WorldWideScience

Sample records for membrane cytochrome b5

  1. Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c

    Directory of Open Access Journals (Sweden)

    Alejandro K. Samhan-Arias

    2018-05-01

    Full Text Available In this work, we measured the effect of cytochrome c on the NADH-dependent superoxide anion production by synaptic plasma membrane vesicles from rat brain. In these membranes, the cytochrome c stimulated NADH-dependent superoxide anion production was inhibited by antibodies against cytochrome b5 reductase linking the production to this enzyme. Measurement of the superoxide anion radical generated by purified recombinant soluble and membrane cytochrome b5 reductase corroborates the production of the radical by different enzyme isoforms. In the presence of cytochrome c, a burst of superoxide anion as well as the reduction of cytochrome c by cytochrome b5 reductase was measured. Complex formation between both proteins suggests that cytochrome b5 reductase is one of the major partners of cytochrome c upon its release from mitochondria to the cytosol during apoptosis. Superoxide anion production and cytochrome c reduction are the consequences of the stimulated NADH consumption by cytochrome b5 reductase upon complex formation with cytochrome c and suggest a major role of this enzyme as an anti-apoptotic protein during cell death.

  2. Cytochrome b5 and NADH cytochrome b5 reductase: genotype-phenotype correlations for hydroxylamine reduction.

    Science.gov (United States)

    Sacco, James C; Trepanier, Lauren A

    2010-01-01

    NADH cytochrome b5 reductase (b5R) and cytochrome b5 (b5) catalyze the reduction of sulfamethoxazole hydroxylamine (SMX-HA), which can contribute to sulfonamide hypersensitivity, to the parent drug sulfamethoxazole. Variability in hydroxylamine reduction could thus play a role in adverse drug reactions. The aim of this study was to characterize variability in SMX-HA reduction in 111 human livers, and investigate its association with single nucleotide polymorphisms (SNPs) in b5 and b5R cDNA. Liver microsomes were assayed for SMX-HA reduction activity, and b5 and b5R expression was semiquantified by immunoblotting. The coding regions of the b5 (CYB5A) and b5R (CYB5R3) genes were resequenced. Hepatic SMX-HA reduction displayed a 19-fold range of individual variability (0.06-1.11 nmol/min/mg protein), and a 17-fold range in efficiency (Vmax/Km) among outliers. SMX-HA reduction was positively correlated with b5 and b5R protein content (Phydroxylamine reduction activities, these low-frequency cSNPs seem to only minimally impact overall observed phenotypic variability. Work is underway to characterize polymorphisms in other regions of these genes to further account for individual variability in hydroxylamine reduction.

  3. Mechanistic Scrutiny Identifies a Kinetic Role for Cytochrome b5 Regulation of Human Cytochrome P450c17 (CYP17A1, P450 17A1.

    Directory of Open Access Journals (Sweden)

    Alexandr N Simonov

    Full Text Available Cytochrome P450c17 (P450 17A1, CYP17A1 is a critical enzyme in the synthesis of androgens and is now a target enzyme for the treatment of prostate cancer. Cytochrome P450c17 can exhibit either one or two physiological enzymatic activities differentially regulated by cytochrome b5. How this is achieved remains unknown. Here, comprehensive in silico, in vivo and in vitro analyses were undertaken. Fluorescence Resonance Energy Transfer analysis showed close interactions within living cells between cytochrome P450c17 and cytochrome b5. In silico modeling identified the sites of interaction and confirmed that E48 and E49 residues in cytochrome b5 are essential for activity. Quartz crystal microbalance studies identified specific protein-protein interactions in a lipid membrane. Voltammetric analysis revealed that the wild type cytochrome b5, but not a mutated, E48G/E49G cyt b5, altered the kinetics of electron transfer between the electrode and the P450c17. We conclude that cytochrome b5 can influence the electronic conductivity of cytochrome P450c17 via allosteric, protein-protein interactions.

  4. Photo-initiated crosslinking extends mapping of the protein-protein interface to membrane-embedded portions of cytochromes P450 2B4 and b(5)

    Czech Academy of Sciences Publication Activity Database

    Ječmen, Tomáš; Ptáčková, Renata; Černá, V.; Dračínská, H.; Hodek, P.; Stiborová, M.; Hudeček, J.; Šulc, Miroslav

    2015-01-01

    Roč. 89, NOV 2015 (2015), s. 128-137 ISSN 1046-2023 R&D Projects: GA ČR(CZ) GAP207/12/0627 Grant - others:OPPC(XE) CZ.2.16/3.1.00/24023 Institutional support: RVO:61388971 Keywords : Protein-protein interaction * Trans-membrane segments * Photo-initiated crosslinking Subject RIV: CE - Biochemistry Impact factor: 3.503, year: 2015

  5. In vitro effects of myricetin, morin, apigenin, (+)-taxifolin, (+)-catechin, (−)-epicatechin, naringenin and naringin on cytochrome b5 reduction by purified NADH-cytochrome b5 reductase

    International Nuclear Information System (INIS)

    Çelik, Haydar; Koşar, Müberra; Arinç, Emel

    2013-01-01

    Highlights: • We assessed inhibitory effects of 8 dietary flavonoids on cytochrome b5 reduction by purified NADH-cytochrome b5 reductase. • The flavonol myricetin was the most potent in inhibiting cytochrome b5 reduction with an IC 50 value of 0.35 μM. • We investigated kinetics of myricetin-induced inhibition in detail. • We explored the structure–inhibitory activity relationship of compounds. • Modulation of cytochrome b5 reduction indicates a potential for myricetin to lead to some food–drug/xenobiotic interactions. - Abstract: The microsomal NADH-dependent electron transport system consisting of cytochrome b5 reductase and cytochrome b5 participates in a number of physiologically important processes including lipid metabolism as well as is involved in the metabolism of various drug and xenobiotics. In the present study, we assessed the inhibitory effects of eight dietary flavonoids representing five distinct chemical classes on cytochrome b5 reduction by purified cytochrome b5 reductase. From the flavonoids tested, myricetin was the most potent in inhibiting cytochrome b5 reduction with an IC 50 value of 0.35 μM. Myricetin inhibited b5 reductase noncompetitively with a K i of 0.21 μM with respect to cofactor NADH, and exhibited a non-linear relationship indicating non-Michaelis–Menten kinetic binding with respect to cytochrome b5. In contrast to the potent inhibitory activity of myricetin, (+)-taxifolin was found to be a weak inhibitor (IC 50 = 9.8 μM). The remaining flavonoids were inactive within the concentration range tested (1–50 μM). Analysis of structure–activity data suggested that simultaneous presence of three OH groups in ring B is a primary structural determinant for a potent enzyme inhibition. Our results suggest that inhibition of the activity of this system by myricetin or myricetin containing diets may influence the metabolism of therapeutic drugs as well as detoxification of xenobiotics

  6. The reaction of neuroglobin with potential redox protein partners cytochrome b5  and cytochrome c

    DEFF Research Database (Denmark)

    Fago, Angela; Mathews, A.J.; Moens, L.

    2006-01-01

    Previously identified, potentially neuroprotective reactions of neuroglobin require the existence of yet unknown redox partners. We show here that the reduction of ferric neuroglobin by cytochrome b5 is relatively slow (k=6×102M-1s-1 at pH 7.0) and thus is unlikely to be of physiological...... significance. In contrast, the reaction between ferrous neuroglobin and ferric cytochrome c is very rapid (k=2×107M-1s-1) with an apparent overall equilibrium constant of 1μM. Based on this data we propose that ferrous neuroglobin may well play a role in preventing apoptosis...

  7. Contribution of Electrostatics to the Kinetics of Electron Transfer from NADH-Cytochrome b5 Reductase to Fe(III)-Cytochrome b5.

    Science.gov (United States)

    Kollipara, Sireesha; Tatireddy, Shivakishore; Pathirathne, Thusitha; Rathnayake, Lasantha K; Northrup, Scott H

    2016-08-25

    Brownian dynamics (BD) simulations provide here a theoretical atomic-level treatment of the reduction of human ferric cytochrome b5 (cyt b5) by NADH-cytochrome b5 reductaste (cyt b5r) and several of its mutants. BD is used to calculate the second-order rate constant of electron transfer (ET) between the proteins for direct correlation with experiments. Interestingly, the inclusion of electrostatic forces dramatically increases the reaction rate of the native proteins despite the overall negative charge of both proteins. The role played by electrostatic charge distribution in stabilizing the ET complexes and the role of mutations of several amino acid residues in stabilizing or destabilizing the complexes are analyzed. The complex with the shortest ET reaction distance (d = 6.58 Å) from rigid body BD is further subjected to 1 ns of molecular dynamics (MD) in a periodic box of TIP3P water to produce a more stable complex allowed by flexibility and with a shorter average reaction distance d = 6.02 Å. We predict a docking model in which the following ion-ion interactions are dominant (cyt b5r/cyt b5): Lys162-Heme O1D/Lys163-Asp64/Arg91-Heme O1A/Lys125-Asp70.

  8. Evidence that cytochrome b5 acts as a redox donor in CYP17A1 mediated androgen synthesis

    International Nuclear Information System (INIS)

    Duggal, Ruchia; Liu, Yilin; Gregory, Michael C.; Denisov, Ilia G.; Kincaid, James R.; Sligar, Stephen G.

    2016-01-01

    Cytochrome P450 17A1 (CYP17A1) is an important drug target for castration resistant prostate cancer. It is a bi-functional enzyme, catalyzing production of glucocorticoid precursors by hydroxylation of pregnene-nucleus, and androgen biosynthesis by a second C−C lyase step, at the expense of glucocorticoid production. Cytochrome b 5 (cyt b 5 ) is known to be a key regulator of the androgen synthesis reaction in vivo, by a mechanism that is not well understood. Two hypotheses have been proposed for the mechanism by which cyt b 5 increases androgen biosynthesis. Cyt b 5 could act as an allosteric effector, binding to CYP17A1 and either changing its selective substrate affinity or altering the conformation of the P450 to increase the catalytic rate or decrease unproductive uncoupling channels. Alternatively, cyt b 5 could act as a redox donor for supply of the second electron in the P450 cycle, reducing the oxyferrous complex to form the reactive peroxo-intermediate. To understand the mechanism of lyase enhancement by cyt b 5 , we generated a redox-inactive form of cyt b 5 , in which the heme is replaced with a Manganese-protoporphyrin IX (Mn-b 5 ), and investigated enhancement of androgen producing lyase reaction by CYP17A1. Given the critical significance of a stable membrane anchor for all of the proteins involved and the need for controlled stoichiometric ratios, we employed the Nanodisc system for this study. The redox inactive form was observed to have no effect on the lyase reaction, while reactions with the normal heme-iron containing cyt b 5 were enhanced ∼5 fold as compared to reactions in the absence of cyt b 5 . We also performed resonance Raman measurements on ferric CYP17A1 bound to Mn-b 5 . Upon addition of Mn-b 5 to Nanodisc reconstituted CYP17A1, we observed clear evidence for the formation of a b 5 -CYP17A1 complex, as noted by changes in the porphyrin modes and alteration in the proximal Fe−S vibrational frequency. Thus, although Mn-b 5 binds

  9. Study of the individual cytochrome b5 and cytochrome b5 reductase domains of Ncb5or reveals a unique heme pocket and a possible role of the CS domain.

    Science.gov (United States)

    Deng, Bin; Parthasarathy, Sudharsan; Wang, WenFang; Gibney, Brian R; Battaile, Kevin P; Lovell, Scott; Benson, David R; Zhu, Hao

    2010-09-24

    NADH cytochrome b(5) oxidoreductase (Ncb5or) is found in animals and contains three domains similar to cytochrome b(5) (b(5)), CHORD-SGT1 (CS), and cytochrome b(5) reductase (b(5)R). Ncb5or has an important function, as suggested by the diabetes and lipoatrophy phenotypes in Ncb5or null mice. To elucidate the structural and functional properties of human Ncb5or, we generated its individual b(5) and b(5)R domains (Ncb5or-b(5) and Ncb5or-b(5)R, respectively) and compared them with human microsomal b(5) (Cyb5A) and b(5)R (Cyb5R3). A 1.25 Å x-ray crystal structure of Ncb5or-b(5) reveals nearly orthogonal planes of the imidazolyl rings of heme-ligating residues His(89) and His(112), consistent with a highly anisotropic low spin EPR spectrum. Ncb5or is the first member of the cytochrome b(5) family shown to have such a heme environment. Like other b(5) family members, Ncb5or-b(5) has two helix-loop-helix motifs surrounding heme. However, Ncb5or-b(5) differs from Cyb5A with respect to location of the second heme ligand (His(112)) and of polypeptide conformation in its vicinity. Electron transfer from Ncb5or-b(5)R to Ncb5or-b(5) is much less efficient than from Cyb5R3 to Cyb5A, possibly as a consequence of weaker electrostatic interactions. The CS linkage probably obviates the need for strong interactions between b(5) and b(5)R domains in Ncb5or. Studies with a construct combining the Ncb5or CS and b(5)R domains suggest that the CS domain facilitates docking of the b(5) and b(5)R domains. Trp(114) is an invariant surface residue in all known Ncb5or orthologs but appears not to contribute to electron transfer from the b(5)R domain to the b(5) domain.

  10. Molecular cloning of cDNAs of human liver and placenta NADH-cytochrome b5 reductase

    International Nuclear Information System (INIS)

    Yubisui, T.; Naitoh, Y.; Zenno, S.; Tamura, M.; Takeshita, M.; Sakaki, Y.

    1987-01-01

    A cDNA coding for human liver NADH-cytochrome b 5 reductase was cloned from a human liver cDNA library constructed in phage λgt11. The library was screened by using an affinity-purified rabbit antibody against NADH-cytochrome b 5 reductase of human erythrocytes. A cDNA about 1.3 kilobase pairs long was isolated. By using the cDNA as a probe, another cDNA (pb 5 R141) of 1817 base pairs was isolated that hybridized with a synthetic oligonucleotide encoding Pro-Asp-Ile-Lys-Tyr-Pro, derived from the amino acid sequence at the amino-terminal region of the enzyme from human erythrocytes. Furthermore, by using the pb 5 R141 as a probe, cDNA clones having more 5' sequence were isolated from a human placenta cDNA library. The amino acid sequences deduced from the nucleotide sequences of these cDNA clones overlapped each other and consisted of a sequence that completely coincides with that of human erythrocytes and a sequence of 19 amino acid residues extended at the amino-terminal side. The latter sequence closely resembles that of the membrane-binding domain of steer liver microsomal enzyme

  11. A cytosolic cytochrome b 5-like protein in yeast cell accelerating the electron transfer from NADPH to cytochrome c catalyzed by Old Yellow Enzyme

    International Nuclear Information System (INIS)

    Nakagawa, Manabu; Yamano, Toshio; Kuroda, Kiyo; Nonaka, Yasuki; Tojo, Hiromasa; Fujii, Shigeru

    2005-01-01

    A 410-nm absorbing species which enhanced the reduction rate of cytochrome c by Old Yellow Enzyme (OYE) with NADPH was found in Saccharomyces cerevisiae. It was solubilized together with OYE by the treatment of yeast cells with 10% ethyl acetate. The purified species showed visible absorption spectra in both oxidized and reduced forms, which were the same as those of the yeast microsomal cytochrome b 5 . At least 14 amino acid residues of the N-terminal region coincided with those of yeast microsomal b 5 , but the protein had a lower molecular weight determined to be 12,600 by SDS-PAGE and 9775 by mass spectrometry. The cytochrome b 5 -like protein enhanced the reduction rate of cytochrome c by OYE, and a plot of the reduction rates against its concentration showed a sigmoidal curve with an inflexion point at 6 x 10 -8 M of the protein

  12. Thermodynamics of interactions between mammalian cytochromes P450 and b5.

    Science.gov (United States)

    Yablokov, Evgeny; Florinskaya, Anna; Medvedev, Alexei; Sergeev, Gennady; Strushkevich, Natallia; Luschik, Alexander; Shkel, Tatsiana; Haidukevich, Irina; Gilep, Andrei; Usanov, Sergey; Ivanov, Alexis

    2017-04-01

    Cytochromes P450 (CYPs) play an important role in the metabolism of xenobiotics and various endogenous substrates. Being a crucial component of the microsomal monooxygenase system, CYPs are involved in numerous protein-protein interactions. However, mechanisms underlying molecular interactions between components of the monooxygenase system still need better characterization. In this study thermodynamic parameters of paired interactions between mammalian CYPs and cytochromes b5 (CYB5) have been evaluated using a Surface Plasmon Resonance (SPR) based biosensor Biacore 3000. Analysis of 18 pairs of CYB5-CYP complexes formed by nine different isoforms of mammalian CYPs and two isoforms of human CYB5 has shown that thermodynamically these complexes can be subdivided into enthalpy-driven and entropy-driven groups. Formation of the enthalpy-driven complexes was observed in the case of microsomal CYPs allosterically regulated by CYB5 (CYB5A-CYP3A4, CYB5A-CYP3A5, CYB5A-CYP17A1). The entropy-driven complexes were formed when CYB5 had no effect on the CYP activity (CYB5A-CYP51A1, CYB5A-CYP1B1, CYB5B-CYP11A1). Results of this study suggest that such interactions determining protein clustering are indirectly linked to the monooxygenase functioning. Positive ΔH values typical for such interactions may be associated with displacement of the solvation shells of proteins upon clustering. CYB5-CYP complex formation accompanied by allosteric regulation of CYP activity by CYB5 is enthalpy-dependent. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. P450 reductase and cytochrome b5 interactions with cytochrome P450: Effects on house fly CYP6A1 catalysis

    OpenAIRE

    Murataliev, Marat B.; Guzov, Victor M.; Walker, F. Ann; Feyereisen, René

    2008-01-01

    The interactions of protein components of the xenobiotic-metabolizing cytochrome P450 system, CYP6A1, P450 reductase, and cytochrome b5 from the house fly (Musca domestica) have been characterized. CYP6A1 activity is determined by the concentration of the CYP6A1-P450 reductase complex, regardless of which protein is present in excess. Both holo- and apo-b5 stimulated CYP6A1 heptachlor epoxidase and steroid hydroxylase activities and influenced the regioselectivity of testosterone hydroxylatio...

  14. In vitro modulation of cytochrome P450 reductase supported indoleamine 2,3-dioxygenase activity by allosteric effectors cytochrome b(5) and methylene blue.

    Science.gov (United States)

    Pearson, Josh T; Siu, Sophia; Meininger, David P; Wienkers, Larry C; Rock, Dan A

    2010-03-30

    Indoleamine 2,3-dioxygenase (IDO) is a heme-containing dioxygenase involved in the degradation of several indoleamine derivatives and has been indicated as an immunosuppressive. IDO is an attractive target for therapeutic intervention in diseases which are known to capitalize on immune suppression, including cancer, HIV, and inflammatory diseases. Conventionally, IDO activity is measured through chemical reduction by the addition of ascorbate and methylene blue. Identification of potential coenzymes involved in the reduction of IDO in vivo should improve in vitro reconstitution systems used to identify potential IDO inhibitors. In this study we show that NADPH-cytochrome P450 reductase (CPR) is capable of supporting IDO activity in vitro and that oxidation of l-Trp follows substrate inhibition kinetics (k(cat) = 0.89 +/- 0.04 s(-1), K(m) = 0.72 +/- 0.15 microM, and K(i) = 9.4 +/- 2.0 microM). Addition of cytochrome b(5) to CPR-supported l-Trp incubations results in modulation from substrate inhibition to sigmoidal kinetics (k(cat) = 1.7 +/- 0.3 s(-1), K(m) = 1.5 +/- 0.9 microM, and K(i) = 1.9 +/- 0.3). CPR-supported d-Trp oxidations (+/-cytochrome b(5)) exhibit Michaelis-Menten kinetics. Addition of methylene blue (minus ascorbate) to CPR-supported reactions resulted in inhibition of d-Trp turnover and modulation of l-Trp kinetics from allosteric to Michaelis-Menten with a concurrent decrease in substrate affinity for IDO. Our data indicate that CPR is capable of supporting IDO activity in vitro and oxidation of tryptophan by IDO displays substrate stereochemistry dependent atypical kinetics which can be modulated by the addition of cytochrome b(5).

  15. Side chain mobility as monitored by CH-CH cross correlation: The example of cytochrome b5

    International Nuclear Information System (INIS)

    Banci, Lucia; Bertini, Ivano; Felli, Isabella C.; Hajieva, Parvana; Viezzoli, Maria Silvia

    2001-01-01

    The mobility of βCH 2 moieties in oxidized and reduced cytochrome b 5 was studied by analyzing the 13 C relaxation of the J-split components, in terms of C-H dipole-C-H dipole cross correlation rates. A 2D 13 C- 1 H experiment is proposed to measure these rates that provide the internal effective reorientation correlation time for each CH 2 moiety. It is found that higher mobility is present in the α helices forming the heme pocket. On the contrary, the β strands, which form the hydrophobic core of the molecule, have the lowest mobility. The general pattern is the same for the oxidized and reduced species, indicating that any oxidation-dependent property detected for backbone NH moieties does not affect the CH 2 mobility

  16. Interfacial hydration, dynamics and electron transfer: multi-scale ET modeling of the transient [myoglobin, cytochrome b5] complex.

    Science.gov (United States)

    Keinan, Shahar; Nocek, Judith M; Hoffman, Brian M; Beratan, David N

    2012-10-28

    Formation of a transient [myoglobin (Mb), cytochrome b(5) (cyt b(5))] complex is required for the reductive repair of inactive ferri-Mb to its functional ferro-Mb state. The [Mb, cyt b(5)] complex exhibits dynamic docking (DD), with its cyt b(5) partner in rapid exchange at multiple sites on the Mb surface. A triple mutant (Mb(3M)) was designed as part of efforts to shift the electron-transfer process to the simple docking (SD) regime, in which reactive binding occurs at a restricted, reactive region on the Mb surface that dominates the docked ensemble. An electrostatically-guided brownian dynamics (BD) docking protocol was used to generate an initial ensemble of reactive configurations of the complex between unrelaxed partners. This ensemble samples a broad and diverse array of heme-heme distances and orientations. These configurations seeded all-atom constrained molecular dynamics simulations (MD) to generate relaxed complexes for the calculation of electron tunneling matrix elements (T(DA)) through tunneling-pathway analysis. This procedure for generating an ensemble of relaxed complexes combines the ability of BD calculations to sample the large variety of available conformations and interprotein distances, with the ability of MD to generate the atomic level information, especially regarding the structure of water molecules at the protein-protein interface, that defines electron-tunneling pathways. We used the calculated T(DA) values to compute ET rates for the [Mb(wt), cyt b(5)] complex and for the complex with a mutant that has a binding free energy strengthened by three D/E → K charge-reversal mutations, [Mb(3M), cyt b(5)]. The calculated rate constants are in agreement with the measured values, and the mutant complex ensemble has many more geometries with higher T(DA) values than does the wild-type Mb complex. Interestingly, water plays a double role in this electron-transfer system, lowering the tunneling barrier as well as inducing protein interface

  17. A web-based resource for the Arabidopsis P450, cytochromes b5, NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases (http://www.P450.kvl.dk).

    Science.gov (United States)

    Paquette, Suzanne M; Jensen, Kenneth; Bak, Søren

    2009-12-01

    Gene and genome duplication is a key driving force in evolution of plant diversity. This has resulted in a number of large multi-gene families. Two of the largest multi-gene families in plants are the cytochromes P450 (P450s) and family 1 glycosyltransferases (UGTs). These two families are key players in evolution, especially of plant secondary metabolism, and in adaption to abiotic and biotic stress. In the model plant Arabidopsis thaliana there are 246 and 112 cytochromes P450 and UGTs, respectively. The Arabidopsis P450, cytochromes b(5), NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases website (http://www.P450.kvl.dk) is a sequence repository of manually curated sequences, multiple sequence alignments, phylogenetic trees, sequence motif logos, 3D structures, intron-exon maps, and customized BLAST datasets.

  18. Cytochrome b5 and epoxide hydrolase contribute to benzo[a]pyrene-DNA adduct formation catalyzed by cytochrome P450 1A1 under low NADPH:P450 oxidoreductase conditions

    International Nuclear Information System (INIS)

    Stiborová, Marie; Moserová, Michaela; Černá, Věra; Indra, Radek; Dračínský, Martin; Šulc, Miroslav; Henderson, Colin J.; Wolf, C. Roland; Schmeiser, Heinz H.; Phillips, David H.; Frei, Eva; Arlt, Volker M.

    2014-01-01

    In previous studies we had administered benzo[a]pyrene (BaP) to genetically engineered mice (HRN) which do not express NADPH:cytochrome P450 oxidoreductase (POR) in hepatocytes and observed higher DNA adduct levels in livers of these mice than in wild-type mice. To elucidate the reason for this unexpected finding we have used two different settings for in vitro incubations; hepatic microsomes from control and BaP-pretreated HRN mice and reconstituted systems with cytochrome P450 1A1 (CYP1A1), POR, cytochrome b 5 , and epoxide hydrolase (mEH) in different ratios. In microsomes from BaP-pretreated mice, in which Cyp1a1 was induced, higher levels of BaP metabolites were formed, mainly of BaP-7,8-dihydrodiol. At a low POR:CYP1A1 ratio of 0.05:1 in the reconstituted system, the amounts of BaP diones and BaP-9-ol formed were essentially the same as at an equimolar ratio, but formation of BaP-3-ol was ∼1.6-fold higher. Only after addition of mEH were BaP dihydrodiols found. Two BaP-DNA adducts were formed in the presence of mEH, but only one when CYP1A1 and POR were present alone. At a ratio of POR:CYP1A1 of 0.05:1, addition of cytochrome b 5 increased CYP1A1-mediated BaP oxidation to most of its metabolites indicating that cytochrome b 5 participates in the electron transfer from NADPH to CYP1A1 required for enzyme activity of this CYP. BaP-9-ol was formed even by CYP1A1 reconstituted with cytochrome b 5 without POR. Our results suggest that in livers of HRN mice Cyp1a1, cytochrome b 5 and mEH can effectively activate BaP to DNA binding species, even in the presence of very low amounts of POR

  19. The Membrane Modulates Internal Proton Transfer in Cytochrome c Oxidase

    DEFF Research Database (Denmark)

    Öjemyr, Linda Nasvik; Ballmoos, Christoph von; Faxén, Kristina

    2012-01-01

    The functionality of membrane proteins is often modulated by the surrounding membrane. Here, we investigated the effect of membrane reconstitution of purified cytochrome c oxidase (CytcO) on the kinetics and thermodynamics of internal electron and proton-transfer reactions during O-2 reduction...... DOPC lipids. In conclusion, the data show that the membrane significantly modulates internal charge-transfer reactions and thereby the function of the membrane-bound enzyme.......-glycerol) (DOPG). In addition, a small Change in the internal Cu-A-heme a electron equilibrium constant was observed. This effect was lipid-dependent and explained in terms of a lower electrostatic potential within the membrane-spanning part of the protein with the anionic DOPG lipids than with the zwitterionic...

  20. Cloning, molecular characterization and expression of a cDNA encoding a functional NADH-cytochrome b5 reductase from Mucor racemosus PTCC 5305 in E. coli

    Directory of Open Access Journals (Sweden)

    NED A SETAYESH

    2009-01-01

    Full Text Available The present work aims to study a new NADH-cytochrome b5 reductase (cb5r from Mucor racemosus PTCC 5305. A cDNA coding for cb s r was isolated from a Mucor racemosus PTCC 5305 cDNA library. The nucleotide sequence of the cDNA including coding and sequences flanking regions was determined. The open reading frame starting from ATG and ending with TAG stop codon encoded 228 amino acids and displayed the closest similarity (73% with Mortierella alpina cb s r. Lack of hydrophobic residues in the N-terminal sequence was apparent, suggesting that the enzyme is a soluble isoform. The coding sequence was then cloned in the pET16b transcription vector carrying an N-terminal-linked His-Tag® sequence and expressed in Escherichia coli BL21 (DE3. The enzyme was then homogeneously purified by a metal affinity column. The recombinant Mucor enzyme was shown to have its optimal activity at pH and temperature of about 7.5 and 40 °C, respectively. The apparent Km value was calculated to be 13 μM for ferricyanide. To our knowledge, this is the first report on cloning and expression of a native fungal soluble isoform of NADH-cytochrome b5 reductase in E. coli.

  1. The catalytic function of cytochrome P450 is entwined with its membrane-bound nature [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Carlo Barnaba

    2017-05-01

    Full Text Available Cytochrome P450, a family of monooxygenase enzymes, is organized as a catalytic metabolon, which requires enzymatic partners as well as environmental factors that tune its complex dynamic. P450 and its reducing counterparts—cytochrome P450-reductase and cytochrome b5—are membrane-bound proteins located in the cytosolic side of the endoplasmic reticulum. They are believed to dynamically associate to form functional complexes. Increasing experimental evidence signifies the role(s played by both protein-protein and protein-lipid interactions in P450 catalytic function and efficiency. However, the biophysical challenges posed by their membrane-bound nature have severely limited high-resolution understanding of the molecular interfaces of these interactions. In this article, we provide an overview of the current knowledge on cytochrome P450, highlighting the environmental factors that are entwined with its metabolic function. Recent advances in structural biophysics are also discussed, setting up the bases for a new paradigm in the study of this important class of membrane-bound enzymes.

  2. Engineering out motion: introduction of a de novo disulfide bond and a salt bridge designed to close a dynamic cleft on the surface of cytochrome b5.

    Science.gov (United States)

    Storch, E M; Daggett, V; Atkins, W M

    1999-04-20

    A previous molecular dynamics (MD) simulation of cytochrome b5 (cyt b5) at 25 degrees C displayed localized dynamics on the surface of the protein giving rise to the periodic formation of a cleft that provides access to the heme through a protected hydrophobic channel [Storch and Daggett (1995) Biochemistry 34, 9682]. Here we describe the production and testing of mutants designed to prevent the cleft from opening using a combination of experimental and theoretical techniques. Two mutants have been designed to close the surface cleft: S18D to introduce a salt bridge and S18C:R47C to incorporate a disulfide bond. The putative cleft forms between two separate cores of the protein: one is structural in nature and can be monitored through the fluorescence of Trp 22, and the other binds the heme prosthetic group and can be tracked via heme absorbance. An increase in motion localized to the cleft region was observed for each protein, except for the disulfide-containing variant, in MD simulations at 50 degrees C compared to simulations at 25 degrees C. For the disulfide-containing variant, the cleft remained closed. Both urea and temperature denaturation curves were nearly identical for wild-type and mutant proteins when heme absorbance was monitored. In contrast, fluorescence studies revealed oxidized S18C:R47C to be considerably more stable based on the midpoints of the denaturation transitions, Tm and U1/2. Moreover, the fluorescence changes for each protein were complete at approximately 50 degrees C and a urea concentration of approximately 3.9 M, significantly below the temperature and urea concentration (62 degrees C, 5 M urea) required to observe heme release. In addition, solvent accessibility based on acrylamide quenching of Trp 22 was lower in the S18C:R47C mutant, particularly at 50 degrees C, before heme release [presented in the accompanying paper (58)]. The results suggest that a constraining disulfide bond can be designed to inhibit dynamic cleft formation

  3. A novel nine base deletion mutation in NADH-cytochrome b5 reductase gene in an Indian family with recessive congenital methemoglobinemia-type-II

    Directory of Open Access Journals (Sweden)

    Prashant Warang

    2015-12-01

    Full Text Available Recessive hereditary methemoglobinemia (RCM associated with severe neurological abnormalities is a very rare disorder caused by NADH- cytochrome b5 reductase (cb5r deficiency (Type II. We report a case of 11 month old male child who had severe mental retardation, microcephaly and gross global developmental delay with methemoglobin level of 61.1%. The diagnosis of NADH-CYB5R3 deficiency was made by the demonstration of significantly reduced NADH-CYB5R3 activity in the patient and intermediate enzyme activity in both the parents. Mutation analysis of the CYB5R gene revealed a novel nine nucleotide deletion in exon 6 leading to the elimination of 3 amino acid residues (Lys173, Ser174 and Val 175. To confirm that this mutation was not an artifact, we performed PCR-RFLP analysis using the restriction enzyme Drd I. As the normal sequence has a restriction recognition site for Drd I which was eliminated by the deletion, a single band of 603-bp was seen in the presence of the homozygous mutation. Molecular modeling analysis showed a significant effect of these 3 amino acids deletion on the protein structure and stability leading to a severe clinical presentation. A novel homozygous 9 nucleotide deletion (p.K173–p.V175del3 is shown to be segregated with the disease in this family. Knowing the profile of mutations would allow us to offer prenatal diagnosis in families with severe neurological disorders associated with RCM — Type II.

  4. Isolation and purification of membrane-bound cytochrome c from ...

    African Journals Online (AJOL)

    Administrator

    2007-05-02

    ferrochrome and redox spectra showed the presence of heme-c. Key words: Cytochrome c, respiratory chain and Proteus mirabilis. INTRODUCTION. Proteus mirabilis is facultative anaerobic, rod-shaped, gram negative bacterium.

  5. Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome c oxidase

    Science.gov (United States)

    Shiva, Sruti; Brookes, Paul S.; Patel, Rakesh P.; Anderson, Peter G.; Darley-Usmar, Victor M.

    2001-06-01

    An emerging and important site of action for nitric oxide (NO) within cells is the mitochondrial inner membrane, where NO binds to and inhibits members of the electron transport chain, complex III and cytochrome c oxidase. Although it is known that inhibition of cytochrome c oxidase by NO is competitive with O2, the mechanisms that underlie this phenomenon remain unclear, and the impact of both NO and O2 partitioning into biological membranes has not been considered. These properties are particularly interesting because physiological O2 tensions can vary widely, with NO having a greater inhibitory effect at low O2 tensions (mitochondrial membranes in the absence of substrate, in a nonsaturable process that is O2 dependent. This consumption modulates inhibition of cytochrome c oxidase by NO and is enhanced by the addition of exogenous membranes. From these data, it is evident that the partition of NO into mitochondrial membranes has a major impact on the ability of NO to control mitochondrial respiration. The implications of this conclusion are discussed in the context of mitochondrial lipid:protein ratios and the importance of NO as a regulator of respiration in pathophysiology.

  6. Kinetic and spectroscopic studies of cytochrome b-563 in isolated cytochrome b/f complex and in thylakoid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hind, G.; Clark, R.D.; Houchins, J.P.

    1983-01-01

    Extensive studies, performed principally by Hauska, Hurt and collaborators, have shown that a cytochrome (cyt) b/f complex isolated from photosynthetic membranes of spinach or Anabaena catalyzes electron transport from plastoquinol (PQH/sub 2/) to plastocyanin or algal cyt c-552. The complex from spinach thylakoids generated a membrane potential when reconstituted into liposomes, and although the electrogenic mechanism remains unknown, a key role for cyt b-563 is widely accepted. Electrogenesis by a Q-cycle mechanism requires a plastoquinone (PQ) reductase to be associated with the stromal side of the thylakoid b/f complex though this activity has yet to be demonstrated. It seemed possible that more gentle isolation of the complex might yield a form containing additional polypeptides, perhaps including a PQ reductase or a component involved in returning electrons from reduced ferredoxin to the complex in cyclic electron flow. Optimization of the isolation of cyt b/f complex for Hybrid 424 spinach from a growth room was also required. The procedure we devised is compared to the protocol of Hurt and Hauska (1982). 13 references.

  7. Change of the NADPH depending superoxide producing and ferri hemoglobin reducing activities of cytochrome b558 from spleen cells and erythrocytes membranes induced by the radiation of different character

    International Nuclear Information System (INIS)

    Melkonyan, L.G.; Simonyan, R.M.; Simonyan, M.A.; Sekoyan, E.S.

    2009-01-01

    After the X radiation, UVA radiation and ultrasound radiation of new isoforms of cytochrome cyt b 5 58 from rats erythrocyte membranes - EM (cyt b 5 58III) and from spleen cell membranes (SCM) in vitro, as well as after the radiation of EM ex vivo, the suppression of both NADPH depending O 2 - producing and ferrihemoglobin (ferriHb)-reducing activities of cyt b 5 58 from EM and SCM in homogeneous (in solution) and heterogeneous phases (in EM and SCM) at various scopes takes place. These changes are associated with the destabilization of EM and SCM, conditioned by the change of the aggregation degree of these hemoproteins in EM and SCM, hemoproteins as a result of the influence of the hydrogen peroxide formed during radiolysis and photolysis of the water medium. After He-Ne laser radiation of the cyt b 5 58 from EM and SCM in vitro an increase of the NADPH depending O 2 - producing and ferriHb-reducing activities of the cyt b 5 58 from EM and SCM in homogenous and heterogeneous phases (in membranes) takes place. It is supposed that the suppression (by X-, UVA- and US-radiation) and the stimulation (by He-Ne laser radiation) of the immune system activity and the oxygen homeostasis are associated with the corresponding decrease and increase of the NADPH depending O 2 - producing and ferriHb-reducings activity of the new isoforms of cyt b 5 58 from EM and SCM in homogeneous and heterogeneous phases

  8. Characterization of the cytochrome c oxidase in isolated and purified plasma membranes from the cyanobacterium Anacystis nidulans

    International Nuclear Information System (INIS)

    Peschek, G.A.; Wastyn, M.; Trnka, M.; Molitor, V.; Fry, I.V.; Packer, L.

    1989-01-01

    Functionally intact plasma membranes were isolated from the cyanobacterium (blue-green alga) Anacystis nidulans through French pressure cell extrusion of lysozyme/EDTA-treated cells, separated from thylakoid membranes by discontinuous sucrose density gradient centrifugation, and purified by repeated recentrifugation. Origin and identity of the chlorophyll-free plasma membrane fraction were confirmed by labeling of intact cells with impermeant protein markers, [ 35 S]diazobenzenesulfonate and fluorescamine, prior to membrane isolation. Rates of oxidation of reduced horse heart cytochrome c by purified plasma and thylakoid membranes were 90 and 2 nmol min -1 (mg of protein) -1 , respectively. The cytochrome oxidase in isolated plasma membranes was identified as a copper-containing aa 3 -type enzyme from the properties of its redox-active and EDTA-resistant Cu 2+ ESR signal, the characteristic inhibition profile, reduced minus oxidized difference spectra, carbon monoxide difference spectra, photoaction and photodissociation spectra of the CO-inhibited enzyme, and immunological cross-reaction of two subunits of the enzyme with antibodies against subunits I and II, and the holoenzyme, of Paracoccus denitrificans aa 3 -type cytochrome oxidase. The data presented are the first comprehensive evidence for the occurrence of aa 3 -type cytochrome oxidase in the plasma membrane of a cyanobacterium similar to the corresponding mitochondrial enzyme

  9. Structural features and dynamic investigations of the membrane-bound cytochrome P450 17A1.

    Science.gov (United States)

    Cui, Ying-Lu; Xue, Qiao; Zheng, Qing-Chuan; Zhang, Ji-Long; Kong, Chui-Peng; Fan, Jing-Rong; Zhang, Hong-Xing

    2015-10-01

    Cytochrome P450 (CYP) 17A1 is a dual-function monooxygenase with a critical role in the synthesis of many human steroid hormones. The enzyme is an important target for treatment of breast and prostate cancers that proliferate in response to estrogens and androgens. Despite the crystallographic structures available for CYP17A1, no membrane-bound structural features of this enzyme at atomic level are available. Accumulating evidence has indicated that the interactions between bounded CYPs and membrane could contribute to the recruitment of lipophilic substrates. To this end, we have investigated the effects on structural characteristics in the presence of the membrane for CYP17A1. The MD simulation results demonstrate a spontaneous insertion process of the enzyme to the lipid. Two predominant modes of CYP17A1 in the membrane are captured, characterized by the depths of insertion and orientations of the enzyme to the membrane surface. The measured heme tilt angles show good consistence with experimental data, thereby verifying the validity of the structural models. Moreover, conformational changes induced by the membrane might have impact on the accessibility of the active site to lipophilic substrates. The dynamics of internal aromatic gate formed by Trp220 and Phe224 are suggested to regulate tunnel opening motions. The knowledge of the membrane binding characteristics could guide future experimental and computational works on membrane-bound CYPs so that various investigations of CYPs in their natural, lipid environment rather than in artificially solubilized forms may be achieved. Copyright © 2015. Published by Elsevier B.V.

  10. Gene Duplication Leads to Altered Membrane Topology of a Cytochrome P450 Enzyme in Seed Plants.

    Science.gov (United States)

    Renault, Hugues; De Marothy, Minttu; Jonasson, Gabriella; Lara, Patricia; Nelson, David R; Nilsson, IngMarie; André, François; von Heijne, Gunnar; Werck-Reichhart, Danièle

    2017-08-01

    Evolution of the phenolic metabolism was critical for the transition of plants from water to land. A cytochrome P450, CYP73, with cinnamate 4-hydroxylase (C4H) activity, catalyzes the first plant-specific and rate-limiting step in this pathway. The CYP73 gene is absent from green algae, and first detected in bryophytes. A CYP73 duplication occurred in the ancestor of seed plants and was retained in Taxaceae and most angiosperms. In spite of a clear divergence in primary sequence, both paralogs can fulfill comparable cinnamate hydroxylase roles both in vitro and in vivo. One of them seems dedicated to the biosynthesis of lignin precursors. Its N-terminus forms a single membrane spanning helix and its properties and length are highly constrained. The second is characterized by an elongated and variable N-terminus, reminiscent of ancestral CYP73s. Using as proxies the Brachypodium distachyon proteins, we show that the elongation of the N-terminus does not result in an altered subcellular localization, but in a distinct membrane topology. Insertion in the membrane of endoplasmic reticulum via a double-spanning open hairpin structure allows reorientation to the lumen of the catalytic domain of the protein. In agreement with participation to a different functional unit and supramolecular organization, the protein displays modified heme proximal surface. These data suggest the evolution of divergent C4H enzymes feeding different branches of the phenolic network in seed plants. It shows that specialization required for retention of gene duplicates may result from altered protein topology rather than change in enzyme activity. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. [Peroxide modification of membranes and isomorphic composition of cytochrome P-450 of rat liver microsomes during antioxidant deficiency].

    Science.gov (United States)

    Gubskiy, Iu I; Paramonova, G I; Boldeskul, A E; Primak, R G; Bogdanova, L A; Zadorina, O V; Litvinova, N V

    1992-01-01

    Lipid peroxidation (LPO), physico-chemical properties of the membranes and isoformic composition of microsomal cytochrome P-450 from the rat liver were studied under conditions of antioxidant insufficiency (AOI) which was modelled by exclusion of alpha-tocopherol from the animals' ration. An insignificant accumulation of microsomal diene conjugates and schiff bases against a sharp increase of the ability to the prooxidant stimulated LPO in vitro took place. A significant decrease of membrane lipid microviscosity and a change in surface properties of microsomal membranes of rats with AOI was determined. Absence of alpha-tocopherol in the ration was accompanied by a significant change in the content of separate isoforms of cytochrome P-450 exhibited in growth of a polypeptide with m. w. 54 kDa and the lowering of proteins with m. w. 48 and 50 kDa. Less intensive quenching of tryptophan fluorescence by acrylamide was also revealed, which testified to a lower accessibility of the quencher to membrane proteins or their fluorophore sites. Modification of lipid composition and of physicochemical properties of the rat liver membrane microsomes which was observed at AOI was significantly correlated by pretreatment with the antioxidant 4-methyl-2,6-ditretbutylphenol (ionol).

  12. Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens.

    Science.gov (United States)

    Zacharoff, Lori; Chan, Chi Ho; Bond, Daniel R

    2016-02-01

    The respiration of metals by the bacterium Geobacter sulfurreducens requires electrons generated by metabolism to pass from the interior of the cell to electron acceptors beyond the cell membranes. The G. sulfurreducens inner membrane multiheme c-type cytochrome ImcH is required for respiration to extracellular electron acceptors with redox potentials greater than -0.1 V vs. SHE, but ImcH is not essential for electron transfer to lower potential acceptors. In contrast, deletion of cbcL, encoding an inner membrane protein consisting of b-type and multiheme c-type cytochrome domains, severely affected reduction of low potential electron acceptors such as Fe(III)-oxides and electrodes poised at -0.1 V vs. SHE. Catalytic cyclic voltammetry of a ΔcbcL strain growing on poised electrodes revealed a 50 mV positive shift in driving force required for electron transfer out of the cell. In non-catalytic conditions, low-potential peaks present in wild type biofilms were absent in ∆cbcL mutants. Expression of cbcL in trans increased growth at low redox potential and restored features to cyclic voltammetry. This evidence supports a model where CbcL is a component of a second electron transfer pathway out of the G. sulfurreducens inner membrane that dominates when redox potential is at or below -0.1 V vs. SHE. Copyright © 2015. Published by Elsevier B.V.

  13. Understanding Free Radicals: Isolating Active Thylakoid Membranes and Purifying the Cytochrome b6f Complex for Superoxide Generation Studies

    Directory of Open Access Journals (Sweden)

    Jason Stofleth

    2012-01-01

    Full Text Available All life persists in an environment that is rich in molecular oxygen. The production of oxygen free radicals, or superoxide, is a necessary consequence of the biogenesis of energy in cells. Both mitochondrial and photosynthetic electron transport chains have been found to produce superoxide associated with cell differentiation, proliferation, and cell death, thereby contributing to the effects of aging. Aerobic respiration in mitochondria consumes oxygen, whereas photosynthesis in chloroplasts or cyanobacteria produces oxygen. The increased concentration of molecular oxygen may serve to allow greater availability for the production of superoxide by cytochrome bc complexes in photosynthetic membranes compared to those of mitochondrial membranes. The isolation of well-coupled chloroplasts, containing the cytochrome b6f complex of oxygenic photosynthesis, is a vital initial step in the process of comparing the rate of production of superoxide to those of the homologous cytochrome bc1 complex of aerobic respiration. It is necessary to determine if the isolated chloroplasts have retained their oxygengenerating capability after isolation by an oxygen evolution assay with a Clark-type electrode. A necessary second step, which is the isolation of cytochrome b6f from spinach, has yet to be successfully performed. Oxygen measurements taken from chloroplasts in the presence of the uncoupler, NH4Cl, exhibited a rate of oxygen evolution over three times greater at 344 +/- 18 μmol O2/mg Chlorophyll a/hr than the rate of oxygen evolution without uncoupler at 109 +/- 29 μmol O2/mg Chlorophyll a/hr. These data demonstrate that the technique used to isolate spinach chloroplasts preserves their light-driven electron-transport activity, making them reliable for future superoxide assays.

  14. Novel function of glutathione transferase in rat liver mitochondrial membrane: Role for cytochrome c release from mitochondria

    International Nuclear Information System (INIS)

    Lee, Kang Kwang; Shimoji, Manami; Hossain, Quazi Sohel; Sunakawa, Hajime; Aniya, Yoko

    2008-01-01

    Microsomal glutathione transferase (MGST1) is activated by oxidative stress. Although MGST1 is found in mitochondrial membranes (mtMGST1), there is no information about the oxidative activation of mtMGST1. In the present study, we aimed to determine whether mtMGST1 also undergoes activation and about its function. When rats were treated with galactosamine/lipopolysaccharide (GalN/LPS), mtMGST1 activity was significantly increased, and the increased activity was reduced by the disulfide reducing agent dithiothreitol. In mitochondria from GalN/LPS-treated rats, disulfide-linked mtMGST1 dimer and mixed protein glutathione disulfides (glutathionylation) were detected. In addition, cytochrome c release from mitochondria isolated from GalN/LPS-treated rats was observed, and the release was inhibited by anti-MGST1 antibodies. Incubation of mitochondria from control rats with diamide and diamide plus GSH in vitro resulted in dimer- and mixed disulfide bond-mediated activation of mtMGST1, respectively. The activation of mtMGST1 by diamide plus GSH caused cytochrome c release from the mitochondria, and the release was prevented by treatment with anti-MGST1 antibodies. In addition, diamide plus GSH treatment caused mitochondrial swelling accompanied by cytochrome c release, which was inhibited by cyclosporin A (CsA) and bongkrekic acid (BKA), inhibitors of the mitochondrial permeability transition (MPT) pore. Furthermore, mtMGST1 activity was also inhibited by CsA and BKA. These results indicate that mtMGST1 is activated through mixed disulfide bond formation that contributes to cytochrome c release from mitochondria through the MPT pore

  15. Localization of cytochromes in the outer membrane of Desulfovibrio vulgaris (Hildenborough) and their role in anaerobic biocorrosion.

    Science.gov (United States)

    Van Ommen Kloeke, F; Bryant, R D; Laishley, E J

    1995-12-01

    A protocol was developed whereby the outer and cytoplasmic membranes of the sulfate-reducing bacterium Desulfovibrio vulgaris (Hildenborough) were isolated and partially characterized. The isolated outer membrane fractions from cultures grown under high (100 ppm) and low (5 ppm) Fe2+ conditions were compared by SDS-PAGE electrophoresis, and showed that several protein bands were derepressed under the low iron conditions, most notably at 50 kDa, and 77.5 kDa. Outer membrane isolated from low iron cultured cells was found to contain two proteins, 77.5 kDa and 62.5 kDa in size, that reacted with a heme-specific stain and were referred to as high molecular weight cytochromes. Studies conducted on the low iron isolated outer membrane by a phosphate/mild steel hydrogen evolution system showed that addition of the membrane fraction caused an immediate acceleration in H2 production. A new model for the anaerobic biocorrosion of mild steel is proposed.

  16. Study of the interaction of cytochrome c and ferredoxine with the double membrane of chloroplast

    International Nuclear Information System (INIS)

    Neuburger, M.; Joyard, J.; Douce, R.

    1975-01-01

    The adsorption of two 59 Fe-labelled proteins on the chloroplast envelope was studied. The former molecule used was ferredoxine extracted from spinach leaves, the latter was cytochrome c, extracted from yeast (Saccharomyces cerevisiae D 261). The chloroplast envelope is thought to be involved in the transport of some proteins such as ferredoxine synthetized in the cytoplasm [fr

  17. Cytochrome b 6 f function and localization, phosphorylation state of thylakoid membrane proteins and consequences on cyclic electron flow.

    Science.gov (United States)

    Dumas, Louis; Chazaux, Marie; Peltier, Gilles; Johnson, Xenie; Alric, Jean

    2016-09-01

    Both the structure and the protein composition of thylakoid membranes have an impact on light harvesting and electron transfer in the photosynthetic chain. Thylakoid membranes form stacks and lamellae where photosystem II and photosystem I localize, respectively. Light-harvesting complexes II can be associated to either PSII or PSI depending on the redox state of the plastoquinone pool, and their distribution is governed by state transitions. Upon state transitions, the thylakoid ultrastructure and lateral distribution of proteins along the membrane are subject to significant rearrangements. In addition, quinone diffusion is limited to membrane microdomains and the cytochrome b 6 f complex localizes either to PSII-containing grana stacks or PSI-containing stroma lamellae. Here, we discuss possible similarities or differences between green algae and C3 plants on the functional consequences of such heterogeneities in the photosynthetic electron transport chain and propose a model in which quinones, accepting electrons either from PSII (linear flow) or NDH/PGR pathways (cyclic flow), represent a crucial control point. Our aim is to give an integrated description of these processes and discuss their potential roles in the balance between linear and cyclic electron flows.

  18. Effects of membrane curvature and pH on proton pumping activity of single cytochrome bo3 enzymes

    DEFF Research Database (Denmark)

    Li, Mengqiu; Khan, Sanobar; Rong, Honglin

    2017-01-01

    The molecular mechanism of proton pumping by heme-copper oxidases (HCO) has intrigued the scientific community since it was first proposed. We have recently reported a novel technology that enables the continuous characterisation of proton transport activity of a HCO and ubiquinol oxidase from...... Escherichia coli, cytochrome bo3, for hundreds of seconds on the single enzyme level (Li et al. J Am Chem Soc 137 (2015) 16055–16063). Here, we have extended these studies by additional experiments and analyses of the proton transfer rate as a function of proteoliposome size and pH at the N- and P......-side of single HCOs. Proton transport activity of cytochrome bo3 was found to decrease with increased curvature of the membrane. Furthermore, proton uptake at the N-side (proton entrance) was insensitive to pH between pH 6.4–8.4, while proton release at the P-side had an optimum pH of ~ 7.4, suggesting...

  19. Protein and DNA technologies for functional expression of membrane-associated cytochromes P450 in bacterial cell factories

    DEFF Research Database (Denmark)

    Vazquez Albacete, Dario

    450 engineering guidelines and serves as platform to improve performance of microbial cells, thereby boosting recombinant production of complex plant P450-derived biochemicals. The knowledge generated, could guide future reconstruction of functional plant metabolic pathways leading to high valuable...... potential as medicines, fuels or food for humans. Plants conquered different environments thereby developing adaptation strategies based on the biosynthesis of a myriad of compounds. Unfortunately they are present in small amounts in plants and are too complex and to produce by organic chemical synthesis....... In most of biosynthetic pathways leading to these chemicals the cytochrome P450 enzyme family (P450s) is responsible for their final functionalization. However, the membrane-bound nature of P450s, makes their expression in microbial hosts a challenge. In order to meet the global demand for these natural...

  20. Evidence that the assembly of the yeast cytochrome bc1 complex involves the formation of a large core structure in the inner mitochondrial membrane.

    Science.gov (United States)

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L

    2009-04-01

    The assembly status of the cytochrome bc(1) complex has been analyzed in distinct yeast deletion strains in which genes for one or more of the bc(1) subunits were deleted. In all the yeast strains tested, a bc(1) sub-complex of approximately 500 kDa was found when the mitochondrial membranes were analyzed by blue native electrophoresis. The subsequent molecular characterization of this sub-complex, carried out in the second dimension by SDS/PAGE and immunodecoration, revealed the presence of the two catalytic subunits, cytochrome b and cytochrome c(1), associated with the noncatalytic subunits core protein 1, core protein 2, Qcr7p and Qcr8p. Together, these bc(1) subunits build up the core structure of the cytochrome bc(1) complex, which is then able to sequentially bind the remaining subunits, such as Qcr6p, Qcr9p, the Rieske iron-sulfur protein and Qcr10p. This bc(1) core structure may represent a true assembly intermediate during the maturation of the bc(1) complex; first, because of its wide distribution in distinct yeast deletion strains and, second, for its characteristics of stability, which resemble those of the intact homodimeric bc(1) complex. By contrast, the bc(1) core structure is unable to interact with the cytochrome c oxidase complex to form respiratory supercomplexes. The characterization of this novel core structure of the bc(1) complex provides a number of new elements clarifying the molecular events leading to the maturation of the yeast cytochrome bc(1) complex in the inner mitochondrial membrane.

  1. Evidence that assembly of the yeast cytochrome bc1 complex involves formation of a large core structure in the inner mitochondrial membrane

    Science.gov (United States)

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L.

    2009-01-01

    The assembly status of the cytochrome bc1 complex has been analyzed in distinct yeast deletion strains in which genes for one or more of the bc1 subunits had been deleted. In all the yeast strains tested a bc1 sub-complex of about 500 kDa was found when the mitochondrial membranes were analyzed by blue native electrophoresis. The subsequent molecular characterization of this sub-complex, carried out in the second dimension by SDS-PAGE and immunodecoration, revealed the presence of the two catalytic subunits cytochrome b and cytochrome c1, associated with the non catalytic subunits core protein 1, core protein 2, Qcr7p and Qcr8p. Altogether these bc1 subunits build up the core structure of the cytochrome bc1 complex which is then able to sequentially bind the remaining subunits, such as Qcr6p, Qcr9p, the Rieske iron-sulfur protein and Qcr10p. This bc1 core structure may represent a true assembly intermediate during the maturation of the bc1 complex, first because of its wide distribution in distinct yeast deletion strains and second for its characteristics of stability which resemble those of the intact homodimeric bc1 complex. Differently from this latter, however, the bc1 core structure is not able to interact with the cytochrome c oxidase complex to form respiratory supercomplexes. The characterization of this novel core structure of the bc1 complex provides a number of new elements for clarification of the molecular events leading to the maturation of the yeast cytochrome bc1 complex in the inner mitochondrial membrane. PMID:19236481

  2. Role of the NAD(P)H quinone oxidoreductase NQR and the cytochrome b AIR12 in controlling superoxide generation at the plasma membrane.

    Science.gov (United States)

    Biniek, Catherine; Heyno, Eiri; Kruk, Jerzy; Sparla, Francesca; Trost, Paolo; Krieger-Liszkay, Anja

    2017-04-01

    The quinone reductase NQR and the b-type cytochrome AIR12 of the plasma membrane are important for the control of reactive oxygen species in the apoplast. AIR12 and NQR are two proteins attached to the plant plasma membrane which may be important for generating and controlling levels of reactive oxygen species in the apoplast. AIR12 (Auxin Induced in Root culture) is a single gene of Arabidopsis that codes for a mono-heme cytochrome b. The NADPH quinone oxidoreductase NQR is a two-electron-transferring flavoenzyme that contributes to the generation of O 2 •- in isolated plasma membranes. A. thaliana double knockout plants of both NQR and AIR12 generated more O 2 •- and germinated faster than the single mutant affected in AIR12. To test whether NQR and AIR12 are able to interact functionally, recombinant purified proteins were added to plasma membranes isolated from soybean hypocotyls. In vitro NADH-dependent O 2 •- production at the plasma membrane in the presence of NQR was reduced upon addition of AIR12. Electron donation from semi-reduced menadione to AIR12 was shown to take place. Biochemical analysis showed that purified plasma membrane from soybean hypocotyls or roots contained phylloquinone and menaquinone-4 as redox carriers. This is the first report on the occurrence of menaquinone-4 in eukaryotic photosynthetic organisms. We propose that NQR and AIR12 interact via the quinone, allowing an electron transfer from cytosolic NAD(P)H to apoplastic monodehydroascorbate and control thereby the level of reactive oxygen production and the redox state of the apoplast.

  3. Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH.

    Science.gov (United States)

    Okamoto, Akihiro; Kalathil, Shafeer; Deng, Xiao; Hashimoto, Kazuhito; Nakamura, Ryuhei; Nealson, Kenneth H

    2014-07-11

    The variety of solid surfaces to and from which microbes can deliver electrons by extracellular electron transport (EET) processes via outer-membrane c-type cytochromes (OM c-Cyts) expands the importance of microbial respiration in natural environments and industrial applications. Here, we demonstrate that the bifurcated EET pathway of OM c-Cyts sustains the diversity of the EET surface in Shewanella oneidensis MR-1 via specific binding with cell-secreted flavin mononucleotide (FMN) and riboflavin (RF). Microbial current production and whole-cell differential pulse voltammetry revealed that RF and FMN enhance EET as bound cofactors in a similar manner. Conversely, FMN and RF were clearly differentiated in the EET enhancement by gene-deletion of OM c-Cyts and the dependency of the electrode potential and pH. These results indicate that RF and FMN have specific binding sites in OM c-Cyts and highlight the potential roles of these flavin-cytochrome complexes in controlling the rate of electron transfer to surfaces with diverse potential and pH.

  4. In Situ Proteolysis for Crystallization of Membrane Bound Cytochrome P450 17A1 and 17A2 Proteins from Zebrafish.

    Science.gov (United States)

    Lei, Li; Egli, Martin

    2016-04-01

    Fish and human cytochrome P450 (P450) 17A1 catalyze both steroid 17α-hydroxylation and 17α,20-lyase reactions. Fish P450 17A2 catalyzes only 17α-hydroxylation. Both enzymes are microsomal-type P450s, integral membrane proteins that bind to the membrane through their N-terminal hydrophobic segment, the signal anchor sequence. The presence of this N-terminal region renders expression of full-length proteins challenging or impossible. For some proteins, variable truncation of the signal anchor sequence precludes expression or results in poor expression levels. To crystallize P450 17A1 and 17A2 in order to gain insight into their different activities, we used an alternative N-terminal sequence to boost expression together with in situ proteolysis. Key features of our approach to identify crystallizable P450 fragments were the use of an N-terminal leader sequence, a screen composed of 12 proteases to establish optimal cleavage, variations of protease concentration in combination with an SDS-PAGE assay, and analysis of the resulting fragments using Edman sequencing. Described in this unit are protocols for vector preparation, expression, purification, and in situ proteolytic crystallization of two membrane-bound P450 proteins. Copyright © 2016 John Wiley & Sons, Inc.

  5. A common pathway for regulation of nutritive blood flow to the brain: arterial muscle membrane potential and cytochrome P450 metabolites.

    Science.gov (United States)

    Harder, D R; Roman, R J; Gebremedhin, D; Birks, E K; Lange, A R

    1998-12-01

    Perfusion pressure to the brain must remain relatively constant to provide rapid and efficient distribution of blood to metabolically active neurones. Both of these processes are regulated by the level of activation and tone of cerebral arterioles. The active state of cerebral arterial muscle is regulated, to a large extent, by the level of membrane potential. At physiological levels of arterial pressure, cerebral arterial muscle is maintained in an active state owing to membrane depolarization, compared with zero pressure load. As arterial pressure changes, so does membrane potential. The membrane is maintained in a relatively depolarized state because of, in part, inhibition of K+ channel activity. The activity of K+ channels, especially the large conductance Ca(2+)-activated K+ channel (KCa) is dependent upon the level of 20-HETE produced by arterial muscle. As arterial pressure increases, so does cytochrome P450 (P4504A) activity. P4504A enzymes catalyse omega-hydroxylation of arachidonic acid and formation of 20-hydroxyeicosatetraenoic acid (20-HETE). 20-HETE is a potent inhibitor of KCa which maintains membrane depolarization and muscle cell activation. Astrocytes also metabolize AA via P450 enzymes of the 2C11 gene family to produce epoxyeicosatrienoic acids (EETs). Epoxyeicosatrienoic acids are released from astrocytes by glutamate which 'spills over' during neuronal activity. These locally released EETs shunt blood to metabolically active neurones providing substrate to support neuronal function. This short paper will discuss the findings which support the above scenario, the purpose of which is to provide a basis for future studies on the molecular mechanisms through which cerebral blood flow matches metabolism.

  6. Membrane-bound human orphan cytochrome P450 2U1: Sequence singularities, construction of a full 3D model, and substrate docking.

    Science.gov (United States)

    Ducassou, Lionel; Dhers, Laura; Jonasson, Gabriella; Pietrancosta, Nicolas; Boucher, Jean-Luc; Mansuy, Daniel; André, François

    2017-09-01

    Human cytochrome P450 2U1 (CYP2U1) is an orphan CYP that exhibits several distinctive characteristics among the 57 human CYPs with a highly conserved sequence in almost all living organisms. We compared its protein sequence with those of the 57 human CYPs and constructed a 3D structure of a full-length CYP2U1 model bound to a POPC membrane. We also performed docking experiments of arachidonic acid (AA) and N-arachidonoylserotonin (AS) in this model. The protein sequence of CYP2U1 displayed two unique characteristics when compared to those of the human CYPs, the presence of a longer N-terminal region upstream of the putative trans-membrane helix (TMH) containing 8 proline residues, and of an insert of about 20 amino acids containing 5 arginine residues between helices A' and A. Its N-terminal part upstream of TMH involved an additional short terminal helix, in a manner similar to what was reported in the crystal structure of Saccharomyces cerevisiae CYP51. Our model also showed a specific interaction between the charged residues of insert AA' and phosphate groups of lipid polar heads, suggesting a possible role of this insert in substrate recruitment. Docking of AA and AS in this model showed these substrates in channel 2ac, with the terminal alkyl chain of AA or the indole ring of AS close to the heme, in agreement with the reported CYP2U1-catalyzed AA and AS hydroxylation regioselectivities. This model should be useful to find new endogenous or exogenous CYP2U1 substrates and to interpret the regioselectivity of their hydroxylation. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  7. 18 CFR 3b.5 - Legal guardians.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Legal guardians. 3b.5... INFORMATION General § 3b.5 Legal guardians. For the purposes of this part, the parent of any minor, or the legal guardian of any individual who has been declared to be incompetent due to physical or mental...

  8. ENDF/B-5 modifications 1986

    International Nuclear Information System (INIS)

    McLaughlin, P.K.

    1986-05-01

    This document summarizes the modifications made to the ENDF/B-5 evaluated neutron data files in 1986. The new versions of the files are available from the IAEA Nuclear Data Section upon request, costfree, on magnetic tape. (author)

  9. Malaysian B5 Implementation and Its Quality

    International Nuclear Information System (INIS)

    Liang, Y.C.; Loh, S.K.; Soon, L.W.; May, C.Y.

    2016-01-01

    A quality survey of 80 samples of diesel fuels (B5) from 80 retail stations throughout Peninsular Malaysia was performed. The bio diesel contents in these B5 samples were in the range of 4.61 vol. % to 5.33 vol. %. The water contents of the samples were < 200 mg kg -1 , meeting the stringent water requirements recommended by the car manufacturers. In addition, all the samples exhibited superior lubricity as indicated by a much shorter wear scar diameter compared to neat diesel. More importantly, 98 % of the samples passed the oxidation stability test (PetroOXY) with an induction period of > 65 min. Overall, the B5 diesel fuel sold was in full compliance with the Malaysian diesel fuel standard specification. (author)

  10. ENDF/B-5 Actinides (Rev. 86)

    International Nuclear Information System (INIS)

    Lemmel, H.D.

    1986-05-01

    This document summarizes the contents of the Actinides part of the ENDF/B-5 nuclear data library released by the US National Nuclear Data Center. This library or selective retrievals of it, are available costfree from the IAEA Nuclear Data Section upon request. The present version of the library is the Revision of 1986. (author). Refs, figs and tabs

  11. ENDF/B-5 formats manual 1984

    Energy Technology Data Exchange (ETDEWEB)

    Kinsey, R; Magurno, B A

    1986-09-01

    The ENDF-5 Format, originally the format of the US Evaluated Nuclear Data File ENDF/B-5, was internationally recommended for the computer storage, processing and exchange of evaluated neutron nuclear data. The present document contains the original Formats Manual of 1979, updated with revisions of Nov. 1983. (author) Figs, tabs

  12. The effects of protein crowding in bacterial photosynthetic membranes on the flow of quinone redox species between the photochemical reaction center and the ubiquinol-cytochrome c2 oxidoreductase.

    Science.gov (United States)

    Woronowicz, Kamil; Sha, Daniel; Frese, Raoul N; Sturgis, James N; Nanda, Vikas; Niederman, Robert A

    2011-08-01

    Atomic force microscopy (AFM) of the native architecture of the intracytoplasmic membrane (ICM) of a variety of species of purple photosynthetic bacteria, obtained at submolecular resolution, shows a tightly packed arrangement of light harvesting (LH) and reaction center (RC) complexes. Since there are no unattributed structures or gaps with space sufficient for the cytochrome bc(1) or ATPase complexes, they are localized in membrane domains distinct from the flat regions imaged by AFM. This has generated a renewed interest in possible long-range pathways for lateral diffusion of UQ redox species that functionally link the RC and the bc(1) complexes. Recent proposals to account for UQ flow in the membrane bilayer are reviewed, along with new experimental evidence provided from an analysis of intrinsic near-IR fluorescence emission that has served to test these hypotheses. The results suggest that different mechanism of UQ flow exist between species such as Rhodobacter sphaeroides, with a highly organized arrangement of LH and RC complexes and fast RC electron transfer turnover, and Phaeospirillum molischianum with a more random organization and slower RC turnover. It is concluded that packing density of the peripheral LH2 antenna in the Rba. sphaeroides ICM imposes constraints that significantly slow the diffusion of UQ redox species between the RC and cytochrome bc(1) complex, while in Phs. molischianum, the crowding of the ICM with LH3 has little effect upon UQ diffusion. This supports the proposal that in this type of ICM, a network of RC-LH1 core complexes observed in AFM provides a pathway for long-range quinone diffusion that is unaffected by differences in LH complex composition or organization.

  13. Induction of Ca2+-dependent cyclosporin A-insensitive nonspecific permeability of the inner membrane of liver mitochondria and cytochrome c release by α,ω-hexadecanedioic acid in media of varying ionic strength.

