WorldWideScience

Sample records for membrane degradation products

  1. Determination of membrane degradation products in the product water of polymer electrolyte membrane fuel cells using liquid chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zedda, Marco

    2011-05-12

    The predominant long term failure of polymer electrolyte membranes (PEM) is caused by hydroxyl radicals generated during fuel cell operation. These radicals attack the polymer, leading to chain scission, unzipping and consequently to membrane decomposition products. The present work has investigated decomposition products of novel sulfonated aromatic hydrocarbon membranes on the basis of a product water analysis. Degradation products from the investigated membrane type and the possibility to detect these compounds in the product water for diagnostic purposes have not been discovered yet. This thesis demonstrates the potential of solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) for the extraction, separation, characterization, identification and quantification of membrane degradation products in the product water of fuel cells. For this purpose, several polar aromatic hydrocarbons with different functional groups were selected as model compounds for the development of reliable extraction, separation and detection methods. The results of this thesis have shown that mixed mode sorbent materials with both weak anion exchange and reversed phase retention properties are well suited for reproducible extraction of both molecules and ions from the product water. The chromatographic separation of various polar aromatic hydrocarbons was achieved by means of phase optimized liquid chromatography using a solvent gradient and on a C18 stationary phase. Sensitive and selective detection of model compounds could be successfully demonstrated by the analysis of the product water using tandem mass spectrometry. The application of a hybrid mass spectrometer (Q Trap) for the characterization of unknown polar aromatic hydrocarbons has led to the identification and confirmation of 4-hydroxybenzoic acid in the product water. In addition, 4-HBA could be verified as a degradation product resulting from PEM decomposition by hydroxyl radicals using an

  2. Lysosomal degradation of membrane lipids.

    Science.gov (United States)

    Kolter, Thomas; Sandhoff, Konrad

    2010-05-03

    The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Biocatalytic degradation of pharmaceuticals, personal care products, industrial chemicals, steroid hormones and pesticides in a membrane distillation-enzymatic bioreactor.

    Science.gov (United States)

    Asif, Muhammad B; Hai, Faisal I; Kang, Jinguo; van de Merwe, Jason P; Leusch, Frederic D L; Price, William E; Nghiem, Long D

    2018-01-01

    Laccase-catalyzed degradation of a broad spectrum of trace organic contaminants (TrOCs) by a membrane distillation (MD)-enzymatic membrane bioreactor (EMBR) was investigated. The MD component effectively retained TrOCs (94-99%) in the EMBR, facilitating their continuous biocatalytic degradation. Notably, the extent of TrOC degradation was strongly influenced by their molecular properties. A significant degradation (above 90%) of TrOCs containing strong electron donating functional groups (e.g., hydroxyl and amine groups) was achieved, while a moderate removal was observed for TrOCs containing electron withdrawing functional groups (e.g., amide and halogen groups). Separate addition of two redox-mediators, namely syringaldehyde and violuric acid, further improved TrOC degradation by laccase. However, a mixture of both showed a reduced performance for a few pharmaceuticals such as primidone, carbamazepine and ibuprofen. Mediator addition increased the toxicity of the media in the enzymatic bioreactor, but the membrane permeate (i.e., final effluent) was non-toxic, suggesting an added advantage of coupling MD with EMBR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Degradation behaviour and excess sludge production of mixed biocoenoses in membrane bioreactors; Abbauverhalten und Ueberschussschlammproduktion von Mischbiozoenosen in Membranbioreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Kraume, M. [Technische Univ. Berlin (Germany). Inst. fuer Verfahrenstechnik; Szewzyk, U. [Technische Univ. Berlin (Germany). Fachgebiet Oekologie und Mikroorganismen

    1999-07-01

    In three different membrane bioreactors (technical scale and pilot scale), process engineering and microbiological studies were carried out over a period of up to three years. The sewage used was sugar-beet molasses slop and municipal sewage. All three plants exhibited stable COD degradation rates of 87 % (molasses slop) and 95 % (municipal sewage). They could be operated during the test period without regular removal of excess sludge. (orig.) [German] An drei unterschiedlichen Membranbioreaktoren (Technikums- und Pilotmassstab) wurden ueber einen Zeitraum von bis zu 3 Jahren verfahrenstechnische und mirkobiologische Untersuchungen durchgefuehrt. Als Abwasser wurde Zuckerrueben-Melasseschlempe und kommunales Abwasser eingesetzt. Alle drei Anlagen zeigten stabile CSB-Abbaugrade von 87% (Melasseschlempe) und 95% (kommunale Abwasser). Sie konnten ueber den Vesuchszeitraum ohne regelmaessigen Abzug von Ueberschussschlamm betrieben werden. (orig.)

  5. Degradation of Polypropylene Membranes Applied in Membrane Distillation Crystallizer

    Directory of Open Access Journals (Sweden)

    Marek Gryta

    2016-03-01

    Full Text Available The studies on the resistance to degradation of capillary polypropylene membranes assembled in a membrane crystallizer were performed. The supersaturation state of salt was achieved by evaporation of water from the NaCl saturated solutions using membrane distillation process. A high feed temperature (363 K was used in order to enhance the degradation effects and to shorten the test times. Salt crystallization was carried out by the application of batch or fluidized bed crystallizer. A significant membrane scaling was observed regardless of the method of realized crystallization. The SEM-EDS, DSC, and FTIR methods were used for investigations of polypropylene degradation. The salt crystallization onto the membrane surface accelerated polypropylene degradation. Due to a polymer degradation, the presence of carbonyl groups on the membranes’ surface was identified. Besides the changes in the chemical structure a significant mechanical damage of the membranes, mainly caused by the internal scaling, was also found. As a result, the membranes were severely damaged after 150 h of process operation. A high level of salt rejection was maintained despite damage to the external membrane surface.

  6. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Yoong-Kee [National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba (Japan); Henson, Neil J.; Kim, Yu Seung [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  7. Removal of organics and degradation products from industrial wastewater by a membrane bioreactor integrated with ozone or UV/H₂O₂ treatment.

    Science.gov (United States)

    Laera, G; Cassano, D; Lopez, A; Pinto, A; Pollice, A; Ricco, G; Mascolo, G

    2012-01-17

    The treatment of a pharmaceutical wastewater resulting from the production of an antibacterial drug (nalidixic acid) was investigated employing a membrane bioreactor (MBR) integrated with either ozonation or UV/H(2)O(2) process. This was achieved by placing chemical oxidation in the recirculation stream of the MBR. A conventional configuration with chemical oxidation as polishing for the MBR effluent was also tested as a reference. The synergistic effect of MBR when integrated with chemical oxidation was assessed by monitoring (i) the main wastewater characteristics, (ii) the concentration of nalidixic acid, (iii) the 48 organics identified in the raw wastewater and (iv) the 55 degradation products identified during wastewater treatment. Results showed that MBR integration with ozonation or UV/H(2)O(2) did not cause relevant drawbacks to both biological and filtration processes, with COD removal rates in the range 85-95%. Nalidixic acid passed undegraded through the MBR and was completely removed in the chemical oxidation step. Although the polishing configuration appeared to give better performances than the integrated system in removing 15 out of 48 secondary organics while similar removals were obtained for 19 other compounds. The benefit of the integrated system was however evident for the removal of the degradation products. Indeed, the integrated system allowed higher removals for 34 out of 55 degradation products while for only 4 compounds the polishing configuration gave better performance. Overall, results showed the effectiveness of the integrated treatment with both ozone and UV/H(2)O(2).

  8. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-12-08

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature.

  9. Differential expression in Phanerochaete chrysosporium of membrane- associated proteins relevant to lignin degradation

    Science.gov (United States)

    Semarjit Shary; Alexander N. Kapich; Ellen A. Panisko; Jon K. Magnuson; Daniel Cullen; Kenneth E. Hammel

    2008-01-01

    Fungal lignin-degrading systems likely include membrane-associated proteins that participate in diverse processes such as uptake and oxidation of lignin fragments, production of ligninolytic secondary metabolites, and defense of the mycelium against ligninolytic oxidants. Little is known about the nature or regulation of these membrane-associated components. We grew...

  10. Track membranes, production, properties, applications

    International Nuclear Information System (INIS)

    Oganesjan, Yu.Ts.

    1994-01-01

    The problems of producing track membranes on heavy ion beams of the Flerov Laboratory are considered. The parameters of the running accelerators and equipment for the irradiation of polymer foils are presented. The process of production of track membranes based on different polymeric materials and various applications of the membranes are described. Special attention is given to the principally new applications and devices developed at the Laboratory. This report presents the results obtained by a big group of scientists and engineers working in the field of elaboration, investigation and application of track membranes (author). 21 refs, 20 figs, 1 tab

  11. Charcoal production and environmental degradation

    International Nuclear Information System (INIS)

    Hosier, R.H.

    1993-01-01

    This paper examines the environmental impacts of continued tree harvesting for charcoal production to supply the urban areas in Tanzania. Woodlands appear to recover relatively well following harvesting for charcoal production. Selective harvesting, where the high quality, low cost fuel production species and specimens are culled first from a piece of land, serves to maintain the viability of the woodlands resource while providing charcoal. This recovery period can be prolonged through any number of human induced activities, such as heavy grazing, multiple burns and extended cultivation periods. At the same time, post-harvest management techniques, such as coppice management, sprout protection and fertilization, can also improve the ability of woodlands to recover following harvesting. The environmental history of a given area determines why certain areas continue to be strong suppliers of woodfuel while others are not. For example, Shinyanga started from a low productivity base and has been degraded by successive waves of tree harvesting compounded by heavy grazing pressure. It is this multiple complex of pressures over a long period of time on land which is intrinsically of low productivity, and not the harvesting of woodlands for fuels, which has led to the environmental degradation in these areas. (author)

  12. Dissection of membrane protein degradation mechanisms by reversible inhibitors

    International Nuclear Information System (INIS)

    Hare, J.F.

    1988-01-01

    The degradation of slowly turning over 125I-lactoperoxidase-labeled plasma membrane polypeptides in response to reversible temperature and lysosomotropic inhibitors was studied in rat hepatoma cultures. Cells were radiolabeled and left for 24 h to allow the removal of rapidly degraded proteins. Remaining trichloroacetic acid-precipitable protein was degraded (t 1/2 = 40-68 h) by an apparent first order process 60-86% sensitive to 10 mM NH4Cl or 5 mM methylamine and greater than 95% inhibited by temperature reduction to 18 degrees C. Thus, membrane proteins are selected for degradation in a time-dependent manner by a system which is sensitive to both 18 degrees C and to lysosomotropic amines. When inhibitory conditions were removed after 40-48 h, degradation of 125I-labeled protein resumed at the same rate as that seen in their absence. Since membrane proteins do not exhibit accelerated degradation after removal of inhibitory conditions, there can be no marking or sorting of those proteins destined for degradation during the 40-h exposure to inhibitory conditions. Exposure to amines or 18 degrees C did not affect the position of two-dimensionally resolved labeled polypeptides. Fractionation of labeled cells on Percoll gradients after 40 h of exposure to low temperature or amines showed that labeled protein remained in the plasma membrane fractions of the gradient although shifted to a slightly lower buoyant density in the presence of amines. These results support the notion that selection of plasma membrane proteins for degradation requires their internalization into acidic vesicles. Lysosomotropic amines and reduced temperature interfere with the selection process by preventing membrane fusion events

  13. Degradation mechanisms of sulfonated poly-aromatic membranes in fuel cell; Mecanismes de degradation des membranes polyaromatiques sulfonees en pile a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Perrot, C

    2006-11-15

    Fuel cell development requires an improvement in the electrode-membrane assembly durability which depends on both the polymer used and the fuel cell operating conditions. The origin of the degradation can be either electrochemical, chemical and/or mechanical. This study deals with the understanding of alternative membranes ageing mechanisms, i.e. non fluorinated membranes, such as sPEEK and sPI. For this kind of membranes, the first process is chemical. Understanding these mechanisms is the first essential step to develop more stable structures. An original approach is developed to overcome the analytical difficulties encountered with polymers. It consists in studying the degradation mechanism on model structures. Ageing are carried out in water, with H{sub 2}O{sub 2} in some cases (identified as a cause of membrane chemical ageing in the fuel cell system), and at different temperatures. The approach consists in separating the different products formed by chromatography. Then they are identified (NMR, IR, MS) and quantified. This method allows us to establish the ageing mechanism. We show that the ageing of a sPEEK structure mainly results from an attack by end chains which spreads to the whole. This mechanism is confirmed on ex-situ and in-situ aged membranes. These two kinds of ageing lead to an important decrease in polymerisation degree (determined by SEC). Formation of the same degradation products is observed. In fuel cells, a heterogeneous degradation is noticed. It takes place mainly on the cathode side. sPI are known for their high sensitivity to hydrolysis. Nevertheless, we highlight a limited degradation at 80 Celsius degrees due to the recombination of hydrolyzed species at this temperature. (author)

  14. In-vitro Degradation Behaviour of Irradiated Bacterial Cellulose Membrane

    International Nuclear Information System (INIS)

    Darwis, D.; Khusniya, T.; Hardiningsih, L.; Nurlidar, F.; Winarno, H.

    2012-01-01

    Bacterial cellulose membrane synthesized by Acetobacter xylinum in coconut water medium has potential application for Guided bone Regeneration. However, this membrane may not meet some application requirements due to its low biodegradation properties. In this paper, incorporation of gamma irradiation into the membrane is a developed strategy to increase its biodegradability properties. The in-vitro degradation study in synthetic body fluid (SBF) of the irradiated membrane has been analyzed during periods of 6 months by means of weight loss, mechanical properties and scanning electron microscopy observation compared to that the un-irradiated one. The result showed that weight loss of irradiated membrane with 25 kGy and 50 kGy and immersed in SBF solution for 6 months reached 18% and 25% respectively. While un-irradiated membrane did not give significant weight loss. Tensile strength of membranes decreases with increasing of irradiation dose and further decreases in tensile strength is observed when irradiated membrane was followed by immersion in SBF solution. Microscope electron image of cellulose membranes shows that un-irradiated bacterial cellulose membrane consists of dense ultrafine fibril network structures, while irradiation result in cleavage of fibrils network of cellulose. The fibrils network become loosely after irradiated membrane immersed in SBF solution due to released of small molecular weight carbohydrates formed during by irradiation from the structure (author)

  15. Novel amphiphilic polymeric ionic liquid-solid phase micro-extraction membrane for the preconcentration of aniline as degradation product of azo dye Orange G under sonication by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Cai, Mei-Qiang; Wei, Xiao-Qing; Du, Chun-Hui; Ma, Xu-Ming; Jin, Mi-Cong

    2014-07-04

    A novel amphiphilic polymeric ionic liquid membrane containing a hydrophilic bromide anion and a hydrophobic carbonyl group was synthesized in dimethylformamide (DMF) systems using the ionic liquid 1-butyl-3-vinylimidazolium bromide (BVImBr) and the methylmethacrylate (MMA) as monomers. The prepared amphiphilic ploy-methylmethacrylate-1-butyl-3-vinylimidazolium bromide (MMA-BVImBr) was characterized by a scanning electron microscope and an infrared spectrum instrument. The results of solid-phase micro-extraction membrane (SPMM) experiments showed that the adsorption capacity of membrane was about 0.76μgμg(-1) for aniline. Based on this, a sensitive method for the determination of trace aniline, as a degradation product of azo dye Orange G under sonication, was developed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The calibration curve showed a good linearity ranging from 0.5 to 10.0μgL(-1) with a correlation coefficient value of 0.9998. The limit of quantification was 0.5μgL(-1). The recoveries ranged from 90.6% to 96.1%. The intra- and inter-day relative standard deviations were less than 8.3% and 10.9%. The developed SPMM-LC-MS/MS method was used successfully for preconcentration of trace aniline produced during the sonication of Orange G solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Knowns and unknowns of plasma membrane protein degradation in plants.

    Science.gov (United States)

    Liu, Chuanliang; Shen, Wenjin; Yang, Chao; Zeng, Lizhang; Gao, Caiji

    2018-07-01

    Plasma membrane (PM) not only creates a physical barrier to enclose the intracellular compartments but also mediates the direct communication between plants and the ever-changing environment. A tight control of PM protein homeostasis by selective degradation is thus crucial for proper plant development and plant-environment interactions. Accumulated evidences have shown that a number of plant PM proteins undergo clathrin-dependent or membrane microdomain-associated endocytic routes to vacuole for degradation in a cargo-ubiquitination dependent or independent manner. Besides, several trans-acting determinants involved in the regulation of endocytosis, recycling and multivesicular body-mediated vacuolar sorting have been identified in plants. More interestingly, recent findings have uncovered the participation of selective autophagy in PM protein turnover in plants. Although great progresses have been made to identify the PM proteins that undergo dynamic changes in subcellular localizations and to explore the factors that control the membrane protein trafficking, several questions remain to be answered regarding the molecular mechanisms of PM protein degradation in plants. In this short review article, we briefly summarize recent progress in our understanding of the internalization, sorting and degradation of plant PM proteins. More specifically, we focus on discussing the elusive aspects underlying the pathways of PM protein degradation in plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng

    2013-01-01

    and multi‐walled carbon nanotubes were used as supports for electrode catalysts and evaluated in accelerated durability tests under potential cycling at 150 °C. Measurements of open circuit voltage, area specific resistance and hydrogen permeation through the membrane were carried out, indicating little...... contribution of the membrane degradation to the performance losses during the potential cycling tests. As the major mechanism of the fuel cell performance degradation, the electrochemical active area of the cathodic catalysts showed a steady decrease in the cyclic voltammetric measurements, which was also......Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black...

  18. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies

    Science.gov (United States)

    Feng, Qi; Yuan, Xiao-Zi; Liu, Gaoyang; Wei, Bing; Zhang, Zhen; Li, Hui; Wang, Haijiang

    2017-10-01

    Proton exchange membrane water electrolysis (PEMWE) is an advanced and effective solution to the primary energy storage technologies. A better understanding of performance and durability of PEMWE is critical for the engineers and researchers to further advance this technology for its market penetration, and for the manufacturers of PEM water electrolyzers to implement quality control procedures for the production line or on-site process monitoring/diagnosis. This paper reviews the published works on performance degradations and mitigation strategies for PEMWE. Sources of degradation for individual components are introduced. With degradation causes discussed and degradation mechanisms examined, the review emphasizes on feasible strategies to mitigate the components degradation. To avoid lengthy real lifetime degradation tests and their high costs, the importance of accelerated stress tests and protocols is highlighted for various components. In the end, R&D directions are proposed to move the PEMWE technology forward to become a key element in future energy scenarios.

  19. Recent advances on membranes and membrane reactors for hydrogen production

    NARCIS (Netherlands)

    Gallucci, F.; Fernandez Gesalaga, E.; Corengia, P.; Sint Annaland, van M.

    2013-01-01

    Membranes and membrane reactors for pure hydrogen production are widely investigated not only because of the important application areas of hydrogen, but especially because mechanically and chemically stable membranes with high perm-selectivity towards hydrogen are available and are continuously

  20. Degradation mechanisms of sulfonated poly-aromatic membranes in fuel cell

    International Nuclear Information System (INIS)

    Perrot, C.

    2006-11-01

    Fuel cell development requires an improvement in the electrode-membrane assembly durability which depends on both the polymer used and the fuel cell operating conditions. The origin of the degradation can be either electrochemical, chemical and/or mechanical. This study deals with the understanding of alternative membranes ageing mechanisms, i.e. non fluorinated membranes, such as sPEEK and sPI. For this kind of membranes, the first process is chemical. Understanding these mechanisms is the first essential step to develop more stable structures. An original approach is developed to overcome the analytical difficulties encountered with polymers. It consists in studying the degradation mechanism on model structures. Ageing are carried out in water, with H 2 O 2 in some cases (identified as a cause of membrane chemical ageing in the fuel cell system), and at different temperatures. The approach consists in separating the different products formed by chromatography. Then they are identified (NMR, IR, MS) and quantified. This method allows us to establish the ageing mechanism. We show that the ageing of a sPEEK structure mainly results from an attack by end chains which spreads to the whole. This mechanism is confirmed on ex-situ and in-situ aged membranes. These two kinds of ageing lead to an important decrease in polymerisation degree (determined by SEC). Formation of the same degradation products is observed. In fuel cells, a heterogeneous degradation is noticed. It takes place mainly on the cathode side. sPI are known for their high sensitivity to hydrolysis. Nevertheless, we highlight a limited degradation at 80 Celsius degrees due to the recombination of hydrolyzed species at this temperature. (author)

  1. Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Liao, J.H.; Li, Qingfeng; Rudbeck, H.C.

    2011-01-01

    the oxidative degradation of the polymer membrane was studied under the Fenton test conditions by the weight loss, intrinsic viscosity, size exclusion chromatography, scanning electron microscopy and Fourier transform infrared spectroscopy. During the Fenton test, significant weight losses depending...... on the initial molecular weight of the polymer were observed. At the same time, viscosity and SEC measurements revealed a steady decrease in molecular weight. The degradation of acid doped PBI membranes under Fenton test conditions is proposed to start by the attack of hydroxyl radicals at the carbon atom......Polybenzimidazole membranes imbibed with acid are emerging as a suitable electrolyte material for high-temperature polymer electrolyte fuel cells. The oxidative stability of polybenzimidazole has been identified as an important issue for the long-term durability of such cells. In this paper...

  2. Investigation on degradation mechanism of ion exchange membrane immersed in highly concentrated tritiated water under the Broader Approach Activities

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Yasunori, E-mail: iwai.yasunori@jaea.go.jp; Sato, Katsumi; Yamanishi, Toshihiko

    2014-10-15

    Highlights: • Endurance of Nafion ion exchange membrane immersed into 1.38 × 10{sup 12} Bq/kg of highly concentrated tritiated water has been demonstrated. • The formation of free hydrophobic free products by reactions between radicals on the membrane and oxygen caused the decrease in ionic conductivity. • From the {sup 19}F NMR spectrum, no distinctive degradation in the membrane structure by interaction with tritium was measured. - Abstract: The ion exchange membrane is a key material for electrolysis cells of the water detritiation system. Durability of ion exchange membrane has been demonstrated under the Broader Approach Activities. Long-term exposure of Nafion{sup ®} ion exchange membrane in 1.38 × 10{sup 12} Bq/kg of tritiated water was conducted at room temperature for up to 2 years. The ionic conductivity of Nafion{sup ®} membrane after immersed in tritiated water was changed. The change in color of membrane from colorless to yellowish was caused by reactions of radicals on the polymer and oxygen molecules in air. Infrared Fourier transform spectrum of a yellowish membrane revealed a small peak for bending vibration of C-H situated at 1437 cm{sup −1}, demonstrating the formation of hydrophobic functional group in the membrane. The hydrophilic network in Nafion{sup ®} membrane was partially obstructed by the hydrophobic free products. This caused the decrease in ionic conductivity. The peak for bending vibration was clearly eliminated in the spectrum of the membrane after treatment by acid for removal of free products. The high-resolution solid state {sup 19}F NMR spectrum of a membrane after immersed in tritiated water was similar to that of a membrane irradiated with gamma-rays. From the {sup 19}F NMR spectrum, no distinctive degradation in the membrane structure by interaction with tritium was measured.

  3. Investigation on degradation mechanism of ion exchange membrane immersed in highly concentrated tritiated water under the Broader Approach Activities

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Sato, Katsumi; Yamanishi, Toshihiko

    2014-01-01

    Highlights: • Endurance of Nafion ion exchange membrane immersed into 1.38 × 10 12 Bq/kg of highly concentrated tritiated water has been demonstrated. • The formation of free hydrophobic free products by reactions between radicals on the membrane and oxygen caused the decrease in ionic conductivity. • From the 19 F NMR spectrum, no distinctive degradation in the membrane structure by interaction with tritium was measured. - Abstract: The ion exchange membrane is a key material for electrolysis cells of the water detritiation system. Durability of ion exchange membrane has been demonstrated under the Broader Approach Activities. Long-term exposure of Nafion ® ion exchange membrane in 1.38 × 10 12 Bq/kg of tritiated water was conducted at room temperature for up to 2 years. The ionic conductivity of Nafion ® membrane after immersed in tritiated water was changed. The change in color of membrane from colorless to yellowish was caused by reactions of radicals on the polymer and oxygen molecules in air. Infrared Fourier transform spectrum of a yellowish membrane revealed a small peak for bending vibration of C-H situated at 1437 cm −1 , demonstrating the formation of hydrophobic functional group in the membrane. The hydrophilic network in Nafion ® membrane was partially obstructed by the hydrophobic free products. This caused the decrease in ionic conductivity. The peak for bending vibration was clearly eliminated in the spectrum of the membrane after treatment by acid for removal of free products. The high-resolution solid state 19 F NMR spectrum of a membrane after immersed in tritiated water was similar to that of a membrane irradiated with gamma-rays. From the 19 F NMR spectrum, no distinctive degradation in the membrane structure by interaction with tritium was measured

  4. Photocatalytic Degradation of Oil using Polyvinylidene Fluoride/Titanium Dioxide Composite Membrane for Oily Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Rusli Ummi Nadiah

    2016-01-01

    Full Text Available Production of industrial wastewater is increasing as the oil and gas industry grows rapidly over the years. The constituents in the industrial wastewater such as organic and inorganic matters, dispersed and lubricant oil and metals which have high toxicity become the major concern to the environment and ecosystem. There are many technologies are being used for oil removal from industrial wastewater. However, there are still needs to find an effective technology to treat oily wastewater before in can be discharge safely to the environment. Membrane technology is an attractive separation technology to treat oily wastewater. The aim of this study is to fabricate polyvinylidene/titanium dioxide (PVDF/TiO2 composite membrane with further treatment using hot pressed method to enhance the adhesion between TiO2 with the membrane surfaces. In this study the structural and physical properties of fabricated membrane were conducted using X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FTIR respectively. The photocatalytic degradation of oil was measured using UV-Vis Spectroscopy. The FTIR results confirmed that, hot pressed PVDF/TiO2 membrane TiO2 was successfully deposited onto PVDF membranes surface and XRD results shows that the XRD pattern of PVDF//TiO2 found that the crystalline structure was remained unchanged after hot pressed. Clear water was obtained after synthetic oily wastewater was exposed to visible light for at least 6 hours. In conclusion, PVDF/TiO2 composite membrane can be a potential candidate to degrade oil in oily wastewater and suggested to possess an excellent performance if perform simultaneously with membrane separation process.

  5. Fibrin degradation products blood test

    Science.gov (United States)

    ... behind when clots dissolve in the blood. A blood test can be done to measure these products. ... Certain medicines can change blood test results. Tell your health care provider about all the medicines you take. Your provider will tell you if you need ...

  6. Nuclear liquid wastes treatment: study of the reverse osmosis membranes degradation under γ irradiation

    International Nuclear Information System (INIS)

    Combernoux, Nicolas

    2015-01-01

    The treatment of nuclear liquid wastes by reverse osmosis (RO) involved issues of the water radiolysis and the membrane ageing due to γ irradiation effects. Membrane performances (permeability, strontium and cesium retention) were assessed after γ irradiation. Irradiation was carried out with an external 60 Co source in different conditions that simulated real used of the process (dose from 0.1 to 1 MGy, dose rate of 0.5 and 5 kGy.h -1 , with or without oxygen or water). Several analytical methods were performed to evaluate irradiation effects (ATR-FTIR, XPS, gas production, water soluble species released from the membrane). The methodology developed led to relevant information due to an innovative analytical protocol. Membrane performances started dropping between 0.2 and 0.5 MGy with oxygen and water (dose rate 0.5 kGy.h -1 ). This shift was linked to chains scissions inside the membrane active layer. The membrane degradation was weaker without oxygen or water or at high dose rate (5 kGy.h -1 ). Results showed that each analysis comforted each other. Membrane performances were also evaluated with three different types of liquid effluents, representing radioactive effluents from a post-disaster situation (groundwater type), disaster situation (seawater) or process water. Experiments were carried out at lab and pilot scales. Results indicated that the treatment of each effluent was possible by RO with an adequate choice of membrane and operating parameters. Finally, the time to reach an integrated dose threshold for the membrane in real conditions was estimated with the RABBI software: a dozen of days in the case of disaster situation to several years in the two other cases. (author) [fr

  7. Modelling the behaviour of organic degradation products

    International Nuclear Information System (INIS)

    Cross, J.E.; Ewart, F.T.; Greenfield, B.F.

    1989-03-01

    Results are presented from recent studies at Harwell which show that the degradation products which are formed when certain organic waste materials are exposed to the alkaline conditions typical of a cementitious environment, can enhance the solubility of plutonium, even at pH values as high as 12, by significant factors. Characterisation of the degradation products has been undertaken but the solubility enhancement does not appear to be related to the concentration of any of the major organic species that have been identified in the solutions. While it has not been possible to identify by analysis the organic ligand responsible for the increased solubility of plutonium, the behaviour of D-Saccharic acid does approach the behaviour of the degradation products. The PHREEQE code has been used to simulate the solubility of plutonium in the presence of D-Saccharic acid and other model degradation products, in order to explain the solubility enhancement. The extrapolation of the experimental conditions to the repository is the major objective, but in this work the ability of a model to predict the behaviour of plutonium over a range of experimental conditions has been tested. (author)

  8. Insulin degradation products from perfused rat kidney

    International Nuclear Information System (INIS)

    Duckworth, W.C.; Hamel, F.G.; Liepnieks, J.; Peavy, D.; Frank, B.; Rabkin, R.

    1989-01-01

    The kidney is a major site for insulin metabolism, but the enzymes involved and the products generated have not been established. To examine the products, we have perfused rat kidneys with insulin specifically iodinated on either the A14 or the B26 tyrosine. Labeled material from both the perfusate and kidney extract was examined by Sephadex G50 and high-performance liquid chromatography (HPLC). In perfusate from a filtering kidney, 22% of the insulin-sized material was not intact insulin on HPLC. With the nonfiltering kidney, 10.6% was not intact insulin. Labeled material from HPLC was sulfitolyzed and reinjected on HPLC. By use of 125 I-iodo(A14)-insulin, almost all the degradation products contained an intact A-chain. By use of 125 I-iodo(B26)-insulin, several different B-chain-cleaved products were obtained. The material extracted from the perfused kidney was different from perfusate products but similar to intracellular products from hepatocytes, suggesting that cellular metabolism by kidney and liver are similar. The major intracellular product had characteristics consistent with a cleavage between the B16 and B17 amino acids. This product and several of the perfusate products are also produced by insulin protease suggesting that this enzyme is involved in the degradation of insulin by kidney

  9. Core degradation and fission product release

    International Nuclear Information System (INIS)

    Wright, R.W.; Hagen, S.J.L.

    1992-01-01

    Experiments on core degradation and melt progression in severe LWR accidents have provided reasonable understanding of the principal processes involved in the early phase of melt progression that extends through core degradation and metallic material melting and relocation. A general but not a quantitative understanding of late phase melt progression that involves ceramic material melting and relocation has also been obtained, primarily from the TMI-2 core examination. A summary is given of the current state of knowledge on core degradation and melt progression obtained from these integral experiments and of the principal remaining significant uncertainties. A summary is also given of the principal results on in-vessel fission product release obtained from these experiments. (author). 8 refs, 5 figs, 3 tabs

  10. Glycerol-plasticised silk membranes made using formic acid are ductile, transparent and degradation-resistant.

    Science.gov (United States)

    Allardyce, Benjamin J; Rajkhowa, Rangam; Dilley, Rodney J; Redmond, Sharon L; Atlas, Marcus D; Wang, Xungai

    2017-11-01

    Regenerated silk fibroin membranes tend to be brittle when dry. The use of plasticisers such as glycerol improve membrane ductility, but, when combined with aqueous processing, can lead to a higher degradation rate than solvent-annealed membranes. This study investigated the use of formic acid as the solvent with glycerol to make deformable yet degradation-resistant silk membranes. Here we show that membranes cast using formic acid had low light scattering, with a diffuse transmittance of less than 5% over the visible wavelengths, significantly lower than the 20% transmittance of aqueous derived silk/glycerol membranes. They had 64% β-sheet content and lost just 30% of the initial silk weight over 6h when tested with an accelerated enzymatic degradation assay, in comparison the aqueous membranes completely degraded within this timeframe. The addition of glycerol also improved the maximum elongation of formic acid derived membranes from under 3% to over 100%. They also showed good cytocompatibility and supported the adhesion and migration of human tympanic membrane keratinocytes. Formic acid based, silk/glycerol membranes may be of great use in medical applications such as repair of tympanic membrane perforation or ocular applications where transparency and resistance to enzymatic degradation are important. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Continuous production of polymethylpentene membranes

    Science.gov (United States)

    Epperson, B.J.; Burnett, L.J.; Helm, V.D.

    1983-11-15

    Gas separation membranes may be prepared in a continuous manner by passing a porous support which may, if so desired, be backed by a fabric through a solution of polymethylpentene dissolved in an organic solvent such as hexane. The support member is passed through the solution while one side thereof is in contact with a roller, thereby permitting only one side of the support member to be coated with the polymer. After continuously withdrawing the support member from the bath, the solvent is allowed to evaporate and the resulting membrane is recovered.

  12. Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2015-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2 and meth...

  13. Analysis of deltamethrin's degradation products by irradiation

    International Nuclear Information System (INIS)

    Wu Ling; Huang Min; Chen Chun; Lei Qing; Du Xiaoying; Xie Yan; Wang Yan; Gao Peng; He Jiang

    2012-01-01

    Deltamethrin were dissolved in ethanol and water; acetone and water; dimethylsulfoxide and water, irradiating these liquors by 60 Co-γ under the dose of 5∼50 kGy. The irradiation system were analyzed by GC/MS, result shows: there were some differences under different irradiation doses; the main degradation products are: α-cyano-3-phenoxy benzyl alcohol, 3-Phenoxybenzaldehyde, 3-Phenoxybenzacetonitrile and bromomethane. (authors)

  14. An Integrated Membrane Process for Butenes Production

    Directory of Open Access Journals (Sweden)

    Leonardo Melone

    2016-11-01

    Full Text Available Iso-butene is an important material for the production of chemicals and polymers. It can take part in various chemical reactions, such as hydrogenation, oxidation and other additions owing to the presence of a reactive double bond. It is usually obtained as a by-product of a petroleum refinery, by Fluidized Catalytic Cracking (FCC of naphtha or gas-oil. However, an interesting alternative to iso-butene production is n-butane dehydroisomerization, which allows the direct conversion of n-butane via dehydrogenation and successive isomerization. In this work, a simulation analysis of an integrated membrane system is proposed for the production and recovery of butenes. The dehydroisomerization of n-butane to iso-butene takes place in a membrane reactor where the hydrogen is removed from the reaction side with a Pd/Ag alloys membrane. Afterwards, the retentate and permeate post-processing is performed in membrane separation units for butenes concentration and recovery. Four different process schemes are developed. The performance of each membrane unit is analyzed by appropriately developed performance maps, to identify the operating conditions windows and the membrane permeation properties required to maximize the recovery of the iso-butene produced. An analysis of integrated systems showed a yield of butenes higher than the other reaction products with high butenes recovery in the gas separation section, with values of molar concentration between 75% and 80%.

  15. DIDS prevents ischemic membrane degradation in cultured hippocampal neurons by inhibiting matrix metalloproteinase release.

    Directory of Open Access Journals (Sweden)

    Matthew E Pamenter

    Full Text Available During stroke, cells in the infarct core exhibit rapid failure of their permeability barriers, which releases ions and inflammatory molecules that are deleterious to nearby tissue (the penumbra. Plasma membrane degradation is key to penumbral spread and is mediated by matrix metalloproteinases (MMPs, which are released via vesicular exocytosis into the extracellular fluid in response to stress. DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid preserves membrane integrity in neurons challenged with an in vitro ischemic penumbral mimic (ischemic solution: IS and we asked whether this action was mediated via inhibition of MMP activity. In cultured murine hippocampal neurons challenged with IS, intracellular proMMP-2 and -9 expression increased 4-10 fold and extracellular latent and active MMP isoform expression increased 2-22 fold. MMP-mediated extracellular gelatinolytic activity increased ∼20-50 fold, causing detachment of 32.1±4.5% of cells from the matrix and extensive plasma membrane degradation (>60% of cells took up vital dyes and >60% of plasma membranes were fragmented or blebbed. DIDS abolished cellular detachment and membrane degradation in neurons and the pathology-induced extracellular expression of latent and active MMPs. DIDS similarly inhibited extracellular MMP expression and cellular detachment induced by the pro-apoptotic agent staurosporine or the general proteinase agonist 4-aminophenylmercuric acetate (APMA. Conversely, DIDS-treatment did not impair stress-induced intracellular proMMP production, nor the intracellular cleavage of proMMP-2 to the active form, suggesting DIDS interferes with the vesicular extrusion of MMPs rather than directly inhibiting proteinase expression or activation. In support of this hypothesis, an antagonist of the V-type vesicular ATPase also inhibited extracellular MMP expression to a similar degree as DIDS. In addition, in a proteinase-independent model of vesicular exocytosis, DIDS

  16. N-Doped TiO₂-Coated Ceramic Membrane for Carbamazepine Degradation in Different Water Qualities.

    Science.gov (United States)

    Luster, Enbal; Avisar, Dror; Horovitz, Inna; Lozzi, Luca; Baker, Mark A; Grilli, Rossana; Mamane, Hadas

    2017-07-31

    The photocatalytic degradation of the model pollutant carbamazepine (CBZ) was investigated under simulated solar irradiation with an N-doped TiO₂-coated Al₂O₃ photocatalytic membrane, using different water types. The photocatalytic membrane combines photocatalysis and membrane filtration in a single step. The impact of each individual constituent such as acidity, alkalinity, dissolved organic matter (DOM), divalent cations (Mg 2+ and Ca 2+ ), and Cl - on the degradation of CBZ was examined. CBZ in water was efficiently degraded by an N-doped TiO₂-coated Al₂O₃ membrane. However, elements added to the water, which simulate the constituents of natural water, had an impact on the CBZ degradation. Water alkalinity inhibited CBZ degradation mostly due to increase in pH while radical scavenging by carbonate was more dominant at higher values (>200 mg/L as CaCO₃). A negative effect of Ca 2+ addition on photocatalytic degradation was found only in combination with phosphate buffer, probably caused by deposition of CaHPO₄ or CaHPO₄·2H₂O on the catalyst surface. The presence of Cl - and Mg 2+ ions had no effect on CBZ degradation. DOM significantly inhibited CBZ degradation for all tested background organic compounds. The photocatalytic activity of N-doped TiO₂-coated Al₂O₃ membranes gradually decreased after continuous use; however, it was successfully regenerated by 0.1% HCl chemical cleaning. Nevertheless, dissolution of metals like Al and Ti should be monitored following acid cleaning.

  17. Membrane complexes of Syntrophomonas wolfei involved in syntrophic butyrate degradation and hydrogen formation

    Directory of Open Access Journals (Sweden)

    Bryan Regis Crable

    2016-11-01

    Full Text Available Syntrophic butyrate metabolism involves the thermodynamically unfavorable production of hydrogen and/or formate from the high potential electron donor, butyryl-CoA. Such redox reactions can occur only with energy input by a process called reverse electron transfer. Previous studies have demonstrated that hydrogen production from butyrate requires the presence of a proton gradient, but the biochemical machinery involved has not been clearly elucidated. In this study, the gene and enzyme systems involved in reverse electron transfer by Syntrophomonas wolfei were investigated using proteomic and gene expression approaches. S. wolfei was grown in coculture with Methanospirillum hungatei or Dehalococcoides mccartyi under conditions requiring reverse electron transfer and compared to both axenic S. wolfei cultures and cocultures grown in conditions that do not require reverse electron transfer. Blue native gel analysis of membranes solubilized from syntrophically grown cells revealed the presence of a membrane-bound hydrogenase, Hyd2, which exhibited hydrogenase activity during in gel assays. Bands containing a putative iron-sulfur (FeS oxidoreductase were detected in membranes of crotonate-grown and butyrate grown S. wolfei cells. The genes for the corresponding hydrogenase subunits, hyd2ABC, were differentially expressed at higher levels during syntrophic butyrate growth when compared to growth on crotonate. The expression of the FeS oxidoreductase gene increased when S. wolfei was grown with M. hungatei. Additional membrane-associated proteins detected included FoF1 ATP synthase subunits and several membrane transporters that may aid syntrophic growth. Furthermore, syntrophic butyrate metabolism can proceed exclusively by interspecies hydrogen transfer, as demonstrated by growth with D. mccartyi, which is unable to use formate. These results argue for the importance of Hyd2 and FeS oxidoreductase in reverse electron transfer during syntrophic

  18. Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal

    DEFF Research Database (Denmark)

    Ahmadi Gavlighi, Hassan; Meyer, Anne S.; Mikkelsen, Jørn Dalgaard

    2013-01-01

    Product inhibition by cellobiose decreases the rate of enzymatic cellulose degradation. The optimal reaction conditions for two Emericella (Aspergillus) nidulans-derived cellobiohydrolases I and II produced in Pichia pastoris were identified as CBHI: 52 °C, pH 4.5–6.5, and CBHII: 46 °C, pH 4.......8. The optimum in a mixture of the two was 50 °C, pH 4.9. An almost fourfold increase in enzymatic hydrolysis yield was achieved with intermittent product removal of cellobiose with membrane filtration (2 kDa cut-off): The conversion of cotton cellulose after 72 h was ~19 % by weight, whereas the conversion...

  19. New insight of hybrid membrane to degrade Congo red and Reactive yellow under sunlight.

    Science.gov (United States)

    Rajeswari, A; Jackcina Stobel Christy, E; Pius, Anitha

    2018-02-01

    A study was carried out to investigate the degradation of organic contaminants (Congo red and Reactive yellow - 105) using cellulose acetate - polystyrene (CA-PS) membrane with and without ZnO impregnation. Scanning electron microscope (SEM), electron dispersive analysis of X-rays (EDAX), Fourier transform infrared spectrometer (FTIR), atomic force microscope (AFM) and thermogravimeric analysis (TG-DTA) analysis were carried out to characterize bare and ZnO impregnated CA-PS membranes. Membrane efficiency was also tested for pure water flux and antifouling performance. The modified membrane showed almost 85% water flux recovery. Blending of ZnO nanoparticles to CA-PS matrix could decrease membrane fouling and increase permeation quality of the membrane with above 90% of photocatalytic degradation efficiency for dyes. The rate of degradation of dyes was observed using UV-Vis spectrometer. Reusability of CA-PS-ZnO membrane was studied and no significant change was noted in the degradation efficiency until fourth cycle. Langmuir-Hinshelwood kinetic model well describes the photo degradation capacity and the degradation of dyes CR and RY - 105 exhibited pseudo-first order kinetics. The regression coefficient (R) of CR and RY - 105 found to be 0.99. The novelty of the prepared CA-PS-ZnO membrane is that it has better efficiency and high thermal stability than our previously reported material. Therefore, ZnO impregnated CA-PS membrane had proved to be an innovative alternative for the degradation of CR and RY - 105 dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Removal and Degradation Pathways of Sulfamethoxazole Present in Synthetic Municipal Wastewater via an Anaerobic Membrane Bioreactor

    KAUST Repository

    Sanchez Huerta, Claudia

    2016-05-01

    The current global water crisis in addition to continues contamination of natural water bodies with harmful organic micropollutants (OMPs) have driven the development of new water treatment technologies that allow the efficient removal of such compounds. Among a long list of OMPs, antibiotics are considered as top priority pollutants to be treated due to their great resistance to biological treatments and their potential to develop bacterial resistance. Different approaches, such as membrane-based and advance oxidation processes have been proposed to alleviate or minimize antibiotics discharge into aquatic environments. However most of these processes are costly and generate either matrices with high concentration of OMPs or intermediate products with potentially greater toxicity or persistence. Therefore, this thesis proposes the study of an anaerobic membrane bioreactor (AnMBR) for the treatment of synthetic municipal wastewater containing sulfamethoxazole (SMX), a world widely used antibiotic. Besides the general evaluation of AnMBR performance in the COD removal and biogas production, this research mainly focuses on the SMX removal and its degradation pathway. Thus 5 SMX quantification was performed through solid phase extraction-liquid chromatography/mass spectrometry and the identification of its transformation products (TPs) was assessed by gas chromatography/mass spectrometry technique. The results achieved showed that, working under optimal conditions (35°C, pH 7 and ORP around -380 to -420 mV) and after a biomass adaptation period (maintaining 0.85 VSS/TSS ratio), the AnMBR process provided over 95% COD removal and 95-98% SMX removal, while allowing stable biogas composition and methane production (≈130 mL CH4/g CODremoved). Kinetic analysis through a batch test showed that after 24 h of biological reaction, AnMBR process achieved around 94% SMX removal, indicating a first order kinetic reaction with K= 0.119, which highlights the high degradation

  1. Vitamin C Degradation Products and Pathways in the Human Lens*

    OpenAIRE

    Nemet, Ina; Monnier, Vincent M.

    2011-01-01

    Vitamin C and its degradation products participate in chemical modifications of proteins in vivo through non-enzymatic glycation (Maillard reaction) and formation of different products called advanced glycation end products. Vitamin C levels are particularly high in selected tissues, such as lens, brain and adrenal gland, and its degradation products can inflict substantial protein damage via formation of advanced glycation end products. However, the pathways of in vivo vitamin C degradation ...

  2. Report: More Information Is Needed On Toxaphene Degradation Products

    Science.gov (United States)

    Report #2006-P-00007, Dec 16, 2005. Toxaphene in the environment changes, or degrades. The degradation products are different from the original toxaphene in chemical composition and how they appear to testing instruments, so they could go unreported.

  3. Degradation and contamination of perfluorinated sulfonic acid membrane due to swelling-dehydration cycles

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Morgen, Per; Skou, Eivind Morten

    Formation of sulfonic anhydride S-O-S (from the condensation of sulfonic acids) was known one of the important degradation mechanisms [i] for Nafion membrane under hydrothermal aging condition, which is especially critical for hydrogen fuel cells. Similar mechanism would also have be desirable...... to the membrane degradation in direct methanol fuel cells (DMFCs), where liquid water has direct contact with the electrolyte. An ex-situ experiment was established with swelling-dehydration cycles on the membrane. However, formation of sulfonic anhydride was not detected during the entire treatment; instead...

  4. Reduction in energy consumption of electrochemical pesticide degradation through combination with membrane filtration

    DEFF Research Database (Denmark)

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen; Muff, Jens

    2015-01-01

    A significant challenge for large-scale use of electrochemical oxidation (EO) is high energy consumption, and for EO to become accepted as a standard technique, the amount of energy consumed in the process must be reduced. In this study, it was investigated how the energy consumption of EO could...... be lowered by combining the process with membrane filtration, in a setup where EO was applied to the membrane retentate stream. Use of two types of membranes, a nanofiltration (NF) and a reverse osmosis (RO) membrane, was investigated, and to provide realistic estimates on the energy consumption...... of the treatment, natural groundwater spiked with the pesticide residue 2,6-dichlorobenzamide (BAM) was used as matrix in the experiments. To understand the effect of the membranes on the energy consumption, their effect on the EO degradation efficiency was also determined. The results showed that membranes...

  5. Vitamin C degradation products and pathways in the human lens.

    Science.gov (United States)

    Nemet, Ina; Monnier, Vincent M

    2011-10-28

    Vitamin C and its degradation products participate in chemical modifications of proteins in vivo through non-enzymatic glycation (Maillard reaction) and formation of different products called advanced glycation end products. Vitamin C levels are particularly high in selected tissues, such as lens, brain and adrenal gland, and its degradation products can inflict substantial protein damage via formation of advanced glycation end products. However, the pathways of in vivo vitamin C degradation are poorly understood. Here we have determined the levels of vitamin C oxidation and degradation products dehydroascorbic acid, 2,3-diketogulonic acid, 3-deoxythreosone, xylosone, and threosone in the human lens using o-phenylenediamine to trap both free and protein-bound adducts. In the protein-free fraction and water-soluble proteins (WSP), all five listed degradation products were identified. Dehydroascorbic acid, 2,3-diketogulonic acid, and 3-deoxythreosone were the major products in the protein-free fraction, whereas in the WSP, 3-deoxythreosone was the most abundant measured dicarbonyl. In addition, 3-deoxythreosone in WSP showed positive linear correlation with age (p degradation product bound to human lens proteins provides in vivo evidence for the non-oxidative pathway of dehydroascorbate degradation into erythrulose as a major pathway for vitamin C degradation in vivo.

  6. Influence of radiolytic degradation products from organic phase

    International Nuclear Information System (INIS)

    Azevedo, H.L.P. de.

    1980-01-01

    The influence of primary and secondary degradation products from TBP - dodecane on zirconium extraction is studied. The presence of radiolytical degradation at organic phase, in systems of initial concentration of HNO 3 1 and 4M, and absorbed γ radiation doses from 0,5 to 4,5 Wh/l, lead to an increase of zirconium extraction, being the HDBP the main product of degradation responsable by this effect. The influence of secondary degradation products is significative in systems of HNO 3 1M initial concentration. The formation of precipitator in extractions of Zr in HNO 3 1M with irradiated TBP-dodecane was observed. (M.C.K.) [pt

  7. Effect of perfluorosulfonic acid membrane equivalent weight on degradation under accelerated stress conditions

    International Nuclear Information System (INIS)

    Rodgers, Marianne P.; Pearman, Benjamin P.; Mohajeri, Nahid; Bonville, Leonard J.; Slattery, Darlene K.

    2013-01-01

    The equivalent weight of proton exchange membranes has a large effect on their properties and can impact performance and durability in hydrogen fuel cells. For example, increasing the EW increases the crystallinity of perfluorosulfonic acid membranes, while water content and glass transition temperature decrease. The length of the sulfonic acid side chain also impacts membrane properties. Perfluorosulfonic acid membranes with shorter sulfonic acid side chains, though they exhibit similar gas permeability, have been shown to have higher crystallinity, higher glass transition temperature, slightly lower water content, and lower proton conductivity than membranes with longer sulfonic acid side chains for a given EW. Although many reports have investigated cell performance for membranes as a function of low EW and side chains length, their impact on cell durability is not well understood. Because side chain attack by radicals formed during fuel cell operation is a major source of membrane degradation, it is reasonable to hypothesize that membranes with lower EW and, therefore, more sulfonic acid side chains, would have lower durability. This study evaluates membrane degradation for cells containing PFSA membranes with 750 EW, 950 EW, and 1100 EW. The 750 EW membrane contained short sulfonic acid side-chains while the 950 EW and 1100 EW membranes were Nafion ® -based with long sulfonic acid side-chains. Membranes were tested in fuel cells for 100 h under open circuit voltage, at 90 °C and 30% relative humidity. Diagnostic tests conducted on the cells included hydrogen crossover, fluoride emission, catalyst electrochemical surface area, posttest membrane scanning electron microscopy/transmission electron microscopy evaluation, and defect identification in membranes. The 950 EW cell had the highest decay metrics including fluoride emission, voltage decay, loss in ECA, and loss in cell performance. In all cases, the 1100 EW cell showed the lowest degradation. This has

  8. Potentialities of a Membrane Reactor with Laccase Grafted Membranes for the Enzymatic Degradation of Phenolic Compounds in Water

    Directory of Open Access Journals (Sweden)

    Vorleak Chea

    2014-10-01

    Full Text Available This paper describes the degradation of phenolic compounds by laccases from Trametes versicolor in an enzymatic membrane reactor (EMR. The enzymatic membranes were prepared by grafting laccase on a gelatine layer previously deposited onto α-alumina tubular membranes. The 2,6-dimethoxyphenol (DMP was selected  from among the three different phenolic compounds tested (guaiacol, 4-chlorophenol and DMP to study the performance of the EMR in dead end configuration. At the lowest feed substrate concentration tested (100 mg·L−1, consumption increased with flux (up to 7.9 × 103 mg·h−1·m−2 at 128 L·h−1·m−2, whereas at the highest substrate concentration (500 mg·L−1, it was shown that the reaction was limited by the oxygen content.

  9. Research of the degradation products of chitosan's angiogenic function

    International Nuclear Information System (INIS)

    Wang Jianyun; Chen Yuanwei; Ding Yulong; Shi Guoqi; Wan Changxiu

    2008-01-01

    Angiogenesis is of great importance in tissue engineering and has gained large attention in the past decade. But how it will be influenced by the biodegradable materials, especially their degradation products, remains unknown. Chitosan (CS) is a kind of naturally occurred polysaccharide which can be degraded in physiological environment. In order to gain some knowledge of the influences of CS degradation products on angiogenesis, the interaction of vascular endothelial cells with the degradation products was investigated in the present study. The CS degradation products were prepared by keeping CS sample in physiological saline aseptically at 37 deg. C for 120 days. Endothelial cells were co-cultured with the degradation products and the angiogenic cell behaviors, including cell proliferation, migration and tube-like structure (TLS) formation, were tested by MTT assay, cell migration quantification method (CMQM), and tube-like structure quantification method (TLSQM) respectively. Furthermore, mRNA expressions of vascular endothelial growth factor (VEGF) and matrix metallo proteinase (MMP-2) were determined by real-time reverse transcriptional polymerase chain reaction (RT-PCR). Physiological saline served as a negative control. As the results showed, the degradation products obtained from 20th to 60th day significantly inhibited the proliferation, migration, and TLS formation of endothelial cells. However, degradation products of the first 14 days and the last 30 days were found to be proangiogenic. At the molecular level, the initial results indicated that the mRNA expressions of VEGF and MMP-2 were increased by the degradation products of 7th day, but were decreased by the ones of 60th day. According to all the results, it could be concluded that the angiogenic behaviors of endothelial cells at both cellular and molecular level could be significantly stimulated or suppressed by the degradation products of CS and the influences are quite time-dependent

  10. A membrane stirrer for product recovery and substrate feeding.

    Science.gov (United States)

    Femmer, T; Carstensen, F; Wessling, M

    2015-02-01

    During fermentation processes, in situ product recovery (ISPR) using submerged membranes allows a continuous operation mode with effective product removal. Continuous recovery reduces product inhibition and organisms in the reactor are not exposed to changing reaction conditions. For an effective in situ product removal, submerged membrane systems should have a sufficient large membrane area and an anti-fouling concept integrated in a compact device for the limited space in a lab-scale bioreactor. We present a new membrane stirrer with integrated filtration membranes on the impeller blades as well as an integrated gassing concept in an all-in-one device. The stirrer is fabricated by rapid prototyping and is equipped with a commercial micromesh membrane. Filtration performance is tested using a yeast cell suspension with different stirring speeds and aeration fluxes. We reduce membrane fouling by backflushing through the membrane with the product stream. © 2014 Wiley Periodicals, Inc.

  11. Sinalbin degradation products in mild yellow mustard paste

    Directory of Open Access Journals (Sweden)

    Paunović Dragana

    2012-01-01

    Full Text Available Sinalbin degradation products in mild yellow mustard paste were investigated. The analyzed material consisted of a mild yellow mustard paste condiment and ground white mustard seeds which were originally used in the mustard paste production process. The samples were extracted in a Soxhlet extraction system and analyzed by gas chromatography - mass spectrometry (GC-MS technique. The only sinalbin degradation product in ground mustard seeds was 2-(4-hydroxyphenylacetonitrile. The most abundant sinalbin degradation product in yellow mustard paste was 4-(hydroxymethylphenol. Other compounds identified in this sample were: 4-methyl phenol, 4-ethyl phenol, 4-(2-hydroxyethylphenol and 2-(4-hydroxyphenyl ethanoic acid.

  12. ESCRT-dependent degradation of ubiquitylated plasma membrane proteins in plants.

    Science.gov (United States)

    Isono, Erika; Kalinowska, Kamila

    2017-12-01

    To control the abundance of plasma membrane receptors and transporters is crucial for proper perception and response to extracellular signals from surrounding cells and the environment. Posttranslational modification of plasma membrane proteins, especially ubiquitin conjugation or ubiquitylation, is key for the determination of stability for many transmembrane proteins localized on the cell surface. The targeted degradation is ensured by a complex network of proteins among which the endosomal sorting complex required for transport (ESCRT) plays a central role. This review focuses on progresses made in recent years on the understanding of the function of the ESCRT machinery in the degradation of ubiquitylated plasma membrane proteins in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Sinalbin degradation products in mild yellow mustard paste

    OpenAIRE

    Paunović, Dragana; Šolević-Knudsen, Tatjana; Krivokapić, Mirjana; Zlatković, Branislav; Antić, Mališa

    2012-01-01

    Sinalbin degradation products in mild yellow mustard paste were investigated. The analyzed material consisted of a mild yellow mustard paste condiment and ground white mustard seeds which were originally used in the mustard paste production process. The samples were extracted in a Soxhlet extraction system and analyzed by gas chromatography - mass spectrometry (GC-MS) technique. The only sinalbin degradation product in ground mustard seeds was 2-(4-hydroxyphenyl)acetonitrile. The most a...

  14. On the use of supported ceria membranes for oxyfuel process/syngas production

    DEFF Research Database (Denmark)

    Lobera, M.P.; Serra, J.M.; Foghmoes, Søren Preben Vagn

    2011-01-01

    Ceramic oxygen transport membranes (OTMs) enable selective oxygen separation from air at high temperatures. Among several potential applications for OTMs, the use in (1) oxygen production for oxyfuel power plants and (2) the integration in high-temperature catalytic membrane reactors for alkane...... upgrading through selective oxidative reactions are of special interest. Nevertheless, these applications involve the direct contact of the membrane surface with carbon-rich atmospheres. Most state-of-the-art permeable membranes are based on perovskites, which are prone to carbonation under operation in CO2......-rich environments and/or decomposition in reducing gas environments. The oxygen flux through supported thin film membranes of Ce0.9Gd0.1O1.95−δ (CGO) with 2 mol.% of cobalt was measured for oxygen separation in oxyfuel processes and in syngas production and degradation was compared to perovskite...

  15. Dilaton dynamics from production of tensionless membranes

    International Nuclear Information System (INIS)

    Cremonini, Sera; Watson, Scott

    2006-01-01

    In this paper we consider classical and quantum corrections to cosmological solutions of 11D supergravity (SUGRA) coming from dynamics of membrane states. We first consider the supermembrane spectrum following the approach of Russo and Tseytlin for consistent quantization. We calculate the production rate of Bogomol'nyi-Prasad-Sommerfield (BPS) membrane bound states in a cosmological background and find that such effects are generically suppressed by the Planck scale, as expected. However, for a modified brane spectrum possessing enhanced symmetry, production can be finite and significant. We stress that this effect could not be anticipated given only a knowledge of the low-energy effective theory. Once on shell, inclusion of these states leads to an attractive force pulling the dilaton towards a fixed point of S-duality, namely g s =1. Although the SUGRA description breaks down in this regime, inclusion of the enhanced states suggests that the center of M-theory moduli space is a dynamical attractor. Moreover, our results seem to suggest that string dynamics does indeed favor a vacuum near fixed points of duality

  16. Polymer electrolyte membrane water electrolysis: Restraining degradation in the presence of fluctuating power

    Science.gov (United States)

    Rakousky, Christoph; Reimer, Uwe; Wippermann, Klaus; Kuhri, Susanne; Carmo, Marcelo; Lueke, Wiebke; Stolten, Detlef

    2017-02-01

    Polymer electrolyte membrane (PEM) water electrolysis generates 'green' hydrogen when conducted with electricity from renewable - but fluctuating - sources like wind or solar photovoltaic. Unfortunately, the long-term stability of the electrolyzer performance is still not fully understood under these input power profiles. In this study, we contrast the degradation behavior of our PEM water electrolysis single cells that occurs under operation with constant and intermittent power and derive preferable operating states. For this purpose, five different current density profiles are used, of which two were constant and three dynamic. Cells operated at 1 A cm-2 show no degradation. However, degradation was observed for the remaining four profiles, all of which underwent periods of high current density (2 A cm-2). Hereby, constant operation at 2 A cm-2 led to the highest degradation rate (194 μV h-1). Degradation can be greatly reduced when the cells are operated with an intermittent profile. Current density switching has a positive effect on durability, as it causes reversible parts of degradation to recover and results in a substantially reduced degradation per mole of hydrogen produced. Two general degradation phenomena were identified, a decreased anode exchange current density and an increased contact resistance at the titanium porous transport layer (Ti-PTL).

  17. Performance and dye-degrading bacteria isolation of a hybrid membrane process

    Energy Technology Data Exchange (ETDEWEB)

    You, Sheng-Jie, E-mail: sjyou@cycu.edu.tw [Department of Bioenvironmental Engineering and R and D Center for Membrane Technology, Chung Yuan Christian University, No. 200, Rd. Chung-Pei, Chungli 320, Taiwan (China); Teng, Jun-Yu, E-mail: nickprometheus@yahoo.com.tw [Department of Civil Engineering, Chung Yuan Christian University, Chungli 320, Taiwan (China)

    2009-12-15

    Textile dyeing wastewater contains harmful compounds, which are toxic to both marine organisms and human beings if it discharged into an aquatic environmental without suitable treatment. In this study, the wastewater containing the azo dye, Reactive Black 5 (RB5), was partially treated in an anaerobic sequencing batch reactor which was further treated either in an aerobic membrane bioreactors (AOMBR) or in combined aerobic membrane bioreactor/reverse osmosis (AOMBR/RO) process. The results showed that in the anaerobic sequencing batch reactor the RB5 dye was degraded to form aromatic amine intermediate metabolites, which were further mineralized in the AOMBR. It was also observed that although all effluents from the AOMBR and AOMBR/RO processes met the Taiwan EPA's effluent criteria, irrespective of which membranes were used in the aerobic tank, the effluent from the AOMBR/RO process met the criteria for reuse for toilet flushing, landscaping, irrigation, and cooling water purposes, where as the AOMBR effluent only met the criteria for cooling water due to incomplete color removal. Five anaerobic high dye-degrading bacteria were isolated, which were identified to be the same species of Lactococcus lactis by 16S rRNA sequencing. The L. lactis showed complete degradation of RB5 and further studies showed that it can also able to degrade Reactive Red 120 and Reactive Yellow 84 efficiently within 6 h.

  18. Performance and dye-degrading bacteria isolation of a hybrid membrane process

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Teng, Jun-Yu

    2009-01-01

    Textile dyeing wastewater contains harmful compounds, which are toxic to both marine organisms and human beings if it discharged into an aquatic environmental without suitable treatment. In this study, the wastewater containing the azo dye, Reactive Black 5 (RB5), was partially treated in an anaerobic sequencing batch reactor which was further treated either in an aerobic membrane bioreactors (AOMBR) or in combined aerobic membrane bioreactor/reverse osmosis (AOMBR/RO) process. The results showed that in the anaerobic sequencing batch reactor the RB5 dye was degraded to form aromatic amine intermediate metabolites, which were further mineralized in the AOMBR. It was also observed that although all effluents from the AOMBR and AOMBR/RO processes met the Taiwan EPA's effluent criteria, irrespective of which membranes were used in the aerobic tank, the effluent from the AOMBR/RO process met the criteria for reuse for toilet flushing, landscaping, irrigation, and cooling water purposes, where as the AOMBR effluent only met the criteria for cooling water due to incomplete color removal. Five anaerobic high dye-degrading bacteria were isolated, which were identified to be the same species of Lactococcus lactis by 16S rRNA sequencing. The L. lactis showed complete degradation of RB5 and further studies showed that it can also able to degrade Reactive Red 120 and Reactive Yellow 84 efficiently within 6 h.

  19. Submerged anaerobic membrane bioreactor (SAnMBR) performance on sewage treatment: removal efficiencies, biogas production and membrane fouling.

    Science.gov (United States)

    Chen, Rong; Nie, Yulun; Ji, Jiayuan; Utashiro, Tetsuya; Li, Qian; Komori, Daisuke; Li, Yu-You

    2017-09-01

    A submerged anaerobic membrane reactor (SAnMBR) was employed for comprehensive evaluation of sewage treatment at 25 °C and its performance in removal efficiency, biogas production and membrane fouling. Average 89% methanogenic degradation efficiency as well as 90%, 94% and 96% removal of total chemical oxygen demand (TCOD), biochemical oxygen demand (BOD) and nonionic surfactant were obtained, while nitrogen and phosphorus were only subjected to small removals. Results suggest that SAnMBRs can effectively decouple organic degradation and nutrients disposal, and reserve all the nitrogen and phosphorus in the effluent for further possible recovery. Small biomass yields of 0.11 g mixed liquor volatile suspended solids (MLVSS)/gCOD were achieved, coupled to excellent methane production efficiencies of 0.338 NLCH 4 /gCOD, making SAnMBR an attractive technology characterized by low excess sludge production and high bioenergy recovery. Batch tests revealed the SAnMBR appeared to have the potential to bear a high food-to-microorganism ratio (F/M) of 1.54 gCOD/gMLVSS without any inhibition effect, and maximum methane production rate occurred at F/M 0.7 gCOD/gMLVSS. Pore blocking dominated the membrane fouling behaviour at a relative long hydraulic retention time (HRT), i.e. >12 hours, while cake layer dominated significantly at shorter HRTs, i.e. <8 hours.

  20. Degradation of Histamine by Lactobacillus plantarum Isolated from Miso Products.

    Science.gov (United States)

    Kung, Hsien-Feng; Lee, Yi-Chen; Huang, Ya-Ling; Huang, Yu-Ru; Su, Yi-Cheng; Tsai, Yung-Hsiang

    2017-10-01

    Histamine is a toxic chemical and is the causative agent of food poisoning. This foodborne toxin may be degraded by the oxidative deamination activity of certain microorganisms. In this study, we isolated four histamine-degrading Lactobacillus plantarum bacteria from miso products. Among them, L. plantarum D-103 exhibited 100% degradation of histamine in de Man Rogosa Sharpe (MRS) broth containing 50 ppm of histamine after 24 h of incubation at 30°C. The optimal growth, histamine oxidase, and histamine-degrading activity of L. plantarum D-103 were observed in histamine MRS broth at pH 7.0, 3% NaCl, and 30°C. It also exhibited tolerance to broad ranges of pH (4 to 10) and salt concentrations (0 to 12%) in histamine MRS broth. Therefore, the histamine-degrading L. plantarum D-103 might be used as an additive culture to prevent histamine accumulation in miso products during fermentation.

  1. Degradation analysis and modeling of reinforced catalyst coated membranes operated under OCV conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Sumit; Fowler, Michael W.; Simon, Leonardo C. [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario (Canada); Abouatallah, Rami; Beydokhti, Natasha [Hydrogenics Corporation, 5985 McLaughlin Road, Mississauga, Ontario (Canada)

    2008-09-01

    This paper studies the degradation of Gore trademark PRIMEA {sup registered} series 5510 catalyst coated membranes with an ePTFE reinforcement layer under open circuit voltage conditions at 90 C, 75% RH, and no backpressure. Scanning electron microscopy (SEM) imaging of cross-sections revealed extensive cathode-side ionomer degradation and the presence of a platinum band. Cumulative fluoride release measurements show more fluoride exiting with the cathode effluent. Furthermore, both anode and cathode cumulative fluoride release plateau after long degradation times. Open circuit voltage was also monitored and the degradation rate was found to decrease after a long duration. It is proposed that all fluoride species are generated from the cathode-side ionomer degradation process and that the fluoride then diffuses to the anode and cathode channels. Further, once the cathode-side ionomer is consumed the degradation reaction slows as the ''degradation front'' passes through the inert reinforcement layer. This process was modeled using a semi-empirical transient model and compared to experimental results. (author)

  2. Degradation of endothelial basement membrane by human breast cancer cell lines

    International Nuclear Information System (INIS)

    Yee, C.; Shiu, R.P.

