WorldWideScience

Sample records for membrane based humidifiers

  1. Modeling of a Membrane Based Humidifier for Fuel Cell Applications Subject to End-Of-Life Conditions

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Olesen, Anders Christian; Menard, Alan

    2014-01-01

    -based water permeable membrane. Results are presented at nominal BOL-conditions and extreme EOL-conditions. A detailed sub-model incorporating the water absorption/desorption kinetics of Nafion and a novel and accurate representation of the diffusion coefficient of water in Nafion was implemented...

  2. Mass and Heat Transfer Analysis of Membrane Humidifier with a Simple Lumped Mass Model

    International Nuclear Information System (INIS)

    Lee, Young Duk; Bae, Ho June; Ahn, Kook Young; Yu, Sang Seok; Hwang, Joon Young

    2009-01-01

    The performance of proton exchange membrane fuel cell (PEMFC) is seriously changed by the humidification condition which is intrinsic characteristics of the PEMFC. Typically, the humidification of fuel cell is carried out with internal or external humidifier. A membrane humidifier is applied to the external humidification of residential power generation fuel cell due to its convenience and high performance. In this study, a simple static model is constructed to understand the physical phenomena of the membrane humidifier in terms of geometric parameters and operating parameters. The model utilizes the concept of shell and tube heat exchanger but the model is also able to estimate the mass transport through the membrane. Model is constructed with FORTRAN under Matlab/Simulink □ environment to keep consistency with other components model which we already developed. Results shows that the humidity of wet gas and membrane thickness are critical parameters to improve the performance of the humidifier

  3. Performance analysis of a membrane humidifier containing porous metal foam as flow distributor in a PEM fuel cell system

    International Nuclear Information System (INIS)

    Afshari, Ebrahim; Baharlou Houreh, Nasser

    2014-01-01

    Highlights: • Three metal foam configurations for the membrane humidifier are introduced. • The performances of the humidifiers containing metal foam are investigated. • A 3D CFD model is developed to compare the introduced humidifiers with one another. • Using metal foam at dry side has no positive effect on the humidifier performance. - Abstract: Using metal foam as flow distributor in membrane humidifier for proton exchange membrane (PEM) fuel cell system has some unique characteristics like more water transfer, low manufacturing complexity and low cost compared to the conventional flow channel plate. Metal foam can be applied at wet side or dry side or both sides of a humidifier. The three-dimensional CFD models are developed to investigate the performance of the above mentioned meanwhile compare them with the conventional humidifier. This model consists of a set of coupled equations including conservations of mass, momentum, species and energy for all regions of the humidifier. The results indicate that with the metal foam installed at wet side and both sides, water recovery ratio and dew point at dry side outlet are more than that of the conventional humidifier, indicating a better humidifier performance; while using metal foam at dry side has no positive effect on humidifier performance. At dry side mass flow rates higher than 10 mgr/s pressure drop in humidifier containing metal foam at wet side is lower than that of the conventional humidifier. As the mass flow rate increases from 9 to 15 mgr/s humidifier containing metal foam at wet side has better performance, while at mass flow rates lower than 9 mgr/s, the humidifier containing metal foam at both sides has better performance. At dry side inlet temperatures lower than 303 K, humidifier containing metal foam at wet side has better performance and at temperatures higher than 303 K, humidifier containing metal foam at both sides has better performance

  4. Humidifier disinfectants, unfinished stories

    Directory of Open Access Journals (Sweden)

    Yeyong Choi

    2016-02-01

    Full Text Available Once released into the air, humidifier disinfectants became tiny nano-size particles, and resulted in chemical bronchoalveolitis. Families had lost their most beloved members, and even some of them became broken. Based on an estimate of two million potential victims who had experienced adverse effects from the use of humidifier disinfectants, we can say that what we have observed was only the tip of the iceberg. Problems of entire airways, as well as other systemic effects, should be examined, as we know these nano-size particles can irritate cell membranes and migrate into systemic circulation. The story of humidifier disinfectant is not finished yet.

  5. Performance of a Cross-Flow Humidifier with a High Flux Water Vapor Transport Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R. K.; Wang, X.; Johnson, W. B.; Berg, F.; Kadylak, D.

    2015-09-30

    Water vapor transport (WVT) flux across a composite membrane that consists of a very thin perfluorosulfonic acid (PFSA) ionomer layer sandwiched between two expanded polytetrafluoroethylene (PTFE) microporous layers is investigated. Static and dynamic tests are conducted to measure WVT flux for different composite structures; a transport model shows that the underlying individual resistances for water diffusion in the gas phase and microporous and ionomer layers and for interfacial kinetics of water uptake at the ionomer surface are equally important under different conditions. A finite-difference model is formulated to determine water transport in a full-scale (2-m2 active membrane area) planar cross-flow humidifier module assembled using pleats of the optimized composite membrane. In agreement with the experimental data, the modeled WVT flux in the module increases at higher inlet relative humidity (RH) of the wet stream and at lower pressures, but the mass transfer effectiveness is higher at higher pressures. The model indicates that the WVT flux is highest under conditions that maintain the wet stream at close to 100% RH while preventing the dry stream from becoming saturated. The overall water transport is determined by the gradient in RH of the wet and dry streams but is also affected by vapor diffusion in the gas layer and the microporous layer.

  6. Cs2.5H0.5PWO40/SiO2 as addition self-humidifying composite membrane for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Wang, L.; Yi, B.L.; Zhang, H.M.; Xing, D.M.