    Science.gov (United States)

    Dubinin, M V; Vedernikov, A A; Khoroshavina, E I; Samartsev, V N

    2014-06-01

    In liver mitochondria loaded with Ca2+ or Sr(2+), α,ω-hexadecanedioic acid (HDA) can induce nonspecific permeability of the inner membrane (mitochondrial pore) by the mechanism insensitive to cyclosporin A (CsA). In this work we studied the effect of ionic strength of the incubation medium on the kinetics of the processes that accompany Ca2+-dependent induction of the mitochondrial pore by fatty acid: organelle swelling, Ca2+ release from the matrix, changes in transmembrane potential (Δψ) and rate of oxygen consumption, and the release of cytochrome c from the intermembrane space. Two basic incubation media were used: sucrose medium and isotonic ionic medium containing KCl without sucrose. We found that 200 μM Ca2+ and 20 μM HDA in the presence of CsA effectively induce high-amplitude swelling of mitochondria both in the case of sucrose and in the ionic incubation medium. In the presence of CsA, mitochondria can rapidly absorb Ca2+ and retain it in the matrix for a while without reducing Δψ. Upon incubation in the ionic medium, mitochondria retain most of the added Ca2+ in the matrix for a short time without reducing the Δψ. In both cases the addition of HDA to the mitochondria 2 min after the introduction of Ca2+ leads to the rapid release of these ions from the matrix and total drop in Δψ. The mitochondrial swelling induced by Ca2+ and HDA in non-ionic medium is accompanied by almost maximal stimulation of respiration. Under the same conditions, but during incubation of mitochondria in the ionic medium, it is necessary to add cytochrome c for significant stimulation of respiration. The mitochondrial swelling induced by Ca2+ and HDA leads to the release of cytochrome c in a larger amount in the case of ionic medium than for the sucrose medium. We conclude that high ionic strength of the incubation medium determines the massive release of cytochrome c from mitochondria and liberates it from the respiratory chain, which leads to blockade of electron

  14. Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase

    Energy Technology Data Exchange (ETDEWEB)

    Kolodkin-Gal, I; Elsholz, AKW; Muth, C; Girguis, PR; Kolter, R; Losick, R

    2013-04-29

    Bacillus subtilis forms organized multicellular communities known as biofilms wherein the individual cells are held together by a self-produced extracellular matrix. The environmental signals that promote matrix synthesis remain largely unknown. We discovered that one such signal is impaired respiration. Specifically, high oxygen levels suppressed synthesis of the extracellular matrix. In contrast, low oxygen levels, in the absence of an alternative electron acceptor, led to increased matrix production. The response to impaired respiration was blocked in a mutant lacking cytochromes caa(3) and bc and markedly reduced in a mutant lacking kinase KinB. Mass spectrometry of proteins associated with KinB showed that the kinase was in a complex with multiple components of the aerobic respiratory chain. We propose that KinB is activated via a redox switch involving interaction of its second transmembrane segment with one or more cytochromes under conditions of reduced electron transport. In addition, a second kinase (KinA) contributes to the response to impaired respiration. Evidence suggests that KinA is activated by a decrease in the nicotinamide adenine dinucleotide (NAD(+))/NADH ratio via binding of NAD(+) to the kinase in a PAS domain A-dependent manner. Thus, B. subtilis switches from a unicellular to a multicellular state by two pathways that independently respond to conditions of impaired respiration.

  15. Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase

    Science.gov (United States)

    Kolodkin-Gal, Ilana; Elsholz, Alexander K.W.; Muth, Christine; Girguis, Peter R.; Kolter, Roberto; Losick, Richard

    2013-01-01

    Bacillus subtilis forms organized multicellular communities known as biofilms wherein the individual cells are held together by a self-produced extracellular matrix. The environmental signals that promote matrix synthesis remain largely unknown. We discovered that one such signal is impaired respiration. Specifically, high oxygen levels suppressed synthesis of the extracellular matrix. In contrast, low oxygen levels, in the absence of an alternative electron acceptor, led to increased matrix production. The response to impaired respiration was blocked in a mutant lacking cytochromes caa3 and bc and markedly reduced in a mutant lacking kinase KinB. Mass spectrometry of proteins associated with KinB showed that the kinase was in a complex with multiple components of the aerobic respiratory chain. We propose that KinB is activated via a redox switch involving interaction of its second transmembrane segment with one or more cytochromes under conditions of reduced electron transport. In addition, a second kinase (KinA) contributes to the response to impaired respiration. Evidence suggests that KinA is activated by a decrease in the nicotinamide adenine dinucleotide (NAD+)/NADH ratio via binding of NAD+ to the kinase in a PAS domain A-dependent manner. Thus, B. subtilis switches from a unicellular to a multicellular state by two pathways that independently respond to conditions of impaired respiration. PMID:23599347

  16. Bcs1p can rescue a large and productive cytochrome bc(1) complex assembly intermediate in the inner membrane of yeast mitochondria.

    Science.gov (United States)

    Conte, Laura; Trumpower, Bernard L; Zara, Vincenzo

    2011-01-01

    The yeast cytochrome bc(1) complex, a component of the mitochondrial respiratory chain, is composed of ten distinct protein subunits. In the assembly of the bc(1) complex, some ancillary proteins, such as the chaperone Bcs1p, are actively involved. The deletion of the nuclear gene encoding this chaperone caused the arrest of the bc(1) assembly and the formation of a functionally inactive bc(1) core structure of about 500-kDa. This immature bc(1) core structure could represent, on the one hand, a true assembly intermediate or, on the other hand, a degradation product and/or an incorrect product of assembly. The experiments here reported show that the gradual expression of Bcs1p in the yeast strain lacking this protein was progressively able to rescue the bc(1) core structure leading to the formation of the functional homodimeric bc(1) complex. Following Bcs1p expression, the mature bc(1) complex was also progressively converted into two supercomplexes with the cytochrome c oxidase complex. The capability of restoring the bc(1) complex and the supercomplexes was also possessed by the mutated yeast R81C Bcsp1. Notably, in the human ortholog BCS1L, the corresponding point mutation (R45C) was instead the cause of a severe bc(1) complex deficiency. Differently from the yeast R81C Bcs1p, two other mutated Bcs1p's (K192P and F401I) were unable to recover the bc(1) core structure in yeast. This study identifies for the first time a productive assembly intermediate of the yeast bc(1) complex and gives new insights into the molecular mechanisms involved in the last steps of bc(1) assembly. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Influence of polyhalogenated aromatic hydrocarbons on the induction, activity, and stabilization of cytochrome P450

    International Nuclear Information System (INIS)

    Voorman, R.

    1987-01-01

    In the course of experiments evaluating the metabolism of polybrominated biphenyls by cytochrome P450 isozymes induced by 3,4,5,3',4',5'-hexabromobiphenyl (HBB), it was discovered that the inducer remained closely associated with cytochrome P450d. Subsequent purification of cytochromes from HBB treated rates revealed a 0.5:1 association of HBB to cytochrome P450d but virtually none with cytochrome P450c or cytochrome b5. Immunochemical quantitation of cytochrome P450d in the same microsomes yielded a ratio of P450d:HBB that approached unity. Measurement of cytochrome P450d estradiol 2-hydroxylase indicated non-competitive or mixed type inhibition caused by HBB at a concentration of 10-1000 nM. Inhibition was specific to cytochrome P450d since estradiol 2-hydroxylase catalyzed by cytochrome P450h was unaffected by HBB. The ability of HCB and isosafrole to stabilize cytochrome P450d, and thus indirectly influence regulation of the enzyme, was evaluated by treating rats with a dose of TCDD sufficient to produce maximum induction of cytochromes P450c and P450d via the Ah receptor, yet insufficient to bind to the enzyme. Subsequent treatment of these animals with HCB or isosafrole and a radiolabeled amino acid, revealed a significant increase in cytochrome P450d specific content relative to cytochrome P450c and significant retention of the radiolabel in P450d relative to rats treated only with TCDD

  18. Muscle symptoms in statin users, associations with cytochrome P450, and membrane transporter inhibitor use: a subanalysis of the USAGE study.

    Science.gov (United States)

    Ito, Matthew K; Maki, Kevin C; Brinton, Eliot A; Cohen, Jerome D; Jacobson, Terry A

    2014-01-01

    Drug interactions have been identified as a risk factor for muscle-related side effects in statin users. The aim was to assess whether use of medications that inhibit cytochrome P450 (CYP450) isozymes, organic anion transporting polypeptide 1B1 (OATP1B1), or P-glycoprotein (P-gp) are associated with muscle-related symptoms among current and former statin users. Persons (n = 10,138) from the Understanding Statin Use in America and Gaps in Education (USAGE) internet survey were categorized about whether they ever reported new or worsening muscle pain while taking a statin (n = 2935) or ever stopped a statin because of muscle pain (n = 1516). Univariate and multivariate logistic regression models were used to assess associations between use of concomitant therapies that inhibit CYP450 isozymes, OATP1B1, P-gp, or a combination and muscle-related outcomes. In multivariate analyses, concomitant use of a CYP450 inhibitor was associated with increased odds for new or worse muscle pain (odds ratio [OR] = 1.42; P statin because of muscle pain (OR = 1.28; P = .037). Concomitant use of medication known to inhibit both OATP1B1 and P-gp was also associated with increased odds (OR = 1.80; P = .030) of ever having stopped a statin because of muscle pain. Concomitant use of medication(s) that inhibit statin metabolism was associated with increased odds of new or worse muscle pain while taking a statin and having previously stopped a statin because of muscle symptoms. These data emphasize the importance of enhancing the capabilities of clinicians and health systems for identifying and reducing statin drug interactions. Copyright © 2014 National Lipid Association. All rights reserved.

  19. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.

    Science.gov (United States)

    Papa, S; Lorusso, M; Izzo, G; Capuano, F

    1981-02-15

    component of the aerobic delta microH+ (the sum of the proton chemical and electrical activities) exerts a pH-dependent constraint on forward electron flow from cytochrome b566 to cytochrome b562. This effect is explained as a consequence of anisotropic location of cytochromes b566 and b562 in the membrane and the pH-dependence of the redox function of these cytochromes. Transmembrane delta pH, on the other hand, exerts control on electron flow from cytochrome b562 to c cytochromes.

  20. Time-resolved generation of membrane potential by ba3 cytochrome c oxidase from Thermus thermophilus coupled to single electron injection into the O and OH states.

    Science.gov (United States)

    Siletsky, Sergey A; Belevich, Ilya; Belevich, Nikolai P; Soulimane, Tewfik; Wikström, Mårten

    2017-11-01

    Two electrogenic phases with characteristic times of ~14μs and ~290μs are resolved in the kinetics of membrane potential generation coupled to single-electron reduction of the oxidized "relaxed" O state of ba 3 oxidase from T. thermophilus (O→E transition). The rapid phase reflects electron redistribution between Cu A and heme b. The slow phase includes electron redistribution from both Cu A and heme b to heme a 3 , and electrogenic proton transfer coupled to reduction of heme a 3 . The distance of proton translocation corresponds to uptake of a proton from the inner water phase into the binuclear center where heme a 3 is reduced, but there is no proton pumping and no reduction of Cu B . Single-electron reduction of the oxidized "unrelaxed" state (O H →E H transition) is accompanied by electrogenic reduction of the heme b/heme a 3 pair by Cu A in a "fast" phase (~22μs) and transfer of protons in "middle" and "slow" electrogenic phases (~0.185ms and ~0.78ms) coupled to electron redistribution from the heme b/heme a 3 pair to the Cu B site. The "middle" and "slow" electrogenic phases seem to be associated with transfer of protons to the proton-loading site (PLS) of the proton pump, but when all injected electrons reach Cu B the electronic charge appears to be compensated by back-leakage of the protons from the PLS into the binuclear site. Thus proton pumping occurs only to the extent of ~0.1 H + /e - , probably due to the formed membrane potential in the experiment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Identification and characterization of NADPH-dependent cytochrome P450 reductase gene and cytochrome b₅ gene from Plutella xylostella: possible involvement in resistance to beta-cypermethrin.

    Science.gov (United States)

    Chen, Xi'en; Zhang, Yalin

    2015-03-10

    NADPH-cytochrome P450 reductase (CPR) and cytochrome b5 (b5) are essential for cytochrome P450 mediated biological reactions. CPR and b5 in several insects have been found to be associated with insecticide resistance. However, CPR and b5 in the diamondback moth (DBM), Plutella xylostella, are not characterized and their roles remain undefined. A full-length cDNA of CPR encoding 678 amino acids and a full-length cDNA of b5 encoding 127 amino acids were cloned from DBM. Their deduced amino acid sequences shared high identities with those of other insects and showed characteristics of classical CPRs and b5s, respectively. The mRNAs of both genes were detectable in all developmental stages with the highest expression levels occurring in the 4th instar larvae. Tissue-specific expression analysis showed that their transcripts were most abundant in gut. Transcripts of CPR and b5 in the beta-cypermethrin resistant DBM strain were 13.2- and 2.84-fold higher than those in the beta-cypermethrin susceptible strain, respectively. The expression levels of CPR and b5 were enhanced by beta-cypermethrin at the concentration of 12 mg L(-1) (~LC10). The results indicate that CPR and b5 may play essential roles in the P450 mediated resistance of DBM to beta-cypermethrin or even other insecticides. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. EXPRESSION AND CHARACTERIZATION OF FULL-LENGTH HUMAN HEME OXYGENASE-1: PRESENCE OF INTACT MEMBRANE-BINDING REGION LEADS TO INCREASED BINDING AFFINITY FOR NADPH-CYTOCHROME P450 REDUCTASE

    Science.gov (United States)

    Huber, Warren J.; Backes, Wayne L.

    2009-01-01

    Heme oxygenase (HO) is the chief regulatory enzyme in the oxidative degradation of heme to biliverdin. In the process of heme degradation, this NADPH and cytochrome P450 reductase (CPR)-dependent oxidation of heme also releases free iron and carbon monoxide. Much of the recent research involving heme oxygenase is done using a 30-kDa soluble form of the enzyme, which lacks the membrane binding region (C-terminal 23 amino acids). The goal of this study was to express and purify a full-length human HO-1 (hHO-1) protein; however, due to the lability of the full-length form, a rapid purification procedure was required. This was accomplished by use of a GST-tagged hHO-1 construct. Although the procedure permitted the generation of a full-length HO-1, this form was contaminated with a 30-kDa degradation product that could not be eliminated. Therefore, we attempted to remove a putative secondary thrombin cleavage site by a conservative mutation of amino acid 254, which replaces lysine with arginine. This mutation allowed the expression and purification of a full length hHO-1 protein. Unlike wild-type HO-1, the K254R mutant could be purified to a single 32-kDa protein capable of degrading heme at the same rate as the wild-type enzyme. The K254R full-length form had a specific activity of ~200–225 nmol bilirubin hr−1nmol−1 HO-1 as compared to ~140–150 nmol bilirubin hr−1nmol−1 for the WT form, which contains the 30-kDa contaminant. This is a 2–3-fold increase from the previously reported soluble 30-kDa HO-1, suggesting that the C-terminal 23 amino acids are essential for maximal catalytic activity. Because the membrane spanning domain is present, the full-length hHO-1 has the potential to incorporate into phospholipid membranes, which can be reconstituted at known concentrations, in combination with other ER-resident enzymes. PMID:17915953

  3. Expression and characterization of full-length human heme oxygenase-1: the presence of intact membrane-binding region leads to increased binding affinity for NADPH cytochrome P450 reductase.

    Science.gov (United States)

    Huber, Warren J; Backes, Wayne L

    2007-10-30

    Heme oxygenase-1 (HO-1) is the chief regulatory enzyme in the oxidative degradation of heme to biliverdin. In the process of heme degradation, HO-1 receives the electrons necessary for catalysis from the flavoprotein NADPH cytochrome P450 reductase (CPR), releasing free iron and carbon monoxide. Much of the recent research involving heme oxygenase has been done using a 30 kDa soluble form of the enzyme, which lacks the membrane binding region (C-terminal 23 amino acids). The goal of this study was to express and purify a full-length human HO-1 (hHO-1) protein; however, due to the lability of the full-length form, a rapid purification procedure was required. This was accomplished by use of a glutathione-s-transferase (GST)-tagged hHO-1 construct. Although the procedure permitted the generation of a full-length HO-1, this form was contaminated with a 30 kDa degradation product that could not be eliminated. Therefore, attempts were made to remove a putative secondary thrombin cleavage site by a conservative mutation of amino acid 254, which replaces arginine with lysine. This mutation allowed the expression and purification of a full-length hHO-1 protein. Unlike wild type (WT) HO-1, the R254K mutant could be purified to a single 32 kDa protein capable of degrading heme at the same rate as the WT enzyme. The R254K full-length form had a specific activity of approximately 200-225 nmol of bilirubin h-1 nmol-1 HO-1 as compared to approximately 140-150 nmol of bilirubin h-1 nmol-1 for the WT form, which contains the 30 kDa contaminant. This is a 2-3-fold increase from the previously reported soluble 30 kDa HO-1, suggesting that the C-terminal 23 amino acids are essential for maximal catalytic activity. Because the membrane-spanning domain is present, the full-length hHO-1 has the potential to incorporate into phospholipid membranes, which can be reconstituted at known concentrations, in combination with other endoplasmic reticulum resident enzymes.

  4. Calcium transport in vesicles energized by cytochrome oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Rosier, Randy N. [Univ. of Rochester, NY (United States)

    1979-01-01

    Experiments on the reconstitution of cytochrome oxidase into phospholipid vesicles were carried out using techniques of selectivity energizing the suspensions with ascorbate and cytochrome c or ascorbate, PMS, and internally trapped cytochrome c. It was found that the K+ selective ionophore valinomycin stimulated the rate of respiration of cytochrome oxidase vesicles regardless of the direction of the K+ flux across the vesicle membranes. The stimulation occurred in the presence of protonophoric uncouplers and in the complete absence of potassium or in detergent-lysed suspensions. Gramicidin had similar effects and it was determined that the ionophores acted by specific interaction with cytochrome oxidase rather than by the previously assumed collapse of membrane potentials. When hydrophobic proteins and appropriate coupling factors were incorporated into the cytochrome oxidase, vesicles phosphorylation of ADP could be coupled to the oxidation reaction of cytochrome oxidase. Relatively low P:O, representing poor coupling of the system, were problematical and precluded measurements of protonmotive force. However the system was used to study ion translocation.

  5. Biogenesis of the yeast cytochrome bc1 complex.

    Science.gov (United States)

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L

    2009-01-01

    The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.

  6. ENDF/B-5. Fission Product Yields File

    International Nuclear Information System (INIS)

    Schwerer, O.

    1985-10-01

    The ENDF/B-5 Fission Product Yields File contains a complete set of independent and cumulative fission product yields, representing the final data from ENDF/B-5 as received at the IAEA Nuclear Data Section in June 1985. Yields for 11 fissioning nuclides at one or more neutron incident energies are included. The data are available costfree on magnetic tape from the IAEA Nuclear Data Section. (author). 4 refs

  7. Computational investigation of hydrogen storage on B5V3

    Science.gov (United States)

    Guo, Chen; Wang, Chong

    2018-05-01

    Based on density functional theory method with 6-311+G(d,p) basis set, the structures, stability and hydrogen storage capacity of B5V3 have been theoretically investigated. It is found that a maximum of seven hydrogen molecules can be adsorbed on B5V3 with gravimetric uptake capacity of 6.39 wt%. The uptake capacity exceeds the target set by the US Department of Energy for vehicular application. Moreover, the average adsorption energy of B5V3 01 (7H2) is 0.60 eV/H2 in the desirable range of reversible hydrogen storage. The kinetic stability of H2 adsorbed on B5V3 01 is confirmed by using gap between highest occupied molecular orbital (HOMO)and the lowest unoccupied molecular orbital (LUMO). The gap value of B5V3 01 (7H2) is 2.81 eV, which indicates the compound with high stability. In addition, the thermochemistry calculation (Gibbs free energy corrected adsorption energy) is used to analyse if the adsorption is favourable or not at different temperatures. It can be found that the Gibbs corrected adsorption energy of B5V3 01 (7H2) is still positive at 400 K at 1 atm. It means that the adsorption of seven hydrogen molecules on B5V3 01 is energetically favourable in a fairly wide temperature range. All the results show that B5V3 01 can be considered as a promising material for hydrogen storage.

  8. Structure of the Zymomonas mobilis respiratory chain: oxygen affinity of electron transport and the role of cytochrome c peroxidase.

    Science.gov (United States)

    Balodite, Elina; Strazdina, Inese; Galinina, Nina; McLean, Samantha; Rutkis, Reinis; Poole, Robert K; Kalnenieks, Uldis

    2014-09-01

    The genome of the ethanol-producing bacterium Zymomonas mobilis encodes a bd-type terminal oxidase, cytochrome bc1 complex and several c-type cytochromes, yet lacks sequences homologous to any of the known bacterial cytochrome c oxidase genes. Recently, it was suggested that a putative respiratory cytochrome c peroxidase, receiving electrons from the cytochrome bc1 complex via cytochrome c552, might function as a peroxidase and/or an alternative oxidase. The present study was designed to test this hypothesis, by construction of a cytochrome c peroxidase mutant (Zm6-perC), and comparison of its properties with those of a mutant defective in the cytochrome b subunit of the bc1 complex (Zm6-cytB). Disruption of the cytochrome c peroxidase gene (ZZ60192) caused a decrease of the membrane NADH peroxidase activity, impaired the resistance of growing culture to exogenous hydrogen peroxide and hampered aerobic growth. However, this mutation did not affect the activity or oxygen affinity of the respiratory chain, or the kinetics of cytochrome d reduction. Furthermore, the peroxide resistance and membrane NADH peroxidase activity of strain Zm6-cytB had not decreased, but both the oxygen affinity of electron transport and the kinetics of cytochrome d reduction were affected. It is therefore concluded that the cytochrome c peroxidase does not terminate the cytochrome bc1 branch of Z. mobilis, and that it is functioning as a quinol peroxidase. © 2014 The Authors.

  9. A complex of cardiac cytochrome c1 and cytochrome c.

    Science.gov (United States)

    Chiang, Y L; Kaminsky, L S; King, T E

    1976-01-10

    The interactions of cytochrome c1 and cytochrome c from bovine cardiac mitochondria were investigated. Cytochrome c1 and cytochrome c formed a 1:1 molecular complex in aqueous solutions of low ionic strength. The complex was stable to Sephadex G-75 chromatography. The formation and stability of the complex were independent of the oxidation state of the cytochrome components as far as those reactions studied were concerned. The complex was dissociated in solutions of ionic strength higher than 0.07 or pH exceeding 10 and only partially dissociated in 8 M urea. No complexation occurred when cytochrome c was acetylated on 64% of its lysine residues or photooxidized on its 2 methionine residues. Complexes with molecular ratios of less than 1:1 (i.e. more cytochrome c) were obtained when polymerized cytochrome c, or cytochrome c with all lysine residues guanidinated, or a "1-65 heme peptide" from cyanogen bromide cleavage of cytochrome c was used. These results were interpreted to imply that the complex was predominantly maintained by ionic interactions probably involving some of the lysine residues of cytochrome c but with major stabilization dependent on the native conformations of both cytochromes. The reduced complex was autooxidizable with biphasic kinetics with first order rate constants of 6 X 10(-5) and 5 X U0(-5) s-1 but did not react with carbon monoxide. The complex reacted with cyanide and was reduced by ascorbate at about 32% and 40% respectively, of the rates of reaction with cytochrome c alone. The complex was less photoreducible than cytochrome c1 alone. The complex exhibited remarkably different circular dichroic behavior from that of the summation of cytochrome c1 plus cytochrome c. We concluded that when cytochromes c1 and c interacted they underwent dramatic conformational changes resulting in weakening of their heme crevices. All results available would indicate that in the complex cytochrome c1 was bound at the entrance to the heme crevice of

  10. 26 CFR 48.4161(b)-5 - Effective date.

    Science.gov (United States)

    2010-04-01

    ...)-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES MANUFACTURERS AND RETAILERS EXCISE TAXES Sporting Goods § 48.4161(b)-5 Effective date. The taxes imposed by section 4161(b) are effective with respect to sales made on and after January 1, 1975. ...

  11. Towards engineering increased pantothenate (Vitamin B5) levels in plants

    CSIR Research Space (South Africa)

    Chakauya, E

    2008-11-01

    Full Text Available Pantothenate (vitamin B5) is the precursor of the 4'-phosphopantetheine moiety of coenzyme A and acyl-carrier protein. It is made by plants and microorganisms de novo, but is a dietary requirement for animals. The pantothenate biosynthetic pathway...

  12. Cytochrome oxidase assembly does not require catalytically active cytochrome C.

    Science.gov (United States)

    Barrientos, Antoni; Pierre, Danielle; Lee, Johnson; Tzagoloff, Alexander

    2003-03-14

    Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, catalyzes the transfer of electrons from reduced cytochrome c to molecular oxygen. COX assembly requires the coming together of nuclear- and mitochondrial-encoded subunits and the assistance of a large number of nuclear gene products acting at different stages of maturation of the enzyme. In Saccharomyces cerevisiae, expression of cytochrome c, encoded by CYC1 and CYC7, is required not only for electron transfer but also for COX assembly through a still unknown mechanism. We have attempted to distinguish between a functional and structural requirement of cytochrome c in COX assembly. A cyc1/cyc7 double null mutant strain was transformed with the cyc1-166 mutant gene (Schweingruber, M. E., Stewart, J. W., and Sherman, F. (1979) J. Biol. Chem. 254, 4132-4143) that expresses stable but catalytically inactive iso-1-cytochrome c. The COX content of the cyc1/cyc7 double mutant strain harboring non-functional iso-1-cytochrome c has been characterized spectrally, functionally, and immunochemically. The results of these studies demonstrate that cytochrome c plays a structural rather than functional role in assembly of cytochrome c oxidase. In addition to its requirement for COX assembly, cytochrome c also affects turnover of the enzyme. Mutants containing wild type apocytochrome c in mitochondria lack COX, suggesting that only the folded and mature protein is able to promote COX assembly.

  13. B =5 Skyrmion as a two-cluster system

    Science.gov (United States)

    Gudnason, Sven Bjarke; Halcrow, Chris

    2018-06-01

    The classical B =5 Skyrmion can be approximated by a two-cluster system in which a B =1 Skyrmion is attached to a core B =4 Skyrmion. We quantize this system, allowing the B =1 to freely orbit the core. The configuration space is 11 dimensional but simplifies significantly after factoring out the overall spin and isospin degrees of freedom. We exactly solve the free quantum problem and then include an interaction potential between the Skyrmions numerically. The resulting energy spectrum is compared to the corresponding nuclei—the helium-5/lithium-5 isodoublet. We find approximate parity doubling not seen in the experimental data. In addition, we fail to obtain the correct ground-state spin. The framework laid out for this two-cluster system can readily be modified for other clusters and in particular for other B =4 n +1 nuclei, of which B =5 is the simplest example.

  14. ENDF/B-5 Fission Products Library. Rev. 2

    International Nuclear Information System (INIS)

    Schwerer, O.; Pronyaev, V.G.; Lemmel, H.D.

    1984-07-01

    This document summarizes contents and documentation of the 1984 version of the Fission Products Nuclear Data File of the ENDF/B-5 Library (Rev. 2) maintained by the National Nuclear Data Center (NNDC) at the Brookhaven National Laboratory, USA. This file contains numerical neutron reaction data and decay data for 877 fission product nuclides. The entire file or selective retrievals from it can be obtained on magnetic tape from the IAEA Nuclear Data Section. (author)

  15. The mechanism by which oxygen and cytochrome c increase the rate of electron transfer from cytochrome a to cytochrome a3 of cytochrome c oxidase.

    Science.gov (United States)

    Bickar, D; Turrens, J F; Lehninger, A L

    1986-11-05

    When cytochrome c oxidase is isolated from mitochondria, the purified enzyme requires both cytochrome c and O2 to achieve its maximum rate of internal electron transfer from cytochrome a to cytochrome a3. When reductants other than cytochrome c are used, the rate of internal electron transfer is very slow. In this paper we offer an explanation for the slow reduction of cytochrome a3 when reductants other than cytochrome c are used and for the apparent allosteric effects of cytochrome c and O2. Our model is based on the conventional understanding of cytochrome oxidase mechanism (i.e. electron transfer from cytochrome a/CuA to cytochrome a3/CuB), but assumes a relatively rapid two-electron transfer between cytochrome a/CuA and cytochrome a3/CuB and a thermodynamic equilibrium in the "resting" enzyme (the enzyme as isolated) which favors reduced cytochrome a and oxidized cytochrome a3. Using the kinetic constants that are known for this reaction, we find that the activating effects of O2 and cytochrome c on the rate of electron transfer from cytochrome a to cytochrome a3 conform to the predictions of the model and so provide no evidence of any allosteric effects or control of cytochrome c oxidase by O2 or cytochrome c.

  16. Production and characterization of yeast cytochrome c antibodies; immunological studies of mutants with altered cytochrome c synthesis

    International Nuclear Information System (INIS)

    Matner, R.R.

    1980-01-01

    Mutations at the structural gene, CYC1, for iso-1-cytochrome c and at the structural gene, CYC7, for iso-2-cytochrome c can reduce the levels of the respective proteins by varying degrees in Saccharomyces cerevisiae. Mutations at two other loci, cyc2 and cyc3, that are unlinked to either of the structural genes, specifically reduced the levels of both iso-cytochromes c. The cyc2 mutations can cause as low as 10 to 20% of the normal level and cyc3 mutations can cause complete deficiencies. We have explored the possiblity that the CYC2 and CYC3 loci code for maturation functions in the biosynthesis of cytochrome c. The approach used to characterize the nature of the cyc2 and cyc3 induced deficiencies of cytochrome c involved four steps. The results were used to propose possible roles for the CYC2 and CYC3 encoded functions. The CYC3 encoded function is hypothesized to be enzymatic heme attachment. CYC2 may code for a protein that binds and transports apo-cytochrome c through the outer mitochondrial membrane and/or enhances the activity of the heme attachment enzyme

  17. NADPH–Cytochrome P450 Oxidoreductase: Roles in Physiology, Pharmacology, and Toxicology

    Science.gov (United States)

    Ding, Xinxin; Wolf, C. Roland; Porter, Todd D.; Pandey, Amit V.; Zhang, Qing-Yu; Gu, Jun; Finn, Robert D.; Ronseaux, Sebastien; McLaughlin, Lesley A.; Henderson, Colin J.; Zou, Ling; Flück, Christa E.

    2013-01-01

    This is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2012 meeting in San Diego, California, on April 25, 2012. The symposium speakers summarized and critically evaluated our current understanding of the physiologic, pharmacological, and toxicological roles of NADPH–cytochrome P450 oxidoreductase (POR), a flavoprotein involved in electron transfer to microsomal cytochromes P450 (P450), cytochrome b5, squalene mono-oxygenase, and heme oxygenase. Considerable insight has been derived from the development and characterization of mouse models with conditional Por deletion in particular tissues or partial suppression of POR expression in all tissues. Additional mouse models with global or conditional hepatic deletion of cytochrome b5 are helping to clarify the P450 isoform- and substrate-specific influences of cytochrome b5 on P450 electron transfer and catalytic function. This symposium also considered studies using siRNA to suppress POR expression in a hepatoma cell–culture model to explore the basis of the hepatic lipidosis phenotype observed in mice with conditional deletion of Por in liver. The symposium concluded with a strong translational perspective, relating the basic science of human POR structure and function to the impacts of POR genetic variation on human drug and steroid metabolism. PMID:23086197

  18. ENDF/B-5 fission product cross section evaluations

    International Nuclear Information System (INIS)

    Schenter, R.E.; England, T.R.

    1979-12-01

    Cross section evaluations were made for the 196 fission product nuclides on the ENDF/B-5 data files. Most of the evaluations involve updating the capture cross sections of the important absorbers for fast and thermal reactor systems. This included updating thermal values, resonance integrals, resonance parameter sets, and fast capture cross sections. For the fast capture results generalized least-squares calculations were made with the computer code FERRET. Input for these cross section adjustments included nuclear models calculations and both integral and differential experimental data results. The differential cross sections and their uncertainties were obtained from the CSIRS library. Integral measurement results came from CFRMF and STEK Assemblies 500, 1000, 2000, 3000, 4000. Comparisons of these evaluations with recent capture measurements are shown. 15 figures, 10 tables

  19. Importance of c-Type cytochromes for U(VI reduction by Geobacter sulfurreducens

    Directory of Open Access Journals (Sweden)

    Leang Ching

    2007-03-01

    Full Text Available Abstract Background In order to study the mechanism of U(VI reduction, the effect of deleting c-type cytochrome genes on the capacity of Geobacter sulfurreducens to reduce U(VI with acetate serving as the electron donor was investigated. Results The ability of several c-type cytochrome deficient mutants to reduce U(VI was lower than that of the wild type strain. Elimination of two confirmed outer membrane cytochromes and two putative outer membrane cytochromes significantly decreased (ca. 50–60% the ability of G. sulfurreducens to reduce U(VI. Involvement in U(VI reduction did not appear to be a general property of outer membrane cytochromes, as elimination of two other confirmed outer membrane cytochromes, OmcB and OmcC, had very little impact on U(VI reduction. Among the periplasmic cytochromes, only MacA, proposed to transfer electrons from the inner membrane to the periplasm, appeared to play a significant role in U(VI reduction. A subpopulation of both wild type and U(VI reduction-impaired cells, 24–30%, accumulated amorphous uranium in the periplasm. Comparison of uranium-accumulating cells demonstrated a similar amount of periplasmic uranium accumulation in U(VI reduction-impaired and wild type G. sulfurreducens. Assessment of the ability of the various suspensions to reduce Fe(III revealed no correlation between the impact of cytochrome deletion on U(VI reduction and reduction of Fe(III hydroxide and chelated Fe(III. Conclusion This study indicates that c-type cytochromes are involved in U(VI reduction by Geobacter sulfurreducens. The data provide new evidence for extracellular uranium reduction by G. sulfurreducens but do not rule out the possibility of periplasmic uranium reduction. Occurrence of U(VI reduction at the cell surface is supported by the significant impact of elimination of outer membrane cytochromes on U(VI reduction and the lack of correlation between periplasmic uranium accumulation and the capacity for uranium

  20. The cytochrome p450 homepage.

    Science.gov (United States)

    Nelson, David R

    2009-10-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 ( CYP ) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described.

  1. Dopamine suppresses neuronal activity of Helisoma B5 neurons via a D2-like receptor, activating PLC and K channels.

    Science.gov (United States)

    Zhong, L R; Artinian, L; Rehder, V

    2013-01-03

    Dopamine (DA) plays fundamental roles as a neurotransmitter and neuromodulator in the central nervous system. How DA modulates the electrical excitability of individual neurons to elicit various behaviors is of great interest in many systems. The buccal ganglion of the freshwater pond snail Helisoma trivolvis contains the neuronal circuitry for feeding and DA is known to modulate the feeding motor program in Helisoma. The buccal neuron B5 participates in the control of gut contractile activity and is surrounded by dopaminergic processes, which are expected to release DA. In order to study whether DA modulates the electrical activity of individual B5 neurons, we performed experiments on physically isolated B5 neurons in culture and on B5 neurons within the buccal ganglion in situ. We report that DA application elicited a strong hyperpolarization in both conditions and turned the electrical activity from a spontaneously firing state to an electrically silent state. Using the cell culture system, we demonstrated that the strong hyperpolarization was inhibited by the D2 receptor antagonist sulpiride and the phospholipase C (PLC) inhibitor U73122, indicating that DA affected the membrane potential of B5 neurons through the activation of a D2-like receptor and PLC. Further studies revealed that the DA-induced hyperpolarization was inhibited by the K channel blockers 4-aminopyridine and tetraethylammonium, suggesting that K channels might serve as the ultimate target of DA signaling. Through its modulatory effect on the electrical activity of B5 neurons, the release of DA in vivo may contribute to a neuronal output that results in a variable feeding motor program. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Radiation-induced damage of membranes

    International Nuclear Information System (INIS)

    Yonei, Shuji

    1977-01-01

    An outline of membranous structure was stated, and radiation-induced damage of membranes were surveyed. By irradiation, permeability of membranes, especially passive transportation mechanism, was damaged, and glycoprotein in the surface layers of cells and the surface layer structures were changed. The intramembranous damage was induced by decrease of electrophoresis of nuclear mambranes and a quantitative change of cytochrome P450 of microsomal membranes of the liver, and peroxidation of membranous lipid and SH substitute damage of membranous protein were mentioned as the mechanism of membranous damage. Recovery of membranous damage depends on radiation dose and temperature, and membranous damage participates largely in proliferation death. (tsunoda, M.)

  3. Production of gold nanoparticles by Streptomyces djakartensis isolate B-5

    Directory of Open Access Journals (Sweden)

    Sara Biglari

    2014-09-01

    Full Text Available  Objective(s: Biosynthesis of gold nanoparticles (NGPs is environmentally safer than chemical and physical procedures. This method requires no use of toxic solvents and synthesis of dangerous products and is environmentally safe. In this study, we report the biosynthesis of NGPs using Streptomyces djakartensis isolate B-5. Materials and Methods: NGPs were biosynthesized by reducing aqueous gold chloride solution via a Streptomyces isolate without the need for any additive for protecting nanoparticles from aggregation. We characterized the responsible Streptomycete; its genome DNA was isolated, purified and 16S rRNA was amplified by PCR. The amplified isolate was sequenced; using the BLAST search tool from NCBI, the microorganism was identified to species level. Results: Treating chloroauric acid solutions with this bacterium resulted in reduction of gold ions and formation of stable NGPs. TEM and SEM electro micrographs of NGPs indicated size range from 2- 25 nm with average of 9.09 nm produced intracellular by the bacterium. SEM electro micrographs revealed morphology of spores and mycelia. The amplified PCR fragment of 16S rRNA gene was cloned and sequenced from both sides; it consisted of 741 nucleotides. According to NCBI GenBank, the bacterium had 97.1% homology with Streptomyces djakartensis strain RT-49. The GenBank accession number for partial 16S rRNA gene was recorded as JX162550. Conclusion: Optimized application of such findings may create applications of Streptomycetes for use as bio-factories in eco-friendly production of NGPs to serve in demanding industries and related biomedical areas. Research in this area should also focus on the unlocking the full mechanism of NGPs biosynthesis by Streptomycetes.

  4. Removal of Bound Triton X-100 from Purified Bovine Heart Cytochrome bc1

    OpenAIRE

    Varhač, Rastislav; Robinson, Neal C.; Musatov, Andrej

    2009-01-01

    Cytochrome bc1 isolated from Triton X-100 solubilized mitochondrial membranes contains up to 120 nmol of Triton X-100 bound per nmol of the enzyme. Purified cytochrome bc1 is fully active; however, protein bound Triton X-100 significantly interferes with structural studies of the enzyme. Removal of Triton X-100 bound to bovine cytochrome bc1 was accomplished by incubation with Bio-Beads SM-2 in presence of sodium cholate. Sodium cholate is critical since it does not interfere with the adsorpt...

  5. Tributyltin interacts with mitochondria and induces cytochrome c release.

    Science.gov (United States)

    Nishikimi, A; Kira, Y; Kasahara, E; Sato, E F; Kanno, T; Utsumi, K; Inoue, M

    2001-01-01

    Although triorganotins are potent inducers of apoptosis in various cell types, the critical targets of these compounds and the mechanisms by which they lead to cell death remain to be elucidated. There are two major pathways by which apoptotic cell death occurs: one is triggered by a cytokine mediator and the other is by a mitochondrion-dependent mechanism. To elucidate the mechanism of triorganotin-induced apoptosis, we studied the effect of tributyltin on mitochondrial function. We found that moderately low doses of tributyltin decrease mitochondrial membrane potential and induce cytochrome c release by a mechanism inhibited by cyclosporine A and bongkrekic acid. Tributyltin-induced cytochrome c release is also prevented by dithiols such as dithiothreitol and 2,3-dimercaptopropanol but not by monothiols such as GSH, N-acetyl-L-cysteine, L-cysteine and 2-mercaptoethanol. Further studies with phenylarsine oxide agarose revealed that tributyltin interacts with the adenine nucleotide translocator, a functional constituent of the mitochondrial permeability transition pore, which is selectively inhibited by dithiothreitol. These results suggest that, at low doses, tributyltin interacts selectively with critical thiol residues in the adenine nucleotide translocator and opens the permeability transition pore, thereby decreasing membrane potential and releasing cytochrome c from mitochondria, a series of events consistent with established mechanistic models of apoptosis. PMID:11368793

  6. Variations in epidermal cytochrome oxidase activity after local irradiation

    International Nuclear Information System (INIS)

    Itoiz, M.E.; Rey, B.M. de; Cabrini, R.L.

    1982-01-01

    Cytochrome oxidase activity was evaluated histochemically as an index of mitochondrial damage after local irradiation with X-rays. It was determined by microphotometry on the tail skin of newly born Wistar rats four days after irradiation with doses ranging from 2 to 16krad. The enzyme activity of the whole epidermis increased after irradiation, the increases being related to the increase in thickness of the epithelium which was observed as a response to irradiation injury. Within the dose range tested, the enzyme concentration (expressed per unit volume of tissue) decreased in relation to the dose applied. At the electron microscopy level, the cytochemical demonstration of cytochrome oxidase revealed an irregular reaction over the cristae, intramitochondrial vacuolization and partial homogenization of the matrix. Positive membrane fragments were seen around lipid droplets. This reaction confirms the mitochondrial origin of these previously observed radiation-induced vacuoles. (author)

  7. Conjugation of cytochrome c with hydrogen titanate nanotubes: novel conformational state with implications for apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Moumita; Mazumdar, Shyamalava [Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Chatterjee, Sriparna; Das, Tanmay; Bhattacharyya, Somnath; Ayyub, Pushan, E-mail: somnath@tifr.res.in, E-mail: pushan@tifr.res.in, E-mail: shyamal@tifr.res.in [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2011-10-14

    We show that hydrogen titanate (H{sub 2}Ti{sub 3}O{sub 7}) nanotubes form strongly associated reversible nano-bio-conjugates with the vital respiratory protein, cytochrome c. Resonance Raman spectroscopy along with direct electrochemical studies indicate that in this nano-bio-conjugate, cytochrome c exists in an equilibrium of two conformational states with distinctly different formal redox potentials and coordination geometries of the heme center. The nanotube-conjugated cytochrome c also showed enhanced peroxidase activity similar to the membrane-bound protein that is believed to be an apoptosis initiator. This suggests that such a nanotube-cytochrome c conjugate may be a good candidate for cancer therapy applications.

  8. Prospects and current status of B5 biodiesel implementation in Malaysia

    International Nuclear Information System (INIS)

    Yusoff, Mohd.Hizami Mohd.; Abdullah, Ahmad Zuhairi; Sultana, Shazia; Ahmad, Mushtaq

    2013-01-01

    This paper addresses B5 biodiesel programs in Malaysia, global challenges on the production of palm oil. Protective measures for future efficiency as well as continued viability of this renewable energy sector are also discussed. Crude palm oil (CPO) prices are currently suppressed because of high palm oil inventory. Malaysian government has taken a pro-active step in implementing the B5 biodiesel for transportation and industrial sectors through the introduction of B5 biodiesel. The B5 Biodiesel Program which was initially targeted at selected government agencies has been fully implemented for subsidized sectors in the Central Region. The promotion of B5 development is highly attractive due to its potential local feedstock from palm oil industry and the availability of production technologies that offer opportunities for the sustainable development in energy entrepreneurships. Nationally, produced B5 will improve the access to alternative energy services and is expected to help in improving productivity and sustainability. Despite successful local B5 implementation, Malaysia is recently facing global challenges on the biodiesel production which currently remains stagnant due to weak domestic demand and uncompetitive export tax structure. -- Highlights: •Prospects of B5 biodiesel implementation in Malaysia. •National Biofuel Policy thrusts pertinent to B5 program. •Successful application of B5 in government and industrial sectors. •Challenges in CPO production, weak domestic demand and export tax. •Reassessment of national policy according to global issues

  9. 296-B-5 Stack monitoring and sampling system annual system assessment report

    International Nuclear Information System (INIS)

    Ridge, T.M.

    1995-02-01

    The B Plant Administration Manual requires an annual system assessment to evaluate and report the present condition of the sampling and monitoring system associated with Stack 296-B-5 at B Plant. The sampling and monitoring system associated with stack 296-B-5 is functional and performing satisfactorily. This document is an annual assessment report of the systems associated with the 296-B-5 stack

  10. Lipids in the Structure of Photosystem I, Photosystem II and the Cytochrome b6f Complex

    NARCIS (Netherlands)

    Kern, Jan; Zouni, Athina; Guskov, Albert; Krauss, Norbert; Wada, Hajime; Murata, Norio

    2009-01-01

    This chapter describes the data accumulated in the last decade regarding the specific function of lipids in oxygenic photosynthesis, based on crystal structures of at least 3.0 Å resolution of the main photosynthetic membrane protein—pigment complexes, photosystem I, photosystem II and cytochrome

  11. Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant.

    Directory of Open Access Journals (Sweden)

    Benoît Lacroix

    Full Text Available VirB5 is a type 4 secretion system protein of Agrobacterium located on the surface of the bacterial cell. This localization pattern suggests a function for VirB5 which is beyond its known role in biogenesis and/or stabilization of the T-pilus and which may involve early interactions between Agrobacterium and the host cell. Here, we identify VirB5 as the first Agrobacterium virulence protein that can enhance infectivity extracellularly. Specifically, we show that elevating the amounts of the extracellular VirB5--by exogenous addition of the purified protein, its overexpression in the bacterium, or transgenic expression in and secretion out of the host cell--enhances the efficiency the Agrobacterium-mediated T-DNA transfer, as measured by transient expression of genes contained on the transferred T-DNA molecule. Importantly, the exogenous VirB5 enhanced transient T-DNA expression in sugar beet, a major crop recalcitrant to genetic manipulation. Increasing the pool of the extracellular VirB5 did not complement an Agrobacterium virB5 mutant, suggesting a dual function for VirB5: in the bacterium and at the bacterium-host cell interface. Consistent with this idea, VirB5 expressed in the host cell, but not secreted, had no effect on the transformation efficiency. That the increase in T-DNA expression promoted by the exogenous VirB5 was not due to its effects on bacterial growth, virulence gene induction, bacterial attachment to plant tissue, or host cell defense response suggests that VirB5 participates in the early steps of the T-DNA transfer to the plant cell.

  12. Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant.

    Science.gov (United States)

    Lacroix, Benoît; Citovsky, Vitaly

    2011-01-01

    VirB5 is a type 4 secretion system protein of Agrobacterium located on the surface of the bacterial cell. This localization pattern suggests a function for VirB5 which is beyond its known role in biogenesis and/or stabilization of the T-pilus and which may involve early interactions between Agrobacterium and the host cell. Here, we identify VirB5 as the first Agrobacterium virulence protein that can enhance infectivity extracellularly. Specifically, we show that elevating the amounts of the extracellular VirB5--by exogenous addition of the purified protein, its overexpression in the bacterium, or transgenic expression in and secretion out of the host cell--enhances the efficiency the Agrobacterium-mediated T-DNA transfer, as measured by transient expression of genes contained on the transferred T-DNA molecule. Importantly, the exogenous VirB5 enhanced transient T-DNA expression in sugar beet, a major crop recalcitrant to genetic manipulation. Increasing the pool of the extracellular VirB5 did not complement an Agrobacterium virB5 mutant, suggesting a dual function for VirB5: in the bacterium and at the bacterium-host cell interface. Consistent with this idea, VirB5 expressed in the host cell, but not secreted, had no effect on the transformation efficiency. That the increase in T-DNA expression promoted by the exogenous VirB5 was not due to its effects on bacterial growth, virulence gene induction, bacterial attachment to plant tissue, or host cell defense response suggests that VirB5 participates in the early steps of the T-DNA transfer to the plant cell.

  13. Identification of human cytochrome P450s as autoantigens.

    Science.gov (United States)

    Manns, M P; Johnson, E F

    1991-01-01

    Antimicrosomal antibodies in inflammatory liver diseases all seem to be directed against members of the cytochrome P450 family of proteins. These autoantigens seem to be genetically polymorphic, the autoantibodies are inhibitory, and the autoepitopes are generally conserved among species. Anti-P450 autoantibodies share these characteristics with other autoantibodies, for example, antinuclear antibodies in systemic lupus erythematosus. The identification of P450s as human autoantigens is clinically important. Diagnostic tests will be developed on the basis of cloned antigen, facilitating a better diagnosis of drug-induced and idiopathic autoimmune hepatitis. It is unknown what triggers autoantibody production against cytochrome P450 proteins. Furthermore, their pathogenetic role and thus their involvement in tissue destruction is unclear. In this context LKM1 autoantibodies may serve as a model. Although LKM1 antibodies are inhibitory, all LKM1 antibody-positive patients tested so far are extensive metabolizers for drug metabolism mediated by P450IID6 and express this protein in their livers. Thus, the inhibitory LKM1 autoantibody does not sufficiently penetrate through the intact liver cell membrane to inhibit enzyme function in vivo. Presumably, tissue destruction in autoimmune hepatitis is mediated by liver-infiltrating T lymphocytes. T lymphocytes have been cloned from liver tissue that specifically proliferate in the presence of recombinant cytochrome P450IID6. The construction of overlapping cDNA subclones is also valuable to identify immunodominant B cell as well as relevant T cell epitopes.

  14. Formation of putative chloroplast cytochromes in isolated developing pea chloroplasts

    International Nuclear Information System (INIS)

    Thaver, S.S.; Bhava, D.; Castelfranco, P.A.

    1986-01-01

    In addition to chlorophyll-protein complexes, other proteins were labeled when isolated developing pea chloroplasts were incubated with [ 14 C]-5-aminolevulinic acid [ 14 C]-ALA. The major labeled band (M/sub r/ = 43 kDa by LDS-PAGE) was labeled even in the presence of chloramphenicol. Heme-dependent peroxidase activity (as detected by the tetramethyl benzidine-H 2 O 2 stain) was not visibly associated with this band. The radioactive band was stable to heat, 5% HCl in acetone, and was absent if the incubation with [ 14 C]-5-aminolevulinic acid was carried out in the presence of N-methyl protoporphyrin IX dimethyl ester (a specific inhibitor of ferrochelatase). Organic solvent extraction procedures for the enrichment of cytochrome f from chloroplast membranes also extracted this unknown labeled product. It was concluded that this labeled product was probably a c-type cytochrome. The effect of exogenous iron, iron chelators, gabaculine (an inhibitor of ALA synthesis) and other incubation conditions upon the in vitro formation of putative chloroplast cytochromes will be discussed

  15. 17 CFR 240.16b-5 - Bona fide gifts and inheritance.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Bona fide gifts and inheritance. 240.16b-5 Section 240.16b-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION... gifts and inheritance. Both the acquisition and the disposition of equity securities shall be exempt...

  16. 17 CFR 240.10b-5 - Employment of manipulative and deceptive devices.

    Science.gov (United States)

    2010-04-01

    ... fraud or deceit upon any person, in connection with the purchase or sale of any security. (Sec. 10; 48... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Employment of manipulative and deceptive devices. 240.10b-5 Section 240.10b-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE...

  17. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus LBB.B5

    NARCIS (Netherlands)

    Urshev, Z.; Hajo, K.; Lenoci, L.; Bron, P.A.; Dijkstra, A.; Alkema, W.; Wels, M.; Siezen, R.J.; Minkova, S.; Hijum, S.A. van

    2016-01-01

    Lactobacillus delbrueckii subsp. bulgaricus LBB.B5 originates from homemade Bulgarian yogurt and was selected for its ability to form a strong association with Streptococcus thermophilus The genome sequence will facilitate elucidating the genetic background behind the contribution of LBB.B5 to the

  18. Magnetic circular dichroism studies on microsomal aryl hydrocarbon hydroxylase: comparison with cytochrome b/sub 5/ and cytochrome P-450/sub cam/

    Energy Technology Data Exchange (ETDEWEB)

    Vickery, L; Salmon, A; Sauer, K

    1975-01-01

    Magnetic circular dichroism spectra are reported for the visible and near ultraviolet spectral regions of liver microsomes from dimethylbenzanthracene-treated rats. The sequential addition of NADH, dithionite, and carbon monoxide enables us to determine contributions to the magnetic circular dichroism by cytochromes b/sub 5/ and P-450, which dominate the spectra. The magnetic circular dichroism of the microsomal preparation is compared with that of purified oxidized and reduced cytochrome b/sub 5/ from pig liver and with the camphor-complexed and camphor-free oxidized, reduced, and reduced carbonmonoxy cytochrome P-450/sub cam/ from Pseudomonas putida. The magnetic circular dichroism spectra of the membrane bound cytochrome b/sub 5/ are similar to those of the purified protein, indicating that little or no alteration in the environment of the heme occurs during the isolation procedure. The soluble bacterial cytochrome P-450/sub cam/ also appears to be a suitable model for microsomal P-450, although differences in the magnetic circular dichroism intensity are observed for the two enzymes. No effect of dimethylbenzanthracene on the magnetic circular dichroism spectra of induced compared to control rat microsomes could be observed.

  19. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

    Directory of Open Access Journals (Sweden)

    Prabhakar Singh

    2016-01-01

    Full Text Available Plasma membrane redox system (PMRS is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD. Effects of curcumin were also evaluated on level of glutathione (GSH and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP. Results show that curcumin significantly (p<0.01 downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects.

  20. Effect of Vitamin B5 on Liver Enzyme Levels in Bile Duct Ligation Cholestatic Rat Model

    Directory of Open Access Journals (Sweden)

    Fatemeh Sadat Emami

    2017-01-01

    Full Text Available Background and Objectives: Accumulation of toxic bile salts in a bile duct ligation (BDL animal model plays a pivotal role in the induction of liver fibrosis. Vitamin B5 is an essential nutrient, which acts as a cofactor in many detoxification system enzymes. In the present research, the antifibrotic effect of vitamin B5 was investigated on liver cholestasis induced by BDL in rats. Methods: In this experimental study, 72 male Wistar rats were divided into 9 groups: Control, sham-operated, vitamin B5 (5, 50, and 100mg/kg bw, BDL, and BDL+vitamin B5 (5, 50, and 100mg/kg bw. After BDL, rats were given vitamin B5 via intragastric gavage for 28 consecutive days. At the end of the experiment, blood was collected from heart and activity of aspartate aminotransferase (AST, alanine aminotransferase (ALT, and alkaline phosphatase (ALP enzymes, were measured. The data were analyzed using one-way ANOVA test. Results: In the BDL animals, the serum activities of AST, ALT, and ALP significantly increased (p<0.001. Treatment of BDL rats with vitamin B5 significantly attenuated these changes. Conclusion: The results of this study indicated that vitamin B5 has hepatoprotective and antifibrotic effects in the cholestatic liver, which is likely due to the antioxidative and free radical scavenging effects of this vitamin.

  1. Affinity of drugs for cytochrome P-450 determined by inhibition of p-nitrophenetole O-deethylation by rat liver microsomes

    DEFF Research Database (Denmark)

    Jørgensen, L; Johansen, Torben

    1983-01-01

    M. Furthermore, cytochrome b5 seemed to be involved in the formation of p-nitrophenol. The effect on p-nitrophenol formation of drugs known to be involved in drug interaction in clinical practice was studied. There was a competitive inhibition by phenytoin (inhibitor constant, Ki, 30 microM), disulfiram (Ki, 2...

  2. 17 CFR 240.10b5-2 - Duties of trust or confidence in misappropriation insider trading cases.

    Science.gov (United States)

    2010-04-01

    ... in misappropriation insider trading cases. 240.10b5-2 Section 240.10b5-2 Commodity and Securities... Devices and Contrivances § 240.10b5-2 Duties of trust or confidence in misappropriation insider trading... of insider trading under Section 10(b) of the Act and Rule 10b-5. The law of insider trading is...

  3. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus LBB.B5.

    Science.gov (United States)

    Urshev, Zoltan; Hajo, Karima; Lenoci, Leonardo; Bron, Peter A; Dijkstra, Annereinou; Alkema, Wynand; Wels, Michiel; Siezen, Roland J; Minkova, Svetlana; van Hijum, Sacha A F T

    2016-10-06

    Lactobacillus delbrueckii subsp. bulgaricus LBB.B5 originates from homemade Bulgarian yogurt and was selected for its ability to form a strong association with Streptococcus thermophilus The genome sequence will facilitate elucidating the genetic background behind the contribution of LBB.B5 to the taste and aroma of yogurt and its exceptional protocooperation with S. thermophilus. Copyright © 2016 Urshev et al.

  4. Dioxin induces expression of hsa-miR-146b-5p in human neuroblastoma cells.

    Science.gov (United States)

    Xu, Tuan; Xie, Heidi Q; Li, Yunping; Xia, Yingjie; Sha, Rui; Wang, Lingyun; Chen, Yangsheng; Xu, Li; Zhao, Bin

    2018-01-01

    Dioxin can cause a series of neural toxicological effects. MicroRNAs (miRs) play important roles in regulating nervous system function and mediating cellular responses to environmental pollutants, such as dioxin. Hsa-miR-146b-5p appears to be involved in neurodegenerative diseases and brain tumors. However, little is known about effects of dioxin on the expression of hsa-miR-146b-5p. We found that the hsa-miR-146b-5p expression and its promoter activity were significantly increased in dioxin treated SK-N-SH cells, a human-derived neuroblastoma cell line. Potential roles of hsa-miR-146b-5p in mediating neural toxicological effects of dioxin may be due to the regulation of certain target genes. We further confirmed that hsa-miR-146b-5p significantly suppressed acetylcholinesterase (AChE) activity and targeted the 3'-untranslated region of the AChE T subunit, which has been down-regulated in dioxin treated SK-N-SH cells. Functional bioinformatic analysis showed that the known and predicted target genes of hsa-miR-146b-5p were involved in some brain functions or cyto-toxicities related to known dioxin effects, including synapse transmission, in which AChE may serve as a responsive gene for mediating the effect. Copyright © 2017. Published by Elsevier B.V.

  5. Cytochrome P450s and molecular epidemiology

    Science.gov (United States)

    Gonzalez, Frank J.; Gelboin, Harry V.

    1993-03-01

    Cytochrome P450 (P450) represent a superfamily of heme-containing monooxygenases that are found throughout the animal and plant kingdoms and in many microorganisms. A number of these enzymes are involved in biosynthetic pathways of steroid synthesis but in mammals the vast majority of P450s function to metabolize foreign chemicals or xenobiotics. In the classical phase I reactions on the latter, a membrane-bound P450 will hydroxylate a compound, usually hydrophobic in nature, and the hydroxyl group will serve as a substrate for the various transferases or phase II enzymes that attach hydrophilic substituents such as glutathione, sulfate or glucuronic acid. Some chemicals, however, are metabolically-activated by P450s to electrophiles capable of reacting with cellular macromolecules. The cellular concentrations of the chemical and P450, reactivity of the active metabolite with nucleic acid and the repairability of the resultant adducts, in addition to the nature of the cell type, likely determines whether a chemical will be toxic and kill the cell or will transform the cell. Immunocorrelative and cDNA-directed expression have been used to define the substrate specificities of numerous human P450s. Levels of expression of different human P450 forms have been measured by both in vivo and in vitro methodologies leading to the realization that a large degree of interindividual differences occur in P450 expression. Reliable procedures for measuring P450 expression in healthy and diseased subjects will lead to prospective and case- cohort studies to determine whether interindividual differences in levels of P450 are associated with susceptibility or resistance to environmentally-based disease.

  6. Ubiquinol-cytochrome c reductase (Complex III) electrochemistry at multi-walled carbon nanotubes/Nafion modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Pelster, Lindsey N.; Minteer, Shelley D.

    2012-01-01

    Highlights: ► The electron transport chain is important to the understanding of metabolism in the living cell. ► Ubiquinol-cytochrome c reductase is a membrane bound complex of the electron transport chain (Complex III). ► The paper details the first bioelectrochemical characterization of ubiquinol-cytochrome c reductase at an electrode. - Abstract: Electron transport chain complexes are critical to metabolism in living cells. Ubiquinol-cytochrome c reductase (Complex III) is responsible for carrying electrons from ubiquinol to cytochrome c, but the complex has not been evaluated electrochemically. This work details the bioelectrochemistry of ubiquinol-cytochrome c reductase of the electron transport chain of tuber mitochondria. The characterization of the electrochemistry of this enzyme is investigated in carboxylated multi-walled carbon nanotube/tetrabutyl ammonium bromide-modified Nafion ® modified glassy carbon electrodes by cyclic voltammetry. Increasing concentrations of cytochrome c result in a catalytic response from the active enzyme in the nanotube sandwich. The experiments show that the enzyme followed Michaelis–Menten kinetics with a K m for the immobilized enzyme of 2.97 (±0.11) × 10 −6 M and a V max of 6.31 (±0.82) × 10 −3 μmol min −1 at the electrode, but the K m and V max values decreased compared to the free enzyme in solution, which is expected for immobilized redox proteins. This is the first evidence of ubiquinol-cytochrome c reductase bioelectrocatalysis.

  7. Structure and function of the tetraheme cytochrome associated to the reaction center of Roseobacter denitrificans.

    Science.gov (United States)

    Garcia, D; Richaud, P; Breton, J; Verméglio, A

    1994-01-01

    We have characterized the tetrahemic RC bound cytochrome isolated from the quasi-photosynthetic bacterium Roseobacter denitrificans in terms of absorption spectrum, redox property and orientation with respect to the membrane plane. The heme, designated H1, which possesses the highest redox midpoint potential (+290 mV), absorbs at 555 nm. Its plane makes an angle of 40 degrees with the membrane plane. The second high potential heme, H2 (+240 mV), peaks at 554 nm and makes a tilt of 55 degrees with the membrane. The two low potential hemes, L1 and L2, present a similar and rather high redox midpoint potential (+90 mV). They absorb at 553 nm and 550 nm. One of these hemes is oriented at 40 degrees while the other makes an angle of 90 degrees with the membrane plane. The soluble cytochrome c551 completes the cyclic electron transfer between the RC and the bc1 complex. Both the oxidation and the re-reduction of cytochrome c551 are diffusible processes. Under semi-aerobic conditions, one of the low potential hemes is photo-oxidized under illumination but only extremely slowly re-reduced. This explains the requirement of high aerobic conditions for growth of Roseobacter denitrificans cells in the light.

  8. Cytochrome P-450 dependent ethanol oxidation. Kinetic isotope effects and absence of stereoselectivity

    International Nuclear Information System (INIS)

    Ekstroem, G.; Norsten, C.; Cronholm, T.; Ingelman-Sundberg, M.

    1987-01-01

    Deuterium isotope effects [/sup D/(V/K)] and stereoselectivity of ethanol oxidation in cytochrome P-450 containing systems and in the xanthine-xanthine oxidase system were compared with those of yeast alcohol dehydrogenase. The isotope effects were determined by using both a noncompetitive method, including incubation of unlabeled of [1,1- 2 H 2 ] ethanol at various concentrations, and a competitive method, where 1:1 mixtures of [1- 13 C]- and [ 2 H 6 ] ethanol or [2,2,2- 2 H 3 ]- and [1,1- 2 H 2 ] ethanol were incubated and the acetaldehyde formed was analyzed by gas chromatography/mass spectrometry. The /sup D/(V/K) isotope effects of the cytochrome P-450 dependent ethanol oxidation were about 4 with liver microsomes from imidazole-, phenobarbital- or acetone-treated rabbits or with microsomes from acetone- or ethanol-treated rats. Similar isotope effects were reached with reconstituted membranes containing the rabbit ethanol-inducible cytochrome P-450 (LMeb), whereas control rat microsomes and membranes containing rabbit phenobarbital-inducible P-450 LM 2 oxidized the alcohol with /sup D/(V/K) of about 2.8 and 1.8, respectively. Addition of Fe/sup III/EDTA either to microsomes from phenobarbital-treated rabbits or to membranes containing P-450 LMeb significantly lowered the isotope effect. Incubations of all cytochrome P-450 containing systems of the xanthine-xanthine oxidase systems with (1R)- and (1S)-[1- 2 H] ethanol, revealed, taking the isotope effects into account, that 44-66% of the ethanol oxidized had lost the 1-pro-R hydrogen. The data indicate that cytochrome P-450 dependent ethanol oxidation is not stereospecific and that cleavage of the C 1 -H bond appears to be a rate-determining step in the catalysis by the ethanol-inducible form of P-450. The contribution of hydroxyl radicals in ethanol oxidation by the various enzymic systems is discussed

  9. Microstructural analysis of hot press formed 22MnB5 steel

    Science.gov (United States)

    Aziz, Nuraini; Aqida, Syarifah Nur; Ismail, Izwan

    2017-10-01

    This paper presents a microstructural study on hot press formed 22MnB5 steel for enhanced mechanical properties. Hot press forming process consists of simultaneous forming and quenching of heated blank. The 22MnB5 steel was processed at three different parameter settings: quenching time, water temperature and water flow rate. 22MnB5 was processed using 33 full factorial design of experiment (DOE). The full factorial DOE was designed using three factors of quenching time, water temperature and water flow rate at three levels. The factors level were quenching time range of 5 - 11 s, water temperature; 5 - 27°C and water flow rate; 20 - 40 L/min. The as-received and hot press forming processed steel was characterised for metallographic study and martensitic structure area percentage using JEOL Field Emission Scanning Electron Microscopic (FESEM). From the experimental finding, the hot press formed 22MnB5 steel consisted of 50 to 84% martensitic structure area. The minimum quenching time of 8 seconds was required to obtain formed sample with high percentage of martensite. These findings contribute to initial design of processing parameters in hot press forming of 22MnB5 steel blanks for automotive component.

  10. Multiple Sclerosis and EIF2B5: A Paradox or a Missing Link.

    Science.gov (United States)

    Zahoor, Insha; Haq, Ehtishamul; Asimi, Ravouf

    2017-01-01

    Multiple sclerosis (MS) is an encumbering inflammatory condition of the central nervous system (CNS) caused by axonal demyelination. There is sufficient evidence suggesting role of eukaryotic translation initiation factor 2B (EIF2B) gene family encoding the five subunits of eIF2B complex-α, β, γ, δ and ε respectively, in causing vanishing white matter (VWM) disease of the brain. Incidentally researchers have proposed overlapping between MS and VWM in terms of clinical, biochemical and genetic aspects, which incited us to write this chapter to explore the association between EIF2B5 and MS. eIF2B plays an essential role in translation initiation and its regulation in eukaryotes. Among EIF2B gene family, EIF2B5 gene encodes the catalytic and a crucial epsilon subunit of the eIF2B protein as most of the alterations have been found in this gene. The recent findings on the association between EIF2B5 and MS susceptibility point towards unfathomable and contentious role of EIF2B5 in MS development. This chapter briefly reviews the insights gleaned from recent studies conducted in understanding the association between EIF2B5 and MS risk. The need of hour is to conduct large scale conclusive studies aimed at expounding the mechanisms behind this relationship.

  11. Cytochrome P450 humanised mice

    Directory of Open Access Journals (Sweden)

    Gonzalez Frank J

    2004-05-01

    Full Text Available Abstract Humans are exposed to countless foreign compounds, typically referred to as xenobiotics. These can include clinically used drugs, environmental pollutants, food additives, pesticides, herbicides and even natural plant compounds. Xenobiotics are metabolised primarily in the liver, but also in the gut and other organs, to derivatives that are more easily eliminated from the body. In some cases, however, a compound is converted to an electrophile that can cause cell toxicity and transformation leading to cancer. Among the most important xenobiotic-metabolising enzymes are the cytochromes P450 (P450s. These enzymes represent a superfamily of multiple forms that exhibit marked species differences in their expression and catalytic activities. To predict how humans will metabolise xenobiotics, including drugs, human liver extracts and recombinant P450s have been used. New humanised mouse models are being developed which will be of great value in the study of drug metabolism, pharmacokinetics and pharmacodynamics in vivo, and in carrying out human risk assessment of xenobiotics. Humanised mice expressing CYP2D6 and CYP3A4, two major drug-metabolising P450s, have revealed the feasibility of this approach.

  12. Cytochrome P450 humanised mice

    Science.gov (United States)

    2004-01-01

    Humans are exposed to countless foreign compounds, typically referred to as xenobiotics. These can include clinically used drugs, environmental pollutants, food additives, pesticides, herbicides and even natural plant compounds. Xenobiotics are metabolised primarily in the liver, but also in the gut and other organs, to derivatives that are more easily eliminated from the body. In some cases, however, a compound is converted to an electrophile that can cause cell toxicity and transformation leading to cancer. Among the most important xenobiotic-metabolising enzymes are the cytochromes P450 (P450s). These enzymes represent a superfamily of multiple forms that exhibit marked species differences in their expression and catalytic activities. To predict how humans will metabolise xenobiotics, including drugs, human liver extracts and recombinant P450s have been used. New humanised mouse models are being developed which will be of great value in the study of drug metabolism, pharmacokinetics and pharmacodynamics in vivo, and in carrying out human risk assessment of xenobiotics. Humanised mice expressing CYP2D6 and CYP3A4, two major drug-metabolising P450s, have revealed the feasibility of this approach. PMID:15588489

  13. Export of Cytochrome P450 105D1 to the Periplasmic Space of Escherichia coli

    OpenAIRE

    Kaderbhai, Mustak A.; Ugochukwu, Cynthia C.; Kelly, Steven L.; Lamb, David C.

    2001-01-01

    CYP105D1, a cytochrome P450 from Streptomyces griseus, was appended at its amino terminus to the secretory signal of Escherichia coli alkaline phosphatase and placed under the transcriptional control of the native phoA promoter. Heterologous expression in E. coli phosphate-limited medium resulted in abundant synthesis of recombinant CYP105D1 that was translocated across the bacterial inner membrane and processed to yield authentic, heme-incorporated P450 within the periplasmic space. Cell ext...