    1986-01-01

    During metastasis, it is believed that tumor cells destroy the basement membrane (BM) of blood vessels in order to disseminate through the circulatory system. By radioactively labeling the extracellular matrix produced by primary endothelial cells in vitro, the ability of human breast cancer cells to degrade BM components was studied. We found that T-47D, a human breast cancer line, was able to degrade significant amounts of [35S]methionine-labeled and [3H]proline-labeled BM, but not 35SO4-labeled BM. Six other tumor cell lines of human breast origin were assayed in the same manner and were found to degrade BM to varying degrees. Several non-tumor cell lines tested showed relatively little degrading activity. The use of serum-free medium greatly enhanced degradation of the BM by tumor cells, suggesting a role for naturally occurring enzyme inhibitors in the serum. Direct cell contact with the BM was required for BM degradation, suggesting that the active enzymes are cell associated. The addition of hormones implicated in the etiology of breast cancer did not significantly alter the ability of T-47D cells to degrade the BM. The use of this assay affords future studies on the mechanism of invasion and metastasis of human breast cancer

  3. Determination of impurities and degradation products from veterinary medicinal products by HPLC method

    Directory of Open Access Journals (Sweden)

    Elena Gabriela Oltean

    2014-06-01

    Full Text Available The organic or inorganic impurities in the veterinary medicinal product can derive from starting materials, manufacturing process, incomplete purification, inappropriate storage. The acceptable levels of impurities in pharmaceuticals are estimated by comparison with standard solutions, according to the appropriate monographs. Forced degradation studies determine the stability of the method of dosage for the active compounds and for the entire finished product under excessive accelerated degradation conditions. They also provide information on degradation pathways and selectivity of analytical methods applied. The information provided by the degradation studies on the active compound and finished pharmaceutical product should demonstrate the specificity of the analytical method regarding impurities. Forced degradation studies should demonstrate that the impurities and degradation products generated do not interfere with the active compound. The current forced degradation methods consist of acid hydrolysis, basic hydrolysis, oxidation, exposure of the medicinal product to temperature and light. HPLC methods are an integral analytical instrument for the analysis of the medicinal product. The HPLC method should be able to separate, detect and quantify various specific degradation products that can appear after manufacture or storage of the medicinal product, as well as new elements appearing after synthesis. FDA and ICH guidelines recommend the enclosure of the results, including the chromatograms specific to the forced degradation-subjected medicinal product, in the documentation for marketing authorization. Using HPLC methods in forced degradation studies on medicinal products provides relevant information on the method of determination for the formulation of the medicinal product, synthesis product, packaging methods and storage.

  4. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products.

    Science.gov (United States)

    Sinela, André; Rawat, Nadirah; Mertz, Christian; Achir, Nawel; Fulcrand, Hélène; Dornier, Manuel

    2017-01-01

    Degradation parameters of two main anthocyanins from roselle extract (Hibiscus sabdariffa L.) stored at different temperatures (4-37°C) over 60days were determined. Anthocyanins and some of their degradation products were monitored and quantified using HPLC-MS and DAD. Degradation of anthocyanins followed first-order kinetics and reaction rate constants (k values), which were obtained by non-linear regression, showed that the degradation rate of delphinidin 3-O-sambubioside was higher than that of cyanidin 3-O-sambubioside with k values of 9.2·10(-7)s(-1) and 8.4·10(-7)s(-1) at 37°C respectively. The temperature dependence of the rate of anthocyanin degradation was modeled by the Arrhenius equation. Degradation of delphinidin 3-O-sambubioside (Ea=90kJmol(-1)) tended to be significantly more sensitive to an increase in temperature than cyanidin 3-O-sambubioside (Ea=80kJmol(-1)). Degradation of these anthocyanins formed scission products (gallic and protocatechuic acids respectively) and was accompanied by an increase in polymeric color index. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions

    DEFF Research Database (Denmark)

    Liao, Jianhui; Yang, Jingshuai; Li, Qingfeng

    2013-01-01

    Phosphoric acid doped polybenzimidazole membranes have been explored as proton exchange membranes for high temperature polymer electrolyte membrane fuel cells. Long-term durability of the membrane is of critical concern and has been evaluated by accelerated degradation tests under Fenton conditions...... of the polymer. Fuel cell durability tests with contaminations of ferrous ions did show considerable performance degradation, however, primarily due to the catalyst deterioration rather than the membrane degradation........ In this study effects of phosphoric acid and ferrous ions were investigated by measurements of the weight loss, intrinsic viscosity and size exclusion chromatography (SEC) of the polymer membranes. Ferrous ions resulted in, as expected, catalytic formation of peroxide radicals and hence the accelerated polymer...

  6. Chemical degradation of proton conducting perflurosulfonic acid ionomer membranes studied by solid-state nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ghassemzadeh, L. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Institut fuer Physikalische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Marrony, M. [European Institute for Energy Research, Emmy-Noether-Strasse 11, D-76131 Karlsruhe (Germany); Barrera, R. [Edison, Via Giorgio La Pira, 2, I-10028 Trofarello (Italy); Kreuer, K.D.; Maier, J. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Mueller, K. [Institut fuer Physikalische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)

    2009-01-15

    The degradation of two different types of perfluorinated polymer membranes, Nafion and Hyflon Ion, has been examined by solid-state {sup 19}F and {sup 13}C NMR spectroscopy. This spectroscopic technique is demonstrated to be a valuable tool for the study of the membrane structure and its alterations after in situ degradation in a fuel cell. The structural changes in different parts of the polymers are clearly distinguished, which provides unique insight into details of the degradation processes. The experimental NMR spectra prove that degradation mostly takes place within the polymer side chains, as reflected by the intensity losses of NMR signals associated with SO{sub 3}H, CF{sub 3}, OCF{sub 2} and CF groups. The integral degree of degradation is found to decrease with increasing membrane thickness while for a given thickness, Hyflon Ion appears to degrade less than Nafion. (author)

  7. Degradation of Reactive Black 5 dye using anaerobic/aerobic membrane bioreactor (MBR) and photochemical membrane reactor

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Damodar, Rahul A.; Hou, Sheng-Chon

    2010-01-01

    Three different types of advance treatment methods were evaluated for the degradation of Reactive Black 5 (RB5). The performance of two stage anaerobic SBR-aerobic MBR, anaerobic MBR with immobilized and suspended biocells and an integrated membrane photocatalytic reactor (MPR) using slurry UV/TiO 2 system were investigated. The results suggest that, nearly 99.9% color removal and 80-95% organic COD and TOC removal can be achieved using different reactor systems. Considering the Taiwan EPA effluent standard discharge criteria for COD/TOC, the degree of treatment achieved by combining the anaerobic-aerobic system was found to be acceptable. Anew, Bacilluscereus, high color removal bacterium was isolated from Anaerobic SBR. Furthermore, when this immobilized into PVA-calcium alginate pellets, and suspended in the anaerobic MBR was able to achieve high removal efficiencies, similar to the suspended biocells system. However, the immobilized cell Anaerobic MBR was found to be more advantageous, due to lower fouling rates in the membrane unit. Results from slurry type MPR system showed that this system was capable of mineralizing RB5 dyes with faster degradation rate as compared to other systems. The reactor was also able to separate the catalyst effectively and perform efficiently without much loss of catalyst activity.

  8. Effective Degradation of Aqueous Tetracycline Using a Nano-TiO2/Carbon Electrocatalytic Membrane

    Directory of Open Access Journals (Sweden)

    Zhimeng Liu

    2016-05-01

    Full Text Available In this work, an electrocatalytic membrane was prepared to degrade aqueous tetracycline (TC using a carbon membrane coated with nano-TiO2 via a sol-gel process. SEM, XRD, EDS, and XPS were used to characterize the composition and structure of the electrocatalytic membrane. The effect of operating conditions on the removal rate of tetracycline was investigated systematically. The results show that the chemical oxygen demand (COD removal rate increased with increasing residence time while it decreased with increasing the initial concentration of tetracycline. Moreover, pH had little effect on the removal of tetracycline, and the electrocatalytic membrane could effectively remove tetracycline with initial concentration of 50 mg·L−1 (pH, 3.8–9.6. The 100% tetracycline and 87.8% COD removal rate could be achieved under the following operating conditions: tetracycline concentration of 50 mg·L−1, current density of 1 mA·cm−2, temperature of 25 °C, and residence time of 4.4 min. This study provides a new and feasible method for removing antibiotics in water with the synergistic effect of electrocatalytic oxidation and membrane separation. It is evident that there will be a broad market for the application of electrocatalytic membrane in the field of antibiotic wastewater treatment.

  9. A novel catalytic ceramic membrane fabricated with CuMn2O4 particles for emerging UV absorbers degradation from aqueous and membrane fouling elimination.

    Science.gov (United States)

    Guo, Yang; Song, Zilong; Xu, Bingbing; Li, Yanning; Qi, Fei; Croue, Jean-Philippe; Yuan, Donghai

    2018-02-15

    A novel catalytic ceramic membrane (CM) for improving ozonation and filtration performance was fabricated by surface coating CuMn 2 O 4 particles on a tubular CM. The degradation of ultraviolet (UV) absorbers, reduction of toxicity, elimination of membrane fouling and catalytic mechanism were investigated. The characterization results suggested the particles were well-fixed on membrane surface. The modified membrane showed improved benzophenone-3 removal performance (from 28% to 34%), detoxification (EC 50 as 12.77%) and the stability of catalytic activity. In the degradation performance of model UV absorbers, the developed membrane significantly decreased the UV254 and DOC values in effluent. Compared with a virgin CM, this CM ozonation increased water flux as 29.9% by in-situ degrade effluent organic matters. The CuMn 2 O 4 modified membrane enhanced the ozone self-decompose to generate O 2 - and initiated the chain reaction of ozone decomposition, and subsequently reacted with molecule ozone to produce OH. Additionally, CM was able to promote the interaction between ozone and catalyst/organic chemicals to form H 2 O 2 that promoted the formation of OH. This catalytic ceramic membrane combining with ozonation showed potential applications in emerging pollutant degradation and membrane fouling elimination, and acted as a novel ternary technology for wastewater treatment and water reuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Functional elastic hydrogel as recyclable membrane for the adsorption and degradation of methylene blue.

    Directory of Open Access Journals (Sweden)

    Song Bao

    Full Text Available Developing the application of high-strength hydrogels has gained much attention in the fields of medical, pharmacy, and pollutant removal due to their versatility and stimulus-responsive properties. In this presentation, a high-strength freestanding elastic hydrogel membrane was constructed by clay nanosheets, N, N-dimethylacrylamide and 2-acrylamide-2-methylpropanesulfonic acid for adsorption of methylene blue and heavy metal ions. The maximum values of elongation and Young's modulus for 0.5% AMPSNa hydrogel were 1901% and 949.4 kPa, respectively, much higher than those of traditional hydrogels. The adsorptions were confirmed to follow pseudo-second kinetic equation and Langmuir isotherm model fits the data well. The maximum adsorption capacity of hydrogel towards methylene blue was 434.8 mg g(-1. The hydrogel also exhibited higher separation selectivity to Pb(2+ than Cu(2+. The methylene blue adsorbed onto the hydrogel membrane can be photocatalytically degraded by Fenton agent and the hydrogel membrane could be recycled at least five times without obvious loss in mechanical properties. In conclusion, this presentation demonstrates a convenient strategy to prepare tough and elastic clay nanocomposite hydrogel, which can not only be applied as recyclable membrane for the photocatalytic degradation of organic dye, but also for the recovery of valuables.

  11. Degradation of surface-labeled hepatoma membrane polypeptides: effect of inhibitors

    International Nuclear Information System (INIS)

    Hare, J.F.; Huston, M.

    1984-01-01

    When their membrane proteins were labeled with 125I by lactoperoxidase, dividing hepatoma cells lost radioactivity to the medium in a biphasic manner (T1/2 . 16-26 h, greater than 40 h). Lysosomotropic weak bases, chloroquine, and NH4Cl inhibited the rapid phase by 59%. More than 50% of the radioactivity which accumulates in the media from dividing cells during the first 4 h after labeling was trichloroacetic acid-soluble, and was identified as iodotyrosine. Iodotyrosine release from labeled membrane proteins was 60-71% inhibited by lysosomotropic agents chloroquine and NH4Cl as well as the sodium-proton ionophore, monensin. The inhibitory effect of NH4Cl and monensin was reversible. Inhibitors of microtubule and microfilament function and transglutamination had no effect on release of iodotyrosine to the medium, but trypsin-like protease inhibitors, p-aminobenzamidine, tosyl-L-lysine/chloromethylketone, and phenylmethylsulfonyl fluoride, as well as the cathepsin B inhibitor, leupeptin, inhibited by 21-24%. Iodotyrosine release showed a biphasic Arrhenius plot with an activation energy of 17 kcal/mol above but 27 kcal/mol below 20 degrees C. These results indicate that cell membrane polypeptides require a temperature-limiting event as well as passage through an ion-sensitive compartment prior to their complete degradation to constituent amino acids. In contrast to other lysosomal-mediated events, however, iodinated membrane proteins of dividing cells are degraded in a manner insensitive to agents which disrupt the cytoskeleton

  12. Photocatalytic reusable membranes for the effective degradation of tartrazine with a solar photoreactor.

    Science.gov (United States)

    Aoudjit, L; Martins, P M; Madjene, F; Petrovykh, D Y; Lanceros-Mendez, S

    2018-02-15

    Recalcitrant dyes present in effluents constitute a major environmental concern due to their hazardous properties that may cause deleterious effects on aquatic organisms. Tartrazine is a widely-used dye, and it is known to be resistant to biological and chemical degradation processes and by its carcinogenic and mutagenic nature. This study presents the use of TiO 2 (P25) nanoparticles immobilized into a poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) membrane to assess the photocatalytic degradation of this dye in a solar photoreactor. The nanocomposite morphological properties were analyzed, confirming an interconnected porous microstructure and the homogeneous distribution of the TiO 2 nanoparticles within the membrane pores. It is shown that the nanocomposite with 8wt% TiO 2 exhibits a remarkable sunlight photocatalytic activity over five hours, with 78% of the pollutant being degraded. It was also demonstrated that the degradation follows pseudo-first-order kinetics model at low initial tartrazine concentration. Finally, the effective reusability of the produced nanocomposite was also assessed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Performance Degradation Tests of Phosphoric Acid Doped PBI Membrane Based High Temperature PEM Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2014-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation. Continuous tests with H2 and simulated reformate which was composed...... of H2, water steam and methanol as the fuel were performed on both single cells. 12-h-startup/12-h-shutdown dynamic tests were performed on the first single cell with pure dry H2 as the fuel and on the second single cell with simulated reformate as the fuel. Along with the tests electrochemical...... techniques such as polarization curves and electrochemical impedance spectroscopy (EIS) were employed to study the degradation mechanisms of the fuel cells. Both single cells showed an increase in the performance in the H2 continuous tests, because of a decrease in the ORR kinetic resistance probably due...

  14. Lignocellulose degradation, enzyme production and protein ...

    African Journals Online (AJOL)

    Microbial conversion of corn stover by white rot fungi has the potential to increase its ligninolysis and nutritional value, thereby transforming it into protein-enriched animal feed. Response surface methodology was applied to optimize conditions for the production of lignocellulolytic enzymes by Trametes versicolor during ...

  15. Relationship between gas production and starch degradation in feed samples

    NARCIS (Netherlands)

    Chai, W.Z.; Gelder, van A.H.; Cone, J.W.

    2004-01-01

    An investigation was completed of the possibilities to estimate starch fermentation in rumen fluid using the gas production technique by incubating the total sample. Gas production from six starchy feed ingredients and eight maize silage samples were recorded and related to starch degradation

  16. Effects of organic degradation products on the sorption of actinides

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Brownsword, M.; Linklater, C.M.

    1992-01-01

    Previous work has shown that products from the chemical degradation of cellulosic matter can significantly reduce sorption of uranium(VI) and plutonium(IV) on geological materials. Uranium(IV) batch sorption experiments have now been performed to study the effect of organic degradation products in a reducing environment. Thorium(IV) sorption has also been studied since thorium is an important radioelement in its own right and has potential use as a simulant for other tetravalent actinides. Sorption onto London clay, Caithness flagstones and St. Bees sandstone was investigated. Experimental conditions were chosen to simulate both those expected close to cementitious repository (pH ∝ 11) and at the edge of the zone of migration of the alkaline plume (pH ∝ 8). Work was carried out with both authentic degradation products and with gluconate, acting as a well-characterized simulant for cellulosic degradation products. The results show that the presence of organic species can cause a reduction in sorption. This is especially so in the presence of a high concentration of gluconate ions, but the reduction is significantly less with authentic degradation products. (orig.)

  17. Effects of organic degradation products on the sorption of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Brownsword, M.; Linklater, C.M. (AEA Decommissioning and Radwaste, Harwell Lab. (United Kingdom))

    1992-01-01

    Previous work has shown that products from the chemical degradation of cellulosic matter can significantly reduce sorption of uranium(VI) and plutonium(IV) on geological materials. Uranium(IV) batch sorption experiments have now been performed to study the effect of organic degradation products in a reducing environment. Thorium(IV) sorption has also been studied since thorium is an important radioelement in its own right and has potential use as a simulant for other tetravalent actinides. Sorption onto London clay, Caithness flagstones and St. Bees sandstone was investigated. Experimental conditions were chosen to simulate both those expected close to cementitious repository (pH [proportional to] 11) and at the edge of the zone of migration of the alkaline plume (pH [proportional to] 8). Work was carried out with both authentic degradation products and with gluconate, acting as a well-characterized simulant for cellulosic degradation products. The results show that the presence of organic species can cause a reduction in sorption. This is especially so in the presence of a high concentration of gluconate ions, but the reduction is significantly less with authentic degradation products. (orig.).

  18. Achievements of European projects on membrane reactor for hydrogen production

    NARCIS (Netherlands)

    di Marcoberardino, G.; Binotti, M.; Manzolini, G.; Viviente, J.L.; Arratibel Plazaola, A.; Roses, L.; Gallucci, F.

    2017-01-01

    Membrane reactors for hydrogen production can increase both the hydrogen production efficiency at small scale and the electric efficiency in micro-cogeneration systems when coupled with Polymeric Electrolyte Membrane fuel cells. This paper discusses the achievements of three European projects

  19. The Membrane Gradostat Reactor: Secondary metabolite production ...

    African Journals Online (AJOL)

    This manuscript focuses on the aspect of a membrane gradostat as an entirely different concept compared to submerged hollow fibre modules. The use of membrane bioreactor (MBR) technology is rapidly advancing in the wastewater treatment industries. However, this is not the case in the biopharmaceutical ...

  20. Gamma radiolytic degradation of 4-chlorophenol determination of degraded products with HPLC and GC-MS

    International Nuclear Information System (INIS)

    Butt, S.B.; Masood, M.N.

    2007-01-01

    Contamination by chlorophenols of surface water and groundwater is an emerging issue in environmental science and engineering. After their usage as pesticide, herbicide and disinfectant, these organic compounds subsequently enter the aquatic environment through a number of routes. Some of the chlorophenols are slightly biodegradable, while others are more persistent and mobile in the aquatic environment especially chlorophenols. Gamma radiolytic degradation is one of advance oxidation process that has been thought to be one of the promising treatments to deal with this problem. This radiolytic study was carried out in methanolic 4-CP (4-chlorophenol) samples. Among several factors effecting radiolytic degradation of 4-CP, dose and concentration are important that were evaluated under atmospheric conditions. A degradation yield (G -value) for 4- CP of 0.38 and 1.35 was achieved in 20 and 100 mg/dm/sup 3/ solution. It was observed that degradation yield decreases with increasing 4-CP concentration. Gamma radiolysis produce free radicals in solvent which further react with 4-CP molecules to generate different products. The identification of degradation products was proposed using HPLC and GC-MS. (author)

  1. Four new degradation products of doxorubicin: An application of forced degradation study and hyphenated chromatographic techniques

    Directory of Open Access Journals (Sweden)

    Dheeraj Kaushik

    2015-10-01

    Full Text Available Forced degradation study on doxorubicin (DOX was carried out under hydrolytic condition in acidic, alkaline and neutral media at varied temperatures, as well as under peroxide, thermal and photolytic conditions in accordance with International Conference on Harmonization (ICH guidelines Q1(R2. It was found extremely unstable to alkaline hydrolysis even at room temperature, unstable to acid hydrolysis at 80 °C, and to oxidation at room temperature. It degraded to four products (O-I–O-IV in oxidative condition, and to single product (A-I in acid hydrolytic condition. These products were resolved on a C8 (150 mm×4.6 mm, 5 µm column with isocratic elution using mobile phase consisting of HCOONH4 (10 mM, pH 2.5, acetonitrile and methanol (65:15:20, v/v/v. Liquid chromatography–photodiode array (LC–PDA technique was used to ascertain the purity of the products noted in LC–UV chromatogram. For their characterization, a six stage mass fragmentation (MS6 pattern of DOX was outlined through mass spectral studies in positive mode of electrospray ionization (+ESI as well as through accurate mass spectral data of DOX and the products generated through liquid chromatography–time of flight mass spectrometry (LC–MS–TOF on degraded drug solutions. Based on it, O-I–O-IV were characterized as 3-hydroxy-9-desacetyldoxorubicin-9-hydroperoxide, 1-hydroxy-9-desacetyldoxorubicin-9-hydroperoxide, 9-desacetyldoxorubicin-9-hydroperoxide and 9-desacetyldoxorubicin, respectively, whereas A-I was characterized as deglucosaminyl doxorubicin. While A-I was found to be a pharmacopoeial impurity, all oxidative products were found to be new degradation impurities. The mechanisms and pathways of degradation of doxorubicin were outlined and discussed. Keywords: Doxorubicin, TOF, Forced degradation, Liquid chromatography, Degradation product, Mass fragmentation pattern

  2. TBP degradation products. Separation and gas-chromatographic determination

    International Nuclear Information System (INIS)

    Kuada, T.A.; Alem, C.M.; Matsuda, H.T.; Araujo, B.F. de; Araujo, J.A de.

    1991-11-01

    A separation method for di butylphosphate, mono butylphosphate and phosphoric acid as degradation products in organic and aqueous streams of the process containing variable amounts of actinides and fission products is described. The products were separated by extraction and after methylation the final determination was carried out by gas chromatography. TPP was used as internal standard and 5 to 500 mg/L concentration range was determined with 1 to 10% deviation depending on the concentration of organo phosphates. (author)

  3. Microbial degradation of coconut coir dust for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Uyenco, F.R.; Ochoa, J.A.K.

    Several species of white-rot fungi were studied for its ability to degrade the lignocellulose components of coir dust at optimum conditions. The most effective fungi was Phanerochaeta chrysosporium UPCC 4003. This organism degraded the lignocellulose complex of coir dust at a rate of about 25 percent in 4 weeks. The degradation process was carried on with minimal nitrogen concentration, coconut water supplementation and moisture levels between 85-90 percent. Shake flask cultures of the degraded coir dust using cellulolytic fungi were not effective. In fermentor cultures with Chaetomium cellulolyticum UPCC 3934, supplemented coir dust was converted into a microbial biomass product (MBP) with 15.58 percent lignin, 19.20 percent cellulose and 18.87 percent protein. More work is being done on the utilization of coir dust on a low technology.

  4. RING finger protein 121 facilitates the degradation and membrane localization of voltage-gated sodium channels

    Science.gov (United States)

    Ogino, Kazutoyo; Low, Sean E.; Yamada, Kenta; Saint-Amant, Louis; Zhou, Weibin; Muto, Akira; Asakawa, Kazuhide; Nakai, Junichi; Kawakami, Koichi; Kuwada, John Y.; Hirata, Hiromi

    2015-01-01

    Following their synthesis in the endoplasmic reticulum (ER), voltage-gated sodium channels (NaV) are transported to the membranes of excitable cells, where they often cluster, such as at the axon initial segment of neurons. Although the mechanisms by which NaV channels form and maintain clusters have been extensively examined, the processes that govern their transport and degradation have received less attention. Our entry into the study of these processes began with the isolation of a new allele of the zebrafish mutant alligator, which we found to be caused by mutations in the gene encoding really interesting new gene (RING) finger protein 121 (RNF121), an E3-ubiquitin ligase present in the ER and cis-Golgi compartments. Here we demonstrate that RNF121 facilitates two opposing fates of NaV channels: (i) ubiquitin-mediated proteasome degradation and (ii) membrane localization when coexpressed with auxiliary NaVβ subunits. Collectively, these results indicate that RNF121 participates in the quality control of NaV channels during their synthesis and subsequent transport to the membrane. PMID:25691753

  5. Open-source FCPEM-Performance & Durability Model Consideration of Membrane Properties on Cathode Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Knights, Shanna [Ballard Fuel Cell Systems, Bend, OR (United States); Harvey, David [Ballard Fuel Cell Systems, Bend, OR (United States)

    2017-01-20

    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications which target operational lifetimes of 5,000 hours and 60,000 hours by 2020, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifying the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different membrane compositions remains an area not well understood. The focus of this project extension was to enhance the predictive capability of the PEM Fuel Cell Performance & Durability Model called FC-APOLLO (Application Package for Open-source Long Life Operation) by including interaction effects of membrane transport properties such as water transport, changes in proton conductivity, and overall water uptake/adsorption and the state of the catalyst layer local conditions to further understand the driving forces for platinum dissolution.

  6. Membrane reactor technology for ultrapure hydrogen production

    NARCIS (Netherlands)

    Patil, Charudatta Subhash

    2005-01-01

    The suitability of polymer electrolyte membrane fuel cells (PEMFC) for stationary and vehicular applications because of its low operating temperatures, compactness, higher power density, cleaner exhausts and higher efficiencies compared to conventional internal combustion engines and gas turbines

  7. Lactic acid Production with in situ Extraction in Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Hamidreza Ghafouri Taleghani

    2017-01-01

    Full Text Available Background and Objective: Lactic acid is widely used in the food, chemical and pharmaceutical industries. The major problems associated with lactic acid production are substrate and end-product inhibition, and by-product formation. Membrane technologyrepresents one of the most effective processes for lactic acid production. The aim of this work is to increase cell density and lactic acid productivity due to reduced inhibition effect of substrate and product in membrane bioreactor.Material and Methods: In this work, lactic acid was produced from lactose in membrane bioreactor. A laboratory scale membrane bioreactor was designed and fabricated. Five types of commercial membranes were tested at the same operating conditions (transmembrane pressure: 500 KPa and temperature: 25°C. The effects of initial lactose concentration and dilution rate on biomass growth, lactic acid production and substrate utilization were evaluated.Results and Conclusion: The high lactose retention of 79% v v-1 and low lactic acid retention of 22% v v-1 were obtained with NF1 membrane; therefore, this membrane was selected for membrane bioreactor. The maximal productivity of 17.1 g l-1 h-1 was obtainedwith the lactic acid concentration of 71.5 g l-1 at the dilution rate of 0.24 h−1. The maximum concentration of lactic acid was obtained at the dilution rate of 0.04 h−1. The inhibiting effect of lactic acid was not observed at high initial lactose concentration. The critical lactose concentration at which the cell growth severely hampered was 150 g l-1. This study proved that membrane bioreactor had great advantages such as elimination of substrate and product inhibition, high concentration of process substrate, high cell density,and high lactic acid productivity.Conflict of interest: There is no conflict of interest.

  8. Membrane Protein Production in Lactococcus lactis for Functional Studies.

    Science.gov (United States)

    Seigneurin-Berny, Daphne; King, Martin S; Sautron, Emiline; Moyet, Lucas; Catty, Patrice; André, François; Rolland, Norbert; Kunji, Edmund R S; Frelet-Barrand, Annie

    2016-01-01

    Due to their unique properties, expression and study of membrane proteins in heterologous systems remains difficult. Among the bacterial systems available, the Gram-positive lactic bacterium, Lactococcus lactis, traditionally used in food fermentations, is nowadays widely used for large-scale production and functional characterization of bacterial and eukaryotic membrane proteins. The aim of this chapter is to describe the different possibilities for the functional characterization of peripheral or intrinsic membrane proteins expressed in Lactococcus lactis.

  9. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water

    Energy Technology Data Exchange (ETDEWEB)

    Gui Minghui; Smuleac, Vasile [University of Kentucky, Department of Chemical and Materials Engineering (United States); Ormsbee, Lindell E. [University of Kentucky, Department of Civil Engineering (United States); Sedlak, David L. [University of California at Berkeley, Department of Civil and Environmental Engineering (United States); Bhattacharyya, Dibakar, E-mail: db@engr.uky.edu [University of Kentucky, Department of Chemical and Materials Engineering (United States)

    2012-05-15

    The potential for using hydroxyl radical (OH{sup Bullet }) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H{sub 2}O{sub 2} addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80-100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Moessbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H{sub 2}O{sub 2} by NP surface generated OH{sup Bullet} were investigated. Depending on the ratio of iron and H{sub 2}O{sub 2}, TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.

  10. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water

    International Nuclear Information System (INIS)

    Gui Minghui; Smuleac, Vasile; Ormsbee, Lindell E.; Sedlak, David L.; Bhattacharyya, Dibakar

    2012-01-01

    The potential for using hydroxyl radical (OH • ) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H 2 O 2 addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80–100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Mössbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H 2 O 2 by NP surface generated OH • were investigated. Depending on the ratio of iron and H 2 O 2 , TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.

  11. Photocatalytic degradation of dairy effluent using AgTiO2 nanostructures/polyurethane nanofiber membrane

    DEFF Research Database (Denmark)

    Kanjwal, Muzafar Ahmad; Barakat, Nasser A.M.; Chronakis, Ioannis S.

    2015-01-01

    Dairy effluent (DE) is environmentally toxic and needs special attention. Photocatalytic degradation of DE was studied using novel polyurethane (PU)-based membranes. Typically, silver-titanium dioxide nanofibers (AgTiO2 NFs) and silver-titanium dioxide nanoparticles (AgTiO2 NPs) were individually...... incorporated in PU electrospun nanofibers to overcome the mandatory sophisticated separation of the nanocatalysts, which can create a secondary pollution, after the treatment process. These nanomembranes were characterized in SEM, TEM, XRD and UV studies. The polymeric electrospun nanofibers were smooth...

  12. A Miniature Membrane Reactor for Evaluation of Process Design Options on the Enzymatic Degradation of Pectin

    DEFF Research Database (Denmark)

    Zainal Alam, Muhd Nazrul Hisham; Pinelo, Manuel; Arnous, Anis

    2011-01-01

    was fabricated from poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) with a working volume of ∼190 μL. The prototype also contained the necessary sensors and actuators, i.e., pressure transducer, mixing via magnetic stirrer bar and a temperature controller. The functionality of the prototype...... was demonstrated by performing a continuous enzymatic degradation of pectin experiment for a range of reactor conditions: different membrane molecular weight cutoff (MWCO) values, enzyme-to-substrate ratios (E/S), and substrate feeding rates (F) were assessed. Based on the experimental data, it was found...

  13. Organochlorine Pesticides and Degradation Products in Soil around ...

    African Journals Online (AJOL)

    The levels and compositions of organochlorine pesticides and degradation products in soil samples collected from a former formulation plant in Morogoro municipality, Tanzania, were determined. Extraction was performed by pressurized fluid extraction using n-hexane:acetone (75:25) mixture. Clean-up of extracts was ...

  14. Diesel degradation and biosurfactant production by Gram-positive ...

    African Journals Online (AJOL)

    The ability of Gram-positive bacteria to degrade diesel increased in a comparable trend as its biosurfactant production increased. The E24 index was highest at 87.6% for isolate D9. Isolates D2, D9 and D10, were identified as Paenibacillus sp. whilst isolate DJLB was found to belong to Stenotrophomonas sp. This study ...

  15. Free-standing hierarchical α-MnO2@CuO membrane for catalytic filtration degradation of organic pollutants.

    Science.gov (United States)

    Luo, Xinsheng; Liang, Heng; Qu, Fangshu; Ding, An; Cheng, Xiaoxiang; Tang, Chuyang Y; Li, Guibai

    2018-06-01

    Catalytic membrane, due to its compact reactor assembling, high catalytic performance as well as low energy consumption, has proved to be more attractive for wastewater treatment. In this work, a free-standing α-MnO 2 @CuO membrane with hierarchical nanostructures was prepared and evaluated as the catalytic membrane to generate radicals from peroxymonosulfate (PMS) for the oxidative degradation of organic dyes in aqueous solution. Benefiting from the high mass transport efficiency and the hierarchical nanostructures, a superior catalytic activity of the membrane was observed for organic dyes degradation. As a typical organic dye, more than 99% of methylene blue (MB) was degraded within 0.23 s using dead-end filtration cell. The effects of flow rate, PMS concentration and buffer solution on MB degradation were further investigated. Besides MB, the catalytic membrane also showed excellent performance for the removal of other dyes, such as congo red, methyl orange, rhodamine B, acid chrome blue K and malachite green. Moreover, the mechanism study indicated that OH and SO 4 - generated from the interaction between PMS and Mn/Cu species with different oxidation states mainly accounted for the dyes degradation. The catalytic filtration process using α-MnO 2 @CuO catalytic membrane could provide a novel method for wastewater purification with high efficiency and low energy consumption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Genome comparison implies the role of Wsm2 in membrane trafficking and protein degradation

    Directory of Open Access Journals (Sweden)

    Guorong Zhang

    2018-04-01

    Wsm2 may combat WSMV disease through a molecular mechanism involving protein degradation and/or membrane trafficking. The 93 putative Wsm2 ancestor loci discovered in this study could serve as good candidates for future genetic isolation of the true Wsm2 locus.

  17. Possible Appearance of Degradation Products of Paraquat in Crops

    Energy Technology Data Exchange (ETDEWEB)

    Slade, P. [Imperial Chemical Industries LTD., Jealott' s Hill Research Station, Bracknell, Berks. (United Kingdom)

    1966-05-15

    Chemical analysis has established that residue levels of paraquat in crops harvested after use of the chemical are at such a low level as to constitute no hazard to the consuming public. (Paraquat dichloride is 1,1'-dimethyl-4,4'-bipyridylium dichloride). There remained the possibility that toxic metabolites or other conversion products of paraquat might appear in crops. This paper is concerned with attempts to evaluate this possibility, and demonstrates that no hazard arises from the formation of degradation products. It has been shown, using paraquat labelled with {sup 14}C in the methyl groups and in the pyridine nuclei, that the chemical is not metabolically degraded in plants. However, photochemical degradation of paraquat can occur on the surface of leaves in sunlight. In vitro experiments involving ultra-violet irradiation of aqueous solutions of {sup 14}C-paraquat have shown that 4-carboxy-1-methylpyridinium chloride and methylamine hydrochloride are the only products formed in significant amount in the photochemical degradation. Paper chromatography and isotope dilution have shown that these products are formed on leaves of plants treated with {sup 14}C-paraquat (mostly after the plants are dead). Whole plant radioautography has established that 4-carboxy-1-{sup 14}C methylpyridinium chloride is not translocated at all from the dead leaves on which it is formed and certainly this compound will not appear in harvested crops. This has been confirmed in an experiment in which {sup 14}C-paraquat was used to desiccate the tops of potato plants before harvesting the tubers. All the radioactivity subsequently found in the tubers could be accounted for as paraquat (level 0.08 ppm). There was no evidence for the presence of significant amounts of other radioactive compounds in the tubers, even though chromatography of extracts of the desiccated plants showed that photochemical degradation products were formed on the leaves: these were not translocated into the

  18. Production of membrane proteins without cells or detergents.

    Science.gov (United States)

    Rajesh, Sundaresan; Knowles, Timothy; Overduin, Michael

    2011-04-30

    The production of membrane proteins in cellular systems is besieged by several problems due to their hydrophobic nature which often causes misfolding, protein aggregation and cytotoxicity, resulting in poor yields of stable proteins. Cell-free expression has emerged as one of the most versatile alternatives for circumventing these obstacles by producing membrane proteins directly into designed hydrophobic environments. Efficient optimisation of expression and solubilisation conditions using a variety of detergents, membrane mimetics and lipids has yielded structurally and functionally intact membrane proteins, with yields several fold above the levels possible from cell-based systems. Here we review recently developed techniques available to produce functional membrane proteins, and discuss amphipols, nanodisc and styrene maleic acid lipid particle (SMALP) technologies that can be exploited alongside cell-free expression of membrane proteins. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Membrane bioreactors' potential for ethanol and biogas production: a review.

    Science.gov (United States)

    Ylitervo, Päivi; Akinbomia, Julius; Taherzadeha, Mohammad J

    2013-01-01

    Companies developing and producing membranes for different separation purposes, as well as the market for these, have markedly increased in numbers over the last decade. Membrane and separation technology might well contribute to making fuel ethanol and biogas production from lignocellulosic materials more economically viable and productive. Combining biological processes with membrane separation techniques in a membrane bioreactor (MBR) increases cell concentrations extensively in the bioreactor. Such a combination furthermore reduces product inhibition during the biological process, increases product concentration and productivity, and simplifies the separation of product and/or cells. Various MBRs have been studied over the years, where the membrane is either submerged inside the liquid to be filtered, or placed in an external loop outside the bioreactor. All configurations have advantages and drawbacks, as reviewed in this paper. The current review presents an account of the membrane separation technologies, and the research performed on MBRs, focusing on ethanol and biogas production. The advantages and potentials of the technology are elucidated.

  20. Codon optimizing for increased membrane protein production

    DEFF Research Database (Denmark)

    Mirzadeh, K.; Toddo, S.; Nørholm, Morten

    2016-01-01

    . As demonstrated with two membrane-embedded transporters in Escherichia coli, the method was more effective than optimizing the entire coding sequence. The method we present is PCR based and requires three simple steps: (1) the design of two PCR primers, one of which is degenerate; (2) the amplification...

  1. Gamma irradiation prolongs the sea bass (Dicentrarchus labrax L) storage and delays the lipids membrane degradation

    International Nuclear Information System (INIS)

    Barkallah, Insaf; Mahjoub, Abdelmajid; Cheour, F.

    2005-01-01

    Sea bass have been submitted to gamma rays radiation at doses 0, 1, 2, 3 or 4 KGy at 0,087KGY/min rate and stored during 21 days at 1 0 C to evaluate the effects on the development of microorganisms as well as on the conservation and the degradation of membranes lipids Microbiological analysis has revealed only the presence of mesophils germs in muscles which are totally eliminated at dose 4 KGy. The presence of psychrophiles, halophiles, coliformes, fecaux and totals, Staphylococcus aureus and Clostridium sulfutoreducteurs has been noted in the visceres of sea bass. They are completely eliminated at dose 1KGy. Contents in nitrogen basic fowl (ABVT) and in trimethylamine (TMA), as well as the pH increase during storage of fish in relation with the reduction of phospholipids, the diminution of the degree of insaturation of the phospholipids and the free fat acidic fraction, and the increase of the report sterols on phospholipids. The irradiation to gamma rays allows to slow these changes and consequently reduced the deterioration of the sea bass. We conclude that the irradiation to gamma rays could have prolong the conservation of sea bass sea bass by preserving probably lipids membranes of the degradation and by inhibiting the development of microorganisms

  2. Study on hydrophobicity degradation of gas diffusion layer in proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Yu, Shuchun; Li, Xiaojin; Li, Jin; Liu, Sa; Lu, Wangting; Shao, Zhigang; Yi, Baolian

    2013-01-01

    Highlights: • The hydrophobicity degradation mechanism of GDL was proposed thoroughly. • C-O and C=O groups appeared on the surfaces of GDL after immersion. • The relative content of PTFE in GDL decreased after immersion. • The surfaces and inner structure of GDL destroyed after immersion. - Abstract: As one of the essential components of proton exchange membrane fuel cell (PEMFC), gas diffusion layer (GDL) is of importance on water management, as well on the performance and durability of PEMFC. In this paper, the hydrophobicity degradation of GDL was investigated by immersing it in the 1.0 mol L −1 H 2 SO 4 solution saturated by air for 1200 h. From the measurements of contact angle and water permeability, the hydrophobic characteristics of the pristine and immersed GDLs were compared. To investigate the causes for hydrophobicity degradation, the GDLs were analyzed by scanning electron microscopy, X-ray photoelectron spectroscopy and thermogravimetry. Further, the chemical compositions of H 2 SO 4 solutions before and after immersion test were analyzed with infrared spectroscopy. Results showed that the hydrophobicity of immersed GDL decreased distinctly, which was caused by the damage of physical structure and surface characteristics. Moreover, the immersed GDL showed a worse fuel cell performance than the pristine GDL, especially under a low humidity condition

  3. N-Doped TiO2-Coated Ceramic Membrane for Carbamazepine Degradation in Different Water Qualities

    Science.gov (United States)

    Luster, Enbal; Avisar, Dror; Horovitz, Inna; Lozzi, Luca; Baker, Mark A.; Grilli, Rossana; Mamane, Hadas

    2017-01-01

    The photocatalytic degradation of the model pollutant carbamazepine (CBZ) was investigated under simulated solar irradiation with an N-doped TiO2-coated Al2O3 photocatalytic membrane, using different water types. The photocatalytic membrane combines photocatalysis and membrane filtration in a single step. The impact of each individual constituent such as acidity, alkalinity, dissolved organic matter (DOM), divalent cations (Mg2+ and Ca2+), and Cl− on the degradation of CBZ was examined. CBZ in water was efficiently degraded by an N-doped TiO2-coated Al2O3 membrane. However, elements added to the water, which simulate the constituents of natural water, had an impact on the CBZ degradation. Water alkalinity inhibited CBZ degradation mostly due to increase in pH while radical scavenging by carbonate was more dominant at higher values (>200 mg/L as CaCO3). A negative effect of Ca2+ addition on photocatalytic degradation was found only in combination with phosphate buffer, probably caused by deposition of CaHPO4 or CaHPO4·2H2O on the catalyst surface. The presence of Cl− and Mg2+ ions had no effect on CBZ degradation. DOM significantly inhibited CBZ degradation for all tested background organic compounds. The photocatalytic activity of N-doped TiO2-coated Al2O3 membranes gradually decreased after continuous use; however, it was successfully regenerated by 0.1% HCl chemical cleaning. Nevertheless, dissolution of metals like Al and Ti should be monitored following acid cleaning. PMID:28758982

  4. Degradation of organic pollutants by an integrated photo-Fenton-like catalysis/immersed membrane separation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan, E-mail: jiedeng05@sina.com [School of Environment, Guang Xi University, Nanning 530004 (China); School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Xiong, Ya [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Tang, Yankui; Wang, Yinghui [School of Environment, Guang Xi University, Nanning 530004 (China)

    2013-01-15

    Highlights: ► The photo-Fenton-like reaction and membrane separation was coupled. ► FeVO{sub 4} was used as catalyst in the PFM reactor. ► Dynamics simulation would direct the actual application of the reactor. -- Abstract: To resolve the continuously reuse problem of fine catalysts, a new reactor was investigated by coupling the heterogeneous photo-Fenton-like oxidation with membrane separation. The reactor consisted of a Xe lamp, a submerged membrane module and FeVO{sub 4} as catalyst with high activity. Results showed that the catalyst was successfully left in the reactor. It was proved by the kinetics study of membrane fouling that the avoidless membrane fouling was brought mainly by surface cake, at catalyst concentration of 4 g/L, it accounted for more than 90% of the total resistance. The kinetics study of catalytic degradation of AO II under sub-critical flux showed the optimal concentration of catalyst was 0.5 g/L and under this concentration the membrane fouling was negligible. For a residence time of 60 min, the degradation efficiency of AO II reached more than 99% and the chemical oxygen demand (COD) removal efficiency was as high as 91%. The model of continuous stirred tank reactor could predict well for the degradation which was consistent with hydrodynamics study. Moreover, the PFM reactor shows a long-term behavior with both membrane and catalyst in it and merits consideration for scaled-up trials.

  5. A Review on Catalytic Membranes Production and Applications

    Directory of Open Access Journals (Sweden)

    Heba Abdallah

    2017-05-01

    Full Text Available The development of the chemical industry regarding reducing the production cost and obtaining a high-quality product with low environmental impact became the essential requirements of the world in these days. The catalytic membrane is considered as one of the new alternative solutions of catalysts problems in the industries, where the reaction and separation can be amalgamated in one unit. The catalytic membrane has numerous advantages such as breaking the thermodynamic equilibrium limitation, increasing conversion rate, reducing the recycle and separation costs. But the limitation or most disadvantages of catalytic membranes related to the high capital costs for fabrication or the fact that manufacturing process is still under development. This review article summarizes the most recent advances and research activities related to preparation, characterization, and applications of catalytic membranes. In this article, various types of catalytic membranes are displayed with different applications and explained the positive impacts of using catalytic membranes in various reactions. Copyright © 2017 BCREC Group. All rights reserved. Received: 1st April 2016; Revised: 14th February 2017; Accepted: 22nd February 2017 How to Cite: Abdallah, H. (2017. A Review on Catalytic Membranes Production and Applications. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 136-156 (doi:10.9767/bcrec.12.2.462.136-156 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.462.136-156

  6. Reticulophagy and Ribophagy: Regulated Degradation of Protein Production Factories

    Directory of Open Access Journals (Sweden)

    Eduardo Cebollero

    2012-01-01

    Full Text Available During autophagy, cytosol, protein aggregates, and organelles are sequestered into double-membrane vesicles called autophagosomes and delivered to the lysosome/vacuole for breakdown and recycling of their basic components. In all eukaryotes this pathway is important for adaptation to stress conditions such as nutrient deprivation, as well as to regulate intracellular homeostasis by adjusting organelle number and clearing damaged structures. For a long time, starvation-induced autophagy has been viewed as a nonselective transport pathway; however, recent studies have revealed that autophagy is able to selectively engulf specific structures, ranging from proteins to entire organelles. In this paper, we discuss recent findings on the mechanisms and physiological implications of two selective types of autophagy: ribophagy, the specific degradation of ribosomes, and reticulophagy, the selective elimination of portions of the ER.

  7. Analysis of deltamethrin's degradation products by irradiation

    International Nuclear Information System (INIS)

    Wu Ling; Huang Min; Chen Chun; Lei Qing; Du Xiaoying; Xie Yan; Wang Yan; Gao Peng; He Jiang

    2011-01-01

    Deltamethrin were dissolved in ethanol and water; acetone and water; dimethylsulfoxide and water, irradiating these liquors by 60 Co-γ under the dose of 5∼50 kGy. The irradiation system were analyzed by GC/MS, result shows: there were some differences under different irradiation doses; the main degradation products are: α-cyano-3-phenoxy benzyl alcohol, 3-Phenoxybenzaldehyde, 3-Phenoxybenzacetonitrile and bromomethane. (authors)

  8. Enzymatic degradation behavior and cytocompatibility of silk fibroin-starch-chitosan conjugate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baran, Erkan T., E-mail: erkantur@metu.edu.tr; Tuzlakoglu, Kadriye, E-mail: kadriye@dep.uminho.pt; Mano, Joao F., E-mail: jmano@dep.uminho.pt; Reis, Rui L., E-mail: rgreis@dep.uminho.pt

    2012-08-01

    The objective of this study was to investigate the influence of silk fibroin and oxidized starch conjugation on the enzymatic degradation behavior and the cytocompatability of chitosan based biomaterials. The tensile stress of conjugate membranes, which was at 50 Megapascal (MPa) for the lowest fibroin and starch composition (10 weight percent (wt.%)), was decreased significantly with the increased content of fibroin and starch. The weight loss of conjugates in {alpha}-amylase was more notable when the starch concentration was the highest at 30 wt.%. The conjugates were resistant to the degradation by protease and lysozyme except for the conjugates with the lowest starch concentration. After 10 days of cell culture, the proliferation of osteoblast-like cells (SaOS-2) was stimulated significantly by higher fibroin compositions and the DNA synthesis on the conjugate with the highest fibroin (30 wt.%) was about two times more compared to the native chitosan. The light microscopy and the image analysis results showed that the cell area and the lengths were decreased significantly with higher fibroin/chitosan ratio. The study proved that the conjugation of fibroin and starch with the chitosan based biomaterials by the use of non-toxic reductive alkylation crosslinking significantly improved the cytocompatibility and modulated the biodegradation, respectively. - Highlights: Black-Right-Pointing-Pointer Silk fibroin, starch and chitosan conjugates were prepared by reductive alkylation. Black-Right-Pointing-Pointer The enzymatic biodegradation and the cytocompatibility of conjugates were tested. Black-Right-Pointing-Pointer The conjugate with 30% starch composition was degraded by {alpha}-amylase significantly. Black-Right-Pointing-Pointer Higher starch composition in conjugates prevented protease and lysozyme degradation. Black-Right-Pointing-Pointer Fibroin incorporation effectively increased the cell proliferation of conjugates.

  9. Conversion of waste polystyrene through catalytic degradation into valuable products

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jasmin; Jan, Muhammad Rasul; Adnan [University of Peshawar, Peshawar (Pakistan)

    2014-08-15

    Waste expanded polystyrene (EPS) represents a source of valuable chemical products like styrene and other aromatics. The catalytic degradation was carried out in a batch reactor with a mixture of polystyrene (PS) and catalyst at 450 .deg. C for 30 min in case of Mg and at 400 .deg. C for 2 h both for MgO and MgCO{sub 3} catalysts. At optimum degradation conditions, EPS was degraded into 82.20±3.80 wt%, 91.60±0.20 wt% and 81.80±0.53 wt% liquid with Mg, MgO and MgCO{sub 3} catalysts, respectively. The liquid products obtained were separated into different fractions by fractional distillation. The liquid fractions obtained with three catalysts were compared, and characterized using GC-MS. Maximum conversion of EPS into styrene monomer (66.6 wt%) was achieved with Mg catalyst, and an increase in selectivity of compounds was also observed. The major fraction at 145 .deg. C showed the properties of styrene monomer. The results showed that among the catalysts used, Mg was found to be the most effective catalyst for selective conversion into styrene monomer as value added product.

  10. Membrane processes in production of functional whey components

    Directory of Open Access Journals (Sweden)

    Lutfiye Yilmaz-Ersan

    2009-12-01

    Full Text Available In recent years, whey has been recognised as a major source of nutritional and functional ingredients for the food industry. Commercial whey products include various powders, whey protein concentrates and isolates, and fractionated proteins, such as a-lactalbumin and b-lactoglobulin. The increased interest in separation and fractionation of whey proteins arises from the differences in their functional, biological and nutritional properties. In response to concerns about environmental aspects, research has been focused on membrane filtration technology, which provides exciting new opportunities for large-scale protein and lactose fractionation. Membrane separation is such technique in which particles are separated according to their molecular size. The types of membrane processing techniques are ultrafiltration, microfiltration, reverse osmosis, pervaporation, electrodialysis and nanofiltration. A higher purification of whey proteins is possible by combining membrane separation with ion-exchange. This paper provides an overview of types and applications of membrane separation techniques

  11. Fate of products of degradation processes: consequences for climatic change

    International Nuclear Information System (INIS)

    Slanina, J.; Brink, H.M. ten; Khlystov, A.

    1999-01-01

    The end products of atmospheric degradation are not only CO 2 and H 2 O but also sulfate and nitrate depending on the chemical composition of the substances which are subject to degradation processes. Atmospheric degradation has thus a direct influence on the radiative balance of the earth not only due to formation of greenhouse gases but also of aerosols. Aerosols of a diameter of 0.1 to 2 micrometer, reflect short wave sunlight very efficiently leading to a radiative forcing which is estimated to be about -0.8 watt per m 2 by IPCC. Aerosols also influence the radiative balance by way of cloud formation. If more aerosols are present, clouds are formed with more and smaller droplets and these clouds have a higher albedo and are more stable compared to clouds with larger droplets. Not only sulfate, but also nitrate and polar organic compounds, formed as intermediates in degradation processes, contribute to this direct and indirect aerosol effect. Estimates for the Netherlands indicate a direct effect of -4 watt m -2 and an indirect effect of as large as -5 watt m -2 . About one third is caused by sulfates, one third by nitrates and last third by polar organic compounds. This large radiative forcing is obviously non-uniform and depends on local conditions. (author)

  12. Radiolytic gas production in the alpha particle degradation of plastics

    International Nuclear Information System (INIS)

    Reed, D.T.; Hoh, J.; Emery, J.; Hobbs, D.

    1992-01-01

    Net gas generation due to alpha particle irradiation of polyethylene and polyvinyl chloride was investigated. Experiments were performed in an air environment at 30, 60, and 100 degree C. The predominant radiolytic degradation products of polyethylene were hydrogen and carbon dioxide with a wide variety of trace organic species noted. Irradiation of polyvinyl chloride resulted in the formation of HCl in addition to the products observed for polyethylene. For both plastic materials, a strong enhancement of net yields was noted at 100 degree C

  13. Halotolerance, ligninase production and herbicide degradation ability of basidiomycetes strains.

    Science.gov (United States)

    Arakaki, R L; Monteiro, D A; Boscolo, M; Dasilva, R; Gomes, E

    2013-12-01

    Fungi have been recently recognized as organisms able to grow in presence of high salt concentration with halophilic and halotolerance properties and their ligninolytic enzyme complex have an unspecific action enabling their use to degradation of a number of xenobiotic compounds. In this work, both the effect of salt and polyols on growth of the basidiomycetes strains, on their ability to produce ligninolytic enzyme and diuron degradation were evaluated. Results showed that the presence of NaCl in the culture medium affected fungal specimens in different ways. Seven out of ten tested strains had growth inhibited by salt while Dacryopinax elegans SXS323, Polyporus sp MCA128 and Datronia stereoides MCA167 fungi exhibited higher biomass production in medium containing 0.5 and 0.6 mol.L(-1) of NaCl, suggesting to be halotolerant. Polyols such as glycerol and mannitol added into the culture media improved the biomass and ligninases production by D. elegans but the fungus did not reveal consumption of these polyols from media. This fungus degraded diuron in medium control, in presence of NaCl as well as polyols, produced MnP, LiP and laccase.

  14. Halotolerance, ligninase production and herbicide degradation ability of basidiomycetes strains

    Directory of Open Access Journals (Sweden)

    R.L. Arakaki

    2013-12-01

    Full Text Available Fungi have been recently recognized as organisms able to grow in presence of high salt concentration with halophilic and halotolerance properties and their ligninolytic enzyme complex have an unspecific action enabling their use to degradation of a number of xenobiotic compounds. In this work, both the effect of salt and polyols on growth of the basidiomycetes strains, on their ability to produce ligninolytic enzyme and diuron degradation were evaluated. Results showed that the presence of NaCl in the culture medium affected fungal specimens in different ways. Seven out of ten tested strains had growth inhibited by salt while Dacryopinax elegans SXS323, Polyporus sp MCA128 and Datronia stereoides MCA167 fungi exhibited higher biomass production in medium containing 0.5 and 0.6 mol.L-1 of NaCl, suggesting to be halotolerant. Polyols such as glycerol and mannitol added into the culture media improved the biomass and ligninases production by D. elegans but the fungus did not reveal consumption of these polyols from media. This fungus degraded diuron in medium control, in presence of NaCl as well as polyols, produced MnP, LiP and laccase.

  15. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables.

    Science.gov (United States)

    Tan, Zaigao; Yoon, Jong Moon; Nielsen, David R; Shanks, Jacqueline V; Jarboe, Laura R

    2016-05-01

    Constructing microbial biocatalysts that produce biorenewables at economically viable yields and titers is often hampered by product toxicity. For production of short chain fatty acids, membrane damage is considered the primary mechanism of toxicity, particularly in regards to membrane integrity. Previous engineering efforts in Escherichia coli to increase membrane integrity, with the goal of increasing fatty acid tolerance and production, have had mixed results. Herein, a novel approach was used to reconstruct the E. coli membrane by enabling production of a novel membrane component. Specifically, trans unsaturated fatty acids (TUFA) were produced and incorporated into the membrane of E. coli MG1655 by expression of cis-trans isomerase (Cti) from Pseudomonas aeruginosa. While the engineered strain was found to have no increase in membrane integrity, a significant decrease in membrane fluidity was observed, meaning that membrane polarization and rigidity were increased by TUFA incorporation. As a result, tolerance to exogenously added octanoic acid and production of octanoic acid were both increased relative to the wild-type strain. This membrane engineering strategy to improve octanoic acid tolerance was found to require fine-tuning of TUFA abundance. Besides improving tolerance and production of carboxylic acids, TUFA production also enabled increased tolerance in E. coli to other bio-products, e.g. alcohols, organic acids, aromatic compounds, a variety of adverse industrial conditions, e.g. low pH, high temperature, and also elevated styrene production, another versatile bio-chemical product. TUFA permitted enhanced growth due to alleviation of bio-product toxicity, demonstrating the general effectiveness of this membrane engineering strategy towards improving strain robustness. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  16. ANALYTICAL METHOD DEVELOPMENT FOR ALACHLOR ESA AND OTHER ACETANILIDE HERBICIDE DEGRADATION PRODUCTS

    Science.gov (United States)

    In 1998, USEPA published a Drinking Water Contaminant Candidate List (CCL) of 50 chemicals and 10 microorganisms. "Alachlor ESA and other acetanilide herbicide degradation products" is listed on the the 1998 CCL. Acetanilide degradation products are generally more water soluble...

  17. Liquid chromatography and liquid chromatography-mass spectrometry analysis of donepezil degradation products

    Directory of Open Access Journals (Sweden)

    Mladenović Aleksandar R.

    2015-01-01

    Full Text Available This study describes the investigation of degradation products of donepezil (DP using stability indicating RP-HPLC method for determination of donepezil, which is a centrally acting reversible acetylcholinesterase inhibitor. In order to investigate the stability of drug and formed degradation products, a forced degradation study of drug sample and finished product under different forced degradation conditions has been conducted. Donepezil hydrochloride and donepezil tablets were subjected to stress degradation conditions recommended by International Conference on Harmonization (ICH. Donepezil hydrochloride solutions were subjected to acid and alkali hydrolysis, chemical oxidation and thermal degradation. Significant degradation was observed under alkali hydrolysis and oxidative degradation conditions. Additional degradation products were observed under the conditions of oxidative degradation. The degradation products observed during forced degradation studies were monitored using the high performance liquid chromatography (HPLC method developed. The parent method was modified in order to obtain LC-MS compatible method which was used to identify the degradation products from forced degradation samples using high resolution mass spectrometry. The mass spectrum provided the precise mass from which derived molecular formula of drug substance and degradation products formed and proved the specificity of the method unambiguously. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  18. Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes.

    Science.gov (United States)

    Heyno, Eiri; Mary, Véronique; Schopfer, Peter; Krieger-Liszkay, Anja

    2011-07-01

    Production of reactive oxygen species (hydroxyl radicals, superoxide radicals and hydrogen peroxide) was studied using EPR spin-trapping techniques and specific dyes in isolated plasma membranes from the growing and the non-growing zones of hypocotyls and roots of etiolated soybean seedlings as well as coleoptiles and roots of etiolated maize seedlings. NAD(P)H mediated the production of superoxide in all plasma membrane samples. Hydroxyl radicals were only produced by the membranes of the hypocotyl growing zone when a Fenton catalyst (FeEDTA) was present. By contrast, in membranes from other parts of the seedlings a low rate of spontaneous hydroxyl radical formation was observed due to the presence of small amounts of tightly bound peroxidase. It is concluded that apoplastic hydroxyl radical generation depends fully, or for the most part, on peroxidase localized in the cell wall. In soybean plasma membranes from the growing zone of the hypocotyl pharmacological tests showed that the superoxide production could potentially be attributed to the action of at least two enzymes, an NADPH oxidase and, in the presence of menadione, a quinone reductase.

  19. Efficient uranous nitrate production using membrane electrolysis

    International Nuclear Information System (INIS)

    Zhongwei Yuan; Taihong Yan; Weifang Zheng; Hongying Shuang; Liang Xian; Xiaoyan Bian; Chen Zuo; Chuanbo Li; Zhi Cao

    2013-01-01

    Electrochemical reduction of uranyl nitrate is a green, simple way to make uranous ion. In order to improve the ratio of uranous ion to the total uranium and maintain high current efficiency, an electrolyser with very thin cathodic and anodic compartment, which were separated by a cation exchange membrane, was setup, and its performance was tested. The effects of various parameters on the reduction were also evaluated. The results show that the apparatus is quite positive. It runs well with 120 mA/cm 2 current density (72 cm 2 cathode, constant current batch operation). U(IV) yield can achieve 93.1 % (500 mL feed, total uranium 199 g/L) after 180 min electrolysis. It was also shown that when U(IV) yield was below 80 %, very high current efficiency was maintained, and there was almost a linear relationship between uranous ion yield and electrolysis time; under the range of experimental conditions, the concentration of uranyl nitrate, hydrazine, and nitric acid had little effect on the reduction. (author)

  20. Product analysis for polyethylene degradation by radiation and thermal ageing

    International Nuclear Information System (INIS)

    Sugimoto, Masaki; Shimada, Akihiko; Kudoh, Hisaaki; Tamura, Kiyotoshi; Seguchi, Tadao

    2013-01-01

    The oxidation products in crosslinked polyethylene for cable insulation formed during thermal and radiation ageing were analyzed by FTIR-ATR. The products were composed of carboxylic acid, carboxylic ester, and carboxylic anhydride for all ageing conditions. The relative yields of carboxylic ester and carboxylic anhydride increased with an increase of temperature for radiation and thermal ageing. The carboxylic acid was the primary oxidation product and the ester and anhydride were secondary products formed by the thermally induced reactions of the carboxylic acids. The carboxylic acid could be produced by chain scission at any temperature followed by the oxidation of the free radicals formed in the polyethylene. The results of the analysis led to formulation of a new oxidation mechanism which was different from the chain reactions via peroxy radicals and peroxides. - Highlights: ► Products analysis of polyethylene degradation by radiation and thermal ageing. ► Components of carbonyl compounds produced in polyethylene by thermal and radiation oxidation were determined by FTIR. ► Carbonyl compounds comprised carboxylic acid, carboxylic ester, and carboxylic anhydride. ► Carboxylic acid was the primary oxidation product of chain scission at any oxidation temperature. ► Carboxylic ester and carboxylic anhydride are secondary products formed from carboxylic acid at higher temperature.

  1. Simulation of a porous ceramic membrane reactor for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Yu, W.; Ohmori, T.; Yamamoto, T.; Endo, A.; Nakaiwa, M.; Hayakawa, T. [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan); Itoh, N. [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan); Utsunomiya Univ. (Japan). Dept. of Applied Chemistry

    2005-08-01

    A systematic simulation study was performed to investigate the performance of a porous ceramic membrane reactor for hydrogen production by means of methane steam reforming. The results show that the methane conversions much higher than the corresponding equilibrium values can be achieved in the membrane reactor due to the selective removal of products from the reaction zone. The comparison of isothermal and non-isothermal model predictions was made. It was found that the isothermal assumption overestimates the reactor performance and the deviation of calculation results between the two models is subject to the operating conditions. The effects of various process parameters such as the reaction temperature, the reaction side pressure, the feed flow rate and the steam to methane molar feed ratio as well as the sweep gas flow rate and the operation modes, on the behavior of membrane reactor were analyzed and discussed. (author)

  2. Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products

    Science.gov (United States)

    Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Theeramunkong, Sewan; Saito, Nagahiro

    2018-01-01

    Chitosan is a polysaccharide that has been extensively studied in the field of biomedicine, especially its water-soluble degraded products called chitooligosaccharides (COS). In this study, COS were produced by the degradation of chitosan hydrogel dispersed in a dilute solution (i.e., 1.55 mM) of various kinds of carboxylic acids using a non-thermal plasma technology called solution plasma (SP). The degradation rates of chitosan were influenced by the type of carboxylic acids, depending on the interaction between chitosan and each carboxylic acid. After SP treatment, the water-soluble degraded products containing COS could be easily separated from the water-insoluble residue of chitosan hydrogel by centrifugation. The production yields of the COS were mostly higher than 55%. Furthermore, the obtained COS products were evaluated for their inhibitory effect as well as their selectivity against human lung cancer cells (H460) and human lung normal cells (MRC-5).

  3. Using membrane transporters to improve crops for sustainable food production

    Science.gov (United States)

    With the global population predicted to grow by at least 25% by 2050, the need for sustainable production of nutritious foods is critical for human and environmental well-being. Recent advances show that specialized plant membrane transporters can be utilized to enhance yields of staple crops, incre...

  4. Removal of nalidixic acid and its degradation products by an integrated MBR-ozonation system.

    Science.gov (United States)

    Pollice, A; Laera, G; Cassano, D; Diomede, S; Pinto, A; Lopez, A; Mascolo, G

    2012-02-15

    Chemical-biological degradation of a widely spread antibacterial (nalidixic acid) was successfully obtained by an integrated membrane bioreactor (MBR)-ozonation process. The composition of the treated solution simulated the wastewater from the production of the target pharmaceutical, featuring high salinity and a relevant concentration of sodium acetate. Aim of treatment integration was to exploit the synergistic effects of chemical oxidation and bioprocesses, by adopting the latter to remove most of the COD and the ozonation biodegradable products. Integration was achieved by placing ozonation in the recirculation stream of the bioreactor effluent. The recirculation flow rate was three-fold the MBR feed, and the performance of the integrated system was compared to the standard polishing configuration (single ozonation step after the MBR). Results showed that the introduction of the ozonation step did not cause relevant drawbacks to both biological and filtration processes. nalidixic acid passed undegraded through the MBR and was completely removed in the ozonation step. Complete degradation of most of the detected ozonation products was better achieved with the integrated MBR-ozonation process than using the sequential treatment configuration, i.e. ozone polishing after MBR, given the same ozone dosage. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Biogas Production from Citrus Waste by Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Rachma Wikandari

    2014-08-01

    Full Text Available Rapid acidification and inhibition by d-limonene are major challenges of biogas production from citrus waste. As limonene is a hydrophobic chemical, this challenge was encountered using hydrophilic polyvinylidine difluoride (PVDF membranes in a biogas reactor. The more sensitive methane-producing archaea were encapsulated in the membranes, while freely suspended digesting bacteria were present in the culture as well. In this membrane bioreactor (MBR, the free digesting bacteria digested the citrus wastes and produced soluble compounds, which could pass through the membrane and converted to biogas by the encapsulated cell. As a control experiment, similar digestions were carried out in bioreactors containing the identical amount of just free cells. The experiments were carried out in thermophilic conditions at 55 °C, and hydraulic retention time of 30 days. The organic loading rate (OLR was started with 0.3 kg VS/m3/day and gradually increased to 3 kg VS/m3/day. The results show that at the highest OLR, MBR was successful to produce methane at 0.33 Nm3/kg VS, while the traditional free cell reactor reduced its methane production to 0.05 Nm3/kg VS. Approximately 73% of the theoretical methane yield was achieved using the membrane bioreactor.

  6. 21 CFR 864.7320 - Fibrinogen/fibrin degradation products assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fibrinogen/fibrin degradation products assay. 864.7320 Section 864.7320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7320 Fibrinogen/fibrin degradation products assay. (a) Identification. A fibrinogen/fibrin degradation...

  7. A Bayesian approach to degradation-based burn-in optimization for display products exhibiting two-phase degradation patterns

    International Nuclear Information System (INIS)

    Yuan, Tao; Bae, Suk Joo; Zhu, Xiaoyan

    2016-01-01

    Motivated by the two-phase degradation phenomena observed in light displays (e.g., plasma display panels (PDPs), organic light emitting diodes (OLEDs)), this study proposes a new degradation-based burn-in testing plan for display products exhibiting two-phase degradation patterns. The primary focus of the burn-in test in this study is to eliminate the initial rapid degradation phase, while the major purpose of traditional burn-in tests is to detect and eliminate early failures from weak units. A hierarchical Bayesian bi-exponential model is used to capture two-phase degradation patterns of the burn-in population. Mission reliability and total cost are introduced as planning criteria. The proposed burn-in approach accounts for unit-to-unit variability within the burn-in population, and uncertainty concerning the model parameters, mainly in the hierarchical Bayesian framework. Available pre-burn-in data is conveniently incorporated into the burn-in decision-making procedure. A practical example of PDP degradation data is used to illustrate the proposed methodology. The proposed method is compared to other approaches such as the maximum likelihood method or the change-point regression. - Highlights: • We propose a degradation-based burn-in test for products with two-phase degradation. • Mission reliability and total cost are used as planning criteria. • The proposed burn-in approach is built within the hierarchical Bayesian framework. • A practical example was used to illustrate the proposed methodology.