    2007-01-01

    In this paper, we first reported a novel self-humidifying composite membrane for the proton exchange membrane fuel cell (PEMFC). Cs 2.5 H 0.5 PWO 40 /SiO 2 catalyst particles were dispersed uniformly into the Nafion (registered) resin, and then Cs 2.5 H 0.5 PWO 40 -SiO 2 /Nafion composite membrane was prepared using solution-cast method. Compared with the H 3 PWO 40 (PTA) , the Cs 2.5 H 0.5 PWO 40 /SiO 2 was steady due to the substitute of H + with Cs + and the interaction between the Cs 2.5 H 0.5 PWO 40 and SiO 2 . And compared with the performance of the fuel cell with commercial Nafion (registered) NRE-212 membrane, the cell performance with the self-humidifying composite membrane was obviously improved under both humidified and dry conditions at 60 and 80 o C. The best performance under dry condition was obtained at 60 o C. The self-humidifying composite membrane could minimize membrane conductivity loss under dry conditions due to the presence of catalyst and hydrophilic Cs 2.5 H 0.5 PWO 40 /SiO 2 particles

  7. Humidifying system design of PEMFC test platform based on the mixture of dry and wet air

    Directory of Open Access Journals (Sweden)

    Tiancai Ma

    2015-01-01

    Full Text Available Based on the present humidifying system of PEMFC test platform, a novel design based on dry and wet air mixture is proposed. Key parameters are calculated, and test platform is built. Three experiments are implemented to test the performance of proposed design. Results show that the new design can meet the requirements, and realize the quick response and accurate control.

  8. Preparation of Stable Pt-Clay Nanocatalysts for Self-humidifying Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhang, Wenjing

    and complexity of the whole system. Therefore, we have designed a novel Pt-clay nanocatalyst and developed a Pt-clay/Nafion nanocomposite membrane to significantly enhanced proton conductivity without any external humidification. In this study, monolayer of Pt nanoparticles of diameters of 2-3 nm with a high...... ultrasonication and a rigorous mechanical agitation of Ptclay in the Nafion solution during the membrane casting process. Planar and hygroscopic clay reduced fuel crossover and balanced the water content. In situ water production for humidification of the dry membranes without any external humidification...

  9. Efficiency measurement and uncertainty discussion of an electric engine powered by a "self-breathing" and "self-humidified" proton exchange membrane fuel cell.

    Science.gov (United States)

    Schiavetti, Pierluigi; Del Prete, Zaccaria

    2007-08-01

    The efficiency of an automotive engine based on a "self-breathing" and "self-humidified" proton exchange membrane fuel cell stack (PEM FC) connected to a dc brushless electrical motor was measured under variable power load conditions. Experiments have been carried out on a small scale 150 W engine model. After determining the fuel cell static polarization curve and the time response to power steps, the system was driven to copy on the test bench a "standard urban load cycle" and its instantaneous efficiencies were measured at an acquisition rate of 5 Hz. The integral system efficiency over the entire urban load cycle, comprising the losses of the unavoidable auxiliary components of the engine, was then calculated. The fuel cell stack was operated mainly in "partial" dead-end mode, with a periodic anode flow channel purging, and one test was carried out in "pure" dead-end mode, with no anode channel purging. An uncertainty analysis of the efficiencies was carried out, taking into account either type A and type B evaluation methods, strengthening the discussion about the outcomes obtained for a system based on this novel simplified FC type. For our small scale engine we measured over the standard urban cycle, on the basis of the H(2) high heating value (HHV), a tank-to-wheel integral efficiency of (18.2+/-0.8)%, when the fuel cell was operated with periodic flow channel purging, and of (21.5+/-1.3)% in complete dead-end operation mode.

  10. Study on Air-cooled Self-humidifying PEMFC Control Method Based on Segmented Predict Negative Feedback Control

    International Nuclear Information System (INIS)

    Zhiyu, You; Tao, Xu; Zhixiang, Liu; Yun, Peng; Weirong, Cheng

    2014-01-01

    In order to obtain the optimal output performance of the air-cooled self-humidifying proton exchange membrane fuel cell (PEMFC), the operating temperature, the air flow, purge interval and some other parameters must be controlled strictly. As a key factor, the operating temperature mainly determines the optimal output performance of the fuel cell. However, some intrinsic issues such as long adjusting time, over-shoot still exist inevitably for the traditional PID temperature-controlled method in circumstances of the load variation. Consequently, output performance of PEMFC decreases because the operating temperature of the fuel cell fails to reach, and the corresponding lifetime of PEMFC is also reduced. In this study, a segmented predict negative feedback control method, based on the advance proportional control one, is proposed and verified by experiments to overcome the shortcomings of PID temperature control. The results demonstrate that the optimal output performance of PEMFC can be realized by utilizing the proposed method for temperature control due to its excellent properties, simple controlling and small over-shoot

  11. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell for a pre-humidified hydrogen stream

    DEFF Research Database (Denmark)

    Berning, Torsten; Shakhshir, Saher Al

    2016-01-01

    was originally believed to be limited to the fuel cell anode operating on dry hydrogen. In the current work, it is expanded for the case of a pre-humidified hydrogen stream. In addition, useful correlations are derived that link the fuel cell water balance with the anode side inlet and outlet thermodynamic state......In a recent publication it has been shown how the water balance in a proton exchange membrane fuel cell can be determined employing hot wire anemometry. The hot wire sensor has to be placed into the anode outlet pipe of the operating fuel cell, and the voltage signal E that is read from the sensor...... has to be divided by a pre-determined voltage signal E0 that has been obtained for a stream of dry hydrogen where the molar flow rate corresponds to a total current I of the fuel cell stack and a stoichiometric flow ratio, ξ. Because the last two properties are usually continuously known in fuel cell...

