WorldWideScience

Sample records for membrane cd25 stability

  1. Stability of supported liquid membranes

    NARCIS (Netherlands)

    Neplenbroek, Antonius Maria

    1989-01-01

    This thesis deals with the stability of supported liquid membranes (SLMs). The use of SLMs, in which an extraction liquid containing a carrier is immobilized in the pores of a microporous support, has recently been introduced as a promising new separation technique. Some advantages ascribed to this

  2. Comparative antioxidant capacity, membrane stabilization ...

    African Journals Online (AJOL)

    Comparative antioxidant capacity, membrane stabilization, polyphenol composition and cytotoxicity of the leaf and stem of Cissus multistriata. ... standard anti-inflammatory drug (Indomethacin) used. The extracts are less toxic to the cell (Arthenia salina) with their LC/EC50 higher than that of standard potassium dichromate ...

  3. Comparative antioxidant capacity, membrane stabilization ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-03

    Sep 3, 2008 ... In this present study, a comparative evaluation of the antioxidant capacities, phenol and polyphenol composition, membrane stabilization, and cytotoxicity to brine shrimps (Arthemia salina) of the leaf and stem extracts of Cissus multistriata were carried out. 2,2- Diphenyl-1-picryl hydrazyl (DPPH) radical.

  4. Nanoporous silica membranes with high hydrothermal stability

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Magnacca, Giualiana; Yue, Yuanzheng

    Despite the use of sol-gel derived nanoporous silica membranes in substitution of traditional separation processes is expected leading to vast energy savings, their intrinsic poor steam-stability hampers their application at an industrial level. Transition metal ions can be used as dopant...... to improve the stability of nanoporous silica structure. This work is a quantitative study on the impact of type and concentration of transition metal ions on the microporous structure and stability of amorphous silica-based membranes, which provides information on how to design chemical compositions...... and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile nanoporous structure...

  5. In ovo injection of anti-chicken CD25 monoclonal antibodies depletes CD4+CD25+ T cells in chickens.

    Science.gov (United States)

    Shanmugasundaram, Revathi; Selvaraj, Ramesh K

    2013-01-01

    The CD4(+)CD25(+) cells have T regulatory cell properties in chickens. This study investigated the effect of in ovo injection of anti-chicken CD25 monoclonal antibodies (0.5 mg/egg) on CD4(+)CD25(+) cell depletion and on amounts of interleukin-2 mRNA and interferon-γ mRNA in CD4(+)CD25(-) cells posthatch. Anti-chicken CD25 or PBS (control) was injected into 16-d-old embryos. Chicks hatched from eggs injected with anti-chicken CD25 antibodies had a lower CD4(+)CD25(+) cell percentage in the blood until 25 d posthatch. The anti-chicken CD25 antibody injection nearly depleted CD4(+)CD25(+) cells in the blood until 16 d posthatch. At 30 d posthatch, the CD4(+)CD25(+) cell percentage in the anti-CD25-antibody-injected group was comparable with the percentage in the control group. At 16 d posthatch, the anti-chicken CD25 antibody injection decreased CD4(+)CD25(+) cell percentages in the thymus, spleen, and cecal tonsils. Chickens hatched from anti-CD25-antibody-injected eggs had approximately 25% of CD4(+)CD25(+) cells in the cecal tonsils and thymus compared with those in the cecal tonsils and thymus of the control group. The CD4(+)CD25(-) cells from the spleen and cecal tonsils of chicks hatched from anti-chicken-CD25-injected eggs had higher amounts of interferon-γ and interleukin-2 mRNA than CD4(+)CD25(-) cells from the control group. It could be concluded that injecting anti-chicken CD25 antibodies in ovo at 16 d of incubation nearly depleted the CD4(+)CD25(+) cells until 25 d posthatch.

  6. Isomeric Detergent Comparison for Membrane Protein Stability

    DEFF Research Database (Denmark)

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S.

    2016-01-01

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope...... and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta....../stability of the membrane proteins. We propose that interplay between the hydrophile–lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane...

  7. Tubular Steel Arch Stabilized by Textile Membranes

    Directory of Open Access Journals (Sweden)

    Ondrej Svoboda

    2016-10-01

    Full Text Available Tubular steel arch supporting textile membrane roofing is investigated experimentally and numerically. The stabilization effects of the textile membrane on in-plane and out-of-plane behavior of the arch is of primary interest. First a model of a large membrane structure tested in laboratory is described. Prestressed membranes of PVC coated polyester fabric Ferrari® Précontraint 702S were used as a currently standard and excellent material. The test arrangement, loading and resulting load/deflection values are presented. The supporting structure consisted of two steel arch tubes, outer at edge of the membrane and inner supporting interior of the membrane roofing. The stability and strength behavior of the inner tube under both symmetrical and asymmetrical loading was monitored and is shown in some details. Second the SOFiSTiK software was employed to analyze the structural behavior in 3D, using geometrically nonlinear analysis with imperfections (GNIA. The numerical analysis, FE mesh sensitivity, the membrane prestressing and common boundary conditions are validated by test results. Finally a parametrical study concerning stability of mid arch with various geometries in a membrane structure with several supporting arches is presented, with recommendations for a practical design.

  8. Stabilization of Erythrocyte Membranes by Polyamines

    Science.gov (United States)

    Ballas, Samir K.; Mohandas, Narla; Marton, Laurence J.; Shohet, Stephen B.

    1983-04-01

    Using a laser diffraction technique, we have studied the effects of putrescine, spermidine, and spermine, the three physiologic polyamines, on the deformability and mechanical stability of human erythrocyte membranes. Ghosts resealed with polyamines were subjected to high fluid shear stress in an ektacytometer. All polyamines increased the membrane shear modulus (decreased deformability) in a concentration- and time-dependent manner. The order of effectiveness was spermine > spermidine > putrescine. At 10 μ M, spermine appreciably decreased membrane deformability. For the measurement of membrane mechanical stability, resealed ghosts were subjected to constant high shear stress in the ektacytometer and deformability was continuously recorded as the deformable ghosts fragmented into rigid spherical vesicles. Polyamines, especially spermine, caused a noticeable increase in the t1/2 for fragmentation. These effects could not be ascribed to proteolysis or Ca2+-induced transglutamination. That the effects of polyamines were specific and not simply due to their positive charge was demonstrated by the finding that Ca2+ and Mg2+ destabilized the erythrocyte membrane as evidenced by decreasing the t1/2 for fragmentation. Extracellular polyamines were not effective except under conditions that caused significant accumulation inside the cell. The data indicate that intracellular physiologic polyamines, especially spermine, decrease erythrocyte membrane deformability and stabilize the membrane skeleton, making it more resistant to fragmentation.

  9. Evaluation of antioxidant capacity and membrane stabilizing ...

    African Journals Online (AJOL)

    Comparative analyses of the antioxidant and membrane stabilizing activities of ethanolic extracts of leaf and root of Cyphospenna adenocaulis (Steud) were investigated with a view to further investigate the biological activities of the plant. Both the leaf and root of C. adenocaulis were extracted with 70% ethanol to yield the ...

  10. Membrane chemical stability and seed longevity

    NARCIS (Netherlands)

    Golovina, E.A.; Hoekstra, F.A.; As, van H.

    2010-01-01

    Here, we investigate the relationships between the chemical stability of the membrane surface and seed longevity. Dry embryos of long-lived tomato and short-lived onion seeds were labeled with 5-doxyl-stearic acid (5-DS). Temperature-induced loss of the electron spin resonance signal caused by

  11. Evaluation of antioxidant capacity and membrane stabilizing ...

    African Journals Online (AJOL)

    Kemi Akinwunmi

    2015-05-27

    May 27, 2015 ... Comparative analyses of the antioxidant and membrane stabilizing activities of ethanolic extracts of leaf and root of Cyphospenna adenocaulis (Steud) were investigated with a view to further investigate the biological activities of the plant. Both the leaf and root of C. adenocaulis were extracted with 70%.

  12. Membrane chemical stability and seed longevity.

    Science.gov (United States)

    Golovina, Elena A; Van As, Henk; Hoekstra, Folkert A

    2010-03-01

    Here, we investigate the relationships between the chemical stability of the membrane surface and seed longevity. Dry embryos of long-lived tomato and short-lived onion seeds were labeled with 5-doxyl-stearic acid (5-DS). Temperature-induced loss of the electron spin resonance signal caused by chemical conversion of 5-DS to nonparamagnetic species was used to characterize the membrane surface chemical stability. No difference was found between temperature plots of 5-DS signal intensity in dry onion and tomato below 345 K. Above this temperature, the 5-DS signal remained unchanged in tomato embryos and irreversibly disappeared in onion seeds. The role of the physical state and chemical status of the membrane environment in the chemical stability of membrane surfaces was estimated for model systems containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) dried alone or in the presence of trehalose or glucose. Fourier transform infrared spectroscopy was used to follow temperature-induced structural changes in dry POPC. Spin-label technique was used to relate the chemical stability of 5-DS with the dynamic properties of the bilayer and 5-DS motion behavior. In all the models, the decrease in 5-DS signal intensity was always observed above T(m) for the membrane surface. The 5-DS signal was irreversibly lost at high temperature when dry POPC was embedded in a glucose matrix. The loss of 5-DS signal was moderate when POPC was dried alone or in the presence of trehalose. Comparison of model and in vivo data shows that the differences in longevity between onion and tomato seeds are caused by differences in the chemical status of the membrane surface rather than the degree of its immobilization.

  13. Membrane Stabilizing Activity And Phytochemistry Of Hibiscus rosa ...

    African Journals Online (AJOL)

    The human erythrocyte membrane stabilizing activity of saline extract of Hibiscus rosa-sinensis leaves was investigated as part of efforts at validating its use as anti-arthritic and anti-inflammatory agent. The results of the membrane stabilizing activity of the extract, when compared to two non-steroidal anti-inflammatory drugs ...

  14. Long term physical and chemical stability of polyelectrolyte multilayer membranes

    NARCIS (Netherlands)

    de Grooth, Joris; Haakmeester, Brian; Wever, Carlos; Potreck, Jens; de Vos, Wiebe Matthijs; Nijmeijer, Dorothea C.

    2015-01-01

    This work presents a detailed investigation into the long term stability of polyelectrolyte multilayer (PEM) modified membranes, a key factor for the application of these membranes in water purification processes. Although PEM modified membranes have been frequently investigated, their long term

  15. Hydrothermal stability of microporous silica and niobia-silica membranes

    NARCIS (Netherlands)

    Boffa, V.; Blank, David H.A.; ten Elshof, Johan E.

    2008-01-01

    The hydrothermal stability of microporous niobia–silica membranes was investigated and compared with silica membranes. The membranes were exposed to hydrothermal conditions at 150 and 200 °C for 70 h. The change of pore structure before and after exposure to steam was probed by single-gas permeation

  16. Effects of in vivo injection of anti-chicken CD25 monoclonal antibody on regulatory T cell depletion and CD4+CD25- T cell properties in chickens.

    Science.gov (United States)

    Shanmugasundaram, Revathi; Selvaraj, Ramesh K

    2012-03-01

    Regulatory T cells (Tregs) are defined as CD4(+)CD25(+) cells in chickens. This study examined the effects of an anti-chicken CD25 monoclonal antibody injection (0.5 mg/bird) on in vivo depletion of Tregs and the properties of CD4(+)CD25(-) cells in Treg-depleted birds. The CD4(+)CD25(+) cell percentage in the blood was lower at 8 d post injection than at 0 d. Anti-CD25-mediated CD4(+)CD25(+) cell depletion in blood was maximum at 12 d post injection. The anti-CD25 antibody injection depleted CD4(+)CD25(+) cells in the spleen and cecal tonsils, but not in the thymus, at 12 d post antibody injection. CD4(+)CD25(-) cells from the spleen and cecal tonsils of birds injected with the anti-chicken CD25 antibody had higher proliferation and higher IL-2 and IFNγ mRNA amounts than the controls at 12 d post injection. At 20 d post injection, CD4(+)CD25(+) cell percentages in the blood, spleen and thymus were comparable to that of the 0 d post injection. It could be concluded that anti-chicken CD25 injection temporarily depleted Treg population and increased and IL-2 and IFNγ mRNA amounts in CD4(+)CD25(-) cells at 12d post injection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. [THE INDUCTION OF CD25 EXPRESSION IN Jurkat T CELLS].

    Science.gov (United States)

    Shatrova, A N; Mityushova, E V; Aksenov, N V; Marakhova, L L

    2015-01-01

    The expression of an α-subunit of interleukin-2 receptor (IL-2Rα) was assessed by quantifying activation-induced upregulation of CD25 in IL-2-independent Jurkat leukemic cell line. It has been found that in growing Jurkat culture within 24 h, phytohemagglutinin (PHA, 5 μg/ml) or PHA in combination with 12,13-phorbol dibutirate (PDBu, 10(-8)M) increase the number of CD25+ cells to 32.3 ± 3.4% (n = 11) and 44.8 ± 8.6% (n = 6) respectively. Interleukin-2 (IL-2, 200 U/ml) alone or in combination with PDBu did not induce CD25 expression in Jurkat cells. All the tested stimulatory agencies affected neither the proliferation status no the growth of Jurkat cell cultures. In contrast to human blood T cells, WHI-P131, a selective pharmacological inhibitor of JAK/STAT signaling and CD25 expression, did not decrease the number of induced CD25+ cells in Jurkat culture. Flow cytometry analysis revealed a dose-dependent decrease in the proportion of cells in G1 phase and an increase in the proportion of cells in G2/M phase in WHI-P131-treated Jurkat cultures. It has been also found that WHI-P131 induces G2/M arrest in the absence of PHA or PDBu. We have concluded that (1) the IL-2-independent T cells of Jurkat line had not loss the mechanism for IL-2Rα expression in response to T cell receptor activation, (2) in the transformed T cells, WHI-P131 can arrest cell cycle at G2/M phase and has effects on targets other than IL-2 receptor-associated tyrosine kinase JAK3.

  18. Hydrogen-Rich Saline Ameliorates Allergic Rhinitis by Reversing the Imbalance of Th1/Th2 and Up-Regulation of CD4+CD25+Foxp3+Regulatory T Cells, Interleukin-10, and Membrane-Bound Transforming Growth Factor-β in Guinea Pigs.

    Science.gov (United States)

    Xu, Feifei; Yu, Shaoqing; Qin, Mali; Mao, Yong; Jin, Ling; Che, Na; Liu, Shuangxi; Ge, Rongming

    2018-02-01

    It is well known that CD4+CD25+Foxp3+Treg cells play an important role in the development of allergic rhinitis (AR); the defect of cell numbers and functions contribute to AR. Hydrogen has been proven effective in alleviating symptoms of AR. We herein aim to verify the protective effects of hydrogen on CD4+CD25+Foxp3+Treg cells in guinea pigs with AR and to explore the effect of hydrogen-rich saline (HRS) on CD4+CD25+Foxp3+Treg cells in animals with AR and investigate the underlying anti-inflammatory mechanism. Eighteen guinea pigs were randomly divided into three groups (control group/AR group/AR-HRS group). The guinea pigs were injected with hydrogen-rich saline (AR-HRS group) for 10 days after sensitization. The control group was injected with an equal volume of normal saline. The number of sneezes, degree of runny nose, and nasal-rubbing movements were scored. Peripheral blood eosinophil count was recorded. The proportions of Th1/Th2 of the peripheral blood and the CD4+CD25+Foxp3+T cells in the CD4+T cells of the spleen and peripheral blood were determined by flow cytometry. The content of interleukin (IL)-10 and transforming growth factor (TGF)-β in the serum was detected by enzyme-linked immunosorbent assay (ELISA). The protein and mRNA expression of Foxp3, IL-10, and TGF-β were determined by Western blot, immunofluorescence, and real-time PCR analysis, respectively. Scores of symptoms, number of eosinophils,and nasal mucosa damage were dramatically reduced after HRS treatment. HRS increased the expression of Foxp3, IL-10, TGF-β, and number of CD4+CD25+Foxp3+Treg cells, which were reduced in AR. HRS also revised the dysregulation of Th1/Th2 balance. Both the number and biological activity of CD4+CD25+Foxp3+Treg cells increased with up-regulation of Th1/Th2 after HRS administration. HRS could play a protective role in attenuating AR through improving the proportion and functions of CD4+CD25+Foxp3+Treg cells.

  19. Stabilized ultrathin liquid membranes for gas separations

    International Nuclear Information System (INIS)

    Deetz, D.W.

    1987-01-01

    Although immobilized liquid membranes have the desirable properties of high selectivity and permeability, their practical application to gas phase separations is hindered because of the instability of the liquid phase and the relative thickness of current membranes. The problem of liquid instability, which is due to both liquid volatilization and flooding, can be reduced, or eliminated, by immobilizing the liquid phase in pores small enough to significantly reduce the molar free energy of the solution via the Kelvin effect. The obstacle of membrane thickness can be overcome by selectively immobilizing the liquid phase into the skin of a porous asymmetric membranes

  20. CD25+ B-1a Cells Express Aicda

    Directory of Open Access Journals (Sweden)

    Hiroaki Kaku

    2017-06-01

    Full Text Available B-1a cells are innate-like B-lymphocytes producing natural antibodies. Activation-induced cytidine deaminase (AID, a product of the Aicda gene, plays a central role in class-switch recombination and somatic hypermutation in B cells. Although a role for Aicda in B-1a cells has been suggested on the basis of experiments with knock out (KO mice, whether B-1a cells express Aicda, and if so, which B-1a cell subpopulation expresses Aicda, remains unknown. Here, we demonstrate that B-1 cells express Aicda, but at a level below that expressed by germinal center (GC B cells. We previously reported that B-1a cells can be subdivided based on CD25 expression. We show here that B-1a cell Aicda expression is concentrated in the CD25+ B-1a cell subpopulation. These results suggest the possibility that previous studies of memory B cells identified on the basis of Aicda expression may have inadvertently included an unknown number of CD25+ B-1a cells. Although B-1a cells develop normally in the absence of Aicda, a competitive reconstitution assay reveals enhanced vigor for AID KO B-1a cell bone marrow (BM progenitors, as compared with wild-type BM B-1 cell progenitors. These results suggest that AID inhibits the development of B-1a cells from BM B-1 cell progenitors in a competitive environment.

  1. Pickering Membranes Stabilized by Saturn Particles.

    Science.gov (United States)

    Krejca, Matthias M; Wüstner, Cornell; Goedel, Werner A

    2017-10-17

    We report on a novel method to synthesize particles-called by us Saturn particles-having two hydrophobic caps that oppose each other and are separated from each other by a hydrophilic belt that encircles the particle. Mixtures of these particles with water and air, without the usage of low molar mass surfactants, easily form Pickering foams and Pickering membranes that are stable for days. These Pickering membranes are composed of a thin film of water into which the particles are embedded in such a way that the belt is surrounded by the water and the caps protrude out of the water into the air at the top and bottom side of the water film. As expected for a liquid membrane, these Pickering membranes are permeable for gases, with the permeance being proportional to the solubility and diffusion coefficient of the gas considered. Experimentally obtained permeance values agree reasonably well with theoretical calculations.

  2. Partial CD25 Antagonism Enables Dominance of Antigen-Inducible CD25high FOXP3+ Regulatory T Cells As a Basis for a Regulatory T Cell-Based Adoptive Immunotherapy.

    Science.gov (United States)

    Wilkinson, Daniel S; Ghosh, Debjani; Nickle, Rebecca A; Moorman, Cody D; Mannie, Mark D

    2017-01-01

    FOXP3 + regulatory T cells (Tregs) represent a promising platform for effective adoptive immunotherapy of chronic inflammatory disease, including autoimmune diseases such as multiple sclerosis. Successful Treg immunotherapy however requires new technologies to enable long-term expansion of stable, antigen-specific FOXP3 + Tregs in cell culture. Antigen-specific activation of naïve T cells in the presence of TGF-β elicits the initial differentiation of the FOXP3 + lineage, but these Treg lines lack phenotypic stability and rapidly transition to a conventional T cell (Tcon) phenotype during in vitro propagation. Because Tregs and Tcons differentially express CD25, we hypothesized that anti-CD25 monoclonal antibodies (mAbs) would only partially block IL-2 signaling in CD25 high FOXP3 + Tregs while completely blocking IL-2 responses of CD25 low-intermediate Tcons to enable preferential outgrowth of Tregs during in vitro propagation. Indeed, murine TGF-β-induced MOG-specific Treg lines from 2D2 transgenic mice that were maintained in IL-2 with the anti-CD25 PC61 mAb rapidly acquired and indefinitely maintained a FOXP3 high phenotype during long-term in vitro propagation (>90% FOXP3 + Tregs), whereas parallel cultures lacking PC61 rapidly lost FOXP3. These results pertained to TGF-β-inducible "iTregs" because Tregs from 2D2-FIG Rag1 - / - mice, which lack thymic or natural Tregs, were stabilized by continuous culture in IL-2 and PC61. MOG-specific and polyclonal Tregs upregulated the Treg-associated markers Neuropilin-1 (NRP1) and Helios (IKZF2). Just as PC61 stabilized FOXP3 + Tregs during expansion in IL-2, TGF-β fully stabilized FOXP3 + Tregs during cellular activation in the presence of dendritic cells and antigen/mitogen. Adoptive transfer of blastogenic CD25 high FOXP3 + Tregs from MOG35-55-specific 2D2 TCR transgenic mice suppressed experimental autoimmune encephalomyelitis in pretreatment and therapeutic protocols. In conclusion, low IL-2 concentrations

  3. Modulation of phenotype and function of human CD4+CD25+ T regulatory lymphocytes mediated by cAMP elevating agents

    Directory of Open Access Journals (Sweden)

    Antonella Riccomi

    2016-09-01

    Full Text Available We have shown that Cholera Toxin (CT and other cyclic AMP (cAMP elevating agents induce up-regulation of the inhibitory molecule CTLA-4 in human resting CD4+ T lymphocytes, which following the treatment acquired suppressive functions. In this study, we evaluated the effect of cAMP elevating agents on human CD4+CD25+ T cells, which include the T regulatory (Treg cells that play a pivotal role in the maintenance of immunological tolerance. We found that cAMP elevating agents induce up-regulation of CTLA-4 in CD4+CD25- and further enhance its expression in CD4+CD25+ T cells. We observed an increase of two isoforms of mRNA coding for the membrane and the soluble CTLA-4 molecules, suggesting that the regulation of CTLA-4 expression by cAMP is at the transcriptional level. In addition, we found that the increase of cAMP in CD4+CD25+ T cells converts the CD4+CD25+Foxp3- T cells in CD4+CD25+Foxp3+ T cells, whereas the increase of cAMP in CD4+CD25- T cells did not up-regulate Foxp3 in the absence of activation stimuli. To investigate the function of these cells, we performed an in vitro suppression assay by culturing CD4+CD25+ T cells untreated or pre-treated with CT with anti-CD3 mAbs-stimulated autologous PBMC. We found that CT enhances the inhibitory function of CD4+CD25+ T cells, CD4+ and CD8+ T cell proliferation and IFNγ production are strongly inhibited by CD4+CD25+ T cells pre-treated with cAMP elevating agents. Furthermore, we found that CD4+CD25+ T lymphocytes pre-treated with cAMP elevating agents induce the up-regulation of CD80 and CD86 co-stimulatory molecules on immature dendritic cells (DCs in the absence of antigenic stimulation, however without leading to full DC maturation. These data show that the increase of intracellular cAMP modulates the phenotype and function of human CD4+CD25+ T cells.

  4. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    International Nuclear Information System (INIS)

    Fox, E.

    2009-01-01

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals

  5. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E

    2009-05-15

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals.

  6. Self-Stabilization in Membrane Systems

    Directory of Open Access Journals (Sweden)

    Artiom Alhazov

    2012-07-01

    Full Text Available In this paper we study a notion of self-stabilization, inspired from biology and engineering. Multiple variants of formalization of this notion are considered, and we discuss how such properties affect the computational power of multiset rewriting systems.

  7. Plasma membrane aquaporins mediates vesicle stability in broccoli.

    Science.gov (United States)

    Martínez-Ballesta, Maria Del Carmen; García-Gomez, Pablo; Yepes-Molina, Lucía; Guarnizo, Angel L; Teruel, José A; Carvajal, Micaela

    2018-01-01

    The use of in vitro membrane vesicles is attractive because of possible applications in therapies. Here we aimed to compare the stability and functionality of plasma membrane vesicles extracted from control and salt-treated broccoli. The impact of the amount of aquaporins was related to plasma membrane osmotic water permeability and the stability of protein secondary structure. Here, we describe for first time an increase in plant aquaporins acetylation under high salinity. Higher osmotic water permeability in NaCl vesicles has been related to higher acetylation, upregulation of aquaporins, and a more stable environment to thermal denaturation. Based on our findings, we propose that aquaporins play an important role in vesicle stability.

  8. CD25 shedding by human natural occurring CD4+CD25+ regulatory T cells does not inhibit the action of IL-2

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Lauritsen, Jens Peter Holst

    2009-01-01

    Tregs are known to inhibit CD4+ T cell in a contact-dependent manner, but at the same time, various suppressive factors are secreted. We, here, demonstrate that human naturally occurring CD4+CD25+ Tregs are able to shed large amounts of soluble CD25 upon activation. Secretion of sCD25 could add......Regulatory T (Treg) cells are important for the maintenance of peripheral tolerance and inhibition of pathogenic T-cell responses. Therefore, they are important for the limitation of chronic inflammation but can also be deleterious by e.g. limiting antitumour immune responses. Natural occurring...... to the inhibitory effect of Tregs as such secretion in other settings has been proposed to act as a sink for local IL-2. However, we here demonstrate that supernatant from human Tregs containing high concentration of sCD25 does not inhibit proliferation of CD4+CD25(-) T cells or inhibit the action of IL-2...

  9. In vitro antioxidant and membrane stabilization activities of the fruit ...

    African Journals Online (AJOL)

    Arthritis is an inflammation of one or more joints. There is considerable experimental evidence linking lysosomal enzymes with tissue damage in arthritis. This study investigated anti-arthritic properties of Tetrapleura tetraptera (TT) using membrane stabilization assay (MSA). Powdered TT fruit sample was extracted by ...

  10. Salinity induced changes in cell membrane stability, protein and ...

    African Journals Online (AJOL)

    control), 4.7, 9.4 and 14.1 dS m-1 to determine the effect of salt on vegetative growth, relative water content, cell membrane stability, protein and RNA contents in sand culture experiment. Fresh and dry weights of plants, shoots and roots decreased ...

  11. Surface Modifications of Support Partitions for Stabilizing Biomimetic Membrane Arrays

    DEFF Research Database (Denmark)

    Perry, Mark; Hansen, Jesper Schmidt; Jensen, Karin Bagger Stibius

    2011-01-01

    Black lipid membrane (BLM) formation across apertures in an ethylene tetra-fluoroethylene (ETFE) partition separating two aqueous compartments is an established technique for the creation of biomimetic membranes. Recently multi-aperture BLM arrays have attracted interest and in order to increase...... with a high signal-to-noise (s/n) ratio. We demonstratesd this by reconstituting gA and α-hemolysin (α-HL) into BLM arrays. The improvement in membrane array lifetime and s/n ratio demonstrates that surface plasma polymerization of the supporting partition can be used to increase the stability of biomimetic...... modified partitions were similar and significantly lower than for arrays formed using untreated ETFE partitions. For single side n-hexene modification average membrane array lifetimes were not significantly changed compared to untreated ETFE. Double-sided n-hexene modification greatly improved average...

  12. Structuring detergents for extracting and stabilizing functional membrane proteins.

    Directory of Open Access Journals (Sweden)

    Rima Matar-Merheb

    Full Text Available BACKGROUND: Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation. METHODOLOGY/PRINCIPAL FINDINGS: Anionic calix[4]arene based detergents (C4Cn, n=1-12 were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5-24 nm, with the critical micellar concentration (CMC being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein, a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM. They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux much more efficiently than SDS (sodium dodecyl sulphate, FC12 (Foscholine 12 or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein. CONCLUSION/SIGNIFICANCE: These compounds seem promising to extract in a functional state

  13. CD4(+)CD25(+)CD127(-) and CD4(+)CD25(+)Foxp3(+) Regulatory T Cell Subsets in Mediating Autoimmune Reactivity in Systemic Lupus Erythematosus Patients.

    Science.gov (United States)

    Żabińska, Marcelina; Krajewska, Magdalena; Kościelska-Kasprzak, Katarzyna; Jakuszko, Katarzyna; Bartoszek, Dorota; Myszka, Marta; Klinger, Marian

    2016-10-01

    The available clinical as well as experimental studies implicate participation of T regulatory (Treg) subsets in the pathogenesis and course of systemic lupus erythematosus (SLE). Introduction of the CD4(+)CD25(+)CD127(-) and CD4(+)CD25(+)Foxp3(+) regulatory subpopulations analysis into immunological processes assessment and disease activation prognosis in patients with lupus nephritis (LN) may improve monitoring of disease activity and enable an early, and thus more effective, therapeutic treatment. The main goal of the study was to investigate whether the quantitative changes of Treg subpopulations are related to the clinical status of patients with LN. Fifty-four adult SLE patients divided into two groups according to their SLEDAI and renal SLEDAI scores were enrolled into the study. Subpopulations of CD4(+)CD25(+)CD127(-) and CD4(+)CD25(+)Foxp3(+) phenotypes were determined by flow cytometry. The control group had higher absolute number of CD4(+)CD25(+)Foxp3(+) cells compared with the study group (p < 0.001). Also, significant inverse correlation in the absolute number of CD4(+)CD25(+)Foxp3(+) cells and SLEDAI score was observed. There were significant differences in the percentage and absolute number of CD4(+)CD25(+)Foxp3(+) lymphocytes between active and non-active LN groups. The study group had statistically lower values of CD4(+)CD25(+)CD127(-) cells, both in the percentage (p < 0.001) as well as their absolute number (p = 0.014) compared to the control group. There were also statistically significant positive correlations between the absolute number of CD4(+)CD25(+)CD127(-) and CD4(+)CD25(+)Foxp3(+) Tregs. (1) reduction in the number of regulatory CD4(+)CD25(+)Foxp3(+) cells is a promising indicator of the activity of SLE, particularly of renal involvement; (2) determination of the number of regulatory cells using the CD4(+)CD25(+)CD127(-) phenotype is unreliable in patients with SLE.

  14. CD8+CD25+ T cells reduce atherosclerosis in apoE(−/−) mice

    International Nuclear Information System (INIS)

    Zhou, Jianchang; Dimayuga, Paul C.; Zhao, Xiaoning; Yano, Juliana; Lio, Wai Man; Trinidad, Portia; Honjo, Tomoyuki; Cercek, Bojan; Shah, Prediman K.; Chyu, Kuang-Yuh

    2014-01-01

    Highlights: •The role of a sub-population of CD8 + T cells with suppressor functions was investigated in atherosclerosis. •CD8 + CD25 + T cells from adult apoE(−/−) mice had phenotype characteristics of T suppressor cells. •These CD8 + CD25 + T cells reduced CD4 + T cell proliferation and CD8 + cytotoxic activity in vitro. •Adoptive transfer of CD8 + CD25 + T cells significantly reduced atherosclerosis. •CD8 + CD25 + T cells have a suppressive function in atherosclerosis. -- Abstract: Background: It is increasingly evident that CD8 + T cells are involved in atherosclerosis but the specific subtypes have yet to be defined. CD8 + CD25 + T cells exert suppressive effects on immune signaling and modulate experimental autoimmune disorders but their role in atherosclerosis remains to be determined. The phenotype and functional role of CD8 + CD25 + T cells in experimental atherosclerosis were investigated in this study. Methods and results: CD8 + CD25 + T cells were observed in atherosclerotic plaques of apoE(−/−) mice fed hypercholesterolemic diet. Characterization by flow cytometric analysis and functional evaluation using a CFSE-based proliferation assays revealed a suppressive phenotype and function of splenic CD8 + CD25 + T cells from apoE(−/−) mice. Depletion of CD8 + CD25 + from total CD8 + T cells rendered higher cytolytic activity of the remaining CD8 + CD25 − T cells. Adoptive transfer of CD8 + CD25 + T cells into apoE(−/−) mice suppressed the proliferation of splenic CD4 + T cells and significantly reduced atherosclerosis in recipient mice. Conclusions: Our study has identified an athero-protective role for CD8 + CD25 + T cells in experimental atherosclerosis

  15. Changes in Reactivity In Vitro of CD4+CD25+ and CD4+CD25− T Cell Subsets in Transplant Tolerance

    Directory of Open Access Journals (Sweden)

    Bruce M. Hall

    2017-08-01

    Full Text Available Transplant tolerance induced in adult animals is mediated by alloantigen-specific CD4+CD25+ T cells, yet in many models, proliferation of CD4+ T cells from hosts tolerant to specific-alloantigen in vitro is not impaired. To identify changes that may diagnose tolerance, changes in the patterns of proliferation of CD4+, CD4+CD25+, and CD4+CD25− T cells from DA rats tolerant to Piebald Virol Glaxo rat strain (PVG cardiac allografts and from naïve DA rats were examined. Proliferation of CD4+ T cells from both naïve and tolerant hosts was similar to both PVG and Lewis stimulator cells. In mixed lymphocyte culture to PVG, proliferation of naïve CD4+CD25− T cells was greater than naïve CD4+ T cells. In contrast, proliferation of CD4+CD25− T cells from tolerant hosts to specific-donor PVG was not greater than CD4+ T cells, whereas their response to Lewis and self-DA was greater than CD4+ T cells. Paradoxically, CD4+CD25+ T cells from tolerant hosts did not proliferate to PVG, but did to Lewis, whereas naïve CD4+CD25+ T cells proliferate to both PVG and Lewis but not to self-DA. CD4+CD25+ T cells from tolerant, but not naïve hosts, expressed receptors for interferon (IFN-γ and IL-5 and these cytokines promoted their proliferation to specific-alloantigen PVG but not to Lewis or self-DA. We identified several differences in the patterns of proliferation to specific-donor alloantigen between cells from tolerant and naïve hosts. Most relevant is that CD4+CD25+ T cells from tolerant hosts failed to proliferate or suppress to specific donor in the absence of either IFN-γ or IL-5. The proliferation to third-party and self of each cell population from tolerant and naïve hosts was similar and not affected by IFN-γ or IL-5. Our findings suggest CD4+CD25+ T cells that mediate transplant tolerance depend on IFN−γ or IL-5 from alloactivated Th1 and Th2 cells.

  16. Quantitative variations of CD4 + CD25 + cells in Peking duckwhite ...

    African Journals Online (AJOL)

    Purpose: To develop a chimera via microinjection of poultry xenogeneic bone marrow mesenchymal stem cells (BMMSCs), and to assess its immune tolerance based on variations in proportion of CD4+CD25+ cells in CD4+ cells (specific CD4+CD25+ cells). Methods: BMMSCs were flush out from femurs and tibias of ...

  17. Thermal stability of nafion membranes under mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Quintilii, M.; Struis, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The feasibility of adequately modified fluoro-ionomer membranes (NAFION{sup R}) is demonstrated for the selective separation of methanol synthesis products from the raw reactor gas at temperatures around 200{sup o}C. For an economically relevant application of this concept on a technical scale the Nafion membranes should be thin ({approx_equal}10 {mu}m) and thermally stable over a long period of time (1-2 years). In cooperation with industry (Methanol Casale SA, Lugano (CH)), we test the thermal stability of Nafion hollow fibers and supported Nafion thin sheet membranes at temperatures between 160 and 200{sup o}C under mechanical stress by applying a gas pressure difference over the membrane surface ({Delta}P{<=} 40 bar). Tests with the hollow fibers revealed that Nafion has visco-elastic properties. Tests with 50 {mu}m thin Nafion sheets supported by a porous metal carrier at 200{sup o}C and {Delta}P=39 bar showed no mechanical defects over a period of 92 days. (author) 5 figs., 4 refs.

  18. Solid-Supported Lipid Membranes: Formation, Stability and Applications

    Science.gov (United States)

    Goh, Haw Zan

    This thesis presents a comprehensive investigation of the formation of supported lipid membranes with vesicle hemifusion, their stability under detergents and organic solvents and their applications in molecular biology. In Chapter 3, we describe how isolated patches of DOPC bilayers supported on glass surfaces are dissolved by various detergents (decyl maltoside, dodecyl maltoside, CHAPS, CTAB, SDS, TritonX-100 and Tween20) at their CMC, as investigated by fluorescence video microscopy. In general, detergents partition into distal leaflets of bilayers and lead to the expansion of the bilayers through a rolling motion of the distal over the proximal leaflets, in agreement with the first stage of the established 3-stage model of lipid vesicle solubilization by detergents. Subsequently, we study the partitioning of organic solvents (methanol, ethanol, isopropanol, propanol, acetone and chloroform) into isolated bilayer patches on glass in Chapter 4 with fluorescence microscopy. The area expansion of bilayers due to the partitioning of organic solvents is measured. From the titration of organic solvents, we measured the rate of area expansion as a function of the volume fraction of organic solvents, which is proposed to be a measure of strength of interactions between solvents and membranes. From the same experiments, we also measure the maximum expansion of bilayers (or the maximum binding stoichiometry between organic solvents and lipids) before structural breakdown, which depends on the depth of penetration of solvents to the membranes. In Chapter 5, we investigate the formation of sparsely-tethered bilayer lipid membranes (stBLMs) with vesicle hemifusion. In vesicle hemifusion, lipid vesicles in contact with a hydrophobic alkyl-terminated self-assembled monolayer (SAM) deposit a lipid monolayer to the SAM surface, thus completing the bilayer. Electrical Impedance Spectroscopy and Neutron Reflectivity are used to probe the integrity of stBLMs in terms of their

  19. Erythrocyte membrane stabilization effect and antioxidant activity of methyl methacrylate

    International Nuclear Information System (INIS)

    Popov, B.

    2004-01-01

    Methyl methacrylate (MMK) is a synthetic product with mild impact on human health that is not well studied on cellular basis. Here, human erythrocytes were used to investigate the effects MMK exerts on acid and heat-induced hemolysis. Biphasic effect of MMK was observed for acid-induced hemolysis; i.e., protection at low (0 - 0.05% v/v) and stimulation at higher (0.1- 0.4% v/v) concentrations. The maximal protective effect was produced at 0.03% (v/v). At this concentration MMK increased the temperatures of heat denaturation of erythrocyte membrane proteins, spectrin and integral proteins, by about 2 0 C and inhibited the heat-induced hemolysis by 20 %. This membrane stabilization effect of MMK is similar to that produced by some anti-inflammatory and antirheumatic drugs. The increased acid resistance possibly indicated anti-oxidant properties of MMK. The nonenzymatic antioxidant activity test evidenced that MMK has no superoxide dismutase-like activity but demonstrates strong catalase-like activity (about 900 kU/mmol at 0.05-0.1 mmol/l concentration). The results indicate that at low concentration MMK exerts benign effect on cellular membrane that could find therapeutic usage. (author)

  20. Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity

    Science.gov (United States)

    Small, Leo J.; Wheeler, David R.; Spoerke, Erik D.

    2015-10-01

    Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.Nanopore size, shape, and surface charge all play

  1. Immunity to experimental Salmonella typhimurium infections in rats. Transfer of immunity with primed CD4+CD25high and CD4+CD25low T lymphocytes

    DEFF Research Database (Denmark)

    Thygesen, P; Brandt, L; Jørgensen, T

    1994-01-01

    M and IgG antibodies. Cell sorting revealed that 2/3 of the primed CD4+ T lymphocytes expressed high levels of CD25. Cell transfer revealed that both CD25high and CD25low expression populations could induce immunity against a lethal dose of S. typhimurium, whilst antibody analysis revealed that antibody...... levels were not correlated with protection against S. typhimurium infections, although it showed that a higher and more persistent level of specific IgG antibodies was produced in animals receiving the CD4+CD25high fraction. It is concluded that 10(4) primed CD4+ T lymphocytes can induce immunity......The protective effect of primed CD4+ T lymphocytes against a lethal dose of 10(8) viable Salmonella typhimurium was studied in Lewis rats. Primed CD4+ T lymphocytes were obtained by inoculating Lewis rats with a non-lethal dose of 10(6) viable S. typhimurium. Four weeks after the infection, spleen...

  2. Pancreatic stone protein and soluble CD25 for infection and sepsis in an emergency department.

    Science.gov (United States)

    García de Guadiana-Romualdo, Luis; Berger, Mario; Jiménez-Santos, Enrique; Rebollo-Acebes, Sergio; Jiménez-Sánchez, Roberto; Esteban-Torrella, Patricia; Hernando-Holgado, Ana; Ortín-Freire, Alejandro; Albaladejo-Otón, María Dolores

    2017-04-01

    Infection is a common problem in emergency departments (EDs) and is associated with high mortality, morbidity and costs. Identifying infection in ED patients can be challenging. Biomarkers can facilitate its diagnosis, enabling an early management and improving outcomes. In the critical care setting, two emerging biomarkers, pancreatic stone protein (PSP) and soluble CD25 (sCD25), have demonstrated to be useful for diagnosis of sepsis. We aimed to assess the diagnostic value of these biomarkers, in comparison with procalcitonin (PCT), for infection and sepsis in an ED population with suspected infection. Through a prospective, observational study, we investigated the utility of serum PCT, PSP and sCD25 levels, measured on admission, for diagnosis of infection and sepsis, defined according to the recently updated for sepsis (Sepsis-3), in patients presenting to the ED for suspected infection. Diagnostic accuracy was evaluated by using receiver operating characteristic curves (ROC) analysis. Of the 152 patients enrolled in this study, 129 had a final diagnosis of infection, including 82 with noncomplicated infection and 47 with sepsis. Median PCT, PSP and sCD25 levels were significantly higher in patients with infection and sepsis. The ROC curve analysis revealed a similar diagnostic accuracy for infection (ROC area under the curve (AUC) PCT: 0·904; sCD25: 0·869 and PSP: 0·839) and for sepsis (ROC AUC: PCT: 0·820; sCD25: 0·835 and PSP: 0·872). Pancreatic stone protein and sCD25 perform well as infection and sepsis biomarkers, with a similar performance than PCT, in ED patients with suspected infection. Further larger studies investigating use of PSP and sCD25 are needed. © 2017 Stichting European Society for Clinical Investigation Journal Foundation.

  3. Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes

    NARCIS (Netherlands)

    ten Hove, Marcel; Luiten-Olieman, Mieke W.J.; Huiskes, Cindy; Nijmeijer, Arian; Winnubst, Louis

    2017-01-01

    Hybrid silica membranes have demonstrated to possess a remarkable hydrothermal stability in pervaporation and gas separation processes allowing them to be used in industrial applications. In several publications the hydrothermal stability of pure silica or that of hybrid silica membranes are

  4. Relationship between soluble CD25 and gene expression in healthy individuals and patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Buhelt, Sophie; Ratzer, Rikke Lenhard; Christensen, Jeppe Romme

    2017-01-01

    Genome wide association studies and fine mapping has established a firm link between the IL2RA gene, encoding the interleukin-2 receptor α-chain CD25, and susceptibility to multiple sclerosis (MS). We hypothesized that gene expression in peripheral blood mononuclear cells (PBMCs) from healthy......-networks were focused around NFKB1, TNF, BCL6 and STAT1. Eighteen genes correlated with sCD25 with rho≥0.707 in relapsing remitting MS versus 33 in secondary progressive and 34 in primary progressive MS. None had a FDR

  5. Downregulation of IL-12 and a novel negative feedback system mediated by CD25+CD4+ T cells

    International Nuclear Information System (INIS)

    Sato, Kojiro; Tateishi, Shoko; Kubo, Kanae; Mimura, Toshihide; Yamamoto, Kazuhiko; Kanda, Hiroko

    2005-01-01

    CD25 + CD4 + regulatory T cells suppress immune responses and are believed to play roles in preventing autoimmune diseases. However, the mechanism(s) underlying the suppression and the regulation of their homeostasis remain to be elucidated. Here we show that these regulatory T cells downregulated CD25 - CD4 + T-cell-mediated production of IL-12 from antigen-presenting cells, which can act as a growth factor for CD25 - CD4 + T cells. We further found that CD25 + CD4 + T cells, despite their well-documented 'anergic' nature, proliferate significantly in vitro only when CD25 - CD4 + T cells are present. Notably, this proliferation was strongly dependent on IL-2 and relatively independent of IL-12. Thus, CD25 + CD4 + T cells suppress CD25 - CD4 + T-cell responses, at least in part, by inhibiting IL-12 production while they themselves can undergo proliferation with the mediation of CD25 - CD4 + T cells in vitro. These results offer a novel negative feedback system involving a tripartite interaction among CD25 + CD4 + and CD25 - CD4 + T cells, and APCs that may contribute to the termination of immune responses

  6. Membrane-stabilizing copolymers confer marked protection to dystrophic skeletal muscle in vivo

    Directory of Open Access Journals (Sweden)

    Evelyne M Houang

    Full Text Available Duchenne muscular dystrophy (DMD is a fatal disease of striated muscle deterioration. A unique therapeutic approach for DMD is the use of synthetic membrane stabilizers to protect the fragile dystrophic sarcolemma against contraction-induced mechanical stress. Block copolymer-based membrane stabilizer poloxamer 188 (P188 has been shown to protect the dystrophic myocardium. In comparison, the ability of synthetic membrane stabilizers to protect fragile DMD skeletal muscles has been less clear. Because cardiac and skeletal muscles have distinct structural and functional features, including differences in the mechanism of activation, variance in sarcolemma phospholipid composition, and differences in the magnitude and types of forces generated, we speculated that optimized membrane stabilization could be inherently different. Our objective here is to use principles of pharmacodynamics to evaluate membrane stabilization therapy for DMD skeletal muscles. Results show a dramatic differential effect of membrane stabilization by optimization of pharmacodynamic-guided route of poloxamer delivery. Data show that subcutaneous P188 delivery, but not intravascular or intraperitoneal routes, conferred significant protection to dystrophic limb skeletal muscles undergoing mechanical stress in vivo. In addition, structure-function examination of synthetic membrane stabilizers further underscores the importance of copolymer composition, molecular weight, and dosage in optimization of poloxamer pharmacodynamics in vivo.

  7. [Expression of CD25 in Acute Myeloid Leukemia Is An Adverse Prognostic Factor Independent of the Chromosome Karyotype].

    Science.gov (United States)

    Liu, Yan-Fang; Dong, Li; Wang, Chong; Sun, Hui; Zhang, Qiu-Tang; Wang, Meng; Li, Tao; Xu, Yan; Ma, Jie; Xie, Xin-Sheng; Sun, Ling; Wan, Ding-Ming

    2016-04-01

    To investigate the CD25 expression in patients with acute myeloid leukemia (AML) and its significance. Clinical data of 168 newly diagnosed AML patients (except APL) were collected. The expression of CD25 in AML patients and its clinical characteristics were retrospectively analyzed. The leukemia cells of 29 out of 168 cases (17.26%) expressed CD25 antigen. Most of CD25 positive AML patients were occurred in patients with unfavourable or normal karyotype, higher WBC and Plt count at diagnosis and higher percentage of blasts in peripheral blood and bone marrow. Compared with CD25(-) AML patients, CD25(+) AML patients had lower CR rate (the CR rate of 1 course of treatment were 49.02% and 16.00%, respectively, P karyotype were not significantly different from that in patients with intermediate karyotype (P karyotype in terms of low complete remission rate and short survival time.

  8. Hematopoietic protein-1 regulates the actin membrane skeleton and membrane stability in murine erythrocytes.

    Directory of Open Access Journals (Sweden)

    Maia M Chan

    Full Text Available Hematopoietic protein-1 (Hem-1 is a hematopoietic cell specific member of the WAVE (Wiskott-Aldrich syndrome verprolin-homologous protein complex, which regulates filamentous actin (F-actin polymerization in many cell types including immune cells. However, the roles of Hem-1 and the WAVE complex in erythrocyte biology are not known. In this study, we utilized mice lacking Hem-1 expression due to a non-coding point mutation in the Hem1 gene to show that absence of Hem-1 results in microcytic, hypochromic anemia characterized by abnormally shaped erythrocytes with aberrant F-actin foci and decreased lifespan. We find that Hem-1 and members of the associated WAVE complex are normally expressed in wildtype erythrocyte progenitors and mature erythrocytes. Using mass spectrometry and global proteomics, Coomassie staining, and immunoblotting, we find that the absence of Hem-1 results in decreased representation of essential erythrocyte membrane skeletal proteins including α- and β- spectrin, dematin, p55, adducin, ankyrin, tropomodulin 1, band 3, and band 4.1. Hem1⁻/⁻ erythrocytes exhibit increased protein kinase C-dependent phosphorylation of adducin at Ser724, which targets adducin family members for dissociation from spectrin and actin, and subsequent proteolysis. Increased adducin Ser724 phosphorylation in Hem1⁻/⁻ erythrocytes correlates with decreased protein expression of the regulatory subunit of protein phosphatase 2A (PP2A, which is required for PP2A-dependent dephosphorylation of PKC targets. These results reveal a novel, critical role for Hem-1 in the homeostasis of structural proteins required for formation and stability of the actin membrane skeleton in erythrocytes.

  9. CD4+ CD25+ cells in type 1 diabetic patients with other autoimmune manifestations

    Directory of Open Access Journals (Sweden)

    Dalia S. Abd Elaziz

    2014-11-01

    Full Text Available The existence of multiple autoimmune disorders in diabetics may indicate underlying primary defects of immune regulation. The study aims at estimation of defects of CD4+ CD25+high cells among diabetic children with multiple autoimmune manifestations, and identification of disease characteristics in those children. Twenty-two cases with type 1 diabetes associated with other autoimmune diseases were recruited from the Diabetic Endocrine and Metabolic Pediatric Unit (DEMPU, Cairo University along with twenty-one normal subjects matched for age and sex as a control group. Their anthropometric measurements, diabetic profiles and glycemic control were recorded. Laboratory investigations included complete blood picture, glycosylated hemoglobin, antithyroid antibodies, celiac antibody panel and inflammatory bowel disease markers when indicated. Flow cytometric analysis of T-cell subpopulation was performed using anti-CD3, anti-CD4, anti-CD8, anti-CD25 monoclonal antibodies. Three cases revealed a proportion of CD4+ CD25+high below 0.1% and one case had zero counts. However, this observation did not mount to a significant statistical difference between the case and control groups neither in percentage nor absolute numbers. Significant statistical differences were observed between the case and the control groups regarding their height, weight centiles, as well as hemoglobin percentage, white cell counts and the absolute lymphocytic counts. We concluded that, derangements of CD4+ CD25+high cells may exist among diabetic children with multiple autoimmune manifestations indicating defects of immune controllers.

  10. CD4+CD25+FOXP3+ Regulatory T Cells In Allogeneic Hematopoietic Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Young-Ho Lee

    2011-06-01

    Full Text Available CD4+CD25+FOXP3+ regulatory T cells (Treg require activation through the T cell receptor for function. CD4+CD25+FOXP3+ regulatory T cells are believed to be key players of the immune tolerance network and control the induction and effector phase of the immune system. Although these cells require antigen-specific activation, they are generally able to suppress bystander T cell responses once activated. This raises the possibility that antigen-specific Treg may be useful therapeutically by localizing generalized suppressive activity to tissues expressing select target antigens. Treg can exert a potent suppressive effect on immune effector cells reactive to host antigens and prevent graft versus host disease (GVHD in allogeneic bone marrow transplantation (BMT. Here, we observed that co-transfer of CD4+CD25+FOXP3+ T cells derived from donor type along with the donor bone marrow cells could control GVHD-like reactions by suppressing effectors cells of host responding to the donor hematopoietic compartment, and resulted in prevention of autoimmunity and rejection. We further demonstrate that CD4+CD25+FOXP3+ regulatory T cells can control immune-based morbidity after allogeneic BMT by suppressing the development of granulocytes cells and increasing the level of B cell expression.

  11. Reactivity of naive CD4+CD25- T cells against gut microflora in healthy mice

    DEFF Research Database (Denmark)

    Gad, Monika; Lundsgaard, Dorthe; Kjellev, Stine

    2006-01-01

    We have previously shown that conventional as well as germ-free CD4+ T cells depleted of CD25+ cells from the gut-associated lymphoid tissue and the periphery proliferate specifically in response to enterobacterial antigen exposure whereas unfractionated CD4+ T cells are not reactive under...

  12. CD4+CD25+ regulatory T cells: I. Phenotype and physiology

    DEFF Research Database (Denmark)

    Holm, Thomas Lindebo; Nielsen, Janne; Claesson, Mogens H

    2004-01-01

    it has become increasingly clear that regulatory CD4+CD25+ T cells (Treg cells) play an important role in the maintenance of immunological self-tolerance, and that this cell subset exerts its function by suppressing the proliferation or function of autoreactive T cells. Based on human and murine...

  13. Use of CD25 as an immunohistochemical marker for acquired ocular toxoplasmosis

    Directory of Open Access Journals (Sweden)

    Cristina Miyamoto

    2010-10-01

    Full Text Available PURPOSE: Toxoplasmosis is the most common cause of posterior infectious uveitis worldwide. It is often impossible to determine its congenital or acquired nature. Interleukin-2 (IL-2 in peripheral blood has been described as a possible marker for acquired toxoplasmosis. The purpose of this study is to evaluate the histopathological characteristics of ocular toxoplasmosis cases using CD25 as a marker for the expression of interleukin-2. METHODS: Ten formalin-fixed, paraffin-embedded enucleated globes from ten immunocompetent patients with clinical diagnosis of toxoplasmosis were evaluated. Four patients had the acquired form of ocular toxoplasmosis (positive IgM while six were IgM negative and IgG positive for toxoplasmosis. Histopathological slides were reviewed for the extension of the retinal necrosis, number of toxo cysts, the granulomatous inflammatory reaction, the presence of T and B cells within the choroid and the IL-2 expression. Immunohistochemistry using monoclonal antibodies was performed to observe the expression of CD4, CD8, CD20, CD25, and CD68. RESULTS: The histopathological evaluation disclosed no differences between acquired and the other ocular toxoplasmosis cases regarding the characteristics studied. However, CD25 showed a higher expression of IL-2 on the 4 acquired cases of ocular toxoplasmosis compared to the remainders. CONCLUSIONS: To the best of our knowledge, this is the first report showing that the use of CD25 as a marker for interleukin-2 could differentiate acquired ocular toxoplasmosis.

  14. Tec protein tyrosine kinase inhibits CD25 expression in human T-lymphocyte.

    Science.gov (United States)

    Susaki, Kentaro; Kitanaka, Akira; Dobashi, Hiroaki; Kubota, Yoshitsugu; Kittaka, Katsuharu; Kameda, Tomohiro; Yamaoka, Genji; Mano, Hiroyuki; Mihara, Keichiro; Ishida, Toshihiko

    2010-01-04

    The Tec protein tyrosine kinase (PTK) belongs to a group of structurally related nonreceptor PTKs that also includes Btk, Itk, Rlk, and Bmx. Previous studies have suggested that these kinases play important roles in hematopoiesis and in the lymphocyte signaling pathway. Despite evidence suggesting the involvement of Tec in the T-lymphocyte activation pathway via T-cell receptor (TCR) and CD28, Tec's role in T-lymphocytes remains unclear because of the lack of apparent defects in T-lymphocyte function in Tec-deficient mice. In this study, we investigated the role of Tec in human T-lymphocyte using the Jurkat T-lymphoid cell line stably transfected with a cDNA encoding Tec. We found that the expression of wild-type Tec inhibited the expression of CD25 induced by TCR cross-linking. Second, we observed that LFM-A13, a selective inhibitor of Tec family PTK, rescued the suppression of TCR-induced CD25 expression observed in wild-type Tec-expressing Jurkat cells. In addition, expression of kinase-deleted Tec did not alter the expression level of CD25 after TCR ligation. We conclude that Tec PTK mediates signals that negatively regulate CD25 expression induced by TCR cross-linking. This, in turn, implies that this PTK plays a role in the attenuation of IL-2 activity in human T-lymphocytes.

  15. Self-assembling peptides form nanodiscs that stabilize membrane proteins

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi; Pedersen, Martin Cramer; Kirkensgaard, Jacob Judas Kain

    2014-01-01

    New methods to handle membrane bound proteins, e.g. G-protein coupled receptors (GPCRs), are highly desirable. Recently, apoliprotein A1 (ApoA1) based lipoprotein particles have emerged as a new platform for studying membrane proteins, and it has been shown that they can self-assemble in combinat......New methods to handle membrane bound proteins, e.g. G-protein coupled receptors (GPCRs), are highly desirable. Recently, apoliprotein A1 (ApoA1) based lipoprotein particles have emerged as a new platform for studying membrane proteins, and it has been shown that they can self...

  16. CD8{sup +}CD25{sup +} T cells reduce atherosclerosis in apoE(−/−) mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianchang; Dimayuga, Paul C.; Zhao, Xiaoning; Yano, Juliana; Lio, Wai Man; Trinidad, Portia; Honjo, Tomoyuki; Cercek, Bojan; Shah, Prediman K.; Chyu, Kuang-Yuh, E-mail: Chyuk@cshs.org

    2014-01-17

    Highlights: •The role of a sub-population of CD8{sup +} T cells with suppressor functions was investigated in atherosclerosis. •CD8{sup +}CD25{sup +} T cells from adult apoE(−/−) mice had phenotype characteristics of T suppressor cells. •These CD8{sup +}CD25{sup +} T cells reduced CD4{sup +} T cell proliferation and CD8{sup +} cytotoxic activity in vitro. •Adoptive transfer of CD8{sup +}CD25{sup +} T cells significantly reduced atherosclerosis. •CD8{sup +}CD25{sup +} T cells have a suppressive function in atherosclerosis. -- Abstract: Background: It is increasingly evident that CD8{sup +} T cells are involved in atherosclerosis but the specific subtypes have yet to be defined. CD8{sup +}CD25{sup +} T cells exert suppressive effects on immune signaling and modulate experimental autoimmune disorders but their role in atherosclerosis remains to be determined. The phenotype and functional role of CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis were investigated in this study. Methods and results: CD8{sup +}CD25{sup +} T cells were observed in atherosclerotic plaques of apoE(−/−) mice fed hypercholesterolemic diet. Characterization by flow cytometric analysis and functional evaluation using a CFSE-based proliferation assays revealed a suppressive phenotype and function of splenic CD8{sup +}CD25{sup +} T cells from apoE(−/−) mice. Depletion of CD8{sup +}CD25{sup +} from total CD8{sup +} T cells rendered higher cytolytic activity of the remaining CD8{sup +}CD25{sup −} T cells. Adoptive transfer of CD8{sup +}CD25{sup +} T cells into apoE(−/−) mice suppressed the proliferation of splenic CD4{sup +} T cells and significantly reduced atherosclerosis in recipient mice. Conclusions: Our study has identified an athero-protective role for CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis.

  17. Colour-Value Based Method for Polydopamine Coating-Stability Characterization on Polyethersulfone Membranes

    Directory of Open Access Journals (Sweden)

    Thomas Bucher

    2017-12-01

    Full Text Available Porous polyethersulfone membranes as used in oenology were investigated in order to evaluate temperature-dependent permeances in a temperature range from 10 to 35 °C. A temperature correction factor was determined for this type of membrane to get accurate and comparable results for further developments. Moreover, the membranes were modified with a bio-inspired polydopamine coating in order to reduce fouling. The performance of the membranes could be increased with respect to permeance and flux recovery under cross-flow conditions. In order to test the applicability and stability of the coating layer, they were treated with basic and acidic cleaning agents as used in industry for fouled membranes. The chemical stability of the coating layer was studied under basic and acidic conditions, by systematic observation of the colour change of the coated membranes over treatment time.

  18. Colour-Value Based Method for Polydopamine Coating-Stability Characterization on Polyethersulfone Membranes.

    Science.gov (United States)

    Bucher, Thomas; Clodt, Juliana I; Grabowski, Andrej; Hein, Martin; Filiz, Volkan

    2017-12-16

    Porous polyethersulfone membranes as used in oenology were investigated in order to evaluate temperature-dependent permeances in a temperature range from 10 to 35 °C. A temperature correction factor was determined for this type of membrane to get accurate and comparable results for further developments. Moreover, the membranes were modified with a bio-inspired polydopamine coating in order to reduce fouling. The performance of the membranes could be increased with respect to permeance and flux recovery under cross-flow conditions. In order to test the applicability and stability of the coating layer, they were treated with basic and acidic cleaning agents as used in industry for fouled membranes. The chemical stability of the coating layer was studied under basic and acidic conditions, by systematic observation of the colour change of the coated membranes over treatment time.

  19. Demonstration of strong enterobacterial reactivity of CD4+CD25- T cells from conventional and germ-free mice which is counter-regulated by CD4+CD25+ T cells

    DEFF Research Database (Denmark)

    Gad, Monika; Pedersen, Anders Elm; Kristensen, Nanna N

    2004-01-01

    Unfractionated CD4+ T cells from the gut-associated lymphoid tissue (GALT) and peripheral lymph nodes are unresponsive when exposed to enterobacterial antigens in vitro. Under similar conditions, CD4+ T cells depleted in vivo or in vitro of CD4+CD25+ T cells proliferate extensively. The CD4+CD25- T...

  20. Stability of DNA-tethered lipid membranes with mobile tethers.

    Science.gov (United States)

    Chung, Minsub; Boxer, Steven G

    2011-05-03

    We recently introduced two approaches for tethering planar lipid bilayers as membrane patches to either a supported lipid bilayer or DNA-functionalized surface using DNA hybridization (Chung, M.; Lowe, R. D.; Chan, Y-H. M.; Ganesan, P. V.; Boxer, S. G. J. Struct. Biol.2009, 168, 190-9). When mobile DNA tethers are used, the tethered bilayer patches become unstable, while they are stable if the tethers are fixed on the surface. Because the mobile tethers between a patch and a supported lipid bilayer offer a particularly interesting architecture for studying the dynamics of membrane-membrane interactions, we have investigated the sources of instability, focusing on membrane composition. The most stable patches were made with a mixture of saturated lipids and cholesterol, suggesting an important role for membrane stiffness. Other factors such as the effect of tether length, lateral mobility, and patch membrane edge were also investigated. On the basis of these results, a model for the mechanism of patch destruction is developed.

  1. Ionic Liquid Confined in Mesoporous Polymer Membrane with Improved Stability for CO2/N2 Separation

    Directory of Open Access Journals (Sweden)

    Ming Tan

    2017-09-01

    Full Text Available Supported ionic liquid membranes (SILMs have a promising prospect of application in flue gas separation, owing to its high permeability and selectivity of CO2. However, existing SILMs have the disadvantage of poor stability due to the loss of ionic liquid from the large pores of the macroporous support. In this study, a novel SILM with high stability was developed by confining ionic liquid in a mesoporous polymer membrane. First, a mesoporous polymer membrane derived from a soluble, low-molecular-weight phenolic resin precursor was deposited on a porous Al2O3 support, and then 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4] was immobilized inside mesopores of phenolic resin, forming the SILM under vacuum. Effects of trans-membrane pressure difference on the SILM separation performance were investigated by measuring the permeances of CO2 and N2. The SILM exhibits a high ideal CO2/N2 selectivity of 40, and an actual selectivity of approximately 25 in a mixed gas (50% CO2 and 50% N2 at a trans-membrane pressure difference of 2.5 bar. Compared to [emim][BF4] supported by polyethersulfone membrane with a pore size of around 0.45 μm, the [emim][BF4] confined in a mesoporous polymer membrane exhibits an improved stability, and its separation performance remained stable for 40 h under a trans-membrane pressure difference of 1.5 bar in a mixed gas before the measurement was intentionally stopped.

  2. CD4+CD25+ regulatory T cells: II. Origin, disease models and clinical aspects

    DEFF Research Database (Denmark)

    Nielsen, Janne; Holm, Thomas Lindebo; Claesson, Mogens H

    2004-01-01

    Autoimmune diseases afflict approximately 5% of the population and reflect a failure in the immune system to discriminate between self and non-self resulting in the breakdown of self-tolerance. Regulatory CD4+CD25+ T cells (Treg cells) have been shown to play an important role in the maintenance ...... in disease models such as autoimmune gastritis and inflammatory bowel disease. Finally, we will consider some aspects of the therapeutic potential of Treg cells....

  3. Interleukin-7 optimizes FOXP3+CD4+ regulatory T cells reactivity to interleukin-2 by modulating CD25 expression.

    Directory of Open Access Journals (Sweden)

    Federico Simonetta

    Full Text Available The vast majority of Foxp3 regulatory T cells (Treg exhibits constitutive expression of CD25 (IL-2Rα, which allows the constitution of the high affinity IL-2Rαβγ receptor, ensuring efficient IL-2 binding by Treg. Maintenance of CD25 expression at Treg surface depends on both cell intrinsic factors and environmental stimuli such as IL-2 itself. Whether other factors can participate to maintenance of CD25 expression in vivo is at present unknown. In the present work we demonstrated that IL-7, a gamma-chain cytokine exerting a crucial role in T cell development and homeostasis, is able and necessary to sustain the expression of high levels of CD25 at Treg surface. We demonstrated that, during in vitro cultures performed in the absence of IL-2, IL-7 is able to sustain CD25 expression at Treg surface through a transcriptional mechanism. By studying mice in which IL-7 signaling is either genetically impaired or increased and by employing adoptive transfer murine models, we demonstrated that IL-7 is necessary for sustained expression of CD25 at Treg surface in vivo. To ascertain the biological impact of IL-7 mediated modulation of CD25 expression, we demonstrated that IL-7 modulation of CD25 expression at Treg surface affected their ability to efficiently bind IL-2 and transduce IL-2 signaling. Finally, we demonstrated that IL-7 dependent modulation of CD25 associated with potentiated IL-2 induced expansion of Treg in vivo. Collectively, our results identify IL-7 as a necessary factor contributing to sustained CD25 expression at Treg surface in vivo thereby affecting their ability to efficiently react to IL-2.

  4. Function and regulation of LAG3 on CD4+CD25- T cells in non-small cell lung cancer.

    Science.gov (United States)

    Ma, Qin-Yun; Huang, Da-Yu; Zhang, Hui-Jun; Wang, Shaohua; Chen, Xiao-Feng

    2017-11-15

    LAG3 is a surface molecule found on a subset of immune cells. The precise function of LAG3 appears to be context-dependent. In this study, we investigated the effect of LAG3 on CD4 + CD25 - T cells from non-small cell lung cancer (NSCLC) patients. We found that in the peripheral blood mononuclear cells of NSCLC patients, LAG3 was significantly increased in CD4 + T cells directly ex vivo and primarily in the CD4 + CD25 - fraction, which was regulated by prolonged TCR stimulation and the presence of IL-27. TCR stimulation also increased CD25 expression, but not Foxp3 expression, in LAG3-expressing CD4 + CD25 - cells Compared to LAG3-nonexpressing CD4 + CD25 - cells, LAG3-expressing CD4 + CD25 - cells presented significantly higher levels of PD1 and TIM3, two inhibitory receptors best described in exhausted CD8 + T effector cells. LAG3-expressing CD4 + CD25 - cells also presented impaired proliferation compared with LAG3-nonexpressing CD4 + CD25 - cells but could be partially rescued by inhibiting both PD1 and TIM3. Interestingly, CD8 + T cells co-incubated with LAG3-expressing CD4 + CD25 - cells at equal cell numbers demonstrated significantly lower proliferation than CD8 + T cells incubated alone. Co-culture with CD8 + T cell and LAG3-expressing CD4 + CD25 - T cell also upregulated soluble IL-10 level in the supernatant, of which the concentration was positively correlated with the number of LAG3-expressing CD4 + CD25 - T cells. In addition, we found that LAG3-expressing CD4 + CD25 - T cells infiltrated the resected tumors and were present at higher frequencies of in metastases than in primary tumors. Taken together, these data suggest that LAG3-expressing CD4 + CD25 - T cells represent another regulatory immune cell type with potential to interfere with anti-tumor immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Phenotypic and functional analysis of CD4+ CD25- Foxp3+ T cells in patients with systemic lupus erythematosus.

    Science.gov (United States)

    Bonelli, Michael; Savitskaya, Anastasia; Steiner, Carl-Walter; Rath, Eva; Smolen, Josef S; Scheinecker, Clemens

    2009-02-01

    CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg) that specialize in the suppression of immune responses might be critically involved in the pathogenesis of autoimmune diseases. Recent studies have described increased proportions of CD4(+)Foxp3(+) T cells that lacked expression of CD25 in systemic lupus erythematosus (SLE) patients but the suppressive capacity of these cells has not been analyzed so far. We therefore performed combined phenotypic and functional analyses of CD4(+)CD25(-)Foxp3(+) T cells in patients with autoimmune diseases and healthy controls (HC). Phenotypic analysis revealed increased proportions of CD4(+)CD25(-)Foxp3(+) T cells in SLE patients as compared with patients with systemic sclerosis, rheumatoid arthritis, (RA), or HC. In addition, increased proportions of CD4(+)CD25(-)Foxp3(+) T cells correlated with the clinical disease activity and the daily cortisone dose. According to phenotypic analysis, CD4(+)CD25(-)Foxp3(+) T cells resembled regulatory T cells rather than activated T cells. For functional analysis, a surrogate surface marker combination to substitute for intracellular Foxp3 was defined: CD4(+)CD25(-)CD127(-) T cells from SLE patients were isolated by FACS sorting and analyzed for their suppressive capacity in vitro. CD4(+)CD25(-)CD127(-) T cells, that contained up to 53% Foxp3(+) T cells, were found to suppress T cell proliferation but not IFN-gamma production in vitro. In summary, CD4(+)CD25(-)Foxp3(+) T cells phenotypically and to a certain extent also functionally resemble conventional Treg. Despite increased proportions, however, their selective functional defects might contribute to the failure of Treg to control autoimmune dysregulation in SLE patients.

  6. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini.

    Directory of Open Access Journals (Sweden)

    Aljona Gaiko-Shcherbak

    Full Text Available The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function.

  7. Cross-linked comb-shaped anion exchange membranes with high base stability

    Energy Technology Data Exchange (ETDEWEB)

    Li, NW; Wang, LZ; Hickner, M

    2014-01-01

    A unique one-step cross-linking strategy that connects quaternary ammonium centers using Grubbs II-catalyzed olefin metathesis was developed. The cross-linked anion exchange membranes showed swelling ratios of less than 10% and hydroxide conductivities of 18 to 40 mS cm(- 1). Cross-linking improved the membranes' stability to hydroxide degradation compared to their non-cross-linked analogues.

  8. Stability and Degradation Mechanisms of Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis.

    Science.gov (United States)

    Albert, Albert; Lochner, Tim; Schmidt, Thomas J; Gubler, L

    2016-06-22

    Radiation-grafted membranes are a promising alternative to commercial membranes for water electrolyzers, since they exhibit lower hydrogen crossover and area resistance, better mechanical properties, and are of potentially lower cost than perfluoroalkylsulfonic acid membranes, such as Nafion. Stability is an important factor in view of the expected lifetime of 40 000 h or more of an electrolyzer. In this study, combinations of styrene (St), α-methylstyrene (AMS), acrylonitrile (AN), and 1,3-diisopropenylbenzene (DiPB) are cografted into 50 μm preirradiated poly(ethylene-co-tetrafluoroethylene) (ETFE) base film, followed by sulfonation to produce radiation-grafted membranes. The stability of the membranes with different monomer combinations is compared under an accelerated stress test (AST), and the degradation mechanisms are investigated. To mimic the conditions in an electrolyzer, in which the membrane is always in contact with liquid water at elevated temperature, the membranes are immersed in water for 5 days at 90 °C, so-called thermal stress test (TST). In addition to testing in air atmosphere tests are also carried out under argon to investigate the effect of the absence of oxygen. The water is analyzed with UV-vis spectroscopy and ion chromatography. The ion exchange capacity (IEC), swelling degree, and Fourier transform infrared (FTIR) spectra of the membranes are compared before and after the test. Furthermore, energy-dispersive X-ray (EDX) spectroscopic analysis of the membrane cross-section is performed. Finally, the influence of the TST to the membrane area resistance and hydrogen crossover is measured. The stability increases along the sequence St/AN, St/AN/DiPB, AMS/AN, and AMS/AN/DiPB grafted membrane. The degradation at the weak-link, oxygen-induced degradation, and hydrothermal degradation are proposed in addition to the "swelling-induced detachment" reported in the literature. By mitigating the possible paths of degradation, the AMS

  9. The spectrin-based membrane skeleton stabilizes mouse megakaryocyte membrane systems and is essential for proplatelet and platelet formation

    Science.gov (United States)

    Patel-Hett, Sunita; Wang, Hongbei; Begonja, Antonija J.; Thon, Jonathan N.; Alden, Eva C.; Wandersee, Nancy J.; An, Xiuli; Mohandas, Narla; Hartwig, John H.