  8. Indigenous production of biosurfactant and degradation of crude oil

    Directory of Open Access Journals (Sweden)

    Hamid Rashedi

    2015-04-01

    Full Text Available The present study investigated the isolation and identification of biosurfactant producing bacteria from Iranian oil wells. The biosurfactant production of bacteria isolates was evaluated and confirmed using hemolysis and emulsification tests. The biodegradation of crude oil was studied using GC and HPLC analysis. A total of 45 strains have been isolated. These strains showed less than a 40 mN m-1 reduction in surface tension. The effects of different pH (4.2-9.2, salinity concentrations (1%-15%, and temperatures (25-50 in biosurfactant production of isolated strains were evaluated. One of the strains (Bacillus sp. NO.4 showed a high salt tolerance and a successful production of biosurfactant in a vast pH range. Its maximum biomass production (about 3.1 g L-1 dry weight was achieved after 60 hours of growth. The surface tension of the culture broth dropped rapidly after inoculation and reached its lowest value (36 mN m-1 during the exponential phase after about 36-48 hours of growth. The study of the GC graphs showed that higher aliphatic reduction occurred in fractions with C14 to C24 hydrocarbons. The depicted results of the HPLC graphs indicated a 100% degradation of chrysene and fluorine. In this study, we demonstrated the useful capacities of the isolates in removing oil pollutants and their application in MEOR in vitro.

  9. Modeling Degradation Product Partitioning in Chlorinated-DNAPL Source Zones

    Science.gov (United States)

    Boroumand, A.; Ramsburg, A.; Christ, J.; Abriola, L.

    2009-12-01

    Metabolic reductive dechlorination degrades aqueous phase contaminant concentrations, increasing the driving force for DNAPL dissolution. Results from laboratory and field investigations suggest that accumulation of cis-dichloroethene (cis-DCE) and vinyl chloride (VC) may occur within DNAPL source zones. The lack of (or slow) degradation of cis-DCE and VC within bioactive DNAPL source zones may result in these dechlorination products becoming distributed among the solid, aqueous, and organic phases. Partitioning of cis-DCE and VC into the organic phase may reduce aqueous phase concentrations of these contaminants and result in the enrichment of these dechlorination products within the non-aqueous phase. Enrichment of degradation products within DNAPL may reduce some of the advantages associated with the application of bioremediation in DNAPL source zones. Thus, it is important to quantify how partitioning (between the aqueous and organic phases) influences the transport of cis-DCE and VC within bioactive DNAPL source zones. In this work, abiotic two-phase (PCE-water) one-dimensional column experiments are modeled using analytical and numerical methods to examine the rate of partitioning and the capacity of PCE-DNAPL to reversibly sequester cis-DCE. These models consider aqueous-phase, nonaqueous phase, and aqueous plus nonaqueous phase mass transfer resistance using linear driving force and spherical diffusion expressions. Model parameters are examined and compared for different experimental conditions to evaluate the mechanisms controlling partitioning. Biot number, a dimensionless number which is an index of the ratio of the aqueous phase mass transfer rate in boundary layer to the mass transfer rate within the NAPL, is used to characterize conditions in which either or both processes are controlling. Results show that application of a single aqueous resistance is capable to capture breakthrough curves when DNAPL is distributed in porous media as low

  10. High Glucose Promotes Aβ Production by Inhibiting APP Degradation

    Science.gov (United States)

    Zhang, Shuting; Song, Weihong

    2013-01-01

    Abnormal deposition of neuriticplaques is the uniqueneuropathological hallmark of Alzheimer’s disease (AD).Amyloid β protein (Aβ), the major component of plaques, is generated from sequential cleavage of amyloidβ precursor protein (APP) by β-secretase and γ-secretase complex. Patients with diabetes mellitus (DM), characterized by chronic hyperglycemia,have increased risk of AD development.However, the role of high blood glucose in APP processing and Aβ generation remains elusive. In this study, we investigated the effect of high glucose on APP metabolism and Aβ generation in cultured human cells. We found that high glucose treatment significantly increased APP protein level in both neuronal-like and non-neuronal cells, and promoted Aβ generation. Furthermore, we found that high glucose-induced increase of APP level was not due to enhancement of APP gene transcription but resulted from inhibition of APP protein degradation. Taken together, our data indicated that hyperglycemia could promote AD pathogenesis by inhibiting APP degradation and enhancing Aβ production. More importantly, the elevation of APP level and Aβ generation by high glucose was caused by reduction of APP turnover rate.Thus,our study provides a molecular mechanism of increased risk of developing AD in patients withDMand suggests thatglycemic control might be potentially beneficial for reducing the incidence of AD in diabetic patients and delaying the AD progression. PMID:23894546

  11. Studies on membrane acid electrolysis for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marco Antonio Oliveira da; Linardi, Marcelo; Saliba-Silva, Adonis Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Celulas a Combustivel e Hidrogenio], Email: saliba@ipen.br

    2010-07-01

    Hydrogen represents great opportunity to be a substitute for fossil fuels in the future. Water as a renewable source of hydrogen is of great interest, since it is abundant and can decompose, producing only pure H{sub 2} and O{sub 2}. This decomposition of water can be accomplished by processes such as electrolysis, thermal decomposition and thermochemical cycles. The electrolysis by membrane has been proposed as a viable process for hydrogen production using thermal and electrical energy derived from nuclear energy or any renewable source like solar energy. In this work, within the context of optimization of the electrolysis process, it is intended to develop a mathematical model that can simulate and assist in parameterization of the electrolysis performed by polymer membrane electrolytic cell. The experimental process to produce hydrogen via the cell membrane, aims to optimize the amount of gas produced using renewable energy with noncarbogenic causing no harm by producing gases deleterious to the environment. (author)

  12. Carbamazepine degradation using a N-doped TiO_2 coated photocatalytic membrane reactor: Influence of physical parameters

    International Nuclear Information System (INIS)

    Horovitz, Inna; Avisar, Dror; Baker, Mark A.; Grilli, Rossana; Lozzi, Luca; Di Camillo, Daniela; Mamane, Hadas

    2016-01-01

    Highlights: • UV–vis N-doped TiO_2 was deposited by sol-gel onto Al_2O_3 microfiltration membranes. • Coating decreased permeability by 50 and 12% for 200- and 800-nm Al_2O_3 membranes. • Flow through membrane results in higher reaction rates compared to flow on top. • Higher vis photocatalytic activity for N-doped TiO_2 vs. non-doped TiO_2 membranes. • Mass transfer is a critical parameter for the design of immobilized PMR. - Abstract: Commercial α-Al_2O_3 photocatalytic membranes with a pore size of 200 and 800-nm were coated with N-doped TiO_2 photocatalytic film using a sol-gel technique for concurrent bottom-up filtration and photocatalytic oxidation. X-ray diffraction confirmed that the deposited N-doped TiO_2 films are in the form of anatase with 78–84% coverage of the membrane surface. The concentration of N found by X-ray photoelectron spectroscopy was in the range of 0.3–0.9 atomic percentage. Membrane permeability after coating decreased by 50% and 12% for the 200- and 800-nm membrane substrates, respectively. The impact of operational parameters on the photocatalytic activity (PCA) of the N-doped TiO_2-coated membranes was examined in a laboratory flow cell based on degradation of the model micropollutant carbamazepine, using a solar simulator as the light source. The significant gap in degradation rate between flow through the membrane and flow on the surface of the membrane was attributed both to the hydraulic effect and in-pore PCA. N-doped TiO_2-coated membranes showed enhanced activity for UV wavelengths, in addition to activity under visible light. Experiments of PCA under varying flow rates concluded that the process is in the mass-transfer control regime. Carbamazepine removal rate increased with temperature, despite the decrease in dissolved oxygen concentration.

  13. Carbamazepine degradation using a N-doped TiO{sub 2} coated photocatalytic membrane reactor: Influence of physical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Horovitz, Inna [School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); The Hydro-Chemistry Laboratory, Faculty of Geography and the Environment, Tel Aviv University, Tel Aviv 69978 (Israel); Avisar, Dror [The Hydro-Chemistry Laboratory, Faculty of Geography and the Environment, Tel Aviv University, Tel Aviv 69978 (Israel); Baker, Mark A.; Grilli, Rossana [The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Lozzi, Luca; Di Camillo, Daniela [Department of Physical and Chemical Sciences, University of L' Aquila, Via Vetoio, I-67100 L' Aquila (Italy); Mamane, Hadas, E-mail: hadasmg@post.tau.ac.il [School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)

    2016-06-05

    Highlights: • UV–vis N-doped TiO{sub 2} was deposited by sol-gel onto Al{sub 2}O{sub 3} microfiltration membranes. • Coating decreased permeability by 50 and 12% for 200- and 800-nm Al{sub 2}O{sub 3} membranes. • Flow through membrane results in higher reaction rates compared to flow on top. • Higher vis photocatalytic activity for N-doped TiO{sub 2} vs. non-doped TiO{sub 2} membranes. • Mass transfer is a critical parameter for the design of immobilized PMR. - Abstract: Commercial α-Al{sub 2}O{sub 3} photocatalytic membranes with a pore size of 200 and 800-nm were coated with N-doped TiO{sub 2} photocatalytic film using a sol-gel technique for concurrent bottom-up filtration and photocatalytic oxidation. X-ray diffraction confirmed that the deposited N-doped TiO{sub 2} films are in the form of anatase with 78–84% coverage of the membrane surface. The concentration of N found by X-ray photoelectron spectroscopy was in the range of 0.3–0.9 atomic percentage. Membrane permeability after coating decreased by 50% and 12% for the 200- and 800-nm membrane substrates, respectively. The impact of operational parameters on the photocatalytic activity (PCA) of the N-doped TiO{sub 2}-coated membranes was examined in a laboratory flow cell based on degradation of the model micropollutant carbamazepine, using a solar simulator as the light source. The significant gap in degradation rate between flow through the membrane and flow on the surface of the membrane was attributed both to the hydraulic effect and in-pore PCA. N-doped TiO{sub 2}-coated membranes showed enhanced activity for UV wavelengths, in addition to activity under visible light. Experiments of PCA under varying flow rates concluded that the process is in the mass-transfer control regime. Carbamazepine removal rate increased with temperature, despite the decrease in dissolved oxygen concentration.

  14. Unraveling micro- and nanoscale degradation processes during operation of high-temperature polymer-electrolyte-membrane fuel cells

    Science.gov (United States)

    Hengge, K.; Heinzl, C.; Perchthaler, M.; Varley, D.; Lochner, T.; Scheu, C.

    2017-10-01

    The work in hand presents an electron microscopy based in-depth study of micro- and nanoscale degradation processes that take place during the operation of high-temperature polymer-electrolyte-membrane fuel cells (HT-PEMFCs). Carbon supported Pt particles were used as cathodic catalyst material and the bimetallic, carbon supported Pt/Ru system was applied as anode. As membrane, cross-linked polybenzimidazole was used. Scanning electron microscopy analysis of cross-sections of as-prepared and long-term operated membrane-electrode-assemblies revealed insight into micrometer scale degradation processes: operation-caused catalyst redistribution and thinning of the membrane and electrodes. Transmission electron microscopy investigations were performed to unravel the nanometer scale phenomena: a band of Pt and Pt/Ru nanoparticles was detected in the membrane adjacent to the cathode catalyst layer. Quantification of the elemental composition of several individual nanoparticles and the overall band area revealed that they stem from both anode and cathode catalyst layers. The results presented do not demonstrate any catastrophic failure but rather intermediate states during fuel cell operation and indications to proceed with targeted HT-PEMFC optimization.

  15. Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: Electrochemical impedance spectroscopy study

    Science.gov (United States)

    Ren, Y. J.; Anisur, M. R.; Qiu, W.; He, J. J.; Al-Saadi, S.; Singh Raman, R. K.

    2017-09-01

    Metallic materials are most suitable for bipolar plates of proton exchange membrane fuel cell (PEMFC) because they possess the required mechanical strength, durability, gas impermeability, acceptable cost and are suitable for mass production. However, metallic bipolar plates are prone to corrosion or they can passivate under PEMFC environment and interrupt the fuel cell operation. Therefore, it is highly attractive to develop corrosion resistance coating that is also highly conductive. Graphene fits these criteria. Graphene coating is developed on copper by chemical vapor deposition (CVD) with an aim to improving corrosion resistance of copper under PEMFC condition. The Raman Spectroscopy shows the graphene coating to be multilayered. The electrochemical degradation of graphene coated copper is investigated by electrochemical impedance spectroscopy (EIS) in 0.5 M H2SO4 solution at room temperature. After exposure to the electrolyte for up to 720 h, the charge transfer resistance (Rt) of the graphene coated copper is ∼3 times greater than that of the bare copper, indicating graphene coatings could improve the corrosion resistance of copper bipolar plates.

  16. Enzymatic degradation of plutonium-contaminated cellulose products

    International Nuclear Information System (INIS)

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M.; Barnes, D.L.; Worl, L.; Avens, L.

    1999-01-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with radionuclides. This presentation describes the use of one such enzyme preparation (Rapidase trademark) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste that must be disposed of in secured storage areas

  17. Enzymatic degradation of plutonium-contaminated cellulose products

    International Nuclear Information System (INIS)

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M.; Barnes, D.L.; Worl, L.A.

    1999-01-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown previously that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with uranium. This presentation describes the use of one such enzyme preparation (Rapidase trademark, manufactured by Genencor, Rochester, NY) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste destined for costly disposal options

  18. Effect of protein degradability on milk production of dairy ewes.

    Science.gov (United States)

    Mikolayunas-Sandrock, C; Armentano, L E; Thomas, D L; Berger, Y M

    2009-09-01

    The objective of this experiment was to determine the effect of protein degradability of dairy sheep diets on milk yield and protein utilization across 2 levels of milk production. Three diets were formulated to provide similar energy concentrations and varying concentrations of rumen-degradable protein (RDP) and rumen-undegradable protein (RUP): 12% RDP and 4% RUP (12-4) included basal levels of RDP and RUP, 12% RDP and 6% RUP (12-6) included additional RUP, and 14% RDP and 4% RUP (14-4) included additional RDP. Diets were composed of alfalfa-timothy cubes, whole and ground corn, whole oats, dehulled soybean meal, and expeller soybean meal (SoyPlus, West Central, Ralston, IA). Estimates of RDP and RUP were based on the Small Ruminant Nutrition System model (2008) and feed and orts were analyzed for Cornell N fractions. Eighteen multiparous dairy ewes in midlactation were divided by milk yield (low and high) into 2 blocks of 9 ewes each and were randomly assigned within block (low and high) to 3 pens of 3 ewes each. Dietary treatments were arranged in a 3 x 3 Latin square within each block and applied to pens for 14-d periods. We hypothesized that pens consuming high-RUP diets (12-6) would produce more milk and milk protein than the basal diet (12-4) and pens consuming high-RDP diets (14-4) would not produce more milk than the basal diet (12-4). Ewes in the high-milk-yield square consumed more dry matter and produced more milk, milk fat, and milk protein than ewes in the low-milk-yield square. There was no effect of dietary treatment on dry matter intake. Across both levels of milk production, the 12-6 diet increased milk yield by 14%, increased milk fat yield by 14%, and increased milk protein yield by 13% compared with the 14-4 and 12-4 diets. Gross N efficiency (milk protein N/intake protein N) was 11 and 15% greater in the 12-6 and 12-4 diets, respectively, compared with the 14-4 diet. Milk urea N concentration was greater in the 12-6 diet and tended to be

  19. Degradation products of irradiated haloperidol: implications for the development of an implantible delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Booker, J

    1988-01-01

    Haloperidol was chosen as a model compound to determine whether the degradation products created by sterilizing dose of gamma radiation would contaminate an implantible delivery device and be hazardous to the health of the person using it. Acrolein, chlorobenzene, and several other products were identified among the degradation products. They were quantitated and evaluated as being potentially dangerous. It is recommended that the development protocol for a radiation-sterilized, implantible drug include the identification and evaluation of the degradation products.

  20. Degradation products of irradiated haloperidol: implications for the development of an implantible delivery system

    International Nuclear Information System (INIS)

    Booker, J.

    1988-01-01

    Haloperidol was chosen as a model compound to determine whether the degradation products created by sterilizing dose of gamma radiation would contaminate an implantible delivery device and be hazardous to the health of the person using it. Acrolein, chlorobenzene, and several other products were identified among the degradation products. They were quantitated and evaluated as being potentially dangerous. It is recommended that the development protocol for a radiation-sterilized, implantible drug include the identification and evaluation of the degradation products. (author)

  1. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation.

    Science.gov (United States)

    Chen, Jing; Qu, Ruijuan; Pan, Xiaoxue; Wang, Zunyao

    2016-10-15

    In this study, we systematically investigated the potential applicability of potassium permanganate for removal of triclosan (TCS) in water treatment. A series of kinetic experiments were carried out to study the influence of various factors, including the pH, oxidant doses, temperature, and presence of typical anions (Cl(-), SO4(2-), NO3(-)), humic acid (HA), and fulvic acid (FA) on triclosan removal. The optimal reaction conditions were: pH = 8.0, [TCS]0:[KMnO4]0 = 1:2.5, and T = 25 °C, where 20 mg/L of TCS could be completely degraded in 120 s. However, the rate of TCS (20 μg/L) oxidation by KMnO4 ([TCS]0:[KMnO4]0 = 1:2.5) was 1.64 × 10(-3) mg L(-1)·h(-1), lower than that at an initial concentration of 20 mg/L (2.24 × 10(3) mg L(-1)·h(-1)). A total of eleven products were detected by liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-Q-TOF-MS) analysis, including phenol and its derivatives, benzoquinone, an organic acid, and aldehyde. Two main reaction pathways involving CO bond cleavage (-C(8)O(7)-) and benzene ring opening (in the less chlorinated benzene ring) were proposed, and were further confirmed based on frontier electron density calculations and point charges. Furthermore, the changes in the toxicity of the reaction solution during TCS oxidation by KMnO4 were evaluated by using both the luminescent bacteria Photobacterium phosphoreum and the water flea Daphnia magna. The toxicity of 20 mg/L triclosan to D. magna and P. phosphoreum after 60 min was reduced by 95.2% and 43.0%, respectively. Phenol and 1,4-benzoquinone, the two representative degradation products formed during permanganate oxidation, would yield low concentrations of DBPs (STHMFP, 20.99-278.97 μg/mg; SHAAFP, 7.86 × 10(-4)-45.77 μg/mg) after chlorination and chloramination. Overall, KMnO4 can be used as an effective oxidizing agent for TCS removal in water and wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Restoration of Degraded Salt Affected Lands to Productive Forest Ecosystem

    Science.gov (United States)

    Singh, Yash; Singh, Gurbachan; Singh, Bajrang; Cerdà, Artemi

    2017-04-01

    Soil system determines the fluxes of energy and matter in the Earth and is the source of goods, services and resources to the humankind (Keesstra et al., 2012; Brevik et al., 2015; Keesstra et al., 2016). To restore and rehabilitate the soil system is a key strategy to recover the services the soils offers (Celentano et al., 2016; Galati et al., 2016; Parras-Alcantara et al., 2016). Transformation of degraded sodic lands in biodiversity rich productive forest ecosystem is a challenging task before the researchers all over the world. The soils of the degraded sites remain almost unfavorable for the normal growth, development and multiplication of organisms; all our attempts tend to alleviate the soil constraints. Land degradation due to presence of salts in the soil is an alarming threat to agricultural productivity and sustainability, particularly in arid and semiarid regions of the world (Tanji, 1990; Qadir et al., 2006). According to the FAO Land and Nutrition Management Service (2008), over 6% of the world's lands are affected by salinity, which accounts for more than 800 million ha in 100 countries. This is due to natural causes, extensive utilization of land (Egamberdieva et al., 2008), poor drainage systems and limited availability of irrigation water which causes salinization in many irrigated soils (Town et al., 2008).In India, about 6.73 million ha are salt affected which spread in 194 districts out of 584 districts in India and represents 2.1% of the geographical area of the country (Mandal et al., 2009).Out of these, 2.8 million ha are sodic in nature and primarily occurring in the Indo-Gangetic alluvial plains. These lands are degraded in structural, chemical, nutritional, hydrological and microbiological characteristics. The reclamation of salt affected soils with chemical amendments like gypsum and phospho-gypsum are in practice for the cultivation field crops under agricultural production. Forest development on such lands although takes considerable

  3. Identification of major degradation products of 5-aminosalicylic acid formed in aqueous solutions and in pharmaceuticals

    DEFF Research Database (Denmark)

    Jensen, J.; Cornett, Claus; Olsen, C. E.

    1992-01-01

    of polymeric species by oxidative self-coupling of 5-ASA moieties. These results indicate that the degradation of 5-ASA follows the same mechanism as observed for the autooxidation of 4-aminophenol and 1,4-phenylenediamine. Some of the identified degradation products were found in 5-ASA......The formation of four major degradation products of 5-aminosalicylic acid (5-ASA) in buffered solutions at pH 7.0 was demonstrated by gradient HPLC analysis. The isolation and structural elucidation of the resulting degradation products showed that the degradation of 5-ASA led to the formation...

  4. Enhancement of organic matter degradation and methane gas production of anaerobic granular sludge by degasification of dissolved hydrogen gas.

    Science.gov (United States)

    Satoh, Hisashi; Bandara, Wasala M K R T W; Sasakawa, Manabu; Nakahara, Yoshihito; Takahashi, Masahiro; Okabe, Satoshi

    2017-11-01

    A hollow fiber degassing membrane (DM) was applied to enhance organic matter degradation and methane gas production of anaerobic granular sludge process by reducing the dissolved hydrogen gas (D-H 2 ) concentration in the liquid phase. DM was installed in the bench-scale anaerobic granular sludge reactors and D-H 2 was removed through DM using a vacuum pump. Degasification improved the organic matter degradation efficiency to 79% while the efficiency was 62% without degasification at 12,000mgL -1 of the influent T-COD concentration. Measurement of D-H 2 concentrations in the liquid phase confirmed that D-H 2 was removed by degasification. Furthermore, the effect of acetate concentrations on the organic matter degradation efficiency was investigated. At acetate concentrations above 3gL -1 , organic matter degradation deteriorated. Degasification enhanced the propionate and acetate degradation. These results suggest that degasification reduced D-H 2 concentration and volatile fatty acids concentrations, prevented pH drop, and subsequent enhanced organic matter degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Using membrane transporters to improve crops for sustainable food production

    Science.gov (United States)

    Schroeder, Julian I.; Delhaize, Emmanuel; Frommer, Wolf B.; Guerinot, Mary Lou; Harrison, Maria J.; Herrera-Estrella, Luis; Horie, Tomoaki; Kochian, Leon V.; Munns, Rana; Nishizawa, Naoko K.; Tsay, Yi-Fang; Sanders, Dale

    2013-01-01

    With the global population predicted to grow by at least 25 per cent by 2050, the need for sustainable production of nutritious foods is critical for human and environmental health. Recent advances show that specialized plant membrane transporters can be used to enhance yields of staple crops, increase nutrient content and increase resistance to key stresses, including salinity, pathogens and aluminium toxicity, which in turn could expand available arable land. PMID:23636397

  6. Identification and ecotoxicity of degradation products of chloroacetamide herbicides from UV-treatment of water

    DEFF Research Database (Denmark)

    Souissi, Yasmine; Bouchonnet, Stéphane; Bourcier, Sophie

    2013-01-01

    The widespread occurrence of chlorinated herbicides and their degradation products in the aquatic environment raises health and environmental concerns. As a consequence pesticides, and to a lesser degree their degradation products, are monitored by authorities both in surface waters and drinking...... waters. In this study the formation of degradation products from ultraviolet (UV) treatment of the three chloroacetamide herbicides acetochlor, alachlor and metolachlor and their biological effects were investigated. UV treatment is mainly used for disinfection in water and wastewater treatments. First...

  7. Assessment of proteolytic degradation of the basement membrane: a fragment of type IV collagen as a biochemical marker for liver fibrosis

    DEFF Research Database (Denmark)

    Veidal, Sanne S.; Karsdal, Morten A.; Nawrocki, Arkadiusz

    2011-01-01

    Collagen deposition and an altered matrix metalloproteinase (MMP) expression profile are hallmarks of fibrosis. Type IV collagen is the most abundant structural basement membrane component of tissue, which increases 14-fold during fibrogenesis in the liver. Proteolytic degradation of collagens...

  8. Analysis of the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications through the Fundamental Understanding of Membrane and MEA Degradation Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Randal L. [DuPont

    2013-10-31

    The Project focused on mitigation of degradation processes on membrane electrode assemblies. The approach was to develop a model to improve understanding of the mechanisms, and to use it to focus mitigation strategies. The detailed effects of various accelerated stress tests (ASTs) were evaluated to determine the best subset to use in model development. A combination of ASTs developed by the Fuel Cell Commercialization Conference of Japan and the Fuel Cell Tech Team were selected for use. The ASTs were compared by measuring effects on performance, running in-situ diagnostics, and performing microscopic analyses of the membrane electrode assemblies after the stress tests were complete. Nissan ran FCCJ AST protocols and performed in situ and ex-situ electrochemical testing. DuPont ran FCTT and USFCC AST protocols, performed scanning and transmission electron microscopy and ran in-situ electrochemical tests. Other ex-situ testing was performed by IIT, along with much of the data analysis and model development. These tests were then modified to generate time-dependent data of the degradation mechanisms. Three different catalyst types and four membrane variants were then used to generate data for a theoretically-based degradation model. An important part of the approach was to use commercially available materials in the electrodes and membranes made in scalable semiworks processes rather than lab-based materials. This constraint ensured all materials would be practicable for full-scale testing. The initial model for the electrode layer was tested for internal consistency and agreement with the data. A Java-based computer application was developed to analyze the time-dependent AST data using polarization curves with four different cathode gas feeds and generate model parameters. Data showed very good reproducibility and good consistency as cathode catalyst loadings were varied. At the point of termination of the project, a basic electrode model was in hand with several

  9. Mapping intermediate degradation products of poly(lactic-co-glycolic acid) in vitro.

    Science.gov (United States)

    Li, Jian; Nemes, Peter; Guo, Ji

    2018-04-01

    There is widespread interest in using absorbable polymers, such as poly(lactic-co-glycolic acid) (PLGA), as components in the design and manufacture of new-generation drug eluting stents (DES). PLGA undergoes hydrolysis to progressively degrade through intermediate chemical entities to simple organic acids that are ultimately absorbed by the human body. Understanding the composition and structure of these intermediate degradation products is critical not only to elucidate polymer degradation pathways accurately, but also to assess the safety and performance of absorbable cardiovascular implants. However, analytical approaches to determining the intermediate degradation products have yet to be established and evaluated in a standard or regulatory setting. Hence, we developed a methodology using electrospray ionization mass spectrometry to qualitatively and quantitatively describe intermediate degradation products generated in vitro from two PLGA formulations commonly used in DES. Furthermore, we assessed the temporal evolution of these degradation products using time-lapse experiments. Our data demonstrated that PLGA degradation products via heterogeneous cleavage of ester bonds are modulated by multiple intrinsic and environmental factors, including polymer chemical composition, degradants solubility in water, and polymer synthesis process. We anticipate the methodologies and outcomes presented in this work will elevate the mechanistic understanding of comprehensive degradation profiles of absorbable polymeric devices, and facilitate the design and regulation of cardiovascular implants by supporting the assessments of the associated biological response to degradation products. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1129-1137, 2018. © 2017 Wiley Periodicals, Inc.

  10. Hydrogenation of Maltose in Catalytic Membrane Reactor for Maltitol Production

    Directory of Open Access Journals (Sweden)

    Makertihartha I.G.B.N.

    2018-01-01

    Full Text Available Maltitol is one of the low-calorie sweeteners which has a major role in food industries. Due to its characteristics of comparable sweetness level to sucrose, maltitol can be a suitable sugar replacement. In this work, catalytic membrane reactor (CMR was examined in maltitol production through hydrogenation of maltose. Commercial ceramic membrane impregnated with Kalcat 8030 Nickel was used as the CMR. The reaction was conducted at a batch mode operation, 95 to 110°C of temperature, and 5 to 8 bar of pressure. In the range of working conditions used in this study, up to 47% conversion was achieved. The reaction conversion was significantly affected by temperature and pressure. Results of this preliminary study indicated that CMR can be used for hydrogenation of maltose with good performance under a relatively low operating pressure.

  11. Degradation kinetics and transformation products of chlorophene by aqueous permanganate.

    Science.gov (United States)

    Xu, Xinxin; Chen, Jing; Wang, Siyuan; Ge, Jiali; Qu, Ruijuan; Feng, Mingbao; Sharma, Virender K; Wang, Zunyao

    2018-07-01

    This paper evaluates the oxidation of an antibacterial agent, chlorophene (4-chloro-2-(phenylmethyl)phenol, CP), by permanganate (Mn(VII)) in water. Second-order rate constant (k) for the reaction between Mn(VII) and CP was measured as (2.05 ± 0.05) × 10 1  M -1  s -1 at pH 7.0 for an initial CP concentration of 20.0 μM and Mn(VII) concentration of 60.0 μM. The value of k decreased with increasing pH in the pH range of 5.0-7.0, and then increased with an increase in solution pH from 7.0 to 10.0. The presence of MnO 2 and Fe 3+ in water generally enhanced the removal of CP, while the effect of humic acid was not obvious. Fourteen oxidation products of CP were identified by an electrospray time-of-flight mass spectrometer, and direct oxidation, ring-opening, and decarboxylation were mainly observed in the reaction process. The initial reaction sites of CP by Mn(VII) oxidation were rationalized by density functional theory calculations. Toxicity changes of the reaction solutions were assessed by the luminescent bacteria P. phosphoreum, and the intermediate products posed a relatively low ecological risk during the degradation process. The efficient removal of CP in secondary clarifier effluent and river water demonstrated the potential application of this Mn(VII) oxidation method in water treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Radioletic degradation of monocrotophos and toxicity of breakdown products

    International Nuclear Information System (INIS)

    Ghanem, I.; Shamma, M.; Al-Arfi, M.; Abu-Alnaser, A.

    2015-03-01

    Among sources of environmental pollution, pesticides contamination is wide spread and has become a source of concern. The organophosphorus pesticide, monocrotophos, is highly toxic compound and inhibits cholinesterase. It is very dangerous by all ways of exposure. Monocrotophos is used widely in Syria to control a variety of boring, chewing and sucking insects on various fruit and veditable crops. It is even, ellegally used to protect grapes in grape orchards from birds which is potentially hazaradous to both birds and the consumers of rthis crop. Monocrotophos is imported to Syria, and this is done according to a yearly plan to assess the amount needed of each pesticide. Such planning combined with variation in the incidence of pest infestation may lead to accummulation of pesticides from year to another, they become obsolete . Getting rid of such pesticides in the developing world is a problem, and Syria is no exception. There are various method of getting rid of obsolete pesticides ranging from containment to chemical methods of breaking down the pesticide. The present study aimed at assesing the feasiblity of using gamma radiation as a means to break down high concentrations of technical grade monocrotophos Several concentrations, 50, 200, and 400 mg/ml of technical grade monocrotophos were exposed to several doses of gamma radiation, namely, 0, 15, 45, 75, and 105 kGy. For each concentration tested percentages of monocrotophos breakdown increased with the increase of applied gamma radiation dose. However, the effect of gamma radiation dose was inversely related to monocrotophos concentration. The highest percentage of moncrotophos degradation was 60% and it was achieved by exposing 50 mg/ml of monocrotophos to 105 kGy of gamma radiation Breakdown products were identified using gas chromatography coupled with mass spectrometry GC-MS. Some identified products were dimethyl methyl phosphonate, phosphoric acid trimethyl and phosphoric acid dimethyl 1-methyl ethyl

  13. Photocatalytic degradation of tetracycline by Ti-MCM-41 prepared at room temperature and biotoxicity of degradation products

    Science.gov (United States)

    Zhou, Kefu; Xie, Xiao-Dan; Chang, Chang-Tang

    2017-09-01

    Ti-doped MCM-41 with different Si/Ti molar ratios was prepared at room temperature to degrade tetracycline antibiotics in aqueous solution. The Ti was doped into the skeleton structure of MCM-41. The photocatalytic activity of Ti-doped MCM-41 was investigated. The optimal catalyst had Si/Ti molar ratio of 25 and over 99% removal of oxytetracycline in 150 min, and the removal could maintain 98% after 5 reuses. Ions and soluble organic matters in natural water affected the degradation reaction when Ti-doped MCM-41 was used to treat simulated wastewater of chicken farms. The degradation products of oxytetracycline, tetracycline and chlortetracycline were detected by Escherichia coli DH5α and HPLC-MS/MS. No intermediate product with higher toxicity was detected.

  14. Detergent resistant membrane-associated IDE in brain tissue and cultured cells: Relevance to Aβ and insulin degradation

    Directory of Open Access Journals (Sweden)

    Castaño Eduardo M

    2008-12-01

    Full Text Available Abstract Background Insulin degrading enzyme (IDE is implicated in the regulation of amyloid β (Aβ steady-state levels in the brain, and its deficient expression and/or activity may be a risk factor in sporadic Alzheimer's disease (AD. Although IDE sub-cellular localization has been well studied, the compartments relevant to Aβ degradation remain to be determined. Results Our results of live immunofluorescence, immuno gold electron-microscopy and gradient fractionation concurred to the demonstration that endogenous IDE from brain tissues and cell cultures is, in addition to its other localizations, a detergent-resistant membrane (DRM-associated metallopeptidase. Our pulse chase experiments were in accordance with the existence of two pools of IDE: the cytosolic one with a longer half-life and the membrane-IDE with a faster turn-over. DRMs-associated IDE co-localized with Aβ and its distribution (DRMs vs. non-DRMs and activity was sensitive to manipulation of lipid composition in vitro and in vivo. When IDE was mis-located from DRMs by treating cells with methyl-β-cyclodextrin (MβCD, endogenous Aβ accumulated in the extracellular space and exogenous Aβ proteolysis was impaired. We detected a reduced amount of IDE in DRMs of membranes isolated from mice brain with endogenous reduced levels of cholesterol (Chol due to targeted deletion of one seladin-1 allele. We confirmed that a moderate shift of IDE from DRMs induced a substantial decrement on IDE-mediated insulin and Aβ degradation in vitro. Conclusion Our results support the notion that optimal substrate degradation by IDE may require its association with organized-DRMs. Alternatively, DRMs but not other plasma membrane regions, may act as platforms where Aβ accumulates, due to its hydrophobic properties, reaching local concentration close to its Km for IDE facilitating its clearance. Structural integrity of DRMs may also be required to tightly retain insulin receptor and IDE for

  15. Laccase/mediator assisted degradation of triarylmethane dyes in a continuous membrane reactor.

    Science.gov (United States)

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2009-08-10

    Laccase/mediator systems are important bioremediation agents as the rates of reactions can be enhanced in the presence of the mediators. The decolorization mechanism of two triarylmethane dyes, namely, Basic Green 4 and Acid Violet 17 is reported using Cyathus bulleri laccase. Basic Green 4 was decolorized through N-demethylation by laccase alone, while in mediator assisted reactions, dye breakdown was initiated from oxidation of carbinol form of the dye. Benzaldehyde and N,N-dimethyl aniline were the major end products. With Acid Violet 17, laccase carried out N-deethylation and in mediator assisted reactions, oxidation of the carbinol form of the dye occurred resulting in formation of formyl benzene sulfonic acid, carboxy benzene sulfonic acid and benzene sulfonic acid. Toxicity analysis revealed that Basic Green 4 was toxic and treatment with laccase/mediators resulted in 80-100% detoxification. The treatment of the textile dye solution using laccase and 2,2'-azino-di-(-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was demonstrated in an enzyme membrane reactor. At a hydraulic retention time of 6h, the process was operated for a period of 15 days with nearly 95% decolorization, 10% reduction in flux and 70% recovery of active ABTS.

  16. Proteasome-mediated degradation of integral inner nuclear membrane protein emerin in fibroblasts lacking A-type lamins

    International Nuclear Information System (INIS)

    Muchir, Antoine; Massart, Catherine; Engelen, Baziel G. van; Lammens, Martin; Bonne, Gisele; Worman, Howard J.

    2006-01-01

    We previously identified and characterized a homozygous LMNA nonsense mutation leading to the absence of A-type lamins in a premature neonate who died at birth. We show here that the absence of A-type lamins is due to degradation of the aberrant mRNA transcript with a premature termination codon. In cultured fibroblasts from the subject with the homozygous LMNA nonsense mutation, there was a decreased steady-state expression of the integral inner nuclear membrane proteins emerin and nesprin-1α associated with their mislocalization to the bulk endoplasmic reticulum and a hyperphosphorylation of emerin. To determine if decreased emerin expression occurred post-translationally, we treated cells with a selective proteasome inhibitor and observed an increase in expression. Our results show that mislocalization of integral inner nuclear membrane proteins to the endoplasmic reticulum in human cells lacking A-type lamins leads to their degradation and provides the first evidence that their degradation is mediated by the proteasome

  17. Strength degradation and failure limits of dense and porous ceramic membrane materials

    DEFF Research Database (Denmark)

    Pećanac, G.; Foghmoes, Søren Preben Vagn; Lipińska-Chwałek, M.

    2013-01-01

    Thin dense membrane layers, mechanically supported by porous substrates, are considered as the most efficient designs for oxygen supply units used in Oxy-fuel processes and membrane reactors. Based on the favorable permeation properties and chemical stability, several materials were suggested...

  18. Impact of Furfural on Rapid Ethanol Production Using a Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Mohammad J. Taherzadeh

    2013-03-01

    Full Text Available A membrane bioreactor was developed to counteract the inhibition effect of furfural in ethanol production. Furfural, a major inhibitor in lignocellulosic hydrolyzates, is a highly toxic substance which is formed from pentose sugars released during the acidic degradation of lignocellulosic materials. Continuous cultivations with complete cell retention were performed at a high dilution rate of 0.5 h−1. Furfural was added directly into the bioreactor by pulse injection or by addition into the feed medium to obtain furfural concentrations ranging from 0.1 to 21.8 g L−1. At all pulse injections of furfural, the yeast was able to convert the furfural very rapidly by in situ detoxification. When injecting 21.8 g L−1 furfural to the cultivation, the yeast converted it by a specific conversion rate of 0.35 g g−1 h−1. At high cell density, Saccharomyces cerevisiae could tolerate very high furfural levels without major changes in the ethanol production. During the continuous cultures when up to 17.0 g L−1 furfural was added to the inlet medium, the yeast successfully produced ethanol, whereas an increase of furfural to 18.6 and 20.6 g L−1 resulted in a rapidly decreasing ethanol production and accumulation of sugars in the permeate. This study show that continuous ethanol fermentations by total cell retention in a membrane bioreactor has a high furfural tolerance and can conduct rapid in situ detoxification of medium containing high furfural concentrations.

  19. On-Site Enzyme Production by Trichoderma asperellum for the Degradation of Duckweed

    DEFF Research Database (Denmark)

    Bech, Lasse; Herbst, Florian-Alexander; Grell, Morten Nedergaard

    2015-01-01

    The on-site production of cell wall degrading enzymes is an important strategy for the development of sustainable bio-refinery processes. This study concerns the optimization of production of plant cell wall-degrading enzymes produced by Trichoderma asperellum. A comparative secretome analysis...

  20. Diesel degradation and biosurfactant production by Gram-positive ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... Full Length Research Paper ... Diesel degradation rates and microbial cell number, increased with an increase in glucose ... that are less or non-toxic and represents one of the ... organic compounds (Larkin et al., 2005).

  1. THE CHALLENGE OF PD PATIENTS: GLUCOSE AND GLUCOSE DEGRADATION PRODUCTS IN PD SOLUTION

    Directory of Open Access Journals (Sweden)

    Yong-Lim Kim

    2012-06-01

    Full Text Available The main osmotic agent found in the peritoneal dialysis (PD solution is glucose. It has been of a wide use for great crystalloid osmotic power at a low concentration, simple metabolism, and excellent safety. On the other hand, anywhere between 60 to 80% of the glucose in the PD solution is absorbed - a 100 to 300 mg of daily glucose absorption. Once into the systemic circulation, glucose can be a cause for metabolic complications including obesity. Indeed, the diabetiform change observed in the peritoneal membrane in the long-term PD patients is believed attributable to the high-concentration glucose in the PD solution. The glucose absorbed from peritoneal cavity raises the risk of ‘glucose toxicity’, leading to insulin resistance and beta cell failure. Clinical similarity can be found in postprandial hyperglycemia, which is known to be associated with oxidative stress, endothelial dysfunction, NF-κb, and inflammation, affecting myocardial blood flow. Moreover, it is a proven independent risk factor of coronary artery disease in patients with type 2 diabetes, particularly of female gender. Though speculative yet, glucose toxicity might explain a higher mortality of PD patients after the first year compared with those on hemodialysis (more so in female, advanced-age patients with diabetes. Also included in the picture are glucose degradation products (GDPs generated along the course of heat sterilization or storage of the PD solution. They have been shown to induce apoptosis of peritoneal mesothelial cells, renal tubular epithelial cells, and endothelial cells, while spurring production of TGF-β and VEGF and facilitating epithelial mesenchymal transition. GDPs provide a stronger reactivity than glucose in the formation of AGEs, a known cause for microvascular complications and arteriosclerosis. Unfortunately, clinical studies using a low-GDP PD solution have provided mixed results on the residual renal function, peritonitis, peritoneal

  2. Characterization of the thermolysis products of Nafion membrane: A potential source of perfluorinated compounds in the environment

    Science.gov (United States)

    Feng, Mingbao; Qu, Ruijuan; Wei, Zhongbo; Wang, Liansheng; Sun, Ping; Wang, Zunyao

    2015-05-01

    The thermal decomposition of Nafion N117 membrane, a typical perfluorosulfonic acid membrane that is widely used in various chemical technologies, was investigated in this study. Structural identification of thermolysis products in water and methanol was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS). The fluoride release was studied using an ion-chromatography system, and the membrane thermal stability was characterized by thermogravimetric analysis. Notably, several types of perfluorinated compounds (PFCs) including perfluorocarboxylic acids were detected and identified. Based on these data, a thermolysis mechanism was proposed involving cleavage of both the polymer backbone and its side chains by attack of radical species. This is the first systematic report on the thermolysis products of Nafion by simulating its high-temperature operation and disposal process via incineration. The results of this study indicate that Nafion is a potential environmental source of PFCs, which have attracted growing interest and concern in recent years. Additionally, this study provides an analytical justification of the LC/ESI-MS/MS method for characterizing the degradation products of polymer electrolyte membranes. These identifications can substantially facilitate an understanding of their decomposition mechanisms and offer insight into the proper utilization and effective management on these membranes.

  3. Oxidative degradation property of the proton-exchange membranes based on fluorinated polymer using radiation-induced grafting

    International Nuclear Information System (INIS)

    Mitani, N.; Muto, F.; Fujii, K.; Sato, Y.; Kakigi, T.; Matsuura, A.; Li Jingye; Miura, T.; Oshima, A.; Washio, M.

    2006-01-01

    To grow popularity of polymer electrolyte fuel cells (PEFCs), it is important that the life-time of FC will be evaluated. In the PEFCs operation, the oxygenated water would be produced by fuel gases crossover reaction. Moreover, the metal ions such as Fe 2+ would dissolve from piping and humidification bubblers in FC systems. As the results, the dissolved metal ions catalyze with oxygenated water, and then active oxidative radicals such as hydroxy and hydroperoxy radicals are induced by Fenton reaction. The oxidative radicals have considered one of the reasons of deterioration of FC performance. In our previous study, the partial-fluorinated sulfonic acid membranes based on crosslinked PTFE (sulfonated RX-PTFE) have been fabricated by pre EB-grafting method. In this study, in order to evaluate the chemical durability exerted on the PEFC performance of sulfonated RX-PTFE, we carried out the accelerated degradation test by Fenton reaction. The test conditions were 6 vol% H 2 O 2 with 5 ppm Fe 2+ solution at 60 degree C. The properties of sulfonated RX-PTFE before and after degradation tests were measured by means of X-ray photoelectron spectroscopy (XPS) and other methods. According to oxidative degradation test, the sulfonated RX-PTFE with higher crosslinking density of main chain became hard to deteriorate. On the contrary, the higher grafting yields became easy to degrade. It is suggested that the oxidative degradation would be greatly influenced to the grafted chain length and crosslinking density of main chain. From XPS after Fenton treated sulfonated RX-PTFE, the signal of S 2p and S 2s was disappeared. And also, by TGA and TG-MS analysis, it was found that the reduction of grafted chains was taken place. Furthermore, the crosslinked PTFE chains may be degraded through the reduction of grafted chain. The PEFC operation tests of sulfonated RX-PTFE before and after degradation tests were carried out. When the weight loss of sulfonated RX-PTFE was almost the same

  4. Bioinspired Synthesis of Photocatalytic Nanocomposite Membranes Based on Synergy of Au-TiO2 and Polydopamine for Degradation of Tetracycline under Visible Light.

    Science.gov (United States)

    Wang, Chen; Wu, Yilin; Lu, Jian; Zhao, Juan; Cui, Jiuyun; Wu, Xiuling; Yan, Yongsheng; Huo, Pengwei

    2017-07-19

    A bioinspired photocatalytic nanocomposite membrane was successfully prepared via polydopamine (pDA)-coated poly(vinylidene fluoride) (PVDF) membrane, as a secondary platform for vacuum-filtrated Au-TiO 2 nanocomposites, with enhanced photocatalytic activity. The degradation efficiency of Au-TiO 2 /pDA/PVDF membranes reached 92% when exposed to visible light for 120 min, and the degradation efficiency of Au-TiO 2 /pDA/PVDF membranes increased by 26% compared to that of Au-TiO 2 powder and increased by 51% compared to that of TiO 2 /pDA/PVDF nanocomposite membranes. The degradation efficiency remained about 90% after five cycle experiments, and the Au-TiO 2 /pDA/PVDF nanocomposite membranes showed good stability, regeneration performance, and easy recycling. The pDA coating not only served as a bioadhesion interface to improve the bonding force between the catalyst and the membrane substrate but also acted as a photosensitizer to broaden the wavelength response range of TiO 2 , and the structure of Au-TiO 2 /pDA/PVDF also improves the transfer rate of photogenerated electrons; the surface plasmon resonance effect of Au also played a positive role in improving the activity of the catalyst. Therefore, we believe that this study opens up a new strategy in preparing the bioinspired photocatalytic nanocomposite membrane for potential wastewater purification, catalysis, and as a membrane separation field.

  5. Development of a Novel Degradation-Controlled Magnesium-Based Regeneration Membrane for Future Guided Bone Regeneration (GBR Therapy

    Directory of Open Access Journals (Sweden)

    Da-Jun Lin

    2017-11-01

    Full Text Available This study aimed to develop and evaluate the ECO-friendly Mg-5Zn-0.5Zr (ECO505 alloy for application in dental-guided bone regeneration (GBR. The microstructure and surface properties of biomedical Mg materials greatly influence anti-corrosion performance and biocompatibility. Accordingly, for the purpose of microstructure and surface modification, heat treatments and surface coatings were chosen to provide varied functional characteristics. We developed and integrated both an optimized solution heat-treatment condition and surface fluoride coating technique to fabricate a Mg-based regeneration membrane. The heat-treated Mg regeneration membrane (ARRm-H380 and duplex-treated regeneration membrane group (ARRm-H380-F24 h were thoroughly investigated to characterize the mechanical properties, as well as the in vitro corrosion and in vivo degradation behaviors. Significant enhancement in ductility and corrosion resistance for the ARRm-H380 was obtained through the optimized solid-solution heat treatment; meanwhile, the corrosion resistance of ARRm-H380-F24 h showed further improvement, resulting in superior substrate integrity. In addition, the ARRm-H380 provided the proper amount of Mg-ion concentration to accelerate bone growth in the early stage (more than 80% new bone formation. From a specific biomedical application point of view, these research results point out a successful manufacturing route and suggest that the heat treatment and duplex treatment could be employed to offer custom functional regeneration membranes for different clinical patients.

  6. Linear equations on thermal degradation products of wood chips in alkaline glycerol

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2004-01-01

    Wood chips of 0.3 and 2 mm depth from poplar and spruce wood samples, respectively, were degraded by using glycerol as a solvent and alkaline glycerol with and without Na 2 CO 3 and NaOH catalysts at different degradation temperatures: 440, 450, 460, 470, 480, 490 and 500 K. By products from the degradation processes of the ligno celluloses include lignin degradation products. Lignin and its degradation products have fuel values. The total degradation degree and cellulose degradation of the wood chips were determined to find the relationship, if any, between the yields of total degradation degree (YTD) and degradation temperature (T). There is a good linear relationship between YTD or the yields of cellulose degradation (YCD) and T (K). For the wood samples, the regression equations from NaOH (10%) catalytic runs for 0.3 mm x 15 mm x 15 mm chip size are: For poplar wood: (YTD=0.7250T-267.507) (YCD=0.1736T-71.707) For spruce wood: (YTD=0.2650T-105.979) (YCD=0.0707T-27.507) For Eqs., the square of the correlation coefficient (r 2 ) were 0.9841, 0.9496, 0.9839 and 0.9447, respectively

  7. Durability and degradation analysis of hydrocarbon ionomer membranes in polymer electrolyte fuel cells accelerated stress evaluation

    Science.gov (United States)

    Shimizu, Ryo; Tsuji, Junichi; Sato, Nobuyuki; Takano, Jun; Itami, Shunsuke; Kusakabe, Masato; Miyatake, Kenji; Iiyama, Akihiro; Uchida, Makoto

    2017-11-01

    The chemical durabilities of two proton-conducting hydrocarbon polymer electrolyte membranes, sulfonated benzophenone poly(arylene ether ketone) (SPK) semiblock copolymer and sulfonated phenylene poly(arylene ether ketone) (SPP) semiblock copolymer are evaluated under accelerated open circuit voltage (OCV) conditions in a polymer electrolyte fuel cell (PEFC). Post-test characterization of the membrane electrodes assemblies (MEAs) is carried out via gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. These results are compared with those of the initial MEAs. The SPP cell shows the highest OCV at 1000 h, and, in the post-test analysis, the SPP membrane retains up to 80% of the original molecular weight, based on the GPC results, and 90% of the hydrophilic structure, based on the NMR results. The hydrophilic structure of the SPP membrane is more stable after the durability evaluation than that of the SPK. From these results, the SPP membrane, with its simple hydrophilic structure, which does not include ketone groups, is seen to be significantly more resistant to radical attack. This structure leads to high chemical durability and thus impedes the chemical decomposition of the membrane.

  8. Fermentative hydrogen production from anaerobic bacteria using a membrane bioreactor

    International Nuclear Information System (INIS)

    Mi-Sun Kim; You-Kwan Oh; Young-Su Yun; Dong-Yeol Lee

    2006-01-01

    Continuous H 2 production from glucose was studied at short hydraulic retention times (HRT) of 4.69 - 0.79 h using a membrane bioreactor (MBR) with a hollow-fiber filtration unit and mixed cells as inoculum. The reactor was inoculated with sewage sludge, which were heat-treated at 90 C for harvesting spore-forming, H 2 -producing bacteria, and fed with synthetic wastewater containing 1% (w/v) glucose. With decreasing HRT, volumetric H 2 production rate increased but the H 2 production yield to glucose decreased gradually. The H 2 content in biogas was maintained at 50 - 70% (v/v) and no appreciable CH 4 was detected during the operation. The maximal volumetric H 2 production rate and H 2 yield to glucose were 1714 mmol H 2 /L.d and 1.1 mol H 2 /mol glucose, respectively. These results indicate that the MBR should be considered as one of the most promising systems for fermentative H 2 production. (authors)

  9. Physical degradation of membrane electrode assemblies undergoing freeze/thaw cycling: Micro-structure effects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. [Fuel Cell Dynamics and Diagnostics Laboratory, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Research and Development Division, Hyundai Motor Company, Yongin 446-912 (Korea); Mench, M.M. [Fuel Cell Dynamics and Diagnostics Laboratory, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2007-11-22

    The objective of this work is to investigate physical damage of polymer electrolyte fuel cell (PEFC) materials subjected to freeze/thaw cycling. Effects of membrane electrode assembly micro-structures (catalyst layer cracking, membrane thickness, and membrane reinforcement) and diffusion media with micro-porous layers were analyzed by comparing scanning electron microscopy images of freeze/thaw cycled samples (-40 C/70 C) with those of virgin material and thermal cycled samples without freezing (5 C/70 C). Ex situ testing performed in this study has revealed a strong direction for the material choices in the PEFC and confirmed the previous computational model in the literature [S. He, M.M. Mench, J. Electrochem. Soc., 153 (2006) A1724-A1731; S. He, S.H. Kim, M.M. Mench, J. Electrochem. Soc., in press]. Specifically, the membrane electrode assemblies were found to be a source of water that can damage the catalyst layers under freeze/thaw conditions. Damage was found to occur almost exclusively under the channel, and not under the land (the graphite that touches the diffusion media). Conceptually, the best material to mitigate freeze-damage is a crack free virgin catalyst layer on a reinforced membrane that is as thin as possible, protected by a stiff diffusion media. (author)

  10. A practical method for measuring the ion exchange capacity decrease of hydroxide exchange membranes during intrinsic degradation

    Science.gov (United States)

    Kreuer, Klaus-Dieter; Jannasch, Patric

    2018-01-01

    In this work we present a practical thermogravimetric method for quantifying the IEC (ion exchange capacity) decrease of hydroxide exchange membranes (HEMs) during intrinsic degradation mainly occurring through nucleophilic attack of the anion exchanging group by hydroxide ions. The method involves measuring weight changes under controlled temperature and relative humidity. These conditions are close to these in a fuel cell, i.e. the measured degradation rate includes all effects originating from the polymeric structure, the consumption of hydroxide ions and the release of water. In particular, this approach involves no added solvents or base, thereby avoiding inaccuracies that may arise in other methods due to the presence of solvents (other than water) or co-ions (such as Na+ or K+). We demonstrate the method by characterizing the decomposition of membranes consisting of poly(2,6-dimethyl-1,4-phenylene oxide) functionalized with trimethyl-pentyl-ammonium side chains. The decomposition rate is found to depend on temperature, relative humidity RH (controlling the hydration number λ) and the total water content (controlled by the actual IEC and RH).

  11. Production of selective membranes using plasma deposited nanochanneled thin films

    Directory of Open Access Journals (Sweden)

    Rodrigo Amorim Motta Carvalho

    2006-12-01

    Full Text Available The hydrolization of thin films obtained by tetraethoxysilane plasma polymerization results in the formation of a nanochanneled silicone like structure that could be useful for the production of selective membranes. Therefore, the aim of this work is to test the permeation properties of hydrolyzed thin films. The films were tested for: 1 permeation of polar organic compounds and/or water in gaseous phase and 2 permeation of salt in liquid phase. The efficiency of permeation was tested using a quartz crystal microbalance (QCM technique in gas phase and conductimetric analysis (CA in liquid phase. The substrates used were: silicon for characterization of the deposited films, piezoelectric quartz crystals for tests of selective membranes and cellophane paper for tests of permeation. QCM analysis showed that the nanochannels allow the adsorption and/or permeation of polar organic compounds, such as acetone and 2-propanol, and water. CA showed that the films allow salt permeation after an inhibition time needed for hydrolysis of the organic radicals within the film. Due to their characteristics, the films can be used for grains protection against microorganism proliferation during storage without preventing germination.

  12. In-Vitro gas production technique as for feed evaluation: volume of gas production and feed degradability

    International Nuclear Information System (INIS)

    Asih Kurniawati

    2007-01-01

    In-vitro gas production technique can be used to predict feed quality. The effect of molasses supplementation as a source of degradable carbohydrate to protein source red clover silage has been done using this technique. Data showed there were positive correlation between total volume gas produced and feed degradability (r = 0.96), between total volume gas produced and microbial biomass (r = 0,96). Dry matter degradability, dry matter degraded, microbial biomass production and efficiency of nitrogen utilization, highly significant (P<0,01) increased due to increasing of degradable carbohydrate. The addition of 0.3 g molasses gave the best result whereas the addition of 0.15 g and 0.225 g have better effect than 0.0625 g molasses addition and red clover only. This result suggested that In-vitro production technique can be used as tool for feed evaluation. (author)

  13. Biological activity of anthocyanins and their phenolic degradation products and metabolites in human vascular endothelial cells

    OpenAIRE

    Edwards, Michael

    2013-01-01

    Human, animal, and in vitro data indicate significant vasoprotective activity of anthocyanins. However, few studies have investigated the activity of anthocyanin degradation products and metabolites which are likely to mediate bioactivity in vivo. The present thesis therefore examined the vascular bioactivity in vitro of anthocyanins, their phenolic degradants, and the potential for interactions between dietary bioactive compounds. Seven treatment compounds (cyanidin-, peonidin-, petunidin- &...

  14. Identification of thermal degradation products of polymers by capillary gas chromatography

    NARCIS (Netherlands)

    Pacakova, V.; Borecka, M.; Leclercq, P.A.; Kaiser, R.E.

    1981-01-01

    Samples of polyethylene, polypropylene, polystyrene and five styrene copolymers were thermally degraded in a quartz tubular reactor at 5100e in an inert atmosphere. The degradation products were separated on-line on capillary coltmlS coated with squalane, OV-17 and SE-30 as stationary phases. The

  15. EVALUATING HYDROGEN PRODUCTION IN BIOGAS REFORMING IN A MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    F. S. A. Silva

    2015-03-01

    Full Text Available Abstract Syngas and hydrogen production by methane reforming of a biogas (CH4/CO2 = 2.85 using carbon dioxide was evaluated in a fixed bed reactor with a Pd-Ag membrane in the presence of a nickel catalyst (Ni 3.31% weight/γ-Al2O3 at 773 K, 823 K, and 873 K and 1.01×105 Pa. Operation with hydrogen permeation at 873 K increased the methane conversion to approximately 83% and doubled the hydrogen yield relative to operation without hydrogen permeation. A mathematical model was formulated to predict the evolution of the effluent concentrations. Predictions based on the model showed similar evolutions for yields of hydrogen and carbon monoxide at temperatures below 823 K for operations with and without the hydrogen permeation. The hydrogen yield reached approximately 21% at 823 K and 47% at 873 K under hydrogen permeation conditions.

  16. High performance liquid chromatographic analysis of insulin degradation products from a cultured kidney cell line

    International Nuclear Information System (INIS)

    Duckworth, W.C.; Hamel, F.G.; Liepnieks, J.; Frank, B.H.; Yagil, C.; Rabkin, R.

    1988-01-01

    The kidney is a major site for insulin removal and degradation, but the subcellular processes and enzymes involved have not been established. We have examined this process by analyzing insulin degradation products by HPLC. Monoiodoinsulin specifically labeled on either the A14 or B26 tyrosine residue was incubated with a cultured kidney epithelial cell line, and both intracellular and extracellular products were examined on HPLC. The products were then compared with products of known structure generated by hepatocytes and the enzyme insulin protease. Intracellular and extracellular products were different, suggesting two different degradative pathways, as previously shown in liver. The extracellular degradation products eluted from HPLC both before and after sulfitolysis similarly with hepatocyte products and products generated by insulin protease. The intracellular products also eluted identically with hepatocyte products. Based on comparisons with identified products, the kidney cell generates two fragments from the A chain of intact insulin, one with a cleavage at A13-A14 and the other at A14-A15. The B chain of intact insulin is cleaved in a number of different sites, resulting in peptides that elute identically with B chain peptides cleaved at B9-B10, B13-B14, B16-B17, B24-B25, and B25-B26. These similarities with hepatocytes and insulin protease suggest that liver and kidney have similar mechanisms for insulin degradation and that insulin protease or a very similar enzyme is involved in both tissues

  17. Fungal degradation of coal as a pretreatment for methane production

    Science.gov (United States)

    Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin

    2013-01-01

    Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.

  18. Asymmetric bipolar membrane: A tool to improve product purity

    NARCIS (Netherlands)

    Balster, J.H.; Sumbharaju, R.; Srikantharajah, S.; Punt, Ineke G.M.; Stamatialis, Dimitrios; Jordan, V.; Wessling, Matthias

    2007-01-01

    Bipolar membranes (BPMs) are catalytic membranes for electro-membrane processes splitting water into protons and hydroxyl ions. To improve selectivity and current efficiency of BPMs, we prepare new asymmetric BPMs with reduced salt leakages. The flux of salt ions across a BPM is determined by the

  19. Identification of Degradation Products of Lincomycin and Iopromide by Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Cha, Yongbyoung; Ham, Hyunsun; Myung, Seungwoon

    2013-01-01

    Lincomycin and Iopromide are major species among the Pharmaceuticals and Personal Care Products (PPCPs) from four major rivers in Korea. The structure characterization of six lincomycin's and two iopromide's degradation products formed under the irradiation of electron beam was performed, and the degradation efficiency as a function of the various irradiation dose and sample concentration was investigated. Electron beam (10 MeV, 0.5 mA and 5 kW) experiments for the structural characterization of the degradation products, which is fortified with lincomycin, were performed at the dose of 10 kGy. The separation of its degradation products and lincomycin was carried by C18 column (2.1 Χ 100 mm, 3.5 μm), using gradient elution with 20 mM ammonium acetate and acetonitrile. The structures of degradation products of lincomycin and iopromide were proposed by interpretation of mass spectra and chromatograms by LC/MS/MS, and also the mass fragmentation pathways of mass spectra in tandem mass spectrometry were proposed. The experiments of the degradation efficiency as a function of the irradiation dose intensity and the initial concentration of lincomycin in aqueous environment were performed, and higher dose of electron beam and lower concentration was observed the increased degradation efficiency

  20. Determination of trace amounts of chemical warfare agent degradation products in decontamination solutions with NMR spectroscopy.

    Science.gov (United States)

    Koskela, Harri; Rapinoja, Marja-Leena; Kuitunen, Marja-Leena; Vanninen, Paula

    2007-12-01

    Decontamination solutions are used for an efficient detoxification of chemical warfare agents (CWAs). As these solutions can be composed of strong alkaline chemicals with hydrolyzing and oxidizing properties, the analysis of CWA degradation products in trace levels from these solutions imposes a challenge for any analytical technique. Here, we present results of application of nuclear magnetic resonance spectroscopy for analysis of trace amounts of CWA degradation products in several untreated decontamination solutions. Degradation products of the nerve agents sarin, soman, and VX were selectively monitored with substantially reduced interference of background signals by 1D 1H-31P heteronuclear single quantum coherence (HSQC) spectrometry. The detection limit of the chemicals was at the low part-per-million level (2-10 microg/mL) in all studied solutions. In addition, the concentration of the degradation products was obtained with sufficient confidence with external standards.

  1. Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention times.

    Science.gov (United States)

    Shin, Hang-Sik; Kang, Seok-Tae

    2003-01-01

    The formation and fate of soluble microbial products (SMP) in membrane bioreactor (MBR) was investigated at various sludge retention times (SRT) for 170 days. The SMP concentration was estimated by feeding glucose, which could be completely degraded, and by measuring the dissolved organic carbon (DOC) of the effluent from MBR. Under the conditions of SRT of 20 days, influent DOC of 112 mg/l and HRT of 6 h, the produced SMP was 4.7 mg DOC/l of which 57% was removed or retained by the membrane. DOC of MBR supernatant increased during 100 days and then gradually decreased. Specific UV absorbance showed that the accumulated compounds had a portion of larger, more aromatic, more hydrophobic and double-bond-rich organics, which originated from the decayed biomass. Molecular weight distributions of SMP in MBR supernatant showed that the acclimated microorganisms in a long SRT could decompose high molecular weight organics, it caused the shift of molecular weight distributions of SMP to a lower range. During the operation period, enumeration of active cells in the MBR showed that microbial inhibitions by accumulated SMP was not observed.

  2. Toxicity and physical properties of atrazine and its degradation products: A literature survey

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, K.C.

    1994-10-01

    The Tennessee Valley Authority`s Environmental Research Center has been developing a means of detoxifying atrazine waste waters using TiO{sub 2} photocatalysis. The toxicity and physical properties of atrazine and its degradation products will probably be required information in obtaining permits from the United States Environmental Protection Agency for the demonstration of any photocatalytic treatment of atrazine waste waters. The following report is a literature survey of the toxicological and physical properties of atrazine and its degradation products.

  3. Proton exchange membrane fuel cell operation and degradation in short-circuit.

    OpenAIRE

    Silva , R.E.; Harel , F.; Jemei , S.; Gouriveau , Rafael; Hissel , Daniel; Boulon , L.; Agbossou , K.

    2013-01-01

    International audience; Hybridization of proton exchange membrane fuel cells (PEMFC) and ultra capacitors (UC) are considered as an alternative way to implement high autonomy, high dynamic, and reversible energy sources. PEMFC allow high efficiency and high autonomy, however their dynamic response is limited and this source does not allow recovering energy. UC appears to be a complementary source to fuel cell systems (FCS) due to their high power density, fast dynamics, and reversibility. A d...

  4. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water

    Directory of Open Access Journals (Sweden)

    Lili Song

    2016-03-01

    Full Text Available This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO2 concentration on permeate fluxes, total organic carbon (TOC, and UV absorbance removal, were investigated. The interaction between the humic acids and TiO2 photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO2 particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

  5. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water.

    Science.gov (United States)

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2016-03-01

    This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO₂ concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO₂ photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO₂ particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

  6. Microsphere erosion in outer hydrogel membranes creating macroscopic porosity to counter biofouling-induced sensor degradation.

    Science.gov (United States)

    Vaddiraju, S; Wang, Y; Qiang, L; Burgess, D J; Papadimitrakopoulos, F

    2012-10-16

    Biofouling and tissue inflammation present major challenges toward the realization of long-term implantable glucose sensors. Following sensor implantation, proteins and cells adsorb on sensor surfaces to not only inhibit glucose flux but also signal a cascade of inflammatory events that eventually lead to permeability-reducing fibrotic encapsulation. The use of drug-eluting hydrogels as outer sensor coatings has shown considerable promise to mitigate these problems via the localized delivery of tissue response modifiers to suppress inflammation and fibrosis, along with reducing protein and cell absorption. Biodegradable poly (lactic-co-glycolic) acid (PLGA) microspheres, encapsulated within a poly (vinyl alcohol) (PVA) hydrogel matrix, present a model coating where the localized delivery of the potent anti-inflammatory drug dexamethasone has been shown to suppress inflammation over a period of 1-3 months. Here, it is shown that the degradation of the PLGA microspheres provides an auxiliary venue to offset the negative effects of protein adsorption. This was realized by: (1) the creation of fresh porosity within the PVA hydrogel following microsphere degradation (which is sustained until the complete microsphere degradation) and (2) rigidification of the PVA hydrogel to prevent its complete collapse onto the newly created void space. Incubation of the coated sensors in phosphate buffered saline (PBS) led to a monotonic increase in glucose permeability (50%), with a corresponding enhancement in sensor sensitivity over a 1 month period. Incubation in serum resulted in biofouling and consequent clogging of the hydrogel microporosity. This, however, was partially offset by the generated macroscopic porosity following microsphere degradation. As a result of this, a 2-fold recovery in sensor sensitivity for devices with microsphere/hydrogel composite coatings was observed as opposed to similar devices with blank hydrogel coatings. These findings suggest that the use of

  7. Radiation degradation of molasses pigment. The fading color and product

    International Nuclear Information System (INIS)

    Sawai, Teruko; Sekiguchi, Masayuki; Tanabe, Hiroko; Sawai, Takeshi

    1993-01-01

    Water demand in Tokyo has increased rapidly. Because of the scarcity of water supply sources within the city, Tokyo is dependent on the water from other prefectures. Recycling of municipal effluent is an effective means of coping with water shortage in Tokyo. We have studied the radiation treatment of waste water for recycling. In this paper, the radiation decomposition methods for fading color of molasses pigment in the effluent from the sewage treatment plant and in the food industry wastwater were reported. The refractory organic substances (molasses pigment) in samples were degraded by gamma irradiation. The COD values decreased and the dark brown color faded with increasing dosage. The high molecular weight components of molasses pigment were degraded to lower molecular weight substances and were decomposed finally to carbon dioxide. The organic acids, such as formic acid, acetic acid, oxalic acid, citric acid and succinic acid were measured as intermediates of radiolytic decomposition. When we added hydrogen peroxide in samples to the gamma irradiation process, the dark brown color of molasses pigment faded with greater efficiency. (author)

  8. Degradation of the pharmaceuticals diclofenac and sulfamethoxazole and their transformation products under controlled environmental conditions

    International Nuclear Information System (INIS)

    Poirier-Larabie, S.; Segura, P.A.; Gagnon, C.