  12. A new method for calculating number concentrations of cloud condensation nuclei based on measurements of a three-wavelength humidified nephelometer system

    Science.gov (United States)

    Tao, Jiangchuan; Zhao, Chunsheng; Kuang, Ye; Zhao, Gang; Shen, Chuanyang; Yu, Yingli; Bian, Yuxuan; Xu, Wanyun

    2018-02-01

    The number concentration of cloud condensation nuclei (CCN) plays a fundamental role in cloud physics. Instrumentations of direct measurements of CCN number concentration (NCCN) based on chamber technology are complex and costly; thus a simple way for measuring NCCN is needed. In this study, a new method for NCCN calculation based on measurements of a three-wavelength humidified nephelometer system is proposed. A three-wavelength humidified nephelometer system can measure the aerosol light-scattering coefficient (σsp) at three wavelengths and the light-scattering enhancement factor (fRH). The Ångström exponent (Å) inferred from σsp at three wavelengths provides information on mean predominate aerosol size, and hygroscopicity parameter (κ) can be calculated from the combination of fRH and Å. Given this, a lookup table that includes σsp, κ and Å is established to predict NCCN. Due to the precondition for the application, this new method is not suitable for externally mixed particles, large particles (e.g., dust and sea salt) or fresh aerosol particles. This method is validated with direct measurements of NCCN using a CCN counter on the North China Plain. Results show that relative deviations between calculated NCCN and measured NCCN are within 30 % and confirm the robustness of this method. This method enables simplerNCCN measurements because the humidified nephelometer system is easily operated and stable. Compared with the method using a CCN counter, another advantage of this newly proposed method is that it can obtain NCCN at lower supersaturations in the ambient atmosphere.

  13. Humidifier fever 1

    Science.gov (United States)

    1977-01-01

    MRC Symposium (1977).Thorax, 32, 653-663. Humidifier fever. In enclosed environments, it may be necessary to regulate temperature, ventilation, and humidity to maintain comfortable working conditions. Several systems can be used although in terms of installation and running costs a simple radiator system is far more economical than air conditioning with complete temperature and humidity control. Humidity control requires the introduction of water into a moving current of air, and in such a system baffle plates are often used to eliminate large droplets; also any unused water is usually recirculated. Organic dust drawn into the system and settling on the baffle plates and in the mixing chamber may be utilised by micro-organisms introduced from the atmosphere and from the water supply, and a biomass builds up. Microbial material is then voided into the working atmosphere by the ventilation system. Under appropriate exposure conditions susceptible individuals may succumb to an episode of humidifier fever, an influenza-like illness with pyrexia and malaise as the main symptoms, but cough, chest tightness, dyspnoea and weight loss may also be seen. The episodes usually occur after absence from work for a few days and have been termed `Monday sickness'. Individuals are often able to return to work the next day and appear refractory to further exposure. The disease is of the winter months probably due to the larger amount (up to 90%) of fresh air drawn into the humidifier during the summer. In the blood of exposed subjects precipitins are usually present to extracts of baffle plate material and recirculating water although they are not necessarily indicative of disease. Skin tests may be positive and inhalation challenge has reproduced the disease in susceptible individuals. Many organisms may be isolated from baffle plates and recirculating water but only amoeba extracts have produced consistently positive reactions with sera from affected individuals. Remedial actions

  14. Rate of humidifier and humidifier disinfectant usage in Korean children: A nationwide epidemiologic study.

    Science.gov (United States)

    Yoon, Jisun; Cho, Hyun-Ju; Lee, Eun; Choi, Yean Jung; Kim, Young-Ho; Lee, Jung Lym; Lee, Ye Jin; Hong, Soo-Jong

    2017-05-01

    In South Korea, a cluster of humidifier disinfectant-induced lung injury (HDLI) cases developed between 2006 and 2011. There are no existing reports regarding the rate of humidifier disinfectant (HD) usage in the general population of Korean children. The purpose of this study was to investigate the rate of humidifier and HD usage in the general population of Korean children. This is a general population-based birth cohort multicenter study, Panel Study of Korean Children (PSKC) from 2008, a humidifier and HD-related questionnaire administered to 1577 subjects (809 male, 768 female) in 2015 (n=1577). The questionnaire consisted of four categories (humidifier usage, HD usage, exposure duration, and type of HD brands). A total of 75.6% (1192/1577) had used a humidifier, and the rate of HD usage was found to be 31.1% (409/1316). Polyhexamethylene guanidine (PHMG), used as a disinfectant, was found to have the highest usage rate (62.0%). HD was used for less than 3 months of the entire lifetime of most of the subjects. In conclusion, approximately 30% of young Korean children were exposed to HD. PHMG-containing HD was the most commonly used. These results suggest that a nationwide epidemiologic investigation is needed urgently, and children exposed to HD should be investigated regarding their status of lung injury, including a pulmonary function test. Moreover, a long-term follow-up period may be required to evaluate HD usage-associated lung injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Humidifiers: Air Moisture Eases Skin, Breathing Symptoms

    Science.gov (United States)

    Humidifiers: Air moisture eases skin, breathing symptoms Humidifiers can ease problems caused by dry air. But they need regular maintenance. Here ... that emit water vapor or steam to increase moisture levels in the air (humidity). There are several ...