    2011-01-01

    Megakaryocytes generate platelets by remodeling their cytoplasm first into proplatelets and then into preplatelets, which undergo fission to generate platelets. Although the functions of microtubules and actin during platelet biogenesis have been defined, the role of the spectrin cytoskeleton is unknown. We investigated the function of the spectrin-based membrane skeleton in proplatelet and platelet production in murine megakaryocytes. Electron microscopy revealed that, like circulating platelets, proplatelets have a dense membrane skeleton, the main fibrous component of which is spectrin. Unlike other cells, megakaryocytes and their progeny express both erythroid and nonerythroid spectrins. Assembly of spectrin into tetramers is required for invaginated membrane system maturation and proplatelet extension, because expression of a spectrin tetramer–disrupting construct in megakaryocytes inhibits both processes. Incorporation of this spectrin-disrupting fragment into a novel permeabilized proplatelet system rapidly destabilizes proplatelets, causing blebbing and swelling. Spectrin tetramers also stabilize the “barbell shapes” of the penultimate stage in platelet production, because addition of the tetramer-disrupting construct converts these barbell shapes to spheres, demonstrating that membrane skeletal continuity maintains the elongated, pre-fission shape. The results of this study provide evidence for a role for spectrin in different steps of megakaryocyte development through its participation in the formation of invaginated membranes and in the maintenance of proplatelet structure. PMID:21566095

  10. Enhancement of membrane stability on magnetic responsive hydrogel microcapsules for potential on-demand cell separation.

    Science.gov (United States)

    Wen, Huiyun; Gao, Ting; Fu, Zizhen; Liu, Xing; Xu, Jiatong; He, Yishu; Xu, Ningxia; Jiao, Ping; Fan, An; Huang, Saipeng; Xue, Weiming

    2017-02-10

    It is of high interest to obtain hydrogel membranes with optimum mechanical stability, which is a prerequisite to the successful fabrication of hydrogel microcapsules for cell separation. In this work, we developed magnetic responsive alginate/chitosan (MAC) hydrogel microcapsules by co-encapsulation of microbial cells and superparamagnetic iron oxide nanoparticles (SPIONs) reacting under a high voltage electrostatic field. We investigated the influence of the molecular weight of chitosan, microcapsules size, and membrane crosslinking time on the swelling behavior of microcapsules as an indicator of stability of the membranes. The results demonstrated that the suitable membrane stability conditions were obtained by a crosslinking of the microspheres with a chitosan presenting a molecular weight of 70kDa for 15-30min resulting in a membrane thickness of approximately 30mm. Considering the need of maintaining the cells inside the microcapsules, fermentation at 37°C and at neutral pH was favorable. Moreover, the MAC microcapsules sizing between 300 and 380μm were suitable for immobilizing Bacillus licheniformis in a 286h multiple fed-bath operation with no leakage of the SPIONs and cells. Overall, the results of this study provided strategies for the rational design of magnetic microcapsules exhibiting suitable mechanical stable membranes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Immunity to experimental Salmonella typhimurium infections in rats. Transfer of immunity with primed CD4+CD25high and CD4+CD25low T lymphocytes

    DEFF Research Database (Denmark)

    Thygesen, P; Brandt, L; Jørgensen, T

    1994-01-01

    levels were not correlated with protection against S. typhimurium infections, although it showed that a higher and more persistent level of specific IgG antibodies was produced in animals receiving the CD4+CD25high fraction. It is concluded that 10(4) primed CD4+ T lymphocytes can induce immunity......The protective effect of primed CD4+ T lymphocytes against a lethal dose of 10(8) viable Salmonella typhimurium was studied in Lewis rats. Primed CD4+ T lymphocytes were obtained by inoculating Lewis rats with a non-lethal dose of 10(6) viable S. typhimurium. Four weeks after the infection, spleen...... by a fluorescence-activated cell sorter. Untreated Lewis rats were injected with 10(4) different primed CD4+ T-cell populations 24 h prior to the lethal dose of 10(8) viable S. typhimurium. Blood samples were drawn from the orbital plexus 1, 2, 3, and 4 weeks after the infection, and analysed for specific Ig...

  12. CD4+CD25+ regulatory T cells: II. Origin, disease models and clinical aspects

    DEFF Research Database (Denmark)

    Nielsen, Janne; Holm, Thomas Lindebo; Claesson, Mogens H

    2004-01-01

    of immune homeostasis and self-tolerance by counteracting the development and effector functions of potentially autoreactive T cells. We have in the previous APMIS review described the phenotype and physiology of Treg cells. The present overview deals with the thymic origin of Treg cells and their role......Autoimmune diseases afflict approximately 5% of the population and reflect a failure in the immune system to discriminate between self and non-self resulting in the breakdown of self-tolerance. Regulatory CD4+CD25+ T cells (Treg cells) have been shown to play an important role in the maintenance...

  13. Chemokines involved in protection from colitis by CD4+CD25+ regulatory T cells

    DEFF Research Database (Denmark)

    Kristensen, Nanna Ny; Brudzewsky, Dan; Gad, Monika

    2006-01-01

    Chemokines are small proteins involved in the direction of migration of immune cells both during normal homeostasis and inflammation. Chemokines have been implicated in the pathology of many different inflammatory disorders and are therefore appealing therapeutic targets. Using a chemokine....../chemokine receptor-specific gene expression profiling system of 67 genes, the authors have determined the expression profile of chemokine and chemokine receptor genes in the rectum of colitic mice and in mice that have been protected fromcolitis by CD4CD25 regulatory T cells. In mice protected from colitis...

  14. Cloning and expression of canine CD25 for validation of an anti-human CD25 antibody to compare T regulatory lymphocytes in healthy dogs and dogs with osteosarcoma.

    Science.gov (United States)

    Rissetto, K C; Rindt, H; Selting, K A; Villamil, J A; Henry, C J; Reinero, C R

    2010-05-15

    T regulatory cells (Tregs) are a unique subset of T helper cells that serve to modify/inhibit effector cells of the immune system and thus are essential to prevent autoimmunity. Overzealous Treg activity may contribute to impaired immune responses to cancer. Tregs can be phenotypically identified by proteins expressed on the cell surface (CD4 and CD25) and inside the cell (forkhead box3 (FoxP3)), although in dogs, no anti-canine CD25 antibody exists. We hypothesized that a mouse anti-human CD25 antibody definitively recognizes the canine protein and can be used to identify Tregs in dogs. We describe cloning and transfection of the canine CD25 gene into human HeLa cells with subsequent expression of the canine protein on the cell surface detected using an anti-human CD25 antibody in a flow cytometric assay. Validation of this antibody was used to identify CD4+CD25+FoxP3+ Tregs in 39 healthy dogs and 16 dogs with osteosarcoma (OSA). Results were expressed in five different ways and showed significantly fewer %CD4+CD25+ T lymphocytes expressing FoxP3 in blood of older dogs (>/=7 years) compared with the other two age groups (dogs and those with OSA. While the CD25 antibody can be successfully used in a flow cytometric assay to identify Tregs, this study does not support clinical utility of phenotypic recognition of Tregs in dogs with OSA. Copyright 2010 Elsevier B.V. All rights reserved.

  15. CD 4 + CD 25 + T cells maintain homeostasis by promoting TER - 119 cell development and inhibiting T cell activation

    Directory of Open Access Journals (Sweden)

    Muhaimin Rifa’i

    2014-05-01

    Full Text Available CD4+ CD25+ regulatory T cells involved in the regulation of self- tolerance and normality of homeostasis. CD122 deficient mice are model animals that have an abnormal immune system characteristically have a high number of activated T cells and TER-119 cell decreased. Here we showed evidence that the transfer of CD4+ CD25+ regulatory T cells derived from normal mice to CD122- defficient neonates prevent the development of activated memory T cells and elicit TER-119 differentiation. Bone marrow reconstitution derived from CD122-/- mice to normal mice resulting tolerance to individual that genetically different. Importantly, CD4+ CD25+ regulatory T cells derived from normal mice can replace CD4+ CD25+ cells derived from CD122-/- mice. The results of this experiment suggest that regulatory T cells from normal mice exert a critical role in maintaining peripheral tolerance and controlling hematopoietic disorder.

  16. The influence of different membrane components on the electrical stability of bilayer lipid membranes

    NARCIS (Netherlands)

    van Uitert, I.; le Gac, Severine; van den Berg, Albert

    A good understanding of cell membrane properties is crucial for better controlled and reproducible experiments, particularly for cell electroporation where the mechanism of pore formation is not fully elucidated. In this article we study the influence on that process of several constituents found in

  17. CD4+CD25+ T regulatory cells from FIV+ cats induce a unique anergic profile in CD8+ lymphocyte targets

    Directory of Open Access Journals (Sweden)

    Tompkins Mary B

    2010-11-01

    Full Text Available Abstract Background Using the FIV model, we reported previously that CD4+CD25+ T regulatory (Treg cells from FIV+ cats are constitutively activated and suppress CD4+CD25- and CD8+ T cell immune responses. In an effort to further explore Treg-mediated suppression, we asked whether Treg cells induce anergy through the alteration of production of cyclins, cyclin-dependent kinases and their inhibitors. Results Lymphocytes were obtained from control or FIV+ cats and sorted by FACS into CD4+CD25+ and CD8+ populations. Following co-culture with CD4+CD25+ cells, CD8+ targets were examined by Western blot for changes in cyclins D3, E and A, retinoblastoma (Rb protein, as well as the cyclin dependent kinase inhibitor p21cip1. Following co-culture with CD4+CD25+cells, we observed up-regulation of p21cip1 and cyclin E, with down-regulation of cyclin D3, in CD8+ cells from FIV+ cats. As expected, CD8+ targets from control cats were quiescent with little up-regulation of p21cip1 and cyclin E. There was also a lack of Rb phosphorylation in CD8+ targets consistent with late G1 cell cycle arrest. Further, IL-2 mRNA was down regulated in CD8+ cells after co-culture with CD4+CD25+ Treg cells. Following CD4+CD25+ co-culture, CD8+ targets from FIV+ cats also had increased Foxp3 mRNA expression; however, these CD8+Foxp3+ cells did not exhibit suppressor function. Conclusions Collectively, these data suggest that CD4+CD25+ Treg cells from FIV+ cats induce CD8+ anergy by disruption of normal G1 to S cell cycle progression.

  18. CD25+ T-lymphocytes induce CD11b on eosinophils in allergic nasal mucosa

    Directory of Open Access Journals (Sweden)

    S. Horiguchi

    1995-01-01

    Full Text Available In the allergic mucosa, there is a significant increase in numbers of CD25+ cells and activated eosinophils. To determine whether a link exists between the activated T-lymphocytes and tissue eosinophils in nasal allergy, we studied CD25+ cells in the nasal mucosa and compared the levels of soluble IL-2 receptor (sIL-2R both in the serum and the nasal secretions, and further investigated expression of CD11b on eosinophils in the nasal lavage fluids and peripheral blood of patients with nasal allergy. We also examined the effects of the culture supernatant of Con A- and IL-2-activated T-lymphocytes on CD11b expression on eosinophils in the present study. The concentration of sIL-2R in the nasal secretions from patients with Japanese cedar pollinosis (JCP was significantly higher than that from normal subjects (p < 0.01. The sIL-2R level was significantly higher in the nasal secretions than in the sera in patients (p < 0.01, and CD11b expression on eosinophils from nasal hvage fluid was significandy higher than that of eosinophils from peripheral blood of the same individuals (p < 0.01. The activated T-lymphocytes promoted eosinophil activation with upregulation of CD11b in vitro, and eosinophils in the nasal secretions from patients significantly expressed more CD11b in vivo. These results indicate that activation of T-lymphocytes is linked to eosinophil activation in nasal allergy.

  19. Influence of endothelium on the membrane-stabilizing effect of calcium

    African Journals Online (AJOL)

    These relaxation responses were attenuated in endothelium-denuded rings as well as following exposure to methylene blue. Conclusion: The results show that relaxation responses induced by high Ca2+ due to membrane stabilization is endothelium-dependent. Keywords: Calcium, rabbit aorta, Vascular smooth muscle, ...

  20. Enhanced thermal stability of the thylakoid membranes from spruce. A comparison with selected angiosperms

    Czech Academy of Sciences Publication Activity Database

    Karlický, Václav; Kurasová, Irena; Ptáčková, B.; Večeřová, Kristýna; Urban, Otmar; Špunda, Vladimír

    2016-01-01

    Roč. 130, 1-3 (2016), s. 357-371 ISSN 0166-8595 R&D Projects: GA MŠk(CZ) LO1415; GA ČR GA13-28093S Institutional support: RVO:67179843 Keywords : Norway spruce * Thermal stability * Circular dichroism * Photosystem II organization * Thylakoid membrane Subject RIV: ED - Physiology Impact factor: 3.864, year: 2016

  1. [Membrane-stabilizing preparations in the treatment of patients with heart rhythm disorders of different etiologies].

    Science.gov (United States)

    Vizir, A D; Grigor'eva, Z E; Stepanova, I V; Vizir, V A

    1991-10-01

    Data are reported of a study of the efficacy of membrane-stabilizing antiarrhythmic agents--ethmosin, ethacisin, allapinin. The latter was used in the treatment of 85 patients with arrhythmias of different etiology and proved more effective as compared with ethmosin and ethacisin. In ventricular extrasystole the effect was favourable in 86%, in supraventricular--in 70% of patients.

  2. CD25+ FoxP3+ Memory CD4 T Cells Are Frequent Targets of HIV Infection In Vivo.

    Science.gov (United States)

    Chachage, Mkunde; Pollakis, Georgios; Kuffour, Edmund Osei; Haase, Kerstin; Bauer, Asli; Nadai, Yuka; Podola, Lilli; Clowes, Petra; Schiemann, Matthias; Henkel, Lynette; Hoffmann, Dieter; Joseph, Sarah; Bhuju, Sabin; Maboko, Leonard; Sarfo, Fred Stephen; Eberhardt, Kirsten; Hoelscher, Michael; Feldt, Torsten; Saathoff, Elmar; Geldmacher, Christof

    2016-10-15

    Interleukin 2 (IL-2) signaling through the IL-2 receptor alpha chain (CD25) facilitates HIV replication in vitro and facilitates homeostatic proliferation of CD25(+) FoxP3(+) CD4(+) T cells. CD25(+) FoxP3(+) CD4(+) T cells may therefore constitute a suitable subset for HIV infection and plasma virion production. CD25(+) FoxP3(+) CD4(+) T cell frequencies, absolute numbers, and the expression of CCR5 and cell cycle marker Ki67 were studied in peripheral blood from HIV(+) and HIV(-) study volunteers. Different memory CD4(+) T cell subsets were then sorted for quantification of cell-associated HIV DNA and phylogenetic analyses of the highly variable EnvV1V3 region in comparison to plasma-derived virus sequences. In HIV(+) subjects, 51% (median) of CD25(+) FoxP3(+) CD4(+) T cells expressed the HIV coreceptor CCR5. Very high frequencies of Ki67(+) cells were detected in CD25(+) FoxP3(+) memory CD4(+) T cells (median, 27.6%) in comparison to CD25(-) FoxP3(-) memory CD4(+) T cells (median, 4.1%; P HIV DNA content was 15-fold higher in CD25(+) FoxP3(+) memory CD4(+) T cells than in CD25(-) FoxP3(-) T cells (P = 0.003). EnvV1V3 sequences derived from CD25(+) FoxP3(+) memory CD4(+) T cells did not preferentially cluster with plasma-derived sequences. Quasi-identical cell-plasma sequence pairs were rare, and their proportion decreased with the estimated HIV infection duration. These data suggest that specific cellular characteristics of CD25(+) FoxP3(+) memory CD4(+) T cells might facilitate efficient HIV infection in vivo and passage of HIV DNA to cell progeny in the absence of active viral replication. The contribution of this cell population to plasma virion production remains unclear. Despite recent advances in the understanding of AIDS virus pathogenesis, which cell subsets support HIV infection and replication in vivo is incompletely understood. In vitro, the IL-2 signaling pathway and IL-2-dependent cell cycle induction are essential for HIV infection of stimulated T

  3. [Formation of stabile cupola-like lipid bilayer membranes with a mobile plateau Gibbs boundary].

    Science.gov (United States)

    Shevchenko, E V; Smirnova, E Iu; Frolov, A V; Iakovenko, E V; Antonov, V F

    1993-01-01

    Stable bilayer lipid membrane with mobile Platear-Gibbs border have been formed. The predominant condition of the formation is the presence of lipid coverage on the teflon surface near the hole. The formation process includes transformation of the initial planar lipid bilayer into cupola-shaped one by bowing of the lipid bilayer due to hydrostatic pressure, movement of the PGb along the teflon surface. The bilayer area estimated by electric capacitance increases from 0.1 x 10(-8) F to 21 x 10(-8) F. Electric conductance of the lipid bilayer has not changed except for the phase transition and membrane collapse. The electric capacitance of the BLM formed from hydrogenated egg lecithin was changed by cooling between 60 degrees and 40 degrees C with the maximum at about phase transition range. The individual membrane sustains several scannings of the temperature without disruption which is an evidence of the stability of the cupola-shaped membranes.

  4. Tailoring of porosity of yttria-stabilized zirconia tubes as supports for oxygen separation membranes

    DEFF Research Database (Denmark)

    Bjørnetun Haugen, Astri; Kothanda Ramachandran, Dhavanesan; Gurauskis, Jonas

    Pure oxygen gas supplied by ceramic oxygen transport membranes can facilitate reduced CO2 emissions through more efficient gasification processes and CO2 capture and storage. Tubular membranes have some advantages compared to planar membranes, such as better resistance to thermal gradients and more...... straightforward sealing. The active oxygen separation layer in the membrane should be as thin as possible and therefore supported on a highly porous tubular substrate. In this work tubular porous supports of yttria-stabilized zirconia have been manufactured using thermoplastic extrusion. Two types of poreformers...... exceeding 55 % and gas permeabilities close to 10-14 m2 could be produced, demonstrating that thermoplastic extrusion is suitable for fabrication of porous and permeable tubes....

  5. An upregulation of CD8+CD25+Foxp3+T cells with suppressive function through interleukin 2 pathway in pulmonary arterial hypertension.

    Science.gov (United States)

    Zhu, Rong; Chen, Liang; Xiong, Yaqiong; Wang, Nana; Xie, Xiaochen; Hong, Yongqing; Meng, Zili

    2017-09-15

    Accumulating evidence suggests that abnormal inflammation plays a critical role in the pathogenesis of pulmonary arterial hypertension (PAH). CD8 + CD25 + Foxp3 + T cell is a novel cell subtype, and its role in PAH is not yet investigated. Here, we observed that PAH patients presented a significant upregulation of CD8 + CD25 + Foxp3 + T cells and a downregulation of CD4 + CD25 + Foxp3 + T cells compared to healthy controls. Regardless, the total number of CD25 + Foxp3 + T cells in PAH patients was still smaller than that in healthy controls. Compared to CD8 + CD25 - T cells, CD8 + CD25 + T cells presented higher Foxp3 expression, lower interferon (IFN)-γ expression and higher transforming growth factor (TGF)-β expression, in both healthy and PAH individuals. The CD8 + CD25 + T cells in PAH patients also demonstrated regulatory function by suppressing the proliferation of CD4 + CD25 - and CD8 + CD25 - effector T cells, albeit at lower efficiency than CD4 + CD25 + T cells from PAH patients and healthy volunteers. CD8 + CD25 + T cells from PAH responded to interleukin (IL)-2 supplement by expansion and upregulating Foxp3 expression. In PAH patients, IL-2-treated CD8 + CD25 + T cells were more potent at inhibiting CD4 + CD25 - effector T cell proliferation than IL-2-untreated CD8 + CD25 + T cells. Together, we found an upregulation of CD8 + CD25 + Foxp3 + T cells in PAH patients, and this T cell population presented suppressive activity that could be enhanced by IL-2 treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Can Stabilization and Inhibition of Aquaporins Contribute to Future Development of Biomimetic Membranes?

    Science.gov (United States)

    To, Janet; Torres, Jaume

    2015-08-10

    In recent years, the use of biomimetic membranes that incorporate membrane proteins, i.e., biomimetic-hybrid membranes, has increased almost exponentially. Key membrane proteins in these systems have been aquaporins, which selectively permeabilize cellular membranes to water. Aquaporins may be incorporated into synthetic lipid bilayers or to more stable structures made of block copolymers or solid-state nanopores. However, translocation of aquaporins to these alien environments has adverse consequences in terms of performance and stability. Aquaporins incorporated in biomimetic membranes for use in water purification and desalination should also withstand the harsh environment that may prevail in these conditions, such as high pressure, and presence of salt or other chemicals. In this respect, modified aquaporins that can be adapted to these new environments should be developed. Another challenge is that biomimetic membranes that incorporate high densities of aquaporin should be defect-free, and this can only be efficiently ascertained with the availability of completely inactive mutants that behave otherwise like the wild type aquaporin, or with effective non-toxic water channel inhibitors that are so far inexistent. In this review, we describe approaches that can potentially be used to overcome these challenges.

  7. Can Stabilization and Inhibition of Aquaporins Contribute to Future Development of Biomimetic Membranes?

    Directory of Open Access Journals (Sweden)

    Janet To

    2015-08-01

    Full Text Available In recent years, the use of biomimetic membranes that incorporate membrane proteins, i.e., biomimetic-hybrid membranes, has increased almost exponentially. Key membrane proteins in these systems have been aquaporins, which selectively permeabilize cellular membranes to water. Aquaporins may be incorporated into synthetic lipid bilayers or to more stable structures made of block copolymers or solid-state nanopores. However, translocation of aquaporins to these alien environments has adverse consequences in terms of performance and stability. Aquaporins incorporated in biomimetic membranes for use in water purification and desalination should also withstand the harsh environment that may prevail in these conditions, such as high pressure, and presence of salt or other chemicals. In this respect, modified aquaporins that can be adapted to these new environments should be developed. Another challenge is that biomimetic membranes that incorporate high densities of aquaporin should be defect-free, and this can only be efficiently ascertained with the availability of completely inactive mutants that behave otherwise like the wild type aquaporin, or with effective non-toxic water channel inhibitors that are so far inexistent. In this review, we describe approaches that can potentially be used to overcome these challenges.

  8. Dexamethasone Regulates Macrophage and Cd4+Cd25+ Cell Numbers in the Chicken Spleen

    Directory of Open Access Journals (Sweden)

    AS Calefi

    2016-03-01

    Full Text Available Abstract Dexamethasone (DEX is a corticoid hormone that is experimentally used to mimic the effects of increased levels of endogenous corticosterone observed during the stress response. Currently, stress is considered one of the major predisposing factors for diseases in the poultry industry. The aim of this study was to analyze the effects of DEX and/or of a 20-fold coccidial vaccine dose on leukocyte phenotypes in the spleen and cecal tonsils of chickens. Twenty specific-pathogen-free (SPF Leghorn chickens were divided into four groups: a non-treated group (NT, a DEX-treated group (Dex, a vaccinated group (V and a DEX-treated+vaccinated group (Dex+V. On experimental day (ED 42, each bird in the vaccinated groups received a anti-coccidial vaccine. DEX was injected in the birds of the Dex and Dex+V groups (0.9 mg/kg onED42 and ED45. The immunophenotyping was performed by flow cytometry analysis of splenocytes and cecal tonsils cells onED48. DEX treatment per se was unable to change CD4+CD8+, CD4+CD8+ and CD4-CD8+ populations with TCRgd or CD28 in the spleen, or macrophages and T lymphocytes in the cecal tonsils. V group birds presented higher numbers of splenic macrophages compared with those measured in the Dex+V group. The number of CD4+CD25+ cells in the spleen of birds of the V group was higher than those measured in the other experimental groups. Our data suggest that CD4+CD25+ cells and macrophages might be influenced by DEX treatment in spleen, but not in the cecal tonsils of chickens inoculated with Eimeria.

  9. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: roles played by stabilization surfactants of oil droplets.

    Science.gov (United States)

    Lu, Dongwei; Zhang, Tao; Ma, Jun

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater.

  10. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: Roles played by stabilization surfactants of oil droplets

    KAUST Repository

    Lu, Dongwei

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater. © 2015 American Chemical Society.

  11. Sedative, membrane stability, cytotoxic and antioxidant properties of methanol extract of leaves of Protium serratum Wall.

    Directory of Open Access Journals (Sweden)

    Md. Rafikul Islam

    2014-09-01

    Full Text Available Objective: To study the sedative, membrane stability, cytotoxic and antioxidant properties of the leaves of Protium serratum extracted using methanol. Methods: Sedative test was performed using hole cross and open field methods at 200 and 400 mg/kg. Membrane stability of red blood cell was used for anti-inflammatory test at different concentrations. Cytotoxic study was performed using brine shrimp lethality test. Total flavonoid contents, total phenol contents and reducing power were used to assess antioxidant properties of the extract. Results: Extract showed better sedative action at lower doses in both experiments. Maximum 73.33% locomotion reduction was found at 200 mg/kg at 1 20 min and that was 89.29% for diazepam in hole cross test. In membrane stability test, extract and standard drug diclofenac have 35.66% and 91.20% stability, respectively. LC50 value of the extract was 22.91 µg/mL. Total phenol and flavonoid contents were (55.53依14.63 mg gallic acid equivalent per gram of extract and (1 06.33依7.35 mg of quercetin equivalent per gram of extract, respectively per gram of extract. Significant reducing power was observed as compared to ascorbic acid. Conclusions: Extract possesses good pharmacological properties. Hence, further extensive study is essential to find out possible active constituents for the treatment of anxiety, inflammation or sickle cell disease, cancer and free radical mediated abnormalities.

  12. Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4+CD25+ cells

    Directory of Open Access Journals (Sweden)

    Uchiyama Masateru

    2012-03-01

    Full Text Available Abstract Background Interactions between the immune response and brain functions such as olfactory, auditory, and visual sensations are likely. This study investigated the effect of sounds on alloimmune responses in a murine model of cardiac allograft transplantation. Methods Naïve CBA mice (H2k underwent transplantation of a C57BL/6 (B6, H2b heart and were exposed to one of three types of music--opera (La Traviata, classical (Mozart, and New Age (Enya--or one of six different single sound frequencies, for 7 days. Additionally, we prepared two groups of CBA recipients with tympanic membrane perforation exposed to opera for 7 days and CBA recipients exposed to opera for 7 days before transplantation (pre-treatment. An adoptive transfer study was performed to determine whether regulatory cells were generated in allograft recipients. Immunohistochemical, cell-proliferation, cytokine, and flow cytometry assessments were also performed. Results CBA recipients of a B6 cardiac graft that were exposed to opera music and Mozart had significantly prolonged allograft survival (median survival times [MSTs], 26.5 and 20 days, respectively, whereas those exposed to a single sound frequency (100, 500, 1000, 5000, 10,000, or 20,000 Hz or Enya did not (MSTs, 7.5, 8, 9, 8, 7.5, 8.5 and 11 days, respectively. Untreated, CBA mice with tympanic membrane perforations and CBA recipients exposed to opera for 7 days before transplantation (pre-treatment rejected B6 cardiac grafts acutely (MSTs, 7, 8 and 8 days, respectively. Adoptive transfer of whole splenocytes, CD4+ cells, or CD4+CD25+ cells from opera-exposed primary allograft recipients resulted in significantly prolonged allograft survival in naive secondary recipients (MSTs, 36, 68, and > 100 days, respectively. Proliferation of splenocytes, interleukin (IL-2 and interferon (IFN-γ production was suppressed in opera-exposed mice, and production of IL-4 and IL-10 from opera-exposed transplant recipients increased

  13. Identification and Functional Characterization of Human Cd4+Cd25+ T Cells with Regulatory Properties Isolated from Peripheral Blood

    OpenAIRE

    Jonuleit, Helmut; Schmitt, Edgar; Stassen, Michael; Tuettenberg, Andrea; Knop, Jurgen; Enk, Alexander H.

    2001-01-01

    A subpopulation of peripheral human CD4+CD25+ T cells that expresses CD45RO, histocompatibility leukocyte antigen DR, and intracellular cytotoxic T lymphocyte–associated antigen (CTLA) 4 does not expand after stimulation and markedly suppresses the expansion of conventional T cells in a contact-dependent manner. After activation, CD4+CD25+ T cells express CTLA-4 on the surface detectable for several weeks. These cells show a G1/G0 cell cycle arrest and no production of interleukin (IL)-2, IL-...

  14. Immunophenotype and increased presence of CD4+CD25+ regulatory T cells in patients with acute lymphoblastic leukemia

    OpenAIRE

    WU, CUI-PING; QING, XI; WU, CUI-YUN; ZHU, HONG; ZHOU, HAI-YAN

    2011-01-01

    Acute lymphoblastic leukemia (ALL), cancer of the white blood cells, is a heterogeneous disease that mainly occurs due to the malignant cloning of original and naive lymphocytes. The aim of this study was to explore the immunophenotype, the percentage of CD4+CD25+ regulatory T cells (Tregs) and the expression of cytokines interleukin (IL)-2, IL-10 and TGF-β in patients with ALL. The immunophenotype and levels of CD4+CD25+ Tregs were detected using flow cytometry in the peripheral blood of 35 ...

  15. Study of structural stability and damaging effect on membrane for four Aβ42 dimers.

    Directory of Open Access Journals (Sweden)

    Wei Feng

    Full Text Available Increasing evidence shows that Aβ oligomers are key pathogenic molecules in Alzheimer's disease. Among Aβ oligomers, dimer is the smallest aggregate and toxic unit. Therefore, understanding its structural and dynamic properties is quite useful to prevent the formation and toxicity of the Aβ oligomers. In this study, we performed molecular dynamic simulations on four Aβ42 dimers, 2NCb, CNNC, NCNC and NCCN, within the hydrated DPPC membrane. Four Aβ42 dimers differ in the arrangements of two Aβ42 peptides. This study aims to investigate the impact of aggregation pattern of two Aβ peptides on the structural stability of the Aβ42 dimer and its disruption to the biological membrane. The MD results demonstrate that the NCCN, CNNC and NCNC have the larger structural fluctuation at the N-terminus of Aβ42 peptide, where the β-strand structure converts into the coil structure. The loss of the N-terminal β-strand further impairs the aggregate ability of Aβ42 dimer. In addition, inserting Aβ42 dimer into the membrane can considerably decrease the average APL of DPPC membrane. Moreover this decrease effect is largely dependent on the distance to the location of Aβ42 dimer and its secondary structure forms. Based on the results, the 2NCb is considered as a stable dimeric unit for aggregating the larger Aβ42 oligomer, and has a potent ability to disrupt the membrane.

  16. CD4+CD25+ and CD4+CD25high regulatory T cells in disseminated and localized forms of allergic contact dermatitis: relation to specific cytokines

    Directory of Open Access Journals (Sweden)

    Halina Laudańska

    2011-07-01

    Full Text Available The aim of this study was to evaluate regulatory T lymphocytes (Tregs in the course of allergic contact dermatitis (ACD and to elucidate the role of IL-10 and TGF-b in Tregs activity. Peripheral blood CD4+CD25+ and CD4+CD25high cells were determined by flow cytometry in patients with acute disseminated ACD (‘ad’, n = 36, acute localized ACD (‘al’, n = 26, and disseminated ACD during remission (‘rd’, n = 27 as well as in controls (n = 22. Serum levels of cytokines were measured using ELISA. The mean percentage of CD4+CD25+ and CD4+CD25high cells in patients with ad ACD was significantly higher than in controls (p < 0.01 and the remaining patients (p < 0.05. Both cell populations were significantly elevated in persons with widespread skin lesions (p < 0.05. In ad patients the CD4+CD25+ increased during three weeks of disease, although the significant increase of CD4+CD25high was noted only in the third week. Patients with ad ACD showed a significantly decreased serum level of TGF-b1 as compared with controls and the remaining ACD patients. IL-10 level did not differ between all groups. The elevated population of CD4+CD25high cells in ad ACD patients, and its dependence on the extension of skin lesions, suggest a role of Tregs in regulating the course of ACD. The growing Tregs percentages may indicate their peripheral generation during ACD. The development of lesions despite an increased population of Tregs suggests their functional defect. The role of TGF-b1 in the suppressive activity of Tregs cannot be excluded. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 2, pp. 255–262

  17. Regulatory CD4+CD25+ T cells restrict memory CD8+ T cell responses.

    Science.gov (United States)

    Kursar, Mischo; Bonhagen, Kerstin; Fensterle, Joachim; Köhler, Anne; Hurwitz, Robert; Kamradt, Thomas; Kaufmann, Stefan H E; Mittrücker, Hans-Willi

    2002-12-16

    CD4+ T cell help is important for the generation of CD8+ T cell responses. We used depleting anti-CD4 mAb to analyze the role of CD4+ T cells for memory CD8+ T cell responses after secondary infection of mice with the intracellular bacterium Listeria monocytogenes, or after boost immunization by specific peptide or DNA vaccination. Surprisingly, anti-CD4 mAb treatment during secondary CD8+ T cell responses markedly enlarged the population size of antigen-specific CD8+ T cells. After boost immunization with peptide or DNA, this effect was particularly profound, and antigen-specific CD8+ T cell populations were enlarged at least 10-fold. In terms of cytokine production and cytotoxicity, the enlarged CD8+ T cell population consisted of functional effector T cells. In depletion and transfer experiments, the suppressive function could be ascribed to CD4+CD25+ T cells. Our results demonstrate that CD4+ T cells control the CD8+ T cell response in two directions. Initially, they promote the generation of a CD8+ T cell responses and later they restrain the strength of the CD8+ T cell memory response. Down-modulation of CD8+ T cell responses during infection could prevent harmful consequences after eradication of the pathogen.

  18. Developmentally regulated GTP-binding protein 2 is required for stabilization of Rac1-positive membrane tubules.

    Science.gov (United States)

    Mani, Muralidharan; Lee, Unn Hwa; Yoon, Nal Ae; Yoon, Eun Hye; Lee, Byung Ju; Cho, Wha Ja; Park, Jeong Woo

    2017-11-04

    Previously we have reported that developmentally regulated GTP-binding protein 2 (DRG2) localizes on Rab5 endosomes and plays an important role in transferrin (Tfn) recycling. We here identified DRG2 as a key regulator of membrane tubule stability. At 30 min after Tfn treatment, DRG2 localized to membrane tubules which were enriched with phosphatidylinositol 4-monophosphate [PI(4)P] and did not contain Rab5. DRG2 interacted with Rac1 more strongly with GTP-bound Rac1 and tubular localization of DRG2 depended on Rac1 activity. DRG2 depletion led to destabilization of membrane tubules, while ectopic expression of DRG2 rescued the stability of the membrane tubules in DRG2-depleted cells. Our results reveal a novel mechanism for regulation of membrane tubule stability mediated by DRG2. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Hydrogen bond stabilities in membrane-reconstituted alamethicin from amide-resolved hydrogen-exchange measurements.

    Science.gov (United States)

    Dempsey, C E; Handcock, L J

    1996-01-01

    Amide-resolved hydrogen-deuterium exchange-rate constants were measured for backbone amides of alamethicin reconstituted in dioleoylphosphatidylcholine vesicles by an exchange-trapping method combined with high-resolution nuclear magnetic resonance spectroscopy. In vesicles containing alamethicin at molar ratios between 1:20 and 1:100 relative to lipid, the exchange-rate constants increased with increasing volume of the D20 buffer in which the vesicles were suspended, indicating that exchange under these conditions is dominated by partitioning of the peptide into the aqueous phase. This was supported by observation of a linear relationship between the exchange-rate constants for amides in membrane-reconstituted alamethicin and those for amides in alamethicin dissolved directly into D2O buffer. Significant protection of amides from exchange with D2O buffer in membrane-reconstituted alamethicin is interpreted in terms of stabilization by helical hydrogen bonding. Under conditions in which amide exchange occurred by partitioning of the peptide into solution, only lower limits for hydrogen-bond stabilities in the membrane were determined; all the potentially hydrogen-bonded amides of alamethicin are at least 1000-fold exchange protected in the membrane-bound state. When partitioning of alamethicin into the aqueous phase was suppressed by hydration of reconstituted vesicles in a limiting volume of water [D2O:dioleoylphosphatidylcholine:alamethicin; 220:1:0.05; (M:M:M)], the exchange-protection factors exhibited helical periodicity with highly exchange-protected, and less well-protected, amides on the nonpolar and polar helix faces, respectively. The exchange data indicate that, under the conditions studied, alamethicin adopts a stable helical structure in DOPC bilayers in which all the potentially hydrogen-bonded amides are stabilized by helical hydrogen bonds. The protection factors define the orientation of the peptide helix with respect to an aqueous phase, which is

  20. Anti-inflammatory, membrane-stabilizing interactions of salmeterol with human neutrophils in vitro.

    Science.gov (United States)

    Anderson, R; Feldman, C; Theron, A J; Ramafi, G; Cole, P J; Wilson, R

    1996-04-01

    1. We have investigated the effects of salmeterol (0.3-50 microM) on several pro-inflammatory activities of human neutrophils in vitro. 2. Oxidant production by FMLP- and calcium ionophore (A23187)-activated neutrophils was particularly sensitive to inhibition by low concentrations (0.3-3 microM) of salmeterol, while the responses of phorbol myristate acetate- and opsonised zymosan-stimulated cells were affected only by higher concentrations (3-50 microM) of the drug. At these concentrations salmeterol is not cytotoxic, nor does it act as a scavenger of superoxide. 3. These anti-oxidative interactions of salmeterol with neutrophils were insensitive to propranolol but could be eliminated by washing the cells, or by pretreatment with low concentrations (1-2 microM) of the pro-oxidative, membrane-destabilizing phospholipids, lysophosphatidylcholine (LPC), platelet activating factor (PAF) and lysoPAF (LPAF). 4. At concentrations of 6.25-50 microM salmeterol interfered with several other activities of stimulated neutrophils, including intracellular calcium fluxes, phospholipase A2 activity and synthesis of PAF. 5. In an assay of membrane-stabilizing activity, salmeterol (25 and 50 microM) neutralized the haemolytic action of LPC, PAF and LPAF. 6. Of the other commonly used beta 2-adrenoceptor agonists, fenoterol, and formoterol, but not salbutamol, caused moderate inhibition of neutrophil oxidant generation by a superoxide-scavenging mechanism. However, unlike salmeterol, these agents possessed only weak membrane stabilizing properties. 7. We conclude that salmeterol antagonizes the pro-inflammatory, pro-oxidative activity of several bioactive lipids implicated in the pathogenesis of bronchial asthma, by a mechanism related to the membrane-stabilizing, rather than to the beta 2-agonist properties of this agent.

  1. Hydrogen bond stabilities in membrane-reconstituted alamethicin from amide-resolved hydrogen-exchange measurements.

    Science.gov (United States)

    Dempsey, C E; Handcock, L J

    1996-04-01

    Amide-resolved hydrogen-deuterium exchange-rate constants were measured for backbone amides of alamethicin reconstituted in dioleoylphosphatidylcholine vesicles by an exchange-trapping method combined with high-resolution nuclear magnetic resonance spectroscopy. In vesicles containing alamethicin at molar ratios between 1:20 and 1:100 relative to lipid, the exchange-rate constants increased with increasing volume of the D20 buffer in which the vesicles were suspended, indicating that exchange under these conditions is dominated by partitioning of the peptide into the aqueous phase. This was supported by observation of a linear relationship between the exchange-rate constants for amides in membrane-reconstituted alamethicin and those for amides in alamethicin dissolved directly into D2O buffer. Significant protection of amides from exchange with D2O buffer in membrane-reconstituted alamethicin is interpreted in terms of stabilization by helical hydrogen bonding. Under conditions in which amide exchange occurred by partitioning of the peptide into solution, only lower limits for hydrogen-bond stabilities in the membrane were determined; all the potentially hydrogen-bonded amides of alamethicin are at least 1000-fold exchange protected in the membrane-bound state. When partitioning of alamethicin into the aqueous phase was suppressed by hydration of reconstituted vesicles in a limiting volume of water [D2O:dioleoylphosphatidylcholine:alamethicin; 220:1:0.05; (M:M:M)], the exchange-protection factors exhibited helical periodicity with highly exchange-protected, and less well-protected, amides on the nonpolar and polar helix faces, respectively. The exchange data indicate that, under the conditions studied, alamethicin adopts a stable helical structure in DOPC bilayers in which all the potentially hydrogen-bonded amides are stabilized by helical hydrogen bonds. The protection factors define the orientation of the peptide helix with respect to an aqueous phase, which is

  2. Effects of up-regulation of lymphocyte HO-1 expression on CD4+CD25+ Treg differentiation in vitro

    Directory of Open Access Journals (Sweden)

    Rui CHEN

    2013-09-01

    Full Text Available Objective To explore the effect of heme oxygenase-1 (HO-1 on differentiation of CD4+CD25+Treg derived from spleen T lymphocytes in mice in vitro and its underlying mechanism. Methods Lymphocytes were prepared from spleen of mice and pretreated with PBS, Copp (cobalt protoporphyrin, HO-1 inducer, 50μmol/L and Znpp (zinc protoporphyrin, HO-1 inhibitor, 50μmol/L respectively, for 12h. The expressions of HO-1 mRNA and protein in each group were determined by real-time qPCR and Western blotting. The ratio of CD4+CD25+Tregs was detected by flow cytometry. The level of Th1 and Th2 cytokines in the supernatant was determined by ELISA. Results Compared with PBS group, the expressions of HO-1 mRNA and protein, and the rates of CD4+CD25+Tregs increased in Copp group. At the same time, the cytokine of Th1, IL-2 and IFN-γ, significantly decreased, and the Th2 cytokines, TGF-β and IL-10, increased significantly (P<0.05. The results of Znpp group showed an opposite trend. Conclusion HO-1 could promote differentiation of T lymphocytes to CD4+CD25+Treg, and it may be related to an adjustment of the balance of Th1/Th2 cytokines.

  3. Ascaris suum infection modulates inflammation: Implication of CD4+CD25highFoxp3+T cells and IL-10.

    Science.gov (United States)

    Titz, T de O; de Araújo, C A A; Enobe, C S; Rigato, P O; Oshiro, T M; de Macedo-Soares, M F

    2017-09-01

    Helminth infections have the ability to modulate host's immune response through mechanisms that allow the chronic persistence of the worms in the host. Here, we investigated the mechanisms involved on the suppressive effect of Ascaris suum infection using a murine experimental model of LPS-induced inflammation. We found that infection with A. suum markedly inhibited leucocyte influx induced by LPS into air pouches, suppressed secretion of pro-inflammatory cytokines (IL-1β, TNF-α and IL-6) and induced high levels of IL-10 and TGF-β. Augmented frequency of CD4 + CD25 high Foxp3 + T cells was observed in the mesenteric lymph nodes of infected mice. Adoptive transfer of purified CD4 + CD25 + T cells to recipient uninfected mice demonstrated that these cells were able to induce a suppressive effect in the LPS-induced inflammation in air pouch model. In addition, adoptive transfer of CD4 + CD25 + T cells derived from IL-10 knockout mice suggests that this suppressive effect of A. suum infection involves IL-10 cytokine. In conclusion, our results demonstrated that A. suum experimental infection was capable of suppressing LPS-induced inflammation by mechanisms, which seem to be dependent on responses of CD4 + CD25 + T cells and secretion of IL-10 cytokine. © 2017 John Wiley & Sons Ltd.

  4. Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans.

    NARCIS (Netherlands)

    Morgan, M.E.; Bilsen, J.H. van; Bakker, A.M.; Heemskerk, B.; Schilham, M.W.; Hartgers, F.C.; Elferink, B.G.; Zanden, L.F.M. van der; Vries, R.R.P. de; Huizinga, T.W.J.; Ottenhoff, T.H.; Toes, R.E.

    2005-01-01

    Expression of the transcription factor Foxp3 (forkhead box P3) has been implicated as a key element for CD25(+) T regulatory cell function in mice. However, literature over similar involvement of FOXP3 expression in human T regulatory cells is limited. We found that, unlike murine cells, FOXP3 mRNA

  5. Identification and Functional Characterization of Human Cd4+Cd25+ T Cells with Regulatory Properties Isolated from Peripheral Blood

    Science.gov (United States)

    Jonuleit, Helmut; Schmitt, Edgar; Stassen, Michael; Tuettenberg, Andrea; Knop, Jurgen; Enk, Alexander H.

    2001-01-01

    A subpopulation of peripheral human CD4+CD25+ T cells that expresses CD45RO, histocompatibility leukocyte antigen DR, and intracellular cytotoxic T lymphocyte–associated antigen (CTLA) 4 does not expand after stimulation and markedly suppresses the expansion of conventional T cells in a contact-dependent manner. After activation, CD4+CD25+ T cells express CTLA-4 on the surface detectable for several weeks. These cells show a G1/G0 cell cycle arrest and no production of interleukin (IL)-2, IL-4, or interferon (IFN)-γ on either protein or mRNA levels. The anergic state of CD4+CD25+ T cells is not reversible by the addition of anti-CD28, anti–CTLA-4, anti–transforming growth factor β, or anti–IL-10 antibody. However, the refractory state of CD4+CD25+ T cells was partially reversible by the addition of IL-2 or IL-4. These data demonstrate that human blood contains a resident T cell population with potent regulatory properties. PMID:11390435

  6. Influence of the intermediate layer on the hydrothermal stability of sol-gel derived hybrid silica membranes

    NARCIS (Netherlands)

    ten Hove, Marcel; Luiten-Olieman, Mieke W.J.; Huiskes, Cindy; Nijmeijer, Arian; Winnubst, Louis

    2017-01-01

    The hydrothermal stability of microporous silica hybrid sol-gel derived membranes is often only tested for either the mesoporous intermediate membrane layer or the microporous separation layer. In this work an investigation is done on the interaction between the intermediate γ-alumina layer and the

  7. Analysis of cerium-composite polymer-electrolyte membranes during and after accelerated oxidative-stability test

    Science.gov (United States)

    Shin, Dongwon; Han, Myungseong; Shul, Yong-Gun; Lee, Hyejin; Bae, Byungchan

    2018-02-01

    The oxidative stability of membranes constructed from a composite of pristine sulfonated poly(arylene ether sulfone) and cerium was investigated by conducting an accelerated oxidative-stability test at the open-circuit voltage (OCV). The membranes were analyzed in situ through OCV and impedance measurements, cyclic voltammetry, and linear-sweep voltammetry to monitor the electrochemical properties during the stability test. Although the high-frequency resistance of a composite membrane was slightly higher than that of a pristine membrane because of the exchange of protons from the sulfonic acid with cerium ions, the composite membrane maintained its potential for much longer than the pristine membrane. The effect of the cerium ions as radical scavengers was confirmed by analyzing the drain water and chemical structure after operation. These post-operation analyses confirmed that cerium ions improved the oxidative stability of the hydrocarbon-based polymer during fuel-cell operation. It is clear that the cerium-based radical scavengers prevented chemical degradation of the polymer membrane as well as the electrode in terms of hydrogen cross-over, polymer-chain scission, and the electrochemical surface area, while they rarely diffused outward from the membrane.

  8. Structure and Stability of the Spinach Aquaporin SoPIP2;1 in Detergent Micelles and Lipid Membranes

    DEFF Research Database (Denmark)

    Plasencia, Ines; Survery, Sabeen; Ibragimova, Sania

    2011-01-01

    reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. Methodology/Principal Finding: We have characterized the protein structural stability after purification and after reconstitution into detergent micelles......-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58 degrees C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced...... by an increased melting temperature of up to 70 degrees C. Conclusion/Significance: The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes...

  9. An increased CD25-positive intestinal regulatory T lymphocyte population is dependent upon Cox-2 activity in the Apcmin/+ model.

    Science.gov (United States)

    Faluyi, O O; Fitch, P; Howie, S E M

    2018-01-01

    Only mismatch repair (MMR)-deficient colorectal cancer (CRC) appears to respond well to programmed death (PD)-1 inhibition at the present time. Emerging evidence suggests a role for micro-environmental factors such as CD25 + cells modulating response to PD-1 inhibition. In the Apc Min/+ model of familial adenomatous polyposis (MMR-proficient CRC), increased Cyclooxygenase-2 (Cox-2) expression by cells which include alternatively activated mononuclear phagocytes promotes intestinal tumorigenesis by mechanisms which may include immune suppression. To gain insight into this, we compared regulatory T cell (T reg ) populations between Apc Min/+ and wild-type mice prior to and after the phase of increased intestinal Cox-2-dependent prostaglandin E 2 (PGE 2 ) production. There was no difference in systemic T reg function or numbers between Apc Min/+ and wild-type mice. However, increased numbers of small intestinal CD25 + T regs were observed with increased Cox-2 activity in the absence of any difference in the expression of Tgf-β or Tslp between Apc Min/+ and wild-type mice. Cox-2 inhibitor therapy (Celecoxib) reversed the increase in Apc Min/+ intestinal CD25 + T reg numbers, without decreasing numbers of CD25 + systemic T regs . Forkhead box protein 3 (FoxP3 + ) and Cox-2 + cells were co-localized to the interstitium of adenomas of Apc min/+ mice. These results suggest selective dependence of an 'activated T reg ' phenotype on paracrine Cox-2 activity in Apc Min/+ small intestine. For therapeutic potential, further studies are required to evaluate the relevance of these findings to human cancer as well as the functional significance of CD25 + intestinal T regs in cancer. © 2017 British Society for Immunology.

  10. CD4+CD25+ T cells expressing FoxP3 in Icelandic horses affected with insect bite hypersensitivity.

    Science.gov (United States)

    Hamza, Eman; Steinbach, Falko; Marti, Eliane

    2012-07-15

    Insect bite hypersensitivity (IBH) is an IgE-mediated dermatitis caused by bites of midges from the genus Culicoides. We have shown previously that peripheral blood mononuclear cells (PBMC) from IBH-affected horses produce higher levels of IL-4 and lower levels of IL-10 and TGF-β1 than those from healthy horses, suggesting that IBH is associated with a reduced regulatory immune response. FoxP3 is a crucial marker of regulatory T cells (Tregs). Here we have determined the proportion of CD4(+)CD25(+)FoxP3(+) T cells by flow cytometry in PBMC directly after isolation or after stimulation with Culicoides extract or a control antigen (Tetanus Toxoid). There were no differences between healthy and IBH horses either in the proportion of FoxP3(+)CD4(+)CD25(+) cells in freshly isolated PBMC or in the following stimulation with Tetanus Toxoid. However, upon stimulation of PBMC with the allergen, expression of FoxP3 by CD4(+)CD25(+high) and CD4(+)CD25(+dim) cells was significantly higher in healthy than in IBH horses. Addition of recombinant IL-4 to PBMC from healthy horses stimulated with the allergen significantly decreased the proportion of FoxP3 expressing cells within CD4(+)CD25(+high). These results suggest that IBH is associated with a decreased number of allergen-induced Tregs. This could be a consequence of the increased IL-4 production by PBMC of IBH-affected horses. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. CD4+CD25+CD127low FoxP3+ regulatory T cells in Crohn's disease.

    Science.gov (United States)

    Khalili, Ali; Ebrahimpour, Soheil; Maleki, Iradj; Abediankenari, Saeid; Mohammadnia Afrouzi, Mousa

    2018-02-16

    Regulatory T (Treg) cell play a key role in autoimmune diseases. We evaluated the regulatory function and frequency of Treg cells and secreted IL-10, IL-35 concentration in Crohn's disease (CD). Twenty-three patients with CD and 25 healthy controls (HC) were included in this study. We analysed the alteration of Tregs frequency using flow cytometry for CD4, CD25, CD127 and FoxP3 markers. Surface expression of CD4, CD25 and CD127 markers were used for isolation of a relatively pure Treg cells. Suppressive activity of Tregs was determined by measuring their ability to inhibit the proliferation of T responder (Tres) cells. In addition, the amounts of IL-10 and IL-35 cytokines in co-culture supernatants were measured by ELISA assay after stimulation with anti-CD2/CD3/CD28. CD patients had significantly lower frequency of CD4+ CD25+ CD127low FoxP3+ Treg cells in comparison with controls (‎2.17 ± 1.04 vs.2.83 ± 1.07, p=0.0352)‎. Additionally, Treg cells mediated suppression was not significantly different in CD patients compared to controls. There was a significant difference in IL-10 secretion in response to anti-CD2/CD3/CD28 stimulation compared with HC (p= 0.0074). The frequency of CD4+ CD25+ CD127 low FoxP3+ Tregs decreased in active stage of CD but there was no impaired suppressive function of CD4+ CD25+ ‎CD127low FoxP3+Treg cells. We suggest that an alteration in the ‎balance of Tregs and T effectors may contribute to pathogenesis of CD.‎.

  12. Conditions that Stabilize Membrane Domains Also Antagonize n-Alcohol Anesthesia

    Science.gov (United States)

    Machta, Benjamin B.; Gray, Ellyn; Nouri, Mariam; McCarthy, Nicola L. C.; Gray, Erin M.; Miller, Ann L.; Brooks, Nicholas J.; Veatch, Sarah L.

    2016-08-01

    Diverse molecules induce general anesthesia with potency strongly correlated both with their hydrophobicity and their effects on certain ion channels. We recently observed that several n-alcohol anesthetics inhibit heterogeneity in plasma membrane derived vesicles by lowering the critical temperature ($T_c$) for phase separation. Here we exploit conditions that stabilize membrane heterogeneity to further test the correlation between the anesthetic potency of n-alcohols and effects on $T_c$. First we show that hexadecanol acts oppositely to n-alcohol anesthetics on membrane mixing and antagonizes ethanol induced anesthesia in a tadpole behavioral assay. Second, we show that two previously described `intoxication reversers' raise $T_c$ and counter ethanol's effects in vesicles, mimicking the findings of previous electrophysiological and behavioral measurements. Third, we find that hydrostatic pressure, long known to reverse anesthesia, also raises $T_c$ in vesicles with a magnitude that counters the effect of butanol at relevant concentrations and pressures. Taken together, these results demonstrate that $\\Delta T_c$ predicts anesthetic potency for n-alcohols better than hydrophobicity in a range of contexts, supporting a mechanistic role for membrane heterogeneity in general anesthesia.

  13. Urinary and serum soluble CD25 complements urinary soluble CD163 to detect active renal anti-neutrophil cytoplasmic autoantibody-associated vasculitis: a cohort study.

    Science.gov (United States)

    Dekkema, Gerjan J; Abdulahad, Wayel H; Bijma, Theo; Moran, Sarah M; Ryan, Louise; Little, Mark A; Stegeman, Coen A; Heeringa, Peter; Sanders, Jan-Stephan F

    2018-03-01

    Early detection of renal involvement in anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) is of major clinical importance to allow prompt initiation of treatment and limit renal damage. Urinary soluble cluster of differentiation 163 (usCD163) has recently been identified as a potential biomarker for active renal vasculitis. However, a significant number of patients with active renal vasculitis test negative using usCD163. We therefore studied whether soluble CD25 (sCD25), a T cell activation marker, could improve the detection of renal flares in AAV. sCD25 and sCD163 levels in serum and urine were measured by enzyme-linked immunosorbent assay in 72 patients with active renal AAV, 20 with active extrarenal disease, 62 patients in remission and 18 healthy controls. Urinary and blood CD4+ T and CD4+ T effector memory (TEM) cell counts were measured in 22 patients with active renal vasculitis. Receiver operating characteristics (ROC) curves were generated and recursive partitioning was used to calculate whether usCD25 and serum soluble CD25 (ssCD25) add utility to usCD163. usCD25, ssCD25 and usCD163 levels were significantly higher during active renal disease and significantly decreased after induction of remission. A combination of usCD25, usCD163 and ssCD25 outperformed all individual markers (sensitivity 84.7%, specificity 95.1%). Patients positive for sCD25 but negative for usCD163 (n = 10) had significantly higher C-reactive protein levels and significantly lower serum creatinine and proteinuria levels compared with the usCD163-positive patients. usCD25 correlated positively with urinary CD4+ T and CD4+ TEM cell numbers, whereas ssCD25 correlated negatively with circulating CD4+ T and CD4+ TEM cells. Measurement of usCD25 and ssCD25 complements usCD163 in the detection of active renal vasculitis.

  14. The effects of a protein osmolyte on the stability of the integral membrane protein glycerol facilitator.

    Science.gov (United States)

    Baturin, Simon; Galka, Jamie J; Piyadasa, Hadeesha; Gajjeraman, S; O'Neil, Joe D

    2014-12-01

    Osmolytes are naturally occurring molecules used by a wide variety of organisms to stabilize proteins under extreme conditions of temperature, salinity, hydrostatic pressure, denaturant concentration, and desiccation. The effects of the osmolyte trimethylamine N-oxide (TMAO) as well as the influence of detergent head group and acyl chain length on the stability of the Escherichia coli integral membrane protein glycerol facilitator (GF) tetramer to thermal and chemical denaturation by sodium dodecyl sulphate (SDS) are reported. TMAO promotes the association of the normally tetrameric α-helical protein into higher order oligomers in dodecyl-maltoside (DDM), but not in tetradecyl-maltoside (TDM), lyso-lauroylphosphatidyl choline (LLPC), or lyso-myristoylphosphatidyl choline (LMPC), as determined by dynamic light scattering (DLS); an octameric complex is particularly stable as indicated by SDS polyacrylamide gel electrophoresis. TMAO increases the heat stability of the GF tetramer an average of 10 °C in the 4 detergents and also protects the protein from denaturation by SDS. However, it did not promote re-association to the tetramer when added to SDS-dissociated protein. TMAO also promotes the formation of rod-like detergent micelles, and DLS was found to be useful for monitoring the structure of the protein and the redistribution of detergent during thermal dissociation of the protein. The protein is more thermally stable in detergents with the phosphatidylcholine head group (LLPC and LMPC) than in the maltoside detergents. The implications of the results for osmolyte mechanism, membrane protein stability, and protein-protein interactions are discussed.

  15. The alternation of autophagy/apoptosis in CD4+CD25+Foxp3+ Tregs on the developmental stages of atherosclerosis.

    Science.gov (United States)

    Tian, Yuling; Liang, Xiao; Wu, Yue

    2018-01-01

    Naturally regulatory T cells (Tregs) play a critical role in the regulation of T cell-mediated immune responses in atherosclerosis. However, the regulatory mechanism underlying Tregs upon long-term development of atherosclerosis remains unknown. Therefore, in this study, atherosclerotic model was induced in ApoE-/- mice by feeding fat-diet for 10 weeks. Quantification of atherosclerotic lesions was done by calculating the lesion size in the aortic sinus every 2 weeks. The lipid levels and inflammatory mediators were detected in serum sample. The populations of CD4+CD25+Foxp3+ Tregs were compared between ApoE-/- mice (ApoE-/-) and wild type C57BL/6 littermates (WT). The expression levels of autophagy and apoptosis signaling related regulators were determined by flow cytomery, RT-qPCR, and western blot assays in the CD4+CD25+Foxp3+ Tregs isolated from ApoE-/- and WT. We found that the sizes of plaque lesions in atherosclerotic ApoE-/- mice were larger than those in WT group during 10 weeks' detection (all P<0.05); Whereas, flow cytometry assay showed that the populations of CD4+CD25+Foxp3+ Tregs were significantly reduced in atherosclerotic ApoE-/- mice compared with those in corresponding WT group from the 4th weeks' detection (all P<0.05). The lipid accumulation and increased pro-inflammatory mediators were correlated with the developmental progression of atherosclerosis. Furthermore, compared to WT group, the functional properties of CD4+CD25+Foxp3+ Tregs from ApoE-/- mice showed a gradually decreased autophagic activity with aberrant expressions of LC3, Beclin1, ATG5, ATG7, p62 (all P<0.05), and a gradually increased apoptotic activity with abnormal expressions of cleaved caspase 3, Bim, Bcl-2 (all P<0.05) during the 10 weeks' detection period. Taken together, our data demonstrated that the population of CD4+CD25+Foxp3+ Tregs was reversely correlated with plaque forming in atherosclerotic ApoE-/- mice during atherosclerosis development. And the autophagy

  16. Poly(vinylbenzylchloride) Based Anion-Exchange Blend Membranes (AEBMs): Influence of PEG Additive on Conductivity and Stability.

    Science.gov (United States)

    Kerres, Jochen A; Krieg, Henning M

    2017-06-16

    In view of the many possible applications such as fuel cells and electrolysers, recent interest in novel anion exchange membranes (AEMs) has increased significantly. However, their low conductivity and chemical stability limits their current suitability. In this study, the synthesis and characterization of several three- and four-component anion exchange blend membranes (AEBMs) is described, where the compositions have been systematically varied to study the influence of the AEBM's composition on the anion conductivities as well as chemical and thermal stabilities under strongly alkaline conditions. It was shown that the epoxide-functionalized poly(ethylene glycol)s that were introduced into the four-component AEBMs resulted in increased conductivity as well as a marked improvement in the stability of the AEBMs in an alkaline environment. In addition, the thermal stability of the novel AEBMs was excellent showing the suitability of these membranes for several electrochemical applications.

  17. Synthesis of mesh-shaped calcia partially stabilized zirconia using eggshell membrane template as filler composite

    Directory of Open Access Journals (Sweden)

    Gema Gempita

    2017-08-01

    Full Text Available This experiment was conducted experimentally to synthesize Calcia Partially Stabilized Zirconia (Ca-PSZ by sol-gel method using eggshell membrane template as a composite filler. The eggshell membrane was used to produce a mesh shaped structure, which hopefully can improve the mechanical properties of the composite. Ca-PSZ filler was synthesized from ZrOCl2 precursor and Ca(NO32 stabilizer with a 24 hours immersion time. Ca-PSZ of synthesis then mixed with the resin matrix to test its composite hardness. The EDS characterization results suggested that the sample contained elements of zirconia, calcium, and oxygen. Whereas, the XRD characterization identified that crystal structures that formed in the sample were nano scale tetragonal. Characterization of SEM showed Ca-PSZ with mesh structured. The average composite hardness value was 15.79 VHN. The composites with Ca-PSZ-synthesized filler could be prepared and its hardness value was higher than the composite with Ca-PSZ filler in spherical particles, but the hardness was still below the composite on the market.

  18. Membrane permeation of testosterone from either solutions, particle dispersions, or particle-stabilized emulsions.

    Science.gov (United States)

    Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Elliott, Russell P

    2012-02-07

    We derive a unified model that accounts for the variation in extent and rate of membrane permeation by a permeating species with the type of donor compartment formulation (aqueous and oil solutions, particle dispersions, and oil-in-water and water-in-oil emulsions stabilized by particles) initially containing the permeant. The model is also applicable to either closed-loop or open-flow configurations of the receiver compartment of the permeation cell. Predictions of the model are compared with measured extents and rates of permeation of testosterone across an 80 μm thick polydimethylsiloxane (PDMS) membrane from donor compartments initially containing testosterone dissolved in either aqueous or isopropylmyristate (IPM) solutions, aqueous or IPM dispersions of silica nanoparticles or IPM-in-water or water-in-IPM emulsions stabilized by silica nanoparticles. Using a single set of input parameters, the model successfully accounts for the wide variations in permeation behavior observed for the different donor formulation types with either closed-loop or open flow configurations of the permeation cell receiver compartment.

  19. The calcineurin inhibitor tacrolimus allows the induction of functional CD4+CD25+ regulatory T cells by rabbit anti-thymocyte globulins

    NARCIS (Netherlands)

    V.D.K.D. Sewgobind (Varsha); L.J.W. van der Laan (Luc); M.M.L. Kho (Marcia); R. Kraaijeveld (Rens); S.S. Korevaar (Sander); W.M. Mol (Wendy)

    2010-01-01

    textabstractRabbit anti-thymocyte globulins (rATG) induce CD4+CD25 +forkhead box P3 (FoxP3+) regulatory T cells that control alloreactivity. In the present study, we investigated whether rATG convert T cells into functional CD4+CD25+FoxP3+CD127 -/low regulatory T cells in the presence of drugs that

  20. CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis

    Science.gov (United States)

    McNally, Alice; Hill, Geoffrey R.; Sparwasser, Tim; Thomas, Ranjeny; Steptoe, Raymond J.

    2011-01-01

    CD4+CD25+ regulatory T cells (Treg) play a crucial role in the regulation of immune responses. Although many mechanisms of Treg suppression in vitro have been described, the mechanisms by which Treg modulate CD8+ T cell differentiation and effector function in vivo are more poorly defined. It has been proposed, in many instances, that modulation of cytokine homeostasis could be an important mechanism by which Treg regulate adaptive immunity; however, direct experimental evidence is sparse. Here we demonstrate that CD4+CD25+ Treg, by critically regulating IL-2 homeostasis, modulate CD8+ T-cell effector differentiation. Expansion and effector differentiation of CD8+ T cells is promoted by autocrine IL-2 but, by competing for IL-2, Treg limit CD8+ effector differentiation. Furthermore, a regulatory loop exists between Treg and CD8+ effector T cells, where IL-2 produced during CD8+ T-cell effector differentiation promotes Treg expansion. PMID:21502514

  1. Stability, Molecular Sieving, and Ion Diffusion Selectivity of a Lamellar Membrane from Two-Dimensional Molybdenum Disulfide.

    Science.gov (United States)

    Deng, Mengmeng; Kwac, Kijeong; Li, Meng; Jung, Yousung; Park, Hyung Gyu

    2017-04-12

    Two-dimensional (2D) subnanometer channels allow unique mass transport promising for molecular sieving. New 2D channels of MoS 2 nanosheets allow one to understand molecular transmission and separation, unlike the graphene oxide counterpart containing various defects and cationic metal contaminants. Membranes from layered MoS 2 platelets show extraordinary stability in an aqueous environment and compatibility with polymer filters, both beneficial to efficient manufacturing. Sharing gas-tightness and unimpeded water vapor permeation with a graphene oxide membrane, our lamellar MoS 2 membrane demonstrates a molecular sieving property for organic vapor for the first time. The MoS 2 membrane also reveals diffusion selectivity of aqueous ions, attributable to the energy penalty in bulk-to-2D dimensional transition. These newly revealed properties of the lamellar membrane full of angstrom-sized 2D channels point to membrane technology applications for energy and environment.

  2. Studie van CD4+CD25+ regulatoire T-cellen bij patiënten met multiple sclerose

    OpenAIRE

    DOUMEN, Kathleen

    2005-01-01

    Multiple sclerose (MS) wordt gekenmerkt door een immuungemedieerde afbraak van de myelinelaag rondom de zenuwen in het centrale zenuwstelsel (demyelinisatie). Sinds enkele jaren is er vernieuwde aandacht gekomen voor de rol van regulatoire T-cellen in autoimmune ziekten, waarbij een belangrijke subpopulatie van CD4+ T-cellen met constitutieve CD25 expressie (Tregs) een kritische functie vervult in de perifere immuuntolerantie. Echter zijn de ontwikkeling en functionele eigensch...

  3. Induction of Immunosuppressive CD8+CD25+FOXP3+ Regulatory T Cells by Suboptimal Stimulation with Staphylococcal Enterotoxin C1.

    Science.gov (United States)

    Lee, Juyeun; Park, Nogi; Park, Joo Youn; Kaplan, Barbara L F; Pruett, Stephen B; Park, Juw Won; Park, Yong Ho; Seo, Keun Seok

    2018-01-15

    Superantigens (SAgs) produced by Staphylococcus aureus at high concentrations induce proliferation of T cells bearing specific TCR Vβ sequences and massive cytokinemia that cause toxic shock syndrome. However, the biological relevance of SAgs produced at very low concentrations during asymptomatic colonization or chronic infections is not understood. In this study, we demonstrate that suboptimal stimulation of human PBMCs with a low concentration (1 ng/ml) of staphylococcal enterotoxin C1, at which half-maximal T cell proliferation was observed, induced CD8 + CD25 + T cells expressing markers related to regulatory T cells (Tregs), such as IFN-γ, IL-10, TGF-β, FOXP3, CD28, CTLA4, TNFR2, CD45RO, and HLA-DR. Importantly, these CD8 + CD25 + T cells suppressed responder cell proliferation mediated in contact-dependent and soluble factor-dependent manners, involving galectin-1 and granzymes, respectively. In contrast, optimal stimulation of human PBMCs with a high concentration (1 μg/ml) of staphylococcal enterotoxin C1, at which maximal T cell proliferation was observed, also induced similar expression of markers related to Tregs, including FOXP3 in CD8 + CD25 + cells, but these T cells were not functionally immunosuppressive. We further demonstrated that SAg-induced TCR Vβ-restricted and MHC class II-restricted expansion of immunosuppressive CD8 + CD25 + T cells is independent of CD4 + T cells. Our results suggest that the concentration of SAg strongly affects the functional characteristics of activated T cells, and low concentrations of SAg produced during asymptomatic colonization or chronic S. aureus infection induce immunosuppressive CD8 + Tregs, potentially promoting colonization, propagation, and invasion of S. aureus in the host. Copyright © 2018 by The American Association of Immunologists, Inc.

  4. Immunophenotype and increased presence of CD4(+)CD25(+) regulatory T cells in patients with acute lymphoblastic leukemia.

    Science.gov (United States)

    Wu, Cui-Ping; Qing, Xi; Wu, Cui-Yun; Zhu, Hong; Zhou, Hai-Yan

    2012-02-01

    Acute lymphoblastic leukemia (ALL), cancer of the white blood cells, is a heterogeneous disease that mainly occurs due to the malignant cloning of original and naive lymphocytes. The aim of this study was to explore the immunophenotype, the percentage of CD4(+)CD25(+) regulatory T cells (Tregs) and the expression of cytokines interleukin (IL)-2, IL-10 and TGF-β in patients with ALL. The immunophenotype and levels of CD4(+)CD25(+) Tregs were detected using flow cytometry in the peripheral blood of 35 ALL patients, with 18 healthy individuals being selected as controls. The results suggested that 22 patients had B cell ALL (B-ALL) and 13 had T cell ALL (T-ALL) among the 35 ALL patients. In B-ALL patients, the surface antigen CD19 was most commonly expressed; in T-ALL patients, CD7 was most common. Furthermore, the percentage of CD4(+)CD25(+) Treg cells in the peripheral blood of B-ALL and T-ALL patients was higher compared to that of healthy individuals (Pcell culture supernatants from B-ALL and T-ALL patients were higher compared to those in the controls (Pcells, IL-2, IL-10 or TGF-β in B-ALL versus T-ALL patients. The authors concluded that CD19 and CD7 may serve as diagnostic markers of B-ALL and T-ALL, respectively. The increased presence of CD4(+)CD25(+) Treg cells and the altered levels of secreted cytokines are indicative of an immunosuppressive mechanism in the pathogenesis of ALL.

  5. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes.

    Science.gov (United States)

    Clafshenkel, William P; Murata, Hironobu; Andersen, Jill; Creeger, Yehuda; Koepsel, Richard R; Russell, Alan J

    2016-01-01

    Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system.

  6. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    William P Clafshenkel

    Full Text Available Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP, may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidylsuberate (BS3. A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system.

  7. Mechanical Stability of H3PO4-Doped PBI/Hydrophilic-Pretreated PTFE Membranes for High Temperature PEMFCs

    International Nuclear Information System (INIS)

    Park, Jaehyung; Wang, Liang; Advani, Suresh G.; Prasad, Ajay K.

    2014-01-01

    Graphical abstract: - Highlights: • PBI/PTFE membrane was prepared by porous PTFE with hydrophilic surface pretreatment. • The durability of the prepared PBI/PTFE membrane was compared with pure PBI, PBI with untreated PTFE, and PBI-Nafion with untreated PTFE membranes. • Accelerated durability tests and SEM showed improved durability based the PBI/PTFE membrane with pretreated PTFE. - Abstract: A novel polybenzimidazole (PBI)/poly(tetrafluoroethylene) (PTFE) composite membrane doped with phosphoric acid was fabricated for high temperature operation in a polymer electrolyte membrane (PEM) fuel cell. A hydrophilic surface pretreatment was applied to the porous PTFE matrix film to improve its interfacial adhesion to the PBI polymer, thereby avoiding the introduction of Nafion ionomer which is traditionally used as a coupling agent. The pretreated PTFE film was embedded within the composite membrane during solution-casting using 5wt% PBI/DMAc solution. The mechanical stability and durability of three types of MEAs assembled with PBI only, PBI with pretreated PTFE, and PBI-Nafion with untreated PTFE membranes were evaluated under an accelerated degradation testing protocol employing extreme temperature cycling. Degradation was characterized by recording polarization curves, hydrogen crossover, and proton resistance. Cross-sections of the membranes were examined before and after thermal cycling by scanning electron microscope. Energy-dispersive X-ray spectroscopy verified that the PBI is dispersed homogeneously in the porous PTFE matrix. Results show that the PBI composite membrane with pretreated PTFE has a lower degradation rate than the Nafion/PBI membrane with untreated PTFE. Thus, the hydrophilic pretreatment employed here greatly improved the mechanical stability of the composite membrane, which resulted in improved durability under an extreme thermal cycling regime

  8. CD4+CD25+ regulatory T cells have divergent effects on intestinal inflammation in IL-10 gene-deficient mice.

    Science.gov (United States)

    Sydora, Beate C; MacFarlane, Sarah M; Tavernini, Michele M; Doyle, Jason S G; Fedorak, Richard N

    2008-06-01

    The regulatory effect of murine CD4+CD25+ T-cells in vivo appears to be dependent on the secretion of IL-10. The lack of IL-10 in the IL-10 gene-deficient mouse has a profoundly negative effect on the mouse's regulation of the response to intestinal bacteria, resulting in severe enterocolitis. We investigated the effect of neonatal injection with wild-type CD4+CD25+ T-cells on the intestinal immune response in IL-10 gene-deficient mice. At the time of analysis, 8-15 weeks later, all mice demonstrated an increased, antigen-stimulated systemic response. However, the intestinal response was divergent with about half of the mice developing an intestinal inflammation with a high injury score, the other half demonstrating a remarkable reduction in injury score with a marked decrease in intestinal IFNgamma release. Our data demonstrate that CD4+CD25+ T-cells can be activated in IL-10 gene-deficient mice and that this stimulation under stringent conditions has the potential to reduce intestinal inflammation.