    2016-01-01

    Contamination of the aquatic environment by pharmaceuticals via urban effluents is well known. Several classes of drugs have been identified in waterways surrounding these effluents in the last 15 years. To better understand the fate of pharmaceuticals in ecosystems, degradation processes need to be investigated and transformation products must be identified. Thus, this study presents the first comparative study between three different natural environmental conditions: photolysis and biodegradation in aerobic and anaerobic conditions both in the dark of diclofenac and sulfamethoxazole, two common drugs present in significant amounts in impacted surface waters. Results indicated that degradation kinetics differed depending on the process and the type of drug and the observed transformation products also differed among these exposure conditions. Diclofenac was nearly degraded by photolysis after 4 days, while its concentration only decreased by 42% after 57 days of exposure to bacteria in aerobic media and barely 1% in anaerobic media. For sulfamethoxazole, 84% of the initial concentration was still present after 11 days of exposure to light, while biodegradation decreased its concentration by 33% after 58 days of exposure under aerobic conditions and 5% after 70 days of anaerobic exposure. In addition, several transformation products were observed and persisted over time while others degraded in turn. For diclofenac, chlorine atoms were lost primarily in the photolysis, while a redox reaction was promoted by biodegradation under aerobic conditions. For sulfamethoxazole, isomerization was favored by photolysis while a redox reaction was also favored by the biodegradation under aerobic conditions. To summarize this study points out the occurrence of different transformation products under variable degradation conditions and demonstrates that specific functional groups are involved in the tested natural attenuation processes. Given the complexity of environmental

  9. Degradation of the pharmaceuticals diclofenac and sulfamethoxazole and their transformation products under controlled environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Poirier-Larabie, S. [Aquatic Contaminants Research Division, Science and Water Technology Directorate, Environment Canada, Montréal, Québec H2Y 2E7 (Canada); Segura, P.A. [Department of Chemistry, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1 (Canada); Gagnon, C., E-mail: christian.gagnon@canada.ca [Aquatic Contaminants Research Division, Science and Water Technology Directorate, Environment Canada, Montréal, Québec H2Y 2E7 (Canada)

    2016-07-01

    Contamination of the aquatic environment by pharmaceuticals via urban effluents is well known. Several classes of drugs have been identified in waterways surrounding these effluents in the last 15 years. To better understand the fate of pharmaceuticals in ecosystems, degradation processes need to be investigated and transformation products must be identified. Thus, this study presents the first comparative study between three different natural environmental conditions: photolysis and biodegradation in aerobic and anaerobic conditions both in the dark of diclofenac and sulfamethoxazole, two common drugs present in significant amounts in impacted surface waters. Results indicated that degradation kinetics differed depending on the process and the type of drug and the observed transformation products also differed among these exposure conditions. Diclofenac was nearly degraded by photolysis after 4 days, while its concentration only decreased by 42% after 57 days of exposure to bacteria in aerobic media and barely 1% in anaerobic media. For sulfamethoxazole, 84% of the initial concentration was still present after 11 days of exposure to light, while biodegradation decreased its concentration by 33% after 58 days of exposure under aerobic conditions and 5% after 70 days of anaerobic exposure. In addition, several transformation products were observed and persisted over time while others degraded in turn. For diclofenac, chlorine atoms were lost primarily in the photolysis, while a redox reaction was promoted by biodegradation under aerobic conditions. For sulfamethoxazole, isomerization was favored by photolysis while a redox reaction was also favored by the biodegradation under aerobic conditions. To summarize this study points out the occurrence of different transformation products under variable degradation conditions and demonstrates that specific functional groups are involved in the tested natural attenuation processes. Given the complexity of environmental

  10. The tissue-specific Rep8/UBXD6 tethers p97 to the endoplasmic reticulum membrane for degradation of misfolded proteins.

    Directory of Open Access Journals (Sweden)

    Louise Madsen

    Full Text Available The protein known as p97 or VCP in mammals and Cdc48 in yeast is a versatile ATPase complex involved in several biological functions including membrane fusion, protein folding, and activation of membrane-bound transcription factors. In addition, p97 plays a central role in degradation of misfolded secretory proteins via the ER-associated degradation pathway. This functional diversity of p97 depends on its association with various cofactors, and to further our understanding of p97 function it is important that these cofactors are identified and analyzed. Here, we isolate and characterize the human protein named Rep8 or Ubxd6 as a new cofactor of p97. Mouse Rep8 is highly tissue-specific and abundant in gonads. In testes, Rep8 is expressed in post-meiotic round spermatids, whereas in ovaries Rep8 is expressed in granulosa cells. Rep8 associates directly with p97 via its UBX domain. We show that Rep8 is a transmembrane protein that localizes to the ER membrane with its UBX domain facing the cytoplasm. Knock-down of Rep8 expression in human cells leads to a decreased association of p97 with the ER membrane and concomitantly a retarded degradation of misfolded ER-derived proteasome substrates. Thus, Rep8 tethers p97 to the ER membrane for efficient ER-associated degradation.

  11. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin

    International Nuclear Information System (INIS)

    Salma, Alaa; Thoröe-Boveleth, Sven; Schmidt, Torsten C.; Tuerk, Jochen

    2016-01-01

    Highlights: • Identification of transformation products using an isotopically labeled surrogate. • 4 of 18 detected transformation products have been identified for the first time. • Revision of 2 molecular structures of previously reported transformation products. • PH dependence of photolytic and photocatalytic degradation of ciprofloxacin. - Abstract: Ciprofloxacin (CIP) is a broad-spectrum antibiotic with five pH dependent species in aqueous medium, which makes its degradation behavior difficult to predict. For the identification of transformation products and prediction of degradation mechanisms, a new experimental concept making use of isotopically labeled compounds together with high resolution mass spectrometry was successfully established. The utilization of deuterated ciprofloxacin (CIP-d8) facilitated the prediction of three different degradation pathways and the corresponding degradation products, four of which were identified for the first time. Moreover, two molecular structures of previously reported transformation products were revised according to the mass spectra and product ion spectra of the deuterated transformation products. Altogether, 18 transformation products have been identified during the photolytic and photocatalytic reactions at different pH values (3, 5, 7 and 9). In this work the influence of pH on both reaction kinetics and degradation mechanism was investigated for direct ultraviolet photolysis (UV-C irradiation) and photocatalysis (TiO_2/UV-C). It could be shown that the removal rates strongly depended on pH with highest removal rates at pH 9. A comparison with those at pH 3 clearly indicated that under acidic conditions ciprofloxacin cannot be easily excited by UV irradiation. We could confirm that the first reaction step for both oxidative treatment processes is mainly defluorination, followed by degradation at the piperazine ring of CIP.

  12. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Salma, Alaa [Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Straße 58-60, 47229 Duisburg (Germany); Thoröe-Boveleth, Sven [University Hospital Aachen, Institute for Hygiene and Environmental Medicine, Pauwelsstraße 30, 52074 Aachen (Germany); Schmidt, Torsten C. [University Duisburg-Essen, Faculty of Chemistry, Instrumental Analytical Chemistry, Universitätsstraße 5, 45141 Essen (Germany); Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstraße 2, 45141 Essen (Germany); Tuerk, Jochen, E-mail: tuerk@iuta.de [Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Straße 58-60, 47229 Duisburg (Germany); Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstraße 2, 45141 Essen (Germany)

    2016-08-05

    Highlights: • Identification of transformation products using an isotopically labeled surrogate. • 4 of 18 detected transformation products have been identified for the first time. • Revision of 2 molecular structures of previously reported transformation products. • PH dependence of photolytic and photocatalytic degradation of ciprofloxacin. - Abstract: Ciprofloxacin (CIP) is a broad-spectrum antibiotic with five pH dependent species in aqueous medium, which makes its degradation behavior difficult to predict. For the identification of transformation products and prediction of degradation mechanisms, a new experimental concept making use of isotopically labeled compounds together with high resolution mass spectrometry was successfully established. The utilization of deuterated ciprofloxacin (CIP-d8) facilitated the prediction of three different degradation pathways and the corresponding degradation products, four of which were identified for the first time. Moreover, two molecular structures of previously reported transformation products were revised according to the mass spectra and product ion spectra of the deuterated transformation products. Altogether, 18 transformation products have been identified during the photolytic and photocatalytic reactions at different pH values (3, 5, 7 and 9). In this work the influence of pH on both reaction kinetics and degradation mechanism was investigated for direct ultraviolet photolysis (UV-C irradiation) and photocatalysis (TiO{sub 2}/UV-C). It could be shown that the removal rates strongly depended on pH with highest removal rates at pH 9. A comparison with those at pH 3 clearly indicated that under acidic conditions ciprofloxacin cannot be easily excited by UV irradiation. We could confirm that the first reaction step for both oxidative treatment processes is mainly defluorination, followed by degradation at the piperazine ring of CIP.

  13. A new-generation asymmetric multi-bore hollow fiber membrane for sustainable water production via vacuum membrane distillation.

    Science.gov (United States)

    Wang, Peng; Chung, Tai-Shung

    2013-06-18

    Due to the growing demand for potable water, the capacities for wastewater reclamation and saline water desalination have been increasing. More concerns are raised on the poor efficiency of removing certain contaminants by the current water purification technologies. Recent studies demonstrated superior separation performance of the vacuum membrane distillation (VMD) technology for the rejection of trace contaminants such as boron, dye, endocrine-disruptive chemical, and chloro-compound. However, the absence of suitable membranes with excellent wetting resistance and high permeation flux has severely hindered the VMD application as an effective water production process. This work presents a new generation multibore hollow fiber (MBF) membrane with excellent mechanical durability developed for VMD. Its micromorphology was uniquely designed with a tight surface and a fully porous matrix to maximize both high wetting resistance and permeation flux. Credit to the multibore configuration, a 65% improvement was obtained on the antiwetting property. Using a synthetic seawater feed, the new membrane with optimized fabrication condition exhibits a high flux and the salt rejection is consistently greater than 99.99%. In addition, a comparison of 7-bore and 6-bore MBF membranes was performed to investigate the optimum geometry design. The newly designed MBF membrane not only demonstrates its suitability for VMD but also makes VMD come true as an efficient process for water production.

  14. Investigation of degradation products of cocaine and benzoylecgonine in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Bijlsma, Lubertus; Boix, Clara [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellón (Spain); Niessen, Wilfried M.A. [hyphen MassSpec, Leiden (Netherlands); Ibáñez, María; Sancho, Juan V. [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellón (Spain); Hernández, Félix, E-mail: felix.hernandez@uji.es [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellón (Spain)

    2013-01-15

    In this work, ultra-high-performance liquid chromatography (UHPLC) coupled to a hybrid quadrupole time-of-flight mass spectrometer (QTOF MS) has allowed the discovery and elucidation of degradation products of cocaine and its main metabolite benzoylecgonine (BE) in water. Spiked surface water was subjected to hydrolysis, chlorination and photo-degradation (both ultraviolet irradiation and simulated sunlight). After degradation of cocaine, up to sixteen compounds were detected and tentatively identified (1 resulting from hydrolysis; 8 from chlorination; 7 from photo-degradation), three of which are well known cocaine metabolites (BE, norbenzoylecgonine and norcocaine). Regarding BE degradation, up to ten compounds were found (3 from chlorination; 7 from photo-degradation), including one known metabolite (norbenzoylecgonine). Since reference standards were available for the major metabolites, they could be confirmed using information on retention time and fragment ions. The other degradates resulted from chlorination, dealkylation, hydroxylation and nitration, or from a combination of these processes. Several influent and effluent sewage water, and surface water samples were then screened for the identified compounds (known and unknown) using UHPLC–tandem MS with triple quadrupole. BE, norcocaine and norbenzoylecgonine were identified in these samples as major metabolites. Four previously unreported degradates were also found in some of the samples under study, illustrating the usefulness and applicability of the degradation experiments performed in this work. Highlights: ► Cocaine and benzoylecgonine degradation/transformation products investigated in water ► Hydrolysis, chlorination and photo degradation studied under laboratory conditions ► Several TPs discovered and tentatively elucidated by high resolution MS ► Structures of non-previously reported TPs have been suggested. ► Several reported/known TPs but also new TPs were found in sewage and surface

  15. Investigation of degradation products of cocaine and benzoylecgonine in the aquatic environment

    International Nuclear Information System (INIS)

    Bijlsma, Lubertus; Boix, Clara; Niessen, Wilfried M.A.; Ibáñez, María; Sancho, Juan V.; Hernández, Félix

    2013-01-01

    In this work, ultra-high-performance liquid chromatography (UHPLC) coupled to a hybrid quadrupole time-of-flight mass spectrometer (QTOF MS) has allowed the discovery and elucidation of degradation products of cocaine and its main metabolite benzoylecgonine (BE) in water. Spiked surface water was subjected to hydrolysis, chlorination and photo-degradation (both ultraviolet irradiation and simulated sunlight). After degradation of cocaine, up to sixteen compounds were detected and tentatively identified (1 resulting from hydrolysis; 8 from chlorination; 7 from photo-degradation), three of which are well known cocaine metabolites (BE, norbenzoylecgonine and norcocaine). Regarding BE degradation, up to ten compounds were found (3 from chlorination; 7 from photo-degradation), including one known metabolite (norbenzoylecgonine). Since reference standards were available for the major metabolites, they could be confirmed using information on retention time and fragment ions. The other degradates resulted from chlorination, dealkylation, hydroxylation and nitration, or from a combination of these processes. Several influent and effluent sewage water, and surface water samples were then screened for the identified compounds (known and unknown) using UHPLC–tandem MS with triple quadrupole. BE, norcocaine and norbenzoylecgonine were identified in these samples as major metabolites. Four previously unreported degradates were also found in some of the samples under study, illustrating the usefulness and applicability of the degradation experiments performed in this work. Highlights: ► Cocaine and benzoylecgonine degradation/transformation products investigated in water ► Hydrolysis, chlorination and photo degradation studied under laboratory conditions ► Several TPs discovered and tentatively elucidated by high resolution MS ► Structures of non-previously reported TPs have been suggested. ► Several reported/known TPs but also new TPs were found in sewage and surface

  16. Modeling of a membrane bioreactor for production of biodiesel

    International Nuclear Information System (INIS)

    Solano, Paola Andrea; Moncada, Jorge Andres; Cardona, Carlos Ariel; Ruiz, Orlando Simon

    2008-01-01

    Through the use of an enzymatic catalyst lipase, produced by Candida Antarctica a membrane bioreactor was modeled and simulated to obtain biodiesel from palm oil and ethanol. A conversion of 0.97 was reached for a residence time of 10.64 min. The membrane bioreactor was compared to a CSTR reactor, where a conversion of 0.76 was obtained. It was concluded that the membrane bioreactor is a better way of producing biodiesel than the CSTR

  17. Identification and in vitro cytotoxicity of ochratoxin A degradation products formed during coffee roasting.

    Science.gov (United States)

    Cramer, Benedikt; Königs, Maika; Humpf, Hans-Ulrich

    2008-07-23

    The mycotoxin ochratoxin A is degraded by up to 90% during coffee roasting. In order to investigate this degradation, model heating experiments with ochratoxin A were carried out, and the reaction products were analyzed by HPLC-DAD and HPLC-MS/MS. Two ochratoxin A degradation products were identified, and their structure and absolute configuration were determined. As degradation reactions, the isomerization to 14-(R)-ochratoxin A and the decarboxylation to 14-decarboxy-ochratoxin A were identified. Subsequently, an analytical method for the determination of these compounds in roasted coffee was developed. Quantification was carried out by HPLC-MS/MS and the use of stable isotope dilution analysis. By using this method for the analysis of 15 coffee samples from the German market, it could be shown that, during coffee roasting, the ochratoxin A diastereomer 14-(R)-ochratoxin A was formed in amounts of up to 25.6% relative to ochratoxin A. The decarboxylation product was formed only in traces. For toxicity evaluations, first preliminary cell culture assays were performed with the two new substances. Both degradation products exhibited higher IC50 values and caused apoptotic effects with higher concentrations than ochratoxin A in cultured human kidney epithelial cells. Thus, these cell culture data suggest that the degradation products are less cytotoxic than ochratoxin A.

  18. Hydrolytic Degradation and Mechanical Stability of Poly(ε-Caprolactone)/Reduced Graphene Oxide Membranes as Scaffolds for In Vitro Neural Tissue Regeneration.

    Science.gov (United States)

    Sánchez-González, Sandra; Diban, Nazely; Urtiaga, Ane

    2018-03-05

    The present work studies the functional behavior of novel poly(ε-caprolactone) (PCL) membranes functionalized with reduced graphene oxide (rGO) nanoplatelets under simulated in vitro culture conditions (phosphate buffer solution (PBS) at 37 °C) during 1 year, in order to elucidate their applicability as scaffolds for in vitro neural regeneration. The morphological, chemical, and DSC results demonstrated that high internal porosity of the membranes facilitated water permeation and procured an accelerated hydrolytic degradation throughout the bulk pathway. Therefore, similar molecular weight reduction, from 80 kDa to 33 kDa for the control PCL, and to 27 kDa for PCL/rGO membranes, at the end of the study, was observed. After 1 year of hydrolytic degradation, though monomers coming from the hydrolytic cleavage of PCL diffused towards the PBS medium, the pH was barely affected, and the rGO nanoplatelets mainly remained in the membranes which envisaged low cytotoxic effect. On the other hand, the presence of rGO nanomaterials accelerated the loss of mechanical stability of the membranes. However, it is envisioned that the gradual degradation of the PCL/rGO membranes could facilitate cells infiltration, interconnectivity, and tissue formation.

  19. Reliability demonstration methodology for products with Gamma Process by optimal accelerated degradation testing

    International Nuclear Information System (INIS)

    Zhang, Chunhua; Lu, Xiang; Tan, Yuanyuan; Wang, Yashun

    2015-01-01

    For products with high reliability and long lifetime, accelerated degradation testing (ADT) may be adopted during product development phase to verify whether its reliability satisfies the predetermined level within feasible test duration. The actual degradation from engineering is usually a strictly monotonic process, such as fatigue crack growth, wear, and erosion. However, the method for reliability demonstration by ADT with monotonic degradation process has not been investigated so far. This paper proposes a reliability demonstration methodology by ADT for this kind of product. We first apply Gamma process to describe the monotonic degradation. Next, we present a reliability demonstration method by converting the required reliability level into allowable cumulative degradation in ADT and comparing the actual accumulative degradation with the allowable level. Further, we suggest an analytical optimal ADT design method for more efficient reliability demonstration by minimizing the asymptotic variance of decision variable in reliability demonstration under the constraints of sample size, test duration, test cost, and predetermined decision risks. The method is validated and illustrated with example on reliability demonstration of alloy product, and is applied to demonstrate the wear reliability within long service duration of spherical plain bearing in the end. - Highlights: • We present a reliability demonstration method by ADT for products with monotonic degradation process, which may be applied to verify reliability with long service life for products with monotonic degradation process within feasible test duration. • We suggest an analytical optimal ADT design method for more efficient reliability demonstration, which differs from the existed optimal ADT design for more accurate reliability estimation by different objective function and different constraints. • The methods are applied to demonstrate the wear reliability within long service duration of

  20. Development of a mixed-conductive ceramic membrane for syngas production; Developpement d'une membrane ceramique conductrice mixte pour la production de gaz de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Etchegoyen, G

    2005-10-15

    Natural gas conversion into syngas (H{sub 2}+CO) is very attractive for hydrogen and clean fuel production via GTL technology by providing an alternative to oil products and reducing greenhouse gas emission. Syngas production, using a mixed ionic-electronic conducting ceramic membrane, is thought to be particularly promising. The purpose of this PhD thesis was to develop this type of membrane. Mixed-conducting oxide was synthesized, characterized and then, shaped via tape casting and co-sintered in order to obtain multilayer membranes with controlled architectures and microstructures. Oxygen permeation fluxes were measured with a specific device to evaluate membrane performances. As a result, the optimisation of architecture and microstructure made it possible to increase oxygen permeation flux by a factor 30. Additional researches were focused on the oxide composition in order to achieve higher dimensional stability. (author)

  1. Time extrapolation of radiolytic degradation product kinetics: the case of polyurethane; Extrapolation dans le temps des cinetiques de production des produits de degradation radiolytique: application a un polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    Dannoux, A

    2007-02-15

    The prediction of the environmental impact of organic materials in nuclear waste geological storage needs knowledge of radiolytic degradation mechanisms and kinetics in aerobic and anaerobic conditions. In this framework, the effect of high doses (> MGy) and the variation of dose rate have to be considered. The material studied is a polyurethane composed of polyether soft segment and aromatic hard segments. Mechanisms were built on the analysis of material submitted to irradiations of simulation (high energy electrons and gamma radiation) by FTIR spectroscopy and gaseous and liquid degradation products by gas mass spectrometry and size exclusion chromatography. The electron paramagnetic resonance study of radical process and the determination of oxygen consumption and gas formation radiolytic yields allowed us to acquire kinetic data and to estimate dose rate and high doses effects. The polyurethane radio-oxidation mainly concerns soft segments and induced cross-linkings and production by scissions of oxidised compounds (esters, alcohols, carboxylic acids). The kinetic of radical termination is rapid and the dose rate effect is limited. After 10 MGy, branching and scission reactions are in equilibrium and low molecular weight products accumulate. At last, the degradation products release in water is influenced by the oxidation rate and the temperature. After 10 MGy, the soluble fraction is stabilised at 25%. The water soluble products identified by electro-spray ionisation mass spectrometry (alcohols, aldehydes, carboxylic acids) potentially formed complexes with radionuclides. (author)

  2. Production and application of cation/anion exchange membranes of high performance

    International Nuclear Information System (INIS)

    Xu Zhili; Tan Chunhong; Yang Xiangmin

    1995-01-01

    A third affiliated factory of our university has been established for the production in batches of cation/anion exchange membranes of high performance, trade marks of which are HF-1 and HF-2. Membrane products have been applied in various fields (including industries and research institutions) with great success

  3. The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor.

    Science.gov (United States)

    Nguyen, Luong N; Hai, Faisal I; Price, William E; Leusch, Frederic D L; Roddick, Felicity; Ngo, Hao H; Guo, Wenshan; Magram, Saleh F; Nghiem, Long D

    2014-09-01

    The removal of four recalcitrant trace organic contaminants (TrOCs), namely carbamazepine, diclofenac, sulfamethoxazole and atrazine by laccase in an enzymatic membrane reactor (EMR) was studied. Laccases are not effective for degrading non-phenolic compounds; nevertheless, 22-55% removal of these four TrOCs was achieved by the laccase EMR. Addition of the redox-mediator syringaldehyde (SA) to the EMR resulted in a notable dose-dependent improvement (15-45%) of TrOC removal affected by inherent TrOC properties and loading rates. However, SA addition resulted in a concomitant increase in the toxicity of the treated effluent. A further 14-25% improvement in aqueous phase removal of the TrOCs was consistently observed following a one-off dosing of 3g/L granular activated carbon (GAC). Mass balance analysis reveals that this improvement was not due solely to adsorption but also enhanced biodegradation. GAC addition also reduced membrane fouling and the SA-induced toxicity of the effluent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Methanogenic degradation of toilet-paper cellulose upon sewage treatment in an anaerobic membrane bioreactor at room temperature.

    Science.gov (United States)

    Chen, Rong; Nie, Yulun; Kato, Hiroyuki; Wu, Jiang; Utashiro, Tetsuya; Lu, Jianbo; Yue, Shangchao; Jiang, Hongyu; Zhang, Lu; Li, Yu-You

    2017-03-01

    Toilet-paper cellulose with rich but refractory carbon sources, are the main insoluble COD fractions in sewage. An anaerobic membrane bioreactor (AnMBR) was configured for sewage treatment at room temperature and its performance on methanogenic degradation of toilet paper was highlighted. The results showed, high organic removal (95%), high methane conversion (90%) and low sludge yield (0.08gVSS/gCOD) were achieved in the AnMBR. Toilet-paper cellulose was fully biodegraded without accumulation in the mixed liquor and membrane cake layer. Bioconversion efficiency of toilet paper approached 100% under a high organic loading rate (OLR) of 2.02gCOD/L/d and it could provide around 26% of total methane generation at most of OLRs. Long sludge retention time and co-digestion of insoluble/soluble COD fractions achieving mutualism of functional microorganisms, contributed to biodegradation of toilet-paper cellulose. Therefore the AnMBR successfully implemented simultaneously methanogenic bioconversion of toilet-paper cellulose and soluble COD in sewage at room temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing.

    Science.gov (United States)

    Wang, Ruhung; Hughes, Tyler; Beck, Simon; Vakil, Samee; Li, Synyoung; Pantano, Paul; Draper, Rockford K

    2013-11-01

    Poloxamers (known by the trade name Pluronic®) are triblock copolymer surfactants that contain two polyethylene glycol blocks and one polypropylene glycol block of various sizes. Poloxamers are widely used as nanoparticle dispersants for nanotoxicity studies wherein nanoparticles are sonicated with a dispersant to prepare suspensions. It is known that poloxamers can be degraded during sonication and that reactive oxygen species contribute to the degradation process. However, the possibility that poloxamer degradation products are toxic to mammalian cells has not been well studied. We report here that aqueous solutions of poloxamer 188 (Pluronic® F-68) and poloxamer 407 (Pluronic® F-127) sonicated in the presence or absence of multi-walled carbon nanotubes (MWNTs) can became highly toxic to cultured cells. Moreover, toxicity correlated with the sonolytic degradation of the polymers. These findings suggest that caution should be used in interpreting the results of nanotoxicity studies where the potential sonolytic degradation of dispersants was not controlled.

  6. The estimation of antistress properties of peat degradation products

    Science.gov (United States)

    Chorna, V. I.; Lyanna, O. L.

    2009-04-01

    Introduction. It is known that polyphenol preparations, produced from peat, represent adaptogens, immunomodulators and can participate in regulation of genetic informational realization as triggers of nonspecific nature. These compounds promote launching of protein-synthesizing system that is very important under unfavorable influence on organism. The experimental data of last years confirmed doth therapeutic value of humic acids as adaptogenes and their antioxidant, anti-inflammatory, antimutogenic, radioprotective and other properties. Lysosomes take the key positions in many physiological and pathological processes of organism owing to their unique structural-functional properties, reactivity and plasticity. These organelles take especial meaning in increased functional activity under stress factors influence. In this way lysosomes become modulators of intracellular processes. It is known that under chronic stress, the systems of neurohumoral regulation and adaptation gradually run out, the function of brain cellular membrane structures disturbs. Understanding of stress developing mechanisms is necessary condition for means development of operative avoiding of the harmful consequences. Purpose. The aim of the work was to investigate corrective influence of hydrohumates on compartmentalization changing of lysosomal cysteine cathepsin H (EC 3.4.22.16) in different rat brain structures. The experiment was held on Wistar's rats (160-200 g weight) which were divided into 4 groups: 1 - the control group; 2 - the animals which were received the hydrohumate with water (10 mg hydrohumate (0,1% solution) per 1 kg of weight) during 3 weeks; 3 - the group of stressed rats (test "forced swimming" for 2 hours); 4 - the stressed rats which received the hydrohumate. The activity of lysosomal cysteine cathepsin H was determined spectrophotometerically by hydrolysis of 2-naphthyl-amid L-leucine (Koch-Light Lab., England). It was found out that intracellular compartmentalization

  7. Degradation study of pesticides by direct photolysis - Structural characterization and potential toxicity of photo products

    International Nuclear Information System (INIS)

    Rifai, A.

    2013-01-01

    Pesticides belong to the large family of organic pollutants. In general, they are intended to fight against crop pests. Distribution of pesticides in nature creates pollution in DIFFERENT compartments of the biosphere (water, soil and air) and can induce acute toxic effects on human beings of the terrestrial and aquatic living biomass. It is now shown that some pesticides are endocrine disruptors and are particularly carcinogenic and mutagenic effects in humans. Pesticides can undergo various processes of transformation in the natural life cycle (biodegradation, volatilization, solar radiation ...) or following applied in the sectors of natural water purification and treatment stations sewage treatment. The presence of degradation products of pesticides in our environment is even more alarming that their structures and potential toxicities generally unknown. Molecules belonging to two families of pesticides were selected for this study: herbicides, represented by metolachlor, and fungicides represented by procymidone, pyrimethanil and boscalid. The first part of the thesis focused on the development of an analytical strategy to characterize the structures of compounds from degradation by photolysis of pesticides. The second part focused on estimating the toxicity of degradation products using a test database in silico. Identification of degradation products was achieved through two complementary analysis techniques: the gas chromatography coupled to a mass spectrometer ''multi-stage'' (GC-MSn) and liquid chromatography coupled to a tandem mass spectrometer (LC-MS/MS). The estimation of the toxicity of the degradation products was performed using the TEST program QSAR recently developed to try to predict the toxicity of molecules. The strategy of the structural elucidation of degradation products of pesticides studied is based on studying of the mechanisms of fragmentation of parent molecules of the degradation products. The molar mass of parent

  8. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    Science.gov (United States)

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Study of the Effect of Nanoparticles and Surface Morphology on Reverse Osmosis and Nanofiltration Membrane Productivity

    Directory of Open Access Journals (Sweden)

    Steven J. Duranceau

    2013-08-01

    Full Text Available To evaluate the significance of reverse osmosis (RO and nanofiltration (NF surface morphology on membrane performance, productivity experiments were conducted using flat-sheet membranes and three different nanoparticles, which included SiO2, TiO2 and CeO2. In this study, the productivity rate was markedly influenced by membrane surface morphology. Atomic force microscopy (AFM analysis of membrane surfaces revealed that the higher productivity decline rates associated with polyamide RO membranes as compared to that of a cellulose acetate NF membrane was due to the inherent ridge-and-valley morphology of the active layer. The unique polyamide active layer morphology was directly related to the surface roughness, and was found to contribute to particle accumulation in the valleys causing a higher flux decline than in smoother membranes. Extended RO productivity experiments using laboratory grade water and diluted pretreated seawater were conducted to compare the effect that different nanoparticles had on membrane active layers. Membrane flux decline was not affected by particle type when the feed water was laboratory grade water. On the other hand, membrane productivity was affected by particle type when pretreated diluted seawater served as feed water. It was found that CeO2 addition resulted in the least observable flux decline, followed by SiO2 and TiO2. A productivity simulation was conducted by fitting the monitored flux data into a cake growth rate model, where the model was modified using a finite difference method to incorporate surface thickness variation into the analysis. The ratio of cake growth term (k1 and particle back diffusion term (k2 was compared in between different RO and NF membranes. Results indicated that k2 was less significant for surfaces that exhibited a higher roughness. It was concluded that the valley areas of thin-film membrane surfaces have the ability to capture particles, limiting particle back diffusion.

  10. Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes

    International Nuclear Information System (INIS)

    Pan Zhengqiang; Balakrishnan, Narayanaswamy

    2011-01-01

    Many highly reliable products usually have complex structure, with their reliability being evaluated by two or more performance characteristics. In certain physical situations, the degradation of these performance characteristics would be always positive and strictly increasing. In such a case, the gamma process is usually considered as a degradation process due to its independent and non-negative increments properties. In this paper, we suppose that a product has two dependent performance characteristics and that their degradation can be modeled by gamma processes. For such a bivariate degradation involving two performance characteristics, we propose to use a bivariate Birnbaum-Saunders distribution and its marginal distributions to approximate the reliability function. Inferential method for the corresponding model parameters is then developed. Finally, for an illustration of the proposed model and method, a numerical example about fatigue cracks is discussed and some computational results are presented.

  11. Identification of Forced Degradation Products of Itopride by LC-PDA and LC-MS.

    Science.gov (United States)

    Joshi, Payal; Bhoir, Suvarna; Bhagwat, A M; Vishwanath, K; Jadhav, R K

    2011-05-01

    Degradation products of itopride formed under different forced conditions have been identified using LC-PDA and LC-MS techniques. Itopride was subjected to forced degradation under the conditions of hydrolysis, photolysis, oxidation, dry and wet heat, in accordance with the International Conference on Harmonization. The stress solutions were chromatographed on reversed phase C18 (250×4.6 mm, 5 μm) column with a mobile phase methanol:water (55:45, v/v) at a detection wavelength of 215 nm. Itopride degraded in acid, alkali and oxidative stress conditions. The stability indicating method was developed and validated. The degradation pathway of the drug to products II-VIII is proposed.

  12. LC-MS characterization of valsartan degradation products and comparison with LC-PDA

    Directory of Open Access Journals (Sweden)

    Sumaia Araújo Pires

    2015-12-01

    Full Text Available abstract Valsartan was submitted to forced degradation under acid hydrolysis condition as prescribed by the ICH. Degraded sample aliquots were separated via HPLC using a Hypersil ODS (C18 column (250 x 4.6 mm i.d., 5 µm. Either photodiode array (PDA detection or mass spectrometry (MS full scan monitoring of HPLC runs were used. HPLC-PDA failed to indicate Valsartan degradation under forced acid degradation, showing an insignificant peak area variation and that Valsartan apparently remained pure. HPLC-MS using electrospray ionization (ESI and total ionic current (TIC monitoring did not reveal any peak variation either, but inspection of the ESI mass spectra showed the appearance of m/z 306 and m/z 352 ions for the same retention time as that of Valsartan (m/z 436. These ions were identified as being protonated molecules of two co-eluting degradation products formed by hydrolysis. These assignments were confirmed by ESI-MS/MS with direct infusion of the degraded samples. The results showed that the use of selective HPLC-MS is essential for monitoring Valsartan degradation. Efficient HPLC separation coupled to selective and structural diagnostic MS monitoring seems therefore mandatory for comprehensive drug degradation studies, particularly for new drugs and formulations, and for method development.

  13. Inorganic membranes for hydrogen production and purification: a critical review and perspective.

    Science.gov (United States)

    Lu, G Q; Diniz da Costa, J C; Duke, M; Giessler, S; Socolow, R; Williams, R H; Kreutz, T

    2007-10-15

    Hydrogen as a high-quality and clean energy carrier has attracted renewed and ever-increasing attention around the world in recent years, mainly due to developments in fuel cells and environmental pressures including climate change issues. In thermochemical processes for hydrogen production from fossil fuels, separation and purification is a critical technology. Where water-gas shift reaction is involved for converting the carbon monoxide to hydrogen, membrane reactors show great promises for shifting the equilibrium. Membranes are also important to the subsequent purification of hydrogen. For hydrogen production and purification, there are generally two classes of membranes both being inorganic: dense phase metal and metal alloys, and porous ceramic membranes. Porous ceramic membranes are normally prepared by sol-gel or hydrothermal methods, and have high stability and durability in high temperature, harsh impurity and hydrothermal environments. In particular, microporous membranes show promises in water gas shift reaction at higher temperatures. In this article, we review the recent advances in both dense phase metal and porous ceramic membranes, and compare their separation properties and performance in membrane reactor systems. The preparation, characterization and permeation of the various membranes will be presented and discussed. We also aim to examine the critical issues in these membranes with respect to the technical and economical advantages and disadvantages. Discussions will also be made on the relevance and importance of membrane technology to the new generation of zero-emission power technologies.

  14. Bio-Gas production from municipal sludge waste using anaerobic membrane bioreactor

    International Nuclear Information System (INIS)

    Lee, Y. H.; Lee, S.

    2009-01-01

    A laboratory scale anaerobic membrane bioreactor (AnMBR) system for the bio-methane gas production was operated for 60 days with municipal sludge wastes as a sole carbon source. The AnMRR system utilized the external cross-flow membrane module and was equipped with on-line data acquisition which enables continuous monitoring of the performance of both bioreactor and membrane through the analyses of pH, temperature, gas production; permeate flow rate, and transmembrane pressure (TMP). Such a configuration also provides an efficient tool to study rapid variations of monitoring membrane pressure (TMP). (Author)

  15. Anaerobic testosterone degradation in Steroidobacter denitrificans - Identification of transformation products

    International Nuclear Information System (INIS)

    Fahrbach, Michael; Krauss, Martin; Preiss, Alfred; Kohler, Hans-Peter E.; Hollender, Juliane

    2010-01-01

    The transformation of the androgenic steroid testosterone by gammaproteobacterium Steroidobacter denitrificans was studied under denitrifying conditions. For the first time, growth experiments showed that testosterone was mineralized under consumption of nitrate and concurrent biomass production. Experiments with cell suspensions using [4- 14 C]-testosterone revealed the intermediate production of several transformation products (TPs). Characterisation of ten TPs was carried out by means of HPLC coupled to high resolution mass spectrometry with atmospheric pressure chemical ionization as well as 1 H and 13 C NMR spectroscopy. 3β-hydroxy-5α-androstan-17-one (trans-androsterone) was formed in the highest amount followed by 5α-androstan-3,17-dione. The data suggests that several dehydrogenation and hydrogenation processes take place concurrently in ring A and D because no consistent time-resolved pattern of TP peaks was observed and assays using 2 TPs as substrates resulted in essentially the same TPs. The further transformation of testosterone in S. denitrificans seems to be very efficient and fast without formation of detectable intermediates. - Testosterone is completely mineralized by Steroidobacter denitrificans under denitrifying conditions with initial formation of several reduced and oxidized transformation products.

  16. Improved keratinase production for feather degradation by Bacillus ...

    African Journals Online (AJOL)

    Optimal medium was used to improve the production of keratinase by Bacillus licheniformis ZJUEL31410, which has a promising application in the transformation of feather into soluble protein. The results of single factor design revealed that the concentration of feather at 20 g/l and the initial pH at value 8 was the best for ...

  17. Anaerobic testosterone degradation in Steroidobacter denitrificans - Identification of transformation products

    Energy Technology Data Exchange (ETDEWEB)

    Fahrbach, Michael, E-mail: michael.fahrbach@web.d [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf (Switzerland); Krauss, Martin, E-mail: martin.krauss@eawag.c [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf (Switzerland); Preiss, Alfred, E-mail: alfred.preiss@item.fraunhofer.d [Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, D-30625 Hannover (Germany); Kohler, Hans-Peter E., E-mail: hkohler@eawag.c [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf (Switzerland); Hollender, Juliane, E-mail: juliane.hollender@eawag.c [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf (Switzerland)

    2010-08-15

    The transformation of the androgenic steroid testosterone by gammaproteobacterium Steroidobacter denitrificans was studied under denitrifying conditions. For the first time, growth experiments showed that testosterone was mineralized under consumption of nitrate and concurrent biomass production. Experiments with cell suspensions using [4-{sup 14}C]-testosterone revealed the intermediate production of several transformation products (TPs). Characterisation of ten TPs was carried out by means of HPLC coupled to high resolution mass spectrometry with atmospheric pressure chemical ionization as well as {sup 1}H and {sup 13}C NMR spectroscopy. 3{beta}-hydroxy-5{alpha}-androstan-17-one (trans-androsterone) was formed in the highest amount followed by 5{alpha}-androstan-3,17-dione. The data suggests that several dehydrogenation and hydrogenation processes take place concurrently in ring A and D because no consistent time-resolved pattern of TP peaks was observed and assays using 2 TPs as substrates resulted in essentially the same TPs. The further transformation of testosterone in S. denitrificans seems to be very efficient and fast without formation of detectable intermediates. - Testosterone is completely mineralized by Steroidobacter denitrificans under denitrifying conditions with initial formation of several reduced and oxidized transformation products.

  18. In situ ruminal crude protein degradability of by-products from cereals, oilseeds and animal origin

    NARCIS (Netherlands)

    Habib, G.; Khan, N.A.; Ali, M.; Bezabih, M.

    2013-01-01

    The aim of this study was to establish a database on in situ ruminal crude protein (CP) degradability characteristics of by-products from cereal grains, oilseeds and animal origin commonly fed to ruminants in Pakistan and South Asian Countries. The oilseed by-products were soybean meal, sunflower

  19. Relationship between in situ degradation kinetics and in vitro gas production fermentation using different mathematical models

    NARCIS (Netherlands)

    Rodrigues, M.A.M.; Cone, J.W.; Ferreira, L.M.M.; Blok, M.C.; Guedes, C.

    2009-01-01

    In vitro and in situ studies were conducted to evaluate the influence of different mathematical models, used to fit gas production profiles of 15 feedstuffs, on estimates of nylon bag organic matter (OM) degradation kinetics. The gas production data were fitted to Exponential, Logistic, Gompertz and

  20. Full Product Pattern Recognition in β-Carotene Thermal Degradation through Ionization Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiaoyin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Lance Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bernstein, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hochrein, James M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    The full product pattern including both volatile and nonvolatile compounds was presented for the first time for β-Carotene thermal degradation at variable temperatures up to 600°C. Solvent-enhanced ionization was used to confirm and distinguish between the dissociation mechanisms that lead to even and odd number mass products.

  1. The Impact of Charcoal Production on Forest Degradation: a Case Study in Tete, Mozambique

    Science.gov (United States)

    Sedano, F.; Silva. J. A.; Machoco, R.; Meque, C. H.; Sitoe, A.; Ribeiro, N.; Anderson, K.; Ombe, Z. A.; Baule, S. H.; Tucker, C. J.

    2016-01-01

    Charcoal production for urban energy consumption is a main driver of forest degradation in sub-Saharan Africa. Urban growth projections for the continent suggest that the relevance of this process will increase in the coming decades. Forest degradation associated to charcoal production is difficult to monitor and commonly overlooked and underrepresented in forest cover change and carbon emission estimates. We use a multi-temporal dataset of very high-resolution remote sensing images to map kiln locations in a representative study area of tropical woodlands in central Mozambique. The resulting maps provided a characterization of the spatial extent and temporal dynamics of charcoal production. Using an indirect approach we combine kiln maps and field information on charcoal making to describe the magnitude and intensity of forest degradation linked to charcoal production, including aboveground biomass and carbon emissions. Our findings reveal that forest degradation associated to charcoal production in the study area is largely independent from deforestation driven by agricultural expansion and that its impact on forest cover change is in the same order of magnitude as deforestation. Our work illustrates the feasibility of using estimates of urban charcoal consumption to establish a link between urban energy demands and forest degradation. This kind of approach has potential to reduce uncertainties in forest cover change and carbon emission assessments in sub-Saharan Africa.

  2. Production of the oxidation-resistant polypropylene track membranes

    International Nuclear Information System (INIS)

    Kravets, L.I.; Dmitriev, S.N.; Apel, P.Y.

    1999-01-01

    This paper describes results of the method of manufacturing the polypropylene track membranes produced by physicochemical treatment under irradiation of accelerated heavy ions of polymer films. The developed method allows to produce membranes 0.1 - 0.2 μm in diameter and more with an improved structural and physicochemical properties. Poly-propylene track membranes of a novel sample are characterized by high homogeneity of pore sizes in magnitude, considerable mechanical strength, advanced thermal stability and resistance to oxidation in aggressive media. It opens new fields for their usage

  3. Investigation of electrolyte leaching in the performance degradation of phosphoric acid-doped polybenzimidazole membrane-based high temperature fuel cells

    Science.gov (United States)

    Jeong, Yeon Hun; Oh, Kyeongmin; Ahn, Sungha; Kim, Na Young; Byeon, Ayeong; Park, Hee-Young; Lee, So Young; Park, Hyun S.; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Ju, Hyunchul; Kim, Jin Young

    2017-09-01

    Precise monitoring of electrolyte leaching in high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) devices during lifetime tests is helpful in making a diagnosis of their quality changes and analyzing their electrochemical performance degradation. Here, we investigate electrolyte leaching in the performance degradation of phosphoric acid (PA)-doped polybenzimidazole (PBI) membrane-based HT-PEMFCs. We first perform quantitative analyses to measure PA leakage during cell operation by spectrophotometric means, and a higher PA leakage rate is detected when the current density is elevated in the cell. Second, long-term degradation tests under various current densities of the cells and electrochemical impedance spectroscopy (EIS) analysis are performed to examine the influence of PA loss on the membrane and electrodes during cell performance degradation. The combined results indicate that PA leakage affect cell performance durability, mostly due to an increase in charge transfer resistance and a decrease in the electrochemical surface area (ECSA) of the electrodes. Additionally, a three-dimensional (3-D) HT-PEMFC model is applied to a real-scale experimental cell, and is successfully validated against the polarization curves measured during various long-term experiments. The simulation results highlight that the PA loss from the cathode catalyst layer (CL) is a significant contributor to overall performance degradation.

  4. An integrated membrane system for the biocatalytic production of 3′-sialyllactose from dairy by-products

    DEFF Research Database (Denmark)

    Luo, Jianquan; Nordvang, Rune Thorbjørn; Morthensen, Sofie Thage

    2014-01-01

    An integrated membrane system was investigated for the production of 30-sialyllactose by an engineered sialidase using casein glycomacropeptide (CGMP) and lactose as substrates. CGMP was purified by ultrafiltration (UF) to remove any small molecules present and then an enzymatic membrane reactor ...

  5. Atmospheric degradation of 3-methylfuran: kinetic and products study

    Directory of Open Access Journals (Sweden)

    A. Tapia

    2011-04-01

    Full Text Available A study of the kinetics and products obtained from the reactions of 3-methylfuran with the main atmospheric oxidants has been performed. The rate coefficients for the gas-phase reaction of 3-methylfuran with OH and NO3 radicals have been determined at room temperature and atmospheric pressure (air and N2 as bath gases, using a relative method with different experimental techniques. The rate coefficients obtained for these reactions were (in units cm3 molecule−1 s−1 kOH = (1.13 ± 0.22 × 10−10 and kNO3 = (1.26 ± 0.18 × 10−11. Products from the reaction of 3-methylfuran with OH, NO3 and Cl atoms in the absence and in the presence of NO have also been determined. The main reaction products obtained were chlorinated methylfuranones and hydroxy-methylfuranones in the reaction of 3-methylfuran with Cl atoms, 2-methylbutenedial, 3-methyl-2,5-furanodione and hydroxy-methylfuranones in the reaction of 3-methylfuran with OH and NO3 radicals and also nitrated compounds in the reaction with NO3 radicals. The results indicate that, in all cases, the main reaction path is the addition to the double bond of the aromatic ring followed by ring opening in the case of OH and NO3 radicals. The formation of 3-furaldehyde and hydroxy-methylfuranones (in the reactions of 3-methylfuran with Cl atoms and NO3 radicals confirmed the H-atom abstraction from the methyl group and from the aromatic ring, respectively. This study represents the first product determination for Cl atoms and NO3 radicals in reactions with 3-methylfuran. The reaction mechanisms and atmospheric implications of the reactions under consideration are also discussed.

  6. Evaluation of anaerobic degradation, biogas and digestate production of cereal silages using nylon-bags.

    Science.gov (United States)

    Negri, Marco; Bacenetti, Jacopo; Fiala, Marco; Bocchi, Stefano

    2016-06-01

    In this study, the degradation efficiency and the biogas and digestate production during anaerobic digestion were evaluated for the cereal silages most used to feed biogas plants. To this purpose, silages of: maize from the whole plant, maize from the ear, triticale and wheat were digested, inside of nylon bags, in laboratory scale digesters, for 75days. Overall, the test involved 288 nylon bags. After 75days of digestion, the maize ear silage shows the highest degradation efficiency (about 98%) while wheat silage the lowest (about 83%). The biogas production ranges from 438 to 852Nm(3)/t of dry matter for wheat and ear maize silage, respectively. For all the cereal silages, the degradation as well as the biogas production are faster at the beginning of the digestion time. Digestate mass, expressed as percentage of the fresh matter, ranges from 38% to 84% for wheat and maize ear silage, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in the Sargasso Sea.

    Science.gov (United States)

    Levine, Naomi Marcil; Varaljay, Vanessa A; Toole, Dierdre A; Dacey, John W H; Doney, Scott C; Moran, Mary Ann

    2012-05-01

    Dimethylsulfide (DMS) is a climatically relevant trace gas produced and cycled by the surface ocean food web. Mechanisms driving intraannual variability in DMS production and dimethylsulfoniopropionate (DMSP) degradation in open-ocean, oligotrophic regions were investigated during a 10-month time-series at the Bermuda Atlantic Time-series Study site in the Sargasso Sea. Abundance and transcription of bacterial DMSP degradation genes, DMSP lyase enzyme activity, and DMS and DMSP concentrations, consumption rates and production rates were quantified over time and depth. This interdisciplinary data set was used to test current hypotheses of the role of light and carbon supply in regulating upper-ocean sulfur cycling. Findings supported UV-A-dependent phytoplankton DMS production. Bacterial DMSP degraders may also contribute significantly to DMS production when temperatures are elevated and UV-A dose is moderate, but may favour DMSP demethylation under low UV-A doses. Three groups of bacterial DMSP degraders with distinct intraannual variability were identified and niche differentiation was indicated. The combination of genetic and biochemical data suggest a modified 'bacterial switch' hypothesis where the prevalence of different bacterial DMSP degradation pathways is regulated by a complex set of factors including carbon supply, temperature and UV-A dose. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  8. Palladium based membranes and membrane reactors for hydrogen production and purification : An overview of research activities at Tecnalia and TU/e

    NARCIS (Netherlands)

    Fernandez, E.; Helmi Siasi Farimani, A.; Medrano Jimenez, J.A.; Coenen, K.T.; Arratibel Plazaola, A.; Melendez Rey, J.; de Nooijer, N.C.A.; Viviente, J.L.; Zuniga, J.; van Sint Annaland, M.; Gallucci, F.; Pacheco Tanaka, D.A.

    2017-01-01

    In this paper, the main achievements of several European research projects on Pd based membranes and Pd membrane reactors for hydrogen production are reported. Pd-based membranes have received an increasing interest for separation and purification of hydrogen. In addition, the integration of such

  9. Expression of matrix metalloproteinase genes during basement membrane degradation in the metamorphosis of Bombyx mori.

    Science.gov (United States)

    Kawasaki, Hideki; Manickam, Asaithambi; Shahin, Rima; Ote, Manabu; Iwanaga, Masashi

    2018-01-05

    The present study was conducted to clarify the involvement of the basement membrane (BM) in insect metamorphosis through analysis of the expression profile of two types of metalloproteinase (MMP and ADAMTS) genes in several organs, their ecdysone involvement, and the histological change of BM. BM was observed around wing sac and in the wing cavity and around fat bodies at the W0 stage but disappeared after the W3 stage, and wing discs evaginated and fat body cells scattered after the W3 stage. The disappearance of the BM of midgut and silk glands was not observed after the W3 stage, but degenerated epithelium cells in the midgut and shrunken cells in the silk gland were observed after the W3 stage. BmMMP1 showed a peak at P0 in the wing discs, fat bodies, midgut, and silk gland. BmMMP2 showed a broad peak around pupation in the wing discs, fat bodies, midgut, and silk gland. BmADAMTS-1 showed enhanced expression at W2 in the wing discs, fat bodies, midgut, and hemocyte, while BmADAMTS-L showed enhanced expression at W3 in the fat bodies, midgut, silk gland, and hemocyte. After pupation, they showed a different expression in different organs. All of four genes were induced by 20-hydroxyecdysone in wing discs in vitro. The present results suggested the involvement of MMPs and ADAMTS in the BM digestion and the morphogenesis of organs during Bombyx metamorphosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Patterned ion exchange membranes for improved power production in microbial reverse-electrodialysis cells

    KAUST Repository

    Liu, Jia

    2014-12-01

    Power production in microbial reverse-electrodialysis cells (MRCs) can be limited by the internal resistance of the reverse electrodialysis stack. Typical MRC stacks use non-conductive spacers that block ion transport by the so-called spacer shadow effect. These spacers can be relatively thick compared to the membrane, and thus they increase internal stack resistance due to high solution (ohmic) resistance associated with a thick spacer. New types of patterned anion and cation exchange membranes were developed by casting membranes to create hemispherical protrusions on the membranes, enabling fluid flow between the membranes without the need for a non-conductive spacer. The use of the patterned membrane decreased the MRC stack resistance by ∼22 Ω, resulting in a 38% increase in power density from 2.50 ± 0.04 W m-2 (non-patterned membrane with a non-conductive spacer) to 3.44 ± 0.02 W m-2 (patterned membrane). The COD removal rate, coulombic efficiency, and energy efficiency of the MRC also increased using the patterned membranes compared to the non-patterned membranes. These results demonstrate that these patterned ion exchange membranes can be used to improve performance of an MRC. © 2014 Elsevier B.V. All rights reserved.

  11. LC/MS/MS identification of some folic acid degradation products after E-beam irradiation

    International Nuclear Information System (INIS)

    Araújo, M.M.; Marchioni, E.; Zhao, M.; Kuntz, F.; Di Pascoli, T.; Villavicencio, A.L.C.H.; Bergaentzle, M.

    2012-01-01

    Folates belong to the B vitamin group based on the parental compound folic acid (FA). They are involved in important biochemical processes like DNA synthesis and repair. FA is composed of a pteridine ring, p-aminobenzoic acid and glutamate moieties. The human metabolism is not able to synthesize folates and therefore obtain them from diet. FA, a synthetic vitamin, is used as a food fortificant because of its low price, relative stability and increased bioavailability compared to natural folate forms. FA is known to be a sensitive compound easily degradable in aqueous solution by ultraviolet and visible light towards various by-products. Irradiation is a process for preservation of foods that uses accelerated electrons, gamma rays or X-rays. Irradiation is proposed for the treatment of various food products, eliminating or reducing pathogens and insects, increasing the storage time and replacing chemical fumigants. This study concerns the identification of degradation products of FA after E-beam irradiation. FA aqueous solutions were irradiated with a Van de Graaff electrons beam accelerator (2 MeV, 100 μA current, 20 cm scan width, dose rate about 2 kGy/s). Applied doses were between 0 (control) and 10.0 kGy. Absorbed doses were monitored with FWT 60.00 radiochromic dosimeters. - Highlights: ► We investigated the degradation of folic acid aqueous solution after electron beam treatment. ► Radiation doses over 5 kGy promote huge folic acid degradation and appearance of several degradation products. ► PCA, PABA and pABGA, already known folic acid degradation products, are formed due to E-beam treatment. ► Xanthopterin, a new radio-induced breakdown product, is formed after irradiation treatment.

  12. The sources, fate, and toxicity of chemical warfare agent degradation products.

    Science.gov (United States)

    Munro, N B; Talmage, S S; Griffin, G D; Waters, L C; Watson, A P; King, J F; Hauschild, V

    1999-01-01

    We include in this review an assessment of the formation, environmental fate, and mammalian and ecotoxicity of CW agent degradation products relevant to environmental and occupational health. These parent CW agents include several vesicants: sulfur mustards [undistilled sulfur mustard (H), sulfur mustard (HD), and an HD/agent T mixture (HT)]; nitrogen mustards [ethylbis(2-chloroethyl)amine (HN1), methylbis(2-chloroethyl)amine (HN2), tris(2-chloroethyl)amine (HN3)], and Lewisite; four nerve agents (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), tabun (GA), sarin (GB), and soman (GD)); and the blood agent cyanogen chloride. The degradation processes considered here include hydrolysis, microbial degradation, oxidation, and photolysis. We also briefly address decontamination but not combustion processes. Because CW agents are generally not considered very persistent, certain degradation products of significant persistence, even those that are not particularly toxic, may indicate previous CW agent presence or that degradation has occurred. Of those products for which there are data on both environmental fate and toxicity, only a few are both environmentally persistent and highly toxic. Major degradation products estimated to be of significant persistence (weeks to years) include thiodiglycol for HD; Lewisite oxide for Lewisite; and ethyl methyl phosphonic acid, methyl phosphonic acid, and possibly S-(2-diisopropylaminoethyl) methylphosphonothioic acid (EA 2192) for VX. Methyl phosphonic acid is also the ultimate hydrolysis product of both GB and GD. The GB product, isopropyl methylphosphonic acid, and a closely related contaminant of GB, diisopropyl methylphosphonate, are also persistent. Of all of these compounds, only Lewisite oxide and EA 2192 possess high mammalian toxicity. Unlike other CW agents, sulfur mustard agents (e.g., HD) are somewhat persistent; therefore, sites or conditions involving potential HD contamination should include an

  13. Production of hydrogen using composite membrane in PEM water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Santhi priya, E.L.; Mahender, C.; Mahesh, Naga; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad-500 085, A.P (India); Anjaneyulu, Y. [Director, TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2012-07-01

    Electrolysis of water is the best known technology till today to produce hydrogen. The only practical way to produce hydrogen using renewable energy sources is by proton exchange membrane (PEM) water electrolysis. The most commonly used PEM membrane is Nafion. Composite membrane of TiO2 is synthesized by casting method using Nafion 5wt% solution. RuO2 is used as anode and 10 wt% Pd on activated carbon is used as cathode in the water electrolyser system. The performance of this Composite membrane is studied by varying voltage range 1.8 to 2.6V with respect to hydrogen yield and at current density 0.1, 0.2, 0.3, 0.4, and 0.5(A cm-2). This Composite membrane has been tested using in-house fabricated single cell PEM water electrolysis cell with 10cm2 active area at temperatures ranging from 30,45,65 850c and at 1 atmosphere pressure.

  14. Estimating grass and grass silage degradation characteristics by in situ and in vitro gas production methods

    Directory of Open Access Journals (Sweden)

    Danijel Karolyi

    2010-01-01

    Full Text Available Fermentation characteristics of grass and grass silage at different maturities were studied using in situ and in vitro gas production methods. In situ data determined difference between grass and silage. Degradable fraction decreased as grass matured while the undegradable fraction increased. Rate of degradation (kd was slower for silage than fresh grass. Gas production method (GP data showed that fermentation of degradable fraction was different between stage of maturity in both grass and silage. Other data did not show any difference with the exception for the rate of GP of soluble and undegradable fraction. The in situ degradation characteristics were estimated from GP characteristics. The degradable and undegradable fractions could be estimated by multiple relationships. Using the three-phases model for gas production kd and fermentable organic matter could be estimated from the same parameters. The only in situ parameter that could not be estimated with GP parameters was the soluble fraction. The GP method and the three phases model provided to be an alternative to the in situ method for animal feed evaluations.

  15. Quantitative analysis of Loperamide hydrochloride in the presence its acid degradation products

    Directory of Open Access Journals (Sweden)

    Savić Ivana M.

    2009-01-01

    Full Text Available The aim of this work was to develop a new RP-HPLC method for the determination of loperamide hydrochloride in the presence of its acid degradation products. Separation of loperamide from degradation products was performed using ZORBAX Eclipse XDB C-18, column with a mobile phase consisting of 0.1% sodium-octansulphonate, 0.05% triethylamine, 0.1% ammonium hydroxide in water:acetonitrile (45:55 v/v. The mobile phase was adjusted to pH 3.2 with phosphoric acid. The method showed high sensitivity with good linearity over the concentration range of 10 to 100 μg cm-3. The method was successfully applied to the analysis of a pharmaceutical formulation (Loperamide, Zdravlje-Actavis, Serbia containing loperamide hydrochloride with excellent recovery. The loperamide hydrochloride degradation during acid hydrolysis and kinetics investigation was carried out in hydrochloric acid solutions of 0.1, 1.0 and 1.5 mol dm-3, at different temperatures (25 and 40°C, by monitoring the parent compound itself. The first order reaction of loperamide degradation in acid solution was determined. The activation energy was estimated from the Arrhenius plot and it was found to be 38.81 kJ mol-1 at 40°C. The developed procedure was successfully applied for the rapid determination of loperamide hydrochloride in pharmaceutical formulation (Loperamide, Zdravlje-Actavis, Serbia and in the presence of its acid degradation products.

  16. Analysis of the Precursors, Simulants and Degradation Products of Chemical Warfare Agents.

    Science.gov (United States)

    Witkiewicz, Zygfryd; Neffe, Slawomir; Sliwka, Ewa; Quagliano, Javier

    2018-09-03

    Recent advances in analysis of precursors, simulants and degradation products of chemical warfare agents (CWA) are reviewed. Fast and reliable analysis of precursors, simulants and CWA degradation products is extremely important at a time, when more and more terrorist groups and radical non-state organizations use or plan to use chemical weapons to achieve their own psychological, political and military goals. The review covers the open source literature analysis after the time, when the chemical weapons convention had come into force (1997). The authors stated that during last 15 years increased number of laboratories are focused not only on trace analysis of CWA (mostly nerve and blister agents) in environmental and biological samples, but the growing number of research are devoted to instrumental analysis of precursors and degradation products of these substances. The identification of low-level concentration of CWA degradation products is often more important and difficult than the original CWA, because of lower level of concentration and a very large number of compounds present in environmental and biological samples. Many of them are hydrolysis products and are present in samples in the ionic form. For this reason, two or three instrumental methods are used to perform a reliable analysis of these substances.

  17. DNA-membrane complex restoration in Micrococcus radiodurans after X-irradiation: relation to repair, DNA synthesis and DNA degradation

    Energy Technology Data Exchange (ETDEWEB)

    Dardalhon-Samsonoff, M; Averbeck, D [Institut du Radium, 75 - Paris (France). Lab. Curie

    1980-07-01

    The DNA-membrane complex in Micrococcus radiodurans was shown to be essentially constituted of proteins, lipids and DNA. The complex was dissociated immediately after X-irradiation of cells and restored during post-incubation in complete medium. In X-irradiated protoplasts some DNA remained associated with the complex. Restoration of the complex during post-incubation was only seen in a medium favouring DNA polymerase and ligase activities. Under this condition no DNA synthesis occurred, suggesting that complex restoration may involve ligase activity. The complex restoration in the wild type and the X-ray sensitive mutant UV17 of M. radiodurans was strictly dependent on the X-ray dose. It was correlated with survival and DNA degradation but always preceded the onset of DNA synthesis after X-irradiation. At the same dose the complex restoration was about 2 fold lower in mutant than in wild type cells indicating that the restoration of the complex is related to repair capacity. The results are consistent with the idea that the complex protects X-irradiated DNA of M. radiodurans from further breakdown and, subsequently, permits DNA synthesis and repair to occur.

  18. Nutrient utilization and oxygen production by Chlorella Vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system

    KAUST Repository

    Najm, Yasmeen Hani Kamal

    2017-02-17

    This work studied oxygen production and nutrient utilization by Chlorella Vulgaris at different organic/inorganic carbon (OC/IC) and ammonium/nitrate (NH4+-N/NO3--N) ratios to design a hybrid aerobic membrane bioreactor (MBR) and membrane photobioreactor (MPBR) system. Specific oxygen production by C. vulgaris was enough to support the MBR if high growth is accomplished. Nearly 100% removal (or utilization) of PO43--P and IC was achieved under all conditions tested. Optimal growth was achieved at mixotrophic carbon conditions (0.353 d-1) and the highest NH4+-N concentration (0.357 d-1), with preferable NH4+-N utilization rather than NO3--N. The results indicate the potential of alternative process designs to treat domestic wastewater by coupling the hybrid MBR - MPBR systems.

  19. Nutrient utilization and oxygen production by Chlorella Vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system

    KAUST Repository

    Najm, Yasmeen Hani Kamal; Jeong, Sanghyun; Leiknes, TorOve

    2017-01-01

    This work studied oxygen production and nutrient utilization by Chlorella Vulgaris at different organic/inorganic carbon (OC/IC) and ammonium/nitrate (NH4+-N/NO3--N) ratios to design a hybrid aerobic membrane bioreactor (MBR) and membrane photobioreactor (MPBR) system. Specific oxygen production by C. vulgaris was enough to support the MBR if high growth is accomplished. Nearly 100% removal (or utilization) of PO43--P and IC was achieved under all conditions tested. Optimal growth was achieved at mixotrophic carbon conditions (0.353 d-1) and the highest NH4+-N concentration (0.357 d-1), with preferable NH4+-N utilization rather than NO3--N. The results indicate the potential of alternative process designs to treat domestic wastewater by coupling the hybrid MBR - MPBR systems.

  20. Influence of phosphorus precipitation on permeability and soluble microbial product concentration in a membrane bioreactor

    Czech Academy of Sciences Publication Activity Database

    Gómez, M.; Dvořák, L.; Růžičková, I.; Wanner, J.; Holba, Marek; Sýkorová, E.

    2013-01-01

    Roč. 129, Feb 2013 (2013), s. 164-169 ISSN 0960-8524 Institutional support: RVO:67985939 Keywords : membrane bioreactor * coagulant adition * soluble microbial products Subject RIV: EF - Botanics Impact factor: 5.039, year: 2013

  1. Quantifying Contribution of Synthrophic Acetate Oxidation to Methane Production in Thermophilic Anaerobic Reactors by Membrane Inlet Mass Spectrometry

    DEFF Research Database (Denmark)

    Mulat, Daniel Girma; Ward, Alastair James; Adamsen, Anders Peter S.

    2014-01-01

    A unique method was developed and applied for monitoring methanogenesis pathways based on isotope labeled substrates combined with online membrane inlet quadrupole mass spectrometry (MIMS). In our study, a fermentation sample from a full-scale biogas plant fed with pig and cattle manure, maize...... silage, and deep litter was incubated with 100 mM of [2-13C] sodium acetate under thermophilic anaerobic conditions. MIMS was used to measure the isotopic distribution of dissolved CO2 and CH4 during the degradation of acetate, while excluding interference from water by applying a cold trap. After 6 days...... a new approach for online quantification of the relative contribution of methanogenesis pathways to methane production with a time resolution shorter than one minute. The observed contribution of SAO-HM to methane production under the tested conditions challenges the current widely accepted anaerobic...

  2. Modelling of biohydrogen production and recovery by membrane gas separation

    Czech Academy of Sciences Publication Activity Database

    Búcsú, D.; Nemestóthy, N.; Pientka, Zbyněk; Gubicza, L.; Bélafi-Bakó, K.

    2009-01-01

    Roč. 240, 1-3 (2009), s. 306-310 ISSN 0011-9164 R&D Projects: GA ČR GA203/06/1207 Institutional research plan: CEZ:AV0Z40500505 Keywords : integrated system * Escherichia coli * PES-PI membrane Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.034, year: 2009

  3. Integration of oxygen membranes for oxygen production in cement plants

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Søgaard, Martin; Hjuler, Klaus

    2015-01-01

    The present paper describes the integration of oxygen membranes in cement plants both from an energy, exergy and economic point of view. Different configurations for oxygen enrichment of the tertiary air for combustion in the pre-calciner and full oxy-fuel combustion in both pre-calciner and kiln...

  4. A positive feedback-based gene circuit to increase the production of a membrane protein

    Directory of Open Access Journals (Sweden)

    Gennis Robert B

    2010-05-01

    Full Text Available Abstract Background Membrane proteins are an important class of proteins, playing a key role in many biological processes, and are a promising target in pharmaceutical development. However, membrane proteins are often difficult to produce in large quantities for the purpose of crystallographic or biochemical analyses. Results In this paper, we demonstrate that synthetic gene circuits designed specifically to overexpress certain genes can be applied to manipulate the expression kinetics of a model membrane protein, cytochrome bd quinol oxidase in E. coli, resulting in increased expression rates. The synthetic circuit involved is an engineered, autoinducer-independent variant of the lux operon activator LuxR from V. fischeri in an autoregulatory, positive feedback configuration. Conclusions Our proof-of-concept experiments indicate a statistically significant increase in the rate of production of the bd oxidase membrane protein. Synthetic gene networks provide a feasible solution for the problem of membrane protein production.