  16. Climate, intermittent humidification, and humidifier fever.

    OpenAIRE

    Anderson, K; Watt, A D; Sinclair, D; Lewis, C; McSharry, C P; Boyd, G

    1989-01-01

    Two summer outbreaks of humidifier fever (HF) are described in a microprocessor factory (factory A) and a printing factory (factory B). The air in each factory was humidified intermittently and controlled by present humidistats operating to maintain a relative humidity of 45% by an air handler incorporating a spray humidifier in factory A and two ceiling mounted spray humidifiers in factory B. Questionnaire data from each workforce suggested that although symptoms apparently occurred most com...

  17. Design of Polymer-Coated Multi-Walled Carbon Nanotube/Carbon Black-based Fuel Cell Catalysts with High Durability and Performance Under Non-humidified Condition

    International Nuclear Information System (INIS)

    Yang, Zehui; Berber, Mohamed R.; Nakashima, Naotoshi

    2015-01-01

    To realize a high catalyst utilization, better fuel cell performance and durability as well as low production cost, an efficient design strategy of the catalyst layer that can improve both the oxygen accessibility and structure stability is highly required. Here, we describe the preparation of fuel cell electrocatalysts with an efficient fuel cell performance and better stability based on hybrids of multi-walled carbon nanotubes (MWNTs) and carbon black (CB) which were wrapped by a proton conducting polymer, poly[2,2′-(2,6-pyridine)-5,5′-bibenzimidazole], before deposition of the platinum (Pt) metal catalyst. The catalyst mass activity after feeding only 10%-MWNTs to CB increased by 1.5 and 2 times than those of the MWNTs-based- and CB-based catalysts, respectively. The results also demonstrated that 90 wt% of the MWNTs in the catalyst layer allows it to be replaced by CB without any significant change in its durability and performance under 120 °C and non-humidified condition

  18. Experimental study on the start-up with dry gases from normal cell temperatures in self-humidified proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Kong, Im Mo; Jung, Aeri; Kim, Beom Jun; Baik, Kyung Don; Kim, Min Soo

    2015-01-01

    In this study, the start-up characteristics of PEMFCs (proton exchange membrane fuel cells) was investigated with dry gases from normal cell temperatures above 0 °C. Firstly, the effects of flow arrangements (co-flow and counter-flow) were evaluated at a starting cell temperature of 25 °C. Then, the start-up was successful in both arrangements, but it showed better performance with counter-flow. In addition, the hydrogen concentration was measured and it showed that hydrogen crossover contributes to the membrane hydration and the first phase of dry start-up. However, although the cell temperature rose above 45 °C after start-up form 25 °C with counter-flow arrangement, the restart-up after shut-down failed at a starting cell temperature of 45 °C regardless of flow arrangements. Considering the needs of restart-up, the available starting cell temperature should be improved. For this, after first sub-step of start-up process, relatively low flow rates were maintained to retain produced water without purge so that the membrane can be hydrated sufficiently. With this modified process, denominated as WSP (water storage process) in this study, the dry start-up became successful at a starting cell temperature of 45 °C and the cell performance was remarkably improved especially with counter-flow arrangement. - Highlights: • Start-up with dry gases from normal cell temperatures was investigated. • Counter-flow arrangement showed better performance over co-flow arrangement. • Water is produced by hydrogen crossover and its direct reaction with oxygen at cathode side. • It prevents the membrane dehydration and helps the start-up during the first phase of the process. • Available starting cell temperature and cell performance could be improved with WSP.

  19. Process for humidifying a gaseous fuel stream

    International Nuclear Information System (INIS)

    Sederquist, R. A.

    1985-01-01

    A fuel gas stream for a fuel cell is humidified by a recirculating hot liquid water stream using the heat of condensation from the humidified stream as the heat to vaporize the liquid water. Humidification is accomplished by directly contacting the liquid water with the dry gas stream in a saturator to evaporate a small portion of water. The recirculating liquid water is reheated by direct contact with the humidified gas stream in a condenser, wherein water is condensed into the liquid stream. Between the steps of humidifying and condensing water from the gas stream it passes through the fuel cell and additional water, in the form of steam, is added thereto

  20. Sol-Gel Based Polybenzimidazole Membranes for Hydrogen Pumping Devices

    Energy Technology Data Exchange (ETDEWEB)

    Benicewicz, Brian C. [Rensselaer Polytechnic Institute, Troy, NY (United States). Department of Chemistry and Chemical Biology; Eisman, Glenn A. [Rensselaer Polytechnic Institute, Troy, NY (United States). Department of Materials Science and Engineering; Kumar, S. K. [Columbia Univ., New York, NY (United States). Department of Chemical Engineering; Greenbaum, S. G. [Hunter College, New York, NY (United States). Department of Physics

    2014-02-26

    Electrochemical hydrogen pumping using a high temperature (>100°C) PBI membrane was demonstrated under non-humidified and humidified conditions at ambient pressures. Relatively low voltages were required to operate the pump over a wide range of hydrogen flow rates. The advantages of the high temperature capability were shown by operating the pump on reformate feed gas mixtures containing various amounts of CO and CO2. Gas purity measurements on the cathode gas product were conducted and significant reductions in gas impurities were detected. The applicability of the PBI membrane for electrochemical hydrogen pumping and its durability under typical operating conditions was established with tests that lasted for nearly 4000 hours.

  1. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-10-12

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and/or impedance sensors) mounted on the porous surface. In another example, a membrane distillation (MD) process includes the membrane. Processing circuitry can be configured to monitor outputs of the plurality of sensors. The monitored outputs can be used to determine membrane degradation, membrane fouling, or to provide an indication of membrane replacement or cleaning. The sensors can also provide temperatures or temperature differentials across the porous surface, which can be used to improve modeling or control the MD process.