  14. ELECTRON-CAPTURE FROM LI BY B-5+, N-5+ AND BE-4+ IONS

    NARCIS (Netherlands)

    HOEKSTRA, R; OLSON, RE; FOLKERTS, HO; WOLFRUM, E; PASCALE, J; DEHEER, FJ; MORGENSTERN, R; WINTER, H

    1993-01-01

    We present state selective experimental and theoretical results for electron capture in B-5+ and N5+-Li collisons at energies in the range of 1-10 keV amu-1. Experimentally we have used photon emission spectroscopy in the VUV and visible spectral range and theoretically we have performed classical

  15. 75 FR 69080 - Federal Management Regulation; FMR Bulletin PBS-2010-B5; Redesignations of Federal Buildings

    Science.gov (United States)

    2010-11-10

    ... Management Regulation; FMR Bulletin PBS-2010-B5; Redesignations of Federal Buildings AGENCY: Public Buildings... announces the designation and redesignation of two Federal buildings. DATES: Expiration Date: This bulletin announcement expires April 30, 2011. The building designation and redesignation remains in effect until...

  16. Industrial canal waterfronts in The Netherlands : transforming the canal zones of B5

    NARCIS (Netherlands)

    Curulli, G.I.

    2012-01-01

    Industrial Canal Waterfronts in The Netherlands provides a comprehensive presentation of the characteristics and challenges of five interconnected and dismissed industrial canal zones located in the Dutch Brabant cities of Eindhoven, Breda, Tilburg, s’-Hertogenbosch and Helmond (B5). Through the

  17. ENDF/B-5 Dosimetry Files, mod. 2 1979/81

    International Nuclear Information System (INIS)

    DayDay, N.; Lemmel, H.D.

    1981-09-01

    This document summarizes the contents and documentation of the ENDF/B-5 Dosimetry Files (Point or Group Data) released in October 1979 and modified in August 1981. The files contain data for 36 neutron reactions of 26 isotopes. The entire libraries or selective retrievals from them can be obtained free of charge from the IAEA Nuclear Data Section. (author)

  18. Becoming a Peroxidase: Cardiolipin-Induced Unfolding of Cytochrome c

    Science.gov (United States)

    Muenzner, Julia; Toffey, Jason R.; Hong, Yuning; Pletneva, Ekaterina V.

    2014-01-01

    Interactions of cytochrome c (cyt c) with a unique mitochondrial glycerophospholipid cardiolipin (CL) are relevant for the protein’s function in oxidative phosphorylation and apoptosis. Binding to CL-containing membranes promotes cyt c unfolding and dramatically enhances the protein’s peroxidase activity, which is critical in early stages of apoptosis. We have employed a collection of seven dansyl variants of horse heart cyt c to probe the sequence of steps in this functional transformation. Kinetic measurements have unraveled four distinct processes during CL-induced cyt c unfolding: rapid protein binding to CL liposomes; rearrangements of protein substructures with small unfolding energies; partial insertion of the protein into the lipid bilayer; and extensive protein restructuring leading to “open” extended structures. While early rearrangements depend on a hierarchy of foldons in the native structure, the later process of large-scale unfolding is influenced by protein interactions with the membrane surface. The opening of the cyt c structure exposes the heme group, which enhances the protein’s peroxidase activity and also frees the C-terminal helix to aid in the translocation of the protein through CL membranes. PMID:23713573

  19. Cytochrome c1 exhibits two binding sites for cytochrome c in plants.

    Science.gov (United States)

    Moreno-Beltrán, Blas; Díaz-Quintana, Antonio; González-Arzola, Katiuska; Velázquez-Campoy, Adrián; De la Rosa, Miguel A; Díaz-Moreno, Irene

    2014-10-01

    In plants, channeling of cytochrome c molecules between complexes III and IV has been purported to shuttle electrons within the supercomplexes instead of carrying electrons by random diffusion across the intermembrane bulk phase. However, the mode plant cytochrome c behaves inside a supercomplex such as the respirasome, formed by complexes I, III and IV, remains obscure from a structural point of view. Here, we report ab-initio Brownian dynamics calculations and nuclear magnetic resonance-driven docking computations showing two binding sites for plant cytochrome c at the head soluble domain of plant cytochrome c1, namely a non-productive (or distal) site with a long heme-to-heme distance and a functional (or proximal) site with the two heme groups close enough as to allow electron transfer. As inferred from isothermal titration calorimetry experiments, the two binding sites exhibit different equilibrium dissociation constants, for both reduced and oxidized species, that are all within the micromolar range, thus revealing the transient nature of such a respiratory complex. Although the docking of cytochrome c at the distal site occurs at the interface between cytochrome c1 and the Rieske subunit, it is fully compatible with the complex III structure. In our model, the extra distal site in complex III could indeed facilitate the functional cytochrome c channeling towards complex IV by building a "floating boat bridge" of cytochrome c molecules (between complexes III and IV) in plant respirasome. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Cytochrome cbb3 of Thioalkalivibrio is a Na+-pumping cytochrome oxidase

    NARCIS (Netherlands)

    Muntyan, M.S.; Cherepanov, D.A.; Malinen, A.M.; Bloch, D.A.; Sorokin, D.Y.; Severina, I.I.; Ivashina, T.V.; Lahti, R.; Muyzer, G.; Skulachev, V.P.

    2015-01-01

    Cytochrome c oxidases (Coxs) are the basic energy transducers in the respiratory chain of the majority of aerobic organisms. Coxs studied to date are redox-driven proton-pumping enzymes belonging to one of three subfamilies: A-, B-, and C-type oxidases. The C-type oxidases (cbb3 cytochromes), which

  1. Evidence from the structure and function of cytochromes c(2) that nonsulfur purple bacterial photosynthesis followed the evolution of oxygen respiration.

    Science.gov (United States)

    Meyer, Terry; Van Driessche, Gonzalez; Ambler, Richard; Kyndt, John; Devreese, Bart; Van Beeumen, Jozef; Cusanovich, Michael

    2010-10-01

    Cytochromes c(2) are the nearest bacterial homologs of mitochondrial cytochrome c. The sequences of the known cytochromes c(2) can be placed in two subfamilies based upon insertions and deletions, one subfamily is most like mitochondrial cytochrome c (the small C2s, without significant insertions and deletions), and the other, designated large C2, shares 3- and 8-residue insertions as well as a single-residue deletion. C2s generally function between cytochrome bc(1) and cytochrome oxidase in respiration (ca 80 examples known to date) and between cytochrome bc(1) and the reaction center in nonsulfur purple bacterial photosynthesis (ca 21 examples). However, members of the large C2 subfamily are almost always involved in photosynthesis (12 of 14 examples). In addition, the gene for the large C2 (cycA) is associated with those for the photosynthetic reaction center (pufBALM). We hypothesize that the insertions in the large C2s, which were already functioning in photosynthesis, allowed them to replace the membrane-bound tetraheme cytochrome, PufC, that otherwise mediates between the small C2 or other redox proteins and photosynthetic reaction centers. Based upon our analysis, we propose that the involvement of C2 in nonsulfur purple bacterial photosynthesis was a metabolic feature subsequent to the evolution of oxygen respiration.

  2. Role of active oxygen species in the photodestruction of microsomal cytochrome P-450 and associated monooxygenases by hematoporphyrin derivative in rats

    International Nuclear Information System (INIS)

    Das, M.; Dixit, R.; Mukhtar, H.; Bickers, D.R.

    1985-01-01

    The cytochrome P-450 in hepatic microsomes prepared from rats pretreated with hematoporphyrin derivative was shown to be rapidly destroyed in the presence of long-wave ultraviolet light. The photocatalytic destruction of the heme-protein was dependent on both the dose of ultraviolet light and of hematoporphyrin derivative administered to the animals. The destructive reaction was accompanied by increased formation of cytochrome P-420, loss of microsomal heme content, and diminished catalytic activity of cytochrome P-450-dependent monooxygenases such as aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase. The specificity of the effect on cytochrome P-450 was confirmed by the observation that other heme-containing moieties such as myoglobin and cytochrome c were not susceptible to photocatalytic destruction. The destruction of cytochrome P-450 was a photodynamic process requiring oxygen since quenchers of singlet oxygen, including 2,5-dimethylfuran, histidine, and beta-carotene, each substantially diminished the reaction. Scavengers of superoxide anion such as superoxide dismutase and of H 2 O 2 such as catalase did not protect against photodestruction of cytochrome P-450, whereas inhibitors of the hydroxyl radical, including benzoate, mannitol, and ethyl alcohol, did afford protection. These results indicate that lipid-rich microsomal membranes and the heme-protein cytochrome P-450 embedded therein are potential targets of injury in cells exposed to hematoporphyrin derivative photosensitization

  3. A new liver function test using the asialoglycoprotein-receptor system on the liver cell membrane, 3

    International Nuclear Information System (INIS)

    Hazama, Hiroshi; Kawa, Soukichi; Kubota, Yoshitsugu

    1986-01-01

    We evaluated the vilidity of a new liver function test using liver scintigraphy based on the asialoglycoprotein (ASGP) receptor system on the liver cell membrane in rats with galactosamine-induced acute liver disorder and those with carbon tetra-chloride-induced chronic liver disorder. Neoglycoprotein (GHSA) produced by combining human serum albumin with 32 galactose units was labeled with 99m Tc and administered (50 μg/100 g body weight) to rats with acute or chronic liver disorder. Clearance curves were produced based on liver scintigrams and analysed using the two-compartment model to obtain parameters. In acute liver disorder, the prolongation of 99m Tc-GHSA clearance and the decrease in ASGP receptor activities correlated well to the increase in serum GOT and the decrease in the esterified to total cholesterol ratio (E/T ratio); in chronic liver disorder, they correlated significantly to the increase in the content of liver hydroxyproline (Hyp) which increased in proportion to the severity of liver fibrosis studied histologically, and to the decrease in the contents of cytochrome P-450 and cytochrome b 5 in liver microsomes. Significant correlation was observed between the prolongation of 99m Tc-GHSA clearance and the decrease in ASGP receptor activities in both acute and chronic liver disorders. These findings indicate that the measurement of 99m Tc-GHSA clearance can be a new liver function test sensitively reflecting the severity of liver damage. (author)

  4. Role of cytochrome B in the processing of the subunits of complex III in the yeast mitochondria

    International Nuclear Information System (INIS)

    Sen, K.G.

    1986-01-01

    The work described in this dissertation deals with the effect of cytochrome b on the biogenesis and assembly of the subunits of complex III in the mitochondrial membrane of the yeast Saccharomyces cerevisiae. The cytochrome b-mutants (Box mutants of S. cerevisiae form an excellent system to study such a role of cytochome B. The amounts of cytochrome c 1 in the mitochrondria, as determined both spectroscopically and immunologically, were not affected by the absence of cytochrome b. Pulse labelling of the cells with ( 35 S) methionine in the presence of CCCP showed the accumulation of the precursors to the core protein I and the iron-sulfur protein in similar amounts in the mutant Box 6-2 and the wild type cells. Synthesis of the iron sulfur protein and the cytochrome c 1 by in vitro translation of mRNA isolated from wild type and mutant Box 6-2 in a rabbit reticulocyte lysate system, also confirmed that the synthesis of the nuclear encoded subunits was not affected in the mutants. Pulse labeling of the cells in the absence of CCCP and subsequent chase with cold methionine, however, showed much less of the mature subunits of core protein I and the iron-sulfur protein in the mitochrondria of the mutant cells relative to the wild type. These results indicate that cytochrome b is necessary for the proper processing of certain subunits of complex III

  5. Production, purification and detergent exchange of isotopically labeled Bacillussubtilis cytochrome b₅₅₈ (SdhC).

    Science.gov (United States)

    Baureder, Michael; Hederstedt, Lars

    2011-11-01

    Cytochrome b₅₅₈ of the gram-positive bacterium Bacillussubtilis is the membrane anchor subunit of the succinate:quinone oxidoreductase of the citric acid cycle. The cytochrome consists of the SdhC polypeptide (202 residues) and two protoheme IX groups that function in transmembrane electron transfer to menaquinone. The general structure of the cytochrome is known from extensive experimental studies and by comparison to Wolinellasuccinogenes fumarate reductase for which the X-ray crystal structure has been determined. Solution state NMR can potentially be used to identify the quinone binding site(s) and study, e.g. redox-linked, dynamics of cytochrome b₅₅₈. In this work we present an efficient procedure for the isolation of preparative amounts of isotopically labeled B. subtilis cytochrome b₅₅₈ produced in Escherichia coli. We have also evaluated several detergents suitable for NMR for their effectiveness in maintaining the cytochrome solubilized and intact for days at room temperature. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Recommended data for capture cross sections in B5+ + H collisions

    International Nuclear Information System (INIS)

    Errea, L F; Guzman, F; Illescas, Clara; Mendez, L; Pons, B; Riera, A; Suarez, J

    2006-01-01

    Recommended values for state selective capture cross sections are presented for the collision B 5+ + H(1s) in the energy range from 0.05 to 1000 keV amu -1 . Special attention is focused on capture processes to n = 7 states of B 4+ , which play an important role in spectral diagnostics in fusion plasmas. In order to completely cover the intermediate impact energy domain, quantal, semi-classical and classical treatments have been employed for low, low-intermediate and intermediate-high energies, respectively. We also give some guidelines about the domain of accuracy of the methodologies employed. Additionally, preliminary cross sections of the B 5+ + H(2s) collision are also provided

  7. Cummins Engine Company B5.9 Propane Engine Development, Certification, and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    The ADEPT Group, Inc. (Los Angeles, California)

    1998-12-18

    The objective of this project was to successfuly develop and certify an LPG-dedicated medium-duty original equipment manufacturer (OEM) engine that could be put into production. The engine was launched into production in 1994, and more than 800 B5.9G engines are now in service in the United States and abroad. This engine is now offered by more than 30 bus and truck OEMs.

  8. Engineering human cytochrome P450 enzymes into catalytically self-sufficient chimeras using molecular Lego.

    Science.gov (United States)

    Dodhia, Vikash Rajnikant; Fantuzzi, Andrea; Gilardi, Gianfranco

    2006-10-01

    The membrane-bound human cytochrome P450s have essential roles in the metabolism of endogenous compounds and drugs. Presented here are the results on the construction and characterization of three fusion proteins containing the N-terminally modified human cytochrome P450s CYP2C9, CY2C19 and CYP3A4 fused to the soluble NADPH-dependent oxidoreductase domain of CYP102A1 from Bacillus megaterium. The constructs, CYP2C9/BMR, CYP2C19/BMR and CYP3A4/BMR are well expressed in Escherichia coli as holo proteins. The chimeras can be purified in the absence of detergent and the purified enzymes are both active and correctly folded in the absence of detergent, as demonstrated by circular dichroism and functional studies. Additionally, in comparison with the parent P450 enzyme, these chimeras have greatly improved solubility properties. The chimeras are catalytically self-sufficient and present turnover rates similar to those reported for the native enzymes in reconstituted systems, unlike previously reported mammalian cytochrome P450 fusion proteins. Furthermore the specific activities of these chimeras are not dependent on the enzyme concentration present in the reaction buffer and they do not require the addition of accessory proteins, detergents or phospholipids to be fully active. The solubility, catalytic self-sufficiency and wild-type like activities of these chimeras would greatly simplify the studies of cytochrome P450 mediated drug metabolism in solution.

  9. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  10. Genetic defects of cytochrome c oxidase assembly

    Czech Academy of Sciences Publication Activity Database

    Pecina, Petr; Houšťková, H.; Hansíková, H.; Zeman, J.; Houštěk, Josef

    2004-01-01

    Roč. 53, Suppl. 1 (2004), s. S213-S223 ISSN 0862-8408 R&D Projects: GA ČR GA303/03/0749 Institutional research plan: CEZ:AV0Z5011922 Keywords : cytochrome c oxidase * mitochondrial disorders Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.140, year: 2004

  11. Enhanced mitochondrial degradation of yeast cytochrome c with amphipathic structures.

    Science.gov (United States)

    Chen, Xi; Moerschell, Richard P; Pearce, David A; Ramanan, Durga D; Sherman, Fred

    2005-02-01

    The dispensable N-terminus of iso-1-cytochrome c (iso-1) in the yeast Saccharomyces cerevisiae was replaced by 11 different amphipathic structures. Rapid degradation of the corresponding iso-1 occurred, with the degree of degradation increasing with the amphipathic moments; and this amphipathic-dependent degradation was designated ADD. ADD occurred with the holo-forms in the mitochondria but not as the apo-forms in the cytosol. The extreme mutant type degraded with a half-life of approximately 12 min, whereas the normal iso-1 was stable over hours. ADD was influenced by the rho+/rho- state and by numerous chromosomal genes. Most importantly, ADD appeared to be specifically suppressed to various extents by deletions of any of the YME1, AFG3, or RCA1 genes encoding membrane-associated mitochondrial proteases, probably because the amphipathic structures caused a stronger association with the mitochondrial inner membrane and its associated proteases. The use of ADD assisted in the differentiation of substrates of different mitochondrial degradation pathways.

  12. Biochemical characterization of a haloalkane dehalogenase DadB from Alcanivorax dieselolei B-5.

    Directory of Open Access Journals (Sweden)

    Anzhang Li

    Full Text Available Recently, we found that Alcanivorax bacteria from various marine environments were capable of degrading halogenated alkanes. Genome sequencing of A. dieselolei B-5 revealed two putative haloalkane dehalogenase (HLD genes, which were supposed to be involved in degradation of halogenated compounds. In this report, we confirm for the first time that the Alcanivorax bacterium encodes a truly functional HLD named DadB. An activity assay with 46 halogenated substrates indicated that DadB possesses broad substrate range and has the highest overall activity among the identified HLDs. DadB prefers brominated substrates; chlorinated alkenes; and the C2-C3 substrates, including the persistent pollutants of 1,2-dichloroethane, 1,2-dichloropropane and 1,2,3-trichloropropane. As DadB displays no detectable activity toward long-chain haloalkanes such as 1-chlorohexadecane and 1-chlorooctadecane, the degradation of them in A. dieselolei B-5 might be attributed to other enzymes. Kinetic constants were determined with 6 substrates. DadB has highest affinity and largest k cat/K m value toward 1,3-dibromopropane (K(m = 0.82 mM, k(cat/K(m = 16.43 mM(-1 · s(-1. DadB aggregates fast in the buffers with pH ≤ 7.0, while keeps stable in monomer form when pH ≥ 7.5. According to homology modeling, DadB has an open active cavity with a large access tunnel, which is supposed important for larger molecules as opposed to C2-C3 substrates. Combined with the results for other HLDs, we deduce that residue I247 plays an important role in substrate selection. These results suggest that DadB and its host, A. dieselolei B-5, are of potential use for biocatalysis and bioremediation applications.

  13. Biochemical characterization of a haloalkane dehalogenase DadB from Alcanivorax dieselolei B-5.

    Science.gov (United States)

    Li, Anzhang; Shao, Zongze

    2014-01-01

    Recently, we found that Alcanivorax bacteria from various marine environments were capable of degrading halogenated alkanes. Genome sequencing of A. dieselolei B-5 revealed two putative haloalkane dehalogenase (HLD) genes, which were supposed to be involved in degradation of halogenated compounds. In this report, we confirm for the first time that the Alcanivorax bacterium encodes a truly functional HLD named DadB. An activity assay with 46 halogenated substrates indicated that DadB possesses broad substrate range and has the highest overall activity among the identified HLDs. DadB prefers brominated substrates; chlorinated alkenes; and the C2-C3 substrates, including the persistent pollutants of 1,2-dichloroethane, 1,2-dichloropropane and 1,2,3-trichloropropane. As DadB displays no detectable activity toward long-chain haloalkanes such as 1-chlorohexadecane and 1-chlorooctadecane, the degradation of them in A. dieselolei B-5 might be attributed to other enzymes. Kinetic constants were determined with 6 substrates. DadB has highest affinity and largest k cat/K m value toward 1,3-dibromopropane (K(m) = 0.82 mM, k(cat)/K(m) = 16.43 mM(-1) · s(-1)). DadB aggregates fast in the buffers with pH ≤ 7.0, while keeps stable in monomer form when pH ≥ 7.5. According to homology modeling, DadB has an open active cavity with a large access tunnel, which is supposed important for larger molecules as opposed to C2-C3 substrates. Combined with the results for other HLDs, we deduce that residue I247 plays an important role in substrate selection. These results suggest that DadB and its host, A. dieselolei B-5, are of potential use for biocatalysis and bioremediation applications.

  14. The Rieske Iron-Sulfur Protein: Import and Assembly into the Cytochrome bc 1 Complex of Yeast Mitochondria

    Science.gov (United States)

    Conte, Laura; Zara, Vincenzo

    2011-01-01

    The Rieske iron-sulfur protein, one of the catalytic subunits of the cytochrome bc 1 complex, is involved in electron transfer at the level of the inner membrane of yeast mitochondria. The Rieske iron-sulfur protein is encoded by nuclear DNA and, after being synthesized in the cytosol, is imported into mitochondria with the help of a cleavable N-terminal presequence. The imported protein, besides incorporating the 2Fe-2S cluster, also interacts with other catalytic and non-catalytic subunits of the cytochrome bc 1 complex, thereby assembling into the mature and functional respiratory complex. In this paper, we summarize the most recent findings on the import and assembly of the Rieske iron-sulfur protein into Saccharomyces cerevisiae mitochondria, also discussing a possible role of this protein both in the dimerization of the cytochrome bc 1 complex and in the interaction of this homodimer with other complexes of the mitochondrial respiratory chain. PMID:21716720

  15. The Rieske Iron-Sulfur Protein: Import and Assembly into the Cytochrome bc(1) Complex of Yeast Mitochondria.

    Science.gov (United States)

    Conte, Laura; Zara, Vincenzo

    2011-01-01

    The Rieske iron-sulfur protein, one of the catalytic subunits of the cytochrome bc(1) complex, is involved in electron transfer at the level of the inner membrane of yeast mitochondria. The Rieske iron-sulfur protein is encoded by nuclear DNA and, after being synthesized in the cytosol, is imported into mitochondria with the help of a cleavable N-terminal presequence. The imported protein, besides incorporating the 2Fe-2S cluster, also interacts with other catalytic and non-catalytic subunits of the cytochrome bc(1) complex, thereby assembling into the mature and functional respiratory complex. In this paper, we summarize the most recent findings on the import and assembly of the Rieske iron-sulfur protein into Saccharomyces cerevisiae mitochondria, also discussing a possible role of this protein both in the dimerization of the cytochrome bc(1) complex and in the interaction of this homodimer with other complexes of the mitochondrial respiratory chain.

  16. Regulation of gap junction function and Connexin 43 expression by cytochrome P450 oxidoreductase (CYPOR)

    International Nuclear Information System (INIS)

    Polusani, Srikanth R.; Kar, Rekha; Riquelme, Manuel A.; Masters, Bettie Sue; Panda, Satya P.

    2011-01-01

    Highlights: → Humans with severe forms of cytochrome P450 oxidoreductase (CYPOR) mutations show bone defects as observed in Antley-Bixler Syndrome. → First report showing knockdown of CYPOR in osteoblasts decreased Connexin 43 (Cx43) protein levels. Cx43 is known to play an important role in bone modeling. → Knockdown of CYPOR decreased Gap Junctional Intercellular Communication and hemichannel activity. → Knockdown of CYPOR decreased Cx43 in mouse primary calvarial osteoblasts. → Decreased Cx43 expression was observed at the transcriptional level. -- Abstract: Cytochrome P450 oxidoreductase (CYPOR) is a microsomal electron-transferring enzyme containing both FAD and FMN as co-factors, which provides the reducing equivalents to various redox partners, such as cytochromes P450 (CYPs), heme oxygenase (HO), cytochrome b 5 and squalene monooxygenase. Human patients with severe forms of CYPOR mutation show bone defects such as cranio- and humeroradial synostoses and long bone fractures, known as Antley-Bixler-like Syndrome (ABS). To elucidate the role of CYPOR in bone, we knocked-down CYPOR in multiple osteoblast cell lines using RNAi technology. In this study, knock-down of CYPOR decreased the expression of Connexin 43 (Cx43), known to play a critical role in bone formation, modeling, and remodeling. Knock-down of CYPOR also decreased Gap Junction Intercellular Communication (GJIC) and hemichannel activity. Promoter luciferase assays revealed that the decrease in expression of Cx43 in CYPOR knock-down cells was due to transcriptional repression. Primary osteoblasts isolated from bone specific Por knock-down mice calvariae confirmed the findings in the cell lines. Taken together, our study provides novel insights into the regulation of gap junction function by CYPOR and suggests that Cx43 may play an important role(s) in CYPOR-mediated bone defects seen in patients.

  17. Probing cytochrome c in living mitochondria with surface-enhanced Raman spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda A.; Evlyukhin, Andrey B.; Goodilin, Eugene A.

    2015-01-01

    Selective study of the electron transport chain components in living mitochondria is essential for fundamental biophysical research and for the development of new medical diagnostic methods. However, many important details of inter- and intramembrane mitochondrial processes have remained in shadow...... due to the lack of non-invasive techniques. Here we suggest a novel label-free approach based on the surface-enhanced Raman spectroscopy (SERS) to monitor the redox state and conformation of cytochrome c in the electron transport chain in living mitochondria. We demonstrate that SERS spectra of living...... mitochondria placed on hierarchically structured silver-ring substrates provide exclusive information about cytochrome c behavior under modulation of inner mitochondrial membrane potential, proton gradient and the activity of ATP-synthetase. Mathematical simulation explains the observed enhancement of Raman...

  18. THE REDOX PATHWAY OF Pseudomonas aeruginosa CYTOCHROME C BIOGENESIS

    Directory of Open Access Journals (Sweden)

    Eva Di Silvio

    2012-06-01

    Full Text Available Cytochrome c contains heme covalently bound to the polypeptide chain through two thioether bonds between the heme vinyl groups and the two cysteines of the conserved heme- binding motif of the apoprotein. Surprisingly, the biochemical events leading to the synthesis of the functional holoprotein in the cell are largely unknown. In the human pathogen Pseudomonas aeruginosa, the biogenesis of Cytc is mediated by a group of membrane or membrane-anchored proteins (CcmABCDEFGHI, exposing their active site to the periplasm. The Ccm proteins involved in the necessary reduction of apoCyt disulfide bond are CcmG and CcmH. Here we present the structural and functional characterization of these two redox-active proteins. We determined the crystal structure of CcmG, both in the oxidized and the reduced state. CcmG is a membrane-anchored thioredoxinlike protein acting as a mild reductant in the redox pathway of Cytc biogenesis. The 3D structure of the soluble periplasmic domain of CcmH revealed that it adopts a peculiar three-helix bundle fold that is different from that of canonical thiol-oxidoreductases. Moreover, we present protein-protein interaction experiments aiming at elucidating the molecular mechanism of the reduction of apoCyt disulfide bond for heme attachment in vivo. On the basis of the structural and functional data on CcmG, CcmH and their interactions, we propose an assembly line for Cytc biogenesis in P. aeruginosa in which reduced CcmH specifically recognizes, binds and reduces oxidized apoCyt via the formation of a mixed disulfide complex, which is subsequently resolved by CcmG.

  19. c-Type cytochrome-dependent formation of U(IV nanoparticles by Shewanella oneidensis.

    Directory of Open Access Journals (Sweden)

    Matthew J Marshall

    2006-09-01

    Full Text Available Modern approaches for bioremediation of radionuclide contaminated environments are based on the ability of microorganisms to effectively catalyze changes in the oxidation states of metals that in turn influence their solubility. Although microbial metal reduction has been identified as an effective means for immobilizing highly-soluble uranium(VI complexes in situ, the biomolecular mechanisms of U(VI reduction are not well understood. Here, we show that c-type cytochromes of a dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, are essential for the reduction of U(VI and formation of extracellular UO(2 nanoparticles. In particular, the outer membrane (OM decaheme cytochrome MtrC (metal reduction, previously implicated in Mn(IV and Fe(III reduction, directly transferred electrons to U(VI. Additionally, deletions of mtrC and/or omcA significantly affected the in vivo U(VI reduction rate relative to wild-type MR-1. Similar to the wild-type, the mutants accumulated UO(2 nanoparticles extracellularly to high densities in association with an extracellular polymeric substance (EPS. In wild-type cells, this UO(2-EPS matrix exhibited glycocalyx-like properties and contained multiple elements of the OM, polysaccharide, and heme-containing proteins. Using a novel combination of methods including synchrotron-based X-ray fluorescence microscopy and high-resolution immune-electron microscopy, we demonstrate a close association of the extracellular UO(2 nanoparticles with MtrC and OmcA (outer membrane cytochrome. This is the first study to our knowledge to directly localize the OM-associated cytochromes with EPS, which contains biogenic UO(2 nanoparticles. In the environment, such association of UO(2 nanoparticles with biopolymers may exert a strong influence on subsequent behavior including susceptibility to oxidation by O(2 or transport in soils and sediments.

  20. Comparison of brain mitochondrial cytochrome c oxidase activity with cyanide LD(50) yields insight into the efficacy of prophylactics.

    Science.gov (United States)

    Marziaz, Mandy L; Frazier, Kathryn; Guidry, Paul B; Ruiz, Robyn A; Petrikovics, Ilona; Haines, Donovan C

    2013-01-01

    Cyanide inhibits cytochrome c oxidase, the terminal oxidase of the mitochondrial respiratory pathway, therefore inhibiting the cell oxygen utilization and resulting in the condition of histotoxic anoxia. The enzyme rhodanese detoxifies cyanide by utilizing sulfur donors to convert cyanide to thiocyanate, and new and improved sulfur donors are actively sought as researchers seek to improve cyanide prophylactics. We have determined brain cytochrome c oxidase activity as a marker for cyanide exposure for mice pre-treated with various cyanide poisoning prophylactics, including sulfur donors thiosulfate (TS) and thiotaurine (TT3). Brain mitochondria were isolated by differential centrifugation, the outer mitochondrial membrane was disrupted by a maltoside detergent, and the decrease in absorbance at 550 nm as horse heart ferrocytochrome c (generated by the dithiothreitol reduction of ferricytochrome c) was oxidized was monitored. Overall, the TS control prophylactic treatment provided significant protection of the cytochrome c oxidase activity. The TT3-treated mice showed reduced cytochrome c oxidase activity even in the absence of cyanide. In both treatment series, addition of exogenous Rh did not significantly enhance the prevention of cytochrome c oxidase inhibition, but the addition of sodium nitrite did. These findings can lead to a better understanding of the protection mechanism by various cyanide antidotal systems. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Polarographic study of mixed-ligand complexes of cadmium(II) with L-amino acid and vitamin B5

    International Nuclear Information System (INIS)

    Jain, Alok K.; Khan, Farid

    1998-01-01

    A survey of literature shows that ternary complexes of Cd II with L-amino acids and vitamin B 5 have not been studied so far. The present communication reports the formation of mixed-ligand complexes of Cd II with L-amino acids as primary ligands and vitamin B 5 as secondary ligand, studied by polarographic technique. (author)

  2. The dimerization of the yeast cytochrome bc1 complex is an early event and is independent of Rip1.

    Science.gov (United States)

    Conte, Annalea; Papa, Benedetta; Ferramosca, Alessandra; Zara, Vincenzo

    2015-05-01

    In Saccharomyces cerevisiae the mature cytochrome bc1 complex exists as an obligate homo-dimer in which each monomer consists of ten distinct protein subunits inserted into or bound to the inner mitochondrial membrane. Among them, the Rieske iron-sulfur protein (Rip1), besides its catalytic role in electron transfer, may be implicated in the bc1 complex dimerization. Indeed, Rip1 has the globular domain containing the catalytic center in one monomer while the transmembrane helix interacts with the adjacent monomer. In addition, the lack of Rip1 leads to the accumulation of an immature bc1 intermediate, only loosely associated with cytochrome c oxidase. In this study we have investigated the biogenesis of the yeast cytochrome bc1 complex using epitope tagged proteins to purify native assembly intermediates. We showed that the dimerization process is an early event during bc1 complex biogenesis and that the presence of Rip1, differently from previous proposals, is not essential for this process. We also investigated the multi-step model of bc1 assembly thereby lending further support to the existence of bona fide subcomplexes during bc1 maturation in the inner mitochondrial membrane. Finally, a new model of cytochrome bc1 complex assembly, in which distinct intermediates sequentially interact during bc1 maturation, has been proposed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. MicroRNA-125b-5p suppresses Brucella abortus intracellular survival via control of A20 expression.

    Science.gov (United States)

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Sun, Wanchun; Peng, Qisheng

    2016-07-29

    Brucella may establish chronic infection by regulating the expression of miRNAs. However, the role of miRNAs in modulating the intracellular growth of Brucella remains unclear. In this study, we show that Brucella. abortus infection leads to downregulation of miR-125b-5p in macrophages. We establish that miR-125b-5p targets A20, an inhibitor of the NF-kB activation. Additionally, expression of miR-125b-5p decreases A20 expression in B. abortus-infected macrophages and leads to NF-kB activation and increased production of TNFα. Furthermore, B. abortus survival is attenuated in the presence of miR-125b-5p. These results uncover a role for miR-125b-5p in the regulation of B. abortus intracellular survival via the control of A20 expression.

  4. Products of aqueous vitamin B5 (pantothenic acid) formed by free radical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Schittl, H. [Section of Radiation Biology, Department of Nutritional Sciences, University of Vienna, Althanstr. 14, UZA II, A-1090 Vienna (Austria); Quint, R.M. [Section of Radiation Biology, Department of Nutritional Sciences, University of Vienna, Althanstr. 14, UZA II, A-1090 Vienna (Austria); Getoff, N. [Section of Radiation Biology, Department of Nutritional Sciences, University of Vienna, Althanstr. 14, UZA II, A-1090 Vienna (Austria)]. E-mail: nikola.getoff@univie.ac.at

    2007-10-15

    The radiolysis of aqueous vitamin B5 (pantothenic acid) has been investigated under various experimental conditions. The highest vitamin degradation (G=3.22) was observed in solutions saturated with N{sub 2}O, where 90% OH radicals are operating. As final products, the following were established: aldehydes, carboxylic acids and ammonia. Their yield strongly depends on the presence/absence of air as well as on N{sub 2}O (used to convert e{sub aq} {sup -} into OH) and was determined as a function of absorbed radiation dose. HPLC-analysis showed that in all media, a main product is formed, having the highest yield in aerated solutions. Based on the chemical analysis, it appears that the OH radicals are most involved in the degradation process. A precise sequence of the reaction steps could not be given presently, because of the implication of many simultaneous reactions.

  5. Products of aqueous vitamin B5 (pantothenic acid) formed by free radical reactions

    International Nuclear Information System (INIS)

    Schittl, H.; Quint, R.M.; Getoff, N.

    2007-01-01

    The radiolysis of aqueous vitamin B5 (pantothenic acid) has been investigated under various experimental conditions. The highest vitamin degradation (G=3.22) was observed in solutions saturated with N 2 O, where 90% OH radicals are operating. As final products, the following were established: aldehydes, carboxylic acids and ammonia. Their yield strongly depends on the presence/absence of air as well as on N 2 O (used to convert e aq - into OH) and was determined as a function of absorbed radiation dose. HPLC-analysis showed that in all media, a main product is formed, having the highest yield in aerated solutions. Based on the chemical analysis, it appears that the OH radicals are most involved in the degradation process. A precise sequence of the reaction steps could not be given presently, because of the implication of many simultaneous reactions

  6. Luminosity effects in the ultraviolet spectrum of B5-B6 stars

    International Nuclear Information System (INIS)

    Underhill, A.B.; Silversmith, E.

    1976-01-01

    Copernicus U2 spectral tracings of the ultraviolet spectra of eta CMa (B5 Ia) and zeta Dra (B6 III) have been compared, and four regions: 1330 to 1340 A, 1340 to 1350 A, 1390 to 1396 A, and 1398 to 1405 A: are found to contain differences due to luminosity effects. The observed profiles are interpreted using synthetic spectra predicted with LTE theory. These effects are found: (1) the C ii 1335 blend is shortward-displaced in eta CMa, (2) the P iii and Si iv resonance lines strengthen significantly in the supergiant, and (3) lines of multiplet UV7 of Si ii are strengthened by non-LTE effects in the supergiant

  7. Coxsackievirus B5 induced apoptosis of HeLa cells: Effects on p53 and SUMO

    International Nuclear Information System (INIS)

    Gomes, Rogerio; Guerra-Sa, Renata; Arruda, Eurico

    2010-01-01

    Coxsackievirus B5 (CVB5), a human enterovirus of the family Picornaviridae, is a frequent cause of acute and chronic human diseases. The pathogenesis of enteroviral infections is not completely understood, and the fate of the CVB5-infected cell has a pivotal role in this process. We have investigated the CVB5-induced apoptosis of HeLa cells and found that it happens by the intrinsic pathway by a mechanism dependent on the ubiquitin-proteasome system, associated with nuclear aggregation of p53. Striking redistribution of both SUMO and UBC9 was noted at 4 h post-infection, simultaneously with a reduction in the levels of the ubiquitin-ligase HDM2. Taken together, these results suggest that CVB5 infection of HeLa cells elicit the intrinsic pathway of apoptosis by MDM2 degradation and p53 activation, destabilizing protein sumoylation, by a mechanism that is dependent on a functional ubiquitin-proteasome system.

  8. Whole Genome Sequence of the Heterozygous Clinical Isolate Candida krusei 81-B-5

    Directory of Open Access Journals (Sweden)

    Christina A. Cuomo

    2017-09-01

    Full Text Available Candida krusei is a diploid, heterozygous yeast that is an opportunistic fungal pathogen in immunocompromised patients. This species also is utilized for fermenting cocoa beans during chocolate production. One major concern in the clinical setting is the innate resistance of this species to the most commonly used antifungal drug fluconazole. Here, we report a high-quality genome sequence and assembly for the first clinical isolate of C. krusei, strain 81-B-5, into 11 scaffolds generated with PacBio sequencing technology. Gene annotation and comparative analysis revealed a unique profile of transporters that could play a role in drug resistance or adaptation to different environments. In addition, we show that, while 82% of the genome is highly heterozygous, a 2.0 Mb region of the largest scaffold has undergone loss of heterozygosity. This genome will serve as a reference for further genetic studies of this pathogen.

  9. Duodenal Cytochrome b (DCYTB in Iron Metabolism: An Update on Function and Regulation

    Directory of Open Access Journals (Sweden)

    Darius J. R. Lane

    2015-03-01

    Full Text Available Iron and ascorbate are vital cellular constituents in mammalian systems. The bulk-requirement for iron is during erythropoiesis leading to the generation of hemoglobin-containing erythrocytes. Additionally; both iron and ascorbate are required as co-factors in numerous metabolic reactions. Iron homeostasis is controlled at the level of uptake; rather than excretion. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance non-heme iron absorption in the gut; ascorbate regulates iron homeostasis. The involvement of ascorbate in dietary iron absorption extends beyond the direct chemical reduction of non-heme iron by dietary ascorbate. Among other activities; intra-enterocyte ascorbate appears to be involved in the provision of electrons to a family of trans-membrane redox enzymes; namely those of the cytochrome b561 class. These hemoproteins oxidize a pool of ascorbate on one side of the membrane in order to reduce an electron acceptor (e.g., non-heme iron on the opposite side of the membrane. One member of this family; duodenal cytochrome b (DCYTB; may play an important role in ascorbate-dependent reduction of non-heme iron in the gut prior to uptake by ferrous-iron transporters. This review discusses the emerging relationship between cellular iron homeostasis; the emergent “IRP1-HIF2α axis”; DCYTB and ascorbate in relation to iron metabolism.

  10. Biochemistry and Ecology of Novel Cytochromes Catalyzing Fe(II) Oxidation by an Acidophilic Microbial Community

    Science.gov (United States)

    Singer, S. W.; Jeans, C. J.; Thelen, M. P.; Verberkmoes, N. C.; Hettich, R. C.; Chan, C. S.; Banfield, J. F.

    2007-12-01

    An acidophilic microbial community found in the Richmond Mine at Iron Mountain, CA forms abundant biofilms in extremely acidic (pHindicated that several variants of Cyt579 were present in Leptospirillum strains. Intact protein MS analysis identified the dominant variants in each biofilm and documented multiple N-terminal cleavage sites for Cyt579. By combining biochemical, geochemical and microbiological data, we established that the sequence variation and N-terminal processing of Cyt579 are selected by ecological conditions. In addition to the soluble Cyt579, the second cytochrome appears as a much larger protein complex of ~210 kDa predominant in the biofilm membrane fraction, and has an alpha-band absorption at 572 nm. The 60 kDa cytochrome subunit, Cyt572, resides in the outer membrane of LeptoII, and readily oxidizes Fe(II) at low pH (0.95 - 3.0). Several genes encoding Cyt572 were localized within a recombination hotspot between two strains of LeptoII, causing a large range of variation in the sequences. Genomic sequencing and MS proteomic studies established that the variants were also selected by ecological conditions. A general mechanistic model for Fe(II) oxidation has been developed from these studies. Initial Fe(II) oxidation by Cyt572 occurs at the outer membrane. Cyt572 then transfers electrons to Cyt579, perhaps representing an initial step in energy flow to the biofilm community. Amino acid variations and post-translational modifications of these unique cytochromes may represent fine-tuning of function in response to local environmental conditions.

  11. Redox active molecules cytochrome c and vitamin C enhance heme-enzyme peroxidations by serving as non-specific agents for redox relay

    International Nuclear Information System (INIS)

    Gade, Sudeep Kumar; Bhattacharya, Subarna; Manoj, Kelath Murali

    2012-01-01

    Highlights: ► At low concentrations, cytochrome c/vitamin C do not catalyze peroxidations. ► But low levels of cytochrome c/vitamin C enhance diverse heme peroxidase activities. ► Enhancement positively correlates to the concentration of peroxide in reaction. ► Reducible additives serve as non-specific agents for redox relay in the system. ► Insight into electron transfer processes in routine and oxidative-stress states. -- Abstract: We report that incorporation of very low concentrations of redox protein cytochrome c and redox active small molecule vitamin C impacted the outcome of one-electron oxidations mediated by structurally distinct plant/fungal heme peroxidases. Evidence suggests that cytochrome c and vitamin C function as a redox relay for diffusible reduced oxygen species in the reaction system, without invoking specific or affinity-based molecular interactions for electron transfers. The findings provide novel perspectives to understanding – (1) the promiscuous role of cytochrome b 5 in the metabolism mediated by liver microsomal xenobiotic metabolizing systems and (2) the roles of antioxidant molecules in affording relief from oxidative stress.

  12. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  13. MOLECULAR DYNAMICS STUDY OF CYTOCHROME C – LIPID COMPLEXES

    Directory of Open Access Journals (Sweden)

    V. Trusova

    2017-10-01

    Full Text Available The interactions between a mitochondrial hemoprotein cytochrome c (cyt c and the model lipid membranes composed of zwitterionic lipid phosphatidylcholine (PC and anionic lipids phosphatidylglycerol (PG, phosphatidylserine (PS or cardiolipin (CL were studied using the method of molecular dynamics. It was found that cyt c structure remains virtually unchanged in the protein complexes with PC/PG or PC/PS bilayers. In turn, protein binding to PC/CL bilayer is followed by the rise in cyt c radius of gyration and root-mean-square fluctuations. The magnitude of these changes was demonstrated to increase with the anionic lipid content. The revealed effect was interpreted in terms of the partial unfolding of polypeptide chain in the region Ala15-Leu32, widening of the heme crevice and enhancement of the conformational fluctuations in the region Pro76-Asp93 upon increasing the CL molar fraction from 5 to 25%. The results obtained seem to be of utmost importance in the context of amyloidogenic propensity of cyt c.

  14. New insight into the mechanism of mitochondrial cytochrome c function

    DEFF Research Database (Denmark)

    Chertkova, Rita V; Brazhe, Nadezda A; Bryantseva, Tatiana V

    2017-01-01

    We investigate functional role of the P76GTKMIFA83 fragment of the primary structure of cytochrome c. Based on the data obtained by the analysis of informational structure (ANIS), we propose a model of functioning of cytochrome c. According to this model, conformational rearrangements of the P76...... with conformational changes and reduced mobility of heme porphyrin. This points to a significant role of the P76GTKMIFA83 fragment in the electron transport function of cytochrome c....

  15. Cytochrome P450 monooxygenases and insecticide resistance in insects.

    OpenAIRE

    Bergé, J B; Feyereisen, R; Amichot, M

    1998-01-01

    Cytochrome P450 monooxygenases are involved in many cases of resistance of insects to insecticides. Resistance has long been associated with an increase in monooxygenase activities and with an increase in cytochrome P450 content. However, this increase does not always account for all of the resistance. In Drosophila melanogaster, we have shown that the overproduction of cytochrome P450 can be lost by the fly without a corresponding complete loss of resistance. These results prompted the seque...

  16. Quorum-sensing-directed protein expression in Serratia proteamaculans B5a

    DEFF Research Database (Denmark)

    Christensen, Allan Beck; Riedel, Kathrin; Eberl, Leo

    2003-01-01

    N-Acyl-L-homoserine-lactone-producing Serratia species are frequently encountered in spoiling foods of vegetable and protein origin. The role of quorum sensing in the food spoiling properties of these bacteria is currently being investigated. A set of luxR luxI homologous genes encoding a putative...... quorum sensor was identified in the N-(3-oxo-hexanoyl)-L-homoserine lactone (3-oxo-C6-HSL)-producing Serratia proteamaculans strain B5a. The 3-oxo-C6-HSL synthase SprI showed 79% similarity with Esal from Pantoea stewartii and the putative regulatory protein SprR was 86% similar to the SpnR of Serratia...... marcescens. Proteome analysis suggested that the presence of at least 39 intracellular proteins was affected by the 3-oxo-C6-HSL-based quorum sensing system. The lipB-encoded secretion system was identified as one target gene of the quorum sensing system. LipB was required for the production of extracellular...

  17. De-bugging and maximizing plant cytochrome P450 production in Escherichia coli with C-terminal GFP fusions

    DEFF Research Database (Denmark)

    Christensen, Ulla; Vazquez Albacete, Dario; Søgaard, Karina Marie

    2017-01-01

    Cytochromes P450 (CYP) are attractive enzyme targets in biotechnology as they catalyze stereospecific C-hydroxylations of complex core skeletons at positions that typically are difficult to access by chemical synthesis. Membrane bound CYPs are involved in nearly all plant pathways leading......-type E. coli strains using standard growth media. Furthermore, sequences encoding a small synthetic peptide and a small bacterial membrane anchor markedly enhance the expression of all six genes. For one of the CYPs, the length of the linker region between the predicted N-terminal transmembrane segment...

  18. The Hinge Segment of Human NADPH-Cytochrome P450 Reductase in Conformational Switching: The Critical Role of Ionic Strength

    Directory of Open Access Journals (Sweden)

    Diana Campelo

    2017-10-01

    Full Text Available NADPH-cytochrome P450 reductase (CPR is a redox partner of microsomal cytochromes P450 and is a prototype of the diflavin reductase family. CPR contains 3 distinct functional domains: a FMN-binding domain (acceptor reduction, a linker (hinge, and a connecting/FAD domain (NADPH oxidation. It has been demonstrated that the mechanism of CPR exhibits an important step in which it switches from a compact, closed conformation (locked state to an ensemble of open conformations (unlocked state, the latter enabling electron transfer to redox partners. The conformational equilibrium between the locked and unlocked states has been shown to be highly dependent on ionic strength, reinforcing the hypothesis of the presence of critical salt interactions at the interface between the FMN and connecting FAD domains. Here we show that specific residues of the hinge segment are important in the control of the conformational equilibrium of CPR. We constructed six single mutants and two double mutants of the human CPR, targeting residues G240, S243, I245 and R246 of the hinge segment, with the aim of modifying the flexibility or the potential ionic interactions of the hinge segment. We measured the reduction of cytochrome c at various salt concentrations of these 8 mutants, either in the soluble or membrane-bound form of human CPR. All mutants were found capable of reducing cytochrome c yet with different efficiency and their maximal rates of cytochrome c reduction were shifted to lower salt concentration. In particular, residue R246 seems to play a key role in a salt bridge network present at the interface of the hinge and the connecting domain. Interestingly, the effects of mutations, although similar, demonstrated specific differences when present in the soluble or membrane-bound context. Our results demonstrate that the electrostatic and flexibility properties of the hinge segment are critical for electron transfer from CPR to its redox partners.

  19. Heme exporter FLVCR1a regulates heme synthesis and degradation and controls activity of cytochromes P450.

    Science.gov (United States)

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-05-01

    The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1a(fl/fl);alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Flvcr1a(fl/fl);alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1a(fl/fl);alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. Heme Exporter FLVCR1a Regulates Heme Synthesis and Degradation and Controls Activity of Cytochromes P450

    Science.gov (United States)

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-01-01

    Background & Aims The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. Methods We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1afl/fl;alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Results Flvcr1afl/fl;alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1afl/fl;alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. Conclusions In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. PMID:24486949

  1. Tracing hepatitis B virus (HBV genotype B5 (formerly B6 evolutionary history in the circumpolar Arctic through phylogeographic modelling

    Directory of Open Access Journals (Sweden)

    Remco Bouckaert

    2017-08-01

    Full Text Available Background Indigenous populations of the circumpolar Arctic are considered to be endemically infected (>2% prevalence with hepatitis B virus (HBV, with subgenotype B5 (formerly B6 unique to these populations. The distinctive properties of HBV/B5, including high nucleotide diversity yet no significant liver disease, suggest virus adaptation through long-term host-pathogen association. Methods To investigate the origin and evolutionary spread of HBV/B5 into the circumpolar Arctic, fifty-seven partial and full genome sequences from Alaska, Canada and Greenland, having known location and sampling dates spanning 40 years, were phylogeographically investigated by Bayesian analysis (BEAST 2 using a reversible-jump-based substitution model and a clock rate estimated at 4.1 × 10−5 substitutions/site/year. Results Following an initial divergence from an Asian viral ancestor approximately 1954 years before present (YBP; 95% highest probability density interval [1188, 2901], HBV/B5 coalescence occurred almost 1000 years later. Surprisingly, the HBV/B5 ancestor appears to locate first to Greenland in a rapid coastal route progression based on the landscape aware geographic model, with subsequent B5 evolution and spread westward. Bayesian skyline plot analysis demonstrated an HBV/B5 population expansion occurring approximately 400 YBP, coinciding with the disruption of the Neo-Eskimo Thule culture into more heterogeneous and regionally distinct Inuit populations throughout the North American Arctic. Discussion HBV/B5 origin and spread appears to occur coincident with the movement of Neo-Eskimo (Inuit populations within the past 1000 years, further supporting the hypothesis of HBV/host co-expansion, and illustrating the concept of host-pathogen adaptation and balance.

  2. Molecular Computational Investigation of Electron Transfer Kinetics across Cytochrome-Iron Oxide Interfaces

    International Nuclear Information System (INIS)

    Kerisit, Sebastien N.; Rosso, Kevin M.; Dupuis, Michel; Valiev, Marat

    2007-01-01

    matrix element and consequently the rate of electron transfer are found to be sensitive to all parameters considered. This work indicates that biomolecularly similar solvent-exposed bis-histidine hemes in outer-membrane cytochromes such as MtrC or OmcA are likely to have an affinity for the oxide surface in water governing the approach and interfacial conformation and, if allowed sufficient conformational freedom, will achieve distances and configurations required for direct interfacial electron transfer.

  3. Prediction of cytochrome P450 mediated metabolism

    DEFF Research Database (Denmark)

    Olsen, Lars; Oostenbrink, Chris; Jørgensen, Flemming Steen

    2015-01-01

    Cytochrome P450 enzymes (CYPs) form one of the most important enzyme families involved in the metabolism of xenobiotics. CYPs comprise many isoforms, which catalyze a wide variety of reactions, and potentially, a large number of different metabolites can be formed. However, it is often hard...... to rationalize what metabolites these enzymes generate. In recent years, many different in silico approaches have been developed to predict binding or regioselective product formation for the different CYP isoforms. These comprise ligand-based methods that are trained on experimental CYP data and structure...

  4. Electronic Connection Between the Quinone and Cytochrome c Redox Pools and Its Role in Regulation of Mitochondrial Electron Transport and Redox Signaling

    Science.gov (United States)

    Sarewicz, Marcin; Osyczka, Artur

    2015-01-01

    Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria. PMID:25540143

  5. Proton translocation stoichiometry of cytochrome oxidase: use of a fast-responding oxygen electrode.

    Science.gov (United States)

    Reynafarje, B; Alexandre, A; Davies, P; Lehninger, A L

    1982-01-01

    The mechanistic stoichiometry of vectorial H+ ejection coupled to electron transport from added ferrocytochrome c to oxygen by the cytochrome oxidase (EC 1.9.3.1) of rat liver mitoplasts was determined from measurements of the initial rates of electron flow and H+ ejection in the presence of K+ (with valinomycin). Three different methods of measuring electron flow were used: (a) dual-wavelength spectrophotometry of ferrocytochrome c oxidation, (b) uptake of scalar H+ for the reduction of O2 in the presence of a protonophore, and (c) a fast-responding membraneless oxygen electrode. The reliability of the rate measurements was first established against the known stoichiometry of the scalar reaction of cytochrome oxidase (2ferrocytochrome c + 2H+ + 1/2O2 leads to 2ferricytochrome c + H2O) in the presence of excess protonophore. With all three methods the directly observed vectorial H+/O ejection ratios in the presence of K+ + valinomycin significantly exceeded 3.0. However, because the rate of backflow of the ejected H+ into the mitoplasts is very high and increases with the increasing delta pH generated across the membrane, there is a very rapid decline in the observed H+/O ratio from the beginning of the reaction. Kinetic analysis of ferrocytochrome c oxidation by the mitoplasts, carried out with a fast-responding membraneless oxygen electrode, showed the reaction to be first order in O2 and allowed accurate extrapolation of the rates of O2 uptake and H+ ejection to zero time. At this point, at which there is zero delta pH across the membrane, the H+/O ejection ratio of the cytochrome oxidase reaction, obtained from the rates at zero time, is close to 4.0. PMID:6296824

  6. Thermodynamics and kinetics of reduction and species conversion at a hydrophobic surface for mitochondrial cytochromes c and their cardiolipin adducts

    International Nuclear Information System (INIS)

    Ranieri, Antonio; Di Rocco, Giulia; Millo, Diego; Battistuzzi, Gianantonio; Bortolotti, Carlo A.; Lancellotti, Lidia; Borsari, Marco; Sola, Marco

    2015-01-01

    Highlights: • Cytochrome c and its adduct with cardiolipin can be immobilized on a hydrophobic SAM. • Adsorbed cytochrome c and its adduct undergo extensive unfolding and axial ligand substitution. • An equilibrium between a six-coordinated and a five-coordinated form is observed in both cases. • The reduced five-coordinated form is stabilized by cardiolipin binding. • Immobilized cytochrome c exchanges electrons more slowly upon cardiolipin binding. - Abstract: Cytochrome c (cytc) and its adduct with cardiolipin (CL) were immobilized on a hydrophobic SAM-coated electrode surface yielding a construct which mimics the environment experienced by the complex at the inner mitochondrial membrane where it plays a role in cell apoptosis. Under these conditions, both species undergo an equilibrium between a six-coordinated His/His-ligated and a five-coordinated His/- ligated forms stable in the oxidized and in the reduced state, respectively. The thermodynamics of the oxidation-state dependent species conversion were determined by temperature-dependent diffusionless voltammetry experiments. CL binding stabilizes the immobilized reduced His/- ligated form of cytc which was found previously to catalytically reduce dioxygen. Here, this adduct is also found to show pseudoperoxidase activity, catalysing reduction of hydrogen peroxide. These effects would impart CL with an additional role in the cytc-mediated peroxidation leading to programmed cell death. Moreover, immobilized cytc exchanges electrons more slowly upon CL binding possibly due to changes in solvent reorganization effects at the protein-SAM interface

  7. The SMARTCyp cytochrome P450 metabolism prediction server

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Gloriam, David Erik Immanuel; Olsen, Lars

    2010-01-01

    The SMARTCyp server is the first web application for site of metabolism prediction of cytochrome P450-mediated drug metabolism.......The SMARTCyp server is the first web application for site of metabolism prediction of cytochrome P450-mediated drug metabolism....

  8. Computational discovery of picomolar Q(o) site inhibitors of cytochrome bc1 complex.

    Science.gov (United States)

    Hao, Ge-Fei; Wang, Fu; Li, Hui; Zhu, Xiao-Lei; Yang, Wen-Chao; Huang, Li-Shar; Wu, Jia-Wei; Berry, Edward A; Yang, Guang-Fu

    2012-07-11

    A critical challenge to the fragment-based drug discovery (FBDD) is its low-throughput nature due to the necessity of biophysical method-based fragment screening. Herein, a method of pharmacophore-linked fragment virtual screening (PFVS) was successfully developed. Its application yielded the first picomolar-range Q(o) site inhibitors of the cytochrome bc(1) complex, an important membrane protein for drug and fungicide discovery. Compared with the original hit compound 4 (K(i) = 881.80 nM, porcine bc(1)), the most potent compound 4f displayed 20 507-fold improved binding affinity (K(i) = 43.00 pM). Compound 4f was proved to be a noncompetitive inhibitor with respect to the substrate cytochrome c, but a competitive inhibitor with respect to the substrate ubiquinol. Additionally, we determined the crystal structure of compound 4e (K(i) = 83.00 pM) bound to the chicken bc(1) at 2.70 Å resolution, providing a molecular basis for understanding its ultrapotency. To our knowledge, this study is the first application of the FBDD method in the discovery of picomolar inhibitors of a membrane protein. This work demonstrates that the novel PFVS approach is a high-throughput drug discovery method, independent of biophysical screening techniques.

  9. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions.

    Science.gov (United States)

    Ismail, Hanafy M; O'Neill, Paul M; Hong, David W; Finn, Robert D; Henderson, Colin J; Wright, Aaron T; Cravatt, Benjamin F; Hemingway, Janet; Paine, Mark J I

    2013-12-03

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or "pyrethrome." Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of unique tools for disease control.

  10. Plasma Membrane ATPase Activity following Reversible and Irreversible Freezing Injury 1

    Science.gov (United States)

    Iswari, S.; Palta, Jiwan P.

    1989-01-01

    Plasma membrane ATPase has been proposed as a site of functional alteration during early stages of freezing injury. To test this, plasma membrane was purified from Solanum leaflets by a single step partitioning of microsomes in a dextran-polyethylene glycol two phase system. Addition of lysolecithin in the ATPase assay produced up to 10-fold increase in ATPase activity. ATPase activity was specific for ATP with a Km around 0.4 millimolar. Presence of the ATPase enzyme was identified by immunoblotting with oat ATPase antibodies. Using the phase partitioning method, plasma membrane was isolated from Solanum commersonii leaflets which had four different degrees of freezing damage, namely, slight (reversible), partial (partially reversible), substantial and total (irreversible). With slight (reversible) damage the plasma membrane ATPase specific activity increased 1.5- to 2-fold and its Km was decreased by about 3-fold, whereas the specific activity of cytochrome c reductase and cytochrome c oxidase in the microsomes were not different from the control. However, with substantial (lethal, irreversible) damage, there was a loss of membrane protein, decrease in plasma membrane ATPase specific activity and decrease in Km, while cytochrome c oxidase and cytochrome c reductase were unaffected. These results support the hypothesis that plasma membrane ATPase is altered by slight freeze-thaw stress. Images Figure 1 Figure 2 PMID:16666856

  11. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  12. Cytochrome P450-Mediated Phytoremediation using Transgenic Plants: A Need for Engineered Cytochrome P450 Enzymes

    OpenAIRE

    Kumar, Santosh; Jin, Mengyao; Weemhoff, James L

    2012-01-01

    There is an increasing demand for versatile and ubiquitous Cytochrome P450 (CYP) biocatalysts for biotechnology, medicine, and bioremediation. In the last decade there has been an increase in realization of the power of CYP biocatalysts for detoxification of soil and water contaminants using transgenic plants. However, the major limitations of mammalian CYP enzymes are that they require CYP reductase (CPR) for their activity, and they show relatively low activity, stability, and expression. O...

  13. Flower colour and cytochromes P450.

    Science.gov (United States)

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-02-19

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) and thus they play a crucial role in the determination of flower colour. F3'H and F3'5'H mostly belong to CYP75B and CYP75A, respectively, except for the F3'5'Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3'5'H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3'5'H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3'5'H and F3'H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones.

  14. Crystal structures of the solid solutions Na3Zn0.912Cd0.088B5O10 and Na3Zn0.845Mg0.155B5O10

    Directory of Open Access Journals (Sweden)

    Xue-An Chen

    2017-11-01

    Full Text Available Two new pentaborates, trisodium zinc cadmium pentaborate, Na3Zn0.912Cd0.088B5O10, and trisodium zinc magnesium pentaborate, Na3Zn0.845Mg0.155B5O10, have been synthesized by high-temperature solution reactions at 1023 K. Their crystal structures were determined by single-crystal X-ray diffraction. Both solid solutions crystallize in the orthorhombic form of the parent compound Na3ZnB5O10 (space group type Pbca, Z = 8 and contain the double ring [B5O10]5− anion composed of one BO4 tetrahedron and four BO3 triangles as the basic structural motif. The anions are bridged by tetrahedrally coordinated and occupationally disordered M2+ (M = Zn/Cd, Zn/Mg cations via common O atoms to form [MB5O10]n3n− layers. The intralayer intersecting channels and the interlayer voids are occupied by Na+ cations to balance the charge.

  15. NMR comparison of prokaryotic and eukaryotic cytochromes c

    International Nuclear Information System (INIS)

    Chau, Meihing; Cai, Meng Li; Timkovich, R.

    1990-01-01

    1 H NMR spectroscopy has been used to examine ferrocytochrome c-551 from Pseudomonas aeruginosa (ATCC 19429) over the pH range 3.5-10.6 and the temperature range 4-60 degree C. Resonance assignments are proposed for main-chain and side-chain protons. Comparison of results for cytochrome c-551 to recently assigned spectra for horse cytochrome c and mutants of yeast iso-1 cytochrome reveals some unique resonances with unusual chemical shifts in all cytochromes that may serve as markers for the heme region. Results for cytochrome c-551 indicate that in the smaller prokaryotic cytochrome, all benzoid side chains are rapidly flipping on the NMR time scale. In contrast, in eukaryotic cytochromes there are some rings flipping slowly on the NMR time scale. The ferrocytochrome c-551 undergoes a transition linked to pH with a pK around 7. The pH behavior of assigned resonances provides evidence that the site of protonation is the inner or buried 17-propionic acid heme substituent (IUPAC-IUB porphyrin nomenclature). Conformational heterogeneity has been observed for segments near the inner heme propionate substituent

  16. Versatility of non-native forms of human cytochrome c: pH and micellar concentration dependence.

    Science.gov (United States)

    Simon, Matthieu; Metzinger-Le Meuth, Valérie; Chevance, Soizic; Delalande, Olivier; Bondon, Arnaud

    2013-01-01

    In addition to its electron transfer activity, cytochrome c is now known to trigger apoptosis via peroxidase activity. This new function is related to a structural modification of the cytochrome upon association with anionic lipids, particularly cardiolipin present in the mitochondrial membrane. However, the exact nature of the non-native state induced by this interaction remains an active subject of debate. In this work, using human cytochromes c (native and two single-histidine mutants and the corresponding double mutant) and micelles as a hydrophobic medium, we succeeded, through UV-visible spectroscopy, circular dichroism spectroscopy and NMR spectroscopy, in fully characterizing the nature of the sixth ligand replacing the native methionine. Furthermore, careful pH titrations permitted the identification of the amino acids involved in the iron binding over a range of pH values. Replacement of the methionine by lysine was only observed at pH above 8.5, whereas histidine binding is dependent on both pH and micelle concentration. The pH variation range for histidine protonation is relatively narrow and is consistent with the mitochondrial intermembrane pH changes occurring during apoptosis. These results allow us to rule out lysine as the sixth ligand at pH values close to neutrality and reinforce the role of histidines (preferentially His33 vs. His26) as the main candidate to replace methionine in the non-native cytochrome c. Finally, on the basis of these results and molecular dynamics simulations, we propose a 3D model for non-native cytochrome c in a micellar environment.

  17. INDL/V. IAEA Nuclear Data Library for various neutron data evaluations in ENDF/B-5 format

    International Nuclear Information System (INIS)

    Pronyaev, V.; Cullen, D.; Lemmel, H.D.; McLaughlin, K.; Schwerer, O.

    1982-05-01

    INDL/V is a computerized library for evaluated neutron reaction data of varying origin compiled in ENDF/B-5 format. The data are available costfree on magnetic tape from the IAEA Nuclear Data Section. This document summarizes the contents of the library, including graphical plots of all cross-section data. (author)

  18. Plastocyanin/cytochrome c6 interchange in Scenedesmus vacuolatus.

    Science.gov (United States)

    Miramar, M Dolores; Inda, Luis A; Saraiva, Lígia M; Peleato, M Luisa

    2003-12-01

    Plastocyanin and cytochrome c6 from the green alga Scenedesmus vacuolatus were immunoquantified in cells grown under different concentrations of copper and iron. Plastocyanin expression was constitutive, its synthesis was not significantly affected by iron availability, and increases with copper availability. On the contrary, cytochrome c6 synthesis is repressed by copper, and only residual amounts of the protein were detected at 0.1 micromol/L copper. Under copper deficiency, cytochrome c6 is slightly dependent on iron. In natural environments, plastocyanin seems to be the predominant electron donor to P700.

  19. Characterisation of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth.

    Directory of Open Access Journals (Sweden)

    christopher eBeckwith

    2015-04-01

    Full Text Available The autotrophic Sideroxydans lithotrophicus ES-1 can grow by coupling the oxidation of ferrous iron to the reduction of oxygen. Soluble ferrous iron is oxidised at the surface of the cell by an MtoAB porin-cytochrome complex that functions as an electron conduit through the outer membrane. Electrons are then transported to the cytoplasmic membrane where they are used to generate proton motive force (for ATP synthesis and NADH for autotrophic processes such as carbon fixation.As part of the mtoAB gene cluster, S. lithotrophicus also contains the gene mtoD that is proposed to encode a cytochrome c protein. We isolated mtoD from a Shewanella oneidensis expression system where the mtoD gene was expressed on a pBAD plasmid vector. Biochemical, biophysical and crystallographic characterisation of the purified MtoD revealed it as an 11 kDa monomeric protein containing a single heme. Sequence and structural alignment indicated that MtoD belonged to the class-1 cytochrome c family and had a similar fold to ferricytochrome c552 family, however the MtoD heme is bis-histidine coordinated and is substantially more exposed than the hemes of other family members. The reduction potential of the MtoD heme at pH 7 was +155 mV vs. Standard Hydrogen Electrode, which is approximately 100 mV lower than that of mitochondrial cytochromes c. Consideration of the properties of MtoD in the context of the potential respiratory partners identified from the genome suggests that MtoD could associate to multiple electron transfer partners as the primary periplasmic electron shuttle.

  20. The influence of single application of paracetamol and/or N-acetylcysteine on rats subchronic exposed to trichloroethylene vapours. I. Effect on hepatic moonooxygenase system dependent of cytochrome P450

    Directory of Open Access Journals (Sweden)

    Andrzej Plewka

    2012-06-01

    Full Text Available Background: There is a number of factors which potentially affect occurrence of toxic change in liver after overdosing of paracetamol. Hepatic metabolism of trichloroethylene has primary impact on hepatotoxic effect of this solvent. This means that the combined exposure to these xenobiotics can be particularly harmful for human. The influence of N-acetylcysteine (NAC as a protective factor after paracetamol intoxication was studies. Materials and method: Tests were carried out on rats which were treated with trichloroethylene, paracetamol and/or N-acetylcysteine. In the hepatic microsomal fraction activity of the components of cytochrome P450- dependent monooxygenases was determined Results: Paracetamol slightly stimulated cytochrome P450 having no effect on reductase activity cooperating with it. Cytochrome b5 and its reductase were inhibited by this compound. Trichloroethylene was the inhibitor of compounds of II microsomal electron transport chain. N-acetylcysteine inhibited activity of reductase of NADH-cytochrome b5. Conclusions: Tested doses of the xenobiotics influenced on II microsomal electron transport chain. Protective influence of N-acetylcysteine was better if this compound was applied 2 hours after exposure on xenobiotics

  1. Aspirin Induces Apoptosis through Release of Cytochrome c from Mitochondria

    Directory of Open Access Journals (Sweden)

    Katja C. Zimmermann

    2000-01-01

    Full Text Available Nonsteroidal anti-inflammatory drugs (NSAID reduce the risk for cancer, due to their anti proliferative and apoptosis-inducing effects. A critical pathway for apoptosis involves the release of cytochrome c from mitochondria, which then interacts with Apaf-1 to activate caspase proteases that orchestrate cell death. In this study we found that treatment of a human cancer cell line with aspirin induced caspase activation and the apoptotic cell morphology, which was blocked by the caspase inhibitor zVAD-fmk. Further analysis of the mechanism underlying this apoptotic event showed that aspirin induces translocation of Bax to the mitochondria and triggers release of cytochrome c into the cytosol. The release of cytochrome c from mitochondria was inhibited by overexpression of the antiapoptotic protein Bcl-2 and cells that lack Apaf-1 were resistant to aspirin-induced apoptosis. These data provide evidence that the release of cytochrome c is an important part of the apoptotic mechanism of aspirin.