  9. [Effect of Coixenolide on Foxp3+ CD4+ CD25+ Regulatory T Cells in Collagen-induced Arthritis Mice].

    Science.gov (United States)

    Zheng, Hong-xia; Zhang, Wei-ming; Zhou, Hong-juan; Zhang, Wen; Yu, Jian-ning; Wang, Wei

    2016-03-01

    To study the effect of coixenolide on Foxp3+ CD4+ CD25+ regulatory T cells (Treg) in collagen induced arthritis (CIA) mice, and to explore its possible mechanism for treating rheumatiol arthritis. Five mice were recruited as a normal control group from 25 mice, and the rest 20 were used in CIA modeling. After successful modeling they were randomly divided in the model control group and the coixenolide group, 10 in each group. Coixenolide injection at 25 mL/kg was intraperitoneally injected to mice in the coixenolide group, while normal saline at 25 mL/kg was intraperitoneally injected to mice in the normal control group and the model control group. The injection lasted for 21 days. Scoring for CIA was performed after injection and arthritis index was calculated. The peripheral blood Foxp3+ CD4+ CD25+ Treg ratio was determined by flow cytometry (FCM). Compared with the normal control group, the arthritis index obviously increased in the model control group (P coixenolide group than in the model control group (P coixenolide control group than in the model control group (P Coixenolide could up-regulate Foxp3+ CD4+ CD25+ Treg ratios in CIA mice, which might play certain immunoregulation roles in the incidence of CIA.

  10. Performance and Long Term Stability of Mesoporous Silica Membranes for Desalination

    Science.gov (United States)

    Elma, Muthia; Yacou, Christelle; Diniz da Costa, João C.; Wang, David K.

    2013-01-01

    This work shows the preparation of silica membranes by a two-step sol-gel method using tetraethyl orthosilicate in ethanolic solution by employing nitric acid and ammonia as co-catalysts. The sols prepared in pH 6 resulted in the lowest concentration of silanol (Si–OH) species to improve hydrostability and the optimized conditions for film coating. The membrane was tested to desalinate 0.3–15 wt % synthetic sodium chloride (NaCl) solutions at a feed temperature of 22 °C followed by long term membrane performance of up to 250 h in 3.5 wt % NaCl solution. Results show that the water flux (and salt rejection) decrease with increasing salt concentration delivering an average value of 9.5 kg m–2 h–1 (99.6%) and 1.55 kg m–2 h–1 (89.2%) from the 0.3 and 15 wt % saline feed solutions, respectively. Furthermore, the permeate salt concentration was measured to be less than 600 ppm for testing conditions up to 5 wt % saline feed solutions, achieving below the recommended standard for potable water. Long term stability shows that the membrane performance in water flux was stable for up to 150 h, and slightly reduced from thereon, possibly due to the blockage of large hydrated ions in the micropore constrictions of the silica matrix. However, the integrity of the silica matrix was not affected by the long term testing as excellent salt rejection of >99% was maintained for over 250 h. PMID:24956942

  11. Research results on productivity stabilization by ultrasonic camera (plant with membrane ceramic elements during vine processing

    Directory of Open Access Journals (Sweden)

    V. T. Antufyev

    2016-01-01

    Full Text Available The article describes solutions to the problems of declining productivity of ceramic membrane elements for wine processing on the final manufacturing phase. A relative stabilization of filtration velocity, venting efficiency and wine lightening were experimentally confirmed during contacts with oscillation waves of ultrasonic transmitter on the ceramic filter. Which significantly reduced the cost of various preservatives to increase periods storage. To study the processes of wine processing by the proposed method it was made an experimental installation on the basis of pilot machine MRp-1/2 for bottling of quiet liquids and an ultrasonic device "Volna– M" UZTA-1/22-OM with a firmly, waveguide which transmits sound, fixed filter frame on the ultrasound emitter. To stabilize the performance of ultrasonic units with ceramic membrane elements without quality deterioration of wines it was empirically determined rational parameters of power of ultrasound input and pressure in the system. The given derived dependencies and graphs allow to define the time of relatively stable operating filter regime. It was revealed a significant cost reduction on filtration, as it allows escape from the contamination of the product by various preservatives, and increasing of storage duration in a sealed container during aseptic filling without a thermal sterilization. Ultrasonic emitter contact by superposition wave vibrations on the ceramic filter increases not only the efficiency of gas removal, but also improves the organoleptic characteristics, stabilizes the filters, improves their productivity. Gas removal creates unfavorable conditions for development of the yeast, which in turn increases the shelf life of semisweet wine.

  12. Stability study and lyophilization of vitamin E-loaded nanocapsules prepared by membrane contactor.

    Science.gov (United States)

    Khayata, N; Abdelwahed, W; Chehna, M F; Charcosset, C; Fessi, H

    2012-12-15

    In this research, we studied the accelerated stability of vitamin E-loaded nanocapsules (NCs) prepared by the nanoprecipitation method. Vitamin E-loaded NCs were optimized firstly at the laboratory scale and then scaled up using the membrane contactor technique. The optimum conditions of the membrane contactor preparation (pilot scale) produced vitamin E-loaded NCs with an average size of 253 nm, polydispersity index 0.19 and a zeta potential -16 mV. The average size, polydispersity index and zeta potential values were 185 nm, 0.12 and -15 mV, respectively for the NCs prepared at laboratory scale. No significant changes were noticed in these values after 3 and 6 months of storage at high temperature (40±2 °C) and relative humidity (75±5%) in spite of vitamin E sensitivity to light, heat and oxygen. The entrapment efficiency of NCs prepared at pilot scale was 97% at the beginning of the stability study, and became (95%, 59%) after 3 and 6 months of storage, respectively. These values at lab-scale were (98%, 96%, and 89%) at time zero and after 3 and 6 months of storage, respectively. This confirms the ability of vitamin E encapsulation to preserve its stability, which is one major goal of our work. Lyophilization of the optimized formula at lab-scale was also performed. Four types of cryoprotectants were tested (poly(vinyl pyrrolidone), sucrose, mannitol, and glucose). Freeze-dried NCs prepared with sucrose were found acceptable. The other lyophilized NCs obtained at different conditions presented large aggregates. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Purity and stability of the membrane-limited glucocorticoid receptor agonist dexamethasone-BSA.

    Science.gov (United States)

    Weiss, Grant L; Rainville, Jennifer R; Zhao, Qi; Tasker, Jeffrey G

    2017-09-20

    Cellular effects of glucocorticoids can be separated into classical transcriptional regulation via activation of the canonical nuclear glucocorticoid receptor and rapid actions mediated by activation of one or more putative membrane-associated glucocorticoid receptors that regulate both transcriptional and non-transcriptional signaling. Dexamethasone-bovine serum albumin (Dex-BSA) is one of several membrane-limited steroid receptor agonists. Dex-BSA and other steroid conjugates such as corticosterone-, estradiol- and testosterone-BSA have been used to study rapid steroid effects initiated by putative membrane receptors. The purity and stability of the steroid-BSA conjugate is crucial, therefore, since any steroid that is not bound to or that dissociates from the BSA conjugate could penetrate into the intracellular compartment and confound the experiment. We used fluorine NMR to determine if free Dex could be detected in a commercially available Dex-BSA dissolved in H 2 O. Non-covalently bound Dex was detected in the Dex-BSA solution, but the level of free Dex remained constant over time and with increasing temperature, indicating that the free Dex was not a result of instability of the Dex-BSA conjugate. The free Dex was lost when the Dex-BSA was denatured and subjected to dialysis, which suggested that it was trapped in the Dex-BSA three-dimensional structure and not covalently bound to the BSA. The purified, renatured Dex-BSA retained its rapid activity, which confirmed that the observed effects of Dex-BSA are not caused by non-covalently-bound Dex. Therefore, the Dex contaminant found in the Dex-BSA solution is likely to be tightly, but non-covalently, bound to BSA, and the Dex-BSA activity remains membrane-limited. Our findings indicate that Dex-BSA remains a suitable membrane-restricted glucocorticoid receptor agonist, but suggest that denaturing purification is a useful control for the study of membrane-initiated steroid-BSA actions. Copyright © 2017

  14. Peptide insertion, positioning, and stabilization in a membrane: insight from an all-atom molecular dynamics simulation.

    Science.gov (United States)

    Babakhani, Arneh; Gorfe, Alemayehu A; Gullingsrud, Justin; Kim, Judy E; Andrew McCammon, J

    Peptide insertion, positioning, and stabilization in a model membrane are probed via an all-atom molecular dynamics (MD) simulation. One peptide (WL5) is simulated in each leaflet of a solvated dimyristoylglycero-3-phosphate (DMPC) membrane. Within the first 5 ns, the peptides spontaneously insert into the membrane and then stabilize during the remaining 70 ns of simulation time. In both leaflets, the peptides localize to the membrane interface, and this localization is attributed to the formation of peptide-lipid hydrogen bonds. We show that the single tryptophan residue in each peptide contributes significantly to these hydrogen bonds; specifically, the nitrogen heteroatom of the indole ring plays a critical role. The tilt angles of the indole rings relative to the membrane normal in the upper and lower leaflets are approximately 26 degrees and 54 degrees , respectively. The tilt angles of the entire peptide chain are 62 degrees and 74 degrees . The membrane induces conformations of the peptide that are characteristic of beta-sheets, and the peptide enhances the lipid ordering in the membrane. Finally, the diffusion rate of the peptides in the membrane plane is calculated (based on experimental peptide concentrations) to be approximately 6 A(2)/ns, thus suggesting a 500 ns time scale for intermolecular interactions.

  15. Membrane stability of sickle erythrocytes incubated in extracts of three medicinal plants: Anacardium occidentale, Psidium guajava, and Terminalia catappa.

    Science.gov (United States)

    Chikezie, Paul Chidoka; Uwakwe, Augustine Amadikwa

    2011-04-01

    Many reports showed that medicinal plant extracts cause alterations on the shape and physiology of erythrocytes. The present study seeks to ascertain the osmotic stability of sickle erythrocytes incubated in aqueous extracts of Anacardium occidentale, Psidium guajava, and Terminalia catappa. The fraction of erythrocytes lysed when suspended in saline solution of varying concentrations was investigated by spectrophotometric method. The percentage hemolysis of erythrocytes in the control and test samples showed a sigmoidal relationship with increasing concentrations of saline solution. Membrane stability was ascertained as mean corpuscular fragility (MCF) index of erythrocytes incubated in 400 and 800 mg/dL aqueous concentrations of the three plant extracts. The two experimental concentrations of P. guajava and T. catappa protected the erythrocytes against osmotic stress, as evidenced by decreases in the values of MCF compared with the control sample (P catappa stabilized erythrocyte membrane, higher concentration (800 mg/dL) of A. occidentale exhibited no membrane protective effect.

  16. Membrane protein stability can be compromised by detergent interactions with the extramembranous soluble domains.

    Science.gov (United States)

    Yang, Zhengrong; Wang, Chi; Zhou, Qingxian; An, Jianli; Hildebrandt, Ellen; Aleksandrov, Luba A; Kappes, John C; DeLucas, Lawrence J; Riordan, John R; Urbatsch, Ina L; Hunt, John F; Brouillette, Christie G

    2014-06-01

    Detergent interaction with extramembranous soluble domains (ESDs) is not commonly considered an important determinant of integral membrane protein (IMP) behavior during purification and crystallization, even though ESDs contribute to the stability of many IMPs. Here we demonstrate that some generally nondenaturing detergents critically destabilize a model ESD, the first nucleotide-binding domain (NBD1) from the human cystic fibrosis transmembrane conductance regulator (CFTR), a model IMP. Notably, the detergents show equivalent trends in their influence on the stability of isolated NBD1 and full-length CFTR. We used differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy to monitor changes in NBD1 stability and secondary structure, respectively, during titration with a series of detergents. Their effective harshness in these assays mirrors that widely accepted for their interaction with IMPs, i.e., anionic > zwitterionic > nonionic. It is noteworthy that including lipids or nonionic detergents is shown to mitigate detergent harshness, as will limiting contact time. We infer three thermodynamic mechanisms from the observed thermal destabilization by monomer or micelle: (i) binding to the unfolded state with no change in the native structure (all detergent classes); (ii) native state binding that alters thermodynamic properties and perhaps conformation (nonionic detergents); and (iii) detergent binding that directly leads to denaturation of the native state (anionic and zwitterionic). These results demonstrate that the accepted model for the harshness of detergents applies to their interaction with an ESD. It is concluded that destabilization of extramembranous soluble domains by specific detergents will influence the stability of some IMPs during purification. © 2014 The Protein Society.

  17. Role of the interosseous membrane and annular ligament in stabilizing the proximal radial head.

    Science.gov (United States)

    Anderson, Ashley; Werner, Frederick W; Tucci, Emily R; Harley, Brian J

    2015-12-01

    The purpose of our study was to determine the relative contributions of the annular ligament, proximal band, central band, and distal band of the interosseous membrane in preventing dislocation of the proximal radius. In part 1 of the study, 8 forearms were loaded transversely with the forearm intact, and the central band, proximal band, and annular ligament were sequentially sectioned to determine the percentage contribution of each structure in preventing transverse radial displacement. In part 2, 12 forearms were cyclically supinated and pronated while optical sensors measured radial and ulnar motion. Transverse radial head motion was computed as the distal band, central band, and proximal band (and annular ligament) were sequentially sectioned. In part 1, there was no significant difference in the percentage contribution of each structure in preventing radial transverse displacement. In part 2, only after sectioning of the central band did significant radial head displacement occur. Greater displacements occurred in supination than in pronation. Dislocation of the proximal radius occurred in 2 arms after sectioning of all 3 structures. Under pure transverse displacement, the central band, annular ligament, and proximal band equally contributed to stabilizing the radius. However, during forearm rotation, the central band contributed more to radial head stability than the annular ligament and proximal band. Our study contributes to our knowledge of forearm biomechanics, demonstrating the importance of the central band in providing proximal radial head stability. Forceful supination should be avoided after surgical procedures designed to stabilize the radial head. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  18. Fibrous Support Stabilizes Nitrification Performance of a Membrane-Aerated Biofilm: The Effect of Liquid Flow Perturbation

    DEFF Research Database (Denmark)

    Terada, Akihiko; Ito, J; Matsumoto, S

    2009-01-01

    Nitrification stability and biofilm robustness were examined by comparing a fibrous support membrane-aerated biofilm reactor (FS-MABR), where a woven fibrous support was surrounded on a silicone tube, with an MABR. The overall mass transfer coefficient of oxygen for the FS-MABR, assuming no bound......Nitrification stability and biofilm robustness were examined by comparing a fibrous support membrane-aerated biofilm reactor (FS-MABR), where a woven fibrous support was surrounded on a silicone tube, with an MABR. The overall mass transfer coefficient of oxygen for the FS-MABR, assuming...

  19. The Nature of Increased Circulating CD4+CD25-Foxp3+ T Cells in Patients with Systemic Lupus Erythematosus: A Novel Hypothesis

    Science.gov (United States)

    Yan, Bing; Liu, Yi

    2009-01-01

    The forkhead family transcriptional factor (Foxp3) is an important lineage marker for regulatory T (Treg) cells. Foxp3 expression is primarily restricted to CD4+CD25+ cell population. Recently, an intriguing phenomenon is highlighted that there is a considerable amount of CD4+CD25-Foxp3+ T cells present in the peripheral blood of patients with systemic lupus erythematosus (SLE). Up to now, it is still an open question as to the nature of this cell subset. Following an analyses of the available phenotypic characteristics of CD4+CD25-Foxp3+ T cell subset along with some new findings in research of Treg in human SLE, we propose the hypothesis: the increased circulating CD4+CD25-Foxp3+ T cells in patients with SLE may constitute a peripheral reservoir of CD4+CD25+ Foxp3+ Treg cells. Under the condition of autoimmune response reactivated, CD4+CD25-Foxp3+ T cells could be recruited to expand the Treg pool upon CD25 regaining, for the effort to try to reverse a homeostatic imbalance shift to more aggressive expansion of autoreactive T cells and B cells. This hypothesis, if confirmed, would provide a new strategy for the treatment of SLE via the generation of therapeutic regulatory T cells. PMID:19590592

  20. Isomeric Detergent Comparison for Membrane Protein Stability: Importance of Inter-Alkyl-Chain Distance and Alkyl Chain Length.

    Science.gov (United States)

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S; Du, Yang; Nielsen, Anne K; Byrne, Bernadette; Kobilka, Brian K; Loland, Claus J; Guan, Lan; Chae, Pil Seok

    2016-12-14

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C 12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile-lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Glycosylation stabilizes hERG channels on the plasma membrane by decreasing proteolytic susceptibility.

    Science.gov (United States)

    Lamothe, Shawn M; Hulbert, Maggie; Guo, Jun; Li, Wentao; Yang, Tonghua; Zhang, Shetuan

    2018-01-05

    The human ether-a-go-go related gene ( hERG)-encoded channel hERG undergoes N-linked glycosylation at position 598, which is located in the unusually long S5-pore linker of the channel. In other work we have demonstrated that hERG is uniquely susceptible to proteolytic cleavage at the S5-pore linker by proteinase K (PK) and calpain (CAPN). The scorpion toxin BeKm-1, which binds to the S5-pore linker of hERG, protects hERG from such cleavage. In the present study, our data revealed that, compared with normal glycosylated hERG channels, nonglycosylated hERG channels were significantly more susceptible to cleavage by extracellular PK. Furthermore, the protective effect of BeKm-1 on hERG from PK-cleavage was lost when glycosylation of hERG was inhibited. The inactivation-deficient mutant hERG channels S620T and S631A were resistant to PK cleavage, and inhibition of glycosylation rendered both mutants susceptible to PK cleavage. Compared with normal glycosylated channels, nonglycosylated hERG channels were also more susceptible to cleavage mediated by CAPN, which was present in the medium of human embryonic kidney cells under normal culture conditions. Inhibition of CAPN resulted in an increase of nonglycosylated hERG current. In summary, our results revealed that N-linked glycosylation protects hERG against protease-mediated degradation and thus contributes to hERG channel stability on the plasma membrane.-Lamothe, S. M., Hulbert, M., Guo, J., Li, W., Yang, T., Zhang, S. Glycosylation stabilizes hERG channels on the plasma membrane by decreasing proteolytic susceptibility.

  2. Insertion of Neurotransmitters into a Lipid Bilayer Membrane and Its Implication on Membrane Stability: A Molecular Dynamics Study.

    Science.gov (United States)

    Shen, Chun; Xue, Minmin; Qiu, Hu; Guo, Wanlin

    2017-03-17

    The signaling molecules in neurons, called neurotransmitters, play an essential role in the transportation of neural signals, during which the neurotransmitters interact with not only specific receptors, but also cytomembranes, such as synaptic vesicle membranes and postsynaptic membranes. Through extensive molecular dynamics simulations, the atomic-scale insertion dynamics of typical neurotransmitters, including methionine enkephalin (ME), leucine enkephalin (LE), dopamine (DA), acetylcholine (ACh), and aspartic acid (ASP), into lipid bilayers is investigated. The results show that the first three neurotransmitters (ME, LE, and DA) are able to diffuse freely into both 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) membranes, and are guided by the aromatic residues Tyr and Phe. Only a limited number of these neurotransmitters are allowed to penetrate into the membrane, which suggests an intrinsic mechanism by which the membrane is protected from being destroyed by excessive inserted neurotransmitters. After spontaneous insertion, the neurotransmitters disturb the surrounding phospholipids in the membrane, as indicated by the altered distribution of components in lipid leaflets and the disordered lipid tails. In contrast, the last two neurotransmitters (ACh and ASP) cannot enter the membrane, but instead always diffuse freely in solution. These findings provide an understanding at the atomic level of how neurotransmitters interact with the surrounding cytomembrane, as well as their impact on membrane behavior. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Stabilized liquid membrane device (SLMD) for the passive, integrative sampling of labile metals in water

    Science.gov (United States)

    Brumbaugh, W.G.; Petty, J.D.; Huckins, J.N.; Manahan, S.E.

    2002-01-01

    A stabilized liquid membrane device (SLMD) is described for potential use as an in situ, passive, integrative sampler for cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in natural waters. The SLMD (patent pending) consists of a 2.5-cm-wide by 15-cm-long strip of low-density polyethylene (LDPE) layflat tubing containing 1 mL of an equal mixture (v/v) of oleic acid (cis-9-octadecenoic acid) and EMO-8Q (7-[4-ethyl-1-methyloctyl]-8-quinolinol). The reagent mixture continuously diffuses to the exterior surface of the LDPE membrane, and provides for sequestration of several divalent metals for up to several weeks. Depending on sampler configuration, concentration factors of several thousand can be realized for these metal ions after just a few days. In addition to in situ deployment, the SLMD may be useful for laboratory determination of labile metal species in grab samples. Methods for minimizing the effects of water flow on the sampling rate are currently under investigation.

  4. Static Magnetic Field Attenuates Lipopolysaccharide-Induced Inflammation in Pulp Cells by Affecting Cell Membrane Stability

    Directory of Open Access Journals (Sweden)

    Sung-Chih Hsieh

    2015-01-01

    Full Text Available One of the causes of dental pulpitis is lipopolysaccharide- (LPS- induced inflammatory response. Following pulp tissue inflammation, odontoblasts, dental pulp cells (DPCs, and dental pulp stem cells (DPSCs will activate and repair damaged tissue to maintain homeostasis. However, when LPS infection is too serious, dental repair is impossible and disease may progress to irreversible pulpitis. Therefore, the aim of this study was to examine whether static magnetic field (SMF can attenuate inflammatory response of dental pulp cells challenged with LPS. In methodology, dental pulp cells were isolated from extracted teeth. The population of DPSCs in the cultured DPCs was identified by phenotypes and multilineage differentiation. The effects of 0.4 T SMF on DPCs were observed through MTT assay and fluorescent anisotropy assay. Our results showed that the SMF exposure had no effect on surface markers or multilineage differentiation capability. However, SMF exposure increases cell viability by 15%. In addition, SMF increased cell membrane rigidity which is directly related to higher fluorescent anisotropy. In the LPS-challenged condition, DPCs treated with SMF demonstrated a higher tolerance to LPS-induced inflammatory response when compared to untreated controls. According to these results, we suggest that 0.4 T SMF attenuates LPS-induced inflammatory response to DPCs by changing cell membrane stability.

  5. Mast cells down-regulate CD4+CD25+ T regulatory cell suppressor function via histamine H1 receptor interaction.

    Science.gov (United States)

    Forward, Nicholas A; Furlong, Suzanne J; Yang, Yongjun; Lin, Tong-Jun; Hoskin, David W

    2009-09-01

    Mast cells promote both innate and acquired immune responses, but little is known about the effect of mast cells on T regulatory (T(reg)) cell function. In this study, we show for the first time that the capacity of murine CD4(+)CD25(+) T(reg) cells to suppress in vitro proliferation by CD4(+)CD25(-) T responder (T(resp)) cells in response to anti-CD3/anti-CD28 mAb-coated beads was reduced in the presence of syngeneic bone marrow-derived mast cells (BMMC) activated by FcepsilonR cross-linking. Activated BMMC culture supernatants or exogenous histamine also inhibited T(reg) cell suppressor function while the histamine H1 receptor-specific antagonist loratadine, but not the H2 receptor-specific antagonist famotidine, restored T(reg) cell suppressor function in the presence of activated BMMC or activated BMMC culture supernatants. Moreover, treatment of T(reg) cells with loratadine, but not famotidine, rescued T(reg) cell suppressor function in the presence of exogenous histamine. In addition, the H1 receptor-specific agonist 2-pyridylethylamine dihydrochloride inhibited T(reg) cell suppressor function to an extent that was comparable to histamine, whereas the H2 receptor-specific agonist amthamine dihydrobromide was without effect. Both T(reg) cells and T(resp) cells expressed H1 receptors. Exposure to histamine caused T(reg) cells to express lower levels of CD25 and the T(reg) cell-specific transcription factor Foxp3. Taken together, these data indicate that BMMC-elaborated histamine inhibited T(reg) cell suppressor function by signaling through the H1 receptor. We suggest that histamine released as a result of mast cell activation by microbial products might cause a transient decrease in T(reg) cell suppressor function, thereby enhancing the development of protective immunity.

  6. Central muscarinic cholinergic activation alters interaction between splenic dendritic cell and CD4+CD25- T cells in experimental colitis.

    Directory of Open Access Journals (Sweden)

    Peris Munyaka

    Full Text Available The cholinergic anti-inflammatory pathway (CAP is based on vagus nerve (VN activity that regulates macrophage and dendritic cell responses in the spleen through alpha-7 nicotinic acetylcholine receptor (a7nAChR signaling. Inflammatory bowel disease (IBD patients present dysautonomia with decreased vagus nerve activity, dendritic cell and T cell over-activation. The aim of this study was to investigate whether central activation of the CAP alters the function of dendritic cells (DCs and sequential CD4+/CD25-T cell activation in the context of experimental colitis.The dinitrobenzene sulfonic acid model of experimental colitis in C57BL/6 mice was used. Central, intracerebroventricular infusion of the M1 muscarinic acetylcholine receptor agonist McN-A-343 was used to activate CAP and vagus nerve and/or splenic nerve transection were performed. In addition, the role of α7nAChR signaling and the NF-kB pathway was studied. Serum amyloid protein (SAP-A, colonic tissue cytokines, IL-12p70 and IL-23 in isolated splenic DCs, and cytokines levels in DC-CD4+CD25-T cell co-culture were determined.McN-A-343 treatment reduced colonic inflammation associated with decreased pro-inflammatory Th1/Th17 colonic and splenic cytokine secretion. Splenic DCs cytokine release was modulated through α7nAChR and the NF-kB signaling pathways. Cholinergic activation resulted in decreased CD4+CD25-T cell priming. The anti-inflammatory efficacy of central cholinergic activation was abolished in mice with vagotomy or splenic neurectomy.Suppression of splenic immune cell activation and altered interaction between DCs and T cells are important aspects of the beneficial effect of brain activation of the CAP in experimental colitis. These findings may lead to improved therapeutic strategies in the treatment of IBD.

  7. Evaluation of CD4+ CD25+ FoxP3+ regulatory T cells during treatment of patients with brucellosis.

    Science.gov (United States)

    Hasanjani Roushan, M R; Bayani, M; Soleimani Amiri, S; Mohammadnia-Afrouzi, M; Nouri, H R; Ebrahimpour, S

    2016-01-01

    Cell-mediated immunity (CMI) plays a critical role in the control of brucellosis. Regulatory T cells (Tregs) have a functional character in modulating the balance between host immune response and tolerance, which can eventually lead to chronic infection or relapse. The aim of this study was to assess the alteration of Tregs in cases of brucellosis before and after treatment. Thirty cases of acute brucellosis with the mean age of 41.03±15.15 years (case group) and 30 healthy persons with the mean age of 40.63±13.95 years (control group) were selected and assessed. Peripheral blood mononuclear cells (PBMCs) were isolated from peripheral blood of all individuals. We analyzed the alteration of Treg cell count using flow cytometry for CD4, CD25, and FoxP3 markers. The level of CD4+ CD25+ FoxP3+ Treg cells was increased in active patients compared with controls (2.5±0.99% vs 1.6±0.84%, p= 0.0004), but it had declined in the treated cases (1.83±0.73%, p=0.02). The level of Tregs was elevated in three relapsed cases. The frequency of Tregs and Treg/Teff (effector T cell) ratio was correlated with inverse serum agglutination test (SAT) and, 2-mercaptoethanol (2-ME) titers as markers of treatment in brucellosis. Based on our findings, we suggest that regulatory cells, such as CD4+ CD25+ FoxP3+ Treg cells, may contribute to the development of infection processes involving immune responses in brucellosis, and evaluation of regulatory T-cell levels may be a potential diagnostic strategy for the treatment outcome in chronic and relapsed cases of brucellosis.

  8. Desmosomes: interconnected calcium-dependent structures of remarkable stability with significant integral membrane protein turnover.

    Science.gov (United States)

    Windoffer, Reinhard; Borchert-Stuhlträger, Monika; Leube, Rudolf E

    2002-04-15

    Desmosomes are prominent cell adhesion structures that are major stabilizing elements, together with the attached cytoskeletal intermediate filament network, of the cytokeratin type in epithelial tissues. To examine desmosome dynamics in tightly coupled cells and in situations of decreased adhesion, fluorescent desmosomal cadherin desmocollin 2a (Dsc2a) chimeras were stably expressed in human hepatocellular carcinoma-derived PLC cells (clone PDc-13) and in Madin-Darby canine kidney cells (clone MDc-2) for the continuous monitoring of desmosomes in living cells. The hybrid polypeptides integrated specifically and without disturbance into normal-appearing desmosomes that occurred in association with typical cytokeratin filament bundles. Tracking of labeled adhesion sites throughout the cell cycle by time-lapse fluorescence microscopy revealed that they were immobile and that they maintained their structural integrity for long periods of time. Time-space diagrams further showed that desmosomal positioning was tightly controlled, even during pronounced cell shape changes, although the desmosomal arrays extended and contracted, suggesting that they were interconnected by a flexible system with intrinsic elasticity. Double-fluorescence microscopy detecting Dsc2a chimeras together with fluorescent cytokeratin 18 chimeras revealed the association and synchronous movement of labeled desmosomes and fluorescent cytokeratin filaments. Only a minor destabilization of desmosomes was observed during mitosis, demonstrated by increased diffuse plasma membrane fluorescence and the fusion of desmosomes into larger structures. Desmosomes did not disappear completely at any time in any cell, and residual cytokeratin filaments remained in association with adhesion sites throughout cell division. On the other hand, a rapid loss of desmosomes was observed upon calcium depletion, with irreversible uptake of some desmosomal particles. Simultaneously, diffusely distributed desmosomal

  9. Ether modified poly(ether ether ketone) nonwoven membrane with excellent wettability and stability as a lithium ion battery separator

    Science.gov (United States)

    Li, Zhen; Wang, Wenqiang; Han, Yu; Zhang, Lei; Li, Shuangshou; Tang, Bin; Xu, Shengming; Xu, Zhenghe

    2018-02-01

    In this study, poly(ether ether ketone) is first chloromethylated to improve the solubility and is later used for nonwoven membrane fabrication by electrospinning. Finally, the chloromethyl group was converted to the ethyl ether group and dibenzyl ether group in a hot alkaline solution. The abundant polar groups endow the membrane with excellent wettability, reducing the contact angle to 0°. The polymer matrix is crosslinked by dibenzyl ether group, endowing the membrane with excellent stability (insolubility in many solvents, and ultra-low swelling in the electrolyte at 80 °C) and good anti-shrinkage property (0% at 180 °C). The electrospinning-fabricated membrane remains stable until 4.812 V (vs. Li+/Li), meeting the requirement for use in lithium ion batteries. The interwoven structure of the nonwoven membrane effectively gives rise to the high electrolyte uptake of 215.8%. The ionic conductivity of the electrolyte-swelled electrospinning-fabricated membrane is 51% higher than that of the electrolyte-swelled Celgard membrane. As a result, the lithium ion battery with this nonwoven membrane exhibits an enhanced rate performance (up to 42.5% higher than the lithium ion battery with a PP separator) and satisfactory cycling performance.

  10. On Stabilization of PVPA/PVA Electrospun Nanofiber Membrane and Its Effect on Material Properties and Biocompatibility

    Directory of Open Access Journals (Sweden)

    Rose Ann Franco

    2012-01-01

    Full Text Available A novel nanofiber membrane was fabricated by electrospinning composed of polyvinyl phosphonic acid (PVPA and polyvinyl alcohol (PVA. Stabilization was done due to the high dissolvability of the membrane when in contact with water. Physical treatment was done by exposure to heat at 150°C in a vacuum environment at different periods of time. Chemical crosslinking was done by immersion in methanol and methanol/ glutaraldehyde. A heat-exposed membrane was also further crosslinked chemically. All conditions were compared with regards to its effect on the material properties of the membranes and its biological response in vitro with MG-63 osteoblast-like cell line. Visual examination and dimensional analyses showed that heat treatment produced discoloration on the membrane surface and chemical crosslinking reduced membrane dimensions. Tensile strength and strain improved in crosslinked membranes compared to noncrosslinked counterpart. Swelling and degradation was also investigated and was seen to vary depending on the crosslinking condition. Biocompatibility was observed to be more favorable in heat-treated membranes.

  11. An Untrodden Path: Versatile Fabrication of Self-Supporting Polymer-Stabilized Percolation Membranes (PSPMs) for Gas Separation.

    Science.gov (United States)

    Friebe, Sebastian; Mundstock, Alexander; Schneider, Daniel; Caro, Jürgen

    2017-05-11

    The preparation and scalability of zeolite or metal organic framework (MOF) membranes remains a major challenge, and thus prevents the application of these materials in large-scale gas separation. Additionally, several zeolite or MOF materials are quite difficult or nearly impossible to grow as defect-free layers, and require expensive macroporous ceramic or polymer supports. Here, we present new self-supporting zeolite and MOF composite membranes, called Polymer-Stabilized Percolation Membranes (PSPMs), consisting of a pressed gas selective percolation network (in our case ZIF-8, NaX and MIL-140) and a gas-impermeable infiltrated epoxy resin for cohesion. We demonstrate the performance of these PSPMs by separating binary mixtures of H 2 /CO 2 and H 2 /CH 4 . We report the brickwork-like architecture featuring selective percolation pathways and the polymer as a stabilizer, compare the mechanical stability of said membranes with competing materials, and give an outlook on how economic these membranes may become. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fibrous Support Stabilizes Nitrification Performance of a Membrane-Aerated Biofilm: The Effect of Liquid Flow Perturbation

    DEFF Research Database (Denmark)

    Terada, Akihiko; Ito, J; Matsumoto, S

    2009-01-01

    Nitrification stability and biofilm robustness were examined by comparing a fibrous support membrane-aerated biofilm reactor (FS-MABR), where a woven fibrous support was surrounded on a silicone tube, with an MABR. The overall mass transfer coefficient of oxygen for the FS-MABR, assuming no bound...

  13. Oxygen permeation and thermo-chemical stability of oxygen separation membrane materials for the oxyfuel process

    Energy Technology Data Exchange (ETDEWEB)

    Ellett, Anna Judith

    2009-07-01

    analysis (TGA) and thermo mechanical analysis (TMA). An increase in thermal expansion and oxygen permeation associated with an increase in oxygen vacancy concentration, observed also in the TGA curves, occurs during heating. BSCF50 exhibits permeation fluxes well above those of LSCF58, PSCF58 and La{sub 2}NiO{sub 4+{delta}}, which are quite similar to each other. After exposure, no degradation of LSCF58, La{sub 2}NiO{sub 4+{delta}} and PSCF58 occurs. On the other hand BSCF50 is found to be unstable in CO{sub 2}- and/or H{sub 2}O-containing atmospheres and also to exhibit a chemical demixing. The thermo-chemical stability and the oxygen permeation performances are both crucial factors in the selection of high purity oxygen separation membranes for the oxyfuel process, thus making LSCF58, PSCF58 and La{sub 2}NiO{sub 4+{delta}} in this study the most suitable materials for this application. Serious issues arise, however, from the fact that secondary non-ion conducting oxide phases are formed in the bulk of every material, forming obstacles for oxygen ion migration, and also that a reaction with chromia occurs, preventing their use without protection. (orig.)

  14. The Tat System for Membrane Translocation of Folded Proteins Recruits the Membrane-stabilizing Psp Machinery in Escherichia coli*

    Science.gov (United States)

    Mehner, Denise; Osadnik, Hendrik; Lünsdorf, Heinrich; Brüser, Thomas

    2012-01-01

    Tat systems transport folded proteins across energized membranes of bacteria, archaea, and plant plastids. In Escherichia coli, TatBC complexes recognize the transported proteins, and TatA complexes are recruited to facilitate transport. We achieved an abstraction of TatA from membranes without use of detergents and observed a co-purification of PspA, a membrane-stress response protein. The N-terminal transmembrane domain of TatA was required for the interaction. Electron microscopy displayed TatA complexes in direct contact with PspA. PspB and PspC were important for the TatA-PspA contact. The activator protein PspF was not involved in the PspA-TatA interaction, demonstrating that basal levels of PspA already interact with TatA. Elevated TatA levels caused membrane stress that induced a strictly PspBC- and PspF-dependent up-regulation of PspA. TatA complexes were found to destabilize membranes under these conditions. At native TatA levels, PspA deficiency clearly affected anaerobic TMAO respiratory growth, suggesting that energetic costs for transport of large Tat substrates such as TMAO reductase can become growth limiting in the absence of PspA. The physiological role of PspA recruitment to TatA may therefore be the control of membrane stress at active translocons. PMID:22689583

  15. In vitro induction of functional allergen-specific CD4+ CD25high Treg cells in horses affected with insect bite hypersensitivity.

    Science.gov (United States)

    Hamza, E; Akdis, C A; Wagner, B; Steinbach, F; Marti, E

    2013-08-01

    Insect bite hypersensitivity (IBH) is a recurrent allergic dermatitis of horses with similarities to human atopic eczema, caused by bites of insects of the genus Culicoides. Previous studies suggested a dysregulated T cell tolerance to Culicoides allergen in IBH-affected horses. We have investigated whether the suppressive function of CD4(+) CD25(high) cells is impaired in IBH-affected horses and possible ways to restore it. CD4(+) CD25(-) cells sorted from peripheral blood mononuclear cells (PBMC) were stimulated with irradiated autologous PBMC pulsed with Culicoides or tetanus toxoid as control antigen, in the presence of CD4(+) CD25(high) cells. Furthermore, Culicoides-specific CD4(+) CD25(high) regulatory cells were expanded or induced from CD4(+) CD25(-) cells in vitro in the presence of a combination of rIL-2 and rTGF-β1 (rIL-2/rTGF-β1) or of retinoic acid and rapamycin (RetA/Rapa). Proliferation was determined by [(3) H] thymidine incorporation and cytokine production measured by flow cytometry. The ability of Culicoides- but not tetanus-stimulated CD4(+) CD25(high) cells to suppress proliferation of CD4(+) CD25(-) cells was significantly lower in IBH-affected horses (28%) than in healthy controls (86%). The decreased suppression in IBH-affected horses was associated with a significantly higher proportion of IL-4(+) cells and a lower percentage of FoxP3(+) IL-10(+) compared to controls. Addition of rIL-2/rTGF-β1 or of RetA/Rapa to Culicoides-stimulated CD4(+) CD25(high) cells from IBH-affected horses significantly increased the proportion of FoxP3(+) IL-10(+) cells. We also found that RetA/Rapa induced a more significant decrease in the frequency of IL-4(+) cells than rIL-2/rTGF-β1. Moreover, the suppressive activity of Culicoides-stimulated CD4(+) CD25(high) cells was significantly restored by both rIL-2/rTGF-β1and RetA/Rapa, albeit in an antigen-unspecific manner. In contrast, in vitro induced Culicoides-specific CD4(+) CD25(high) cells suppressed

  16. CD4⁺CD25⁻Foxp3⁺ T cells: a marker for lupus nephritis?

    Science.gov (United States)

    Bonelli, Michael; Göschl, Lisa; Blüml, Stephan; Karonitsch, Thomas; Steiner, Carl-Walter; Steiner, Günter; Smolen, Josef S; Scheinecker, Clemens

    2014-04-28

    Systemic lupus erythematosus (SLE) is a heterogenous autoimmune disease, which can affect different organs. Increased proportions of CD4⁺CD25-Foxp3⁺ T cells have been described in SLE patients. The exact role of this cell population in SLE patients still remains unclear. We therefore analyzed this T cell subset in a large cohort of SLE patients with different organ manifestations. Phenotypic analyses, proportions and absolute cell numbers of CD4⁺CD25-Foxp3⁺ T cells were determined by flow cytometry (FACS) in healthy controls (HC) (n = 36) and SLE patients (n = 61) with different organ manifestations. CD4⁺CD25⁻Foxp3⁺ T cells were correlated with clinical data, the immunosuppressive therapy and different disease activity indices. In patients with active glomerulonephritis, CD4⁺CD25⁻Foxp3⁺ T cells were analyzed in urine sediment samples. Time course analyses of CD4⁺CD25⁻Foxp3⁺ T cells were performed in patients with active disease activity before and after treatment with cyclophosphamide and prednisone. CD4⁺CD25⁻Foxp3⁺ T cells were significantly increased in active SLE patients and the majority expressed Helios. Detailed analysis of this patient cohort revealed increased proportions of CD4⁺CD25⁻Foxp3⁺ T cells in SLE patients with renal involvement. CD4⁺CD25⁻Foxp3⁺ T cells were also detected in urine sediment samples of patients with active glomerulonephritis and correlated with the extent of proteinuria. CD4⁺CD25⁻Foxp3⁺ T cells resemble regulatory rather than activated T cells. Comparative analysis of CD4⁺CD25⁻Foxp3⁺ T cells in SLE patients revealed a significant association of this newly described cell population with active nephritis. Therefore CD4⁺CD25⁻Foxp3⁺ T cells might serve as an important tool to recognize and monitor SLE patients with renal involvement.

  17. CD4+ CD25− FoxP3+ regulatory cells are the predominant responding regulatory T cells after human rotavirus infection or vaccination in gnotobiotic pigs

    Science.gov (United States)

    Wen, Ke; Li, Guohua; Yang, Xingdong; Bui, Tammy; Bai, Muqun; Liu, Fangning; Kocher, Jacob; Yuan, Lijuan

    2012-01-01

    The distribution and dynamic changes of CD4+ CD25+ FoxP3+ and CD4+ CD25− FoxP3+ regulatory T (Treg) cells induced by human rotavirus (HRV) infection and vaccination were examined in neonatal gnotobiotic pigs infected with virulent HRV (VirHRV) or vaccinated with attenuated HRV (AttHRV). Subsets of gnotobiotic pigs in the AttHRV and control groups were challenged with VirHRV at post-inoculation day (PID) 28. We demonstrated that VirHRV infection or AttHRV vaccination reduced frequencies and numbers of tissue-residing Treg cells, and decreased the frequencies of interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) producing CD4+ CD25− Treg cells in ileum, spleen and blood at PID 28. The frequencies of IL-10 and TGF-β producing CD4+ CD25− Treg cells in all sites at PID 28 were significantly inversely correlated with the protection rate against VirHRV-caused diarrhoea (r = −1, P protective immunity against rotavirus. Our results highlighted the importance of CD4+ CD25− Treg cells over CD4+ CD25+ Treg cells in rotavirus infection and immunity. AttHRV vaccination (induction of immune effector responses) reduced the expansion of CD4+ CD25− Treg cells in ileum seen in the challenged naive pigs during the acute phase of VirHRV infection and preserved normal levels of intestinal TGF-β producing Treg cells post-challenge. The reduced suppressive effect of Treg cells in AttHRV-vaccinated pigs would unleash effector/memory T-cell activation upon challenge. Preserving TGF-β producing CD4+ CD25− Treg cells is important in maintaining homeostasis. Based on our findings, a model is proposed to depict the dynamic equilibrium course of Treg and effector T-cell responses after primary rotavirus infection/vaccination and challenge. PMID:22716916

  18. The cellular prion protein is preferentially expressed by CD4+ CD25+ Foxp3+ regulatory T cells

    Science.gov (United States)

    Isaacs, Jeremy D; Garden, Oliver A; Kaur, Gurman; Collinge, John; Jackson, Graham S; Altmann, Daniel M

    2008-01-01

    Post-translational modification of the cellular prion protein (PrPC) is intimately associated with the pathogenesis of prion disease, yet the normal function of the protein remains unclear. PrPC is expressed in lymphoid cells and is known to be a T-cell activation antigen. Further, transcription profiling studies of regulatory T cells have shown preferential overexpression of PrPC, suggesting a possible role in regulatory function. We report that both the expression of PrP message and cell surface PrPC levels are increased in murine CD4+ CD25+ regulatory T cells compared with CD4+ CD25− cells. However, PrP0/0 mice do not show altered regulatory T-cell numbers or forkhead box P3 (Foxp3) expression levels, or impaired regulatory T-cell function in vitro. Nevertheless, the preferential expression of surface PrPC by regulatory T cells raises the possibility that therapeutic ligation of PrPC might alter immune regulation. PMID:18462346

  19. Protective Effect of CXCR3+CD4+CD25+Foxp3+ Regulatory T Cells in Renal Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Cao Jun

    2015-01-01

    Full Text Available Regulatory T cells (Tregs suppress excessive immune responses and are potential therapeutic targets in autoimmune disease and organ transplantation rejection. However, their role in renal ischemia-reperfusion injury (IRI is unclear. Levels of Tregs and expression of CXCR3 in Tregs were analyzed to investigate their function in the early phase of renal IRI. Mice were randomly divided into Sham, IRI, and anti-CD25 (PC61 + IRI groups. The PC61 + IRI group was established by i.p. injection of PC61 monoclonal antibody (mAb to deplete Tregs before renal ischemia. CD4+CD25+Foxp3+ Tregs and CXCR3 on Tregs were analyzed by flow cytometry. Blood urea nitrogen (BUN, serum creatinine (Scr levels, and tubular necrosis scores, all measures of kidney injury, were greater in the IRI group than in the Sham group. Numbers of Tregs were increased at 72 h after reperfusion in kidney. PC61 mAb preconditioning decreased the numbers of Tregs and aggravated kidney injury. There was no expression of CXCR3 on Tregs in normal kidney, while it expanded at 72 h after reperfusion and inversely correlated with BUN, Scr, and kidney histology score. This indicated that recruitment of Tregs into the kidney was related to the recovery of renal function after IRI and CXCR3 might be involved in the migration of Tregs.

  20. Cell membrane thermo-stability studies through joint segregation analysis in various wheat populations

    International Nuclear Information System (INIS)

    Ullah, K.; Khan, N.U.; Gul, S.; Khan, S.J.

    2014-01-01

    Using joint segregation analysis (JSA) technique as statistical approach, mixed inheritance analysis for cell plasma membrane as membrane thermal stability (MTS) was assayed in two parental lines (P1, P2) and their four populations (F1, BC1, BC2, F2) of four wheat crosses, viz., Hashim-08 * LU-26, Farid-06 * Shafaq, Parula * Blue Silver and TD-1 * D-97603 at Faculty of Agriculture, Gomal University, Dera Ismail Khan, Pakistan during crop season 2011-12. Results revealed that MTS was under control of two mixed groups of genes i.e., additive-dominant-epistatic major genes plus additive-dominant-epistasis of polygenes (model E) in Hashim-08 * LU-26 and Farid-06 * Shafaq crosses, respectively. In cross Parula * Blue Silver, it was governed by mixed genes i.e. one major-gene and additive-dominance-epistatic polygenes (model D). However, in cross TD-1 * D-97603, the MTS was under the influence of mixed epistasis of two major genes plus polygenes (model E-1). Polygene variation and polygene heritability were higher than major gene variation and heritability in crosses Hashim-08 * LU-26 and Farid-06 * Shafaq. In crosses Parula * Blue Silver and TD-1 * D-97603, the major gene variation and heritability were higher than polygene variation and heritability, indicating maximum contribution of the major genes. While in cross TD-1 * D-97603, epistatic components were also positive and due to which the polygene heritability was almost zero. Moderate to high environmental variation in the MTS for segregating generations revealed that the said trait was highly persuaded by the environment. However, the genetic behavior of the MTS suggested that early selection for MTS in the crosses Hashim-08 * LU-26 and Farid-06 * Shafaq would be efficient. Whereas, the delayed selection in crosses Parula * Blue Silver and TD-1 * D-97603 until the accumulation of maximum favorable genes will be effective. (author)

  1. Potentiometric sensing of iodide using polymeric membranes of microwave stabilized β-AgI

    International Nuclear Information System (INIS)

    James, Dhanya; Rao, T. Prasada

    2012-01-01

    Highlights: ► Stable β-phase was obtained by post MW irradiation of AgI precipitate. ► Constructed ISEby dispersing stable β-AgI crystals in polyvinyl chloride. ► Designed iodide ISE exhibited wide linear range and fast response. ► Highly selective with selectivity factors less than 10 −6 . ► Successfully applied to natural waters, table salt and human urine samples. - Abstract: A polymer based heterogeneous ion selective electrode (ISE) membrane was fabricated for the potentiometric sensing of iodide. The sensing element used for the preparation of the ISE membrane was microwave stabilized β-AgI. Because microwave energy was found to be beneficial for causing hysteresis at the phase transition temperature of AgI, an attempt has been made to prepare stable and conductive β-AgI crystals by post microwave irradiation under high pressure. A conventionally precipitated AgI based ISE was also fabricated for comparative studies. The β-AgI based ISE could respond to a wide range of iodide concentrations (1 × 10 −8 to 1 M) within 60 s with a detection limit of 10 nM. The ISE gave stable response to iodide ions in a pH range of 2.0–8.0 and was highly selective in the presence of various interfering ions. The performance of the proposed iodide ISE in the analysis of natural and seawater samples was encouraging, and the determination of iodide in table salt and human urine samples was explained using the developed sensor.

  2. Evaluation of the Association between CD4, CD8 and CD25 Cell Counts and SLE in Active Disease and in Remission.

    Science.gov (United States)

    Sonawale, Archana; Bohara, Vinay; Bichile, L S

    2017-04-01

    To evaluate the correlation between the levels of CD4, CD8 and CD25 cells and SLE disease in active phase and in remission. A total of 25 SLE patients, aged between 18-60 years, and fulfilling the ACR criteria with preferential Renal and CNS involvement were included in this study. Baseline CD4/CD8 and CD25 counts, lab parameters etc were conducted. Approximately at the end of 6 months with the settlement of the disease activity blood sample was drawn for the CD4, CD8 and CD25 counts and other lab parameters. ESR showed a statistical significant decrease while the SLEDAI score and proteinuria showed a decreasing trend as the patients underwent remission. The C3 showed an increasing trend, while the C4 showed more or less a stable pattern. Rise in %CD4 and %CD25 count was statistically significant. There was negative correlation between % CD4 count and SLEDAI score, while positive correlation between % CD25 count and SLEDAI score. %CD4 count is a sensitive, specific, reliable and valid marker of active disease in SLE and can be used to follow disease activity. %CD25 count can also be used as a marker to follow disease activity.

  3. Use of stable emulsion to improve stability, activity, and enantioselectivity of lipase immobilized in a membrane reactor.

    Science.gov (United States)

    Giorno, L; Li, N; Drioli, E

    2003-12-20

    The enantiocatalytic performance of immobilized lipase in an emulsion membrane reactor using stable emulsion prepared by membrane emulsification technology was studied. The production of optical pure (S)-naproxen from racemic naproxen methyl ester was used as a model reaction system. The O/W emulsion, containing the substrate in the organic phase, was fed to the enzyme membrane reactor from shell-to-lumen. The enzyme was immobilized in the sponge layer (shell side) of capillary polyamide membrane with 50 kDa cut-off. The aqueous phase was able to permeate through the membrane while the microemulsion was retained by the thin selective layer. Therefore, the substrate was kept in the enzyme-loaded membrane while the water-soluble product was continuously removed from the reaction site. The results show that lipase maintained stable activity during the entire operation time (more than 250 h), showing an enantiomeric excess (96 +/- 2%) comparable to the free enzyme (98 +/- 1%) and much higher compared to similar lipase-loaded membrane reactors used in two-separate phase systems (90%). The results demonstrate that immobilized enzymes can achieve high stability as well as high catalytic activity and enantioselectivity. Copyright 2003 Wiley Periodicals, Inc.

  4. Lack of cations in flow cytometry buffers affect fluorescence signals by reducing membrane stability and viability of Escherichia coli strains.

    Science.gov (United States)

    Tomasek, Kathrin; Bergmiller, Tobias; Guet, Călin C

    2018-02-20

    Buffers are essential for diluting bacterial cultures for flow cytometry analysis in order to study bacterial physiology and gene expression parameters based on fluorescence signals. Using a variety of constitutively expressed fluorescent proteins in Escherichia coli K-12 strain MG1655, we found strong artifactual changes in fluorescence levels after dilution into the commonly used flow cytometry buffer phosphate-buffered saline (PBS) and two other buffer solutions, Tris-HCl and M9 salts. These changes appeared very rapidly after dilution, and were linked to increased membrane permeability and loss in cell viability. We observed buffer-related effects in several different E. coli strains, K-12, C and W, but not E. coli B, which can be partially explained by differences in lipopolysaccharide (LPS) and outer membrane composition. Supplementing the buffers with divalent cations responsible for outer membrane stability, Mg 2+ and Ca 2+ , preserved fluorescence signals, membrane integrity and viability of E. coli. Thus, stabilizing the bacterial outer membrane is essential for precise and unbiased measurements of fluorescence parameters using flow cytometry. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Membrane Protein Stability Analyses by Means of Protein Energy Profiles in Case of Nephrogenic Diabetes Insipidus

    Directory of Open Access Journals (Sweden)

    Florian Heinke

    2012-01-01

    Full Text Available Diabetes insipidus (DI is a rare endocrine, inheritable disorder with low incidences in an estimated one per 25,000–30,000 live births. This disease is characterized by polyuria and compensatory polydypsia. The diverse underlying causes of DI can be central defects, in which no functional arginine vasopressin (AVP is released from the pituitary or can be a result of defects in the kidney (nephrogenic DI, NDI. NDI is a disorder in which patients are unable to concentrate their urine despite the presence of AVP. This antidiuretic hormone regulates the process of water reabsorption from the prourine that is formed in the kidney. It binds to its type-2 receptor (V2R in the kidney induces a cAMP-driven cascade, which leads to the insertion of aquaporin-2 water channels into the apical membrane. Mutations in the genes of V2R and aquaporin-2 often lead to NDI. We investigated a structure model of V2R in its bound and unbound state regarding protein stability using a novel protein energy profile approach. Furthermore, these techniques were applied to the wild-type and selected mutations of aquaporin-2. We show that our results correspond well to experimental water ux analysis, which confirms the applicability of our theoretical approach to equivalent problems.

  6. An experimental study on inhibiting graft rejection following high-risk penetrating keratoplasty by CD25 siRNA nanocarrier in rats

    Directory of Open Access Journals (Sweden)

    Yun-jie SHI

    2015-06-01

    Full Text Available Objective To investigate the effects of CD25 siRNA nanoparticles against immune rejection and prolongation of corneal graft survival time after high-risk corneal grafting in rats. Methods Orthotopic corneal transplantation was performed in SD rats with alkali burned corneas to mimic high-risk rat models. Donor cornea (Wistar rats was grafted into the right cornea of SD recipients on day 14 after alkali burn. The grafted rats were randomly divided into control group (Group A, EntransterTM-control CD25siRNA instillation treatment (Group B, EntransterTM-CD25siRNA instillation treatment (Group C and EntransterTM-CD25siRNA twice instillation treatment (Group D, first administration at 2-hour post-surgery and second on day 7 post-surgery. The recipient eyes were examined using a slit lamp microscope. Then, the mean survival time and rejection index (RI were calculated. The morphologies of grafts were microscopically examined with HE staining, and TEM. CD25 expression after operation was determined by quantitative RT-PCR and immunohistochemistry. Results The survival curves of transplanted cornea showed that the mean survival time in rats of groups C and D was significantly longer than that in groups A and B (P<0.05. No significant difference was found in survival time between group A and group B, and the same between group C and group D. The grafts in groups A and B showed obvious edema and thickening, with irregular arrangement of collagen fibers and infiltration of a large amount of inflammatory cells. Immunohistochemical results showed that expression of CD25 was found in the corneal epithelium, stroma and endothelium in all rats, and higher CD25 expression was observed in groups A and B. Transmission electron microscopy revealed that the degree of stromal fibroblast apoptosis and necrosis in corneal graft was obviously lower in groups C and D than that of groups A and B, with a significant statistical difference. The expression of CD25 m

  7. Changes in Th1 cells and CD4+CD25+Treg cells in non-obese diabetic mice at early stage of diabetes

    Directory of Open Access Journals (Sweden)

    Hong-jun WANG

    2013-11-01

    Full Text Available Objective To investigate the changes in Th1 cells and CD4+CD25+Treg cells in non-obese diabetic (NOD mice at early stage of diabetes, and to evaluate the significance of these changes. Methods Four week- (group A, 8 week- (group B and 16 week-old (group C female NOD mice (8 each were used in present study. The spleen, thymus and pancreas were harvested. Th1 and CD4+CD25+Treg cells in spleen were determined by flow cytometer, and the ratios of Th1/CD4+T, CD4+CD25+Treg/CD4+T and Th1/CD4+CD25+Treg were calculated. Subsequently, CD4–CD8–T, CD4+CD8+T, CD4–CD8+T and CD4+CD8–T cells in thymus were determined by flow cytometer, and the ratio of CD25+Treg/CD4+CD8–T was calculated. The histopathological changes in pancreas were also evaluated by HE staining and immunohistochemistry staining. Results The proportion of Th1 cells in spleen and the ratios of Th1/CD4+T and Th1/CD4+CD25+Treg were higher significantly in group C than in group A and B. However, no significant differences were found in the proportion of spleen CD4+CD25+Treg cells and the ratio of CD4+CD25+Treg/CD4+T among the three groups. Compared with group A, no obvious changes were found in thymus CD4–CD8–T, CD4+CD8+T, CD4–CD8+T and CD4+CD8–T cells in group B and C, but the ratio of thymus CD25+Treg/CD4+CD8–T increased significantly in group B and C. Lymphocytic infiltration was observed in pancreatic islets of group B and C as shown with HE staining, but Foxp3+T cells were not seen in pancreatic islets by immunohistochemistry. Conclusion Th1 cells are gradually increased at early stage of diabetes in NOD mice, but CD4+CD25+Treg cells are relatively default. These changes may play an important role in the progress of diabetes. DOI: 10.11855/j.issn.0577-7402.2013.11.004

  8. CD4+CD25Hi FoxP3+ regulatory T cells in long-term cardiac xenotransplantation.

    Science.gov (United States)

    Singh, Avneesh K; Chan, Joshua L; Seavey, Caleb N; Corcoran, Philip C; Hoyt, Robert F; Lewis, Billeta G T; Thomas, Marvin L; Ayares, David L; Horvath, Keith A; Mohiuddin, Muhammad M

    2018-03-01

    CD4+CD25 Hi FoxP3+ T (Treg) cells are a small subset of CD4+ T cells that have been shown to exhibit immunoregulatory function. Although the absolute number of Treg cells in peripheral blood lymphocytes (PBL) is very small, they play an important role in suppressing immune reactivity. Several studies have demonstrated that the number of Treg cells, rather than their intrinsic suppressive capacity, may contribute to determining the long-term fate of transplanted grafts. In this study, we analyzed Treg cells in PBL of long-term baboon recipients who have received genetically modified cardiac xenografts from pig donors. Heterotopic cardiac xenotransplantation was performed on baboons using hearts obtained from GTKO.hCD46 (n = 8) and GTKO.hCD46.TBM (n = 5) genetically modified pigs. Modified immunosuppression regimen included antithymocyte globulin (ATG), anti-CD20, mycophenolate mofetil (MMF), cobra venom factor (CVF), and costimulation blockade (anti-CD154/anti-CD40 monoclonal antibody). FACS analysis was performed on PBLs labeled with anti-human CD4, CD25, and FoxP3 monoclonal antibodies (mAb) to analyze the percentage of Treg cells in six baboons that survived longer than 2 months (range: 42-945 days) after receiving a pig cardiac xenograft. Total WBC count was low due to immunosuppression in baboons who received cardiac xenograft from GTKO.hCD46 and GTKO.hCD46.hTBM donor pigs. However, absolute numbers of CD4+CD25 Hi FoxP3 Treg cells in PBLs of long-term xenograft cardiac xenograft surviving baboon recipients were found to be increased (15.13 ± 1.50 vs 7.38 ± 2.92; P < .018) as compared to naïve or pre-transplant baboons. Xenograft rejection in these animals was correlated with decreased numbers of regulatory T cells. Our results suggest that regulatory T (Treg) cells may contribute to preventing or delaying xenograft rejection by controlling the activation and expansion of donor-reactive T cells, thereby masking the antidonor immune response

  9. CD4+Foxp3+CD25+/- Tregs characterize liver tissue specimens of patients suffering from drug-induced autoimmune hepatitis: A clinical-pathological study.

    Science.gov (United States)

    Qu, Li-Mei; Wang, Shu-Hua; Yang, Kun; Brigstock, David R; Sun, Li; Gao, Run-Ping

    2018-02-19

    The diagnosis of drug-induced autoimmune hepatitis (DIAIH) and its differentiation from idiopathic autoimmune hepatitis (AIH) is challenging. This study aimed to differentiate DIAIH from AIH by comparing the biochemical changes, histological features, and frequencies of CD4 + Foxp3 + CD25 +/- regulatory T cells (Tregs) in liver tissues or peripheral blood lymphocytes. A total of 15 DIAIH patients and 24 AIH patients who underwent liver biopsies at initial presentation were enrolled in this study. The liver histological changes were assessed by HE staining. The phenotypic recognition and distribution of CD4 + Foxp3 + CD25 +/- Tregs in liver tissues were evaluated by single/double immunostains in serial sections. The CD4 + Foxp3 + CD25 +/- Tregs in peripheral blood were analyzed by flow cytometry. The median values of ALT and AST were 404.50 U/L and 454.10 U/L in DIAIH patients and 309.50 U/L and 315.00 U/L in AIH patients, respectively. More importantly, for the first time we found that patients with DIAIH had higher levels of serum ALT and AST, more severe degree of lobular inflammation, higher frequencies of zone 3 necrosis and higher number of lobular CD4 + Foxp3 + CD25 - Tregs compared with AIH (P < 0.05). Furthermore, there were positive correlations in DIAIH between the degree of lobular inflammation and either the AST/ALT level or the number of lobular CD4 + Foxp3 + CD25 - Tregs (P < 0.05). However, the frequency of peripheral blood CD4 + Foxp3 + CD25 +/- Tregs were not significantly different between DIAIH and AIH. The differences of ALT, AST and the number of lobular CD4 + Foxp3 + CD25 - Tregs between patients with DIAIH and those with AIH are clinically helpful in differentiating these two diseases in their early stage. Copyright © 2018. Published by Elsevier B.V.

  10. Physicochemical stability, microrheological properties and microstructure of lutein emulsions stabilized by multilayer membranes consisting of whey protein isolate, flaxseed gum and chitosan.

    Science.gov (United States)

    Xu, Duoxia; Aihemaiti, Zulipiya; Cao, Yanping; Teng, Chao; Li, Xiuting

    2016-07-01

    The impact of chitosan (CTS) on the physicochemical stability, microrheological property and microstructure of whey protein isolate (WPI)-flaxseed gum (FG) stabilized lutein emulsions at pH 3.0 was studied. A layer-by-layer electrostatic deposition method was used to prepare multilayered lutein emulsions. Droplet size, zeta-potential, instability index, microstructure and microrheological behavior of lutein emulsions were measured. The influences of interfacial layer, metal chelator and free radical scavenger on the chemical stability of lutein emulsions were also investigated. It was found that multilayer emulsions had better physical stability showing the pronounced effect of 1wt% CTS. The mean square displacement analysis demonstrated that CTS led to increases of macroscopic viscosity and elasticity index for WPI-FG stabilized lutein emulsions due to CTS embedding in the network. CTS also helped to chemically stabilize the lutein emulsions against degradation. The combination of interfacial membrane and prooxidative metal chelator or free radical scavenger was an effective method to control lutein degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Kinetic stability and membrane structure of liposomes during in vitro infant intestinal digestion: Effect of cholesterol and lactoferrin.

    Science.gov (United States)

    Liu, Weilin; Wei, Fuqiang; Ye, Aiqian; Tian, Mengmeng; Han, Jianzhong

    2017-09-01

    The effects of cholesterol and lactoferrin on the kinetic stability and membrane structural integrity of negatively charged liposomes under in vitro infant intestinal digestion conditions were elucidated using dynamic light scattering, pH-stat titration, Fourier transform infrared spectroscopy, and pyrene steady state fluorescence probes. The liposomes had a smaller particle diameter, a wider size distribution, and a greater negative charge after digestion. The incorporation of cholesterol into the phospholipid bilayers resulted in a more ordered conformation in the aliphatic tail region and reduced micropolarity, indicating that cholesterol can improve the structural stability of liposomal membranes against intestinal environmental stress. Lactoferrin coverage facilitated the release of free fatty acids and increased the microfluidity of the bilayers, reducing the structural integrity of the liposomes. This study provides useful information on the design of liposomes and other microcapsules with improved and controlled release properties during digestion for particular groups of people. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Non-traditional CD4+CD25-CD69+ regulatory T cells are correlated to leukemia relapse after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Zhao, Xiao-su; Wang, Xu-hua; Zhao, Xiang-yu; Chang, Ying-jun; Xu, Lan-ping; Zhang, Xiao-hui; Huang, Xiao-jun

    2014-07-01

    Non-traditional CD4+CD25-CD69+ T cells were found to be involved in disease progression in tumor-bearing mouse models and cancer patients recently. We attempted to define whether this subset of T cells were related to leukemia relapse after allogeneic hematopoietic cell transplantation (allo-HSCT). The frequency of CD4+CD25-CD69+ T cells among the CD4+ T cell population from the bone marrow of relapsed patients, patients with positive minimal residual disease (MRD+) and healthy donors was examined by flow cytometry. The CD4+CD25-CD69+ T cells were also stained with the intracellular markers to determine the cytokine (TGF-β, IL-2 and IL-10) secretion. The results showed that the frequency of CD4+CD25-CD69 + T cells was markedly increased in patients in the relapsed group and the MRD + group compared to the healthy donor group. The percentage of this subset of T cells was significantly decreased after effective intervention treatment. We also analyzed the reconstitution of CD4+CD25-CD69+ T cells at various time points after allo-HSCT, and the results showed that this subset of T cells reconstituted rapidly and reached a relatively higher level at +60 d in patients compared to controls. The incidence of either MRD+ or relapse in patients with a high frequency of CD4+CD25-CD69+ T cells (>7%) was significantly higher than that of patients with a low frequency of CD4+CD25-CD69+ T cells at +60 d, +90 d and +270 d after transplant. However, our preliminary data indicated that CD4+CD25-CD69+ T cells may not exert immunoregulatory function via cytokine secretion. This study provides the first clinical evidence of a correlation between non-traditional CD4+CD25-CD69+ Tregs and leukemia relapse after allo-HSCT and suggests that exploration of new methods of adoptive immunotherapy may be beneficial. Further research related to regulatory mechanism behind this phenomenon would be necessary.

  13. Increased natural CD4+CD25+ regulatory T cells and their suppressor activity do not contribute to mortality in murine polymicrobial sepsis.

    Science.gov (United States)

    Scumpia, Philip O; Delano, Matthew J; Kelly, Kindra M; O'Malley, Kerri A; Efron, Philip A; McAuliffe, Priscilla F; Brusko, Todd; Ungaro, Ricardo; Barker, Tolga; Wynn, James L; Atkinson, Mark A; Reeves, Westley H; Salzler, Michael J Clare; Moldawer, Lyle L

    2006-12-01

    Regulatory T cells (Tregs), including natural CD4+CD25+ Tregs and inducible IL-10 producing T regulatory type 1 (T(R)1) cells, maintain tolerance and inhibit autoimmunity. Recently, increased percentages of Tregs have been observed in the blood of septic patients, and ex vivo-activated Tregs were shown to prevent polymicrobial sepsis mortality. Whether endogenous Tregs contribute to sepsis outcome remains unclear. Polymicrobial sepsis, induced by cecal ligation and puncture, caused an increased number of splenic Tregs compared with sham-treated mice. Splenic CD4+CD25+ T cells from septic mice expressed higher levels of Foxp3 mRNA and were more efficient suppressors of CD4+CD25- T effector cell proliferation. Isolated CD4+ T cells from septic mice displayed increased intracellular IL-10 staining following stimulation, indicating that T(R)1 cells may also be elevated in sepsis. Surprisingly, Ab depletion of total CD4+ or CD4+CD25+ populations did not affect mortality. Furthermore, no difference in survival outcome was found between CD25 or IL-10 null mice and wild-type littermates, indicating that Treg or T(R)1-generated IL-10 are not required for survival. These results demonstrate that, although sepsis causes a relative increase in Treg number and increases their suppressive function, their presence does not contribute significantly to overall survival in this model.

  14. Deficiency of Mouse CD4+CD25+Foxp3+ Regulatory T Cells in Xenogeneic Pig Thymus-Grafted Nude Mice Suffering from Autoimmune Diseases

    Science.gov (United States)

    Zhang, Baojun; Sun, Chenming; Qu, Yanyan; Zhang, Aijun; Liu, Jun; Zhang, Lianjun; Niu, Zeqing; Zhao, Yong

    2008-01-01

    Xenogeneic thymus transplantation can efficiently induce specific immune tolerance to donor antigens in athymic recipients. However, many nude mice suffer from autoimmune diseases (AID) for over 10 weeks after xenogeneic thymus transplantation. CD4+CD25+Foxp3+ regulatory T (Treg) cells were recently determined to play a pivotal role in keeping immune tolerance in humans and mice. Thus, we investigated this subpopulation of Treg cells in the periphery of pig thymus-grafted nude mice suffering from AID. Our results showed that the expression of Foxp3, CTLA-4 and GITR on mouse CD4+CD25+ T cells and the ratio of CD4+CD25+Foxp3+ Treg cells to CD4+ T cells were significantly decreased in the periphery of pig thymus-grafted nude mice suffering from AID, compared with healthy pig or mouse thymus-grafted nude mice. Furthermore, mouse CD4+CD25+ T cells in pig thymus-grafted nude mice suffering from AID showed more severe deficiency in immunosuppressive function compared with the counterpart in xenogeneic pig or syngeneic thymus-grafted nude mice without AID. Thus, the decreased frequency, altered phenotype and functional deficiency of mouse CD4+CD25+ Treg cells in pig thymus-grafted nude mice may contribute to the development of AID in this model. PMID:18954555

  15. The effect of peptides and ions interacting with an electrically neutral membrane interface on the structure and stability of lipid membranes in the liquid-crystalline phase and in the liquid-ordered phase

    Science.gov (United States)

    Sano, Ryoko; Masum, Shah Md; Tanaka, Tomoki; Yamashita, Yuko; Levadny, Victor; Yamazaki, Masahito

    2005-08-01

    We investigated the effects of a de novo designed peptide, WLFLLKKK (peptide-1) and La3+, which can bind with the electrically neutral lipid membrane interface, on the stability of the phosphatidylcholine (PC) membrane in the Lα phase and that of the liquid-ordered (lo) phase membranes. The results of spacing of the multilamellar vesicle and shape changes of the giant unilamellar vesicle (GUV) indicate that the peptide-1 can be partitioned into the membrane interface in the Lα phase but not into that in the lo phase. La3+ induced shape changes of GUVs of the lo phase membrane, which are the same as those of GUVs in the Lα phase. This indicates that the binding of La3+ induced an increase in the lateral compression pressure of the membrane, which decreased the surface area of the membrane in the lo phase. The difference of the membrane interface between the Lα phase and the lo phase is discussed.

  16. Aquifex aeolicus membrane hydrogenase for hydrogen biooxidation: Role of lipids and physiological partners in enzyme stability and activity

    Energy Technology Data Exchange (ETDEWEB)

    Infossi, Pascale; Lojou, Elisabeth; Giudici-Orticoni, Marie-Therese [Unite de Bioenergetique et Ingenierie des Proteines, UPR 9036, Institut de Microbiologie de la Mediterranee - CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20 (France); Chauvin, Jean-Paul [Institut de Biologie du developpement de Marseille Luminy, UMR 6216, Parc Scientifique de Luminy, 163 Avenue de Luminy, BP 907, 13009 Marseille (France); Herbette, Gaetan [Spectropole FI 1739, Aix-Marseille Universite case 511, Faculte de St Jerome Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20 (France); Brugna, Myriam [Unite de Bioenergetique et Ingenierie des Proteines, UPR 9036, Institut de Microbiologie de la Mediterranee - CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20 (France); Universite de Provence, 3 Place Victor Hugo, 13331 Marseille Cedex 03 (France)

    2010-10-15

    Hydrogenase I from the hyperthermophilic bacterium Aquifex aeolicus is a good candidate for biotechnological devices thanks to its ability to oxidize hydrogen at high temperature, even in the presence of oxygen and CO. In order to enhance the enzyme stability and the catalytic efficiency, we investigated the hydrogen oxidation process with hydrogenase I embedded in a physiological-like environment. Hydrogenase I partners in the metabolic chain, namely membrane quinone and cytochrome b, were purified and fully characterized. The complex hydrogenase I-cytochrome b was inserted into liposomes. Surface Plasmon Resonance revealed that quinone took part in the stabilization of the complex. By use of molecular modelization and electrochemistry analysis, enzyme stability has been demonstrated to be stronger and enzymatic efficiency to be five times higher when hydrogenase is embedded into the liposomes. This result raises the possibility of using hydrogenases as biocatalysts in fuel cells. (author)

  17. Stability and structure of the membrane protein transporter Ffh is modulated by substrates and lipids

    DEFF Research Database (Denmark)

    Reinau, Marika Ejby; Otzen, Daniel

    2009-01-01

    the apoprotein. Escherichia coli lipid and DOPG (and to a smaller extent DOPC) increase Ffh's α-helical content, possibly related to Ffh's role in guiding membrane proteins to the membrane. Binding is largely mediated by electrostatic interactions but does not protect Ffh against trypsinolysis. We conclude...