  5. The Sustainable Release of Vancomycin and Its Degradation Products From Nanostructured Collagen/Hydroxyapatite Composite Layers

    Czech Academy of Sciences Publication Activity Database

    Suchý, Tomáš; Šupová, Monika; Klapková, E.; Horný, L.; Rýglová, Šárka; Žaloudková, Margit; Braun, Martin; Sucharda, Zbyněk; Ballay, R.; Veselý, J.; Chlup, H.; Denk, František

    2016-01-01

    Roč. 105, č. 3 (2016), 1288-1294 ISSN 0022-3549 R&D Projects: GA TA ČR(CZ) TA04010330 Institutional support: RVO:67985891 Keywords : anti-infectives * HPLC * coating * controlled release * degradation products * drug delivery systems * nanoparticles * pharmacokinetics * polymeric drug delivery systems Subject RIV: JI - Composite Materials Impact factor: 2.713, year: 2016

  6. Global sensitivity analysis for UNSATCHEM simulations of crop production with degraded waters

    Science.gov (United States)

    One strategy for maintaining irrigated agricultural productivity in the face of diminishing resource availability is to make greater use of marginal quality waters and lands. A key to sustaining systems using degraded irrigation waters is salinity management. Advanced simulation models and decision ...

  7. Particulate and gas-phase products from the atmospheric degradation of chlorpyrifos and chlorpyrifos-oxon

    Science.gov (United States)

    Borrás, Esther; Ródenas, Milagros; Vázquez, Mónica; Vera, Teresa; Muñoz, Amalia

    2015-12-01

    The phosphorothioate structure is highly present in several pesticides. However, there is a lack of information about its degradation process in air and the secondary pollutants formed. Herein, the atmospheric reactions of chlorpyrifos, one of the most world-used insecticide, and its main degradation product - chlorpyrifos-oxon - are described. The photo-oxidation under the presence of NOx was studied in a large outdoor simulation chamber for both chlorpyrifos and chlorpyrifos-oxon, observing a rapid degradation (Half lifetime < 3.5 h for both compounds). Also, the photolysis reactions of both were studied. The formation of particulate matter (aerosol mass yield ranged 6-59%) and gaseous products were monitored. The chemical composition of minor products was studied, identifying 15 multi-oxygenated derivatives. The most abundant products were ring-retaining molecules such as 3,5,6-trichloropyridin-2-ol and ethyl 3,5,6-trichloropyridin-2-yl hydrogen phosphate. An atmospheric degradation mechanism has been amplified based on an oxidation started with OH-nucleophilic attack to Pdbnd S bond.

  8. The degradation of lining of rotary furnaces in the production of zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Pešlová, F.; Anisimov, E.

    2014-01-01

    Roč. 21, č. 3 (2014), s. 116-121 ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : zinc oxide * the production of zinc oxide * zinc slag * refractories * the degradation of rotary furnace linings Subject RIV: JG - Metallurgy http://ojs.mateng.sk/index.php/Mateng/article/view/133/194

  9. Source of fibrin/fibrinogen degradation products in the CSF after subarachnoid hemorrhage

    NARCIS (Netherlands)

    Vermeulen, M.; van Vliet, H. H.; Lindsay, K. W.; Hijdra, A.; van Gijn, J.

    1985-01-01

    In 48 patients with a subarachnoid hemorrhage, levels of fibrin/fibrinogen degradation products (FDP's), total protein, and plasminogen were measured in the cerebrospinal fluid (CSF) between Days 9 and 15 after the bleed. Of these 48 patients, 22 received tranexamic acid. Despite a significant

  10. Wood Degradation by Thermotolerant and Thermophilic Fungi for Sustainable Heat Production

    NARCIS (Netherlands)

    Caizan Juanarena, Leire; ter Heijne, Annemiek; Buisman, Cees; Van der Wal, A.

    2016-01-01

    The use of renewable biomass for production of heat and electricity plays an important role in the circular economy. Degradation of wood biomass to produce heat is a clean and novel process proposed as an alternative to wood burning, and could be used for various heating applications. So far, wood

  11. Effects of cellulosic degradation products on uranium sorption in the geosphere

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Boult, K.A.; Brownsword, M.; Linklater, C.M.

    1994-01-01

    The current design concept for intermediate- and some low-level radioactive waste disposal in the UK involves emplacement in a cementitious repository deep underground. The movement of radionuclides away from such a repository through the host rock formation towards the biosphere is expected to be retarded to a significant degree by sorption processes. One major issue being studied is the effect on uranium sorption of degradation products arising from organic waste matter, especially cellulosic materials. The sorption of uranium could be reduced by degradation products, either because of complexation, or through the organic materials competing for sorption sites. Because of the complexity of authentic degradation products, work has also been carried out using gluconate and iso-saccharinate as well-characterised simulants. In the presence of high concentrations of either the authentic or simulated degradation products, significant reductions in uranium sorption have been observed. However, in the presence of lower concentrations of these organic materials, such as would be present in the repository, sorption was reduced at most by only a small margin and, in some cases, the results suggested a slight increase. ((orig.))

  12. Effects of cellulosic degradation products on uranium sorption in the geosphere

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Berry, J.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Bond, K.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Boult, K.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Brownsword, M. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Linklater, C.M. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom))

    1994-10-01

    The current design concept for intermediate- and some low-level radioactive waste disposal in the UK involves emplacement in a cementitious repository deep underground. The movement of radionuclides away from such a repository through the host rock formation towards the biosphere is expected to be retarded to a significant degree by sorption processes. One major issue being studied is the effect on uranium sorption of degradation products arising from organic waste matter, especially cellulosic materials. The sorption of uranium could be reduced by degradation products, either because of complexation, or through the organic materials competing for sorption sites. Because of the complexity of authentic degradation products, work has also been carried out using gluconate and iso-saccharinate as well-characterised simulants. In the presence of high concentrations of either the authentic or simulated degradation products, significant reductions in uranium sorption have been observed. However, in the presence of lower concentrations of these organic materials, such as would be present in the repository, sorption was reduced at most by only a small margin and, in some cases, the results suggested a slight increase. ((orig.))

  13. HYDROLOGIC CONDITIONS AFFECTING THE TROPOSPHERIC FLUX OF VINCLOZOLIN AND ITS DEGRADATION PRODUCTS

    Science.gov (United States)

    A laboratory chamber was used to determine hydrologic conditions that lead to the tropospheric flux of a suspected anti-androgenic dicarboximide fungicide, vinclozolin (3-(3,5-dichlorophenyl)-5-methyl-5-vinyl-oxzoli-dine-2,4-dione) and three degradation products from sterilized...

  14. Enhanced production of dimethyl phthalate-degrading strain Bacillus sp. QD14 by optimizing fermentation medium

    Directory of Open Access Journals (Sweden)

    Jixian Mo

    2015-05-01

    Conclusion: In this work, the key factors affected by the fermentation of DMP-degrading strain Bacillus sp. QD14 were optimized by PBD, SAM and BBD (RSM; the yield was increased by 57,11% in the conditions in our study. We propose that the conditions optimized in the study can be applied to the fermentation for commercialization production.

  15. Rapid quantification of TBP and TBP degradation product ratios by FTIR-ATR

    International Nuclear Information System (INIS)

    Gillens, A.R.; Powell, B.A.; Clemson University, Clemson, SC

    2013-01-01

    Tri-n-butyl phosphate (TBP) is the key complexant within the plutonium and uranium reduction extraction process used to extract uranium and plutonium from used nuclear fuel. During reprocessing TBP degrades to dibutyl phosphate (DBP), butyl acid phosphate (MBP), butanol, and phosphoric acid over time. A method for rapidly monitoring TBP degradation is needed for the support of nuclear forensics. Therefore, a Fourier transform infrared spectrometry-attenuated total reflectance (FTIR-ATR) technique was developed to determine approximate peak intensity ratios of TBP and its degradation products. The technique was developed by combining variable concentrations of TBP, DBP, and MBP to simulate TBP degradation. This method is achieved by analyzing selected peak positions and peak intensity ratios of TBP and DBP at different stages of degradation. The developed technique was tested on TBP samples degraded with nitric acid. In mock degradation samples, the 1,235 cm -1 peak position shifts to 1,220 cm -1 as the concentration of TBP decreases and DBP increases. Peak intensity ratios of TBP positions at 1,279 and 1,020 cm -1 relative to DBP positions at 909 and 1,003 cm -1 demonstrate an increasing trend as the concentration of DBP increases. The same peak intensity ratios were used to analyze DBP relative to MBP whereas a decreasing trend is seen with increasing DBP concentrations. The technique developed from this study may be used as a tool to determine TBP degradation in nuclear reprocessing via a rapid FTIR-ATR measurement without gas chromatography analysis. (author)

  16. Stimulation of diesel degradation and biosurfactant production by aminoglycosides in a novel oil-degrading bacterium Pseudomonas luteola PRO23

    Directory of Open Access Journals (Sweden)

    Atanasković Iva M.

    2016-01-01

    Full Text Available Bioremediation is promising technology for dealing with oil hydrocarbons contamination. In this research growth kinetics and oil biodegradation efficiency of Pseudomonas luteola PRO23, isolated from crude oil-contaminated soil samples, were investigated under different concentrations (5, 10 and 20 g/L of light and heavy crude oil. More efficient biodegradation and more rapid adaptation and cell growth were obtained in conditions with light oil. The 5 to 10 g/L upgrade of light oil concentration stimulated the microbial growth and the biodegradation efficiency. Further upgrade of light oil concentration and the upgrade of heavy oil concentration both inhibited the microbial growth, as well as biodegradation process. Aminoglycosides stimulated biosurfactant production in P. luteola in the range of sub-inhibitory concentrations (0.3125, 0.625 μg/mL. Aminoglycosides also induced biofilm formation. The production of biosurfactants was the most intense during lag phase and continues until stationary phase. Aminoglycosides also induced changes in P. luteola growth kinetics. In the presence of aminoglycosides this strain degraded 82% of diesel for 96 h. These results indicated that Pseudomonas luteola PRO23 potentially can be used in bioremediation of crude oil-contaminated environments and that aminoglycosides could stimulate this process. [Projekat Ministarstva nauke Republike Srbije, br. TR31080

  17. Plasma membrane profiling defines an expanded class of cell surface proteins selectively targeted for degradation by HCMV US2 in cooperation with UL141.

    Directory of Open Access Journals (Sweden)

    Jye-Lin Hsu

    2015-04-01

    Full Text Available Human cytomegalovirus (HCMV US2, US3, US6 and US11 act in concert to prevent immune recognition of virally infected cells by CD8+ T-lymphocytes through downregulation of MHC class I molecules (MHC-I. Here we show that US2 function goes far beyond MHC-I degradation. A systematic proteomic study using Plasma Membrane Profiling revealed US2 was unique in downregulating additional cellular targets, including: five distinct integrin α-chains, CD112, the interleukin-12 receptor, PTPRJ and thrombomodulin. US2 recruited the cellular E3 ligase TRC8 to direct the proteasomal degradation of all its targets, reminiscent of its degradation of MHC-I. Whereas integrin α-chains were selectively degraded, their integrin β1 binding partner accumulated in the ER. Consequently integrin signaling, cell adhesion and migration were strongly suppressed. US2 was necessary and sufficient for degradation of the majority of its substrates, but remarkably, the HCMV NK cell evasion function UL141 requisitioned US2 to enhance downregulation of the NK cell ligand CD112. UL141 retained CD112 in the ER from where US2 promoted its TRC8-dependent retrotranslocation and degradation. These findings redefine US2 as a multifunctional degradation hub which, through recruitment of the cellular E3 ligase TRC8, modulates diverse immune pathways involved in antigen presentation, NK cell activation, migration and coagulation; and highlight US2's impact on HCMV pathogenesis.

  18. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products.

    Science.gov (United States)

    Kassotaki, Elissavet; Buttiglieri, Gianluigi; Ferrando-Climent, Laura; Rodriguez-Roda, Ignasi; Pijuan, Maite

    2016-05-01

    The occurrence of the widely-used antibiotic sulfamethoxazole (SFX) in wastewaters and surface waters has been reported in a large number of studies. However, the results obtained up-to-date have pointed out disparities in its removal. This manuscript explores the enhanced biodegradation potential of an enriched culture of Ammonia Oxidizing Bacteria (AOB) towards SFX. Several sets of batch tests were conducted to establish a link between SFX degradation and specific ammonia oxidation rate. The occurrence, degradation and generation of SFX and some of its transformation products (4-Nitro SFX, Desamino-SFX and N(4)-Acetyl-SFX) was also monitored. A clear link between the degradation of SFX and the nitrification rate was found, resulting in an increased SFX removal at higher specific ammonia oxidation rates. Moreover, experiments conducted under the presence of allylthiourea (ATU) did not present any removal of SFX, suggesting a connection between the AMO enzyme and SFX degradation. Long term experiments (up to 10 weeks) were also conducted adding two different concentrations (10 and 100 μg/L) of SFX in the influent of a partial nitrification sequencing batch reactor, resulting in up to 98% removal. Finally, the formation of transformation products during SFX degradation represented up to 32%, being 4-Nitro-SFX the most abundant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fate of CL-20 in sandy soils: Degradation products as potential markers of natural attenuation

    International Nuclear Information System (INIS)

    Monteil-Rivera, Fanny; Halasz, Annamaria; Manno, Dominic; Kuperman, Roman G.; Thiboutot, Sonia; Ampleman, Guy; Hawari, Jalal

    2009-01-01

    Hexanitrohexaazaisowurtzitane (CL-20) is an emerging explosive that may replace the currently used explosives such as RDX and HMX, but little is known about its fate in soil. The present study was conducted to determine degradation products of CL-20 in two sandy soils under abiotic and biotic anaerobic conditions. Biotic degradation was prevalent in the slightly acidic VT soil, which contained a greater organic C content, while the slightly alkaline SAC soil favored hydrolysis. CL-20 degradation was accompanied by the formation of formate, glyoxal, nitrite, ammonium, and nitrous oxide. Biotic degradation of CL-20 occurred through the formation of its denitrohydrogenated derivative (m/z 393 Da) while hydrolysis occurred through the formation of a ring cleavage product (m/z 156 Da) that was tentatively identified as CH 2 =N-C(=N-NO 2 )-CH=N-CHO or its isomer N(NO 2 )=CH-CH=N-CO-CH=NH. Due to their chemical specificity, these two intermediates may be considered as markers of in situ attenuation of CL-20 in soil. - Two key intermediates of CL-20 degradation are potential markers of its natural attenuation in soil

  20. Synthesis of a catalytic reactor membrane for synthesis gas production; Elaboration d'une membrane de reacteur catalytique pour la production de gaz de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Juste, E.; Julian, A.; Chartier, T. [Limoges Univ., Lab. Science des Procedes Ceramiques et de Traitements de Surface (SPCTS, UMR 6638 CNRS), 87 (France); Juste, E.; Julian, A.; Del Gallo, P.; Richet, N. [Centre de Recherche Claude-Delorme, Air Liquide, 78 - Jouy en Josas (France)

    2007-07-01

    The conversion of natural gas to synthesis gas (mixture of H{sub 2} and CO) is a main challenge for the hydrogen and clean fuels production. Mixed (ionic O{sup 2-} and electronic) conducing ceramics membrane reactors seem particularly promising. The design considered for the membrane is a tri-layer system integrating a reforming catalyst and a dense membrane laying on a porous support. Among the materials considered for the dense membrane, perovskites La{sub 1-x}Sr{sub x}Fe{sub 1-y}Ga{sub y}O{sub 3-{delta}} seem to be interesting for their performances and stability. The oxygen flux through the membrane is measured in terms of temperature under different oxygen partial pressure gradients. In the industrial experimental conditions, the membrane is submitted to a strong oxygen (air/methane) partial pressure gradient of about 900 C which induces mechanical stresses, on account of the material expansion difference, in terms of p{sub O2}. In this framework, the evolutions of the performances and of the expansion coefficient have been followed in terms of the substitutions rates in La{sub (1-x)}Sr{sub x}Fe{sub (1-y)}Ga{sub y}O{sub 3-{delta}} with x{<=}0.5 and y{<=}0.5. (O.M.)

  1. PERVAPORATION MEMBRANE SYSTEMS FOR VOLATILE FERMENTATION PRODUCT RECOVERY AND DEHYDRATION

    Science.gov (United States)

    The economics of fermentative production of fuels and commodity chemicals can be a strong function of the efficiency with which the fermentation products are removed from the biological media. Due to growth inhibition by some fermentation products, including ethanol, concentrati...

  2. In-situ product removal from fermentations by membrane extraction: conceptual process design and economics

    NARCIS (Netherlands)

    Heerema, L.; Roelands, C.P.M.; Goetheer, E.L.V.; Verdoes, D.; Keurentjes, J.

    2011-01-01

    This paper describes a conceptual process design for the production of the model component phenol by a recombinant strain of the micro-organism Pseudomonas putida S12. The (bio)production of the inhibiting component phenol in a bioreactor is combined with direct product removal by membrane

  3. Effectiveness of commercial microbial products in enhancing oil degradation in Prince William Sound field plots

    International Nuclear Information System (INIS)

    Venosa, A.D.; Haines, J.R.; Allen, D.M.

    1991-01-01

    In the spring of 1990, previously reported laboratory experiments were conducted on 10 commercial microbial products to test for enhanced biodegradation of weathered crude oil from the Exxon Valdez oil spill. The laboratory tests measured the rate and extent of oil degradation in closed flasks. Weathered oil from the beaches in Alaska and seawater from Prince William Sound were used in the tests. Two of the 10 products were found to provide significantly greater alkane degradation than flasks supplemented with mineral nutrients alone. These two products were selected for further testing on a beach in Prince William Sound. A randomized complete block experiment was designed to compare the effectiveness of these two products in enhancing oil degradation compared to simple fertilizer alone. Four small plots consisting of a no nutrient control, a mineral nutrient plot, and two plots receiving mineral nutrients plus the two products, were laid out on a contaminated beach. These four plots comprised a 'block' of treatments, and this block was replicated four times on the same beach. Triplicate samples of beach sediment were collected at four equally spaced time intervals and analyzed for oil residue weight and alkane hydrocarbon profile changes with time. The objective was to determine if either of the two commercial microbiological products was able to enhance bioremediation of an oil-contaminated beach in Prince William Sound to an extent greater than that achievable by simple fertilizer application. Results indicated no significant differences among the four treatments in the 27-day period of the experiment

  4. Membrane extraction in preconcentration of some uranium fission products

    International Nuclear Information System (INIS)

    Macasek, F.; Rajec, P.; Kopunec, R.; Mikulaj, V.

    1984-01-01

    Theoretical comparison of the equilibria and kinetics of solvent extraction (SX) and emulsion liquid membrane extraction (MX) was performed using the distribution ratios at the outer inner boundaries of liquid membrane. Enhancement factors, pertraction factor (p) and mulitplication factor (N), were proposed to express efficiency of the MX technique. The extraction of cesium, strontium, cobalt(II), uranium(VI), cerium(III) and technetium(VII) was investigated from this point of view. The most perspective systems are those with chelating agents (e.g. di-2-ethylhexyl-phosporic acid and 8-hydroquinoline), especially at low concentrations (substioichiometric amounts), with which high enhancement factors can be achieved. The results with the ion-exchange systems (bis(1,2-dicarbollyl)-cobalt(III) and quaternary ammonium salts) may be interpreted as indicating some surface barriers which prevent the transport of ions. 20 references, 14 figures, 6 tables

  5. Study of the effect of the fibre mass UP2 degradation products on radionuclide mobilisation

    Energy Technology Data Exchange (ETDEWEB)

    Duro, Lara; Grive, Mireia; Gaona, Xavier; Bruno, Jordi [Amphos 21 Consulting S.L., Barcelona (Spain); Andersson, Thomas; Boren, Hans; Dario, Maarten [Linkoeping Univ., Linkoeping (Sweden); Allard, Bert; Hagberg, Jessica [Oerebro Univ., Oerebro (Sweden); Kaellstroem, Klas [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2012-09-15

    This report presents a literature review and laboratory work of the degradation of the fibre UP2, as well as an assessment of the effects of its degradation products on Europium sorption onto cement, as an example of their effects on radionuclide migration. All laboratory work was performed by the Swedish groups (Linkoeping and Oerebro Universities), who also performed some of the literature review. The data interpretation was performed by the Spanish team (Amphos 21). SKB has combined the reports of these studies into this common document and has added minor editorial changes. All these changes have been accepted by the authors.

  6. Identification of Forced Degradation Products of Itopride by LC-PDA and LC-MS

    OpenAIRE

    Joshi, Payal; Bhoir, Suvarna; Bhagwat, A. M.; Vishwanath, K.; Jadhav, R. K.

    2011-01-01

    Degradation products of itopride formed under different forced conditions have been identified using LC-PDA and LC-MS techniques. Itopride was subjected to forced degradation under the conditions of hydrolysis, photolysis, oxidation, dry and wet heat, in accordance with the International Conference on Harmonization. The stress solutions were chromatographed on reversed phase C18 (250×4.6 mm, 5 μm) column with a mobile phase methanol:water (55:45, v/v) at a detection wavelength of 215 nm. Itop...

  7. Study of the effect of the fibre mass UP2 degradation products on radionuclide mobilisation

    International Nuclear Information System (INIS)

    Duro, Lara; Grive, Mireia; Gaona, Xavier; Bruno, Jordi; Andersson, Thomas; Boren, Hans; Dario, Maarten; Allard, Bert; Hagberg, Jessica; Kaellstroem, Klas

    2012-09-01

    This report presents a literature review and laboratory work of the degradation of the fibre UP2, as well as an assessment of the effects of its degradation products on Europium sorption onto cement, as an example of their effects on radionuclide migration. All laboratory work was performed by the Swedish groups (Linkoeping and Oerebro Universities), who also performed some of the literature review. The data interpretation was performed by the Spanish team (Amphos 21). SKB has combined the reports of these studies into this common document and has added minor editorial changes. All these changes have been accepted by the authors

  8. Membrane treatment of alkaline bleaching effluents from elementary chlorine free kraft softwood cellulose production.

    Science.gov (United States)

    Oñate, Elizabeth; Rodríguez, Edgard; Bórquez, Rodrigo; Zaror, Claudio

    2015-01-01

    This paper reports experimental results on the sequential use of ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) to fractionate alkaline extraction bleaching effluents from kraft cellulose production. The aim was to unveil the way key pollutants are distributed when subjected to sequential UF/NF/RO membrane separation processes. Alkaline bleaching effluents were obtained from a local pinewood-based mill, featuring elementary chlorine free bleaching to produce high-brightness cellulose. The experimental system was based on a laboratory-scale membrane system, DSS LabStak® M20 Alfa Laval, using Alfa Laval UF and NF/RO membranes, operated at a constant transmembrane pressure (6 bar for UF membranes and 32 bar for NF/RO membranes), at 25°C. Results show that 78% chemical oxygen demand (COD) and total phenols, 82% adsorbable organic halogens (AOX) and 98% colour were retained by UF membranes which have molecular weight cut-off (MWCO) above 10 kDa. In all, 16% of original COD, total phenols and AOX, and the remaining 2% colour were retained by UF membranes within the 1 to 10 kDa MWCO range. Chloride ions were significantly present in all UF permeates, and RO was required to obtain a high-quality permeate with a view to water reuse. It is concluded that UF/NF/RO membranes offer a feasible option for water and chemicals recovery from alkaline bleaching effluents in kraft pulp production.

  9. Forced degradation studies of lansoprazole using LC-ESI HRMS and 1 H-NMR experiments: in vitro toxicity evaluation of major degradation products.

    Science.gov (United States)

    Shankar, G; Borkar, R M; Suresh, U; Guntuku, L; Naidu, V G M; Nagesh, N; Srinivas, R

    2017-07-01

    Regulatory agencies from all over the world have set up stringent guidelines with regard to drug degradation products due to their toxic effects or carcinogenicity. Lansoprazole, a proton-pump inhibitor, was subjected to forced degradation studies as per ICH guidelines Q1A (R2). The drug was found to degrade under acidic, basic, neutral hydrolysis and oxidative stress conditions, whereas it was found to be stable under thermal and photolytic conditions. The chromatographic separation of the drug and its degradation products were achieved on a Hiber Purospher, C18 (250 × 4.6 mm, 5 μ) column using 10 mM ammonium acetate and acetonitrile as a mobile phase in a gradient elution mode at a flow rate of 1.0 ml/min. The eight degradation products (DP1-8) were identified and characterized by UPLC/ESI/HRMS with in-source CID experiments combined with accurate mass measurements. DP-1, DP-2 and DP-3 were formed in acidic, DP-4 in basic, DP-5 in neutral and DP-1, DP-6, DP-7 and DP-8 were in oxidation stress condition Among eight degradation products, five were hitherto unknown degradation products. In addition, one of the major degradation products, DP-2, was isolated by using semi preparative HPLC and other two, DP-6 and DP-7 were synthesized. The cytotoxic effect of these degradation products (DP-2, DP-6 and DP-7) were tested on normal human cells such as HEK 293 (embryonic kidney cells) and RWPE-1(normal prostate epithelial cells) by MTT assay. From the results of cytotoxicity, it was found that lansoprazole as well as its degradation products (DP-2, DP-6 and DP-7) were nontoxic up to 50-μM concentrations, and the latter showed slightly higher cytotoxicity when compared with that of lansoprazole. DNA binding studies using spectroscopic techniques indicate that DP-2, DP-6 and DP-7 molecules interact with ctDNA and may bind to its surface. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Development of a mixed-conductive ceramic membrane for syngas production

    International Nuclear Information System (INIS)

    Etchegoyen, G.

    2005-10-01

    Natural gas conversion into syngas (H 2 +CO) is very attractive for hydrogen and clean fuel production via GTL technology by providing an alternative to oil products and reducing greenhouse gas emission. Syngas production, using a mixed ionic-electronic conducting ceramic membrane, is thought to be particularly promising. The purpose of this PhD thesis was to develop this type of membrane. Mixed-conducting oxide was synthesized, characterized and then, shaped via tape casting and co-sintered in order to obtain multilayer membranes with controlled architectures and microstructures. Oxygen permeation fluxes were measured with a specific device to evaluate membrane performances. As a result, the optimisation of architecture and microstructure made it possible to increase oxygen permeation flux by a factor 30. Additional researches were focused on the oxide composition in order to achieve higher dimensional stability. (author)

  11. Chemical and photochemical degradation of chlorantraniliprole and characterization of its transformation products.

    Science.gov (United States)

    Lavtižar, Vesna; van Gestel, Cornelis A M; Dolenc, Darko; Trebše, Polonca

    2014-01-01

    This study aimed at assessing the photodegradation of the insecticide chlorantraniliprole (CAP) in deionized water and in tap water amended with humic acids and nitrate. Photolysis was carried out under simulated solar or UV-A light. CAP (39 μM) photodegradation was slightly faster in tap water than in deionized water with half lives of 4.1 and 5.1 days, respectively. Photodegradation rate of CAP was hardly affected by humic acids (up to 100 mg L(-1)) and nitrate. Photodegradation pattern was different in slightly acidic (pH=6.1) deionized water compared to basic (pH=8.0) tap water. Four main degradation products have been isolated and characterized spectroscopically, and crystal structure was recorded for the first two photodegradation products. CAP also degraded in the dark controls, but only at basic pH (23% loss at pH 8.0 in tap water after 6 days), resulting in the formation of one single degradation product. Our study shows that the degradation of chlorantraniliprole in water is a combination of chemical and photochemical reactions, which are highly dependent on the pH of the solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The degradation of lining of rotary furnaces in the production of zinc oxide

    Directory of Open Access Journals (Sweden)

    Natália Luptáková

    2014-06-01

    Full Text Available This paper is closely connected with the complex problem of degradation relating to the refractories of rotary furnace linings in the production of zinc oxide. Zinc oxide can be produced by variety of ways, but the most common method of production which is used in Europe is indirect, i.e. pyrolytic combustion of zinc. This method is also called "French process" of manufacturing ZnO. But this mentioned method of preparation leads to the creation of the enormous amount of zinc slag including chemical complexes of elements Fe, Zn and Al. The mechanism of degradation of the lining leads to slag rests and it is closely connected with the mutual interaction of the aggressive agents with the components of the lining. This process creates a new undesired surface layer which increased the overall thickness of zinc slag. Stuck slag has the influence on rapid degradation of the linings and moreover it also decreases the production quality of ZnO. Analysis results introduced in this paper are significant information for minimizing of degradation of rotary furnaces.  

  13. Novel chromatographic separation and carbon solid-phase extraction of acetanilide herbicide degradation products.

    Science.gov (United States)

    Shoemaker, Jody A

    2002-01-01

    One acetamide and 5 acetanilide herbicides are currently registered for use in the United States. Over the past several years, ethanesulfonic acid (ESA) and oxanilic acid (OA) degradation products of these acetanilide/acetamide herbicides have been found in U.S. ground waters and surface waters. Alachlor ESA and other acetanilide degradation products are listed on the U.S. Environmental Protection Agency's (EPA) 1998 Drinking Water Contaminant Candidate List. Consequently, EPA is interested in obtaining national occurrence data for these contaminants in drinking water. EPA currently does not have a method for determining these acetanilide degradation products in drinking water; therefore, a research method is being developed using liquid chromatography/negative ion electrospray/mass spectrometry with solid-phase extraction (SPE). A novel chromatographic separation of the acetochlor/alachlor ESA and OA structural isomers was developed which uses an ammonium acetate-methanol gradient combined with heating the analytical column to 70 degrees C. Twelve acetanilide degradates were extracted by SPE from 100 mL water samples using carbon cartridges with mean recoveries >90% and relative standard deviations < or =16%.

  14. A validated stability-indicating RP-HPLC method for levofloxacin in the presence of degradation products, its process related impurities and identification of oxidative degradant.

    Science.gov (United States)

    Lalitha Devi, M; Chandrasekhar, K B

    2009-12-05

    The objective of current study was to develop a validated specific stability indicating reversed-phase liquid chromatographic method for the quantitative determination of levofloxacin as well as its related substances determination in bulk samples, pharmaceutical dosage forms in the presence of degradation products and its process related impurities. Forced degradation studies were performed on bulk sample of levofloxacin as per ICH prescribed stress conditions using acid, base, oxidative, water hydrolysis, thermal stress and photolytic degradation to show the stability indicating power of the method. Significant degradation was observed during oxidative stress and the degradation product formed was identified by LCMS/MS, slight degradation in acidic stress and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from forced degradation studies and the impurity spiked solution. Good resolution between the peaks corresponds to process related impurities and degradation products from the analyte were achieved on ACE C18 column using the mobile phase consists a mixture of 0.5% (v/v) triethyl amine in sodium dihydrogen orthophosphate dihydrate (25 mM; pH 6.0) and methanol using a simple linear gradient. The detection was carried out at 294 nm. The limit of detection and the limit of quantitation for the levofloxacin and its process related impurities were established. The stressed test solutions were assayed against the qualified working standard of levofloxacin and the mass balance in each case was in between 99.4 and 99.8% indicating that the developed LC method was stability indicating. Validation of the developed LC method was carried out as per ICH requirements. The developed LC method was found to be suitable to check the quality of bulk samples of levofloxacin at the time of batch release and also during its stability studies (long term and accelerated stability).

  15. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  16. Phytase production by Aspergillus niger NCIM 563 for a novel application to degrade organophosphorus pesticides.

    Science.gov (United States)

    Shah, Parin C; Kumar, V Ravi; Dastager, Syed G; Khire, Jayant M

    2017-12-01

    The production of phytase using Aspergillus niger NCIM 563 under submerged fermentation conditions was studied using protein rich chickpea flour as substrate. Employing a hybrid statistical media optimization strategy of Plackett-Burman and Box-Behnken experimental designs in shake-flasks gave an increased phytase activity from an initial 66 IU/mL in 216 h to 160 IU/mL in a reduced time of 132 h. Productivity, thus increased by 3.97 times from 7.3 to 29 IU/mL/day. Using the optimized media, the production was successfully scaled-up further and improved up to 164 IU/mL in 96 h by studies carried out employing 2 and 10-L fermenters. The enzyme supernatant was recovered using centrifugal separation of biomass and the stability of the produced phytase was tested for animal feed applications under gastric conditions. In vitro degradation studies of water soluble monocrotophos, methyl parathion and water insoluble chlorpyrifos, pesticides used extensively in agriculture was carried out. It was observed by HPLC analysis that phytase could degrade 72% of chlorpyrifos at pH 7.0, 35 °C. Comparable results were obtained with monocrotophos and methyl parathion. With chlorpyrifos at higher temperature 50 °C as much as 91% degradation could be obtained. The degradation of chlorpyrifos was further validated by spraying phytase on harvested green chilli (Capsicum annuum L) under normal conditions of pH 7.0, 35 °C and the degradation products obtained analyzed by LCMS. Thus, the present study brings out a potentially novel application of phytase for biodegradation of organophosphorus pesticides.

  17. Degradation product characterization of therapeutic oligonucleotides using liquid chromatography mass spectrometry.

    Science.gov (United States)

    Elzahar, N M; Magdy, N; El-Kosasy, Amira M; Bartlett, Michael G

    2018-05-01

    Synthetic antisense phosphorothioate oligonucleotides (PS) have undergone rapid development as novel therapeutic agents. The increasing significance of this class of drugs requires significant investment in the development of quality control methods. The determination of the many degradation pathways of such complex molecules presents a significant challenge. However, an understanding of the potential impurities that may arise is necessary to continue to advance these powerful new therapeutics. In this study, four different antisense oligonucleotides representing several generations of oligonucleotide therapeutic agents were evaluated under various stress conditions (pH, thermal, and oxidative stress) using ion-pairing reversed-phase liquid chromatography tandem mass spectrometry (IP-RPLC-MS/MS) to provide in-depth characterization and identification of the degradation products. The oligonucleotide samples were stressed under different pH values at 45 and 90 °C. The main degradation products were observed to be losses of nucleotide moieties from the 3'- and 5'-terminus, depurination, formation of terminal phosphorothioates, and production of ribose, ribophosphorothioates (Rp), and phosphoribophosphorothioates (pRp). Moreover, the effects of different concentrations of hydrogen peroxide were studied resulting in primarily extensive desulfurization and subsequent oxidation of the phosphorothioate linkage to produce the corresponding phosphodiester. The reaction kinetics for the degradation of the oligonucleotides under the different stress conditions were studied and were found to follow pseudo-first-order kinetics. Differences in rates exist even for oligonucleotides of similar length but consisting of different sequences. Graphical abstract Identification of degradation products across several generations of oligonucleotide therapeutics using LC-MS.

  18. Rates and products of degradation for MTBE and other oxygenate fuel additives in the subsurface environment

    International Nuclear Information System (INIS)

    Tratnyek, P.G.; Church, C.D.; Pankow, J.F.

    1995-01-01

    The recent realization that oxygenated fuel additives such as MTBE are becoming widely distributed groundwater contaminants has created a sudden and pressing demand for data on the processes that control their environmental fate. Explaining and predicting the subsequent environmental fate of these compounds is going to require extrapolations over long time frames that will be very sensitive to the quality of input data on each compound. To provide such data, they have initiated a systematic study of the pathways and kinetics of fuel oxygenate degradation under subsurface conditions. Batch experiments in simplified model systems are being performed to isolate specific processes that may contribute to MTBE degradation. A variety of degradation pathways can be envisioned that lead to t-butyl alcohol (TBA) as the primary or secondary product. However, experiments to date with a facultative iron reducing bacteria showed no evidence for TBA formation. Continuing experiments include mixed cultures from a range of aquifer materials representative of NAWQA study sites

  19. Time extrapolation of radiolytic degradation product kinetics: the case of polyurethane

    International Nuclear Information System (INIS)

    Dannoux, A.

    2007-02-01

    The prediction of the environmental impact of organic materials in nuclear waste geological storage needs knowledge of radiolytic degradation mechanisms and kinetics in aerobic and anaerobic conditions. In this framework, the effect of high doses (> MGy) and the variation of dose rate have to be considered. The material studied is a polyurethane composed of polyether soft segment and aromatic hard segments. Mechanisms were built on the analysis of material submitted to irradiations of simulation (high energy electrons and gamma radiation) by FTIR spectroscopy and gaseous and liquid degradation products by gas mass spectrometry and size exclusion chromatography. The electron paramagnetic resonance study of radical process and the determination of oxygen consumption and gas formation radiolytic yields allowed us to acquire kinetic data and to estimate dose rate and high doses effects. The polyurethane radio-oxidation mainly concerns soft segments and induced cross-linkings and production by scissions of oxidised compounds (esters, alcohols, carboxylic acids). The kinetic of radical termination is rapid and the dose rate effect is limited. After 10 MGy, branching and scission reactions are in equilibrium and low molecular weight products accumulate. At last, the degradation products release in water is influenced by the oxidation rate and the temperature. After 10 MGy, the soluble fraction is stabilised at 25%. The water soluble products identified by electro-spray ionisation mass spectrometry (alcohols, aldehydes, carboxylic acids) potentially formed complexes with radionuclides. (author)

  20. Sulfamethoxazole in poultry wastewater: Identification, treatability and degradation pathway determination in a membrane-photocatalytic slurry reactor.

    Science.gov (United States)

    Asha, Raju C; Kumar, Mathava

    2015-01-01

    The presence of sulfamethoxazole (SMX) in a real-time poultry wastewater was identified via HPLC analysis. Subsequently, SMX removal from the poultry wastewater was investigated using a continuous-mode membrane-photocatalytic slurry reactor (MPSR). The real-time poultry wastewater was found to have an SMX concentration of 0-2.3 mg L(-1). A granular activated carbon supported TiO2 (GAC-TiO2) was synthesized, characterized and used in MPSR experiments. The optimal MPSR condition, i.e., HRT ∼ 125 min and catalyst dosage 529.3 mg L(-1), for complete SMX removal was found out using unconstrained optimization technique. Under the optimized condition, the effect of SMX concentration on MPSR performance was investigated by synthetic addition of SMX (i.e., 1, 25, 50, 75 and 100 mg L(-1)) into the wastewater. Interestingly, complete removals of total volatile solids (TVS), biochemical oxygen demand (BOD) and SMX were observed under all SMX concentrations investigated. However, a decline in SMX removal rate and proportionate increase in transmembrane-pressure (TMP) were observed when the SMX concentration was increased to higher levels. In the MPSR, the SMX mineralization was through one of the following degradation pathways: (i) fragmentation of the isoxazole ring and (ii) the elimination of methyl and amide moieties followed by the formation of phenyl sulfinate ion. These results show that the continuous-mode MPSR has great potential in the removal for SMX contaminated real-time poultry wastewater and similar organic micropollutants from wastewater.

  1. Histological Evaluation of Degradable Guided Bone Regeneration Membranes Prepared from Poly(trimethylene carbonate) and Biphasic Calcium Phosphate Composites

    NARCIS (Netherlands)

    Zeng, Ni; van Leeuwen, Anne; Bos, Ruud R.M.; Grijpma, Dirk W.; Kuijer, Roel

    2013-01-01

    In oral and maxillofacial surgery, guided bone regeneration using barrier membranes is an important strategy to treat bone defects. The currently used barrier membranes have important disadvantages. Barrier membranes prepared from resorbable poly(trimethylene carbonate) (PTMC) performed as well as

  2. Histological evaluation of degradable guided bone regeneration membranes prepared from poly(trimethylene carbonate) and biphasic calcium phosphate composites

    NARCIS (Netherlands)

    Zeng, Ni; van Leeuwen, Anne; Bos, Ruud R.M.; Grijpma, Dirk W.; Kuijer, Roel

    2013-01-01

    In oral and maxillofacial surgery, guided bone regeneration using barrier membranes is an important strategy to treat bone defects. The currently used barrier membranes have important disadvantages. Barrier membranes prepared from resorbable poly(trimethylene carbonate) (PTMC) performed as well as

  3. Anaerobic membrane bioreactors and the influence of space velocity and biomass concentration on methane production for liquid dairy manure

    International Nuclear Information System (INIS)

    Wallace, James M.; Safferman, Steven I.

    2014-01-01

    Two pilot-scale anaerobic membrane bioreactors (AnMBRs) and a control completely mixed digester (CMD) were constructed to evaluate the influence of space velocity and biomass concentration on methane production for sand separated dairy manure. A negative impact on methane production resulted with operating the AnMBR system at 972 μHz–2960 μHz but no impact was found when operating at 69 μHz and 312 μHz. Operating at 69 μHz–350 μHz is realistic for a field installation. Despite the higher biomass concentration, the methane production of the AnMBRs was nearly equal to the CMD. An AnMBR with 69 μHz was operated equivalent to a CMD by returning all permeate to the digester tank and removing excess biomass directly from the reactor tank resulting in a hydraulic retention time (HRT) equal to the solids retention time (SRT). When using sand separated dairy manure and an HRT (and equal SRT) of 12 d, both systems produced methane at an equal rate, suggesting that the pump/membrane system did not influence methane production. The most likely reason was mass transfer limitations of hydrolytic enzymes. Based on methane production and volatile fatty acids analysis, it appears the fermentable substrate available for degradation was similar. The AnMBR proved to have benefit as part of an integrated nutrient management system that produced water that is virtually free of particulate nutrients, especially phosphorus. This enables the irrigation of the water to crops that need nitrogen and the efficient movement of phosphorus, as a solid, to needed locations. - Highlights: • Manure AnMBRs with a high space velocity inhibit methane production. • Manure AnMBRs with a low space velocity perform similar to conventional digesters. • Decoupled HRT and SRT in manure AnMBRs do not increase methane production. • Ultrafiltration membranes effectively partitioned manure nutrients from the liquid. • Manure does not foul ultrafiltration membranes and require mild

  4. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    Science.gov (United States)

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  5. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    Directory of Open Access Journals (Sweden)

    Simon P Rout

    Full Text Available The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP including α and β forms of isosaccharinic acid (ISA and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118 in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2 hr(-1 (SE ± 2.9 × 10(-3. These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  6. The tissue-specific Rep8/UBXD6 tethers p97 to the endoplasmic reticulum membrane for degradation of misfolded proteins

    DEFF Research Database (Denmark)

    Madsen, Louise; Kriegenburg, Franziska; Lages Lino Vala, Andrea

    2011-01-01

    is a transmembrane protein that localizes to the ER membrane with its UBX domain facing the cytoplasm. Knock-down of Rep8 expression in human cells leads to a decreased association of p97 with the ER membrane and concomitantly a retarded degradation of misfolded ER-derived proteasome substrates. Thus, Rep8 tethers p......The protein known as p97 or VCP in mammals and Cdc48 in yeast is a versatile ATPase complex involved in several biological functions including membrane fusion, protein folding, and activation of membrane-bound transcription factors. In addition, p97 plays a central role in degradation of misfolded...... protein named Rep8 or Ubxd6 as a new cofactor of p97. Mouse Rep8 is highly tissue-specific and abundant in gonads. In testes, Rep8 is expressed in post-meiotic round spermatids, whereas in ovaries Rep8 is expressed in granulosa cells. Rep8 associates directly with p97 via its UBX domain. We show that Rep8...

  7. Method for determination of methyl tert-butyl ether and its degradation products in water

    Science.gov (United States)

    Church, C.D.; Isabelle, L.M.; Pankow, J.F.; Rose, D.L.; Tratnyek, P.G.

    1997-01-01

    An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method can also give simultaneous identification of polar compounds that might occur as degradation products of gasoline oxygenates, such as TBA, TBF, TAA, methyl acetate, and acetone. When the method was applied to effluent from a column microcosm prepared with core material from an urban site in New Jersey, conversion of MTBE to TBA was observed after a lag period of 35 days. However, to date, analyses of water samples from six field sites using the DAI-GC/MS method have not produced evidence for the expected products of in situ degradation of MTBE.An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method

  8. Rapid establishment of phenol- and quinoline-degrading consortia driven by the scoured cake layer in an anaerobic baffled ceramic membrane bioreactor.

    Science.gov (United States)

    Wang, Wei; Wang, Shun; Ren, Xuesong; Hu, Zhenhu; Yuan, Shoujun

    2017-11-01

    Although toxic and refractory organics, such as phenol and quinoline, are decomposed by anaerobic bacteria, the establishment of specific degrading consortia is a relatively slow process. An anaerobic membrane bioreactor allows for complete biomass retention that can aid the establishment of phenol- and quinoline-degrading consortia. In this study, the anaerobic digestion of phenol (500 mg L -1 ) and quinoline (50 mg L -1 ) was investigated using an anaerobic baffled ceramic membrane bioreactor (ABCMBR). The results showed that, within 30 days, 99% of phenol, 98% of quinoline and 88% of chemical oxygen demand (COD) were removed. The substrate utilisation rates of the cake layer for phenol and quinoline, and specific methanogenic activity of the cake layer, were 7.58 mg phenol g -1  mixed liquor volatile suspended solids (MLVSS) day -1 , 8.23 mg quinoline g -1  MLVSS day -1 and 0.55 g COD CH4  g -1  MLVSS day -1 , respectively. The contribution of the cake layer to the removals of phenol and quinoline was extremely underestimated because the uncounted scoured cake layer was disregarded. Syntrophus was the key population for phenol and quinoline degradation, and it was more abundant in the cake layer than in the bulk sludge. The highly active scattered cake layer sped up the establishment of phenol- and quinoline-degrading consortia in the ABCMBR.

  9. Large-scale bioreactor production of the herbicide-degrading Aminobacter sp. strain MSH1

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Knudsen, Berith Elkær; Frkova, Zuzana

    2014-01-01

    The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon and with ......The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon...... and with an element composition similar to the strain was generated. The optimal pH and temperature for strain growth were determined using shaker flasks and verified in bioreactors. Glucose, fructose, and glycerol were suitable carbon sources for MSH1 (μ =0.1 h−1); slower growth was observed on succinate and acetic...... acid (μ =0.01 h−1). Standard conditions for growth of theMSH1 strain were defined at pH 7 and 25 °C, with glucose as the carbon source. In bioreactors (1 and 5 L), the specific growth rate of MSH1 increased from μ =0.1 h−1 on traditional mineral salt medium to μ =0.18 h−1 on the optimized mineral salt...

  10. Characterization of stress degradation products of benazepril by using sophisticated hyphenated techniques.

    Science.gov (United States)

    Narayanam, Mallikarjun; Sahu, Archana; Singh, Saranjit

    2013-01-04

    Benazepril, an anti-hypertensive drug, was subjected to forced degradation studies. The drug was unstable under hydrolytic conditions, yielding benazeprilat, which is a known major degradation product (DP) and an active metabolite. It also underwent photochemical degradation in acid and neutral pH conditions, resulting in multiple minor DPs. The products were separated on a reversed phase (C18) column in a gradient mode, and subjected to LC-MS and LC-NMR studies. Initially, comprehensive mass fragmentation pathway of the drug was established through support of high resolution mass spectrometric (HR-MS) and multi stage tandem mass spectrometric (MS(n)) data. The DPs were also subjected to LC-MS/TOF studies to obtain their accurate masses. Along with, on-line H/D exchange data were obtained to ascertain the number of exchangeable hydrogens in each molecule. LC-(1)H NMR and LC-2DNMR data were additionally acquired in a fraction loop mode. The whole information was successfully employed for the characterization of all the DPs. A complete degradation pathway of the drug was also established. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Isolation and characterization of the E. coli membrane protein production strain Mutant56(DE3)

    DEFF Research Database (Denmark)

    Baumgarten, Thomas; Schlegel, Susan; Wagner, Samuel

    2017-01-01

    Membrane protein production is usually toxic to E. coli. However, using genetic screens strains can be isolated in which the toxicity of membrane protein production is reduced, thereby improving production yields. Best known examples are the C41(DE3) and C43(DE3) strains, which are both derived...... from the T7 RNA polymerase (P)-based BL21(DE3) protein production strain. In C41(DE3) and C43(DE3) mutations lowering t7rnap expression levels result in strongly reduced T7 RNAP accumulation levels. As a consequence membrane protein production stress is alleviated in the C41(DE3) and C43(DE3) strains......, thereby increasing membrane protein yields. Here, we isolated Mutant56(DE3) from BL21(DE3) using a genetic screen designed to isolate BL21(DE3)-derived strains with mutations alleviating membrane protein production stress other than the ones in C41(DE3) and C43(DE3). The defining mutation of Mutant56(DE3...

  12. High yield cell-free production of integral membrane proteins without refolding or detergents.

    Science.gov (United States)

    Wuu, Jessica J; Swartz, James R

    2008-05-01

    Integral membrane proteins act as critical cellular components and are important drug targets. However, difficulties in producing membrane proteins have hampered investigations of structure and function. In vivo production systems are often limited by cell toxicity, and previous in vitro approaches have required unnatural folding pathways using detergents or lipid solutions. To overcome these limitations, we present an improved cell-free expression system which produces high yields of integral membrane proteins without the use of detergents or refolding steps. Our cell-free reaction activates an Escherichia coli-derived cell extract for transcription and translation. Purified E. coli inner membrane vesicles supply membrane-bound components and the lipid environment required for insertion and folding. Using this system, we demonstrated successful synthesis of two complex integral membrane transporters, the tetracycline pump (TetA) and mannitol permease (MtlA), in yields of 570+/-50 microg/mL and 130+/-30 microg/mL of vesicle-associated protein, respectively. These yields are up to 400 times typical in vivo concentrations. Insertion and folding of these proteins are verified by sucrose flotation, protease digestion, and activity assays. Whereas TetA incorporates efficiently into vesicle membranes with over two-thirds of the synthesized protein being inserted, MtlA yields appear to be limited by insufficient concentrations of a membrane-associated chaperone.

  13. Membrane reforming in converting natural gas to hydrogen: Production costs, Part II

    Energy Technology Data Exchange (ETDEWEB)

    Iaquaniello, G; Cosenza, S [Technip-KTI S.p.A., via Castello della Magliana 75, Rome (Italy); Giacobbe, F; Morico, B; Farace, A [Processi Innovativi s.r.l., L' Aquila (Italy)

    2008-11-15

    This paper evaluates the production costs of a hybrid system based on a new membrane reforming MRR concept to convert natural gas to hydrogen and electricity. Membrane reforming with hydrogen-selective, palladium-silver membranes pushes the chemical equilibrium and allows higher methane conversions at lower temperature such as 650 C. The new MRR concept formed of a series of modules is put forward herein. Each module is made up of a reforming step and an external membrane separation unit. The estimates, based on utilities costs of a typical Italian refinery (end of 2006), show that the production costs for the hybrid system are 30% less than conventional tubular steam reforming technology, and 13% less than a gas-fired cogeneration plant coupled with a conventional H{sub 2} plant. (author)

  14. Membrane steam reforming of natural gas for hydrogen production by utilization of medium temperature nuclear reactor

    International Nuclear Information System (INIS)

    Djati Hoesen Salimy

    2010-01-01

    The assessment of steam reforming process with membrane reactor for hydrogen production by utilizing of medium temperature nuclear reactor has been carried out. Difference with the conventional process of natural gas steam reforming that operates at high temperature (800-1000°C), the process with membrane reactor operates at lower temperature (~500°C). This condition is possible because the use of perm-selective membrane that separate product simultaneously in reactor, drive the optimum conversion at the lower temperature. Besides that, membrane reactor also acts the role of separation unit, so the plant will be more compact. From the point of nuclear heat utilization, the low temperature of process opens the chance of medium temperature nuclear reactor utilization as heat source. Couple the medium temperature nuclear reactor with the process give the advantage from the point of saving fossil fuel that give direct implication of decreasing green house gas emission. (author)

  15. Analysis of Gas Separated for Silica Membrane in Hydrogen Gas Production by Using Nuclear Reactor Thermal

    International Nuclear Information System (INIS)

    Pandiangan, Tumpal

    2007-01-01

    One of the hydrogen production method that have been developed is a thermo-chemical method. This method is permissible to increase thermal efficiency up to 70 % and to decrease of operational temperature from 800℃ down to 450 ℃. One of several factor that can increase of the hydrogen production thermal efficiency at the above method is to apply a separated membrane that have a relative good for permeansce and selectivity performance. It had been carried out for analyzing of time and temperature CVD (Chemical Vapouration Deposition) that is affected to permeansce and power selecting performance of the membrane. The layering membrane silica process was carried out by means of the CVD method at atmosphere pressure. The membrane silica layering that was observed was developed by a CVD method in atmospheric pressure. The silica membrane was formed at the out side surface of the alumina gamma cylinder that had been coated by alumina gamma which it has average porosity about of 0.01 mic.meter. A permeansce and separation power performance of the membrane silica that was carried out by means of CVD method at 600 ℃ on H 2 , He and N 2 are : 2 x 10 -10 , 9 x 10 -9 and 4 x 10 -7 mol Pa/m 2 s and the selected power of H 2 /N 2 = 45. The permeansce of that membrane is relative good but the selected power is relative not so good. (author)

  16. Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

    2011-03-14

    The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

  17. Characterization of degradation products from alkaline wet oxidation of wheat straw

    DEFF Research Database (Denmark)

    Klinke, H.B.; Ahring, B.K.; Schmidt, A.S.

    2002-01-01

    to their chemical structure, e.g. diacids (oxalic and succinic acids), furan aldehydes, phenol aldehydes, phenol ketones and phenol acids. Aromatic aldehyde formation was correlated to severe conditions with high temperatures and low pH. Apart from CO2 and water, carboxylic acids were the main degradation products...... degreesC with addition of 12 bar oxygen and 6.5 g l(-1) Na2CO3. At these conditions the hemicellulose fraction from 100 g straw consisted of soluble hemicellulose (16 g), low molecular weight carboxylic acids (11 g), monomeric phenols (0.48 g) and 2-furoic acid (0.01 g). Formic acid and acetic acid...... constituted the majority of degradation products (8.5 g). The main phenol monomers were 4-hydroxybenzaldehyde, vanillin, syringaldehyde, acetosyringone (4-hydroxy-3,5-dimethoxy-acetophenone), vanillic acid and syringic acid, occurring in 0.04-0.12 g per 100 g straw concentrations. High lignin removal from...

  18. Extracellular membrane vesicles in blood products-biology and clinical relevance

    Directory of Open Access Journals (Sweden)

    Emilija Krstova Krajnc

    2016-01-01

    Full Text Available Extracellular membrane vesicles are fragments shed from plasma membranes off all cell types that are undergoing apoptosis or are being subjected to various types of stimulation or stress.  Even in the process of programmed cell death (apoptosis, cell fall apart of varying size vesicles. They expose phosphatidylserine (PS on the outer leaflet of their membrane, and bear surface membrane antigens reflecting their cellular origin. Extracellular membrane vesicles have been isolated from many types of biological fluids, including serum, cerebrospinal fluid, urine, saliva, tears and conditioned culture medium. Flow cytometry is one of the many different methodological approaches that have been used to analyze EMVs. The method attempts to characterize the EMVs cellular origin, size, population, number, and structure. EMVs are present and accumulate in blood products (erythrocytes, platelets as well as in fresh frozen plasma during storage. The aim of this review is to highlight the importance of extracellular vesicles as a cell-to-cell communication system and the role in the pathogenesis of different diseases. Special emphasis will be given to the implication of extracellular membrane vesicles in blood products and their clinical relevance. Although our understanding of the role of  EMVs in disease is far from comprehensive, they display promise as biomarkers for different diseases in the future and also as a marker of quality and safety in the quality control of blood products.

  19. Pressure retarded osmosis for energy production: membrane materials and operating conditions.

    Science.gov (United States)

    Kim, H; Choi, J-S; Lee, S

    2012-01-01

    Pressure retarded osmosis (PRO) is a novel membrane process to produce energy. PRO has the potential to convert the osmotic pressure difference between fresh water (i.e. river water) and seawater to electricity. Moreover, it can recover energy from highly concentrated brine in seawater desalination. Nevertheless, relatively little research has been undertaken for fundamental understanding of the PRO process. In this study, the characteristics of the PRO process were examined using a proof-of-concept device. Forward osmosis (FO), reverse osmosis (RO), and nanofiltration (NF) membranes were compared in terms of flux rate and concentration polarization ratio. The results indicated that the theoretical energy production by PRO depends on the membrane type as well as operating conditions (i.e. back pressure). The FO membrane had the highest energy efficiency while the NF membrane had the lowest efficiency. However, the energy production rate was low due to high internal concentration polarization (ICP) in the PRO membrane. This finding suggests that the control of the ICP is essential for practical application of PRO for energy production.

  20. PRODUCTION AND RECOVERY OF POLY-Β-HYDROXYBUTYRATE FROM WHEY DEGRADATION BY AZOTOBACTER

    Directory of Open Access Journals (Sweden)

    A. Khanafari , A. Akhavan Sepahei, M. Mogharab

    2006-07-01

    Full Text Available Three strains of Azotobacter chroococcum were studied to produce poly-β hydroxybutyrate as a inclusion body by whey degradation. Optimum degradation whey results were obtained when using whey broth as a fermentation medium without extra salt, temperature at 35 °C and pH 7 (P<0.05. Lambda max for whey broth medium was determined probably about 400 nm. The effect of different nitrogenous rich compounds (NH4NO3, Bactopeptone, Casein, Yeast extract, Meat extract, Protease peptone and Tryptone on whey degradation showed that incorporation of nitrogenous compounds into the medium did not increase whey degradation by Azotobacter chroococcum 1723 (P<0.05. But poly-β hydroxyl-butyrate production was increased in presence Meat extract up to 75% of the cell dry weight after 48h. The addition of nitrogenous sourced (except ammonium nitrate had a positive effect on poly-β hydroxyl-butyrate production as it peaked in the presence of Meat extract and 4.43 g/L was accumulated in comparison to 0.5g at diazotrophically growing cells. Increasing the O2 values resulted by shaking at 122 rpm in decreased poly-β hydroxyl-butyrate yield form 4.43 to 0.04 g/L. The results show that this medium supports the growth of strain 1735 and also that this waste could be utilized as a carbon and nitrogen source. Production of poly-β hydroxyl-butyrate by using whey as a medium looks promising, since the use of inexpensive feed-stocks for poly-β hydroxyl-butyrate is essential if bioplastics are to become competitive products.

  1. Hydrogen and Carbon Black Production from the Degradation of Methane by Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Leila Cottet

    2014-05-01

    Full Text Available Methane gas (CH4 is the main inducer of the so called greenhouse gases effect. Recent scientific research aims to minimize the accumulation of this gas in the atmosphere and to develop processes capable of producing stable materials with added value. Thermal plasma technology is a promising alternative to these applications, since it allows obtaining H2 and solid carbon from CH4, without the parallel formation of byproducts such as CO2 and NOx. In this work, CH4 was degraded by thermal plasma in order to produce hydrogen (H2 and carbon black. The degradation efficiency of CH4, selectivity for H2 production as well as the characterization of carbon black were studied. The best results were obtained in the CH4 flow rate of 5 L min-1 the degradation percentage and the selectivity for H2 production reached 98.8 % and 48.4 %, respectively. At flow rates of less than 5 L min-1 the selectivity for H2 production increases and reaches 91.9 %. The carbon black has obtained amorphous with hydrophobic characteristics and can be marketed to be used in composite material, and can also be activated chemically and/or physically and used as adsorbent material.

  2. Environmental degradation, global food production, and risk for large-scale migrations

    International Nuclear Information System (INIS)

    Doeoes, B.R.

    1994-01-01

    This paper attempts to estimate to what extent global food production is affected by the ongoing environmental degradation through processes, such as soil erosion, salinization, chemical contamination, ultraviolet radiation, and biotic stress. Estimates have also been made of available opportunities to improve food production efficiency by, e.g., increased use of fertilizers, irrigation, and biotechnology, as well as improved management. Expected losses and gains of agricultural land in competition with urbanization, industrial development, and forests have been taken into account. Although estimated gains in food production deliberately have been overestimated and losses underestimated, calculations indicate that during the next 30-35 years the annual net gain in food production will be significantly lower than the rate of world population growth. An attempt has also been made to identify possible scenarios for large-scale migrations, caused mainly by rapid population growth in combination with insufficient local food production and poverty. 18 refs, 7 figs, 6 tabs

  3. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges.

    Science.gov (United States)

    Wilkes, R A; Aristilde, L

    2017-09-01

    Synthetic plastics, which are widely present in materials of everyday use, are ubiquitous and slowly-degrading polymers in environmental wastes. Of special interest are the capabilities of microorganisms to accelerate their degradation. Members of the metabolically diverse genus Pseudomonas are of particular interest due to their capabilities to degrade and metabolize synthetic plastics. Pseudomonas species isolated from environmental matrices have been identified to degrade polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, polyethylene terephthalate, polyethylene succinate, polyethylene glycol and polyvinyl alcohol at varying degrees of efficiency. Here, we present a review of the current knowledge on the factors that control the ability of Pseudomonas sp. to process these different plastic polymers and their by-products. These factors include cell surface attachment within biofilms, catalytic enzymes involved in oxidation or hydrolysis of the plastic polymer, metabolic pathways responsible for uptake and assimilation of plastic fragments and chemical factors that are advantageous or inhibitory to the biodegradation process. We also highlight future research directions required in order to harness fully the capabilities of Pseudomonas sp. in bioremediation strategies towards eliminating plastic wastes. © 2017 The Society for Applied Microbiology.

  4. The degradation of lining of rotary furnaces in the production of zinc oxide

    OpenAIRE

    Natália Luptáková; Evgeniy Anisimov; Františka Pešlová

    2014-01-01

    This paper is closely connected with the complex problem of degradation relating to the refractories of rotary furnace linings in the production of zinc oxide. Zinc oxide can be produced by variety of ways, but the most common method of production which is used in Europe is indirect, i.e. pyrolytic combustion of zinc. This method is also called "French process" of manufacturing ZnO. But this mentioned method of preparation leads to the creation of the enormous amount of zinc slag including ch...

  5. Complexation of Cu2+, Ni2+ and UO22+ by radiolytic degradation products of bitumen

    International Nuclear Information System (INIS)

    Loon, L.R. Van; Kopajtic, Z.

    1990-05-01

    The radiolytic degradation of bitumen was studied under conditions which reflect those which will exist in the near field of a cementitious radioactive waste repository. The potential complexation capacity of the degradation products was studied and complexation experiments with Cu 2+ , Ni 2+ and UO 2 2+ were performed. In general 1:1 complexes with Cu 2+ , Ni 2+ and UO 2 2+ , with log K values of between 5.7 and 6.0 for Cu 2+ , 4.2 for Ni 2+ and 6.1 for UO 2 2+ , were produced at an ionic strength of 0.1 M. The composition of the bitumen water was analysed by GC-MS and IC. The major proportion of the bitumen degradation products in solution were monocarboxylic acids (acetic acid, formic acid, myric acid, stearic acid ...), dicarboxylic acids (oxalic acid, phthalic acid) and carbonates. The experimentally derived log K data are in good agreement with the literature and suggest that oxalate determines the speciation of Cu 2+ , Ni 2+ and UO 2 2+ in the bitumen water below pH=7. However, under the high pH conditions typical of the near field of a cementitious repository, competition with OH-ligands will be large and oxalate, therefore, will not play a significant role in the speciation of radionuclides. The main conclusion of the study is that the radiolytic degradation products of bitumen will have no influence on radionuclide speciation in a cementitious near field and, as such, need not to be considered in the appropriate safety assessment models. (author) 12 figs., 11 tabs., 31 refs

  6. Phosphorus, carbon- and nitrogen interactions in productive and degraded tropical pastures

    Science.gov (United States)

    Oberson, A.; Hegglin, D. D.; Nesper, M.; Rao, I.; Fonte, S.; Ramirez, B.; Velasquez, J.; Tamburini, F.; Bünemann, E. K.; Frossard, E.

    2011-12-01

    Pastures are the main land use in deforested areas of tropical South America. The highly weathered soils of these regions usually have low total and available phosphorus (P) contents. Low P availability can strongly limit plant and animal productivity and other soil ecosystem functions. Most introduced pastures of Brachiaria spp. are grass-alone (GA) while some are grass-legume (GL) pastures. The majority of the introduced pastures, particularly the grass-alone are at some state of degradation (GD). Pasture degradation induces severe loss of plant biomass production, with drastic ecological and economic implications. Although the importance of P deficiency in pasture degradation has been recognized, the knowledge generated on stoichiometry of carbon (C), nitrogen (N) and P along pathways of the nutrient cycles of pastures, with different botanical composition and productivity, has been very limited. We will present results of a case study realized during 2010 to 2011 in the forest margins agro-ecosystem of the department of Caquetá, Colombia. Our objectives were to determine: i) whether P availability is lower in degraded compared to productive pastures, and ii) whether the introduction of legumes in the pasture increases P availability through enhanced biological P cycling through plant growth, plant litter decomposition and the soil microbial biomass; and iii) whether pasture types (GA vs GL) and the state of pasture degradation affect the C:N:P ratios in nutrient pools of the soil-plant system. An on-farm study was conducted on nine farms in the department of Caquetá, Colombia. On every farm three different pasture types were studied: degraded grass alone pastures (GD), productive grass-alone pastures (GA) and productive grass-legume pastures (GL). Basic soil characteristics and indicators on soil P status, microbial P cycling, plant biomass production, plant litter deposition and nutrient concentrations in plant tissue were determined. Analysis of P, C and N

  7. Optimization of a membrane reactor for hydrogen production with genetic algorithms

    International Nuclear Information System (INIS)

    Raceanu, Mircea; Iordache, Ioan; Curuia, Marian; Rasoi, Gabriel; Patularu, Laurentiu; Enache, Adrian

    2009-01-01

    Full text: Hydrogen is produced via steam reforming of hydrocarbons such as natural gas or methane by using conventional systems. Unfortunately, these systems need at least four different stages, consisting of three reactors and a purification system. Moreover, the steam reforming reaction is an endothermic thermodynamically limited system, meaning that high temperature energy supply is needed for complete conversion. Among different technologies related to production, separation and purification of H 2 , membrane technologies seem to really play a fundamental role. The specific thermodynamic limits are overcome using the so-called membrane reactors, systems in which both reaction and separation occur simultaneously. The hydrogen is driven across the membrane by the pressure difference, depending on the temperature, pressure and reactor length the methane can be completely converted and consequently very pure hydrogen is produced. A membrane reactor has two components which can be optimized namely, the membrane and the reactor dimensions. This paper presents a study on optimization of membrane reactor for enhancing the overall production. A mathematical heterogeneous model of the reactor was used for optimization of reactor performance. Genetic algorithms were used as powerful methods for optimization of complex problems. (authors)

  8. Current strategies for protein production and purification enabling membrane protein structural biology.

    Science.gov (United States)

    Pandey, Aditya; Shin, Kyungsoo; Patterson, Robin E; Liu, Xiang-Qin; Rainey, Jan K

    2016-12-01

    Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).

  9. Degradation modeling and operational optimization for improving the lifetime of high-temperature PEM (proton exchange membrane) fuel cells

    International Nuclear Information System (INIS)

    Kim, Jintae; Kim, Minjin; Kang, Taegon; Sohn, Young-Jun; Song, Taewon; Choi, Kyoung Hwan

    2014-01-01

    High-temperature PEMFCs (proton exchange membrane fuel cells) using PA (phosphoric acid)-doped PBI (polybenzimidazole) membranes have received attention as a potential solution to several of the issues with traditional low-temperature PEMFCs. However, the durability of high-temperature PEMFCs deteriorates rapidly with increasing temperature, although its performance improves. This characteristic makes it difficult to select the proper operating temperature to achieve its target lifetime. In this paper, to resolve this problem, models were developed to predict the performance and durability of the high-temperature PEMFC as a function of operating temperature. The optimal operating temperature was then determined for a variety of lifetimes. Theoretical model to estimate cell performance and empirical model to predict the degradation rate of cell performance were constructed, respectively. The prediction results of the developed models agreed well with the experimental data. From the simulation, we could obtain higher average cell performances by optimizing the operating temperature for the given target lifetime compared to the cell performance at some temperatures determined using an existing rule of thumb. It is expected that the proposed methodologies will lead to the more rapid commercialization of this technology in such applications as stationary and automotive fuel cell systems. - Highlights: • High-temperature PEMFCs (proton exchange membrane fuel cells). • Operational optimization for improving the lifetime. • Development of the degradation modeling for high-temperature PEMFCs

  10. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    Directory of Open Access Journals (Sweden)

    Mehrdad Ebrahimi

    2015-12-01

    Full Text Available Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  11. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration.