  2. Cytochrome c Is Tyrosine 97 Phosphorylated by Neuroprotective Insulin Treatment

    Czech Academy of Sciences Publication Activity Database

    Sanderson, T. H.; Mahapatra, G.; Pecina, Petr; Ji, Q.; Yu, K.; Sinkler, Ch.; Varughese, A.; Kumar, R.; Bukowski, M. J.; Tousignant, R. N.; Salomon, A. R.; Lee, I.; Hüttemann, M.

    2013-01-01

    Roč. 8, č. 11 (2013), e78627 E-ISSN 1932-6203 Institutional support: RVO:67985823 Keywords : cytochrome c * tyrosine phosphorylation * brain ischemia * insulin Subject RIV: ED - Physiology Impact factor: 3.534, year: 2013

  3. North African genetic variation of cytochrome and sulfotransferase ...

    African Journals Online (AJOL)

    in these genes have shown relevant ethnic differences among Sub-Saharan .... This cytochrome catalyzes a big amount of oxidative reactions of substances like ... with samples of European and African origin (because of the scarce data ...

  4. Oxygen and xenobiotic reductase activities of cytochrome P450.

    NARCIS (Netherlands)

    Goeptar, A.R.; Scheerens, H.; Vermeulen, N.P.E.

    1995-01-01

    The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O

  5. The biodiversity of microbial cytochromes P450.

    Science.gov (United States)

    Kelly, Steven L; Lamb, David C; Jackson, Colin J; Warrilow, Andrew G; Kelly, Diane E

    2003-01-01

    The cytochrome P450 (CYP) superfamily of genes and proteins are well known for their involvement in pharmacology and toxicology, but also increasingly for their importance and diversity in microbes. The extent of diversity has only recently become apparent with the emergence of data from whole genome sequencing projects and the coming years will reveal even more information on the diversity in microbial eukaryotes. This review seeks to describe the historical development of these studies and to highlight the importance of the genes and proteins. CYPs are deeply involved in the development of strategies for deterrence and attraction as well as detoxification. As such, there is intense interest in pathways of secondary metabolism that include CYPs in oxidative tailoring of antibiotics, sometimes influencing potency as bioactive compounds. Further to this is interest in CYPs in metabolism of xenobiotics for use as carbon sources for microbial growth and as biotransformation agents or in bioremediation. CYPs are also current and potential drug targets; compounds inhibiting CYP are antifungal and anti-protozoan agents, and potentially similar compounds may be useful against some bacterial diseases such as tuberculosis. Of note is the diversity of CYP requirements within an organism, ranging from Escherichia coli that has no CYPs as in many bacteria, to Mycobacterium smegmatis that has 40 representing 1% of coding genes. The basidiomycete fungus Phanerochaete chrysosporium surprised all when it was found to contain a hundred or more CYPs. The functional genomic investigation of these orphan CYPs is a major challenge for the future.

  6. Geometrical analysis of cytochrome c unfolding

    Science.gov (United States)

    Urie, Kristopher G.; Pletneva, Ekaterina; Gray, Harry B.; Winkler, Jay R.; Kozak, John J.

    2011-01-01

    A geometrical model has been developed to study the unfolding of iso-1 cytochrome c. The model draws on the crystallographic data reported for this protein. These data were used to calculate the distance between specific residues in the folded state, and in a sequence of extended states defined by n = 3, 5, 7, 9, 11, 13, and 15 residue units. Exact calculations carried out for each of the 103 residues in the polypeptide chain demonstrate that different regions of the chain have different unfolding histories. Regions where there is a persistence of compact structures can be identified, and this geometrical characterization is fully consistent with analyses of time-resolved fluorescence energy-transfer (TrFET) data using dansyl-derivatized cysteine side-chain probes at positions 39, 50, 66, 85, and 99. The calculations were carried out assuming that different regions of the polypeptide chain unfold synchronously. To test this assumption, lattice Monte Carlo simulations were performed to study systematically the possible importance of asynchronicity. Calculations show that small departures from synchronous dynamics can arise if displacements of residues in the main body of the chain are much more sluggish than near-terminal residues.

  7. Epidermal CYP2 family cytochromes P450

    International Nuclear Information System (INIS)

    Du Liping; Hoffman, Susan M.G.; Keeney, Diane S.

    2004-01-01

    Skin is the largest and most accessible drug-metabolizing organ. In mammals, it is the competent barrier that protects against exposure to harmful stimuli in the environment and in the systemic circulation. Skin expresses many cytochromes P450 that have critical roles in exogenous and endogenous substrate metabolism. Here, we review evidence for epidermal expression of genes from the large CYP2 gene family, many of which are expressed preferentially in extrahepatic tissues or specifically in epithelia at the environmental interface. At least 13 CYP2 genes (CYP2A6, 2A7, 2B6, 2C9, 2C18, 2C19, 2D6, 2E1, 2J2, 2R1, 2S1, 2U1, and 2W1) are expressed in skin from at least some human individuals, and the majority of these genes are expressed in epidermis or cultured keratinocytes. Where epidermal expression has been localized in situ by hybridization or immunocytochemistry, CYP2 transcripts and proteins are most often expressed in differentiated keratinocytes comprising the outer (suprabasal) cell layers of the epidermis and skin appendages. The tissue-specific transcriptional regulation of CYP2 genes in the epidermis, and in other epithelia that interface with the environment, suggests important roles for at least some CYP2 gene products in the production and disposition of molecules affecting competency of the epidermal barrier

  8. Novel extrahepatic cytochrome P450s

    International Nuclear Information System (INIS)

    Karlgren, Maria; Miura, Shin-ichi; Ingelman-Sundberg, Magnus

    2005-01-01

    The cytochrome P450 enzymes are highly expressed in the liver and are involved in the metabolism of xenobiotics. Because of the initiatives associated with the Human Genome Project, a great progress has recently been seen in the identification and characterization of novel extrahepatic P450s, including CYP2S1, CYP2R1, CYP2U1 and CYP2W1. Like the hepatic enzymes, these P450s may play a role in the tissue-specific metabolism of foreign compounds, but they may also have important endogenous functions. CYP2S1 has been shown to metabolize all-trans retinoic acid and CYP2R1 is a major vitamin D 25-hydroxylase. Regarding their metabolism of xenobiotics, much remains to be established, but CYP2S1 metabolizes naphthalene and it is likely that these P450s are responsible for metabolic activation of several different kinds of xenobiotic chemicals and contribute to extrahepatic toxicity and carcinogenesis

  9. Polyethylene glycol promotes autoxidation of cytochrome c.

    Science.gov (United States)

    Sato, Wataru; Uchida, Takeshi; Saio, Tomohide; Ishimori, Koichiro

    2018-06-01

    Cytochrome c (Cyt c) was rapidly oxidized by molecular oxygen in the presence, but not absence of PEG. The redox potential of heme c was determined by the potentiometric titration to be +236 ± 3 mV in the absence of PEG, which was negatively shifted to +200 ± 4 mV in the presence of PEG. The underlying the rapid oxidation was explored by examining the structural changes in Cyt c in the presence of PEG using UV-visible absorption, circular dichroism, resonance Raman, and fluorescence spectroscopies. These spectroscopic analyses suggested that heme oxidation was induced by a modest tertiary structural change accompanied by a slight shift in the heme position (c, which triggered heme displacement. The primary dehydration site was estimated to be around surface-exposed hydrophobic residues near the heme center: Ile81 and Val83. These findings and our previous studies, which showed that hydrated water molecules around Ile81 and Val83 are expelled when Cyt c forms a complex with CcO, proposed that dehydration of these residues is functionally significant to electron transfer from Cyt c to CcO. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  11. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  12. Calculation of total cross sections and effective emission coefficients for B5+ collisions with ground-state and excited hydrogen

    International Nuclear Information System (INIS)

    Guzman, F; Errea, L F; Illescas, Clara; Mendez, L; Pons, B

    2010-01-01

    Classical and semiclassical calculations of nl-resolved charge exchange cross sections in B 5 + collisions with H(n i ) are performed to compute effective emission coefficients for the n = 7 → n = 6 transition in B 4 + for plasma conditions typical of the ASDEX-U tokamak. For n i = 1, the value of the emission coefficient is larger than that obtained from ADAS database by a factor of 2 at energies of 10 keV amu -1 , but no differences are found at energies above 50 keV amu -1 . For n i = 2, our calculation yields emission coefficients close to those derived from ADAS data from low to high impact energies. The emission coefficients corresponding to B 5 + + H(n i = 3) collisions are of the same order of magnitude as those for n i = 2.

  13. The soluble loop BC region guides, but not dictates, the assembly of the transmembrane cytochrome b6.

    Directory of Open Access Journals (Sweden)

    Lydia Tome-Stangl

    Full Text Available Studying folding and assembly of naturally occurring α-helical transmembrane proteins can inspire the design of membrane proteins with defined functions. Thus far, most studies have focused on the role of membrane-integrated protein regions. However, to fully understand folding pathways and stabilization of α-helical membrane proteins, it is vital to also include the role of soluble loops. We have analyzed the impact of interhelical loops on folding, assembly and stability of the heme-containing four-helix bundle transmembrane protein cytochrome b6 that is involved in charge transfer across biomembranes. Cytochrome b6 consists of two transmembrane helical hairpins that sandwich two heme molecules. Our analyses strongly suggest that the loop connecting the helical hairpins is not crucial for positioning the two protein "halves" for proper folding and assembly of the holo-protein. Furthermore, proteolytic removal of any of the remaining two loops, which connect the two transmembrane helices of a hairpin structure, appears to also not crucially effect folding and assembly. Overall, the transmembrane four-helix bundle appears to be mainly stabilized via interhelical interactions in the transmembrane regions, while the soluble loop regions guide assembly and stabilize the holo-protein. The results of this study might steer future strategies aiming at designing heme-binding four-helix bundle structures, involved in transmembrane charge transfer reactions.

  14. The effect of initial microstructure on the final properties of press hardened 22MnB5 steels

    Energy Technology Data Exchange (ETDEWEB)

    Järvinen, Henri, E-mail: henri.jarvinen@tut.fi [Department of Materials Science, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Isakov, Matti; Nyyssönen, Tuomo [Department of Materials Science, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Järvenpää, Martti [SSAB Europe Oy, Harvialantie 420, FI-13300 Hämeenlinna (Finland); Peura, Pasi [Department of Materials Science, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland)

    2016-10-31

    This paper addresses the relationship between initial microstructure and final properties of press hardened 22MnB5 steels. Four commercial 22MnB5 steels having different initial microstructures were investigated. An experimental press hardening equipment with a flat-die was used to investigate material behavior in the direct press hardening process. Two austenitizing treatments, 450 s and 180 s at 900 °C, were examined. Microstructural characterization with optical and scanning electron microscopes revealed a mixture of martensite and auto-tempered martensite after press hardening. Electron backscatter diffraction data of the transformed martensite was used to reconstruct grain boundary maps of parent austenite. Grain sizes of parent austenite (mean linear intercept) were measured for each material. In addition to microstructural evaluation, quasistatic and high strain rate tensile tests at strain rates of 5×10{sup −4} s{sup −1} and 400 s{sup −1}, respectively, were performed for press hardened samples. The results show that strength and uniform elongation depend on the initial microstructure of the 22MnB5 steel, when parameters typical to the direct press hardening process are used. Parent austenite grain size was shown to influence the morphology of the transformed martensite, which in turn affects the strength and uniform elongation after press hardening. The tensile properties of the press hardened materials are almost strain rate independent in the studied strain rate range. The obtained results can be used to optimize the properties of 22MnB5 steels in the direct press hardening process. In addition, the here revealed connection between the parent austenite grain size and final steel properties should be taken into account in the development of new press hardening steel grades for automotive industry.

  15. The effect of initial microstructure on the final properties of press hardened 22MnB5 steels

    International Nuclear Information System (INIS)

    Järvinen, Henri; Isakov, Matti; Nyyssönen, Tuomo; Järvenpää, Martti; Peura, Pasi

    2016-01-01

    This paper addresses the relationship between initial microstructure and final properties of press hardened 22MnB5 steels. Four commercial 22MnB5 steels having different initial microstructures were investigated. An experimental press hardening equipment with a flat-die was used to investigate material behavior in the direct press hardening process. Two austenitizing treatments, 450 s and 180 s at 900 °C, were examined. Microstructural characterization with optical and scanning electron microscopes revealed a mixture of martensite and auto-tempered martensite after press hardening. Electron backscatter diffraction data of the transformed martensite was used to reconstruct grain boundary maps of parent austenite. Grain sizes of parent austenite (mean linear intercept) were measured for each material. In addition to microstructural evaluation, quasistatic and high strain rate tensile tests at strain rates of 5×10 −4 s −1 and 400 s −1 , respectively, were performed for press hardened samples. The results show that strength and uniform elongation depend on the initial microstructure of the 22MnB5 steel, when parameters typical to the direct press hardening process are used. Parent austenite grain size was shown to influence the morphology of the transformed martensite, which in turn affects the strength and uniform elongation after press hardening. The tensile properties of the press hardened materials are almost strain rate independent in the studied strain rate range. The obtained results can be used to optimize the properties of 22MnB5 steels in the direct press hardening process. In addition, the here revealed connection between the parent austenite grain size and final steel properties should be taken into account in the development of new press hardening steel grades for automotive industry.

  16. Computer Program Development Specification for Ada Integrated Environment. Ada Compiler Phases B5-AIE (1). COMP (1).

    Science.gov (United States)

    1982-11-05

    INTERMETRICS INCORPORATED * 733 CONCORD AVENUE e CAMBRIDGE, MASSACHUSETTS 02138 1 6171 861-1340 B5-AIE(l) .COt4P(1) SET U _j ISTING AST.’ ISTINGDIN...header EZMAP DS A-OAMAP ’ address of exception handler map -- Code (instructions and literals) follows BODY ZQU * entry point to the unit Ist ...exceed a figure to be determined. (3) VIH limits the compiler to 200 subdomains accessible at once. This limits the number of units that may be WITHd

  17. Enrichment of W2B5 from WO3 and B2O3 by Double SHS Method

    Directory of Open Access Journals (Sweden)

    Bora DERIN

    2018-02-01

    Full Text Available A second self-propagating high-temperature synthesis (SHS was carried out to enrich the W2B5 content in the SHS product containing a mixture of various tungsten boride compounds. In the experiment, the process called Double-SHS (D-SHS was conducted in two steps. In the first SHS reaction, an initial molar composition ratio of WO3:B2O3:Mg mixture was selected as 1:3:8. The product was then hot-leached with hydrochloric acid to eliminate MgO and Mg3B2O6 phases. The leached product, consisting of 72.6 wt.% W2B5, 16.1 wt.% WB, 8.4 wt.% W2B, and 2.9 wt.% W, was again reacted with the Mg and B2O3 mixture by second SHS. After another acid leaching step, W2B5 content in the D-SHS product was found to be 98.2 wt.%. The study showed that D-SHS is an effective method for boron enrichment in the tungsten compounds.DOI: http://dx.doi.org/10.5755/j01.ms.24.1.17834

  18. Evolution of mechanical properties of boron/manganese 22MnB5 steel under magnetic pulse influences

    International Nuclear Information System (INIS)

    Falaleev, A P; Meshkov, V V; Vetrogon, A A; Shymchenko, A V

    2016-01-01

    The boron/manganese 22MnB5 steel can be noted as the widely used material for creation of details, which must withstand high amount of load and impact influences. The complexity and high labor input of restoration of boron steel parts leads to growing interest in the new forming technologies such as magnetic pulse forming. There is the investigation of the evolution of mechanical properties of 22MnB5 steel during the restoration by means of magnetic pulse influence and induction heating. The heating of 22MnB5 blanks to the temperature above 900 0 C was examined. The forming processes at various temperatures (800, 900 and 950 0 C) were performed during the experiments. The test measurements allowed to obtain the relationships between the strain and the operation parameters such as induced current, pulse discharge time and the operation temperature. Based on these results the assumption about usage of these parameters for control of deformation process was made. Taking into account the load distribution and the plasticity evolution during the heating process, the computer simulation was performed in order to obtain more clear strain distribution through the processed area. The measurement of hardness and the comparison with the properties evolution during hot stamping processes confirmed the obtained results. (paper)

  19. Solution NMR study of the yeast cytochrome c peroxidase: cytochrome c interaction

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Alexander N., E-mail: ovolkov@vub.ac.be; Nuland, Nico A. J. van [Vrije Universiteit Brussel, Jean Jeener NMR Centre, Structural Biology Brussels (Belgium)

    2013-07-15

    Here we present a solution NMR study of the complex between yeast cytochrome c (Cc) and cytochrome c peroxidase (CcP), a paradigm for understanding the biological electron transfer. Performed for the first time, the CcP-observed heteronuclear NMR experiments were used to probe the Cc binding in solution. Combining the Cc- and CcP-detected experiments, the binding interface on both proteins was mapped out, confirming that the X-ray structure of the complex is maintained in solution. Using NMR titrations and chemical shift perturbation analysis, we show that the interaction is independent of the CcP spin-state and is only weakly affected by the Cc redox state. Based on these findings, we argue that the complex of the ferrous Cc and the cyanide-bound CcP is a good mimic of the catalytically-active Cc-CcP compound I species. Finally, no chemical shift perturbations due to the Cc binding at the low-affinity CcP site were observed at low ionic strength. We discuss possible reasons for the absence of the effects and outline future research directions.

  20. Elucidating cytochrome C release from mitochondria: insights from an in silico three-dimensional model.

    Science.gov (United States)

    Tam, Zhi Yang; Cai, Yi Hui; Gunawan, Rudiyanto

    2010-11-17

    Mitochondrial regulation of apoptosis depends on the programmed release of proapoptotic proteins such as cytochrome c (Cyt c) through the outer mitochondrial membrane (OMM). Although a few key processes involved in this release have been identified, including the liberation of inner membrane-bound Cyt c and formation of diffusible pores on the OMM, other details like the transport of Cyt c within complex mitochondrial compartments, e.g., the cristae and crista junctions, are not yet fully understood (to our knowledge). In particular, a remodeling of the inner mitochondrial membrane accompanying apoptosis seen in a few studies, in which crista junctions widen, has been hypothesized to be a necessary step in the Cyt c release. Using a three-dimensional spatial modeling of mitochondrial crista and the crista junction, model simulations and analysis illustrated how the interplay among solubilization of Cyt c, fast diffusion of Cyt c, and OMM permeabilization gives rise to the observed experimental release profile. Importantly, the widening of the crista junction was found to have a negligible effect on the transport of free Cyt c from cristae. Finally, model simulations showed that increasing the fraction of free/loosely-bound Cyt c can sensitize the cell to apoptotic stimuli in a threshold manner, which may explain increased sensitivity to cell death associated with aging. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. In vitro investigation of cytochrome P450-mediated metabolism of dietary flavonoids

    DEFF Research Database (Denmark)

    Breinholt, Vibeke; Offord, E.A.; Brouwer, C.

    2002-01-01

    Human and mouse liver microsomes And membranes isolated from Escherichia coli, which expressed cytochrome P450 (CYP) 1A2, 3A4 2C9 or 2D6, were used to investigate CYP-mediated metabolism of five selected dietary flavonoids. In human and mouse liver microsomes kaempferol, apigenin and naringenin...... were hydroxylated at the 3'-position to yield their corresponding analogs quercetin, luteolin and eriodietyol, whereas hesperetin and tamarixetin were demethylated at the 4'-position to yield eriodictyol and quercetin. respectively, Microsomal flavonoid metabolism as potently inhibited by the CYP1A2...... inhibitors. fluvoxamine and alpha-naphthoflavone. Recombinant CYP1A2 as capable of metabolizing all five investigated flavonoids. CYP3A4 recombinant protein did not catalyze hesperetin demethylation. but showed similar metabolic profiles for the remaining compounds, as did human microsomes and recombinant...

  2. {sup 13}C-Methyl isocyanide as an NMR probe for cytochrome P450 active sites

    Energy Technology Data Exchange (ETDEWEB)

    McCullough, Christopher R.; Pullela, Phani Kumar [Marquette University, Chemical Proteomics Facility at Marquette, Department of Chemistry (United States); Im, Sang-Choul; Waskell, Lucy [University of Michigan and VA Medical Center, Department of Anesthesiology (United States); Sem, Daniel S. [Marquette University, Chemical Proteomics Facility at Marquette, Department of Chemistry (United States)], E-mail: Daniel.sem@marquette.edu

    2009-03-15

    The cytochromes P450 (CYPs) play a central role in many biologically important oxidation reactions, including the metabolism of drugs and other xenobiotic compounds. Because they are often assayed as both drug targets and anti-targets, any tools that provide: (a) confirmation of active site binding and (b) structural data, would be of great utility, especially if data could be obtained in reasonably high throughput. To this end, we have developed an analog of the promiscuous heme ligand, cyanide, with a {sup 13}CH{sub 3}-reporter attached. This {sup 13}C-methyl isocyanide ligand binds to bacterial (P450cam) and membrane-bound mammalian (CYP2B4) CYPs. It can be used in a rapid 1D experiment to identify binders, and provides a qualitative measure of structural changes in the active site.

  3. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  4. NADH-Cytochrome b5 Reductase 3 Promotes Colonization and Metastasis Formation and Is a Prognostic Marker of Disease-Free and Overall Survival in Estrogen Receptor-Negative Breast Cancer

    DEFF Research Database (Denmark)

    Lund, Rikke R; Leth-Larsen, Rikke; Caterino, Tina Di

    2015-01-01

    (NRH2). The altered expression levels were validated at the protein and transcriptional levels, and analysis of breast cancer biopsies from two cohorts of patients demonstrated a significant correlation between high CYB5R3 expression and poor disease-free and overall survival in patients with estrogen...... receptor-negative tumors (DFS: p = .02, OS: p = .04). CYB5R3 gene knock-down using siRNA in metastasizing cells led to significantly decreased tumor burden in lungs when injected intravenously in immunodeficient mice. The cellular effects of CYB5R3 knock-down showed signaling alterations associated...

  5. Leukotriene B4 omega-hydroxylase in human polymorphonuclear leukocytes. Partial purification and identification as a cytochrome P-450.

    Science.gov (United States)

    Shak, S; Goldstein, I M

    1985-09-01

    Human polymorphonuclear leukocytes (PMN) not only synthesize and respond to leukotriene B4 (LTB4), but also catabolize this mediator of inflammation rapidly and specifically by omega-oxidation. To characterize the enzyme(s) responsible for omega-oxidation of LTB4, human PMN were disrupted by sonication and subjected to differential centrifugation to yield membrane, granule, and cytosol fractions (identified by biochemical markers). LTB4 omega-hydroxylase activity was concentrated (together with NADPH cytochrome c reductase activity) only in the membrane fraction (specific activity increased 10-fold as compared to whole sonicates, 41% recovery). Negligible activity was detected in granule or cytosol fractions. LTB4 omega-hydroxylase activity in isolated PMN membranes was linear with respect to duration of incubation and protein concentration, was maximal at pH 7.4, had a Km for LTB4 of 0.6 microM, and was dependent on oxygen and on reduced pyridine nucleotides (apparent Km for NADPH = 0.5 microM; apparent Km for NADH = 223 microM). The LTB4 omega-hydroxylase was inhibited significantly by carbon monoxide, ferricytochrome c, SKF-525A, and Triton X-100, but was not affected by alpha-naphthoflavone, azide, cyanide, catalase, and superoxide dismutase. Finally, isolated PMN membranes exhibited a carbon monoxide difference spectrum with a peak at 452 nm. Thus, we have partially purified the LTB4 omega-hydroxylase in human PMN and identified the enzyme as a membrane-associated, NADPH-dependent cytochrome P-450.

  6. Membranous nephropathy

    Science.gov (United States)

    ... skin-lightening creams Systemic lupus erythematosus , rheumatoid arthritis, Graves disease, and other autoimmune disorders The disorder occurs at ... diagnosis. The following tests can help determine the cause of membranous nephropathy: Antinuclear antibodies test Anti-double- ...

  7. Mass spectrometry-based proteomic analysis of human liver cytochrome(s) P450

    Energy Technology Data Exchange (ETDEWEB)

    Shrivas, Kamlesh; Mindaye, Samuel T.; Getie-Kebtie, Melkamu; Alterman, Michail A., E-mail: Michail.Alterman@fda.hhs.gov

    2013-02-15

    The major objective of personalized medicine is to select optimized drug therapies and to a large degree such mission is determined by the expression profiles of cytochrome(s) P450 (CYP). Accordingly, a proteomic case study in personalized medicine is provided by the superfamily of cytochromes P450. Our knowledge about CYP isozyme expression on a protein level is very limited and based exclusively on DNA/mRNA derived data. Such information is not sufficient because transcription and translation events do not lead to correlated levels of expressed proteins. Here we report expression profiles of CYPs in human liver obtained by mass spectrometry (MS)-based proteomic approach. We analyzed 32 samples of human liver microsomes (HLM) of different sexes, ages and ethnicity along with samples of recombinant human CYPs. We have experimentally confirmed that each CYP isozyme can be effectively differentiated by their unique isozyme-specific tryptic peptide(s). Trypsin digestion patterns for almost 30 human CYP isozymes were established. Those findings should assist in selecting tryptic peptides suitable for MS-based quantitation. The data obtained demonstrate remarkable differences in CYP expression profiles. CYP2E1, CYP2C8 and CYP4A11 were the only isozymes found in all HLM samples. Female and pediatric HLM samples revealed much more diverse spectrum of expressed CYPs isozymes compared to male HLM. We have confirmed expression of a number of “rare” CYP (CYP2J2, CYP4B1, CYP4V2, CYP4F3, CYP4F11, CYP8B1, CYP19A1, CYP24A1 and CYP27A1) and obtained first direct experimental data showing expression of such CYPs as CYP2F1, CYP2S1, CYP2W1, CYP4A22, CYP4X1, and CYP26A1 on a protein level. - Highlights: ► First detailed proteomic analysis of CYP isozymes expression in human liver ► Trypsin digestion patterns for almost 30 human CYP isozymes established ► The data obtained demonstrate remarkable differences in CYP expression profiles. ► Female HLM samples revealed more

  8. Mass spectrometry-based proteomic analysis of human liver cytochrome(s) P450

    International Nuclear Information System (INIS)

    Shrivas, Kamlesh; Mindaye, Samuel T.; Getie-Kebtie, Melkamu; Alterman, Michail A.

    2013-01-01

    The major objective of personalized medicine is to select optimized drug therapies and to a large degree such mission is determined by the expression profiles of cytochrome(s) P450 (CYP). Accordingly, a proteomic case study in personalized medicine is provided by the superfamily of cytochromes P450. Our knowledge about CYP isozyme expression on a protein level is very limited and based exclusively on DNA/mRNA derived data. Such information is not sufficient because transcription and translation events do not lead to correlated levels of expressed proteins. Here we report expression profiles of CYPs in human liver obtained by mass spectrometry (MS)-based proteomic approach. We analyzed 32 samples of human liver microsomes (HLM) of different sexes, ages and ethnicity along with samples of recombinant human CYPs. We have experimentally confirmed that each CYP isozyme can be effectively differentiated by their unique isozyme-specific tryptic peptide(s). Trypsin digestion patterns for almost 30 human CYP isozymes were established. Those findings should assist in selecting tryptic peptides suitable for MS-based quantitation. The data obtained demonstrate remarkable differences in CYP expression profiles. CYP2E1, CYP2C8 and CYP4A11 were the only isozymes found in all HLM samples. Female and pediatric HLM samples revealed much more diverse spectrum of expressed CYPs isozymes compared to male HLM. We have confirmed expression of a number of “rare” CYP (CYP2J2, CYP4B1, CYP4V2, CYP4F3, CYP4F11, CYP8B1, CYP19A1, CYP24A1 and CYP27A1) and obtained first direct experimental data showing expression of such CYPs as CYP2F1, CYP2S1, CYP2W1, CYP4A22, CYP4X1, and CYP26A1 on a protein level. - Highlights: ► First detailed proteomic analysis of CYP isozymes expression in human liver ► Trypsin digestion patterns for almost 30 human CYP isozymes established ► The data obtained demonstrate remarkable differences in CYP expression profiles. ► Female HLM samples revealed more

  9. Flow-alignment of bicellar lipid mixtures: orientations of probe molecules and membrane-associated biomacromolecules in lipid membranes studied with polarized light

    KAUST Repository

    Kogan, Maxim; Beke-Somfai, Tamá s; Nordé n, Bengt

    2011-01-01

    Bicelles are excellent membrane-mimicking hosts for a dynamic and structural study of solutes with NMR, but the magnetic fields required for their alignment are hard to apply to optical conditions. Here we demonstrate that bicellar mixtures can be aligned by shear forces in a Couette flow cell, to provide orientation of membrane-bound retinoic acid, pyrene and cytochrome c (cyt c) protein, conveniently studied with linear dichroism spectroscopy. © 2011 The Royal Society of Chemistry.

  10. Calorimetric studies of the thermal denaturation of cytochrome c peroxidase

    International Nuclear Information System (INIS)

    Kresheck, G.C.; Erman, J.E.

    1988-01-01

    Two endotherms are observed by differential scanning calorimetry during the thermal denaturation of cytochrome c peroxidase at pH 7.0. The transition midpoint temperatures (t/sub m/) were 43.9 +- 1.4 and 63.3 +- 1.6 0 C, independent of concentration. The two endotherms were observed at all pH values between 4 and 8, with the transition temperatures varying with pH. Precipitation was observed between pH 4 and 6, and only qualitative data are presented for this region. The thermal unfolding of cytochrome c peroxidase was sensitive to the presence and ligation state of the heme. Only a single endotherm was observed for the unfolding of the apoprotein, and this transition was similar to the high-temperature transition in the holoenzyme. Addition of KCN to the holoenzyme increases the midpoint of the high-temperature transition whereas the low-temperature transition was increased upon addition of KF. Binding of the natural substrate ferricytochrome c to the enzyme increases the low-temperature transition by 4.8 +- 1.3 0 C but has no effect on the high-temperature transition at pH 7. The presence of cytochrome c peroxidase decreases the stability of cytochrome c, and both proteins appear to unfold simultaneously. The results are discussed in terms of the two domains evident in the X-ray crystallographic structure of cytochrome c peroxidase

  11. Oleamide synthesizing activity from rat kidney: identification as cytochrome c.

    Science.gov (United States)

    Driscoll, William J; Chaturvedi, Shalini; Mueller, Gregory P

    2007-08-03

    Oleamide (cis-9-octadecenamide) is the prototype member of an emerging class of lipid signaling molecules collectively known as the primary fatty acid amides. Current evidence suggests that oleamide participates in the biochemical mechanisms underlying the drive to sleep, thermoregulation, and antinociception. Despite the potential importance of oleamide in these physiologic processes, the biochemical pathway for its synthesis in vivo has not been established. We report here the discovery of an oleamide synthetase found in rat tissues using [(14)C]oleoyl-CoA and ammonium ion. Hydrogen peroxide was subsequently found to be a required cofactor. The enzyme displayed temperature and pH optima in the physiologic range, a remarkable resistance to proteolysis, and specificity for long-chain acyl-CoA substrates. The reaction demonstrated Michaelis-Menten kinetics with a K(m) for oleoyl-CoA of 21 microm. Proteomic, biochemical, and immunologic analyses were used to identify the source of the oleamide synthesizing activity as cytochrome c. This identification was based upon peptide mass fingerprinting of isolated synthase protein, a tight correlation between enzymatic activity and immunoreactivity for cytochrome c, and identical functional properties shared by the tissue-derived synthetase and commercially obtained cytochrome c. The ability of cytochrome c to catalyze the formation of oleamide experimentally raises the possibility that cytochrome c may mediate oleamide biosynthesis in vivo.

  12. Cardiolipin modulates allosterically peroxynitrite detoxification by horse heart cytochrome c

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it [Department of Biology and Interdepartmental Laboratory for Electron Microscopy, University Roma Tre, I-00146 Roma (Italy); Ciaccio, Chiara [Department of Experimental Medicine and Biochemical Sciences, University of Roma ' Tor Vergata' , I-00133 Roma (Italy); Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, I-70126 Bari (Italy); Sinibaldi, Federica; Santucci, Roberto [Department of Experimental Medicine and Biochemical Sciences, University of Roma ' Tor Vergata' , I-00133 Roma (Italy); Coletta, Massimo [Department of Experimental Medicine and Biochemical Sciences, University of Roma ' Tor Vergata' , I-00133 Roma (Italy); Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, I-70126 Bari (Italy)

    2011-01-07

    Research highlights: {yields} Cardiolipin binding to cytochrome c. {yields} Cardiolipin-dependent peroxynitrite isomerization by cytochrome c. {yields} Cardiolipin-cytochrome c complex plays pro-apoptotic effects. {yields} Cardiolipin-cytochrome c complex plays anti-apoptotic effects. -- Abstract: Upon interaction with bovine heart cardiolipin (CL), horse heart cytochrome c (cytc) changes its tertiary structure disrupting the heme-Fe-Met80 distal bond, reduces drastically the midpoint potential out of the range required for its physiological role, binds CO and NO with high affinity, and displays peroxidase activity. Here, the effect of CL on peroxynitrite isomerization by ferric cytc (cytc-Fe(III)) is reported. In the absence of CL, hexa-coordinated cytc does not catalyze peroxynitrite isomerization. In contrast, CL facilitates cytc-Fe(III)-mediated isomerization of peroxynitrite in a dose-dependent fashion inducing the penta-coordination of the heme-Fe(III)-atom. The value of the second order rate constant for CL-cytc-Fe(III)-mediated isomerization of peroxynitrite (k{sub on}) is (3.2 {+-} 0.4) x 10{sup 5} M{sup -1} s{sup -1}. The apparent dissociation equilibrium constant for CL binding to cytc-Fe(III) is (5.1 {+-} 0.8) x 10{sup -5} M. These results suggest that CL-cytc could play either pro-apoptotic or anti-apoptotic effects facilitating lipid peroxidation and scavenging of reactive nitrogen species, such as peroxynitrite, respectively.

  13. Characterization of the cydAB-Encoded Cytochrome bd Oxidase from Mycobacterium smegmatis

    Science.gov (United States)

    Kana, Bavesh D.; Weinstein, Edward A.; Avarbock, David; Dawes, Stephanie S.; Rubin, Harvey; Mizrahi, Valerie

    2001-01-01

    The cydAB genes from Mycobacterium smegmatis have been cloned and characterized. The cydA and cydB genes encode the two subunits of a cytochrome bd oxidase belonging to the widely distributed family of quinol oxidases found in prokaryotes. The cydD and cydC genes located immediately downstream of cydB encode a putative ATP-binding cassette-type transporter. At room temperature, reduced minus oxidized difference spectra of membranes purified from wild-type M. smegmatis displayed spectral features that are characteristic of the γ-proteobacterial type cytochrome bd oxidase. Inactivation of cydA or cydB by insertion of a kanamycin resistance marker resulted in loss of d-heme absorbance at 631 nm. The d-heme could be restored by transformation of the M. smegmatis cyd mutants with a replicating plasmid carrying the highly homologous cydABDC gene cluster from Mycobacterium tuberculosis. Inactivation of cydA had no effect on the ability of M. smegmatis to exit from stationary phase at 37 or 42°C. The growth rate of the cydA mutant was tested under oxystatic conditions. Although no discernible growth defect was observed under moderately aerobic conditions (9.2 to 37.5 × 102 Pa of pO2 or 5 to 21% air saturation), the mutant displayed a significant growth disadvantage when cocultured with the wild type under extreme microaerophilia (0.8 to 1.7 × 102 Pa of pO2 or 0.5 to 1% air saturation). These observations were in accordance with the two- to threefold increase in cydAB gene expression observed upon reduction of the pO2 of the growth medium from 21 to 0.5% air saturation and with the concomitant increase in d-heme absorbance in spectra of membranes isolated from wild-type M. smegmatis cultured at 1% air saturation. Finally, the cydA mutant displayed a competitive growth disadvantage in the presence of the terminal oxidase inhibitor, cyanide, when cocultured with wild type at 21% air saturation in an oxystat. In conjunction with these findings, our results suggest that

  14. ENDF/B-5 Standards Data Library (including modifications made in 1986). Summary of contents and documentation

    International Nuclear Information System (INIS)

    DayDay, N.; Lemmel, H.D.

    1986-01-01

    This document summarizes the contents and documentation of the ENDF/B-5 Standards Data Library (EN5-ST) released in September 1979. The library contains complete evaluations for all significant neutron reactions in the energy range 10 -5 eV to 20 MeV for H-1, He-3, Li-6, B-10, C-12, Au-197 and U-235 isotopes. In 1986 the files for C-12, Au-197 and U-235 were slightly modified. The entire library or selective retrievals from it can be obtained free of charge from the IAEA Nuclear Data Section. (author)

  15. ENDF/B-5 Standards Data Library (including modifications made in 1986). Summary of contents and documentation

    Energy Technology Data Exchange (ETDEWEB)

    DayDay, N; Lemmel, H D

    1986-05-01

    This document summarizes the contents and documentation of the ENDF/B-5 Standards Data Library (EN5-ST) released in September 1979. The library contains complete evaluations for all significant neutron reactions in the energy range 10{sup -5}eV to 20 MeV for H-1, He-3, Li-6, B-10, C-12, Au-197 and U-235 isotopes. In 1986 the files for C-12, Au-197 and U-235 were slightly modified. The entire library or selective retrievals from it can be obtained free of charge from the IAEA Nuclear Data Section. (author) Refs, figs, tabs

  16. Mitochondrial cytochrome c biogenesis: no longer an enigma.

    Science.gov (United States)

    Babbitt, Shalon E; Sutherland, Molly C; San Francisco, Brian; Mendez, Deanna L; Kranz, Robert G

    2015-08-01

    Cytochromes c (cyt c) and c1 are heme proteins that are essential for aerobic respiration. Release of cyt c from mitochondria is an important signal in apoptosis initiation. Biogenesis of c-type cytochromes involves covalent attachment of heme to two cysteines (at a conserved CXXCH sequence) in the apocytochrome. Heme attachment is catalyzed in most mitochondria by holocytochrome c synthase (HCCS), which is also necessary for the import of apocytochrome c (apocyt c). Thus, HCCS affects cellular levels of cyt c, impacting mitochondrial physiology and cell death. Here, we review the mechanisms of HCCS function and the roles of heme and residues in the CXXCH motif. Additionally, we consider concepts emerging within the two prokaryotic cytochrome c biogenesis pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    International Nuclear Information System (INIS)

    McCue, Jeffrey M.; Driscoll, William J.; Mueller, Gregory P.

    2008-01-01

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo

  18. The expression of HoxB5 and SPC in neonatal rat lung after exposure to fluoxetine.

    Science.gov (United States)

    Taghizadeh, Razieh; Taghipour, Zahra; Karimi, Akbar; Shamsizadeh, Ali; Taghavi, Mohammad Mohsen; Shariati, Mahdi; Shabanizadeh, Ahmad; Jafari Naveh, Hamid Reza; Bidaki, Reza; Aminzadeh, Fariba

    2016-01-01

    Approximately 10% of pregnant women suffer from pregnancy-associated depression. Fluoxetine, as a selective serotonin reuptake inhibitor, is being employed as a therapy for depressive disorders. The present study aimed to determine the effects of fluoxetine on neonatal lung development. Thirty pregnant Wistar rats (weighing 200-250 g) were treated daily with 7 mg/kg fluoxetine from gestation day 0 to gestation day 21, via gavage. The control group received a similar volume of distilled water only. Following delivery, the newborns and their lungs were immediately weighed in both of the groups. The right lung was fixed for histological assessments while the left lung was used for evaluation of the expression of SPC and HoxB5 by the real-time polymerase chain reaction method. Results have indicated that even though the body weight and the number of neonatal rats in both groups were the same, the lung weight of neonates exposed to fluoxetine was significantly different compared to the control group ( P fluoxetine treatment group morphologically appears to be similar to the pseudoglandular phase, whereas the control group lungs experienced more development. According to the upregulated expression of HoxB5 concerning histological findings, results of the present study showed that fluoxetine can influence lung growth and may in turn lead to delay in lung development. So establishment of studies to identify the effects of antidepressant drugs during pregnancy is deserved.

  19. Real-world comparison of probe vehicle emissions and fuel consumption using diesel and 5% biodiesel (B5) blend

    Energy Technology Data Exchange (ETDEWEB)

    Ropkins, Karl; Quinn, Robert; Tate, James; Bell, Margaret [Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT (United Kingdom); Beebe, Joe [National Center for Vehicle Emissions Control and Safety, Colorado State University, Colorado 80523-1584 (United States); Li, Hu; Daham, Basil; Andrews, Gordon [Energy and Resources Research Institute, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2007-04-15

    An instrumented EURO I Ford Mondeo was used to perform a real-world comparison of vehicle exhaust (carbon dioxide, carbon monoxide, hydrocarbons and oxides of nitrogen) emissions and fuel consumption for diesel and 5% biodiesel in diesel blend (B5) fuels. Data were collected on multiple replicates of three standardised on-road journeys: (1) a simple urban route; (2) a combined urban/inter-urban route; and, (3) an urban route subject to significant traffic management. At the total journey measurement level, data collected here indicate that replacing diesel with a B5 substitute could result in significant increases in both NO{sub x} emissions (8-13%) and fuel consumption (7-8%). However, statistical analysis of probe vehicle data demonstrated the limitations of comparisons based on such total journey measurements, i.e., methods analogous to those used in conventional dynamometer/drive cycle fuel comparison studies. Here, methods based on the comparison of speed/acceleration emissions and fuel consumption maps are presented. Significant variations across the speed/acceleration surface indicated that direct emission and fuel consumption impacts were highly dependent on the journey/drive cycle employed. The emission and fuel consumption maps were used both as descriptive tools to characterise impacts and predictive tools to estimate journey-specific emission and fuel consumption effects. (author)

  20. Isolation and characterization of a novel biosurfactant produced by hydrocarbon-degrading bacterium Alcanivorax dieselolei B-5.

    Science.gov (United States)

    Qiao, N; Shao, Z

    2010-04-01

    Our goal was to identify a novel biosurfactant produced by a marine oil-degrading bacterium. Biosurfactants were produced by Alcanivorax dieselolei strain B-5(T) growing with diesel oil as the sole carbon and energy source. Culture supernatant was first extracted with chloroform/methanol (1:1, v/v), then further purified step by step with a normal phase silica gel column, a Sephadex LH20 gel column and a preparative thin layer plate. The main component was determined to be a lipopeptide; it was chemically characterized with nuclear magnetic resonance, liquid chromatography-quadrupole ion-trap mass spectrometry, amino acid analysis and GC-MS and was found to be a mixture of proline lipids. The monomers of the proline lipids were composed of a proline residue and a fatty acid (C(14:0), C(16:0) or C(18:0)). The critical micelle concentration of the mixed proline lipids was determined to be 40 mg l(-1). Moreover, activity variations in ranges of pH, temperature and salinity were also detected and showed reasonable stability. Alcanivorax dieselolei B-5 produced a novel linear lipoamino biosurfactant, characterized as a proline lipid. A proline lipid was characterized for the first time as a bacterial biosurfactant. This product has potential in both environmental and industrial applications.

  1. Real-world comparison of probe vehicle emissions and fuel consumption using diesel and 5% biodiesel (B5) blend

    International Nuclear Information System (INIS)

    Ropkins, Karl; Quinn, Robert; Tate, James; Bell, Margaret; Beebe, Joe; Li, Hu; Daham, Basil; Andrews, Gordon

    2007-01-01

    An instrumented EURO I Ford Mondeo was used to perform a real-world comparison of vehicle exhaust (carbon dioxide, carbon monoxide, hydrocarbons and oxides of nitrogen) emissions and fuel consumption for diesel and 5% biodiesel in diesel blend (B5) fuels. Data were collected on multiple replicates of three standardised on-road journeys: (1) a simple urban route; (2) a combined urban/inter-urban route; and, (3) an urban route subject to significant traffic management. At the total journey measurement level, data collected here indicate that replacing diesel with a B5 substitute could result in significant increases in both NO x emissions (8-13%) and fuel consumption (7-8%). However, statistical analysis of probe vehicle data demonstrated the limitations of comparisons based on such total journey measurements, i.e., methods analogous to those used in conventional dynamometer/drive cycle fuel comparison studies. Here, methods based on the comparison of speed/acceleration emissions and fuel consumption maps are presented. Significant variations across the speed/acceleration surface indicated that direct emission and fuel consumption impacts were highly dependent on the journey/drive cycle employed. The emission and fuel consumption maps were used both as descriptive tools to characterise impacts and predictive tools to estimate journey-specific emission and fuel consumption effects. (author)

  2. Fast prediction of cytochrome P450 mediated drug metabolism

    DEFF Research Database (Denmark)

    Rydberg, Patrik Åke Anders; Poongavanam, Vasanthanathan; Oostenbrink, Chris

    2009-01-01

    Cytochrome P450 mediated metabolism of drugs is one of the major determinants of their kinetic profile, and prediction of this metabolism is therefore highly relevant during the drug discovery and development process. A new rule-based method, based on results from density functional theory...... calculations, for predicting activation energies for aliphatic and aromatic oxidations by cytochromes P450 is developed and compared with several other methods. Although the applicability of the method is currently limited to a subset of P450 reactions, these reactions describe more than 90...

  3. Evaluation of cytochrome P-450 concentration in Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Míriam Cristina Sakuragui Matuo

    2010-09-01

    Full Text Available Saccharomyces cerevisiae has been widely used in mutagenicity tests due to the presence of a cytochrome P-450 system, capable of metabolizing promutagens to active mutagens. There are a large number of S. cerevisiae strains with varying abilities to produce cytochrome P-450. However, strain selection and ideal cultivation conditions are not well defined. We compared cytochrome P-450 levels in four different S. cerevisiae strains and evaluated the cultivation conditions necessary to obtain the highest levels. The amount of cytochrome P-450 produced by each strain varied, as did the incubation time needed to reach the maximum level. The highest cytochrome P-450 concentrations were found in media containing fermentable sugars. The NCYC 240 strain produced the highest level of cytochrome P-450 when grown in the presence of 20 % (w/v glucose. The addition of ethanol to the media also increased cytochrome P-450 synthesis in this strain. These results indicate cultivation conditions must be specific and well-established for the strain selected in order to assure high cytochrome P-450 levels and reliable mutagenicity results.Linhagens de Saccharomyces cerevisiae tem sido amplamente empregadas em testes de mutagenicidade devido à presença de um sistema citocromo P-450 capaz de metabolizar substâncias pró-mutagênicas à sua forma ativa. Devido à grande variedade de linhagens de S. cerevisiae com diferentes capacidades de produção de citocromo P-450, torna-se necessária a seleção de cepas, bem como a definição das condições ideais de cultivo. Neste trabalho, foram comparados os níveis de citocromo P-450 em quatro diferentes linhagens de S. cerevisiae e avaliadas as condições de cultivo necessárias para obtenção de altas concentrações deste sistema enzimático. O maior nível enzimático foi encontrado na linhagem NCYC 240 em presença de 20 % de glicose (p/v. A adição de etanol ao meio de cultura também produziu um aumento na s

  4. Axionic membranes

    International Nuclear Information System (INIS)

    Aurilia, A.; Spallucci, E.

    1992-01-01

    A metal ring removed from a soap-water solution encloses a film of soap which can be mathematically described as a minimal surface having the ring as its only boundary. This is known to everybody. In this letter we suggest a relativistic extension of the above fluidodynamic system where the soap film is replaced by a Kalb-Ramand gauge potential B μν (x) and the ring by a closed string. The interaction between the B μν field and the string current excites a new configuration of the system consisting of a relativistic membrane bounded by the string. We call such a classical solution of the equation of motion an axionic membrane. As a dynamical system, the axionic membrane admits a Hamilton-Jacobi formulation which is an extension of the HJ theory of electromagnetic strings. (orig.)

  5. Bcl-2 and Bcl-xL overexpression inhibits cytochrome c release, activation of multiple caspases, and virus release following coxsackievirus B3 infection

    International Nuclear Information System (INIS)

    Carthy, Christopher M.; Yanagawa, Bobby; Luo Honglin; Granville, David J.; Yang, Decheng; Cheung, Paul; Cheung, Caroline; Esfandiarei, Mitra; Rudin, Charles M.; Thompson, Craig B.; Hunt, David W.C.; McManus, Bruce M.

    2003-01-01

    Coxsackievirus B3, a cytopathic virus in the family Picornaviridae, induces degenerative changes in host cell morphology. Here we demonstrate cytochrome c release and caspases-2, -3, -6, -7, -8, and -9 processing. Enforced Bcl-2 and Bcl-xL expression markedly reduced release of cytochrome c, presentation of the mitochondrial epitope 7A6, and depressed caspase activation following infection. In comparison, cell death using TRAIL ligand caused caspase-8 processing prior to cytochrome c release and executioner caspases and cell death was only partially rescued by Bcl-2 and Bcl-xL overexpression. Disruption of the mitochondrial inner membrane potential following CVB3 infection was not inhibited by zVAD.fmk treatment. Bcl-2 or Bcl-xL overexpression or zVAD.fmk treatment delayed the loss of host cell viability and decreased progeny virus release following infection. Our data suggest that mitochondrial release of cytochrome c may be an important early event in caspase activation in CVB3 infection, and, as such, may contribute to the loss of host-cell viability and progeny virus release

  6. Submitochondrial distributions and stabilities of subunits 4, 5, and 6 of yeast cytochrome oxidase in assembly defective mutants.

    Science.gov (United States)

    Glerum, D M; Tzagoloff, A

    1997-08-04

    The concentration and submitochondrial distribution of the subunit polypeptides of cytochrome oxidase have been studied in wild type yeast and in different mutants impaired in assembly of this respiratory complex. All the subunit polypeptides of the enzyme are associated with mitochondrial membranes of wild type cells, except for a small fraction of subunits 4 and 6 that is recovered in the soluble protein fraction of mitochondria. Cytochrome oxidase mutants consistently display a severe reduction in the steady-state concentration of subunit 1 due to its increased turnover. As a consequence, most of subunit 4, which normally is associated with subunit 1, is found in the soluble fraction. A similar shift from membrane-bound to soluble subunit 6 is seen in mutants blocked in expression of subunit 5a. In contrast, null mutations in COX6 coding for subunit 6 promote loss of subunit 5a. The absence of subunit 5a in the cox6 mutant is the result of proteolytic degradation rather than regulation of its expression by subunit 6. The possible role of the ATP-dependent proteases Rca1p and Afg3p in proteolysis of subunits 1 and 5a has been assessed in strains with combined mutations in COX6, RCA1, and/or AFG3. Immunochemical assays indicate that another protease(s) must be responsible for most of the proteolytic loss of these proteins.

  7. Metamaterial membranes

    International Nuclear Information System (INIS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2017-01-01

    We introduce a new class of metamaterial device to achieve separation of compounds by using coordinate transformations and metamaterial theory. By rationally designing the spatial anisotropy for mass diffusion, we simultaneously concentrate different compounds in different spatial locations, leading to separation of mixtures across a metamaterial membrane. The separation of mixtures into their constituent compounds is critically important in biophysics, biomedical, and chemical applications. We present a practical case where a mixture of oxygen and nitrogen diffusing through a polymeric planar matrix is separated. This work opens doors to new paradigms in membrane separations via coordinate transformations and metamaterials by introducing novel properties and unconventional mass diffusion phenomena. (paper)

  8. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Kärenlampi, S O; Marin, E; Hänninen, O O

    1981-01-01

    The appearance of cytochrome P-450 in the yeast Saccharomyces cerevisiae depended on the substrate supporting growth. Cytochrome P-450 was apparent in yeast cells grown on a strongly fermentable sugar such as D-glucose, D-fructose or sucrose. When yeast was grown on D-galactose, D-mannose or maltose, where fermentation and respiration occurred concomitantly, cytochrome P-450 was also formed. The cytochrome P-450 concentration was maximal at the beginning of the stationary phase of the culture...

  9. Non-isothermal kinetics model to predict accurate phase transformation and hardness of 22MnB5 boron steel

    Energy Technology Data Exchange (ETDEWEB)

    Bok, H.-H.; Kim, S.N.; Suh, D.W. [Graduate Institute of Ferrous Technology, POSTECH, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongsangbuk-do (Korea, Republic of); Barlat, F., E-mail: f.barlat@postech.ac.kr [Graduate Institute of Ferrous Technology, POSTECH, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongsangbuk-do (Korea, Republic of); Lee, M.-G., E-mail: myounglee@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul (Korea, Republic of)

    2015-02-25

    A non-isothermal phase transformation kinetics model obtained by modifying the well-known JMAK approach is proposed for application to a low carbon boron steel (22MnB5) sheet. In the modified kinetics model, the parameters are functions of both temperature and cooling rate, and can be identified by a numerical optimization method. Moreover, in this approach the transformation start and finish temperatures are variable instead of the constants that depend on chemical composition. These variable reference temperatures are determined from the measured CCT diagram using dilatation experiments. The kinetics model developed in this work captures the complex transformation behavior of the boron steel sheet sample accurately. In particular, the predicted hardness and phase fractions in the specimens subjected to a wide range of cooling rates were validated by experiments.

  10. Implementation of IAU Resolution 2009 B5, "in Defence of the night sky and the right to starlight"

    Science.gov (United States)

    Green, Richard F.; Walker, Constance Elaine

    2015-08-01

    IAU Resolution 2009 B5 calls on IAU members to protect the public`s right to an unpolluted night sky as well as the astronomical quality of the sky around major research observatories. The approach of Commission 50 - astronomical site protection - includes working with the lighting industry for appropriate products from rapidly evolving solid state technology, arming astronomers with training and materials for presentation, selective endorsement of key protection issues, cooperation with other IAU commissions for education and outreach with particular current attention to the International Year of Light, and provision of clear quantitative priorities for outdoor lighting standards. In 2012, these priorities were defined as full cut-off shielding, spectral management to minimize output shortward of 500 nm, and zone- and time-appropriate lighting levels. Revisiting the specifics of these priorities will be a topic for current discussion.

  11. DFT study on the isomerization and tautomerism in vitamins B3 (niacin), B5 (pantothenic acid) and B7 (biotin)

    Science.gov (United States)

    Valadbeigi, Younes; Farrokhpour, Hossein; Tabrizchi, Mahmoud

    2014-05-01

    Isomerization and tautomerism of the three water soluble vitamins including B3, B5 and B7 were studied applying density functional theory using B3LYP method in gas and aqueous phases. Activation energies (Ea), Gibbs free energies of activation (ΔG#), and imaginary frequencies of the transition state structures were calculated for all the isomerization and tautomerism reactions. Activation energies of the neutral → zwitterion (amine-enamine) tautomerism in vitamin B3 were 310-360 kJ/mol where these values for the keto-enol tautomerism were 100-130 kJ/mol. It was found that water molecule catalyzes the tautomerism and decreases the activation energies about 90-160 kJ/mol.

  12. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  13. Fasciola gigantica cathepsin B5 is an acidic endo- and exopeptidase of the immature and mature parasite.

    Science.gov (United States)

    Siricoon, Sinee; Vichasri Grams, Suksiri; Lertwongvisarn, Kittisak; Abdullohfakeeyah, Muntana; Smooker, Peter M; Grams, Rudi

    2015-12-01

    Cysteine proteases of the liver fluke Fasciola have been described as essential molecules in the infection process of the mammalian host. Destinct cathepsin Bs, which are already expressed in the metacercarial stage and released by the newly excysted juvenile are major actors in this process. Following infection their expression is stopped and the proteins will not be detectable any longer after the first month of development. On the contrary, the novel cathepsin B5 of Fasciola gigantica (FgCB5) described in this work was also found expressed in later juvenile stages and the mature worm. Like all previously described Fasciola family members it was located in the cecal epithelium of the parasite. Western blot analysis of adult antigen preparations detected procathepsin B5 in crude worm extract and in small amounts in the ES product. In support of these data, the sera of infected rabbits and mice were reactive with recombinant FgCB5 in Western blot and ELISA. Biochemical analysis of yeast-expressed FgCB5 revealed that it has properties of a lysosomal hydrolase optimized for activity at acid pH and that it is able to efficiently digest a broad spectrum of host proteins. Unlike previously characterized Fasciola family members FgCB5 carries a histidine doublet in the occluding loop equivalent to residues His110 and His111 of human mature cathepsin B and consequently showed substantial carboxydipeptidyl activity which depends on these two residues. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  14. Computational identification of putative cytochrome P450 genes in ...

    African Journals Online (AJOL)

    Chattha

    Economically, legumes represent the second most important family of crop plants after Poacea (grass family), accounting for ... further characterization of P450 genes with both known and unknown functions. MATERIALS AND METHODS ..... Cytochrome P450. In: Somerville CR, Meyerowitz EM (eds) .The Arabidopsis book,.

  15. Interplay between cytochrome c and gibberellins during Arabidopsis vegetative development

    Czech Academy of Sciences Publication Activity Database

    Racca, S.; Welchen, E.; Gras, D. E.; Tarkowská, Danuše; Turečková, Veronika; Maurino, V. G.; Gonzalez, D. H.

    2018-01-01

    Roč. 94, č. 1 (2018), s. 105-121 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * cytochrome c * DELLA protein * gibberellin * mitochondrion Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 5.901, year: 2016

  16. The Role of Cytochromes P450 in Infection

    Directory of Open Access Journals (Sweden)

    Elisavet Stavropoulou

    2018-01-01

    Full Text Available Cytochromes are expressed in many different tissues of the human body. They are found mostly in intestinal and hepatic tissues. Cytochromes P450 (CYPs are enzymes that oxidize substances using iron and are able to metabolize a large variety of xenobiotic substances. CYP enzymes are linked to a wide array of reactions including and O-dealkylation, S-oxidation, epoxidation, and hydroxylation. The activity of the typical P450 cytochrome is influenced by a variety of factors, such as genus, environment, disease state, herbicide, alcohol, and herbal medications. However, diet seems to play a major role. The mechanisms of action of dietary chemicals, macro- and micronutrients on specific CYP isoenzymes have been extensively studied. Dietary modulation has effects upon the metabolism of xenobiotics. Cytochromes harbor intra- or interindividual and intra- or interethnic genetic polymorphisms. Bacteria were shown to express CYP-like genes. The tremendous metabolic activity of the microbiota is associated to its abundant pool of CYP enzymes, which catalyze phase I and II reactions in drug metabolism. Disease states, intestinal disturbances, aging, environmental toxic effects, chemical exposures or nutrition modulate the microbial metabolism of a drug before absorption. A plethora of effects exhibited by most of CYP enzymes can resemble those of proinflammatory cytokines and IFNs. Moreover, they are involved in the initiation and persistence of pathologic pain by directly activating sensory neurons and inflammatory cytokines.

  17. Redox Thermodynamics of Cytochromes c Subjected to Urea Induced Unfolding

    NARCIS (Netherlands)

    Monari, S.; Ranieri, A.; Di Rocco, G.; van der Zwan, G.; Peressini, S.; Tavagnacco, C.; Millo, D.; Borsari, M.

    2009-01-01

    The thermodynamics of the electron transfer (ET) process for beef heart and yeast cytochromes c and the Lys72Ala/Lys73Ala/Lys79Ala mutant of the latter species subjected to progressive urea-induced unfolding was determined electrochemically. The results indicate the presence of at least three

  18. Multivariate Modeling of Cytochrome P450 Enzymes for 4 ...

    African Journals Online (AJOL)

    Conclusion: Apart from insights into important molecular properties for CYP inhibition, the findings may also guide further investigations of novel drug candidates that are unlikely to inhibit multiple CYP sub-types. Keywords: Antimalarial, Chloroquine, Cytochrome P450, Genetic algorithm-based multiple linear regression, ...

  19. A decade of crystallization drops: crystallization of the cbb3 cytochrome c oxidase from Pseudomonas stutzeri.

    Science.gov (United States)

    Buschmann, Sabine; Richers, Sebastian; Ermler, Ulrich; Michel, Hartmut

    2014-04-01

    The cbb3 cytochrome c oxidases are distant members of the superfamily of heme copper oxidases. These terminal oxidases couple O2 reduction with proton transport across the plasma membrane and, as a part of the respiratory chain, contribute to the generation of an electrochemical proton gradient. Compared with other structurally characterized members of the heme copper oxidases, the recently determined cbb3 oxidase structure at 3.2 Å resolution revealed significant differences in the electron supply system, the proton conducting pathways and the coupling of O2 reduction to proton translocation. In this paper, we present a detailed report on the key steps for structure determination. Improvement of the protein quality was achieved by optimization of the number of lipids attached to the protein as well as the separation of two cbb3 oxidase isoenzymes. The exchange of n-dodecyl-β-D-maltoside for a precisely defined mixture of two α-maltosides and decanoylsucrose as well as the choice of the crystallization method had a most profound impact on crystal quality. This report highlights problems frequently encountered in membrane protein crystallization and offers meaningful approaches to improve crystal quality. © 2014 The Protein Society.

  20. Study on the apoptosis mediated by cytochrome c and factors that affect the activation of bovine longissimus muscle during postmortem aging.

    Science.gov (United States)

    Zhang, Jiaying; Yu, Qunli; Han, Ling; Chen, Cheng; Li, Hang; Han, Guangxing

    2017-06-01

    This study investigates whether bovine longissimus muscle cell apoptosis occurs during postmortem aging and whether apoptosis is dependent on the mitochondria pathway. This study also determines the apoptosis process mediated by cytochrome c after its release from mitochondria and the factors that affect the activation processes. Results indicate that apoptotic nuclei were detected at 12 h postmortem. Cytochrome c release from the mitochondria to the cytoplasm activated the caspase-9 and caspase-3 at early postmortem aging and the activation of caspase-9 occurs before the activation of caspase-3. The pH level decreased during the first 48 h postmortem, whereas the mitochondria membrane permeability increased from 6 to 12 h. Results demonstrate that an apoptosis process of bovine muscle occurred during postmortem aging. Apoptosis was dependent on the mitochondria pathway and occurred at early postmortem aging. Increased mitochondria membrane permeability and low pH are necessary conditions for the release of cytochrome c during postmortem aging.

  1. Mycobacterium tuberculosis Modulates miR-106b-5p to Control Cathepsin S Expression Resulting in Higher Pathogen Survival and Poor T-Cell Activation

    Directory of Open Access Journals (Sweden)

    David Pires

    2017-12-01

    Full Text Available The success of tuberculosis (TB bacillus, Mycobacterium tuberculosis (Mtb, relies on the ability to survive in host cells and escape to immune surveillance and activation. We recently demonstrated that Mtb manipulation of host lysosomal cathepsins in macrophages leads to decreased enzymatic activity and pathogen survival. In addition, while searching for microRNAs (miRNAs involved in posttranscriptional gene regulation during mycobacteria infection of human macrophages, we found that selected miRNAs such as miR-106b-5p were specifically upregulated by pathogenic mycobacteria. Here, we show that miR-106b-5p is actively manipulated by Mtb to ensure its survival in macrophages. Using an in silico prediction approach, we identified miR-106b-5p with a potential binding to the 3′-untranslated region of cathepsin S (CtsS mRNA. We demonstrated by luminescence-based methods that miR-106b-5p indeed targets CTSS mRNA resulting in protein translation silencing. Moreover, miR-106b-5p gain-of-function experiments lead to a decreased CtsS expression favoring Mtb intracellular survival. By contrast, miR-106b-5p loss-of-function in infected cells was concomitant with increased CtsS expression, with significant intracellular killing of Mtb and T-cell activation. Modulation of miR-106b-5p did not impact necrosis, apoptosis or autophagy arguing that miR-106b-5p directly targeted CtsS expression as a way for Mtb to avoid exposure to degradative enzymes in the endocytic pathway. Altogether, our data suggest that manipulation of miR-106b-5p as a potential target for host-directed therapy for Mtb infection.

  2. Proteomes of Lactobacillus delbrueckii subsp. bulgaricus LBB.B5 Incubated in Milk at Optimal and Low Temperatures.

    Science.gov (United States)

    Yin, Xiaochen; Salemi, Michelle R; Phinney, Brett S; Gotcheva, Velitchka; Angelov, Angel; Marco, Maria L

    2017-01-01

    We identified the proteins synthesized by Lactobacillus delbrueckii subsp. bulgaricus strain LBB.B5 in laboratory culture medium (MRS) at 37°C and milk at 37 and 4°C. Cell-associated proteins were measured by gel-free, shotgun proteomics using high-performance liquid chromatography coupled with tandem mass spectrophotometry. A total of 635 proteins were recovered from all cultures, among which 72 proteins were milk associated (unique or significantly more abundant in milk). LBB.B5 responded to milk by increasing the production of proteins required for purine biosynthesis, carbohydrate metabolism (LacZ and ManM), energy metabolism (TpiA, PgK, Eno, SdhA, and GapN), amino acid synthesis (MetE, CysK, LBU0412, and AspC) and transport (GlnM and GlnP), and stress response (Trx, MsrA, MecA, and SmpB). The requirement for purines was confirmed by the significantly improved cell yields of L. delbrueckii subsp. bulgaricus when incubated in milk supplemented with adenine and guanine. The L. delbrueckii subsp. bulgaricus -expressed proteome in milk changed upon incubation at 4°C for 5 days and included increased levels of 17 proteins, several of which confer functions in stress tolerance (AddB, UvrC, RecA, and DnaJ). However, even with the activation of stress responses in either milk or MRS, L. delbrueckii subsp. bulgaricus did not survive passage through the murine digestive tract. These findings inform efforts to understand how L. delbrueckii subsp. bulgaricus is adapted to the dairy environment and its implications for its health-benefiting properties in the human digestive tract. IMPORTANCE Lactobacillus delbrueckii subsp. bulgaricus has a long history of use in yogurt production. Although commonly cocultured with Streptococcus salivarius subsp. thermophilus in milk, fundamental knowledge of the adaptive responses of L. delbrueckii subsp. bulgaricus to the dairy environment and the consequences of those responses on the use of L. delbrueckii subsp. bulgaricus as

  3. Evidence from Studies with Acifluorfen for Participation of a Flavin-Cytochrome Complex in Blue Light Photoreception for Phototropism of Oat Coleoptiles 12

    Science.gov (United States)

    Leong, Ta-Yan; Briggs, Winslow R.

    1982-01-01

    The diphenyl ether acifluorfen enhances the blue light-induced absorbance change in Triton X100-solubilized crude membrane preparations from etiolated oat (Avena sativa L. cv. Lodi) coleoptiles. Enhancement of the spectral change is correlated with a change in rate of dark reoxidation of a b-type cytochrome. Similar, although smaller, enhancement was obtained with oxyfluorfen, nitrofen, and bifenox. Light-minus-dark difference spectra in the presence and absence of acifluorfen, and the dithionite-reduced-minus oxidized difference spectrum indicate that acifluorfen is acting specifically at a blue light-sensitive cytochrome-flavin complex. Sodium azide, a flavin inhibitor, decreases the light-induced absorbance change significantly, but does not affect the dark reoxidation of the cytochrome. Hence, it is acting on the light reaction, suggesting that the photoreceptor itself is a flavin. Acifluorfen sensitizes phototropism in dark-grown oat seedlings such that the first positive response occurs with blue light fluences as little as one-third of those required to elicit the same response in seedlings grown in the absence of the herbicide. Both this increase in sensitivity to light and the enhancement of the light-induced cytochrome reduction vary with the applied acifluorfen concentration in a similar manner. The herbicide is without effect either on elongation or on the geotropic response of dark-grown oat seedlings, indicating that acifluorfen is acting specifically close to, or at the photoreceptor end of, the stimulus-response chain. It seems likely that the flavin-cytochrome complex serves to transduce the light signal into curvature in phototropism in oats, with the flavin moiety itself serving as the photoreceptor. PMID:16662593

  4. An expression tag toolbox for microbial production of membrane bound plant cytochromes P450

    DEFF Research Database (Denmark)

    Vazquez Albacete, Dario; Cavaleiro, Mafalda; Christensen, Ulla

    2017-01-01

    of the intermediate and the final product of the pathway. Finally, the effect of a robustly performing expression tag was explored with a library of 49 different P450s from medicinal plants and nearly half of these were improved in expression by more than 2-fold. The developed toolbox serves as platform to tune P450...... tag chimeras of the model plant P450 CYP79A1 in different Escherichia coli strains. Using a high-throughput screening platform based on C-terminal GFP fusions, we identify several highly expressing and robustly performing chimeric designs. Analysis of long-term cultures by flow cytometry showed...... homogeneous populations for some of the conditions. Three chimeric designs were chosen for a more complex combinatorial assembly of a multigene pathway consisting of two P450s and a redox partner. Cells expressing these recombinant enzymes catalysed the conversion of the substrate to highly different ratios...

  5. The effects of non-isothermal deformation on martensitic transformation in 22MnB5 steel

    International Nuclear Information System (INIS)

    Naderi, M.; Saeed-Akbari, A.; Bleck, W.