  18. A Stability Study of Alkali Doped PBI Membranes for Alkaline Electrolyzer Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Aili, David; Hansen, Martin Kalmar

    2014-01-01

    Polybenzimidazole membranes in a linear, a crosslinked and a thermally cured form were subjected to aging in 6 M aqueous KOH at 85 ºC for periods of up to 176 days. The aged membranes were characterized with respect to weight loss, mechanical properties and ionic conductivity. The area specific c...

  19. Increased sensitivity of CD4+ T-effector cells to CD4+CD25+ Treg suppression compensates for reduced Treg number in asymptomatic HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Georgina Thorborn

    Full Text Available BACKGROUND: In HIV infection, uncontrolled immune activation and disease progression is attributed to declining CD4+CD25+FoxP3+ regulatory T-cell (Treg numbers. However, qualitative aspects of Treg function in HIV infection, specifically the balance between Treg cell suppressive potency versus suppressibility of effector cells, remain poorly understood. This report addresses this issue. METHODOLOGY/PRINCIPAL FINDINGS: A classic suppression assay to measure CD4+CD45RO+CD25hi Treg cells to suppress the proliferation of CD4+CD45RO+CD25- effectors cells (E following CD3/CD28 polyclonal stimulation was employed to compare the suppressive ability of healthy volunteers (N = 27 and chronic, asymptomatic, treatment naïve, HIV-infected subjects (N = 14. HIV-infected subjects displayed significantly elevated Treg-mediated suppression compared to healthy volunteers (p = 0.0047. Cross-over studies comparing Treg cell potency from HIV-infected versus control subjects to suppress the proliferation of a given population of allogeneic effector cells demonstrated increased sensitivity of CD4+CD25- effector cells from HIV-infected subjects to be suppressed, associated with reduced production of the Treg counter-regulatory cytokine, IL-17, rather than an increase in the suppressive potential of their CD4+CD25+ Treg cells. However, compared to controls, HIV+ subjects had significantly fewer absolute numbers of circulating CD4+CD25+FoxP3+ Treg cells. In vitro studies highlighted that one mechanism for this loss could be the preferential infection of Treg cells by HIV. CONCLUSIONS/SIGNIFICANCE: Together, novel data is provided to support the contention that elevated Treg-mediated suppression may be a natural host response to HIV infection.

  20. FoxP3+CD4+CD25+ T cells with regulatory properties can be cultured from colonic mucosa of patients with Crohn's disease

    Science.gov (United States)

    Kelsen, J; Agnholt, J; Hoffmann, H J; Rømer, J L; Hvas, C L; Dahlerup, J F

    2005-01-01

    CD4+CD25+ regulatory T cells (Tregs) are involved in the maintenance of peripheral tolerance and ensure a balanced immune response competent of fighting pathogens and at the same time recognizing commensals as harmless. This feature is lost in Crohn's disease (CD). The forkhead/winged helix transcription factor FoxP3 is a master gene for Treg function and defects in the FoxP3 gene lead to a clinical picture similar to inflammatory bowel disease (IBD). Murine colitis can be cured by adoptive transfer of Tregs and ex vivo-generated gut-specific Tregs represent an attractive option for therapy in CD. Thus, defective Tregs could contribute to the development of CD. We cultured biopsies of colonic mucosa in the presence of high concentrations of interleukin (IL)-2 and IL-4 to overcome the anergic nature of naturally occurring CD4+CD25+ Tregs in the mucosa. We investigated the expression of FoxP3 and regulatory potential of gut-derived CD4+CD25+ T cells cultured from patients with CD and healthy individuals. The FoxP3 expression was analysed by reverse transcriptase polymerase chain reaction (RT-PCR), and the suppressive effect of FoxP3+CD4+CD25+ T cells on proliferation and cytokine production of autologous CD4+ T cells was assessed by flow cytometry. Cultured gut-derived T cells with CD4+CD25+ phenotype expressed FoxP3 and were able as the freshly isolated Tregs from peripheral blood to suppress proliferation and cytokine production of autologous CD4+ T cells. Thus, we demonstrate that FoxP3+CD4+CD25+ T cells with regulatory properties can be propagated in vitro from inflamed mucosa of CD patients, which may be of interest in adoptive immunotherapy. PMID:16045746

  1. [Change of CD4(+) CD25(+) regulatory T cells and NK Cells in peripheral blood of children with acute leukemia and its possible significance in tumor immunity].

    Science.gov (United States)

    Wu, Ze-Lin; Hu, Guan-Yu; Chen, Fu-Xiong; Lu, Hui-Min; Wu, Zi-Liang; Li, Hua-Mei; Wei, Feng-Gui; Guan, Jing-Ming; Wu, Li-Ping

    2010-06-01

    This study was purposed to investigate the changes of CD4(+) CD25(+) regulatory T cells and NK cells in peripheral blood of acute leukemia children at different stages, the function of immune system and the possible roles of the CD4(+) CD25(+) regulatory T cells as well as NK cells in leukemia immunity. The number and proportion of CD4(+) CD25(+) regulatory T cells and NK cells were detected by flow cytometry in the peripheral blood of 53 acute leukemia children, including 25 patients in new diagnosis and 28 patients in continuous complete remission (CCR), and were compared with that of 20 normal children. The results indicated that the mean proportion of CD4(+) CD25(+) CD127(+) in CD4(+) T cells of peripheral blood in newly diagnosed patients, patients with CCR and normal children were (9.55 +/- 2.41)%, (8.54 +/- 2.51)% and (6.25 +/- 0.85)% respectively, the mean proportions of CD4(+)CD25(+)CD127(+) in newly diagnosed patients and patients with CCR were higher than that in normal children, the mean proportion of CD4(+)CD25(+)CD127(+) in newly diagnosed patients were higher than that in patients with CCR (p cell count in patients with acute leukaemia decreased as compared with normal control, while after achieving CCR, the NK cell count in patients were also less than that in normal control (4.11 +/- 3.87% and 10.41 +/- 7.20% vs 14.06 +/- 5.95%, p regulatory T cells is a simple, reproductive and accurate method, and the CD4(+) CD25(+) CD127(+) T cells can better reflect the proportion of CD4(+)CD25(+) regulatory T cells. The increase of regulatory T cells and decrease of NK cells in pediatric patients with acute leukemia indicate that the function of NK cells may be depressed. Treg T cells play a role in occurrence and development of leukemia, and are involved in down-regulating NK cell function.

  2. Reconstitution of Scid mice with CD4+CD25- T cells leads to rapid colitis: an improved model for pharmacologic testing

    DEFF Research Database (Denmark)

    Kjellev, Stine; Lundsgaard, Dorthe; Poulsen, Steen Seier

    2006-01-01

    was paralleled by increased fecal soluble tumor necrosis factor receptor II content. Cytokines in colonic tissue homogenates exhibited a Th1-like profile. We conclude that adoptive transfer of CD4+CD25- T cells results in colitis resembling IBD with a rapid onset and limited variability between individuals....... Purification of CD4+CD25- T cells is a simple procedure, and does not require flow-cytometric sorting. Fecal consistency score and colonic weight:length ratio are readily measurable and consistent disease parameters. This model is thus highly suitable for pharmacological testing of intervention strategies....

  3. Expansion of CD25-Negative Forkhead Box P3-Positive T Cells during HIV and Mycobacterium tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Matías T. Angerami

    2017-05-01

    Full Text Available Tuberculosis (TB and HIV alter the immune system, and coinfected (HIV-TB individuals usually present deregulations of T-lymphocytic immune response. We previously observed an increased frequency of “unconventional” CD4+CD25−FoxP3+ Treg (uTreg population during HIV-TB disease. Therefore, we aimed to explore the phenotype and function of uTreg and conventional CD4+CD25+FoxP3+ Treg subsets (cTreg in this context. We evaluated the expression of CD39, programmed cell death protein 1 (PD1, glucocorticoid-induced tumor necrosis factor receptor (GITR, and the effector/memory distribution by flow cytometry in cTreg and uTreg. Also, IL-10, TGF-β, IFN-γ production, and the suppressor capacity of uTregs were analyzed in cocultures with effector lymphocytes and compared with the effect of regulatory T cells (Tregs. We found diminished expression of CD39 and higher levels of PD1 on uTreg compared to cTreg in both HIV-TB and healthy donors (HD. In addition, uTreg and cTreg showed differences in maturation status in both HIV-TB and HD groups, due to the expansion of effector memory uTregs. Interestingly, both HIV-TB and HD showed a pronounced production of IFN-γ in uTreg population, though no significant differences were observed for IL-10 and TGF-β production between uTreg and cTreg. Moreover, IFN-γ+ cells were restricted to the CD39− uTreg population. Finally, when the suppressor capacity was evaluated, both uTreg and cTreg inhibited polyclonal T cell-proliferation and IFN-γ production in a similar extent. These findings suggest that uTregs, which are expanded during HIV-TB coinfection, exert regulatory functions in a similar way to cTregs despite an altered surface expression of Treg characteristic markers and differences in cytokine production.

  4. Effect of stabilization temperature during pyrolysis process of P84 co-polyimide-based tubular carbon membrane for H2/N2 and He/N2 separations

    Science.gov (United States)

    Sazali, N.; Salleh, W. N. W.; Ismail, A. F.; Ismail, N. H.; Aziz, F.; Yusof, N.; Hasbullah, H.

    2018-04-01

    In this study, the effect of stabilization temperature on the performance of tubular carbon membrane was being investigated. P84 co-polyimide-based tubular carbon membrane will be fabricated through the dip-coating technique. The tubular carbon membrane performance can be controlled by manipulating the pyrolysis conditions which was conducted at different stabilization temperatures of 250, 300, 350, 400, and 450°C under N2 environment (200 ml/min). The prepared membranes were characterized by using scanning electron microscopy (SEM), x-ray diffraction (XRD), and pure gas permeation system. The pure gas of H2, He, and N2 were used to determine the permeation properties of the carbon membrane. The P84 co-polyimide-based tubular carbon membrane stabilized at 300°C demonstrated an excellent permeation property with H2, He, and N2 gas permeance of 1134.51±2.87, 1287.22±2.86 and 2.98±1.28GPU, respectively. The highest H2/N2 and He/N2 selectivity of 380.71±2.34 and 431.95±2.61 was obtained when the stabilization temperature of 450°C was applied. It is concluded that the stabilization temperatures have protrusive effect on the carbon membrane properties specifically their pore structure, and eventually their gas separation properties.

  5. Invited: A Stability Study of Alkali Doped PBI Membranes for Alkaline Electrolyzer Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Aili, David; Hansen, Martin Kalmar

    2014-01-01

    or a porous diaphragm is used instead in direct contact with both electrodes (zero gap). In proton exchange membrane (PEM) electrolyzers proton conducting membranes like in PEM fuel cells have been very successful, but for the equivalent anion exchange membranes a similar conductivity has not yet been...... lost less that 10 mass %. Viscosity measurement on the linear PBI (the only one soluble) showed a decreasing molecular weight over time of storage. The materials were also examined by IR, NMR and TGA. Finally, electrolysis tests were made including comparison with a commercial diaphragm material...

  6. Polymer-stabilized palladium nanoparticles for catalytic membranes: ad hoc polymer fabrication

    Science.gov (United States)

    Domènech, Berta; Muñoz, Maria; Muraviev, Dmitri N.; Macanás, Jorge

    2011-06-01

    Metal nanoparticles are known as highly effective catalysts although their immobilization on solid supports is frequently required to prevent aggregation and to facilitate the catalyst application, recovery, and reuse. This paper reports the intermatrix synthesis of Pd0 nanoparticles in sulfonated polyethersulfone with Cardo group membranes and their use as nanocomposite catalytic membrane reactors. The synthesized polymer and the corresponding nanocomposite were characterized by spectroscopic and microscopic techniques. The catalytic efficiency of catalytic membranes was evaluated by following the reduction of p-nitrophenol in the presence of NaBH4.

  7. Polymer-stabilized palladium nanoparticles for catalytic membranes: ad hoc polymer fabrication

    Directory of Open Access Journals (Sweden)

    Macanás Jorge

    2011-01-01

    Full Text Available Abstract Metal nanoparticles are known as highly effective catalysts although their immobilization on solid supports is frequently required to prevent aggregation and to facilitate the catalyst application, recovery, and reuse. This paper reports the intermatrix synthesis of Pd0 nanoparticles in sulfonated polyethersulfone with Cardo group membranes and their use as nanocomposite catalytic membrane reactors. The synthesized polymer and the corresponding nanocomposite were characterized by spectroscopic and microscopic techniques. The catalytic efficiency of catalytic membranes was evaluated by following the reduction of p-nitrophenol in the presence of NaBH4.

  8. Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters.

    Science.gov (United States)

    Machnicka, Beata; Czogalla, Aleksander; Hryniewicz-Jankowska, Anita; Bogusławska, Dżamila M; Grochowalska, Renata; Heger, Elżbieta; Sikorski, Aleksander F

    2014-02-01

    This review focuses on structure and functions of spectrin as a major component of the membrane skeleton. Recent advances on spectrin function as an interface for signal transduction mediation and a number of data concerning interaction of spectrin with membrane channels, adhesion molecules, receptors and transporters draw a picture of multifaceted protein. Here, we attempted to show the current depiction of multitask role of spectrin in cell physiology. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. FBAR syndapin 1 recognizes and stabilizes highly curved tubular membranes in a concentration dependent manner

    DEFF Research Database (Denmark)

    Ramesh, Pradeep; Baroji, Younes F.; Seyyed Reihani, Seyyed Nader

    2013-01-01

    brain lipid vesicles and show that it senses membrane curvature at low density whereas it induces and reinforces tube stiffness at higher density. FBAR strongly up-concentrates on the high curvature tubes pulled out of Giant Unilamellar lipid Vesicles (GUVs), this sorting behavior is strongly amplified...... at low protein densities. Interestingly, FBAR from syndapin 1 has a large affinity for tubular membranes with curvatures larger than its own intrinsic concave curvature. Finally, we studied the effect of FBAR on membrane relaxation kinetics with high temporal resolution and found that the protein...... increases relaxation time of the tube holding force in a density-dependent fashion....

  10. GITR overexpression on CD4+CD25+ HTLV-1 transformed cells: detection by massively parallel signature sequencing.

    Science.gov (United States)

    Bal, Harshawardhan P; Cheng, Jihua; Murakami, Akikazu; Tallarico, Aimee St Claire; Wang, Wei; Zhou, Daixing; Vasicek, Thomas J; Marasco, Wayne A

    2005-07-01

    HTLV-I is the etiologic agent of adult T-cell leukemia (ATL), a fatal T-cell malignancy that is associated with profound immunosuppression. In this study, comprehensive gene expression profiling was performed using massively parallel signature sequencing (MPSS) to investigate virus-host interactions in acutely HTLV-1 transformed cells. The analysis revealed the modulation of numerous genes across different functional classes, many of which have not been previously implicated in HTLV-1 transformation or ATL. Differences in the transcriptomes of transformed cell lines were observed that have provided clues on how different clonal populations of cells respond to virus transformation. Quantitation of HTLV-1 transcription was possible, thus making MPSS a useful tool to study emerging pathogens and unknown microbial causes of human diseases. Importantly, overexpression of GITR, an activation marker that has not been previously reported to be upregulated by HTLV-1-infection or in transformed/leukemic cells and that is associated with the suppressor phenotype of CD4+CD25+ regulatory T-cells (Tregs), was also observed. The deep and quantitative gene expression profile generated by MPSS should provide additional leads for discovery research that can be applied to better understand the pathobiology of HTLV-1 transformation and ATL as well as to developing new therapies.

  11. Increased bronchial density of CD25+Foxp3+ regulatory T cells in occupational asthma: relationship to current smoking.

    Science.gov (United States)

    Sjåheim, T B; Bjørtuft, Ø; Drabløs, P A; Kongerud, J; Halstensen, T S

    2013-05-01

    To identify activated T cell subset in the asthmatic bronchia, we developed a triple-colour immunohistofluorescence labelling technique on cryo-section to discriminate activated CD4+CD25+ T cells, (effector T cells) from Foxp3+ regulatory T cells (Treg). Additional coexpression of activation and proliferation markers was also examined in situ. Bronchial biopsies were taken from 20 aluminium potroom workers (12 smokers) with asthma (>12% reversibility), 15 non-asthmatic potroom workers (7 smokers) and 10 non-smoking, non-exposed controls. Non-smoking asthmatics had significantly higher subepithelial density of both Tregs, effector T cells, activated (HLA-DR+) CD8+ and activated CD4+ T cells. Moreover, both Tregs, effector T cells and CD8+ T cells proliferated in the non-smoking asthmatics, only. Although smoking asthmatics had no asthma-associated increase in bronchial T cell, both had a significantly increase in effector T cell to Treg ratios. The significantly increased bronchial density of Tregs, effector T cells, proliferative T cells and activated CD8+ T cells in non-smoking asthmatics clearly showed that both the effector T cells and the inhibitory Treg system were activated in asthma. © 2013 The Authors. Scandinavian Journal of Immunology © 2013 Blackwell Publishing Ltd.

  12. Roles of specific membrane lipid domains in EGF receptor activation and cell adhesion molecule stabilization in a developing olfactory system.

    Science.gov (United States)

    Gibson, Nicholas J; Tolbert, Leslie P; Oland, Lynne A

    2009-09-29

    Reciprocal interactions between glial cells and olfactory receptor neurons (ORNs) cause ORN axons entering the brain to sort, to fasciculate into bundles destined for specific glomeruli, and to form stable protoglomeruli in the developing olfactory system of an experimentally advantageous animal species, the moth Manduca sexta. Epidermal growth factor receptors (EGFRs) and the cell adhesion molecules (IgCAMs) neuroglian and fasciclin II are known to be important players in these processes. We report in situ and cell-culture studies that suggest a role for glycosphingolipid-rich membrane subdomains in neuron-glia interactions. Disruption of these subdomains by the use of methyl-beta-cyclodextrin results in loss of EGFR activation, depletion of fasciclin II in ORN axons, and loss of neuroglian stabilization in the membrane. At the cellular level, disruption leads to aberrant ORN axon trajectories, small antennal lobes, abnormal arrays of olfactory glomerul, and loss of normal glial cell migration. We propose that glycosphingolipid-rich membrane subdomains (possible membrane rafts or platforms) are essential for IgCAM-mediated EGFR activation and for anchoring of neuroglian to the cytoskeleton, both required for normal extension and sorting of ORN axons.

  13. Polymer-stabilized palladium nanoparticles for catalytic membranes: ad hoc polymer fabrication

    OpenAIRE

    Dom?nech, Berta; Mu?oz, Maria; Muraviev, Dmitri N; Macan?s, Jorge

    2011-01-01

    Metal nanoparticles are known as highly effective catalysts although their immobilization on solid supports is frequently required to prevent aggregation and to facilitate the catalyst application, recovery, and reuse. This paper reports the intermatrix synthesis of Pd0 nanoparticles in sulfonated polyethersulfone with Cardo group membranes and their use as nanocomposite catalytic membrane reactors. The synthesized polymer and the corresponding nanocomposite were characterized by spectr...

  14. CD25, CD28 and CD38 expression in peripheral blood lymphocytes as a tool to predict acute rejection after liver transplantation.

    Science.gov (United States)

    Boleslawski, Emmanuel; BenOthman, Samia; Grabar, Sophie; Correia, Leonor; Podevin, Philippe; Chouzenoux, Sandrine; Soubrane, Olivier; Calmus, Yvon; Conti, Filomena

    2008-01-01

    The aim of this study was to determine whether the expression of CD25, CD28 and CD38 (which reflects the degree of T-cell activation) by peripheral blood mononuclear cells constitutes a useful means of measuring the immune status of liver transplant recipients. Fifty-two patients enrolled in a prospective randomized study comparing cyclosporine and tacrolimus as the principal immunosuppressive drugs were monitored prospectively. The expression of CD25, CD28 and CD38 was analyzed on CD3-, CD4- and CD8-positive cells from whole blood using flow cytometry. The prognostic value of baseline and day 14 measurements regarding acute rejection was examined using Kaplan-Meier estimates for univariate analyses and the Cox model for multivariate analyses. The mean frequencies of CD28 and CD38-expressing T cells were significantly higher in patients with acute rejection (p = 0.01 and p = 0.001, respectively), whereas the frequency CD25-expressing T cells did not differ significantly. Under univariate analysis, baseline CD25 levels, the type of calcineurin inhibitor, as well as the CD28 and CD38 frequencies obtained at day 14 were associated with the subsequent development of acute rejection. Under multivariate analysis, only CD28 and CD38 frequencies obtained at day 14 were independently associated with acute rejection. The evaluation of CD28 and CD38 expression in peripheral blood lymphocytes is a simple marker that could be used routinely in clinical practice to assess the level of immunosuppression.

  15. FoxP3(+)CD4(+)CD25(+) T cells with regulatory properties can be cultured from colonic mucosa of patients with Crohn's disease

    DEFF Research Database (Denmark)

    Rømer, Johanne Lade

    2005-01-01

    Summary CD4(+)CD25(+) regulatory T cells (T(regs)) are involved in the maintenance of peripheral tolerance and ensure a balanced immune response competent of fighting pathogens and at the same time recognizing commensals as harmless. This feature is lost in Crohn's disease (CD). The forkhead...... option for therapy in CD. Thus, defective T(regs) could contribute to the development of CD. We cultured biopsies of colonic mucosa in the presence of high concentrations of interleukin (IL)-2 and IL-4 to overcome the anergic nature of naturally occurring CD4(+)CD25(+) T(regs) in the mucosa. We...... investigated the expression of FoxP3 and regulatory potential of gut-derived CD4(+)CD25(+) T cells cultured from patients with CD and healthy individuals. The FoxP3 expression was analysed by reverse transcriptase polymerase chain reaction (RT-PCR), and the suppressive effect of FoxP3(+)CD4(+)CD25(+) T cells...

  16. FOXP3, CBLB and ITCH gene expression and cytotoxic T lymphocyte antigen 4 expression on CD4(+) CD25(high) T cells in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Krakauer, M; Khademi, M

    2012-01-01

    the phenotype of CD4(+) CD25(high) T cells in MS by flow cytometry and its relationship with expression of the FOXP3, ITCH and CBLB genes. We found that untreated MS patients had lower cell surface expression of cytotoxic T lymphocyte antigen 4 (CTLA-4) on CD4(+) CD25(high) T cells and higher intracellular CTLA......Expression of the forkhead box protein 3 (FoxP3) transcription factor is regulated by the E3 ubiquitin ligases Itch and Cbl-b and induces regulatory activity CD4(+) CD25(high) T cells. Treatment with interferon (IFN)-β enhances regulatory T cell activity in multiple sclerosis (MS). We studied......-4 expression than healthy controls. Cell surface expression of CTLA-4 on CD4(+) CD25(high) T cells correlated with expression of FOXP3 mRNA in untreated patients and increased significantly with time from most recent injection in patients treated with IFN-β. FOXP3 mRNA expression correlated...

  17. In vitro inhibition of enterobacteria-reactive CD4+CD25- T cells and suppression of immunoinflammatory colitis in mice by the novel immunomodulatory agent VGX-1027

    DEFF Research Database (Denmark)

    Mangano, Katia; Sardesai, Niranjan; D'Alcamo, Maria

    2008-01-01

    of innate immunity in inflammatory bowel diseases prompted us to consider the use of VGX-1027 in these diseases leading us to in vitro and in vivo test the drug in related experimental conditions. These consist, respectively, of the proliferation assay of CD4+CD25- T cells to enterobacteria, and the acute...

  18. Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential.

    Science.gov (United States)

    Chen, Ying-Bei; Aon, Miguel A; Hsu, Yi-Te; Soane, Lucian; Teng, Xinchen; McCaffery, J Michael; Cheng, Wen-Chih; Qi, Bing; Li, Hongmei; Alavian, Kambiz N; Dayhoff-Brannigan, Margaret; Zou, Shifa; Pineda, Fernando J; O'Rourke, Brian; Ko, Young H; Pedersen, Peter L; Kaczmarek, Leonard K; Jonas, Elizabeth A; Hardwick, J Marie

    2011-10-17

    Mammalian Bcl-x(L) protein localizes to the outer mitochondrial membrane, where it inhibits apoptosis by binding Bax and inhibiting Bax-induced outer membrane permeabilization. Contrary to expectation, we found by electron microscopy and biochemical approaches that endogenous Bcl-x(L) also localized to inner mitochondrial cristae. Two-photon microscopy of cultured neurons revealed large fluctuations in inner mitochondrial membrane potential when Bcl-x(L) was genetically deleted or pharmacologically inhibited, indicating increased total ion flux into and out of mitochondria. Computational, biochemical, and genetic evidence indicated that Bcl-x(L) reduces futile ion flux across the inner mitochondrial membrane to prevent a wasteful drain on cellular resources, thereby preventing an energetic crisis during stress. Given that F(1)F(O)-ATP synthase directly affects mitochondrial membrane potential and having identified the mitochondrial ATP synthase β subunit in a screen for Bcl-x(L)-binding partners, we tested and found that Bcl-x(L) failed to protect β subunit-deficient yeast. Thus, by bolstering mitochondrial energetic capacity, Bcl-x(L) may contribute importantly to cell survival independently of other Bcl-2 family proteins.

  19. The relative values of CD8+CD25+Foxp3brigh Treg cells correlate with selected lung function parameters in asthma.

    Science.gov (United States)

    Eusebio, M; Kuna, P; Kraszula, L; Kupczyk, M; Pietruczuk, M

    2015-06-01

    The study aimed to detect CD8(+)CD25(+)FoxP3(brigh) Tregs and investigate their possible association with selected lung function values. CD8(+)CD25(+)FoxP3(brigh) Tregs were detected by flow cytometry in the peripheral blood of 25 patients with severe asthma (SA), 25 patients with mild-to-moderate asthma (MA), and 25 age-matched healthy donors (NC). The percentages of CD8(+)CD25(+)FoxP3(brigh) Tregs of the patients with severe (3.4 ± 4.55), and mild-to-moderate asthma (7.5 ± 8.15), were markedly lower than those of controls (12.1 ± 13.2). The mean forced expiratory volume in 1 s (FEV1) % predicted value in severe asthma subpopulation was significantly lower (67.05 ± 15.98%) when compared with that of mild-to-moderate asthma subgroup (87.71 ± 16.12%). Interestingly, the percentages of CD8(+)CD25(+)FoxP3(brigh) Tregs correlate with mean peak expiratory flow (PEF)% predicted values in severe (r = 0.7, P <0.01) and mild-to-moderate (r = 0.73, P <0.01) asthma. In contrast, this parameter was positively correlated with FEV1% predicted values in the severe asthmatics only (r = 0.71, P <0.01). In summary, this study establishes a link between the percentage of CD8(+)CD25(+)FoxP3(brigh) Tregs and selected lung function parameters, suggesting that this parameter has potential as a marker for inflammation and airflow obstruction. © The Author(s) 2015.

  20. Ozone and allergen exposure during postnatal development alters the frequency and airway distribution of CD25+ cells in infant rhesus monkeys

    International Nuclear Information System (INIS)

    Miller, Lisa A.; Gerriets, Joan E.; Tyler, Nancy K.; Abel, Kristina; Schelegle, Edward S.; Plopper, Charles G.; Hyde, Dallas M.

    2009-01-01

    The epidemiologic link between air pollutant exposure and asthma has been supported by experimental findings, but the mechanisms are not understood. In this study, we evaluated the impact of combined ozone and house dust mite (HDM) exposure on the immunophenotype of peripheral blood and airway lymphocytes from rhesus macaque monkeys during the postnatal period of development. Starting at 30 days of age, monkeys were exposed to 11 cycles of filtered air, ozone, HDM aerosol, or ozone + HDM aerosol. Each cycle consisted of ozone delivered at 0.5 ppm for 5 days (8 h/day), followed by 9 days of filtered air; animals received HDM aerosol during the last 3 days of each ozone exposure period. Between 2-3 months of age, animals co-exposed to ozone + HDM exhibited a decline in total circulating leukocyte numbers and increased total circulating lymphocyte frequency. At 3 months of age, blood CD4+/CD25+ lymphocytes were increased with ozone + HDM. At 6 months of age, CD4+/CD25+ and CD8+/CD25+ lymphocyte populations increased in both blood and lavage of ozone + HDM animals. Overall volume of CD25+ cells within airway mucosa increased with HDM exposure. Ozone did not have an additive effect on volume of mucosal CD25+ cells in HDM-exposed animals, but did alter the anatomical distribution of this cell type throughout the proximal and distal airways. We conclude that a window of postnatal development is sensitive to air pollutant and allergen exposure, resulting in immunomodulation of peripheral blood and airway lymphocyte frequency and trafficking

  1. High soluble CD30, CD25 and IL-6 may identify patients with worse survival in CD30+ cutaneous lymphomas and early mycosis fungoides

    Science.gov (United States)

    Kadin, Marshall E.; Pavlov, Igor; Delgado, Julio C.; Vonderheid, Eric C.

    2011-01-01

    Histopathology alone cannot predict outcome of patients with CD30+ primary cutaneous lymphoproliferative disorders (CD30CLPD) and early mycosis fungoides (MF). To test the hypothesis that serum cytokines/cytokine receptors provide prognostic information in these disorders, we measured soluble CD30 (sCD30), sCD25, and selected cytokines in cell cultures and sera of 116 patients with CD30CLPD and 96 patients with early MF followed up to 20 years. Significant positive correlation was found between sCD30 levels and sCD25, CD40L, IL-6, and IL-8, suggesting CD30+ neoplastic cells secrete these cytokines, but not Th2 cytokines. In vitro studies confirmed sCD30, sCD25, IL-6 and IL-8 are secreted by CD30CLPD-derived cell lines. CD30CLPD patients with above normal sCD30 and sCD25 had worse overall and disease-related survivals, but only sCD30 retained significance in Cox models that included advanced age. High sCD30 also identified patients with worse survival in early MF. Increased IL-6 and IL-8 correlated with poor disease-related survival in CD30CLPD patients, We conclude that: (1) neoplastic cells of some CD30CLPD patients do not resemble Th2 cells, (2) high serum sCD30, sCD25, IL-6, and perhaps IL-8 levels may provide prognostic information useful for patient management. PMID:22071475

  2. Performance and Long-Term Stability of Pd/PSS and Pd/Al2O3 Membranes for Hydrogen Separation.

    Science.gov (United States)

    Liguori, Simona; Iulianelli, Adolfo; Dalena, Francesco; Pinacci, Pietro; Drago, Francesca; Broglia, Maria; Huang, Yan; Basile, Angelo

    2014-03-06

    The present work is focused on the investigation of the performance and long-term stability of two composite palladium membranes under different operating conditions. One membrane (Pd/porous stainless steel (PSS)) is characterized by a ~10 µm-thick palladium layer on a porous stainless steel substrate, which is pretreated by means of surface modification and oxidation; the other membrane (Pd/Al2O3) is constituted by a ~7 µm-thick palladium layer on an asymmetric microporous Al2O3 substrate. The operating temperature and pressure ranges, used for studying the performance of these two kinds of membranes, are 350-450 °C and 200-800 kPa, respectively. The H2 permeances and the H2/N2 selectivities of both membranes were investigated and compared with literature data. At 400 °C and 200 kPa as pressure difference, Pd/PSS and Pd/Al2O3 membranes exhibited an H2/N2 ideal selectivity equal to 11700 and 6200, respectively, showing stability for 600 h. Thereafter, H2/N2 selectivity of both membranes progressively decreased and after around 2000 h, dropped dramatically to 55 and 310 for the Pd/PSS and Pd/Al2O3 membranes, respectively. As evidenced by Scanning Electron Microscope (SEM) analyses, the pinholes appear on the whole surface of the Pd/PSS membrane and this is probably due to release of sulphur from the graphite seal rings.

  3. Anion-exchange membranes containing diamines: preparation and stability in alkaline solution

    NARCIS (Netherlands)

    Komkova, E.N.; Komkova, E.N.; Stamatialis, Dimitrios; Strathmann, H.; Wessling, Matthias

    2004-01-01

    Anion-exchange membranes (AEM) are prepared from chloromethylated polysulfone and a number of diamine compounds. The properties of the new AEM including the water content, ion-exchange capacity, permselectivity and area resistance are thoroughly studied. By varying the amount of diamine into the

  4. High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability

    NARCIS (Netherlands)

    Castricum, H.L.; Kreiter, R.; van Veen, H.M.; Blank, D.H.A.; Vente, J.F.; ten Elshof, J.E.

    2008-01-01

    A new organic-inorganic hybrid membrane has been prepared with exceptional performance in dewatering applications. The only precursor used in the sol-gel synthesis of the selective layer was organically linked 1,2-bis(triethoxysilyl)ethane (BTESE). The microporous structure of this layer enables

  5. High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability

    NARCIS (Netherlands)

    Castricum, H.L.; Kreiter, Robert; van Veen, Henk M.; Blank, David H.A.; Vente, Jaap F.; ten Elshof, Johan E.

    2008-01-01

    A new organic–inorganic hybrid membrane has been prepared with exceptional performance in dewatering applications. The only precursor used in the sol–gel synthesis of the selective layer was organically linked 1,2-bis(triethoxysilyl)ethane (BTESE). The microporous structure of this layer enables

  6. Acquisition of Co metal from spent lithium-ion battery using emulsion liquid membrane technology and emulsion stability test

    Science.gov (United States)

    Yuliusman; Wulandari, P. T.; Amiliana, R. A.; Huda, M.; Kusumadewi, F. A.

    2018-03-01

    Lithium-ion batteries are the most common type to be used as energy source in mobile phone. The amount of lithium-ion battery wastes is approximated by 200 – 500 ton/year. In one lithium-ion battery, there are 5 – 20% of cobalt metal, depend on the manufacturer. One of the way to recover a valuable metal from waste is leaching process then continued with extraction, which is the aim of this study. Spent lithium-ion batteries will be characterized with EDX and AAS, the result will show the amount of cobalt metal with form of LiCoO2 in the cathode. Hydrochloric acid concentration used is 4 M, temperature 80°C, and reaction time 1 hour. This study will discuss the emulsion stability test on emulsion liquid membrane. The purpose of emulsion stability test in this study was to determine optimum concentration of surfactant and extractant to produce a stable emulsion. Surfactant and extractant used were SPAN 80 and Cyanex 272 respectively with both concentrations varied. Membrane and feed phase ratios used in this experiment was 1 : 2. The optimum results of this study were SPAN 80 concentrations of 10% w/v and Cyanex 272 0.7 M.

  7. The critical relation between chemical stability of cations and water in anion exchange membrane fuel cells environment

    Science.gov (United States)

    Dekel, Dario R.; Willdorf, Sapir; Ash, Uri; Amar, Michal; Pusara, Srdjan; Dhara, Shubhendu; Srebnik, Simcha; Diesendruck, Charles E.

    2018-01-01

    Anion exchange membrane fuel cells can potentially revolutionize energy storage and delivery; however, their commercial development is hampered by a significant technological impedance: the chemical decomposition of the anion exchange membranes during operation. The hydroxide anions, while transported from the cathode to the anode, attack the positively charged functional groups in the polymer membrane, neutralizing it and suppressing its anion-conducting capability. In recent years, several new quaternary ammonium salts have been proposed to address this challenge, but while they perform well in ex-situ chemical studies, their performance is very limited in real fuel cell studies. Here, we use experimental work, corroborated by molecular dynamics modeling to show that water concentration in the environment of the hydroxide anion, as well as temperature, significantly impact its reactivity. We compare different quaternary ammonium salts that have been previously studied and test their stabilities in the presence of relatively low hydroxide concentration in the presence of different amounts of solvating water molecules, as well as different temperatures. Remarkably, with the right amount of water and at low enough temperatures, even quaternary ammonium salts which are considered "unstable", present significantly improved lifetime.

  8. Age-related Differences in Dystrophin: Impact on Force Transfer Proteins, Membrane Integrity, and Neuromuscular Junction Stability.

    Science.gov (United States)

    Hughes, David C; Marcotte, George R; Marshall, Andrea G; West, Daniel W D; Baehr, Leslie M; Wallace, Marita A; Saleh, Perrie M; Bodine, Sue C; Baar, Keith

    2017-05-01

    The loss of muscle strength with age has been studied from the perspective of a decline in muscle mass and neuromuscular junction (NMJ) stability. A third potential factor is force transmission. The purpose of this study was to determine the changes in the force transfer apparatus within aging muscle and the impact on membrane integrity and NMJ stability. We measured an age-related loss of dystrophin protein that was greatest in the flexor muscles. The loss of dystrophin protein occurred despite a twofold increase in dystrophin mRNA. Importantly, this disparity could be explained by the four- to fivefold upregulation of the dystromir miR-31. To compensate for the loss of dystrophin protein, aged muscle contained increased α-sarcoglycan, syntrophin, sarcospan, laminin, β1-integrin, desmuslin, and the Z-line proteins α-actinin and desmin. In spite of the adaptive increase in other force transfer proteins, over the 48 hours following lengthening contractions, the old muscles showed more signs of impaired membrane integrity (fourfold increase in immunoglobulin G-positive fibers and 70% greater dysferlin mRNA) and NMJ instability (14- to 96-fold increases in Runx1, AchRδ, and myogenin mRNA). Overall, these data suggest that age-dependent alterations in dystrophin leave the muscle membrane and NMJ more susceptible to contraction-induced damage even before changes in muscle mass are obvious. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Evaluation of PLGA containing anti-CTLA4 inhibited endometriosis progression by regulating CD4+CD25+Treg cells in peritoneal fluid of mouse endometriosis model.

    Science.gov (United States)

    Liu, Qi; Ma, Pingchuan; Liu, Lanxia; Ma, Guilei; Ma, Jingjing; Liu, Xiaoxuan; Liu, Yijin; Lin, Wanjun; Zhu, Yingjun

    2017-01-01

    Our study investigated poly(lactic-co-glycolic acid) (PLGA) as protein delivery vehicles encapsulate CTLA-4-antibody (anti-CTLA-4) which is essential for CD4+CD25+Treg cells suppressive function exposing superior potential for inhibiting endometriosis progress in mouse model than single anti-CTLA-4. Anti-CTLA-4 loaded PLGA combined to ligands CTLA-4 in surface of CD4+CD25+Treg cells which distributed in peritoneal fluid of mouse endometriosis model. The particle size, zeta potential of the anti-CTLA-4 loaded nanoparticles was detected by dynamic light scattering. Morphology of nanoparticles was evaluated by transmission electron microscopy (TEM). Confocal laser scanning microscopy (CLSM) indicated distribution of anti-CTLA-4 with PLGA or without in peritoneal fluid. Cumulative anti-CTLA-4 release from nanoparticles was evaluated by Micro BCA assay. The percentage of CD4+CD25+Treg cells in peritoneal fluid was demonstrated by flow cytometer. In vitro experiment we co-culture ectopic endometrial cells (EEC) with isolated CD4+CD25+Treg cells in peritoneal fluid (PF), proliferation and invasion of ectopic endometrial cells (EEC) was measured by BrdU ELISA assay and Matrigel invasion assay. In comparison with anti-CTLA-4 without nanoparticles, the bioconjugates PLGA/anti-CTLA-4 were tolerated in peritoneal fluid with a controlled release of anti-CTLA-4 in 3, 7, 14days. Moreover, PLGA/anti-CTLA-4 had superior protective regulation ability to reduce level of CD4+CD25+Treg cells in peritoneal fluid. Most strikingly, in vitro experiment, PLGA/anti-CTLA-4 exhibited better ability in inhibiting proliferation and invasion of ectopic endometrial cells in co-culture system compared with anti-CTLA-4. Progressively, PLGA/anti-CTLA-4 had better suppressive activity to inhibited IL-10 and TGF-beta secreted by CD4+CD25+Treg cells which indicating that PLGA/anti-CTLA-4 suppressed cells proliferation and invasion through reduced IL-10 and TGF-beta production. Thus, PLGA/anti-CTLA-4 may

  10. Unbalanced expression of aryl hydrocarbon receptor in peripheral blood CCR6+CD4+ and CD4+CD25+T cells of rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Lin Cheng

    Full Text Available ABSTRACT Objective: The goal of this study was to analyze the role of aryl hydrocarbon receptor in peripheral blood CCR6+CD4+ and CD4+CD25+T cells of patients with rheumatoid arthritis. Methods: Flow cytometry was applied to determine the proportion of AhR positive cells in CCR6+CD4+T, CD4+CD25+T and peripheral blood peripheral mononuclear cells from each subject. AhR mRNA and CYP1A1 mRNA relative expression levels were tested by real-time PCR. Results: The percentage of AhR positive cells in peripheral blood mononuclear cells was higher in RA group than that in healthy cases [(35.23 ± 10.71% vs. (18.83 ± 7.32%, p < 0.01]. The expression levels of AhR and CYP1A1 were both increased in patients with RA while compared to controls [(3.71 ± 1.63 vs. (2.00 ± 1.27, p = 0.002; (2.62 ± 2.08 vs. (0.62 ± 0.29, p < 0.01, respectively]. In RA patients, the percentage of AhR positive cells in CD4+CD25+T cells was significantly lower than that from controls [17.90 (6.10 ± 80.10% vs. (52.49 ± 19.18%, p < 0.01]; In healthy controls, the percentage of AhR positive cells in CD4+CD25+T cells was significantly higher than that in CCR6+CD4+T cells, and was also significantly higher than that in PBMCs [(52.49 ± 19.18% vs. (23.18 ± 5.62% vs. (18.06 ± 7.80%, X 2 = 24.03, p < 0.01]; in RA patients, the percentage of AhR positive cells in CCR6+CD4+T cells was significantly increased than that in CD4+CD25+T cells and PBMCs [(46.02 ± 14.68% vs. 17.90 (6.10 ± 80.10% vs. (34.22 ± 10.33%, X 2 = 38.29, p < 0.01]; Nevertheless, no statistically significant relationship was found between clinical data and AhR positive cells in CCR6+CD4+T and CD4+CD25+T cells. Conclusion: AhR may participate in the pathological progress of RA by controlling the differentiation of Th17 and Treg cells in peripheral blood.

  11. Unbalanced expression of aryl hydrocarbon receptor in peripheral blood CCR6+CD4+and CD4+CD25+T cells of rheumatoid arthritis.

    Science.gov (United States)

    Cheng, Lin; Qian, Long; Tan, Yue; Wang, Guo-Sheng; Li, Xiao-Mei; Li, Xiang-Pei; Luo, Chao-Yin

    The goal of this study was to analyze the role of aryl hydrocarbon receptor in peripheral blood CCR6 + CD4 + and CD4 + CD25 + T cells of patients with rheumatoid arthritis. Flow cytometry was applied to determine the proportion of AhR positive cells in CCR6 + CD4 + T, CD4 + CD25 + T and peripheral blood peripheral mononuclear cells from each subject. AhR mRNA and CYP1A1 mRNA relative expression levels were tested by real-time PCR. The percentage of AhR positive cells in peripheral blood mononuclear cells was higher in RA group than that in healthy cases [(35.23±10.71)% vs. (18.83±7.32)%, p<0.01]. The expression levels of AhR and CYP1A1 were both increased in patients with RA while compared to controls [(3.71±1.63) vs. (2.00±1.27), p=0.002; (2.62±2.08) vs. (0.62±0.29), p<0.01, respectively]. In RA patients, the percentage of AhR positive cells in CD4 + CD25 + T cells was significantly lower than that from controls [17.90 (6.10±80.10)% vs. (52.49±19.18)%, p<0.01]; In healthy controls, the percentage of AhR positive cells in CD4 + CD25 + T cells was significantly higher than that in CCR6 + CD4 + T cells, and was also significantly higher than that in PBMCs [(52.49±19.18)% vs. (23.18±5.62)% vs. (18.06±7.80)%, X 2 =24.03, p<0.01]; in RA patients, the percentage of AhR positive cells in CCR6 + CD4 + T cells was significantly increased than that in CD4 + CD25 + T cells and PBMCs [(46.02±14.68)% vs. 17.90 (6.10±80.10)% vs. (34.22±10.33)%, X 2 =38.29, p<0.01]; Nevertheless, no statistically significant relationship was found between clinical data and AhR positive cells in CCR6 + CD4 + T and CD4 + CD25 + T cells. AhR may participate in the pathological progress of RA by controlling the differentiation of Th17 and Treg cells in peripheral blood. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.

  12. Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart

    International Nuclear Information System (INIS)

    Montaigne, David; Marechal, Xavier; Baccouch, Riadh; Modine, Thomas; Preau, Sebastien; Zannis, Konstantinos; Marchetti, Philippe; Lancel, Steve; Neviere, Remi

    2010-01-01

    The present study was undertaken to examine the effects of doxorubicin on left ventricular function and cellular energy state in intact isolated hearts, and, to test whether inhibition of mitochondrial membrane potential dissipation would prevent doxorubicin-induced mitochondrial and myocardial dysfunction. Myocardial contractile performance and mitochondrial respiration were evaluated by left ventricular tension and its first derivatives and cardiac fiber respirometry, respectively. NADH levels, mitochondrial membrane potential and glucose uptake were monitored non-invasively via epicardial imaging of the left ventricular wall of Langendorff-perfused rat hearts. Heart performance was reduced in a time-dependent manner in isolated rat hearts perfused with Krebs-Henseleit solution containing 1 μM doxorubicin. Compared with controls, doxorubicin induced acute myocardial dysfunction (dF/dt max of 105 ± 8 mN/s in control hearts vs. 49 ± 7 mN/s in doxorubicin-treated hearts; *p < 0.05). In cardiac fibers prepared from perfused hearts, doxorubicin induced depression of mitochondrial respiration (respiratory control ratio of 4.0 ± 0.2 in control hearts vs. 2.2 ± 0.2 in doxorubicin-treated hearts; *p < 0.05) and cytochrome c oxidase kinetic activity (24 ± 1 μM cytochrome c/min/mg in control hearts vs. 14 ± 3 μM cytochrome c/min/mg in doxorubicin-treated hearts; *p < 0.05). Acute cardiotoxicity induced by doxorubicin was accompanied by NADH redox state, mitochondrial membrane potential, and glucose uptake reduction. Inhibition of mitochondrial permeability transition pore opening by cyclosporine A largely prevented mitochondrial membrane potential dissipation, cardiac energy state and dysfunction. These results suggest that in intact hearts an impairment of mitochondrial metabolism is involved in the development of doxorubicin cardiotoxicity.

  13. Molecularly Designed Stabilized Asymmetric Hollow Fiber Membranes for Aggressive Natural Gas Separation.

    Science.gov (United States)

    Liu, Gongping; Li, Nanwen; Miller, Stephen J; Kim, Danny; Yi, Shouliang; Labreche, Ying; Koros, William J

    2016-10-24

    New rigid polyimides with bulky CF 3 groups were synthesized and engineered into high-performance hollow fiber membranes. The enhanced rotational barrier provided by properly positioned CF 3 side groups prohibited fiber transition layer collapse during cross-linking, thereby greatly improving CO 2 /CH 4 separation performance compared to conventional materials for aggressive natural gas feeds. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Curcumin blocks interleukin (IL)-2 signaling in T-lymphocytes by inhibiting IL-2 synthesis, CD25 expression, and IL-2 receptor signaling

    International Nuclear Information System (INIS)

    Forward, Nicholas A.; Conrad, David M.; Power Coombs, Melanie R.; Doucette, Carolyn D.; Furlong, Suzanne J.; Lin, Tong-Jun; Hoskin, David W.

    2011-01-01

    Highlights: → Curcumin inhibits CD4 + T-lymphocyte proliferation. → Curcumin inhibits interleukin-2 (IL-2) synthesis and CD25 expression by CD4 + T-lymphocytes. → Curcumin interferes with IL-2 receptor signaling by inhibiting JAK3 and STAT5 phosphorylation. → IL-2-dependent regulatory T-lymphocyte function and Foxp3 expression is downregulated by curcumin. -- Abstract: Curcumin (diferulomethane) is the principal curcuminoid in the spice tumeric and a potent inhibitor of activation-induced T-lymphocyte proliferation; however, the molecular basis of this immunosuppressive effect has not been well studied. Here we show that micromolar concentrations of curcumin inhibited DNA synthesis by mouse CD4 + T-lymphocytes, as well as interleukin-2 (IL-2) and CD25 (α chain of the high affinity IL-2 receptor) expression in response to antibody-mediated cross-linking of CD3 and CD28. Curcumin acted downstream of protein kinase C activation and intracellular Ca 2+ release to inhibit IκB phosphorylation, which is required for nuclear translocation of the transcription factor NFκB. In addition, IL-2-dependent DNA synthesis by mouse CTLL-2 cells, but not constitutive CD25 expression, was impaired in the presence of curcumin, which demonstrated an inhibitory effect on IL-2 receptor (IL-2R) signaling. IL-2-induced phosphorylation of STAT5A and JAK3, but not JAK1, was diminished in the presence of curcumin, indicating inhibition of critical proximal events in IL-2R signaling. In line with the inhibitory action of curcumin on IL-2R signaling, pretreatment of CD4 + CD25 + regulatory T-cells with curcumin downregulated suppressor function, as well as forkhead box p3 (Foxp3) expression. We conclude that curcumin inhibits IL-2 signaling by reducing available IL-2 and high affinity IL-2R, as well as interfering with IL-2R signaling.

  15. Curcumin blocks interleukin (IL)-2 signaling in T-lymphocytes by inhibiting IL-2 synthesis, CD25 expression, and IL-2 receptor signaling

    Energy Technology Data Exchange (ETDEWEB)

    Forward, Nicholas A.; Conrad, David M. [Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia (Canada); Power Coombs, Melanie R.; Doucette, Carolyn D. [Department of Pathology, Dalhousie University, Halifax, Nova Scotia (Canada); Furlong, Suzanne J. [Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia (Canada); Lin, Tong-Jun [Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia (Canada); Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia (Canada); Hoskin, David W., E-mail: d.w.hoskin@dal.ca [Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia (Canada); Department of Pathology, Dalhousie University, Halifax, Nova Scotia (Canada); Department of Surgery, Dalhousie University, Halifax, Nova Scotia (Canada)

    2011-04-22

    Highlights: {yields} Curcumin inhibits CD4{sup +} T-lymphocyte proliferation. {yields} Curcumin inhibits interleukin-2 (IL-2) synthesis and CD25 expression by CD4{sup +} T-lymphocytes. {yields} Curcumin interferes with IL-2 receptor signaling by inhibiting JAK3 and STAT5 phosphorylation. {yields} IL-2-dependent regulatory T-lymphocyte function and Foxp3 expression is downregulated by curcumin. -- Abstract: Curcumin (diferulomethane) is the principal curcuminoid in the spice tumeric and a potent inhibitor of activation-induced T-lymphocyte proliferation; however, the molecular basis of this immunosuppressive effect has not been well studied. Here we show that micromolar concentrations of curcumin inhibited DNA synthesis by mouse CD4{sup +} T-lymphocytes, as well as interleukin-2 (IL-2) and CD25 ({alpha} chain of the high affinity IL-2 receptor) expression in response to antibody-mediated cross-linking of CD3 and CD28. Curcumin acted downstream of protein kinase C activation and intracellular Ca{sup 2+} release to inhibit I{kappa}B phosphorylation, which is required for nuclear translocation of the transcription factor NF{kappa}B. In addition, IL-2-dependent DNA synthesis by mouse CTLL-2 cells, but not constitutive CD25 expression, was impaired in the presence of curcumin, which demonstrated an inhibitory effect on IL-2 receptor (IL-2R) signaling. IL-2-induced phosphorylation of STAT5A and JAK3, but not JAK1, was diminished in the presence of curcumin, indicating inhibition of critical proximal events in IL-2R signaling. In line with the inhibitory action of curcumin on IL-2R signaling, pretreatment of CD4{sup +}CD25{sup +} regulatory T-cells with curcumin downregulated suppressor function, as well as forkhead box p3 (Foxp3) expression. We conclude that curcumin inhibits IL-2 signaling by reducing available IL-2 and high affinity IL-2R, as well as interfering with IL-2R signaling.

  16. Regulatory T cells in early life: comparative study of CD4+CD25high T cells from foals and adult horses.

    Directory of Open Access Journals (Sweden)

    Eman Hamza

    Full Text Available The immune system of mammals is subject to continuous development during the postnatal phase of life. Studies following the longitudinal development of the immune system in healthy children are limited both by ethical considerations and sample volumes. Horses represent a particular valuable large animal model for T regulatory (Treg cells and allergy research. We have recently characterised Treg cells from horses, demonstrated their regulatory capability and showed both their expansion and induction in vitro. Insect bite hypersensitivity (IBH is a common allergy in horses resembling atopic dermatitis and studies have shown that first exposure to allergens in adult life results in an increased incidence of IBH. The aim of the present study was to characterize circulating CD4+CD25highFoxP3+cells in foals, evaluate their suppressive capability and their in vitro induction compared to adult horses. 19 foals (age range, 1-5 months, their adult mothers and six one-year-old horses (yearlings were included in the study. The proportion of FoxP3+ cells within the circulating CD4+CD25high population was significantly higher in foals (47% compared to their mothers (18% and to yearlings (26%. Treg cells from foals also displayed a higher suppressive capability. Furthermore, CD4+CD25high cells in foals could be induced in vitro from CD4+CD25- cells in a significantly higher proportion compared to mares. These cells also displayed a significantly enhanced suppressive capability. In summary these findings support the notion that exposure of horses to allergens during maturation of the immune system assists the establishment of induced (iTreg driven tolerance.

  17. Regulatory T cells in early life: comparative study of CD4+CD25high T cells from foals and adult horses.

    Science.gov (United States)

    Hamza, Eman; Mirkovitch, Jelena; Steinbach, Falko; Marti, Eliane

    2015-01-01

    The immune system of mammals is subject to continuous development during the postnatal phase of life. Studies following the longitudinal development of the immune system in healthy children are limited both by ethical considerations and sample volumes. Horses represent a particular valuable large animal model for T regulatory (Treg) cells and allergy research. We have recently characterised Treg cells from horses, demonstrated their regulatory capability and showed both their expansion and induction in vitro. Insect bite hypersensitivity (IBH) is a common allergy in horses resembling atopic dermatitis and studies have shown that first exposure to allergens in adult life results in an increased incidence of IBH. The aim of the present study was to characterize circulating CD4+CD25highFoxP3+cells in foals, evaluate their suppressive capability and their in vitro induction compared to adult horses. 19 foals (age range, 1-5 months), their adult mothers and six one-year-old horses (yearlings) were included in the study. The proportion of FoxP3+ cells within the circulating CD4+CD25high population was significantly higher in foals (47%) compared to their mothers (18%) and to yearlings (26%). Treg cells from foals also displayed a higher suppressive capability. Furthermore, CD4+CD25high cells in foals could be induced in vitro from CD4+CD25- cells in a significantly higher proportion compared to mares. These cells also displayed a significantly enhanced suppressive capability. In summary these findings support the notion that exposure of horses to allergens during maturation of the immune system assists the establishment of induced (i)Treg driven tolerance.

  18. Percentage of CD4+, CD8+, and CD25+ T lymphocytes in peripheral blood of pigs in the course of experimental burns and necrectomy

    Directory of Open Access Journals (Sweden)

    Aleksiewicz Roman

    2015-09-01

    Full Text Available The aim of the study was the evaluation of changes in the percentage profile of CD4+, CD8+, and CD25+ T lymphocytes, and their predictive value with respect to the course of experimental skin burns and early necrectomy in pigs. Thirty Large White Landrace pigs of both genders, weighing 50 kg (±2 kg, were used. Burns to their skin were performed with the use of a computer-controlled heating plate, applied to the animal’s body and heated to 2000°C, using 2.5 kg pressure for 10 s. It produced a burn of 30% (±2% of body surface with a range of damage between II b° and III°. In animals of each experimental group fascial necrectomy was performed, according to the testing module. Blood from experimental and non-treated control animals was collected from the external jugular vein before the beginning of the experiment (hour 0 and at 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, and 180 h of the experiment. An immune response profile was evaluated using flow cytometry analysis of the level and expression dynamics of CD4+, CD8+, and CD25+ particles on the surface of T lymphocytes. The study demonstrated that experimentally-induced burns in pigs caused cell-mediated immune response reflected in the changes in the percentage of CD4+, CD8+, and CD25+ T lymphocytes, and that early necrectomy in burnt pigs acted in a protective manner for the organism, based on the immunological index values. The study also proved that the dynamics of cell-mediated immunological response intensification determined on the basis of the percentage of CD4+, CD8+, and CD25+ T lymphocytes is conditioned by the size of the burnt surface and the time of necrectomy procedure.

  19. Abnormally high levels of virus-infected IFN-gamma+ CCR4+ CD4+ CD25+ T cells in a retrovirus-associated neuroinflammatory disorder.

    Directory of Open Access Journals (Sweden)

    Yoshihisa Yamano

    Full Text Available BACKGROUND: Human T-lymphotropic virus type 1 (HTLV-1 is a human retrovirus associated with both HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP, which is a chronic neuroinflammatory disease, and adult T-cell leukemia (ATL. The pathogenesis of HAM/TSP is known to be as follows: HTLV-1-infected T cells trigger a hyperimmune response leading to neuroinflammation. However, the HTLV-1-infected T cell subset that plays a major role in the accelerated immune response has not yet been identified. PRINCIPAL FINDINGS: Here, we demonstrate that CD4(+CD25(+CCR4(+ T cells are the predominant viral reservoir, and their levels are increased in HAM/TSP patients. While CCR4 is known to be selectively expressed on T helper type 2 (Th2, Th17, and regulatory T (Treg cells in healthy individuals, we demonstrate that IFN-gamma production is extraordinarily increased and IL-4, IL-10, IL-17, and Foxp3 expression is decreased in the CD4(+CD25(+CCR4(+ T cells of HAM/TSP patients as compared to those in healthy individuals, and the alteration in function is specific to this cell subtype. Notably, the frequency of IFN-gamma-producing CD4(+CD25(+CCR4(+Foxp3(- T cells is dramatically increased in HAM/TSP patients, and this was found to be correlated with disease activity and severity. CONCLUSIONS: We have defined a unique T cell subset--IFN-gamma(+CCR4(+CD4(+CD25(+ T cells--that is abnormally increased and functionally altered in this retrovirus-associated inflammatory disorder of the central nervous system.

  20. Loss of regulatory characteristics in CD4+CD25+/hiT cells induced by impaired transforming growth factor beta secretion in pneumoconiosis.

    Science.gov (United States)

    Bian, Lu-Qin; Mao, Ling; Bi, Ying; Zhou, Shao-Wei; Chen, Zi-Dan; Wen, Jun; Shi, Jin; Wang, Ling

    2017-12-01

    Pneumoconiosis is caused by the accumulation of airborne dust in the lung, which stimulates a progressive inflammatory response that ultimately results in lung fibrosis and respiratory failure. It is possible that regulatory cells in the immune system could function to suppress inflammation and possibly slow or reverse disease progression. However, results in this study suggest that in pneumoconiosis patients, the regulatory T cells (Tregs) and B cells are functionally impaired. First, we found that pneumoconiosis patients presented an upregulation of CD4 + CD25 + T cells compared to controls, whereas the CD4 + CD25 + and CD4 + CD25 hi T cells were enriched with Th1- and Th17-like cells but not Foxp3-expressing Treg cells and evidenced by significantly higher T-bet, interferon (IFN)-γ, and interleukin (IL)-17 expression but lower Foxp3 and transforming growth factor (TGF)-β expression. Regarding the CD4 + CD25 hi T-cell subset, the frequency of this cell type in pneumoconiosis patients was significantly reduced compared to controls, together with a reduction in Foxp3 and TGF-β and an enrichment in T-bet, RORγt, IFN-γ, and IL-17. This skewing toward Th1 and Th17 types of inflammation could be driven by monocytes and B cells, since after depleting CD14 + monocytes and CD19 + B cells, the levels of IFN-γ and IL-17 were significantly decreased. Whole peripheral blood mononuclear cells and isolated monocytes and B cells in pneumoconiosis patients also presented reduced capacity of TGF-β secretion. Furthermore, monocytes and B cells from pneumoconiosis patients presented reduced capacity in inducing Foxp3 upregulation, a function that could be rescued by exogenous TGF-β. Together, these data indicated a potential pathway for the progression of pneumoconiosis through a loss of Foxp3 + Treg cells associated with impaired TGF-β secretion. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  1. Alternative Th17 and CD4+ CD25+ FoxP3+ cell frequencies increase and correlate with worse cardiac function in Chagas cardiomyopathy.

    Science.gov (United States)

    Almeida, M S; Lorena, V M B; Medeiros, C de A; Junior, W O; Cavalcanti, M da G A M; Martins, S M; de Morais, C N L

    2018-04-01

    Immune homeostasis has been suggested to play an important role in the clinical evolution of chronic Chagas disease; however, the immunopathologic factors involved have not been fully elucidated. Therefore, our study aimed to analyse the frequency of CD4 + CD25 + FoxP3 + cells, classic Th17 cells, alternative Th17 cells and IL-17 + B cells from peripheral blood of chronic cardiac patients after in vitro stimulation with Trypanosoma cruzi soluble EPI antigen. Patients were selected and classified according to clinical evaluation of cardiac involvement: mild, B1 (CARD1) (n = 20) and severe, C (CARD2) (n = 11). Patients with the indeterminate form of CD were included as the control group A (IND) (n = 17). Blood samples were collected and cultured in the presence of EPI antigen. Cells frequency and median fluorescence intensity (MFI) were obtained by flow cytometry. Our results showed that only CD4 + CD25 + FoxP3 + , CD4 + CD25 high FoxP3 + , CD4 + IL-17 + IFN-γ - and CD4 + IL-17 + IFN-γ + cells are more frequent in patients with severe cardiac disease and correlate with worse global cardiac function. However, while indeterminate patients demonstrated a positive correlation between CD4 + CD25 + FoxP3 + and CD4 + IL-17 + IFN-γ - Th17 cells, this relationship was not observed in cardiac patients. IL-17 expression by Th17 cells and B cells correlated with disease progression. Altogether our results suggest that the clinical progression of Chagas cardiomyopathy involves worsening of inflammation and impairment of immunoregulatory mechanisms. © 2018 The Foundation for the Scandinavian Journal of Immunology.

  2. Monomeric allergoid intragastric administration induces local and systemic tolerogenic response involving IL-10-producing CD4(+)CD25(+) T regulatory cells in mice.

    Science.gov (United States)

    Petrarca, C; Lazzarin, F; Pannellini, T; Iezzi, M; Braga, M; Mistrello, G; Falagiani, P; Di Giampaolo, L; Di Gioacchino, M

    2010-01-01

    The efficacy of sublingual immunotherapy, at present one of the treatments of choice for respiratory allergy, relies on the tolerance induced by oral mucosa-associated immune system; however, the gut-associated lymphoid tissue (GALT: Peyers patches and isolated lymphoid follicles) and mesenteric lymph nodes could also be involved, being stimulated by the ingested part of the allergen extract. The aim of the present study is to assess whether the exposure of the allergen exclusively to the GALT induces a tolerogenic response. For this purpose, mice were sensitized with ovalbumin or Par j 1 allergens. The corresponding gastric-resistant monomeric allergoids were then administered via orogastric gavage. After treatment, all mice were tested for: serum IgE, in vitro Th1 and Th2 cytokine release by allergen-stimulated peripheral blood lymphocytes, CD4(+)CD25(+) and CD4(+)CD25(+)IL-10(+) T cells in Peyers patches, mesenteric lymph nodes and spleen. Compared to the control, sensitized groups showed higher levels of serum IgE, lower frequency of CD4+CD25+IL-10+ T cells, at all sites, and higher amounts of in vitroreleased IL-4, IL-6 and TNF-alpha. Compared to the sensitized groups, higher frequency of CD4(+)CD25(+)IL-10(+) T cells was observed in the spleen of both Par-j 1 and OVA sensitized/treated groups and, only for ovalbumin-treated mice, in the Peyers patches and mesenteric lymph nodes, IgE and in vitro cytokines were significantly lower and equivalent to the control group. The results give the first evidence that the intragastric-restricted administration of gastric-resistant allergens restores local and peripheral tolerance in allergen-sensitized mice.

  3. Significance of the frequency of CD4+CD25+CD127- T-cells in patients with pulmonary tuberculosis and diabetes mellitus.

    Science.gov (United States)

    Sun, Qin; Zhang, Qing; Xiao, Heping; Cui, Haiyan; Su, Bo

    2012-07-01

    Pulmonary tuberculosis and diabetes mellitus (DM) are closely associated. The objective of this study was to determine whether the expression of CD4+CD25+CD127- T-cells (regulatory T-cells (Treg)) is associated with diabetic pulmonary tuberculosis. Flow cytometry was used to determine the frequencies of CD4+CD25+ and CD4+CD25+CD127- T-cells in peripheral blood, bronchoalveolar lavage fluid (BALF) and pleural effusions from 120 patients (30 with pulmonary tuberculosis and DM (TBDM), 30 with pulmonary tuberculosis without DM (TB), 30 with tuberculous pleurisy without DM (TBP) and 30 healthy volunteers). The concentrations of interferon (IFN)-γ and interleukin (IL)-10 in BALF and pleural effusions were determined by enzyme-linked immunosorbent assay. Treg frequencies in peripheral blood were significantly higher in patients with TBDM, TB and TBP than in the control group, with the frequency in TBDM being the highest (P tuberculosis and DM, the imbalance between Treg and effector T-cells at pathological sites may be associated with weakened immunity and clinical manifestations of TB. © 2012 The Authors. Respirology © 2012 Asian Pacific Society of Respirology.

  4. Biological Evaluation of 131I- and CF750-Labeled Dmab(scFv-Fc Antibodies for Xenograft Imaging of CD25-Positive Tumors

    Directory of Open Access Journals (Sweden)

    Qing Fan

    2014-01-01

    Full Text Available A Dmab(scFv-Fc antibody containing the single chain variable fragment of a humanized daclizumab antibody and the Fc fragment of a human IgG1 antibody was produced via recombinant expression in Pichia pastoris. The Dmab(scFv-Fc antibody forms a dimer in solution, and it specifically binds CD25-positive tumor cells and tumor tissues. For tumor imaging, the Dmab(scFv-Fc antibody was labeled with the 131I isotope and CF750 fluorescent dye, respectively. After intravenous injection of mice bearing CD25-positive tumor xenografts, tumor uptake of the 131I-Dmab(scFv-Fc antibody was visible at 1 h, and clear images were obtained at 5 h using SPECT/CT. After systemic administration of the CF750-Dmab(scFv-Fc antibody, tumor uptake was present as early as 1 h, and tumor xenografts could be kinetically imaged within 9 h after injection. These results indicate that the Dmab(scFv-Fc antibody rapidly and specifically targets CD25-positive tumor cells, suggesting the potential of this antibody as an imaging agent for the diagnosis of lymphomatous-type ATLL.

  5. Sublingual Immunotherapy Induces Regulatory Function of IL-10-Expressing CD4(+)CD25(+)Foxp3(+) T Cells of Cervical Lymph Nodes in Murine Allergic Rhinitis Model.

    Science.gov (United States)

    Yamada, Takaya; Tongu, Miki; Goda, Kaoru; Aoi, Noriaki; Morikura, Ichiro; Fuchiwaki, Takafumi; Kawauchi, Hideyuki

    2012-01-01

    Sublingual immunotherapy (SLIT) has been considered to be a painless and efficacious therapeutic treatment of allergic rhinitis which is known as type I allergy of nasal mucosa. Nevertheless, its mechanisms need to be further investigated. In this study, we constructed an effective murine model of sublingual immunotherapy in allergic rhinitis, in which mice were sublingually administered with ovalbumin (OVA) followed by intraperitoneal sensitization and nasal challenge of OVA. Sublingually treated mice showed significantly decreased specific IgE responses as well as suppressed Th2 immune responses. Sublingual administration of OVA did not alter the frequency of CD4(+)CD25(+) regulatory T cells (Tregs), but led to upregulation of Foxp3- and IL-10-specific mRNAs in the Tregs of cervical lymph nodes (CLN), which strongly suppressed Th2 cytokine production from CD4(+)CD25(-) effector T cells in vitro. Furthermore, sublingual administration of plasmids encoding the lymphoid chemokines CCL19 and CCL21-Ser DNA together with OVA suppressed allergic responses. These results suggest that IL-10-expressing CD4(+)CD25(+)Foxp3(+) Tregs in CLN are involved in the suppression of allergic responses and that CCL19/CCL21 may contribute to it in mice that received SLIT.

  6. Correlations of the glycemic variability with oxidative stress and erythrocytes membrane stability in patients with type 1 diabetes under intensive treatment.

    Science.gov (United States)

    Rodrigues, Ricardo; Alves de Medeiros, Luciana; Moreira Cunha, Lucas; da Silva Garrote-Filho, Mario; Bernardino Neto, Morun; Tannus Jorge, Paulo; Santos Resende, Elmiro; Penha-Silva, Nilson

    2018-02-07

    This study aimed to evaluate the correlations of glycemic variability with erythrocyte membrane stability parameters and oxidative stress markers in patients with DM1 under intensive treatment. 90 patients with DM1 and under intensive treatment of the disease were evaluated in relation to anthropometric indices, records of glycemic averages and parameters of glycemic variability, biochemical dosages (glucose, uric acid, lipidogram, glycated hemoglobin, microalbuminuria, creatinine and iron) reticulocyte count, erythrocyte membrane stability parameters and oxidative stress markers (thiobarbituric acid reactive substances, TBARS, and glutathione reductase, GR). Indicators of glycemic variability in the short and long term showed correlations with parameters of membrane stability and markers of oxidative stress (GR). In addition, the comparison of these same parameters between the subgroups consisting of quartiles of GV or glycemic control also showed significant differences. In the DM1 patients studied here, glycemic variability showed correlations with oxidative stress and erythrocyte membrane stability variables. This corroborates the hypothesis that glycemic fluctuations interfere with lipid peroxidation and cell membrane behavior, emphasizing its participation in mechanisms related to the development of chronic complications of diabetes. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Stability of Dry Probiotic Bacteria in Relation to the Cellular Membrane and Genomic DNA

    DEFF Research Database (Denmark)

    Hansen, Marie-Louise Rittermann W

    powders to infant formula and functional foods, e.g. cereal and chocolate bars. Part of production of the probiotic product often includes freeze-drying of the probiotic bacteria. Drying is necessary in the preparation of dry powders, and to increase shelf life of the product at ambient temperatures......Lactic acid bacteria are used in a wide range of fermented dairy and meat products. Several strains of lactic acid bacteria are associated with health benefits upon digestion, and are known as probiotic bacteria. Probiotic bacteria can be produced for dietary supplements, but are also added as dry....... Freeze-drying and storage of probiotic bacteria can, however, also have a negative effect on cell stability. It is important to understand the processes, which can lead to loss of cell stability during dry storage in order to develop more stable probiotic products. The purpose of the present PhD thesis...

  8. Application of membrane LaF3 electrode in the determination of stability constants of Uranyl Fluoride complex in solution

    International Nuclear Information System (INIS)

    Muzakky; Iswani GS; Mintolo

    1996-01-01

    A membrane electrode LaF 3 has been applied in the determination of uranyl fluoride complex stability constant in solution. The determination is based on the detection of free F ion in solution as a result of hydrolysis reaction (process) of uranyl ions into the uranyl hydroxide form at low pH. The experiment results showed that there was no effect of ammonium carbonate 2 M titran, flow rate on the electrode response. The F release is optimum at pH 1. The free F ion in solution is calculated from the standard curve at pH 1, after the fluoride concentration at the same pH has been corrected. Using the plot of average number of ligand binding (n) versus minus log of free ligand (-log F) the value of β1 = 4.4, β2 = 7.48, β3=9.73, and β4 = 11.67

  9. Influences of the Structure of Lipids on Thermal Stability of Lipid Membranes

    International Nuclear Information System (INIS)

    Hai Nan-Nan; Zhou Xin; Li Ming

    2015-01-01

    The binding free energy (BFE) of lipid to lipid bilayer is a critical factor to determine the thermal or mechanical stability of the bilayer. Although the molecular structure of lipids has significant impacts on BFE of the lipid, there lacks a systematic study on this issue. In this paper we use coarse-grained molecular dynamics simulation to investigate this problem for several typical phospholipids. We find that both the tail length and tail unsaturation can significantly affect the BFE of lipids but in opposite way, namely, BFE decreases linearly with increasing length, but increases linearly with addition of unsaturated bonds. Inspired by the specific structure of cholesterol which is a crucial component of biomembrane, we also find that introduction of carbo-ring-like structures to the lipid tail or to the bilayer may greatly enhance the stability of the bilayer. Our simulation also shows that temperature can influence the bilayer stability and this effect can be significant when the bilayer undergoes phase transition. These results may be helpful to the design of liposome or other self-assembled lipid systems. (paper)

  10. Artificial-enzyme gel membrane-based biosurveillance sensor with high reproducibility and long-term storage stability.