    Science.gov (United States)

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-12-31

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  12. Bioactive Structure of Membrane Lipids and Natural Products Elucidated by a Chemistry-Based Approach.

    Science.gov (United States)

    Murata, Michio; Sugiyama, Shigeru; Matsuoka, Shigeru; Matsumori, Nobuaki

    2015-08-01

    Determining the bioactive structure of membrane lipids is a new concept, which aims to examine the functions of lipids with respect to their three-dimensional structures. As lipids are dynamic by nature, their "structure" does not refer solely to a static picture but also to the local and global motions of the lipid molecules. We consider that interactions with lipids, which are completely defined by their structures, are controlled by the chemical, functional, and conformational matching between lipids and between lipid and protein. In this review, we describe recent advances in understanding the bioactive structures of membrane lipids bound to proteins and related molecules, including some of our recent results. By examining recent works on lipid-raft-related molecules, lipid-protein interactions, and membrane-active natural products, we discuss current perspectives on membrane structural biology. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Experimental evaluation of methane dry reforming process on a membrane reactor to hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fabiano S.A.; Benachour, Mohand; Abreu, Cesar A.M. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. of Chemical Engineering], Email: f.aruda@yahoo.com.br

    2010-07-01

    In a fixed bed membrane reactor evaluations of methane-carbon dioxide reforming over a Ni/{gamma}- Al{sub 2}O{sub 3} catalyst were performed at 773 K, 823 K and 873 K. A to convert natural gas into syngas a fixed-bed reactor associate with a selective membrane was employed, where the operating procedures allowed to shift the chemical equilibrium of the reaction in the direction of the products of the process. Operations under hydrogen permeation, at 873 K, promoted the increase of methane conversion, circa 83%, and doubled the yield of hydrogen production, when compared with operations where no hydrogen permeation occurred. (author)

  14. Different Spectrophotometric Methods for Simultaneous Determination of Trelagliptin and Its Acid Degradation Product

    Science.gov (United States)

    Hassan, Mostafa A.; Zaghary, Wafaa A.

    2018-01-01

    New spectrophotometric and chemometric methods were carried out for the simultaneous assay of trelagliptin (TRG) and its acid degradation product (TAD) and applied successfully as a stability indicating assay to recently approved Zafatek® tablets. TAD was monitored using TLC to ensure complete degradation. Furthermore, HPLC was used to confirm dealing with one major acid degradation product. The proposed methods were developed by manipulating zero-order, first-derivative, and ratio spectra of TRG and TAD using simultaneous equation, first-derivative, and mean-centering methods, respectively. Using Spectra Manager II and Minitab v.14 software, the absorbance at 274 nm–260.4 nm, amplitudes at 260.4 nm–274.0 nm, and mean-centered values at 287.6 nm–257.2 nm were measured against methanol as a blank for TRG and TAD, respectively. Linearity and the other validation parameters were acceptable at concentration ranges of 5–50 μg/mL and 2.5–25 μg/mL for TRG and TAD, respectively. Using one-way analysis of variance (ANOVA), the optimized methods were compared and proved to be accurate for the simultaneous assay of TRG and TAD. PMID:29629213

  15. Infection-Induced Thrombin Production: A Potential Novel Mechanism for Preterm Premature Rupture of Membranes (PPROM).

    Science.gov (United States)

    Feng, Liping; Allen, Terrence K; Marinello, William P; Murtha, Amy P

    2018-04-13

    Preterm premature rupture of membranes (PPROM) is a leading contributor to maternal and neonatal morbidity and mortality. Epidemiologic and experimental studies have demonstrated that thrombin causes fetal membrane weakening and subsequently PPROM. Although blood is suspected as the likely source of thrombin in fetal membranes and amniotic fluid of patients with PPROM, this has not been proven. Ureaplasma Parvum (U. parvum) is emerging as a pathogen involved in prematurity, including PPROM, but until now, prothrombin production directly induced by bacteria in fetal membranes has not been described. This study was designed to investigate whether U. parvum exposure can induce prothrombin production in fetal membranes cells. Primary fetal membrane cells (amnion epithelial, chorion trophoblast, and decidua stromal) or full-thickness fetal membrane tissue explants from elective, term, uncomplicated cesarean deliveries were harvested. Cells or tissue explants were infected with live U. parvum (1 x 10 5 , 1 x 10 6 , or 1 x 10 7 colony forming units (cfu)/ml) or lipopolysaccharide (Escherichia coli J5, L-5014, Sigma, 100 ng/ml or 1000 ng/ml) for 24 hours. Tissue explants were fixed for immunohistochemistry staining of thrombin/prothrombin. Fetal membrane cells were fixed for confocal immunofluorescent staining of the biomarkers of fetal membrane cell types and thrombin/prothrombin. Protein and mRNA were harvested from the cells and tissue explants for Western blot or qRT-PCR to quantify thrombin/prothrombin protein or mRNA production, respectively. Data are presented as mean values ± standard errors of mean. Data were analyzed using one-way ANOVA with post hoc Dunnett's test. Prothrombin production and localization was confirmed by Western blot and immunostainings in all primary fetal membrane cells and tissue explants. Immunofluorescence observations revealed a perinuclear localization of prothrombin in amnion epithelial cells. Localization of prothrombin in chorion and

  16. Natural and enhanced anaerobic degradation of 1,1,1-trichloroethane and its degradation products in the subsurface – A critical review

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Durant, Neal D.; Hansen, Maria Heisterberg

    2011-01-01

    1,1,1-Trichloroethane (TCA) in groundwater is susceptible to a variety of natural degradation mechanisms. Evidence of intrinsic decay of TCA in aquifers is commonly observed; however, TCA remains a persistent pollutant at many sites and some of the daughter products that accumulate from intrinsic...

  17. New approach for determination of the degradation products of fenspiride hydrochloride found in oral liquid formulations.

    Science.gov (United States)

    Cioroiu, Bogdan I; Caba, Ioana C; Prisăcaru, Irina; Cioroiu, Mona E; Lazar, Mihai I; Niculaua, Marius

    2018-05-01

    Fenspiride hydrochloride (FNS) is used in treating chronic inflammatory diseases, most commonly as a liquid oral solution. FNS produces degradation products along with fenspiride N-oxide (FNO) and 1-phenylethyl-4-hydroxy-4-aminomethyl piperidine hydrochloride (PHAP). We aimed to develop and validate a chromatographic method in order to identify the main degradation products in the presence of other compounds from a liquid preparation. The method used a dual gradient using two buffer solutions: the first with pH 4.5 (buffer 1, pH 4.5-MeOH 90:10%, v/v) and the second with pH 2.9 (buffer 2, pH 2.9-acetronitrile-methanol, 65:15:10%, v/v/v). As mentioned, there was a modification of the organic mixture, starting with 10% methanol and ending with a mixture of acetonitrile-methanol (15:10%, v/v). The flow-rate was 1.5 mL/min. According to the elution program, experimental conditions started with 100% solution S1, which decreased to 0% and, simultaneously, solution S2 increased to 100% during the first 10 min and was maintained for a further 5 min. After 15 min, initial conditions were re-established. The linearity interval was 0.5-2 μg/mL and the minimum correlation coefficient was 0.999. The recovery factor was 100.47-103.17% and the limit of quantification was 0.19-0.332 μg/mL. Intra-day maximum precision was 4.08% for FNS and 2.65% for PHAP. This double-gradient mobile phase produced good specificity in relation to the degradation products of FNS and other constituents of the oral liquid formulation. Forced degradation studies revealed other related substances that were confirmed in mass balance analyses. Degradation products were confirmed in acidic, basic and oxidative media. Copyright © 2017 John Wiley & Sons, Ltd.

  18. A stability indicating HPLC method for determination of mebeverine in the presence of its degradation products and kinetic study of its degradation in oxidative condition.

    Science.gov (United States)

    Souri, E; Aghdami, A Negahban; Adib, N

    2014-01-01

    An HPLC method for determination of mebeverine hydrochloride (MH) in the presence of its degradation products was developed. The degradation of MH was studied under hydrolysis, oxidative and photolysis stress conditions. Under alkaline, acidic and oxidative conditions, degradation of MH was observed. The separation was performed using a Symmetry C18 column and a mixture of 50 mM KH2PO4, acetonitrile and tetrahydrfuran (THF) (63:35:2; v/v/v) as the mobile phase. No interference peaks from degradation products in acidic, alkaline and oxidative conditions were observed. The linearity, accuracy and precision of the method were studied. The method was linear over the range of 1-100 μg/ml MH (r(2)>0.999) and the CV values for intra-day and inter-day variations were in the range of 1.0-1.8%. The limit of quantification (LOQ) and the limit of detection (LOD) of the method were 1.0 and 0.2 μg/ml, respectively. Determination of MH in pharmaceutical dosage forms was performed using the developed method. Furthermore the kinetics of the degradation of MH in the presence of hydrogen peroxide was investigated. The proposed method could be a suitable method for routine quality control studies of mebeverine dosage forms.

  19. Detection of the spectroscopic signatures of explosives and their degradation products

    Science.gov (United States)

    Florian, Vivian; Cabanzo, Andrea; Baez, Bibiana; Correa, Sandra; Irrazabal, Maik; Briano, Julio G.; Castro, Miguel E.; Hernandez-Rivera, Samuel P.

    2005-06-01

    Detection and removal of antipersonnel and antitank landmines is a great challenge and a worldwide enviromental and humanitarian problem. Sensors tuned on the spectroscopic signature of the chemicals released from mines are a potential solution. Enviromental factors (temperature, relative humidity, rainfall precipitation, wind, sun irradiation, pressure, etc.) as well as soil characteristics (water content, compaction, porosity, chemical composition, particle size distribution, topography, vegetation, etc), have a direct impact on the fate and transport of the chemicals released from landmines. Chemicals such as TNT, DNT and their degradation products, are semi-volatile, and somewhat soluble in water. Also, they may adsorb strongly to soil particles, and are susceptible to degradation by microorganisms, light, or chemical agents. Here we show an experimental procedure to quantify the effect of the above variables on the spectroscopic signature. A number of soil tanks under controlled conditions are used to study the effect of temperature, water content, relative humidity and light radiation.

  20. Isolation of oxidative degradation products of atorvastatin with supercritical fluid chromatography.

    Science.gov (United States)

    Klobčar, Slavko; Prosen, Helena

    2015-12-01

    The isolation of four oxidative degradation products of atorvastatin using preparative high-performance liquid chromatography applying at least two chromatographic steps is known from the literature. In this paper it is shown that the same four impurities could be isolated from similarly prepared mixtures in only one step using supercritical fluid chromatography. The methods for separation were developed and optimized. The preparation of the mixtures was altered in such a way as to enhance the concentration of desired impurities. Appropriate solvents were applied for collection of separated impurities in order to prevent degradation. The structures of the isolated impurities were confirmed and their purity determined. The preparative supercritical fluid chromatography has proven to be superior to preparative HPLC regarding achieved purity of standards applying fewer chromatographic as well as isolation steps. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Novel pre-combustion power production : membrane Reactors

    NARCIS (Netherlands)

    Gallucci, F.; Van Sint Annaland, M.

    2015-01-01

    It is well known that conversion of fossil fuels for power production leads to an enormous amount of greenhouse gas emissions widely accepted as responsible for climate change. As fossil fuels will remain the primary energy source for the next decades, different studies are ongoing to make the

  2. Characterization of degradation products of amorphous and polymorphic forms of clopidogrel bisulphate under solid state stress conditions

    DEFF Research Database (Denmark)

    Raijada, Dhara K; Prasad, Bhagwat; Paudel, Amrit

    2010-01-01

    The present study deals with the stress degradation studies on amorphous and polymorphic forms of clopidogrel bisulphate. The objective was to characterize the degradation products and postulate mechanism of decomposition of the drug under solid state stress conditions. For that, amorphous form, ...

  3. Production of Biodiesel Using a Membrane Reactor to Minimize Separation Cost

    Science.gov (United States)

    Olagunju, O. A.; Musonge, P.

    2017-07-01

    This study investigates the performance of a packed bed membrane reactor in the transesterification process of triglycerides to methyl ester using soyabean oil as feedstock. A TiO2/Al2O3 ceramic microporous membrane was selected due to its chemical inert nature and thermal stability to selectively remove the product from the reaction medium. CaO impregnated on the surface of activated carbon was packed into the membrane and acted as catalyst. The synthesized catalyst had a total loading of 40.50 % and was characterized by XRD and temperature-programmed desorption of CO2 (CO2-TPD). The crude biodiesel produced was micro-filtered by the ceramic membrane with a pore size of 0.02 μm to retain the unreacted oil and free glycerol, at the transmembrane pressure of 100 KPa. The best condition was achieved with a temperature of 65 °C, methanol/oil molar ratio of 6:1 for 150 minutes, which resulted in the highest FAME yield of 94 %. Methyl ester produced met the ASTM D6751 and SANS 1935 specifications. The product obtained was mainly composed of methyl esters. Glycerol was not detected in the product stream due to the ability of the membrane to retain the glycerol and the unreacted oil in the medium, which solved the issue of glycerol separation from biodiesel.

  4. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  5. Optimization of crude oil degradation by Dietzia cinnamea KA1, capable of biosurfactant production.

    Science.gov (United States)

    Kavynifard, Amirarsalan; Ebrahimipour, Gholamhossein; Ghasempour, Alireza

    2016-05-01

    The aim of this study was isolation and characterization of a crude oil degrader and biosurfactant-producing bacterium, along with optimization of conditions for crude oil degradation. Among 11 isolates, 5 were able to emulsify crude oil in Minimal Salt Medium (MSM) among which one isolate, named KA1, showed the highest potency for growth rate and biodegradation. The isolate was identified as Dietzia cinnamea KA1 using morphological and biochemical characteristics and 16S rRNA gene sequencing. The optimal conditions were 510 mM NaCl, pH 9.0, 35 °C, and minimal requirement of 46.5 mM NH4 Cl and 2.10 mM NaH2 PO4 . Gravimetric test and Gas chromatography-Mass spectroscopy technique (GC-MS) showed that Dietzia cinnamea KA1 was able to utilize and degrade 95.7% of the crude oil after 5 days, under the optimal conditions. The isolate was able to grow and produce biosurfactant when cultured in MSM supplemented with crude oil, glycerol or whey as the sole carbon sources, but bacterial growth was occurred using molasses with no biosurfactant production. This is the first report of biosurfactant production by D. cinnamea using crude oil, glycerol and whey and the first study to report a species of Dietzia degrading a wide range of hydrocarbons in a short time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Aqueous photodegradation of 4-tert-butylphenol: By-products, degradation pathway and theoretical calculation assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanlin [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Shi, Jin; Chen, Hongche [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China); Zhao, Jianfu [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Dong, Wenbo, E-mail: wbdong@fudan.edu.cn [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China)

    2016-10-01

    4-tert-butylphenol (4-t-BP), an endocrine disrupting chemical, is widely distributed in natural bodies of water but is difficult to biodegrade. In this study, we focused on the transformation of 4-t-BP in photo-initiated degradation processes. The steady-state photolysis and laser flash photolysis (LFP) experiments were conducted in order to elucidate its degradation mechanism. Identification of products was performed using the GC–MS, LC-MS and theoretical calculation techniques. The oxidation pathway of 4-t-BP by hydroxyl radical (HO·) was also studied and H{sub 2}O{sub 2} was added to produce HO·. 4-tert-butylcatechol and 4-tert-butylphenol dimer were produced in 4-t-BP direct photolysis. 4-tert-butylcatechol and hydroquinone were produced by the oxidation of HO·. But the formation mechanism of 4-tert-butylcatechol in the two processes was different. The benzene ring was fractured in 4-t-BP oxidation process and 29% of TOC was degraded after 16 h irradiation. - Highlights: • Photodegradation of 4-t-BP, an endocrine disrupting chemical, has been investigated. • 3 stable byproducts were identified from photolysis and oxidation processes. • 5 transient by-products were concluded from LFP experiments. • The theoretical calculation was performed to confirm the byproducts. • 4-t-BP was degraded with increasing efficiency: 254 nm < H{sub 2}O{sub 2}/313 nm < H{sub 2}O{sub 2}/254 nm.

  7. Butanol production from concentrated lactose/whey permeate: Use of pervaporation membrane to recover and concentrate product

    Science.gov (United States)

    In these studies butanol (acetone butanol ethanol, or ABE) was produced from concentrated lactose/whey permeate containing 211 gL-1 lactose. Fermentation of such a highly concentrated lactose solution was possible due to simultaneous product removal using a pervaporation membrane. In this system a p...

  8. Biosurfactant production by Pseudomonas fluorescens growing on molasses and its application in phenol degradation

    Science.gov (United States)

    Suryantia, Venty; Marliyana, Soerya Dewi; Wulandari, Astri

    2015-12-01

    A molasses based medium for the biosurfactant production by Pseudomonas fluorescens was developed, where the effect of pre-treated of molasses and medium composition were evaluated. Biosurfactant production was followed by measuring optical density (OD), surface tension and emulsifying index (E24) over 12 days of fermentation. The optimum condition for the biosurfactant production was obtained when a medium containing of 8 g/L nutrient broth, 5 g/L NaCl, 1 g/L NH4NO3 and 5% v/v pre-treated molasses with centrifugation was used as media with 3 days of fermentation. The biosurfactant was identified as a rhamnolipid type biosurfactant which had critical micelle concentration (CMC) value of 801 mg/L and was able to reduce the surface tension of the water from 80 mN/m to 51 mN/m. The biosurfactants had water in oil (w/o) emulsion type. Biosurfactant was able to emulsify various hydrocarbons, which were able to decrase the interfacial tension about 50-75% when benzyl chloride, anisaldehyde and palm oil were used as immiscible compounds. The biosurfactant exhibited the E24 value of about 50% and the stable emulsion was reached up to 30 days when lubricant was used as an immiscible compound. Up to 68% of phenol was degraded in the presence of biosurfactant within 15 days, whereas only 56% of phenol was degraded in the absence of biosurfactant. Overall, the results exhibited that molasses are recommended for the rhamnolipids production which possessed good surface-active properties and had potential application in the enhancement of phenol degradation.

  9. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum.

    Science.gov (United States)

    Leite, Giuseppe G F; Figueirôa, Juciane V; Almeida, Thiago C M; Valões, Jaqueline L; Marques, Walber F; Duarte, Maria D D C; Gorlach-Lira, Krystyna

    2016-03-01

    Biosurfactants are microbial secondary metabolites. The most studied are rhamnolipids, which decrease the surface tension and have emulsifying capacity. In this study, the production of biosurfactants, with emphasis on rhamnolipids, and diesel oil degradation by 18 strains of bacteria isolated from waste landfill soil contaminated by petroleum was analyzed. Among the studied bacteria, gram-positive endospore forming rods (39%), gram positive rods without endospores (17%), and gram-negative rods (44%) were found. The following methods were used to test for biosurfactant production: oil spreading, emulsification, and hemolytic activity. All strains showed the ability to disperse the diesel oil, while 77% and 44% of the strains showed hemolysis and emulsification of diesel oil, respectively. Rhamnolipids production was observed in four strains that were classified on the basis of the 16S rRNA sequences as Pseudomonas aeruginosa. Only those strains showed the rhlAB gene involved in rhamnolipids synthesis, and antibacterial activity against Escherichia coli, P. aeruginosa, Staphylococcus aureus, Bacillus cereus, Erwinia carotovora, and Ralstonia solanacearum. The highest production of rhamnolipids was 565.7 mg/L observed in mineral medium containing olive oil (pH 8). With regard to the capacity to degrade diesel oil, it was observed that 7 strains were positive in reduction of the dye 2,6-dichlorophenolindophenol (2,6-DCPIP) while 16 had the gene alkane mono-oxygenase (alkB), and the producers of rhamnolipids were positive in both tests. Several bacterial strains have shown high potential to be explored further for bioremediation purposes due to their simultaneous ability to emulsify, disperse, and degrade diesel oil. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:262-270, 2016. © 2015 American Institute of Chemical Engineers.

  10. Ruminal degradation kinetics of protein foods by in vitro gas production technique

    Directory of Open Access Journals (Sweden)

    Ivone Yurika Mizubuti

    2014-02-01

    Full Text Available Chemical analysis of carbohydrates and nitrogen fractions, as well as, determination their carbohydrates digestion rates in soyben meal (SM, crambe meal (CM, radish meal (RM, wet brewery residue (WBR and dehydrated silkworm chrysalis (SCD were accomplished. The kinetics parameters of non-fibrous carbohydrates (NFC and B2 fraction were estimated using cumulative gas production technique. Among the foods studied there was considerable variation in chemical composition. The crambe meal was the only food that did not present synchronism between carbohydrate and nitrogen fractions. In this food there was predominance of A+B1 carbohydrates fractions and B1+B2 nitrogen compounds fraction, and for the other predominated B2 carbohydrate fraction and B1+ B2 nitrogen compounds fraction. There were differences among the digestive kinetic parameters for all foods. The greater participation in gas production due to non-fibrous carbohydrates was found in the crambe meal and oilseed radish meal. The fermentation of fibrous carbohydrates provided higher gas volume in the wet brewery residue and in the soybean meal, however, the soybean meal was food with higher total gas volume. Non fibrous carbohydrates degradation rates of wet brewery residue and dehydrated silkworm chrysalis were far below the limits of degradation of this fraction. Due to the parameters obtained by the cumulative gas production, the soybean meal was the best food, however, all others have potential for use in animal nutrition. The cumulative gas production technique allows the estimative of degradation rates and provides further information about the ruminal fermentation kinetics of foods.

  11. Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole on nanocrystalline titania films in alkaline media: Effect of applied electrical bias on degradation and transformation products

    Energy Technology Data Exchange (ETDEWEB)

    Tantis, Iosif [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); Bousiakou, Leda [Department of Physics and Astronomy, King Saud University, Riyadh (Saudi Arabia); Department of Automation Engineering, Technological Educational Institute of Pireaus, GR-12244 Athens (Greece); Frontistis, Zacharias; Mantzavinos, Dionissios [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); Konstantinou, Ioannis; Antonopoulou, Maria [Department of Environmental and Natural Resources Management, University of Patras, GR-30100 Agrinio (Greece); Karikas, George-Albert [Department of Medical Laboratories Technology, Technological Educational Institute of Athens, 12210 Athens (Greece); Lianos, Panagiotis, E-mail: lianos@upatras.gr [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); FORTH/ICE-HT, P.O. Box 1414, GR-26504 Patras (Greece)

    2015-08-30

    Highlights: • Photocatalytic and photoelectrocatalytic degradation of the proton pump omeprazole. • Improvement of photocatalysis rate by applying a moderate forward bias. • Highlighting of the advantages of photoelectrocatalysis in a straightforward manner. • HPLC and HR-LC–MS analysis of transformation products. - Abstract: Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole has been studied in the presence of nanocrystalline titania films supported on glass slides or transparent FTO electrodes in alkaline environment. Its photocatalytic degradation rate was assessed by its UV absorbance and by HPLC, while its transformation products were analyzed by HR-LC–MS. Based on UV absorbance, omeprazole can be photocatalytically degraded at an average rate of 6.7 × 10{sup −4} min{sup −1} under low intensity UVA irradiation of 1.5 mW cm{sup −2} in the presence of a nanoparticulate titania film. This corresponds to degradation of 1.4 mg of omeprazole per gram of the photocatalyst per liter of solution per hour. The photodegradation rate can be accelerated in a photoelectrochemical cell by applying a forward bias. In this case, the maximum rate reached under the present conditions was 11.6 × 10{sup −4} min{sup −1} by applying a forward bias of +0.6 V vs. Ag/AgCl. Four major transformation products were successfully identified and their profiles were followed by HR-LC–MS. The major degradation path includes the scission of the sulfoxide bridge into the corresponding pyridine and benzimidazole ring derivates and this is accompanied by the release of sulfate anions in the reaction mixture.

  12. Modelling and sequential simulation of multi-tubular metallic membrane and techno-economics of a hydrogen production process employing thin-layer membrane reactor

    KAUST Repository

    Shafiee, Alireza

    2016-09-24

    A theoretical model for multi-tubular palladium-based membrane is proposed in this paper and validated against experimental data for two different sized membrane modules that operate at high temperatures. The model is used in a sequential simulation format to describe and analyse pure hydrogen and hydrogen binary mixture separations, and then extended to simulate an industrial scale membrane unit. This model is used as a sub-routine within an ASPEN Plus model to simulate a membrane reactor in a steam reforming hydrogen production plant. A techno-economic analysis is then conducted using the validated model for a plant producing 300 TPD of hydrogen. The plant utilises a thin (2.5 μm) defect-free and selective layer (Pd75Ag25 alloy) membrane reactor. The economic sensitivity analysis results show usefulness in finding the optimum operating condition that achieves minimum hydrogen production cost at break-even point. A hydrogen production cost of 1.98 $/kg is estimated while the cost of the thin-layer selective membrane is found to constitute 29% of total process capital cost. These results indicate the competiveness of this thin-layer membrane process against conventional methods of hydrogen production. © 2016 Hydrogen Energy Publications LLC

  13. Internalization, lysosomal degradation and new synthesis of surface membrane CD4 in phorbol ester-activated T-lymphocytes and U-937 cells

    DEFF Research Database (Denmark)

    Petersen, C M; Christensen, E I; Andresen, B S

    1992-01-01

    degradation was low in resting cells. Endocytosis and/or degradation of anti-CD4 mAb was suppressed by H7, and by inhibitors of membrane traffic (Monensin) and lysosome function (methylamine, chloroquine). Immunocytochemistry localized CD4 to the surface of unstimulated T-cells. Upon PMA stimulation...... occasional labeling was seen in endosomes but whole cell CD4 decreased dramatically. However, methylamine-treated PMA blasts showed accumulation of CD4 in lysosomes and accordingly, pulse-chase experiments in biolabeled cell cultures suggested a manifest reduction of CD4 half-life in response to PMA. Despite...... in activated cells was further evidenced by metabolic labeling and Northern blot analysis demonstrating unaltered or slightly increased CD4 protein and mRNA levels resulting from PMA. Our findings demonstrate that phorbol esters downregulate the cellular CD4 pool by endocytosis and subsequent lysosomal...

  14. Preparation of environment-friendly 3D eggshell membrane-supported anatase TiO2 as a reusable photocatalyst for degradation of organic dyes

    Science.gov (United States)

    Li, Yaling; Zhou, Ji; Fan, Yunde; Ye, Yong; Tang, Bin

    2017-12-01

    We fabricated a low-cost and efficient composite photocatalyst material, combining eggshell membrane (ESM) and titanium dioxide (TiO2) nanoparticles, through self-assembly method. ESM with 3D porous structures provide scaffolds for TiO2 nanoparticles. Polyethyleneimine (PEI) was used to modify ESM by grafting amine groups. The microstructure and property of the fabricated composites were studied by various characterization methods. The composite was used for the photodegradation of Rhodamine B (RhB). The results demonstrate that the composite catalyst possesses good photocatalytic performance for dye degradation under sunlight irradiation simulated by a xenon lamp. Functionalization based on nanomaterials may promote the applications of ESM.

  15. Glycerin purification using asymmetric nano-structured ceramic membranes from production of waste fish oil biodiesel

    Science.gov (United States)

    Maghami, M.; Sadrameli, S. M.; Shamloo, M.

    2018-02-01

    Biodiesel is an environmental friendly alternative liquid transportation fuel that can be used in diesel engines without major modifications. The scope of this research work is to produce biodiesel from waste fish oil and its purification from the byproducts using a ceramic membrane. Transesterification of waste fish oil was applied for the biodiesel production using methanol in the presence of KOH as a catalyst. Effect of catalyst weight percent, temperature and methanol to oil molar ratio (MR) on the biodiesel yield have been studied and the results show that highest methyl ester yield of 79.2% has been obtained at 60 °C, MR: 6 and 1% KOH. The produced biodiesel purified by a ceramic membrane. Membrane flux and glycerin removal at different operating conditions such as temperature, trans-membrane pressures and cross flow velocities have been measured. Glycerin purity by membrane method is 99.97% by weight at the optimum condition. The highest membrane flux occurred at 50 °C temperature, 1 bar pressure and 3 m/s velocity.

  16. Process simulation and economic analysis of biodiesel production from waste cooking oil with membrane bioreactor

    Science.gov (United States)

    Abdurakhman, Yuanita Budiman; Putra, Zulfan Adi; Bilad, Muhammad Roil

    2017-10-01

    Pollution and shortage of clean energy supply are among major problems that are caused by rapid population growth. Due to this growth, waste cooking oil is one of the pollution sources. On the other hand, biodiesel appears to be one of the most promising and feasible energy sources as it emits less toxic pollutants and greenhouse gases than petroleum diesel. Thus, biodiesel production using waste cooking oil offers a two-in-one solution to cater pollution and energy issues. However, the conventional biodiesel production process using homogeneous base catalyst and stirred tank reactor is unable to produce high purity of biodiesel from waste cooking oil. It is due its sensitivity to free fatty acid (FFA) content in waste cooking oil and purification difficulties. Therefore, biodiesel production using heterogeneous acid catalyst in membrane reactor is suggested. The product of this process is fatty acid methyl esters (FAME) or biodiesel with glycerol as by-product. This project is aimed to study techno-economic feasibility of biodiesel production from waste cooking oil via heterogeneous acid catalyst in membrane reactor. Aspen HYSYS is used to accomplish this aim. Several cases, such as considering different residence times and the production of pharmaceutical (USP) grade glycerol, are evaluated and compared. Economic potential of these cases is calculated by considering capital expenditure, utilities cost, product and by-product sales, as well as raw material costs. Waste cooking oil, inorganic pressure-driven membrane and WAl is used as raw material, type of membrane and heterogeneous acid catalyst respectively. Based on literature data, FAME yield formulation is developed and used in the reactor simulation. Simulation results shows that economic potential increases by 30% if pharmaceutical (USP) grade glycerol is produced regardless the residence time of the reactor. In addition, there is no significant effect of residence time on the economic potential.

  17. ANALYSIS OF THE FLUX OF AN ENDOCRINE DISRUPTING DICARBOXIMIDE AND ITS DEGRADATION PRODUCTS FROM THE SOIL TO THE LOWER TROPOSPHERE

    Science.gov (United States)

    A method for measuring the atmospheric flux of the antiandrogenic dicarboxirnide, vinclozolin, and its degradation products was investigated. A nitric oxide laboratory chamber was modified to measure the flux of semi-volatile compounds. Pesticide application systems and soil in...

  18. Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes

    DEFF Research Database (Denmark)

    Li, Qingfeng; Rudbeck, Hans Christian; Chromik, Andreas

    2010-01-01

    Polybenzimidazoles (PBIs) with synthetically modified structures and their blends with a partially fluorinated sulfonated aromatic polyether have been prepared and characterized for high temperature proton exchange membrane fuel cells. Significant improvement in the polymer chemical stability...

  19. Degradation kinetics of organic chloramines and formation of disinfection by-products during chlorination of creatinine.

    Science.gov (United States)

    Zhang, Tianyang; Xu, Bin; Wang, Anqi; Cui, Changzheng

    2018-03-01

    Organic chloramines can interfere with the measurement of effective combined chlorine in chlorinated water and are potential intermediate products of highly toxic disinfection by-products (DBPs). In order to know more about the degradation and transformation of organic chloramines, a typical organic chloramine precursor creatinine was selected for investigation and a corresponding individual organic chloramine chlorocreatinine was prepared in this study. The preparation condition of chlorocreatinine by chlorination was established as chlorine/creatinine = 1 M/M, reaction time = 2 h and pH = 7.0. Then the degradation kinetics of chlorocreatinine during further chlorination was studied, and a second-order rate constant of 1.16 (±0.14) M -1 s -1 was obtained at pH 7.0. Solution pH significantly influenced the degradation rate, and the elementary rate constants of chlorocreatinine with HOCl+H + , HOCl, OCl - and chlorocreatinine - with OCl - were calculated as 2.43 (±1.55) × 10 4  M -2  s -1 , 1.05 (±0.09) M -1 s -1 , 2.86 (±0.30) M -1 s -1 and 3.09 (±0.24) M -1 s -1 , respectively. Besides, it was found that chlorocreatinine could be further converted into several C-DBPs (chloroform and trichloroacetone) and N-DBPs (dichloroacetonitrile (DCAN) and trichloronitromethane (TCNM)) during chlorination. The total yield of DBPs increased obviously with increasing pH, especially for TCNM. In addition, the presence of humic acid in creatinine solution could increase the formation of DCAN obviously during chlorination. Based on the UPLC-Q-TOF-MS analysis, the conversion pathways of chlorocreatinine were proposed. Several kinds of intermediate products were also identified as organic chloramines and some of them could even exist stably during the further chlorination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Graphene-modified nickel foam electrode for cathodic degradation of nitrofuranzone: Kinetics, transformation products and toxicity

    Directory of Open Access Journals (Sweden)

    Ya Ma

    2017-12-01

    Full Text Available Simple, efficient, and durable electrodes are highly demanded for practical electro­chemical process. In this study, a reduced graphene oxide modified nickel foam electrode (GR‑Ni foam was facilely prepared via one-step cyclic voltammetry electrodeposition of gra­phene oxide suspension onto the Ni foam. The electrochemical degradation of nitrofuran­zone (NFZ, a kind of typical antibiotics was studied on the GR-Ni foam cathode. The cyclic voltammetry and electrochemical impedance spectra analysis confirmed that presence of GR loading accelerated the electron transfer from the cathode surface to NFZ. With the applied cathode potential of −1.25 V (vs. Ag/AgCl, the removal efficiency of NFZ (C0 = 20 mg L−1 at the GR-Ni foam electrode reached up to 99 % within 30 min, showing a higher reaction rate constant (0.1297 min−1 than 0.0870 min−1 at the Pd-Ni foam and 0.0186 min−1 at the Ni foam electrode. It was also found that the pH, dissolved oxygen and NFZ initial concentration have slight effect on NFZ degradation at the GR-Ni foam electrode. The reactions first occurred at nitro groups (-NO2, unsaturated C=N bonds and N-N bonds to generate furan ring-containing products, and then these products were transformed into linear diamine products. The direct reduction by electrons was mainly responsible for NFZ reduction at the GR-Ni foam electrode. Even after 18 cycles, the removal efficiency of NFZ still reached up to 98 % within 1 h. In addition, the cathodic degradation process could eliminate the antibacterial activity of NFZ. The GR-Ni foam electrode would have a great potential in electrochemical process for treating wastewater containing furan antibiotics.

  1. Stability-indicating methods for the determination of racecadotril in the presence of its degradation products.

    Science.gov (United States)

    Mohamed, Afaf O; Fouad, Manal M; Hasan, Mona M; Abdel Razeq, Sawsan A; Elsherif, Zeinab A

    2009-12-01

    Three stability-indicating methods were developed for the determination of racecadotril (RCT) in the presence of its alkaline degradation products. The first was an HPLC method in which efficient chromatographic separation was achieved on a C18 analytical column and a mobile phase of acetonitrile-methanol-water-acetic acid (52:28:20:0.1, v/v/v/v). Linearity was obtained in the range of 4-40 microg/mL with mean accuracy of 99.5 +/- 0.88%. The second method was a densitometric evaluation of thin-layer chromatograms of the drug using a mobile phase of isopropanol-ammonia (33%)-n-hexane (9:0.5:20, v/v/v). The chromatograms were scanned at 232 nm, a wavelength at which RCT can be readily separated from its degradation products and determined in the range of 2-20 microg per spot with mean accuracy of 99.5 +/- 0.56%. The third method is based on the use of first-derivative spectrophotometry (D1) at 240 nm, and the drug was determined in the range of 5-40 microg/mL with mean accuracy of 99.2 +/- 1.02%. The three methods provided satisfactory recovery of the intact drug (100.8 +/- 0.82, 100.4 +/- 0.55, and 99.9 +/- 0.72%, respectively) in the presence of up to 90% of its degradation products. Determination was also successful when analyzing RCT in a formulation in the form of acetorphan packets. Results were statistically analyzed and found to be in accordance with those given by a reported method.

  2. Phospholipase C-catalyzed sphingomyelin hydrolysis in a membrane reactor for ceramide production

    DEFF Research Database (Denmark)

    Zhang, Long; Liang, Shanshan; Hellgren, Lars

    2008-01-01

    A membrane reactor for the production of ceramide through sphingomyelin hydrolysis with phospholipase C from Clostridium perfringens was studied for the first time. Ceramide has raised a large interest as an active component in both pharmaceutical and cosmetic industry. The enzymatic hydrolysis...

  3. Photolysis of nonylphenol ethoxylates: the determination of the degradation kinetics and the intermediate products.

    Science.gov (United States)

    Chen, Ling; Zhou, Hai-Yun; Deng, Qin-Ying

    2007-06-01

    The photolysis of nonylphenol ethoxylates with an average oligomers length of ten ethoxylate units (NPEO(10)) in aqueous solution under UV, as well as the influence of humic acid (HA) on the photolysis was studied. A 125W high-pressure mercury lamp was employed as the light source. The intermediate products from the photolysis were determined by LC-MS. The results indicated that NPEO(10) underwent direct photolysis upon exposed to UV. The degradation pathway was complex. Besides the generally proposed degradation pathway of ethylene oxide (EO) side chains shortening, the oxidation of alkyl chain and EO chain led to intermediates having both a carboxylated (as well as carbonylated) ethoxylate and alkyl chain of varying lengths. The hydrogenation of benzene ring was also detected. The kinetics data showed that the first order reaction kinetics could be well used to describe the kinetics of NPEO(10) degradation. In the presence of dissolved organic matter by HA addition, the performance of NPEO(10) photodegradation was reduced. The photolysis rate decreased with increased HA concentration.

  4. Enhancing wastewater degradation and biogas production by intermittent operation of UASB reactors

    International Nuclear Information System (INIS)

    Nadais, Helena; Barbosa, Marta; Capela, Isabel; Arroja, Luis; Ramos, Christian G.; Grilo, Andre; Sousa, Silvia A.; Leitao, Jorge H.

    2011-01-01

    The present work establishes intermittent operation of UASB reactors as a novel form of enhancing the anaerobic degradation of complex wastewaters and its conversion to usable biogas. Results show that the average methane production rate is 25% higher with the intermittent operation than with the continuous mode, meaning that it could produce 25% more electricity or heat. The methanization efficiency obtained in intermittent UASB reactors is around 20% higher than in the continuous systems, confirming a higher biological degradation of the substrates. It has been suggested that intermittent operation causes a forced adaptation of the biomass towards the degradation of complex substrates and results from morphological analyses of the biomass developed in intermittent and continuous UASB reactors showed marked differences between them. In order to gain a deeper knowledge on how microbial populations are affected by these operational parameters, a strategy involving the amplification, cloning, and analysis of the nucleotide sequences of genes encoding the 16S ribosomal RNA was undertaken and is described in this work. This strategy allowed the identification of a total of 49 different sequences. Results from the molecular characterization of the microbial populations are consistent with the higher methanization efficiency of the intermittent mode of operation.

  5. Land Husbandry: Biochar application to reduce land degradation and erosion on cassava production

    Science.gov (United States)

    Yuniwati, E. D.

    2017-12-01

    This field experiment was carried out to examine the effect of increasing crop yield on land degradation and erosion in cassava-based cropping systems. The experiment was also aimed at showing that with proper crop management, the planting of cassava does not result in land degradation, and therefore, a sustainable production system can be obtained. The experiment was done in a farmer's fields in Batu, about 15 km south east of Malang, East Java, Indonesia. The soils are Alfisols with a surface slope of about 8%. There were 8 experimental treatments with two replications. The experiment results show that biochar applications reduce of soil erosion rate of the cassava field were not necessarily higher than those of maize in terms of crop yield and crop management. At low-to-medium yield, also observed the nutrient uptake of cassava was lower than that of maize. At high yield, only the K uptake of cassava was higher than that of maize, whereas the N and P uptake was more or less similar. Soil erosion on the cassava field was significantly higher than that on the maize field; however, this only occurred when there was no suitable crop management. Simple crop managements, such as ridging, biochar application, or manure application could significantly reduce soil erosion. The results also revealed that proper management could prevent land degradation and increase crop yield. In turn, the increase in crop yield could decrease soil erosion and plant nutrient depletion.

  6. Characterization of intermediate products of solar photocatalytic degradation of ranitidine at pilot-scale.

    Science.gov (United States)

    Radjenović, Jelena; Sirtori, Carla; Petrović, Mira; Barceló, Damià; Malato, Sixto

    2010-04-01

    In the present study the mechanisms of solar photodegradation of H(2)-receptor antagonist ranitidine (RNTD) were studied in a well-defined system of a pilot plant scale Compound Parabolic Collector (CPC) reactor. Two types of heterogeneous photocatalytic experiments were performed: catalysed by titanium-dioxide (TiO(2)) semiconductor and by Fenton reagent (Fe(2+)/H(2)O(2)), each one with distilled water and synthetic wastewater effluent matrix. Complete disappearance of the parent compounds and discreet mineralization were attained in all experiments. Furthermore, kinetic parameters, main intermediate products, release of heteroatoms and formation of carboxylic acids are discussed. The main intermediate products of photocatalytic degradation of RNTD have been structurally elucidated by tandem mass spectrometry (MS(2)) experiments performed at quadrupole-time of flight (QqToF) mass analyzer coupled to ultra-performance liquid chromatograph (UPLC). RNTD displayed high reactivity towards OH radicals, although a product of conduction band electrons reduction was also present in the experiment with TiO(2). In the absence of standards, quantification of intermediates was not possible and only qualitative profiles of their evolution could be determined. The proposed TiO(2) and photo-Fenton degradation routes of RNTD are reported for the first time. (c) 2010 Elsevier Ltd. All rights reserved.

  7. Estimation of PMI depends on the changes in ATP and its degradation products.

    Science.gov (United States)

    Mao, Shiwei; Fu, Gaowen; Seese, Ronald R; Wang, Zhen-Yuan

    2013-09-01

    Estimating the time since death, or postmortem interval (PMI), has been one of the biggest difficulties in modern forensic investigation. This study tests if the concentrations of breakdown products of adenosine triphosphate (ATP) correlate with PMI in multiple organs from rat. Brains, spleens, and kidneys of rats were harvested at different time points in carcasses maintained at 4°C or 20°C. High Performance Liquid Chromatography (HPLC) was used to quantify concentrations of metabolites related to ATP degradation. A K value (Kv=100×(Hx+HxR)/(ATP+ADP+AMP+IMP+HxR+Hx)) was calculated and correlated with PMI for each organ and temperature. The results indicate that the K value is a robust index for the estimation of PMI based on highly significant linear correlations between PMI and concentrations of ATP breakdown products. Compared with other current research methods, the changing tendency of ATP and its degradation products may be potentially a better way for the estimation of PMI in medico-legal practice. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Fouling characteristics and cleaning strategies of NF membranes for the advanced treatment of antibiotic production wastewater.

    Science.gov (United States)

    Wang, Jianxing; Li, Kun; Yu, Dawei; Zhang, Junya; Wei, Yuansong

    2017-04-01

    The nanofiltration (NF) membrane fouling characteristics and cleaning strategies were investigated through a laboratory-scale NF fouling test treating membrane bioreactor (MBR) effluent and MBR-granular activated carbon (GAC) effluent of an antibiotic production wastewater by DK and NF90 membranes, respectively. Results showed that organic fouling is the main NF membrane fouling for treating both the MBR effluent and MBR-GAC effluent. Soluble microbial by-product (SMP)-like and aromatic protein-like substances were the dominant components in the foulants, whereas humic-like substances had little contribution to the NF fouling. The fouling of DK was more severe than that of NF90. However, foulants respond by UV 254 were more easily to foul NF90 membrane. It could get satisfactory effect using combined cleaning of acid (HCl, pH 2.0∼2.5) and alkali (NaOH + 0.3 wt% NaDS, pH 10.0∼10.5). The favorable cleaning strategy is "acid + alkali" for treating MBR-GAC effluent, while it is "alkali + acid" for treating MBR effluent.

  9. By-products formation during degradation of isoproturon in aqueous solution. II: Chlorination.

    Science.gov (United States)

    Mascolo, G; Lopez, A; James, H; Fielding, M

    2001-05-01

    After a previous study in which the considered oxidant was ozone (Part I), a laboratory investigation has been carried out to study the degradation of the herbicide isoproturon during its reaction with another oxidant, i.e. chlorine, in aqueous solution (Part II; this paper). The specific aim was to identify the by-products formed. The effects of pH and the presence of bromide ions were studied. Reactions have been carried out at room temperature, in phosphate buffered aqueous solutions, at four pHs (6, 7, 8 and 9). By-products identification was first performed using relatively high initial reagent concentrations which were analytically convenient ([isoproturon] = 40 mg/l, [HClO + ClO-] = 160 mg Cl/l, [Br-] = 80 mg/l). In follow-up studies, the by-products identified during this preliminary step were searched for when using concentration values closer to those actually encountered at real water treatment plants ([isoproturon] = 0.4 and 0.004 mg/l, [HClO + ClO-] = 1.6 mg Cl/l, [Br-] = 0.8 and 0.008 mg/l). Under all of the studied conditions, the results showed that isoproturon is completely degraded and that it decays much faster in the presence of bromide. The pH has a negligible influence when bromide ions are absent. On the contrary, if bromide ions are present, the isoproturon decay is slower at higher pH values. High-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses have led to the identification of several by-products as a result of simultaneous oxidation and substitution reactions, both occurring on the aromatic ring of the herbicide. However, the more abundant by-products are those resulting from the oxidation of the isoproturon aromatic ring. As far as halogenated by-products are concerned, the higher the bromide ion concentration the higher the ratio of brominated to chlorinated by-products. On the basis of the analytical results, a pathway for isoproturon degradation under the studied conditions is proposed.

  10. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria

    DEFF Research Database (Denmark)

    Halling-Sørensen, B.; Sengeløv, G.; Tjørnelund, J.

    2002-01-01

    Tetracyclines used in veterinary therapy invariably will find their way as parent compound and degradation products to the agricultural field. Major degradation products formed due to the limited stability of parent tetracyclines (tetracycline, chlortetracycline, and oxytetracycline) in aqueous...... at the same concentration level as tetracycline, chlortetracycline, and oxytetracycline on both the sludge and the tetracycline-sensitive soil bacteria. Further, both 5a,6-anhydrotetracychne and 5a,6-anhydrochlortetracycline had potency on tetracycline-resistant bacteria supporting a mode of action different...

  11. Identification of degradation products of ionic liquids in an ultrasound assisted zero-valent iron activated carbon micro-electrolysis system and their degradation mechanism.

    Science.gov (United States)

    Zhou, Haimei; Lv, Ping; Shen, Yuanyuan; Wang, Jianji; Fan, Jing

    2013-06-15

    Ionic liquids (ILs) have potential applications in many areas of chemical industry because of their unique properties. However, it has been shown that the ILs commonly used to date are toxic and not biodegradable in nature, thus development of efficient chemical methods for the degradation of ILs is imperative. In this work, degradation of imidazolium, piperidinium, pyrrolidinium and morpholinium based ILs in an ultrasound and zero-valent iron activated carbon (ZVI/AC) micro-electrolysis system was investigated, and some intermediates generated during the degradation were identified. It was found that more than 90% of 1-alkyl-3-methylimidazolium bromide ([Cnmim]Br, n = 2, 4, 6, 8, 10) could be degraded within 110 min, and three intermediates 1-alkyl-3-methyl-2,4,5-trioxoimidazolidine, 1-alkyl-3-methylurea and N-alkylformamide were detected. On the other hand, 1-butyl-1-methylpiperidinium bromide ([C4mpip]Br), 1-butyl-1-methylpyrrolidinium bromide ([C4mpyr]Br) and N-butyl-N-methylmorpholinium bromide ([C4mmor]Br) were also effectively degraded through the sequential oxidization into hydroxyl, carbonyl and carboxyl groups in different positions of the butyl side chain, and then the N-butyl side chain was broken to form the final products of N-methylpiperidinium, N-methylpyrrolidinium and N-methylmorpholinium, respectively. Based on these intermediate products, degradation pathways of these ILs were suggested. These findings may provide fundamental information on the assessment of the factors related to the environmental fate and environmental behavior of these commonly used ILs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Degradation of 2,4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: antibiotic production.

    Science.gov (United States)

    Ferreira-Guedes, Sumaya; Mendes, Benilde; Leitão, Ana Lúcia

    2012-01-01

    The extensive use of pesticides in agriculture has prompted intensive research on chemical and biological methods in order to protect contamination of water and soil resources. In this paper the degradation of the pesticide 2,4-dichlorophenoxyacetic acid by a Penicillium chrysogenum strain previously isolated from a salt mine was studied in batch cultures. Co-degradation of 2,4-dichlorophenoxyacetic acid with additives such as sugar and intermediates of pesticide metabolism was also investigated. Penicillium chrysogenum in solid medium was able to grow at concentrations up to 1000 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D) with sucrose. Meanwhile, supplementation of the solid medium with glucose and lactose led to fungal growth at concentrations up to 500 mg/L of herbicide. Batch cultures of 2,4-D at 100 mg/L were developed under aerobic conditions with the addition of glucose, lactose and sucrose, showing sucrose as the best additional carbon source. The 2,4-D removal was quantified by liquid chromatography. The fungus was able to use 2,4-D as the sole carbon and energy source under 0%, 2% and 5.9% NaCl. The greatest 2,4-D degradation efficiency was found using alpha-ketoglutarate and ascorbic acid as co-substrates under 2% NaCl at pH 7. Penicillin production was evaluated in submerged cultures by bioassay, and higher amounts of beta-lactam antibiotic were produced when the herbicide was alone. Taking into account the ability of P. chrysogenum CLONA2 to degrade aromatic compounds, this strain could be an interesting tool for 2,4-D herbicide remediation in saline environments.

  13. Development of a membrane electrode assembly production process for proton exchange membrane fuel cell (PEMFC) by sieve printing

    International Nuclear Information System (INIS)

    Bonifacio, Rafael Nogueira

    2010-01-01

    Energy is a resource that presents historical trend of growth in demand. Projections indicate that future energy needs will require a massive use of hydrogen as fuel. The use of systems based on the use of proton exchange membrane fuel cell (PEMFC) has features that allow its application for stationary applications, automotive and portable power generation. The use of hydrogen as fuel for PEMFC has the advantage low pollutants' emission, when compared to fossil fuels. For the reactions in a PEMFC is necessary to build membrane electrode assembly (MEA). And the production of MEAs and its materials are relevant to the final cost of kW of power generated by systems of fuel cell. This represent currently a technological and financial barriers to large-scale application of this technology. In this work a process of MEAs fabrication were developed that showed high reproducibility, rapidity and low cost by sieve printing. The process of sieve printing and the ink composition as a precursor to the catalyst layer were developed, which allow the preparation of electrodes for MEAs fabrication with the implementation of the exact catalyst loading, 0.6 milligrams of platinum per square centimeters (mgPt.cm -2 ) suitable for cathodes and 0.4 mgPt.cm -2 for anode in only one application step per electrode. The ink was developed, produced, characterized and used with similar characteristics to ink of sieve printing build for other applications. The MEAs produced had a performance of up to 712 mA.cm -2 by 600 mV to 25 cm 2 MEA area. The MEA cost production for MEAs of 247.86 cm 2 , that can generate 1 kilowatt of energy was estimated to US$ 7,744.14 including cost of equipment, materials and labor. (author)

  14. Solar fuel production at high temperatures using ceria as a dense membrane

    International Nuclear Information System (INIS)

    Zhu, Liya; Lu, Youjun; Shen, Shaohua

    2016-01-01

    In this paper, ceria was proposed as a candidate material of membrane reactor for solar fuel production. A thermodynamic model of the membrane reactor system based on ceria with heat recovery was established and solar-to-fuel efficiency of both inert gas-assisted and pump-assisted CO_2 splitting was calculated under a broad range of conditions. For system using inert gas, gas heat recovery is the determining factor for energy conversion efficiency. The energy efficiency is calculated to be >10% at 1800 K when the oxygen pressure at the inlet of reduction zone is lower than 10"−"6MPa. Increase of total pressure of the oxidation zone could improve the energy efficiency due to decrease of gas heat loss. Significant promotion in efficiency could be expected when a pump is applied to avoid using inert gas. Solar-to-fuel efficiency could be above 40% assuming good heat recovery. For the membrane reactor with a pump applied to maintain a vacuum atmosphere of the reduction zone, a simplified steady state model was put forward to predict the converting process and estimate the productivity. The diffusion rate of oxygen ions in the membrane is fast enough for conversion of considerable amount of CO_2 in the reactor with a limited geometry. - Highlights: • Ceria membrane reactor was proposed for solar fuel production. • A thermodynamic model of the ceria membrane reactor system was established. • Inert gas-assisted and pump-assisted systems were evaluated. • High efficiency >40% could be expected when using a pump instead of inert gas. • A steady state model concerning oxygen diffusion rate was established.

  15. The effects of the antibiotics ampicillin, florfenicol, sulfamethazine, and tylosin on biogas production and their degradation efficiency during anaerobic digestion.

    Science.gov (United States)

    Mitchell, Shannon M; Ullman, Jeffrey L; Teel, Amy L; Watts, Richard J; Frear, Craig

    2013-12-01

    The impacts of four common animal husbandry antibiotics (ampicillin, florfenicol, sulfamethazine, and tylosin) on anaerobic digestion (AD) treatment efficiency and the potential for antibiotic degradation during digestion were evaluated. Sulfamethazine and ampicillin exhibited no impact on total biogas production up to 280 and 350 mg/L, respectively, although ampicillin inhibited biogas production rates during early stages of AD. Tylosin reduced biogas production by 10-38% between 130 and 913 mg/L. Florfenicol reduced biogas by ≈ 5%, 40% and 75% at 6.4, 36 and 210 mg/L, respectively. These antibiotic concentrations are higher than commonly seen for mixed feedlot manure, so impacts on full scale AD should be minimal. Antibiotic degradation products were found, confirming AD effectively degraded ampicillin, florfenicol, and tylosin, although some products were persistent throughout the process. Contamination of AD solid and liquid effluents with sulfamethazine and antibiotic transformation products from florfenicol and tylosin could present an environmental concern. Published by Elsevier Ltd.

  16. Tailoring Escherichia coli for the L-rhamnose PBAD promoter-based production of membrane and secretory proteins

    NARCIS (Netherlands)

    Hjelm, Anna; Karyolaimos, Alexandros; Zhang, Zhe; Rujas, Edurne; Vikström, David; Slotboom, Dirk Jan; de Gier, Jan-Willem

    Membrane and secretory protein production in Escherichia coli requires precisely controlled production rates to avoid the deleterious saturation of their biogenesis pathways. Based on this requirement, the E. coli L-rhamnose PBAD promoter (PrhaBAD) is often used for membrane and secretory protein

  17. Estimation of physicochemical properties of 2-ethylhexyl-4-methoxycinnamate (EHMC) degradation products and their toxicological evaluation.

    Science.gov (United States)

    Gackowska, Alicja; Studziński, Waldemar; Kudlek, Edyta; Dudziak, Mariusz; Gaca, Jerzy

    2018-06-01

    The organic UV filters, commonly used in personal protection products, are of concern because of their potential risk to aquatic ecosystems and living organisms. One of UV filters is ethylhexyl-4-methoxycinnamate (EHMC) acid. Studies have shown that, in the presence of oxidizing and chlorinating factors, EHMC forms a series of products with different properties than the substrate. In this study, the toxicities of EHMC and its transformation/degradation products formed under the influence of NaOCl/UV and H 2 O 2 /UV systems in the water medium were tested using Microtox® bioassay and by observation of mortality of juvenile crustaceans Daphnia magna and Artemia Salina. We have observed that oxidation and chlorination products of EHMC show significantly higher toxicity than EHMC alone. The toxicity of chemicals is related to their physicochemical characteristic such as lipophilicity and substituent groups. With the increase in lipophilicity of products, expressed as log K OW , the toxicity (EC 50 ) increases. On the basis of physicochemical properties such as vapour pressure (VP), solubility (S), octanol-water partition coefficient (K OW ), bioconcentration factor (BCF) and half-lives, the overall persistence (P OV ) and long-range transport potential (LRTP) of all the products and EHMC were calculated. It was shown that the most persistent and traveling on the long distances in environment are methoxyphenol chloroderivatives, then methoxybenzene chloroderivatives, EHMC chloroderivatives, methoxybenzaldehyde chloroderivatives and methoxycinnamate acid chloroderivatives. These compounds are also characterised by high toxicity.

  18. Studies on resin degradation products encountered during purification of plutonium by anion exchange

    International Nuclear Information System (INIS)

    Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Dhumwad, R.K.

    1991-01-01

    Among the methods available for the purification of plutonium in Purex process, anion exchange method offers several advantages. However, on repeated use, the resin gets degraded due to thermal, radiolytic and chemical attacks resulting in chemical as well as physical damage. Frequently, plutonium product eluted from such resin contains significant quantities of white precipitates. A few anion exchange resins were leached with 8 M HNO 3 at 60-80degC and the resin degradation products (RDP) in the leach-extract were found to give similar precipitates with tetravalent metal ions like Pu(IV), Th(IV) etc. Tetra propyl ammonium hydroxide in 8 M HNO 3 (TPAN) also gave a white precipitate with plutonium similar to the one found in the elution streams. The results indicate that delinked quaternary ammonium functional groups might be responsible for the formation of precipitate. The characteristics of precipitates Th-RDP, Th-TPAN and that isolated from elution stream have been investigated. In a separate study a tentative formula for Th-RDP compound is proposed. The influence of RDP on the extraction of plutonium and other components in Purex process was studied and it was found that RDP complexes metal ions thus marginally affecting the kd values. A spectrophotometric method has been standardised to monitor the extent of degradation of anion exchange resins which is based on the ability of RDP to reduce the colour intensity of Th-thoron complex. This technique can be used to study the stability of the anion exchange resins. (author). 8 refs., 8 tabs., 5 figs.,

  19. Investigation of forced and total degradation products of amlodipine besylate by liquid chromatography and liquid chromatography-mass spectrometry

    Directory of Open Access Journals (Sweden)

    Stoiljković Zora Ž.

    2014-01-01

    Full Text Available An isocratic, reversed-phase liquid chromatographic method was applied for the investigation of the degradation products of amlodipine besylate under the stressed conditions in solution. Amlodipine besylate stock solutions were subjected to acid and alkali hydrolysis, chemical oxidation and photodegradation as well as to the electrochemical degradation by cyclic voltammetry in 0.05 mol/L NaHCO3 on gold electrode. The total degradation of amlodipine besylate was achieved in 5 mol/L NaOH at 80°C for 6 h and the compound with molecular formula C15H16NOCl was identified as a main degradation product. Under acidic (5 mol/L HCl at 80°C for 6 h stress conditions 75.2% of amlodipine besylate degradation was recorded. Oxidative degradation in the solution of 3% H2O2-methanol 80:20 at 80°C for 6 h showed that amlodipine besylate degraded to 80.1%. After 14 days of expose in photostability chamber amlodipine besylate solution showed degradation of 32.2%. In electrochemical degradation after 9 hours of cyclization the beginning of amlodipine oxidation was shifted for 200 mV to more negative potentials, with the degradation of 66.5%. Mass spectrometry analysis confirmed the presence of dehydro amlodipine derivate with molecular formula C20H23N2O5Cl in oxidative and acidic conditions while in electrochemical degradation was detected in traces. [Projekat Ministarsva nauke Republike Srbije, br. 172013

  20. How early studies on secreted and membrane protein quality control gave rise to the ER associated degradation (ERAD) pathway: the early history of ERAD.

    Science.gov (United States)

    Needham, Patrick G; Brodsky, Jeffrey L

    2013-11-01

    All newly synthesized proteins are subject to quality control check-points, which prevent aberrant polypeptides from harming the cell. For proteins that ultimately reside in the cytoplasm, components that also reside in the cytoplasm were known for many years to mediate quality control. Early biochemical and genetic data indicated that misfolded proteins were selected by molecular chaperones and then targeted to the proteasome (in eukaryotes) or to proteasome-like particles (in bacteria) for degradation. What was less clear was how secreted and integral membrane proteins, which in eukaryotes enter the endoplasmic reticulum (ER), were subject to quality control decisions. In this review, we highlight early studies that ultimately led to the discovery that secreted and integral membrane proteins also utilize several components that constitute the cytoplasmic quality control machinery. This component of the cellular quality control pathway is known as ER associated degradation, or ERAD. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Maize production and land degradation: a Portuguese agriculture field case study

    Science.gov (United States)

    Ferreira, Carla S. S.; Pato, João V.; Moreira, Pedro M.; Valério, Luís M.; Guilherme, Rosa; Casau, Fernando J.; Santos, Daniela; Keizer, Jacob J.; Ferreira, António J. D.

    2016-04-01

    While food security is a main challenge faced by human kind, intensive agriculture often leads to soil degradation which then can threaten productivity. Maize is one of the most important crops across the world, with 869 million tons produced worldwide in 2012/2013 (IGC 2015), of which 929.5 thousand tons in Portugal (INE 2014). In Portugal, maize is sown in April/May and harvest occurs generally in October. Conventional maize production requires high inputs of water and fertilizers to achieve higher yields. As Portuguese farmers are typically rather old (on average, 63 years) and typically have a low education level (INE 2014), sustainability of their land management practises is often not a principal concern. This could explain why, in 2009, only 4% of the Portuguese temporary crops were under no-tillage, why only 8% of the farmers performed soil analyses in the previous three years, and why many soils have a low organic matter content (INE 2014). Nonetheless, sustainable land management practices are generally accepted to be the key to reducing agricultural soil degradation, preventing water pollution, and assuring long-term crop production objectives and food security. Sustainable land management should therefore not only be a concern for policy makers but also for farmers, since land degradation will have negative repercussions on the productivity, thus, on their economical income. This paper aims to assess the impact of maize production on soil properties. The study focusses on an 8 ha maize field located in central Portugal, with a Mediterranean climate on a gently sloping terrain (<3%) and with a soil classified as Eutric Fluvisol. On the field, several experiments were carried out with different maize varieties as well as with different fertilizers (solid, liquid and both). Centre pivot irrigation was largely used. Data is available from 2003, and concerns crop yield, fertilization and irrigation practices, as well as soil properties assessed through

  2. Reforming and filtration Dual membrane for the production of hydrogen by cracking reaction

    International Nuclear Information System (INIS)

    Hafsaoui, J.

    2009-02-01

    In a context of rarefaction and increasing of prices of fossil energetic resources, it is necessary to diversify the energetic offer. Hydrogen seems to be one of the most promising vectors, although technological matters associated to its production slow down its development. In this context, the present work aims at elaborating a system able to produce pure hydrogen from hydrocarbon, and in particularly from methane. It is constituted of three membranes, which specific roles are reforming, separation and restitution of molecular hydrogen. The first membrane is porous and is made of a cermet BaCe 0.85 Y 0.15 O 3-α / nickel. The second one is dense and is elaborated either simply from BaCe 0.85 Y 0.15 O 3-α , or from the same cermet as the first membrane, depending whether the system operates in a galvanic or in a non-galvanic mode. The last one is of the same nature and morphology as the first one. The three membranes are fabricated and coupled one with the others by the process called co-tape-casting in organic solvent followed by a step of co-sintering. Hydrogen enters then in the porosity of the first membrane where it is oxidized when meeting with triple phases boundaries. In a non-galvanic system, protons and electrons can go through the second membrane, following the percolating proton and ion conducting paths, to reach the third membrane. In a galvanic system, electrons are transported toward the third membrane via an external circuit, which imposes a voltage. At the third membrane triple phase boundaries, electrons and protons recombine to form pure molecular hydrogen. These two systems galvanic and non galvanic have been designed and fabricated, and the motivation that has led to the choice of the materials used was given at each step of the process. Thanks to the comprehension of the different phenomena taking place during operating conditions, a rather optimized process leading to a system of production and purification of hydrogen was realized

  3. Megalanthine, a bioactive sesquiterpenoid from Heliotropium megalanthum, its degradation products and their bioactivities.

    Science.gov (United States)

    Macías, Francisco A; Simonet, Ana M; D'Abrosca, Brigida; Maya, Claudia C; Reina, Matías; González-Coloma, Azucena; Cabrera, Raimundo; Giménez, Cristina; Villarroel, Luis

    2009-01-01

    The new bioactive sesquiterpenoid (3R,6E)-2,6,10-trimethyl-3-(3-p-hydroxyphenylpropanoyloxy)-dodeca-6,11-diene-2,10-diol, named megalanthine, was isolated from the resinous exudates of Heliotropium megalanthum. The degradation products of this compound were identified. Several plant-defensive properties (insecticidal, antifungal, and phytotoxic) were evaluated after obtaining positive results in a preliminary etiolated wheat coleoptile bioassay. This bioassay showed the need to have both the phenolic and sesquiterpene moieties of the natural product present to achieve a biological effect. This result was confirmed in phytotoxicity bioassays. Megalanthine was ruled out as a significant plant-plant defense agent because of its lack of stability. The positive results recorded in the antifungal and antifeedant tests suggest, however, that this chemical is relevant in several ecological interactions involving H. megalanthum.

  4. Gaseous products generated by radiation degradation of N,N-diethylhydroxylamine aqueous solution

    International Nuclear Information System (INIS)

    Wang Jinhua; Wang Shengxiu; Bao Borong; Li Zhen; Li Chun; Zheng Weifang; Zhang Shengdong

    2008-01-01

    In this paper, gaseous products generated by radiation degradation of N,N-diethylhydroxylamine (DEHA) in aqueous solution are studied. The results show that by 10-1000 kGy irradiation of the solution in DEHA concentration of 0.1-0.5 mol·L -1 , the gaseous products were mainly hydrogen, methane, ethane and ethene. The volume fraction of hydrogen did not change much with different concentrations of DEHA. The volume fraction of methane and ethane decreased, but that of ethene increased, with increasing DEHA concentration. The volume fraction of hydrogen, methane and ethane increased with the dose. The relationship of the volume fraction of ethene with the dose had something to do with the DEHA concentration. (authors)

  5. Reactivity of tributyl phosphate degradation products with nitric acid: Relevance to the Tomsk-7 accident

    International Nuclear Information System (INIS)

    Barney, G.S.; Cooper, T.D.

    1995-01-01

    The reaction of a degraded tributyl phosphate (TBP) solvent with nitric acid is thought to have caused the chemical explosion at the Tomsk-7 reprocessing plant at Tomsk, Russia in 1993. The estimated temperature of the organic layer was not high eneough to cause significant reaction of nitric acid with TBP or hydrocarbon diluent compounds. A more reactive organic compound was likely present in the organic layer that reacted with sufficient heat generation to raise the temperature to the point where an autocatalytic oxidation of the organic solvent was initiated. Two of the most likely reactive compounds that are present in degraded TBP solvents are n-butanol and n-butyl nitrate. The reactions of these compounds with nitric acid are the subject of this study. The objective of laboratory-scale tests was to identify chemical reactions that occur when n-butanol and n-butyl nitrate contact heated nitric acid solutions. Reaction products were identified and quantitified, the temperatures at which these reactions occur and heats of reaction were measured, and reaction variables (temperature, nitric acid concentration, organic concentration, and reaction time) were evaluated. Data showed that n-butyl nitrate is less reactive than n-butanol. An essentially complete oxidation reaction of n-butanol at 110-120 C produced four major reaction products. Mass spectrometry identified the major inorganic oxidation products for both n-butanol and n-butyl nitrate as nitric oxide and carbon dioxide. Calculated heats of reaction for n-butanol and n-butyl nitrate to form propionic acid, a major reaction product, are -1860 cal/g n-butanol and -953 cal/g n-butyl nitrate. These heats of reaction are significant and could have raised the temperature of the organic layer in the Tomsk-7 tank to the point where autocatalytic oxidation of other organic compounds present resulted in an explosion

  6. Plasma modified PLA electrospun membranes for actinorhodin production intensification in Streptomyces coelicolor immobilized-cell cultivations.