    2008-01-01

    In the present paper, the effects of process parameters on phase transformations during non-isothermal deformations are described and discussed. Non-isothermal high temperature compressive deformations were conducted on 22MnB5 boron steel by using deformation dilatometry. Cylindrical samples were uniaxially deformed at different strain rates ranging from 0.05 to 1.0 s -1 to a maximum compressive strain of 50%. Qualitative and quantitative investigations were carried out using surface hardness mapping data as well as dilatation curves. It was observed that a higher initial deformation temperatures resulted in a higher martensite fraction of the microstructure, while a variation in the martensite start temperature was negligible. Another conclusion was that by applying larger amounts of strain as well as higher force levels, not only the martensite start temperature, but also the amount of martensite was reduced. Moreover, it was concluded that using surface hardness mapping technique and dilatometry experiments were very reliable methods to quantify and qualify the coexisting phases

  6. The effects of non-isothermal deformation on martensitic transformation in 22MnB5 steel

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, M. [Department of Materials Science and Engineering, Faculty of Engineering, Arak University, Shariati Street, Arak (Iran, Islamic Republic of)], E-mail: malek.naderi@iehk.rwth-aachen.de; Saeed-Akbari, A.; Bleck, W. [Department of Ferrous Metallurgy, RWTH Aachen University, Aachen (Germany)

    2008-07-25

    In the present paper, the effects of process parameters on phase transformations during non-isothermal deformations are described and discussed. Non-isothermal high temperature compressive deformations were conducted on 22MnB5 boron steel by using deformation dilatometry. Cylindrical samples were uniaxially deformed at different strain rates ranging from 0.05 to 1.0 s{sup -1} to a maximum compressive strain of 50%. Qualitative and quantitative investigations were carried out using surface hardness mapping data as well as dilatation curves. It was observed that a higher initial deformation temperatures resulted in a higher martensite fraction of the microstructure, while a variation in the martensite start temperature was negligible. Another conclusion was that by applying larger amounts of strain as well as higher force levels, not only the martensite start temperature, but also the amount of martensite was reduced. Moreover, it was concluded that using surface hardness mapping technique and dilatometry experiments were very reliable methods to quantify and qualify the coexisting phases.

  7. Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells

    International Nuclear Information System (INIS)

    Nordlund, Henri R.; Laitinen, Olli H.; Uotila, Sanna T.H.; Kulmala, Minna; Kalkkinen, Nisse; Kulomaa, Markku S.

    2005-01-01

    The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches

  8. An investigation of laser cutting quality of 22MnB5 ultra high strength steel using response surface methodology

    Science.gov (United States)

    Tahir, Abdul Fattah Mohd; Aqida, Syarifah Nur

    2017-07-01

    In hot press forming, changes of mechanical properties in boron steel blanks have been a setback in trimming the final shape components. This paper presents investigation of kerf width and heat affected zone (HAZ) of ultra high strength 22MnB5 steel cutting. Sample cutting was conducted using a 4 kW Carbon Dioxide (CO2) laser machine with 10.6 μm wavelength with the laser spot size of 0.2 mm. A response surface methodology (RSM) using three level Box-Behnken design of experiment was developed with three factors of peak power, cutting speed and duty cycle. The parameters were optimised for minimum kerf width and HAZ formation. Optical evaluation using MITUTOYO TM 505 were conducted to measure the kerf width and HAZ region. From the findings, laser duty cycle was crucial to determine cutting quality of ultra-high strength steel; followed by cutting speed and laser power. Meanwhile, low power intensity with continuous wave contributes the narrowest kerf width formation and least HAZ region.

  9. Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells.

    Science.gov (United States)

    Nordlund, Henri R; Laitinen, Olli H; Uotila, Sanna T H; Kulmala, Minna; Kalkkinen, Nisse; Kulomaa, Markku S

    2005-10-14

    The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches.

  10. Analytical relation between the fifth-order vacuum-polarization coefficient b5 and the fifth-order Gell-Mann-Low function Ψ5

    International Nuclear Information System (INIS)

    Nigam, B.P.

    1994-01-01

    An expression for the fifth-order vacuum-polarization coefficient b 5 was reported. Recently, Broadhurst et al have indicated that this is in error by the omission of a fifth-order term. In this letter, after including the fifth-order Gell-Mann-Low (GML) function Ψ 5 in the GML equation, a relation between b 5 and Ψ 5 is derived. (author)

  11. Enterocin X, a Novel Two-Peptide Bacteriocin from Enterococcus faecium KU-B5, Has an Antibacterial Spectrum Entirely Different from Those of Its Component Peptides▿

    Science.gov (United States)

    Hu, Chih-Bo; Malaphan, Wanna; Zendo, Takeshi; Nakayama, Jiro; Sonomoto, Kenji

    2010-01-01

    Enterocin X, composed of two antibacterial peptides (Xα and Xβ), is a novel class IIb bacteriocin from Enterococcus faecium KU-B5. When combined, Xα and Xβ display variably enhanced or reduced antibacterial activity toward a panel of indicators compared to each peptide individually. In E. faecium strains that produce enterocins A and B, such as KU-B5, only one additional bacteriocin had previously been known. PMID:20418437

  12. Enterocin X, a novel two-peptide bacteriocin from Enterococcus faecium KU-B5, has an antibacterial spectrum entirely different from those of its component peptides.

    Science.gov (United States)

    Hu, Chih-Bo; Malaphan, Wanna; Zendo, Takeshi; Nakayama, Jiro; Sonomoto, Kenji

    2010-07-01

    Enterocin X, composed of two antibacterial peptides (Xalpha and Xbeta), is a novel class IIb bacteriocin from Enterococcus faecium KU-B5. When combined, Xalpha and Xbeta display variably enhanced or reduced antibacterial activity toward a panel of indicators compared to each peptide individually. In E. faecium strains that produce enterocins A and B, such as KU-B5, only one additional bacteriocin had previously been known.

  13. Sol-gel syntheses, luminescence, and energy transfer properties of α-GdB5O9:Ce(3+)/Tb(3+) phosphors.

    Science.gov (United States)

    Sun, Xiaorui; Gao, Wenliang; Yang, Tao; Cong, Rihong

    2015-02-07

    Sol-gel method was applied to prepare homogenous and highly crystalline phosphors with the formulas α-GdB5O9:xTb(3+) (0 ≤ x ≤ 1), α-Gd1-xCexB5O9 (0 ≤ x ≤ 0.40), α-GdB5O9:xCe(3+), 0.30Tb(3+) (0 ≤ x ≤ 0.15) and α-GdB5O9:0.20Ce(3+), xTb(3+) (0 ≤ x ≤ 0.10). The success of the syntheses was proved by the linear shrinkage or expansion of the cell volumes against the substitution contents. In α-GdB5O9:xTb(3+), an efficient energy transfer from Gd(3+) to Tb(3+) was observed and there was no luminescence quenching. The exceptionally high efficiency of the f-f excitations of Tb(3+) implies that these phosphors may be good green-emitting UV-LED phosphors. For α-Gd1-xCexB5O9, Ce(3+) absorbs the majority of the energy and transfers it to Gd(3+). Therefore, the co-doping of Ce(3+) and Tb(3+) leads to a significant enhancement in the green emission of Tb(3+). Our current results together with the study on α-GdB5O9:xEu(3+) in the literature indicate that α-GdB5O9 is a good phosphor host with advantages including controllable preparation, diverse cationic doping, the absence of concentration quenching, and effective energy transfer.

  14. Thermal expansion and strength characteristics of interatomic bonds in melts of A3 B5 (Al Sb, In Sb, Ga Sb, In As, Ga As) compounds

    International Nuclear Information System (INIS)

    Glazov, V.M.; Shchelikov, O.D.

    1998-01-01

    Temperature dependence of specific volume of the A 3 B 5 compounds melts is studied thermometrically and through the method of the penetrating γ radiation. Evaluation of melts thermal expansion coefficients under different temperatures is carried out. Estimates of the Debye characteristic temperatures and mean square dynamic shifts of atoms in the close order structure of the A 3 B 5 compounds melts are conducted on the basis of the obtained results

  15. MicroRNA-106b-5p regulates cisplatin chemosensitivity by targeting polycystic kidney disease-2 in non-small-cell lung cancer.

    Science.gov (United States)

    Yu, Shaorong; Qin, Xiaobing; Chen, Tingting; Zhou, Leilei; Xu, Xiaoyue; Feng, Jifeng

    2017-09-01

    Systemic therapy with cytotoxic agents remains one of the main treatment methods for non-small-cell lung cancer (NSCLC). Cisplatin is a commonly used chemotherapeutic agent, that, when combined with other drugs, is an effective treatment for NSCLC. However, effective cancer therapy is hindered by a patient's resistance to cisplatin. Unfortunately, the potential mechanism underlying such resistance remains unclear. In this study, we explored the mechanism of microRNA-106b-5p (miR-106b-5p), which is involved in the resistance to cisplatin in the A549 cell line of NSCLC. Quantitative real-time PCR was used to test the expression of miR-106-5p in the A549 and the A549/DDP cell line of NSCLC. The cell counting kit-8 assay was used to detect cell viability. Flow cytometry was used to measure cell cycle and cell apoptosis. Luciferase reporter assays and western blot were performed to confirm whether polycystic kidney disease-2 (PKD2) is a direct target gene of miR-106b-5p. Immunohistochemistry was performed to examine the distribution of PKD2 expression in patients who are sensitive and resistant to cisplatin. The experiments indicated that the expression of miR-106b-5p was significantly decreased in A549/DDP compared with that in A549. MiR-106b-5p affected the tolerance of cells to cisplatin by negatively regulating PKD2. Upregulation of miR-106b-5p or downregulation of PKD2 expression can cause A549/DDP cells to become considerably more sensitive to cisplatin. The results showed that miR-106b-5p enhanced the sensitivity of A549/DDP cells to cisplatin by targeting the expression of PKD2. These findings suggest that the use of miR-106b-5p may be a promising clinical strategy in the treatment of NSCLC.

  16. Lansoprazole is an antituberculous prodrug targeting cytochrome bc1.

    Science.gov (United States)

    Rybniker, Jan; Vocat, Anthony; Sala, Claudia; Busso, Philippe; Pojer, Florence; Benjak, Andrej; Cole, Stewart T

    2015-07-09

    Better antibiotics capable of killing multi-drug-resistant Mycobacterium tuberculosis are urgently needed. Despite extensive drug discovery efforts, only a few promising candidates are on the horizon and alternative screening protocols are required. Here, by testing a panel of FDA-approved drugs in a host cell-based assay, we show that the blockbuster drug lansoprazole (Prevacid), a gastric proton-pump inhibitor, has intracellular activity against M. tuberculosis. Ex vivo pharmacokinetics and target identification studies reveal that lansoprazole kills M. tuberculosis by targeting its cytochrome bc1 complex through intracellular sulfoxide reduction to lansoprazole sulfide. This novel class of cytochrome bc1 inhibitors is highly active against drug-resistant clinical isolates and spares the human H(+)K(+)-ATPase thus providing excellent opportunities for targeting the major pathogen M. tuberculosis. Our finding provides proof of concept for hit expansion by metabolic activation, a powerful tool for antibiotic screens.

  17. Interaction of rocuronium with human liver cytochromes P450

    OpenAIRE

    Anzenbacherova, Eva; Spicakova, Alena; Jourova, Lenka; Ulrichova, Jitka; Adamus, Milan; Bachleda, Petr; Anzenbacher, Pavel

    2015-01-01

    Rocuronium is a neuromuscular blocking agent acting as a competitive antagonist of acetylcholine. Results of an inhibition of eight individual liver microsomal cytochromes P450 (CYP) are presented. As the patients are routinely premedicated with diazepam, possible interaction of diazepam with rocuronium has been also studied. Results indicated that rocuronium interacts with human liver microsomal CYPs by binding to the substrate site. Next, concentration dependent inhibition of liver micro...

  18. Coordinate regulation of cytochrome and alternative pathway respiration in tobacco.

    Science.gov (United States)

    Vanlerberghe, G C; McIntosh, L

    1992-12-01

    In suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow), inhibition of the cytochrome pathway of respiration with antimycin A induced a large increase in the capacity of the alternative pathway over a period of approximately 12 h, as confirmed in both whole cells and isolated mitochondria. The increase in alternative pathway capacity required de novo RNA and protein synthesis and correlated closely with the increase of a 35-kD alternative oxidase protein. When the cytochrome pathway of intact cells was inhibited by antimycin A, respiration proceeded exclusively through the alternative pathway, reached rates significantly higher than before antimycin A addition, and was not stimulated by p-trifluoromethoxycarbonylcyanide (FCCP). When inhibition of the cytochrome pathway was relieved, alternative pathway capacity and the level of the 35-kD alternative oxidase protein declined. Respiration rate also declined and could once again be stimulated by FCCP. These observations show that the capacities of the mitochondrial electron transport pathways can be regulated in a coordinate fashion.

  19. Monoclonal antibodies to drosophila cytochrome P-450's

    International Nuclear Information System (INIS)

    Sundseth, S.S.; Kennel, S.J.; Waters, L.C.

    1987-01-01

    Hybridomas producing monoclonal antibodies were prepared by the fusion of SP2/0 myeloma cells and spleen cells from a female BALB/c mouse immunized by cytochrome P-450-A and P-450-B purified from Drosophila Hikone-R (BG) microsomes. P-450-A and P-450-B are electrophoretically distinct subsets of Drosophila P-450. P-450-A is ubiquitous among strains tested, while P-450-B is present in only a few strains displaying unique enzyme activities and increased insecticide resistance. The Oregon-R strain contains only cytochromes P-450-A and is susceptible to insecticides. The authors Hikone-R (BG) strain expresses both cytochromes P-450-A and P-450-B and is insecticide resistant. Antibody producing hybridomas were detected in a solid-phase radioimmunoassay (RIA) by binding to Hikone-R (BG) or Oregon-R microsomes. Four independent hybridomas were identified as producing monoclonal antibodies that recognized proteins in the P-450 complex by immunoblot experiments. Three monoclonal antibodies recognized P-450-A proteins, while one monoclonal antibody bound predominantly P-450-B. This monoclonal antibody also recognized southern armyworm (Spodoptera eridania, Cramer) microsomal proteins

  20. Covalent modification of cytochrome c by reactive metabolites of furan.

    Science.gov (United States)

    Phillips, Martin B; Sullivan, Mathilde M; Villalta, Peter W; Peterson, Lisa A

    2014-01-21

    Metabolism of the hepatotoxicant furan leads to protein adduct formation in the target organ. The initial bioactivation step involves cytochrome P450-catalyzed oxidation of furan, generating cis-2-butene-1,4-dial (BDA). BDA reacts with lysine to form pyrrolin-2-one adducts. Metabolic studies indicate that BDA also reacts with glutathione (GSH) to generate 2-(S-glutathionyl)butanedial (GSH-BDA), which then reacts with lysine to form GSH-BDA-lysine cross-links. To explore the relative reactivity of these two reactive intermediates, cytochrome c was reacted with BDA in the presence and absence of GSH. As judged by MALDI-TOF mass spectrometry, BDA reacts extensively with cytochrome c to form adducts that add 66 Da to the protein, consistent with the formation of pyrrolinone adducts. Addition of GSH to the reaction mixture reduced the overall extent of adduct formation. The mass of the adducted protein was shifted by 355 Da as expected for GSH-BDA-protein cross-link formation. LC-MS/MS analysis of the tryptic digests of the alkylated protein indicated that the majority of adducts occurred on lysine residues, with BDA reacting less selectively than GSH-BDA. Both types of adducts may contribute to the toxic effects of furan.

  1. Rational redesign of the biodegradative enzyme cytochrome P450 cam:

    International Nuclear Information System (INIS)

    Ornstein, R.; Paulsen, M.; Bass, M.; Arnold, G.

    1991-03-01

    Cytochromes P450, a superfamily of monooxygenase enzymes present in all kingdoms of living organisms, are very versatile with respect to substrate range and catalytic functionality. Many recalcitrant halogenated hydrocarbons, on DOE sites and throughout the nation, result in serious environmental impact. Cytochromes P450 have been shown to be catalytically capable of, at least partial, dehalogenation of some such compounds. Clearly, however, their active site stereochemistry and related functional components are not well suited for this role because the rates of dehalogenation are generally rather modest. The evolution of modified active site and access channel structures may proceed very slowly if multiple genetic changes are simultaneously required for enzyme adaptation. Since each mutational event is by itself a rare event, a basic premise of our research is that designing multiple changes into an enzyme may be more timely than waiting for them to occur biologically either via natural selection or under laboratory-controlled conditions. Starting with available high-resolution x-ray crystal structures, molecular modeling and molecular dynamics simulations have been used to probe the basic structure/function principles and conformational fluctuations of the biodegradative enzyme, cytochrome P450cam (camphor hydroxylase from Pseudomonas putida) and active site mutants, to provide the fundamental understanding necessary for rational engineering of the enzyme for modified substrate specificity. In the present paper, we review our progress to data, in the area of molecular dynamics simulations and active site redesign of P450cam. 36 refs., 2 figs

  2. Comparison of Nucleotide Sequence of P2C Region in Diabetogenic and Non-Diabetogenic Coxsackie Virus B5 Isolates

    Directory of Open Access Journals (Sweden)

    Cheng-Chong Chou

    2004-11-01

    Full Text Available Enteroviruses are environmental triggers in the pathogenesis of type 1 diabetes mellitus (DM. A sequence of six identical amino acids (PEVKEK is shared by the 2C protein of Coxsackie virus B and the glutamic acid decarboxylase (GAD molecules. Between 1995 and 2002, we investigated 22 Coxsackie virus B5 (CVB5 isolates from southern Taiwan. Four of these isolates were obtained from four new-onset type 1 DM patients with diabetic ketoacidosis. We compared a 300 nucleotide sequence in the 2C protein gene (p2C in 24 CVB5 isolates (4 diabetogenic, 18 non-diabetogenic and 2 prototype. We found 0.3-10% nucleotide differences. In the four isolates from type 1 DM patients, there was only 2.4-3.4% nucleotide difference, and there was only 1.7-7.1% nucleotide difference between type 1 DM isolates and non-diabetogenic isolates. Comparison of the nucleotide sequence between prototype virus and 22 CVB5 isolates revealed 18.4-24.1% difference. Twenty-one CVB5 isolates from type 1 DM and non-type 1 DM patients contained the PEVKEK sequence, as shown by the p2C nucleotide sequence. Our data showed that the viral p2C sequence with homology with GAD is highly conserved in CVB5 isolates. There was no difference between diabetogenic and non-diabetogenic CVB5 isolates. All four type 1 DM patients had at least one of the genetic susceptibility alleles HLA-DR, DQA1, DQB1. Other genetic and autoimmune factors such as HLA genetic susceptibility and GAD may also play important roles in the pathogenesis in type 1 DM.

  3. Vitamin B5 Reduces Bacterial Growth via Regulating Innate Immunity and Adaptive Immunity in Mice Infected with Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Wenting He

    2018-02-01

    Full Text Available The mechanisms by which vitamins regulate immunity and their effect as an adjuvant treatment for tuberculosis have gradually become very important research topics. Studies have found that vitamin B5 (VB5 can promote epithelial cells to express inflammatory cytokines. We aimed to examine the proinflammatory and antibacterial effect of VB5 in macrophages infected with Mycobacterium tuberculosis (MTB strain H37Rv and the therapeutic potential of VB5 in vivo with tuberculosis. We investigated the activation of inflammatory signal molecules (NF-κB, AKT, JNK, ERK, and p38, the expression of two primary inflammatory cytokines (tumor necrosis factor and interleukin-6 and the bacterial burdens in H37Rv-infected macrophages stimulated with VB5 to explore the effect of VB5 on the inflammatory and antibacterial responses of macrophages. We further treated the H37Rv-infected mice with VB5 to explore VB5’s promotion of the clearance of H37Rv in the lungs and the effect of VB5 on regulating the percentage of inflammatory cells. Our data showed that VB5 enhanced the phagocytosis and inflammatory response in macrophages infected with H37Rv. Oral administration of VB5 decreased the number of colony-forming units of H37Rv in lungs of mice at 1, 2, and 4 weeks after infection. In addition, VB5 regulated the percentage of macrophages and promoted CD4+ T cells to express interferon-γ and interleukin-17; however, it had no effect on the percentage of polymorphonuclear neutrophils, CD4+ and CD8+ T cells. In conclusion, VB5 significantly inhibits the growth of MTB by regulating innate immunity and adaptive immunity.

  4. Influence of temperature and friction on the 22MnB5 formability under hot stamping conditions

    Science.gov (United States)

    Venturato, G.; Ghiotti, A.; Bruschi, S.

    2018-05-01

    The need to increase the safety and decrease the weight of the car body-in-white has determined the success of the direct hot stamping process as a primary technology for the automotive sector. Thanks to this process, parts with high strength-to-weight ratio can be obtained along with high stiffness and increase of the crashworthiness properties. Moreover, the thinner metal sheets used to manufacture the pieces lead to a decrease of the total weight of the car body-in-white, with a consequent reduction of the CO2 emissions. The direct hot stamping process is becoming the key to obtain pieces with high mechanical properties, thanks to the quenching stage that allows the manufacture of complex shapes characterized by a fully martensitic structure, thanks to the forming stage at elevated temperature and subsequent hardening inside the cooled dies. The aim of this paper is the investigation of the influence that the forming temperature may have on the formability of 22MnB5 steel sheets, commonly used in the hot stamping process of automotive components. Nakajima tests were carried out at different temperatures and the Forming Limit Diagrams (FLDs) at rupture were obtained and analysed. The temperature influenced both the major and the minor strain at which the sheet failed, indicating that not only the formability increased at increasing temperature, but there was also a modification of the strain path, which means a modification of the strain states through which the part passes during the deformation process. Moreover, the influence of friction is studied using a model developed in the LS-Dyna FEM environment. The obtained data are of great importance for an accurate calibration of Finite Element (FE) models of the hot stamping of real components in order to get optimal process parameters to obtain defects-free pieces.

  5. Conformational changes of the NADPH-dependent cytochrome P450 reductase in the course of electron transfer to cytochromes P450

    DEFF Research Database (Denmark)

    Laursen, Tomas; Jensen, Kenneth; Møller, Birger Lindberg

    2011-01-01

    The NADPH-dependent cytochrome P450 reductase (CPR) is a key electron donor to eucaryotic cytochromes P450 (CYPs). CPR shuttles electrons from NADPH through the FAD and FMN-coenzymes into the iron of the prosthetic heme-group of the CYP. In the course of these electron transfer reactions, CPR und...... to serve as an effective electron transferring "nano-machine"....

  6. One-electron reduction of mitomycin c by rat liver : role of cytochrome P-450 and NADPH-cytochrome P-450 reductase

    NARCIS (Netherlands)

    Vromans, R M; Van de Straat, R; Groeneveld, M.; Vermeulen, N P

    1. The role of cytochrome P-450 in the one-electron reduction of mitomycin c was studied in rat hepatic microsomal systems and in reconstituted systems of purified cytochrome P-450. Formation of H2O2 from redox cycling of the reduced mitomycin c in the presence of O2 and the alkylation of

  7. In-silico assessment of protein-protein electron transfer. a case study: cytochrome c peroxidase--cytochrome c.

    Directory of Open Access Journals (Sweden)

    Frank H Wallrapp

    Full Text Available The fast development of software and hardware is notably helping in closing the gap between macroscopic and microscopic data. Using a novel theoretical strategy combining molecular dynamics simulations, conformational clustering, ab-initio quantum mechanics and electronic coupling calculations, we show how computational methodologies are mature enough to provide accurate atomistic details into the mechanism of electron transfer (ET processes in complex protein systems, known to be a significant challenge. We performed a quantitative study of the ET between Cytochrome c Peroxidase and its redox partner Cytochrome c. Our results confirm the ET mechanism as hole transfer (HT through residues Ala194, Ala193, Gly192 and Trp191 of CcP. Furthermore, our findings indicate the fine evolution of the enzyme to approach an elevated turnover rate of 5.47 × 10(6 s(-1 for the ET between Cytc and CcP through establishment of a localized bridge state in Trp191.

  8. Structure and expression of cytochrome f in an Oenothera plastome mutant.

    Science.gov (United States)

    Johnson, E M; Sears, B B

    1990-06-01

    The chloroplast mutant pm7 is one of a number of mutants derived from the plastome mutator (pm) line of Oenothera hookeri, strain Johansen. Immunoblotting showed that this mutant accumulates a protein that is cross-antigenic with cytochrome f, but five kilodaltons larger than the mature wild-type protein. Since cytochrome f is known to be translated on plastid ribosomes as a precursor with an amino-terminal extension, it is proposed that the unprocessed cytochrome f precursor accumulates in pm7. In addition to this precursor-sized cytochrome f protein, some mature-sized cytochrome f was also found in the mutant plastids. The pm7 mutation is inherited in a non-Mendelian fashion; but no alterations in chloroplast DNA restriction patterns, or differences in DNA sequence in the region encoding cytochrome f, were found in a comparison of the wild-type and pm7 chloroplast DNAs. Although the mutant was capable of synthesizing heme, no covalently-bound heme, normally found associated with mature, functional, cytochrome f was detected in the mutant at sizes expected for the presumed precursor, or for mature cytochrome f. These results indicate that the aberrant accumulation of a precursor-sized cytochrome f in pm7 is not due to a lesion directly in the plastid gene encoding cytochrome f, petA, or to a deficiency in the ability of the mutant plastids to synthesize or accumulate heme.

  9. Plasmon waveguide resonance spectroscopic evidence for differential binding of oxidized and reduced rhodobacter capsulatus cytochrome c(2) to the cytochrome bc(1) complex mediated by the conformation of the rieske iron-sulfur protein

    International Nuclear Information System (INIS)

    Devanathan, S.; Salamon, Z.; Tollin, G.; Fitch, J.C.; Meyer, T.E.; Berry, E.A.; Cusanovich, M.A.

    2007-01-01

    The dissociation constants for the binding of Rhodobacter capsulatus cytochrome c2 and its K93P mutant to the cytochrome bc1 complex embedded in a phospholipid bilayer were measured by plasmon waveguide resonance spectroscopy in the presence and absence of the inhibitor stigmatellin. The reduced form of cytochrome c2 strongly binds to reduced cytochrome bc1 (Kd = 0.02 M) but binds much more weakly to the oxidized form (Kd = 3.1 M). In contrast, oxidized cytochrome c2 binds to oxidized cytochrome bc1 in a biphasic fashion with Kd values of 0.11 and 0.58 M. Such a biphasic interaction is consistent with binding to two separate sites or conformations of oxidized cytochrome c2 and/or cytochrome bc1. However, in the presence of stigmatellin, we find that oxidized cytochrome c2 binds to oxidized cytochrome bc1 in a monophasic fashion with high affinity (Kd = 0.06 M) and reduced cytochrome c2 binds less strongly (Kd = 0.11 M) but ∼30-fold more tightly than in the absence of stigmatellin. Structural studies with cytochrome bc1, with and without the inhibitor stigmatellin, have led to the proposal that the Rieske protein is mobile, moving between the cytochrome b and cytochrome c1 components during turnover. In one conformation, the Rieske protein binds near the heme of cytochrome c1, while the cytochrome c2 binding site is also near the cytochrome c1 heme but on the opposite side from the Rieske site, where cytochrome c2 cannot directly interact with Rieske. However, the inhibitor, stigmatellin, freezes the Rieske protein iron-sulfur cluster in a conformation proximal to cytochrome b and distal to cytochrome c1. We conclude from this that the dual conformation of the Rieske protein is primarily responsible for biphasic binding of oxidized cytochrome c2 to cytochrome c1. This optimizes turnover by maximizing binding of the substrate, oxidized cytochrome c2, when the iron-sulfur cluster is proximal to cytochrome b and minimizing binding of the product, reduced cytochrome c

  10. Robotic membranes

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    The relationship between digital and analogue is often constructed as one of opposition. The perception that the world is permeated with underlying patterns of data, describing events and matter alike, suggests that information can be understood apart from the substance to which it is associated......, and that its encoded logic can be constructed and reconfigured as an isolated entity. This disembodiment of information from materiality implies that an event like a thunderstorm, or a material like a body, can be described equally by data, in other words it can be read or written. The following prototypes......, Vivisection and Strange Metabolisms, were developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts in Copenhagen as a means of engaging intangible digital data with tactile physical material. As robotic membranes, they are a dual examination...

  11. HYSTOPATHOLOGIC CHANGES ON AORTA OF CIRRHOSIS MALE RATS (RATTUS NORVEGICUS INDUCTED BY ESCHERICIA COLI O55 : B5

    Directory of Open Access Journals (Sweden)

    Tony Hartono

    2008-09-01

    Full Text Available ABSTRACT The background of this study is to visualize histopathological changes on aorta of cirrhosis rats (Rattus norvegicus induced by endotoxin E. coli O55 : B5 This study was a laboratory experimental using complete randomized design with five treatments and five repetitions. Twenty five male Wistar rats were used as experimental model of cirrhosis by bile duct ligation (BDL technique. Three weeks after BDL, all cirrhosis experimental models were induced with a single intra venous injection of Eschericia coli endotoxin (3mg/kg b.b in 1 ml sterile saline, except those of five control rats that induced with sterile saline at the same volume only. Aortas of control rats group were excised at 6 hours after induction with sterile saline, whereas the other four groups were done at 6, 12, 18 and 24 hours after induction with endotoxin. The quantity of endothelial cell, discontinuity increment and the thickness of internal elastic lamina layer were observed to know histopathological changes on aorta. Histopathological changes were observed using a light mycroscope, dyscontinuity and thickness of internal elastic lamina were measured by reticular micrometer. The quantity of endothelial cell on control and observation interval of 6 and 12 hours as significant difference (P<0.05, which are bigger than that of 18 and 24 hours. Rats in the control group have the biggest quantity comparing to the other treatments. Discontinuity and thickness of internal elastic lamina layer had significant difference (P<0.05 on control, observation on 6 and 12 hours compared to observation on 18 and 24 hours after being induced with endotoxine. The highest discontinuity and the thinnest elastic lamina internal were obtained within observation on 24 hours. VCAM-1 expression on control group differ from observation on 6 and 12hours but all of them have significant difference to observation on 18 and 24 hours (P<0,05. The decrease of endothelial cell number is caused by

  12. Heterologous expression of the isopimaric acid pathway in Nicotiana benthamiana and the effect of N-terminal modifications of the involved cytochrome P450 enzyme

    DEFF Research Database (Denmark)

    Gnanasekaran, Thiyagarajan; Vavitsas, Konstantinos; Andersen-Ranberg, Johan

    2015-01-01

    in the infiltrated leaves. Furthermore, we demonstrated that a modified membrane anchor is a prerequisite for a functional CYP720B4 enzyme when the chloroplast targeting peptide is added. We report the accumulation of 45-55 μg/g plant dry weight of isopimaric acid four days after the infiltration with the modified...... in the chloroplast and subsequently oxidized by a cytochrome P450, CYP720B4. RESULTS: We transiently expressed the isopimaric acid pathway in Nicotiana benthamiana leaves and enhanced its productivity by the expression of two rate-limiting steps in the pathway (providing the general precursor of diterpenes). This co...

  13. The effect of X-irradiation on vitamin E deficient rat liver mitochondrial ATPase and cytochrome c oxidase

    International Nuclear Information System (INIS)

    Korkut, S.

    1978-01-01

    Male albino rats were fed for 3 weeks on standard diets or on diets either deficient in or supplemented by vitamin E, whole-body X-irradiated and then immediately decapitated. Liver mitochondrial ATPase activity was stimulated and cytochrome c oxidase inhibited in the irradiated vitamin E deficient group. These activities were not influenced by irradiation in the rats fed on vitamin E supplemented and standard diets. The live mitochondrial vitamin E level was decreased in rats fed on the deficient diet. No differences in liver mitochondrial vitamin E levels were observed after X-irradiation of rats fed on any of the diets. The results suggest that the liver mitochondrial inner-membrane structure may be altered by a diet deficient in vitamin E. (U.K.)

  14. JS-K, a nitric oxide prodrug, induces cytochrome c release and caspase activation in HL-60 myeloid leukemia cells.

    Science.gov (United States)

    Udupi, Vidya; Yu, Margaret; Malaviya, Swati; Saavedra, Joseph E; Shami, Paul J

    2006-10-01

    Nitric oxide (NO) induces differentiation and apoptosis in acute myelogenous leukemia (AML) cells. The NO prodrug O2-(2,4-dinitrophenyl)1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate, or JS-K, has potent antileukemic activity. JS-K induces apoptosis in HL-60 cells by a caspase-dependent mechanism. The purpose of this study was to determine the pathway through which JS-K induces apoptosis. We show that JS-K alters mitochondrial membrane potential (DeltaPsim) and induces cytochrome c release from mitochondria into the cytoplasm. Treatment with JS-K resulted in activation of Caspase (Casp) 9, Casp 3 and Casp 8. JS-K constitutes a promising lead for a new class of anti-leukemic agents.

  15. Charge Transfer at the Qo-Site of the Cytochrome bc1 Complex Leads to Superoxide Production

    DEFF Research Database (Denmark)

    Bøgh Salo, Adrian; Husen, Peter; Solov'yov, Ilia A

    2017-01-01

    The cytochrome bc1 complex is the third protein complex in the electron transport chain of mitochondria or photosynthetic bacteria, and it serves to create an electrochemical gradient across a cellular membrane, which is used to drive ATP synthesis. The purpose of this study is to investigate...... interactions involving an occasionally trapped oxygen molecule (O2) at the so-called Qo site of the bc1 complex, which is one of the central active sites of the protein complex, where redox reactions are expected to occur. The investigation focuses on revealing the possibility of the oxygen molecule...... to influence the normal operation of the bc1 complex and acquire an extra electron, thus becoming superoxide, a biologically toxic free radical. The process is modeled by applying quantum chemical calculations to previously performed classical molecular dynamics simulations. Investigations reveal several...

  16. Heterogeneous binding of sigma radioligands in the rat brain and liver; Possible relationship to subforms of cytochrome P-450

    Energy Technology Data Exchange (ETDEWEB)

    Ross, S B [Research Laboratories, Astra Research Centre AB, Soedertaejle (Sweden)

    1991-01-01

    The binding of four sigma receptor ligands, {sup 3}H-(+)-N-allyl-N-normetazocine ({sup 3}H-(+)-SKF 10,047), {sup 3}H-(+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine ({sup 3}H-(+)-3-PPP), {sup 3}H-haloperidol and {sup 3}H-N,N'-di(o-totyl)guanidine ({sup 3}H-DTG), and the cytochrome P450IID6 ligand and dopamine uptake inhibitor {sup 3}H-1-(2-(diphenylmethoxy)ethyl)-4-(3-phenylpropyl)piperazine ({sup 3}H-GBR 12935) to membranal preparations of rat liver or whole rat brain was examined regarding kinetical properties and inhibition by various compounds with affinity for sigma binding sites or cytochrome P-450. In rat brain the density of binding sites was increased in order (+)-SKF 10,047<(+)-3-PPPcytochrome P-450 inhibitor proadifen (SKF 525A), like haloperidol, was a potent inhibitor of the binding of {sup 3}H-(+)-SKF 10,047, {sup 3}H-(+)-3-PPP and {sup 3}H-haloperidol to the liver and brain preparations, less active in inhibiting the binding of {sup 3}H-DTG and least effective on the binding of {sup 3}H-GBR 12935. Another cytochrome P-450 inhibitor, L-lobeline, was particularly potent in inhibiting the binding of {sup 3}H-DTG but was also quite potent inhibitor of the binding of the other sigma ligands. It was less potent in inhibiting the binding of {sup 3}H-GBR 12935. The binding of the latter ligand was potently inhibited by the analogous compound GBR 12909 but of the other compounds examined only L-lobeline, proadifen, haloperidol, DTG and (+)-3-PPP had IC50 values below 10 {mu}M. (Abstract Truncated)

  17. The Cytochrome b 6 f Complex: Biophysical Aspects of Its Functioning in Chloroplasts.

    Science.gov (United States)

    Tikhonov, Alexander N

    2018-01-01

    This chapter presents an overview of structural properties of the cytochrome (Cyt) b 6 f complex and its functioning in chloroplasts. The Cyt b 6 f complex stands at the crossroad of photosynthetic electron transport pathways, providing connectivity between Photosystem (PSI) and Photosysten II (PSII) and pumping protons across the membrane into the thylakoid lumen. After a brief review of the chloroplast electron transport chain, the consideration is focused on the structural organization of the Cyt b 6 f complex and its interaction with plastoquinol (PQH 2 , reduced form of plastoquinone), a mediator of electron transfer from PSII to the Cyt b 6 f complex. The processes of PQH 2 oxidation by the Cyt b 6 f complex have been considered within the framework of the Mitchell's Q-cycle. The overall rate of the intersystem electron transport is determined by PQH 2 turnover at the quinone-binding site Q o of the Cyt b 6 f complex. The rate of PQH 2 oxidation is controlled by the intrathylakoid pH in , which value determines the protonation/deprotonation events in the Q o -center. Two other regulatory mechanisms associated with the Cyt b 6 f complex are briefly overviewed: (i) redistribution of electron fluxes between alternative (linear and cyclic) pathways, and (ii) "state transitions" related to redistribution of solar energy between PSI and PSII.

  18. Glucose metabolism determines resistance of cancer cells to bioenergetic crisis after cytochrome-c release.

    LENUS (Irish Health Repository)

    Huber, Heinrich J

    2011-03-01

    Many anticancer drugs activate caspases via the mitochondrial apoptosis pathway. Activation of this pathway triggers a concomitant bioenergetic crisis caused by the release of cytochrome-c (cyt-c). Cancer cells are able to evade these processes by altering metabolic and caspase activation pathways. In this study, we provide the first integrated system study of mitochondrial bioenergetics and apoptosis signalling and examine the role of mitochondrial cyt-c release in these events. In accordance with single-cell experiments, our model showed that loss of cyt-c decreased mitochondrial respiration by 95% and depolarised mitochondrial membrane potential ΔΨ(m) from -142 to -88 mV, with active caspase-3 potentiating this decrease. ATP synthase was reversed under such conditions, consuming ATP and stabilising ΔΨ(m). However, the direction and level of ATP synthase activity showed significant heterogeneity in individual cancer cells, which the model explained by variations in (i) accessible cyt-c after release and (ii) the cell\\'s glycolytic capacity. Our results provide a quantitative and mechanistic explanation for the protective role of enhanced glucose utilisation for cancer cells to avert the otherwise lethal bioenergetic crisis associated with apoptosis initiation.

  19. The Complexity of Mitochondrial Complex IV: An Update of Cytochrome c Oxidase Biogenesis in Plants

    Science.gov (United States)

    Mansilla, Natanael; Racca, Sofia; Gras, Diana E.; Gonzalez, Daniel H.

    2018-01-01

    Mitochondrial respiration is an energy producing process that involves the coordinated action of several protein complexes embedded in the inner membrane to finally produce ATP. Complex IV or Cytochrome c Oxidase (COX) is the last electron acceptor of the respiratory chain, involved in the reduction of O2 to H2O. COX is a multimeric complex formed by multiple structural subunits encoded in two different genomes, prosthetic groups (heme a and heme a3), and metallic centers (CuA and CuB). Tens of accessory proteins are required for mitochondrial RNA processing, synthesis and delivery of prosthetic groups and metallic centers, and for the final assembly of subunits to build a functional complex. In this review, we perform a comparative analysis of COX composition and biogenesis factors in yeast, mammals and plants. We also describe possible external and internal factors controlling the expression of structural proteins and assembly factors at the transcriptional and post-translational levels, and the effect of deficiencies in different steps of COX biogenesis to infer the role of COX in different aspects of plant development. We conclude that COX assembly in plants has conserved and specific features, probably due to the incorporation of a different set of subunits during evolution. PMID:29495437

  20. Bioactivation and Regioselectivity of Pig Cytochrome P450 3A29 towards Aflatoxin B1

    Directory of Open Access Journals (Sweden)

    Jun Wu

    2016-09-01

    Full Text Available Due to unavoidable contaminations in feedstuff, pigs are easily exposed to aflatoxin B1 (AFB1 and suffer from poisoning, thus the poisoned products potentially affect human health. Heretofore, the metabolic process of AFB1 in pigs remains to be clarified, especially the principal cytochrome P450 oxidases responsible for its activation. In this study, we cloned CYP3A29 from pig liver and expressed it in Escherichia coli, and its activity has been confirmed with the typical P450 CO-reduced spectral characteristic and nifedipine-oxidizing activity. The reconstituted membrane incubation proved that the recombinant CYP3A29 was able to oxidize AFB1 to form AFB1-exo-8,9-epoxide in vitro. The structural basis for the regioselective epoxidation of AFB1 by CYP3A29 was further addressed. The T309A mutation significantly decreased the production of AFBO, whereas F304A exhibited an enhanced activation towards AFB1. In agreement with the mutagenesis study, the molecular docking simulation suggested that Thr309 played a significant role in stabilization of AFB1 binding in the active center through a hydrogen bond. In addition, the bulk phenyl group of Phe304 potentially imposed steric hindrance on the binding of AFB1. Our study demonstrates the bioactivation of pig CYP3A29 towards AFB1 in vitro, and provides the insight for understanding regioselectivity of CYP3A29 to AFB1.

  1. Jacobsen Catalyst as a Cytochrome P450 Biomimetic Model for the Metabolism of Monensin A

    Directory of Open Access Journals (Sweden)

    Bruno Alves Rocha

    2014-01-01

    Full Text Available Monensin A is a commercially important natural product isolated from Streptomyces cinnamonensins that is primarily employed to treat coccidiosis. Monensin A selectively complexes and transports sodium cations across lipid membranes and displays a variety of biological properties. In this study, we evaluated the Jacobsen catalyst as a cytochrome P450 biomimetic model to investigate the oxidation of monensin A. Mass spectrometry analysis of the products from these model systems revealed the formation of two products: 3-O-demethyl monensin A and 12-hydroxy monensin A, which are the same ones found in in vivo models. Monensin A and products obtained in biomimetic model were tested in a mitochondrial toxicity model assessment and an antimicrobial bioassay against Staphylococcus aureus, S. aureus methicillin-resistant, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli. Our results demonstrated the toxicological effects of monensin A in isolated rat liver mitochondria but not its products, showing that the metabolism of monensin A is a detoxification metabolism. In addition, the antimicrobial bioassay showed that monensin A and its products possessed activity against Gram-positive microorganisms but not for Gram-negative microorganisms. The results revealed the potential of application of this biomimetic chemical model in the synthesis of drug metabolites, providing metabolites for biological tests and other purposes.

  2. Expression and characterization of truncated human heme oxygenase (hHO-1) and a fusion protein of hHO-1 with human cytochrome P450 reductase.

    Science.gov (United States)

    Wilks, A; Black, S M; Miller, W L; Ortiz de Montellano, P R

    1995-04-04

    A human heme oxygenase (hHO-1) gene without the sequence coding for the last 23 amino acids has been expressed in Escherichia coli behind the pho A promoter. The truncated enzyme is obtained in high yields as a soluble, catalytically-active protein, making it available for the first time for detailed mechanistic studies. The purified, truncated hHO-1/heme complex is spectroscopically indistinguishable from that of the rat enzyme and converts heme to biliverdin when reconstituted with rat liver cytochrome P450 reductase. A self-sufficient heme oxygenase system has been obtained by fusing the truncated hHO-1 gene to the gene for human cytochrome P450 reductase without the sequence coding for the 20 amino acid membrane binding domain. Expression of the fusion protein in pCWori+ yields a protein that only requires NADPH for catalytic turnover. The failure of exogenous cytochrome P450 reductase to stimulate turnover and the insensitivity of the catalytic rate toward changes in ionic strength establish that electrons are transferred intramolecularly between the reductase and heme oxygenase domains of the fusion protein. The Vmax for the fusion protein is 2.5 times higher than that for the reconstituted system. Therefore, either the covalent tether does not interfere with normal docking and electron transfer between the flavin and heme domains or alternative but equally efficient electron transfer pathways are available that do not require specific docking.

  3. Calculation of the Dielectric Constant as a Function of Temperature Close to the Smectic A-Smectic B Transition in B5 Using the Mean Field Model

    Directory of Open Access Journals (Sweden)

    Hamit Yurtseven

    2012-01-01

    Full Text Available The temperature dependence of the static dielectric constant ( is calculated close to the smectic A-smectic B ( transition ( = 71.3°C for the liquid crystal compound B5. By expanding the free energy in terms of the order parameter in the mean field theory, the expression for the dielectric susceptibility (dielectric constant is derived and is fitted to the experimental data for which was obtained at the field strengths of 0 and 67 kV/cm from literature. Coefficients in the free energy expansion are determined from our fit for the transition of B5. Our results show that the observed behaviour of the dielectric constant close to the transition in B5 can be described satisfactorily by our mean field model.

  4. The amino acid sequence of cytochrome c from Cucurbita maxima L. (pumpkin)

    Science.gov (United States)

    Thompson, E. W.; Richardson, M.; Boulter, D.

    1971-01-01

    The amino acid sequence of pumpkin cytochrome c was determined on 2μmol of protein. Some evidence was found for the occurrence of two forms of cytochrome c, whose sequences differed in three positions. Pumpkin cytochrome c consists of 111 residues and is homologous with mitochondrial cytochromes c from other plants. Experimental details are given in a supplementary paper that has been deposited as Supplementary Publication SUP 50005 at the National Lending Library for Science and Technology, Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1971), 121, 7. PMID:5131733

  5. The distinct role of strand-specific miR-514b-3p and miR-514b-5p in colorectal cancer metastasis.

    Science.gov (United States)

    Ren, Lin-Lin; Yan, Ting-Ting; Shen, Chao-Qin; Tang, Jia-Yin; Kong, Xuan; Wang, Ying-Chao; Chen, Jinxian; Liu, Qiang; He, Jie; Zhong, Ming; Chen, Hao-Yan; Hong, Jie; Fang, Jing-Yuan

    2018-06-07

    The abnormal expression of microRNAs (miRNAs) in colorectal cancer (CRC) progression has been widely investigated. It was reported that the same hairpin RNA structure could generate mature products from each strand, termed 5p and 3p, which binds different target mRNAs. Here, we explored the expression, functions, and mechanisms of miR-514b-3p and miR-514b-5p in CRC cells and tissues. We found that miR-514b-3p was significantly down-regulated in CRC samples, and the ratio of miR-514b-3p/miR-514b-5p increased from advanced CRC, early CRC to matched normal colorectal tissues. Follow-up functional experiments illustrated that miR-514b-3p and miR-514b-5p had distinct effects through interacting with different target genes: MiR-514b-3p reduced CRC cell migration, invasion and drug resistance through increasing epithelial marker and decreasing mesenchymal marker expressions, conversely, miR-514b-5p exerted its pro-metastatic properties in CRC by promoting EMT progression. MiR-514b-3p overexpressing CRC cells developed tumors more slowly in mice compared with control cells, however, miR-514b-5p accelerated tumor metastasis. Overall, our data indicated that though miR-514b-3p and miR-514b-5p were transcribed from the same RNA hairpin, each microRNA has distinct effect on CRC metastasis.

  6. Covalent Modification of Cytochrome C by Reactive Metabolites of Furan

    OpenAIRE

    Phillips, Martin B.; Sullivan, Mathilde M.; Villalta, Peter W.; Peterson, Lisa A.

    2013-01-01

    Metabolism of the hepatotoxicant furan leads to protein adduct formation in the target organ. The initial bioactivation step involves cytochrome P450-catalyzed oxidation of furan, generating cis-2-butene-1,4-dial (BDA). BDA reacts with lysine to form pyrrolin-2-one adducts. Metabolic studies indicate that BDA also reacts with glutathione (GSH) to generate 2-(S-glutathionyl)butanedial (GSH-BDA), which then reacts with lysine to form GSH-BDA-lysine cross-links. To explore the relative reactivit...

  7. Redox Thermodynamics of Cytochromes c Subjected to Urea Induced Unfolding

    OpenAIRE

    Monari, S.; Ranieri, A.; Di Rocco, G.; van der Zwan, G.; Peressini, S.; Tavagnacco, C.; Millo, D.; Borsari, M.

    2009-01-01

    The thermodynamics of the electron transfer (ET) process for beef heart and yeast cytochromes c and the Lys72Ala/Lys73Ala/Lys79Ala mutant of the latter species subjected to progressive urea-induced unfolding was determined electrochemically. The results indicate the presence of at least three protein forms which were assigned to a low-temperature and a high-temperature His-Met intermediate species and a bis-histidinate form (although the presence of a His-Lys form cannot be excluded). The muc...

  8. Enzymes activities involving bacterial cytochromes incorporated in clays

    International Nuclear Information System (INIS)

    Lojou, E.; Giudici-Orticoni, M.Th.; Bianco, P.

    2005-01-01

    With the development of bio electrochemistry, researches appeared on the enzymes immobilization at the surface of electrodes for the realization of bioreactors and bio sensors. One of the main challenges is the development of host matrix able to immobilize the protein material preserving its integrity. In this framework the authors developed graphite electrodes modified by clay films. These electrodes are examined for two enzyme reactions involving proteins of sulfate-reduction bacteria. Then in the framework of the hydrogen biological production and bioreactors for the environmental pollution de-pollution, the electrochemical behavior of the cytochrome c3 in two different clays deposed at the electrode is examined

  9. Induction of apoptosis in cancer cells by NiZn ferrite nanoparticles through mitochondrial cytochrome C release

    Directory of Open Access Journals (Sweden)

    Al-Qubaisi MS

    2013-10-01

    Full Text Available Mothanna Sadiq Al-Qubaisi,1 Abdullah Rasedee,1,2 Moayad Husein Flaifel,3 Sahrim Hj Ahmad,3 Samer Hussein-Al-Ali,1 Mohd Zobir Hussein,4 Zulkarnain Zainal,4 Fatah H Alhassan,4 Yun H Taufiq-Yap,4 Eltayeb EM Eid,5 Ismail Adam Arbab,1 Bandar A Al-Asbahi,3 Thomas J Webster,6,7 Mohamed Ezzat El Zowalaty1,8,9 1Institute of Bioscience, 2Faculty of Veterinary Medicine, Universiti Putra Malaysia, 3Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 4Faculty of Science, Universiti Putra Malaysia, Selangor, Malaysia; 5College of Pharmacy, Qassim University, Buraidah, Saudi Arabia; 6Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA; 7Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 8Faculty of Pharmacy, Zagazig University, Zagazig, Egypt; 9Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Saudi Arabia Abstract: The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2 ± 29.8 nm, 0.524 ± 0.013, and -60 ± 14 mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29 cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated

  10. Reduction of reversed micelle entrapped cytochrome c and cytochrome c3 by electrons generated by pulse radiolysis or by pyrene photoionization

    International Nuclear Information System (INIS)

    Vlsser, A.J.W.G.; Fendler, J.H.

    1982-01-01

    Horse heart cytochrome c and cytochrome c 3 , isolated from Desulfovibrio vulgaris, have been incorporated in sodium bis(2-ethylhexyl)sulfosuccinate (AOT) entrapped water pools in heptane. The absorption spectra of the cytochromes have been found to be strongly dependent on the water to AOT concentration ratios. The proteins solubilized in heptane by the AOT reversed micelles have retained their ability to mediate electron transfer. They reacted very rapidly with hydrated electrons, generated pulse radiolytically or, alternatively, formed in the laser photoionization of pyrene

  11. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.; Choi, Seung Hak

    2012-01-01

    . The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane

  12. Carbonic anhydrase activity of integral-functional complexes of thylakoid membranes of spinach chloroplasts

    Directory of Open Access Journals (Sweden)

    A. V. Semenihin

    2015-06-01

    Full Text Available Isolated thylakoid membranes were disrupted by treatment with nonionic detergents digitonin or dodecyl maltoside. Solubilized polypeptide complexes were separated by native gel charge shift electrophoresis. The position of ATP-synthase complex and its isolated catalytic part (CF1 within gel was determined using the color reaction for ATPase activity. Due to the presence of cytochromes, the red band in unstained gels corresponded to the cytochrome b6f complex. Localization of the cytochrome b6f complex, ATP synthase and coupling CF1 in the native gel was confirmed by their subunit composition determined after SDS-electrophoretic analysis. Carbonic anhydrase (CA activity in polypeptide zones of PS II, cytochrome b6f complex, and ATP-synthase CF1 was identified in native gels using indicator bromothymol blue. CA activity of isolated CF1 in solution was determined by infrared gas analysis as the rate of bicarbonate dehydration. The water-soluble acetazolamide, an inhibitor of CA, unlike lipophilic ethoxyzolamide inhibited CA activity of CF1. Thus, it was shown for the first time that ATP-synthase has a component which is capable of catalyzing the interconversion of forms of carbonic acid associated with proton exchange. The data obtained suggest the presence of multiple forms of carbonic anhydrase in the thylakoid membranes of spinach chloroplasts and confirm their involvement in the proton transfer to the ATP synthase.

  13. [Correcting influence of vitamin E short chain derivatives on lipid peroxidation, liver cell membrane, and chromatin structure when rats are exposed to embichin].

    Science.gov (United States)

    Kovalenko, V M; Byshovets', T F; Hubs'kyĭ, Iu I; Levyts'kyĭ, Ie L; Shaiakhmetova, H M; Marchenko, O M; Voloshyna, O S; Saĭfetdinova, H A; Okhrimenko, V O; Donchenko, H V

    2000-01-01

    Embikhin causes activation of LPO processes in endoplasmic reticulum and in nuclear chromatine fractions of rat liver cells. The latter is accompanied by the impairment of repressive and active nuclear chromatine fractions structure. Derivate of vitamin E in these conditions renders correcting action on parameters of lipid peroxidation in the investigated subcellular structures, testifying its positive influence on the cell heredity apparatus state. The normalizing action of tocopherol derivative on cytochromes P450 and b5 levels is shown.

  14. Crystallization and diffraction properties of the Fab fragment of 3B5H10, an antibody specific for disease-causing polyglutamine stretches

    International Nuclear Information System (INIS)

    Peters-Libeu, Clare; Newhouse, Yvonne; Krishnan, Preethi; Cheung, Kenneth; Brooks, Elizabeth; Weisgraber, Karl; Finkbeiner, Steven

    2005-01-01

    Optimization of crystallization conditions and cryoprotectants decreased the anisotropy of the diffraction obtained from 3B5H10 Fab crystals. Dehydration improved the resolution of cryoprotected 3B5H10 crystals from 2.6 to 1.9 Å, but changed the space group of the crystals from P2 1 2 1 2 to P2 1 . Because it binds soluble forms of proteins with disease-associated polyglutamine expansions, the antibody 3B5H10 is a powerful tool for studying polyglutamine-related diseases. Crystals of the 3B5H10 Fab (47 kDa) were obtained by vapor diffusion at room temperature from PEG 3350. However, the initial crystals gave highly anisotropic diffraction patterns. After optimization of the crystallization conditions and cryoprotectants, a nearly isotropic diffraction pattern at 2.6 Å resolution was achieved for crystals with unit-cell parameters a = 133.26, b = 79.52, c = 41.49 Å and space group P2 1 2 1 2. Dehydrated crystals diffracted isotropically to 1.9 Å with unit-cell parameters a = 123.65, b = 78.25, c = 42.26 Å, β = 90.3° and space group P2 1

  15. Crystallization and diffraction properties of the Fab fragment of 3B5H10, an antibody specific for disease-causing polyglutamine stretches

    Energy Technology Data Exchange (ETDEWEB)

    Peters-Libeu, Clare; Newhouse, Yvonne; Krishnan, Preethi; Cheung, Kenneth; Brooks, Elizabeth [Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 (United States); Weisgraber, Karl [Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 (United States); Department of Pathology, University of California, San Francisco, CA 94143 (United States); Finkbeiner, Steven, E-mail: sfinkbeiner@gladstone.ucsf.edu [Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 (United States); Departments of Neurology, Physiology and Neuroscience and Biomedical Sciences Program, University of California, San Francisco, CA 94143 (United States)

    2005-12-01

    Optimization of crystallization conditions and cryoprotectants decreased the anisotropy of the diffraction obtained from 3B5H10 Fab crystals. Dehydration improved the resolution of cryoprotected 3B5H10 crystals from 2.6 to 1.9 Å, but changed the space group of the crystals from P2{sub 1}2{sub 1}2 to P2{sub 1}. Because it binds soluble forms of proteins with disease-associated polyglutamine expansions, the antibody 3B5H10 is a powerful tool for studying polyglutamine-related diseases. Crystals of the 3B5H10 Fab (47 kDa) were obtained by vapor diffusion at room temperature from PEG 3350. However, the initial crystals gave highly anisotropic diffraction patterns. After optimization of the crystallization conditions and cryoprotectants, a nearly isotropic diffraction pattern at 2.6 Å resolution was achieved for crystals with unit-cell parameters a = 133.26, b = 79.52, c = 41.49 Å and space group P2{sub 1}2{sub 1}2. Dehydrated crystals diffracted isotropically to 1.9 Å with unit-cell parameters a = 123.65, b = 78.25, c = 42.26 Å, β = 90.3° and space group P2{sub 1}.

  16. Identification and expression analysis of miR-144-5p and miR-130b-5p in dairy cattle

    Directory of Open Access Journals (Sweden)

    Z. Li

    2017-07-01

    Full Text Available MicroRNAs (miRNAs can coordinate the main pathways involved in innate and adaptive immune responses by regulating gene expression. To explore the resistance to mastitis in cows, miR-144-5p and miR-130b-5p were identified in bovine mammary gland tissue and 14 potential target genes belonging to the chemokine signaling pathway, the arginine and proline metabolism pathway and the mRNA surveillance pathway were predicted. Subsequently, we estimated the relative expression of miR-144-5p and miR-130b-5p in cow mammary tissues by using stem-loop quantitative real-time polymerase chain reaction. The results showed that the relative expression of miR-144-5p and miR-130b-5p in the mastitis-infected mammary tissues (n = 5 was significantly downregulated 0.14-fold (p < 0. 01 and upregulated 3.34-fold (p < 0. 01, respectively, compared to healthy tissues (n = 5. Our findings reveal that miR-144-5p and miR-130b-5p may have important roles in resistance to mastitis in dairy cattle.

  17. Electric field and substrate–induced modulation of spin-polarized transport in graphene nanoribbons on A3B5 semiconductors

    International Nuclear Information System (INIS)

    Ilyasov, Victor V.; Nguyen, Chuong V.; Ershov, Igor V.; Hieu, Nguyen N.

    2015-01-01

    In this work, we present the density functional theory calculations of the effect of an oriented electric field on the electronic structure and spin-polarized transport in a one dimensional (1D) zigzag graphene nanoribbon (ZGNR) channel placed on a wide bandgap semiconductor of the A3B5 type. Our calculations show that carrier mobility in the 1D semiconductor channel of the ZGNR/A3B5(0001) type is in the range from 1.7×10 4 to 30.5×10 4 cm 2 /Vs and can be controlled by an electric field. In particular, at the critical value of the positive potential, even though hole mobility in an one-dimensional 8-ZGNR/h-BN semiconductor channel for spin down electron subsystems is equal to zero, hole mobility can be increased to 4.1×10 5 cm 2 /Vs for spin up electron subsystems. We found that band gap and carrier mobility in a 1D semiconductor channel of the ZGNR/A3B5(0001) type depend strongly on an external electric field. With these extraordinary properties, ZGNR/A3B5(0001) can become a promising materials for application in nanospintronic devices

  18. 17 CFR 240.15b5-1 - Extension of registration for purposes of the Securities Investor Protection Act of 1970 after...

    Science.gov (United States)

    2010-04-01

    ... purposes of the Securities Investor Protection Act of 1970 after cancellation or revocation. 240.15b5-1... purposes of the Securities Investor Protection Act of 1970 after cancellation or revocation. Commission... member within the meaning of Section 3(a)(2) of the Securities Investor Protection Act of 1970 for...

  19. ENDF/B-5 formats manual. Revised update pages of Nov. 1983. Reprint of B.A. Magurno, BNL-NCS--50496 (ENDF-102) 2nd Edition

    Energy Technology Data Exchange (ETDEWEB)

    Magurno, B A

    1986-09-01

    The ENDF-5 Format, originally the format of the US Evaluated Nuclear Data File ENDF/B-5, was internationally recommended for the computer storage, processing and exchange of evaluated neutron nuclear data. The pages included in this document serve as an update to the original ENDF-5 Formats Manual BNL-NCS-50496 [ENDF-102] 2nd Edition, October 1979. (author)

  20. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  1. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jü rgen; Khashab, Niveen M.; Zaher, Amir

    2013-01-01

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  2. Influence of acute and chronic administration of methadone hydrochloride on NADPH-cytochrome c reductase and cytochrome P-450 of mouse liver microsomes.

    Science.gov (United States)

    Datta, R K; Johnson, E A; Bhattacharjee, G; Stenger, R J

    1976-03-01

    Administration of a single acute dose (20 mg/kg body weight) of methadone hydrochloride to both male and female mice increased the specific activity of NADPH-cytochrome c reductase and did not change much the content of cytochrome P-450 of their liver microsomes. Administration of multiple acute doses of methadone in male mice increased the specific activity of cytochrome c reductase and the content of cytochrome P-450 of their liver microsomes. Chronic administration of progressively increasing doses of methadone (up to 40 mg/kg body weight) to male mice increased the specific activity of c reductase. Similar chronic administration of methadone up to 28 mg/kg body weight also increased the microsomal content of P-450, but with higher doses of methadone, the content of P-450 declined and finally dropped slightly below control levels. The levels of c reductase activity and P-450 content returned to normal about two weeks after discontinuation of methadone administration.

  3. A positive feedback-based gene circuit to increase the production of a membrane protein

    Directory of Open Access Journals (Sweden)

    Gennis Robert B

    2010-05-01

    Full Text Available Abstract Background Membrane proteins are an important class of proteins, playing a key role in many biological processes, and are a promising target in pharmaceutical development. However, membrane proteins are often difficult to produce in large quantities for the purpose of crystallographic or biochemical analyses. Results In this paper, we demonstrate that synthetic gene circuits designed specifically to overexpress certain genes can be applied to manipulate the expression kinetics of a model membrane protein, cytochrome bd quinol oxidase in E. coli, resulting in increased expression rates. The synthetic circuit involved is an engineered, autoinducer-independent variant of the lux operon activator LuxR from V. fischeri in an autoregulatory, positive feedback configuration. Conclusions Our proof-of-concept experiments indicate a statistically significant increase in the rate of production of the bd oxidase membrane protein. Synthetic gene networks provide a feasible solution for the problem of membrane protein production.

  4. Destabilization of the Outer and Inner Mitochondrial Membranes by Core and Linker Histones

    Science.gov (United States)

    Cascone, Annunziata; Bruelle, Celine; Lindholm, Dan; Bernardi, Paolo; Eriksson, Ove

    2012-01-01

    Background Extensive DNA damage leads to apoptosis. Histones play a central role in DNA damage sensing and may mediate signals of genotoxic damage to cytosolic effectors including mitochondria. Methodology/Principal Findings We have investigated the effects of histones on mitochondrial function and membrane integrity. We demonstrate that both linker histone H1 and core histones H2A, H2B, H3, and H4 bind strongly to isolated mitochondria. All histones caused a rapid and massive release of the pro-apoptotic intermembrane space proteins cytochrome c and Smac/Diablo, indicating that they permeabilize the outer mitochondrial membrane. In addition, linker histone H1, but not core histones, permeabilized the inner membrane with a collapse of the membrane potential, release of pyridine nucleotides, and mitochondrial fragmentation. Conclusions We conclude that histones destabilize the mitochondrial membranes, a mechanism that may convey genotoxic signals to mitochondria and promote apoptosis following DNA damage. PMID:22523586

  5. Antimycin-insensitive mutants of Candida utilis II. The effects of antimycin on Cytochrome b

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Marres, C A; Slater, Conor

    1975-01-01

    1. Cytochrome b-562 is more reduced in submitochondrial particles of mutant 28 during the aerobic steady-state respiration with succinate than in particles of the wild type. When anaerobiosis is reached, the reduction of cytochrome b is preceded by a rapid reoxidation in the mutnat. A similar reo...

  6. Electrochemical determination of hydrogen peroxide using Rhodobacter capsulatus cytochrome c peroxidase at a gold electrode

    NARCIS (Netherlands)

    De Wael, K.; Buschop, H.; Heering, H.A.; De Smet, L.; Van Beeumen, J.; Devreese, B.; Adriaens, A.

    2007-01-01

    We describe the redox behaviour of horse heart cytochrome c (HHC) and Rhodobacter capsulatus cytochrome c peroxidase (RcCCP) at a gold electrode modified with 4,4?-bipyridyl. RcCCP shows no additional oxidation or reduction peaks compared to the electrochemistry of only HHC, which indicates that it

  7. Immobilized unfolded cytochrome c acts as a catalyst for dioxygen reduction.

    Science.gov (United States)

    Tavagnacco, Claudio; Monari, Stefano; Ranieri, Antonio; Bortolotti, Carlo Augusto; Peressini, Silvia; Borsari, Marco

    2011-10-21

    Unfolding turns immobilized cytochrome c into a His-His ligated form endowed with catalytic activity towards O(2), which is absent in the native protein. Dioxygen could be used by naturally occurring unfolded cytochrome c as a substrate for the production of partially reduced oxygen species (PROS) contributing to the cell oxidative stress.

  8. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kärenlampi, S O; Marin, E; Hänninen, O O

    1981-02-15

    The appearance of cytochrome P-450 in the yeast Saccharomyces cerevisiae depended on the substrate supporting growth. Cytochrome P-450 was apparent in yeast cells grown on a strongly fermentable sugar such as D-glucose, D-fructose or sucrose. When yeast was grown on D-galactose, D-mannose or maltose, where fermentation and respiration occurred concomitantly, cytochrome P-450 was also formed. The cytochrome P-450 concentration was maximal at the beginning of the stationary phase of the culture. Thereafter the concentration decreased, reaching zero at a late-stationary phase. When the yeast was grown on a medium that contained lactose or pentoses (L-arabinose, L-rhamnose, D-ribose and D-xylose), cytochrome P-450 did not occur. When a non-fermentable energy source (glycerol, lactate or ethanol) was used, no cytochrome P-450 was detectable. Transfer of cells from D-glucose medium to ethanol medium caused a slow disappearance of cytochrome P-450, although the amount of the haemoprotein still continued to increase in the control cultures. Cytochrome P-450 appeared thus to accumulate in conditions where the rate of growth was fast and fermentation occurred. Occurrence of this haemoprotein is not necessarily linked, however, with the repression of mitochondrial haemoprotein synthesis.

  9. The functional localization of cytochromes b in the respiratory chain of anaerobically grown Proteus mirabilis

    NARCIS (Netherlands)

    Van Wielink, J E; Reijnders, W N; Van Spanning, R J; Oltmann, L F; Stouthamer, A.H.

    1986-01-01

    The functional localization of the cytochromes b found in anaerobically grown Proteus mirabilis was investigated. From light absorption spectra, scanned during uninhibited and HQNO-inhibited electron transport to various electron acceptors, it was concluded that all cytochromes b function between

  10. Hunting for low abundant redox proteins in plant plasma membranes.

    Science.gov (United States)

    Lüthje, Sabine; Hopff, David; Schmitt, Anna; Meisrimler, Claudia-Nicole; Menckhoff, Ljiljana

    2009-04-13

    Nowadays electron transport (redox) systems in plasma membranes appear well established. Members of the flavocytochrome b family have been identified by their nucleotide acid sequences and characterized on the transcriptional level. For their gene products functions have been demonstrated in iron uptake and oxidative stress including biotic interactions, abiotic stress factors and plant development. In addition, NAD(P)H-dependent oxidoreductases and b-type cytochromes have been purified and characterized from plasma membranes. Several of these proteins seem to belong to the group of hypothetical or unknown proteins. Low abundance and the lack of amino acid sequence data for these proteins still hamper their functional analysis. Consequently, little is known about the physiological function and regulation of these enzymes. In recent years evidence has been presented for the existence of microdomains (so-called lipid rafts) in plasma membranes and their interaction with specific membrane proteins. The identification of redox systems in detergent insoluble membranes supports the idea that redox systems may have important functions in signal transduction, stress responses, cell wall metabolism, and transport processes. This review summarizes our present knowledge on plasma membrane redox proteins and discusses alternative strategies to investigate the function and regulation of these enzymes.

  11. Inactivation of Cytochrome P450 (P450) 3A4 but not P450 3A5 by OSI-930, a Thiophene-Containing Anticancer DrugS⃞

    Science.gov (United States)

    Lin, Hsia-lien; Zhang, Haoming; Medower, Christine; Johnson, William W.