    Science.gov (United States)

    Ikeno, Shinya; Yoshida, Tetsuya; Haruyama, Tetsuya

    2009-02-01

    We propose that the most sophisticated strategy for primary biosurveillance is to exploit structural commonality through the detection of biologically relevant phosphoric substances. A novel assay, an artificial-enzyme membrane was designed and synthesized for sensor fabrication. This artificial-enzyme catalyzes the hydrolysis of the diphosphoric acid anhydride structure. This structure-selective, albeit not molecule-selective, catalytic hydrolysis was successfully coupled with amperometric detection. Since the catalytic reaction produces a dephosphorylation product (PO(4)(3-)), it can be reduced by an electrode potential of -250 mV vs. Ag/AgCl. Owing to the structural selectivity of the artificial-enzyme membrane, the sensor can detect biological phosphoric substances comprehensively that have the diphosphoric acid anhydride structure. The sensor successfully determined various biological phosphoric substances at concentrations in the micromolar (microM) to millimolar (mM) range, and it showed good functional stability and reproducibility in terms of sensor responses. This sensor was used to detect Escherichia coli lysed by heat treatment, and the response increased with increasing bacterial numbers. This unique technique for analyzing molecular commonality can be applied to the surveillance of biocontaminants, e.g. microorganisms, spores and viruses. Artificial-enzyme-based detection is a novel strategy for practical biosurveillance in the front line.

  11. The effect of peptides and ions interacting with an electrically neutral membrane interface on the structure and stability of lipid membranes in the liquid-crystalline phase and in the liquid-ordered phase

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Ryoko [Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529 (Japan); Masum, Shah Md [Material Science, Graduate School of Science and Engineering, Shizuoka University, 422-8529 (Japan); Tanaka, Tomoki [Material Science, Graduate School of Science and Engineering, Shizuoka University, 422-8529 (Japan); Yamashita, Yuko [Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529 (Japan); Levadny, Victor [Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529 (Japan); Scientific Council for Cybernetics, Russian Academy of Sciences, Vavilov street 34, 333117, Moscow (Russian Federation); Yamazaki, Masahito [Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529 (Japan); Material Science, Graduate School of Science and Engineering, Shizuoka University, 422-8529 (Japan)

    2005-08-10

    We investigated the effects of a de novo designed peptide, WLFLLKKK (peptide-1) and La{sup 3+}, which can bind with the electrically neutral lipid membrane interface, on the stability of the phosphatidylcholine (PC) membrane in the L{sub {alpha}} phase and that of the liquid-ordered (lo) phase membranes. The results of spacing of the multilamellar vesicle and shape changes of the giant unilamellar vesicle (GUV) indicate that the peptide-1 can be partitioned into the membrane interface in the L{sub {alpha}} phase but not into that in the lo phase. La{sup 3+} induced shape changes of GUVs of the lo phase membrane, which are the same as those of GUVs in the L{sub {alpha}} phase. This indicates that the binding of La{sup 3+} induced an increase in the lateral compression pressure of the membrane, which decreased the surface area of the membrane in the lo phase. The difference of the membrane interface between the L{sub {alpha}} phase and the lo phase is discussed.

  12. The effect of peptides and ions interacting with an electrically neutral membrane interface on the structure and stability of lipid membranes in the liquid-crystalline phase and in the liquid-ordered phase

    International Nuclear Information System (INIS)

    Sano, Ryoko; Masum, Shah Md; Tanaka, Tomoki; Yamashita, Yuko; Levadny, Victor; Yamazaki, Masahito

    2005-01-01

    We investigated the effects of a de novo designed peptide, WLFLLKKK (peptide-1) and La 3+ , which can bind with the electrically neutral lipid membrane interface, on the stability of the phosphatidylcholine (PC) membrane in the L α phase and that of the liquid-ordered (lo) phase membranes. The results of spacing of the multilamellar vesicle and shape changes of the giant unilamellar vesicle (GUV) indicate that the peptide-1 can be partitioned into the membrane interface in the L α phase but not into that in the lo phase. La 3+ induced shape changes of GUVs of the lo phase membrane, which are the same as those of GUVs in the L α phase. This indicates that the binding of La 3+ induced an increase in the lateral compression pressure of the membrane, which decreased the surface area of the membrane in the lo phase. The difference of the membrane interface between the L α phase and the lo phase is discussed

  13. Expression of Th17 and CD4+ CD25+ T regulatory cells in peripheral blood of acute leukemia patients and their prognostic significance.

    Science.gov (United States)

    Xiang, Mingli; Guo, Li; Ma, Yan; Li, Yi

    2016-11-01

    To discuss the expression of T helper cell 17 (Th17) cells and CD4+ CD25+ Foxp3+ regulatory T cells (Treg) in peripheral blood (PB) of patients with acute leukemia (AL), and to explore the relationship between them and disease prognosis. 40 patients diagnosed with acute leukemia in The First Affiliated Hospital of Zhengzhou University from July 2012 to August 2014 were selected as the observation group. Meanwhile, 40 healthy people were taken as the control group. Flow Cytometry Method (FCM) was used to detect the level of Th17 cells and CD4 + CD25 + Foxp3 + cells in peripheral blood of the two groups, and enzyme-linked immuno sorbent assay (ELISA) method was used to test the level of IL17 and TGF-β in peripheral blood of two groups; reverse transcription-polymerase chain reaction (RT-PCR) was adopted to analyze the mRNA levels of RORγT and Foxp3 in peripheral blood. In addition, we examined the levels of Th17 and CD4 + CD25 + Foxp3 + cells and associated factor levels in patients with remission after AL chemotherapy. the Th17 cells (CD3 + CD4 + IL-17 + ) in acute leukemia patients accounted for (1.51±0.27)%, which was significantly higher than that of control group (0.36±0.23)%, with statistical significance (t=20.51, Pcells in AL patients was (3.37±0.48)%, which was significantly higher than that of control group of (1.26±0.27)%, with statistical significance (t=24.23, Pt=7.83, Pt=7.83, Pt=12.27, Pt=7.89, Pcells and CD4 + CD25 + Foxp3 + cells, and the serum levels of IL-17 and TGF-β in acute leukemia patients all decreased significantly after 6 months of chemotherapy, and the difference was statistically significant (Pcells, CD4+ CD25+ Foxp3 + cells and their secretory proteins IL-17, TGF-β and transcription factors were significantly increased in AL patients. Therefore, regular detection of peripheral blood Th17 and Treg cells, as well as their secretory proteins are useful for monitoring the immune status and prognosis of patients.

  14. Stability of Dry Probiotic Bacteria in Relation to the Cellular Membrane and Genomic DNA

    DEFF Research Database (Denmark)

    Hansen, Marie-Louise Rittermann W

    was to investigate the processes, which occur in the probiotic cell during dry storage and could lead to loss of cell culturability. Interest was more specifically on the cytoplasmic membrane and the genomic DNA. The bacterial response to fatty acid supplementation was investigated with respect to the cytoplasmic...... DNA of B. animalis subsp. lactis BB-12 and L. acidophilus La-5 was investigated. During dry storage the loss of cell culturability was found to correlate well with the degradation of DNA for both strains. Integrity of DNA was, similarly to the loss of culturability, negatively affected by the presence......Lactic acid bacteria are used in a wide range of fermented dairy and meat products. Several strains of lactic acid bacteria are associated with health benefits upon digestion, and are known as probiotic bacteria. Probiotic bacteria can be produced for dietary supplements, but are also added as dry...

  15. Stability and performance improvement of a polymer electrolyte membrane fuel cell stack by laser perforation of gas diffusion layers

    Energy Technology Data Exchange (ETDEWEB)

    Gerteisen, Dietmar; Sadeler, Christian [Fraunhofer Institute for Solar Energy Systems ISE, Department of Energy Technology, Heidenhofstrasse 2, 79110 Freiburg (Germany)

    2010-08-15

    The performance and stability of a hydrogen-driven polymer electrolyte membrane fuel cell stack (6-cell PEFC stack) are investigated with regard to pore flooding within the gas diffusion layers (GDLs). Two short stacks with various GDLs (Toray TGP-H-060 untreated and laser-perforated) were characterized at different operating conditions by several characterization techniques such as constant current load, polarization curve, chronoamperometry and chronovoltammetry. The experimental results reveal that the perforation of the cathode GDLs improves the water transport in the porous media and thus the performance as well as the stability of the operating stack in medium and high current density range. A reduced pore flooding is verified when using the customized laser-perforated GDLs. The GDL perforation has a huge potential to balance the inhomogeneous in-plane saturation conditions between the inlet and outlet area of the cell and to compensate to a certain degree the effects of temperature distribution within a stack regarding the water management. (author)

  16. Stability and performance improvement of a polymer electrolyte membrane fuel cell stack by laser perforation of gas diffusion layers

    Science.gov (United States)

    Gerteisen, Dietmar; Sadeler, Christian

    The performance and stability of a hydrogen-driven polymer electrolyte membrane fuel cell stack (6-cell PEFC stack) are investigated with regard to pore flooding within the gas diffusion layers (GDLs). Two short stacks with various GDLs (Toray TGP-H-060 untreated and laser-perforated) were characterized at different operating conditions by several characterization techniques such as constant current load, polarization curve, chronoamperometry and chronovoltammetry. The experimental results reveal that the perforation of the cathode GDLs improves the water transport in the porous media and thus the performance as well as the stability of the operating stack in medium and high current density range. A reduced pore flooding is verified when using the customized laser-perforated GDLs. The GDL perforation has a huge potential to balance the inhomogeneous in-plane saturation conditions between the inlet and outlet area of the cell and to compensate to a certain degree the effects of temperature distribution within a stack regarding the water management.

  17. Enhanced catalytic stability of lipase immobilized on oxidized and disulfide-rich eggshell membrane for esters hydrolysis and transesterification.

    Science.gov (United States)

    Jiang, Chenyu; Cheng, Chuanchuan; Hao, Mei; Wang, Hongbin; Wang, Ziying; Shen, Cai; Cheong, Ling-Zhi

    2017-12-01

    Eggshell membrane (ESM) is an industrial waste that is available in abundance from food industry. Present study investigated the physicochemical properties of oxidized ESM and compared the efficiency of ESM and oxidized ESM as carrier for Burkholderia cepacia lipase (BCL) used in esters hydrolysis and transesterification. Following oxidation treatment, FTIR analysis and Ellman's assay showed amino acid cysteine in ESM was oxidized to form disulfide bond-containing cystine. In addition, AFM analysis showed ESM which exhibited a highly porous filamentous structure appeared to be coalesce following oxidation treatment. Oxidized ESM also showed reduced porosity (38.67%) in comparison to native ESM (51.65%). BCL were successfully immobilized on oxidized ESM through carrier activation method (enzyme loading of 5.01mg protein/g oxidized ESM). These immobilized lipase demonstrated significantly (Ptransesterification (7.83±0.05) activity for at least 10 consecutive runs. Enhanced catalytic stability of BCL immobilized on oxidized ESM might be due to stabilization of the protein structure in oxidized ESM by disulfide bonds which helped formation of a stable bonding with BCL. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Stabilizing and destabilizing effects on plasma membrane Ca(2+)-ATPase activity.

    Science.gov (United States)

    Kosk-Kosicka, D; Wawrzynow, A; Roszczynska, G

    1994-10-12

    We have examined the temperature-dependent effects of several organic compounds on the activity of the purified Ca(2+)-ATPase of erythrocytes. The monomeric enzyme was activated either by interaction with calmodulin or by oligomerization in the absence of calmodulin. Of the four homologous solute series studied including polyols, alkanols, aprotic solvents, and N-methyl derivatives of formamide and acetamide only polyols stabilized the enzyme over a broad range of concentration and temperature. Similarity of Ca(2+)-ATPase activity patterns at 25 and 37 degrees C and in the presence of glycerol is in agreement with indirect, stabilizing interactions. Glycerol also protected the Ca(2+)-ATPase from thermal denaturation at 45 degrees C. Within each homologous series, inhibitory effects increased with increasing solute concentration and with increasing structural similarity to detergents, indicating that direct destabilizing interactions are responsible for the observed inhibition. These were comparable to the destabilizing effect of urea. Oligomers were more resistant to all inhibitory solutes as compared to calmodulin-activated monomers suggesting that the nonpolar patches of the oligomerized enzyme are less accessible to solutes.

  19. Modeling error and stability of endothelial cytoskeletal membrane parameters based on modeling transendothelial impedance as resistor and capacitor in series.

    Science.gov (United States)

    Bodmer, James E; English, Anthony; Brady, Megan; Blackwell, Ken; Haxhinasto, Kari; Fotedar, Sunaina; Borgman, Kurt; Bai, Er-Wei; Moy, Alan B

    2005-09-01

    Transendothelial impedance across an endothelial monolayer grown on a microelectrode has previously been modeled as a repeating pattern of disks in which the electrical circuit consists of a resistor and capacitor in series. Although this numerical model breaks down barrier function into measurements of cell-cell adhesion, cell-matrix adhesion, and membrane capacitance, such solution parameters can be inaccurate without understanding model stability and error. In this study, we have evaluated modeling stability and error by using a chi(2) evaluation and Levenberg-Marquardt nonlinear least-squares (LM-NLS) method of the real and/or imaginary data in which the experimental measurement is compared with the calculated measurement derived by the model. Modeling stability and error were dependent on current frequency and the type of experimental data modeled. Solution parameters of cell-matrix adhesion were most susceptible to modeling instability. Furthermore, the LM-NLS method displayed frequency-dependent instability of the solution parameters, regardless of whether the real or imaginary data were analyzed. However, the LM-NLS method identified stable and reproducible solution parameters between all types of experimental data when a defined frequency spectrum of the entire data set was selected on the basis of a criterion of minimizing error. The frequency bandwidth that produced stable solution parameters varied greatly among different data types. Thus a numerical model based on characterizing transendothelial impedance as a resistor and capacitor in series and as a repeating pattern of disks is not sufficient to characterize the entire frequency spectrum of experimental transendothelial impedance.

  20. The prognostic value of peripheral CD4+CD25+ T lymphocytes among early stage and triple negative breast cancer patients receiving dendritic cells-cytokine induced killer cells infusion.

    Science.gov (United States)

    Song, Qing-Kun; Ren, Jun; Zhou, Xin-Na; Wang, Xiao-Li; Song, Guo-Hong; Di, Li-Jun; Yu, Jing; Hobeika, Amy; Morse, Michael A; Yuan, Yan-Hua; Yang, Hua-Bing; Lyerly, Herbert Kim

    2015-12-01

    This study aimed to assess the prognostic value of CD4+CD25+ T lymphocyte in peripheral blood among breast cancer patients treated with adoptive T lymphocytes immunotherapy. 217 patients participated in the follow-up study. CD4+CD25+ proportion was measured by flow cytometry in peripheral T cells. The median survival was estimated by Kaplan-Meier curve, Log-rank test and Cox hazard proportion regression model, between groups of CD4+CD25+ proportion more than 5% and less than or equal to 5% in peripheral T cells. Peripheral CD4+CD25+ T lymphocytes had not a relationship with progression-free survival. It was featured that above 5% peripheral CD4+CD25+ proportion of T cells was related with the median overall survival by a shorten of 51 months (p < 0.05) with the HR 1.65 (95%CI 1.04, 2.62). Above 5% CD4+CD25+proportion of T cells produced the HR to be 1.76 (95%CI 1.07, 2.87) In stage 0-II patients, and 3.59 (95%CI 1.05, 12.29) in triple negative breast cancer patients. Cellular immunity restoration recovered by adoptive T cell infusions which resulted in less proportion of peripheral CD4+CD25+T lymphocytes could be a potential prognostic indicator among early stage and triple negative patients.

  1. A novel membrane distillation-thermophilic bioreactor system: biological stability and trace organic compound removal.

    Science.gov (United States)

    Wijekoon, Kaushalya C; Hai, Faisal I; Kang, Jinguo; Price, William E; Guo, Wenshan; Ngo, Hao H; Cath, Tzahi Y; Nghiem, Long D

    2014-05-01

    The removal of trace organic compounds (TrOCs) by a novel membrane distillation-thermophilic bioreactor (MDBR) system was examined. Salinity build-up and the thermophilic conditions to some extent adversely impacted the performance of the bioreactor, particularly the removal of total nitrogen and recalcitrant TrOCs. While most TrOCs were well removed by the thermophilic bioreactor, compounds containing electron withdrawing functional groups in their molecular structure were recalcitrant to biological treatment and their removal efficiency by the thermophilic bioreactor was low (0-53%). However, the overall performance of the novel MDBR system with respect to the removal of total organic carbon, total nitrogen, and TrOCs was high and was not significantly affected by the conditions of the bioreactor. All TrOCs investigated here were highly removed (>95%) by the MDBR system. Biodegradation, sludge adsorption, and rejection by MD contribute to the removal of TrOCs by MDBR treatment. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  2. Polymer confined in membrane phases: influences on stability, structure and dynamics

    International Nuclear Information System (INIS)

    Javierre, Isabelle

    1999-01-01

    The addition of a hydrosoluble polymer to the different structures obtained with mixtures of water/surfactant/alcohol/oil alters the thermodynamic stability of microemulsion and lamellar phases. The reverse sponge phase disappears while one can observe the occurrence of a new phase, labelled L5, at intermediate polymer concentration. In polymer-'doped' solvent lamellar phase, the polymer induces an attractive contribution to the interaction between bilayers while in polymer-'doped' bilayers lamellar phase, the polymer increases the flexibility. The L5 phase exhibits symmetric sponge properties and furthermore presents very strong symmetry fluctuations. The relaxation of these fluctuations were experimentally evidenced for the first time. This unusual dynamic behaviour was confronted to the one of other sponge phases, in a large range of concentrations. (author) [fr

  3. Self-Assembling Peptide Surfactants A6K and A6D Adopt a-Helical Structures Useful for Membrane Protein Stabilization

    Directory of Open Access Journals (Sweden)

    Furen Zhuang

    2011-10-01

    Full Text Available Elucidation of membrane protein structures have been greatly hampered by difficulties in producing adequately large quantities of the functional protein and stabilizing them. A6D and A6K are promising solutions to the problem and have recently been used for the rapid production of membrane-bound G protein-coupled receptors (GPCRs. We propose that despite their short lengths, these peptides can adopt α-helical structures through interactions with micelles formed by the peptides themselves. These α-helices are then able to stabilize α-helical motifs which many membrane proteins contain. We also show that A6D and A6K can form β-sheets and appear as weak hydrogels at sufficiently high concentrations. Furthermore, A6D and A6K together in sodium dodecyl sulfate (SDS can form expected β-sheet structures via a surprising α-helical intermediate.

  4. Following-up changes in red blood cell deformability and membrane stability in the presence of PTFE graft implanted into the femoral artery in a canine model

    Science.gov (United States)

    Toth, Csaba; Kiss, Ferenc; Klarik, Zoltan; Gergely, Eszter; Toth, Eniko; Peto, Katalin; Vanyolos, Erzsebet; Miko, Iren; Nemeth, Norbert

    2014-05-01

    It is known that a moderate mechanical stress can even improve the red blood cells' (RBC) micro-rheological characteristics, however, a more significant stress causes deterioration in the deformability. In this study, we aimed to investigate the effect of the presence of artificial graft on the RBC deformability and membrane stability in beagles. In the Control group only anesthesia was induced and in the postoperative (p.o.) period blood samplings were carried out. In the Grafted group under general anesthesia, the left femoral artery was isolated, from which a 3.5 cm segment was resected and a PTFE graft (O.D.: 3 mm) of equal in length was implanted into the gap. On the 1st, 3rd, 5th, 7th and 14th p.o. days blood was collected the cephalic veins and RBC deformability was determined ektacytometry (LoRRca MaxSis Osmoscan). Membrane stability test consisted of two deformability measurements before and after the cells were being exposed to mechanical stress (60 or 100 Pa for 300 seconds). Compared to the Control group and the baseline values the red blood cell deformability showed significant deterioration on the 3rd, 5th and mainly on the 7th postoperative day after the graft implantation. The membrane stability of erythrocyte revealed marked inter-group difference on the 3rd, 5th and 7th day: in the Grafted group the deformability decreased and during the membrane stability test smaller difference was observed between the states before and after shearing. We concluded that the presence of a PTFE graft in the femoral artery may cause changes in RBC deformability in the first p.o. week. RBC membrane stability investigation shows a lower elongation index profile for the grafted group and a narrowed alteration in the deformability curves due to mechanical stress.

  5. A low pressure gravity-driven membrane filtration (GDM) system for rainwater recycling: Flux stabilization and removal performance.

    Science.gov (United States)

    Ding, An; Wang, Jinlong; Lin, Dachao; Tang, Xiaobin; Cheng, Xiaoxiang; Wang, Hui; Bai, Langming; Li, Guibai; Liang, Heng

    2017-04-01

    Rainwater is a nature resource, which can be widely used for non-potable and potable applications in water scared countries after appropriate treatment. Gravity-driven membrane filtration (GDM) process is a promising technology for decentralized rainwater treatment due to no backwashing, flushing and chemical cleaning. In this study, we established a single lab-scale GDM system for the stored rainwater (simulative cellar rainwater) treatment with two months operation, and a stored tap water was used as a compared system to evaluate the permeability and organics removal performance. Results showed that GDM exhibited a good performance for bacteria and turbidity removals, but the removal performance of DOC was undesirable due to the low rejection of low molecular-weight fulvic. Additionally, the permeate flux reached stable with the value of 6-6.5 L/m 2 h during 60 days operation in the rainwater system, however, the tap water system stabilized only at 4 L/m 2 h. Hydraulically reversible resistance accounted for large proportions (90%) of the total resistance, which indicated that the flux could be recovered by simple physical flushing. The bio-fouling layer adhered on the membrane surface was characterized at the end of the filtration experiment. Higher bio-activity with lower EPS (polysaccharides and proteins) contents of the fouling layer were found in the rainwater system compared with the control system, which was the main reason for the higher flux. These results show that rainwater can be treated in a single GDM process with low maintenance, which makes the process suitable for decentralized water supply. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Characterization of CD4+ subpopulations and CD25+ cells in ileal lymphatic tissue of weaned piglets infected with Salmonella Typhimurium with or without Enterococus faecium feeding.

    Science.gov (United States)

    Kreuzer, S; Rieger, J; Strucken, E M; Thaben, N; Hünigen, H; Nöckler, K; Janczyk, P; Plendl, J; Brockmann, Gudrun A

    2014-04-15

    The aim of the present study was to test the effect of Enterococcus faecium NCIMB 10415 (E. faecium) on CD4+ T helper immune cell subpopulations and CD25+ cells in ileal lymphatic tissue after challenge with Salmonella (S.) Typhimurium DT 104. German Landrace piglets treated with E. faecium (n=16) as a feed additive and untreated controls (n=16) were challenged with S. Typhimurium 10 days after weaning. The expression of lineage specific T helper cell subtype master transcription factors on mRNA level was measured in the whole tissue of the gut associated lymphoid tissues (ileocecal mesenteric lymph node, ileum with Peyer's patches and papilla ilealis) and in magnetically sorted T helper cells from blood and ileocecal mesenteric lymph nodes at two and 28 days post infection. CD25 protein expression of T helper cells was studied by flow cytometry in ileal Peyer's patches, lymph nodes and blood. Distribution and morphology of CD25+ cells was demonstrated in situ by immunohistochemistry in paraffin embedded specimens of the ileum and the ileocecal mesenteric lymph nodes. The data provide evidence for a higher T helper 2 cell driven immune response in the control group compared to the E. faecium treated group (Pfaecium fed pigs and the control group, but provided a detailed description of the occurrence and morphology of these cells in the gut associate lymphoid tissues of piglets. In conclusion we suggest that (i) prolonged feeding with E. faecium can result in changes of the T helper cell response leading to a stronger infection with S. Typhimurium and (ii) that it is important to examine purified immune cells to be able to detect effects on T helper cell subpopulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. CD4+ CD25+ FOXP3+ T cell frequency in the peripheral blood is a biomarker that distinguishes intestinal tuberculosis from Crohn's disease.

    Science.gov (United States)

    Tiwari, Veena; Kedia, Saurabh; Garg, Sushil Kumar; Rampal, Ritika; Mouli, V Pratap; Purwar, Anuja; Mitra, D K; Das, Prasenjit; Dattagupta, S; Makharia, Govind; Acharya, S K; Ahuja, Vineet

    2018-01-01

    Distinguishing between Crohn's Disease (CD) and Intestinal Tuberculosis (ITB) has been a challenging task for clinicians due to their similar presentation. CD4+FOXP3+ T regulatory cells (Tregs) have been reported to be increased in patients with pulmonary tuberculosis. However, there is no such data available in ITB. The aim of this study was to investigate the differential expression of FOXP3+ T cells in patients with ITB and CD and its utility as a biomarker. The study prospectively recruited 124 patients with CD, ITB and controls: ulcerative colitis (UC) and patients with only haemorrhoidal bleed. Frequency of CD4+CD25+FOXP3+ Tregs in peripheral blood (flow cytometry), FOXP3 mRNA expression in blood and colonic mucosa (qPCR) and FOXP3+ T cells in colonic mucosa (immunohistochemistry) were compared between controls, CD and ITB patients. Frequency of CD4+CD25+FOXP3+ Treg cells in peripheral blood was significantly increased in ITB as compared to CD. Similarly, significant increase in FOXP3+ T cells and FOXP3 mRNA expression was observed in colonic mucosa of ITB as compared to CD. ROC curve showed that a value of >32.5% for FOXP3+ cells in peripheral blood could differentiate between CD and ITB with a sensitivity of 75% and a specificity of 90.6%. Phenotypic enumeration of peripheral CD4+CD25+FOXP3+ Treg cells can be used as a non-invasive biomarker in clinics with a high diagnostic accuracy to differentiate between ITB and CD in regions where TB is endemic.

  8. Sublingual tolerance induction with antigen conjugated to cholera toxin B subunit induces Foxp3+CD25+CD4+ regulatory T cells and suppresses delayed-type hypersensitivity reactions.

    Science.gov (United States)

    Sun, J-B; Cuburu, N; Blomquist, M; Li, B-L; Czerkinsky, C; Holmgren, J

    2006-09-01

    Although sublingual (s.l.) immunotherapy with selected allergens is safe and often effective for treating patients with allergies, knowledge of the immunological mechanisms involved remains limited. Can s.l. administration of antigen (Ag) induce peripheral immunological tolerance and also suppress delayed-type hypersensitivity (DTH) responses? To what extent can s.l.-induced tolerance be explained by the generation of Foxp3+CD25+CD4+ regulatory T cells (T(reg))? This study addressed these questions in mice and compared the relative efficacy of administering ovalbumin (OVA) conjugated to cholera toxin B (CTB) subunit with administration of the same Ag alone. We found that s.l. administration of a single or even more efficiently three repeated 40-mug doses of OVA/CTB conjugate suppressed T-cell proliferative responses to OVA by cervical lymph node (CLN), mesenteric lymph node (MLN) and spleen cells and concurrently strongly increased the frequency of Ag-specific T(reg) in CLN, MLN and spleen and also transforming growth factor-beta (TGF-beta) levels in serum. The CLN and splenic cells from OVA/CTB-treated BALB/c mice efficiently suppressed OVA-specific T-cell receptor (TCR) transgenic (DO11.10) CD25-CD4+ effector T-cell proliferation in vitro. Further, s.l. treatment with OVA/CTB completely suppressed OVA-specific DTH responses in vivo and T-cell proliferative responses in mice immunized subcutaneously with OVA in Freund's complete adjuvant. The intracellular expression of Foxp3 was strongly increased in OVA-specific (KJ1-26+) CD4+ T cells from OVA/CTB-treated mice. Thus, s.l. administration of CTB-conjugated Ag can efficiently induce peripheral T-cell tolerance associated with strong increases in serum TGF-beta levels and in Ag-specific Foxp3+CD25+CD4+ T(reg) cells.

  9. Dysregulation of CD4+CD25+CD127lowFOXP3+ regulatory T cells in HIV-infected pregnant women

    DEFF Research Database (Denmark)

    Kolte, Lilian; Gaardbo, Julie C; Karlsson, Ingrid

    2010-01-01

    prospectively during pregnancy and postpartum. A significant expansion of CD4(+)CD25(+)CD127(low)FoxP3(+) regulatory T cells indicating alteration of peripheral tolerance was seen during second trimester, but only in HIV-negative women. HIV-infected women had lower CD4 counts, lower thymic output and Th-2...... course of HIV infection. However, despite HAART during pregnancy, HIV-infected women display different immunologic profiles from HIV-negative women, which may have importance for the induction of fetal-maternal tolerance and in part explain the increased risk of abortion in HIV-infected women....

  10. Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Huber, George W.; Upadhye, Aniruddha A.; Ford, David M.; Bhatia, Surita R.; Badger, Phillip C.

    2012-10-19

    This University of Massachusetts, Amherst project, "Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils" started on 1st February 2009 and finished on August 31st 2011. The project consisted following tasks: Task 1.0: Char Removal by Membrane Separation Technology The presence of char particles in the bio-oil causes problems in storage and end-use. Currently there is no well-established technology to remove char particles less than 10 micron in size. This study focused on the application of a liquid-phase microfiltration process to remove char particles from bio-oil down to slightly sub-micron levels. Tubular ceramic membranes of nominal pore sizes 0.5 and 0.8m were employed to carry out the microfiltration, which was conducted in the cross-flow mode at temperatures ranging from 38 to 45 C and at three different trans-membrane pressures varying from 1 to 3 bars. The results demonstrated the removal of the major quantity of char particles with a significant reduction in overall ash content of the bio-oil. The results clearly showed that the cake formation mechanism of fouling is predominant in this process. Task 2.0 Acid Removal by Membrane Separation Technology The feasibility of removing small organic acids from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration (NF) and reverse osmosis (RO) membranes was studied. Experiments were carried out with a single solute solutions of acetic acid and glucose, binary solute solutions containing both acetic acid and glucose, and a model aqueous fraction of bio-oil (AFBO). Retention factors above 90% for glucose and below 0% for acetic acid were observed at feed pressures near 40 bar for single and binary solutions, so that their separation in the model AFBO was expected to be feasible. However, all of the membranes were irreversibly damaged when experiments were conducted with the model AFBO due to the presence of guaiacol in the feed solution. Experiments

  11. MitoNEET Is a Uniquely Folded 2Fe-2S Outer Mitochondrial Membrane Protein Stabilized By Pioglitazone

    Energy Technology Data Exchange (ETDEWEB)

    Paddock, M.L.; Wiley, S.E.; Axelrod, H.L.; Cohen, A.E.; Roy, M.; Abresch, E.C.; Capraro, D.; Murphy, A.N.; Nechushtai, R.; Dixon, J.E.; Jennings, P.A.; /UC, San Diego /SLAC, SSRL /Hebrew U.

    2007-10-19

    Iron-sulfur (Fe-S) proteins are key players in vital processes involving energy homeostasis and metabolism from the simplest to most complex organisms. We report a 1.5 Angstrom x-ray crystal structure of the first identified outer mitochondrial membrane Fe-S protein, mitoNEET. Two protomers intertwine to form a unique dimeric structure that constitutes a new fold to not only the {approx}650 reported Fe-S protein structures but also to all known proteins. We name this motif the NEET fold. The protomers form a two-domain structure: a {beta}-cap domain and a cluster-binding domain that coordinates two acid-labile 2Fe-2S clusters. Binding of pioglitazone, an insulin-sensitizing thiazolidinedione used in the treatment of type 2 diabetes, stabilizes the protein against 2Fe-2S cluster release. The biophysical properties of mitoNEET suggest that it may participate in a redox-sensitive signaling and/or in Fe-S cluster transfer.

  12. Neonatal respiratory syncytial virus infection has an effect on lung inflammation and the CD4(+) CD25(+) T cell subpopulation during ovalbumin sensitization in adult mice.

    Science.gov (United States)

    Comas-García, A; López-Pacheco, C P; García-Zepeda, E A; Soldevila, G; Ramos-Martínez, P; Ramos-Castañeda, J

    2016-08-01

    In BALB/c adult mice, respiratory syncytial virus (RSV) infection enhances the degree of lung inflammation before and/or after ovalbumin (OVA) respiratory sensitization. However, it is unclear whether RSV infection in newborn mice has an effect on the immune response to OVA respiratory sensitization in adult mice. The aim of this study was to determine if RSV neonatal infection alters T CD4(+) population and lung inflammation during OVA respiratory sensitization in adult mice. BALB/c mice were infected with RSV on the fourth day of life and challenged by OVA 4 weeks later. We found that in adult mice, RSV neonatal infection prior to OVA sensitization reduces the CD4(+) CD25(+) and CD4(+) CD25(+) forkhead protein 3 (FoxP3)(+) cell populations in the lungs and bronchoalveolar lavage. Furthermore, it also attenuates the inflammatory infiltrate and cytokine/chemokine expression levels in the mouse airways. In conclusion, the magnitude of the immune response to a non-viral respiratory perturbation in adult mice is not enhanced by a neonatal RSV infection. © 2016 British Society for Immunology.

  13. IL-15 augments TCR-induced CD4+ T cell expansion in vitro by inhibiting the suppressive function of CD25 High CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Tom L Van Belle

    Full Text Available Due to its critical role in NK cell differentiation and CD8(+ T cell homeostasis, the importance of IL-15 is more firmly established for cytolytic effectors of the immune system than for CD4(+ T cells. The increased levels of IL-15 found in several CD4(+ T cell-driven (auto- immune diseases prompted us to examine how IL-15 influences murine CD4(+ T cell responses to low dose TCR-stimulation in vitro. We show that IL-15 exerts growth factor activity on both CD4(+ and CD8(+ T cells in a TCR-dependent and Cyclosporin A-sensitive manner. In CD4(+ T cells, IL-15 augmented initial IL-2-dependent expansion and once IL-15Rα was upregulated, IL-15 sustained the TCR-induced expression of IL-2/15Rβ, supporting proliferation independently of secreted IL-2. Moreover, IL-15 counteracts CD4(+ T cell suppression by a gradually expanding CD25(HighCD4(+ T cell subset that expresses Foxp3 and originates from CD4(+CD25(+ Tregs. These in vitro data suggest that IL-15 may dramatically strengthen the T cell response to suboptimal TCR-triggering by overcoming an activation threshold set by Treg that might create a risk for autoimmune pathology.

  14. Growth Arrest-Specific 6 Enhances the Suppressive Function of CD4+CD25+ Regulatory T Cells Mainly through Axl Receptor

    Directory of Open Access Journals (Sweden)

    Guang-ju Zhao

    2017-01-01

    Full Text Available Background. Growth arrest-specific (Gas 6 is one of the endogenous ligands of TAM receptors (Tyro3, Axl, and Mertk, and its role as an immune modulator has been recently emphasized. Naturally occurring CD4+CD25+ regulatory T cells (Tregs are essential for the active suppression of autoimmunity. The present study was designed to investigate whether Tregs express TAM receptors and the potential role of Gas6-TAM signal in regulating the suppressive function of Tregs. Methods. The protein and mRNA levels of TAM receptors were determined by using Western blot, immunofluorescence, flow cytometry, and RT-PCR. Then, TAM receptors were silenced using targeted siRNA or blocked with specific antibody. The suppressive function of Tregs was assessed by using a CFSE-based T cell proliferation assay. Flow cytometry was used to determine the expression of Foxp3 and CTLA4 whereas cytokines secretion levels were measured by ELISA assay. Results. Tregs express both Axl and Mertk receptors. Gas6 increases the suppressive function of Tregs in vitro and in mice. Both Foxp3 and CTLA-4 expression on Tregs are enhanced after Gas6 stimulation. Gas6 enhances the suppressive activity of Tregs mainly through Axl receptor. Conclusion. Gas6 has a direct effect on the functions of CD4+CD25+Tregs mainly through its interaction with Axl receptor.

  15. Tryptophan deprivation induces inhibitory receptors ILT3 and ILT4 on dendritic cells favoring the induction of human CD4+CD25+ Foxp3+ T regulatory cells.

    Science.gov (United States)

    Brenk, Manuela; Scheler, Marina; Koch, Susanne; Neumann, Jürgen; Takikawa, Osamu; Häcker, Georg; Bieber, Thomas; von Bubnoff, Dagmar

    2009-07-01

    Tryptophan catabolism through IDO activity can cause nonresponsiveness and tolerance acting on T cells. Given the crucial importance of dendritic cells (DCs) in the initiation of a T cell response, surprisingly little is known about the impact of IDO activity and tryptophan deprivation on DCs themselves. In the present study, we show that human DCs differentiated under low-tryptophan conditions acquire strong tolerogenic capacity. This effect is associated with a markedly decreased Ag uptake as well as the down-regulation of costimulatory molecules (CD40, CD80). In contrast, the inhibitory receptors ILT3 and ILT4 are significantly increased. Functionally, tryptophan-deprived DCs show a reduced capacity to stimulate T cells, which can be restored by blockade of ILT3. Moreover, ILT3(high)ILT4(high) DCs lead to the induction of CD4(+)CD25(+) Foxp3(+) T regulatory cells with suppressive activity from CD4(+)CD25(-) T cells. The generation of ILT3(high)ILT4(high) DCs with tolerogenic properties by tryptophan deprivation is linked to a stress response pathway mediated by the GCN2 kinase. These results demonstrate that tryptophan degradation establishes a regulatory microenvironment for DCs, enabling these cells to induce T regulatory cells. The impact of IDO thus extends beyond local immune suppression to a systemic control of the immune response.

  16. LAP TGF-Beta Subset of CD4+CD25+CD127− Treg Cells is Increased and Overexpresses LAP TGF-Beta in Lung Adenocarcinoma Patients

    Science.gov (United States)

    Islas-Vazquez, Lorenzo; Aguilar-Cazares, Dolores; Meneses-Flores, Manuel; Galicia-Velasco, Miriam; Romero-Garcia, Susana; Camacho-Mendoza, Catalina; Lopez-Gonzalez, Jose Sullivan

    2015-01-01

    Lung cancer is the leading cause of cancer death worldwide. Adenocarcinoma, the most commonly diagnosed histologic type of lung cancer, is associated with smoking. Cigarette smoke promotes inflammation on the airways, which might be mediated by Th17 cells. This inflammatory environment may contribute to tumor development. In contrast, some reports indicate that tumors may induce immunosuppressive Treg cells to dampen immune reactivity, supporting tumor growth and progression. Thus, we aimed to analyze whether chronic inflammation or immunosuppression predominates at the systemic level in lung adenocarcinoma patients, and several cytokines and Th17 and Treg cells were studied. Higher proportions of IL-17-producing CD4+ T-cells were found in smoking control subjects and in lung adenocarcinoma patients compared to nonsmoking control subjects. In addition, lung adenocarcinoma patients increased both plasma concentrations of IL-2, IL-4, IL-6, and IL-10, and proportions of Latency Associated Peptide (LAP) TGF-β subset of CD4+CD25+CD127− Treg cells, which overexpressed LAP TGF-β. This knowledge may lead to the development of immunotherapies that could inhibit the suppressor activity mediated by the LAP TGF-β subset of CD4+CD25+CD127− Treg cells to promote reactivity of immune cells against lung adenocarcinoma cells. PMID:26582240

  17. LAP TGF-Beta Subset of CD4+CD25+CD127− Treg Cells is Increased and Overexpresses LAP TGF-Beta in Lung Adenocarcinoma Patients

    Directory of Open Access Journals (Sweden)

    Lorenzo Islas-Vazquez

    2015-01-01

    Full Text Available Lung cancer is the leading cause of cancer death worldwide. Adenocarcinoma, the most commonly diagnosed histologic type of lung cancer, is associated with smoking. Cigarette smoke promotes inflammation on the airways, which might be mediated by Th17 cells. This inflammatory environment may contribute to tumor development. In contrast, some reports indicate that tumors may induce immunosuppressive Treg cells to dampen immune reactivity, supporting tumor growth and progression. Thus, we aimed to analyze whether chronic inflammation or immunosuppression predominates at the systemic level in lung adenocarcinoma patients, and several cytokines and Th17 and Treg cells were studied. Higher proportions of IL-17-producing CD4+ T-cells were found in smoking control subjects and in lung adenocarcinoma patients compared to nonsmoking control subjects. In addition, lung adenocarcinoma patients increased both plasma concentrations of IL-2, IL-4, IL-6, and IL-10, and proportions of Latency Associated Peptide (LAP TGF-β subset of CD4+CD25+CD127− Treg cells, which overexpressed LAP TGF-β. This knowledge may lead to the development of immunotherapies that could inhibit the suppressor activity mediated by the LAP TGF-β subset of CD4+CD25+CD127− Treg cells to promote reactivity of immune cells against lung adenocarcinoma cells.

  18. Effects of sublingual immunotherapy for Dermatophagoides farinae on Th17 cells and CD4(+) CD25(+) regulatory T cells in peripheral blood of children with allergic asthma.

    Science.gov (United States)

    Tian, Man; Wang, Yu; Lu, Yueqing; Jiang, Yan-he; Zhao, De-yu

    2014-05-01

    Sublingual immunotherapy is becoming a more common treatment for allergic diseases, particularly in pediatric clinics. This type of treatment is highly effective for Dermatophagoides farinae allergy, but the mechanisms resulting in immune tolerance have not been investigated. We explored the effects of sublingual immunotherapy with D. farinae drops on populations of subsets of T immune cells, specifically Th17 cells and CD4(+) CD25(+) regulatory T cells (Treg cells), in peripheral blood of children with allergic asthma. We assessed immune cell populations in 60 patients allergic to D. farinae who were randomly divided into 2 groups: a treatment group (n = 30) and a control group (n = 30), treated with sublingual administration of D. farinae drops or placebo, respectively, for 48 weeks. Clinical symptoms of asthma were scored for each individual before and after treatment, and the percentages of Th17 cells and CD4(+) CD25(+) Treg cells in the peripheral blood were evaluated by flow cytometry at 12-week intervals beginning at baseline. Both the mean daily symptom scores and percentages of Th17 cells significantly declined in the treatment group throughout the study period (p Sublingual administration of D. farinae drops alters T immune cell profiles and reduces asthma symptoms, likely resulting in enhanced immunosuppression in children with asthma. © 2014 ARS-AAOA, LLC.

  19. Expression of CD4+CD25+Foxp3+ Regulatory T Cells, Interleukin 10 and Transforming Growth Factor β in Newly Diagnosed Type 2 Diabetic Patients.

    Science.gov (United States)

    Yuan, Ning; Zhang, Hai-Feng; Wei, Qi; Wang, Ping; Guo, Wei-Ying

    2018-02-01

    Recent studies have shown that dysfunction and decrease of regulatory T cells (Tregs) correlates with insulin resistance (IR), one of the most significant mechanisms for type 2 diabetes mellitus (T2DM). To examine potential relationships among Tregs, IR, blood lipid content, and related cytokines, we investigated the frequency of CD4+CD25+Foxp3+ Tregs, as well as expression levels of interleukin 10 (IL-10) and transforming growth factor-β (TGF-β) in newly diagnosed T2DM patients. Fifty-one newly diagnosed T2DM patients and 55 control individuals were enrolled. According to body mass index (BMI), the T2DM patients were grouped into non-obese and obese groups. Blood was collected in ethylene diamine tetraacetic acid (EDTA) anticoagulant tubes for detection of CD4+CD25+Foxp3+ Tregs by flow cytometry. Serum was collected to quantify IL-10 and TGF-β levels by enzyme-linked immunosorbent assay (ELISA). By comparing percentages of Tregs between non-obese and obese groups, correlation with Treg frequency, homeostasis model assessment of insulin resistance (HOMA-IR), IL-10 and TGF-β was examined. The percentage of CD4+CD25+Foxp3+ Tregs in the newly diagnosed T2DM group was significantly lower than in the control group (P<0.01). Further, levels of IL-10 and TGF-β were also lower in the T2DM group (P<0.05). The level of IL-10 was remarkably lower in the obese group than in the non-obese and the control groups (P<0.01), but there was no significant difference between non-obese group and the control group. The level of TGF-β was lower in obese group than in the control group (P<0.05). There was no significant difference between non-obese group and the control group. The frequency of CD4+CD25+Foxp3+ Tregs in the obese group was significantly lower than in the non-obese group (P<0.05). In the obese group, the percentage of Tregs negatively correlated with HOMA-IR and positively correlated with TGF-β (P<0.05). There was no obvious correlation between Treg and HOMA-IR in the

  20. Hydrolytic Degradation and Mechanical Stability of Poly(ε-Caprolactone/Reduced Graphene Oxide Membranes as Scaffolds for In Vitro Neural Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Sandra Sánchez-González

    2018-03-01

    Full Text Available The present work studies the functional behavior of novel poly(ε-caprolactone (PCL membranes functionalized with reduced graphene oxide (rGO nanoplatelets under simulated in vitro culture conditions (phosphate buffer solution (PBS at 37 °C during 1 year, in order to elucidate their applicability as scaffolds for in vitro neural regeneration. The morphological, chemical, and DSC results demonstrated that high internal porosity of the membranes facilitated water permeation and procured an accelerated hydrolytic degradation throughout the bulk pathway. Therefore, similar molecular weight reduction, from 80 kDa to 33 kDa for the control PCL, and to 27 kDa for PCL/rGO membranes, at the end of the study, was observed. After 1 year of hydrolytic degradation, though monomers coming from the hydrolytic cleavage of PCL diffused towards the PBS medium, the pH was barely affected, and the rGO nanoplatelets mainly remained in the membranes which envisaged low cytotoxic effect. On the other hand, the presence of rGO nanomaterials accelerated the loss of mechanical stability of the membranes. However, it is envisioned that the gradual degradation of the PCL/rGO membranes could facilitate cells infiltration, interconnectivity, and tissue formation.

  1. Hydrolytic Degradation and Mechanical Stability of Poly(ε-Caprolactone)/Reduced Graphene Oxide Membranes as Scaffolds for In Vitro Neural Tissue Regeneration.

    Science.gov (United States)

    Sánchez-González, Sandra; Diban, Nazely; Urtiaga, Ane

    2018-03-05

    The present work studies the functional behavior of novel poly(ε-caprolactone) (PCL) membranes functionalized with reduced graphene oxide (rGO) nanoplatelets under simulated in vitro culture conditions (phosphate buffer solution (PBS) at 37 °C) during 1 year, in order to elucidate their applicability as scaffolds for in vitro neural regeneration. The morphological, chemical, and DSC results demonstrated that high internal porosity of the membranes facilitated water permeation and procured an accelerated hydrolytic degradation throughout the bulk pathway. Therefore, similar molecular weight reduction, from 80 kDa to 33 kDa for the control PCL, and to 27 kDa for PCL/rGO membranes, at the end of the study, was observed. After 1 year of hydrolytic degradation, though monomers coming from the hydrolytic cleavage of PCL diffused towards the PBS medium, the pH was barely affected, and the rGO nanoplatelets mainly remained in the membranes which envisaged low cytotoxic effect. On the other hand, the presence of rGO nanomaterials accelerated the loss of mechanical stability of the membranes. However, it is envisioned that the gradual degradation of the PCL/rGO membranes could facilitate cells infiltration, interconnectivity, and tissue formation.

  2. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  3. The importance of Foxp3 antibody and fixation/permeabilization buffer combinations in identifying CD4+CD25+Foxp3+ regulatory T cells.

    Science.gov (United States)

    Law, Jacqueline P; Hirschkorn, Dale F; Owen, Rachel E; Biswas, Hope H; Norris, Philip J; Lanteri, Marion C

    2009-12-01

    Foxp3 is a key marker for CD4(+) regulatory T cells (T(regs)) and was used in developing a multiparameter flow cytometric panel to identify T(regs). Achieving reproducible staining and analysis first required optimization of Foxp3 staining. We present a comparative study of PCH101, 236A/E7, 3G3, 206D, 150D, and 259D/C7 clones of anti-human-Foxp3 antibodies used in combination with five different fixation/permeabilization buffers. Staining for CD25, CD152, and CD127 was also compared between fixation/permeabilization treatments. Promising antibody/buffer combinations were tested in a panel of peripheral blood mononuclear cells from 10 individuals, and then on fresh versus frozen cells from four individuals. Finally, different fluorochromes coupled to two representative antibodies were compared to optimize separation of Foxp3(+) from Foxp3(-) events. Foxp3 gates were set using two gating strategies based on CD127(+)CD25(-) "non-T(regs)" or based on isotype controls. For Foxp3 staining, the best conditions for fixation/permeabilization were obtained using the eBioscience Foxp3, Imgenex, BioLegend, and BD Foxp3 buffers. Comparing results from 10 subjects, 259D/C7, PCH101, 236A/E7, and 206D antibodies yielded statistically higher levels of Foxp3 cells than those by 150D and 3G3 antibodies (mean = 6.9, 5.1, 4.7, and 3.7% compared with 1.7, and 0.3% of CD25(+)Foxp3(+) events within CD4(+) cells, respectively). Importantly, the "nonspecificity" of some antibodies observed with a Foxp3 gate based on isotype controls could be eliminated by setting the Foxp3 gate on "non-T(regs)". Better separation of Foxp3(+) and Foxp3(-) populations was observed using the PCH101 clone coupled to Alexa647 compared with FITC or the 259D/C7 clone coupled to PE compared with Alexa488 fluorochrome. Foxp3 staining can be highly variable and depends on the choice of antibody/buffer pair and the fluorochrome used. Selecting the correct population for setting the Foxp3 gate is critical to avoid

  4. The development of orally administrable gemcitabine prodrugs with D-enantiomer amino acids: enhanced membrane permeability and enzymatic stability.

    Science.gov (United States)

    Tsume, Yasuhiro; Incecayir, Tuba; Song, Xueqin; Hilfinger, John M; Amidon, Gordon L

    2014-04-01

    Gemcitabine prodrugs with D- and L-configuration amino acids were synthesized and their chemical stability in buffers, resistance to glycosidic bond metabolism, enzymatic activation, permeability in Caco-2 cells and mouse intestinal membrane, anti-proliferation activity in cancer cell were determined and compared to that of parent drug, gemcitabine. Prodrugs containing D-configuration amino acids were enzymatically more stable than ones with L-configuration amino acids. The activation of all gemcitabine prodrugs was 1.3-17.6-fold faster in cancer cell homogenate than their hydrolysis in buffer, suggesting enzymatic action. The enzymatic activation of amino acid monoester prodrugs containing D-configuration amino acids in cell homogenates was 2.2-10.9-fold slower than one of amino acid monoester prodrugs with L-configuration amino acids. All prodrugs exhibited enhanced resistance to glycosidic bond metabolism by thymidine phosphorylase compared to parent gemcitabine. Gemcitabine prodrugs showed superior the effective permeability in mouse jejunum to gemcitabine. More importantly, the high plasma concentration of d-amino acid gemcitabine prodrugs was observed more than one of L-amino acid gemcitabine prodrugs. In general, the 5'-mono-amino acid monoester gemcitabine prodrugs exhibited higher permeability and uptake than their parent drug, gemcitabine. Cell proliferation assays in AsPC-1 pancreatic ductal cell line indicated that gemcitabine prodrugs were more potent than their parent drug, gemcitabine. The transport and enzymatic profiles of 5'-D-valyl-gemcitabine and 5'-D-phenylalanyl-gemcitabine suggest their potential for increased oral uptake and delayed enzymatic bioconversion as well as enhanced uptake and cytotoxic activity in cancer cells, would facilitate the development of oral dosage form for anti-cancer agents and, hence, improve the quality of life for the cancer patients. Copyright © 2014. Published by Elsevier B.V.

  5. Dysregulation of CD4+CD25+CD127lowFOXP3+ regulatory T cells in HIV-infected pregnant women

    DEFF Research Database (Denmark)

    Kolte, Lilian; Gaardbo, Julie C; Karlsson, Ingrid

    2010-01-01

    Pregnancy represents a major challenge to immunologic tolerance. How the fetal "semiallograft" evades maternal immune attack is unknown. Pregnancy success may involve alteration of both central (thymic) and peripheral tolerance mechanisms. HIV infection is characterized by CD4(+) T-cell depletion......, chronic immune activation, and altered lymphocyte subsets. We studied immunologic consequences of pregnancy in 20 HIV-infected women receiving highly active antiretroviral therapy (HAART), and for comparison in 16 HIV-negative women. Lymphocyte subsets, thymic output, and cytokine profiles were measured...... prospectively during pregnancy and postpartum. A significant expansion of CD4(+)CD25(+)CD127(low)FoxP3(+) regulatory T cells indicating alteration of peripheral tolerance was seen during second trimester, but only in HIV-negative women. HIV-infected women had lower CD4 counts, lower thymic output and Th-2...

  6. Inhibition of Allograft Inflammatory Factor-1 in Dendritic Cells Restrains CD4+ T Cell Effector Responses and Induces CD25+Foxp3+ T Regulatory Subsets

    Directory of Open Access Journals (Sweden)

    Diana M. Elizondo

    2017-11-01

    Full Text Available Allograft inflammatory factor-1 (AIF1 is a cytoplasmic scaffold protein shown to influence immune responses in macrophages and microglial cells. The protein contains Ca2+ binding EF-hand and PDZ interaction domains important for mediating intracellular signaling complexes. This study now reports that AIF1 is expressed in CD11c+ dendritic cells (DC and silencing of expression restrains induction of antigen-specific CD4+ T cell effector responses. AIF1 knockdown in murine DC resulted in impaired T cell proliferation and skewed polarization away from T helper type 1 and 17 fates. In turn, there was a parallel expansion of IL-10-producing and CD25+Foxp3+ T regulatory subsets. These studies are the first to demonstrate that AIF1 expression in DC serves as a potent governor of cognate T cell responses and presents a novel target for engineering tolerogenic DC-based immunotherapies.

  7. Dysregulation of CD4+CD25+CD127lowFOXP3+ regulatory T cells in HIV-infected pregnant women

    DEFF Research Database (Denmark)

    Kolte, Lilian; Gaardbo, Julie C; Karlsson, Ingrid

    2010-01-01

    Pregnancy represents a major challenge to immunologic tolerance. How the fetal "semiallograft" evades maternal immune attack is unknown. Pregnancy success may involve alteration of both central (thymic) and peripheral tolerance mechanisms. HIV infection is characterized by CD4(+) T-cell depletion...... prospectively during pregnancy and postpartum. A significant expansion of CD4(+)CD25(+)CD127(low)FoxP3(+) regulatory T cells indicating alteration of peripheral tolerance was seen during second trimester, but only in HIV-negative women. HIV-infected women had lower CD4 counts, lower thymic output and Th-2...... cytokines, and more immune activation at all time points compared with controls. Immune activation was decreased in HIV-infected patients during pregnancy. In contrast, CD4 counts were increased in both groups. In conclusion, the study does not indicate that pregnancy adversely affects the immunologic...

  8. Inhibition of Allograft Inflammatory Factor-1 in Dendritic Cells Restrains CD4+ T Cell Effector Responses and Induces CD25+Foxp3+ T Regulatory Subsets.

    Science.gov (United States)

    Elizondo, Diana M; Andargie, Temesgen E; Yang, Dazhi; Kacsinta, Apollo D; Lipscomb, Michael W

    2017-01-01

    Allograft inflammatory factor-1 (AIF1) is a cytoplasmic scaffold protein shown to influence immune responses in macrophages and microglial cells. The protein contains Ca 2+ binding EF-hand and PDZ interaction domains important for mediating intracellular signaling complexes. This study now reports that AIF1 is expressed in CD11c + dendritic cells (DC) and silencing of expression restrains induction of antigen-specific CD4 + T cell effector responses. AIF1 knockdown in murine DC resulted in impaired T cell proliferation and skewed polarization away from T helper type 1 and 17 fates. In turn, there was a parallel expansion of IL-10-producing and CD25 + Foxp3 + T regulatory subsets. These studies are the first to demonstrate that AIF1 expression in DC serves as a potent governor of cognate T cell responses and presents a novel target for engineering tolerogenic DC-based immunotherapies.

  9. Decrease in circulating CD25(hi)Foxp3(+) regulatory T cells following vaccination with the candidate malaria vaccine RTS,S.

    Science.gov (United States)

    Parsons, Emily; Epstein, Judith; Sedegah, Martha; Villasante, Eileen; Stewart, Ann

    2016-08-31

    Regulatory T (Treg) cells have been shown in some cases to limit vaccine-specific immune responses and impact efficacy. Very little is known about the regulatory responses to the leading malaria vaccine candidate, RTS,S. The goal of this study was to begin to characterize the regulatory responses to the RTS,S vaccine. Using multi-parameter flow cytometry, we examined responses in 13 malaria naïve adult volunteers who received 2 doses of RTS,S given eight weeks apart. Five of these volunteers had previously received 3 doses of a candidate DNA-CSP vaccine, with the final dose given approximately one year prior to the first dose of the RTS,S vaccine. We found that the frequency of CD25(hi)Foxp3(+) Treg cells decreased following administration of RTS,S (p=0.0195), with no differences based on vaccine regimen. There was a concomitant decrease in CTLA-4 expression on CD25(hi)Foxp3(+) Treg cells (p=0.0093) and PD-1 levels on CD8(+) T cells (p=0.0002). Additionally, the frequency of anergic CTLA-4(+)CCR7(+) T cells decreased following vaccination. An inverse correlation was observed between the frequency of Plasmodium falciparum circumsporozoite protein (PfCSP)-specific IFN-γ and PfCSP-specific IL-10, as well as an inverse correlation between IL-10 induced by Hepatitis B surface antigen, the carrier of RTS,S, and PfCSP-specific IFN-γ, suggesting that immunity against the vaccine backbone could impact vaccine immunogenicity. These results have implications for future malaria vaccine design. Copyright © 2016. Published by Elsevier Ltd.

  10. Assessment of the frequency of regulatory T cells (CD4+CD25+CD127-) in children with hemophilia A: relation to factor VIII inhibitors and disease severity.

    Science.gov (United States)

    El-Asrar, Mohamed Abo; Hamed, Ahmed El-Saeed; Darwish, Yasser Wagih; Ismail, Eman Abdel Rahman; Ismail, Noha Ali

    2016-01-01

    A rapidly growing evidence showed that regulatory T cells (Tregs) play a crucial role in tolerance to coagulation factors and may be involved in the pathogenesis of inhibitor formation in patients with hemophilia. We determined the percentage of Tregs (CD4CD25CD127) in 45 children with hemophilia A compared with 45 healthy controls, and assessed their relation to the clinical characteristics of patients and factor VIII (FVIII) inhibitors. Patients were studied stressing on frequency of bleeding attacks, joint pain, history of viral hepatitis, and the received therapy (FVIII precipitate/cryotherapy). FVIII activity and FVIII inhibitors were assessed with flow cytometric analysis of CD4CD25CD127 Tregs. According to residual FVIII activity levels, 30 patients (66.7%) had mild/moderate hemophilia A, whereas 15 (33.3%) patients had severe hemophilia A. The frequency of Tregs was significantly lower among all patients with hemophilia A compared with controls (2.59 ± 1.1 versus 3.73 ± 1.12%; P = 0.002). Tregs were significantly decreased among patients with FVIII inhibitors compared with the inhibitor-negative group (P hemophilia A had lower Tregs levels than those without (P = 0.34 and P = 0.011, respectively). A significant positive correlation was found between the percentage of Tregs and FVIII among hemophilia A patients. ROC curve analysis revealed that the cut-off value of Tregs at 1.91% could differentiate patients with and without FVIII inhibitors, with a sensitivity of 100% and a specificity of 91.3%. We suggest that alteration in the frequency of Tregs in young patients with hemophilia A may contribute to inhibitor formation and disease severity.

  11. An increase in CD3+CD4+CD25+ regulatory T cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis.

    Directory of Open Access Journals (Sweden)

    Yu-Hua Chao

    Full Text Available Sepsis remains an important cause of death worldwide, and vigorous immune responses during sepsis could be beneficial for bacterial clearance but at the price of collateral damage to self tissues. Mesenchymal stem cells (MSCs have been found to modulate the immune system and attenuate sepsis. In the present study, MSCs derived from bone marrow and umbilical cord were used and compared. With a cecal ligation and puncture (CLP model, the mechanisms of MSC-mediated immunoregulation during sepsis were studied by determining the changes of circulating inflammation-associated cytokine profiles and peripheral blood mononuclear cells 18 hours after CLP-induced sepsis. In vitro, bone marrow-derived MSCs (BMMSCs and umbilical cord-derived MSCs (UCMSCs showed a similar morphology and surface marker expression. UCMSCs had stronger potential for osteogenesis but lower for adipogenesis than BMMSCs. Compared with rats receiving PBS only after CLP, the percentage of circulating CD3+CD4+CD25+ regulatory T (Treg cells and the ratio of Treg cells/T cells were elevated significantly in rats receiving MSCs. Further experiment regarding Treg cell function demonstrated that the immunosuppressive capacity of Treg cells from rats with CLP-induced sepsis was decreased, but could be restored by administration of MSCs. Compared with rats receiving PBS only after CLP, serum levels of interleukin-6 and tumor necrosis factor-α were significantly lower in rats receiving MSCs after CLP. There were no differences between BMMSCs and UCMSCs. In summary, this work provides the first in vivo evidence that administering BMMSCs or UCMSCs to rats with CLP-induced sepsis could increase circulating CD3+CD4+CD25+ Treg cells and Treg cells/T cells ratio, enhance Treg cell suppressive function, and decrease serum levels of interleukin-6 and tumor necrosis factor-α, suggesting the immunomodulatory association of Treg cells and MSCs during sepsis.

  12. Naturally occurring CD4+ CD25+ FOXP3+ T-regulatory cells are increased in chronic myeloid leukemia patients not in complete cytogenetic remission and can be immunosuppressive.

    Science.gov (United States)

    Rojas, Jose M; Wang, Lihui; Owen, Sally; Knight, Katy; Watmough, Sarah J; Clark, Richard E

    2010-12-01

    Clinical presentation of chronic myeloid leukemia (CML) requires not only the deregulated tyrosine kinase BCR-ABL, but also the failure of an immune response against BCR-ABL-expressing cells. T-cell responses against BCR-ABL and other antigens are well-described, but their relevance to the in vivo control of CML is unclear. The suppressive role of naturally occurring T regulatory (T-reg) cells in antitumor immunity is well-established, although little is known about their role in modulating the T-cell response to BCR-ABL. Naturally occurring T-reg cells were characterized and quantified by flow cytometry in 39 CML patients and 10 healthy donors. Their function was studied by observing their effect on responses to purified protein derivative, a recall antigen, and on the response of an autologous T-cell line recognizing BCR-ABL. T-reg cells were CD4(+), CD25(+), FOXP3(+), CD127(low), and CD62L(high). T-reg numbers in patients in complete cytogenetic remission were significantly lower than in patients not in complete cytogenetic remission (p T-reg cell depletion using anti-CD25 selection enhanced proliferative responses to purified protein derivative. Furthermore, the interferon-γ and/or granzyme-B production of effector cells specific for viral peptides or a BCR-ABL HLA-A3-restricted peptide was inhibited when autologous T-reg cells were present. Taken together, these data suggest a role for T-reg cells in limiting immune responses in CML patients and this may include immune responses to BCR-ABL. The increased frequency of T-reg cells in patients with high levels of BCR-ABL transcripts indicates that an immune mechanism may be important in the control of CML. Copyright © 2010 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  13. The flame retardants tetrabromobisphenol A and tetrabromobisphenol A-bisallylether suppress the induction of interleukin-2 receptor α chain (CD25) in murine splenocytes

    International Nuclear Information System (INIS)

    Pullen, Sabine; Boecker, Ronald; Tiegs, Gisa

    2003-01-01

    Polybrominated flame retardants (PBF) are frequently used additives in electronical equipment. They are ubiquitous environmental contaminants which bioaccumulate with several health effects for humans and the environment. This study investigated immunotoxic effects of the PBF tetrabromobisphenol A (TBBP A), tetrabromobisphenol A-bisallylether (TBBP A-AE), tetrabromobisphenol A-bis-(2,3-dibromopropyl-ether) (TBBP A-PE), decabromodiphenylether (DBDE), and 2,4,6-tribromophenol (TBP) in vitro. The structurally related polychlorinated aromatic hydrocarbon 3,4,3',4'-tetrachlorobiphenyl (PCB77) and dioxins mediate their immunotoxicity via the Ah-receptor gene complex. A highly relevant function of the Ah receptor, the induction of CYP 1A1 in hepatocytes of C57BL/6 mice by the established inducers 3-methylcholanthrene (MC) and PCB77 was compared to the effect of PBF by measurement of ethoxyresorufin-o-deethylase (EROD) activity. The PBF did not show any induction of CYP 1A1, while EROD activity of hepatocytes exposed to MC and PCB77 was induced 10.8- and 8.7-fold, respectively. To investigate immunotoxic effects of the flame retardants, splenocytes of C57BL/6 mice were incubated with subtoxic doses of the flame retardants and PCB77 and activated by concanavalin A (Con A). The flame retardants TBBP A and TBBP A-AE significantly inhibited the expression of interleukin-2 receptor α chain (CD25) in contrast to TBBP A-PE, DBDE, TBP, and PCB77 as shown by immunohistochemistry and quantitative analysis by laser scanning cytometry. None of the substances had any effect on the Con A-induced production of cytokines. Hence, TBBP A and TBBP A-AE may act as immunotoxic compounds by specifically inhibiting the expression of CD25

  14. Interplay of T Helper 17 Cells with CD4+CD25high FOXP3+ Tregs in Regulation of Allergic Asthma in Pediatric Patients

    Directory of Open Access Journals (Sweden)

    Amit Agarwal

    2014-01-01

    Full Text Available Background. There is evidence that Tregs are important to prevent allergic diseases like asthma but limited literature exists on role of TH17 cells in allergic diseases. Methods. Fifty children with asthma and respiratory allergy (study group and twenty healthy children (control group were recruited in this study. Total IgE levels and pulmonary function tests were assessed. The expression of Tregs and cytokines was determined by flow cytometry. Results. The average level of total IgE in study group (316.8 ± 189.8 IU/mL was significantly higher than controls (50 ± 17.5 IU/mL, P<0.0001. The frequency of TH17 cells and culture supernatant level of IL-17 in study group (12.09 ± 8.67 pg/mL was significantly higher than control group (2.01 ± 1.27 pg/mL, P<0.001. Alternatively, the frequency of FOXP3 level was significantly lower in study group [(49.00 ± 13.47%] than in control group [(95.91 ± 2.63%] and CD4+CD25+FOXP3+ to CD4+CD25+ ratio was also significantly decreased in study group [(6.33 ± 2.18%] compared to control group [(38.61 ± 11.04%]. The total serum IgE level is negatively correlated with FOXP3 level (r=-0.5273, P<0.0001. The FOXP3 expression is negatively correlated with the IL-17 levels (r=-0.5631, P<0.0001 and IL-4 levels (r=-0.2836, P=0.0460. Conclusions. Imbalance in TH17/Tregs, elevated IL-17, and IL-4 response and downregulation of FOXP3 were associated with allergic asthma.

  15. Differential effects of IL-2 and IL-21 on expansion of the CD4+ CD25+ Foxp3+ T regulatory cells with redundant roles in natural killer cell mediated antibody dependent cellular cytotoxicity in chronic lymphocytic leukemia.

    Science.gov (United States)

    Gowda, Aruna; Ramanunni, Asha; Cheney, Carolyn; Rozewski, Darlene; Kindsvogel, Wayne; Lehman, Amy; Jarjoura, David; Caligiuri, Michael; Byrd, John C; Muthusamy, Natarajan

    2010-01-01

    CD4(+) CD25(+) regulatory T cells are expanded in solid and hematological malignancies including chronic lymphocytic leukemia (CLL). Several cytokines and co-stimulatory molecules are required for generation, survival and maintenance of their suppressive effect. We and others have shown direct cytotoxic effect of the novel common gamma chain cytokine interleukin (IL)-21 on primary B cells from CLL patients. Since members of this family of cytokines are known to exhibit their effects on diverse immune cells, we have examined the effects of IL-21 on CLL patient derived regulatory T cell (Treg) induction, expansion and the inhibitory effect on natural killer cells in vitro. We demonstrate here the expression of IL-21 receptor in CD4(+)CD25(High) regulatory cells from CLL patients. In contrast to IL-2, the IL-21 cytokine failed to mediate expansion of regulatory T cells or induced expression of Foxp3 in CD4(+)CD25(Intermediate) or CD4(+)CD25(Dim/-) T cells in whole blood derived from CLL patients. Interestingly, in contrast to their differential effects on expansion of the CD4(+)CD25(+)Foxp3(+)T cells, IL-2 and IL-21 exhibited a redundant role in Treg mediated suppression of NK cell mediated antibody dependent cytotoxicity function. Given the infusion related toxicities and pro-survival effect of IL-2 in CLL, these studies provide a rationale to explore IL-21 as an alternate gamma chain cytokine in CLL therapy.

  16. Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis: linking biofouling layer morphology with flux stabilization.

    Science.gov (United States)

    Akhondi, Ebrahim; Wu, Bing; Sun, Shuyang; Marxer, Brigit; Lim, Weikang; Gu, Jun; Liu, Linbo; Burkhardt, Michael; McDougald, Diane; Pronk, Wouter; Fane, Anthony G

    2015-03-01

    In this study gravity-driven membrane (GDM) ultrafiltration is investigated for the pretreatment of seawater before reverse osmosis (RO). The impacts of temperature (21 ± 1 and 29 ± 1 °C) and hydrostatic pressure (40 and 100 mbar) on dynamic flux development and biofouling layer structure were studied. The data suggested pore constriction fouling was predominant at the early stage of filtration, during which the hydrostatic pressure and temperature had negligible effects on permeate flux. With extended filtration time, cake layer fouling played a major role, during which higher hydrostatic pressure and temperature improved permeate flux. The permeate flux stabilized in a range of 3.6 L/m(2) h (21 ± 1 °C, 40 mbar) to 7.3 L/m(2) h (29 ± 1 °C, 100 mbar) after slight fluctuations and remained constant for the duration of the experiments (almost 3 months). An increase in biofouling layer thickness and a variable biofouling layer structure were observed over time by optical coherence tomography and confocal laser scanning microscopy. The presence of eukaryotic organisms in the biofouling layer was observed by light microscopy and the microbial community structure of the biofouling layer was analyzed by sequences of 16S rRNA genes. The magnitude of permeate flux was associated with the combined effect of the biofouling layer thickness and structure. Changes in the biofouling layer structure were attributed to (1) the movement and predation behaviour of the eukaryotic organisms which increased the heterogeneous nature of the biofouling layer; (2) the bacterial debris generated by eukaryotic predation activity which reduced porosity; (3) significant shifts of the dominant bacterial species over time that may have influenced the biofouling layer structure. As expected, most of the particles and colloids in the feed seawater were removed by the GDM process, which led to a lower RO fouling potential. However, the dissolved organic carbon in the

  17. Role of sulfonation in the stability, reactivity, and selectivity of poly(ether imide) used to develop ion exchange membranes: DFT study with application to fuel cells.

    Science.gov (United States)

    López-Chávez, Ernesto; Peña-Castañeda, Yésica A; de la Portilla-Maldonado, L César; Guzmán-Pantoja, Javier; Martínez-Magadán, José Manuel; Oviedo-Roa, Raúl; de Landa Castillo-Alvarado, Fray; Cruz-Torres, Armando

    2014-07-01

    The design of polymer electrolyte membranes for fuel cells must satisfy two equally important fundamental principles: optimization of the reactivity and the selectivity in order to improve the ion transport properties of the membrane as well as its long-term stability in the hydrated state at high temperature (above 100 °C). A study utilizing density functional theory (DFT) to elucidate the effect of the degree of sulfonation on the chemical stability, reactivity, and selectivity of poly(ether imide) (PEI), which allows the ionic transport properties of the membrane to be predicted, is reported here. Sulfonated poly(ether imide) (SPEI) structures with (-SO3H) n (n = 1-6) groups were built and optimized in order to calculate the above properties as functions of the number of sulfonyl groups. A comparative study demonstrated that the SPEI with four sulfonyl groups in its backbone is the polymer with the properties best suited for use in fuel cells.

  18. Selective Ion Transporting Polymerized Ionic Liquid Membrane Separator for Enhancing Cycle Stability and Durability in Secondary Zinc-Air Battery Systems.