  2. Humidification during laparoscopic surgery: overview of the clinical benefits of using humidified gas during laparoscopic surgery.

    Science.gov (United States)

    Binda, Maria Mercedes

    2015-11-01

    The peritoneum is the serous membrane that covers the abdominal cavity and most of the intra-abdominal organs. It is a very delicate layer highly susceptible to damage and it is not designed to cope with variable conditions such as the dry and cold carbon dioxide (CO2) during laparoscopic surgery. The aim of this review was to evaluate the effects caused by insufflating dry and cold gas into the abdominal cavity after laparoscopic surgery. A literature search using the Pubmed was carried out. Articles identified focused on the key issues of laparoscopy, peritoneum, morphology, pneumoperitoneum, humidity, body temperature, pain, recovery time, post-operative adhesions and lens fogging. Insufflating dry and cold CO2 into the abdomen causes peritoneal damage, post-operative pain, hypothermia and post-operative adhesions. Using humidified and warm gas prevents pain after surgery. With regard to hypothermia due to desiccation, it can be fully prevented using humidified and warm gas. Results relating to the patient recovery are still controversial. The use of humidified and warm insufflation gas offers a significant clinical benefit to the patient, creating a more physiologic peritoneal environment and reducing the post-operative pain and hypothermia. In animal models, although humidified and warm gas reduces post-operative adhesions, humidified gas at 32 °C reduced them even more. It is clear that humidified gas should be used during laparoscopic surgery; however, a question remains unanswered: to achieve even greater clinical benefit to the patient, at what temperature should the humidified gas be when insufflated into the abdomen? More clinical trials should be performed to resolve this query.

  3. Influence of Silica/Sulfonated Polyether-Ether Ketone as Polymer Electrolyte Membrane for Hydrogen Fueled Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Sri Handayani

    2011-12-01

    Full Text Available The operation of non-humidified condition of proton exchange membrane fuel cell (PEMFC using composite sPEEK-silica membrane is reported. Sulfonated membrane of PEEK is known as hydrocarbon polyelectrolyte membrane for PEMFC and direct methanol fuel cell (DMFC. The state of the art of fuel cells is based on the perluorosulfonic acid membrane (Nafion. Nafion has been the most used in both PEMFC and DMFC due to good performance although in low humidified condition showed poor current density. Here we reported the effect of silica in hydrocarbon sPEEK membrane that contributes for a better water management system inside the cell, and showed 0.16 W/cm2 of power density which is 78% higher than that of non-silica modified [Keywords: composite membrane, polyether-ether ketone, silica, proton exchange membrane fuel cell].

  4. Chitosan-based ferrimagnetic membrane

    International Nuclear Information System (INIS)

    Macedo, M.A.; Silva, M.N.B.; Cestari, A.R.; Vieira, E.F.S.; Sasaki, J.M.; Goes, J.C.; Aguiar, J. Albino

    2004-01-01

    A chitosan-based ferrimagnetic membrane (Chitosan/NiFe 2 O 4 ) was prepared and it showed a typical magnetization of soft ferrimagnetic material with M s =16 emu/g at 50 kOe and a high capacity to extract Hg(II), Cu(II) and Zn(II) ions from aqueous solutions. These results indicate that the Chitosan/NiFe 2 O 4 is a good candidate to remove heavy metals from polluted water with the possibility that its recovery can be done by an electromagnet

  5. Robust High Performance Aquaporin based Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus; Zhao, Yichun; Qiu, C.

    2013-01-01

    Aquaporins are water channel proteins with high water permeability and solute rejection, which makes them promising for preparing high-performance biomimetic membranes. Despite the growing interest in aquaporin-based biomimetic membranes (ABMs), it is challenging to produce robust and defect...... on top of a support membrane. Control membranes, either without aquaporins or with the inactive AqpZ R189A mutant aquaporin served as controls. The separation performance of the membranes was evaluated by cross-flow forward osmosis (FO) and reverse osmosis (RO) tests. In RO the ABM achieved a water...... permeability of ~ 4 L/(m2 h bar) with a NaCl rejection > 97% at an applied hydraulic pressure of 5 bar. The water permeability was ~40% higher compared to a commercial brackish water RO membrane (BW30) and an order of magnitude higher compared to a seawater RO membrane (SW30HR). In FO, the ABMs had > 90...

  6. The clinical spectrum of humidifier disease in synthetic fiber plants

    NARCIS (Netherlands)

    Pal, TM; deMonchy, JGR; Groothoff, JW; Post, D

    In a synthetic fiber production site with recirculating cold water humidification systems and small-size-particle (> 0.1 mu <1 mu) oil mist exposure, humidifier disease was diagnosed in several workers. The patients could be divided into three groups illustrating the clinical spectrum of humidifier

  7. Rapid Scan Humidified Growth Cloud Condensation Nuclei Counter

    Energy Technology Data Exchange (ETDEWEB)

    Gregory L. Kok; Athanasios Nenes

    2013-03-13

    This research focused on enhancements to the streamwise thermal gradient cloud condensation nuclei counter to support the rapid scan mode and to enhance the capability for aerosol humidified growth measurements. The research identified the needs for flow system modifications and range of capability for operating the conventional instrument in the rapid scan and humidified growth modes.