    2011-01-01

    An investigational anticancer agent that contains a thiophene moiety, 3-[(quinolin-4-ylmethyl)-amino]-N-[4-trifluoromethox)phenyl] thiophene-2-carboxamide (OSI-930), was tested to investigate its ability to modulate the activities of several cytochrome P450 enzymes. Results showed that OSI-930 inactivated purified, recombinant cytochrome P450 (P450) 3A4 in the reconstituted system in a mechanism-based manner. The inactivation was dependent on cytochrome b5 and required NADPH. Catalase did not protect against the inactivation. No inactivation was observed in studies with human 2B6, 2D6, or 3A5 either in the presence or in the absence of b5. The inactivation of 3A4 by OSI-930 was time- and concentration-dependent. The inactivation of the 7-benzyloxy-4-(trifluoromethyl)coumarin catalytic activity of 3A4 was characterized by a KI of 24 μM and a kinact of 0.04 min−1. This KI is significantly greater than the clinical OSI-930 Cmax of 1.7 μM at the maximum tolerated dose, indicating that clinical drug interactions of OSI-930 via this pathway are not likely. Spectral analysis of the inactivated protein indicated that the decrease in the reduced CO spectrum at 450 nm was comparable to the amount of inactivation, thereby suggesting that the inactivation was primarily due to modification of the heme. High-pressure liquid chromatography (HPLC) analysis with detection at 400 nm showed a loss of heme comparable to the activity loss, but a modified heme was not detected. This result suggests either that the heme must have been modified enough so as not to be observed in a HPLC chromatograph or, possibly, that it was destroyed. The partition ratio for the inactivation of P450 3A4 was approximately 23, suggesting that this P450 3A4-mediated pathway occurs with approximately 4% frequency during the metabolism of OSI-930. Modeling studies on the binding of OSI-930 to the active site of the P450 3A4 indicated that OSI-930 would be oriented properly in the active site for oxidation

  12. Effectiveness of cytochrome C and cepharanthin for leukopenia following multidisciplinary treatment

    International Nuclear Information System (INIS)

    Tabata, Kumiko; Endow, Masaru; Suzuki, Hirotoshi

    1986-01-01

    Leukopenia is one of important problems for multidisciplinary treatment of malignant tumor. We could not be able to take a continuous cancer therapy because of leukopenia. And then we had a study of effectiveness combination treatment of cytochrome C with cepharanthin for leukopenia of cancer patient. We carried on the study of 3 classifications of treatment as follows, a) cytochrome C only, b) combined cytochrome C with cepharanthin, and c) control group without drugs. Bone marrow potentiality is individual differentiation and then the group was administrated both cytochrome C and cepharanthin following radiotherapy associated with postoperative breast cancer. The above description lead to conclusion that combination treatment of cytochrome C and cepharanthin was available for protective drugs from multidisciplinary treatment induced leukemia. (author)

  13. Acrolein, A Reactive Product of Lipid Peroxidation, Induces Oxidative Modification of Cytochrome c

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jung Hoon [Cheongju Univ., Cheongju (Korea, Republic of)

    2013-11-15

    Acrolein (ACR) is a well-known carbonyl toxin produced by lipid peroxidation of polyunsaturated fatty acids, which is involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). In Alzheimer's brain, ACR was found to be elevated in hippocampus and temporal cortex where oxidative stress is high. In this study, we evaluated oxidative modification of cytochrome c occurring after incubation with ACR. When cytochrome c was incubated with ACR, protein aggregation increased in a dose-dependent manner. The formation of carbonyl compounds and the release of iron were obtained in ACR-treated cytochrome c. Reactive oxygen species scavengers and iron specific chelator inhibited the ACR-mediated cytochrome c modification and carbonyl compound formation. Our data demonstrate that oxidative damage of cytochrome c by ACR might induce disruption of cyotochrome c structure and iron mishandling as a contributing factor to the pathology of AD.

  14. Acrolein, A Reactive Product of Lipid Peroxidation, Induces Oxidative Modification of Cytochrome c

    International Nuclear Information System (INIS)

    Kang, Jung Hoon

    2013-01-01

    Acrolein (ACR) is a well-known carbonyl toxin produced by lipid peroxidation of polyunsaturated fatty acids, which is involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). In Alzheimer's brain, ACR was found to be elevated in hippocampus and temporal cortex where oxidative stress is high. In this study, we evaluated oxidative modification of cytochrome c occurring after incubation with ACR. When cytochrome c was incubated with ACR, protein aggregation increased in a dose-dependent manner. The formation of carbonyl compounds and the release of iron were obtained in ACR-treated cytochrome c. Reactive oxygen species scavengers and iron specific chelator inhibited the ACR-mediated cytochrome c modification and carbonyl compound formation. Our data demonstrate that oxidative damage of cytochrome c by ACR might induce disruption of cyotochrome c structure and iron mishandling as a contributing factor to the pathology of AD

  15. Cytochromes c': Structure, Reactivity and Relevance to Haem-Based Gas Sensing.

    Science.gov (United States)

    Hough, Michael A; Andrew, Colin R

    2015-01-01

    Cytochromes c' are a group of class IIa cytochromes with pentacoordinate haem centres and are found in photosynthetic, denitrifying and methanotrophic bacteria. Their function remains unclear, although roles in nitric oxide (NO) trafficking during denitrification or in cellular defence against nitrosoative stress have been proposed. Cytochromes c' are typically dimeric with each c-type haem-containing monomer folding as a four-α-helix bundle. Their hydrophobic and crowded distal sites impose severe restrictions on the binding of distal ligands, including diatomic gases. By contrast, NO binds to the proximal haem face in a similar manner to that of the eukaryotic NO sensor, soluble guanylate cyclase and bacterial analogues. In this review, we focus on how structural features of cytochromes c' influence haem spectroscopy and reactivity with NO, CO and O2. We also discuss the relevance of cytochrome c' to understanding the mechanisms of gas binding to haem-based sensor proteins. © 2015 Elsevier Ltd. All rights reserved.

  16. Cytochrome c and c1 heme lyases are essential in Plasmodium berghei.

    Science.gov (United States)

    Posayapisit, Navaporn; Songsungthong, Warangkhana; Koonyosying, Pongpisid; Falade, Mofolusho O; Uthaipibull, Chairat; Yuthavong, Yongyuth; Shaw, Philip J; Kamchonwongpaisan, Sumalee

    Malaria parasites possess a de novo heme synthetic pathway. Interestingly, this pathway is dispensable during the blood stages of development in mammalian hosts. The assembly of the two most important hemeproteins, cytochromes c and c1, is mediated by cytochrome heme lyase enzymes. Plasmodium spp. possess two cytochrome heme lyases encoded by separate genes. Given the redundancy of heme synthesis, we sought to determine if heme lyase function also exhibits redundancy. To answer this question, we performed gene knockout experiments. We found that the PBANKA_143950 and PBANKA_0602600 Plasmodium berghei genes encoding cytochrome c (Pbcchl) and cytochrome c1 (Pbcc 1 hl) heme lyases, respectively, can only be disrupted when a complementary gene is present. In contrast, four genes in the de novo heme synthesis pathway can be disrupted without complementation. This work provides evidence that Pbcchl and Pbcc 1 hl are both essential and thus may be antimalarial targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effect of a pH Gradient on the Protonation States of Cytochrome c Oxidase: A Continuum Electrostatics Study.

    Science.gov (United States)

    Magalhães, Pedro R; Oliveira, A Sofia F; Campos, Sara R R; Soares, Cláudio M; Baptista, António M

    2017-02-27

    Cytochrome c oxidase (CcO) couples the reduction of dioxygen to water with transmembrane proton pumping, which leads to the generation of an electrochemical gradient. In this study we analyze how one of the components of the electrochemical gradient, the difference in pH across the membrane, or ΔpH, influences the protonation states of residues in CcO. We modified our continuum electrostatics/Monte Carlo (CE/MC) method in order to include the ΔpH and applied it to the study of CcO, in what is, to our best knowledge, the first CE/MC study of CcO in the presence of a pH gradient. The inclusion of a transmembrane pH gradient allows for the identification of residues whose titration behavior depends on the pH on both sides of the membrane. Among the several residues with unusual titration profiles, three are well-known key residues in the proton transfer process of CcO: E286 I , Y288 I , and K362 I . All three residues have been previously identified as being critical for the catalytic or proton pumping functions of CcO. Our results suggest that when the pH gradient increases, these residues may be part of a regulatory mechanism to stem the proton flow.

  18. Data for molecular dynamics simulations of B-type cytochrome c oxidase with the Amber force field

    Directory of Open Access Journals (Sweden)

    Longhua Yang

    2016-09-01

    Full Text Available Cytochrome c oxidase (CcO is a vital enzyme that catalyzes the reduction of molecular oxygen to water and pumps protons across mitochondrial and bacterial membranes. This article presents parameters for the cofactors of ba3-type CcO that are compatible with the all-atom Amber ff12SB and ff14SB force fields. Specifically, parameters were developed for the CuA pair, heme b, and the dinuclear center that consists of heme a3 and CuB bridged by a hydroperoxo group. The data includes geometries in XYZ coordinate format for cluster models that were employed to compute proton transfer energies and derive bond parameters and point charges for the force field using density functional theory. Also included are the final parameter files that can be employed with the Amber leap program to generate input files for molecular dynamics simulations with the Amber software package. Based on the high resolution (1.8 Å X-ray crystal structure of the ba3-type CcO from Thermus thermophilus (Protein Data Bank ID number PDB: 3S8F, we built a model that is embedded in a POPC lipid bilayer membrane and solvated with TIP3P water molecules and counterions. We provide PDB data files of the initial model and the equilibrated model that can be used for further studies.

  19. Ginsenoside Rb1 Attenuates Oxygen-Glucose Deprivation-Induced Apoptosis in SH-SY5Y Cells via Protection of Mitochondria and Inhibition of AIF and Cytochrome c Release

    Directory of Open Access Journals (Sweden)

    Pengfei Ge

    2013-10-01

    Full Text Available To investigate the role of mitochondria in the protective effects of ginsenoside Rb1 on cellular apoptosis caused by oxygen-glucose deprivation, in this study, MTT assay, TUNEL staining, flow cytometry, immunocytochemistry and western blotting were used to examine the cellular viability, apoptosis, ROS level, mitochondrial membrane potential, and the distribution of apoptosis inducing factor, cytochrome c, Bax and Bcl-2 in nucleus, mitochondria and cytoplasm. We found that pretreatment with GRb1 improved the cellular viability damaged by OGD. Moreover, GRb1 inhibited apoptosis in SH-SY5Y cells induced by OGD. Further studies showed that the elevation of cellular reactive oxygen species levels and the reduction of mitochondrial membrane potential caused by OGD were both counteracted by GRb1. Additionally, GRb1 not only suppressed the translocation of apoptosis inducing factor into nucleus and cytochrome c into cytoplasm, but also inhibited the increase of Bax within mitochondria and alleviated the decrease of mitochondrial Bcl-2. Our study indicates that the protection of GRb1 on OGD-induced apoptosis in SH-SY5Y cells is associated with its protection on mitochondrial function and inhibition of release of AIF and cytochrome c.

  20. The production of ammonia by multiheme cytochromes C.

    Science.gov (United States)

    Simon, Jörg; Kroneck, Peter M H

    2014-01-01

    The global biogeochemical nitrogen cycle is essential for life on Earth. Many of the underlying biotic reactions are catalyzed by a multitude of prokaryotic and eukaryotic life forms whereas others are exclusively carried out by microorganisms. The last century has seen the rise of a dramatic imbalance in the global nitrogen cycle due to human behavior that was mainly caused by the invention of the Haber-Bosch process. Its main product, ammonia, is a chemically reactive and biotically favorable form of bound nitrogen. The anthropogenic supply of reduced nitrogen to the biosphere in the form of ammonia, for example during environmental fertilization, livestock farming, and industrial processes, is mandatory in feeding an increasing world population. In this chapter, environmental ammonia pollution is linked to the activity of microbial metalloenzymes involved in respiratory energy metabolism and bioenergetics. Ammonia-producing multiheme cytochromes c are discussed as paradigm enzymes.

  1. Cytochrome P450 polymorphism and postoperative cognitive dysfunction

    DEFF Research Database (Denmark)

    Steinmetz, J; Jespersgaard, Cathrine; Dalhoff, Kim Peder

    2012-01-01

    neuropsychological testing at one week had POCD, and 24 out of 307 (7.8%) had POCD at three months. None of the examined CYP2C19, 2D6 alleles, or various phenotypes were significantly associated with POCD. CONCLUSION: Polymorphisms in CYP2C19, or 2D6 genes do not seem to be related to the occurrence of cognitive......BACKGROUND:The etiology of postoperative cognitive dysfunction (POCD) remains unclear but toxicity of anesthetic drugs and their metabolites could be important. We aimed to assess the possible association between POCD after propofol anesthesia and various phenotypes owing to polymorphisms...... in cytochrome P450 encoding genes. METHODS:We included patients who underwent non-cardiac surgery under total intravenous anesthesia with propofol. POCD was identified using a neuropsychological test-battery administered preoperatively, one week, and three months after surgery. Genotyping of CYP2C19*2, *3, CYP2...

  2. Role of cytochrome P450 in drug interactions

    Directory of Open Access Journals (Sweden)

    Bibi Zakia

    2008-10-01

    Full Text Available Abstract Drug-drug interactions have become an important issue in health care. It is now realized that many drug-drug interactions can be explained by alterations in the metabolic enzymes that are present in the liver and other extra-hepatic tissues. Many of the major pharmacokinetic interactions between drugs are due to hepatic cytochrome P450 (P450 or CYP enzymes being affected by previous administration of other drugs. After coadministration, some drugs act as potent enzyme inducers, whereas others are inhibitors. However, reports of enzyme inhibition are very much more common. Understanding these mechanisms of enzyme inhibition or induction is extremely important in order to give appropriate multiple-drug therapies. In future, it may help to identify individuals at greatest risk of drug interactions and adverse events.

  3. Advances in molecular modeling of human cytochrome P450 polymorphism.

    Science.gov (United States)

    Martiny, Virginie Y; Miteva, Maria A

    2013-11-01

    Cytochrome P450 (CYP) is a supergene family of metabolizing enzymes involved in the phase I metabolism of drugs and endogenous compounds. CYP oxidation often leads to inactive drug metabolites or to highly toxic or carcinogenic metabolites involved in adverse drug reactions (ADR). During the last decade, the impact of CYP polymorphism in various drug responses and ADR has been demonstrated. Of the drugs involved in ADR, 56% are metabolized by polymorphic phase I metabolizing enzymes, 86% among them being CYP. Here, we review the major CYP polymorphic forms, their impact for drug response and current advances in molecular modeling of CYP polymorphism. We focus on recent studies exploring CYP polymorphism performed by the use of sequence-based and/or protein-structure-based computational approaches. The importance of understanding the molecular mechanisms related to CYP polymorphism and drug response at the atomic level is outlined. © 2013.

  4. Differentially regulated NADPH: cytochrome p450 oxidoreductases in parsely

    International Nuclear Information System (INIS)

    Koopmann, E.; Hahlbrock, K.

    1997-01-01

    Two NADPH:cytochrome P450 oxidoreductases (CPRs) from parsley (Petroselinum crispum) were cloned, and the complete proteins were expressed and functionally identified in yeast. The two enzymes, designated CPR1 and CPR2, are 80% identical in amino acid sequence with one another and about 75% identical with CPRs from several other plant species. The mRNA accumulation patterns for CPR1 and CPR2 in fungal elicitor-treated or UV-irradiated cultured parsley cells and in developing or infected parsley plants were compared with those for cinnamate 4-hydroxylase (C4H), one of the most abundant CPR-dependent P450 enzymes in plants. All treatments strongly induced the mRNAs for C4H and CPR1 but not for CPR2, suggesting distinct metabolic roles of CPR1 and CPR2 and a functional relationship between CPR1 and C4H

  5. Stability enhancement of cytochrome c through heme deprotonation and mutations

    OpenAIRE

    Sonoyama, Takafumi; Hasegawa, Jun; Uchiyama, Susumu; Nakamura, Shota; Kobayashi, Yuji; Sambongi, Yoshihiro

    2009-01-01

    The chemical denaturation of Pseudomonas aeruginosa cytochrome c551 variants was examined at pH 5.0 and 3.6. All variants were stabilized at both pHs compared with the wild-type. Remarkably, the variants carrying the F34Y and/or E43Y mutations were more stabilized than those having the F7A/V13M or V78I ones at pH 5.0 compared with at pH 3.6 by ~3.0 – 4.6 kJ/mol. Structural analyses predicted that the side chains of introduced Tyr-34 and Tyr-43 become hydrogen donors for the hydrogen bond form...

  6. Ligand Access Channels in Cytochrome P450 Enzymes: A Review

    Directory of Open Access Journals (Sweden)

    Philippe Urban

    2018-05-01

    Full Text Available Quantitative structure-activity relationships may bring invaluable information on structural elements of both enzymes and substrates that, together, govern substrate specificity. Buried active sites in cytochrome P450 enzymes are connected to the solvent by a network of channels exiting at the distal surface of the protein. This review presents different in silico tools that were developed to uncover such channels in P450 crystal structures. It also lists some of the experimental evidence that actually suggest that these predicted channels might indeed play a critical role in modulating P450 functions. Amino acid residues at the entrance of the channels may participate to a first global ligand recognition of ligands by P450 enzymes before they reach the buried active site. Moreover, different P450 enzymes show different networks of predicted channels. The plasticity of P450 structures is also important to take into account when looking at how channels might play their role.

  7. Prognostic relevance of cytochrome C oxidase in primary glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Corinne E Griguer

    Full Text Available Patients with primary glioblastoma multiforme (GBM have one of the lowest overall survival rates among cancer patients, and reliable biomarkers are necessary to predict patient outcome. Cytochrome c oxidase (CcO promotes the switch from glycolytic to OXPHOS metabolism, and increased CcO activity in tumors has been associated with tumor progression after chemotherapy failure. Thus, we investigated the relationship between tumor CcO activity and the survival of patients diagnosed with primary GBM. A total of 84 patients with grade IV glioma were evaluated in this retrospective cohort study. Cumulative survival was calculated by the Kaplan-Meier method and analyzed by the log-rank test, and univariate and multivariate analyses were performed with the Cox regression model. Mitochondrial CcO activity was determined by spectrophotometrically measuring the oxidation of cytochrome c. High CcO activity was detected in a subset of glioma tumors (∼30%, and was an independent prognostic factor for shorter progression-free survival and overall survival [P = 0.0087 by the log-rank test, hazard ratio = 3.57 for progression-free survival; P<0.001 by the log-rank test, hazard ratio = 10.75 for overall survival]. The median survival time for patients with low tumor CcO activity was 14.3 months, compared with 6.3 months for patients with high tumor CcO activity. High CcO activity occurs in a significant subset of high-grade glioma patients and is an independent predictor of poor outcome. Thus, CcO activity may serve as a useful molecular marker for the categorization and targeted therapy of GBMs.

  8. Mode of Antifungal Drugs Interaction with Cytochrome P- 450

    Directory of Open Access Journals (Sweden)

    M- Mahmodian

    1991-07-01

    Full Text Available Computer was used to identify the interactions of substrates and antifungal drugs with the enzyme, Cytochrome P-450; and then Molplot.bas computer program was applied to get three dimensional figures of 5-hydroxy camphor.oxidation products of camphor analogues, and antifungal drugs.Cartesian characteristics of atoms building molecules, are taken from Buildz. for program, which can calculate X,Y,Z coordinates of atoms by Zmatrix data. The other program which can calculate X,Y,Z coordinates, using fractional characteristics, is the Coord, for program that, gives our cartesian characteristics of the atoms of molecule, then by using these data, we obtain three dimensional figures and distance between active atoms in compounds under consideration. Results show that distance between two oxygen atoms in 5-exo-hydroxy- camphor and the other compounds obtained from oxidation of camphor analogues, with the distance of two oxygen atoms in antifungal compounds under discussion are equal. Therefore, we can conclude that, the antifungal molecule also interacts with enzyme's active site, by its own sites, in a similar manner to the 5-hydroxy camphor molecule, which is:"n1. Nitrogen atom (N of Imidazole and Triazole ring in antifungal molecule with Iron atom in heam molecule belonging to Cytochrome P-450 enzyme, are coordinated."n2. The other atoms such as : 0,S or N in structure of the antifungal drug are coordinated with hydrogen atom of hydroxyl group belong ing to Tyr-96 in the structure of enzyme, forming hydrogen bonding.

  9. Optimization of the combustion of SOME (soybean oil methyl ester), B5, B10, B20 and petrodiesel in a semi industrial boiler

    International Nuclear Information System (INIS)

    Ghorbani, Afshin; Bazooyar, Bahamin

    2012-01-01

    This paper characterizes combustion of petrodiesel and prevalent SOME blends (B100, B5, B10 and B20), which were produced through an alkali-based transesterification in PUT, in a semi industrial boiler by determining its efficiency, exhaust emissions and costs. First, the influence of oxygen content of stock gases (by volume percent) upon regular emissions, thermal efficiency and costs (calculated by a cost function) was studied in order to investigate the performance and feasibility of using biodiesel in the boiler. In the next level, a multi-objective optimization method, named cost-based optimization, was represented and optimized the combustion of the fuels. The overall efficiency of the boiler obtained with the different fuels is comparable for the same operating points. Soy bean methyl ester and the blends emitted lower emissions than petrodiesel. Results demonstrate that the use of pure biodiesel is not economically feasible in the boiler. The total costs of the boiler obtained with the blends and petrodiesel are quite competitive. B5 is introduced to be the best fuel for using in the boiler. Results also reveal an optimum (“compromise”) in total cost of all the fuels in relation to the oxygen concentration of stock gases, which promises a cost saving in the boiler performance. -- Highlights: ► Efficiency, emissions and economy of the boiler fuelled with SOME, B5, B10, B20 and petrodiesel are investigated. ► The use of pure biodiesel was not economically feasible while economy of the blends and petrodiesel is competitive. ► B5 is introduced to be the most appropriate and economic fuel for the boiler. ► Presentation of a cost-based method optimization method. ► Introducing an optimum, “compromise”, O 2 % for the combustion of each fuel which promises a cost saving.

  10. Regulation of UGT2B Expression and Activity by miR-216b-5p in Liver Cancer Cell Lines

    OpenAIRE

    Dluzen, Douglas F.; Sutliff, Aimee K.; Chen, Gang; Watson, Christy J. W.; Ishmael, Faoud T.; Lazarus, Philip

    2016-01-01

    The UDP-glucuronosyltransferase (UGT) 2B enzymes are important in the detoxification of a variety of endogenous and exogenous compounds, including many hormones, drugs, and carcinogens. Identifying novel mechanisms governing their expression is important in understanding patient-specific response to drugs and cancer risk factors. In silico prediction algorithm programs were used to screen for microRNAs (miRNAs) as potential regulators of UGT2B enzymes, with miR-216b-5p identified as a potenti...

  11. First-principles study on the structural, cohesive and electronic properties of rhombohedral Mo2B5 as compared with hexagonal MoB2

    International Nuclear Information System (INIS)

    Shein, I.R.; Shein, K.I.; Ivanovskii, A.L.

    2007-01-01

    The full-potential linearized augmented plane wave method using the generalized gradient approximation (FLAPW-GGA) has been applied to provide comparison and contrast for Mo borides with various structural types: rhombohedral Mo 2 B 5 versus hexagonal MoB 2 . The equilibrium lattice parameters, energies of formations, total and partial densities of states, electronic density distributions and the theoretical shapes of boron K-edge X-ray emission spectra are obtained and compared to available data

  12. Resonance Raman study on photoreduction of cytochrome c oxidase: distinction of cytochromes a and a3 in the intermediate oxidation states.

    Science.gov (United States)

    Ogura, T; Yoshikawa, S; Kitagawa, T

    1985-12-17

    Occurrence of photoreduction of bovine cytochrome c oxidase was confirmed with the difference absorption spectra and oxygen consumption measurements for the enzyme irradiated with laser light at 406.7, 441.6, and 590 nm. The resonance Raman spectra were obtained under the same experimental conditions as those adopted for the measurements of oxygen consumption and difference absorption spectra. The photoreduction was more effective upon irradiation at shorter wavelengths and was irreversible under anaerobic conditions. However, upon aeration into the cell, the original oxidized form was restored. It was found that aerobic laser irradiation produces a photo steady state of the catalytic dioxygen reduction and that the Raman scattering from this photo steady state probes cytochrome a2+ and cytochrome a3(3)+ separately upon excitations at 441.6 and 406.7 nm, respectively. The enzyme was apparently protected from the photoreduction in the spinning cell with the spinning speed between 1 and 1500 rpm. These results were explained satisfactorily with the reported rate constant for the electron transfer from cytochrome a to cytochrome a3 (0.58 s-1) and a comparable photoreduction rate of cytochrome a. The anaerobic photoreduction did give Raman lines at 1666 and 214 cm-1, which are characteristic of the ferrous high-spin cytochrome a3(2)+, but they were absent under aerobic photoreduction. The formyl CH = O stretching mode of the a3 heme was observed at 1671 cm-1 for a2+a3(2)+CO but at 1664 cm-1 for a2+a3(2)+CN-, indicating that the CH = O stretching frequency reflects the pi back-donation to the axial ligand similar to the oxidation state marker line (v4).

  13. Natural killer cells inhibit oxaliplatin-resistant colorectal cancer by repressing WBSCR22 via upregulating microRNA-146b-5p.

    Science.gov (United States)

    Zhao, Haiyan; Su, Wuyun; Kang, Qingmei; Xing, Ze; Lin, Xue; Wu, Zhongjun

    2018-01-01

    Natural killer (NK) cells have exhibited promising efficacy in inhibiting cancer growth. We aimed to explorer the effect of NK cells on oxaliplatin-resistant colorectal cancer and the underlying molecular mechanism. Oxaliplatin-resistant colorectal cancer cell lines were co-cultured with NK cells to evaluate the effect on viability, proliferation, migration and invasion in vitro . Oxaliplatin-resistant colorectal cancer cells were also co-injected with NK cells into mice to establish xenograft tumor model, to assess the in vivo effect of NK cells on tumorigenesis of the oxaliplatin-resistant colorectal cancer cells. Expression of WBSCR22 gene was assessed in the oxaliplatin-resistant colorectal cancer cells following NK cell treatment to elucidate the mechanism. NK cell treatment significantly reduces growth of oxaliplatin-resistant colorectal cancer cells both in vitro and in vivo , as well as reduced WBSCR22 expression. MicroRNAs potentially targeting WBSCR22 were analyzed, and microRNA-146b-5p was found to be significantly upregulated following NK cell treatment. MicroRNA-146b-5p directly targeted WBSCR22 mRNA 3'-UTR to inhibit its expression, which was required for NK cell-induced inhibition of oxaliplatin-resistant colorectal cancer cell lines. NK cells inhibit oxaliplatin-resistant colorectal cancer by repressing WBSCR22 via upregulating microRNA-146b-5p, both of which could serve as candidates for targeted therapy against oxaliplatin-resistant colorectal cancer.

  14. No evidence for a role of Ile587Val polymorphism of EIF2B5 gene in multiple sclerosis in Kashmir Valley of India.

    Science.gov (United States)

    Zahoor, Insha; Asimi, Ravouf; Haq, Ehtishamul

    2015-12-15

    Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the nervous system with a profound genetic element. It is already known that alterations in Eukaryotic Translation Initiation Factor 2B (EIF2B) gene encoding the five subunits of eIF2B complex cause Vanishing White Matter (VWM) disease of the brain and emerging evidences have advocated certain resemblances between MS and VWM in terms of clinical and epidemiological characteristics, thus validating the association study between EIF2B and MS. Moreover, a recent study has implicated EIF2B5 Ile587Val (rs843358) polymorphism as a susceptibility factor for MS. In order to investigate the association of EIF2B5 Ile587Val polymorphism with MS susceptibility in Kashmir region in India, we screened EIF2B5 Exon 13 in 30 MS patients and 65 controls (a total of 95 participants). During the present course of study, we could not find statistically significant difference in the frequency of Ile587Val between MS patients and controls, thus indicating that such alteration does not appear to influence MS development in Kashmiri population. Our results provide evidence against a major role for Ile587Val polymorphism in MS susceptibility. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Respiration triggers heme transfer from cytochrome c peroxidase to catalase in yeast mitochondria

    Science.gov (United States)

    Kathiresan, Meena; Martins, Dorival; English, Ann M.

    2014-01-01

    In exponentially growing yeast, the heme enzyme, cytochrome c peroxidase (Ccp1) is targeted to the mitochondrial intermembrane space. When the fermentable source (glucose) is depleted, cells switch to respiration and mitochondrial H2O2 levels rise. It has long been assumed that CCP activity detoxifies mitochondrial H2O2 because of the efficiency of this activity in vitro. However, we find that a large pool of Ccp1 exits the mitochondria of respiring cells. We detect no extramitochondrial CCP activity because Ccp1 crosses the outer mitochondrial membrane as the heme-free protein. In parallel with apoCcp1 export, cells exhibit increased activity of catalase A (Cta1), the mitochondrial and peroxisomal catalase isoform in yeast. This identifies Cta1 as a likely recipient of Ccp1 heme, which is supported by low Cta1 activity in ccp1Δ cells and the accumulation of holoCcp1 in cta1Δ mitochondria. We hypothesized that Ccp1’s heme is labilized by hyperoxidation of the protein during the burst in H2O2 production as cells begin to respire. To test this hypothesis, recombinant Ccp1 was hyperoxidized with excess H2O2 in vitro, which accelerated heme transfer to apomyoglobin added as a surrogate heme acceptor. Furthermore, the proximal heme Fe ligand, His175, was found to be ∼85% oxidized to oxo-histidine in extramitochondrial Ccp1 isolated from 7-d cells, indicating that heme labilization results from oxidation of this ligand. We conclude that Ccp1 responds to respiration-derived H2O2 via a previously unidentified mechanism involving H2O2-activated heme transfer to apoCta1. Subsequently, the catalase activity of Cta1, not CCP activity, contributes to mitochondrial H2O2 detoxification. PMID:25422453

  16. Respiration triggers heme transfer from cytochrome c peroxidase to catalase in yeast mitochondria.

    Science.gov (United States)

    Kathiresan, Meena; Martins, Dorival; English, Ann M

    2014-12-09

    In exponentially growing yeast, the heme enzyme, cytochrome c peroxidase (Ccp1) is targeted to the mitochondrial intermembrane space. When the fermentable source (glucose) is depleted, cells switch to respiration and mitochondrial H2O2 levels rise. It has long been assumed that CCP activity detoxifies mitochondrial H2O2 because of the efficiency of this activity in vitro. However, we find that a large pool of Ccp1 exits the mitochondria of respiring cells. We detect no extramitochondrial CCP activity because Ccp1 crosses the outer mitochondrial membrane as the heme-free protein. In parallel with apoCcp1 export, cells exhibit increased activity of catalase A (Cta1), the mitochondrial and peroxisomal catalase isoform in yeast. This identifies Cta1 as a likely recipient of Ccp1 heme, which is supported by low Cta1 activity in ccp1Δ cells and the accumulation of holoCcp1 in cta1Δ mitochondria. We hypothesized that Ccp1's heme is labilized by hyperoxidation of the protein during the burst in H2O2 production as cells begin to respire. To test this hypothesis, recombinant Ccp1 was hyperoxidized with excess H2O2 in vitro, which accelerated heme transfer to apomyoglobin added as a surrogate heme acceptor. Furthermore, the proximal heme Fe ligand, His175, was found to be ∼ 85% oxidized to oxo-histidine in extramitochondrial Ccp1 isolated from 7-d cells, indicating that heme labilization results from oxidation of this ligand. We conclude that Ccp1 responds to respiration-derived H2O2 via a previously unidentified mechanism involving H2O2-activated heme transfer to apoCta1. Subsequently, the catalase activity of Cta1, not CCP activity, contributes to mitochondrial H2O2 detoxification.

  17. Oxidative modification of methionine80 in cytochrome c by reaction with peroxides.

    Science.gov (United States)

    Nugraheni, Ari Dwi; Ren, Chunguang; Matsumoto, Yorifumi; Nagao, Satoshi; Yamanaka, Masaru; Hirota, Shun

    2018-05-01

    The Met80-heme iron bond of cytochrome c (cyt c) is cleaved by the interaction of cyt c with cardiolipin (CL) in membranes. The Met80 dissociation enhances the peroxidase activity of cyt c and triggers cyt c release from mitochondrion to the cytosol at the early stage of apoptosis. This paper demonstrates the selective oxidation of Met80 for the reaction of ferric cyt c with a peroxide, meta-chloroperbenzoic acid (mCPBA), in the presence of CL-containing liposomes by formation of a ferryl species (Compound I). After the reaction of cyt c with mCPBA in the presence of 1,2-dioloeyl-sn-glycero-3-phosphocholine (DOPC) liposomes containing CL, the electrospray ionization mass spectrum of the peptide fragments, obtained by digestion of cyt c with lysyl endopeptidase, exhibited a peak at m/z = 795.45; whereas, this peak was not observed for the peptide fragments obtained after the reaction in the presence of DOPC liposomes not containing CL. According to the tandem mass spectrum of the m/z = 795.45 peptide fragment, Met80 was modified with a 16 Da mass increase. The purified Met80-modified cyt c exhibited a peroxidase activity more than 5-fold higher than that of the unmodified protein. Transient absorption bands around 650 nm were generated by the reactions with mCPBA for ferric wild-type cyt c in the presence of CL-containing DOPC liposomes and ferric Y67F cyt c in the absence of liposomes. The formation and decomposition rates of the 650-nm absorption species increased and decreased, respectively, by increasing the mCPBA concentration in the reaction, indicating transient formation of Compound I. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Assessment of cytochrome C oxidase dysfunction in the substantia nigra/ventral tegmental area in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Matthew W Rice

    Full Text Available Perturbations in metabolism are a well-documented but complex facet of schizophrenia pathology. Optimal cellular performance requires the proper functioning of the electron transport chain, which is constituted by four enzymes located within the inner membrane of mitochondria. These enzymes create a proton gradient that is used to power the enzyme ATP synthase, producing ATP, which is crucial for the maintenance of cellular functioning. Anomalies in a single enzyme of the electron transport chain are sufficient to cause disruption of cellular metabolism. The last of these complexes is the cytochrome c oxidase (COX enzyme, which is composed of thirteen different subunits. COX is a major site for oxidative phosphorylation, and anomalies in this enzyme are one of the most frequent causes of mitochondrial pathology. The objective of the present report was to assess if metabolic anomalies linked to COX dysfunction may contribute to substantia nigra/ventral tegmental area (SN/VTA pathology in schizophrenia. We tested COX activity in postmortem SN/VTA from schizophrenia and non-psychiatric controls. We also tested the protein expression of key subunits for the assembly and activity of the enzyme, and the effect of antipsychotic medication on subunit expression. COX activity was not significantly different between schizophrenia and non-psychiatric controls. However, we found significant decreases in the expression of subunits II and IV-I of COX in schizophrenia. Interestingly, these decreases were observed in samples containing the entire rostro-caudal extent of the SN/VTA, while no significant differences were observed for samples containing only mid-caudal regions of the SN/VTA. Finally, rats chronically treated with antipsychotic drugs did not show significant changes in COX subunit expression. These findings suggest that COX subunit expression may be compromised in specific sub-regions of the SN/VTA (i.e. rostral regions, which may lead to a faulty

  19. Structure-Function, Stability, and Chemical Modification of the Cyanobacterial Cytochrome b6f Complex from Nostoc sp. PCC 7120*

    Science.gov (United States)

    Baniulis, Danas; Yamashita, Eiki; Whitelegge, Julian P.; Zatsman, Anna I.; Hendrich, Michael P.; Hasan, S. Saif; Ryan, Christopher M.; Cramer, William A.

    2009-01-01

    The crystal structure of the cyanobacterial cytochrome b6f complex has previously been solved to 3.0-Å resolution using the thermophilic Mastigocladus laminosus whose genome has not been sequenced. Several unicellular cyanobacteria, whose genomes have been sequenced and are tractable for mutagenesis, do not yield b6f complex in an intact dimeric state with significant electron transport activity. The genome of Nostoc sp. PCC 7120 has been sequenced and is closer phylogenetically to M. laminosus than are unicellular cyanobacteria. The amino acid sequences of the large core subunits and four small peripheral subunits of Nostoc are 88 and 80% identical to those in the M. laminosus b6f complex. Purified b6f complex from Nostoc has a stable dimeric structure, eight subunits with masses similar to those of M. laminosus, and comparable electron transport activity. The crystal structure of the native b6f complex, determined to a resolution of 3.0Å (PDB id: 2ZT9), is almost identical to that of M. laminosus. Two unique aspects of the Nostoc complex are: (i) a dominant conformation of heme bp that is rotated 180° about the α- and γ-meso carbon axis relative to the orientation in the M. laminosus complex and (ii) acetylation of the Rieske iron-sulfur protein (PetC) at the N terminus, a post-translational modification unprecedented in cyanobacterial membrane and electron transport proteins, and in polypeptides of cytochrome bc complexes from any source. The high spin electronic character of the unique heme cn is similar to that previously found in the b6f complex from other sources. PMID:19189962

  20. Phosphorylation of Cytochrome c Threonine 28 Regulates Electron Transport Chain Activity in Kidney: IMPLICATIONS FOR AMP KINASE.

    Science.gov (United States)

    Mahapatra, Gargi; Varughese, Ashwathy; Ji, Qinqin; Lee, Icksoo; Liu, Jenney; Vaishnav, Asmita; Sinkler, Christopher; Kapralov, Alexandr A; Moraes, Carlos T; Sanderson, Thomas H; Stemmler, Timothy L; Grossman, Lawrence I; Kagan, Valerian E; Brunzelle, Joseph S; Salomon, Arthur R; Edwards, Brian F P; Hüttemann, Maik

    2017-01-06

    Mammalian cytochrome c (Cytc) plays a key role in cellular life and death decisions, functioning as an electron carrier in the electron transport chain and as a trigger of apoptosis when released from the mitochondria. However, its regulation is not well understood. We show that the major fraction of Cytc isolated from kidneys is phosphorylated on Thr 28 , leading to a partial inhibition of respiration in the reaction with cytochrome c oxidase. To further study the effect of Cytc phosphorylation in vitro, we generated T28E phosphomimetic Cytc, revealing superior behavior regarding protein stability and its ability to degrade reactive oxygen species compared with wild-type unphosphorylated Cytc Introduction of T28E phosphomimetic Cytc into Cytc knock-out cells shows that intact cell respiration, mitochondrial membrane potential (ΔΨ m ), and ROS levels are reduced compared with wild type. As we show by high resolution crystallography of wild-type and T28E Cytc in combination with molecular dynamics simulations, Thr 28 is located at a central position near the heme crevice, the most flexible epitope of the protein apart from the N and C termini. Finally, in silico prediction and our experimental data suggest that AMP kinase, which phosphorylates Cytc on Thr 28 in vitro and colocalizes with Cytc to the mitochondrial intermembrane space in the kidney, is the most likely candidate to phosphorylate Thr 28 in vivo We conclude that Cytc phosphorylation is mediated in a tissue-specific manner and leads to regulation of electron transport chain flux via "controlled respiration," preventing ΔΨ m hyperpolarization, a known cause of ROS and trigger of apoptosis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Phosphorylation of Cytochrome c Threonine 28 Regulates Electron Transport Chain Activity in Kidney: IMPLICATIONS FOR AMP KINASE

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Gargi; Varughese, Ashwathy; Ji, Qinqin; Lee, Icksoo; Liu, Jenney; Vaishnav, Asmita; Sinkler, Christopher; Kapralov, Alexandr A.; Moraes, Carlos T.; Sanderson, Thomas H.; Stemmler, Timothy L.; Grossman, Lawrence I.; Kagan, Valerian E.; Brunzelle, Joseph S.; Salomon, Arthur R.; Edwards, Brian F. P.; Hüttemann, Maik

    2016-10-07

    Mammalian cytochrome c (Cytc) plays a key role in cellular life and death decisions, functioning as an electron carrier in the electron transport chain and as a trigger of apoptosis when released from the mitochondria. However, its regulation is not well understood. We show that the major fraction of Cytc isolated from kidneys is phosphorylated on Thr28, leading to a partial inhibition of respiration in the reaction with cytochrome c oxidase. To further study the effect of Cytc phosphorylation in vitro, we generated T28E phosphomimetic Cytc, revealing superior behavior regarding protein stability and its ability to degrade reactive oxygen species compared with wild-type unphosphorylated Cytc. Introduction of T28E phosphomimetic Cytc into Cytc knock-out cells shows that intact cell respiration, mitochondrial membrane potential (ΔΨm), and ROS levels are reduced compared with wild type. As we show by high resolution crystallography of wild-type and T28E Cytc in combination with molecular dynamics simulations, Thr28 is located at a central position near the heme crevice, the most flexible epitope of the protein apart from the N and C termini. Finally, in silico prediction and our experimental data suggest that AMP kinase, which phosphorylates Cytc on Thr28 in vitro and colocalizes with Cytc to the mitochondrial intermembrane space in the kidney, is the most likely candidate to phosphorylate Thr28 in vivo. We conclude that Cytc phosphorylation is mediated in a tissue-specific manner and leads to regulation of electron transport chain flux via “controlled respiration,” preventing ΔΨm hyperpolarization, a known cause of ROS and trigger of apoptosis.

  2. RNA interference of NADPH-cytochrome P450 reductase results in reduced insecticide resistance in the bed bug, Cimex lectularius.

    Science.gov (United States)

    Zhu, Fang; Sams, Sarah; Moural, Tim; Haynes, Kenneth F; Potter, Michael F; Palli, Subba R

    2012-01-01

    NADPH-cytochrome P450 reductase (CPR) plays a central role in cytochrome P450 action. The genes coding for P450s are not yet fully identified in the bed bug, Cimex lectularius. Hence, we decided to clone cDNA and knockdown the expression of the gene coding for CPR which is suggested to be required for the function of all P450s to determine whether or not P450s are involved in resistance of bed bugs to insecticides. The full length Cimex lectularius CPR (ClCPR) cDNA was isolated from a deltamethrin resistant bed bug population (CIN-1) using a combined PCR strategy. Bioinformatics and in silico modeling were employed to identify three conserved binding domains (FMN, FAD, NADP), a FAD binding motif, and the catalytic residues. The critical amino acids involved in FMN, FAD, NADP binding and their putative functions were also analyzed. No signal peptide but a membrane anchor domain with 21 amino acids which facilitates the localization of ClCPR on the endoplasmic reticulum was identified in ClCPR protein. Phylogenetic analysis showed that ClCPR is closer to the CPR from the body louse, Pediculus humanus corporis than to the CPRs from the other insect species studied. The ClCPR gene was ubiquitously expressed in all tissues tested but showed an increase in expression as immature stages develop into adults. We exploited the traumatic insemination mechanism of bed bugs to inject dsRNA and successfully knockdown the expression of the gene coding for ClCPR. Suppression of the ClCPR expression increased susceptibility to deltamethrin in resistant populations but not in the susceptible population of bed bugs. These data suggest that P450-mediated metabolic detoxification may serve as one of the resistance mechanisms in bed bugs.

  3. Immunohistochemical detection of cytochrome P450 isoenzymes in cultured human epidermal cells.

    Science.gov (United States)

    Van Pelt, F N; Meierink, Y J; Blaauboer, B J; Weterings, P J

    1990-12-01

    We used specific monoclonal antibodies (MAb) to human cytochrome P450 isoenzymes to determine the presence of these proteins in human epidermal cells. Two MAb (P450-5 and P450-8) recognize major forms of hepatic cytochrome P450 involved in biotransformation of xenobiotics. A third MAb, to cytochrome P450-9, is not fully characterized. The proteins were determined by the indirect immunoperoxidase technique after fixation with methanol and acetone. Biopsy materials for cultured keratinocytes, i.e., foreskin and hair follicles, contained the two major forms of cytochrome P450. In cultured keratinocytes derived from hair follicles the proteins were undetectable, whereas the keratinocytes derived from foreskin continued to express the two major forms of hepatic cytochrome P450. Cultured human fibroblasts and a human keratinocyte cell line (SVK14) showed staining similar to that of the foreskin keratinocytes. Cytochrome P450-9 was detectable only in human hepatocytes. The results indicate that, under the culture conditions applied, cultured human foreskin cells and the cell line SVK14 continue to express specific cytochrome P450 isoenzymes in culture, in contrast to hair follicle keratinocytes.

  4. A novel alkaloid, evodiamine causes nuclear localization of cytochrome-c and induces apoptosis independent of p53 in human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Vijay [School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat (India); Agarwal, Rajesh [Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO (United States); Singh, Rana P., E-mail: ranaps@hotmail.com [School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat (India); Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi (India)

    2016-09-02

    Lung cancer is the most frequently diagnosed malignancy that contributes to high proportion of deaths globally among patients who die due to cancer. Chemotherapy remains the common mode of treatment for lung cancer patients though with limited success. We assessed the biological effects and associated molecular changes of evodiamine, a plant alkaloid, on human lung cancer A549 and H1299 cells along with other epithelial cancer and normal lung SAEC cells. Our data showed that 20–40 μM evodiamine treatment for 24–48 h strongly (up to 73%, P < 0.001) reduced the growth and survival of these cancer cells. However, it also moderately inhibited growth and survival of SAEC cells. A strong inhibition (P < 0.001) was observed on clonogenicity of A549 cells. Further, evodiamine increased (4-fold) mitochondrial membrane depolarization with 6-fold increase in apoptosis and a slight increase in Bax/Bcl-2 ratio. It increased the cytochrome-c release from mitochondria into the cytosol as well as nucleus. Cytosolic cytochrome-c activated cascade of caspase-9 and caspase-3 intrinsic pathway, however, DR5 and caspase-8 extrinsic pathway was also activated which could be due to nuclear cytochrome-c. Pan-caspase inhibitor (z-VAD.fmk) partially reversed evodiamine induced apoptosis. An increase in p53 as well as its serine 15 phosphorylation was also observed. Pifithrin-α, a p53 inhibitor, slightly inhibited growth of A549 cells and under p53 inhibitory condition evodiamine-induced apoptosis could not be reversed. Together these findings suggest that evodiamine is a strong inducer of apoptosis in lung epithelial cancer cells independent of their p53 status and that could involve both intrinsic as well as extrinsic pathway of apoptosis. Thus evodiamine could be a potential anticancer agent against lung cancer. - Highlights: • Evodiamine, a novel plant alkaloid, relatively selectively inhibited growth and survival of human lung cancer cells. • Increased cancer cell

  5. Nanoscopic dynamics of bicontinous microemulsions: effect of membrane associated protein.

    Science.gov (United States)

    Sharma, V K; Hayes, Douglas G; Urban, Volker S; O'Neill, Hugh M; Tyagi, M; Mamontov, E

    2017-07-19

    Bicontinous microemulsions (BμE) generally consist of nanodomains formed by surfactant in a mixture of water and oil at nearly equal proportions and are potential candidates for the solubilization and purification of membrane proteins. Here we present the first time report of nanoscopic dynamics of surfactant monolayers within BμEs formed by the anionic surfactant sodium dodecyl sulfate (SDS) measured on the nanosecond to picosecond time scale using quasielastic neutron scattering (QENS). BμEs investigated herein consisted of middle phases isolated from Winsor-III microemulsion systems that were formed by mixing aqueous and oil solutions under optimal conditions. QENS data indicates that surfactants undergo two distinct motions, namely (i) lateral motion along the surface of the oil nanodomains and (ii) localized internal motion. Lateral motion can be described using a continuous diffusion model, from which the lateral diffusion coefficient is obtained. Internal motion of surfactant is described using a model which assumes that a fraction of the surfactants' hydrogens undergoes localized translational diffusion that could be considered confined within a spherical volume. The effect of cytochrome c, an archetypal membrane-associated protein known to strongly partition near the surfactant head groups in BμEs (a trend supported by small-angle X-ray scattering [SAXS] analysis), on the dynamics of BμE has also been investigated. QENS results demonstrated that cytochrome c significantly hindered both the lateral and the internal motions of surfactant. The lateral motion was more strongly affected: a reduction of the lateral diffusion coefficient by 33% was measured. This change is mainly attributable to the strong association of cytochrome c with oppositely charged SDS. In contrast, analysis of SAXS data suggested that thermal fluctuations (for a longer length and slower time scale compared to QENS) were increased upon incorporation of cytochrome c. This study

  6. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  7. Premature rupture of membranes

    Science.gov (United States)

    ... gov/ency/patientinstructions/000512.htm Premature rupture of membranes To use the sharing features on this page, ... water that surrounds your baby in the womb. Membranes or layers of tissue hold in this fluid. ...

  8. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  9. Membrane with integrated spacer

    NARCIS (Netherlands)

    Balster, J.H.; Stamatialis, Dimitrios; Wessling, Matthias

    2010-01-01

    Many membrane processes are severely influenced by concentration polarisation. Turbulence promoting spacers placed in between the membranes can reduce the diffusional resistance of concentration polarisation by inducing additional mixing. Electrodialysis (ED) used for desalination suffers from

  10. Gel layer formation on membranes in Membrane Bioreactors

    NARCIS (Netherlands)

    Van den Brink, P.F.H.

    2014-01-01

    The widespread application of membrane bioreactors (MBRs) for municipal wastewater treatment is hampered by membrane fouling. Fouling increases energy demand, reduces process performance and creates the need for more frequent (chemical) membrane cleaning or replacement. Membrane fouling in MBRs is

  11. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Karam, Ayman M.

    2017-01-01

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and

  12. In situ Raman study of redox state changes of mitochondrial cytochromes in a perfused rat heart

    DEFF Research Database (Denmark)

    Brazhe, Nadezda; Treiman, Marek; Faricelli, Barbara

    2013-01-01

    We developed a Raman spectroscopy-based approach for simultaneous study of redox changes in c-and b-type cytochromes and for a semiquantitative estimation of the amount of oxygenated myoglobin in a perfused rat heart. Excitation at 532 nm was used to obtain Raman scattering of the myocardial...... surface of the isolated heart at normal and hypoxic conditions. Raman spectra of the heart under normal pO2 demonstrate unique peaks attributable to reduced c-and b-type cytochromes and oxymyoglobin (oMb). The cytochrome peaks decreased in intensity upon FCCP treatment, as predicted from uncoupling...

  13. The Cytochrome bd Oxidase of Porphyromonas gingivalis Contributes to Oxidative Stress Resistance and Dioxygen Tolerance.

    Directory of Open Access Journals (Sweden)

    Julia Leclerc

    Full Text Available Porphyromonas gingivalis is an etiologic agent of periodontal disease in humans. The disease is associated with the formation of a mixed oral biofilm which is exposed to oxygen and environmental stress, such as oxidative stress. To investigate possible roles for cytochrome bd oxidase in the growth and persistence of this anaerobic bacterium inside the oral biofilm, mutant strains deficient in cytochrome bd oxidase activity were characterized. This study demonstrated that the cytochrome bd oxidase of Porphyromonas gingivalis, encoded by cydAB, was able to catalyse O2 consumption and was involved in peroxide and superoxide resistance, and dioxygen tolerance.

  14. Model cell membranes

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite

    2014-01-01

    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...

  15. Idiopathic epiretinal membrane

    NARCIS (Netherlands)

    Bu, Shao-Chong; Kuijer, Roelof; Li, Xiao-Rong; Hooymans, Johanna M M; Los, Leonoor I

    2014-01-01

    Background: Idiopathic epiretinal membrane (iERM) is a fibrocellular membrane that proliferates on the inner surface of the retina at the macular area. Membrane contraction is an important sight-threatening event and is due to fibrotic remodeling. Methods: Analysis of the current literature

  16. Meniscus Membranes For Separation

    Science.gov (United States)

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  17. Meniscus membranes for separations

    Science.gov (United States)

    Dye, Robert C [Irvine, CA; Jorgensen, Betty [Jemez Springs, NM; Pesiri, David R [Aliso Viejo, CA

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  18. Microfluidic platform for efficient Nanodisc assembly, membrane protein incorporation, and purification.

    Science.gov (United States)

    Wade, James H; Jones, Joshua D; Lenov, Ivan L; Riordan, Colleen M; Sligar, Stephen G; Bailey, Ryan C

    2017-08-22

    The characterization of integral membrane proteins presents numerous analytical challenges on account of their poor activity under non-native conditions, limited solubility in aqueous solutions, and low expression in most cell culture systems. Nanodiscs are synthetic model membrane constructs that offer many advantages for studying membrane protein function by offering a native-like phospholipid bilayer environment. The successful incorporation of membrane proteins within Nanodiscs requires experimental optimization of conditions. Standard protocols for Nanodisc formation can require large amounts of time and input material, limiting the facile screening of formation conditions. Capitalizing on the miniaturization and efficient mass transport inherent to microfluidics, we have developed a microfluidic platform for efficient Nanodisc assembly and purification, and demonstrated the ability to incorporate functional membrane proteins into the resulting Nanodiscs. In addition to working with reduced sample volumes, this platform simplifies membrane protein incorporation from a multi-stage protocol requiring several hours or days into a single platform that outputs purified Nanodiscs in less than one hour. To demonstrate the utility of this platform, we incorporated Cytochrome P450 into Nanodiscs of variable size and lipid composition, and present spectroscopic evidence for the functional active site of the membrane protein. This platform is a promising new tool for membrane protein biology and biochemistry that enables tremendous versatility for optimizing the incorporation of membrane proteins using microfluidic gradients to screen across diverse formation conditions.

  19. Sulfite oxidase activity of cytochrome c: Role of hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Murugesan Velayutham

    2016-03-01

    Full Text Available In humans, sulfite is generated endogenously by the metabolism of sulfur containing amino acids such as methionine and cysteine. Sulfite is also formed from exposure to sulfur dioxide, one of the major environmental pollutants. Sulfite is used as an antioxidant and preservative in dried fruits, vegetables, and beverages such as wine. Sulfite is also used as a stabilizer in many drugs. Sulfite toxicity has been associated with allergic reactions characterized by sulfite sensitivity, asthma, and anaphylactic shock. Sulfite is also toxic to neurons and cardiovascular cells. Recent studies suggest that the cytotoxicity of sulfite is mediated by free radicals; however, molecular mechanisms involved in sulfite toxicity are not fully understood. Cytochrome c (cyt c is known to participate in mitochondrial respiration and has antioxidant and peroxidase activities. Studies were performed to understand the related mechanism of oxidation of sulfite and radical generation by ferric cytochrome c (Fe3+cyt c in the absence and presence of H2O2. Electron paramagnetic resonance (EPR spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO were performed with sulfite, Fe3+cyt c, and H2O2. An EPR spectrum corresponding to the sulfite radical adducts of DMPO (DMPO-SO3- was obtained. The amount of DMPO-SO3- formed from the oxidation of sulfite by the Fe3+cyt c increased with sulfite concentration. In addition, the amount of DMPO-SO3- formed by the peroxidase activity of Fe3+cyt c also increased with sulfite and H2O2 concentration. From these results, we propose a mechanism in which the Fe3+cyt c and its peroxidase activity oxidizes sulfite to sulfite radical. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of sulfite in biological systems due to increased production of sulfite radical. It also shows that the increased production of sulfite radical may be responsible for neurotoxicity and some of the injuries which

  20. Separation membrane development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.W. [Savannah River Technology Center, Aiken, SC (United States)

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  1. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  2. Clustering on Membranes

    DEFF Research Database (Denmark)

    Johannes, Ludger; Pezeshkian, Weria; Ipsen, John H

    2018-01-01

    Clustering of extracellular ligands and proteins on the plasma membrane is required to perform specific cellular functions, such as signaling and endocytosis. Attractive forces that originate in perturbations of the membrane's physical properties contribute to this clustering, in addition to direct...... protein-protein interactions. However, these membrane-mediated forces have not all been equally considered, despite their importance. In this review, we describe how line tension, lipid depletion, and membrane curvature contribute to membrane-mediated clustering. Additional attractive forces that arise...... from protein-induced perturbation of a membrane's fluctuations are also described. This review aims to provide a survey of the current understanding of membrane-mediated clustering and how this supports precise biological functions....

  3. Prognostic Value of Cytochrome C and Cytokines in Acute Viral Encephalopathy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-06-01

    Full Text Available Serum cytochrome c and cytokines were evaluated as prognostic predictors in 29 children (ages 9 mos to 9 yrs 11 mos with viral acute encephalopathies and multiple organ failure at Fukushima Medical University School of Medicine, Japan.

  4. Evidence that Na+-pumping occurs through the D-channel in Vitreoscilla cytochrome bo

    International Nuclear Information System (INIS)

    Kim, Seong K.; Stark, Benjamin C.; Webster, Dale A.

    2005-01-01

    The operon (cyo) encoding the Na + -pumping respiratory terminal oxidase (cytochrome bo) of the bacterium Vitreoscilla was transformed into Escherichia coli GV100, a deletion mutant of cytochrome bo. This was done for the wild type operon and five mutants in three conserved Cyo subunit I amino acids known to be crucial for H + transport in the E. coli enzyme, one near the nuclear center, one in the K-channel, and one in the D-channel. CO-binding, NADH and ubiquinol oxidase, and Na + -pumping activities were all substantially inhibited by each mutation. The wild type Vitreoscilla cytochrome bo can pump Na + against a concentration gradient, resulting in a transmembrane concentration differential of 2-3 orders of magnitude. It is proposed that Vitreoscilla cytochrome bo pumps four Na + through the D-channel to the exterior and transports four H + through the K-channel for the reduction of each O 2

  5. A mitochondrial cytochrome b mutation causing severe respiratory chain enzyme deficiency in humans and yeast.

    NARCIS (Netherlands)

    Blakely, E.L.; Mitchell, A.L.; Fisher, N.; Meunier, B.; Nijtmans, L.G.J.; Schaefer, A.M.; Jackson, M.J.; Turnbull, D.M.; Taylor, R.W.

    2005-01-01

    Whereas the majority of disease-related mitochondrial DNA mutations exhibit significant biochemical and clinical heterogeneity, mutations within the mitochondrially encoded human cytochrome b gene (MTCYB) are almost exclusively associated with isolated complex III deficiency in muscle and a clinical

  6. Formalin-inactivated EV71 vaccine candidate induced cross-neutralizing antibody against subgenotypes B1, B4, B5 and C4A in adult volunteers.

    Directory of Open Access Journals (Sweden)

    Ai-Hsiang Chou

    Full Text Available Enterovirus 71 (EV71 has caused several epidemics of hand, foot and mouth diseases (HFMD in Asia. No effective EV71 vaccine is available. A randomized and open-label phase I clinical study registered with ClinicalTrials.gov #NCT01268787, aims to evaluate the safety, reactogenicity and immunogenicity of a formalin-inactivated EV71 vaccine candidate (EV71vac at 5- and 10-µg doses. In this study we report the cross-neutralizing antibody responses from each volunteer against different subgenotypes of EV71 and CVA16.Sixty eligible healthy adults were recruited and vaccinated. Blood samples were obtained on day 0, 21 and 42 and tested against B1, B4, B5, C2, C4A, C4B and CVA16 for cross-neutralizing antibody responses.The immunogenicity of both 5- and 10- µg doses were found to be very similar. Approximately 45% of the participants had 4-fold increase in Nt, but there was no further increase in Nt after the second dose. EV71vac induced very strong cross-neutralizing antibody responses in >85% of volunteers without pre-existing Nt against subgenotype B1, B5 and C4A. EV71vac elicited weak cross-neutralizing antibody responses (∼20% of participants against a C4B and Coxsackie virus A16. Over 90% of vaccinated volunteers did not develop cross-neutralizing antibody responses (Nt<8 against a C2 strain. EV71vac can boost and significantly enhance the neutralizing antibody responses in volunteers who already had pre-vaccination antibodies against EV71 and/or CVA16.EV71vac is efficient in eliciting cross-neutralizing antibody responses against EV71 subgenotypes B1, B4, B5, and C4A, and provides the rationale for its evaluation in phase II clinical trials.ClinicalTrials.gov NCT01268787.

  7. Expression of miRNA-26b-5p and its target TRPS1 is associated with radiation exposure in post-Chernobyl breast cancer.

    Science.gov (United States)

    Wilke, Christina M; Hess, Julia; Klymenko, Sergiy V; Chumak, Vadim V; Zakhartseva, Liubov M; Bakhanova, Elena V; Feuchtinger, Annette; Walch, Axel K; Selmansberger, Martin; Braselmann, Herbert; Schneider, Ludmila; Pitea, Adriana; Steinhilber, Julia; Fend, Falko; Bösmüller, Hans C; Zitzelsberger, Horst; Unger, Kristian

    2018-02-01

    Ionizing radiation is a well-recognized risk factor for the development of breast cancer. However, it is unknown whether radiation-specific molecular oncogenic mechanisms exist. We investigated post-Chernobyl breast cancers from radiation-exposed female clean-up workers and nonexposed controls for molecular changes. Radiation-associated alterations identified in the discovery cohort (n = 38) were subsequently validated in a second cohort (n = 39). Increased expression of hsa-miR-26b-5p was associated with radiation exposure in both of the cohorts. Moreover, downregulation of the TRPS1 protein, which is a transcriptional target of hsa-miR-26b-5p, was associated with radiation exposure. As TRPS1 overexpression is common in sporadic breast cancer, its observed downregulation in radiation-associated breast cancer warrants clarification of the specific functional role of TRPS1 in the radiation context. For this purpose, the impact of TRPS1 on the transcriptome was characterized in two radiation-transformed breast cell culture models after siRNA-knockdown. Deregulated genes upon TRPS1 knockdown were associated with DNA-repair, cell cycle, mitosis, cell migration, angiogenesis and EMT pathways. Furthermore, we identified the interaction partners of TRPS1 from the transcriptomic correlation networks derived from gene expression data on radiation-transformed breast cell culture models and sporadic breast cancer tissues provided by the TCGA database. The genes correlating with TRPS1 in the radiation-transformed breast cell lines were primarily linked to DNA damage response and chromosome segregation, while the transcriptional interaction partners in the sporadic breast cancers were mostly associated with apoptosis. Thus, upregulation of hsa-miR-26b-5p and downregulation of TRPS1 in radiation-associated breast cancer tissue samples suggests these molecules representing radiation markers in breast cancer. © 2017 UICC.

  8. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  9. Environmentally persistent free radical-containing particulate matter competitively inhibits metabolism by cytochrome P450 1A2

    Energy Technology Data Exchange (ETDEWEB)

    Reed, James R., E-mail: rreed@lsuhsc.edu [Department of Pharmacology and Experimental Therapeutics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Cruz, Albert Leo N. dela, E-mail: adelac2@tigers.lsu.edu [Department of Environmental Sciences and LSU Superfund Research Center, Louisiana State University A& M College, Baton Rouge, LA 70803 (United States); Lomnicki, Slawo M., E-mail: slomni1@lsu.edu [Department of Environmental Sciences and LSU Superfund Research Center, Louisiana State University A& M College, Baton Rouge, LA 70803 (United States); Backes, Wayne L., E-mail: wbacke@lsuhsc.edu [Department of Pharmacology and Experimental Therapeutics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar St., New Orleans, LA 70112 (United States)

    2015-12-01

    Combustion processes generate different types of particulate matter (PM) that can have deleterious effects on the pulmonary and cardiovascular systems. Environmentally persistent free radicals (EPFRs) represent a type of particulate matter that is generated after combustion of environmental wastes in the presence of redox-active metals and aromatic hydrocarbons. Cytochromes P450 (P450/CYP) are membrane-bound enzymes that are essential for the phase I metabolism of most lipophilic xenobiotics. The EPFR formed by chemisorption of 2-monochlorophenol to silica containing 5% copper oxide (MCP230) has been shown to generally inhibit the activities of different forms of P450s without affecting those of cytochrome P450 reductase and heme oxygenase-1. The mechanism of inhibition of rat liver microsomal CYP2D2 and purified rabbit CYP2B4 by MCP230 has been shown previously to be noncompetitive with respect to substrate. In this study, MCP230 was shown to competitively inhibit metabolism of 7-benzyl-4-trifluoromethylcoumarin and 7-ethoxyresorufin by the purified, reconstituted rabbit CYP1A2. MCP230 is at least 5- and 50-fold more potent as an inhibitor of CYP1A2 than silica containing 5% copper oxide and silica, respectively. Thus, even though PM generally inhibit multiple forms of P450, PM interacts differently with the forms of P450 resulting in different mechanisms of inhibition. P450s function as oligomeric complexes within the membrane. We also determined the mechanism by which PM inhibited metabolism by the mixed CYP1A2–CYP2B4 complex and found that the mechanism was purely competitive suggesting that the CYP2B4 is dramatically inhibited when bound to CYP1A2. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • Particulate matter (PM) competitively inhibited CYP1A2 activity. • EPFRs were much more potent CYP1A2 inhibitors than other types of PM. • PM interacts differently with different forms of P450. • PM

  10. Effects of soluble flavin on heterogeneous electron transfer between surface-exposed bacterial cytochromes and iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zheming; Shi, Zhi; Shi, Liang; White, Gaye F.; Richardson, David J.; Clarke, Thomas A.; Fredrickson, Jim K.; Zachara, John M.

    2015-08-25

    Dissimilatory iron-reducing bacteria can utilize insoluble Fe(Mn)-oxides as a terminal electron acceptor under anaerobic conditions. For Shewanella species specifically, some evidence suggests that iron reduction is associated with the secretion of flavin mononucleotide (FMN) and riboflavin that are proposed to mediate electron transfer (Marsili et al., 2008). In this work, we used methyl viologen (MV•+)-encapsulated, porin-cytochrome complex (MtrCAB) embedded liposomes (MELs) as a synthetic model of the Shewanella outer membrane to investigate the proposed mediating behavior of secreted flavins. The reduction kinetics of goethite, hematite and lepidocrocite (200 µM) by MELs ([MV•+] ~ 42 µM and MtrABC ≤ 1 nM) were determined in the presence FMN at pH 7.0 in N2 atmosphere by monitoring the concentrations of MV•+ and FMN through their characteristic UV-visible absorption spectra. Experiments were performed where i) FMN and Fe(III)-oxide were mixed and then reacted with the reduced MELs and ii) FMN was reacted with the reduced MELs followed by addition of Fe(III)-oxide. The redox reactions proceeded in two steps: a fast step that was completed in a few seconds, and a slower one lasting over 400 seconds. For all three Fe(III)-oxides, the initial reaction rate in the presence of a low concentration of FMN (≤ 1 µM) was at least a factor of five faster than those with MELs alone, and orders of magnitude faster than those by FMNH2, suggesting that FMN may serve as a co-factor that enhances electron transfer from outer-membrane c-cytochromes to Fe(III)-oxides. The rate and extent of the initial reaction followed the order of lepidocrocite > hematite > goethite, the same as their reduction potentials, implying thermodynamic control on reaction rate. However, at higher FMN concentrations (> 1 µM), the reaction rates for both steps decreased and varied inversely with FMN concentration, indicating that FMN inhibited the MEL to Fe(III)-oxide electron transfer

  11. Total cross-sections for single electron capture from H, He and H2 targets by impact of Be4+ and B5+ ions

    International Nuclear Information System (INIS)

    Busnengo, H.F.; Rivarola, R.D.; Universidad Nacional de Rosario; Rosario Univ. Nacional

    1996-01-01

    Single electron capture from H, He and H 2 targets by impact of Be 4+ and B 5+ projectiles is studied for intermediate and high collision energies. Total cross-sections are calculated using the continuum distorted wave-eikonal final state model. Theoretical results corresponding to capture to selective final bound states and to all final states are presented for impact energies ranging from 50 keV/amu to 3 MeV/amu. A comparison with available experimental data is also shown. (orig.)

  12. Avaliação de diferentes estratégias de biorremediação no tratamento de solo contaminado por diesel B5

    OpenAIRE

    Roberta Carvalho Ciannella

    2010-01-01

    No Brasil, a contaminação do solo por derramamentos de combustíveis representa um dos mais graves problemas ambientais e o impacto da introdução de novas misturas como diesel/biodiesel na matriz energética requer investigação quanto a tecnologias apropriadas de remediação. O presente estudo teve por objetivo avaliar diferentes estratégias de biorremediação no tratamento de solo contaminado experimentalmente com óleo diesel B5. Foram conduzidos três experimentos. No primeiro, quatro microcosmo...

  13. cMyc/miR-125b-5p signalling determines sensitivity to bortezomib in preclinical model of cutaneous T-cell lymphomas

    DEFF Research Database (Denmark)

    Manfè, Valentina; Biskup, Edyta; Willumsgaard, Ayalah

    2013-01-01

    Successful/effective cancer therapy in low grade lymphoma is often hampered by cell resistance to anti-neoplastic agents. The crucial mechanisms responsible for this phenomenon are poorly understood. Overcoming resistance of tumor cells to anticancer agents, such as proteasome inhibitors, could...... improve their clinical efficacy. Using cutaneous T-cell lymphoma (CTCL) as a model of the chemotherapy-resistant peripheral lymphoid malignancy, we demonstrated that resistance to proteasome inhibition involved a signaling between the oncogene cMyc and miR-125b-5p. Bortezomib repressed c...

  14. [Immunomodulators with an 8-azasteroid structure as inducers of liver cytochrome P-450].