    Science.gov (United States)

    Hwang, Ho Jung; Chi, Won Seok; Kwon, Ohchan; Lee, Jin Goo; Kim, Jong Hak; Shul, Yong-Gun

    2016-10-05

    Rechargeable secondary zinc-air batteries with superior cyclic stability were developed using commercial polypropylene (PP) membrane coated with polymerized ionic liquid as separators. The anionic exchange polymer was synthesized copolymerizing 1-[(4-ethenylphenyl)methyl]-3-butylimidazolium hydroxide (EBIH) and butyl methacrylate (BMA) monomers by free radical polymerization for both functionality and structural integrity. The ionic liquid induced copolymer was coated on a commercially available PP membrane (Celguard 5550). The coat allows anionic transfer through the separator and minimizes the migration of zincate ions to the cathode compartment, which reduces electrolyte conductivity and may deteriorate catalytic activity by the formation of zinc oxide on the surface of the catalyst layer. Energy dispersive X-ray spectroscopy (EDS) data revealed the copolymer-coated separator showed less zinc element in the cathode, indicating lower zinc crossover through the membrane. Ion coupled plasma optical emission spectroscopy (ICP-OES) analysis confirmed over 96% of zincate ion crossover was reduced. In our charge/discharge setup, the constructed cell with the ionic liquid induced copolymer casted separator exhibited drastically improved durability as the battery life increased more than 281% compared to the pure commercial PP membrane. Electrochemical impedance spectroscopy (EIS) during the cycle process elucidated the premature failure of cells due to the zinc crossover for the untreated cell and revealed a substantial importance must be placed in zincate control.

  19. The stability of poly(2,2′-(m-phenylene)-5,5′-bibenzimidazole) membranes in aqueous potassium hydroxide

    DEFF Research Database (Denmark)

    Aili, David; Jankova Atanasova, Katja; Li, Qingfeng

    2015-01-01

    In the form of membranes, poly(2,2′-(m-phenylene)-5,5′-bibenzimidazole) (mPBI) is known to exhibit high ionic conductivity when doped with aqueous KOH, which makes it interesting as electrolyte in e.g. alkaline fuel cells and water electrolyzers. The conductivity peaks at KOH concentrations around...... 25wt%. This work is devoted to a comprehensive stability study of mPBI in aqueous KOH of different concentrations for up to 200 days under conditions relevant for electrochemical energy conversion technologies. The polymer membranes were kept at 88°C in aqueous KOH with concentrations ranging from 0...... to 50wt%, and the chemical and physicochemical changes were monitored. The degradation was connected to the hydrolysis of the polymer backbone and the degradation rate increased with increasing KOH concentration. In the lower concentration range mPBI proved to be stable but exhibited low ionic...

  20. Increase of Circulating CD4(+)CD25(high)Foxp3(+) Regulatory T Cells in Patients With Metastatic Renal Cell Carcinoma During Treatment With Dendritic Cell Vaccination and Low-Dose Interleukin-2

    DEFF Research Database (Denmark)

    Berntsen, Annika; Brimnes, M.K.; Straten, P.T.

    2010-01-01

    in patients with metastatic renal cell carcinoma on the frequency of CD4(+) CD25(high)Foxp3(+) Treg cells in peripheral blood. We found that the treatment increased the frequency of Treg cells more than 7-fold compared with pretreatment levels (P ... to an increase in the number of Treg cells whereas IL-21 does not stimulate the induction of Treg cells. These findings demonstrate that even low doses of IL-2 in combination with DC vaccination are able to expand CD4(+)CD25(+)Foxp3(+) Treg cells in vivo in metastatic renal cell carcinoma patients. Further...

  1. H9N2-specific IgG and CD4+CD25+ T cells in broilers fed a diet supplemented with organic acids.

    Science.gov (United States)

    Lee, In Kyu; Bae, Suhan; Gu, Min Jeong; You, Sun Jong; Kim, Girak; Park, Sung-Moo; Jeung, Woon-Hee; Ko, Kwang Hyun; Cho, Kyung Jin; Kang, Jung Sun; Yun, Cheol-Heui

    2017-05-01

    Organic acids have long been known for their beneficial effects on growth performance in domestic animals. However, their impact on immune responses against viral antigens in chickens is unclear. The present study aimed to investigate immunological parameters in broilers immunized with a H9N2 vaccine and/or fed a diet containing organic acids (citric, formic, and lactic acids). We allotted 1-day-old broilers into 4 groups: control (C), fed a diet supplemented with organic acids (O), administered a H9N2 vaccine (V), and fed a diet supplemented with organic acids and administered a H9N2 vaccine (OV). Blood and spleen samples were taken at 2, 7 and 14 d post vaccination (DPV). At 14 DPV, total and H9N2-specific IgG levels were significantly lower in the OV group than in the V group. However, it was intriguing to observe that at 2 DPV, the percentage of CD4+CD25+ T cells was significantly higher in the OV group than in the other groups, indicating the potential induction of regulatory T cells by organic acids. In contrast, at 2 DPV, the percentage of CD4+CD28+ T cells were significantly lower in the OV group than in the other groups, suggesting that CD28 molecules are down-regulated by the treatment. The expression of CD28 on CD4+ T cells, up-regulated by the stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin (Iono), was inhibited upon organic acid treatment in OV group. In addition, the proliferation of lymphocytes, stimulated with formalin-inactivated H9N2, was significantly higher in the V group than in the OV group. Alpha 1-acid glycoprotein (AGP) production was significantly lower in the OV group than in the V group, suggesting that the organic acids inhibited the inflammation caused by the vaccination. Overall, induction of regulatory CD4+CD25+ T cells, coinciding with the decrease of H9N2-specific antibodies, was observed in broilers fed organic acids. © 2016 Poultry Science Association Inc.

  2. Shen-Qi-Jie-Yu-Fang exerts effects on a rat model of postpartum depression by regulating inflammatory cytokines and CD4+CD25+ regulatory T cells

    Directory of Open Access Journals (Sweden)

    Li JY

    2016-04-01

    Full Text Available Jingya Li,1,* Ruizhen Zhao,1,* Xiaoli Li,1 Wenjun Sun,1 Miao Qu,1 Qisheng Tang,1 Xinke Yang,1 Shujing Zhang2 1Third Affiliated Hospital, 2School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China *These authors contributed equally to this work Background: Shen-Qi-Jie-Yu-Fang (SJF is composed of eight Chinese medicinal herbs. It is widely used in traditional Chinese medicine for treating postpartum depression (PPD. Previous studies have shown that SJF treats PPD through the neuroendocrine mechanism. Aim: To further investigate the effect of SJF on the immune system, including the inflammatory response system and CD4+CD25+ regulatory T (Treg cells. Materials and methods: Sprague Dawley rats were used to create an animal model of PPD by inducing hormone-simulated pregnancy followed by hormone withdrawal. After hormone withdrawal, the PPD rats were treated with SJF or fluoxetine for 1, 2, and 4 weeks. Levels of Treg cells in peripheral blood were measured by flow cytometry analysis. Serum interleukin (IL-1β and IL-6 were evaluated by enzyme-linked immunosorbent assay, and gene and protein expressions of IL-1RI, IL-6Rα, and gp130 in the hippocampus were observed by reverse-transcription polymerase chain reaction and Western blot. Results: Serum IL-1β in PPD rats increased at 2 weeks and declined from then on, while serum IL-6 increased at 1, 2, and 4 weeks. Both IL-1β and IL-6 were downregulated by SJF and fluoxetine. Changes in gene and protein expressions of IL-1RI and gp130 in PPD rats were consistent with changes in serum IL-1β, and were able to be regulated by SJF and fluoxetine. The levels of Treg cells were negatively correlated with serum IL-1β and IL-6, and were decreased in PPD rats. The levels of Treg cells were increased by SJF and fluoxetine. Conclusion: Dysfunction of proinflammatory cytokines and Tregs in different stages of PPD was attenuated by SJF and fluoxetine through

  3. Identification of key genes implicated in the suppressive function of human FOXP3+CD25+CD4+ regulatory T cells through the analysis of time‑series data.

    Science.gov (United States)

    Bai, Xiaofeng; Shi, Hua; Yang, Mingxi; Wang, Yuanlin; Sun, Zhaolin; Xu, Shuxiong

    2018-03-01

    Human forkhead box P3 (FOXP3)+ cluster of differentiation (CD)25+CD4+ regulatory T cells (Tregs) are a type of T cell that express CD4, CD25 and FOXP3, which are critical for maintaining immune homeostasis. The present study aimed to determine the mechanisms underlying Treg function. The GSE11292 dataset was downloaded from the Gene Expression Omnibus, which included data from Treg cells at 19 time points (0‑360 min) with an equal interval of 20 min, and corresponding repeated samples. However, data for Treg cells at time point 120 min were missing. Using the Mfuzz package, the key genes were identified by clustering analysis. Subsequently, regulatory networks and protein‑protein interaction (PPI) networks were constructed and merged into integrated networks using Cytoscape software. Using Database for Annotation, Visualization and Integrated Discover software, enrichment analyses were performed for the genes involved in the PPI networks. Cluster 1 (including 292 genes), cluster 2 (including 111 genes), cluster 3 (including 194 genes) and cluster 4 (including 103 genes) were obtained from the clustering analysis. GAPDH (degree, 40) in cluster 1, Janus kinase 2 (JAK2) (degree, 10) and signal transducer and activator of transcription 5A (STAT5A) (degree, 9) in cluster 3, and tumor necrosis factor (TNF) (degree, 26) and interleukin 2 (IL2) (degree, 22) in cluster 4 had higher degrees in the PPI networks. In addition, it was indicated that several genes may have a role in Treg function by targeting other genes [e.g. microRNA (miR)‑146b‑3p→TNF, miR‑146b‑5p→TNF, miR‑142‑5p→TNF and tripartite motif containing 28 (TRIM28)→GAPDH]. Enrichment analyses indicated that IL2 and TNF were enriched in the immune response and T cell receptor signaling pathway. In conclusion, GAPDH targeted by TRIM28, TNF targeted by miR‑146b‑3p, miR‑146b‑5p and miR‑142‑5p, in addition to JAK2, IL2, and STAT5A may serve important roles in Treg function.

  4. Changes in carbohydrate content and membrane stability of two ecotypes of Calamagrostis arundinacea growing at different elevations in the drawdown zone of the Three Gorges Reservoir.

    Directory of Open Access Journals (Sweden)

    Shutong Lei

    Full Text Available BACKGROUND: The Three Gorges project has caused many ecosystem problems. Ecological restoration using readily-available plants is an effective way of mitigating environmental impacts. Two perennial submergence-tolerant ecotypes of Calamagrostis arundinacea were planted in an experimental field in the drawdown zone. Responses of the two plant ecotypes to flooding stress in the drawdown zone were unknown. METHODOLOGY/PRINCIPAL FINDINGS: Carbohydrate content and membrane stability, two key factors for survival of plants under flooding stress, of two ecotypes (designated "dwarf" and "green" of C. arundinacea growing at different elevations of the drawdown zone were investigated. Live stems (LS and dead stems (DS of the two plant ecotypes at eight elevations (175, 170, 162, 160, 158, 155, 152 m and 149 m were sampled. Contents of soluble sugar, starch and malondialdehyde (MDA, as well as plasma membrane permeability of live stems were measured. The lowest elevations for survival of dwarf and green C. arundinacea were 160 m and 158 m, respectively. Soluble sugar content of live stems of both ecotypes decreased with elevation, with amounts from an elevation of 170 m being lower than from an elevation of 175 m. MDA content and plasma membrane permeability in live stems of green C. arundinacea did not increase with the decrease in elevation, while these measures in dwarf C. arundinacea from an elevation of 162 m were significantly higher than from an elevation of 175 m. CONCLUSIONS: Carbohydrate content, especially soluble sugar content, in both ecotypes was more sensitive to flooding stress than membrane stability. Green C. arundinacea had a higher tolerance to submergence than dwarf C. arundinacea, and thus green C. arundinacea can be planted at lower elevations than dwarf C. arundinacea.

  5. Effect of different surface treatments on the stability of stainless steels for use as bipolar plates in low and high temperature proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Richards, J.; Schmidt, K. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Wolfsburg (Germany); Tuebke, J.; Cremers, C. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Pfinztal (Germany)

    2010-07-01

    The stability of different stainless steels against corrosion under simulated low and high temperature proton exchange membrane fuel cell (PEMFC) operating conditions was studied. These investigations showed a moderate corrosion resistance for a couple of steels under LT-PEMFC conditions. However, for the HT-PEMFC conditions all specimens except one exhibit visible corrosion traces. With regards to their corrosion resistance after different surface treatments results show a minor improvement in corrosion resistance after the electro polishing process for most of the tested stainless steel samples. (orig.)

  6. [Level of Th17 cell and CD4(+);CD25(+); Foxp3(+); regulatory T cell in peripheral blood mononuclear cells of primary nephrotic syndrome in children].

    Science.gov (United States)

    Wang, Li; Li, Qiu; Wang, Li-jia; Li, Xin

    2010-08-01

    To investigate the levels and functions of Th17 cells and CD4(+); CD25(+); Foxp3(+); regulate cells(Treg) and explore their role in pathogenesis of primary nephrotic syndrome (PNS) in children. Children with PNS were divided into simple type nephritic syndrome group (SNS) (n = 20), and nephritic type nephritic syndrome group (NNS) (n = 15). 20 healthy subjects were selected as control group. The circulating frequencies of Th17 cells and Treg were measured by FCM. Real-time PCR were used to analyze the mRNA expressions of RORC, IL-23p19 and Foxp3 in peripheral blood mononuclear cells. The serum of IL-1ß, IL-6, TGF-ß1 were measured by ELISA. Circulating frequencies of Th17 cells, the mRNA levels of RORC, IL-23p19 and the serum of IL-1ß, IL-6 were higher in SNS and NNS groups than control group (P 0.05). Imbalance of Th17 and Treg cells might contribute to the pathogenesis of PNS in children and have associated with clinical presentation, pathological type, glucocorticoid sensitivity and prognosis of the disease.

  7. 4-1BB Signaling in Conventional T Cells Drives IL-2 Production That Overcomes CD4+CD25+FoxP3+ T Regulatory Cell Suppression.

    Directory of Open Access Journals (Sweden)

    Hampartsoum B Barsoumian

    Full Text Available Costimulation with the recombinant SA-4-1BBL agonist of 4-1BB receptor on conventional CD4+ T cells (Tconvs overcomes the suppression mediated by naturally occurring CD4+CD25+FoxP3+ T regulatory cells (Tregs. The mechanistic basis of this observation has remained largely unknown. Herein we show that Tconvs, but not Tregs, are the direct target of SA-4-1BBL-mediated evasion of Treg suppression. IL-2 produced by Tconvs in response to 4-1BB signaling is both necessary and sufficient for overcoming Treg suppression. Supernatant from Tconvs stimulated with SA-4-1BBL contains high levels of IL-2 and overcomes Treg suppression in ex vivo Tconv:Treg cocultures. Removal of IL-2 from such supernatant restores Treg suppression and repletion of Tconv:Treg cocultures with exogenous recombinant IL-2 overcomes suppression. This study establishes 4-1BB signaling as a key circuit that regulates physical and functional equilibrium between Tregs and Tconvs with important implications for immunotherapy for indications where a fine balance between Tregs and Teffs plays a decisive role.

  8. Frequency of CD4+CD25+Foxp3+ cells in peripheral blood in relation to urinary bladder cancer malignancy indicators before and after surgical removal.

    Science.gov (United States)

    Jóźwicki, Wojciech; Brożyna, Anna A; Siekiera, Jerzy; Slominski, Andrzej T

    2016-03-08

    Tumor cells communicate with stromal cells, including cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), to form microenvironment inhibiting immune responses. Regulatory T cells (Tregs, CD4+CD25+FoxP3+) stimulate immune tolerance and facilitate tumor progression. We analyzed the changes in Treg frequencies assessed using flow cytometry in the peripheral blood of patients with urothelial bladder cancer before and after tumor-removal. Changes in Treg frequency were investigated in relation to clinicopathomorphological indicators of tumor malignancy and expression of RCAS1 on CAFs and TAMs. Higher Treg frequencies were observed in early phase of tumor growth (pTa-pT2), in larger tumors, with more aggressive type of invasion, and with expression of RCAS1. The later phase of tumor development, accompanied by a nonclassic differentiations and pT3-pT4 advancement, had lower number of tumor infiltrating lymphocytes (TILs) and lower Treg frequency. Furthermore, in pT2-pT4 tumors, a decreased post-surgery Treg frequency was associated with poorer prognosis: patients with the lowest frequency of Tregs died first. These findings strongly suggest that the Treg frequencies at later phase of tumor growth, associated with a low anti-tumor response, represent a new and important prognostic indicator in urinary bladder cancer.

  9. Foxp3+ CD25+ regulatory T cells specific for a neo-self-antigen develop at the double-positive thymic stage

    Science.gov (United States)

    Cabarrocas, Julie; Cassan, Cécile; Magnusson, Fay; Piaggio, Eliane; Mars, Lennart; Derbinski, Jens; Kyewski, Bruno; Gross, David-Alexandre; Salomon, Benoit L.; Khazaie, Khashayarsha; Saoudi, Abdelhadi; Liblau, Roland S.

    2006-01-01

    Thymus-derived regulatory T cells (Tregs) expressing CD4, CD25, and the transcription factor Foxp3 play major roles in preventing autoimmunity. The Treg population is enriched in T cells expressing high-avidity self-reactive T cell receptors, and thymic epithelial cells expressing self-antigens (Ag) have been implicated in their induction and/or selection. However, the thymic selection events leading to Treg lineage commitment remain unclear. We followed the thymic development of self-Ag-specific Tregs in double-transgenic mice coexpressing a neo-self-Ag, hemagglutinin (HA) under the control of a neural tissue-specific promoter, and a transgenic class II-restricted T cell antigen receptor specific for HA111-119. Our data show that the promiscuous expression of the HA transgene in thymic epithelial cells is involved in the selective induction and/or expansion of HA-specific Foxp3+ Treg thymic precursors as early as the double-positive stage. PMID:16709665

  10. Orally-Induced Intestinal CD4+ CD25+ FoxP3+ Treg Controlled Undesired Responses towards Oral Antigens and Effectively Dampened Food Allergic Reactions.

    Directory of Open Access Journals (Sweden)

    Paola Lorena Smaldini

    Full Text Available The induction of peripheral tolerance may constitute a disease-modifying treatment for allergic patients. We studied how oral immunotherapy (OIT with milk proteins controlled allergy in sensitized mice (cholera toxin plus milk proteins upon exposure to the allergen. Symptoms were alleviated, skin test was negativized, serum specific IgE and IgG1 were abrogated, a substantial reduction in the secretion of IL-5 and IL-13 by antigen-stimulated spleen cells was observed, while IL-13 gene expression in jejunum was down-regulated, and IL-10 and TGF-β were increased. In addition, we observed an induction of CD4+CD25+FoxP3+ cells and IL-10- and TGF-β-producing regulatory T cells in the lamina propria. Finally, transfer experiments confirmed the central role of these cells in tolerance induction. We demonstrated that the oral administration of milk proteins pre- or post-sensitization controlled the Th2-immune response through the elicitation of mucosal IL-10- and TGF-β-producing Tregs that inhibited hypersensitivity symptoms and the allergic response.

  11. Clinical Implications of CD4+CD25+Foxp3+Regulatory T Cell Frequencies After CHP-MAGE-A4 Cancer Vaccination.

    Science.gov (United States)

    Wada, Masataka; Tsuchikawa, Takahiro; Kyogoku, Noriaki; Abiko, Takehiro; Miyauchi, Kengo; Takeuchi, Shintaro; Kuwatani, Toshihiko; Shichinohe, Toshiaki; Miyahara, Yoshihiro; Kageyama, Shinichi; Ikeda, Hiroaki; Shiku, Hiroshi; Hirano, Satoshi

    2018-03-01

    The aim of this study was to explore whether the treatment effect or immune response to a cancer vaccine can be predicted by the percentage of CD4 + CD25 + Foxp3 + regulatory T cells (Tregs) in peripheral blood mononuclear cells (PBMCs) after vaccination. Sixteen patients (9 men, 7 women; median age 61.5 years) enrolled in the CHP-MAGE-A4 cancer vaccine clinical trial who had a fixed dose (300 μg of CHP-MAGE-A4 cancer vaccine and 0.5 Klinische Einheit (KE) of OK432 and received at least four vaccinations were investigated. Safety, immune response, and clinical effects were assessed before and after the cancer vaccination. Treg ratios that remained low both before and after vaccination were associated with a good prognosis, and a low Treg/CD4 lymphocyte ratio 7-weeks after the initial vaccination was correlated with a better prognosis. The Treg ratio following vaccination appears to have some utility for predicting patient prognosis. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. c-Jun N-terminal kinase 1 defective CD4+CD25+FoxP3+ cells prolong islet allograft survival in diabetic mice.

    Science.gov (United States)

    Tripathi, Deepak; Cheekatla, Satyanarayana S; Paidipally, Padmaja; Radhakrishnan, Rajesh Kumar; Welch, Elwyn; Thandi, Ramya Sivangala; Tvinnereim, Amy R; Vankayalapati, Ramakrishna

    2018-02-19

    CD4+CD25+FoxP3+ cells (Tregs) inhibit inflammatory immune responses to allografts. Here, we found that co-transplantation of allogeneic pancreatic islets with Tregs that are defective in c-Jun N-terminal kinase 1 (JNK1) signaling prolongs islet allograft survival in the liver parenchyma of chemically induced diabetic mice (CDM). Adoptively transferred JNK1 -/- but not wild-type (WT) Tregs survive longer in the liver parenchyma of CDM. JNK1 -/- Tregs are resistant to apoptosis and express anti-apoptotic molecules. JNK1 -/- Tregs express higher levels of lymphocyte activation gene-3 molecule (LAG-3) on their surface and produce higher amounts of the anti-inflammatory cytokine interleukin (IL)-10 compared with WT Tregs. JNK1 -/- Tregs inhibit liver alloimmune responses more efficiently than WT Tregs. JNK1 -/- but not WT Tregs are able to inhibit IL-17 and IL-21 production through enhanced LAG-3 expression and IL-10 production. Our study identifies a novel role of JNK1 signaling in Tregs that enhances islet allograft survival in the liver parenchyma of CDM.

  13. The presence of B7-H4+ macrophages and CD25+CD4+ and FOXP3+ regulatory T cells in the microenvironment of nasal polyps - a preliminary report.

    Directory of Open Access Journals (Sweden)

    P Strek

    2011-04-01

    Full Text Available The nasal polyp (NP seems to represent the end-stage of longstanding inflammation in patients with chronic rhinosinusitis. The aim of our study has been to evaluate the presence of two regulatory cell populations in the microenvironment of NP: CD4+CD25high Foxp3+ (Treg cells and B7-H4-expressing macrophages. Treg cells are actively able to inhibit T lymphocytes, while the population of B7-H4-expressing macrophages has recently been described as characterized by a regulatory function similar to that of Treg cells. For our study, we evaluated 14 NP tissue samples. The samples were divided into two main groups, eosinophilic (NP and lymphocytic (NP, according to the predominant type of immune cell infiltration. The presence of Treg cells and B7-H4 positive macrophages in the samples was analyzed by FACS. Treg cells and B7-H4-expressing macrophages were identified in all the examined nasal polyps. The percentages of both Treg cells and of B7H4 positive cells found in the eosinophilic nasal polyps were higher than those found in the lymphocytic nasal polyps. Treg cells and B7H4+ macrophage subpopulations were present in the NP microenvironment and the alterations in their percentages were related to a distinct pattern of immune cell infiltration.

  14. Ex vivo generation of human alloantigen-specific regulatory T cells from CD4(posCD25(high T cells for immunotherapy.

    Directory of Open Access Journals (Sweden)

    Jorieke H Peters

    Full Text Available BACKGROUND: Regulatory T cell (Treg based immunotherapy is a potential treatment for several immune disorders. By now, this approach proved successful in preclinical animal transplantation and auto-immunity models. In these models the success of Treg based immunotherapy crucially depends on the antigen-specificity of the infused Treg population. For the human setting, information is lacking on how to generate Treg with direct antigen-specificity ex vivo to be used for immunotherapy. METHODOLOGY/PRINCIPAL FINDINGS: Here, we demonstrate that in as little as two stimulation cycles with HLA mismatched allogeneic stimulator cells and T cell growth factors a very high degree of alloantigen-specificity was reached in magnetic bead isolated human CD4(posCD25(high Treg. Efficient increases in cell numbers were obtained. Primary allogeneic stimulation appeared a prerequisite in the generation of alloantigen-specific Treg, while secondary allogeneic or polyclonal stimulation with anti-CD3 plus anti-CD28 monoclonal antibodies enriched alloantigen-specificity and cell yield to a similar extent. CONCLUSIONS/SIGNIFICANCE: The ex vivo expansion protocol that we describe will very likely increase the success of clinical Treg-based immunotherapy, and will help to induce tolerance to selected antigens, while minimizing general immune suppression. This approach is of particular interest for recipients of HLA mismatched transplants.

  15. CD4+CD25+CD127 regulatory cells play multiple roles in maintaining HIV-1 p24 production in patients on long-term treatment: HIV-1 p24-producing cells and suppression of anti-HIV immunity

    Directory of Open Access Journals (Sweden)

    Yan-Mei Jiao

    2015-08-01

    Conclusions: CD4+CD25+CD127 regulatory cells play multiple roles in maintaining HIV-1 p24 production in long-term ART patients. Treg cells may be a target for eliminating the latent HIV reservoir after effective long-term ART.

  16. Tr-1-like CD4+CD25-CD127-/lowFOXP3- cells are the main source of interleukin 10 in patients with cutaneous leishmaniasis due to Leishmania braziliensis.

    Science.gov (United States)

    Costa, Diego L; Cardoso, Tiago M; Queiroz, Adriano; Milanezi, Cristiane M; Bacellar, Olívia; Carvalho, Edgar M; Silva, João S

    2015-03-01

    CD4(+)CD25(+)FOXP3(+) regulatory T cells have long been shown to mediate susceptibility to Leishmania infection, mainly via interleukin 10 production. In this work, we showed that the main sources of interleukin 10 in peripheral blood mononuclear cells (PBMCs) from patients with cutaneous leishmaniasis due to Leishmania braziliensis are CD4(+)CD25(-)CD127(-/low)FOXP3(-) cells. Compared with uninfected controls, patients with CL had increased frequencies of circulating interleukin 10-producing CD4(+)CD25(-)CD127(-/low) cells, which efficiently suppressed tumor necrosis factor α production by the total PBMC population. Also, in CL lesions, interleukin 10 was mainly produced by CD4(+)CD25(-) cells, and interleukin 10 messenger RNA expression was associated with interleukin 27, interleukin 21, and interferon γ expression, rather than with FOXP3 or transforming growth factor β expressions. Active production of both interleukin 27 and interleukin 21, together with production of interferon γ and interleukin 10, was also detected in the lesions. Since these cytokines are associated with the differentiation and activity of Tr-1 cells, our results suggest that this cell population may play an important role in the immunomodulation of CL. Therefore, development of treatments that interfere with this pathway may lead to faster parasite elimination. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Immunosuppression during active tuberculosis is characterized by decreased interferon- gamma production and CD25 expression with elevated forkhead box P3, transforming growth factor- beta , and interleukin-4 mRNA levels.

    Science.gov (United States)

    Roberts, Teri; Beyers, Nulda; Aguirre, Ana; Walzl, Gerhard

    2007-03-15

    The balance between effector and regulatory responses after Mycobacterium tuberculosis infection may dictate outcome and progression to active disease. We investigated effector and regulatory T cell responses in bacille Calmette-Guerin (BCG)-stimulated peripheral blood mononuclear cells and whole blood cultures from persons with active tuberculosis (TB), persons with TB at the end of 6 months of treatment, and healthy control subjects with latent TB infection. All 3 groups displayed BCG-induced increases in effector and regulatory T cell phenotypes as defined by CD4(+)CD25(lo) and CD4(+)CD25(hi) T cells, respectively. In case patients with active disease, BCG stimulation induced the lowest increase of CD25, CD4(+)CD25(hi), CTLA-4, and interferon- gamma . However, these case patients expressed the highest mRNA levels of forkhead box P3, transforming growth factor (TGF)- beta , and interleukin (IL)-4 and a lower T-bet : GATA-3 ratio. There were no significant differences in IL-4 delta 2, IL-10, or TGF- beta receptor-II mRNA expression between groups. Together, these results suggest that immunosuppression seen after mycobacterial stimulation in case patients with active TB is associated with naturally occurring regulatory T cells.

  18. Relationship of the Content of Systemic and Endobronchial Soluble Molecules of CD25, CD38, CD8, and HLA-I-CD8 and Lung Function Parameters in COPD Patients

    Directory of Open Access Journals (Sweden)

    Nailya Kubysheva

    2017-01-01

    Full Text Available The definition of new markers of local and systemic inflammation of chronic obstructive pulmonary disease (COPD is one of the priority directions in the study of pathogenesis and diagnostic methods improvement for this disease. We investigated 91 patients with COPD and 21 healthy nonsmokers. The levels of soluble CD25, CD38, CD8, and HLA-I-CD8 molecules in the blood serum and exhaled breath condensate (EBC in moderate-to-severe COPD patients during exacerbation and stable phase were studied. An unidirectional change in the content of sCD25, sCD38, and sCD8 molecules with increasing severity of COPD was detected. The correlations between the parameters of lung function and sCD8, sCD25, and sHLA-I-CD8 levels in the blood serum and EBC were discovered in patients with severe COPD. The findings suggest a pathogenetic role of the investigated soluble molecules of the COPD development and allow considering the content of sCD8, sCD25, and sHLA-I-CD8 molecules as additional novel systemic and endobronchial markers of the progression of chronic inflammation of this disease.

  19. FERMT2 links cortical actin structures, plasma membrane tension and focal adhesion function to stabilize podocyte morphology.

    Science.gov (United States)

    Yasuda-Yamahara, M; Rogg, M; Frimmel, J; Trachte, P; Helmstaedter, M; Schroder, P; Schiffer, M; Schell, C; Huber, T B

    2018-01-11

    Simplification and retraction of podocyte protrusions, generally termed as foot process effacement, is a uniform pathological pattern observed in the majority of glomerular disease, including focal segmental glomerulosclerosis. However, it is still incompletely understood how the interaction of cortical actin structures, actomyosin contractility and focal adhesions, is being orchestrated to control foot process morphology in health and disease. By uncovering the functional role of fermitin family member 2 (FERMT2 or kindlin-2) in podocytes, we provide now evidence, how cell-extracellular matrix (ECM) interactions modulate membrane tension and actomyosin contractility. A genetic modeling approach was applied by deleting FERMT2 in a set of in vivo systems as well as in CRISPR/Cas9 modified human podocytes. Loss of FERMT2 results in altered cortical actin composition, cell cortex destabilization associated with plasma membrane blebbing and a remodeling of focal adhesions. We further show that FERMT2 knockout podocytes have high levels of RhoA activation and concomitantly increased actomyosin contractility. Inhibition of actomyosin tension reverses the membrane blebbing phenotype. Thus, our findings establish a direct link between cell-matrix adhesions, cortical actin structures and plasma membrane tension allowing to better explain cell morphological changes in foot process effacement. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Microvillar membrane microdomains exist at physiological temperature. Role of galectin-4 as lipid raft stabilizer revealed by "superrafts"

    DEFF Research Database (Denmark)

    Braccia, Anita; Villani, Maristella; Immerdal, Lissi

    2003-01-01

    function and even existence in vivo. The nonionic detergent Brij 98 was used to isolate lipid rafts from microvillar membrane vesicles of intestinal brush borders at physiological temperature to compare with rafts, obtained by "conventional" extraction using Triton X-100 at low temperature. Microvillar...

  1. STABILITY OF MFI ZEOLITE-FILLED PDMS MEMBRANES DURING PERVAPORATIVE ETHANOL RECOVERY FROM AQUEOUS MIXTURES CONTAINING ACETIC ACID

    Science.gov (United States)

    Pervaporation is potentially a cost-effective means of recovering biofuels, such as ethanol, from biomass fermentation broths for small- to medium-scale applications (~2 - 20 million liters per year). Hydrophobic zeolite-filled polydimethylsiloxane (PDMS) membranes have been sho...

  2. Membrane Stabilization and Detoxification of Acetaminophen-Mediated Oxidative Onslaughts in the Kidneys of Wistar Rats by Standardized Fraction of Zea mays L. (Poaceae, Stigma maydis

    Directory of Open Access Journals (Sweden)

    S. Sabiu

    2016-01-01

    Full Text Available This study evaluated membrane stabilization and detoxification potential of ethyl acetate fraction of Zea mays L., Stigma maydis in acetaminophen-induced oxidative onslaughts in the kidneys of Wistar rats. Nephrotoxic rats were orally pre- and posttreated with the fraction and vitamin C for 14 days. Kidney function, antioxidative and histological analyses were thereafter evaluated. The acetaminophen-mediated significant elevations in the serum concentrations of creatinine, urea, uric acid, sodium, potassium, and tissue levels of oxidized glutathione, protein-oxidized products, lipid peroxidized products, and fragmented DNA were dose-dependently assuaged in the fraction-treated animals. The fraction also markedly improved creatinine clearance rate, glutathione, and calcium concentrations as well as activities of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase in the nephrotoxic rats. These improvements may be attributed to the antioxidative and membrane stabilization activities of the fraction. The observed effects compared favorably with that of vitamin C and are informative of the fraction’s ability to prevent progression of renal pathological conditions and preserve kidney functions as evidently supported by the histological analysis. Although the effects were prominently exhibited in the fraction-pretreated groups, the overall data from the present findings suggest that the fraction could prevent or extenuate acetaminophen-mediated oxidative renal damage via fortification of antioxidant defense mechanisms.

  3. Membrane Stabilization and Detoxification of Acetaminophen-Mediated Oxidative Onslaughts in the Kidneys of Wistar Rats by Standardized Fraction of Zea mays L. (Poaceae), Stigma maydis

    Science.gov (United States)

    Sabiu, S.; O'Neill, F. H.

    2016-01-01

    This study evaluated membrane stabilization and detoxification potential of ethyl acetate fraction of Zea mays L., Stigma maydis in acetaminophen-induced oxidative onslaughts in the kidneys of Wistar rats. Nephrotoxic rats were orally pre- and posttreated with the fraction and vitamin C for 14 days. Kidney function, antioxidative and histological analyses were thereafter evaluated. The acetaminophen-mediated significant elevations in the serum concentrations of creatinine, urea, uric acid, sodium, potassium, and tissue levels of oxidized glutathione, protein-oxidized products, lipid peroxidized products, and fragmented DNA were dose-dependently assuaged in the fraction-treated animals. The fraction also markedly improved creatinine clearance rate, glutathione, and calcium concentrations as well as activities of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase in the nephrotoxic rats. These improvements may be attributed to the antioxidative and membrane stabilization activities of the fraction. The observed effects compared favorably with that of vitamin C and are informative of the fraction's ability to prevent progression of renal pathological conditions and preserve kidney functions as evidently supported by the histological analysis. Although the effects were prominently exhibited in the fraction-pretreated groups, the overall data from the present findings suggest that the fraction could prevent or extenuate acetaminophen-mediated oxidative renal damage via fortification of antioxidant defense mechanisms. PMID:27579048

  4. Plasmodium falciparum-mediated induction of human CD25Foxp3 CD4 T cells is independent of direct TCR stimulation and requires IL-2, IL-10 and TGFbeta.

    Directory of Open Access Journals (Sweden)

    Anja Scholzen

    2009-08-01

    Full Text Available CD4(+CD25(+Foxp3(+ regulatory T cells (Tregs regulate disease-associated immunity and excessive inflammatory responses, and numbers of CD4(+CD25(+Foxp3(+ Tregs are increased during malaria infection. The mechanisms governing their generation, however, remain to be elucidated. In this study we investigated the role of commonly accepted factors for Foxp3 induction, TCR stimulation and cytokines such as IL-2, TGFbeta and IL-10, in the generation of human CD4(+CD25(+Foxp3(+ T cells by the malaria parasite Plasmodium falciparum. Using a co-culture system of malaria-infected red blood cells (iRBCs and peripheral blood mononuclear cells from healthy individuals, we found that two populations of Foxp3(hi and Foxp3(int CD4(+CD25(hi T cells with a typical Treg phenotype (CTLA-4(+, CD127(low, CD39(+, ICOS(+, TNFRII(+ were induced. Pro-inflammatory cytokine production was confined to the Foxp3(int subset (IFNgamma, IL-4 and IL-17 and inversely correlated with high relative levels of Foxp3(hi cells, consistent with Foxp3(hi CD4 T cell-mediated inhibition of parasite-induced effector cytokine T cell responses. Both Foxp3(hi and Foxp3(int cells were derived primarily from proliferating CD4(+CD25(- T cells with a further significant contribution from CD25(+Foxp3(+ natural Treg cells to the generation of the Foxp3(hi subset. Generation of Foxp3(hi, but not Foxp3(int, cells specifically required TGFbeta1 and IL-10. Add-back experiments showed that monocytes expressing increased levels of co-stimulatory molecules were sufficient for iRBC-mediated induction of Foxp3 in CD4 T cells. Foxp3 induction was driven by IL-2 from CD4 T cells stimulated in an MHC class II-dependent manner. However, transwell separation experiments showed that direct contact of monocytes with the cells that acquire Foxp3 expression was not required. This novel TCR-independent and therefore antigen-non specific mechanism for by-stander CD4(+CD25(hiFoxp3(+ cell induction is likely to reflect a

  5. Folding and stability of outer membrane protein A (OmpA) from Escherichia coli in an amphipathic polymer, amphipol A8-35.

    Science.gov (United States)

    Pocanschi, Cosmin L; Popot, Jean-Luc; Kleinschmidt, Jörg H

    2013-03-01

    Amphipols are a class of amphipathic polymers designed to maintain membrane proteins in aqueous solutions in the absence of detergents. Denatured β-barrel membrane proteins, like outer membrane proteins OmpA from Escherichia coli and FomA from Fusobacterium nucleatum, can be folded by dilution of the denaturant urea in the presence of amphipol A8-35. Here, the folding kinetics and stability of OmpA in A8-35 have been investigated. Folding is well described by two parallel first-order processes, whose half-times, ~5 and ~70 min, respectively, are independent of A8-35 concentration. The faster process contributed ~55-64 % to OmpA folding. Folding into A8-35 was faster than into dioleoylphosphatidylcholine bilayers and complete at ratios as low as ~0.17 g/g A8-35/OmpA, corresponding to ~1-2 A8-35 molecules per OmpA. Activation energies were determined from the temperature dependence of folding kinetics, monitored both by electrophoresis, which reports on the formation of stable OmpA tertiary structure, and by fluorescence spectroscopy, which reflects changes in the environment of tryptophan side chains. The two methods yielded consistent estimates, namely ~5-9 kJ/mol for the fast process and ~29-37 kJ/mol for the slow one, which is lower than is observed for OmpA folding into dioleoylphosphatidylcholine bilayers. Folding and unfolding titrations with urea demonstrated that OmpA folding into A8-35 is reversible and that amphipol-refolded OmpA is thermodynamically stable at room temperature. Comparison of activation energies for folding and unfolding in A8-35 versus detergent indicates that stabilization of A8-35-trapped OmpA against denaturation by urea is a kinetic, not a thermodynamic phenomenon.

  6. Testing the Chemical/Structural Stability of Proton Conducting Perovskite Ceramic Membranes by in Situ/ex Situ Autoclave Raman Microscopy.

    Science.gov (United States)

    Slodczyk, Aneta; Zaafrani, Oumaya; Sharp, Matthew D; Kilner, John A; Dabrowski, Bogdan; Lacroix, Olivier; Colomban, Philippe

    2013-10-25

    Ceramics, which exhibit high proton conductivity at moderate temperatures, are studied as electrolyte membranes or electrode components of fuel cells, electrolysers or CO2 converters. In severe operating conditions (high gas pressure/high temperature), the chemical activity towards potentially reactive atmospheres (water, CO2, etc.) is enhanced. This can lead to mechanical, chemical, and structural instability of the membranes and premature efficiency loss. Since the lifetime duration of a device determines its economical interest, stability/aging tests are essential. Consequently, we have developed autoclaves equipped with a sapphire window, allowing in situ Raman study in the 25-620 °C temperature region under 1-50 bar of water vapor/gas pressure, both with and without the application of an electric field. Taking examples of four widely investigated perovskites (BaZr0.9Yb0.1O3-δ, SrZr0.9Yb0.1O3-δ, BaZr0.25In0.75O3-δ, BaCe0.5Zr0.3Y0.16Zn0.04O3-δ), we demonstrate the high potential of our unique set-up to discriminate between good/stable and instable electrolytes as well as the ability to detect and monitor in situ: (i) the sample surface reaction with surrounding atmospheres and the formation of crystalline or amorphous secondary phases (carbonates, hydroxides, hydrates, etc.); and (ii) the structural modifications as a function of operating conditions. The results of these studies allow us to compare quantitatively the chemical stability versus water (corrosion rate from ~150 µm/day to less than 0.25 µm/day under 200-500 °C/15-80 bar PH2O) and to go further in comprehension of the aging mechanism of the membrane.

  7. Impact of surgical management in cases of intraoperative membrane perforation during a sinus lift procedure: a follow-up on bone graft stability and implant success.

    Science.gov (United States)

    Beck-Broichsitter, Benedicta E; Westhoff, Dorothea; Behrens, Eleonore; Wiltfang, Jörg; Becker, Stephan T

    2018-02-05

    Until now, sinus floor elevation represents the gold standard procedure in the atrophic maxilla in order to facilitate dental implant insertion. Although the procedure remains highly predictive, the perforation of the Schneiderian membrane might compromise the stability of the augmented bone and implant success due to chronic sinus infection. The aim of this retrospective cohort study was to show that a membrane tear, if detected and surgically properly addressed, has no influence on the survival of dental implants and bone resorption in the augmented area. Thirty-one patients with 39 perforations could be included in this evaluation, and a control group of 32 patients with 40 sinus lift procedures without complications were compared regarding the radiographically determined development of bone level, peri-implant infection, and implant loss. Implant survival was 98.9% in the perforation group over an observation period of 2.7 (± 2.03) years compared to 100% in the control group after 1.8 (± 1.57) years. The residual bone level was significantly lower in the perforation group (p = 0.05) but showed no difference direct postoperatively (p = 0.7851) or in the follow-up assessment (p = 0.2338). Bone resorption remained not different between both groups (p = 0.945). A two-stage procedure was more frequent in the perforation group (p = 0.0003) as well as peri-implantitis (p = 0.0004). Within the limits of our study, the perforation of the Schneiderian membrane did not have a negative impact on long-term graft stability or the overall implant survival.

  8. Combined effect of ultrasound/SonoVue microbubble on CD4(+)CD25(+) regulatory T cells viability and optimized parameters for its transfection.

    Science.gov (United States)

    Shi, Chunying; Zhang, Yu; Yang, Haichao; Dong, Tianxiu; Chen, Yaodong; Xu, Yutong; Yang, Xiuhua

    2015-09-01

    The purpose of this study was to investigate the combined effect of ultrasound and SonoVue microbubble on CD4(+)CD25(+) regulatory T cells (Tregs) viability and to explore the appropriate parameters for Tregs transfection. Tregs were separated from peripheral venous blood of patients with hepatocellular carcinoma and seeded in 96-well plates. The optimal ultrasound exposure time and optimal SonoVue microbubble concentration for Tregs were measured by mechanical index (MI) of 1.2 or 1.4, exposure time of 0, 30, 60, 90, 120, 150, 180s, and 0, 10, 20, 30, 40, 50μL/100μL microbubble per well, respectively. In addition, the combined effect of ultrasound and microbubble on Tregs viability was evaluated according to the following parameters: MI 1.2/1.4+exposure time of 120, 150, 180s+0, 10, 20, 30, 40, 50μL/100μL microbubble per well. Tregs viability investigations were performed in order to explore the optimal transfection condition. The efficiency of plasmid transfer was determined by detection of luciferase activity on the microscopic examinations. The proliferation of Tregs could be promoted by ultrasound exposures, while being decreased with the increasing concentration of microbubbles. Under the current experimental conditions, the optimal ultrasound parameters were MI=1.4 and exposure time=150/180s. The optimal microbubble concentration was 10μL/100μL. Compared with treatment with ultrasound or microbubbles alone, the transfection efficiency of Tregs improved 50% by combining ultrasound and microbubble. The results indicate that both ultrasound and microbubble could affect the Tregs proliferation and the optimal Treg transfection rate was obtained by treating with 10% microbubbles and ultrasound exposure for 150/180s under ultrasound MI of 1.4. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Low-dose temozolomide before dendritic-cell vaccination reduces (specifically) CD4+CD25++Foxp3+ regulatory T-cells in advanced melanoma patients.

    Science.gov (United States)

    Ridolfi, Laura; Petrini, Massimiliano; Granato, Anna Maria; Gentilcore, Giusy; Simeone, Ester; Ascierto, Paolo Antonio; Pancisi, Elena; Ancarani, Valentina; Fiammenghi, Laura; Guidoboni, Massimo; de Rosa, Francesco; Valmorri, Linda; Scarpi, Emanuela; Nicoletti, Stefania Vittoria Luisa; Baravelli, Stefano; Riccobon, Angela; Ridolfi, Ruggero

    2013-05-31

    In cancer immunotherapy, dendritic cells (DCs) play a fundamental role in the dialog between innate and adaptive immune response, but several immunosuppressive mechanisms remain to be overcome. For example, a high number of CD4+CD25++Foxp3+ regulatory T-cells (Foxp3+Tregs) have been observed in the peripheral blood and tumor microenvironment of cancer patients. On the basis of this, we conducted a study on DC-based vaccination in advanced melanoma, adding low-dose temozolomide to obtain lymphodepletion. Twenty-one patients were entered onto our vaccination protocol using autologous DCs pulsed with autologous tumor lysate and keyhole limpet hemocyanin. Patients received low-dose temozolomide before vaccination and 5 days of low-dose interleukin-2 (IL-2) after vaccination. Circulating Foxp3+Tregs were evaluated before and after temozolomide, and after IL-2. Among the 17 evaluable patients we observed 1 partial response (PR), 6 stable disease (SD) and 10 progressive disease (PD). The disease control rate (PR+SD = DCR) was 41% and median overall survival was 10 months. Temozolomide reduced circulating Foxp3+Treg cells in all patients. A statistically significant reduction of 60% was observed in Foxp3+Tregs after the first cycle, whereas the absolute lymphocyte count decreased by only 14%. Conversely, IL-2 increased Foxp3+Treg cell count by 75.4%. Of note the effect of this cytokine, albeit not statistically significant, on the DCR subgroup led to a further 33.8% reduction in Foxp3+Treg cells. Our results suggest that the combined immunological therapy, at least as far as the DCR subgroup is concerned, effectively reduced the number of Foxp3+Treg cells, which exerted a blunting effect on the growth-stimulating effect of IL-2. However, this regimen, with its current modality, would not seem to be capable of improving clinical outcome.

  10. Phenotypical analysis of ectoenzymes CD39/CD73 and adenosine receptor 2A in CD4+ CD25high Foxp3+ regulatory T-cells in psoriasis.

    Science.gov (United States)

    Han, Ling; Sugiyama, Hideaki; Zhang, Qi; Yan, Kexiang; Fang, Xu; McCormick, Thomas S; Cooper, Kevin D; Huang, Qiong

    2018-02-01

    CD39 and CD73 are two novel cell surface markers of CD25 high Foxp3 + regulatory T-cells (Tregs). Concordant expression of these two ectoenzymes not only discriminate Tregs from other cell populations, but also generates pericellular adenosine, which has been reported to suppress proliferation of activated T effector (Teff) cells. Because it is currently unclear whether human ectoenzymes (CD39/CD73) are involved in the impaired suppressive activity of Tregs in psoriasis, we examined the frequencies and phenotypes of CD39/CD73-expressing Tregs and related receptor adenosine receptor 2A (A 2A R) in peripheral blood of patients with different types of psoriasis. Peripheral blood mononuclear cells (PMBC) were prepared from patients with three different types of psoriasis (psoriasis vulgaris, pustular psoriasis and erythrodermic psoriasis). CD4 + cells were separated from PBMC by negative selection on midiMACS columns, and the frequencies and phenotypes of CD39 and CD73 expressing Tregs, and A 2A R expressing Teff were all determined by flow cytometry analysis. Blood from healthy volunteers served as controls. The expression of single CD73 + Tregs was markedly reduced (approximately 50%) in psoriasis vulgaris, compared to normal controls. In pustular psoriasis, the mean numbers of CD39 + Tregs and A 2A R + Teff was significantly lower than in normal controls. Among three different types of psoriasis, CD39 expression was strikingly reduced in the blood Treg population of pustular psoriasis patients. Decreased CD73 + Tregs levels were observed in psoriasis vulgaris compared to pustular psoriasis and erythrodermic psoriasis. The differences in the expression of CD39 - and CD73 - Tregs may be a factor in the pathogenesis of psoriasis. © 2017 The Authors. Australasian Journal of Dermatology published by Wiley Publishing Asia Pty Ltd on behalf of The Australasian College of Dermatologists.

  11. CD4+CD25+Foxp3+ regulatory T cells depletion may attenuate the development of silica-induced lung fibrosis in mice.

    Directory of Open Access Journals (Sweden)

    Fangwei Liu

    Full Text Available BACKGROUND: Silicosis is an occupational lung disease caused by inhalation of silica dust characterized by lung inflammation and fibrosis. Previous study showed that Th1 and Th2 cytokines are involved in silicosis, but Th1/Th2 polarization during the development of silicosis is still a matter of debate. Regulatory T cells (Treg cells represent a crucial role in modulation of immune homeostasis by regulating Th1/Th2 polarization, but their possible implication in silicosis remains to be explored. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the implication of Treg cells in the development of silicosis, we generated the Treg-depleted mice model by administration of anti-CD25 mAbs and mice were exposed to silica by intratracheal instillation to establish experimental model of silica-induced lung fibrosis. The pathologic examinations show that the Treg-depleted mice are susceptive to severer inflammation in the early stage, with enhanced infiltration of inflammatory cells. Also, depletion of Treg cells causes a delay of the progress of silica-induced lung fibrosis in mice model. Further study of mRNA expression of cytokines reveals that depletion of Tregs leads to the increased production of Th1-cytokines and decreased production of Th2-cytokine. The Flow Cytometry and realtime PCR study show that Treg cells exert the modulation function both directly by expressing CTLA-4 at the inflammatory stage, and indirectly by secreting increasing amount of IL-10 and TGF-β during the fibrotic stage in silica-induced lung fibrosis. CONCLUSION/SIGNIFICANCE: Our study suggests that depletion of Tregs may attenuate the progress of silica-induced lung fibrosis and enhance Th1 response and decelerate Th1/Th2 balance toward a Th2 phenotype in silica-induced lung fibrosis. The regulatory function of Treg cells may depend on direct mechanism and indirect mechanism during the inflammatory stage of silicosis.

  12. Enhanced Wettability and Thermal Stability of a Novel Polyethylene Terephthalate-Based Poly(Vinylidene Fluoride) Nanofiber Hybrid Membrane for the Separator of Lithium-Ion Batteries.

    Science.gov (United States)

    Zhu, Chunhong; Nagaishi, Tomoki; Shi, Jian; Lee, Hoik; Wong, Pok Yin; Sui, Jianhua; Hyodo, Kenji; Kim, Ick Soo

    2017-08-09

    In this study, a novel membrane for the separator in a lithium-ion (Li-ion) battery was proposed via a mechanically pressed process with a poly(vinylidene fluoride) (PVDF) nanofiber subject and polyethylene terephthalate (PET) microfiber support. Important physical properties, such as surface morphology, wettability, and heat stability were considered for the PET-reinforced PVDF nanofiber (PRPN) hybrid separator. Images of scanning electron microscopy (SEM) showed that the PRPN hybrid separator had a homogeneous pore size and high porosity. It can wet out in battery electrolytes completely and quickly, satisfying wettability requirements. Moreover, the electrolyte uptake was higher than that of dry-laid and wet-laid nonwovens. For heat stability, no shrink occurred even when the heating temperature reached 135 °C, demonstrating thermal and dimensional stability. Moreover, differential scanning calorimetry (DSC) showed that the PRPN hybrid separator possessed a shutdown temperature of 131 °C, which is the same as conventional separators. Also, the meltdown temperature reached 252 °C, which is higher than the shutdown temperature, and thus can protect against internal cell shorts. The proposed PRPN hybrid separator is a strong candidate material for utilization in Li-ion batteries.

  13. Cation-pi interactions stabilize the structure of the antimicrobial peptide indolicidin near membranes: molecular dynamics simulations

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Kaznessis, Yiannis N

    2007-01-01

    to the sulfate groups leads to an extended peptide structure. To the best of our knowledge, this is the first time that a cation-pi interaction between peptide side chains has been shown to stabilize the structure of a small antimicrobial peptide. The simulations are in excellent agreement with available...

  14. Electrochemical stability and postmortem studies of Pt/SiC catalysts for polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Stamatin, Serban Nicolae; Spéder, József; Dhiman, Rajnish

    2015-01-01

    potential cycle aging tests were used in order to accelerate the support corrosion, simulating start-up/shutdown and load cycling. On the basis of the results, we draw two main conclusions. First, platinized silicon carbide exhibits improved electrochemical stability over platinized active carbons. Second...

  15. Osmotic stress and cryoinjury of koala sperm: an integrative study of the plasma membrane, chromatin stability and mitochondrial function.

    Science.gov (United States)

    Johnston, S D; Satake, N; Zee, Y; López-Fernández, C; Holt, W V; Gosálvez, J

    2012-06-01

    This study investigated whether cryopreservation-induced injury to koala spermatozoa could be explained using an experimental model that mimics the structural and physiological effects of osmotic flux. DNA labelling after in situ nick translation of thawed cryopreserved spermatozoa revealed a positive correlation (r=0.573; Pkoala spermatozoa revealed that injury induced by exposure to osmotic flux, essentially imitated the results found following cryopreservation. Plasma membrane integrity, chromatin relaxation and SDF appeared particularly susceptible to extreme hypotonic environments. Mitochondrial membrane potential (MMP), while susceptible to extreme hypo- and hypertonic environments, showed an ability to rebound from hypertonic stress when returned to isotonic conditions. Koala spermatozoa exposed to 64 mOsm/kg media showed an equivalent, or more severe, degree of structural and physiological injury to that of frozen-thawed spermatozoa, supporting the hypothesis that cryoinjury is principally associated with a hypo-osmotic effect. A direct comparison of SDF of thawed cryopreserved spermatozoa and those exposed to a 64 mOsm/kg excursion showed a significant correlation (r=0.878; Pkoala SDF, the mechanisms resulting in relaxed chromatin require further study. A lack of correlation between the percentage of sperm with relaxed chromatin and SDF suggests that the timing of these pathologies are asynchronous. We propose an integrative model of cryo-induced osmotic injury that involves a combination of structural damage (rupture of membrane) and oxidative stress that first leads to the reduction of MMP and the relaxation of chromatin, which is then ultimately followed by an increase in DNA fragmentation.

  16. Isolation of highly suppressive CD25+FoxP3+ T regulatory cells from G-CSF-mobilized donors with retention of cytotoxic anti-viral CTLs: application for multi-functional immunotherapy post stem cell transplantation.

    Directory of Open Access Journals (Sweden)

    Edward R Samuel

    Full Text Available Previous studies have demonstrated the effective control of cytomegalovirus (CMV infections post haematopoietic stem cell transplant through the adoptive transfer of donor derived CMV-specific T cells (CMV-T. Strategies for manufacturing CMV immunotherapies has involved a second leukapheresis or blood draw from the donor, which in the unrelated donor setting is not always possible. We have investigated the feasibility of using an aliquot of the original G-CSF-mobilized graft as a starting material for manufacture of CMV-T and examined the activation marker CD25 as a targeted approach for identification and isolation following CMVpp65 peptide stimulation. CD25+ cells isolated from G-CSF-mobilized apheresis revealed a significant increase in the proportion of FoxP3 expression when compared with conventional non-mobilized CD25+ cells and showed a superior suppressive capacity in a T cell proliferation assay, demonstrating the emergence of a population of Tregs not present in non-mobilized apheresis collections. The expansion of CD25+ CMV-T in short-term culture resulted in a mixed population of CD4+ and CD8+ T cells with CMV-specificity that secreted cytotoxic effector molecules and lysed CMVpp65 peptide-loaded phytohaemagglutinin-stimulated blasts. Furthermore CD25 expanded cells retained their suppressive capacity but did not maintain FoxP3 expression or secrete IL-10. In summary our data indicates that CD25 enrichment post CMV stimulation in G-CSF-mobilized PBMCs results in the simultaneous generation of both a functional population of anti-viral T cells and Tregs thus illustrating a potential single therapeutic strategy for the treatment of both GvHD and CMV reactivation following allogeneic haematopoietic stem cell transplantation. The use of G-CSF-mobilized cells as a starting material for cell therapy manufacture represents a feasible approach to alleviating the many problems incurred with successive donations and procurement of cells from

  17. Ion selective phosphotungestate and beta-cyclodextrin based membrane electrodes for stability-indicating determination of midodrine hydrochloride.

    Science.gov (United States)

    Elzanfaly, Eman S; Zaazaa, Hala E; Merey, Hanan A

    2013-01-01

    This paper reports the construction and evaluation of two ion selective electrodes for the determination midodrine hydrochloride (MD) by direct potentiometry in pure drug substance and in tablet formulations. Precipitation based technique was used for fabrication of the first membrane sensor (sensor 1) using phosphotungestate (PT) and dioctylphthalate (DOP) as cation exchanger and solvent mediator, respectively. beta-cyclodextrin (beta-CD)-based technique with PT as a fixed anionic site in PVC matrix was used for fabrication of the second membrane sensor (sensor 2). The proposed sensors showed fast, stable Nernstian responses of 54 and 56 mV/decade for sensors 1 and 2, respectively, across a relatively wide MD concentration range (1x 10(-4) to 1 x 10(-1) mol/L and 5 x 10(-5) to 1 x 10(-1) mol/L for sensor 1 and 2, respectively) in the pH range of 5-7. Sensor I and sensor 2 can be used for three and two weeks, respectively without any measurable change in sensitivity. The suggested electrodes succeeded to determine intact MD in the presence of up to 10% of its degradation product and displayed good selectivity in presence of common inorganic and organic species.

  18. Prognostic Relevance of Cytokine Receptor Expression in Acute Myeloid Leukemia: Interleukin-2 Receptor α-Chain (CD25 Expression Predicts a Poor Prognosis.

    Directory of Open Access Journals (Sweden)

    Kazunori Nakase

    Full Text Available A variety of cytokine/cytokine receptor systems affect the biological behavior of acute leukemia cells. However, little is known about the clinical relevance of cytokine receptor expression in acute myeloid leukemia (AML. We quantitatively examined the expression of interleukin-2 receptor α-chain (IL-2Rα, also known as CD25, IL-2Rβ, IL-3Rα, IL-4Rα, IL-5Rα, IL-6Rα, IL-7Rα, the common β-chain (βc, γc, granulocyte-macrophage colony-stimulating factor (GM-CSFRα, G-CSFR, c-fms, c-mpl, c-kit, FLT3, and GP130 in leukemia cells from 767 adult patients with AML by flow cytometry and determined their prevalence and clinical significance. All cytokine receptors examined were expressed at varying levels, whereas the levels of IL-3Rα, GM-CSFRα, IL-2Rα, γc, c-kit, and G-CSFR exhibited a wide spectrum of ≥10,000 sites/cell. In terms of their French-American-British classification types, GM-CSFRα and c-fms were preferentially expressed in M4/M5 patients, G-CSF in M3 patients, and IL-2Rα in non-M3 patients. Elevated levels of IL-3Rα, GM-CSFRα, and IL-2Rα correlated with leukocytosis. In patients ≤60 years old, higher levels of these 3 receptors correlated with poor responses to conventional chemotherapy, but only IL-2Rα was associated with a shorter overall survival. By incorporating IL-2Rα status into cytogenetic risk stratification, we could sort out a significantly adverse-risk cohort from the cytogenetically intermediate-risk group. Analyses with various phenotypical risk markers revealed the expression of IL-2Rα as an independent prognostic indicator in patients with intermediate-risk cytogenetics. These findings were not observed in patients >60 years old. Our results indicate that several cytokine receptors were associated with certain cellular and clinical features, but IL-2Rα alone had prognostic value that provides an additional marker to improve current risk evaluation in AML patients ≤60 years old.

  19. CLIC5 stabilizes membrane-actin filament linkages at the base of hair cell stereocilia in a molecular complex with radixin, taperin, and myosin VI.

    Science.gov (United States)

    Salles, Felipe T; Andrade, Leonardo R; Tanda, Soichi; Grati, M'hamed; Plona, Kathleen L; Gagnon, Leona H; Johnson, Kenneth R; Kachar, Bechara; Berryman, Mark A

    2014-01-01

    Chloride intracellular channel 5 protein (CLIC5) was originally isolated from microvilli in complex with actin binding proteins including ezrin, a member of the Ezrin-Radixin-Moesin (ERM) family of membrane-cytoskeletal linkers. CLIC5 concentrates at the base of hair cell stereocilia and is required for normal hearing and balance in mice, but its functional significance is poorly understood. This study investigated the role of CLIC5 in postnatal development and maintenance of hair bundles. Confocal and scanning electron microscopy of CLIC5-deficient jitterbug (jbg) mice revealed progressive fusion of stereocilia as early as postnatal day 10. Radixin (RDX), protein tyrosine phosphatase receptor Q (PTPRQ), and taperin (TPRN), deafness-associated proteins that also concentrate at the base of stereocilia, were mislocalized in fused stereocilia of jbg mice. TPRQ and RDX were dispersed even prior to stereocilia fusion. Biochemical assays showed interaction of CLIC5 with ERM proteins, TPRN, and possibly myosin VI (MYO6). In addition, CLIC5 and RDX failed to localize normally in fused stereocilia of MYO6 mutant mice. Based on these findings, we propose a model in which these proteins work together as a complex to stabilize linkages between the plasma membrane and subjacent actin cytoskeleton at the base of stereocilia. © Published 2013 Wiley Periodicals, Inc. This article is a US government work and, as such, is in the public domain in the United States of America.

  20. Influence of Poly(ethylene glycol) Segment Length on CO2 Permeation and Stability of PolyActive Membranes and Their Nanocomposites with PEG POSS.

    Science.gov (United States)

    Rahman, Md Mushfequr; Filiz, Volkan; Shishatskiy, Sergey; Abetz, Clarissa; Georgopanos, Prokopios; Khan, Muntazim Munir; Neumann, Silvio; Abetz, Volker

    2015-06-17

    Three grades of PolyActive block copolymers are investigated for CO2 separation from light gases. The polymers are composed of 23 wt % poly(butylene terephthalate) (PBT) and 77 wt % poly(ethylene glycol terephthalate) (PEGT) having the poly(ethylene glycol) segments of 1500, 3000, and 4000 g/mol, respectively. A commercial PEG POSS (poly(ethylene glycol) functionalized polyoctahedral oligomeric silsesquioxanes) is used as a nanofiller for these polymers to prepare nanocomposites via a solvent casting method. Single gas permeabilities of N2, H2, CH4, and CO2 are measured via the time-lag method in the temperature range from 30 to 70 °C. The thermal transitions of the prepared membranes are studied by differential scanning calorimetry (DSC). It is found that the length of PEG segment has a pronounced influence on the thermal transition of the polymers that regulates the gas separation performance of the membranes. The stability of the nanocomposites is also correlated with the thermal transition of the polyether blocks of the polymer matrices.

  1. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  2. ANAMMOX process start up and stabilization with an anaerobic seed in Anaerobic Membrane Bioreactor (AnMBR).

    Science.gov (United States)

    Suneethi, S; Joseph, Kurian

    2011-10-01

    ANaerobic AMMonium OXidation (ANAMMOX) process, an advanced biological nitrogen removal alternative to traditional nitrification--denitrification removes ammonia using nitrite as the electron acceptor without oxygen. The feasibility of enriching anammox bacteria from anaerobic seed culture to start up an Anaerobic Membrane Bioreactor (AnMBR) for N-removal is reported in this paper. The Anammox activity was established in the AnMBR with anaerobic digester seed culture from a Sewage Treatment Plant in batch mode with recirculation followed by semi continuous process and continuous modes of operation. The AnMBR performance under varying Nitrogen Loading Rates (NLR) and HRTs is reported for a year, in terms of nitrogen transformations to ammoniacal nitrogen, nitrite and nitrate along with hydrazine and hydroxylamine. Interestingly ANAMMOX process was evident from simultaneous Amm-N and nitrite reduction, consistent nitrate production, hydrazine and hydroxylamine presence, notable organic load reduction and bicarbonate consumption. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Cockayne syndrome group B protein promotes mitochondrial DNA stability by supporting the DNA repair association with the mitochondrial membrane

    DEFF Research Database (Denmark)

    Aamann, Maria Diget; Sorensen, Martin M; Hvitby, Christina Poulsen

    2010-01-01

    Cockayne syndrome (CS) is a human premature aging disorder associated with severe developmental deficiencies and neurodegeneration, and phenotypically it resembles some mitochondrial DNA (mtDNA) diseases. Most patients belong to complementation group B, and the CS group B (CSB) protein plays a role...... in genomic maintenance and transcriptome regulation. By immunocytochemistry, mitochondrial fractionation, and Western blotting, we demonstrate that CSB localizes to mitochondria in different types of cells, with increased mitochondrial distribution following menadione-induced oxidative stress. Moreover, our...... association of the BER activities with the mitochondrial inner membrane, suggesting that CSB may participate in the anchoring of the DNA repair complex. Increased mutation frequency in mtDNA of CSB-deficient cells demonstrates functional significance of the presence of CSB in the mitochondria. The results...

  4. Allergy-related changes in levels of CD8+CD25+FoxP3(bright) Treg cells and FoxP3 mRNA expression in peripheral blood: the role of IL-10 or TGF-beta.

    Science.gov (United States)

    Eusebio, M; Kuna, P; Kraszula, L; Kupczyk, M; Pietruczuk, M

    2014-01-01

    There is an increasing body of evidence that alterations of regulatory T (Treg) cell numbers and functions lead to immune disorders. Accordingly, understanding the regulatory mechanisms that maintain peripheral regulatory T (Treg) cell homeostasis is key to the development of effective targeted biologic therapies. We previously demonstrated the effects of IL-10 or TGF-beta on distinct CD8+CD28- T cell subsets in vitro. Allergy-related changes of CD8+CD25+FoxP3(bright)Treg cells and FoxP3 mRNA expression in peripheral blood were assessed by means of multicolor flow cytometry and real-time polymerase chain reaction (RT-PCR). Co-stimulation of CD8+CD25+ T cells with anti-CD3/CD28 in the presence of either IL-10 or TGF-beta increased the frequency of CD8+CD25+FoxP3(bright)Treg cells in patients with asthma and controls. Likewise, CD8+CD25+ T cell activation with anti-CD3/CD28 and TGF-beta increased FoxP3mRNA expression in all groups. Anti-CD3/CD28 and IL-10 appeared to regulate FoxP3 mRNA expression in a phenotype-dependent manner. Specifically, co-stimulation by anti-CD3/CD28 and IL-10 markedly increased FoxP3 mRNA expression in the severe asthma group whereas it had opposite effects on this value in other groups. Taken altogether, these data suggest that IL-10 and TGF-beta may modulate FoxP3 expressions at the protein and mRNA levels in respect to their need for peripheral tolerance.

  5. Involvement of the Cdc42 pathway in CFTR post-translational turnover and in its plasma membrane stability in airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Romain Ferru-Clément

    Full Text Available Cystic fibrosis transmembrane conductance regulator (CFTR is a chloride channel that is expressed on the apical plasma membrane (PM of epithelial cells. The most common deleterious allele encodes a trafficking-defective mutant protein undergoing endoplasmic reticulum-associated degradation (ERAD and presenting lower PM stability. In this study, we investigated the involvement of the Cdc42 pathway in CFTR turnover and trafficking in a human bronchiolar epithelial cell line (CFBE41o- expressing wild-type CFTR. Cdc42 is a small GTPase of the Rho family that fulfils numerous cell functions, one of which is endocytosis and recycling process via actin cytoskeleton remodelling. When we treated cells with chemical inhibitors such as ML141 against Cdc42 and wiskostatin against the downstream effector N-WASP, we observed that CFTR channel activity was inhibited, in correlation with a decrease in CFTR amount at the cell surface and an increase in dynamin-dependent CFTR endocytosis. Anchoring of CFTR to the cortical cytoskeleton was then presumably impaired by actin disorganization. When we performed siRNA-mediated depletion of Cdc42, actin polymerization was not impacted, but we observed actin-independent consequences upon CFTR. Total and PM CFTR amounts were increased, resulting in greater activation of CFTR. Pulse-chase experiments showed that while CFTR degradation was slowed, CFTR maturation through the Golgi apparatus remained unaffected. In addition, we observed increased stability of CFTR in PM and reduction of its endocytosis. This study highlights the involvement of the Cdc42 pathway at several levels of CFTR biogenesis and trafficking: (i Cdc42 is implicated in the first steps of CFTR biosynthesis and processing; (ii it contributes to the stability of CFTR in PM via its anchoring to cortical actin; (iii it promotes CFTR endocytosis and presumably its sorting toward lysosomal degradation.

  6. Effects of drought stress on growth, solute accumulation and membrane stability of leafy vegetable, huckleberry (Solanum scabrum Mill.).

    Science.gov (United States)

    Assaha, Dekoum Vincent Marius; Liu, Liyun; Ueda, Akihiro; Nagaoka, Toshinori; Saneoka, Hirofumi

    2016-01-01

    The present study sought to investigate the factors implicated in growth impairment of huckleberry (a leafy vegetable) under water stress conditions. To achieve this, seedlings of plant were subjected to control, mild stress and severe stress conditions for 30 days. Plant growth, plant water relation, gas exchange, oxidative stress damage, electrolyte leakage rate, mineral content and osmolyte accumulation were measured. Water deficit markedly decreased leaf, stem and root growth. Leaf photosynthetic rate was tremendously reduced by decrease in stomatal conductance under stress conditions. Malondialdehyde (MDA) content markedly increased under mild (82%) and severe (131%) stress conditions, while electrolyte leakage rate (ELR) increased by 59% under mild stress and 3-fold under severe stress. Mineral content in leafwas high in stressed plants, while proline content markedly increased under mild stress (12-fold) and severe stress (15-fold), with corresponding decrease in osmotic potential at full turgor and an increase in osmotic adjustment. These results suggest that maintenance of high mineral content and osmotic adjustment constitute important adaptations in huckleberry under water deficit conditions and that growth depression under drought stress would be mainly caused by increased electrolyte leakage resulting from membrane damage induced by oxidative stress.

  7. The Role of Nanobiotechnology in the Study of Dystrophin and B-Dystroglycan in Membrane Stability of Aging Skeletal Muscles

    Science.gov (United States)

    Vaseashta, Ashok

    2005-03-01

    Duchene muscular dystrophy (DMD) is one of nine types of muscular dystrophy, a group of genetic degenerative diseases, primarily affecting voluntary muscles, caused by absence of dystrophin. New experiments on mice with DMD has shown that gene therapy can reverse some symptoms of the disease. The ultimate goal of gene therapy for muscle diseases is improvement of strength and function, which will require treatment in multiple muscles simultaneously. A major limitation to gene therapy until now has been that no one had found a method by which a new gene could be delivered to all the muscles of an adult animal. Recent utilization of nanotechnology to life sciences has shown exciting promises in a wide range of disciplines, showing advances in the ability to manipulate, fabricate and alter tiny subjects at the nanometer scale. In the present investigation, we have employed such techniques to study single motors such as myosin and kinesin, as well elastic proteins viz. titin and nebulin, muscle filaments, cytoskeletal filaments, and receptors in cellular membranes and cellular organelles viz. myofibril, ribosome, and chromatin. Application of AFM to images and measures the elastic properties of single monomeric and oligomeric protein, genetically engineered titin, and nebulin molecules will be presented.

  8. Effect of sonochemical synthesized TiO2 nanoparticles and coagulation bath temperature on morphology, thermal stability and pure water flux of asymmetric cellulose acetate membranes prepared via phase inversion method

    Directory of Open Access Journals (Sweden)

    Abedini Reza

    2012-01-01

    Full Text Available In this study, asymmetric pure CA and CA/ TiO2 composite membranes were prepared via phase inversion by dispersing TiO2 nanopaticles in the CA casting solutions induced by immersion precipitation in water coagulation bath. TiO2 nanoparticles, which were synthesized by the sonochemical method, were added into the casting solution with different concentrations. Effects of TiO2 nanoparticles concentration (0 wt. %, 5wt.%, 10wt.%, 15wt.%, 20wt.% and 25wt.% and coagulation bath temperature (CBT= 25°C, 50°C and 75°C on morphology, thermal stability and pure water flux (PWF of the prepared membranes were studied and discussed. Increasing TiO2 concentration in the casting solution film along with higher CBT resulted in increasing the membrane thickness, water content (WC, membrane porosity and pure water flux (PWF, also these changes facilitate macrovoids formation. Thermal gravimetric analysis (TGA shows that thermal stability of the composite membranes were improved by the addition of TiO2 nanopaticles. Also TGA results indicated that increasing CBT in each TiO2 concentration leads to the decreasing of decomposition temperature (Td of hybrid membranes.