    Science.gov (United States)

    Scaffaro, Roberto; Lopresti, Francesco; Sutera, Alberto; Botta, Luigi; Fontana, Rosa Maria; Gallo, Giuseppe

    2017-09-01

    Most of industrially relevant bioproducts are produced by submerged cultivations of actinomycetes. The immobilization of these Gram-positive filamentous bacteria on suitable porous supports may prevent mycelial cell-cell aggregation and pellet formation which usually negatively affect actinomycete submerged cultivations, thus, resulting in an improved biosynthetic capability. In this work, electrospun polylactic acid (PLA) membranes, subjected or not to O 2 -plasma treatment (PLA-plasma), were used as support for immobilized-cell submerged cultivations of Streptomyces coelicolor M145. This strain produces different bioactive compounds, including the blue-pigmented actinorhodin (ACT) and red-pigmented undecylprodigiosin (RED), and constitutes a model for the study of antibiotic-producing actinomycetes. Wet contact angles and X-ray photoelectron spectroscopy analysis confirmed the increased wettability of PLA-plasma due to the formation of polar functional groups such as carboxyl and hydroxyl moieties. Scanning electron microscope observations, carried out at different incubation times, revealed that S. coelicolor immobilized-cells created a dense "biofilm-like" mycelial network on both kinds of PLA membranes. Cultures of S. coelicolor immobilized-cells on PLA or PLA-plasma membranes produced higher biomass (between 1.5 and 2 fold) as well as higher levels of RED and ACT than planktonic cultures. In particular, cultures of immobilized-cells on PLA and PLA-plasma produced comparable levels of RED that were approximatively 4 and 5 fold higher than those produced by planktonic cultures, respectively. In contrast, levels of ACT produced by immobilized-cell cultures on PLA and PLA-plasma were different, being 5 and 10 fold higher than those of planktonic cultures, respectively. Therefore, this is study demonstrated the positive influence of PLA membrane on growth and secondary metabolite production in S. coelicolor and also revealed that O 2 -plasma treated PLA membranes

  7. Reverse membrane bioreactor: Introduction to a new technology for biofuel production.

    Science.gov (United States)

    Mahboubi, Amir; Ylitervo, Päivi; Doyen, Wim; De Wever, Heleen; Taherzadeh, Mohammad J

    2016-01-01

    The novel concept of reverse membrane bioreactors (rMBR) introduced in this review is a new membrane-assisted cell retention technique benefiting from the advantageous properties of both conventional MBRs and cell encapsulation techniques to tackle issues in bioconversion and fermentation of complex feeds. The rMBR applies high local cell density and membrane separation of cell/feed to the conventional immersed membrane bioreactor (iMBR) set up. Moreover, this new membrane configuration functions on basis of concentration-driven diffusion rather than pressure-driven convection previously used in conventional MBRs. These new features bring along the exceptional ability of rMBRs in aiding complex bioconversion and fermentation feeds containing high concentrations of inhibitory compounds, a variety of sugar sources and high suspended solid content. In the current review, the similarities and differences between the rMBR and conventional MBRs and cell encapsulation regarding advantages, disadvantages, principles and applications for biofuel production are presented and compared. Moreover, the potential of rMBRs in bioconversion of specific complex substrates of interest such as lignocellulosic hydrolysate is thoroughly studied. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Defect production in Ar irradiated graphene membranes under different initial applied strains

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Asencio, J., E-mail: jesusmartinez@ua.es [Dept. Física Aplicada, Facultad de Ciencias, Fase II, Universidad de Alicante, Alicante E-036090 (Spain); Ruestes, C.J.; Bringa, E. [CONICET and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500 (Argentina); Caturla, M.J. [Dept. Física Aplicada, Facultad de Ciencias, Fase II, Universidad de Alicante, Alicante E-036090 (Spain)

    2017-02-15

    Highlights: • Defects in graphene membranes are formed due to 140 eV Ar ions irradiation using MD. • Different initial strains are applied, which influence the type and number of defects. • Mono-vacancies, di-vacancies and tri-vacancies production behaves linearly with dose. • The total number of defects under compression is slightly higher than under tension. - Abstract: Irradiation with low energy Ar ions of graphene membranes gives rise to changes in the mechanical properties of this material. These changes have been associated to the production of defects, mostly isolated vacancies. However, the initial state of the graphene membrane can also affect its mechanical response. Using molecular dynamics simulations we have studied defect production in graphene membranes irradiated with 140 eV Ar ions up to a dose of 0.075 × 10{sup 14} ions/cm{sup 2} and different initial strains, from −0.25% (compressive strain) to 0.25% (tensile strain). For all strains, the number of defects increases linearly with dose with a defect production of about 80% (80 defects every 100 ions). Defects are mostly single vacancies and di-vacancies, although some higher order clusters are also observed. Two different types of di-vacancies have been identified, the most common one being two vacancies at first nearest neighbours distance. Differences in the total number of defects with the applied strain are observed which is related to the production of a higher number of di-vacancies under compressive strain compared to tensile strain. We attribute this effect to the larger out-of-plane deformations of compressed samples that could favor the production of defects in closer proximity to others.

  9. Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingzhan; Shi, Kaichuang; Yoo, Dongwan, E-mail: dyoo@illinois.edu

    2016-02-15

    Type I interferons (IFN-α/β) are the major components of the innate immune response of hosts, and in turn many viruses have evolved to modulate the host response during infection. We found that the IFN-β production was significantly suppressed during PEDV infection in cells. To identify viral IFN antagonists and to study their suppressive function, viral coding sequences for the entire structural and nonstructural proteins were cloned and expressed. Of 16 PEDV nonstructural proteins (nsps), nsp1, nsp3, nsp7, nsp14, nsp15 and nsp16 were found to inhibit the IFN-β and IRF3 promoter activities. The sole accessory protein ORF3, structure protein envelope (E), membrane (M), and nucleocapsid (N) protein were also shown to inhibit such activities. PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP) by degrading CBP. A further study showed that the CBP degradation by nsp1 was proteasome-dependent. Our data demonstrate that PEDV modulates the host innate immune responses by degrading CBP and suppressing ISGs expression. - Highlights: • PEDV modulates the host innate immune system by suppressing the type I interferon production and ISGs expression. • Ten viral proteins were identified as IFN antagonists, and nsp1 was the most potent viral IFN antagonist. • PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP). • PEDV nsp1 caused the CBP degradation in the nucleus, which may be the key mechanism for PEDV-mediated IFN downregulation.

  10. Efficient photocatalytic degradation of gaseous N,N-dimethylformamide in tannery waste gas using doubly open-ended Ag/TiO2 nanotube array membranes

    Science.gov (United States)

    Zhao, Yang; Ma, Lin; Chang, Wenkai; Huang, Zhiding; Feng, Xugen; Qi, Xiaoxia; Li, Zenghe

    2018-06-01

    Gaseous N,N-dimethylformamide (DMF), typical volatile organic compound exhausted from manufacturing factories, may damage the health of workers under long-term exposure even at low levels. The defined geometry, porous surface and highly ordered channels make the free-standing anodic TiO2 nanotube (TiNT) arrays particularly suitable for applications of practical air purification by flow-through photocatalysis. In the present work, crystallized doubly open-ended Ag/TiNT array membranes were designed and prepared by employing a lift-off process based on an anodization-annealing-anodization-etching sequence, followed by uniform Ag nanoparticles decoration. For the photocatalytic degradation of gaseous DMF at low concentration levels close to that found in realistic pollutant air, an analytical methodology for the monitoring and determination of degradation process was developed based on the coupling of headspace sampling with gas chromatography mass spectrometry (HS-GC-MS). The doubly open-ended Ag/TiNT arrays exhibited higher removal efficiency of gaseous DMF from air compared with conventional bottom-closed Ag/TiNT arrays and pure bottomless TiNT arrays. These results indicated that the photocatalytic properties of TiNT arrays were improved with the open-bottom morphology and the Ag nanoparticles decoration. Based on the analysis with GC-MS and high performance ion chromatography (HPIC), it was found that demethylation is the main pathway of DMF degradation in photocatalytic reactions. Furthermore, decontamination of actual polluted tannery waste gas collected in leather factory proved that the photocatalysis on doubly open-ended Ag/TiNT array membrane is an efficient way and a promising application to treat air contaminated by DMF despite the complexity of various volatile organic compounds.

  11. Viability in the production of a drug extracted from Ananas comosus by a flat membrane system

    Directory of Open Access Journals (Sweden)

    Francisco Luiz Gumes Lopes

    2012-06-01

    Full Text Available The aim of this work was to study the production of e bromelain from the Ananas comosus L. Merril, by determining the process conditions using flat membranes. The production system modeling generated a hyperbolical curve and the optimization by response surfaces showed an influence of the transmembrane pressure higher than the pH influence. The cost of the production of bromelain from A. comosus was estimated 9 to 13 times lower than Sigma's retail sales price and 6.5 to 8.5 times lower than when this enzyme was obtained through a liquid-liquid extraction, which showed the economical feasibility of the process.

  12. Production of hydrogen from bio-ethanol in catalytic membrane reactor

    International Nuclear Information System (INIS)

    Gernot, E.; Aupretre, F.; Deschamps, A.; Etievant, C.; Epron, F.; Marecot, P.; Duprez, D.

    2006-01-01

    Production of hydrogen from renewable energy sources offers a great potential for CO 2 emission reduction, responsible for global warming. Among renewable energies, liquid biofuels are very convenient hydrogen carriers for decentralized applications such as micro-cogeneration and transports. Ethanol, produced from sugar plants and cereals, allows a reduction of more than 60% of CO 2 emissions in comparison to gasoline. BIOSTAR is an R and D project, co-funded by the French Agency for Environment and Energy Management (ADEME) which aims at developing an efficient source of hydrogen from bio-ethanol, suitable for proton exchange membrane fuel cell systems. The objectives are to obtain, through catalytic process at medium temperature range, an efficient conversion of bio-ethanol into pure hydrogen directly usable for PEMFC. CETH has developed a catalytic membrane reformer (CMR), based on a patented technology, integrating a steam reforming catalyst as well as a combustion catalyst. Both catalysts have been developed and optimized for membrane reactor in partnership with the University of Poitiers. The composite metallic membrane developed by CETH allows hydrogen extraction near the hydrogen production sites, which enhances both efficiency and compactness. (authors)

  13. Ethanol production in a membrane bioreactor: pilot-scale trials in a corn wet mill.

    Science.gov (United States)

    Escobar, J M; Rane, K D; Cheryan, M

    2001-01-01

    Pilot plant trials were conducted in a corn wet mill with a 7000-L membrane recycle bioreactor (MRB) that integrated ceramic microfiltration membranes in a semi-closed loop configuration with a stirred-tank reactor. Residence times of 7.5-10 h with ethanol outputs of 10-11.5% (v/v) were obtained when the cell concentration was 60-100 g/L dry wt of yeast, equivalent to about 10(9)-10(10) cells/mL. The performance of the membrane was dependent on the startup mode and pressure management techniques. A steady flux of 70 L/(m2 x h) could be maintained for several days before cleaning was necessary. The benefits of the MRB include better productivity; a clear product stream containing no particulates or yeast cells, which should improve subsequent stripping and distillation operations; and substantially reduced stillage handling. The capital cost of the MRB is $21-$34/(m3 x yr) ($0.08-$0.13/[gal x yr]) of ethanol capacity. Operating cost, including depreciation, energy, membrane replacement, maintenance, labor, and cleaning, is $4.5-9/m3 ($0.017-$0.034/gal) of ethanol.

  14. Photochemical hydrogen production through solar radiation by means of the membrane principle

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    This report was written by Enelbert Broda from the University of Vienna for the UNESCO-Solar-Energy-Symposium in Geneva in 1976. Nuclear experts are considering a 'hydrogen economy' where H 2 serves as a fuel to make electricity, as a chemical reactant, as a metallurgical reductant and as a source of food. Now H 2 could also be made by photolysis of water. Theoretically, a quantum of green light carries enough energy for the reaction H 2 0 = H 2 + 0.5 0 2 . With long-wave light, photolysis could be achieved by combination of 2 quanta. Yet attempts to photolyze water, in presence of sensitizers (photocatalysts), have failed. In the last analysis, this is due to re-combination of the primary, highly reactive, products of the photochemical reaction. A solution of the problem is to be found by the spatial separation of the primary production by development of suitable membranes where these products, and therefore also the stable gases H 2 and 0 2 , come out on opposite sides. The feasibility of this 'membrane principle' has been shown in Nature for 3 giga-years. Using membranes, all photosynthetic cells (photosynthetic bacteria and plants) succeed in the photo-production of a reductant (in many cases at least ferredoxin in the reduced form) with a redox potential equal to that of H 2 in neutral solution (-0.4 v). The reductant can, but need not, be used by the cells for C0 2 assimilation. In man-made technology, the reducing power would be diverted as H 2 . Here it is not suggested to use or copy living cells. Rather their operation is to be studied so that technically useful membranes for water photolysis can be constructed abiotically. The scientific and practical aspects of large-scale photolytic H 2 production are discussed. (author)

  15. Chromatographic determination of itopride hydrochloride in the presence of its degradation products.

    Science.gov (United States)

    Kaul, Neeraj; Agrawal, Himani; Maske, Pravin; Rao, Janhavi Ramchandra; Mahadik, Kakasaheb Ramoo; Kadam, Shivajirao S

    2005-08-01

    Two sensitive and reproducible methods are described for the quantitative determination of itopride hydrochloride (IH) in the presence of its degradation products. The first method is based on HPLC separation on a reversed phase Kromasil column [C18 (5-microm, 25 cm x 4.6 mm, ID)] at ambient temperature using a mobile phase consisting of methanol and water (70:30, v/v) adjusted to pH 4.0 with orthophosphoric acid with UV detection at 258 nm. The flow rate was 1.0 mL per min with an average operating pressure of 180 kg/cm2. The second method is based on HPTLC separation on silica gel 60 F254 using toluene:methanol:chloroform:10% ammonia (5.0:3.0:6.0:0.1, v/v/v/v) as mobile phase at 270 nm. The analysis of variance (ANOVA) and Student's t-test were applied to correlate the results of IH determination in dosage form by means of HPLC and HPTLC methods. The drug was subjected to acid and alkali hydrolysis, oxidation, dry heat, wet heat treatment, UV, and photodegradation. The proposed HPLC method was utilized to investigate the kinetics of the acidic, alkaline, and oxidative degradation processes at different temperatures and the apparent pseudo-first-order rate constant, half-life, and activation energy were calculated. In addition the pH-rate profile of degradation of IH in constant ionic strength buffer solutions in the pH range 2-11 was studied.

  16. Precipitation of organic arsenic compounds and their degradation products during struvite formation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jin-Biao; Yuan, Shoujun [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Wang, Wei, E-mail: dwhit@126.com [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Hu, Zhen-Hu, E-mail: zhhu@hfut.edu.cn [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Yu, Han-Qing [Department of Chemistry, University of Science & Technology of China, Hefei 230026 (China)

    2016-11-05

    Highlights: • Organic and inorganic arsenic compounds precipitated during struvite formation. • Precipitation of organic arsenic compounds in struvite decreased with increasing pH. • Arsenate easily precipitate in struvite as compared to organic arsenic compounds. • Arsenic compounds in solution affected the shape of struvite crystallization products. - Abstract: Roxarsone (ROX) and arsanilic acid (ASA) have been extensively used as organoarsenic animal feed additives. Organic arsenic compounds and their degradation products, arsenate (As(V)) and arsenite (As(III)), exist in the effluent from anaerobic reactors treating animal manure contaminated by ROX or ASA with ammonium (NH{sub 4}{sup +}-N) and phosphate (PO{sub 4}{sup 3−}-P) together. Therefore, arsenic species in the effluent might be involved in the struvite formation process. In this study, the involvement of organic arsenic compounds and their degradation products As(V) and As(III) in the struvite crystallization was investigated. The results demonstrated that arsenic compounds did not substantially affect the PO{sub 4}{sup 3−}-P recovery, but confirmed the precipitation of arsenic during struvite formation. The precipitation of arsenic compounds in struvite was considerably affected by a solution pH from 9.0 to 11.0. With an increase in pH, the content of ASA and ROX in the precipitation decreased, but the contents of As(III) and As(V) increased. In addition, the arsenic content of As(V) in the struvite was higher than that of As(III), ASA and ROX. The results indicated that the struvite could be contaminated when the solution contains arsenic species, but that could be minimized by controlling the solution pH and maintaining anaerobic conditions during struvite formation.

  17. Degradation of fluoroquinolone antibiotics during ionizing radiation treatment and assessment of antibacterial activity, toxicity and biodegradability of the products

    Science.gov (United States)

    Tegze, Anna; Sági, Gyuri; Kovács, Krisztina; Homlok, Renáta; Tóth, Tünde; Mohácsi-Farkas, Csilla; Wojnárovits, László; Takács, Erzsébet

    2018-06-01

    This work aimed at investigating the ionizing radiation induced degradation of two fluoroquinolone antibiotics: norfloxacin and ciprofloxacin. At 0.1 mmol dm-3 concentration a low dose, 2 kGy was sufficient to degrade the initial molecules. However, despite of the high removal efficiency the degrees of both the mineralization and the oxidation were low, ∼10% and ∼25%, respectively. (The difference between the results obtained in norfloxacin and ciprofloxacin solutions was not statistically significant.) Broth microdilution tests carried out on Staphylococcus aureus evidenced removal of antibacterial activity in samples irradiated with 2 kGy. Acute toxicity determined on Vibrio fischeri bacteria showed increased toxicity at low doses indicating that the early degradation products were more toxic than the initial molecules. The results of biodegradation experiments performed in activated sludge have shown that the degradation products have become available to the metabolic processes of the microorganisms.

  18. Yeast Extract Promotes Cell Growth and Induces Production of Polyvinyl Alcohol-Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Min Li

    2011-01-01

    Full Text Available Polyvinyl alcohol-degrading enzymes (PVAases have a great potential in bio-desizing processes for its low environmental impact and low energy consumption. In this study, the effect of yeast extract on PVAases production was investigated. A strategy of four-point yeast extract addition was developed and applied to maximize cell growth and PVAases production. As a result, the maximum dry cell weight achieved was 1.48 g/L and the corresponding PVAases activity was 2.99 U/mL, which are 46.5% and 176.8% higher than the control, respectively. Applying this strategy in a 7 L fermentor increased PVAases activity to 3.41 U/mL. Three amino acids (glycine, serine, and tyrosine in yeast extract play a central role in the production of PVAases. These results suggest that the new strategy of four-point yeast extract addition could benefit PVAases production.

  19. Degradation of materials under conditions of thermochemical cycles for hydrogen production

    International Nuclear Information System (INIS)

    Klimas, S.J.; Searle, H.; Stolberg, L.

    2010-01-01

    A capsule method has been developed and employed to measure the degradation rates of selected materials under some of the most challenging conditions relevant to the sulphur-iodine (SI) and the copper-chlorine (Cu-Cl) thermochemical cycles for hydrogen production. The materials tested so far include metals and engineering alloys, structural and functional polymers, elastomers, carbon-based materials, ceramics and glasses, and composites. A number of characterization methods have been used to detect and quantify the degradation of the diverse materials and, when feasible, establish the mode of attack. The paper details the results of this ongoing experimental investigation. The investigation currently focuses on the copper-chlorine hybrid cycle. The environment representative of the conditions in the electrolyser subsystem was approximated with an aqueous solution of hydrochloric acid (13.6 mol/kg), copper(II) chloride (1.36 mol/kg) and copper(I) chloride (1.36 mol/kg) at 160°C and 2.5 MPa (absolute). The current (tentative) recommendations for the selection of the materials required for the construction of the electrolyser subsystem of the copper-chlorine hybrid cycle, and the associated rationale, are presented and discussed. (author)

  20. Natural attenuation of trichloroethene and its degradation products at a lake-shore site

    International Nuclear Information System (INIS)

    An, Youn-Joo; Kampbell, Donald H.; Weaver, James W.; Wilson, John T.; Jeong, Seung-Woo

    2004-01-01

    Subsurface contamination by trichloroethene (TCE) was detected at a Michigan National Priorities List (NPL) site in 1982. The TCE plume resulted from the disposal of spent solvent and other chemicals at an industrial facility located in the eastern shore of Lake Michigan. TCE degradation products of three dichloroethene (DCE) isomers, vinyl chloride (VC) and ethene were present. The plume was depleted of oxygen and methanogenic at certain depths. Transects of the plume were sampled by slotted auger borings the year after the TCE plume was first discovered. Water samples were also taken from lake sediments to a depth of 12 m about 100 m offshore. Later samples were taken along the shoreline of the lake with a hand-driven probe. Later in 1998 water was taken from sediments about 3-m from the shoreline. The average concentration of each chemical and net apparent base coefficient between appropriate pairs of transects between the lower site and lakeshore were calculated. Loss rates were then calculated from an analytical solution of the two-dimensional advective-dispersive-reactive transport equation. Net apparent rate coefficients and a set of coupled reaction rate equations were used to extract the apparent loss coefficients. This study showed the field evidence for natural attenuation of TCE. - Field investigation of TCE contamination at a lake-shore site indicates that TCE is anaerobically degrading under ambient conditions

  1. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mireille eHaon

    2015-09-01

    Full Text Available Filamentous fungi are the predominant source of lignocellulolytic enzymes used in industry for the transformation of plant biomass into high-value molecules and biofuels. The rapidity with which new fungal genomic and post-genomic data are being produced is vastly outpacing functional studies. This underscores the critical need for developing platforms dedicated to the recombinant expression of enzymes lacking confident functional annotation, a prerequisite to their functional and structural study. In the last decade, the yeast Pichia pastoris has become increasingly popular as a host for the production of fungal biomass-degrading enzymes, and particularly carbohydrate-active enzymes (CAZymes. This study aimed at setting-up a platform to easily and quickly screen the extracellular expression of biomass-degrading enzymes in Pichia pastoris. We first used three fungal glycoside hydrolases that we previously expressed using the protocol devised by Invitrogen to try different modifications of the original protocol. Considering the gain in time and convenience provided by the new protocol, we used it as basis to set-up the facility and produce a suite of fungal CAZymes (glycoside hydrolases, carbohydrate esterases and auxiliary activity enzyme families out of which more than 70% were successfully expressed. The platform tasks range from gene cloning to automated protein purifications and activity tests, and is open to the CAZyme users’ community.

  2. Reaction of plasmic degradation products of fibrinogen in the radioimmunoassay of human fibrinopeptide A

    International Nuclear Information System (INIS)

    Budzynski, A.Z.; Marder, V.J.; Sherry, S.

    1975-01-01

    A radioimmunoassay (RIA) technique has been devised for the measurement of human fibrinopeptide A (FPA). The system utilizes rabbit antiserum to native human FPA and a synthetic fibrinopeptide, with tyrosine substituted for phenylanine in amino acid position 8. The test detects native human FPA at a concentration of 0.1 ng/ml, but does not cross react with human fibrinopeptide B or with fibrinopeptides A from canine, porcine, or bovine fibrinogen. Fibrinogen and chemical or plasmic degradation products with 2 moles of FPA per mole react fully in this test system. This includes the large-molecular-weight intermediate fragments X and Y and the NH 2 -terminal disulfide knot, and indicates that this antibody recognizes and reacts with FPA in the presence of the contiguous peptide structures presents in fibrinogen. Fragment E, which is derived from the NH 2 -terminal portion of fibrinogen, loses most of its FPA content after its liberation from its precursor derivative and reacts to a lesser extent in the RIA than do fragments X and Y. This correlates with the recovery of FPA-positive material from ultrafiltrates of extensive but not partial plasmic digests of fibrinogen. Although FPA immunoreactivity liberated from fibrinogen does not necessarily reflect thrombin activity and/or fibrin formation, only extensive plasmic degradation yields peptide material which reacts in this RIA system. This should not be a serious limitation to the application of the RIA in the detection of venous thrombosis. (U.S.)

  3. Effect of the vitamin D photosynthesis products on thermodynamic parameters of model lipid membranes

    Directory of Open Access Journals (Sweden)

    Lisetski L. N.

    2012-04-01

    Full Text Available Aim. To compare effects of vitamin D (VitD, provitamin D (ProD and its photo- and thermoisomerization products on thermodynamical parameters of hydrated dipalmitoylphoshpatidylcholine (DPPC multilayers. Methods. Differential scanning calorimetry, UV spectroscopy. Results. A regular decrease was established in the melting temperature accompanied with the pronounced broadening of the appropriate peaks for DPPC multilayers doped with the sterols in the order ProD3 < < ProD3 + UV < ProD3 + UV + dark storage < VitD3. Conclusions. The destabilizing effect of VitD3 on the membrane appeared to be stronger than that of ProD3 and its photoisomerization products. This can facilitate VitD3 withdrawal from the membrane into intercellular space under its biosinthesis in vivo. A possible molecular mechanism of the phenomena observed is related to the higher conformational flexibility and anisometry of VitD3 as compared to ProD3.

  4. Development of membrane technology for production of concentrated fertilizer and clean water

    DEFF Research Database (Denmark)

    Camilleri Rumbau, Maria Salud

    The global increasing livestock production is reflected in a high rate of animal waste production, commonly known as manure or animal slurry. These effluents are rich in nutrients such as nitrogen, phosphorus and potassium. Solid-liquid separation of farm effluents is a common practice...... for obtaining a phosphorus-rich fraction and a liquid fraction rich in nitrogen and potassium. However, the nutrient concentration in the obtained liquid fractions remains unbalanced due to the high water content. Membrane technologies have previously proved to be a suitable technology for separation....... During FO processing of digestate liquid fractions, membranes were able to retain ammonia nitrogen -TAN while using a highly saline wastewater from a tannery beam house. A salt rejection higher than 90% was achieved along the experiments. However, when acidification of the feed digestate liquid fraction...

  5. Spatial variation in biodiversity, soil degradation and productivity in agricultural landscapes in the highlands of Tigray, northern Ethiopia

    NARCIS (Netherlands)

    Hadgu, K.M.; Rossing, W.A.H.; Kooistra, L.; Bruggen, van A.H.C.

    2009-01-01

    There is a growing concern about food security and sustainability of agricultural production in developing countries. However, there are limited attempts to quantify agro-biodiversity losses and relate these losses to soil degradation and crop productivity, particularly in Tigray, Ethiopia. In this

  6. Why do forest products become less available? A pan-tropical comparison of drivers of forest-resource degradation

    NARCIS (Netherlands)

    Hermans, Kathleen; Gerstner, Katharina; Geijzendorffer, Ilse R.; Herold, Martin; Seppelt, Ralf; Wunder, Sven

    2016-01-01

    Forest products provide an important source of income and wellbeing for rural smallholder communities across the tropics. Although tropical forest products frequently become over-exploited, only few studies explicitly address the dynamics of degradation in response to socio-economic drivers. Our

  7. Lifetime design strategy for binary geothermal plants considering degradation of geothermal resource productivity

    International Nuclear Information System (INIS)

    Budisulistyo, Denny; Wong, Choon Seng; Krumdieck, Susan

    2017-01-01

    Highlights: • A new lifetime strategy for binary plants considering thermal resource degradations. • The net present value and energy return on investment are selected as indicators. • The results indicate that the design based on point 2 has the best revenue. • Improving plant performance by parameters adjustments and adaptable designs. - Abstract: This work proposes a lifetime design strategy for binary geothermal plants which takes into account heat resource degradation. A model of the resource temperature and mass flow rate decline over a 30 year plant life is developed from a survey of data. The standard approach to optimise a basic subcritical cycle of n-pentane working fluid and select component sizes is used for the resource characteristics in years 1, 7, 15 and 30. The performances of the four plants designed for the different resource conditions are then simulated over the plant life to obtain the best lifetime design. The net present value and energy return on investment are selected as the measures of merit. The production history of a real geothermal well in the Taupo Volcanic Zone, New Zealand, is used as a case study for the lifetime design strategy. The results indicate that the operational parameters (such as mass flow rate of n-pentane, inlet turbine pressure and air mass flow rate) and plant performance (net power output) decrease over the whole plant life. The best lifetime plant design was at year 7 with partly degraded conditions. This condition has the highest net present value at USD 6,894,615 and energy return on investment at 4.15. Detailed thermo-economic analysis was carried out with the aim of improving the plant performance to overcome the resource degradation in two ways: operational parameters adjustments and adaptable designs. The results shows that mass flow rates of n-pentane and air cooling should be adjusted to maintain the performance over the plant life. The plant design can also be adapted by installing a recuperator

  8. System design study of a membrane reforming hydrogen production plant using a small sized sodium cooled reactor

    International Nuclear Information System (INIS)

    Chikazawa, Y.; Konomura, M.; Hori, T.; Sato, H.; Uchida, S.

    2004-01-01

    In this study, a membrane reforming hydrogen production plant using a small sized sodium cooled reactor was designed as one of promising concepts. In the membrane reformer, methane and steam are reformed into carbon dioxide and hydrogen with sodium heat at a temperature 500 deg-C. In the equilibrium condition, steam reforming proceeds with catalyst at a temperature more than 800 deg-C. Using membrane reformers, the steam reforming temperature can be decreased from 800 to 500 deg-C because the hydrogen separation membrane removes hydrogen selectively from catalyst area and the partial pressure of hydrogen is kept much lower than equilibrium condition. In this study, a hydrogen and electric co-production plant has been designed. The reactor thermal output is 375 MW and 25% of the thermal output is used for hydrogen production (70000 Nm 3 /h). The hydrogen production cost is estimated to 21 yen/Nm 3 but it is still higher than the economical goal (17 yen/Nm 3 ). The major reason of the high cost comes from the large size of hydrogen separation reformers because of the limit of hydrogen separation efficiency of palladium membrane. A new highly efficient hydrogen separation membrane is needed to reduce the cost of hydrogen production using membrane reformers. There is possibility of multi-tube failure in the membrane reformers. In future study, a design of measures against tube failure and elemental experiments of reaction between sodium and reforming gas will be needed. (authors)

  9. Comparative scanning electron microscope study of the degradation of a plasticized polyvinyl chloride waterproofing membrane in different conditions

    International Nuclear Information System (INIS)

    Pedrosa, A.; Del Río, M.

    2017-01-01

    This paper discusses the analysis of several samples of a plasticized polyvinyl chloride (PVC-P) waterproofing membrane. The samples were extracted from different areas of the same flat roof, which was in service for over 12 years. An original sample of an identical PVC-P membrane that was not installed on the roof was also analyzed. The analysis of the materials was carried out using a scanning electron microscope (SEM). An elemental analysis of every sample was also performed by energy dispersive X-ray spectroscopy (EDS). Micrographs and the elemental composition of the samples were compared with the data obtained in the analysis of the original sample. The results show dehydrochlorination of the polymer in two of the samples studied and great deterioration that was not visible to the naked eye in the sample that was totally exposed to the weather. [es

  10. In-situ radiation grafting of polymer films and degradation studies of monomers for applications in fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Mitov, S.

    2007-02-15

    The present work consists of three parts which deal with the optimization of the properties of polymers finding application as proton exchange membranes in PEMFCs. The focus is the oxidative and photochemical stability of non-fluorinated polymer membranes, as well as the radiation-induced grafting of commercially available fluoropolymer films. The use of the ESR technique is common for the first two parts of the dissertation. ESR spectroscopy is the major method of study, because of its sensitivity and specificity for the detection of radical intermediates. It is a suitable spectroscopic technique to identify the nature of radiation generated radicals in organic polymers, and to monitor their concentration in-situ during the grafting process. The third part comprises the results and discussions of DFT calculations for non-fluorinated and fluorinated fragments.

  11. Ethanol production in an integrated fermentation/membrane system. Process simulations and economics

    Energy Technology Data Exchange (ETDEWEB)

    Groot, W J; Kraayenbrink, M R; Lans, R.G.J.M. van der; Luyben, K C.A.M. [Delft Univ. of Technology (Netherlands). Dept. of Biochemical Engineering

    1993-01-01

    Four systems comprising of an ethanol fermentation integrated with microfiltration and/or pervaporation, and a conventional continuous culture, were compared with respect to the performance of the fermentation and economics. The processes are compared on the basis of the same kinetic model. It is found that cell retention by microfiltration leads to lower production costs, compared to a conventional continuous culture. Pervaporation becomes profitable at a high selectivity of ethanol/water separation and low membrane prices. (orig.).

  12. [Determination of sennosides and degraded products in the process of sennoside metabolism by HPLC].

    Science.gov (United States)

    Sun, Yan; Li, Xuetuo; Yu, Xingju

    2004-01-01

    A method for the separation and determination of sennosides A and B and the main composition (sennidins A and B) in degraded products of sennosides by linear gradient high performance liquid chromatography has been developed. Separation conditions were as follows: column, a Spherisorb C18 column (250 mm x 4.6 mm i.d., 10 microm); column temperature, 40 degrees C; detection wavelength, 360 nm; mobile phase A, 1.25% acetic acid aqueous solution; mobile phase B, methanol; linear gradient, 100% A --> (20 min) 100% B. The method is effective, quick, accurate and reproducible. The satisfactory results show that this new method has certain practical values as an approach of real-time analysis in the process of sennoside metabolism.

  13. Procyanidin A2 and Its Degradation Products in Raw, Fermented, and Roasted Cocoa.

    Science.gov (United States)

    De Taeye, Cédric; Caullet, Gilles; Eyamo Evina, Victor Jos; Collin, Sonia

    2017-03-01

    Cocoa is known as an important source of flavan-3-ols, but their fate "from the bean to the bar" is not yet clear. Here, procyanidin A2 found in native cocoa beans (9-13 mg/kg) appeared partially epimerized into A2 E1 through fermentation, whereas a second epimer (A2 E2 ) emerged after roasting. At m/z 575, dehydrodiepicatechin A was revealed to be the major HPLC peak before fermentation, whereas F1, a marker of well-conducted fermentations, becomes the most intense after roasting. RP-HPLC-ESI(-)-HRMS/MS analysis performed on a procyanidin A2 model medium after 12 h at 90 °C revealed many more degradation products than those identified in fermented cocoa, including the last epimer of A2, A2 open structure intermediates (m/z 577), and oxidized A-type dimers (m/z 573).

  14. Gas production due to alpha particle degradation of polyethylene and polyvinylchloride

    International Nuclear Information System (INIS)

    Reed, D.T.; Hoh, J.; Emery, J.; Okajima, S.; Krause, T.

    1998-07-01

    Alpha particle degradation experiments were performed on polyethylene (PE) and polyvinylchloride (PVC) plastic samples typical of Westinghouse Savannah River Company (WSRC) transuranic (TRU) waste. This was done to evaluate the effects of sealing TRU waste during shipment. Experiments were conducted at three temperatures using low dose rates. Predominant products from both plastics were hydrogen, carbon dioxide, and various organic species, with the addition of hydrochloric acid from PVC. In all experiments, the total pressure decreased. Irradiation at 30 and 60 C and at various dose rates caused small changes for both plastics, but at 100 C coupled thermal-radiolytic effects included discoloration of the material as well as large differences in the gas phase composition

  15. Thermal degradation products of saccharides: effect study over Escherichia coli K12S cells

    International Nuclear Information System (INIS)

    Oliveira, R.L.B.C. de.

    1980-01-01

    The heat sterilization of reducing sugars, in the presence of phosphates, in alkaline pH, promotes caramelization reactions, yielding a serie of degradation products. Among them, aldehyde-like compounds seem to be responsible for the decrease in viability of DNA repair-proficient E.coli cells. A positive interaction between toxic solutions and UV-radiation effects is observed in these cells. The sinergism UV-toxic solutions varies in function of post-irradiation time and is dependent on UV dose, indicating the interference of repair processes in toxicity. The effect of non-reducing sugars on cellular viability is negligible, suggesting that toxic substances generation is linked to the presence of at least a free carbonyl group in sugar structure. All tested reducing sugars, when experimental conditions remained constant, have similarly shaped inactivation kinetics and their effects are equally inhibited by catalase activity, during incubation. (author)

  16. Coilin phosphomutants disrupt Cajal body formation, reduce cell proliferation and produce a distinct coilin degradation product.

    Directory of Open Access Journals (Sweden)

    Zunamys I Carrero

    Full Text Available Coilin is a nuclear phosphoprotein that accumulates in Cajal bodies (CBs. CBs participate in ribonucleoprotein and telomerase biogenesis, and are often found in cells with high transcriptional demands such as neuronal and cancer cells, but can also be observed less frequently in other cell types such as fibroblasts. Many proteins enriched within the CB are phosphorylated, but it is not clear what role this modification has on the activity of these proteins in the CB. Coilin is considered to be the CB marker protein and is essential for proper CB formation and composition in mammalian cells. In order to characterize the role of coilin phosphorylation on CB formation, we evaluated various coilin phosphomutants using transient expression. Additionally, we generated inducible coilin phosphomutant cell lines that, when used in combination with endogenous coilin knockdown, allow for the expression of the phosphomutants at physiological levels. Transient expression of all coilin phosphomutants except the phosphonull mutant (OFF significantly reduces proliferation. Interestingly, a stable cell line induced to express the coilin S489D phosphomutant displays nucleolar accumulation of the mutant and generates a N-terminal degradation product; neither of which is observed upon transient expression. A N-terminal degradation product and nucleolar localization are also observed in a stable cell line induced to express a coilin phosphonull mutant (OFF. The nucleolar localization of the S489D and OFF coilin mutants observed in the stable cell lines is decreased when endogenous coilin is reduced. Furthermore, all the phosphomutant cells lines show a significant reduction in CB formation when compared to wild-type after endogenous coilin knockdown. Cell proliferation studies on these lines reveal that only wild-type coilin and the OFF mutant are sufficient to rescue the reduction in proliferation associated with endogenous coilin depletion. These results emphasize

  17. Development of chromatographic methods for analysis of sulfamethoxazole, trimethoprim, their degradation products and preservatives in syrup

    Directory of Open Access Journals (Sweden)

    Perović Ivana

    2014-01-01

    Full Text Available In this paper the experimental conditions for optimal reversed-phase liquid chromatographic (RP-HPLC determination of sulfamethoxazole, trimethoprim and preservatives, as well as degradation products of sulfamethoxazole and trimethoprim in syrup were defined. The determination of active compounds and preservatives was carried out on Zorbax Eclipse XDB-C18, 150 mm × 4.6 mm, 5 μm particle size column, mobile phase flow rate was 1.5 mL min-1, and detection at 235 nm for the active compounds and 254 nm for preservatives. Mobile phase A consisted of 150 mL of acetonitrile, 850 mL of water and 1 mL of triethanolamine (pH 5.90 adjusted with diluted acetic acid, while mobile phase B was acetonitrile. The mobile phase ratio was defined by the gradient program. For the determination of degradation products Zorbax Eclipse Plus C18, 100 mm x 4.6 mm, 3.5 μm particle size column was used, the mobile phase flow rate was 0.5 mL min-1 and detection at 210 nm for 3,4,5-trimethoxybenzoic acid and 254 nm for sulfanilic acid and sulfanilamide. Mobile phase A was 50 mM potassium dihydrogenphosphate (pH 5.60 adjusted with a 0.5 mol L-1 potassium hydroxide, while mobile phase B was acetonitrile. The mobile phase ratio was defined by the gradient program. Through the validation of the developed methods their efficiency and reliability is confirmed and consequently the adequacy for the routine control.

  18. Occurrence of pesticides and some of their degradation products in waters in a Spanish wine region

    Science.gov (United States)

    Herrero-Hernández, E.; Andrades, M. S.; Álvarez-Martín, A.; Pose-Juan, E.; Rodríguez-Cruz, M. S.; Sánchez-Martín, M. J.

    2013-04-01

    SummaryA multi-residual analytical method based on solid phase extraction (SPE) followed by liquid chromatography-electrospray ionisation-mass spectrometry (LC-MS) was developed to monitor pesticides in natural waters. Fifty-eight compounds, including herbicides, fungicides, insecticides and some of their degradation products, were surveyed to evaluate the quality of natural waters throughout the wine-growing region of La Rioja (Rioja DOCa). Ninety-two sampling points were selected, including surface and ground waters that could be affected by agricultural activities covering the region's three sub-areas. Different parameters that may affect the efficiency of the SPE procedure were optimised (sorbent type, elution solvent and sample volume), and matrix-matched standards were used to eliminate the variable matrix effect and ensure good quantification. The developed method allows the determination of target compounds below the level established by the European Union for waters for human use with suitable precision (relative standard deviations lower than 18%) and accuracy (with recoveries over 61%). Forty compounds included in this study (six insecticides, 12 herbicides, 16 fungicides and six degradation products) were detected in one or more samples. The herbicides terbuthylazine, its metabolite desethyl terbuthylazine, fluometuron and ethofumesate and the fungicides pyrimethanil and tebuconazole were the compounds most frequently detected in water samples (present in more than 60% of the samples). Concentrations above 0.1 μg L-1 were detected for 37 of the compounds studied, and in several cases recorded values of over 18 μg L-1. The results reveal the presence of pesticides in most of the samples investigated. In 64% of groundwaters and 62% of surface waters, the sum of compounds detected was higher than 0.5 μg L-1 (the limit established by EU legislation for the sum of all pesticides detected in waters for human use).

  19. Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean

    Directory of Open Access Journals (Sweden)

    R. Röttgers

    2012-07-01

    Full Text Available Measurements of light absorption by chromophoric dissolved organic matter (CDOM from subsurface waters of the tropical Atlantic and Pacific Oceans showed a distinct absorption shoulder at 410–415 nm. This indicates an underlying absorption of a pigment whose occurrence is partly correlated with the apparent oxygen utilization (AOU but also found in the deep chlorophyll maximum. A similar absorption maximum at ~415 nm was also found in the particulate fraction of samples taken below the surface mixing layer and is usually attributed to absorption by respiratory pigments of heterotrophic unicellular organisms. In our study, fluorescence measurements of pre-concentrated dissolved organic matter (DOM samples from 200–6000 m confirmed a previous study suggesting that the absorption at ~415 nm was related to fluorescence at 650 nm in the oxygen minimum zone. The absorption characteristics of this fluorophore was examined by fluorescence emission/excitation analysis and showed a clear excitation maximum at 415 nm that could be linked to the absorption shoulder in the CDOM spectra. The spectral characteristics of the substance found in the dissolved and particulate fraction did not match with those of chlorophyll a degradation products (as found in a sample from the sea surface but can be explained by the occurrence of porphyrin pigments from either heterotrophs or autotrophs. Combining the observations of the fluorescence and the 415-nm absorption shoulder suggests that there are high concentrations of a pigment degradation product in subsurface DOM of all major oceans. Most pronouncedly we found this signal in the deep chlorophyll maximum and the oxygen minimum zone of tropical regions. The origin, chemical nature, turnover rate, and fate of this molecule is so far unknown.

  20. Method of producing a carbon coated ceramic membrane and associated product

    Science.gov (United States)

    Liu, Paul K. T.; Gallaher, George R.; Wu, Jeffrey C. S.

    1993-01-01

    A method of producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane.

  1. Heterologous Expression of Plant Cell Wall Degrading Enzymes for Effective Production of Cellulosic Biofuels

    Science.gov (United States)

    Jung, Sang-Kyu; Parisutham, Vinuselvi; Jeong, Seong Hun; Lee, Sung Kuk

    2012-01-01

    A major technical challenge in the cost-effective production of cellulosic biofuel is the need to lower the cost of plant cell wall degrading enzymes (PCDE), which is required for the production of sugars from biomass. Several competitive, low-cost technologies have been developed to produce PCDE in different host organisms such as Escherichia coli, Zymomonas mobilis, and plant. Selection of an ideal host organism is very important, because each host organism has its own unique features. Synthetic biology-aided tools enable heterologous expression of PCDE in recombinant E. coli or Z. mobilis and allow successful consolidated bioprocessing (CBP) in these microorganisms. In-planta expression provides an opportunity to simplify the process of enzyme production and plant biomass processing and leads to self-deconstruction of plant cell walls. Although the future of currently available technologies is difficult to predict, a complete and viable platform will most likely be available through the integration of the existing approaches with the development of breakthrough technologies. PMID:22911272

  2. Hydrogen Production by a Hyperthermophilic Membrane-Bound Hydrogenase in Soluble Nanolipoprotein Particles

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S E; Hopkins, R C; Blanchette, C; Walsworth, V; Sumbad, R; Fischer, N; Kuhn, E; Coleman, M; Chromy, B; Letant, S; Hoeprich, P; Adams, M W; Henderson, P T

    2008-10-22

    Hydrogenases constitute a promising class of enzymes for ex vivo hydrogen production. Implementation of such applications is currently hindered by oxygen sensitivity and, in the case of membrane-bound hydrogenases (MBH), poor water solubility. Nanolipoprotein particles (NLPs), formed from apolipoproteins and phospholipids, offer a novel means to incorporate MBH into in a well-defined water-soluble matrix that maintains the enzymatic activity and is amenable to incorporation into more complex architectures. We report the synthesis, hydrogen-evolving activity and physical characterization of the first MBH-NLP assembly. This may ultimately lead to the development of biomimetic hydrogen production devices.

  3. Experimental demonstration of the reverse flow catalytic membrane reactor concept for energy efficient syngas production. Part 2: Model development

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; Sint Annaland, van M.; Kuipers, J.A.M.

    2007-01-01

    In this contribution the technical feasibility of the reverse flow catalytic membrane reactor (RFCMR) concept with porous membranes for energy efficient syngas production is investigated. In earlier work an experimental proof of principle was already provided [Smit, J., Bekink, G.J., van Sint

  4. Degradation of vitamin C in a product made from mango (Mangifera indica L. and whey protein

    Directory of Open Access Journals (Sweden)

    Fernando Alonso Mendoza-Corvis

    2017-01-01

    Full Text Available This study aimed to determine the kinetics of vitamin C degradation in a product made from mango pulp (Mangifera indica L. and whey protein powder, in order to determine the effect of temperature on its conservation and further evaluate the behavior of the L*, a*, b* and the total color difference (ΔE in the powder product. Vitamin C was determined by the aoac 967.21/90 method using 2,6-dichlorophenol indophenol, and the color was quantified with a HunterLab Color Flex EZ colorimeter. Vitamin C showed greater stability in the powder product ResumoEsta pesquisa procurou determinar a cinética de degradação da vitamina C em um produto em pó elaborado a base de polpa de manga (Mangifera indica L. var. Hilacha e lactisoro, com o fim de conhecer o efeito da temperatura na sua conservação e ademais avaliar o comportamento dos parâmetros L*, a*, b* e a diferença total da cor (ΔE no produto. A vitamina C determinou-se mediante o método aoac 967.21/90, com 2,6-diclorofenol indofe-nol; enquanto que a cor se quantificou com um colorímetro cor Flex EZ marca HunterLab. A vitamina C exibiu maior estabilidade no produto em pó armazenado a uma temperatura de 4 °C, stored at 4 °C with a concentration at the end of the eighth sampling week of 13.94 ± 1.2 mg/10 0 g-1 sample and showing a first order degradation kinetics with k1 values of 0.014 and 0.041 mg/100 g/week at temperatures of 4 °C and 28 °C, respec-tively. The greatest variations in color occurred in samples stored at 28 °C, indicating the influence of the temperature change on the product compo-nents. In addition, L*, a* and b* parameters were less affected under storage temperature of 4 °C, and their values correspond to a second degree polynomial.

  5. Studies on the Conditioning Methods of Spent Tri-butyl Phosphate/Kerosene and its Degradation Product in Different Matrices

    International Nuclear Information System (INIS)

    El-Dessouky, M.I.; El-sourougy, M.R.; Abed El-Aziz, M.M.; Aly, H.F.

    1999-01-01

    The destruction of spent TBP/Kerosene (odourless Kerosene (OK)) with potassium permanganate have been investigated. Comparative studies on the immobilization of spent TBP/Kerosene and its degradation product into different matrices have been carried out. The matrices used include, ordinary Portland cement, silica fume, treated fly ash, epoxy resin and cement mixed with epoxy resin.The different factors affecting solidified waste forms such as, compressive strength, water resistance, thermal stability, chemical resistance, radiological stability and leachability have been investigated. It was found that, epoxy resin and cement mixed with 5,10,20, and 50% of epoxy resin enhance the compressive strength of the solidified waste forms with spent TBP/OK more than that obtained from degradation products. The leaching rates of 152 and 154 Eu and 181 Hf from waste forms containing TBP/OK was found lower than that with degradation product

  6. Analysis of neem oils by LC-MS and degradation kinetics of azadirachtin-A in a controlled environment. Characterization of degradation products by HPLC-MS-MS.

    Science.gov (United States)

    Barrek, Sami; Paisse, Olivier; Grenier-Loustalot, Marie-Florence

    2004-02-01

    Since it was first isolated, the oil extracted from seeds of neem (Azadirachtin indica A juss) has been extensively studied in terms of its efficacy as an insecticide. Several industrial formulations are produced as emulsifiable solutions containing a stated titer of the active ingredient azadirachtin-A (AZ-A). The work reported here is the characterization of a formulation of this insecticide marketed under the name of Neem-azal T/S and kinetic studies of the major active ingredient of this formulation. We initially performed liquid-liquid extraction to isolate the neem oil from other ingredients in the commercial mixture. This was followed by a purification using flash chromatography and semi-preparative chromatography, leading to (13)C NMR identification of structures such as azadirachtin-A, azadirachtin-B, and azadirachtin-H. The neem extract was also characterized by HPLC-MS using two ionization sources, APCI (atmospheric pressure chemical ionization) and ESI (electrospray ionization) in positive and negative ion modes of detection. This led to the identification of other compounds present in the extract-azadirachtin-D, azadirachtin-I, deacetylnimbin, deacetylsalannin, nimbin, and salannin. The comparative study of data gathered by use of the two ionization sources is discussed and shows that the ESI source enables the largest number of structures to be identified. In a second part, kinetic changes in the main product (AZ-A) were studied under precise conditions of pH (2, 4, 6, and 8), temperature (40 to 70 degrees C), and light (UV, dark room and in daylight). This enabled us to determine the degradation kinetics of the product (AZ-A) over time. The activation energy of the molecule (75+/-9 kJ mol(-1)) was determined by examining thermal stability in the range 40 to 70 degrees C. The degradation products of this compound were identified by use of HPLC-MS and HPLC-MS-MS. The results enabled proposal of a chemical degradation reaction route for AZ-A under

  7. Application of CO{sub 2} selective membrane reactors in pre-combustion decarbonisation systems for power production

    Energy Technology Data Exchange (ETDEWEB)

    Steven C.A. Kluiters; Virginie C. Feuillade; Jan Wilco Dijkstra; Daniel Jansen; Wim G. Haije [Energy research Centre of the Netherlands (ECN), Petten (Netherlands)

    2006-07-01

    For pre-combustion decarbonisation of fuels for large-scale power production or H{sub 2} generation both CO{sub 2} and H{sub 2} selective membranes are viable candidates for use in steam reforming and water gas shift membrane reactors. It will be shown that the choice between either option is not a matter of taste, but dictated by the fuel used and, to a lesser extent, the total system layout. Hydrotalcites, clay-like materials, are shown to be promising candidates as membrane material for low temperature, below 400{sup o}C, membrane shift reactors. 7 refs., 6 figs., 1 tab.

  8. Why do forest products become less available? A pan-tropical comparison of drivers of forest-resource degradation

    OpenAIRE

    Hermans, Kathleen; Gerstner, Katharina; Geijzendorffer, Ilse R.; Herold, Martin; Seppelt, Ralf; Wunder, Sven

    2016-01-01

    Forest products provide an important source of income and wellbeing for rural smallholder communities across the tropics. Although tropical forest products frequently become over-exploited, only few studies explicitly address the dynamics of degradation in response to socio-economic drivers. Our study addresses this gap by analyzing the factors driving changes in tropical forest products in the perception of rural smallholder communities. Using the poverty and environment network global datas...

  9. Optimization of liquid-state fermentation conditions for the glyphosate degradation enzyme production of strain Aspergillus oryzae by ultraviolet mutagenesis.

    Science.gov (United States)

    Fu, Gui-Ming; Li, Ru-Yi; Li, Kai-Min; Hu, Ming; Yuan, Xiao-Qiang; Li, Bin; Wang, Feng-Xue; Liu, Cheng-Mei; Wan, Yin

    2016-11-16

    This study aimed to obtain strains with high glyphosate-degrading ability and improve the ability of glyphosate degradation enzyme by the optimization of fermentation conditions. Spore from Aspergillus oryzae A-F02 was subjected to ultraviolet mutagenesis. Single-factor experiment and response surface methodology were used to optimize glyphosate degradation enzyme production from mutant strain by liquid-state fermentation. Four mutant strains were obtained and named as FUJX 001, FUJX 002, FUJX 003, and FUJX 004, in which FUJX 001 gave the highest total enzyme activity. Starch concentration at 0.56%, GP concentration at 1,370 mg/l, initial pH at 6.8, and temperature at 30°C were the optimum conditions for the improved glyphosate degradation endoenzyme production of A. oryzae FUJX 001. Under these conditions, the experimental endoenzyme activity was 784.15 U/100 ml fermentation liquor. The result (784.15 U/100 ml fermentation liquor) was approximately 14-fold higher than that of the original strain. The result highlights the potential of glyphosate degradation enzyme to degrade glyphosate.

  10. The Inhibitory Effect of Natural Products on Protein Fibrillation May Be Caused by Degradation Products – A Study Using Aloin and Insulin

    DEFF Research Database (Denmark)

    Lobbens, Eva Stephanie; Foderà, Vito; Nyberg, Nils

    2016-01-01

    , high-performance liquid chromatography and transmission electron microscopy it was found that a degradation product of aloin, formed over weeks of storage, was able to significantly inhibit insulin fibrillation. The activity of the stored aloin was significantly reduced in the presence of small amounts...... of sodium azide or ascorbic acid, suggesting the active compound to be an oxidation product. A high-performance liquid chromatography method and a liquid chromatography-mass spectrometry method were developed to investigate the degradation products in the aged aloin solution. We found that the major...

  11. Production efficiency of micellar casein concentrate using polymeric spiral-wound microfiltration membranes.

    Science.gov (United States)

    Beckman, S L; Zulewska, J; Newbold, M; Barbano, D M

    2010-10-01

    Most current research has focused on using ceramic microfiltration (MF) membranes for micellar casein concentrate production, but little research has focused on the use of polymeric spiral-wound (SW) MF membranes. A method for the production of a serum protein (SP)-reduced micellar casein concentrate using SW MF was compared with a ceramic MF membrane. Pasteurized (79°C, 18s) skim milk (1,100 kg) was microfiltered at 50°C [about 3 × concentration] using a 0.3-μm polyvinylidene fluoride spiral-wound membrane, bleed-and-feed, 3-stage process, using 2 diafiltration stages, where the retentate was diluted 1:2 with reverse osmosis water. Skim milk, permeate, and retentate were analyzed for SP content, and the reduction of SP from skim milk was determined. Theoretically, 68% of the SP content of skim milk can be removed using a single-stage 3× MF. If 2 subsequent water diafiltration stages are used, an additional 22% and 7% of the SP can be removed, respectively, giving a total SP removal of 97%. Removal of SP greater than 95% has been achieved using a 0.1-μm pore size ceramic uniform transmembrane pressure (UTP) MF membrane after a 3-stage MF with diafiltration process. One stage of MF plus 2 stages of diafiltration of 50°C skim milk using a polyvinylidene fluoride polymeric SW 0.3-μm membrane yielded a total SP reduction of only 70.3% (stages 1, 2, and 3: 38.6, 20.8, and 10.9%, respectively). The SP removal rate for the polymeric SW MF membrane was lower in all 3 stages of processing (stages 1, 2, and 3: 0.05, 0.04, and 0.03 kg/m(2) per hour, respectively) than that of the comparable ceramic UTP MF membrane (stages 1, 2, and 3: 0.30, 0.11, and 0.06 kg/m(2) per hour, respectively), indicating that SW MF is less efficient at removing SP from 50°C skim milk than the ceramic UTP system. To estimate the number of steps required for the SW system to reach 95% SP removal, the third-stage SP removal rate (27.4% of the starting material SP content) was used to

  12. Co-Utilization of Glucose and Xylose for Enhanced Lignocellulosic Ethanol Production with Reverse Membrane Bioreactors

    Science.gov (United States)

    Ishola, Mofoluwake M.; Ylitervo, Päivi; Taherzadeh, Mohammad J.

    2015-01-01

    Integrated permeate channel (IPC) flat sheet membranes were examined for use as a reverse membrane bioreactor (rMBR) for lignocellulosic ethanol production. The fermenting organism, Saccharomyces cerevisiae (T0936), a genetically-modified strain with the ability to ferment xylose, was used inside the rMBR. The rMBR was evaluated for simultaneous glucose and xylose utilization as well as in situ detoxification of furfural and hydroxylmethyl furfural (HMF). The synthetic medium was investigated, after which the pretreated wheat straw was used as a xylose-rich lignocellulosic substrate. The IPC membrane panels were successfully used as the rMBR during the batch fermentations, which lasted for up to eight days without fouling. With the rMBR, complete glucose and xylose utilization, resulting in 86% of the theoretical ethanol yield, was observed with the synthetic medium. Its application with the pretreated wheat straw resulted in complete glucose consumption and 87% xylose utilization; a final ethanol concentration of 30.3 g/L was obtained, which corresponds to 83% of the theoretical yield. Moreover, complete in situ detoxification of furfural and HMF was obtained within 36 h and 60 h, respectively, with the rMBR. The use of the rMBR is a promising technology for large-scale lignocellulosic ethanol production, since it facilitates the co-utilization of glucose and xylose; moreover, the technology would also allow the reuse of the yeast for several batches. PMID:26633530

  13. Co-Utilization of Glucose and Xylose for Enhanced Lignocellulosic Ethanol Production with Reverse Membrane Bioreactors

    Directory of Open Access Journals (Sweden)

    Mofoluwake M. Ishola

    2015-12-01

    Full Text Available Integrated permeate channel (IPC flat sheet membranes were examined for use as a reverse membrane bioreactor (rMBR for lignocellulosic ethanol production. The fermenting organism, Saccharomyces cerevisiae (T0936, a genetically-modified strain with the ability to ferment xylose, was used inside the rMBR. The rMBR was evaluated for simultaneous glucose and xylose utilization as well as in situ detoxification of furfural and hydroxylmethyl furfural (HMF. The synthetic medium was investigated, after which the pretreated wheat straw was used as a xylose-rich lignocellulosic substrate. The IPC membrane panels were successfully used as the rMBR during the batch fermentations, which lasted for up to eight days without fouling. With the rMBR, complete glucose and xylose utilization, resulting in 86% of the theoretical ethanol yield, was observed with the synthetic medium. Its application with the pretreated wheat straw resulted in complete glucose consumption and 87% xylose utilization; a final ethanol concentration of 30.3 g/L was obtained, which corresponds to 83% of the theoretical yield. Moreover, complete in situ detoxification of furfural and HMF was obtained within 36 h and 60 h, respectively, with the rMBR. The use of the rMBR is a promising technology for large-scale lignocellulosic ethanol production, since it facilitates the co-utilization of glucose and xylose; moreover, the technology would also allow the reuse of the yeast for several batches.

  14. Study on methane separation from steam reforming product gas with polyimide membrane

    International Nuclear Information System (INIS)

    Koiso, Hiroshi; Inagaki, Yoshiyuki; Aita, Hideki; Sekita, Kenji; Haga, Katsuhiro; Hino, Ryutaro.

    1997-10-01

    In the HTTR hydrogen production system by steam reforming of natural gas (main component: CH 4 ), CH 4 conversion rate is limited to approximately 65% due to high pressure and low temperature conditions (4.5 MPa, 800degC). The one of the measures to improve CH 4 conversion is recycling of residual CH 4 extracted from steam reforming product gas with a gas separator. Experimental and analytical studies on CH 4 separation from gas mixture composed of CH 4 , H 2 , CO 2 and CO were carried out to investigate gas separation characteristics of a polyimide membrane gas separator. Measured permeability of each gas in gas mixture was reduced from 1/3 to 1/14 of that obtained with a single gas (catalog value). The polyimide membrane could extracted CH 4 of approximately 80% from gas mixture, then, H 2 and CO 2 more than 98% were removed. It was confirmed that the polyimide membrane could be available to residual CH 4 recycling. The analytical results by a difference method gave good prospects of experimental results such as permeated flow rate, mol-fraction profiles and so on. Therefore, it can be said the analysis method was established. (author)

  15. HS-SPME-GC-MS analysis of antioxidant degradation products migrating to drinking water from PE materials and PEX pipes

    DEFF Research Database (Denmark)

    Lützhøft, Hans-Christian Holten; Waul, Christopher Kevin; Andersen, Henrik Rasmus

    2013-01-01

    degradation products may leach and enter drinking water. The aim of this investigation was to develop a method for measuring these degradation products with a performance meeting the drinking water quality criteria of 20 µg L−1. Using headspace solid phase microextraction coupled to a gas chromatograph......Polyethylene (PE) and cross-linked polyethylene (PEX) pipes are frequently used in water supply systems. Such pipes contain added antioxidants with phenolic structures, e.g. Irgafos 168, Irganox 1010 and 1076, in order to improve durability. However, phenol, ketone and quinone antioxidant...

  16. Production of pyrite nanoparticles using high energy planetary ball milling for sonocatalytic degradation of sulfasalazine.

    Science.gov (United States)

    Khataee, Alireza; Fathinia, Siavash; Fathinia, Mehrangiz

    2017-01-01

    Sonocatalytic performance of pyrite nanoparticles was evaluated by the degradation of sulfasalazine (SSZ). Pyrite nanoparticles were produced via a high energy mechanical ball milling (MBM) in different processing time from 2h to 6h, in the constant milling speed of 320rpm. X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR) analysis and Brunauer-Emmett-Teller (BET) confirmed the production of pyrite nanoparticles during 6h of ball milling with the average size distribution of 20-80nm. The effects of various operational parameters including pH value, catalyst amount (mg/L), SSZ concentration (mg/L), ultrasonic frequency (kHz) and reaction time on the SSZ removal efficiency were examined. The obtained results showed that the maximum removal efficiency of 97.00% was obtained at pH value of 4, catalyst dosage of 0.5g/L, SSZ concentration of 10mg/L and reaction time of 30min. Experimental results demonstrated that the kinetic of the degradation process can be demonstrated using Langmuir-Hinshelwood (L-H) kinetic model. The effect of different inorganic ions such as Cl - , CO 3 2- and SO 4 2- was investigated on the L-H reaction rate (k r ) and adsorption (K s ) constants. Results showed that the presence of the mentioned ions significantly influenced the L-H constants. The impact of ethanol as a OH radical scavenger and some enhancers including H 2 O 2 and K 2 S 2 O 8 was investigated on the SSZ removal efficiency. Accordingly, the presence of ethanol suppressed SSZ degradation due to the quenching of OH radicals and the addition of K 2 S 2 O 8 and H 2 O 2 increased the SSZ removal efficiency, due to the formation of SO 4 - and additional OH radicals, respectively. Under the identical conditions of operating parameters, pyrite nanoparticles maintained their catalytic activity during four consecutive runs. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Regularization of the degradation behavior and working zone of proton exchange membrane fuel cells with a five-constant ideal cell as prototype

    International Nuclear Information System (INIS)

    Zhang, H.F.; Pei, P.C.; Yuan, X.; Chao, P.X.; Wang, X.Z.

    2011-01-01

    Highlights: → Load-oriented cell lifetime endpoint definition to reveal two forms of lifetime. → Working zone representing the range of optimum operating endpoint candidates. → Ideal cell model to describe the commonness in PEM fuel cell specialties. → Ideal cell as prototype to regularize real cells. → Working zone of real cells uniformly characterized with five cell constants. - Abstract: This paper is to outline the working zone (the correlative assembly of all the practical steady-state operating points under all affordable constant power loads) of proton exchange membrane (PEM) fuel cells in united form. For this purpose, an ideal cell model is proposed to regularize the degradation behavior of real cells, and a load-oriented cell lifetime endpoint definition is made to reveal two forms of cell lifetime. As derived, the working zone of any cell is an enclosed region by three boundaries: one part of the initial steady-state polarization (SSP) curve, the lifetime end-curve and the zero current density line; and the ideal cell has three distinct shapes of working zone of the simplest expressions of lifetime end-curve. Practical data well support the ideal cell as a good prototype for the regularization, and thus the working zone of real cells can be approximately but uniformly and concisely outlined, with the boundaries characterized with five cell constants including two initial SSP constants, two degradation constants and the absolute lifetime.

  18. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology

    Science.gov (United States)

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Said; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.

  19. Microbiological degradation of products for detoxication of chemical weapons and organophosphoric herbicides

    Energy Technology Data Exchange (ETDEWEB)

    Zharikov, G.A. [Research Center for Toxicology and Hygienic Regulation of Biopreparations (RCT and HRB), Serpukhov, Moscow region (Russian Federation); Starovoitov, I.I.; Ermakova, I.T.; Shushkova, T.V. [Inst. for Biochemistry and Physiology of Microorganisms, Pushchino, Moscow region (Russian Federation)

    2003-07-01

    Wide and uncontrolled application of some pesticides, herbicides, and insecticides in agriculture has led to intensive contamination of the environment by phosphoroorganic compounds (PO{sub s}). Development of ecologically sound technologies for bioremediation is an urgent task at cleanup of territories contaminated as a result of implementation of chemical weapons destruction program (toxic agents - TA). Presently, the greatest problem when cleaning the environment is decomposition of PO{sub s} with hardly hydrolyzed direct N-D bond. The bond is resistant to photolysis, chemical hydrolysis, heat degradation and it can be found in many natural and anthropogenic PO{sub s} (methylphosphoric acid (MPA), glyphosate or round-up, phosphonolipids, methylphosphonylfloride, etc.). The goal of the present work is search and selection of highly efficient strains of microorganisms-degraders, hydrolyzing C-P bond in phosphoroorganic compounds for further development of technology for bioremediation of contaminated soils. Microorganisms, capable of hydrolysis of PO{sub s} with direct C-P bond, were isolated from soil samples taken at territories, contaminated by TA detoxication products (sarin, soman), as well as from rice fields subjected to long-term treatment by herbicide glyphosate. Activity of isolated microorganism strains was assessed by the amount of produced biomass as well as by specific growth velocity on the media with mentioned above sources of phosphorus and glutamate as a carbon source. As a result, most active bacteria strains, growing with maximal specific velocity 0.12-0.15 hour{sup -1} and producing biomass 2.0-2.5 g/l were selected. (orig.)

  20. Accumulated polymer degradation products as effector molecules in cytotoxicity of polymeric nanoparticles.

    Science.gov (United States)

    Singh, Raman Preet; Ramarao, Poduri

    2013-11-01

    Polymeric nanoparticles (PNPs) are a promising platform for drug, gene, and vaccine delivery. Although generally regarded as safe, the toxicity of PNPs is not well documented. The present study investigated in vitro toxicity of poly-ε-caprolactone, poly(DL-lactic acid), poly(lactide-cocaprolactone), and poly(lactide-co-glycide) NPs and possible mechanism of toxicity. The concentration-dependent effect of PNPs on cell viability was determined in a macrophage (RAW 264.7), hepatocyte (Hep G2), lung epithelial (A549), kidney epithelial (A498), and neuronal (Neuro 2A) cell lines. PNPs show toxicity at high concentrations in all cell lines. PNPs were efficiently internalized by RAW 264.7 cells and stimulated reactive oxygen species and tumor necrosis factor-alpha production. However, reactive nitrogen species and interleukin-6 production as well as lysosomal and mitochondrial stability remained unaffected. The intracellular degradation of PNPs was determined by monitoring changes in osmolality of culture medium and a novel fluorescence recovery after quenching assay. Cell death showed a good correlation with osmolality of culture medium suggesting the role of increased osmolality in cell death.