    Science.gov (United States)

    Kuz'mitskiĭ, B B; Dad'kov, I G; Mashkovich, A E; Stoma, O V; Slepneva, L M

    1990-01-01

    Two structural analogues of D-homo-8-azasteroids, both an immunostimulant and an immunodepressant, are inductors of the liver cytochrome P-450 in animals. This capability was shown by means of both a decrease of the hexenal sleep duration in the pharmacological test and an increase of the quantity of cytochrome P-450 and the rate of N-demethylation of aminopyrine in the biochemical assays.

  15. Evolution of NADPH-cytochrome P450 oxidoreductases (POR) in Apiales - POR 1 is missing

    DEFF Research Database (Denmark)

    Andersen, Trine Bundgaard; Hansen, Niels Bjørn; Laursen, Tomas

    2016-01-01

    The NADPH-dependent cytochrome P450 oxidoreductase (POR) is the obligate electron donor to eukaryotic microsomal cytochromes P450 enzymes. The number of PORs within plant species is limited to one to four isoforms, with the most common being two PORs per plant. These enzymes provide electrons to ...... (available from the SRA at NCBI). All three genes were shown to be functional upon reconstitution into nanodiscs, confirming that none of the isoforms are pseudogenes....

  16. Utilizing Chemical Genomics to Identify Cytochrome b as a Novel Drug Target for Chagas Disease.

    Directory of Open Access Journals (Sweden)

    Shilpi Khare

    2015-07-01

    Full Text Available Unbiased phenotypic screens enable identification of small molecules that inhibit pathogen growth by unanticipated mechanisms. These small molecules can be used as starting points for drug discovery programs that target such mechanisms. A major challenge of the approach is the identification of the cellular targets. Here we report GNF7686, a small molecule inhibitor of Trypanosoma cruzi, the causative agent of Chagas disease, and identification of cytochrome b as its target. Following discovery of GNF7686 in a parasite growth inhibition high throughput screen, we were able to evolve a GNF7686-resistant culture of T. cruzi epimastigotes. Clones from this culture bore a mutation coding for a substitution of leucine by phenylalanine at amino acid position 197 in cytochrome b. Cytochrome b is a component of complex III (cytochrome bc1 in the mitochondrial electron transport chain and catalyzes the transfer of electrons from ubiquinol to cytochrome c by a mechanism that utilizes two distinct catalytic sites, QN and QP. The L197F mutation is located in the QN site and confers resistance to GNF7686 in both parasite cell growth and biochemical cytochrome b assays. Additionally, the mutant cytochrome b confers resistance to antimycin A, another QN site inhibitor, but not to strobilurin or myxothiazol, which target the QP site. GNF7686 represents a promising starting point for Chagas disease drug discovery as it potently inhibits growth of intracellular T. cruzi amastigotes with a half maximal effective concentration (EC50 of 0.15 µM, and is highly specific for T. cruzi cytochrome b. No effect on the mammalian respiratory chain or mammalian cell proliferation was observed with up to 25 µM of GNF7686. Our approach, which combines T. cruzi chemical genetics with biochemical target validation, can be broadly applied to the discovery of additional novel drug targets and drug leads for Chagas disease.

  17. Glaucoma and Cytochrome P4501B1 Gene Mutations

    Directory of Open Access Journals (Sweden)

    Mukesh Tanwar

    2010-01-01

    Full Text Available Developmental anomalies of the ocular anterior chamber angle may lead to an incomplete development of the structures that form the conventional aqueous outflow pathway. Thus, disorders that present with such dysfunction tend to be associated with glaucoma. Among them, Axenfeld-Rieger (ARS malformation is a rare clinical entity with an estimated prevalence of one in every 200,000 individuals. The changes in eye morphogenesis in ARS are highly penetrant and are associated with 50% risk of development of glaucoma. Mutations in the cytochrome P4501B1 (CYP1B1 gene have been reported to be associated with primary congenital glaucoma and other forms of glaucoma and mutations in pituitary homeobox 2 (PITX2 gene have been identified in ARS in various studies. This case was negative for PITX2 mutations and compound heterozygote for CYP1B1 mutations. Clinical manifestations of this patient include bilateral elevated intraocular pressure (>40 mmHg with increased corneal diameter (>14 mm and corneal opacity. Patient also had iridocorneal adhesions, anteriorly displaced Schwalbe line, anterior insertion of iris, broad nasal bridge and protruding umbilicus. This is the first study from north India reporting CYP1B1 mutations in Axenfeld-Rieger syndrome with bilateral buphthalmos and early onset glaucoma. Result of this study supports the role of CYP1B1 as a causative gene in ASD disorders and its role in oculogenesis.

  18. Clinical Pharmacogenetics of Cytochrome P450-Associated Drugs in Children

    Directory of Open Access Journals (Sweden)

    Ida Aka

    2017-11-01

    Full Text Available Cytochrome P450 (CYP enzymes are commonly involved in drug metabolism, and genetic variation in the genes encoding CYPs are associated with variable drug response. While genotype-guided therapy has been clinically implemented in adults, these associations are less well established for pediatric patients. In order to understand the frequency of pediatric exposures to drugs with known CYP interactions, we compiled all actionable drug–CYP interactions with a high level of evidence using Clinical Pharmacogenomic Implementation Consortium (CPIC data and surveyed 10 years of electronic health records (EHR data for the number of children exposed to CYP-associated drugs. Subsequently, we performed a focused literature review for drugs commonly used in pediatrics, defined as more than 5000 pediatric patients exposed in the decade-long EHR cohort. There were 48 drug–CYP interactions with a high level of evidence in the CPIC database. Of those, only 10 drugs were commonly used in children (ondansetron, oxycodone, codeine, omeprazole, lansoprazole, sertraline, amitriptyline, citalopram, escitalopram, and risperidone. For these drugs, reports of the drug–CYP interaction in cohorts including children were sparse. There are adequate data for implementation of genotype-guided therapy for children for three of the 10 commonly used drugs (codeine, omeprazole and lansoprazole. For the majority of commonly used drugs with known CYP interactions, more data are required to support pharmacogenomic implementation in children.

  19. Force modulation and electrochemical gating of conductance in a cytochrome

    Science.gov (United States)

    Davis, Jason J.; Peters, Ben; Xi, Wang

    2008-09-01

    Scanning probe methods have been used to measure the effect of electrochemical potential and applied force on the tunnelling conductance of the redox metalloprotein yeast iso-1-cytochrome c (YCC) at a molecular level. The interaction of a proximal probe with any sample under test will, at this scale, be inherently perturbative. This is demonstrated with conductive probe atomic force microscopy (CP-AFM) current-voltage spectroscopy in which YCC, chemically adsorbed onto pristine Au(111) via its surface cysteine residue, is observed to become increasingly compressed as applied load is increased, with concomitant decrease in junction resistance. Electrical contact at minimal perturbation, where probe-molecule coupling is comparable to that in scanning tunnelling microscopy, brings with it the observation of negative differential resistance, assigned to redox-assisted probe-substrate tunnelling. The role of the redox centre in conductance is also resolved in electrochemical scanning tunnelling microscopy assays where molecular conductance is electrochemically gateable through more than an order of magnitude.

  20. Spaceflight Effects on Cytochrome P450 Content in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Natalia Moskaleva

    Full Text Available Hard conditions of long-term manned spaceflight can affect functions of many biological systems including a system of drug metabolism. The cytochrome P450 (CYP superfamily plays a key role in the drug metabolism. In this study we examined the hepatic content of some P450 isoforms in mice exposed to 30 days of space flight and microgravity. The CYP content was established by the mass-spectrometric method of selected reaction monitoring (SRM. Significant changes in the CYP2C29, CYP2E1 and CYP1A2 contents were detected in mice of the flight group compared to the ground control group. Within seven days after landing and corresponding recovery period changes in the content of CYP2C29 and CYP1A2 returned to the control level, while the CYP2E1 level remained elevated. The induction of enzyme observed in the mice in the conditions of the spaceflight could lead to an accelerated biotransformation and change in efficiency of pharmacological agents, metabolizing by corresponding CYP isoforms. Such possibility of an individual pharmacological response to medication during long-term spaceflights and early period of postflight adaptation should be taken into account in space medicine.

  1. Regulation of the cytochrome P450 2A genes

    International Nuclear Information System (INIS)

    Su Ting; Ding Xinxin

    2004-01-01

    Cytochrome P450 monooxygenases of the CYP2A subfamily play important roles in xenobiotic disposition in the liver and in metabolic activation in extrahepatic tissues. Many of the CYP2A transcripts and enzymes are inducible by xenobiotic compounds, and the expression of at least some of the CYP2A genes is influenced by physiological status, such as circadian rhythm, and pathological conditions, such as inflammation, microbial infection, and tumorigenesis. Variability in the expression of the CYP2A genes, which differs by species, animal strain, gender, and organ, may alter the risks of chemical toxicity for numerous compounds that are CYP2A substrates. The mechanistic bases of these variabilities are generally not well understood. However, recent studies have yielded interesting findings in several areas, such as the role of nuclear factor 1 in the tissue-selective expression of CYP2A genes in the olfactory mucosa (OM); the roles of constitutive androstane receptor, pregnane X receptor (PXR), and possibly, peroxisome proliferator-activated receptors in transcriptional regulation of the Cyp2a5 gene; and the involvement of heterogeneous nuclear ribonucleoprotein A1 in pyrazole-induced stabilization of CYP2A5 mRNA. The aims of this minireview are to summarize current knowledge of the regulation of the CYP2A genes in rodents and humans, and to stimulate further mechanistic studies that will ultimately improve our ability to determine, and to understand, these variabilities in humans

  2. Expression of cytochrome P450 regulators in cynomolgus macaque.

    Science.gov (United States)

    Uno, Yasuhiro; Yamazaki, Hiroshi

    2017-09-11

    1. Cytochrome P450 (P450) regulators including nuclear receptors and transcription factors have not been fully investigated in cynomolgus macaques, an important species used in drug metabolism studies. In this study, we analyzed 17 P450 regulators by sequence and phylogenetic analysis, and tissue expression. 2. Gene and genome structures of 17 P450 regulators were similar to the human orthologs, and the deduced amino acid sequences showed high sequence identities (92-95%) and more closely clustered in a phylogenetic tree, with the human orthologs. 3. Many of the P450 regulator mRNAs were preferentially expressed in the liver, kidney, and/or jejunum. Among the P450 regulator mRNAs, PXR was most abundant in the liver and jejunum, and HNF4α in the kidney. In the liver, the expression of most P450 regulator mRNAs did not show significant differential expression (>2.5-fold) between cynomolgus macaques bred in Cambodia, China, and Indonesia, or rhesus macaques. 4. By correlation analysis, most of the P450 regulators were significantly (p < 0.05) correlated to other P450 regulators, and many of them were also significantly (p < 0.05) correlated with P450s. 5. These results suggest that 17 P450 regulators of cynomolgus macaques had similar molecular characteristics to the human orthologs.

  3. Interaction of rocuronium with human liver cytochromes P450.

    Science.gov (United States)

    Anzenbacherova, Eva; Spicakova, Alena; Jourova, Lenka; Ulrichova, Jitka; Adamus, Milan; Bachleda, Petr; Anzenbacher, Pavel

    2015-02-01

    Rocuronium is a neuromuscular blocking agent acting as a competitive antagonist of acetylcholine. Results of an inhibition of eight individual liver microsomal cytochromes P450 (CYP) are presented. As the patients are routinely premedicated with diazepam, possible interaction of diazepam with rocuronium has been also studied. Results indicated that rocuronium interacts with human liver microsomal CYPs by binding to the substrate site. Next, concentration dependent inhibition of liver microsomal CYP3A4 down to 42% (at rocuronium concentration 189 μM) was found. This effect has been confirmed with two CYP3A4 substrates, testosterone (formation of 6β-hydroxytestosterone) and diazepam (temazepam formation). CYP2C9 and CYP2C19 activities were inhibited down to 75-80% (at the same rocuronium concentration). Activities of other microsomal CYPs have not been inhibited by rocuronium. To prove the possibility of rocuronium interaction with other drugs (diazepam), the effect of rocuronium on formation of main diazepam metabolites, temazepam (by CYP3A4) and desmethyldiazepam, (also known as nordiazepam; formed by CYP2C19) in primary culture of human hepatocytes has been examined. Rocuronium has caused inhibition of both reactions by 20 and 15%, respectively. The results open a possibility that interactions of rocuronium with drugs metabolized by CYP3A4 (and possibly also CYP2C19) may be observed. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  4. Direct observation of vibrational energy flow in cytochrome c.

    Science.gov (United States)

    Fujii, Naoki; Mizuno, Misao; Mizutani, Yasuhisa

    2011-11-10

    Vibrational energy flow in ferric cytochrome c has been examined by picosecond time-resolved anti-Stokes ultraviolet resonance Raman (UVRR) measurements. By taking advantage of the extremely short nonradiative excited state lifetime of heme in the protein (energy of 20000-25000 cm(-1) was optically deposited selectively at the heme site. Subsequent energy relaxation in the protein moiety was investigated by monitoring the anti-Stokes UVRR intensities of the Trp59 residue, which is a single tryptophan residue involved in the protein that is located close to the heme group. It was found from temporal changes of the anti-Stokes UVRR intensities that the energy flow from the heme to Trp59 and the energy release from Trp59 took place with the time constants of 1-3 and ~8 ps, respectively. These data are consistent with the time constants for the vibrational relaxation of the heme and heating of water reported for hemeproteins. The kinetics of the energy flow were not affected by the amount of excess energy deposited at the heme group. These results demonstrate that the present technique is a powerful tool for studying the vibrational energy flow in proteins.

  5. Polycyclic aromatic hydrocarbons and cytochrome P450 in HIV pathogenesis

    Science.gov (United States)

    Rao, P. S. S.; Kumar, Santosh

    2015-01-01

    High prevalence of cigarette smoking in HIV patients is associated with increased HIV pathogenesis and disease progression. While the effect of smoking on the occurrence of lung cancer has been studied extensively, the association between smoking and HIV pathogenesis is poorly studied. We have recently shown the possible role of cytochrome P450 (CYP) in smoking/nicotine-mediated viral replication. In this review, we focus on the potential role of CYP pathway in polycyclic aromatic hydrocarbons (PAH), important constituents of cigarette smoke, mediated HIV pathogenesis. More specifically, we will discuss the role of CYP1A1 and CYP1B1, which are the major PAH-activating CYP enzymes. Our results have shown that treatment with cigarette smoke condensate (CSC) increases viral replication in HIV-infected macrophages. CSC contains PAH, which are known to be activated by CYP1A1 and CYP1B1 into procarcinogens/toxic metabolites. The expression of these CYPs is regulated by aryl hydrocarbon receptors (AHR), the cellular target of PAH, and an important player in various diseases including cancer. We propose that PAH/AHR-mediated CYP pathway is a novel target to develop new interventions for HIV positive smokers. PMID:26082767

  6. Cytochromes P450: History, Classes, Catalytic Mechanism, and Industrial Application.

    Science.gov (United States)

    Cook, D J; Finnigan, J D; Cook, K; Black, G W; Charnock, S J

    Cytochromes P450, a family of heme-containing monooxygenases that catalyze a diverse range of oxidative reactions, are so-called due to their maximum absorbance at 450nm, ie, "Pigment-450nm," when bound to carbon monoxide. They have appeal both academically and commercially due to their high degree of regio- and stereoselectivity, for example, in the area of active pharmaceutical ingredient synthesis. Despite this potential, they often exhibit poor stability, low turnover numbers and typically require electron transport protein(s) for catalysis. P450 systems exist in a variety of functional domain architectures, organized into 10 classes. P450s are also divided into families, each of which is based solely on amino acid sequence homology. Their catalytic mechanism employs a very complex, multistep catalytic cycle involving a range of transient intermediates. Mutagenesis is a powerful tool for the development of improved biocatalysts and has been used extensively with the archetypal Class VIII P450, BM3, from Bacillus megaterium, but with the increasing scale of genomic sequencing, a huge resource is now available for the discovery of novel P450s. © 2016 Elsevier Inc. All rights reserved.

  7. Differences in renal metabolism of insulin and cytochrome c

    International Nuclear Information System (INIS)

    Herrman, J.; Simmons, R.E.; Frank, B.H.; Rabkin, R.

    1988-01-01

    Kidneys degrade small proteins such as cytochrome c (CYT c) by the classic lysosomal pathway. However, because alternate routes for the transport and degradation of protein hormones have been identified in other tissues, the authors set out to determine whether extralysosomal sites might participate in the renal degradation of insulin. First, they compared the effect of the lysosomal inhibitor NH 4 Cl on insulin and CYT c degradation by isolated perfused rat kidneys. After kidneys were loaded with radiolabeled proteins to allow for absorption and transport to lysosomes, degradation was measured in the presence or absence of inhibitors. Next they followed the subcellular distribution of 125 I-labeled insulin in kidneys exposed to 125 I-labeled insulin in vivo or when isolated and perfused. Under both circumstances the distribution of insulin on a linear sucrose gradient differed from that of the lysosomal enzyme N-acetyl-β-glucosaminidase. In contrast, [ 14 CH 3 ]CYT c, injected in vivo, distributed over a density similar to the lysosomal marker. Thus important differences exist between the renal metabolism of CYT c, which proceeds in lysosomes, and the renal metabolism of insulin. These include rate of degradation, sensitivity to NH 4 Cl, and subcellular sites of localization. Accordingly, they suggest that insulin degradation may occur, at least in part, in a different compartment from the classic lysosomal site of protein degradation

  8. Taxonomic relationships among Phenacomys voles as inferred by cytochrome b

    Science.gov (United States)

    Bellinger, M.R.; Haig, S.M.; Forsman, E.D.; Mullins, T.D.

    2005-01-01

    Taxonomic relationships among red tree voles (Phenacomys longicaudus longicaudus, P. l. silvicola), the Sonoma tree vole (P. pomo), the white-footed vole (P. albipes), and the heather vole (P. intermedius) were examined using 664 base pairs of the mitochondrial cytochrome b gene. Results indicate specific differences among red tree voles, Sonoma tree voles, white-footed voles, and heather voles, but no clear difference between the 2 Oregon subspecies of red tree voles (P. l. longicaudus and P. l. silvicola). Our data further indicated a close relationship between tree voles and albipes, validating inclusion of albipes in the subgenus Arborimus. These 3 congeners shared a closer relationship to P. intermedius than to other arvicolids. A moderate association between porno and albipes was indicated by maximum parsimony and neighbor-joining phylogenetic analyses. Molecular clock estimates suggest a Pleistocene radiation of the Arborimus clade, which is concordant with pulses of diversification observed in other murid rodents. The generic rank of Arborimus is subject to interpretation of data.

  9. Stability enhancement of cytochrome c through heme deprotonation and mutations.

    Science.gov (United States)

    Sonoyama, Takafumi; Hasegawa, Jun; Uchiyama, Susumu; Nakamura, Shota; Kobayashi, Yuji; Sambongi, Yoshihiro

    2009-01-01

    The chemical denaturation of Pseudomonas aeruginosa cytochrome c(551) variants was examined at pH 5.0 and 3.6. All variants were stabilized at both pHs compared with the wild-type. Remarkably, the variants carrying the F34Y and/or E43Y mutations were more stabilized than those having the F7A/V13M or V78I ones at pH 5.0 compared with at pH 3.6 by ~3.0-4.6 kJ/mol. Structural analyses predicted that the side chains of introduced Tyr-34 and Tyr-43 become hydrogen donors for the hydrogen bond formation with heme 17-propionate at pH 5.0, but less efficiently at pH 3.6, because the propionate is deprotonated at the higher pH. Our results provide an insight into a stabilization strategy for heme proteins involving variation of the heme electronic state and introduction of appropriate mutations.

  10. Multifunctional Cytochrome c: Learning New Tricks from an Old Dog.

    Science.gov (United States)

    Alvarez-Paggi, Damián; Hannibal, Luciana; Castro, María A; Oviedo-Rouco, Santiago; Demicheli, Veronica; Tórtora, Veronica; Tomasina, Florencia; Radi, Rafael; Murgida, Daniel H

    2017-11-08

    Cytochrome c (cyt c) is a small soluble heme protein characterized by a relatively flexible structure, particularly in the ferric form, such that it is able to sample a broad conformational space. Depending on the specific conditions, interactions, and cellular localization, different conformations may be stabilized, which differ in structure, redox properties, binding affinities, and enzymatic activity. The primary function is electron shuttling in oxidative phosphorylation, and is exerted by the so-called native cyt c in the intermembrane mitochondrial space of healthy cells. Under pro-apoptotic conditions, however, cyt c gains cardiolipin peroxidase activity, translocates into the cytosol to engage in the intrinsic apoptotic pathway, and enters the nucleus where it impedes nucleosome assembly. Other reported functions include cytosolic redox sensing and involvement in the mitochondrial oxidative folding machinery. Moreover, post-translational modifications such as nitration, phosphorylation, and sulfoxidation of specific amino acids induce alternative conformations with differential properties, at least in vitro. Similar structural and functional alterations are elicited by biologically significant electric fields and by naturally occurring mutations of human cyt c that, along with mutations at the level of the maturation system, are associated with specific diseases. Here, we summarize current knowledge and recent advances in understanding the different structural, dynamic, and thermodynamic factors that regulate the primary electron transfer function, as well as alternative functions and conformations of cyt c. Finally, we present recent technological applications of this moonlighting protein.

  11. Polarography of cytochrome c in ammoniacal buffers containing cobalt ions. The effect of the protein conformation.

    Science.gov (United States)

    Brabec, V

    1985-12-01

    Catalytic currents yielded by cytochrome c in ammoniacal buffers containing cobalt ions at a dropping mercury electrode (Brdicka's catalytic currents) were investigated by means of direct current, differential pulse, normal pulse (NP) and phase-selective alternating current polarography. It was found that Brdicka's catalytic current of cytochrome c, (the more negative part of Brdicka's double wave, wave B) is influenced by the presence of cytochrome c denaturants in the background solution. The wave B rose with the increasing concentrations of urea and sodium perchlorate, and increased in parallel with absorbance changes at 409 and 695 nm measured for identical cytochrome c solutions. The latter absorbance changes reflect unfolding of cytochrome c molecules in the bulk of solution by these denaturants. The results of NP polarography (a technique working with large potential excursion during the drop lifetime) indicate that in Brdicka's solution cytochrome c could extensively be unfolded due to its adsorption at the mercury electrode, polarized to potentials around that of zero charge.

  12. Unique organizational and functional features of the cytochrome c maturation system in Shewanella oneidensis.

    Directory of Open Access Journals (Sweden)

    Miao Jin

    Full Text Available Shewanella are renowned for their ability to respire on a wide range of electron acceptors, which has been partially accredited to the presence of a large number of the c-type cytochromes. In the model species S. oneidensis MR-1, at least 41 genes encode c-type cytochromes that are predicted to be intact, thereby likely functional. Previously, in-frame deletion mutants for 36 of these genes were obtained and characterized. In this study, first we completed the construction of an entire set of c-type cytochrome mutants utilizing a newly developed att-based mutagenesis approach, which is more effective and efficient than the approach used previously by circumventing the conventional cloning. Second, we investigated the cytochrome c maturation (Ccm system in S. oneidensis. There are two loci predicted to encode components of the Ccm system, SO0259-SO0269 and SO0476-SO0478. The former is proven essential for cytochrome c maturation whereas the latter is dispensable. Unlike the single operon organization observed in other γ-proteobacteria, genes at the SO0259-SO0269 locus are uniquely organized into four operons, ccmABCDE, scyA, SO0265, and ccmFGH-SO0269. Functional analysis revealed that the SO0265 gene rather than the scyA and SO0269 genes are relevant to cytochrome c maturation.

  13. Interface Adsorption Taking the Most Advantageous Conformation for Electron Transfer Between Graphene and Cytochrome c.

    Science.gov (United States)

    Hu, Benfeng; Ge, Zhenpeng; Li, Xiaoyi

    2015-07-01

    Most designed functions in biomedical nanotechnology are directly influenced by interactions of biological molecules with nano surfaces. Here, we explored and detected the most favorable adsorption conformation of cytochrome c on graphene by measuring the adsorption energy, the number of contact atoms, and the minimal distance between protein and surface. From the root mean square deviation of the protein backbone, the radius of gyration, and the proportion of secondary structure, it is revealed that cytochrome c does not deform significantly and the secondary structures are preserved to a large extent. The residues, Lys, Phe and Thr contribute significantly to the adsorption of cytochrome c to graphene. The long hydrophobic and flexible alkyl tail of Lys, the π-π stacking interaction between Phe and graphene, and the presence of abundant Thr constitute the driving force for the stable adsorption of cytochrome c on graphene. Cytochrome c is adsorbed to graphene with the group heme lying almost perpendicular to the graphene, and the distance between Fe atom and the graphene is 10.15 A, which is shorter than that between electron donor and receptor in many other biosystems. All the results suggest that the most favorable adsorption takes the most advantageous conformation for electron transfer, which promotes significantly the electron transfer between graphene and cytochrome c. The findings might provide new and important information for designs of biomedical devices or products with graphene-based nanomaterials.

  14. Multi-heme Cytochromes in Shewanella oneidensis MR-1: Structures, functions and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, Marian; Rosso, Kevin M.; Blumberger, Jochen; Butt, Julea N.

    2014-11-05

    Multi-heme cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometers. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-heme cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-heme cytochromes have attracted much interest and contributed to advances in bioenergy applications and bioremediation of contaminated soils. Looking forward there are opportunities to engage multi-heme cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-heme cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-heme cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies.

  15. The novel cytochrome c6 of chloroplasts: a case of evolutionary bricolage?

    Science.gov (United States)

    Howe, Christopher J; Schlarb-Ridley, Beatrix G; Wastl, Juergen; Purton, Saul; Bendall, Derek S

    2006-01-01

    Cytochrome c6 has long been known as a redox carrier of the thylakoid lumen of cyanobacteria and some eukaryotic algae that can substitute for plastocyanin in electron transfer. Until recently, it was widely accepted that land plants lack a cytochrome c6. However, a homologue of the protein has now been identified in several plant species together with an additional isoform in the green alga Chlamydomonas reinhardtii. This form of the protein, designated cytochrome c6A, differs from the 'conventional' cytochrome c6 in possessing a conserved insertion of 12 amino acids that includes two absolutely conserved cysteine residues. There are conflicting reports of whether cytochrome c6A can substitute for plastocyanin in photosynthetic electron transfer. The evidence for and against this is reviewed and the likely evolutionary history of cytochrome c6A is discussed. It is suggested that it has been converted from a primary role in electron transfer to one in regulation within the chloroplast, and is an example of evolutionary 'bricolage'.

  16. A novel Geobacteraceae-specific outer membrane protein J (OmpJ is essential for electron transport to Fe (III and Mn (IV oxides in Geobacter sulfurreducens

    Directory of Open Access Journals (Sweden)

    Schiffer Marianne

    2005-07-01

    Full Text Available Abstract Background Metal reduction is thought to take place at or near the bacterial outer membrane and, thus, outer membrane proteins in the model dissimilatory metal-reducing organism Geobacter sulfurreducens are of interest to understand the mechanisms of Fe(III reduction in the Geobacter species that are the predominant Fe(III reducers in many environments. Previous studies have implicated periplasmic and outer membrane cytochromes in electron transfer to metals. Here we show that the most abundant outer membrane protein of G. sulfurreducens, OmpJ, is not a cytochrome yet it is required for metal respiration. Results When outer membrane proteins of G. sulfurreducens were separated via SDS-PAGE, one protein, designated OmpJ (outer membrane protein J, was particularly abundant. The encoding gene, which was identified from mass spectrometry analysis of peptide fragments, is present in other Geobacteraceae, but not in organisms outside this family. The predicted localization and structure of the OmpJ protein suggested that it was a porin. Deletion of the ompJ gene in G. sulfurreducens produced a strain that grew as well as the wild-type strain with fumarate as the electron acceptor but could not grow with metals, such as soluble or insoluble Fe (III and insoluble Mn (IV oxide, as the electron acceptor. The heme c content in the mutant strain was ca. 50% of the wild-type and there was a widespread loss of multiple cytochromes from soluble and membrane fractions. Transmission electron microscopy analyses of mutant cells revealed an unusually enlarged periplasm, which is likely to trigger extracytoplasmic stress response mechanisms leading to the degradation of periplasmic and/or outer membrane proteins, such as cytochromes, required for metal reduction. Thus, the loss of the capacity for extracellular electron transport in the mutant could be due to the missing c-type cytochromes, or some more direct, but as yet unknown, role of OmpJ in metal

  17. Probing lipid membrane electrostatics

    Science.gov (United States)

    Yang, Yi

    The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful

  18. Emulsification using microporous membranes

    Directory of Open Access Journals (Sweden)

    Goran T. Vladisavljević

    2011-10-01

    Full Text Available Membrane emulsification is a process of injecting a pure dispersed phase or pre-emulsion through a microporous membrane into the continuous phase. As a result of the immiscibility of the two phases, droplets of the dispersed phase are formed at the outlets of membrane pores. The droplets formed in the process are removed from the membrane surface by applying cross-flow or stirring of the continuous phase or using a dynamic (rotating or vibrating membrane. The most commonly used membrane for emulsification is the Shirasu Porous Glass (SPG membrane, fabricated through spinodal decomposition in a melt consisting of Japanese volcanic ash (Shirasu, boric acid and calcium carbonate. Microsieve membranes are increasingly popular as an alternative to highly tortuous glass and ceramic membranes. Microsieves are usually fabricated from nickel by photolithography and electroplating or they can be manufactured from silicon nitride via Reactive Ion Etching (RIE. An advantage of microsieves compared to the SPG membrane is in much higher transmembrane fluxes and higher tolerance to fouling by the emulsion ingredients due to the existence of short, straight through pores. Unlike conventional emulsification devices such as high-pressure valve homogenisers and rotor-stator devices, membrane emulsification devices permit a precise control over the mean pore size over a wide range and during the process insignificant amount of energy is dissipated as heat. The drop size is primarily determined by the pore size, but it depends also on other parameters, such as membrane wettability, emulsion formulation, shear stress on the membrane surface, transmembrane pressure, etc.

  19. Self-assembled tethered bimolecular lipid membranes.

    Science.gov (United States)

    Sinner, Eva-Kathrin; Ritz, Sandra; Naumann, Renate; Schiller, Stefan; Knoll, Wolfgang

    2009-01-01

    via the NH2 moiety of their headgroups. It is demonstrated that these membranes are well suited for the in situ synthesis of membrane protein by a cell-free expression approach. The vectorial integration of an in vitro synthesized odorant receptor, OR5 from the rat, is demonstrated by means of antibodies that specifically bind to a tag at the N-terminus of the receptor and is read out by surface plasmon fluorescence spectroscopy. A completely different strategy employs his-tagged membrane proteins in their solubilized form binding to a surface-attached Ni(+)-NTA monolayer generating a well-oriented protein layer the density of which can be easily controlled by online monitoring the binding (assembly) step by surface plasmon spectroscopy. Moreover, the attachment of the his-tag to either the C- or the N-terminus allows for the complete control of the protein orientation. After the exchange of the detergent micelle by a lipid bilayer via a surface dialysis procedure an electrically very well isolating protein-tethered membrane is formed. We show that this "wiring" of the functional units allows for the (external) manipulation of the oxidation state of the redox-protein cytochrome c Oxidase by the control of the potential applied to the gold substrate which is used as the working electrode in an electrochemical attachment.

  20. [Association between homozygous c.318A>GT mutation in exon 2 of the EIF2B5 gene and the infantile form of vanishing white matter leukoencephalopathy].

    Science.gov (United States)

    Esmer, Carmen; Blanco Hernández, Gabriela; Saavedra Alanís, Víctor; Reyes Vaca, Jorge Guillermo; Bravo Oro, Antonio

    Vanishing white matter disease is one of the most frequent leukodystrophies in childhood with an autosomal recessive inheritance. A mutation in one of the genes encoding the five subunits of the eukaryotic initiation factor 2 (EIF2B5) is present in 90% of the cases. The diagnosis can be accomplished by the clinical and neuroradiological findings and molecular tests. We describe a thirteen-month-old male with previous normal neurodevelopment, who was hospitalized for vomiting, hyperthermia and irritability. On examination, cephalic perimeter and cranial pairs were normal. Hypotonia, increased muscle stretching reflexes, generalized white matter hypodensity on cranial tomography were found. Fifteen days after discharge, he suffered minor head trauma presenting drowsiness and focal seizures. Magnetic resonance showed generalized hypointensity of white matter. Vanishing white matter disease was suspected, and confirmed by sequencing of the EIF2B5 gene, revealing a homozygous c.318A> T mutation in exon 2. Subsequently, visual acuity was lost and cognitive and motor deterioration was evident. The patient died at six years of age due to severe pneumonia. This case contributes to the knowledge of the mutational spectrum present in Mexican patients and allows to extend the phenotype associated to this mutation. Copyright © 2017. Publicado por Masson Doyma México S.A.

  1. Redetermination of Ce[B5O8(OH(H2O]NO3·2H2O

    Directory of Open Access Journals (Sweden)

    Ya-Xi Huang

    2012-05-01

    Full Text Available The crystal structure of Ce[B5O8(OH(H2O]NO3·2H2O, cerium(III aquahydroxidooctaoxidopentaborate nitrate dihydrate, has been redetermined from single-crystal X-ray diffraction data. In contrast to the previous determination [Li et al. (2003. Chem. Mater. 15, 2253–2260], the present study reveals the location of all H atoms, slightly different fundamental building blocks (FBBs of the polyborate anions, more reasonable displacement ellipsoids for all non-H atoms, as well as a model without disorder of the nitrate anion. The crystal structure is built from corrugated polyborate layers parallel to (010. These layers, consisting of [B5O8(OH(H2O]2− anions as FBBs, stack along [010] and are linked by Ce3+ ions, which exhibit a distorted CeO10 coordination sphere. The layers are additionally stabilized via O—H...O hydrogen bonds between water molecules and nitrate anions, located at the interlayer space. The [BO3(H2O]-group shows a [3 + 1] coordination and is considerably distorted from a tetrahedral configuration. Bond-valence-sum calculation shows that the valence sum of boron is only 2.63 valence units (v.u. when the contribution of the water molecule (0.49 v.u. is neglected.

  2. Exposure to the viral by-product dsRNA or Coxsackievirus B5 triggers pancreatic beta cell apoptosis via a Bim / Mcl-1 imbalance.

    Directory of Open Access Journals (Sweden)

    Maikel L Colli

    2011-09-01

    Full Text Available The rise in type 1 diabetes (T1D incidence in recent decades is probably related to modifications in environmental factors. Viruses are among the putative environmental triggers of T1D. The mechanisms regulating beta cell responses to viruses, however, remain to be defined. We have presently clarified the signaling pathways leading to beta cell apoptosis following exposure to the viral mimetic double-stranded RNA (dsRNA and a diabetogenic enterovirus (Coxsackievirus B5. Internal dsRNA induces cell death via the intrinsic mitochondrial pathway. In this process, activation of the dsRNA-dependent protein kinase (PKR promotes eIF2α phosphorylation and protein synthesis inhibition, leading to downregulation of the antiapoptotic Bcl-2 protein myeloid cell leukemia sequence 1 (Mcl-1. Mcl-1 decrease results in the release of the BH3-only protein Bim, which activates the mitochondrial pathway of apoptosis. Indeed, Bim knockdown prevented both dsRNA- and Coxsackievirus B5-induced beta cell death, and counteracted the proapoptotic effects of Mcl-1 silencing. These observations indicate that the balance between Mcl-1 and Bim is a key factor regulating beta cell survival during diabetogenic viral infections.

  3. Validation of the Pangao PG-800B5 for clinical use and self-measurement according to the European Society of Hypertension International Protocol revision 2010.

    Science.gov (United States)

    Chen, Wan; Zeng, Zhaolin; Li, Lizhi; Wan, Xiaofen; Wan, Yi

    2014-10-01

    This study aimed to validate the Pangao PG-800B5 upper arm blood pressure monitor according to the European Society of Hypertension International Protocol revision 2010. A total of 33 participants, 16 men and 17 women, were included in the device evaluation. The protocol requirements were followed precisely. The mean age of the participants was 56.4±21.0 years (range 22-84 years). The mean systolic blood pressure was 143.6±25.5 mmHg (range 98-188 mmHg), the mean diastolic blood pressure was 85.7±17.2 mmHg (range 49-125 mmHg), and the mean arm circumference was 26.1±2.2 cm (range 23-32 cm). On average, the device overestimated the systolic blood pressure by 0.9±4.2 mmHg and diastolic blood pressure by 0.7±4.5 mmHg. The device passed all requirements, fulfilling the standards of the protocol. Therefore, the Pangao PG-800B5 upper arm blood pressure monitor can be recommended for clinical use and self-measurement in an adult population.

  4. Identification and characterization of a new Bacillus atrophaeus strain B5 as biocontrol agent of postharvest anthracnose disease in soursop (Annona muricata) and avocado (Persea americana).

    Science.gov (United States)

    Guardado-Valdivia, Lizeth; Tovar-Pérez, Erik; Chacón-López, Alejandra; López-García, Ulises; Gutiérrez-Martínez, Porfirio; Stoll, Alexandra; Aguilera, Selene

    2018-05-01

    Anthracnose is a fungal disease caused by Colletotrichum species that is detrimental to numerous fruit, including soursop and avocado. The use of fungicides to maintain the high quality of fruit creates a potential health risk. One alternative to this problem is the biological control, which has been applied successfully during postharvest. The Bacillus species are one of the most studied biological agents against postharvest pathogens because accomplish their biocontrol performance by producing a variety of metabolites. In this study, we evaluated the activity of metabolites contained in the cell free supernatant, obtained from Bacillus strain B5 culture, against micelial growth and spore germination of two virulent strains of C. gloeosporioides isolated from soursop and avocado. On the basis of 16S rDNA gene sequence analysis, this strain was identified as Bacillus atrophaeus. A preventive treatment using cell free supernatant, reduced severity and incidence of anthracnose disease on harvested soursop and avocado fruit. B. atrophaeus strain B5 harbors genes involved in the production of antibiotics such as surfactin, bacillomycin and iturin, which could be contributing to the efficiency of the preventive treatment during postharvest. The antagonistic role of metabolites contained in the cell free supernatant against anthracnose disease, provide a new approach by which to attack this problem and can help reduce the use of chemical pesticides, environmental pollution, leading to the safer fruit preservation. Copyright © 2018 Elsevier GmbH. All rights reserved.

  5. Infantile onset Vanishing White Matter disease associated with a novel EIF2B5 variant, remarkably long life span, severe epilepsy, and hypopituitarism.

    Science.gov (United States)

    Woody, April L; Hsieh, David T; McIver, Harkirtin K; Thomas, Linda P; Rohena, Luis

    2015-04-01

    Vanishing White Matter disease (VWM) is an inherited progressive leukoencephalopathy caused by mutations in the genes EIF2B1-5, which encode for the 5 subunits of the eukaryotic initiation factor 2B (eIF2B), a regulator of protein synthesis. VWM typically presents with acute neurological decline following febrile infections or minor head trauma, and subsequent progressive neurological and cognitive regression. There is a varied clinical spectrum of VWM, with earlier onset associated with more severe phenotypes. Brain magnetic resonance imaging is usually diagnostic with diffusely abnormal white matter, progressing over time to cystic degeneration. We are reporting on a patient with infantile onset VWM associated with three heterozygous missense variants in EIF2B5, including a novel missense variant on exon 6 of EIF2B5 (D262N), as well as an interstitial duplication at 7q21.12. In addition, our case is unusual because of a severe epilepsy course, a novel clinical finding of hypopituitarism manifested by hypothyroidism and adrenal insufficiency, and a prolonged life span with current age of survival of 4 years and 11 months. © 2015 Wiley Periodicals, Inc.

  6. Prevention of LDL-suppression of HMG-CoA reductase (HMGR) activity by progesterone (PG): evidence for cytochrome P-450 involvement

    International Nuclear Information System (INIS)

    Sexton, R.C.; Gupta, A.; Panini, S.R.; Rudney, H.

    1987-01-01

    Incubation of rat intestinal epithelial cells (IEC-6) with PG has been reported by us to prevent the suppression of HMGR activity by LDL. In the present study, addition of LDL and PG to IEC-6 cells resulted in a 2 fold increase in cellular free cholesterol (CH) in 24 h, while HMGR activity remained elevated. PG did not affect the internalization and degradation of [ 125 I] LDL nor the accumulation of free [ 3 H] CH in cells incubated with [ 3 H-cholesteryl linoleate]-LDL. Also, PG did not affect the intracellular transport of LDL-derived [ 3 H] CH to the plasma membrane nor the efflux of the [ 3 H] CH into medium containing human high density lipoprotein. Addition of LDL to cells, in which the cellular CH was radiolabeled from [ 3 H] acetate, resulted in an increased formation of radiolabeled oxysterols, detected by HPLC, and a corresponding decrease in HMGR activity. PG attenuated both the LDL-induced formation of oxysterols and suppression of HMGR activity. PG inhibited cytochrome P-450 dependent oxidation of benzphetamine, aminopyrine and aniline by liver microsomes from phenobarbitol treated rats. These results suggest PG may prevent LDL suppression of HMGR activity in IEC-6 cells by inhibiting cytochrome P-450 dependent formation of regulatory oxysterols

  7. Effect of irradiation on membrane-bound rabit liver mitochondrial enzymes in embryogenesis

    International Nuclear Information System (INIS)

    Mirakhmedov, A.K.; Muradillaev, A.; Khan, M.Z.; Khamidov, D. Kh.

    1982-01-01

    Effect of irradiation on protein content of inner mitochondrial membrane and on activity of certain enzymes of respiratory chain of hepatic mitochondria has been studied. Within 24 and 48 hr after total irradiation (200 R) of pregnant rabbits, the protein content of the inner membranes of 25-30 day-old embryos and the mothers was broken with the increase in the thickness and densitometric height of the protein spots. Changes were seen in NADH-oxidase, succinate oxidase and in cytochrome-c-oxidase activities of mitochondria of 20 day-old embryos within 4 hr after irradiation and within 1 hr after irradiation in adult rabbits. The NADH-oxidase and the succinate oxidase activities of 30 day-old embryos were insensitive to the effect of irradiation. The cytochrome-c-oxidase activity increased in mitochondria of 25-30 day-old embryos upon 24 hr of irradiation. Substantial depression of the thermostability of the NADH-oxidase system was seen within 24 hr after irradiation while cytochrome-c-oxidase did not change its thermostability. The unequal disturbances of the emzyme activity and thermostability upon the total irradiation are connected with the different state of mitochondria and with the specificity of enzymes of the respiratory chain. (author)

  8. Ion-conducting membranes

    Science.gov (United States)

    Masel, Richard I.; Sajjad, Syed Dawar; Gao, Yan; Liu, Zengcai; Chen, Qingmei

    2017-12-26

    An anion-conducting polymeric membrane comprises a terpolymer of styrene, vinylbenzyl-R.sub.s and vinylbenzyl-R.sub.x. R.sub.s is a positively charged cyclic amine group. R.sub.x is at least one constituent selected from the group consisting Cl, OH and a reaction product between an OH or Cl and a species other than a simple amine or a cyclic amine. The total weight of the vinylbenzyl-R.sub.x groups is greater than 0.3% of the total weight of the membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  9. Gas separation with membranes

    International Nuclear Information System (INIS)

    Schulz, G.; Michele, H.; Werner, U.

    1982-01-01

    Gas separation with membranes has already been tested in numerous fields of application, e.g. uranium enrichment of H 2 separation. In many of these processes the mass transfer units, so-called permeators, have to be connected in tandem in order to achieve high concentrations. A most economical operating method provides for each case an optimization of the cascades with regard to the membrane materials, construction and design of module. By utilization of the concentration gradient along the membrane a new process development has been accomplished - the continuously operating membrane rectification unit. Investment and operating costs can be reduced considerably for a number of separating processes by combining a membrane rectification unit with a conventional recycling cascade. However, the new procedure requires that the specifications for the module construction, flow design, and membrane properties be reconsidered. (orig.) [de

  10. Requirement of histidine 217 for ubiquinone reductase activity (Qi site) in the cytochrome bc1 complex.

    Science.gov (United States)

    Gray, K A; Dutton, P L; Daldal, F

    1994-01-25

    Folding models suggest that the highly conserved histidine 217 of the cytochrome b subunit from the cytochrome bc1 complex is close to the quinone reductase (Qi) site. This histidine (bH217) in the cytochrome b polypeptide of the photosynthetic bacterium Rhodobacter capsulatus has been replaced with three other residues, aspartate (D), arginine (R), and leucine (L). bH217D and bH217R are able to grow photoheterotrophically and contain active cytochrome bc1 complexes (60% of wild-type activity), whereas the bH217L mutant is photosynthetically incompetent and contains a cytochrome bc1 complex that has only 10% of the wild-type activity. Single-turnover flash-activated electron transfer experiments show that cytochrome bH is reduced via the Qo site with near native rates in the mutant strains but that electron transfer between cytochrome bH and quinone bound at the Qi site is greatly slowed. These results are consistent with redox midpoint potential (Em) measurements of the cytochrome b subunit hemes and the Qi site quinone. The Em values of cyt bL and bH are approximately the same in the mutants and wild type, although the mutant strains have a larger relative concentration of what may be the high-potential form of cytochrome bH, called cytochrome b150. However, the redox properties of the semiquinone at the Qi site are altered significantly. The Qi site semiquinone stability constant of bH217R is 10 times higher than in the wild type, while in the other two strains (bH217D and bH217L) the stability constant is much lower than in the wild type. Thus H217 appears to have major effects on the redox properties of the quinone bound at the Qi site. These data are incorporated into a suggestion that H217 forms part of the binding pocket of the Qi site in a manner reminiscent of the interaction between quinone bound at the Qb site and H190 of the L subunit of the bacterial photosynthetic reaction center.

  11. Economics of membrane occupancy and respiro-fermentation

    Science.gov (United States)

    Zhuang, Kai; Vemuri, Goutham N; Mahadevan, Radhakrishnan

    2011-01-01

    The simultaneous utilization of efficient respiration and inefficient fermentation even in the presence of abundant oxygen is a puzzling phenomenon commonly observed in bacteria, yeasts, and cancer cells. Despite extensive research, the biochemical basis for this phenomenon remains obscure. We hypothesize that the outcome of a competition for membrane space between glucose transporters and respiratory chain (which we refer to as economics of membrane occupancy) proteins influences respiration and fermentation. By incorporating a sole constraint based on this concept in the genome-scale metabolic model of Escherichia coli, we were able to simulate respiro-fermentation. Further analysis of the impact of this constraint revealed differential utilization of the cytochromes and faster glucose uptake under anaerobic conditions than under aerobic conditions. Based on these simulations, we propose that bacterial cells manage the composition of their cytoplasmic membrane to maintain optimal ATP production by switching between oxidative and substrate-level phosphorylation. These results suggest that the membrane occupancy constraint may be a fundamental governing constraint of cellular metabolism and physiology, and establishes a direct link between cell morphology and physiology. PMID:21694717

  12. Artificial membranes with selective nanochannels for protein transport

    KAUST Repository

    Sutisna, Burhannudin

    2016-09-05

    A poly(styrene-b-tert-butoxystyrene-b-styrene) copolymer was synthesized by anionic polymerization and hydrolyzed to poly(styrene-b-4-hydroxystyrene-b-styrene). Lamellar morphology was confirmed in the bulk after annealing. Membranes were fabricated by self-assembly of the hydrolyzed copolymer in solution, followed by water induced phase separation. A high density of pores of 4 to 5 nm diameter led to a water permeance of 40 L m−2 h−1 bar−1 and molecular weight cut-off around 8 kg mol−1. The morphology was controlled by tuning the polymer concentration, evaporation time, and the addition of imidazole and pyridine to stabilize the terpolymer micelles in the casting solution via hydrogen bond complexes. Transmission electron microscopy of the membrane cross-sections confirmed the formation of channels with hydroxyl groups beneficial for hydrogen-bond forming sites. The morphology evolution was investigated by time-resolved grazing incidence small angle X-ray scattering experiments. The membrane channels reject polyethylene glycol with a molecular size of 10 kg mol−1, but are permeable to proteins, such as lysozyme (14.3 kg mol−1) and cytochrome c (12.4 kg mol−1), due to the right balance of hydrogen bond interactions along the channels, electrostatic attraction, as well as the right pore sizes. Our results demonstrate that artificial channels can be designed for protein transport via block copolymer self-assembly using classical methods of membrane preparation.

  13. Artificial membranes with selective nanochannels for protein transport

    KAUST Repository

    Sutisna, Burhannudin; Polymeropoulos, Georgios; Mygiakis, E.; Musteata, Valentina-Elena; Peinemann, Klaus-Viktor; Smilgies, D. M.; Hadjichristidis, Nikolaos; Nunes, Suzana Pereira

    2016-01-01

    A poly(styrene-b-tert-butoxystyrene-b-styrene) copolymer was synthesized by anionic polymerization and hydrolyzed to poly(styrene-b-4-hydroxystyrene-b-styrene). Lamellar morphology was confirmed in the bulk after annealing. Membranes were fabricated by self-assembly of the hydrolyzed copolymer in solution, followed by water induced phase separation. A high density of pores of 4 to 5 nm diameter led to a water permeance of 40 L m−2 h−1 bar−1 and molecular weight cut-off around 8 kg mol−1. The morphology was controlled by tuning the polymer concentration, evaporation time, and the addition of imidazole and pyridine to stabilize the terpolymer micelles in the casting solution via hydrogen bond complexes. Transmission electron microscopy of the membrane cross-sections confirmed the formation of channels with hydroxyl groups beneficial for hydrogen-bond forming sites. The morphology evolution was investigated by time-resolved grazing incidence small angle X-ray scattering experiments. The membrane channels reject polyethylene glycol with a molecular size of 10 kg mol−1, but are permeable to proteins, such as lysozyme (14.3 kg mol−1) and cytochrome c (12.4 kg mol−1), due to the right balance of hydrogen bond interactions along the channels, electrostatic attraction, as well as the right pore sizes. Our results demonstrate that artificial channels can be designed for protein transport via block copolymer self-assembly using classical methods of membrane preparation.

  14. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  15. The anti-mycobacterial activity of the cytochrome bcc inhibitor Q203 can be enhanced by small-molecule inhibition of cytochrome bd.

    NARCIS (Netherlands)

    Lu, P.; Asseri, A.H.O.; Kremer, Martijn; Maaskant, Janneke; Ummels, Roy; Lill, H.; Bald, D.

    2018-01-01

    Mycobacterial energy metabolism currently attracts strong attention as new target space for development of anti-tuberculosis drugs. The imidazopyridine Q203 targets the cytochrome bcc complex of the respiratory chain, a key component in energy metabolism. Q203 blocks growth of Mycobacterium

  16. Presteady-state and steady-state kinetic properties of human cytochrome c oxidase. Identification of rate-limiting steps in mammalian cytochrome c oxidase

    NARCIS (Netherlands)

    van Kuilenburg, A. B.; Gorren, A. C.; Dekker, H. L.; Nieboer, P.; van Gelder, B. F.; Muijsers, A. O.

    1992-01-01

    Human cytochrome c oxidase was purified in a fully active form from heart and skeletal muscle. The enzyme was selectively solubilised with octylglucoside and KCl from submitochondrial particles followed by ammonium sulphate fractionation. The presteady-state and steady-state kinetic properties of

  17. CW EPR parameters reveal cytochrome P450 ligand binding modes.

    Science.gov (United States)

    Lockart, Molly M; Rodriguez, Carlo A; Atkins, William M; Bowman, Michael K

    2018-06-01

    Cytochrome P450 (CYP) monoxygenses utilize heme cofactors to catalyze oxidation reactions. They play a critical role in metabolism of many classes of drugs, are an attractive target for drug development, and mediate several prominent drug interactions. Many substrates and inhibitors alter the spin state of the ferric heme by displacing the heme's axial water ligand in the resting enzyme to yield a five-coordinate iron complex, or they replace the axial water to yield a nitrogen-ligated six-coordinate iron complex, which are traditionally assigned by UV-vis spectroscopy. However, crystal structures and recent pulsed electron paramagnetic resonance (EPR) studies find a few cases where molecules hydrogen bond to the axial water. The water-bridged drug-H 2 O-heme has UV-vis spectra similar to nitrogen-ligated, six-coordinate complexes, but are closer to "reverse type I" complexes described in older liteature. Here, pulsed and continuous wave (CW) EPR demonstrate that water-bridged complexes are remarkably common among a range of nitrogenous drugs or drug fragments that bind to CYP3A4 or CYP2C9. Principal component analysis reveals a distinct clustering of CW EPR spectral parameters for water-bridged complexes. CW EPR reveals heterogeneous mixtures of ligated states, including multiple directly-coordinated complexes and water-bridged complexes. These results suggest that water-bridged complexes are under-represented in CYP structural databases and can have energies similar to other ligation modes. The data indicates that water-bridged binding modes can be identified and distinguished from directly-coordinated binding by CW EPR. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Triterpene Structural Diversification by Plant Cytochrome P450 Enzymes

    Directory of Open Access Journals (Sweden)

    Sumit Ghosh

    2017-11-01

    Full Text Available Cytochrome P450 monooxygenases (P450s represent the largest enzyme family of the plant metabolism. Plants typically devote about 1% of the protein-coding genes for the P450s to execute primary metabolism and also to perform species-specific specialized functions including metabolism of the triterpenes, isoprene-derived 30-carbon compounds. Triterpenes constitute a large and structurally diverse class of natural products with various industrial and pharmaceutical applications. P450-catalyzed structural modification is crucial for the diversification and functionalization of the triterpene scaffolds. In recent times, a remarkable progress has been made in understanding the function of the P450s in plant triterpene metabolism. So far, ∼80 P450s are assigned biochemical functions related to the plant triterpene metabolism. The members of the subfamilies CYP51G, CYP85A, CYP90B-D, CYP710A, CYP724B, and CYP734A are generally conserved across the plant kingdom to take part in plant primary metabolism related to the biosynthesis of essential sterols and steroid hormones. However, the members of the subfamilies CYP51H, CYP71A,D, CYP72A, CYP81Q, CYP87D, CYP88D,L, CYP93E, CYP705A, CYP708A, and CYP716A,C,E,S,U,Y are required for the metabolism of the specialized triterpenes that might perform species-specific functions including chemical defense toward specialized pathogens. Moreover, a recent advancement in high-throughput sequencing of the transcriptomes and genomes has resulted in identification of a large number of candidate P450s from diverse plant species. Assigning biochemical functions to these P450s will be of interest to extend our knowledge on triterpene metabolism in diverse plant species and also for the sustainable production of valuable phytochemicals.

  19. Cytochrome P450-Dependent Metabolism of Caffeine in Drosophila melanogaster

    Science.gov (United States)

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone—an inhibitor of CYP enzymes—showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects. PMID:25671424

  20. Cytochrome P450 isoform selectivity in human hepatic theobromine metabolism

    Science.gov (United States)

    Gates, Simon; Miners, John O

    1999-01-01

    Aims The plasma clearance of theobromine (TB; 3,7-dimethylxanthine) is known to be induced in cigarette smokers. To determine whether TB may serve as a model substrate for cytochrome P450 (CYP) 1A2, or possibly other isoforms, studies were undertaken to identify the individual human liver microsomal CYP isoforms responsible for the conversion of TB to its primary metabolites. Methods The kinetics of formation of the primary TB metabolites 3-methylxanthine (3-MX), 7-methylxanthine (7-MX) and 3,7-dimethyluric acid (3,7-DMU) by human liver microsomes were characterized using a specific hplc procedure. Effects of CYP isoform-selective xenobiotic inhibitor/substrate probes on each pathway were determined and confirmatory studies with recombinant enzymes were performed to define the contribution of individual isoforms to 3-MX, 7-MX and 3,7-DMU formation. Results The CYP1A2 inhibitor furafylline variably inhibited (0–65%) 7-MX formation, but had no effect on other pathways. Diethyldithiocarbamate and 4-nitrophenol, probes for CYP2E1, inhibited the formation of 3-MX, 7-MX and 3,7-DMU by ≈55–60%, 35–55% and 85%, respectively. Consistent with the microsomal studies, recombinant CYP1A2 and CYP2E1 exhibited similar apparent Km values for 7-MX formation and CYP2E1 was further shown to have the capacity to convert TB to both 3-MX and 3,7-DMU. Conclusions Given the contribution of multiple isoforms to 3-MX and 7-MX formation and the negligible formation of 3,7-DMU in vivo, TB is of little value as a CYP isoform-selective substrate in humans. PMID:10215755

  1. Regulation of cytochrome P-450 monooxygenases in the mouse

    International Nuclear Information System (INIS)

    Kelley, M.F.

    1986-01-01

    Recently, the compound 1,4-bis[2-(3,4-dichloropyridyloxy)] benzene (TCPOBOP) has been identified as a highly potent phenobabital-like agonist in mice. This finding has led to the suggestion that a receptor-mediated process may govern the induction of cytochrome P-450 monooxygenases by phenobarbital and phenobarbital-like agonists. This dissertation examines: (1) the effects of structural alterations of the TCPOBOP molecule on enzyme induction activity, (2) the induction response to phenobarbital and TCPOBOP among inbred mouse strains, (3) the spectrum of monooxygenase activities induced by phenobarbital and TCPOBOP compared to 3-methylcholanthrene, isosafrole and pregnenolone 16α-carbonitrile (PCN) and (4) the binding of [ 3 H] TCPOBOP in hepatic cytosol. Changes in the structure of the pyridyloxy or benzene rings markedly affect enzyme induction activity and provide additional indirect evidence for a receptor-mediated response. An evaluation of monooxygenase induction by TCPOBOP for 27 inbred mouse strains and by phenobarbital for 15 inbred mouse strains failed to identify a strain which was completely nonresponsive to these compounds, although several strains exhibited decreased responsiveness for select monooxygenase reactions. TCPOBOP, PCN and phenobarbital were all found to significantly increase the rate of hydroxylation of testosterone at the 2α-, 6β- and 15β- positions but only TCPOBOP and phenobarbital dramatically increased the rate of pentoxyresorufin O-dealkylation. The results demonstrates that TCPOBOP most closely resembles phenobarbital in its mode of monooxygenase induction in mice. Sucrose density gradient analysis of [ 3 H] TCPOBOP-hepatic cytosol incubations failed to identify specific, saturable binding of [ 3 H] TCPOBOP to cytosolic marcomolecular elements

  2. Controlled adsorption of cytochrome c to nanostructured gold surfaces

    International Nuclear Information System (INIS)

    Gomes, Inês; Feio, Maria J.; Santos, Nuno C.; Eaton, Peter; Serro, Ana Paula; Saramago, Benilde; Pereira, Eulália; Franco, Ricardo

    2012-01-01

    Controlled electrostatic physisorption of horse heart cytochrome c (Cyt c) onto nanostructured gold surfaces was investigated using Quartz-Crystal Microbalance measurements in planar gold surfaces with or without functionalization using a self-assembled monolayer (SAM) of the alkanethiol mercaptoundecanoic acid (MUA). MUA is a useful functionalization ligand for gold surfaces, shedding adsorbed biomolecules from the excessive electron density of the metal. A parallel analysis was conducted in the corresponding curved surfaces of 15 nm gold nanoparticles (AuNPs), using zeta-potential and UV– visible spectroscopy. Atomic Force Microscopy of both types of functionalized gold surfaces with a MUA SAM, allowed for visualization of Cyt c deposits on the nanostructured gold surface. The amount of Cyt c adsorbed onto the gold surface could be controlled by the solution pH. For the assays conducted at pH 4.5, when MUA SAM- functionalized planar gold surfaces are positive or neutral, and Cyt c has a positive net charge, only 13 % of the planar gold surface area was coated with protein. In contrast, at pH 7.4, when MUA SAM-functionalized planar gold surfaces and Cyt c have opposite charges, a protein coverage of 28 % could be observed implying an adsorption process strongly governed by electrostatic forces. Cyt c adsorption on planar and curved gold surfaces are found to be greatly favored by the presence of a MUA-capping layer. In particular, on the AuNPs, the binding constant is three times larger than the binding constant obtained for the original citrate-capped AuNPs.

  3. Cytochrome C is tyrosine 97 phosphorylated by neuroprotective insulin treatment.

    Directory of Open Access Journals (Sweden)

    Thomas H Sanderson

    Full Text Available Recent advancements in isolation techniques for cytochrome c (Cytc have allowed us to discover post-translational modifications of this protein. We previously identified two distinct tyrosine phosphorylated residues on Cytc in mammalian liver and heart that alter its electron transfer kinetics and the ability to induce apoptosis. Here we investigated the phosphorylation status of Cytc in ischemic brain and sought to determine if insulin-induced neuroprotection and inhibition of Cytc release was associated with phosphorylation of Cytc. Using an animal model of global brain ischemia, we found a ∼50% decrease in neuronal death in the CA1 hippocampal region with post-ischemic insulin administration. This insulin-mediated increase in neuronal survival was associated with inhibition of Cytc release at 24 hours of reperfusion. To investigate possible changes in the phosphorylation state of Cytc we first isolated the protein from ischemic pig brain and brain that was treated with insulin. Ischemic brains demonstrated no detectable tyrosine phosphorylation. In contrast Cytc isolated from brains treated with insulin showed robust phosphorylation of Cytc, and the phosphorylation site was unambiguously identified as Tyr97 by immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry. We next confirmed these results in rats by in vivo application of insulin in the absence or presence of global brain ischemia and determined that Cytc Tyr97-phosphorylation is strongly induced under both conditions but cannot be detected in untreated controls. These data suggest a mechanism whereby Cytc is targeted for phosphorylation by insulin signaling, which may prevent its release from the mitochondria and the induction of apoptosis.

  4. Alterations of sirtuins in mitochondrial cytochrome c-oxidase deficiency.

    Directory of Open Access Journals (Sweden)

    Arne Björn Potthast

    Full Text Available Sirtuins are NAD+ dependent deacetylases, which regulate mitochondrial energy metabolism as well as cellular response to stress. The NAD/NADH-system plays a crucial role in oxidative phosphorylation linking sirtuins and the mitochondrial respiratory chain. Furthermore, sirtuins are able to directly deacetylate and activate different complexes of the respiratory chain. This prompted us to analyse sirtuin levels in skin fibroblasts from patients with cytochrome c-oxidase (COX deficiency and to test the impact of different pharmaceutical activators of sirtuins (SRT1720, paeonol to modulate sirtuins and possibly respiratory chain enzymes in patient cells in vitro.We assayed intracellular levels of sirtuin 1 and the mitochondrial sirtuins SIRT3 and SIRT4 in human fibroblasts from patients with COX- deficiency. Furthermore, sirtuins were measured after inhibiting complex IV in healthy control fibroblasts by cyanide and after incubation with activators SRT1720 and paeonol. To determine the effect of sirtuin inhibition at the cellular level we measured total cellular acetylation (control and patient cells, with and without treatment by Western blot.We observed a significant decrease in cellular levels of all three sirtuins at the activity, protein and transcriptional level (by 15% to 50% in COX-deficient cells. Additionally, the intracellular concentration of NAD+ was reduced in patient cells. We mimicked the biochemical phenotype of COX- deficiency by incubating healthy fibroblasts with cyanide and observed reduced sirtuin levels. A pharmacological activation of sirtuins resulted in normalized sirtuin levels in patient cells. Hyper acetylation was also reversible after treatment with sirtuin activators. Pharmacological modulation of sirtuins resulted in altered respiratory chain complex activities.We found inhibition of situins 1, 3 and 4 at activity, protein and transcriptional levels in fibroblasts from patient with COX-deficiency. Pharmacological

  5. Controlled adsorption of cytochrome c to nanostructured gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Ines [Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, REQUIMTE, Departamento de Quimica (Portugal); Feio, Maria J. [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Santos, Nuno C. [Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular (Portugal); Eaton, Peter [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Serro, Ana Paula; Saramago, Benilde [Centro de Quimica Estrutural, Instituto Superior Tecnico (Portugal); Pereira, Eulalia [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Franco, Ricardo, E-mail: ricardo.franco@fct.unl.pt [Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, REQUIMTE, Departamento de Quimica (Portugal)

    2012-12-15

    Controlled electrostatic physisorption of horse heart cytochrome c (Cyt c) onto nanostructured gold surfaces was investigated using Quartz-Crystal Microbalance measurements in planar gold surfaces with or without functionalization using a self-assembled monolayer (SAM) of the alkanethiol mercaptoundecanoic acid (MUA). MUA is a useful functionalization ligand for gold surfaces, shedding adsorbed biomolecules from the excessive electron density of the metal. A parallel analysis was conducted in the corresponding curved surfaces of 15 nm gold nanoparticles (AuNPs), using zeta-potential and UV- visible spectroscopy. Atomic Force Microscopy of both types of functionalized gold surfaces with a MUA SAM, allowed for visualization of Cyt c deposits on the nanostructured gold surface. The amount of Cyt c adsorbed onto the gold surface could be controlled by the solution pH. For the assays conducted at pH 4.5, when MUA SAM- functionalized planar gold surfaces are positive or neutral, and Cyt c has a positive net charge, only 13 % of the planar gold surface area was coated with protein. In contrast, at pH 7.4, when MUA SAM-functionalized planar gold surfaces and Cyt c have opposite charges, a protein coverage of 28 % could be observed implying an adsorption process strongly governed by electrostatic forces. Cyt c adsorption on planar and curved gold surfaces are found to be greatly favored by the presence of a MUA-capping layer. In particular, on the AuNPs, the binding constant is three times larger than the binding constant obtained for the original citrate-capped AuNPs.

  6. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Alexandra Coelho

    Full Text Available Caffeine (1, 3, 7-trimethylxanthine, an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents. A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs that were highly overexpressed. Flies treated with metyrapone--an inhibitor of CYP enzymes--showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects.

  7. Gas separation membranes

    Science.gov (United States)

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  8. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  9. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, Poornima

    2016-07-26

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane\\'s water flux and solute retention. © 2016 The Royal Society of Chemistry.

  10. AVALIAÇÃO EXPERIMENTAL DA SENSIBILIDADE DO BIODIESEL B5 EM FROTAS DE ÔNIBUS URBANO E INTERURBANO UTILIZANDO MOTOR DIESEL

    Directory of Open Access Journals (Sweden)

    M. F. Oliveira Filho

    2012-06-01

    Full Text Available O objetivo deste estudo é investigar a consolidação do uso do biodiesel em motores de duas frotas de ônibus, uma urbana e uma interurbana. Entende-se serem necessários estudos para se observar, do ponto de vista tecnológico, se o uso do biodiesel apresenta problemas quanto ao desgaste das peças diretamente envolvidas com o combustível e também observar as flutuações, para mais ou para menos, do consumo específico desse combustível. O diesel fóssil – tipo D (interior ou marítmo – e Biodiesel B5 foram analisados analiticamente, investigando-se também o teor de enxofre presente. Duas frotas de ônibus urbana e interurbana, sediadas em Natal/RN – Brasil, possuíam 41 e 13 veículos, respectivamente. Foram analisadas as planilhas de cada veículo no período de três anos (2008 a 2010 e entrevistados os responsáveis pela manutenção e condução da frota para observar os relatos dos mesmos quanto aos aspectos resultantes da política brasileira ambientalmente amigável para substituição do óleo diesel pelo B5. Segundo uma avaliação do consumo de combustível, houve um aumento não-linear (cerca de 5 % quando da substituição do diesel pelo biodiesel B5, mas não foi observada qualquer manutenção adicional relacionada com a sua utilização; todavia foi compensado pela redução de emissões de compostos químicos de dióxido de nitrogênio e teor de enxofre, como medido por Fernandes, 2011. Além disso, a funcionalidade ea vida residual em serviço dos ônibus utilizando misturas diesel são discutidos.

  11. MicroRNA-20b-5p inhibits platelet-derived growth factor-induced proliferation of human fetal airway smooth muscle cells by targeting signal transducer and activator of transcription 3.