  8. Ceria Based Composite Membranes for Oxygen Separation

    DEFF Research Database (Denmark)

    Gurauskis, Jonas; Ovtar, Simona; Kaiser, Andreas

    2014-01-01

    Mixed ionic-electronic conducting membranes for oxygen gas separation are attracting a lot of interest due to their promising potential for the pure oxygen and the syngas production. Apart from the need for a sufficiently high oxygen permeation fluxes, the prolonged stability of these membranes...... under the large oxygen potential gradients at elevated temperatures is decisive for the future applications. The gadolinium doped cerium oxide (CGO) based composite membranes are considered as promising candidates due to inherent stability of CGO phase. The CGO matrix is a main oxygen ion transporter......; meanwhile the primary role of a secondary phase in this membrane is to compensate the low electronic conductivity of matrix at intended functioning conditions. In this work thin film (15-20 μm) composite membranes based on CGO matrix and LSF electronic conducting phase were fabricated and evaluated...

  9. Device for cooling and humidifying reformate

    Science.gov (United States)

    Zhao, Jian Lian; Northrop, William F.

    2008-04-08

    Devices for cooling and humidifying a reformate stream from a reforming reactor as well as related methods, modules and systems includes a heat exchanger and a sprayer. The heat exchanger has an inlet, an outlet, and a conduit between the inlet and the outlet. The heat exchanger is adapted to allow a flow of a first fluid (e.g. water) inside the conduit and to establish a heat exchange relationship between the first fluid and a second fluid (e.g. reformate from a reforming reactor) flowing outside the conduit. The sprayer is coupled to the outlet of the heat exchanger for spraying the first fluid exiting the heat exchanger into the second fluid.

  10. Comparison of Active and Passive Humidifiers on Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    H. Dilek Mersin Özcanoğlu

    2010-12-01

    Full Text Available Objective: To research the effectiveness on humidifying, respiratory mechanics, bacterial colonization and infection rates of continuous usage for 96 hours of active and passive humidifiers which are used for heating and moisturizing the inspired gases in patients under mechanical ventilation. Materials and Methods: Adult patients who are expected to support at least 4 days under mechanical ventilation, excluding patients with primary lung disease and sepsis, are included in the research. Patients are separated in two groups as a passive humidifier group (heat moisture exchange filter (n=16 and an active humidifier group (n=14. In passive humidifier group, humidifier is used continuously for 96 hours without change. In active humidifier group moisturizing is obtained by using sterile distilled water in heated humidifier. Patients whose demographic characteristics were recorded and first 24 hour APACHE II scores were calculated, were taking chest X-Ray’s daily. Respiratory mechanics measurements were recorded twice a day which were watched in Servo300A ventilators respiratory mechanics monitor, in patients under volume controlled ventilation. The amount of moisture and liquidity of the secretion in endotracheal tube were recorded and scored visually. The endotracheal aspiration samples at the beginning and at the end of 96th hour and respiratory circuits ventilator side sample taken at 96th hour were studied microbiologically. Cultures and colonial counts were studied at Cerrahpasa Medical Faculty Microbiology Laboratory. Results: There were no significant difference in two groups by demographic data, APACHE II scores and illness diagnoses. In passive humidifier group, respiratory mechanics showed no significant difference between the beginning and the 4th day (p>0.05. In active humidifier group when MAP, PEEPtot, EEF, Rins, Rexp values showed no significant difference between the beginning and the 4th day but PIP values showed significant

  11. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...... based on pure PBI as a reference point, the composite membranes were characterized with respect to spectroscopic and physicochemical properties. After doping with phosphoric acid, the composite membranes showed considerably improved ex situ proton conductivity under anhydrous as well as under fully...... humidified conditions in the 120-180°C temperature range. The conductivity improvements were also confirmed by in situ fuel cell tests at 160°C and further supported by the electrochemical impedance spectroscopy data based on the operating membrane electrode assemblies, demonstrating the technical...

  12. Humidity in air during and after humidifying incidents in three different houses

    DEFF Research Database (Denmark)

    Gunnarsen, Lars; Logadottir, Asta; Afshari, Alireza

    2009-01-01

    in the house and areas of main inner surface structures. The ability of the houses to absorb water in their structures after these experimentally created humidifying incidents was assessed based on mathematical models. Moisture absorption was most significant in the old masonry house during the first four...... hours after the steam was added. After this period the modern masonry house, with the slowly reacting concrete, had the highest absorption. At all times the least absorption was seen in the wooden house....

  13. EXPERIMENTAL STUDY OF CENTRIFUGAL HUMIDIFIER FITTED IN AN INDUSTRIAL SHED LOCATED IN TROPICAL CLIMATES

    Directory of Open Access Journals (Sweden)

    K SENTHILKUMAR

    2011-01-01

    Full Text Available An evaporative cooling system based on centrifugal humidification technique is proposed for large industrial spaces. In this system, the evaporation rate is improved by splitting the water into fine micronisers by impinging it onto the stationery strips. The various parameters influencing the rate of evaporation are identified. The effect of mass flow rate of water, disc speed and mass flow rate of air on space cooling and humidifier efficiency is studied experimentally and plotted with respect to time. The studies indicate that medium mass flow rate of water, higher disc speed and medium mass flow rate of air are preferable in reducing the dry bulb temperature of room and for increasing humidifier efficiency.

  14. HIGH PERFORMANCE CERIA BASED OXYGEN MEMBRANE

    DEFF Research Database (Denmark)

    2014-01-01

    The invention describes a new class of highly stable mixed conducting materials based on acceptor doped cerium oxide (CeO2-8 ) in which the limiting electronic conductivity is significantly enhanced by co-doping with a second element or co- dopant, such as Nb, W and Zn, so that cerium and the co-...... thin film membrane devices using these materials....