  1. Mass production of bacterial communities adapted to the degradation of volatile organic compounds (TEX).

    Science.gov (United States)

    Lapertot, Miléna; Seignez, Chantal; Ebrahimi, Sirous; Delorme, Sandrine; Peringer, Paul

    2007-06-01

    This study focuses on the mass cultivation of bacteria adapted to the degradation of a mixture composed of toluene, ethylbenzene, o-, m- and p-xylenes (TEX). For the cultivation process Substrate Pulse Batch (SPB) technique was adapted under well-automated conditions. The key parameters to be monitored were handled by LabVIEW software including, temperature, pH, dissolved oxygen and turbidity. Other parameters, such as biomass, ammonium or residual substrate concentrations needed offline measurements. SPB technique has been successfully tested experimentally on TEX. The overall behavior of the mixed bacterial population was observed and discussed along the cultivation process. Carbon and nitrogen limitations were shown to affect the integrity of the bacterial cells as well as their production of exopolymeric substances (EPS). Average productivity and yield values successfully reached the industrial specifications, which were 0.45 kg(DW)m(-3) d(-1) and 0.59 g(DW)g (C) (-1) , respectively. Accuracy and reproducibility of the obtained results present the controlled SPB process as a feasible technique.

  2. Temperature-sensitive porous membrane production through radiation co-grafting of NIPAAm on/in PVDF porous membrane

    International Nuclear Information System (INIS)

    Liu Qi; Zhu Zhiyong; Yang Xiaomin; Chen Xiliang; Song Yufeng

    2007-01-01

    N-isopropylacrylamide (NIPAAm) monomer was grafted on and in poly(vinylidene fluoride) (PVDF) micro-pore membrane by γ-irradiation. The influence of irradiation and reaction conditions on the grafting yield was investigated in detail. The chemical structure of NIPAAm-grafted PVDF (NIPAAm-g-PVDF) membrane was characterized by Fourier transform infrared spectra and X-ray photoelectron spectra measurements. The morphology of the sample surface as well as the cross-section before and after grafting was characterized by scanning electron microscope. The temperature sensitive properties of the membrane were monitored by measuring the conductance as well as the water flux through the sample thickness. The results show that the membrane exhibits clearly temperature-sensitive permeability to water as expected, i.e. the permeability of water changes dramatically as the temperature goes over the lower critical solution temperature of NIPAAm

  3. Pervaporation membrane bioreactor with permeate fractional condensation and mechanical vapor compression for energy efficient ethanol production

    International Nuclear Information System (INIS)

    Fan, Senqing; Xiao, Zeyi; Li, Minghai; Li, Sizhong

    2016-01-01

    Graphical abstract: Pervaporation membrane bioreactor with permeate partial condensation and mechanical vapor compression is developed for an energy efficient ethanol production. - Highlights: • PVMBR-MVC for energy efficient ethanol production. • Process separation factor of 20–44 for ethanol achieved by fractional condensation. • Energy production of 20.25 MJ and hourly energy production of 56.25 kJ/h achieved. • Over 50% of energy saved in PVMBR-MVC compared with PVMBR-LTC. • Integrated heat pump with COP of 7–9 for the energy recovery of the permeate. - Abstract: Improved process separation factor and heat integration are two key issues to increase the energy efficiency of ethanol production in a pervaporation membrane bioreactor (PVMBR). A PVMBR with permeate fractional condensation and mechanical vapor compression was developed for energy efficient ethanol production. A condensation model based on the mass balance and thermodynamic equilibrium in the partial vacuum condenser was developed for predicting the purification performance of the permeate vapor. Three runs of ethanol fermentation-pervaporation experiment were carried out and ethanol concentration of higher than 50 wt% could be achieved in the final condensate, with the separation factor of the process for ethanol increased to 20. Ethanol production could be enhanced in the bioreactor and 17.1 MJ of the energy could be produced in per liter of fermentation broth, owing to 27.0 MJ/kg heating value of the recovered ethanol. Compared with the traditional pervaporation process with low temperature condensation for ethanol production, 50% of the energy would be saved in the process. The energy consumption would be further reduced, if the available energy of the permeate vapor was utilized by integrating the mechanical vapor compression heat pump.

  4. Membrane-anchored MucR mediates nitrate-dependent regulation of alginate production in Pseudomonas aeruginosa

    KAUST Repository

    Wang, Yajie

    2015-04-29

    Alginates exhibit unique material properties suitable for medical and industrial applications. However, if produced by Pseudomonas aeruginosa, it is an important virulence factor in infection of cystic fibrosis patients. The alginate biosynthesis machinery is activated by c-di-GMP imparted by the inner membrane protein, MucR. Here, it was shown that MucR impairs alginate production in response to nitrate in P. aeruginosa. Subsequent site-specific mutagenesis of MucR revealed that the second MHYT sensor motif (MHYT II, amino acids 121–124) of MucR sensor domain was involved in nitrate sensing. We also showed that both c-di-GMP synthesizing and degrading active sites of MucR were important for alginate production. Although nitrate and deletion of MucR impaired alginate promoter activity and global c-di-GMP levels, alginate yields were not directly correlated with alginate promoter activity or c-di-GMP levels, suggesting that nitrate and MucR modulate alginate production at a post-translational level through a localized pool of c-di-GMP. Nitrate increased pel promoter activity in the mucR mutant while in the same mutant the psl promoter activity was independent of nitrate. Nitrate and deletion of mucR did not impact on swarming motility but impaired attachment to solid surfaces. Nitrate and deletion of mucR promoted the formation of biofilms with increased thickness, cell density, and survival. Overall, this study provided insight into the functional role of MucR with respect to nitrate-mediated regulation of alginate biosynthesis. © 2015 Springer-Verlag Berlin Heidelberg

  5. Modelling and sequential simulation of multi-tubular metallic membrane and techno-economics of a hydrogen production process employing thin-layer membrane reactor

    KAUST Repository

    Shafiee, Alireza; Arab, Mobin; Lai, Zhiping; Liu, Zongwen; Abbas, Ali

    2016-01-01

    reforming hydrogen production plant. A techno-economic analysis is then conducted using the validated model for a plant producing 300 TPD of hydrogen. The plant utilises a thin (2.5 μm) defect-free and selective layer (Pd75Ag25 alloy) membrane reactor

  6. End-to-end gene fusions and their impact on the production of multifunctional biomass degrading enzymes

    International Nuclear Information System (INIS)

    Rizk, Mazen; Antranikian, Garabed; Elleuche, Skander

    2012-01-01

    Highlights: ► Multifunctional enzymes offer an interesting approach for biomass degradation. ► Size and conformation of separate constructs play a role in the effectiveness of chimeras. ► A connecting linker allows for maximal flexibility and increased thermostability. ► Genes with functional similarities are the best choice for fusion candidates. -- Abstract: The reduction of fossil fuels, coupled with its increase in price, has made the search for alternative energy resources more plausible. One of the topics gaining fast interest is the utilization of lignocellulose, the main component of plants. Its primary constituents, cellulose and hemicellulose, can be degraded by a series of enzymes present in microorganisms, into simple sugars, later used for bioethanol production. Thermophilic bacteria have proven to be an interesting source of enzymes required for hydrolysis since they can withstand high and denaturing temperatures, which are usually required for processes involving biomass degradation. However, the cost associated with the whole enzymatic process is staggering. A solution for cost effective and highly active production is through the construction of multifunctional enzyme complexes harboring the function of more than one enzyme needed for the hydrolysis process. There are various strategies for the degradation of complex biomass ranging from the regulation of the enzymes involved, to cellulosomes, and proteins harboring more than one enzymatic activity. In this review, the construction of multifunctional biomass degrading enzymes through end-to-end gene fusions, and its impact on production and activity by choosing the enzymes and linkers is assessed.

  7. Oxygen transport and degradation properties of high-temperature membranes for CO{sub 2}-free power plants; Sauerstofftransport und Degradationsverhalten von Hochtemperaturmembranen fuer CO{sub 2}-freie Kraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Schlehuber, Dominic

    2010-07-01

    This thesis deals with membranes for oxygen separation from air for high temperature application in fossil power plants within the scope of the oxyfuel-process. Different perovskite membrane materials (ABO3-ae) were investigated concerning the oxygen transport and their chemical stability under operation condition. The association between oxygen transport properties and both the thermodynamic boundary conditions as well as the material properties (membrane thickness and surface properties) was studied. One possibility to achieve higher oxygen fluxes through the membrane is to reduce the thickness. In this case the influence of surface processes on the overall permeation becomes noteworthy. The effect of different membrane surface modifications on the permeation rate was investigated. For example it could be confirmed, that a porous layer on the membrane surface significantly increases the permeation flux due to the compensation of surface exchange limitations. Beyond that, degradation processes during the operation under power plant condition were investigated. Special attention was attached to the influence of degradation on the permeation flux during long term operation. Thereby kinetic demixing of the membrane material was observed. (orig.)

  8. Rapid and Simultaneous Determination of Acetylsalicylic Acid, Paracetamol, and Their Degradation and Toxic Impurity Products by HPLC in Pharmaceutical Dosage Forms

    OpenAIRE

    AKAY, Cemal

    2008-01-01

    Aims: Determinations of drug impurity and drug degradation products are very important from both pharmacological and toxicological perspectives. Establishment of monitoring methods for impurities and degradation products during pharmaceutical development is necessary because of their potential toxicity. The aim of this study was to develop a rapid and simultaneous determination method for paracetamol and acetylsalicylic acid (ACA) and their degradation and toxic impurity products by high perf...

  9. Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity.

    Science.gov (United States)

    Manso Cobos, Isabel; Ibáñez García, María Isabel; de la Peña Moreno, Fernando; Sáez Melero, Lara Paloma; Luque-Almagro, Víctor Manuel; Castillo Rodríguez, Francisco; Roldán Ruiz, María Dolores; Prieto Jiménez, María Auxiliadora; Moreno Vivián, Conrado

    2015-06-10

    Cyanide is one of the most toxic chemicals produced by anthropogenic activities like mining and jewelry industries, which generate wastewater residues with high concentrations of this compound. Pseudomonas pseudoalcaligenes CECT5344 is a model microorganism to be used in detoxification of industrial wastewaters containing not only free cyanide (CN(-)) but also cyano-derivatives, such as cyanate, nitriles and metal-cyanide complexes. Previous in silico analyses suggested the existence of genes putatively involved in metabolism of short chain length (scl-) and medium chain length (mcl-) polyhydroxyalkanoates (PHAs) located in three different clusters in the genome of this bacterium. PHAs are polyesters considered as an alternative of petroleum-based plastics. Strategies to optimize the bioremediation process in terms of reducing the cost of the production medium are required. In this work, a biological treatment of the jewelry industry cyanide-rich wastewater coupled to PHAs production as by-product has been considered. The functionality of the pha genes from P. pseudoalcaligenes CECT5344 has been demonstrated. Mutant strains defective in each proposed PHA synthases coding genes (Mpha(-), deleted in putative mcl-PHA synthases; Spha(-), deleted in the putative scl-PHA synthase) were generated. The accumulation and monomer composition of scl- or mcl-PHAs in wild type and mutant strains were confirmed by gas chromatography-mass spectrometry (GC-MS). The production of PHAs as by-product while degrading cyanide from the jewelry industry wastewater was analyzed in batch reactor in each strain. The wild type and the mutant strains grew at similar rates when using octanoate as the carbon source and cyanide as the sole nitrogen source. When cyanide was depleted from the medium, both scl-PHAs and mcl-PHAs were detected in the wild-type strain, whereas scl-PHAs or mcl-PHAs were accumulated in Mpha(-) and Spha(-), respectively. The scl-PHAs were identified as homopolymers of 3

  10. Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart

    2017-01-01

    This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells....... The fault detection and isolation algorithm is based on an artificial neural network classifier, which uses three extracted features as input. Two of the proposed features are based on angles in the impedance spectrum, and are therefore relative to specific points, and shown to be independent of degradation......, contrary to other available feature extraction methods in the literature. The experimental data is based on a 35 day experiment, where 2010 unique electrochemical impedance spectroscopy measurements were recorded. The test of the algorithm resulted in a good detectability of the faults, except for high...

  11. Nanofiltration and Tight Ultrafiltration Membranes for the Recovery of Polyphenols from Agro-Food By-Products

    Directory of Open Access Journals (Sweden)

    Alfredo Cassano

    2018-01-01

    Full Text Available Pressure-driven membrane-based technologies represent a valid approach to reduce the environmental pollution of several agro-food by-products. Recently, in relation to the major interest for natural compounds with biological activities, their use has been also addressed to the recovery, separation and fractionation of phenolic compounds from such by-products. In particular, tight ultrafiltration (UF and nanolfiltration (NF membranes have been recognized for their capability to recover phenolic compounds from several types of agro-food by-products. The separation capability of these membranes, as well as their productivity, depends on multiple factors such as membrane material, molecular weight cut-off (MWCO and operating conditions (e.g., pressure, temperature, feed flow rate, volume reduction factor, etc.. This paper aims at providing a critical overview of the influence of these parameters on the recovery of phenolic compounds from agro-food by-products by using tight UF and NF membranes. The literature data are analyzed and discussed in relation to separation processes, molecule properties, membrane characteristics and other phenomena occurring in the process. Current extraction methodologies of phenolic compounds from raw materials are also introduced in order to drive the implementation of integrated systems for the production of actractive phenolic formulations of potential interest as food antioxidants.

  12. Nanofiltration and Tight Ultrafiltration Membranes for the Recovery of Polyphenols from Agro-Food By-Products.

    Science.gov (United States)

    Cassano, Alfredo; Conidi, Carmela; Ruby-Figueroa, René; Castro-Muñoz, Roberto

    2018-01-24

    Pressure-driven membrane-based technologies represent a valid approach to reduce the environmental pollution of several agro-food by-products. Recently, in relation to the major interest for natural compounds with biological activities, their use has been also addressed to the recovery, separation and fractionation of phenolic compounds from such by-products. In particular, tight ultrafiltration (UF) and nanolfiltration (NF) membranes have been recognized for their capability to recover phenolic compounds from several types of agro-food by-products. The separation capability of these membranes, as well as their productivity, depends on multiple factors such as membrane material, molecular weight cut-off (MWCO) and operating conditions (e.g., pressure, temperature, feed flow rate, volume reduction factor, etc.). This paper aims at providing a critical overview of the influence of these parameters on the recovery of phenolic compounds from agro-food by-products by using tight UF and NF membranes. The literature data are analyzed and discussed in relation to separation processes, molecule properties, membrane characteristics and other phenomena occurring in the process. Current extraction methodologies of phenolic compounds from raw materials are also introduced in order to drive the implementation of integrated systems for the production of actractive phenolic formulations of potential interest as food antioxidants.

  13. Production of xylooligosaccharides from forest waste by membrane separation and Paenibacillus xylanase hydrolysis

    Directory of Open Access Journals (Sweden)

    Chun-Han Ko

    2013-02-01

    Full Text Available Xylooligosaccharides (XO, derived from the alkaline (NaOH extractant of Mikania micrantha, were produced using multiple staged membrane separation and enzymatic xylanolysis. Staged nanofiltration (NMX, ultrafiltration (EUMX, and centrifugation (EMX processes for the ethanol precipitates were conducted. NMX recovered 97.26% of total xylose and removed 73.18% of sodium ions. Concentrations of total xylose were raised from 10.98 to 51.85 mg/mL by the NMX process. Recovered xylan-containing solids were hydrolyzed by the recombinant Paenibacillus xylanase. 68% XO conversions from total xylose of NMX was achieved in 24 hours. Xylopentaose (DP 5 was the major product from NMX and EMX hydrolysis. Xylohexaose (DP 6 was the major product from EUMX hydrolysis. Results of the present study suggest the applicability for XO production by nanofiltration, as NMX gave higher XO yields compared to those from a conventional ethanol-related lignocellulosic waste conversion process.

  14. Production and partial characterization of arabinoxylan-degrading enzymes by Penicillium brasilianum under solid-state fermentation

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Granouillet, P.; Olsson, Lisbeth

    2006-01-01

    The production of a battery of arabinoxylan-degrading enzymes by the fungus Penicillium brasilianum grown on brewer's spent grain (BSG) under solid-state fermentation was investigated. Initial moisture content, initial pH, temperature, and nitrogen source content were optimized to achieve maximum...

  15. Identification of Unsaturated and 2H Polyfluorocarboxylate Homologous Series and Their Detection in Environmental Samples and as Polymer Degradation Products

    Science.gov (United States)

    A pair of homologous series of polyfluorinated degradation products have been identified, both having structures similar to perfluorocarboxylic acids but (i) having a H substitution for F on the α carbon for 2H polyfluorocarboxylic acids (2HPFCAs) and (ii) bearing a double ...

  16. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production

    OpenAIRE

    Weselowski, Brian; Nathoo, Naeem; Eastman, Alexander William; MacDonald, Jacqueline; Yuan, Ze-Chun

    2016-01-01

    Background Paenibacillus polymyxa is a plant-growth promoting rhizobacterium that could be exploited as an environmentally friendlier alternative to chemical fertilizers and pesticides. Various strains have been isolated that can benefit agriculture through antimicrobial activity, nitrogen fixation, phosphate solubilization, plant hormone production, or lignocellulose degradation. However, no single strain has yet been identified in which all of these advantageous traits have been confirmed. ...

  17. New chromatographic method for separating Omeprazole from its degradation components and the quantitatively determining it in its pharmaceutical products

    International Nuclear Information System (INIS)

    Touma, M.; Rajab, A.; Seuleiman, M.

    2007-01-01

    New chromatographic method for Quantitative Determination of Omeprazole in its Pharmaceutical Products was produced. Omeprazole and its degradation components were well separated in same chromatogram by using high perfume liquid chromatography (HPLC). The new analytical method has been validated by these characteristic tests (accuracy, precision, range, linearity, specificity/selectivity, limit of detection (LOD) and limit of quantitative (LOQ) ).(author)

  18. New chromatographic Methods for Separation of Lansoprazole from its Degradation Components and The Quantitative Determination in its Pharmaceutical Products

    International Nuclear Information System (INIS)

    Touma, M.; Rajab, A.

    2009-01-01

    New chromatographic method was found for Quantitative Determination of Lansoprazole in its pharmaceutical products. Lansoprazole and its degradation components were well separated in same chromatogram by using high perfume liquid chromatography (HPLC). The new analytical method has been validated by these characteristic tests (accuracy, precision, range, linearity, specificity/selectivity, limit of detection (LOD) and limit of quantitative (LOQ)). (author)

  19. Microbial surface displayed enzymes based biofuel cell utilizing degradation products of lignocellulosic biomass for direct electrical energy.

    Science.gov (United States)

    Fan, Shuqin; Hou, Chuantao; Liang, Bo; Feng, Ruirui; Liu, Aihua

    2015-09-01

    In this work, a bacterial surface displaying enzyme based two-compartment biofuel cell for the direct electrical energy conversion from degradation products of lignocellulosic biomass is reported. Considering that the main degradation products of the lignocellulose are glucose and xylose, xylose dehydrogenase (XDH) displayed bacteria (XDH-bacteria) and glucose dehydrogenase (GDH) displayed bacteria (GDH-bacteria) were used as anode catalysts in anode chamber with methylene blue as electron transfer mediator. While the cathode chamber was constructed with laccase/multi-walled-carbon nanotube/glassy-carbon-electrode. XDH-bacteria exhibited 1.75 times higher catalytic efficiency than GDH-bacteria. This assembled enzymatic fuel cell exhibited a high open-circuit potential of 0.80 V, acceptable stability and energy conversion efficiency. Moreover, the maximum power density of the cell could reach 53 μW cm(-2) when fueled with degradation products of corn stalk. Thus, this finding holds great potential to directly convert degradation products of biomass into electrical energy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Investigation of relationships between removals of tetracycline and degradation products and physicochemical parameters in municipal wastewater treatment plant.

    Science.gov (United States)

    Topal, Murat; Uslu Şenel, Gülşad; Öbek, Erdal; Arslan Topal, E Işıl

    2016-05-15

    Determination of the effect of physicochemical parameters on the removal of tetracycline (TC) and degradation products is important because of the importance of the removal of antibiotics in Wastewater Treatment Plant (WWTP). Therefore, the purpose of this study was to investigate the relationships between removals of TC and degradation products and physicochemical parameters in Municipal Wastewater Treatment Plant (MWWTP). For this aim, (i) the removals of physicochemical parameters in a MWWTP located in Elazığ city (Turkey) were determined (ii) the removals of TC and degradation products in MWWTP were determined (iii) the relationships between removals of TC and degradation products and physicochemical parameters were investigated. TC, 4-epitetracycline (ETC), 4-epianhydrotetracycline (EATC), anhydrotetracycline (ATC), and physicochemical parameters (pH, temperature, electrical conductivity (EC), suspended solids (SS), BOD5, COD, total organic carbon (TOC), NH4(+)-N, NO2(-)-N, NO3(-)-N and O-PO4(-3)) were determined. The calculation of the correlation coefficients of relationships between the physicochemical parameters and TC, EATC, ATC showed that, among the investigated parameters, EATC and SS most correlated. The removals of other physicochemical parameters were not correlated with TC, EATC and ATC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui; Sukitpaneenit, Panu; Chung, Neal Tai-Shung

    2014-01-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  2. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui

    2014-04-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  3. Carbon-coated ceramic membrane reactor for the production of hydrogen by aqueous-phase reforming of sorbitol.

    Science.gov (United States)

    Neira D'Angelo, M F; Ordomsky, V; Schouten, J C; van der Schaaf, J; Nijhuis, T A

    2014-07-01

    Hydrogen was produced by aqueous-phase reforming (APR) of sorbitol in a carbon-on-alumina tubular membrane reactor (4 nm pore size, 7 cm long, 3 mm internal diameter) that allows the hydrogen gas to permeate to the shell side, whereas the liquid remains in the tube side. The hydrophobic nature of the membrane serves to avoid water loss and to minimize the interaction between the ceramic support and water, thus reducing the risks of membrane degradation upon operation. The permeation of hydrogen is dominated by the diffusivity of the hydrogen in water. Thus, higher operation temperatures result in an increase of the flux of hydrogen. The differential pressure has a negative effect on the flux of hydrogen due to the presence of liquid in the larger pores. The membrane was suitable for use in APR, and yielded 2.5 times more hydrogen than a reference reactor (with no membrane). Removal of hydrogen through the membrane assists in the reaction by preventing its consumption in undesired reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Urea plus nitrate pretreatment of rice and wheat straws enhances degradation and reduces methane production in in vitro ruminal culture.

    Science.gov (United States)

    Zhang, Xiumin; Wang, Min; Wang, Rong; Ma, Zhiyuan; Long, Donglei; Mao, Hongxiang; Wen, Jiangnan; Bernard, Lukuyu A; Beauchemin, Karen A; Tan, Zhiliang

    2018-04-10

    Urea pretreatment of straw damages fiber structure, while nitrate supplementation of ruminal diets inhibits enteric methane production. The study examined the combined effects of these treatments on ruminal substrate biodegradation and methane production using an in vitro incubation system. Rice and wheat straws were pretreated with urea (40 g kg -1 straw dry matter, DM) and urea + ammonium nitrate (34 + 6 g kg -1 dry matter (DM), respectively), and each straw (control, urea, urea+nitrate) was used in batch culture incubations in three replications (runs). Urea pretreatment increased (P content (+17%) and in vitro DM degradation of rice straw, in comparison with control. Urea+nitrate pretreatment of rice and wheat straws had higher (P content, in vitro DM degradation and propionate molar proportion, and lower (P ruminal biodegradation, facilitate propionate production and reduce methane production from lignified straws. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  5. New Possibilities of the FLNR Accelerator Complex for the Production of Track Membranes

    CERN Document Server

    Oganessian, Yu T; Didyk, A Yu; Gulbekyan, G G; Kutner, V B

    2000-01-01

    The description of the main systems of modified heavy ion accelerator U-400 of the Flerov Laboratory of Nuclear Reactions is presented including the ECR ion source, system of external injection of low energy ions onto median plane. The characteristic parameters for obtaining of accelerated heavy ions from krypton ions to more heavier ones also are presented. The structure and parameters of new beam line and vacuum chamber for irradiation of polymeric and other materials on modified cyclotron U-400 are presented too. The new possibilities for the production of unique track membrane are discussed.

  6. Herbicidal Activity of Glucosinolate Degradation Products in Fermented Meadowfoam (Limnanthes alba) Seed Meal

    Science.gov (United States)

    STEVENS, JAN F.; REED, RALPH L.; ALBER, SUSAN; PRITCHETT, LARRY; MACHADO, STEPHEN

    2009-01-01

    Meadowfoam (Limnanthes alba) is an oilseed crop grown in western Oregon. After extraction of the oil from the seeds, the remaining seed meal contains 2-4% of the glucosinolate, glucolimnanthin. We investigated the effect of fermentation of seed meal on its chemical composition and the effect of the altered composition on downy brome (Bromus tectorum) coleoptile emergence. Incubation of enzyme-inactive seed meal with enzyme-active seeds (1% by weight) resulted in complete degradation of glucolimnanthin and formation of 3-methoxybenzyl isothiocyanate in 28% yield. Fermentation in the presence of an aqueous solution of FeSO4 (10 mM) resulted in the formation of 3-methoxyphenylacetonitrile and 2-(3-methoxyphenyl)ethanethioamide, a novel natural product. The formation of the isothiocyanate, the nitrile and the thioamide, as a total, correlated with an increase of herbicidal potency of seed meal (r2 = 0.96). The results of this study open new possibilities for the refinement of glucosinolate-containing seed meals for use as bioherbicides. PMID:19170637

  7. Porphyromonas gingivalis Promotes Unrestrained Type I Interferon Production by Dysregulating TAM Signaling via MYD88 Degradation.

    Science.gov (United States)

    Mizraji, Gabriel; Nassar, Maria; Segev, Hadas; Sharawi, Hafiz; Eli-Berchoer, Luba; Capucha, Tal; Nir, Tsipora; Tabib, Yaara; Maimon, Avraham; Dishon, Shira; Shapira, Lior; Nussbaum, Gabriel; Wilensky, Asaf; Hovav, Avi-Hai

    2017-01-10

    Whereas type I interferons (IFNs-I) were proposed to be elevated in human periodontitis, their role in the disease remains elusive. Using a bacterial-induced model of murine periodontitis, we revealed a prolonged elevation in IFN-I expression. This was due to the downregulation of TAM signaling, a major negative regulator of IFN-I. Further examination revealed that the expression of certain TAM components was reduced as a result of prolonged degradation of MYD88 by the infection. As a result of such prolonged IFN-I production, innate immunological functions of the gingiva were disrupted, and CD4 + T cells were constitutively primed by dendritic cells, leading to elevated RANKL expression and, subsequently, alveolar bone loss (ABL). Blocking IFN-I signaling restored proper immunological function and prevented ABL. Importantly, a loss of negative regulation on IFN-I expression by TAM signaling was also evident in periodontitis patients. These findings thus suggest a role for IFN-I in the pathogenesis of periodontitis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Herbicidal activity of glucosinolate degradation products in fermented meadowfoam ( Limnanthes alba ) seed meal.

    Science.gov (United States)

    Stevens, Jan F; Reed, Ralph L; Alber, Susan; Pritchett, Larry; Machado, Stephen

    2009-03-11

    Meadowfoam ( Limnanthes alba ) is an oilseed crop grown in western Oregon. After extraction of the oil from the seeds, the remaining seed meal contains 2-4% of the glucosinolate glucolimnanthin. This study investigated the effect of fermentation of seed meal on its chemical composition and the effect of the altered composition on downy brome ( Bromus tectorum ) coleoptile emergence. Incubation of enzyme-inactive seed meal with enzyme-active seeds (1% by weight) resulted in complete degradation of glucolimnanthin and formation of 3-methoxybenzyl isothiocyanate in 28% yield. Fermentation in the presence of an aqueous solution of FeSO(4) (10 mM) resulted in the formation of 3-methoxyphenylacetonitrile and 2-(3-methoxyphenyl)ethanethioamide, a novel natural product. The formation of the isothiocyanate, the nitrile, and the thioamide, as a total, correlated with an increase of herbicidal potency of the seed meal (r(2) = 0.96). The results of this study open new possibilities for the refinement of glucosinolate-containing seed meals for use as bioherbicides.

  9. Quantification of superoxide radical production in thylakoid membrane using cyclic hydroxylamines.

    Science.gov (United States)

    Kozuleva, Marina; Klenina, Irina; Mysin, Ivan; Kirilyuk, Igor; Opanasenko, Vera; Proskuryakov, Ivan; Ivanov, Boris

    2015-12-01

    Applicability of two lipophilic cyclic hydroxylamines (CHAs), CM-H and TMT-H, and two hydrophilic CHAs, CAT1-H and DCP-H, for detection of superoxide anion radical (O2(∙-)) produced by the thylakoid photosynthetic electron transfer chain (PETC) of higher plants under illumination has been studied. ESR spectrometry was applied for detection of the nitroxide radical originating due to CHAs oxidation by O2(∙-). CHAs and corresponding nitroxide radicals were shown to be involved in side reactions with PETC which could cause miscalculation of O2(∙-) production rate. Lipophilic CM-H was oxidized by PETC components, reducing the oxidized donor of Photosystem I, P700(+), while at the same concentration another lipophilic CHA, TMT-H, did not reduce P700(+). The nitroxide radical was able to accept electrons from components of the photosynthetic chain. Electrostatic interaction of stable cation CAT1-H with the membrane surface was suggested. Water-soluble superoxide dismutase (SOD) was added in order to suppress the reaction of CHA with O2(∙-) outside the membrane. SOD almost completely inhibited light-induced accumulation of DCP(∙), nitroxide radical derivative of hydrophilic DCP-H, in contrast to TMT(∙) accumulation. Based on the results showing that change in the thylakoid lumen pH and volume had minor effect on TMT(∙) accumulation, the reaction of TMT-H with O2(∙-) in the lumen was excluded. Addition of TMT-H to thylakoid suspension in the presence of SOD resulted in the increase in light-induced O2 uptake rate, that argued in favor of TMT-H ability to detect O2(∙-) produced within the membrane core. Thus, hydrophilic DCP-H and lipophilic TMT-H were shown to be usable for detection of O2(∙-) produced outside and within thylakoid membranes. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Formation of chlorinated breakdown products during degradation of sunscreen agent, 2-ethylhexyl-4-methoxycinnamate in the presence of sodium hypochlorite

    OpenAIRE

    Gackowska , Alicja; Przybyłek , Maciej; Studziński , Waldemar; Gaca , Jerzy

    2016-01-01

    International audience; In this study, a new degradation path of sunscreen active ingredient, 2-ethylhexyl-4-methoxycinnamate (EHMC) and 4-methoxycinnamic acid (MCA) in the presence of sodium hypochlorite (NaOCl), was discussed. The reaction products were detected using gas chromatography–mass spectrometry (GC-MS). Since HOCl treatment leads to more polar products than EHMC, application of polar extracting agents, dichloromethane and ethyl acetate/n-hexane mixture, gave better results in term...

  11. Formation of chlorinated breakdown products during degradation of sunscreen agent, 2-ethylhexyl-4-methoxycinnamate in the presence of sodium hypochlorite

    OpenAIRE

    Gackowska, Alicja; Przybyłek, Maciej; Studziński, Waldemar; Gaca, Jerzy

    2018-01-01

    In this study, a new degradation path of sunscreen active ingredient, 2-ethylhexyl-4-methoxycinnamate (EHMC) and 4-methoxycinnamic acid (MCA) in the presence of sodium hypochlorite (NaOCl), was discussed. The reaction products were detected using gas chromatography-mass spectrometry (GC-MS). Since HOCl treatment leads to more polar products than EHMC, application of polar extracting agents, dichloromethane and ethyl acetate/n-hexane mixture, gave better results in terms of chlorinated breakdo...

  12. Formation of chlorinated breakdown products during degradation of sunscreen agent, 2-ethylhexyl-4-methoxycinnamate in the presence of sodium hypochlorite

    OpenAIRE

    Gackowska, Alicja; Przyby?ek, Maciej; Studzi?ski, Waldemar; Gaca, Jerzy

    2015-01-01

    In this study, a new degradation path of sunscreen active ingredient, 2-ethylhexyl-4-methoxycinnamate (EHMC) and 4-methoxycinnamic acid (MCA) in the presence of sodium hypochlorite (NaOCl), was discussed. The reaction products were detected using gas chromatography?mass spectrometry (GC-MS). Since HOCl treatment leads to more polar products than EHMC, application of polar extracting agents, dichloromethane and ethyl acetate/n-hexane mixture, gave better results in terms of chlorinated breakdo...

  13. Purification of the Membrane Compartment for Endoplasmic Reticulum-associated Degradation of Exogenous Antigens in Cross-presentation.

    Science.gov (United States)

    Imai, Jun; Otani, Mayu; Sakai, Takahiro; Hatta, Shinichi

    2017-08-21

    Dendritic cells (DCs) are highly capable of processing and presenting internalized exogenous antigens upon major histocompatibility class (MHC) I molecules also known as cross-presentation (CP). CP plays an important role not only in the stimulation of naïve CD8 + T cells and memory CD8 + T cells for infectious and tumor immunity but also in the inactivation of self-acting naïve T cells by T cell anergy or T cell deletion. Although the critical molecular mechanism of CP remains to be elucidated, accumulating evidence indicates that exogenous antigens are processed through endoplasmic reticulum-associated degradation (ERAD) after export from non-classical endocytic compartments. Until recently, characterizations of these endocytic compartments were limited because there were no specific molecular markers other than exogenous antigens. The method described here is a new vesicle isolation protocol, which allows for the purification of these endocytic compartments. Using this purified microsome, we reconstituted the ERAD-like transport, ubiquitination, and processing of the exogenous antigen in vitro, suggesting that the ubiquitin-proteasome system processed the exogenous antigen after export from this cellular compartment. This protocol can be further applied to other cell types to clarify the molecular mechanism of CP.

  14. Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation

    Science.gov (United States)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart; Thomas, Sobi; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2017-08-01

    This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells. The fault detection and isolation algorithm is based on an artificial neural network classifier, which uses three extracted features as input. Two of the proposed features are based on angles in the impedance spectrum, and are therefore relative to specific points, and shown to be independent of degradation, contrary to other available feature extraction methods in the literature. The experimental data is based on a 35 day experiment, where 2010 unique electrochemical impedance spectroscopy measurements were recorded. The test of the algorithm resulted in a good detectability of the faults, except for high methanol vapour concentration in the anode gas fault, which was found to be difficult to distinguish from a normal operational data. The achieved accuracy for faults related to CO pollution, anode- and cathode stoichiometry is 100% success rate. Overall global accuracy on the test data is 94.6%.

  15. Molecular sieve adsorbents and membranes for applications in the production of renewable fuels and chemicals

    Science.gov (United States)

    Ranjan, Rajiv

    Metal organic frameworks (MOF), a new class of porous materials, have emerged as promising candidate for gas storage, separation membrane and chemical sensors. We used secondary growth method to grow microporous metal organic framework (MMOF) films on porous alumina supports. Examination of the film using SEM and XRD showed that the crystals were well inter-grown and preferentially oriented. Gas permeation study showed that membranes were defect free and moderate selectivity was achieved for H2/N2 gas pairs. The next project had to do with ethanol production from lignocellulosic biomass as an alternate energy source. However, toxic inhibitors produced from the hydrolysis of biomass decrease ethanol yield during the fermentation process. We demonstrated the use of zeolites for the pretreatment of hydrolyzate in order to remove inhibitors like 5-Hydroxymethylfurfuraldehyde (HMF) and furfural from aqueous solution. Zeolites exhibit preferential adsorption of the inhibitors and in effect improve the ethanol yield during fermentation. Ideal Adsorbed Solution Theory (IAST) was also used to predict adsorption isotherms for HMF-furfural mixtures using single component adsorption data. We also studied production of HMF, a potential substitute as a building block for plastic and chemical production, from renewable biomass resources. Catalytic dehydration of fructose for HMF production faces problems like low conversion and yield. Dimethyl sulfoxide (DMSO) can be used as the solvent as well as the catalyst resulting in high HMF yield. We studied a reaction-separation system for this dehydration reaction where the product (HMF) could be recovered by selective adsorption on solid adsorbents from the reaction mixture.

  16. A glass capillary based microfluidic electromembrane extraction of basic degradation products of nitrogen mustard and VX from water.

    Science.gov (United States)

    Tak, Vijay; Kabra, Ankur; Pardasani, Deepak; Goud, D Raghavender; Jain, Rajeev; Dubey, D K

    2015-12-24

    In this work, a glass capillary based microfluidic electromembrane extraction (μ-EME) was demonstrated for the first time. The device was made by connecting an auxillary borosilicate glass tubing (O.D. 3mm, I.D. 2mm) perpendicular to main borosilicate glass capillary just below one end of the capillary (O.D. 8mm, I.D. 1.2mm). It generated the distorted T-shaped device with inlet '1' and inlet '2' for the introduction of sample and acceptor solutions, respectively. At one end of this device (inlet '2'), a microsyringe containing acceptor solution along with hollow fiber (O.D. 1000μm) was introduced. This configuration creates the micro-channel between inner wall of glass capillary and outer surface of hollow fiber. Sample solution was pumped into the system through another end of glass capillary (inlet '1'), with a micro-syringe pump. The sample was in direct contact with the supported liquid membrane (SLM), consisted of 20% (w/w) di-(2-ethylhexyl)phosphate in 2-nitrophenyl octyl ether immobilized in the pores of the hollow fiber. In the lumen of the hollow fiber, the acceptor phase was present. The driving force for extraction was direct current (DC) electrical potential sustained over the SLM. Highly polar (logP=-2.5 to 1.4) basic degradation products of nitrogen mustard and VX were selected as model analytes. The influence of chemical composition of SLM, extraction time, voltage and pH of donor and acceptor phase were investigated. The model analytes were extracted from 10μL of pure water with recoveries ranging from 15.7 to 99.7% just after 3min of operation time. Under optimized conditions, good limits of detection (2-50ngmL(-1)), linearity (from 5-1000 to 100-1000ngmL(-1)), and repeatability (RSDs below 11.9%, n=3) were achieved. Applicability of the proposed μ-EME was proved by recovering triethanolamine (31.3%) from 10μL of five times diluted original water sample provided by the Organization for the Prohibition of Chemical Weapons during 28th official

  17. Effects of cellulosic degradation product concentration on actinide sorption on tuffs from the Borrowdale Volcanic Group, Sellafield, Cumbria

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Boult, K.A.; Linklater, C.M.

    1994-01-01

    The Nirex Safety Assessment Research Programme includes an investigation into the effects of cellulosic degradation products on the sorption of radioelements onto geological materials. Previous batch sorption studies have shown that the presence of high concentrations of both authentic cellulosic degradation products (produced by alkaline degradation of wood/tissue) and the well-characterised simulant, gluconate, can cause marked reductions in actinide sorption. This work has now been extended to cover a range of concentrations of both authentic cellulosic degradation products and their simulants, gluconate and iso-saccharinate. Geological samples were from the proposed Nirex underground radioactive waste disposal site at Sellafied, Cumbria. The nuclides studied were thorium and plutonium. In the presence of gluconate or iso-saccharinate, at concentrations above 10 -4 M, the present work has confirmed the trends shown by earlier experiments, with a significant reduction in actinide sorption (R D values reduced by less than a factor of two), and in some cases the results suggested a slight increase (R D values increased by up to a factor of four). (orig.)

  18. Effects of cellulosic degradation product concentration on actinide sorption on tuffs from the Borrowdale Volcanic Group, Sellafield, Cumbria

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N. [AEA Technology, Decommissioning and Waste Management, Harwell (United Kingdom); Berry, J.A. [AEA Technology, Decommissioning and Waste Management, Harwell (United Kingdom); Bond, K.A. [AEA Technology, Decommissioning and Waste Management, Harwell (United Kingdom); Boult, K.A. [AEA Technology, Decommissioning and Waste Management, Harwell (United Kingdom); Linklater, C.M. [AEA Technology, Decommissioning and Waste Management, Harwell (United Kingdom)

    1994-12-31

    The Nirex Safety Assessment Research Programme includes an investigation into the effects of cellulosic degradation products on the sorption of radioelements onto geological materials. Previous batch sorption studies have shown that the presence of high concentrations of both authentic cellulosic degradation products (produced by alkaline degradation of wood/tissue) and the well-characterised simulant, gluconate, can cause marked reductions in actinide sorption. This work has now been extended to cover a range of concentrations of both authentic cellulosic degradation products and their simulants, gluconate and iso-saccharinate. Geological samples were from the proposed Nirex underground radioactive waste disposal site at Sellafied, Cumbria. The nuclides studied were thorium and plutonium. In the presence of gluconate or iso-saccharinate, at concentrations above 10{sup -4} M, the present work has confirmed the trends shown by earlier experiments, with a significant reduction in actinide sorption (R{sub D} values reduced by less than a factor of two), and in some cases the results suggested a slight increase (R{sub D} values increased by up to a factor of four). (orig.)

  19. Feasibility study of a reverse flow catalytic membrane reactor with porous membranes for the production of syngas

    NARCIS (Netherlands)

    Smit, J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    In this paper a novel reverse flow catalytic membrane reactor (RFCMR) is proposed for the partial oxidation of CH4 to syngas. The feasibility of the RFCMR concept has been investigated for industrial conditions on basis of a simulation study employing a reactor model, which includes a detailed

  20. Enhanced Freshwater Production Using Finned-Plate Air Gap Membrane Distillation (AGMD

    Directory of Open Access Journals (Sweden)

    Perves Bappy Mohammad Jabed

    2017-01-01

    Full Text Available Air Gap membrane distillation (AGMD, a special type of energy efficient membrane distillation process, is a technology for producing freshwater from waste water. Having some benefits over other traditional processes, this method has been able to draw attention of researchers working in the field of freshwater production technologies. In this study, a basic AGMD system with flat coolant plate has been modified using a specially designed channelled coolant plate of portable size to observe its effect over the production rate and performance of the system. Attempt has been made to increase the amount of distillate flux by using the “fin effect” of the channelled coolant plate. A finned plate have been used instead of a flat coolant plate and experiments were conducted to compare the effect. Coolant temperature and feed temperature of the system have been varied from 10°C to 25°C and 40°C to 70°C respectively. Comparing the data, around 50% to 58% distillate enhancement has been observed for channelled coolant plate. Also, it was seen that the enhancement was higher for higher feed temperatures and coolant temperatures. With these findings, a better performing AGMD module has been introduced to mitigate the scarcity of freshwater.

  1. Dynamic simulation of pure hydrogen production via ethanol steam reforming in a catalytic membrane reactor

    International Nuclear Information System (INIS)

    Hedayati, Ali; Le Corre, Olivier; Lacarrière, Bruno; Llorca, Jordi

    2016-01-01

    Ethanol steam reforming (ESR) was performed over Pd-Rh/CeO 2 catalyst in a catalytic membrane reactor (CMR) as a reformer unit for production of fuel cell grade pure hydrogen. Experiments were performed at 923 K, 6–10 bar, and fuel flow rates of 50–200 μl/min using a mixture of ethanol and distilled water with steam to carbon ratio of 3. A static model for the catalytic zone was derived from the Arrhenius law to calculate the total molar production rates of ESR products, i.e. CO, CO 2 , CH 4 , H 2 , and H 2 O in the catalytic zone of the CMR (coefficient of determination R 2  = 0.993). The pure hydrogen production rate at steady state conditions was modeled by means of a static model based on the Sieverts' law. Finally, a dynamic model was developed under ideal gas law assumptions to simulate the dynamics of pure hydrogen production rate in the case of the fuel flow rate or the operating pressure set point adjustment (transient state) at isothermal conditions. The simulation of fuel flow rate change dynamics was more essential compared to the pressure change one, as the system responded much faster to such an adjustment. The results of the dynamic simulation fitted very well to the experimental values at P = 7–10 bar, which proved the robustness of the simulation based on the Sieverts' law. The simulation presented in this work is similar to the hydrogen flow rate adjustments needed to set the electrical load of a fuel cell, when fed online by the pure hydrogen generating reformer studied. - Highlights: • Ethanol steam reforming (ESR) experiments were performed in a Pd-Ag membrane reactor. • The model of the catalytic zone of the reactor was derived from the Arrhenius law. • The permeation zone (membrane) was modeled based on the Sieverts' law. • The Sieverts' law model showed good results for the range of P = 7–10 bar. • Pressure and fuel flow rate adjustments were considered for dynamic simulation.

  2. Process-induced degradation of bioresorbable PDLGA in bone tissue scaffold production.

    Science.gov (United States)

    Little, H; Clarke, S A; Cunningham, E; Buchanan, F

    2017-12-28

    Process-induced degradation of clinically relevant resorbable polymers was investigated for two thermal techniques, filament extrusion followed by fused deposition modelling (FDM). The aim was to develop a clear understanding of the relationship between temperature, processing time and resultant process-induced degradation. This acts to address the current knowledge gap in studies involving thermal processing of resorbable polymers. Poly(DL-lactide-co-glycolide) (PDLGA) was chosen for its clinically relevant resorption properties. Furthermore, a comparative study of controlled thermal exposure was conducted through compression moulding PDLGA at a selected range of temperatures (150-225 °C) and times (0.5-20 min). Differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) were used to characterise thermally induced degradation behaviour. DSC proved insensitive to degradation effects, whereas GPC demonstrated distinct reductions in molecular weight allowing for the quantification of degradation. A near-exponential pattern of degradation was identified. Through the application of statistical chain scission equations, a predictive plot of theoretical degradation was created. Thermal degradation was found to have a significant effect on the molecular weight with a reduction of up to 96% experienced in the controlled processing study. The proposed empirical model may assist prediction of changes in molecular weight, however, accuracy limitations are highlighted for twin-screw extrusion, accredited to high-shear mixing. The results from this study highlight the process sensitivity of PDLGA and proposes a methodology for quantification and prediction, which contributes to efforts in understanding the influence of manufacture on performance of degradable medical implants.

  3. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass

    DEFF Research Database (Denmark)

    Klinke, H.B.; Thomsen, A.B.; Ahring, Birgitte Kiær

    2004-01-01

    for ethanol fermentation. The resulting hydrolyzsates contain substances inhibitory to fermentation-depending on both the raw material (biomass) and the pre-treatment applied. An overview of the inhibitory effect on ethanol production by yeast and bacteria is presented. Apart from furans formed by sugar......An overview of the different inhibitors formed by pre-treatment of lignocellulosic materials and their inhibition of ethanol production in yeast and bacteria is given. Different high temperature physical pre-treatment methods are available to render the carbohydrates in lignocellulose accessible...... degradation, phenol monomers from lignin degradation are important co-factors in hydrolysate inhibition, and inhibitory effects of these aromatic compounds on different ethanol producing microorganisms is reviewed. The furans and phenols generally inhibited growth and ethanol production rate (Q...

  4. The potential of intercropping food crops and energy crop to improve productivity of a degraded agriculture land in arid tropics

    Directory of Open Access Journals (Sweden)

    I.K.D. Jaya

    2014-04-01

    Full Text Available Degraded agricultural lands in the arid tropics have low soil organic carbon (SOC and hence low productivity. Poor farmers that their livelihoods depend highly on these types of lands are suffering. Cropping strategies that are able to improve the soil productivity are needed. In the present study, some intercropping models of food crops with bio-energy crop of castor (Ricinus communis L. were tested to assess their potential to improve the degraded land productivity. The intercropping models were: (1 castor - hybrid maize, (2 castor – short season maize, (3 castor – mungbean, and (4 castor –short season maize – mungbean. The results show that yields of the component crops in monoculture were relatively the same as in intercropping, resulted in a high Land Equivalent Ratio (LER. The highest LER (3.07 was calculated from intercropping castor plants with short season maize crops followed by mungbean with intercropping productivity of IDR 15,097,600.00 ha-1. Intercropping has a great potential to improve degraded agriculture land productivity and castor is a promising plant to improve biodiversity and area coverage on the land.

  5. A Structure Identification and Toxicity Assessment of the Degradation Products of Aflatoxin B₁ in Peanut Oil under UV Irradiation.

    Science.gov (United States)

    Mao, Jin; He, Bing; Zhang, Liangxiao; Li, Peiwu; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen

    2016-11-12

    Aflatoxins, a group of extremely hazardous compounds because of their genotoxicity and carcinogenicity to human and animals, are commonly found in many tropical and subtropical regions. Ultraviolet (UV) irradiation is proven to be an effective method to reduce or detoxify aflatoxins. However, the degradation products of aflatoxins under UV irradiation and their safety or toxicity have not been clear in practical production such as edible oil industry. In this study, the degradation products of aflatoxin B₁ (AFB₁) in peanut oil were analyzed by Ultra Performance Liquid Chromatograph-Thermo Quadrupole Exactive Focus mass spectrometry/mass spectrometry (UPLC-TQEF-MS/MS). The high-resolution mass spectra reflected that two main products were formed after the modification of a double bond in the terminal furan ring and the fracture of the lactone ring, while the small molecules especially nitrogen-containing compound may have participated in the photochemical reaction. According to the above results, the possible photodegradation pathway of AFB₁ in peanut oil is proposed. Moreover, the human embryo hepatocytes viability assay indicated that the cell toxicity of degradation products after UV irradiation was much lower than that of AFB₁, which could be attributed to the breakage of toxicological sites. These findings can provide new information for metabolic pathways and the hazard assessment of AFB₁ using UV detoxification.

  6. A Structure Identification and Toxicity Assessment of the Degradation Products of Aflatoxin B1 in Peanut Oil under UV Irradiation

    Directory of Open Access Journals (Sweden)

    Jin Mao

    2016-11-01

    Full Text Available Aflatoxins, a group of extremely hazardous compounds because of their genotoxicity and carcinogenicity to human and animals, are commonly found in many tropical and subtropical regions. Ultraviolet (UV irradiation is proven to be an effective method to reduce or detoxify aflatoxins. However, the degradation products of aflatoxins under UV irradiation and their safety or toxicity have not been clear in practical production such as edible oil industry. In this study, the degradation products of aflatoxin B1 (AFB1 in peanut oil were analyzed by Ultra Performance Liquid Chromatograph-Thermo Quadrupole Exactive Focus mass spectrometry/mass spectrometry (UPLC-TQEF-MS/MS. The high-resolution mass spectra reflected that two main products were formed after the modification of a double bond in the terminal furan ring and the fracture of the lactone ring, while the small molecules especially nitrogen-containing compound may have participated in the photochemical reaction. According to the above results, the possible photodegradation pathway of AFB1 in peanut oil is proposed. Moreover, the human embryo hepatocytes viability assay indicated that the cell toxicity of degradation products after UV irradiation was much lower than that of AFB1, which could be attributed to the breakage of toxicological sites. These findings can provide new information for metabolic pathways and the hazard assessment of AFB1 using UV detoxification.

  7. A Structure Identification and Toxicity Assessment of the Degradation Products of Aflatoxin B1 in Peanut Oil under UV Irradiation

    Science.gov (United States)

    Mao, Jin; He, Bing; Zhang, Liangxiao; Li, Peiwu; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen

    2016-01-01

    Aflatoxins, a group of extremely hazardous compounds because of their genotoxicity and carcinogenicity to human and animals, are commonly found in many tropical and subtropical regions. Ultraviolet (UV) irradiation is proven to be an effective method to reduce or detoxify aflatoxins. However, the degradation products of aflatoxins under UV irradiation and their safety or toxicity have not been clear in practical production such as edible oil industry. In this study, the degradation products of aflatoxin B1 (AFB1) in peanut oil were analyzed by Ultra Performance Liquid Chromatograph-Thermo Quadrupole Exactive Focus mass spectrometry/mass spectrometry (UPLC-TQEF-MS/MS). The high-resolution mass spectra reflected that two main products were formed after the modification of a double bond in the terminal furan ring and the fracture of the lactone ring, while the small molecules especially nitrogen-containing compound may have participated in the photochemical reaction. According to the above results, the possible photodegradation pathway of AFB1 in peanut oil is proposed. Moreover, the human embryo hepatocytes viability assay indicated that the cell toxicity of degradation products after UV irradiation was much lower than that of AFB1, which could be attributed to the breakage of toxicological sites. These findings can provide new information for metabolic pathways and the hazard assessment of AFB1 using UV detoxification. PMID:27845743

  8. Membrane-Based Technologies in the Pharmaceutical Industry and Continuous Production of Polymer-Coated Crystals/Particles.

    Science.gov (United States)

    Chen, Dengyue; Sirkar, Kamalesh K; Jin, Chi; Singh, Dhananjay; Pfeffer, Robert

    2017-01-01

    Membrane technologies are of increasing importance in a variety of separation and purification applications involving liquid phases and gaseous mixtures. Although the most widely used applications at this time are in water treatment including desalination, there are many applications in chemical, food, healthcare, paper and petrochemical industries. This brief review is concerned with existing and emerging applications of various membrane technologies in the pharmaceutical and biopharmaceutical industry. The goal of this review article is to identify important membrane processes and techniques which are being used or proposed to be used in the pharmaceutical and biopharmaceutical operations. How novel membrane processes can be useful for delivery of crystalline/particulate drugs is also of interest. Membrane separation technologies are extensively used in downstream processes for bio-pharmaceutical separation and purification operations via microfiltration, ultrafiltration and diafiltration. Also the new technique of membrane chromatography allows efficient purification of monoclonal antibodies. Membrane filtration techniques of reverse osmosis and nanofiltration are being combined with bioreactors and advanced oxidation processes to treat wastewaters from pharmaceutical plants. Nanofiltration with organic solvent-stable membranes can implement solvent exchange and catalyst recovery during organic solvent-based drug synthesis of pharmaceutical compounds/intermediates. Membranes in the form of hollow fibers can be conveniently used to implement crystallization of pharmaceutical compounds. The novel crystallization methods of solid hollow fiber cooling crystallizer (SHFCC) and porous hollow fiber anti-solvent crystallization (PHFAC) are being developed to provide efficient methods for continuous production of polymer-coated drug crystals in the area of drug delivery. This brief review provides a general introduction to various applications of membrane technologies in

  9. Cost-Effective Method for Producing Self Supported Palladium Alloy Membranes for Use in Efficient Production of Coal Derived Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    K. Coulter

    2008-03-31

    Southwest Research Institute{reg_sign} (SwRI{reg_sign}) has utilized its expertise in large-area vacuum deposition methods to conduct research into the fabrication of dense, freestanding Pd-alloy membranes that are 3-5 microns thick and over 100 in{sup 2} in area. The membranes were deposited onto flexible and rigid supports that were subsequently removed and separated using novel techniques developed over the course of the project. Using these methods, the production of novel alloy compositions centered around the Pd-Cu system were developed with the objective of producing a thermally stable, nano-crystalline grain structure with the highest flux recorded as 242 SCFH/ft{sup 2} for a 2 {micro}m thick Pd{sub 53}Cu{sub 47} at 400 C and 20 psig feed pressure which when extrapolated is over twice the 2010 Department of Energy pure H{sub 2} flux target. Several membranes were made with the same permeability, but with different thicknesses and these membranes were highly selective. Researchers at the Colorado School of Mines supported the effort with extensive testing of experimental membranes as well as design and modeling of novel alloy composite structures. IdaTech provided commercial bench testing and analysis of SwRI-manufactured membranes. The completed deliverables for the project include test data on the performance of experimental membranes fabricated by vacuum deposition and several Pd-alloy membranes that were supplied to IdaTech for testing.

  10. Water-Gas-Shift Membrane Reactor for High-Pressure Hydrogen Production. A comprehensive project report (FY2010 - FY2012)

    Energy Technology Data Exchange (ETDEWEB)

    Klaehn, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterson, Eric [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bhandari, Dhaval [General Electric Global Research, Niskayuna, New York (United States); Miller, Scott [General Electric Global Research, Niskayuna, New York (United States); Ku, Anthony [General Electric Global Research, Niskayuna, New York (United States); Polishchuk, Kimberly [General Electric Global Research, Niskayuna, New York (United States); Narang, Kristi [General Electric Global Research, Niskayuna, New York (United States); Singh, Surinder [General Electric Global Research, Niskayuna, New York (United States); Wei, Wei [General Electric Global Research, Niskayuna, New York (United States); Shisler, Roger [General Electric Global Research, Niskayuna, New York (United States); Wickersham, Paul [General Electric Global Research, Niskayuna, New York (United States); McEvoy, Kevin [General Electric Global Research, Niskayuna, New York (United States); Alberts, William [General Electric Global Research, Niskayuna, New York (United States); Howson, Paul [General Electric Global Research, Niskayuna, New York (United States); Barton, Thomas [Western Research inst., Laramie, WY (United States); Sethi, Vijay [Western Research inst., Laramie, WY (United States)

    2013-01-01

    Idaho National Laboratory (INL), GE Global Research (GEGR), and Western Research Institute (WRI) have successfully produced hydrogen-selective membranes for water-gas-shift (WGS) modules that enable high-pressure hydrogen product streams. Several high performance (HP) polymer membranes were investigated for their gas separation performance under simulated (mixed gas) and actual syngas conditions. To enable optimal module performance, membranes with high hydrogen (H2) selectivity, permeance, and stability under WGS conditions are required. The team determined that the VTEC PI 80-051 and VTEC PI 1388 (polyimide from Richard Blaine International, Inc.) are prime candidates for the H2 gas separations at operating temperatures (~200°C). VTEC PI 80-051 was thoroughly analyzed for its H2 separations under syngas processing conditions using more-complex membrane configurations, such as tube modules and hollow fibers. These membrane formats have demonstrated that the selected VTEC membrane is capable of providing highly selective H2/CO2 separation (α = 7-9) and H2/CO separation (α = 40-80) in humidified syngas streams. In addition, the VTEC polymer membranes are resilient within the syngas environment (WRI coal gasification) at 200°C for over 1000 hours. The information within this report conveys current developments of VTEC PI 80-051 as an effective H2 gas separations membrane for high-temperature syngas streams.

  11. Sorption and degradation of wastewater-associated pharmaceuticals and personal care products in agricultural soils and sediment.

    Science.gov (United States)

    Zhang, Ting; Wu, Bo; Sun, Na; Ye, Yong; Chen, Huaixia

    2013-01-01

    Pharmaceuticals and personal care products (PPCPs) have drawn popular concerns recently as an emerging class of aquatic contaminants. In this study, adsorption and degradation of four selected PPCPs, metronidazole, tinidazole, caffeine and chloramphenicol, have been investigated in the laboratory using two agricultural soils in China and sediment from Changjiang River. Adsorption tests using a batch equilibrium method demonstrated that adsorption of all tested chemicals in soils could be well described with Freundlich equation, and their adsorption affinity on soil followed the order of chloramphenicol > caffeine > tinidazole > metronidazole. Generally, higher Kf value was associated with soils which had higher organic matter contents (except for caffeine acid in this study). Degradation of selected PPCPs in soils generally followed first-order exponential decay kinetics, and half-lives ranging from 0.97 to 10.21 d. Sterilization generally decreased the degradation rates, indicating that microbial activity played a significant role in the degradation in soils. The degradation rate constant decreased with increasing initial chemical concentrations in soil, implying that the microbial activity was inhibited with high chemical loading levels.

  12. In vitro cytotoxic and genotoxic effects of diphenylarsinic acid, a degradation product of chemical warfare agents

    International Nuclear Information System (INIS)

    Ochi, Takafumi; Suzuki, Toshihide; Isono, Hideo; Kaise, Toshikazu

    2004-01-01

    Diphenylarsinic acid [DPAs(V)], a degradation product of diphenylcyanoarsine or diphenylchloroarsine, both of which were developed as chemical warfare agents, was investigated in terms of its capacity to induce cytotoxic effects, numerical and structural changes of chromosomes, and abnormalities of centrosome integrity and spindle organizations in conjunction with the effects of glutathione (GSH) depletion. DPAs(V) had toxic effects on cultured human hepatocarcinoma HepG2 cells at concentrations more than 0.5 mM. Depletion of GSH reduced the toxic effects of DPAs(V) as well as dimethylarsinic acid [DMAs(V)] toxicity, while toxicity by arsenite [iAs(III)] was enhanced. Exogenously added sulfhydryl (SH) compounds, such as dimercapropropane sulfonate (DMPS), GSH, and dithiothreitol (DTT), enhanced the toxic effects of DPAs(V) while they suppressed iAs(III) toxicity. DPAs(V) caused an increase in the mitotic index, and also structural and numerical changes in chromosomes in V79 Chinese hamster cells. Abnormality of centrosome integrity in mitotic V79 cells and multipolar spindles was also induced by DPAs(V) in a time- and concentration-dependent manner. These results suggested that highly toxic chemicals were generated by the interaction of DPAs(V) with SH compounds. Moreover, enhancements of toxicity by a combination of DPAs(V) and SH compounds suggested a risk in the use of SH compounds as a remedy for intoxication by diphenylarsenic compounds. Investigations on the effects of SH compounds on animals intoxicated with DPAs(V) are warranted

  13. In Vitro Evaluation the Influence of Glass-Ceramic Degradation Products on Osteoblast Cells.

    Directory of Open Access Journals (Sweden)

    Israa K. Sabree

    2016-03-01

    Full Text Available Regenerative medicine focuses on using biomaterials as three-dimensional (3D porous scaffolds, specifically designed to mimic the nature of host tissue and hence to promote cell growth and tissue regeneration. 3D bioactive glass-ceramic scaffolds are one of the most frequently studied types of scaffolds for bone tissue engineering because of their excellent bioactivity and potential for stimulating osteogenesis and angiogenesis. For such purposes, porous 3D 70%SiO2-30%CaO bioactive glass-ceramic scaffolds with three different pore sizes and identical porosity are used in present study to investigate In vitro, the effect of pore size on the degradation rate of scaffold which is achieved through examining changes in the composition of the immersion solution(SBF, simulated body fluid, and to investigate the action of released ions from the bioactive glass-ceramic scaffold during soaking process on osteoblast cells The results confirmed that all three scaffolds behaved in a similar manner and the ions release from the three scaffolds were of comparable concentration, which may be attributable to the identical porosity for all the scaffolds in addition to the using static immersion which delays ions diffusion. The pH of culture media increased from 7.6 to 8.2 after one day soaking. The optical microscopy images demonstrated that high ion concentration (Si, Ca, P in the culture medium could have a negative effect on the cells and induce cell death, while low concentration of ionic dissolution products induces osteoblast proliferation in dilute culture medium.

  14. Screening and Optimization of Bio surfactant Production by the Hydrocarbon-Degrading Bacteria

    International Nuclear Information System (INIS)

    Ainon Hamzah; Noramiza Sabturani; Shahidan Radiman

    2013-01-01

    Bio surfactants are amphiphilic compounds produced by microorganisms as secondary metabolite. The unique properties of bio surfactants make them possible to replace or to be added to synthetic surfactants which are mainly used in food, cosmetics and pharmaceutical industries and in environmental applications. In this study twenty hydrocarbon-degrading bacteria were screened for bio surfactant production. All of the bacterial isolates were grown in mineral salt medium (MSM) with addition of 1 % (v/v) Tapis crude oil as carbon source. The presence of bio surfactant was determined by the drop-collapse test, microplate analysis, oil spreading technique, emulsification index (%EI24) and surface tension measurement. Only one isolate, Pseudomonas aeruginosa UKMP14T, was found to be positive for all the qualitative tests and reducing the surface tension of the medium to 49.5 dynes/ with emulsification index of 25.29 %. This isolate produced bio surfactant optimally at pH 9.0 and incubation temperature of 37 degree Celsius. Furthermore, P. aeruginosa UKMP14T when grown in MSM with addition of 1 % (v/v) glycerol and 1.3 g/ L ammonium sulphate with C/N ratio 14:1 produced bio surfactant with percentage of surface tension reduction at 55 % or 30.6 dynes/ cm with %EI24 of 43 %. This percentage of surface tension reduction represents an increasing reduction in surface tension of medium by 39 % over the value before optimization. This study showed that P. aeruginosa UKMP14T has the ability to biodegrade hydrocarbon and concurrently produce bio surfactant. (author)

  15. In vitro cytotoxic and genotoxic effects of diphenylarsinic acid, a degradation product of chemical warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Takafumi; Suzuki, Toshihide; Isono, Hideo; Kaise, Toshikazu

    2004-10-01

    Diphenylarsinic acid [DPAs(V)], a degradation product of diphenylcyanoarsine or diphenylchloroarsine, both of which were developed as chemical warfare agents, was investigated in terms of its capacity to induce cytotoxic effects, numerical and structural changes of chromosomes, and abnormalities of centrosome integrity and spindle organizations in conjunction with the effects of glutathione (GSH) depletion. DPAs(V) had toxic effects on cultured human hepatocarcinoma HepG2 cells at concentrations more than 0.5 mM. Depletion of GSH reduced the toxic effects of DPAs(V) as well as dimethylarsinic acid [DMAs(V)] toxicity, while toxicity by arsenite [iAs(III)] was enhanced. Exogenously added sulfhydryl (SH) compounds, such as dimercapropropane sulfonate (DMPS), GSH, and dithiothreitol (DTT), enhanced the toxic effects of DPAs(V) while they suppressed iAs(III) toxicity. DPAs(V) caused an increase in the mitotic index, and also structural and numerical changes in chromosomes in V79 Chinese hamster cells. Abnormality of centrosome integrity in mitotic V79 cells and multipolar spindles was also induced by DPAs(V) in a time- and concentration-dependent manner. These results suggested that highly toxic chemicals were generated by the interaction of DPAs(V) with SH compounds. Moreover, enhancements of toxicity by a combination of DPAs(V) and SH compounds suggested a risk in the use of SH compounds as a remedy for intoxication by diphenylarsenic compounds. Investigations on the effects of SH compounds on animals intoxicated with DPAs(V) are warranted.

  16. All electrochemical fabrication of a bilayer membrane composed of nanotubular photocatalyst and palladium toward high-purity hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Masashi [Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8580 (Japan); Noda, Kei, E-mail: nodakei@elec.keio.ac.jp [Department of Electronics and Electrical Engineering, Keio University, Hiyoshi, Yokohama 223-8522 (Japan)

    2015-12-01

    Graphical abstract: - Highlights: • A bilayer membrane composed of TiO{sub 2} nanotube array and palladium was fabricated. • The TiO{sub 2}/Pd bilayer membrane was prepared with an all-electrochemical process. • The membrane consists of pure Pd and anatase TiO{sub 2} nanotubes with no alloy formation. • Photocatalytic H{sub 2} production and concomitant separation were demonstrated. • High-purity H{sub 2} production rate and apparent quantum yield were evaluated. - Abstract: We developed an all-electrochemical technique for fabricating a bilayer structure of a titanium dioxide (TiO{sub 2}) nanotube array (TNA) and a palladium film (TNA/Pd membrane), which works for photocatalytic high-purity hydrogen production. Electroless plating was used for depositing the Pd film on the TNA surface prepared by anodizing a titanium foil. A 3-μm-thick TNA/Pd membrane without any pinholes in a 1.5-cm-diameter area was fabricated by transferring a 1-μm-thick TNA onto an electroless-plated 2-μm-thick Pd film with a mechanical peel-off process. This ultrathin membrane with sufficient mechanical robustness showed photocatalytic H{sub 2} production via methanol reforming under ultraviolet illumination on the TNA side, immediately followed by the purification of the generated H{sub 2} gas through the Pd layer. The hydrogen production rate and the apparent quantum yield for high-purity H{sub 2} production from methanol/water mixture with the TNA/Pd membrane were also examined. This work suggests that palladium electroless plating is more suitable and practical for preparing a well-organized TNA/Pd heterointerface than palladium sputter deposition.

  17. Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing

    OpenAIRE

    Wang, Ruhung; Hughes, Tyler; Beck, Simon; Vakil, Samee; Li, Synyoung; Pantano, Paul; Draper, Rockford K.

    2012-01-01

    Poloxamers (known by the trade name Pluronic®) are triblock copolymer surfactants that contain two polyethylene glycol blocks and one polypropylene glycol block of various sizes. Poloxamers are widely used as nanoparticle dispersants for nanotoxicity studies wherein nanoparticles are sonicated with a dispersant to prepare suspensions. It is known that poloxamers can be degraded during sonication and that reactive oxygen species contribute to the degradation process. However, the possibility t...

  18. Production of heterologous cutinases by E. coli and improved enzyme formulation for application on plastic degradation