  9. Polymeric matrix membrane sensors for stability-indicating potentiometric determination of oxybutynin hydrochloride and flavoxate hydrochloride urogenital system drugs.

    Science.gov (United States)

    Heba, Mohamed; Ramadan, Nesrin; El-Laithy, Moustafa

    2008-01-01

    Four polyvinyl chloride (PVC) matrix membrane electrodes responsive to 2 drugs affecting the urogenital system--oxybutynin hydrochloride (OX) and flavoxate hydrochloride (FX)--were developed, described, and characterized. A precipitation-based technique with tungstophosphate (TP) and ammonium reineckate (R) anions as electroactive materials in a PVC matrix with an OX cation was used for electrode 1 and 2 fabrication, respectively. Electrode 3 and 4 fabrication was based on use of the precipitation technique of FX cation with tetrakis (4-chlorophenyl) borate and R anions as electroactive materials. Fast and stable Nernstian responses in the range 1 x 10(-2)-1 x 10(-6) M for the 2 drugs over the pH range 5-8 revealed the performance characteristics of these electrodes, which were evaluated according to International Union of Pure and Applied Chemistry recommendations. The method was applied to FX and OX in their pharmaceutical formulations and in human plasma samples. The 4 proposed sensors were found to be specific for the drugs in the presence of up to 60% of their degradation products. Validation of the method according to the quality assurance standards showed suitability of the proposed electrodes for use in the quality control assessment of these drugs. The recoveries for determination of the drugs by the 4 proposed selective electrodes were 99.5 +/- 0.5, 100.0 +/- 0.4, 99.9 +/- 0.4, and 100.1 +/- 0.4% for sensors 1-4, respectively. Statistical comparison between the results obtained by this method and the official method of the drugs was done, and no significant difference found.

  10. Stability of a Cu0.7Co2.3O4 electrode during the oxygen evolution reaction for alkaline anion-exchange membrane water electrolysis

    Science.gov (United States)

    Kang, Kyoung Eun; Kim, Chi Ho; Lee, Myung Sup; Jung, Chang Wook; Kim, Yang Do; Lee, Jae Ho

    2018-01-01

    The electrode materials for oxygen evolution, especially non-platinum group metal oxides, have attracted increasing attention. Among the spinel-type transition metal oxides, Cu0.7Co2.3O4 powders were evaluated as a potential replacement for expensive dimensionally stabilized anode materials. Cu0.7Co2.3O4 powder for use as an electrode material for oxygen evolution in an alkaline anion-exchange membrane water electrolyzer was prepared using a thermal decomposition method. The Cu0.7Co2.3O4 powders heat-treated at 250 °C exhibited the same X-ray diffraction patterns without any secondary phases as the Co3O4 spinel structure did. The Cu0.7Co2.3O4 powders heat-treated at 250 °C for 30 minutes showed the smallest mean particle size of approximately 376 nm with the powders having a homogeneous shape and size distribution. The fine powders with a relatively homogeneous size distribution showed a higher current density during the oxygen evolution reaction. The lifetime of the Cu0.7Co2.3O4 electrode was relatively long at a low current density, but was quickly shortened due to physical detachment of the Cu0.7Co2.3O4 powders as the current density was increased. This study showed that the efficiency and the stability of Cu0.7Co2.3O4 powders during the oxygen evolution reaction were related directly to the active electrode area.

  11. The potential role of cAMP as a pollution biomarker of terrestrial environments using the land snail Eobania vermiculata: Correlation with lysosomal membrane stability

    Energy Technology Data Exchange (ETDEWEB)

    Itziou, A.; Dimitriadis, V.K. [Aristotle University of Thessaloniki, Thessaloniki (Greece). School of Biology

    2009-09-15

    The present study investigates the role of the signal transduction molecule cAMP, and the lysosomal membrane stability (LMS), as biomarkers of terrestrial environmental pollution using the land snail Eobania vermiculata. Snails were exposed to different concentrations of heavy metals (Ca, Pb and Cu) and organic pollutants (chlorpyrifos, parathion-methyl and PAHs) in laboratory conditions for 25 days. In addition, snails were collected from various sites located at different distances away from two polluted areas in northern Greece (the road Agiou Dimitriou in Thessaloniki city and a lignite power station in the district of Kozani). The results of the current investigation showed significantly increased levels of cAMP in the digestive gland of snails, as well as decreased LMS values in all experimental groups compared to control animals. In support of our data, cAMP levels were significantly negatively correlated with the conventional biomarker LMS, thus encouraging the use of cAMP as a new potential stress index in terrestrial pollution biomonitoring studies.

  12. Lu-177-PSMA-617 Prostate-Specific Membrane Antigen Inhibitor Therapy in Patients with Castration-Resistant Prostate Cancer: Stability, Bio-distribution and Dosimetry

    Directory of Open Access Journals (Sweden)

    Levent Kabasakal

    2017-06-01

    Full Text Available Objective: The aim of the study was to estimate the radiation-absorbed doses and to study the in vivo and in vitro stability as well as pharmacokinetic characteristics of lutetium-177 (Lu-177 prostate-specific membrane antigen (PSMA-617. Methods: For this purpose, 7 patients who underwent Lu-177-PSMA therapy were included into the study. The injected Lu-177-PSMA-617 activity ranged from 3.6 to 7.4 GBq with a mean of 5.2±1.8 GBq. The stability of radiotracer in saline was calculated up to 48 h. The stability was also calculated in blood and urine samples. Post-therapeutic dosimetry was performed based on whole body and single photon emission computed tomography/computed tomography (SPECT/CT scans on dual-headed SPECT/CT system. Results: The radiochemical yield of Lu-177-PSMA-617 was >99%. It remained stable in saline up to 48 h. Analyses of the blood and urine samples showed a single radioactivity peak even at 24 hours after injection. Half-life of the distribution and elimination phases were calculated to be 0.16±0.09 and 10.8±2.5 hours, respectively. The mean excretion rate was 56.5±8.8% ranging from 41.5% to 65.4% at 24 h. Highest radiation estimated doses were calculated for parotid glands and kidneys (1.90±1.19 and 0.82±0.25 Gy/GBq respectively. Radiation dose given to the bone marrow was significantly lower than those of kidney and parotid glands (p<0.05 (0.030±0.008 Gy/GBq. Conclusion: Lu-177-PSMA-617 is a highly stable compound both in vitro and in vivo. Lu-177-PSMA-617 therapy seems to be a safe method for the treatment of castration-resistant prostate cancer patients. The fractionation regime that enables the longest duration of tumor control and/or survival will have to be developed in further studies.

  13. [Effects of transcription factor T-bet, GATA-3, FoxP3 and CD4(+)CD25(+)regulatory T cells in pathogenesis of child Hench-Schonlein purpura].

    Science.gov (United States)

    Wang, Qiang; Ren, Shu-Hong; Dong, Wei; Fang, Jun

    2012-02-01

    The aim of this study was to investigate the effects of transcription factors T-bet, GATA-3 in the pathogenesis of Hench-Schonlein purpura (HSP) in children, the relationship between CD4(+)CD25(+)regulatory T cells, transcription factor FoxP3 and the development of child HSP, and the molecular mechanisms of Th1/Th2 imbalance of child HSP at acute phase, so as to may provide a new approach and strategy for the treatment of HSP at the molecular levels. The expression of T-bet, GATA-3 and FoxP3 mRNA were detected by real time PCR using SYBR Green I in 46 patients with HSP at acute phase and 30 healthy children as controls. The expression of T lymphocyte subsets CD4(+)CD25(+) in peripheral blood mononuclear cells was detected by flow cytometry. The results showed that the relative level of GATA-3 mRNA in peripheral blood mononuclear cells of patients with HSP was significantly higher than those of the control group (964.30 ± 655.18 vs 78.09 ± 57.20, P child HSP, especially predominant activation of Th2, which correlates with the abnormal expression of transcription factor T-bet and GATA-3 mRNA. At acute phase of child HSP, the expression of CD4(+)CD25(+)Treg and its special transcription factor FoxP3 mRNA are down-regulated. Treg cells decreases, which indicates that insufficient immunosuppressive effects resulting from the reduction of Treg cells may be one of the important reason in the immune imbalance of HSP acute phase. This study provides experimental evidence for illustrating the pathogenesis of HSP from the molecular mechanism of Treg cells and its regulation, and also provides a new thinking and new strategies for the treatment of HSP at molecular levels.

  14. Fermented fish oil suppresses T helper 1/2 cell response in a mouse model of atopic dermatitis via generation of CD4+CD25+Foxp3+ T cells

    Directory of Open Access Journals (Sweden)

    Han Sang-Chul

    2012-08-01

    Full Text Available Abstract Background Allergic skin inflammation such as atopic dermatitis (AD, which is characterized by pruritus and inflammation, is regulated partly through the activity of regulatory T cells (Tregs. Tregs play key roles in the immune response by preventing or suppressing the differentiation, proliferation and function of various immune cells, including CD4+ T cells. Recent studies report that fermentation has a tremendous capacity to transform chemical structures or create new substances, and the omega-3 polyunsaturated fatty acids (n-3 PUFAs in fish oil can reduce inflammation in allergic patients. The beneficial effects of natural fish oil (NFO have been described in many diseases, but the mechanism by which fermented fish oil (FFO modulates the immune system and the allergic response is poorly understood. In this study, we produced FFO and tested its ability to suppress the allergic inflammatory response and to activate CD4+CD25+Foxp3+ Tregs. Results The ability of FFO and NFO to modulate the immune system was investigated using a mouse model of AD. Administration of FFO or NFO in the drinking water alleviated the allergic inflammation in the skin, and FFO was more effective than NFO. FFO treatment did increase the expression of the immune-suppressive cytokines TGF-β and IL-10. In addition, ingestion of FFO increased Foxp3 expression and the number of CD4+CD25+Foxp3+ Tregs compared with NFO. Conclusions These results suggest that the anti-allergic effect of FFO is associated with enrichment of CD4+CD25+ Foxp3+ T cells at the inflamed sites and that FFO may be effective in treating the allergic symptoms of AD.

  15. INFα-2b inhibitory effects on CD4+CD25+FOXP3+ regulatory T cells in the tumor microenvironment of C57BL/6 J mice with melanoma xenografts

    International Nuclear Information System (INIS)

    Yu, Yang; Huang, Run; Zong, Xiangyun; He, Xiangming; Mo, Wenju

    2016-01-01

    Regulatory T cells (Treg s ), particularly the CD4 + CD25 + Foxp3 + Treg s , down regulate immunity and promote tumor cell growth by directly suppressing CD8 + and CD4 + T cells. Alternatively they can promote tumor growth by generating interleukin-10 (IL-10) and transforming growth factor β (TGFβ) in situ, which help tumor cells to evade the immune system. In vivo tumor models were prepared via subcutaneous injection with a suspension of B16 melanoma cells into the left upper flank of C57BL/6 J mice. The mice were randomized into five groups: radiotherapy (RT), chemotherapy (CT), radiochemotherapy (RCT), Inteferon α (INFα) groups, and a control group. Flow cytometry was used to determine the Treg s levels in the spleen and peripheral blood, and immunohistochemistry was performed to determine the expression levels of TGFβ and IL-10 in the tumor microenvironment. Tumor weight was significantly reduced in the CT or RCT groups (40.91 % and 41.83 %, respectively), while the reduction in tumor weight was relatively lower for the RT and IFNα groups (15.10 % and 13.15 %, respectively). The flow cytometry results showed that the ratios of CD4 + CD25 + Foxp3 + Treg s to lymphocytes and CD4 + cells in the spleen and in peripheral blood were significantly decreased after treatment with IFNα (P < 0.05). Expression of TGFβ and IL-10 in the tumor microenvironment in the CT and RT groups was higher compared with the control group (P < 0.01), while the expression of TGFβ and IL-10 in the INFα group was not significantly different (P > 0.05). The results show that INFα-2b inhibits cancer cell immune evasion by decreasing the levels of CD4 + CD25 + Foxp3 + Treg s and suppressing the expression of TGFβ and IL-10 in the tumor microenvironment

  16. Increase of circulating CD4+CD25highFoxp3+ regulatory T cells in patients with metastatic renal cell carcinoma during treatment with dendritic cell vaccination and low-dose interleukin-2

    DEFF Research Database (Denmark)

    Berntsen, Annika; Brimnes, Marie Klinge; thor Straten, Per

    2010-01-01

    Regulatory T cells (Treg) play an important role in the maintenance of immune tolerance and may be one of the obstacles of successful tumor immunotherapy. In this study, we analyzed the impact of administration of dendritic cell (DC) vaccination in combination with low-dose interleukin (IL)-2 in ...... in patients with metastatic renal cell carcinoma on the frequency of CD4+CD25highFoxp3+ Treg cells in peripheral blood. We found that the treatment increased the frequency of Treg cells more than 7-fold compared with pretreatment levels (P...

  17. Kinetics of T cell receptor β, γ, and δ rearrangements during adult thymic development: T cell receptor rearrangements are present in CD44+CD25+ Pro-T thymocytes

    Science.gov (United States)

    Capone, Myriam; Hockett, Richard D.; Zlotnik, Albert

    1998-01-01

    We performed a comprehensive analysis of T cell receptor (TCR) γ rearrangements in T cell precursors of the mouse adult thymus. Using a sensitive quantitative PCR method, we show that TCRγ rearrangements are present in CD44+CD25+ Pro-T thymocytes much earlier than expected. TCRγ rearrangements increase significantly from the Pro-T to the CD44−CD25+ Pre-T cell transition, and follow different patterns depending on each Vγ gene segment, suggesting that ordered waves of TCRγ rearrangement exist in the adult mouse thymus as has been described in the fetal mouse thymus. Recombinations of TCRγ genes occur concurrently with TCRδ and D-Jβ rearrangements, but before Vβ gene assembly. Productive TCRγ rearrangements do not increase significantly before the Pre-T cell stage and are depleted in CD4+CD8+ double-positive cells from normal mice. In contrast, double-positive thymocytes from TCRδ−/− mice display random proportions of TCRγ rearranged alleles, supporting a role for functional TCRγ/δ rearrangements in the γδ divergence process. PMID:9770518

  18. Effects of oral Lactobacillus administration on antioxidant activities and CD4+CD25+forkhead box P3 (FoxP3)+ T cells in NZB/W F1 mice.

    Science.gov (United States)

    Tzang, Bor-Show; Liu, Chung-Hsien; Hsu, Kuo-Ching; Chen, Yi-Hsing; Huang, Chih-Yang; Hsu, Tsai-Ching

    2017-09-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterised by a dysregulation of the immune system, which causes inflammation responses, excessive oxidative stress and a reduction in the number of cluster of differentiation (CD)4+CD25+forkhead box P3 (FoxP3)+ T cells. Supplementation with certain Lactobacillus strains has been suggested to be beneficial in the comprehensive treatment of SLE. However, little is known about the effect and mechanism of certain Lactobacillus strains on SLE. To investigate the effects of Lactobacillus on SLE, NZB/W F1 mice were orally gavaged with Lactobacillus paracasei GMNL-32 (GMNL-32), Lactobacillus reuteri GMNL-89 (GMNL-89) and L. reuteri GMNL-263 (GMNL-263). Supplementation with GMNL-32, GMNL-89 and GMNL-263 significantly increased antioxidant activity, reduced IL-6 and TNF-α levels and significantly decreased the toll-like receptors/myeloid differentiation primary response gene 88 signalling in NZB/W F1 mice. Notably, supplementation with GMNL-263, but not GMNL-32 and GMNL-89, in NZB/W F1 mice significantly increased the differentiation of CD4+CD25+FoxP3+ T cells. These findings reveal beneficial effects of GMNL-32, GMNL-89 and GMNL-263 on NZB/W F1 mice and suggest that these specific Lactobacillus strains can be used as part of a comprehensive treatment of SLE patients.

  19. An Imbalance between Frequency of CD4+CD25+FOXP3+ Regulatory T Cells and CCR4+ and CCR9+ Circulating Helper T Cells Is Associated with Active Perennial Allergic Conjunctivitis

    Directory of Open Access Journals (Sweden)

    J. Galicia-Carreón

    2013-01-01

    Full Text Available Allergic conjunctivitis (AC is one of the most common eye disorders in ophthalmology. In mice models, it has been suggested that control of allergic conjunctivitis is a delicate balance between Tregs and inflammatory migrating effector cells. Our aim was to evaluate the frequency of Tregs and the frequency of homing receptors expressing cells in peripheral blood mononuclear cells (PBMC from patients with perennial allergic conjunctivitis (PAC. The analyses of phenotypic markers on CD4+ T cells and both soluble or intracellular cytokines were performed by flow cytometry. CD4+CD25+ cells were 15 times more frequent in PBMC from patients than HC; the vast majority of these CD4+CD25+ cells were FOXP3−, and most of CD4+ T cells were CCR4+ and CCR9+ cells. Upon allergen-stimulation, no significant changes were observed in frequency of Treg; however, an increased frequency of CD4+CCR4+CCR9+ cells, CD4+CD103+ cells and CD4+CD108+ cells with increased IL-5, IL-6, and IL-8 production was observed. These findings suggest an immune dysregulation in PAC, characterized by diminished frequency of Tregs and increased frequency of circulating activated CD4+ T cells; upon allergen-stimulation, these cells were expressing cell-surface molecules related to mucosa homing and were able to trigger an inflammatory microenvironment.

  20. High-flux oxygen-transporting membrane Pr(0.6)Sr(0.4)Co(0.5)Fe(0.5)O(3-δ): CO2 stability and microstructure.

    Science.gov (United States)

    Partovi, Kaveh; Liang, Fangyi; Ravkina, Olga; Caro, Jürgen

    2014-07-09

    High oxygen permeability and good thermochemical stability of oxygen-transporting membranes (OTMs) are two main requirements concerning the applicability of these devices in chemical processes, such as CO2 capture using the oxyfuel concept or catalytic membrane reactors. In this work, a single-phase perovskite-type membrane Pr0.6Sr0.4Co0.5Fe0.5O3-δ (PSCF) with 0.6-mm thickness was subjected to periodic thermal cycling in the temperature range between 850 and 1000 °C in a 1000-h long-term permeation test with pure CO2 as the sweep gas. The results of this long-term permeation operation revealed a stepwise increase in oxygen permeation values at 1000 °C after each thermal cycle, reaching from 1.38 cm(3) (STP) min(-1) cm(-2) in the first cycle to 1.75 cm(3) (STP) min(-1) cm(-2) in the fourth cycle. Furthermore, the membrane showed very good CO2 stability at 900 °C and above. Despite a partial decrease in oxygen permeation fluxes at 850 °C, a steady state of 0.25 cm(3) (STP) min(-1) cm(-2) was reached and maintained for more than 100 h. The newly developed PSCF membrane also exhibited a higher oxygen permeation flux with He and CO2 sweeping at all measured temperatures compared to a similar La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF) membrane.

  1. Further studies on membrane stabilizing, anti-inflammatory and FCA induced arthritic activity of various fractions of bark of Machilus macrantha in rats

    Directory of Open Access Journals (Sweden)

    Anil U Tatiya

    2011-08-01

    Full Text Available Machilus macrantha Nees, Lauraceae, bark is traditionally used in the treatment of asthma, tuberculosis and rheumatoid arthritis. In order to validate, mechanism based anti-inflammatory activity of fractions M. macrantha bark are investigated for first time. Test materials viz. petroleum ether (PE, alkaloidal fraction (CH, acetone extracts (TAN and mucilage (MM (250 and 500 mg/kg, p.o. obtained from M. macrantha bark were tested for membrane stabilizing, anti-nociceptive; anti inflammatory and Freund's complete adjuvant (FCA induced arthritis activity. Diclofenac sodium and morphine were used as the reference standards in pharmacological assay. Test materials have significantly (p<0.01 inhibited paw edema after Carrageenan and histamine induction at higher doses. Administration of test materials of M. macrantha (250 and 500 mg/kg b.w. significantly reduced abdominal writhing, formalin nociception, cotton pellet granuloma and vascular permeability in experimental animal. In addition to this, bark of M. macrantha showed chronic anti-rheumatic effect by suppressing the swelling volume, arthritis index, hematological and biochemical parameters (ESR, RA factor, CRP, liver transferase enzyme in FCA-induced arthritis. It also significantly inhibited protein denaturation, heat-induced haemolysis of RBC and reduction in total leukocyte migration. Bioassay guided fractionation of the pet. ether extract of bark of M. macrantha led to isolation and characterization of β-sitosterol and stigma sterol confirmed by its HPLC, NMR and GC-MS study. In conclusion, extracts of M. macrantha bark can be explored as a therapeutic agent for the treatment of acute and chronic arthritis.

  2. Further studies on membrane stabilizing, anti-inflammatory and FCA induced arthritic activity of various fractions of bark of Machilus macrantha in rats

    Directory of Open Access Journals (Sweden)

    Anil U Tatiya

    2011-12-01

    Full Text Available Machilus macrantha Nees, Lauraceae, bark is traditionally used in the treatment of asthma, tuberculosis and rheumatoid arthritis. In order to validate, mechanism based anti-inflammatory activity of fractions M. macrantha bark are investigated for first time. Test materials viz. petroleum ether (PE, alkaloidal fraction (CH, acetone extracts (TAN and mucilage (MM (250 and 500 mg/kg, p.o. obtained from M. macrantha bark were tested for membrane stabilizing, anti-nociceptive; anti inflammatory and Freund's complete adjuvant (FCA induced arthritis activity. Diclofenac sodium and morphine were used as the reference standards in pharmacological assay. Test materials have significantly (p<0.01 inhibited paw edema after Carrageenan and histamine induction at higher doses. Administration of test materials of M. macrantha (250 and 500 mg/kg b.w. significantly reduced abdominal writhing, formalin nociception, cotton pellet granuloma and vascular permeability in experimental animal. In addition to this, bark of M. macrantha showed chronic anti-rheumatic effect by suppressing the swelling volume, arthritis index, hematological and biochemical parameters (ESR, RA factor, CRP, liver transferase enzyme in FCA-induced arthritis. It also significantly inhibited protein denaturation, heat-induced haemolysis of RBC and reduction in total leukocyte migration. Bioassay guided fractionation of the pet. ether extract of bark of M. macrantha led to isolation and characterization of β-sitosterol and stigma sterol confirmed by its HPLC, NMR and GC-MS study. In conclusion, extracts of M. macrantha bark can be explored as a therapeutic agent for the treatment of acute and chronic arthritis.

  3. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic (NOD) mice via up-regulation of CD4{sup +}CD25{sup +} regulatory T cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yulan; Purohit, Sharad [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA (United States); Chen, Xueqin; Yi, Bing [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); She, Jin-Xiong, E-mail: jshe@georgiahealth.edu [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA (United States)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer This is the first study to provide direct evidence of the role of Stat5b in NOD mice. Black-Right-Pointing-Pointer Over-expression of wild type Stat5b transgene protects NOD mice against diabetes. Black-Right-Pointing-Pointer This protection may be mediated by the up-regulation of CD4{sup +}CD25{sup +} Tregs. -- Abstract: The signal transducers and activators of transcription (STAT) family of proteins play a critical role in cytokine signaling required for fine tuning of immune regulation. Previous reports showed that a mutation (L327M) in the Stat5b protein leads to aberrant cytokine signaling in the NOD mice. To further elaborate the role of Stat5b in diabetes, we established a NOD transgenic mouse that over-expresses the wild type Stat5b gene. The incidences of spontaneous diabetes as well as cyclophosphamide-induced diabetes were significantly reduced and delayed in the Stat5b transgenic NOD mice compared to their littermate controls. The total cell numbers of CD4{sup +} T cells and especially CD8{sup +} T cells in the spleen and pancreatic lymph node were increased in the Stat5b transgenic NOD mice. Consistent with these findings, CD4{sup +} and CD8{sup +} T cells from the Stat5b transgenic NOD mice showed a higher proliferation capacity and up-regulation of multiple cytokines including IL-2, IFN-{gamma}, TNF-{alpha} and IL-10 as well as anti-apoptotic gene Bcl-xl. Furthermore, the number and proportion of CD4{sup +}CD25{sup +} regulatory T cells were significantly increased in transgenic mice although in vitro suppression ability of the regulatory T-cells was not affected by the transgene. Our results suggest that Stat5b confers protection against diabetes in the NOD mice by regulating the numbers and function of multiple immune cell types, especially by up-regulating CD4{sup +}CD25{sup +} regulatory T cells.

  4. Identification of CD4+CD25+CD127-regulatory T cells and CD14+HLA-DR-/low myeloid-derived suppressor cells and their roles in the prognosis of breast cancer.

    Science.gov (United States)

    Wang, Jinhu; Yang, Jianhong

    2016-08-01

    The aim of the present study was to identify cluster of differentiation 4 + (CD4 + )CD25 + CD127 - regulatory T cells (Tregs) and CD14 + human leukocyte antigen-antigen D-related (HLA - DR - )/low myeloid-derived suppressor cells (MDSCs) in patients with breast cancer of varying stages, and investigate their roles and the potential interactions in the prognosis of breast cancer. A total of 40 patients with breast cancer were included in the study. A total of 30 healthy individuals served as the healthy control. Flow cytometry was performed for the identification of biomarkers. Natural Tregs were characterized by the expression of CD4 + CD25 + CD127 - . The MDSC frequency was expressed as the percentage of CD33 + CD11b + HLA - DR - lineage markers (Lin) - . The absolute number of Tregs was higher in breast cancer patients compared to the healthy control. The absolute number of Tregs in the patients with stage III or IV breast cancer was higher than those of the stage I or II, respectively. The percentage showed a gradual increase in the patients with breast cancer compared with the normal control. No direct correlation was established between the number or percentage of Tregs and the patient survival. There was a higher percentage of circulating MDSCs in breast cancer patients compared with the normal individuals. A close correlation was established between clinical cancer stage and percentage and total number of circulating MDSCs. To be exact, a significant increase of MDSC percentage and total number was observed in patients with stage III-IV breast cancer compared with the other cancer patients (stage I-II) and the normal individuals. No statistical difference was observed in the 3- and 5-year survival rates in the breast cancer patients with enhanced expression of Tregs, compared with the normal individuals. In conclusion, enhanced expression of CD4 + CD25 + CD127 - Tregs cells and CD33 + CD11 + HLA - DR - LIN - MDSCs were identified from patients with breast

  5. Induction of CD4+CD25+Foxp3+ regulatory T cells by mesenchymal stem cells is associated with RUNX complex factors.

    Science.gov (United States)

    Khosravi, Maryam; Bidmeshkipour, Ali; Moravej, Ali; Hojjat-Assari, Suzzan; Naserian, Sina; Karimi, Mohammad Hossein

    2018-02-01

    Among the particular immunomodulation properties of mesenchymal stem cells (MSCs), one relies on their capacity to regulatory T cell (Treg) induction from effector T cells. Stable expression of Foxp3 has a dominant role in suppressive phenotype and stability of induced regulatory T cells (iTregs). How MSCs induce stable Foxp3 expression in iTregs remains unknown. We previously showed MSCs could enhance demethylation of Treg-specific demethylated region (TSDR) in iTregs in cell-cell contact manner (unpublished data). Here, we evaluated the possible effect of MSCs on the mRNA expression of Runx complex genes (Runx1, Runx3, and CBFB) that perch on TSDR in iTregs and play the main role in suppressive properties of Tregs, a regulatory pathway that has not yet been explored by MSCs. Also, we investigated the mRNA expression of MBD2 that promotes TSDR demethylation in Tregs. We first showed that in vitro MSC-iTreg induction was associated with strong mRNA modifications of genes involved in Runx complex. We next injected high doses of MSCs in a murine model of C57BL/6 into Balb/C allogeneic skin transplantation to prolong allograft survival. When splenocytes of grafted mice were analyzed, we realized that the Foxp3 expression was increased at day 5 and 10 post-graft merely in MSC-treated mice. Furthermore, Foxp3 mRNA expression was associated with modified Runx complex mRNA expression comparable to what was shown in in vitro studies. Hence, our data identify a possible mechanism in which MSCs convert conventional T cells to iTreg through strong modifications of mRNA of genes that are involved in Runx complex of Foxp3.

  6. Increase of Circulating CD4(+)CD25(high)Foxp3(+) Regulatory T Cells in Patients With Metastatic Renal Cell Carcinoma During Treatment With Dendritic Cell Vaccination and Low-Dose Interleukin-2

    DEFF Research Database (Denmark)

    Berntsen, Annika; Brimnes, M.K.; Straten, P.T.

    2010-01-01

    Regulatory T cells (Treg) play an important role in the maintenance of immune tolerance and may be one of the obstacles of successful tumor immunotherapy. In this study, we analyzed the impact of administration of dendritic cell (DC) vaccination in combination with low-dose interleukin (IL)-2...... to an increase in the number of Treg cells whereas IL-21 does not stimulate the induction of Treg cells. These findings demonstrate that even low doses of IL-2 in combination with DC vaccination are able to expand CD4(+)CD25(+)Foxp3(+) Treg cells in vivo in metastatic renal cell carcinoma patients. Further......, the results indicate that the IL-2-induced effect on Treg cells is reversible and declines shortly after termination of IL-2 treatment. Our data suggest that approaches combining DC-mediated immunotherapy and depletion of Treg cells may be necessary to enhance the ability of vaccination therapy to elicit...

  7. A new approach to the role of IL-7 and TGF-ß in the in vitro generation of thymus-derived CD4+CD25+Foxp3+ regulatory T cells.

    Science.gov (United States)

    Bieńkowska, Anna; Kiernozek, Ewelina; Kozlowska, Ewa; Bugajski, Łukasz; Drela, Nadzieja

    2018-02-01

    Thymus-derived regulatory T cells of CD4+CD25+Foxp3+ phenotype develop as a functional, mature population playing an essential role in self-tolerance and immune homeostasis, and exhibiting therapeutic potential to inhibit adverse immune response. Despite intensive research on thymus-derived Tregs, the knowledge about agents involved in their generation, survival, proliferation, and biological functions is still insufficient. In this research we have focused on the role of selected cytokines in previously developed in vitro model based on the application of anti-CD3 monoclonal antibodies. We have demonstrated an essential role of IL-7 and TGF-β in the generation of thymus-derived Tregs in the co-culture of thymocytes and JAWS II cells. In addition, in vitro generated Tregs exhibited their suppressive function similarly to Tregs sorted from freshly isolated thymus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Antigen-specific over-expression of human cartilage glycoprotein 39 on CD4+ CD25+ forkhead box protein 3+ regulatory T cells in the generation of glucose-6-phosphate isomerase-induced arthritis.

    Science.gov (United States)

    Tanaka, Y; Matsumoto, I; Inoue, A; Umeda, N; Takai, C; Sumida, T

    2014-08-01

    Human cartilage gp-39 (HC gp-39) is a well-known autoantigen in rheumatoid arthritis (RA). However, the exact localization, fluctuation and function of HC gp-39 in RA are unknown. Therefore, using a glucose-6-phosphate isomerase (GPI)-induced model of arthritis, we investigated these aspects of HC gp-39 in arthritis. The rise in serum HC gp-39 levels was detected on the early phase of GPI-induced arthritis (day 7) and the HC gp-39 mRNA was increased significantly on splenic CD4(+) T cells on day7, but not on CD11b(+) cells. Moreover, to identify the characterization of HC gp-39(+) CD4(+) T cells, we assessed the analysis of T helper (Th) subsets. As a result, HC gp-39 was expressed dominantly in CD4(+) CD25(+) forkhead box protein 3 (FoxP3)(+) refulatory T cells (T(reg)), but not in Th1, Th2 or Th17 cells. Furthermore, to investigate the effect of HC gp-39 to CD4(+) T cells, T cell proliferation assay and cytokine production from CD4(+) T cells using recombinant HC gp-39 was assessed. We found that GPI-specific T cell proliferation and interferon (IFN)-γ or interleukin (IL)-17 production were clearly suppressed by addition of recombinant HC gp-39. Antigen-specific over-expression of HC gp-39 in splenic CD4(+) CD25(+) FoxP3(+) T(reg) cells occurs in the induction phase of GPI-induced arthritis, and addition of recombinant HC gp-39 suppresses antigen-specific T-cell proliferation and cytokine production, suggesting that HC gp-39 in CD4(+) T cells might play a regulatory role in arthritis. © 2014 British Society for Immunology.

  9. The Influence of Emulgator on Stability of Emulsion H3PO4 in Topo-Kerosene and Efficiency at Emulsion Membrane Extraction of La and Nd Concentrate Product of Monazite Sand Treatment

    International Nuclear Information System (INIS)

    Purwani, MV.; Bintarti, AN.; Subagiono, R.

    2002-01-01

    The making of La and Nd concentrate from monazite sand have been done. The separation of La and Nd by emulsion 1M H 3 PO 4 in 5 % TOPO-Kerosene membrane extraction. The feed or aqueous phase was La and Nd concentrate in 1M HNO 3 . Emulgator Span-80 and Tween-80 were used to stabilize emulsion membrane. The influence parameters were percentage of Span-80 and ratio of Span-80 and Tween-80. After formation of emulsion membrane, the extraction process was carried out. Ratio of volume of feed : volume membrane phase = 1 : 1, ratio of volume of 5% TOPO - Kerosene : ratio of volume of 1M H 3 PO 4 1 : 1. The best yield were obtained time of emulsification was 10 minutes with the speed of emulsion was 6000 rpm and concentration of span-80 was 5%. At this condition was obtained the extraction efficiency of La was 55.55%, the extraction efficiency of Nd was 41.6% the stripping efficiency of La was 35.05%, the stripping efficiency of Nd was 87.32 %, the total efficiency of La was 19.46%, the total efficiency of Nd was 36.30% and Separation factor of Nd and La = 1.87. (author)

  10. Hydrogen purifier module with membrane support

    Science.gov (United States)

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  11. Inflation and Failure of Polymeric Membranes

    DEFF Research Database (Denmark)

    Hassager, Ole; Neergaard, Jesper

    2000-01-01

    We consider the inflation of an axisymmetric polymeric membrane.Some membranes composed of viscoelastic materialsdescribed by a Mooney-Rivlin model show a monotone increasingpressure during inflation. These materialsdevelop a homogeneous membrane thickness in agreement with the Considere...... is found to stabilize the inflated polymer membrane....

  12. Purification non-aqueous solution of quantum dots CdSe- CdS-ZnS from excess organic substance-stabilizer by use PE- HD membrane

    International Nuclear Information System (INIS)

    Kosolapova, K; Al-Alwani, A; Gorbachev, I; Glukhovskoy, E

    2015-01-01

    Recently, a new simple method for the purification of CdSe-CdS-ZnS quantum dots by using membrane filtration, the filtration process, successfully separated the oleic acid from quantum dots through membranes purification after synthesis; purification of quantum dots is a very significant part of post synthetical treatment that determines the properties of the material. We explore the possibilities of the Langmuir-Blodgett technique to make such layers, using quantum dots as a model system. The Langmuir monolayer of quantum dots were then investigated the surface pressure-area isotherm. From isotherm, we found the surface pressure monolayer changed with time. (paper)

  13. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...

  14. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  15. NY-ESO-1-specific circulating CD4+ T cells in ovarian cancer patients are prevalently T(H)1 type cells undetectable in the CD25+ FOXP3+ Treg compartment.

    Science.gov (United States)

    Redjimi, Nassima; Duperrier-Amouriaux, Karine; Raimbaud, Isabelle; Luescher, Immanuel; Dojcinovic, Danijel; Classe, Jean-Marc; Berton-Rigaud, Dominique; Frenel, Jean-Sébastien; Bourbouloux, Emmanuelle; Valmori, Danila; Ayyoub, Maha

    2011-01-01

    Spontaneous CD4(+) T-cell responses to the tumor-specific antigen NY-ESO-1 (ESO) are frequently found in patients with epithelial ovarian cancer (EOC). If these responses are of effector or/and Treg type, however, has remained unclear. Here, we have used functional approaches together with recently developed MHC class II/ESO tetramers to assess the frequency, phenotype and function of ESO-specific cells in circulating lymphocytes from EOC patients. We found that circulating ESO-specific CD4(+) T cells in EOC patients with spontaneous immune responses to the antigen are prevalently T(H)1 type cells secreting IFN-γ but no IL-17 or IL-10 and are not suppressive. We detected tetramer(+) cells ex vivo, at an average frequency of 1:25,000 memory cells, that is, significantly lower than in patients immunized with an ESO vaccine. ESO tetramer(+) cells were mostly effector memory cells at advanced stages of differentiation and were not detected in circulating CD25(+)FOXP3(+)Treg. Thus, spontaneous CD4(+) T-cell responses to ESO in cancer patients are prevalently of T(H)1 type and not Treg. Their relatively low frequency and advanced differentiation stage, however, may limit their efficacy, that may be boosted by immunogenic ESO vaccines.

  16. NY-ESO-1-Specific Circulating CD4+ T Cells in Ovarian Cancer Patients Are Prevalently TH1 Type Cells Undetectable in the CD25+FOXP3+Treg Compartment

    Science.gov (United States)

    Redjimi, Nassima; Duperrier-Amouriaux, Karine; Raimbaud, Isabelle; Luescher, Immanuel; Dojcinovic, Danijel; Classe, Jean-Marc; Berton-Rigaud, Dominique; Frenel, Jean-Sébastien; Bourbouloux, Emmanuelle

    2011-01-01

    Spontaneous CD4+ T-cell responses to the tumor-specific antigen NY-ESO-1 (ESO) are frequently found in patients with epithelial ovarian cancer (EOC). If these responses are of effector or/and Treg type, however, has remained unclear. Here, we have used functional approaches together with recently developed MHC class II/ESO tetramers to assess the frequency, phenotype and function of ESO-specific cells in circulating lymphocytes from EOC patients. We found that circulating ESO-specific CD4+ T cells in EOC patients with spontaneous immune responses to the antigen are prevalently TH1 type cells secreting IFN-γ but no IL-17 or IL-10 and are not suppressive. We detected tetramer+ cells ex vivo, at an average frequency of 1∶25000 memory cells, that is, significantly lower than in patients immunized with an ESO vaccine. ESO tetramer+ cells were mostly effector memory cells at advanced stages of differentiation and were not detected in circulating CD25+FOXP3+Treg. Thus, spontaneous CD4+ T-cell responses to ESO in cancer patients are prevalently of TH1 type and not Treg. Their relatively low frequency and advanced differentiation stage, however, may limit their efficacy, that may be boosted by immunogenic ESO vaccines. PMID:21829534

  17. Uptake of donor lymphocytes treated with 8-methoxypsoralen and ultraviolet A light by recipient dendritic cells induces CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells and down-regulates cardiac allograft rejection

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, De-Hua [Organ Transplant Center, Chinese PLA 309th Hospital, No. 17A Hei-Shan-Hu Road, Beijing 100091 (China); Dou, Li-Ping [Department of Hematology, Chinese PLA General Hospital, No. 28 Fu-Xing Road, Beijing 100853 (China); Wei, Yu-Xiang; Du, Guo-Sheng; Zou, Yi-Ping; Song, Ji-Yong; Zhu, Zhi-Dong; Cai, Ming; Qian, Ye-Yong [Organ Transplant Center, Chinese PLA 309th Hospital, No. 17A Hei-Shan-Hu Road, Beijing 100091 (China); Shi, Bing-Yi, E-mail: shibingyi@medmail.com.cn [Organ Transplant Center, Chinese PLA 309th Hospital, No. 17A Hei-Shan-Hu Road, Beijing 100091 (China)

    2010-05-14

    Extracorporeal photopheresis (ECP) is an effective immunomodulatory therapy and has been demonstrated to be beneficial for graft-vs-host disease and solid-organ allograft rejection. ECP involves reinfusion of a patient's autologous peripheral blood leukocytes treated ex vivo with 8-methoxypsoralen and UVA light radiation (PUVA). Previous studies focused only on ECP treatment of recipient immune cells. Our study is the first to extend the target of ECP treatment to donor immune cells. The results of in vitro co-culture experiments demonstrate uptake of donor PUVA-treated splenic lymphocytes (PUVA-SPs) by recipient immature dendritic cells (DCs). Phagocytosis of donor PUVA-SPs does not stimulate phenotype maturation of recipient DCs. In the same co-culture system, donor PUVA-SPs enhanced production of interleukin-10 and interferon-{gamma} by recipient DCs and impaired the subsequent capability of recipient DCs to stimulate recipient naive T cells. Phagocytosis of donor PUVA-SP (PUVA-SP DCs) by recipient DCs shifted T-cell responses in favor of T helper 2 cells. Infusion of PUVA-SP DCs inhibited cardiac allograft rejection in an antigen-specific manner and induced CD4{sup +}CD25{sup high}Foxp3{sup +} regulatory T cells. In conclusion, PUVA-SP DCs simultaneously deliver the donor antigen and the regulatory signal to the transplant recipient, and thus can be used to develop a novel DC vaccine for negative immune regulation and immune tolerance induction.

  18. CD4+CD25highCD127low Regulatory T Cells in Peripheral Blood Are Not an Independent Factor for Chronic Graft-versus-Host Disease after Allogeneic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Jolanta B. Perz

    2012-01-01

    Full Text Available Background. The therapeutic efficacy of allogeneic hemopoietic stem cell transplantation (HSCT largely relies on the graft-versus-leukemia (GVL effect. Uncontrolled graft-versus-host disease (GVHD is a feared complication of HSCT. Regulatory T cells (Treg are a subset of CD4+ T-helper cells believed to maintain tolerance after HSCT. It remains unclear whether low peripheral blood Treg have an impact on the risk for acute (aGVHD and chronic GVHD (cGVHD. Methods. In this paper we enumerated the CD4+CD25highCD127low Treg in the peripheral blood of 84 patients after at least 150 days from HSCT and in 20 healthy age-matched controls. Results. Although similar mean lymphocyte counts were found in patients and controls, CD3+CD4+ T-cell counts were significantly lower in patients. Patients also had significantly lower Treg percentages among lymphocytes as compared to controls. Patients with cGVHD had even higher percentages of Treg if compared to patients without cGVHD. In multivariate analysis, Treg percentages were not an independent factor for cGVHD. Conclusions. This paper did not show a relation between deficient peripheral blood Treg and cGVHD, therefore cGVHD does not seem to occur as a result of peripheral Treg paucity.

  19. Freeze and Thaw of CD4+CD25+Foxp3+ Regulatory T Cells Results in Loss of CD62L Expression and a Reduced Capacity to Protect against Graft-versus-Host Disease.

    Directory of Open Access Journals (Sweden)

    Mareike Florek

    Full Text Available The adoptive transfer of CD4+CD25+Foxp3+ regulatory T cells (Tregs in murine models of allogeneic hematopoietic cell transplantation (HCT has been shown to protect recipient mice from lethal acute graft-versus-host disease (GVHD and this approach is being actively investigated in human clinical trials. Here, we examined the effects of cryopreservation on Tregs. We found that freeze and thaw of murine and human Tregs is associated with reduced expression of L-selectin (CD62L, which was previously established to be an important factor that contributes to the in vivo protective effects of Tregs. Frozen and thawed murine Tregs showed a reduced capacity to bind to the CD62L binding partner MADCAM1 in vitro as well as an impaired homing to secondary lymphoid organs in vivo. Upon adoptive transfer frozen and thawed Tregs failed to protect against lethal GVHD compared with fresh Tregs in a murine model of allogeneic HCT across major histocompatibility barriers. In summary, the direct administration of adoptively transferred frozen and thawed Tregs adversely affects their immunosuppressive potential which is an important factor to consider in the clinical implementation of Treg immunotherapies.

  20. Uptake of donor lymphocytes treated with 8-methoxypsoralen and ultraviolet A light by recipient dendritic cells induces CD4+CD25+Foxp3+ regulatory T cells and down-regulates cardiac allograft rejection

    International Nuclear Information System (INIS)

    Zheng, De-Hua; Dou, Li-Ping; Wei, Yu-Xiang; Du, Guo-Sheng; Zou, Yi-Ping; Song, Ji-Yong; Zhu, Zhi-Dong; Cai, Ming; Qian, Ye-Yong; Shi, Bing-Yi

    2010-01-01

    Extracorporeal photopheresis (ECP) is an effective immunomodulatory therapy and has been demonstrated to be beneficial for graft-vs-host disease and solid-organ allograft rejection. ECP involves reinfusion of a patient's autologous peripheral blood leukocytes treated ex vivo with 8-methoxypsoralen and UVA light radiation (PUVA). Previous studies focused only on ECP treatment of recipient immune cells. Our study is the first to extend the target of ECP treatment to donor immune cells. The results of in vitro co-culture experiments demonstrate uptake of donor PUVA-treated splenic lymphocytes (PUVA-SPs) by recipient immature dendritic cells (DCs). Phagocytosis of donor PUVA-SPs does not stimulate phenotype maturation of recipient DCs. In the same co-culture system, donor PUVA-SPs enhanced production of interleukin-10 and interferon-γ by recipient DCs and impaired the subsequent capability of recipient DCs to stimulate recipient naive T cells. Phagocytosis of donor PUVA-SP (PUVA-SP DCs) by recipient DCs shifted T-cell responses in favor of T helper 2 cells. Infusion of PUVA-SP DCs inhibited cardiac allograft rejection in an antigen-specific manner and induced CD4 + CD25 high Foxp3 + regulatory T cells. In conclusion, PUVA-SP DCs simultaneously deliver the donor antigen and the regulatory signal to the transplant recipient, and thus can be used to develop a novel DC vaccine for negative immune regulation and immune tolerance induction.

  1. TLR2-dependent induction of IL-10 and Foxp3+ CD25+ CD4+ regulatory T cells prevents effective anti-tumor immunity induced by Pam2 lipopeptides in vivo.

    Directory of Open Access Journals (Sweden)

    Sayuri Yamazaki

    Full Text Available 16 S-[2,3-bis(palmitoylpropyl]cysteine (Pam2 lipopeptides act as toll-like receptor (TLR2/6 ligands and activate natural killer (NK cells and dendritic cells (DCs to produce inflammatory cytokines and cytotoxic NK activity in vitro. However, in this study, we found that systemic injection of Pam2 lipopeptides was not effective for the suppression of NK-sensitive B16 melanomas in vivo. When we investigated the immune suppressive mechanisms, systemic injection of Pam2 lipopeptides induced IL-10 in a TLR2-dependent manner. The Pam2 lipopeptides increased the frequencies of Foxp3(+CD4(+ regulatory T (T reg cells in a TLR2- and IL-10- dependent manner. The T reg cells from Pam2-lipopeptide injected mice maintained suppressor activity. Pam2 lipopeptides, plus the depletion of T reg with an anti-CD25 monoclonal antibody, improved tumor growth compared with Pam2 lipopeptides alone. In conclusion, our data suggested that systemic treatment of Pam2 lipopeptides promoted IL-10 production and T reg function, which suppressed the effective induction of anti-tumor immunity in vivo. It is necessary to develop an adjuvant that does not promote IL-10 and T reg function in vivo for the future establishment of an anti-cancer vaccine.

  2. Biopores/membrane proteins in synthetic polymer membranes.

    Science.gov (United States)

    Garni, Martina; Thamboo, Sagana; Schoenenberger, Cora-Ann; Palivan, Cornelia G

    2017-04-01

    Mimicking cell membranes by simple models based on the reconstitution of membrane proteins in lipid bilayers represents a straightforward approach to understand biological function of these proteins. This biomimetic strategy has been extended to synthetic membranes that have advantages in terms of chemical and mechanical stability, thus providing more robust hybrid membranes. We present here how membrane proteins and biopores have been inserted both in the membrane of nanosized and microsized compartments, and in planar membranes under various conditions. Such bio-hybrid membranes have new properties (as for example, permeability to ions/molecules), and functionality depending on the specificity of the inserted biomolecules. Interestingly, membrane proteins can be functionally inserted in synthetic membranes provided these have appropriate properties to overcome the high hydrophobic mismatch between the size of the biomolecule and the membrane thickness. Functional insertion of membrane proteins and biopores in synthetic membranes of compartments or in planar membranes is possible by an appropriate selection of the amphiphilic copolymers, and conditions of the self-assembly process. These hybrid membranes have new properties and functionality based on the specificity of the biomolecules and the nature of the synthetic membranes. Bio-hybrid membranes represent new solutions for the development of nanoreactors, artificial organelles or active surfaces/membranes that, by further gaining in complexity and functionality, will promote translational applications. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider. Copyright © 2016. Published by Elsevier B.V.

  3. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  4. Biobased Membrane

    NARCIS (Netherlands)

    Koenders, E.A.B.; Zlopasa, J.; Picken, S.J.

    2015-01-01

    The present invention is in the field of a composition for forming a bio-compatible membrane applicable to building material, such as concrete, cement, etc., to a meth od of applying said composition for forming a bio-compatible membrane, a biocompatible membrane, use of said membrane for various

  5. Effect of sulfonation degree on molecular weight, thermal stability, and proton conductivity of poly(arylene ether sulfone)s membrane.

    Science.gov (United States)

    Pirali-Hamedani, Majid; Mehdipour-Ataei, Shahram

    2017-01-01

    Direct copolymerization of sulfonated and non-sulfonated difluorodiphenyl sulfones as dihalide monomers with hydroquinone and also 4,4'-(4,4'-sulfonylbis-(1,4-phenylene)bis(oxy)) diphenol as diols led to preparation of two series of poly(arylene ether sulfone)s. Copolymers with different degrees of sulfonation (40, 50 and 60%) were synthesized in order to evaluate their potential for fuel cell application. 1 H-NMR, FT-IR, and mass spectroscopy were used for characterization of prepared monomers and copolymers. Differential scanning calorimetry and thermogravimetric analysis were applied for investigation and comparison of the thermal properties of copolymers. Laser light scattering (LLS) was employed to calculate zeta potential, conductivity, and molecular weight of copolymers. Copolymers were obtained in high and sufficient molecular weight that was basic need to reach reasonable physical and thermal properties for applications as fuel cell membrane. The effect of similar structural repeating units with different sizes on the final properties of sulfonated poly(ether sulfone)s was investigated to compare their potential in fuel cell membrane.

  6. Performance and stability of niobium-substituted Ba0.5Sr0.5Co0.8Fe0.2O3-¿ membranes

    NARCIS (Netherlands)

    Fang, S.; Yoo, C.-Y.; Bouwmeester, Henricus J.M.

    2011-01-01

    The phase stability, thermal expansion, electrical conductivity, and oxygen permeation of perovskite-type oxides Ba0.5Sr0.5(Co0.8Fe0.2)1 − xNbxO3 − δ (x = 0 − 0.2) have been investigated. Room-temperature X-ray diffraction of as-prepared powders indicates that in the investigated compositional range

  7. Composite hollow fiber gas-liquid membrane contactors for olefin/paraffin separation

    NARCIS (Netherlands)

    Nijmeijer, Dorothea C.; Visser, Tymen; Assen, R.; Wessling, Matthias

    2004-01-01

    Gas¿liquid membrane contactors frequently suffer from undesired wetting of the microporous membrane by the absorption liquid. Stabilization layers at the liquid-side of the microporous membrane potentially prevent this wetting. We apply such stabilized membranes in a membrane contactor using AgNO3

  8. Acetyl salicylic acid and 24-epibrassinolide attenuate decline in photosynthesis, chlorophyll contents and membrane thermo- stability in tomato (lycopersicon esculentum mill.) under heat stress

    International Nuclear Information System (INIS)

    Khan, A.R.; Hui, C.Z.; Ghazanfar, B.

    2015-01-01

    The effect of exogenous application of varying levels of 24-epibrassinolide (0.75, 1.5 and 3 micro M) and acetyl salicylic acid (0.25, 0.75 and 1.25 micro M) for induction of heat tolerance in terms of their effect on photosynthesis, chlorophyll content, membrane integrity and survival in four weeks old tomato (cultivar: Mei Jie Lo) seedlings under high temperature stress (46 degree C/4 h daily) for 21 days was investigated. The daily heat stress treatment had deleterious effects on seedlings but chemical treatments significantly reduced the magnitude of losses to different extents. 24-epibrassinolide (3 micro M) was over all the best treatment to improve survival (86.11%), photosynthesis (39.4%) and chlorophyll contents (26.12%) accompanied with initiation of flower buds and improved vegetative growth. Whereas acetyl salicylic acid (1.25 mM) best improved photosynthetic activity (40.6%) as compared to the untreated heat stressed control seedlings. Moreover, 3 micro M 24-epibrassinolide and 0.75 micro M acetyl salicylic acid reduced cell membrane injury to 8.3 and 6.9% respectively as compared with 22.4% in heat stressed control seedlings. However lower doses of acetyl salicylic acid (0.25 and 0.75 micro M) had slight (5.6 and 12.8%) inhibition effect on the photosynthesis than the heat stressed controls. Overall both acetyl salicylic acid and 24-epibrassinolide up regulated basal heat tolerance in tomato seedlings and studied concentrations demonstrated signature affect upon different parameters. Thus both chemical agents can be potential candidates for further investigations for exogenous application aiming at extension of tomato growth season in summer. (author)

  9. Membranous nephropathy

    Science.gov (United States)

    ... check for hepatitis B, hepatitis C, and syphilis Complement levels Cryoglobulin test Treatment The goal of treatment ... not as helpful for people with membranous nephropathy. Medicines used treat membranous nephropathy include: Angiotensin-converting enzyme ( ...

  10. Depletion of CD4+CD25+ regulatory T cells exacerbates sodium iodide-induced experimental autoimmune thyroiditis in human leucocyte antigen DR3 (DRB1*0301) transgenic class II-knock-out non-obese diabetic mice.

    Science.gov (United States)

    Flynn, J C; Meroueh, C; Snower, D P; David, C S; Kong, Y M

    2007-03-01

    Both genetic and environmental factors contribute to autoimmune disease development. Previously, we evaluated genetic factors in a humanized mouse model of Hashimoto's thyroiditis (HT) by immunizing human leucocyte antigen DR3 (HLA-DR3) and HLA-DQ8 transgenic class II-knock-out non-obese diabetic (NOD) mice. DR3+ mice were susceptible to experimental autoimmune thyroiditis (EAT) induction by both mouse thyroglobulin (mTg) and human (h) Tg, while DQ8+ mice were weakly susceptible only to hTg. As one environmental factor associated with HT and tested in non-transgenic models is increased sodium iodide (NaI) intake, we examined the susceptibility of DR3+ and/or DQ8+ mice to NaI-induced disease. Mice were treated for 8 weeks with NaI in the drinking water. At 0 x 05% NaI, 23% of DR3+, 0% of DQ8+ and 20% of DR3+DQ8+ mice had thyroid destruction. No spleen cell proliferation to mTg was observed. Most mice had undetectable anti-mTg antibodies, but those with low antibody levels usually had thyroiditis. At 0.3% NaI, a higher percentage of DR3+ and DR3+DQ8+ mice developed destructive thyroiditis, but it was not statistically significant. However, when DR3+ mice had been depleted of CD4+CD25+ regulatory T cells prior to NaI treatment, destructive thyroiditis (68%) and serum anti-mTg antibodies were exacerbated further. The presence of DQ8 molecules does not alter the susceptibility of DR3+DQ8+ mice to NaI-induced thyroiditis, similar to earlier findings with mTg-induced EAT. Susceptibility of DR3+ mice to NaI-induced EAT, in both the presence and absence of regulatory T cells, demonstrates the usefulness of HLA class II transgenic mice in evaluating the roles of environmental factors and immune dysregulation in autoimmune thyroid disease.

  11. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  12. Water stability of zeolite imidazolate framework 8 and application to porous membrane-protected micro-solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples.

    Science.gov (United States)

    Ge, Dandan; Lee, Hian Kee

    2011-11-25

    Zeolite imidazolate framework 8 (ZIF-8) has permanent porosity, high surface area, hydrophobic property, open metal sites and remarkable water stability. These novel properties characterize the material as being different from other moisture sensitive metal-organic frameworks and endow ZIF-8 with the potential to extract trace analytes from environmental water samples. In the present study, ZIF-8 was synthesized and used as a sorbent for micro-solid-phase extraction of 6 polycyclic aromatic hydrocarbons (PAHs) from environmental water samples for the first time. Parameters influencing the extraction efficiency such as desorption time, extraction time, desorption solvent and salt concentration were investigated. Environmental water samples collected from a local lake were processed using this novel μ-SPE procedure. ZIF-8 proved to be a very efficient extraction sorbent for the extraction of trace analytes from water samples. The limits of detection from gas chromatography-mass spectrometric analysis of PAHs were 0.002-0.012 ng/ml. The linear ranges were 0.1-50 or 0.5-50 ng/ml. The relative standard deviations for five replicates of the extractions were in the range of 2.1-8.5%. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Development of thin PdeAg supported membranes for fluidized bed membrane reactors including WGS related gases

    OpenAIRE

    Fernandez, E Ekain; Helmi Siasi Farimani, A Arash; Coenen, KT Kai; Meléndez, J; Viviente, JL; Pacheco Tanaka, DA; Sint Annaland, van, M Martin; Gallucci, F Fausto

    2015-01-01

    This paper reports the preparation, characterization and stability tests of Pd-based thin membranes for fluidized bed membrane reactor applications. Various thin membranes have been prepared by simultaneous Pd-Ag electroless plating. A simple technique for sealing of the produced membranes is reported and discussed. The membranes have been characterized for single gas permeation, and afterwards used for permeation of mixtures of gases and under fluidization conditions. The membranes have show...

  14. A SNARE-Like Superfamily Protein SbSLSP from the Halophyte Salicornia brachiata Confers Salt and Drought Tolerance by Maintaining Membrane Stability, K(+)/Na(+) Ratio, and Antioxidant Machinery.

    Science.gov (United States)

    Singh, Dinkar; Yadav, Narendra Singh; Tiwari, Vivekanand; Agarwal, Pradeep K; Jha, Bhavanath

    2016-01-01

    About 1000 salt-responsive ESTs were identified from an extreme halophyte Salicornia brachiata. Among these, a novel salt-inducible gene SbSLSP (Salicornia brachiata SNARE-like superfamily protein), showed up-regulation upon salinity and dehydration stress. The presence of cis-regulatory motifs related to abiotic stress in the putative promoter region supports our finding that SbSLSP gene is inducible by abiotic stress. The SbSLSP protein showed a high sequence identity to hypothetical/uncharacterized proteins from Beta vulgaris, Spinacia oleracea, Eucalyptus grandis, and Prunus persica and with SNARE-like superfamily proteins from Zostera marina and Arabidopsis thaliana. Bioinformatics analysis predicted a clathrin adaptor complex small-chain domain and N-myristoylation site in the SbSLSP protein. Subcellular localization studies indicated that the SbSLSP protein is mainly localized in the plasma membrane. Using transgenic tobacco lines, we establish that overexpression of SbSLSP resulted in elevated tolerance to salt and drought stress. The improved tolerance was confirmed by alterations in a range of physiological parameters, including high germination and survival rate, higher leaf chlorophyll contents, and reduced accumulation of Na(+) ion and reactive oxygen species (ROS). Furthermore, overexpressing lines also showed lower water loss, higher cell membrane stability, and increased accumulation of proline and ROS-scavenging enzymes. Overexpression of SbSLSP also enhanced the transcript levels of ROS-scavenging and signaling enzyme genes. This study is the first investigation of the function of the SbSLSP gene as a novel determinant of salinity/drought tolerance. The results suggest that SbSLSP could be a potential candidate to increase salinity and drought tolerance in crop plants for sustainable agriculture in semi-arid saline soil.

  15. A SNARE-like superfamily protein SbSLSP from the halophyte Salicornia brachiata confers salt and drought tolerance by maintaining membrane stability, K+/Na+ ratio, and antioxidant machinery

    Directory of Open Access Journals (Sweden)

    Dinkar eSingh

    2016-06-01

    Full Text Available About 1000 salt-responsive ESTs were identified from an extreme halophyte Salicornia brachiata. Among these, a novel salt-inducible gene SbSLSP, (Salicornia brachiata SNARE-like superfamily protein showed up-regulation upon salinity and dehydration stress. The presence of cis-regulatory motifs related to abiotic stress in the putative promoter region supports our finding that SbSLSP gene is inducible by abiotic stress. The SbSLSP protein showed a high sequence identity to hypothetical/uncharacterised proteins from Beta vulgaris, Spinacia oleracea, Eucalyptus grandis and Prunus persica and with SNARE-like superfamily proteins from Zostera marina and Arabidopsis thaliana. Bioinformatics analysis predicted a clathrin adaptor complex small-chain domain and N-myristoylation site in the SbSLSP protein. Subcellular localisation studies indicated that the SbSLSP protein is mainly localised in the plasma membrane. Using transgenic tobacco lines, we establish that overexpression of SbSLSP resulted in elevated tolerance to salt and drought stress. The improved tolerance was confirmed by alterations in a range of physiological parameters, including high germination and survival rate, higher leaf chlorophyll contents, and reduced accumulation of Na+ ion and reactive oxygen species (ROS. Furthermore, overexpressing lines also showed lower water loss, higher cell membrane stability and increased accumulation of proline and ROS-scavenging enzymes. Overexpression of SbSLSP also enhanced the transcript levels of ROS-scavenging and signalling enzyme genes. This study is the first investigation of the function of the SbSLSP gene as a novel determinant of salinity/drought tolerance. The results suggest that SbSLSP could be a potential candidate to increase salinity and drought tolerance in crop plants for sustainable agriculture in semi-arid saline soil.

  16. Effect of detergent concentration on the thermal stability of a membrane protein: The case study of bacterial reaction center solubilized by N,N-dimethyldodecylamine-N-oxide.

    Science.gov (United States)

    Palazzo, Gerardo; Lopez, Francesco; Mallardi, Antonia

    2010-01-01

    We report on the response of reaction center (RC) from Rhodobacter sphaeroides (an archetype of membrane proteins) to the exposure at high temperature. The RCs have been solubilized in aqueous solution of the detergent N,N-dimethyldodecylamine-N-oxide (LDAO). Changes in the protein conformation have been probed by monitoring the variation in the absorbance of the bacteriochlorine cofactors and modification in the efficiency of energy transfer from tryptophans to cofactors and among the cofactors (through fluorescence measurements). The RC aggregation taking place at high temperature has been investigated by means of dynamic light scattering. Two experimental protocols have been used: (i) isothermal kinetics, in which the time evolution of RC after a sudden increase of the temperature is probed, and (ii) T-scans, in which the RCs are heated at constant rate. The analysis of the results coming from both the experiments indicates that the minimal kinetic scheme requires an equilibrium step and an irreversible process. The irreversible step is characterized by a activation energy of 205+/-14 kJ/mol and is independent from the detergent concentration. Since the temperature dependence of the aggregation rate was found to obey to the same law, the aggregation process is unfolding-limited. On the other hand, the equilibrium process between the native and a partially unfolded conformations was found to be strongly dependent on the detergent concentration. Increasing the LDAO content from 0.025 to 0.5 wt.% decreases the melting temperature from 49 to 42 degrees C. This corresponds to a sizeable (22 kJ/mol at 25 degrees C) destabilization of the native conformation induced by the detergent. The nature of the aggregates formed by the denatured RCs depends on the temperature. For temperature below 60 degrees C compact aggregates are formed while at 60 degrees C the clusters are less dense with a scaling relation between mass and size close to that expected for diffusion

  17. Porous polyoxadiazole membranes for harsh environment

    KAUST Repository

    Maab, Husnul

    2013-10-01

    A series of polyoxadiazoles with exceptionally high stability at temperatures as high as 370°C and in oxidative medium has been synthesized by polycondensation and manufactured into porous membranes by phase inversion. The membranes were characterized by thermal analysis (TGA), chemical stability was measured by immersion test, oxidative stability by Fenton\\'s test, pore diameter by porosimetry and the morphology by FESEM. The polymers are soluble only in sulfuric acid and are stable in organic solvents like NMP, THF and isopropanol. The membranes selectivity was confirmed by separation of polystyrene standards with different molecular weights. Most membranes were characterized as having a cut-off of 60,000. g/mol. Being stable under harsh environments, the membranes have incomparable characteristics with perspectives of application in chemical and pharmaceutical industry, catalytic reactors, in combination with oxidative processes and other applications so far envisioned only for ceramic membranes. © 2013.

  18. Adoptive transfer of pregnancy-induced CD4+CD25+ regulatory T cells reverses the increase in abortion rate caused by interleukin 17 in the CBA/JxBALB/c mouse model.

    Science.gov (United States)

    Wang, Wen-Juan; Liu, Fu-Jun; Xin-Liu; Hao, Cui-Fang; Bao, Hong-Chu; Qu, Qing-Lan; Liu, Xue-Mei

    2014-05-01

    Could adoptive transfer of pregnancy-induced CD4+CD25+ regulatory T cells (Tregs) reverse the increase in abortion rate caused by interleukin 17 (IL-17) in the CBA/J × BALB/c mouse model? The effects of exogenous IL-17 on increased abortion rate, as well as decreased transforming growth factor (TGF)-β and IL-10 expression, are reversed by a pre-mating transfusion of Tregs in a mouse model of pregnancy. IL-17 is a pro-inflammatory cytokine mainly expressed by T helper 17 cells, and plays a pivotal role in the pathogenesis of endometriosis, miscarriage, preterm labor and pre-eclampsia. The activity of Th17 cells is attenuated by the anti-inflammatory action of Tregs. Fifty microliters of phosphate-buffered saline (PBS) (Group 1,) or recombinant IL-17 (rIL) (10 µg/mouse) supernatant (Group 2) was administered in the vaginal vaults of anesthetized pregnant CBA/J mice on Day 1 of pregnancy. Tregs (2 × 10(5) cells) purified from pregnant CBA/J × BALB/c mice were given i.v. via the tail vein 2 days before mating (Group 3) or on Day 7 of pregnancy (Group 4). Mice (n = 40) were randomly assigned to one of four experimental groups. The numbers of surviving and reabsorbed fetuses in each group were counted on Day 14 of pregnancy, and the expression of interferon (IFN)-γ, IL-4, TGF-β and IL-10 in the decidual tissue was assessed by real-time RT-PCR and western blotting. Normal pregnant CBA/J mice mated with BALB/c males which received transvaginal rIL-17 presented with a significantly increased abortion rate compared with the group which received PBS (27.7 versus 9.9%, respectively; P abortion rate caused by IL-17 (12.5 versus 27.7%, respectively; P effect. Transfusion of Tregs did not affect IFN-γ or IL-4 expression in the decidual tissue at either the mRNA or protein level. Administration of rIL-17 resulted in a decrease in production of TGF-β and IL-10 at both mRNA and protein levels (P effect on TGF-β or IL-10 expression. These data derive from only a small

  19. Development of Improved Membranes for ROWPU Spiral-Wound Elements

    National Research Council Canada - National Science Library

    Riley, R

    2001-01-01

    .... They are: poor lack of chemical stability to oxidants such as chlorine, high fouling rates due to membrane surface roughness and high bacterial attachment counts on the membrane surface leading to biofouling...

  20. Sol-Gel Synthesis, Electrochemical Characterization, and Stability Testing of Ti0.7W0.3O2 Nanoparticles for Catalyst Support Applications in Proton-Exchange Membrane Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Subban, Chinmayee V. [Cornell Univ., Ithaca, NY (United States); Zhou, Qin [Cornell Univ., Ithaca, NY (United States); Hu, Anthony [Cornell Univ., Ithaca, NY (United States); Moylan, Thomas E. [General Motors Research and Development, Warren, MI (United States); Wagner, Frederick T. [General Motors Research and Development, Warren, MI (United States); DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States)

    2010-11-19

    The materials currently used in proton-exchange membrane fuel cells (PEMFCs) require complex control of operating conditions to make them sufficiently durable to permit commercial deployment. One of the major materials challenges to allow simplification of fuel cell operating strategies is the discovery of catalyst supports that are much more stable to oxidative decomposition than currently used carbon blacks. Here we report the synthesis and characterization of Ti0.7W0.3O2 nanoparticles (approximately 50 nm diameter), a promising doped metal oxide that is a candidate for such a durable catalyst support. The synthesized nanoparticles were platinized, characterized by electrochemical testing, and evaluated for stability under PEMFC and other oxidizing acidic conditions. Ti0.7W0.3O2 nanoparticles show no evidence of decomposition when heated in a Nafion solution for 3 weeks at 80 °C. In contrast, when heated in sulfuric, nitric, perchloric, or hydrochloric acid, the oxide reacts to form salts such as titanylsulfatehydrate from sulfuric acid. Electrochemical tests show that rates of hydrogen oxidation and oxygen reduction by platinum nanoparticles supported on Ti0.7W0.3O2 are comparable to those of commercial Pt on carbon black.

  1. The homologous homeodomain-leucine zipper transcription factors HaHB1 and AtHB13 confer tolerance to drought and salinity stresses via the induction of proteins that stabilize membranes.

    Science.gov (United States)

    Cabello, Julieta V; Chan, Raquel L

    2012-09-01

    Transgenic approaches to conferring tolerance to abiotic stresses have mostly resulted in some degree of plant yield penalty under normal or mild stress conditions. Recently, we have reported that the homeodomain-leucine zipper transcription factors (TFs) HaHB1 and AtHB13 were able to confer tolerance to freezing temperatures via the induction of glucanase (GLU and PR2) and chitinase (PR4) proteins. In the present study, we show that the expression of these TFs, as well as that of their putative targets AtPR2, AtPR4 and AtGLU, is up-regulated by drought and salinity stresses. Transgenic plants overexpressing separately these five genes exhibited tolerance to severe drought and salinity stresses, displaying a cell membrane stabilization mechanism. Under normal or mild stress conditions, these plants achieved an improved yield associated with higher chlorophyll content. Moreover, overexpression of the sunflower HaHB1 gene from its own, inducible, promoter conferred a high drought-stress tolerance without yield penalty under normal or mild stress conditions. We propose these TFs as potential biotechnological tools to breed crops for tolerance to multiple stresses and for increased yield. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  2. Effect of heat treatment on the activity and stability of PtCo/C catalyst and application of in-situ X-ray absorption near edge structure for proton exchange membrane fuel cell

    Science.gov (United States)

    Lin, Rui; Zhao, Tiantian; Shang, Mingfeng; Wang, Jianqiang; Tang, Wenchao; Guterman, Vladimir E.; Ma, Jianxin

    2015-10-01

    For the purpose of reducing the cost and improving the performance of the proton exchange membrane fuel cell (PEMFC), some low-Pt or non-Pt catalysts have been studied in recent years. PtCo/C electrocatalysts are synthesized by a two-step reduction approach followed by the heat treatment. PtCo metal particles are uniformly dispersed on the surface of XC-72 carbon support, with a uniform particle size distribution. The PtCo/C catalyst after 400 °C heat treatment has the best electrochemical performance among the as-prepared catalysts, even superior to the commercial Pt/C catalyst. In the durability test, PtCo/C-400 also shows excellent stability with only 6.9% decline of electrochemical surface area (ECSA) after 1000 cyclic voltammetry (CV) cycles. In-situ X-ray absorption near edge structure (XANES) technique is conducted to explore the nanostructure change of Pt during the PEMFC operation. For PtCo/C catalyst, with the fuel cell operation potential decreasing from open circuit voltage (OCV) to 0.3 V, the Pt L3 white line intensity decreases continuously, indicating the decline of Pt 5d-vacancy due to the adsorption of oxygenated species.

  3. Oxygen permeation and stability of La 0.4Ca 0.6Fe 1-xCo xO 3-δ ( x = 0, 0.25, 0.5) membranes

    Science.gov (United States)

    Diethelm, S.; Van herle, J.; Middleton, P. H.; Favrat, D.

    Three perovskite-type compounds of composition La 0.4Ca 0.6Fe 1- xCo xO 3- δ ( x=0, 0.25 and 0.5) were investigated for use as oxygen separation membranes for the partial oxidation (POX) of methane to syngas. Special attention was given to the question of their stability in real operating conditions. A permeation set-up was specially designed to measure oxygen fluxes through these materials when placed in a strong pO 2 gradient. It also facilitated testing the long-term stability of the specimen. Permeation measurements performed in an air/argon gradient between 800 and 1000 °C showed that the highest fluxes were obtained with the highest content of cobalt (La 0.4Ca 0.6Fe 0.5Co 0.5O 3- δ ≅ La 0.4Ca 0.6Fe 0.75Co 0.25O 3- δ > La 0.4Ca 0.6FeO 3- δ). In addition, comparison between the fluxes of samples of different thickness gave clear evidence of surface limitations in the oxygen transport. The long-term stability test showed opposite trends: only the two lowest Co containing compounds ( x=0 and 0.25) sustained an air/(Ar+H 2) gradient over more than 600 h. The other ( x=0.5) broke shortly after the introduction of H 2. In the presence of H 2, the oxygen flux was increased by a factor 10 compared to Ar and reached 0.83 μmol/cm 2 s for La 0.4Ca 0.6Fe 0.75Co 0.25O 3- δ at 900 °C. Post-operation SEM examination of the cross-section and both surfaces revealed that the surface exposed to H 2 had started to decompose resulting in the formation of a thin porous layer but the bulk of the material remained unchanged.