  15. Nanostructured Polysulfone-Based Block Copolymer Membranes

    KAUST Repository

    Xie, Yihui

    2016-05-01

    The aim of this work is to fabricate nanostructured membranes from polysulfone-based block copolymers through self-assembly and non-solvent induced phase separation. Block copolymers containing polysulfone are novel materials for this purpose providing better mechanical and thermal stability to membranes than polystyrene-based copolymers, which have been exclusively used now. Firstly, we synthesized a triblock copolymer, poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) through polycondensation and reversible addition-fragmentation chain-transfer polymerization. The obtained membrane has a highly porous interconnected skin layer composed of elongated micelles with a flower-like arrangement, on top of the graded finger-like macrovoids. Membrane surface hydrolysis was carried out in a combination with metal complexation to obtain metal-chelated membranes. The copper-containing membrane showed improved antibacterial capability. Secondly, a poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) triblock copolymer obtained by hydrolyzing poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) formed a thin film with cylindrical poly(acrylic acid) microdomains in polysulfone matrix through thermal annealing. A phase inversion membrane was prepared from the same polymer via self-assembly and chelation-assisted non-solvent induced phase separation. The spherical micelles pre-formed in a selective solvent mixture packed into an ordered lattice in aid of metal-poly(acrylic acid) complexation. The space between micelles was filled with poly(acrylic acid)-metal complexes acting as potential water channels. The silver0 nanoparticle-decorated membrane was obtained by surface reduction, having three distinct layers with different particle sizes. Other amphiphilic copolymers containing polysulfone and water-soluble segments such as poly(ethylene glycol) and poly(N-isopropylacrylamide) were also synthesized through coupling reaction and copper0-mediated

  16. Optimization of humidifying procedure in controlled environment for ...

    African Journals Online (AJOL)

    This study investigated mushroom cultivation in controlled indoor environment. For this, the environmental factors including humidity and temperature were controlled by humidifier and ventilation. Four ventilations were installed on tops to bring the air from inside to outside and four small ventilations were installed on side ...

  17. Optimization of humidifying procedure in controlled environment for ...

    African Journals Online (AJOL)

    hp

    2016-11-09

    Nov 9, 2016 ... This study investigated mushroom cultivation in controlled indoor environment. For this, the environmental factors including humidity and temperature were controlled by humidifier and ventilation. Four ventilations were installed on tops to bring the air from inside to outside and four small ventilations were ...

  18. Gallium nitride electrodes for membrane-based electrochemical biosensors.

    Science.gov (United States)

    Schubert, T; Steinhoff, G; von Ribbeck, H-G; Stutzmannn, M; Eickhoff, M; Tanaka, M

    2009-10-01

    We report on the deposition of planar lipid bilayers (supported membranes) on gallium nitride (GaN) electrodes for potential applications as membrane-based biosensors. The kinetics of the lipid membrane formation upon vesicle fusion were monitored by simultaneous measurements of resistance and capacitance of the membrane using AC impedance spectroscopy in the frequency range between 50 mHz and 50 kHz. We could identify a two-step process of membrane spreading and self-healing. Despite its relatively low resistance, the membrane can be modeled by a parallel combination of an ideal resistor and capacitor, indicating that the membrane efficiently blocks the diffusion of ions.

  19. Nationwide Study of Humidifier Disinfectant Lung Injury in South Korea, 1994-2011. Incidence and Dose-Response Relationships.

    Science.gov (United States)

    Paek, Domyung; Koh, Younsuck; Park, Dong-Uk; Cheong, Hae-Kwan; Do, Kyung-Hyun; Lim, Chae-Man; Hong, Soo-Jong; Kim, Yong-Hwa; Leem, Jong-Han; Chung, Kyu Hyuck; Choi, Ye-Yong; Lee, Jong-Hyeon; Lim, Sin-Ye; Chung, Eun-Hee; Cho, Young Ah; Chae, Eun Jin; Joh, Joon-Sung; Yoon, Yup; Lee, Kyu-Hong; Choi, Bo Youl; Gwack, Jin

    2015-12-01

    Humidifier disinfectant lung injury is an acute lung disease attributed to recurrent inhalation of certain disinfectant aerosols emitted from room humidifiers. An outbreak of this toxic lung injury occurred in South Korea from 1995 until all humidifier disinfectant products were recalled from the consumer market by the government in 2011. A nationwide study was conducted to ascertain and classify all potential cases of humidifier disinfectant lung injury in Korea and to assess dose-response relationships. By several mechanisms, clinicians and the general public were invited to report all suspected cases of humidifier disinfectant lung injury to public health officials in South Korea. A committee was convened to define diagnostic criteria based on pathologic, radiologic, and clinical findings for index cases, combined with assessment of environmental exposure to humidifier disinfectants. Clinical review and environmental assessments were performed and later combined to determine overall likelihood of disease for each study participant, classified as definite, probable, possible, or unlikely. Survival time from exposure to onset of symptoms was analyzed to assess dose-response relationships. Three broad categories of risk factors were examined: (1) biological susceptibility, (2) temporal cycle of exposure and recovery, and (3) spatial conditions and density of disinfectant. Of 374 possible cases identified and reviewed, 329 were unanimously classified by the diagnostic committee, as follows: 117 definite, 34 probable, 38 possible and 140 unlikely cases. A total of 62 individuals with definite or probable disease died. Risk factors examined for polyhexamethyleneguanidine phosphate exposure that were found to be significant in shortening survival included age 4 years or younger at onset, use of disinfectant for 7 days per week, airborne density of 800 μg/m(3) or more of disinfectant, and daily exposure 11 or more hours in duration. Dose-response analysis indicated

  20. Silica incorporated membrane for wastewater based filtration

    Science.gov (United States)

    Fernandes, C. S.; Bilad, M. R.; Nordin, N. A. H. M.