    Science.gov (United States)

    Tang, Jin; Luo, Lingying

    2018-06-01

    Pediatric asthma is still a health threat to the pediatric population in recent years. The airway remodeling induced by abnormal airway smooth muscle (ASM) cell proliferation is an important cause of asthma. MicroRNAs (miRNAs) are important regulators of ASM cell proliferation. Numerous studies have reported that miR-20b-5p is a critical regulator for cell proliferation. However, whether miR-20b-5p is involved in regulating ASM cell proliferation remains unknown. In this study, we aimed to investigate the potential role of miR-20b-5p in regulating the proliferation of fetal ASM cell induced by platelet-derived growth factor (PDGF). Here, we showed that miR-20b-5p was significantly decreased in fetal ASM cells treated with PDGF. Biological experiments showed that the overexpression of miR-20b-5p inhibited the proliferation while miR-20b-5p inhibition markedly promoted the proliferation of fetal ASM cells. Bioinformatics analysis and luciferase reporter assay showed that miR-20b-5p directly targeted the 3'-UTR of signal transducer and activator of transcription 3 (STAT3). Further data showed that miR-20b-5p negatively regulated the expression of STAT3 in fetal ASM cells. Moreover, miR-20b-5p regulates the transcriptional activity of STAT3 in fetal ASM cells. Overexpression of STAT3 reversed the inhibitory effect of miR-20b-5p overexpression on fetal ASM cell proliferation while the knockdown of STAT3 abrogated the promoted effect of miR-20b-5p inhibition on fetal ASM cell proliferation. Overall, our results show that miR-20b-5p impedes PDGF-induced proliferation of fetal ASM cells through targeting STAT3. Our study suggests that miR-20b-5p may play an important role in airway remodeling during asthma and suggests that miR-20b-5p may serve as a potential therapeutic target for pediatric asthma. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome c-independent pathway

    Directory of Open Access Journals (Sweden)

    Castranova Vincent

    2009-04-01

    Full Text Available Abstract Background Carcinogenicity of nickel compounds has been well documented. However, the carcinogenic effect of metallic nickel is still unclear. The present study investigates metallic nickel nano- and fine particle-induced apoptosis and the signal pathways involved in this process in JB6 cells. The data obtained from this study will be of benefit for elucidating the pathological and carcinogenic potential of metallic nickel particles. Results Using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, we found that metallic nickel nanoparticles exhibited higher cytotoxicity than fine particles. Both metallic nickel nano- and fine particles induced JB6 cell apoptosis. Metallic nickel nanoparticles produced higher apoptotic induction than fine particles. Western-blot analysis showed an activation of proapoptotic factors including Fas (CD95, Fas-associated protein with death domain (FADD, caspase-8, death receptor 3 (DR3 and BID in apoptotic cells induced by metallic nickel particles. Immunoprecipitation (IP western blot analysis demonstrated the formation of the Fas-related death-inducing signaling complex (DISC in the apoptotic process. Furthermore, lamin A and beta-actin were cleaved. Moreover, we found that apoptosis-inducing factor (AIF was up-regulated and released from mitochondria to cytoplasm. Interestingly, although an up-regulation of cytochrome c was detected in the mitochondria of metallic nickel particle-treated cells, no cytochrome c release from mitochondria to cytoplasm was found. In addition, activation of antiapoptotic factors including phospho-Akt (protein kinase B and Bcl-2 was detected. Further studies demonstrated that metallic nickel particles caused no significant changes in the mitochondrial membrane permeability after 24 h treatment. Conclusion In this study, metallic nickel nanoparticles caused higher cytotoxicity and apoptotic induction than fine particles in JB6 cells. Apoptotic cell death

  13. The mammalian phosphate carrier SLC25A3 is a mitochondrial copper transporter required for cytochrome c oxidase biogenesis.

    Science.gov (United States)

    Boulet, Aren; Vest, Katherine E; Maynard, Margaret K; Gammon, Micah G; Russell, Antoinette C; Mathews, Alexander T; Cole, Shelbie E; Zhu, Xinyu; Phillips, Casey B; Kwong, Jennifer Q; Dodani, Sheel C; Leary, Scot C; Cobine, Paul A

    2018-02-09

    Copper is required for the activity of cytochrome c oxidase (COX), the terminal electron-accepting complex of the mitochondrial respiratory chain. The likely source of copper used for COX biogenesis is a labile pool found in the mitochondrial matrix. In mammals, the proteins that transport copper across the inner mitochondrial membrane remain unknown. We previously reported that the mitochondrial carrier family protein Pic2 in budding yeast is a copper importer. The closest Pic2 ortholog in mammalian cells is the mitochondrial phosphate carrier SLC25A3. Here, to investigate whether SLC25A3 also transports copper, we manipulated its expression in several murine and human cell lines. SLC25A3 knockdown or deletion consistently resulted in an isolated COX deficiency in these cells, and copper addition to the culture medium suppressed these biochemical defects. Consistent with a conserved role for SLC25A3 in copper transport, its heterologous expression in yeast complemented copper-specific defects observed upon deletion of PIC2 Additionally, assays in Lactococcus lactis and in reconstituted liposomes directly demonstrated that SLC25A3 functions as a copper transporter. Taken together, these data indicate that SLC25A3 can transport copper both in vitro and in vivo . © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Enhancing cytochrome P450-mediated conversions in P. pastoris through RAD52 over-expression and optimizing the cultivation conditions.

    Science.gov (United States)

    Wriessnegger, Tamara; Moser, Sandra; Emmerstorfer-Augustin, Anita; Leitner, Erich; Müller, Monika; Kaluzna, Iwona; Schürmann, Martin; Mink, Daniel; Pichler, Harald

    2016-04-01

    Cytochrome P450 enzymes (CYPs) play an essential role in the biosynthesis of various natural compounds by catalyzing regio- and stereospecific hydroxylation reactions. Thus, CYP activities are of great interest in the production of fine chemicals, pharmaceutical compounds or flavors and fragrances. Industrial applicability of CYPs has driven extensive research efforts aimed at improving the performance of these enzymes to generate robust biocatalysts. Recently, our group has identified CYP-mediated hydroxylation of (+)-valencene as a major bottleneck in the biosynthesis of trans-nootkatol and (+)-nootkatone in Pichia pastoris. In the current study, we aimed at enhancing CYP-mediated (+)-valencene hydroxylation by over-expressing target genes identified through transcriptome analysis in P. pastoris. Strikingly, over-expression of the DNA repair and recombination gene RAD52 had a distinctly positive effect on trans-nootkatol formation. Combining RAD52 over-expression with optimization of whole-cell biotransformation conditions, i.e. optimized media composition and cultivation at higher pH value, enhanced trans-nootkatol production 5-fold compared to the initial strain and condition. These engineering approaches appear to be generally applicable for enhanced hydroxylation of hydrophobic compounds in P. pastoris as confirmed here for two additional membrane-attached CYPs, namely the limonene-3-hydroxylase from Mentha piperita and the human CYP2D6. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart

    International Nuclear Information System (INIS)

    Montaigne, David; Marechal, Xavier; Baccouch, Riadh; Modine, Thomas; Preau, Sebastien; Zannis, Konstantinos; Marchetti, Philippe; Lancel, Steve; Neviere, Remi

    2010-01-01

    The present study was undertaken to examine the effects of doxorubicin on left ventricular function and cellular energy state in intact isolated hearts, and, to test whether inhibition of mitochondrial membrane potential dissipation would prevent doxorubicin-induced mitochondrial and myocardial dysfunction. Myocardial contractile performance and mitochondrial respiration were evaluated by left ventricular tension and its first derivatives and cardiac fiber respirometry, respectively. NADH levels, mitochondrial membrane potential and glucose uptake were monitored non-invasively via epicardial imaging of the left ventricular wall of Langendorff-perfused rat hearts. Heart performance was reduced in a time-dependent manner in isolated rat hearts perfused with Krebs-Henseleit solution containing 1 μM doxorubicin. Compared with controls, doxorubicin induced acute myocardial dysfunction (dF/dt max of 105 ± 8 mN/s in control hearts vs. 49 ± 7 mN/s in doxorubicin-treated hearts; *p < 0.05). In cardiac fibers prepared from perfused hearts, doxorubicin induced depression of mitochondrial respiration (respiratory control ratio of 4.0 ± 0.2 in control hearts vs. 2.2 ± 0.2 in doxorubicin-treated hearts; *p < 0.05) and cytochrome c oxidase kinetic activity (24 ± 1 μM cytochrome c/min/mg in control hearts vs. 14 ± 3 μM cytochrome c/min/mg in doxorubicin-treated hearts; *p < 0.05). Acute cardiotoxicity induced by doxorubicin was accompanied by NADH redox state, mitochondrial membrane potential, and glucose uptake reduction. Inhibition of mitochondrial permeability transition pore opening by cyclosporine A largely prevented mitochondrial membrane potential dissipation, cardiac energy state and dysfunction. These results suggest that in intact hearts an impairment of mitochondrial metabolism is involved in the development of doxorubicin cardiotoxicity.

  16. Disruption of a hydrogen bond network in human versus spider monkey cytochrome c affects heme crevice stability.

    Science.gov (United States)

    Goldes, Matthew E; Jeakins-Cooley, Margaret E; McClelland, Levi J; Mou, Tung-Chung; Bowler, Bruce E

    2016-05-01

    The hypothesis that the recent rapid evolution of primate cytochromes c, which primarily involves residues in the least stable Ω-loop (Ω-loop C, residues 40-57), stabilizes the heme crevice of cytochrome c relative to other mammals, is tested. To accomplish this goal, we have compared the properties of human and spider monkey cytochrome c and a set of four variants produced in the process of converting human cytochrome c into spider monkey cytochrome c. The global stability of all variants has been measured by guanidine hydrochloride denaturation. The stability of the heme crevice has been assessed with the alkaline conformational transition. Structural insight into the effects of the five amino acid substitutions needed to convert human cytochrome c into spider monkey cytochrome c is provided by a 1.15Å resolution structure of spider monkey cytochrome c. The global stability for all variants is near 9.0kcal/mol at 25°C and pH7, which is higher than that observed for other mammalian cytochromes c. The heme crevice stability is more sensitive to the substitutions required to produce spider monkey cytochrome c with decreases of up to 0.5 units in the apparent pKa of the alkaline conformational transition relative to human cytochrome c. The structure of spider monkey cytochrome c indicates that the Y46F substitution destabilizes the heme crevice by disrupting an extensive hydrogen bond network that connects three surface loops including Ω-loop D (residues 70-85), which contains the Met80 heme ligand. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Membrane fusion and exocytosis.

    Science.gov (United States)

    Jahn, R; Südhof, T C

    1999-01-01

    Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.

  18. New naphtho[1,2-b:5,6-b‧]difuran based two-dimensional conjugated small molecules for photovoltaic application

    Science.gov (United States)

    Peng, Hongjian; Luan, Xiangfeng; Qiu, Lixia; Li, Hang; Liu, Ye; Zou, Yingping

    2017-10-01

    Two new A-D-A small molecules with alkoxyphenyl and alkylthiophenyl-substituted naphtho[1,2-b:5,6-b‧]difuran (NDF) as the central building block named NDFPO-DPP and NDFPS-DPP were synthesized and firstly used as donor materials in organic solar cells (OSCs). The effects of the alkoxyphenyl and alkylthiophenyl side chains on the NDF unit have been investigated. With a single atom variation from O to S, NDFPS-DPP exhibited lower HOMO energy levels than its counterpart NDFPO-DPP, which resulted in enhanced Voc. The device based on NDFPO-DPP with thermal annealing exhibited a better PCE of 3.10% due to the higher and more balanced hole and electron mobilities. The investigations show that NDF could be a promising building block in OSCs via rational molecular structure design and device optimizations.

  19. Molecular basis of proton uptake in single and double mutants of cytochrome c oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Rowan M; Caplan, David; Pomes, Regis [Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Fadda, Elisa, E-mail: pomes@sickkids.ca [Department of Chemistry, University of Galway (Ireland)

    2011-06-15

    Cytochrome c oxidase, the terminal enzyme of the respiratory chain, utilizes the reduction of dioxygen into water to pump protons across the mitochondrial inner membrane. The principal pathway of proton uptake into the enzyme, the D channel, is a 2.5 nm long channel-like cavity named after a conserved, negatively charged aspartic acid (D) residue thought to help recruiting protons to its entrance (D132 in the first subunit of the S. sphaeroides enzyme). The single-point mutation of D132 to asparagine (N), a neutral residue, abolishes enzyme activity. Conversely, replacing conserved N139, one-third into the D channel, by D, induces a decoupled phenotype, whereby oxygen reduction proceeds but not proton pumping. Intriguingly, the double mutant D132N/N139D, which conserves the charge of the D channel, restores the wild-type phenotype. We use molecular dynamics simulations and electrostatic calculations to examine the structural and physical basis for the coupling of proton pumping and oxygen chemistry in single and double N139D mutants. The potential of mean force for the conformational isomerization of N139 and N139D side chains reveals the presence of three rotamers, one of which faces the channel entrance. This out-facing conformer is metastable in the wild-type and in the N139D single mutant, but predominant in the double mutant thanks to the loss of electrostatic repulsion with the carboxylate group of D132. The effects of mutations and conformational isomerization on the pKa of E286, an essential proton-shuttling residue located at the top of the D channel, are shown to be consistent with the electrostatic control of proton pumping proposed recently (Fadda et al 2008 Biochim. Biophys. Acta 1777 277-84). Taken together, these results suggest that preserving the spatial distribution of charges at the entrance of the D channel is necessary to guarantee both the uptake and the relay of protons to the active site of the enzyme. These findings highlight the interplay

  20. Molecular basis of proton uptake in single and double mutants of cytochrome c oxidase

    International Nuclear Information System (INIS)

    Henry, Rowan M; Caplan, David; Pomes, Regis; Fadda, Elisa

    2011-01-01

    Cytochrome c oxidase, the terminal enzyme of the respiratory chain, utilizes the reduction of dioxygen into water to pump protons across the mitochondrial inner membrane. The principal pathway of proton uptake into the enzyme, the D channel, is a 2.5 nm long channel-like cavity named after a conserved, negatively charged aspartic acid (D) residue thought to help recruiting protons to its entrance (D132 in the first subunit of the S. sphaeroides enzyme). The single-point mutation of D132 to asparagine (N), a neutral residue, abolishes enzyme activity. Conversely, replacing conserved N139, one-third into the D channel, by D, induces a decoupled phenotype, whereby oxygen reduction proceeds but not proton pumping. Intriguingly, the double mutant D132N/N139D, which conserves the charge of the D channel, restores the wild-type phenotype. We use molecular dynamics simulations and electrostatic calculations to examine the structural and physical basis for the coupling of proton pumping and oxygen chemistry in single and double N139D mutants. The potential of mean force for the conformational isomerization of N139 and N139D side chains reveals the presence of three rotamers, one of which faces the channel entrance. This out-facing conformer is metastable in the wild-type and in the N139D single mutant, but predominant in the double mutant thanks to the loss of electrostatic repulsion with the carboxylate group of D132. The effects of mutations and conformational isomerization on the pKa of E286, an essential proton-shuttling residue located at the top of the D channel, are shown to be consistent with the electrostatic control of proton pumping proposed recently (Fadda et al 2008 Biochim. Biophys. Acta 1777 277-84). Taken together, these results suggest that preserving the spatial distribution of charges at the entrance of the D channel is necessary to guarantee both the uptake and the relay of protons to the active site of the enzyme. These findings highlight the interplay

  1. Molecular basis of proton uptake in single and double mutants of cytochrome c oxidase

    Science.gov (United States)

    Henry, Rowan M.; Caplan, David; Fadda, Elisa; Pomès, Régis

    2011-06-01

    Cytochrome c oxidase, the terminal enzyme of the respiratory chain, utilizes the reduction of dioxygen into water to pump protons across the mitochondrial inner membrane. The principal pathway of proton uptake into the enzyme, the D channel, is a 2.5 nm long channel-like cavity named after a conserved, negatively charged aspartic acid (D) residue thought to help recruiting protons to its entrance (D132 in the first subunit of the S. sphaeroides enzyme). The single-point mutation of D132 to asparagine (N), a neutral residue, abolishes enzyme activity. Conversely, replacing conserved N139, one-third into the D channel, by D, induces a decoupled phenotype, whereby oxygen reduction proceeds but not proton pumping. Intriguingly, the double mutant D132N/N139D, which conserves the charge of the D channel, restores the wild-type phenotype. We use molecular dynamics simulations and electrostatic calculations to examine the structural and physical basis for the coupling of proton pumping and oxygen chemistry in single and double N139D mutants. The potential of mean force for the conformational isomerization of N139 and N139D side chains reveals the presence of three rotamers, one of which faces the channel entrance. This out-facing conformer is metastable in the wild-type and in the N139D single mutant, but predominant in the double mutant thanks to the loss of electrostatic repulsion with the carboxylate group of D132. The effects of mutations and conformational isomerization on the pKa of E286, an essential proton-shuttling residue located at the top of the D channel, are shown to be consistent with the electrostatic control of proton pumping proposed recently (Fadda et al 2008 Biochim. Biophys. Acta 1777 277-84). Taken together, these results suggest that preserving the spatial distribution of charges at the entrance of the D channel is necessary to guarantee both the uptake and the relay of protons to the active site of the enzyme. These findings highlight the interplay

  2. HPA e Nitro-HPA em Ambiente Semifechado Impactado por Emissão da Combustão de Diesel/Biodiesel (B5

    Directory of Open Access Journals (Sweden)

    Fabio Cal Sabino

    2015-09-01

    Full Text Available Com o objetivo de verificar a presença de HPA e nitro-HPA associados à fração fina do material particulado (MP1,0 e MP2,5 proveniente da combustão de mistura diesel/biodiesel (B5 foram realizadas amostragens diárias no terminal urbano de ônibus de Londrina. Para a determinação do nitro-HPA foi utilizada a espectroscopia de massa acoplado à cromatografia a líquido com ionização química a pressão atmosférica e detector por aprisionamento de íons. Os HPA foram determinados por cromatografia a líquido com detecções por fluorescência e arranjo de fotodiodos. Foram determinados 9 HPA e 1-nitropireno. As concentrações dos HPA de 4 a 6 anéis (FLUT, PIR, CRI, BBF, BKF e DBA foram mais elevadas em comparação aos HPA mais leves (ACE, FLU e ANT. A ∑HPA associado ao MP1,0 correspondeu a 66% do MP2,5 com concentrações que excedem ao recomendado pela OMS. As razões de diagnóstico para pares de HPA e NHPA foram calculadas e seus valores são indicativos das emissões B5. O uso de bicombustíveis no território brasileiro é estimulado e o acompanhamento das alterações nas emissões decorrentes dos processos de combustão é importante e necessário para inferir sobre a alteração da qualidade do ar e o impacto sobre o ambiente.

  3. Effect of Al-Si Coating on Weld Microstructure and Properties of 22MnB5 Steel Joints for Hot Stamping

    Science.gov (United States)

    Lin, Wenhu; Li, Fang; Wu, Dongsheng; Chen, Xiaoguan; Hua, Xueming; Pan, Hua

    2018-03-01

    22MnB5 hot stamping steels are gradually being used in tailor-welded blank applications. In this experiment, 1-mm-thick Al-Si coated and de-coated 22MnB5 steels were laser-welded and then hot-stamped. The chemical compositions, solidification process, microstructure and mechanical properties were investigated to reveal the effect of Al-Si coating and heat treatment. In the welded condition, the coated joints had an Al content of approximately 2.5 wt.% in the fusion zone and the de-coated joints had 0.5 wt.% Al. The aluminum promoted the δ-ferrite formation as the skeletal structure during solidification. In the high-aluminum weld, the microstructure consisted of martensite and long and band-like δ-ferrite. Meanwhile, the low-aluminum weld was full of lath martensite. After the hot stamping process, the δ-ferrite fraction increased from 10 to 24% in the coated joints and the lath martensite became finer in the de-coated joints. The tensile strengths of the coated joints or de-coated joints were similar to that before hot stamping, but the strength of the coated joints was reduced heavily after hot stamping compared to the de-coated joints and base material. The effect of δ-ferrite on the tensile properties became stronger when the fusion zone was soft and deformed first in the hot-stamped specimens. The coated weld showed a brittle fracture surface with many cleavage planes, and the de-coated weld showed a ductile fracture surface with many dimples in hot-stamped conditions.

  4. On the role of cytochrome c8 in photosynthetic electron transfer of the purple non-sulfur bacterium Rhodoferax fermentans

    DEFF Research Database (Denmark)

    Hochkoeppler, Alejandro; Ciurli, Stefano; Kofod, Pauli

    1997-01-01

    We report on the isolation, purification and functional characterization of a soluble c-type cytochrome from light-grown cells of the purple phototroph Rhodoferax fermentans. This cytochrome is basic (pI = 8), has a molecular mass of 12 kDa, and is characterized by a midpoint reduction potential...... center, in a fast (sub-ms) and a slow (ms) phase. Competition experiments in the presence of both cytochrome c8 and high potential iron-sulfur protein (HiPIP), isolated from the same microorganism, show that cytochrome c8 oxidation is decreased upon addition of HiPIP. These observations suggest...

  5. Membrane Transporters for Bilirubin and Its Conjugates: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Jovana Čvorović

    2017-12-01

    Full Text Available Background: Bilirubin is a highly-hydrophobic tetrapyrrole which binds to plasma albumin. It is conjugated in the liver to glucuronic acid, and the water-soluble glucuronides are excreted in urine and bile. The membrane transporters of bilirubin diglucuronide are well-known. Still undefined are however the transporters performing the uptake of bilirubin from the blood into the liver, a process known to be fast and not rate-limited. The biological importance of this process may be appraised by considering that in normal adults 200–300 mg of bilirubin are produced daily, as a result of the physiologic turnover of hemoglobin and cellular cytochromes. Nevertheless, research in this field has yielded controversial and contradicting results. We have undertaken a systematic review of the literature, believing in its utility to improve the existing knowledge and promote further advancements.Methods: We have sourced the PubMed database until 30 June 2017 by applying 5 sequential searches. Screening and eligibility criteria were applied to retain research articles reporting results obtained by using bilirubin molecules in membrane transport assays in vitro or by assessing serum bilirubin levels in in vivo experiments.Results: We have identified 311 articles, retaining 44, reporting data on experimental models having 6 incremental increases of complexity (isolated proteins, membrane vesicles, cells, organ fragments, in vivo rodents, and human studies, demonstrating the function of 19 membrane transporters, encoded by either SLCO or ABC genes. Three other bilirubin transporters have no gene, though one, i.e., bilitranslocase, is annotated in the Transporter Classification Database.Conclusions: This is the first review that has systematically examined the membrane transporters for bilirubin and its conjugates. Paradoxically, the remarkable advancements in the field of membrane transport of bilirubin have pointed to the elusive mechanism(s enabling

  6. Plasma membrane ATPases

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Bækgaard, Lone; Lopez Marques, Rosa Laura

    2011-01-01

    The plasma membrane separates the cellular contents from the surrounding environment. Nutrients must enter through the plasma membrane in order to reach the cell interior, and toxic metabolites and several ions leave the cell by traveling across the same barrier. Biological pumps in the plasma me...

  7. Polymide gas separation membranes

    Science.gov (United States)

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  8. Enantioseparation with liquid membranes

    NARCIS (Netherlands)

    Gössi, Angelo; Riedl, Wolfgang; Schuur, Boelo

    Chiral resolution of racemic products is a challenging and important task in the pharmaceutical, agrochemical, flavor, polymer and fragrances industries. One of the options for these challenging separations is to use liquid membranes. Although liquid membranes have been known for almost four decades

  9. Silicon nitride nanosieve membrane

    NARCIS (Netherlands)

    Tong, D.H.; Jansen, Henricus V.; Gadgil, V.J.; Bostan, C.G.; Berenschot, Johan W.; van Rijn, C.J.M.; Elwenspoek, Michael Curt

    2004-01-01

    An array of very uniform cylindrical nanopores with a pore diameter as small as 25 nm has been fabricated in an ultrathin micromachined silicon nitride membrane using focused ion beam (FIB) etching. The pore size of this nanosieve membrane was further reduced to below 10 nm by coating it with

  10. Membrane capacitive deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Wal, van der A.

    2010-01-01

    Membrane capacitive deionization (MCDI) is an ion-removal process based on applying an electrical potential difference across an aqueous solution which flows in between oppositely placed porous electrodes, in front of which ion-exchange membranes are positioned. Due to the applied potential, ions

  11. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, Poornima; Sutisna, Burhannudin; Sougrat, Rachid; Nunes, Suzana Pereira

    2016-01-01

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane's water flux and solute retention. © 2016 The Royal Society of Chemistry.

  12. Cytochrome c interaction with hematite ({alpha}-Fe{sub 2}O{sub 3}) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Eggleston, Carrick M. [Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071 (United States)]. E-mail: carrick@uwyo.edu; Khare, Nidhi [Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071 (United States); Lovelace, David M. [Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071 (United States)

    2006-02-15

    The interaction of metalloproteins such as cytochromes with oxides is of interest for a number of reasons, including molecular catalysis of environmentally important mineral-solution electron transfer reactions (e.g., dehalogenations) and photovoltaic applications. Iron reduction by bacteria, thought to be cytochrome mediated, is of interest for geochemical and environmental remediation reasons. As a baseline for understanding cytochrome interaction with ferric oxide surfaces, we report on the interaction of mitochondrial cytochrome c (Mcc), a well-studied protein, with hematite ({alpha}-Fe{sub 2}O{sub 3}) surfaces. Mcc sorbs strongly to hematite from aqueous solution in a narrow pH range corresponding to opposite charge on Mcc and hematite (between pH 8.5 and 10, Mcc is positively charged and hematite surfaces are negatively charged). Cyclic voltammetry of Mcc using hematite electrodes gives redox potentials characteristic of Mcc in a native conformational state, with no evidence for unfolding on the hematite surface. Atomic force microscopy imaging is consistent with a loosely attached adsorbate that is easily deformed by the AFM tip. In phosphate-containing solution, Mcc adhers to the surface more strongly. These results establish hematite as a viable material for electrochemical and spectroscopic characterization of cytochrome-mineral interaction.

  13. Antibodies against human cytochrome P-450db1 in autoimmune hepatitis type II.

    Science.gov (United States)

    Zanger, U M; Hauri, H P; Loeper, J; Homberg, J C; Meyer, U A

    1988-11-01

    In a subgroup of children with chronic active hepatitis, circulating autoantibodies occur that bind to liver and kidney endoplasmic reticulum (anti-liver/kidney microsome antibody type I or anti-LKM1). Anti-LKM1 titers follow the severity of the disease and the presence of these antibodies serves as a diagnostic marker for this autoimmune hepatitis type II. We demonstrate that anti-LKM1 IgGs specifically inhibit the hydroxylation of bufuralol in human liver microsomes. Using two assay systems with different selectivity for the two cytochrome P-450 isozymes catalyzing bufuralol metabolism in human liver, we show that anti-LKM1 exclusively recognizes cytochrome P-450db1. Immunopurification of the LKM1 antigen from solubilized human liver microsomes resulted in an electrophoretically homogenous protein that had the same molecular mass (50 kDa) as purified P-450db1 and an identical N-terminal amino acid sequence. Recognition of both purified P-450db1 and the immunoisolated protein on western blots by several monoclonal antibodies confirmed the identity of the LKM1 antigen with cytochrome P-450db1. Cytochrome P-450db1 has been identified as the target of a common genetic polymorphism of drug oxidation. However, the relationship between the polymorphic cytochrome P-450db1 and the appearance of anti-LKM1 autoantibodies as well as their role in the pathogenesis of chronic active hepatitis remains speculative.

  14. Molecular Interactions at Membranes

    DEFF Research Database (Denmark)

    Jagalski, Vivien

    . Today, we know more than ever before about the properties of biological membranes. Advanced biophysical techniques and sophisticated membrane models allow us to answer specific questions about the structure of the components within membranes and their interactions. However, many detailed structural...... the surface-immobilization of LeuT by exchanging the detergent with natural phosphatidylcholine (PC) lipids. Various surface sensitive techniques, including neutron reflectometry (NR), are employed and finally enabled us to confirm the gross structure of LeuT in a lipid environment as predicted by molecular...... dynamic simulations. In a second study, the co-localization of three toxic plant-derived diterpene resin acids (RAs) within DPPC membranes was investigated. These compounds are reported to disrupt the membrane and increase its fluidity. The RAs used in this study vary in their toxicity while...

  15. Membrane technology and applications

    International Nuclear Information System (INIS)

    Khalil, F.H.

    1997-01-01

    The main purpose of this dissertation is to prepare and characterize some synthetic membranes obtained by radiation-induced graft copolymerization of and A Am unitary and binary system onto nylon-6 films. The optimum conditions at which the grafting process proceeded homogeneously were determined. Some selected properties of the prepared membranes were studied. Differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), x-ray diffraction (XRD), mechanical properties and U.V./vis, instruments and techniques were used to characterize the prepared membranes. The use of such membranes for the decontamination of radioactive waste and some heavy metal ions as water pollutants were investigated. These grafted membranes showed good cation exchange properties and may be of practical interest in waste water treatment whether this water was radioactive or not. 4 tabs., 68 figs., 146 refs

  16. Cytochrome P450 enzyme mediated herbal drug interactions (Part 2)

    Science.gov (United States)

    Wanwimolruk, Sompon; Phopin, Kamonrat; Prachayasittikul, Virapong

    2014-01-01

    To date, a number of significant herbal drug interactions have their origins in the alteration of cytochrome P450 (CYP) activity by various phytochemicals. Among the most noteworthy are those involving St. John's wort and drugs metabolized by human CYP3A4 enzyme. This review article is the continued work from our previous article (Part 1) published in this journal (Wanwimolruk and Prachayasittikul, 2014[ref:133]). This article extends the scope of the review to six more herbs and updates information on herbal drug interactions. These include black cohosh, ginseng, grape seed extract, green tea, kava, saw palmetto and some important Chinese medicines are also presented. Even though there have been many studies to determine the effects of herbs and herbal medicines on the activity of CYP, most of them were in vitro and in animal studies. Therefore, the studies are limited in predicting the clinical relevance of herbal drug interactions. It appeared that the majority of the herbal medicines have no clear effects on most of the CYPs examined. For example, the existing clinical trial data imply that black cohosh, ginseng and saw palmetto are unlikely to affect the pharmacokinetics of conventional drugs metabolized by human CYPs. For grape seed extract and green tea, adverse herbal drug interactions are unlikely when they are concomitantly taken with prescription drugs that are CYP substrates. Although there were few clinical studies on potential CYP-mediated interactions produced by kava, present data suggest that kava supplements have the ability to inhibit CYP1A2 and CYP2E1 significantly. Therefore, caution should be taken when patients take kava with CYP1A2 or CYP2E1 substrate drugs as it may enhance their therapeutic and adverse effects. Despite the long use of traditional Chinese herbal medicines, little is known about the potential drug interactions with these herbs. Many popularly used Chinese medicines have been shown in vitro to significantly change the

  17. Effects of prolonged recombinant human erythropoietin administration on muscle membrane transport systems and metabolic marker enzymes

    DEFF Research Database (Denmark)

    Juel, C; Thomsen, J J; Rentsch, R L

    2007-01-01

    on the expression of muscle membrane transport proteins. Likewise, improvements in performance may involve upregulation of metabolic enzymes. Since Epo is known to augment performance we tested the effect of rHuEpo on some marker enzymes that are related to aerobic capacity. For these purposes eight subjects...... performance by approximately 54%. Membrane transport systems and carbonic anhydrases involved in pH regulation remained unchanged. Of the Na(+), K(+)-pump isoforms only the density of the alpha2 subunit was decreased (by 22%) after treatment. The marker enzymes cytochrom c and hexokinase remained unchanged......Adaptations to chronic hypoxia involve changes in membrane transport proteins. The underlying mechanism of this response may be related to concomitant occurring changes in erythropoietin (Epo) levels. We therefore tested the direct effects of recombinant human erythropoietin (rHuEpo) treatment...

  18. Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity analysis of Cytochrome C

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim; White, Peter C.

    2007-01-01

    High quality Resonance Raman (RR) and resonance Raman Optical Activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due...... to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein back-bone. Combining the intrinsic resonance enhancement of cytochrome c with surface plasmon enhancement by colloidal silver particles, the Surface Enhanced Resonance Raman Scattering (SERRS) and Chiral...... Enhanced Raman Spectroscopy (ChERS) spectra of the protein were successfully obtained at very low concentration (as low as 1 µM). The assignment of spectral features was based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported...

  19. Role of Asp544 in subunit I for Na+ pumping by Vitreoscilla cytochrome bo

    International Nuclear Information System (INIS)

    Chung, Yeon T.; Stark, Benjamin C.; Webster, Dale A.

    2006-01-01

    The conserved Glu540 in subunit I of Escherichia coli cytochrome bo (a H + pump) is replaced by Asp544 in the Vitreoscilla enzyme (a Na + pump). Site-directed mutagenesis of the Vitreoscilla cytochrome bo operon changed this Asp to Glu, and both wild type and mutant cyo's were transformed into E. coli strain GV100, which lacks cytochrome bo. Compared to the wild type transformant the Asp544Glu transformant had decreased ability to pump Na + as well as decreased stimulation in respiratory activity in the presence of Na + . Preliminary experiments indicated that this mutant also had increased ability to pump protons, suggesting that this single change may provide cation pumping specificity in this group of enzymes

  20. The binding of cytochrome c to neuroglobin: A docking and surface plasmon resonance study

    DEFF Research Database (Denmark)

    Bønding, Signe Helbo; Henty, K.; Dingley, A.J.

    2008-01-01

    is associated with a small unfavourable enthalpy change (1.9 kcal mol-1) and a moderately large, favourable entropy change (14.8 cal mol-1 deg-1). The sensitivity of the binding constant to the presence of salt suggests that the complex formation involves electrostatic interactions....... one major binding site for cytochrome c to neuroglobin. The results yield a plausible structure for the most likely complex structure in which the hemes of each protein are in close contact. NMR analysis identifies the formation of a weak complex in which the heme group of cytochrome c is involved....... surface plasmon resonance studies provide a value of 45 μM for the equilibrium constant for cytochrome c binding to neuroglobin, which increases significantly as the ionic strength of the solution increases. The temperature dependence of the binding constant indicates that the complex formation...

  1. Partitioning of electrostatic and conformational contributions in the redox reactions of modified cytochromes c

    International Nuclear Information System (INIS)

    Ilan, Y.; Shafferman, A.; Feinberg, B.A.; Lau, Y.K.

    1979-01-01

    The reduction of acetylated, fully succinylated and dicarboxymethyl horse cytochromes c by the radicals CH 3 CHOH, CO 2 , O 2 , and e - /sub aq/, and the oxidation of the reduced cytochrome c derivatives by Fe(CN) 6 3- were studied using the pulse radiolysis technique. Many of the reactions were also examined as a function of ionic strength. By obtaining rate constants for the reactions of differently charged small molecules redox agents with the differently charged cytochrome c derivatives at both zero ionic strength and infinite ionic strength, electrostatic and conformational contributions to the electron transfer mechanism were effectively partitioned from each other in some cases. In regard to cycochrome c electron transfer mechanism, the results, especially those for which conformational influences predominate, are supportive of the electron being transferred in the heme edge region

  2. Electrochemistry and electron paramagnetic resonance spectroscopy of cytochrome c and its heme-disrupted analogs.

    Science.gov (United States)

    Novak, David; Mojovic, Milos; Pavicevic, Aleksandra; Zatloukalova, Martina; Hernychova, Lenka; Bartosik, Martin; Vacek, Jan

    2018-02-01

    Cytochrome c (cyt c) is one of the most studied conjugated proteins due to its electron-transfer properties and ability to regulate the processes involved in homeostasis or apoptosis. Here we report an electrochemical strategy for investigating the electroactivity of cyt c and its analogs with a disrupted heme moiety, i.e. apocytochrome c (acyt c) and porphyrin cytochrome c (pcyt c). The electrochemical data are supplemented with low-temperature and spin-probe electron paramagnetic resonance (EPR) spectroscopy. The main contribution of this report is a complex evaluation of cyt c reduction and oxidation at the level of surface-localized amino acid residues and the heme moiety in a single electrochemical scan. The electrochemical pattern of cyt c is substantially different to both analogs acyt c and pcyt c, which could be applicable in further studies on the redox properties and structural stability of cytochromes and other hemeproteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Kinetics and Mechanistic Studies on the Reaction between Cytochrome c and Tea Catechins

    Directory of Open Access Journals (Sweden)

    Lihua Wang

    2014-08-01

    Full Text Available Green tea is characterized by the presence of an abundance of polyphenolic compounds, also known as catechins, including epicatechin (EC, epigallocatechin (EGC, epicatechin gallate (EGC and epigallocatechin gallate (EGCG. In addition to being a popular beverage, tea consumption has been suggested as a mean of chemoprevention. However, its mode of action is unclear. It was discovered that tea catechins can react with cytochrome c. When oxidized cytochrome c was mixed with catechins commonly found in green tea under non-steady-state conditions, a reduction of cytochrome c was observed. The reaction rate of the catechins was dependent on the pH and the nature of the catechin. The pseudo-first order rate constant obtained increased in the order of EC < ECG < EGC < EGCG, which is consistent with previously reported superoxide reduction activities and Cu2+ reduction activities of tea catechins.

  4. Reduction of U(VI) and Toxic Metals by Desulfovibrio Cytochrome C3

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D

    2013-04-11

    The central objective of our proposed research was twofold: 1) to investigate the structure-function relationship of Desulfovibrio desulfuricans (now Desulfovibrio alaskensis G20) cytochrome c3 with uranium and 2) to elucidate the mechanism for uranium reduction in vitro and in vivo. Physiological analysis of a mutant of D. desulfuricans with a mutation of the gene encoding the type 1 tetraheme cytochrome c3 had demonstrated that uranium reduction was negatively impacted while sulfate reduction was not if lactate were the electron donor. This was thought to be due to the presence of a branched pathway of electron flow from lactate leading to sulfate reduction. Our experimental plan was to elucidate the structural and mechanistic details of uranium reduction involving cytochrome c3.

  5. PAR1 inhibition suppresses the self-renewal and growth of A2B5-defined glioma progenitor cells and their derived gliomas in vivo

    DEFF Research Database (Denmark)

    Auvergne, R.; Wu, C.; Connell, A.

    2016-01-01

    Glioblastoma (GBM) remains the most common and lethal intracranial tumor. In a comparison of gene expression by A2B5-defined tumor-initiating progenitor cells (TPCs) to glial progenitor cells derived from normal adult human brain, we found that the F2R gene encoding PAR1 was differentially...... overexpressed by A2B5-sorted TPCs isolated from gliomas at all stages of malignant development. In this study, we asked if PAR1 is causally associated with glioma progression. Lentiviral knockdown of PAR1 inhibited the expansion and self-renewal of human GBM-derived A2B5(+) TPCs in vitro, while pharmacological...

  6. Microfabricated hydrogen sensitive membranes

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, A.; Kraetz, L. [Lehrstuhl fuer Thermische Verfahrenstechnik, Technische Universitaet Kaiserslautern (Germany); Detemple, P.; Schmitt, S.; Hessel, V. [Institut fuer Mikrotechnik Mainz GmbH, Mainz (Germany); Faqir, N. [University of Jordan, Amman (Jordan); Bart, H.J.

    2009-01-15

    Thin, defect-free palladium, palladium/copper and palladium/silver hydrogen absorbing membranes were microfabricated. A dual sputtering technique was used to deposit the palladium alloy membranes of only 1 {mu}m thickness on a nonporous silicon substrate. Advanced silicon etching (ASE) was applied on the backside to create a mechanically stable support structure for the thin films. Performance evaluation was carried out for different gases in a temperature range of 20 C to 298 C at a constant differential pressure of 110 kPa at the two sides of the membrane. The composite membranes show an excellent permeation rate of hydrogen, which appears to be 0.05 Pa m{sup 3} s{sup -1} and 0.01.10{sup -3} Pa m{sup 3} s{sup -1} at 20 C for the microfabricated 23 % silver and the 53 % copper composite membranes, respectively. The selectivity to hydrogen over a gas mixture containing, in addition to hydrogen, carbon monoxide, carbon dioxide and nitrogen was measured. The mass spectrometer did not detect any CO{sub 2} or CO, showing that the membrane is completely hydrogen selective. The microfabricated membranes exhibit both high mechanical strength (they easily withstand pressures up to 4 bar) and high thermal stability (up to 650 C). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  7. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  8. Tuning of Hemes b Equilibrium Redox Potential Is Not Required for Cross-Membrane Electron Transfer.

    Science.gov (United States)

    Pintscher, Sebastian; Kuleta, Patryk; Cieluch, Ewelina; Borek, Arkadiusz; Sarewicz, Marcin; Osyczka, Artur

    2016-03-25

    In biological energy conversion, cross-membrane electron transfer often involves an assembly of two hemesb The hemes display a large difference in redox midpoint potentials (ΔEm_b), which in several proteins is assumed to facilitate cross-membrane electron transfer and overcome a barrier of membrane potential. Here we challenge this assumption reporting on hemebligand mutants of cytochromebc1in which, for the first time in transmembrane cytochrome, one natural histidine has been replaced by lysine without loss of the native low spin type of heme iron. With these mutants we show that ΔEm_b can be markedly increased, and the redox potential of one of the hemes can stay above the level of quinone pool, or ΔEm_b can be markedly decreased to the point that two hemes are almost isopotential, yet the enzyme retains catalytically competent electron transfer between quinone binding sites and remains functionalin vivo This reveals that cytochromebc1can accommodate large changes in ΔEm_b without hampering catalysis, as long as these changes do not impose overly endergonic steps on downhill electron transfer from substrate to product. We propose that hemesbin this cytochrome and in other membranous cytochromesbact as electronic connectors for the catalytic sites with no fine tuning in ΔEm_b required for efficient cross-membrane electron transfer. We link this concept with a natural flexibility in occurrence of several thermodynamic configurations of the direction of electron flow and the direction of the gradient of potential in relation to the vector of the electric membrane potential. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Jan, Yi-Hua [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Richardson, Jason R., E-mail: jricha3@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Baker, Angela A. [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Mishin, Vladimir [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Department of Environmental Health Science, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2015-10-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.

  10. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    International Nuclear Information System (INIS)

    Jan, Yi-Hua; Richardson, Jason R.; Baker, Angela A.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2015-01-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.

  11. Functional environmental proteomics: elucidating the role of a c-type cytochrome abundant during uranium bioremediation.

    Science.gov (United States)

    Yun, Jiae; Malvankar, Nikhil S; Ueki, Toshiyuki; Lovley, Derek R

    2016-02-01

    Studies with pure cultures of dissimilatory metal-reducing microorganisms have demonstrated that outer-surface c-type cytochromes are important electron transfer agents for the reduction of metals, but previous environmental proteomic studies have typically not recovered cytochrome sequences from subsurface environments in which metal reduction is important. Gel-separation, heme-staining and mass spectrometry of proteins in groundwater from in situ uranium bioremediation experiments identified a putative c-type cytochrome, designated Geobacter subsurface c-type cytochrome A (GscA), encoded within the genome of strain M18, a Geobacter isolate previously recovered from the site. Homologs of GscA were identified in the genomes of other Geobacter isolates in the phylogenetic cluster known as subsurface clade 1, which predominates in a diversity of Fe(III)-reducing subsurface environments. Most of the gscA sequences recovered from groundwater genomic DNA clustered in a tight phylogenetic group closely related to strain M18. GscA was most abundant in groundwater samples in which Geobacter sp. predominated. Expression of gscA in a strain of Geobacter sulfurreducens that lacked the gene for the c-type cytochrome OmcS, thought to facilitate electron transfer from conductive pili to Fe(III) oxide, restored the capacity for Fe(III) oxide reduction. Atomic force microscopy provided evidence that GscA was associated with the pili. These results demonstrate that a c-type cytochrome with an apparent function similar to that of OmcS is abundant when Geobacter sp. are abundant in the subsurface, providing insight into the mechanisms for the growth of subsurface Geobacter sp. on Fe(III) oxide and suggesting an approach for functional analysis of other Geobacter proteins found in the subsurface.

  12. L1R, A27L, A33R and B5R vaccinia virus genes expressed by fowlpox recombinants as putative novel orthopoxvirus vaccines.

    Science.gov (United States)

    Pacchioni, Sole Maria; Bissa, Massimiliano; Zanotto, Carlo; Morghen, Carlo De Giuli; Illiano, Elena; Radaelli, Antonia

    2013-04-11

    The traditional smallpox vaccine, administered by scarification, was discontinued in the general population from 1980, because of the absence of new smallpox cases. However, the development of an effective prophylactic vaccine against smallpox is still necessary, to protect from the threat of deliberate release of the variola virus for bioterrorism and from new zoonotic infections, and to improve the safety of the traditional vaccine. Preventive vaccination still remains the most effective control and new vectors have been developed to generate recombinant vaccines against smallpox that induce the same immunogenicity as the traditional one. As protective antibodies are mainly directed against the surface proteins of the two infectious forms of vaccinia, the intracellular mature virions and the extracellular virions, combined proteins from these viral forms can be used to better elicit a complete and protective immunity. Four novel viral recombinants were constructed based on the fowlpox genetic background, which independently express the vaccinia virus L1 and A27 proteins present on the mature virions, and the A33 and B5 proteins present on the extracellular virions. The correct expression of the transgenes was determined by RT-PCR, Western blotting, and immunofluorescence. Using immunoprecipitation and Western blotting, the ability of the proteins expressed by the four novel FPL1R, FPA27L, FPA33R and FPB5R recombinants to be recognized by VV-specific hyperimmune mouse sera was demonstrated. By neutralisation assays, recombinant virus particles released by infected chick embryo fibroblasts were shown not be recognised by hyperimmune sera. This thus demonstrates that the L1R, A27L, A33R and B5R gene products are not inserted into the new viral progeny. Fowlpox virus replicates only in avian species, but it is permissive for entry and transgene expression in mammalian cells, while being immunologically non-cross-reactive with vaccinia virus. These recombinants might

  13. Rotating bubble membrane radiator

    Science.gov (United States)

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  14. Cytochrome oxidase as an indicator of ice storage and frozen storage

    DEFF Research Database (Denmark)

    Godiksen, Helene; Jessen, Flemming

    2001-01-01

    in different cods was 21%, and the coefficient of variation of different analyses on the same homogenate was 5%. It was shown that ice storage of muscle samples before they were frozen and thawed resulted in a major freezing-induced activation of cytochrome oxidase activity. The enzyme may therefore be used...... as an indicator of frozen fish to determine if the fish has been stored on ice before freezing. Cytochrome oxidase activity showed also potential as an indicator of frozen storage, as it was possible to distinguish between the frozen storage temperatures -9, -20, and -40 degreesC....

  15. Metabolism and binding of cyclophosphamide and its metabolite acrolein to rat hepatic microsomal cytochrome P-450

    International Nuclear Information System (INIS)

    Marinello, A.J.; Bansal, S.K.; Paul, B.; Koser, P.L.; Love, J.; Struck, R.F.; Gurtoo, H.L.

    1984-01-01

    The hepatic cytochrome P-450-mediated metabolism and metabolic activation of [chloroethyl-3H]cyclophosphamide [( chloroethyl-3H]CP) and [4-14C]cyclophosphamide [( 4-14C]CP) were investigated in vitro in the reconstituted system containing cytochrome P-450 isolated from phenobarbital-treated rats. In addition, hepatic microsomal binding and the hepatic microsome-mediated metabolism of [14C]acrolein, a metabolite of [4-14C]CP, were also investigated. The metabolism of [chloroethyl-3H]CP and [4-14C]CP to polar metabolites was found to depend on the presence of NADPH and showed concentration dependence with respect to cytochrome P-450 and NADPH:cytochrome P-450 reductase. Km and Vmax values were essentially similar. The patterns of inhibition by microsomal mixed-function oxidase inhibitors, anti-cytochrome P-450 antibody, and heat denaturation of the cytochrome P-450 were essentially similar, with subtle differences between [4-14C]CP and [chloroethyl-3H]CP metabolism. The in vitro metabolic activation of CP in the reconstituted system demonstrated predominant binding of [chloroethyl-3H]CP to nucleic acids and almost exclusive binding of [4-14C]CP to proteins. Gel electrophoresis-fluorography of the proteins in the reconstituted system treated with [4-14C]CP demonstrated localization of the 14C label in the cytochrome P-450 region. To examine this association further, hepatic microsomes were modified with [14C]acrolein in the presence and the absence of NADPH. The results confirmed covalent association between [14C]acrolein and cytochrome P-450 in the microsomes and also demonstrated further metabolism of [14C]acrolein, apparently to an epoxide, which is capable of binding covalently to proteins. The results of these investigations not only confirm the significance of primary metabolism but also emphasize the potential role of the secondary metabolism of cyclophosphamide in some of its toxic manifestations

  16. The effect of amixin and agmatine on cytochrome c release from isolated mitochondria

    Directory of Open Access Journals (Sweden)

    K. R. Uspenska

    2017-02-01

    Full Text Available Mitochondrial nicotinic acetylcholine receptors (nAChRs control permeability transition pore formation and cytochrome c release in the presence of apoptogenic factors. This study demonstrates that pharmacological agents amixin and agmatine affect mitochondrial nAChR functioning: they slightly suppress cytochrome c release from mouse brain and liver mitochondria stimulated with apoptogenic dose of Са2+ and prevent the effect of α7 nAChR agonist PNU282987. We conclude that mitochondria may be one of therapeutic targets of amixin and agmatine.

  17. High resolution structure of the ba3 cytochrome c oxidase from Thermus thermophilus in a lipidic environment.

    Directory of Open Access Journals (Sweden)

    Theresa Tiefenbrunn

    Full Text Available The fundamental chemistry underpinning aerobic life on Earth involves reduction of dioxygen to water with concomitant proton translocation. This process is catalyzed by members of the heme-copper oxidase (HCO superfamily. Despite the availability of crystal structures for all types of HCO, the mode of action for this enzyme is not understood at the atomic level, namely how vectorial H(+ and e(- transport are coupled. Toward addressing this problem, we report wild type and A120F mutant structures of the ba(3-type cytochrome c oxidase from Thermus thermophilus at 1.8 Å resolution. The enzyme has been crystallized from the lipidic cubic phase, which mimics the biological membrane environment. The structures reveal 20 ordered lipid molecules that occupy binding sites on the protein surface or mediate crystal packing interfaces. The interior of the protein encloses 53 water molecules, including 3 trapped in the designated K-path of proton transfer and 8 in a cluster seen also in A-type enzymes that likely functions in egress of product water and proton translocation. The hydrophobic O(2-uptake channel, connecting the active site to the lipid bilayer, contains a single water molecule nearest the Cu(B atom but otherwise exhibits no residual electron density. The active site contains strong electron density for a pair of bonded atoms bridging the heme Fe(a3 and Cu(B atoms that is best modeled as peroxide. The structure of ba(3-oxidase reveals new information about the positioning of the enzyme within the membrane and the nature of its interactions with lipid molecules. The atomic resolution details provide insight into the mechanisms of electron transfer, oxygen diffusion into the active site, reduction of oxygen to water, and pumping of protons across the membrane. The development of a robust system for production of ba(3-oxidase crystals diffracting to high resolution, together with an established expression system for generating mutants, opens the

  18. Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca

    NARCIS (Netherlands)

    Schallmey, Anett; den Besten, Gijs; Teune, Ite G. P.; Kembaren, Roga F.; Janssen, Dick B.

    Cytochrome P450 monooxygenases are valuable biocatalysts due to their ability to hydroxylate unactivated carbon atoms using molecular oxygen. We have cloned the gene for a new cytochrome P450 monooxygenase, named CYP154H1, from the moderately thermophilic soil bacterium Thermobifida fusca. The

  19. HPLC Determination of Caffeine and Paraxanthine in Urine: An Assay for Cytochrome P450 1A2 Activity

    Science.gov (United States)

    Furge, Laura Lowe; Fletke, Kyle J.

    2007-01-01

    Cytochrome P450 enzymes are a family of heme-containing proteins located throughout the body with roles in metabolism of endogenous and exogenous compounds. Among exogenous compounds, clinically relevant pharmaceutical agents are nearly all metabolized by P450 enzymes. However, the activity of the different cytochrome P450 enzymes varies among…

  20. A theoretical study on the metabolic activation of paracetamol by cytochrome P-450 : indications for a uniform oxidation mechanism

    NARCIS (Netherlands)

    Koymans, L.; Lenthe, J.H.; Van de Straat, R; Donné-Op den Kelder, G M; Vermeulen, N P

    1989-01-01

    The cytochrome P-450 mediated activation of paracetamol (PAR) to the reactive electrophilic intermediate N-acetyl-p-benzoquinone imine (NAPQI) has been studied by use of SV 6-31G ab initio energy calculations and spin distributions. A simplified model for cytochrome P-450 has been used by

  1. Effect of Pre-strain and High Stresses on the Bainitic Transformation of Manganese-boron Steel 22MnB5

    Science.gov (United States)

    Said Schicchi, Diego; Hunkel, Martin

    2018-06-01

    During the last decade, the use of press-hardened components in the automotive industry has grown considerably. The so-called tailored tempering, also known as partial press hardening, employs locally heated tools seeking to obtain bainitic transformations. This leads to (seamless) zones within the formed parts with higher ductility. Due to the intrinsic nature of this process, phase transformations happen under the influence of high loads and in pre-deformed austenite. The austenite pre-strain state and applied stresses affect the kinetics of the bainitic transformation. Moreover, stresses have an additional relevant effect in this process, the so-called transformation plasticity. Linear transformation plasticity models have been successfully used to predict the behavior in the presence of low stresses. Nonetheless, because of the process's severe conditions, these tend to fail. A strong nonlinearity of the transformation plasticity strain is observed for applied stresses above the austenite yield strength. Using thermomechanical tests on sheet specimens of a manganese-boron steel (22MnB5), widely utilized in the industry, the effect on the bainitic transformation of various degrees of deformation in the range of 0 to 18 pct, applied stresses in the range of 0 to 250 MPa and the transformation plasticity effect are investigated in this work.

  2. Synthesis, properties, crystal structures, and semiconductor characteristics of naphtho[1,2-b:5,6-b']dithiophene and -diselenophene derivatives.

    Science.gov (United States)

    Shinamura, Shoji; Miyazaki, Eigo; Takimiya, Kazuo

    2010-02-19

    In this paper we present the synthesis, structures, characterization, and applications to field-effect transistors (FETs) of naphtho[1,2-b:5,6-b']dithiophene (NDT) and -diselenophene (NDS) derivatives. Treatment of 1,5-dichloro-2,6-diethynylnaphthalenes, easily derived from commercially available 2,6-dihydroxynaphthalene, with sodium chalcogenide afforded a straightforward access to NDTs and NDSs including the parent and dioctyl and diphenyl derivatives. Physicochemical evaluations of NDT and NDS derivatives showed that these heteroarenes have a similar electronic structure with isomeric [1]benzothieno[2,3-b][1]benzothiophene (BTBT) and [1]benzoselenopheneno[2,3-b][1]benzoselenophene (BSBS) derivatives, respectively. Although attempts to fabricate solution-processed field-effect transistors (FETs) with soluble dioctyl-NDT (C(8)-NDT) and -NDS (C(8)-NDS) failed, diphenyl derivatives (DPh-NDT and DPh-NDS) afforded vapor-processed FETs showing field-effect mobility as high as 0.7 cm(2) V(-1) s(-1). These results indicated that NDT and NDS are new potential heteroarene core structures for organic semiconducting materials.

  3. Complete genome sequence of Pseudomonas citronellolis P3B5, a candidate for microbial phyllo-remediation of hydrocarbon-contaminated sites.

    Science.gov (United States)

    Remus-Emsermann, Mitja N P; Schmid, Michael; Gekenidis, Maria-Theresia; Pelludat, Cosima; Frey, Jürg E; Ahrens, Christian H; Drissner, David

    2016-01-01

    Pseudomonas citronellolis is a Gram negative, motile gammaproteobacterium belonging to the order Pseudomonadales and the family Pseudomonadaceae . We isolated strain P3B5 from the phyllosphere of basil plants ( Ocimum basilicum L.). Here we describe the physiology of this microorganism, its full genome sequence, and detailed annotation. The 6.95 Mbp genome contains 6071 predicted protein coding sequences and 96 RNA coding sequences. P. citronellolis has been the subject of many studies including the investigation of long-chain aliphatic compounds and terpene degradation. Plant leaves are covered by long-chain aliphates making up a waxy layer that is associated with the leaf cuticle. In addition, basil leaves are known to contain high amounts of terpenoid substances, hinting to a potential nutrient niche that might be exploited by P. citronellolis . Furthermore, the isolated strain exhibited resistance to several antibiotics. To evaluate the potential of this strain as source of transferable antibiotic resistance genes on raw consumed herbs we therefore investigated if those resistances are encoded on mobile genetic elements. The availability of the genome will be helpful for comparative genomics of the phylogenetically broad pseudomonads, in particular with the sequence of the P. citronellolis type strain PRJDB205 not yet publicly available. The genome is discussed with respect to a phyllosphere related lifestyle, aliphate and terpenoid degradation, and antibiotic resistance.

  4. The dynamic model on the impact of biodiesel blend mandate (B5) on Malaysian palm oil domestic demand: A preliminary finding

    Science.gov (United States)

    Abidin, Norhaslinda Zainal; Applanaidu, Shri-Dewi; Sapiri, Hasimah

    2014-12-01

    Over the last ten years, world biofuels production has increased dramatically. The biodiesel demand is driven by the increases in fossil fuel prices, government policy mandates, income from gross domestic product and population growth. In the European Union, biofuel consumption is mostly driven by blending mandates in both France and Germany. In the case of Malaysia, biodiesel has started to be exported since 2006. The B5 of 5% blend of palm oil based biodiesel into diesel in all government vehicles was implemented in February 2009 and it is expected to be implemented nationwide in the nearest time. How will the blend mandate will project growth in the domestic demand of palm oil in Malaysia? To analyze this issue, a system dynamics model was constructed to evaluate the impact of blend mandate implementation on the palm oil domestic demand influence. The base run of simulation analysis indicates that the trend of domestic demand will increase until 2030 in parallel with the implementation of 5 percent of biodiesel mandate. Finally, this study depicts that system dynamics is a useful tool to gain insight and to experiment with the impact of changes in blend mandate implementation on the future growth of Malaysian palm oil domestic demand sector.

  5. Experimental evaluation of tool wear throughout a continuous stroke blanking process of quenched 22MnB5 ultra-high-strength steel

    Science.gov (United States)

    Vogt, S.; Neumayer, F. F.; Serkyov, I.; Jesner, G.; Kelsch, R.; Geile, M.; Sommer, A.; Golle, R.; Volk, W.

    2017-09-01

    Steel is the most common material used in vehicles’ chassis, which makes its research an important topic for the automotive industry. Recently developed ultra-high-strength steels (UHSS) provide extreme tensile strength up to 1,500 MPa and combine great crashworthiness with good weight reduction potential. However, in order to reach the final shape of sheet metal parts additional cutting steps such as trimming and piercing are often required. The final trimming of quenched metal sheets presents a huge challenge to a conventional process, mainly because of the required extreme cutting force. The high cutting impact, due to the materials’ brittleness, causes excessive tool wear or even sudden tool failure. Therefore, a laser is commonly used for the cutting process, which is time and energy consuming. The purpose of this paper is to demonstrate the capability of a conventional blanking tool design in a continuous stroke piercing process using boron steel 22MnB5 sheets. Two different types of tool steel were tested for their suitability as active cutting elements: electro-slag remelted (ESR) cold work tool steel Bohler K340 ISODUR and powder-metallurgic (PM) high speed steel Bohler S390 MICROCLEAN. A FEM study provided information about an optimized punch design, which withstands buckling under high cutting forces. The wear behaviour of the process was assessed by the tool wear of the active cutting elements as well as the quality of cut surfaces.

  6. Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel

    International Nuclear Information System (INIS)

    Nikravesh, M.; Naderi, M.; Akbari, G.H.

    2012-01-01

    Highlights: ► Reduction of cooling rate, can cause to increase or decrease M s and M f . ► 40% hot plastic deformation hindered the martensitic transformation. ► Hot plastic deformation, caused to decrease M f and M s , while B s increased. ► The critical cooling rate increased 40 °C/s due to apply 40% hot deformation. - Abstract: During hot stamping process, hot forming, cooling and phase transformations are performed in a single step. As a matter of fact, multifunctional phenomena happen and affect each other. Among these phenomena, martensitic and bainitic transformations have the greatest importance. In the current research, the start temperatures of martensite and bainite of 22MnB5 boron steel have been measured in undeformed and 40% deformed conditions, and in various cooling rates from 0.4 °C/s to 100 °C/s by means of deformation dilatometer. It is concluded that, reduction of cooling rate, could bring about an increase or decrease in M s and M f , depending on other phases formation before martensite. Also, hot plastic deformation, hindered the martensitic transformation and decreased M f and M s especially at lower cooling rates, while B s increased. Furthermore, the critical cooling rate, increased about 40 °C/s by applying 40% hot plastic deformation.

  7. Peculiarities of structure state and mechanical characteristics in ion-plasma condensates of quasibinary system borides W2B5-TiB2

    Directory of Open Access Journals (Sweden)

    Sobol O.V.

    2006-01-01

    Full Text Available In order to create high-durable, wear-resistant materials for a wide range of functional applications, comparative investigations of the structure and mechanical characteristics of ion-plasma Ti-W-B nano-crystalline condensates were carried out. The range of condensation rates 0.11÷0.25nm/s was found to be critical for the coatings obtained from the target with 80 vol% W2B5-20 vol% TiB2. Below this, a phase with a cubic lattice (W,TiB0.7…1.2(O,N,C0.3…0.2 formed, while over this range, a solid solution (W,TiB2 with a hexagonal lattice and element composition close to the sputtered target was observed. The structure state of the material changed from cluster-crystalline (under low sputter potentials U=0.6…1.0 kV to textured- crystalline (under U>2.2 kV. Structure perfection improvement with U increase results in higher hardness and elastic modulus of condensates. The conditions of cluster component formation and its effect on hardness and elastic modulus of condensates are discussed. .

  8. Impact of Si on Microstructure and Mechanical Properties of 22MnB5 Hot Stamping Steel Treated by Quenching & Partitioning (Q&P)

    Science.gov (United States)

    Linke, Bernd M.; Gerber, Thomas; Hatscher, Ansgar; Salvatori, Ilaria; Aranguren, Iñigo; Arribas, Maribel

    2018-01-01

    Based on 22MnB5 hot stamping steel, three model alloys containing 0.5, 0.8, and 1.5 wt pct Si were produced, heat treated by quenching and partitioning (Q&P), and characterized. Aided by DICTRA calculations, the thermal Q&P cycles were designed to fit into industrial hot stamping by keeping partitioning times ≤ 30 seconds. As expected, Si increased the amount of retained austenite (RA) stabilized after final cooling. However, for the intermediate Si alloy the heat treatment exerted a particularly pronounced influence with an RA content three times as high for the one-step process compared to the two-step process. It appeared that 0.8 wt pct Si sufficed to suppress direct cementite formation from within martensite laths but did not sufficiently stabilize carbon-soaked RA at higher temperatures. Tensile and bending tests showed strongly diverging effects of austenite on ductility. Total elongation improved consistently with increasing RA content independently from its carbon content. In contrast, the bending angle was not impacted by high-carbon RA but deteriorated almost linearly with the amount of low-carbon RA.

  9. Naphtho[1,2-b:5,6-b']dithiophene-Based Conjugated Polymers for Fullerene-Free Inverted Polymer Solar Cells.

    Science.gov (United States)

    Jiang, Zhaoyan; Li, Huan; Wang, Zhen; Zhang, Jianqi; Zhang, Yajie; Lu, Kun; Wei, Zhixiang

    2018-03-23

    Three novel copolymers based on zigzag naphthodithiophene (zNDT) with different aromatic rings as π bridges and different core side substitutions are designed and synthesized (PzNDT-T-1,3-bis(4-(2-ethylhexyl)-thiophen-2-yl)-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c']-dithiophene-4,8-dione (BDD), PzNDT-TT-BDD, and PzNDTP-T-BDD, respectively). The 2D conjugation structure and molecular planarity of the polymers can be effectively altered through the modification of conjugated side chains and π-bridges. These alterations contribute to the variation in energy levels, light absorption capacity, and morphology compatibility of the polymers. When blended with the nonfullerene acceptor (2,2'-[(4,4,9,9-tetrahexyl-4,9-dihydro-sindaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis[methylidyne(3-oxo-1H-indene-2,1(3H)-diylidene)

  10. Combining EL4-B5-based B-cell stimulation and phage display technology for the successful isolation of human anti-Scl-70 autoantibody fragments.

    Science.gov (United States)

    Weber, Malte; Weiss, Etienne; Engel, Alfred M

    2003-07-01

    Scl-70 is the major antigen recognised by autoantibodies in the sera of patients with systemic sclerosis (SSc). The autoantibodies that specifically react with Scl-70 are highly characteristic of the disease and represent valuable markers for the diagnosis of SSc. We describe a novel strategy for cloning autoantibody fragments starting with a small blood sample from an SSc patient. B cells isolated from the collected peripheral blood mononuclear cells (PBMCs) were cultured in vitro using the EL4-B5 system. Anti-Scl-70 IgG-producing cells were pooled for RNA preparation followed by the generation of phagemid libraries of approximately 10(7) independent single-chain Fvs (scFvs). The screening of these libraries by phage display allowed us to isolate four anti-Scl-70 scFvs following three rounds of biopanning. About 10 times more starting blood material was needed to generate scFv libraries of similar size from PBMCs of an SSc patient and only two anti-Scl-70 scFvs were isolated after three rounds of phage selection. Together, this work shows that functional autoantibody fragments can be advantageously cloned after in vitro expansion of B cells. The isolated anti-Scl-70 autoantibody fragments represent useful tools for calibrating SSc diagnostic assays.

  11. Membrane Assisted Enzyme Fractionation

    DEFF Research Database (Denmark)

    Yuan, Linfeng

    to the variation in size of the proteins and a reasonable separation factor can be observed only when the size difference is in the order of 10 or more. This is partly caused by concentration polarization and membrane fouling which hinders an effective separation of the proteins. Application of an electric field...... across the porous membrane has been demonstrated to be an effective way to reduce concentration polarization and membrane fouling. In addition, this technique can also be used to separate the proteins based on difference in charge, which to some extent overcome the limitations of size difference...... of proteins on the basis of their charge, degree of hydrophobicity, affinity or size. Adequate purity is often not achieved unless several purification steps are combined thereby increasing cost and reducing product yield. Conventional fractionation of proteins using ultrafiltration membranes is limited...

  12. Fuel cell membrane humidification

    Science.gov (United States)

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  13. Wrinkles in reinforced membranes

    Science.gov (United States)

    Takei, Atsushi; Brau, Fabian; Roman, Benoît; Bico, José.

    2012-02-01

    We study, through model experiments, the buckling under tension of an elastic membrane reinforced with a more rigid strip or a fiber. In these systems, the compression of the rigid layer is induced through Poisson contraction as the membrane is stretched perpendicularly to the strip. Although strips always lead to out-of-plane wrinkles, we observe a transition from out-of-plane to in plane wrinkles beyond a critical strain in the case of fibers embedded into the elastic membranes. The same transition is also found when the membrane is reinforced with a wall of the same material depending on the aspect ratio of the wall. We describe through scaling laws the evolution of the morphology of the wrinkles and the different transitions as a function of material properties and stretching strain.

  14. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-02-01

    This factsheet describes a research project that will focus on the development and application of nonporous high gas flux perfluoro membranes with high temperature rating and excellent chemical resistance.

  15. Temperature responsive track membranes

    International Nuclear Information System (INIS)

    Omichi, H.; Yoshido, M.; Asano, M.; Tamada, H.

    1994-01-01

    A new track membrane was synthesized by introducing polymeric hydrogel to films. Such a monomer as amino acid group containing acryloyl or methacryloyl was either co-polymerized with diethylene glycol-bis-ally carbonate followed by on beam irradiation and chemical etching, or graft co-polymerized onto a particle track membrane of CR-39. The pore size was controlled in water by changing the water temperature. Some films other than CR-39 were also examined. (author). 11 refs, 7 figs

  16. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

    Science.gov (United States)

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

    2015-08-01

    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo

    2013-02-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission scanning electron microscopy and pore size distribution analysis revealed the big pore size structure of electrospun membranes to be greater than 2 μm and the pore size distribution is found to be narrow. Flat sheet Matrimid membranes were fabricated via casting followed by phase inversion. The morphology, pore size distribution, and water contact angle were measured and compared with the electrospun membranes. Both membranes fabricated by electrospinning and phase inversion techniques were tested in a direct contact membrane distillation process. Electrospun membranes showed high water vapor flux of 56 kg/m2-h, which is very high compared to the casted membrane as well as most of the fabricated and commercially available highly hydrophobic membranes. ©2013 Desalination Publications.

  18. Far Western: probing membranes.

    Science.gov (United States)

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-08-01

    INTRODUCTIONThe far-Western technique described in this protocol is fundamentally similar to Western blotting. In Western blots, an antibody is used to detect a query protein on a membrane. In contrast, in a far-Western blot (also known as an overlay assay) the antibody is replaced by a recombinant GST fusion protein (produced and purified from bacteria), and the assay detects the interaction of this protein with target proteins on a membrane. The membranes are washed and blocked, incubated with probe protein, washed again, and subjected to autoradiography. The GST fusion (probe) proteins are often labeled with (32)P; alternatively, the membrane can be probed with unlabeled GST fusion protein, followed by detection using commercially available GST antibodies. The nonradioactive approach is substantially more expensive (due to the purchase of antibody and detection reagents) than using radioactively labeled proteins. In addition, care must be taken to control for nonspecific interactions with GST alone and a signal resulting from antibody cross-reactivity. In some instances, proteins on the membrane are not able to interact after transfer. This may be due to improper folding, particularly in the case of proteins expressed from a phage expression library. This protocol describes a way to overcome this by washing the membrane in denaturation buffer, which is then serially diluted to permit slow renaturation of the proteins.

  19. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  20. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.