  4. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  5. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  6. Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability.

    Science.gov (United States)

    Wang, Zhangxin; Lin, Shihong

    2017-04-01

    Membrane distillation (MD) has been identified as a promising technology to desalinate the hypersaline wastewaters from fracking and other industries. However, conventional hydrophobic MD membranes are highly susceptible to fouling and/or wetting by the hydrophobic and/or amphiphilic constituents in these wastewaters of complex compositions. This study systematically investigates the impact of the surface wetting properties on the membrane wetting and/or fouling behaviors in MD. Specifically, we compare the wetting and fouling resistance of three types of membranes of different wetting properties, including hydrophobic and omniphobic membranes as well as composite membranes with a hydrophobic substrate and a superhydrophilic top surface. We challenged the MD membranes with hypersaline feed solutions that contained a relatively high concentration of crude oil with and without added synthetic surfactants, Triton X-100. We found that the composite membranes with superhydrophilic top surface were robustly resistant to oil fouling in the absence of Triton X-100, but were subject to pore wetting in the presence of Triton X-100. On the other hand, the omniphobic membranes were easily fouled by oil-in-water emulsion without Triton X-100, but successfully sustained stable MD performance with Triton X-100 stabilized oil-in-water emulsion as the feed solution. In contrast, the conventional hydrophobic membranes failed readily regardless whether Triton X-100 was present, although via different mechanisms. These findings are corroborated by contact angle measures as well as oil-probe force spectroscopy. This study provides a holistic picture regarding how a hydrophobic membrane fails in MD and how we can leverage membranes with special wettability to prevent membrane failure in MD operations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Gas Separations using Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Paul KT Liu

    2005-01-13

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  8. Inflation and Instability of a Polymeric Membrane

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Hassager, Ole

    1999-01-01

    We consider the inflation of an axisymmetric polymeric membrane. Some membranes composed of viscoelastic materials described by a Mooney-Rivlin model show a monotone increasingpressure during inflation. These materialsdevelop a homogeneous membrane thickness in agreement with the Considere......-Pearson condition.Molecularly based models such as the neo-Hookean, Doi-Edwards or Tom-Pom model exhibit a pressure maximum when inflated. Membranes described by these models develop local thinning which may lead to bursting in finite time. Chain branching is found to be a stabilizing factor for a polymer membrane...... undergoing inflation....

  9. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  10. Proton conducting ceramic membranes for hydrogen separation

    Science.gov (United States)

    Elangovan, S [South Jordan, UT; Nair, Balakrishnan G [Sandy, UT; Small, Troy [Midvale, UT; Heck, Brian [Salt Lake City, UT

    2011-09-06

    A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

  11. Performance and stability of (ZrO2)0.89(Y2O3)0.01(Sc2O3)0.10-LaCr0.85Cu0.10Ni0.05O3-δ oxygen transport membranes under conditions relevant for oxy-fuel combustion

    DEFF Research Database (Denmark)

    Pirou, Stéven; Bermudez, Jose M.; Na, Beom Tak

    2018-01-01

    Self-standing, planar dual-phase oxygen transport membranes consisting of 70 vol% (ZrO2).89(Y2O3).01(Sc2O3).10 (10Sc1YSZ) and 30 vol% LaCr.85Cu.10Ni.05O3-δ (LCCN) were successfully developed and tested. The stability of the composite membrane was studied in simulated oxy-fuel power plant flue......-gas conditions (CO2, SO2, H2O). The analyses of the exposed composites by X-ray diffraction (XRD), X-ray fluorescence (XRF), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Raman spectroscopy revealed an excellent stability. Oxygen permeation fluxes were measured across 1000...

  12. The frequency of CD127low expressing CD4+CD25high T regulatory cells is inversely correlated with human T lymphotrophic virus type-1 (HTLV-1 proviral load in HTLV-1-infection and HTLV-1-associated myelopathy/tropical spastic paraparesis

    Directory of Open Access Journals (Sweden)

    Chieia Marco

    2008-07-01

    Full Text Available Abstract Background CD4+CD25high regulatory T (TReg cells modulate antigen-specific T cell responses, and can suppress anti-viral immunity. In HTLV-1 infection, a selective decrease in the function of TReg cell mediated HTLV-1-tax inhibition of FOXP3 expression has been described. The purpose of this study was to assess the frequency and phenotype of TReg cells in HTLV-1 asymptomatic carriers and in HTLV-1-associated neurological disease (HAM/TSP patients, and to correlate with measures of T cell activation. Results We were able to confirm that HTLV-I drives activation, spontaneous IFNγ production, and proliferation of CD4+ T cells. We also observed a significantly lower proportion of CTLA-4+ TReg cells (CD4+CD25high T cells in subjects with HAM/TSP patients compared to healthy controls. Ki-67 expression was negatively correlated to the frequency of CTLA-4+ TReg cells in HAM/TSP only, although Ki-67 expression was inversely correlated with the percentage of CD127low TReg cells in healthy control subjects. Finally, the proportion of CD127low TReg cells correlated inversely with HTLV-1 proviral load. Conclusion Taken together, the results suggest that TReg cells may be subverted in HAM/TSP patients, which could explain the marked cellular activation, spontaneous cytokine production, and proliferation of CD4+ T cells, in particular those expressing the CD25highCD127low phenotype. TReg cells represent a potential target for therapeutic intervention for patients with HTLV-1-related neurological diseases.

  13. Proton exchange membranes prepared by grafting of styrene/divinylbenzene into crosslinked PTFE membranes

    International Nuclear Information System (INIS)

    Li Jingye; Ichizuri, Shogo; Asano, Saneto; Mutou, Fumihiro; Ikeda, Shigetoshi; Iida, Minoru; Miura, Takaharu; Oshima, Akihiro; Tabata, Yoneho; Washio, Masakazu

    2005-01-01

    Thin PTFE membranes were prepared by coating the PTFE dispersion onto the aluminum films. Thus the thin crosslinked PTFE (RX-PTFE) membranes were obtained by means of electron beam irradiation above the melting temperature of PTFE under oxygen-free atmosphere. The RX-PTFE membranes were pre-irradiated and grafted by styrene with or without divinylbenzene (DVB) in liquid phase. The existence of DVB accelerated the initial grafting rate. The styrene grafted RX-PTFE membranes are white colored, on the other hand, the styrene/DVB grafted RX-PTFE membranes are colorless. The proton exchange membranes (PEMs) were obtained by sulfonating the grafted membranes using chlorosulfonic acid. The ion exchange capacity (IEC) values of the PEMs ranging from 1.5 to 2.8 meq/g were obtained. The PEMs made from the styrene/DVB grafted membranes showed higher chemical stability than those of the styrene grafted membranes under oxidative circumstance

  14. Hydrogen Selective Exfoliated Zeolite Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Tsapatsis, Michael [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Daoutidis, Prodromos [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Elyassi, Bahman [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Lima, Fernando [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Iyer, Aparna [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Agrawal, Kumar [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Sabnis, Sanket [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  15. New Polymeric Membranes for Organic Solvent Nanofiltration

    KAUST Repository

    Aburabie, Jamaliah

    2017-05-01

    The focus of this dissertation was the development, synthesis and modification of polymers for the preparation of membranes for organic solvent nanofiltration. High chemical stability in a wide range of solvents was a key requirement. Membranes prepared from synthesized polymers as well as from commercial polymers were designed and chemically modified to reach OSN requirements. A solvent stable thin-film composite (TFC) membrane is reported, which is fabricated on crosslinked polythiosemicarbazide (PTSC) as substrate. The membranes exhibited high fluxes towards solvents like THF, DMF and DMSO ranging around 20 L/m2 h at 5 bar with a MWCO of around 1000 g/mol. Ultrafiltration PTSC membranes were prepared by non-solvent induced phase separation and crosslinked with GPTMS. The crosslinking reaction was responsible for the formation of an inorganic-type-network that tuned the membrane pore size. The crosslinked membranes acquired high solvent stability in DMSO, DMF and THF with a MWCO above 1300 g/mol. Reaction Induced Phase Separation (RIPS) was introduced as a new method for the preparation of skinned asymmetric membranes. These membranes have two distinctive layers with different morphologies both from the same polymer. The top dense layer is composed of chemically crosslinked polymer chains while the bottom layer is a porous structure formed by non-crosslinked polymer chains. Such membranes were tested for vitamin B12 in solvents after either crosslinking the support or dissolving the support and fixing the freestanding membrane on alumina. Pebax® 1657 was utilized for the preparation of composite membranes by simple coating. Porous PAN membranes were coated with Pebax® 1657 which was then crosslinked using TDI. Crosslinked Pebax® membranes show high stability towards ethanol, propanol and acetone. The membranes were also stable in DMF once crosslinked PAN supports were used. Sodium alginate polymer was investigated for the preparation of thin film composite

  16. Biomimetic Membrane Arrays on Cast Hydrogel Supports

    DEFF Research Database (Denmark)

    Roerdink-Lander, Monique; Ibragimova, Sania; Rein Hansen, Christian

    2011-01-01

    Lipid bilayers are intrinsically fragile and require mechanical support in technical applications based on biomimetic membranes. Tethering the lipid bilayer membranes to solid substrates, either directly through covalent or ionic substrate−lipid links or indirectly on substrate-supported cushions......, provides mechanical support but at the cost of small molecule transport through the membrane−support sandwich. To stabilize biomimetic membranes while allowing transport through a membrane−support sandwich, we have investigated the feasibility of using an ethylene tetrafluoroethylene (ETFE...

  17. Recent development of ionic liquid membranes

    Directory of Open Access Journals (Sweden)

    Junfeng Wang

    2016-04-01

    Full Text Available The interest in ionic liquids (IL is motivated by its unique properties, such as negligible vapor pressure, thermal stability, wide electrochemical stability window, and tunability of properties. ILs have been highlighted as solvents for liquid–liquid extraction and liquid membrane separation. To further expand its application in separation field, the ionic liquid membranes (ILMs and its separation technology have been proposed and developed rapidly. This paper is to give a comprehensive overview on the recent applications of ILMs for the separation of various compounds, including organic compounds, mixed gases, and metal ions. Firstly, ILMs was classified into supported ionic liquid membranes (SILMs and quasi-solidified ionic liquid membranes (QSILMs according to the immobilization method of ILs. Then, preparation methods of ILMs, membrane stability as well as applications of ILMs in the separation of various mixtures were reviewed. Followed this, transport mechanisms of gaseous mixtures and organic compounds were elucidated in order to better understand the separation process of ILMs. This tutorial review intends to not only offer an overview on the development of ILMs but also provide a guide for ILMs preparations and applications. Keywords: Ionic liquid membrane, Supported ionic liquid membrane, Qusai-solidified ionic liquid membrane, Stability, Application

  18. Biomimetic aquaporin membranes coming of age

    DEFF Research Database (Denmark)

    Tang, Chuyang; Wang, Zhining; Petrinić, Irena

    2015-01-01

    Membrane processes have been widely used for water purification because of their high stability, efficiency, low energy requirement and ease of operation. Traditional desalting membranes are mostly dense polymeric films with a "trade off" effect between permeability and selectivity. Biological...... membranes, on the other hand, can perform transport in some cases with exceptional flux and rejection properties. In particular the discovery of selective water channel proteins - aquaporins - has prompted interest in using these proteins as building blocks for new types of membranes. The major challenge...... in developing an aquaporin-based membrane technology stems from the fact that the aquaporin protein spans a membrane only a few nanometers thick. Such ultrathin membranes will not be able to withstand any substantial pressures, nor being industrially scalable without supporting structures. Incorporating...

  19. Suppression of Gas Separation Membrane Plasticization by Homogeneous Polymer Blending

    NARCIS (Netherlands)

    Bos, A.; Punt, Ineke G.M.; Strathmann, H.; Wessling, Matthias

    2001-01-01

    Plasticization is a phenomenon frequently encountered in the application of glassy polymeric materials for solution-diffusion membranes. Conventional methods for stabilizing the membrane are either annealing or cross-linking, which hardly influence the selectivity of the membrane, but decrease the

  20. Robotic membranes

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    , Vivisection and Strange Metabolisms, were developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts in Copenhagen as a means of engaging intangible digital data with tactile physical material. As robotic membranes, they are a dual examination...

  1. Study for increasing the stabilization time of a catalytic dye to facilitate the fabrication of membrane electrode assemblies; Estudio para incrementar el tiempo de estabilizacion de una tinta catalitica para facilitar la fabricacion de ensambles membrana-electrodo

    Energy Technology Data Exchange (ETDEWEB)

    Flores Hernandez, J. Roberto [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)] e-mail: jrflores@iie.org.mx; Martinez Vado, F. Isaias [Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico); Cano Castillo, Ulises, Albarran Sanchez, Lorena [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2009-09-15

    An infrastructure project has been underway for hydrogen technology and fuel cells at the Electrical Research Institute (IIE, Spanish acronym). Part of this project is an activity for the fabrication of membrane electrode assemblies (MEA). Currently, a fabrication process is well-established for the MEA using the spray technique. In addition, a catalytic dye base composition has been developed for use in the fabrication of high-quality MEA with a good degree of reproducibility. Nevertheless, the instability of the dye over time prevents continuous fabrication of MEA. This document presents the results obtained, to-date, of research conducted at the IIE aimed at increasing the stability of the catalytic dye by adding a surfactant with different concentrations and increasing the concentration of the Nafion® solution. It was found that the effect of adding the surfactant to the catalytic dye results in a qualitative decrease in the agglomerate sizes, while also decreasing the porosity of the dye once it has dried. In addition, it was found that increasing the amount of Nafion® in the catalytic die increases the porosity. [Spanish] En el Instituto de Investigaciones Electricas (IIE) se ha venido trabajando en un proyecto de infraestructura sobre la tecnologia de hidrogeno y celdas de combustible. Dentro de este proyecto se tiene una actividad orientada a la fabricacion de Ensambles Membrana-Electrodo (MEA's). Actualmente se tiene un proceso de fabricacion bien establecido para la elaboracion de MEA's utilizando la tecnica de rociado, asimismo, se tiene una composicion base de tinta catalitica con la cual se fabrican MEA's de buena calidad y con buen grado de reproducibilidad. Sin embargo, la inestabilidad de la tinta con respecto al tiempo impide tener una fabricacion continua de los MEA's. En este documento se presentan los resultados obtenidos hasta ahora de una investigacion que se realiza en el IIE orientada a incrementar la estabilidad de la

  2. Ceria Based Composite Membranes for Oxygen Separation

    DEFF Research Database (Denmark)

    Gurauskis, Jonas; Ovtar, Simona; Kaiser, Andreas

    2014-01-01

    Mixed ionic-electronic conducting membranes for oxygen gas separation are attracting a lot of interest due to their promising potential for the pure oxygen and the syngas production. Apart from the need for a sufficiently high oxygen permeation fluxes, the prolonged stability of these membranes...... under the large oxygen potential gradients at elevated temperatures is decisive for the future applications. The gadolinium doped cerium oxide (CGO) based composite membranes are considered as promising candidates due to inherent stability of CGO phase. The CGO matrix is a main oxygen ion transporter......; meanwhile the primary role of a secondary phase in this membrane is to compensate the low electronic conductivity of matrix at intended functioning conditions. In this work thin film (15-20 μm) composite membranes based on CGO matrix and LSF electronic conducting phase were fabricated and evaluated...

  3. New membrane structures with proton conducting properties

    DEFF Research Database (Denmark)

    Nørgaard, Casper Frydendal

    Perfluorosulfonic acid membranes (e.g. Nafion®) are the most widely applied electrolytes in Polymer Electrolyte Membrane Fuel Cells (PEMFCs) because of their good chemical stability, mechanical properties and high proton conductivity, when well hydrated. The upper limit of operating temperature...... for these membranes is restricted by the loss of conductivity and dimensional stability as the temperature reaches the boiling point of water and the glass transition temperature of the polymer. At low relative humidity the membranes dehydrate, resulting in loss of conductivity and reduced dimensions. High...... [1, 2, 3]. Improved fuel cell performance from incorporation of hygroscopic oxides or solid proton conductors (e.g. zirconium phosphates) has been reported. The poster exhibits upcoming work in the field of composite electrolyte membranes at the University of Southern Denmark, combining radiation...

  4. Membrane Buckling Induced by Curved Filaments

    Science.gov (United States)

    Lenz, Martin; Crow, Daniel J. G.; Joanny, Jean-François

    2009-07-01

    We present a novel buckling instability relevant to membrane budding in eukaryotic cells. In this mechanism, curved filaments bind to a lipid bilayer without changing its intrinsic curvature. As more and more filaments adsorb, newly added ones are more and more strained, which destabilizes the flat membrane. We perform a linear stability analysis of filament-dressed membranes and find that the buckling threshold is within reasonable in vivo parameter values. We account for the formation of long tubes previously observed in cells and in purified systems. We study strongly deformed dressed membranes and their bifurcation diagram numerically. Our mechanism could be validated by a simple experiment.

  5. Membrane Technologies in Wine Industry: An Overview.

    Science.gov (United States)

    El Rayess, Youssef; Mietton-Peuchot, Martine

    2016-09-09

    Membrane processes are increasingly reported for various applications in wine industry such as microfiltration, electrodialysis, and reverse osmosis, but also emerging processes as bipolar electrodialysis and membrane contactor. Membrane-based processes are playing a critical role in the field of separation/purification, clarification, stabilization, concentration, and de-alcoholization of wine products. They begin to be an integral part of the winemaking process. This review will provide an overview of recent developments, applications, and published literature in membrane technologies applied in wine industry.

  6. Cable Stability

    CERN Document Server

    Bottura, L

    2014-01-01

    Superconductor stability is at the core of the design of any successful cable and magnet application. This chapter reviews the initial understanding of the stability mechanism, and reviews matters of importance for stability such as the nature and magnitude of the perturbation spectrum and the cooling mechanisms. Various stability strategies are studied, providing criteria that depend on the desired design and operating conditions.

  7. Functionalization of a Hydrophilic Commercial Membrane Using Inorganic-Organic Polymers Coatings for Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Lies Eykens

    2017-06-01

    Full Text Available Membrane distillation is a thermal separation technique using a microporous hydrophobic membrane. One of the concerns with respect to the industrialization of the technique is the development of novel membranes. In this paper, a commercially available hydrophilic polyethersulfone membrane with a suitable structure for membrane distillation was modified using available hydrophobic coatings using ORMOCER® technology to obtain a hydrophobic membrane that can be applied in membrane distillation. The surface modification was performed using a selection of different components, concentrations, and application methods. The resulting membranes can have two hydrophobic surfaces or a hydrophobic and hydrophilic surface depending on the application method. An extensive characterization procedure confirmed the suitability of the coating technique and the obtained membranes for membrane distillation. The surface contact angle of water could be increased from 27° up to 110°, and fluxes comparable to membranes commonly used for membrane distillation were achieved under similar process conditions. A 100 h test demonstrated the stability of the coating and the importance of using sufficiently stable base membranes.

  8. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination.

    Science.gov (United States)

    Kayvani Fard, Ahmad; McKay, Gordon; Buekenhoudt, Anita; Al Sulaiti, Huda; Motmans, Filip; Khraisheh, Marwan; Atieh, Muataz

    2018-01-05

    Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling.

  9. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Directory of Open Access Journals (Sweden)

    Ahmad Kayvani Fard

    2018-01-01

    Full Text Available Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling.

  10. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Science.gov (United States)

    McKay, Gordon; Buekenhoudt, Anita; Motmans, Filip; Khraisheh, Marwan; Atieh, Muataz

    2018-01-01

    Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling. PMID:29304024

  11. Dendronic trimaltoside amphiphiles (DTMs) for membrane protein study

    DEFF Research Database (Denmark)

    Sadaf, Aiman; Du, Yang; Santillan, Claudia

    2017-01-01

    The critical contribution of membrane proteins in normal cellular function makes their detailed structure and functional analysis essential. Detergents, amphipathic agents with the ability to maintain membrane proteins in a soluble state in aqueous solution, have key roles in membrane protein...... alkyl chains by introducing dendronic hydrophobic groups connected to a trimaltoside head group, designated dendronic trimaltosides (DTMs). Representative DTMs conferred enhanced stabilization to multiple membrane proteins compared to the benchmark conventional detergent, DDM. One DTM (i.e., DTM-A6...

  12. A Review of Carbon Dioxide Selective Membranes: A Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dushyant Shekhawat; David R. Luebke; Henry W. Pennline

    2003-12-01

    Carbon dioxide selective membranes provide a viable energy-saving alternative for CO2 separation, since membranes do not require any phase transformation. This review examines various CO2 selective membranes for the separation of CO2 and N2, CO2 and CH4, and CO2 and H2 from flue or fuel gas. This review attempts to summarize recent significant advances reported in the literature about various CO2 selective membranes, their stability, the effect of different parameters on the performance of the membrane, the structure and permeation properties relationships, and the transport mechanism applied in different CO2 selective membranes.

  13. Organosilica Membrane with Ionic Liquid Properties for Separation of Toluene/H₂ Mixture.

    Science.gov (United States)

    Hirota, Yuichiro; Maeda, Yohei; Yamamoto, Yusuke; Miyamoto, Manabu; Nishiyama, Norikazu

    2017-08-03

    In this study, we present a new concept in chemically stabilized ionic liquid membranes: an ionic liquid organosilica (ILOS) membrane, which is an organosilica membrane with ionic liquid-like properties. A silylated ionic liquid was used as a precursor for synthesis. The permselectivity, permeation mechanism, and stability of the membrane in the H₂/toluene binary system were then compared with a supported ionic liquid membrane. The membrane showed a superior separation factor of toluene/H₂ (>17,000) in a binary mixture system based on a solution-diffusion mechanism with improved durability over the supported ionic liquid membrane.

  14. Therapeutic Treatment of Arthritic Mice with 15-Deoxy Δ12,14-Prostaglandin J2 (15d-PGJ2 Ameliorates Disease through the Suppression of Th17 Cells and the Induction of CD4+CD25−FOXP3+ Cells

    Directory of Open Access Journals (Sweden)

    Vanessa Carregaro

    2016-01-01

    Full Text Available The prostaglandin, 15-deoxy Δ12,14-prostaglandin J2 (15d-PGJ2, is a lipid mediator that plays an important role in the control of chronic inflammatory disease. However, the role of prostanoid in rheumatoid arthritis (RA is not well determined. We demonstrated the therapeutic effect of 15d-PGJ2 in an experimental model of arthritis. Daily administration of 15d-PGJ2 attenuated the severity of CIA, reducing the clinical score, pain, and edema. 15d-PGJ2 treatment was associated with a marked reduction in joint levels of proinflammatory cytokines. Although the mRNA expression of ROR-γt was profoundly reduced, FOXP3 was enhanced in draining lymph node cells from 15d-PGJ2-treated arthritic mice. The specific and polyclonal CD4+ Th17 cell responses were limited during the addition of prostaglandin to cell culture. Moreover, in vitro 15d-PGJ2 increased the expression of FOXP3, GITR, and CTLA-4 in the CD4+CD25− population, suggesting the induction of Tregs on conventional T cells. Prostanoid addition to CD4+CD25− cells selectively suppressed Th17 differentiation and promoted the enhancement of FOXP3 under polarization conditions. Thus, 15d-PGJ2 ameliorated symptoms of collagen-induced arthritis by regulating Th17 differentiation, concomitant with the induction of Tregs, and, consequently, protected mice from diseases aggravation. Altogether, these results indicate that 15d-PGJ2 may represent a potential therapeutic strategy in RA.

  15. Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein is PAM involved in the capacitative calcium entry?

    Science.gov (United States)

    Kozieł, Katarzyna; Lebiedzinska, Magdalena; Szabadkai, Gyorgy; Onopiuk, Marta; Brutkowski, Wojciech; Wierzbicka, Katarzyna; Wilczyński, Grzegorz; Pinton, Paolo; Duszyński, Jerzy; Zabłocki, Krzysztof; Wieckowski, Mariusz R

    2009-12-01

    A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca(2+) entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca(2+) entry, and their formation and rebuilding have an important regulatory role in cellular Ca(2+) homeostasis.

  16. Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation

    KAUST Repository

    Zuo, Jian

    2015-09-26

    The potential of utilizing polyethylene (PE) membranes in membrane distillation (MD) for sea water desalination has been explored in this study. The advantages of using PE membranes are (1) their intrinsic hydrophobicity with low surface energy of 28-33×10N/m, (2) good chemical stability and low thermal conductivity and (3) their commercial availability that may expedite the MD commercialization process. Several commercial PE membranes with different physicochemical properties are employed to study the capability and feasibility of PE membrane application in an MD process. The effect of membrane pore size, porosity, thickness and wetting resistance on MD performance and energy efficiency have been investigated. The PE membranes demonstrate impressive separation performance with permeation fluxes reaching 123.0L/mh for a 3.5wt% sodium chloride (NaCl) feed solution at 80°C. This superior performance surpasses most of the prior commercial and lab-made flat sheet and hollow fiber membranes. A long term MD testing of 100h is also performed to evaluate the durability of PE membranes, and a relatively stable performance is observed during the entire experiment. This long term stability signifies the suitability of PE membranes for MD applications.

  17. Composite hollow fiber membranes for organic solvent-based liquid-liquid extraction

    NARCIS (Netherlands)

    He, T.; Bolhuis-Versteeg, Lydia A.M.; Mulder, M.H.V.; Wessling, Matthias

    2004-01-01

    Instability issues of liquid membranes extraction significantly limit its wide application in industry. We report research on the application of a new composite hollow fiber membrane to stabilizing liquid membrane extraction. These type of composite membranes have either a polysulfone (PSf)

  18. Review on Modification of Sulfonated Poly (-ether-ether-ketone Membranes Used as Proton Exchange Membranes

    Directory of Open Access Journals (Sweden)

    Xiaomin GAO

    2015-11-01

    Full Text Available The proton exchange membrane fuel cell (PEMFC is a type of modern power, but the traditional proton exchange membranes (PEM of PEMFC are limited by high methanol permeability and water uptake. Poly-ether-ether-ketone (PEEK is a widely used thermoplastic with good cost-effective property. Sulfonated poly (-ether-ether-ketone (SPEEK has high electric conductivity and low methanol permeability, as well as comprehensive property, which is expected to be used as PEMs. However, the proton exchange ability, methanol resistance, mechanical property and thermal stability of SPEEK are closely related to the degree of sulfonation (DS of SPEEK membranes. Additionally, the proton conductivity, methanol permeability, and stability of SPEEK membranes applied in various conditions need to be further improved. In this paper, the research into modification of SPEEK membranes made by SPEEK and other polymers, inorganic materials are introduced. The properties and modification situation of the SPEEK and the composite membranes, as well as the advantages and disadvantages of membranes prepared by different materials are summarized. From the results we know that, the methanol permeability of SPEEK/PES-C membranes is within the order of magnitude, 10-7cm2/s. The proton conductivity of the SPPESK/SPEEK blend membrane reaches 0.212 S cm-1 at 80 °C. The cross-linked SPEEK membranes have raised thermal and dimensional stability. The non-solvent caused aggregation of the SPEEK ionomers. The proton conductivity of SPEEK/50%BMIMPF6/4.6PA membrane maintains stable as 2.0 x 10-2S cm-1 after 600 h at 160 °C. Incorporation of aligned CNT into SPEEK increases the proton conductivity and reduces the methanol permeability of the composite membranes. The PANI improves the hydrothermal stability. More proton transfer sites lead to a more compact structure in the composite membranes. According to the results, the proton exchange capacity, water uptake, and conductivity of

  19. Poly-thiosemicarbazide membrane for gold recovery

    KAUST Repository

    Villalobos, Luis Francisco

    2014-11-01

    A novel polymeric membrane adsorber with a high density of adsorption sites that can selectively capture Au(III) ions, is proposed as an efficient alternative to recover gold from dilute solutions. Poly-thiosemicarbazide (PTSC), a polymer that contains one chelate site per monomeric unit, was used to fabricate the membranes. This polymer can be easily processed into membranes by a phase inversion technique, resulting in an open and interconnected porous structure suitable for high flux liquid phase applications. This method overcomes the usual low capacities of membrane adsorbents by selecting a starting material that contains the adsorption sites within it, therefore avoiding the necessity to add an external agent into the membrane matrix. The resulting mechanically stable PTSC membranes can operate in a pressure driven permeation process, which eliminates the diffusion limitations commonly present in packed column adsorption processes. This process can selectively recover 97% of the gold present in a solution containing a 9-fold higher copper concentration, while operating at a flux as high as 1868 L/m2 h. The maximum gold uptake measured without sacrificing the mechanical stability of the membrane was 5.4 mmol Au/g. Furthermore the gold can be easily eluted from the membrane with a 0.1 M thiourea solution and the membrane can be reused for at least three cycles without any decrease in its performance. Finally, the ability of this membrane for recovering metals from real-life samples, like seawater and tap water, was tested with promising results.

  20. Kinetics and Thermodynamics of Membrane Protein Folding

    Directory of Open Access Journals (Sweden)

    Ernesto A. Roman

    2014-03-01

    Full Text Available Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in known genomes, stability studies on membrane proteins have been impaired due to experimental limitations. Furthermore, no systematic experimental strategies are available for folding these biomolecules in vitro. Common denaturing agents such as chaotropes usually do not work on helical membrane proteins, and ionic detergents have been successful denaturants only in few cases. Refolding a membrane protein seems to be a craftsman work, which is relatively straightforward for transmembrane β-barrel proteins but challenging for α-helical membrane proteins. Additional complexities emerge in multidomain membrane proteins, data interpretation being one of the most critical. In this review, we will describe some recent efforts in understanding the folding mechanism of membrane proteins that have been reversibly refolded allowing both thermodynamic and kinetic analysis. This information will be discussed in the context of current paradigms in the protein folding field.

  1. Membranes for corrosive oxidations. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, S. W.; Energy Systems

    2010-02-01

    The objective of this project is to develop porous hydrophilic membranes that are highly resistant to oxidative and corrosive conditions and to deploy them for recovery and purification of high tonnage chemicals such as hydrogen peroxide and other oxychemicals. The research team patented a process for membrane-based separation of hydrogen peroxide (US Patent No. 5,662,878). The process is based on using a hydrophilic membrane to separate hydrogen peroxide from the organic working solution. To enable this process, a new method for producing hydrophilic membrane materials (Patent No.6,464,880) was reported. We investigated methods of producing these hydrophilic materials and evaluated separations performance in comparison to membrane stability. It was determined that at the required membrane flux, membrane stability was not sufficient to design a commercial process. This work was published (Hestekin et al., J. Membrane Science 2006). To meet the performance needs of the process, we developed a membrane contactor method to extract the hydrogen peroxide, then we surveyed several commercial and pre-commercial membrane materials. We identified pre-commercial hydrophilic membranes with the required selectivity, flux, and stability to meet the needs of the process. In addition, we invented a novel reaction/separations format that greatly increases the performance of the process. To test the performance of the membranes and the new formats we procured and integrated reactor/membrane separations unit that enables controlled mixing, flow, temperature control, pressure control, and sampling. The results were used to file a US non-provisional patent application (ANL-INV 03-12). Hydrogen peroxide is widely used in pulp and paper applications, environmental treatment, and other industries. Virtually all hydrogen peroxide production is now based on a process featuring catalytic hydrogenation followed by auto-oxidation of suitable organic carrier molecules. This process has several

  2. Evaluation of thin film ceria membranes for syngas membrane reactors—Preparation, characterization and testing

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Foghmoes, Søren Preben Vagn; Chatzichristodoulou, Christodoulos

    2011-01-01

    , up to 16Nmlcm−2min−1 at 900°C, were obtained when placing the membrane between air and humidified hydrogen (H2/H2O=20). Initial experiments for syngas production were performed by testing the CGO10 membrane with methane and steam feed.The mechanical integrity of CGO10 membranes during operation (heat...... film CGO membrane should therefore lie below the expansion limit of 0.1% expected to be critical for mechanical stability and thereby allows for operation at high temperatures and low oxygen partial pressures....

  3. Structure–property tuning in hydrothermally stable sol–gel-processed hybrid organosilica molecular sieving membranes

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Dral, Albertine Petra

    2016-01-01

    Supported microporous organosilica membranes made from bridged silsesquioxane precursors by an acid-catalyzed sol–gel process have demonstrated a remarkable hydrothermal stability in pervaporation and gas separation processes, making them the first generation of ceramic molecular sieving membranes

  4. Double cross-linked polyetheretherketone proton exchange membrane for fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2012-04-01

    Full Text Available The proton exchange membrane based on polyetheretherketone was prepared via two steps of cross-linking. The properties of the double cross-linked membrane (water uptake, proton conductivity, methanol permeability and thermal stability) have been...

  5. Hydrophylicity Enhancement of Modified Cellulose Acetate Membrane to Improve the Membrane Performance in Produced Water Treatment

    Directory of Open Access Journals (Sweden)

    Kusworo Tutuk Djoko

    2018-01-01

    Full Text Available Produced water is a wastewater generated from petroleum industry with high concentration of pollutants such as Total Dissolved Solid, Organic content, and Oil and grease. Membrane technology has been currently applied for produced water treatment due to its efficiency, compact, mild and clean process. The main problem of produced water using membrane is fouling on the membrane surface which causes on low permeate productivity. This paper is majority focused on the improvement of anti-fouling performance through several modifications to increase CA membrane hydrophilicity. The membrane was prepared by formulating the dope solution consists of 18 wt-% CA polymer, acetone, and PEG additive (3 wt-%, 5 wt-%, and 7 wt-%. The membranes are casted using NIPS method and being irradiated under UV light exposure. The SEM images show that parepared membrane has asymmetric structure consist of dense layer, intermediete layer, and finger-like support layer. The filtration test shows that PEG addition increase the membrane hydrophilicity and the permeate flux increases. UV light exposure on the membrane improves the membrane stability and hydrophilicity. The imrpovement of membrane anti-fouling performance is essential to achieve the higher productivity without lowering its pollutants rejection.

  6. From biological membranes to biomimetic model membranes

    Directory of Open Access Journals (Sweden)

    Eeman, M.

    2010-01-01

    Full Text Available Biological membranes play an essential role in the cellular protection as well as in the control and the transport of nutrients. Many mechanisms such as molecular recognition, enzymatic catalysis, cellular adhesion and membrane fusion take place into the biological membranes. In 1972, Singer et al. provided a membrane model, called fluid mosaic model, in which each leaflet of the bilayer is formed by a homogeneous environment of lipids in a fluid state including globular assembling of proteins and glycoproteins. Since its conception in 1972, many developments were brought to this model in terms of composition and molecular organization. The main development of the fluid mosaic model was made by Simons et al. (1997 and Brown et al. (1997 who suggested that membrane lipids are organized into lateral microdomains (or lipid rafts with a specific composition and a molecular dynamic that are different to the composition and the dynamic of the surrounding liquid crystalline phase. The discovery of a phase separation in the plane of the membrane has induced an explosion in the research efforts related to the biology of cell membranes but also in the development of new technologies for the study of these biological systems. Due to the high complexity of biological membranes and in order to investigate the biological processes that occur on the membrane surface or within the membrane lipid bilayer, a large number of studies are performed using biomimicking model membranes. This paper aims at revisiting the fundamental properties of biological membranes in terms of membrane composition, membrane dynamic and molecular organization, as well as at describing the most common biomimicking models that are frequently used for investigating biological processes such as membrane fusion, membrane trafficking, pore formation as well as membrane interactions at a molecular level.

  7. Water-soluble egg membrane enhances the immunoactivating properties of an Aloe vera-based extract of Nerium oleander leaves

    Directory of Open Access Journals (Sweden)

    Benson KF

    2016-11-01

    Full Text Available Kathleen F Benson,1 Robert A Newman,2,3 Gitte S Jensen1 1NIS Labs, Klamath Falls, OR, 2Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, 3Nerium Biotechnology Inc, San Antonio, TX, USA Objective: To evaluate a blend of two natural ingredients on immune parameters relevant for their current topical use and potential support of microcirculation in skin tissue. Materials and methods: A blend (BL of Aloe vera-based Nerium oleander extract (NAE-8i, oleandrin-free and hydrolyzed water-soluble egg membrane (WSEM was applied to human whole-blood cultures for 24 hours, with each separate ingredient serving as a control. Immune-cell subsets were analyzed for expression levels of the activation markers CD69 and CD25. Culture supernatants were analyzed for cytokines, chemokines, and immunoregulating peptides. Results: BL increased CD69 expression on lymphocytes, monocytes, and CD3–CD56+ natural killer cells, and CD25 expression on natural killer cells. The number of CD69+CD25+ lymphocytes increased in cultures treated with BL and the separate ingredients. BL triggered production of multiple cytokines and chemokines, where CC chemokines MIP1α and MIP3α, as well as cytokines involved in wound healing – Groα, Groβ, ENA78, and fractalkine – reached levels manyfold above treatment with either NAE-8i or WSEM alone. Conclusion: Data on BL showed that WSEM strongly enhanced NAE-8i’s effects on immunoactivation in vitro. This has potential relevance for support of immunity in skin tissue, including antibacterial and antiviral defense mechanisms, wrinkle reduction, and wound care. Keywords: chemokines, cytokines, leukocyte activation

  8. Long term testing of PSI-membranes

    Energy Technology Data Exchange (ETDEWEB)

    Huslage, J.; Brack, H.P.; Geiger, F.; Buechi, F.N.; Tsukada, A.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Long term tests of PSI membranes based on radiation-grafted FEP and ETFE films were carried out and FEP-based membranes were evaluated by monitoring the in-situ membrane area resistance measured by a current pulse method. By modifying our irradiation procedure and using the double crosslinking concept we obtain reproducible membrane cell lifetimes (in term of in-situ membrane resistance) of greater than 5000 hours at 60-65{sup o}C. Preliminary tests at 80-85{sup o}C with lifetimes of greater than 2500 demonstrate the potential long term stability of PSI proton exchange membranes based on FEP over the whole operating temperature range of low-temperature polymer electrolyte fuel cells. Radiation grafted PSI membranes based on ETFE have better mechanical properties than those of the FEP membranes. Mechanical properties are particularly important in large area cells and fuel cell stacks. ETFE membranes have been tested successfully for approximately 1000 h in a 2-cell stack (100 cm{sup 2} active area each cell). (author) 4 figs., 4 refs.

  9. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A

    1979-01-01

    Progress in Surface and Membrane Science, Volume 12 covers the advances in the study of surface and membrane science. The book discusses the topographical differentiation of the cell surface; the NMR studies of model biological membrane system; and an irreversible thermodynamic approach to energy coupling in mitochondria and chloroplasts. The text also describes water at surfaces; the nature of microemulsions; and the energy principle in the stability of interfaces. Biochemists, physicists, chemical engineers, and people involved in surface and coatings research will find the book invaluable.

  10. Progress of Nanocomposite Membranes for Water Treatment

    Directory of Open Access Journals (Sweden)

    Claudia Ursino

    2018-04-01

    Full Text Available The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  11. Artificial Lipid Membranes: Past, Present, and Future.

    Science.gov (United States)

    Siontorou, Christina G; Nikoleli, Georgia-Paraskevi; Nikolelis, Dimitrios P; Karapetis, Stefanos K

    2017-07-26

    The multifaceted role of biological membranes prompted early the development of artificial lipid-based models with a primary view of reconstituting the natural functions in vitro so as to study and exploit chemoreception for sensor engineering. Over the years, a fair amount of knowledge on the artificial lipid membranes, as both, suspended or supported lipid films and liposomes, has been disseminated and has helped to diversify and expand initial scopes. Artificial lipid membranes can be constructed by several methods, stabilized by various means, functionalized in a variety of ways, experimented upon intensively, and broadly utilized in sensor development, drug testing, drug discovery or as molecular tools and research probes for elucidating the mechanics and the mechanisms of biological membranes. This paper reviews the state-of-the-art, discusses the diversity of applications, and presents future perspectives. The newly-introduced field of artificial cells further broadens the applicability of artificial membranes in studying the evolution of life.

  12. Progress of Nanocomposite Membranes for Water Treatment.

    Science.gov (United States)

    Ursino, Claudia; Castro-Muñoz, Roberto; Drioli, Enrico; Gzara, Lassaad; Albeirutty, Mohammad H; Figoli, Alberto

    2018-04-03

    The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  13. Layer-by-layer cell membrane assembly

    Science.gov (United States)

    Matosevic, Sandro; Paegel, Brian M.

    2013-11-01

    Eukaryotic subcellular membrane systems, such as the nuclear envelope or endoplasmic reticulum, present a rich array of architecturally and compositionally complex supramolecular targets that are as yet inaccessible. Here we describe layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity. Starting with phospholipid-stabilized water-in-oil droplets trapped in a static droplet array, lipid monolayer deposition proceeds as oil/water-phase boundaries pass over the droplets. Unilamellar vesicles assembled layer-by-layer support functional insertion both of purified and of in situ expressed membrane proteins. Synthesis and chemical probing of asymmetric unilamellar and double-bilayer vesicles demonstrate the programmability of both membrane lamellarity and lipid-leaflet composition during assembly. The immobilized vesicle arrays are a pragmatic experimental platform for biophysical studies of membranes and their associated proteins, particularly complexes that assemble and function in multilamellar contexts in vivo.

  14. A study on ion separation through liquid membrane

    International Nuclear Information System (INIS)

    Kang, Young Ho; Kwon, Sun Kil; Joo, Jae Oh; Whang, Sung Chan; Kim, Jung Do; Ann, Hyun Suk

    1991-12-01

    The flux of uranyl nitrate across cellulose acetate was determined using TOPO as a carrier. TOPO particles were physically entrapped in the membrane, which prepared by phase inversion method. The dominating factors were the amount of plasticizer, CTA-TOPO ratio in the membrane, uranium concentration in the feed solution, acidity and the solution temperature. And the transport phenomena of uranyl nitrate across this membrane were microscopically analysed by SEM. The increase of the membrane stability was observed when TOPO was used as a carrier. Another new technology to economically reduce the low-level liquid waste through the membrane is tested in a laboratory scale. (Author)

  15. Fouling-induced enzyme immobilization for membrane reactors

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil

    2013-01-01

    A simple enzyme immobilization method accomplished by promoting membrane fouling formation is proposed. The immobilization method is based on adsorption and entrapment of the enzymes in/on the membrane. To evaluate the concept, two membrane orientations, skin layer facing feed (normal mode......, but the reverse mode allowed for higher enzyme loading and stability, and irreversible fouling (i.e. pore blocking) developed more readily in the support structure than in the skin layer. Compared with an enzymatic membrane reactor (EMR) with free enzymes, the novel EMR with enzymes immobilized in membrane...... support improved the enzyme reusability (especially for ADH), and reduced the product inhibition (especially for GDH). © 2013 Elsevier Ltd....

  16. Review of Large Spacecraft Deployable Membrane Antenna Structures

    Science.gov (United States)

    Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li

    2017-11-01

    The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.

  17. Novel Ultrathin Membranes Composed of Organic Ions

    DEFF Research Database (Denmark)

    Chaban, Vitaly V.; Verspeek, Bram; Khandelia, Himanshu

    2013-01-01

    of artificial bilayers composed of long-chained organic ions, such as dodecyltrimethylammonium (DMA(+)) and perfluorooctaonate (PFO-). Various ratios of DMA/PFO surfactants result in bilayers of different stability, thickness, area per molecule, and density profiles. In our quest for water filtration, we...... incorporated aquaporin protein into the DMA/PFO bilayer but did not observe sufficient stability of the system. We discuss further steps to utilize these surfactant bilayers as highly selective, salt-impermeable membranes....

  18. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared

  19. Dense ceramic membranes based on ion conducting oxides

    International Nuclear Information System (INIS)

    Fontaine, M.L.; Larring, Y.; Bredesen, R.; Norby, T.; Grande, T.

    2007-01-01

    This chapter reviews the recent progress made in the fields of high temperature oxygen and hydrogen separation membranes. Studies of membranes for oxygen separation are mainly focusing on materials design to improve flux, and to lesser extent, related to stability issues. High oxygen fluxes satisfying industrial requirements can be obtained but, for many materials, the surface exchange rate is limiting the performance. The current status on electrolyte-type and mixed proton and electron conducting membranes is outlined, highlighting materials with improved stability in typical applications as solid oxide fuel cell technology and gas separation. In our presentation more fundamental aspects related to transport properties, chemical and mechanical stability of membrane materials are also treated. It is concluded that a significantly better understanding of the long term effects of operation in chemical gradients is needed for these types of membrane materials. (authors)

  20. Molecular Interactions at Membranes

    DEFF Research Database (Denmark)

    Jagalski, Vivien

    Biological membranes are essential and complex structures in every living cell consisting of a fluid lipid bilayer sheet and membrane proteins. Its significance makes biological membranes not only interesting for medical research, but also has made it a target for toxins in the course of evolution....... Today, we know more than ever before about the properties of biological membranes. Advanced biophysical techniques and sophisticated membrane models allow us to answer specific questions about the structure of the components within membranes and their interactions. However, many detailed structural...... mechanisms of membrane compounds, including compounds associated with membranes, are still unknown due to the challenges that arise when probing the hydrophobic nature of the membrane's interior. For integral membrane proteins that span through the entire membrane, the amphiphilic environment is essential...

  1. Natural channel protein inserts and functions in a completely artificial, solid-supported bilayer membrane

    OpenAIRE

    Zhang, Xiaoyan; Fu, Wangyang; Palivan, Cornelia G.; Meier, Wolfgang

    2013-01-01

    Reconstitution of membrane proteins in artificial membrane systems creates a platform for exploring their potential for pharmacological or biotechnological applications. Previously, we demonstrated amphiphilic block copolymers as promising building blocks for artificial membranes with long-term stability and tailorable structural parameters. However, the insertion of membrane proteins has not previously been realized in a large-area, stable, and solid-supported artificial membrane. Here, we s...

  2. Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes

    International Nuclear Information System (INIS)

    Yang, Jingshuai; Xu, Yixin; Liu, Peipei; Gao, Liping; Che, Quantong; He, Ronghuan

    2015-01-01

    Covalently cross-linked hexafluoropropylidene polybenzimidazole (F 6 PBI) was prepared and used to fabricate high temperature proton exchange membranes with enhanced mechanical strength against thermoplastic distortion. Three different epoxides, i.e. bisphenol A diglycidyl ether (R 1 ), bisphenol A propoxylate diglycidyl ether (R 2 ) and poly(ethylene glycol) diglycidyl ether (R 3 ), were chosen as the cross-linkers to investigate the influence of their structures on the properties of the cross-linked F 6 PBI membranes. All the cross-linked F 6 PBI membranes displayed excellent stability towards the radical oxidation. Comparing with the pure F 6 PBI membrane, the cross-linked F 6 PBI membranes showed high acid doping level but less swelling after doping phosphoric acid at elevated temperatures. The mechanical strength at 130 °C was improved from 0.4 MPa for F 6 PBI membrane to a range of 0.8–2.0 MPa for the cross-linked F 6 PBI membranes with an acid doping level as high as around 14, especially for that crosslinking with the epoxide (R 3 ), which has a long linear structure of alkyl ether. The proton conductivity of the cross-linked membranes was increased accordingly due to the high acid doping levels. Fuel cell tests demonstrated the technical feasibility of the acid doped cross-linked F 6 PBI membranes for high temperature proton exchange membrane fuel cells

  3. Vaccination of B-CLL patients with autologous dendritic cells can change the frequency of leukemia antigen-specific CD8+ T cells as well as CD4+CD25+FoxP3+ regulatory T cells toward an antileukemia response.

    Science.gov (United States)

    Hus, I; Schmitt, M; Tabarkiewicz, J; Radej, S; Wojas, K; Bojarska-Junak, A; Schmitt, A; Giannopoulos, K; Dmoszyńska, A; Roliński, J

    2008-05-01

    Recently, we described that vaccination with allogeneic dendritic cells (DCs) pulsed with tumor cell lysate generated specific CD8+ T cell response in patients with B-cell chronic lymphocytic leukemia (B-CLL). In the present study, the potential of autologous DCs pulsed ex vivo with tumor cell lysates to stimulate antitumor immunity in patients with B-CLL in early stages was evaluated. Twelve patients at clinical stage 0-2 as per Rai were vaccinated intradermally up to eight times with a mean number of 7.4 x 10(6) DCs pulsed with B-CLL cell lysate. We observed a decrease of peripheral blood leukocytes and CD19+/CD5+ leukemic cells in five patients, three patients showed a stable disease and four patients progressed despite DC vaccination. A significant increase of specific cytotoxic CD8+ T lymphocytes against the leukemia-associated antigens RHAMM or fibromodulin was detected in four patients after DC vaccination. In patients with a clinical response, an increase of interleukin 12 (IL-12) serum levels and a decrease of the frequency of CD4+CD25(+)FOXP3+ T regulatory cells were observed. Taken together, the study demonstrated that vaccination with autologous DC in CLL patients is feasible and safe. Immunological and to some extend hematological responses could be noted, justifying further investigation on this immunotherapeutical approach.

  4. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  5. Styrene-Based Copolymer for Polymer Membrane Modifications

    OpenAIRE

    Harsha Srivastava; Harshad Lade; Diby Paul; G. Arthanareeswaran; Ji Hyang Kweon

    2016-01-01

    Poly(vinylidene fluoride) (PVDF) was modified with a styrene-based copolymer. The crystalline behavior, phase, thermal stability, and surface morphology of the modified membranes were analyzed. The membrane surface roughness showed a strong dependence on the styrene-acrylonitrile content and was reduced to 34% for a PVDF/styrene-acrylonitrile blend membrane with a 40/60 ratio. The thermal and crystalline behavior confirmed the blend miscibility of both polymers. It was observed in X-ray diffr...

  6. Fuel cell catalysts and membrane development at the CSIR: Presentation

    CSIR Research Space (South Africa)

    Modibedi, M

    2013-07-01

    Full Text Available cross-linked polyetheretherketone PEM for DMFC • Incorporation of nanoparticles such ZrO2 in Nafion membrane • Characterisation: methanol crossover studies, conductivity tests, thermal stability • MEA fabrication and testing (performance 10... and alcohol oxidation • Membrane: reduced or no alcohol crossover Why Lithium ion batteries? Preparation of nano-composite membrane • The OH- form of QPSU was dissolved in DMAc and different proportion of TiO2 nano filler was added to this solution...

  7. Is vitamin C able to prevent premature rupture of membranes?

    OpenAIRE

    Citra Aryanti

    2016-01-01

    Premature rupture of membranes (PROM) is leakage of amniotic fluid through ruptured chorioamniotic membranes that occur before starting the labor pain at any gestational age. This is one of the most common problems in obstetrics with many adverse pregnancy outcomes. Main and final mechanisms of membrane rupture is disturbances in its collagen content metabolism. Vitamin C is found to stabilize the cross link triple helix collagen structure and scavange oxidant that involved in PPROM. Associat...

  8. Hydrogels for in situ encapsulation of biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Ibragimova, Sania; Jensen, Karin Bagger Stibius; Szewczykowski, Piotr Przemyslaw

    2012-01-01

    Hydrogels are hydrophilic, porous polymer networks that can absorb up to thousands of times their own weight in water. They have many potential applications, one of which is the encapsulation of freestanding black lipid membranes (BLMs) for novel separation technologies or biosensor applications....... membranes retained their integrity and functionality after encapsulation with hydrogel. Our results show that hydrogel encapsulation is a potential means to provide stability for biomimetic devices based on functional proteins reconstituted in biomimetic membrane arrays....

  9. Preparation and properties of hydrothermally stable gamma-alumina membranes

    NARCIS (Netherlands)

    Nijmeijer, Arian; Kruidhof, H.; Bredesen, Rune; Verweij, H.

    2001-01-01

    Supported mesoporous γ-Al2O3 membranes deteriorate and blister in steam-containing environments at high temperatures. This deterioration led us to the development of a new type of supported γ-Al2O3 membrane with significantly improved stability under hostile conditions. Two measures were taken to

  10. Highly Hydrothermally Stable Microporous Membranes for Hydroge Separation

    NARCIS (Netherlands)

    Wei, Qi; Wang, Fei; Wang, F.; Nie, Zuo-Ren; Song, C.; Wang, Yan-Li; Li, Qun-Yan

    2008-01-01

    Fluorocarbon-modified silica membranes were deposited on γ-Al2O3/α-Al2O3 supports by the sol−gel technique for hydrogen separation. The hydrophobic property, pore structure, gas transport and separation performance, and hydrothermal stability of the modified membranes were investigated. It is

  11. Polymer blend membranes for CO2 separation from natural gas

    Science.gov (United States)

    Mukhtar, H.; Mannan, H. A.; Minh, D.; Nasir, R.; Moshshim, D. F.; Murugesan, T.

    2016-06-01

    Polymeric membranes are dominantly used in industrial gas separation membrane processes. Enhancement in membranes permeability and/or selectivity is a key challenge faced by membrane researchers. The current work represents the effect of poyetherimide blending on separation performance of polysulfone membranes. Polysulfone/poyetherimide (PSF/PEI) blend flat sheet dense membranes were synthesized and tested for permeation analysis of CO2 and CH4 gases at 6, 8 and 10 bar pressure and 25oC temperature. Morphology and thermal properties of membranes were characterized by field emission scanning electron microscope (FESEM) and thermo gravimetric analysis (TGA) respectively. Blend membranes were dense and homogeneous as deduced from FESEM analysis. Thermal stability of synthesized blend membranes was maintained by blending with PEI as characterized by TGA results. Decrease in permeability of both gases was observed by the addition of PEI due to rigidity of PEI chains. Additionally, selectivity of synthesized blend membranes was enhanced by blending PEI and blend membranes show improved selectivity over pure PSF membrane. This new material has the capability to be used as gas separation membrane material.

  12. Synthesis and characterization of microporous titania membranes

    NARCIS (Netherlands)

    Sekulic, J.; ten Elshof, Johan E.; Blank, David H.A.

    2004-01-01

    A procedure for the preparation of microporous titania membranes by the polymeric sol-gel technique is reported. The influence of acid/titanium ratio, water/titanium ratio, method of mixing components and refluxing time on particle size and sol stability was investigated. The thermal evolution,

  13. Polymeric Membrane Reactors

    OpenAIRE

    José M. Sousa; Luís M. Madeira; João C. Santos; Adélio Mendes

    2008-01-01

    The aim of this chapter is the study of membrane reactors with polymeric membranes, particularly catalytic polymeric membranes. After an introduction where the main advantages and disadvantages of the use of polymeric membranes are summarised, a review of the main areas where they have been applied, integrated in chemical reactors, is presented. This excludes the field of bio-membranes processes, which is analysed in a specific chapter of this book. Particular attention is then given to model...

  14. Hybrid Nano composite Membranes for PEMFC Applications

    International Nuclear Information System (INIS)

    Niepceron, F.

    2008-03-01

    This work aims at validating a new concept of hybrid materials for the realization of proton exchange membranes, an essential constituent of PEM fuel cells. The originality of this nano-composite hybrid concept corresponds to a separation of the membrane's properties. We investigated the preparation of composite materials based on an inert, relatively low cost, polymer matrix (PVDF-HFP) providing the mechanical stability embedding inorganic fillers providing the necessary properties o f proton-conduction and water retention. The first step of this work consisted in the modification of fumed silica to obtain a proton-conducting filler. An ionic exchange capacity (CEI) equal to 3 meq/g was obtained by the original grafting of sodium poly(styrene-sulfonate) chains from the surface of particles. Nano-composite hybrid membranes PVDF-HFP/functionalized silica were accomplished by a film casting process. The coupling of the morphological and physicochemical analyses validated the percolation of the inorganic phase for 30 wt.% of particles. Beyond 40 % of loading, measured protonic conductivity is higher than the reference membrane Nafion 112. Finally, these membranes presented high performances, above 0.8 W/cm 2 , in single-cell fuel cell tests. A compromise is necessary according to the rate of loading between performances in fuel cell and mechanical properties of the membrane. 50 % appeared as best choice with, until 90 C, a remarkable thermal stability of the performances. (author)

  15. Adamantane-based amphiphiles (ADAs) for membrane protein study: importance of a detergent hydrophobic group in membrane protein solubilisation.

    Science.gov (United States)

    Chae, Pil Seok; Bae, Hyoung Eun; Das, Manabendra

    2014-10-21

    We prepared adamantane-containing amphiphiles and evaluated them using a large membrane protein complex in terms of protein solubilisation and stabilization efficacy. These agents were superior to conventional detergents, especially in terms of the membrane protein solubilisation efficiency, implying a new detergent structure-property relationship.

  16. Biglycan and decorin differentially regulate signaling in the fetal membranes

    Science.gov (United States)

    Wu, Zhiping; Horgan, Casie E.; Carr, Olivia; Owens, Rick T.; Iozzo, Renato V.; Lechner, Beatrice E.

    2014-01-01

    Preterm birth is the leading cause of newborn mortality in the United States and about one third of cases are caused by preterm premature rupture of fetal membranes, a complication that is frequently observed in patients with Ehlers-Danlos Syndrome. Notably, a subtype of Ehlers-Danlos Syndrome is caused by expression of abnormal biglycan and decorin proteoglycans. As compound deficiency of these two small leucine-rich proteoglycans is a model of preterm birth, we investigated the fetal membranes of Bgn−/−;Dcn−/− double-null and single-null mice. Our results showed that biglycan signaling supported fetal membrane remodeling during early gestation in the absence of concomitant changes in TGFβ levels. In late gestation, biglycan signaling acted in a TGFβ–dependent manner to aid in membrane stabilization. In contrast, decorin signaling supported fetal membrane remodeling at early stages of gestation in a TGFβ–dependent manner, and fetal membrane stabilization at later stages of gestation without changes in TGFβ levels. Furthermore, exogenous soluble decorin was capable of rescuing the TGFβ signaling pathway in fetal membrane mesenchymal cells. Collectively, these findings provide novel targets for manipulation of fetal membrane extracellular matrix stability and could represent novel targets for research on preventive strategies for preterm premature rupture of fetal membranes. PMID:24373743

  17. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham

    2006-06-30

    A non-agglomerated and nanocrystalline-sized powder was successfully produced using ethylene glycol nitrate methods. The LSFT powder prepared using this method exhibits well dispersed and nano-sized particles about 100-200 nm. The density of LSFT sintered at 1300 C was about 90% of the theoretical density at which is 100 C less than that of the previous LSFT which was sintered at 1400 C. The sample sintered at 1400 C exhibited the evidence of a liquid phase at the grain boundaries and 2nd phase formation which probably caused low mechanical stability. The electrical conductivity and Seebeck coefficient were measured as a function of temperature. The LSFT-CGO specimens were cut from the as sintered bars and used for the evaluation of Mechanical Properties after polishing. The effect of strain rate on the flexural strength of the LSFT-CGO test specimens was studied. Three strain rates 6, 60 and 600 {micro}m/ min were chosen for this study. It is observed from the results that with increasing cross head speed the membrane takes higher loads to fail. A reduction in the strength of the membrane was observed at 1000 C in N{sub 2}. Two different routes were investigated to synthesis GDC using either formate or carbonate precursors. The precursor and CGO particle morphologies were examined by scanning electron microscopy. The thermal decomposition behaviors of Ce(Gd)(HCOO){sub 3} and Ce(Gd)(CO{sub 3})(OH) were determined by thermogravimetric analysis (TGA) at a rate of 3 C/min in air. The X-ray powder diffraction patterns of the precursor and CGO were collected and nitrogen adsorption isotherms were measured. Conductivity measurements were made by AC impedance spectroscopy on sintered disks in air using platinum electrodes.

  18. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  19. Membrane Distillation of Meat Industry Effluent with Hydrophilic Polyurethane Coated Polytetrafluoroethylene Membranes

    Directory of Open Access Journals (Sweden)

    M. G. Mostafa

    2017-09-01

    Full Text Available Meat rendering operations produce stick water waste which is rich in proteins, fats, and minerals. Membrane distillation (MD may further recover water and valuable solids, but hydrophobic membranes are contaminated by the fats. Here, commercial hydrophobic polytetrafluorethylene (PTFE membranes with a hydrophilic polyurethane surface layer (PU-PTFE are used for the first time for direct contact MD (DCMD on real poultry, fish, and bovine stick waters. Metal membrane microfiltration (MMF was also used to capture fats prior to MD. Although the standard hydrophobic PTFE membranes failed rapidly, PU-PTFE membranes effectively processed all stick water samples to colourless permeate with sodium rejections >99%. Initial clean solution fluxes 5–6 L/m2/h declined to less than half during short 40% water recovery tests for all stick water samples. Fish stick water uniquely showed reduced fouling and up to 78% water recovery. Lost flux was easily restored by rinsing the membrane with clean water. MMF prior to MD removed 92% of fats, facilitating superior MD performance. Differences in fouling between stick waters were attributed to temperature polarisation from higher melt temperature fats and relative proportions to proteins. Hydrophilic coated MD membranes are applicable to stick water processing but further studies should consider membrane cleaning and longer-term stability.

  20. Membrane Distillation of Meat Industry Effluent with Hydrophilic Polyurethane Coated Polytetrafluoroethylene Membranes.

    Science.gov (United States)

    Mostafa, M G; Zhu, Bo; Cran, Marlene; Dow, Noel; Milne, Nicholas; Desai, Dilip; Duke, Mikel

    2017-09-29

    Meat rendering operations produce stick water waste which is rich in proteins, fats, and minerals. Membrane distillation (MD) may further recover water and valuable solids, but hydrophobic membranes are contaminated by the fats. Here, commercial hydrophobic polytetrafluorethylene (PTFE) membranes with a hydrophilic polyurethane surface layer (PU-PTFE) are used for the first time for direct contact MD (DCMD) on real poultry, fish, and bovine stick waters. Metal membrane microfiltration (MMF) was also used to capture fats prior to MD. Although the standard hydrophobic PTFE membranes failed rapidly, PU-PTFE membranes effectively processed all stick water samples to colourless permeate with sodium rejections >99%. Initial clean solution fluxes 5-6 L/m²/h declined to less than half during short 40% water recovery tests for all stick water samples. Fish stick water uniquely showed reduced fouling and up to 78% water recovery. Lost flux was easily restored by rinsing the membrane with clean water. MMF prior to MD removed 92% of fats, facilitating superior MD performance. Differences in fouling between stick waters were attributed to temperature polarisation from higher melt temperature fats and relative proportions to proteins. Hydrophilic coated MD membranes are applicable to stick water processing but further studies should consider membrane cleaning and longer-term stability.

  1. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  2. Sheet Membrane Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  3. Gyroid Membranes made from Nanoporous Blck Copolymers

    DEFF Research Database (Denmark)

    Szewczykowski, Piotr Plzemystaw; Vigild, Martin Etchells; Ndoni, Sokol

    2007-01-01

    Nanoporous materials are interesting and exciting materials in view of their many potential applications, especially as ultrafiltration membranes. One way of preparing nanoporous polymeric materials is to use block copolymers. Block copolymers have the great advantage that they organize them......-selves into different morphologies on the nano scale. Block copolymer synthesis controls the molecular weight and volume fraction of blocks, which determine the resulting nano-structures. From a membrane application point of view one very suitable morphology is the bicontinuous gyroid. Mechanical stability...... of the membrane and its nanoporosity is e.g. obtained by cross-linking the majority blocks and selectively etching the minority blocks. Here we report on ultrafiltration membranes prepared from a 1,2-polybutadiene-b-polydimethylsiloxane diblock copolymer with gyroid structure. Different experimental methods...

  4. Prospects and problems of dense oxygen permeable membranes

    DEFF Research Database (Denmark)

    Hendriksen, P.V.; Larsen, P.H.; Mogensen, Mogens Bjerg

    2000-01-01

    The prospects of using mixed ionic/electronic conducting ceramics for syngas production in a catalytic membrane reactor are analysed. Problems relating to limited thermodynamic stability and poor dimensional stability of candidate materials are addressed, The consequences for these problems......, of flux improving measures like minimization of membrane thickness and minimization of the losses due to oxygen exchange over the membrane surfaces, are discussed. The analysis is conducted on two candidate materials: La0.6Sr0.4Co0.2Fe0.8O3-delta and SrFeCo0.5Ox. Finally. experimental investigations...

  5. Dissipative dynamics of fluid lipid membranes enriched in cholesterol.

    Science.gov (United States)

    Arriaga, Laura R; Rodríguez-García, Ruddi; Moleiro, Lara H; Prévost, Sylvain; López-Montero, Iván; Hellweg, Thomas; Monroy, Francisco

    2017-09-01

    Cholesterol is an intriguing component of fluid lipid membranes: It makes them stiffer but also more fluid. Despite the enormous biological significance of this complex dynamical behavior, which blends aspects of membrane elasticity with viscous friction, their mechanical bases remain however poorly understood. Here, we show that the incorporation of physiologically relevant contents of cholesterol in model fluid membranes produces a fourfold increase in the membrane bending modulus. However, the increase in the compression rigidity that we measure is only twofold; this indicates that cholesterol increases coupling between the two membrane leaflets. In addition, we show that although cholesterol makes each membrane leaflet more fluid, it increases the friction between the membrane leaflets. This dissipative dynamics causes opposite but advantageous effects over different membrane motions: It allows the membrane to rearrange quickly in the lateral dimension, and to simultaneously dissipate out-of-plane stresses through friction between the two membrane leaflets. Moreover, our results provide a clear correlation between coupling and friction of membrane leaflets. Furthermore, we show that these rigid membranes are optimal to resist slow deformations with minimum energy dissipation; their optimized stability might be exploited to design soft technological microsystems with an encoded mechanics, vesicles or capsules for instance, useful beyond classical applications as model biophysical systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes

    DEFF Research Database (Denmark)

    Li, Qingfeng; Rudbeck, Hans Christian; Chromik, Andreas

    2010-01-01

    Polybenzimidazoles (PBIs) with synthetically modified structures and their blends with a partially fluorinated sulfonated aromatic polyether have been prepared and characterized for high temperature proton exchange membrane fuel cells. Significant improvement in the polymer chemical stability...... to further improve the polymer stability and assist maintaining the membrane integrity. Upon acid doping the membrane swelling was reduced for the modified PBI and their blend membranes, which, in turn, results in enhancement of the mechanical strength, proton conductivity and high temperature fuel cell...

  7. Membrane Shape Instability Induced by Protein Crowding.

    Science.gov (United States)

    Chen, Zhiming; Atefi, Ehsan; Baumgart, Tobias

    2016-11-01

    Peripheral proteins can bend membranes through several different mechanisms, including scaffolding, wedging, oligomerization, and crowding. The crowding effect in particular has received considerable attention recently, in part because it is a colligative mechanism-implying that it could, in principle, be explored by any peripheral protein. Here we sought to clarify to what extent this mechanism is exploited by endocytic accessory proteins. We quantitatively investigate membrane curvature generation by means of a GUV shape stability assay. We found that the amount of crowding required to induce membrane curvature is correlated with membrane tension. Importantly, we also revealed that at the same membrane tension, the crowding mechanism requires far higher protein coverage to induce curvature changes compared to those observed for the endophilin BAR domain, serving here as an example of an endocytic accessory protein. Our results are important for the design of membrane-targeted biosensors as well as the understanding of mechanisms of biological membrane shaping. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Lower incidence of acute GVHD is associated with the rapid recovery of CD4+CD25+CD45RA+ regulatory T cells in patients who received haploidentical allografts from NIMA-mismatched donors: A retrospective (development) and prospective (validation) cohort-based study.

    Science.gov (United States)

    Wang, Yu; Zhao, Xiang-Yu; Xu, Lan-Ping; Zhang, Xiao-Hui; Han, Wei; Chen, Huan; Wang, Feng-Rong; Mo, Xiao-Dong; Zhang, Yuan-Yuan; Zhao, Xiao-Su; Y, Kong; Liua, Kai-Yan; Huang, Xiao-Jun; Yu, Xue-Zhong; Chang, Ying-Jun

    2016-01-01

    To investigate the effects of non-inherited maternal antigen (NIMA) on clinical outcomes and immune recovery, especially of regulatory T cells (Tregs), in patients who underwent unmanipulated haploidentical transplantation. A retrospective cohort (n = 57) and a prospective cohort (n = 88) were included. All patients received haploidentical allografts from sibling donors. Reconstitution of immune subsets, including Tregs, was determined using multicolor flow cytometry. In the retrospective cohort, the cumulative incidence of grades II-IV acute GVHD in patients with NIMA-mismatched donors was significantly lower than that of cases with NIPA-mismatched donors (14.8% vs. 43.30%, p = 0.018). Patients with higher percentages of CD4 + CD25 + CD45RA + T cells (naive Tregs) within CD4 + T cells recovered on day 30 (≥1.55%) experienced a significantly lower incidence of grades II-IV acute GVHD than that of cases with lower percentages of naive Tregs (<1.55%) (13.8% vs. 46.4%, p = 0.010). Multivariate analysis showed that NIMA mismatch and the percentages of naive Tregs were associated with the incidence of grades II-IV acute GVHD [ p = 0.050, and 0.031, respectively]. In the prospective cohort, the association of NIMA mismatch [HR = 0.365, 95% CI, 0.169-0.786, p = 0.010] or higher percentages of naive Tregs recovered on day 30 (≥1.55%) [HR = 0.114, 95% CI, 0.027-0.479, p = 0.003] with a lower cumulative incidence of grades II-IV acute GVHD was further demonstrated. No effects of NIMA mismatch on chronic GVHD, transplant-related mortality, relapse, disease-free survival, or overall survival were found. Our results confirmed the role of NIMA mismatch in acute GVHD and provided the first demonstration, based on clinical data, that recovered Tregs may be involved in the effects of NIMA on acute GVHD in a haploidentical transplant setting.

  9. Amine-based solvents regeneration in gas-liquid membrane contactor based on asymmetric PVTMS

    NARCIS (Netherlands)

    Volkov, A.V.; Tsarkov, S.E.; Goetheer, E.L.V.; Volkov, V.V.

    2015-01-01

    Asymmetric flat-sheet membranes made of poly(vinyltrimethylsilane) (PVTMS) were studied for the regeneration of amine-based absorption solvents in a membrane gas-liquid contactor at 100°C. It was shown that PVTMS membrane possesses good mechanical and chemical stability in contact with 4 M

  10. Crosslinked Hexafluoropropylidene Polybenzimidazole Membranes with Chloromethyl Polysulfone for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Qingfeng; Cleemann, Lars Nilausen

    2013-01-01

    Hexafluoropropylidene polybenzimidazole (F6PBI) was synthesized with excellent chemical stability and improved solubility. When doped with phosphoric acid, however, the F6PBI membranes showed plastic deformation at elevated temperatures. Further efforts were made to covalently crosslink F6PBI...... membranes with chloromethyl polysulfone as a polymeric crosslinker. Comparing with linear F6PBI and mPBI membranes, the polymer crosslinked F6PBI membranes exhibited little organo solubility, excellent stability towards the radical oxidation, high resistance to swelling in concentrated phosphoric acid...... with the linear F6PBI and mPBI membranes....

  11. Supported Molten Metal Membranes for Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Ravindra [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Ma, Yi Hua [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Yen, Pei-Shan [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Deveau, Nicholas [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Fishtik, Ilie [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Mardilovich, Ivan [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering

    2013-09-30

    We describe here our results on the feasibility of a novel dense metal membrane for hydrogen separation: Supported Molten Metal Membrane, or SMMM. The goal in this work was to develop these new membranes based on supporting thin films of low-melting, non- precious group metals, e.g., tin (Sn), indium (In), gallium (Ga), or their alloys, to provide a flux and selectivity of hydrogen that rivals the conventional but substantially more expensive palladium (Pd) or Pd alloy membranes, which are susceptible to poisoning by the many species in the coal-derived syngas, and further possess inadequate stability and limited operating temperature range. The novelty of the technology presented numerous challenges during the course of this project, however, mainly in the selection of appropriate supports, and in the fabrication of a stable membrane. While the wetting instability of the SMMM remains an issue, we did develop an adequate understanding of the interaction between molten metal films with porous supports that we were able to find appropriate supports. Thus, our preliminary results indicate that the Ga/SiC SMMM at 550 °C has a permeance that is an order of magnitude higher than that of Pd, and exceeds the 2015 DOE target. To make practical SMM membranes, however, further improving the stability of the molten metal membrane is the next goal. For this, it is important to better understand the change in molten metal surface tension and contact angle as a function of temperature and gas-phase composition. A thermodynamic theory was, thus, developed, that is not only able to explain this change in the liquid-gas surface tension, but also the change in the solid-liquid surface tension as well as the contact angle. This fundamental understanding has allowed us to determine design characteristics to maintain stability in the face of changing gas composition. These designs are being developed. For further progress, it is also important to understand the nature of solution and

  12. Porous polymeric membranes with thermal and solvent resistance

    KAUST Repository

    Pulido, Bruno

    2017-05-30

    Polymeric