    2017-10-01

    Membrane technology has long been applied for waste water treatment industries due to its numerous advantages compared to other conventional processes. However, the biggest challenge in pressure driven membrane process is membrane fouling. Fouling decreases the productivity and efficiency of the filtration, reduces the lifespan of the membrane and reduces the overall efficiency of water treatment processes. In this study, a novel membrane material is developed for water filtration. The developed membrane incorporates silica nanoparticles mainly to improve its structural properties. Membranes with different loadings of silica nanoparticles were applied in this study. The result shows an increase in clean water permeability and filterability of the membrane for treating activated sludge, microalgae solution, secondary effluent and raw sewage as feed. Adding silica into the membrane matrix does not significantly alter contact angle and membrane pore size. We believe that silica acts as an effective pore forming agent that increases the number of pores without significantly altering the pore sizes. A higher number of small pores on the surface of the membrane could reduce membrane fouling because of a low specific loading imposed to individual pores.

  1. Membrane-based technologies for biogas separations.

    Science.gov (United States)

    Basu, Subhankar; Khan, Asim L; Cano-Odena, Angels; Liu, Chunqing; Vankelecom, Ivo F J

    2010-02-01

    Over the past two decades, membrane processes have gained a lot of attention for the separation of gases. They have been found to be very suitable for wide scale applications owing to their reasonable cost, good selectivity and easily engineered modules. This critical review primarily focuses on the various aspects of membrane processes related to the separation of biogas, more in specific CO(2) and H(2)S removal from CH(4) and H(2) streams. Considering the limitations of inorganic materials for membranes, the present review will only focus on work done with polymeric materials. An overview on the performance of commercial membranes and lab-made membranes highlighting the problems associated with their applications will be given first. The development studies carried out to enhance the performance of membranes for gas separation will be discussed in the subsequent section. This review has been broadly divided into three sections (i) performance of commercial polymeric membranes (ii) performance of lab-made polymeric membranes and (iii) performance of mixed matrix membranes (MMMs) for gas separations. It will include structural modifications at polymer level, polymer blending, as well as synthesis of mixed matrix membranes, for which addition of silane-coupling agents and selection of suitable fillers will receive special attention. Apart from an overview of the different membrane materials, the study will also highlight the effects of different operating conditions that eventually decide the performance and longevity of membrane applications in gas separations. The discussion will be largely restricted to the studies carried out on polyimide (PI), cellulose acetate (CA), polysulfone (PSf) and polydimethyl siloxane (PDMS) membranes, as these membrane materials have been most widely used for commercial applications. Finally, the most important strategies that would ensure new commercial applications will be discussed (156 references).

  2. 3002 Humidified Tandem Differential Mobility Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Uin, Janek [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The Brechtel Manufacturing Inc. (BMI) Humidified Tandem Differential Mobility Analyzer (HT-DMA Model 3002) (Brechtel and Kreidenweis 2000a,b, Henning et al. 2005, Xerxes et al. 2014) measures how aerosol particles of different initial dry sizes grow or shrink when exposed to changing relative humidity (RH) conditions. It uses two different mobility analyzers (DMA) and a humidification system to make the measurements. One DMA selects a narrow size range of dry aerosol particles, which are exposed to varying RH conditions in the humidification system. The second (humidified) DMA scans the particle size distribution output from the humidification system. Scanning a wide range of particle sizes enables the second DMA to measure changes in size or growth factor (growth factor = humidified size/dry size), due to water uptake by the particles. A Condensation Particle Counter (CPC) downstream of the second DMA counts particles as a function of selected size in order to obtain the number size distribution of particles exposed to different RH conditions.

  3. Metal-organic frameworks based membranes for liquid separation.

    Science.gov (United States)

    Li, Xin; Liu, Yuxin; Wang, Jing; Gascon, Jorge; Li, Jiansheng; Van der Bruggen, Bart

    2017-11-27

    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  4. Metal–organic frameworks based membranes for liquid separation

    KAUST Repository

    Li, Xin

    2017-11-07

    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  5. A general model for membrane-based separation processes

    DEFF Research Database (Denmark)

    Soni, Vipasha; Abildskov, Jens; Jonsson, Gunnar Eigil

    2009-01-01

    behaviour will play an important role. In this paper, modelling of membrane-based processes for separation of gas and liquid mixtures are considered. Two general models, one for membrane-based liquid separation processes (with phase change) and another for membrane-based gas separation are presented....... The separation processes covered are: membrane-based gas separation processes, pervaporation and various types of membrane distillation processes. The specific model for each type of membrane-based process is generated from the two general models by applying the specific system descriptions and the corresponding......A separation process could be defined as a process that transforms a given mixture of chemicals into two or more compositionally distinct end-use products. One way to design these separation processes is to employ a model-based approach, where mathematical models that reliably predict the process...

  6. Mathematical model and minimal measurement system for optimal control of heated humidifiers in neonatal ventilation.

    Science.gov (United States)

    Verta, Antonella; Schena, Emiliano; Silvestri, Sergio

    2010-06-01

    The control of thermo-hygrometric conditions of gas delivered in neonatal mechanical ventilation appears to be a particularly difficult task, mainly due to the vast number of parameters to be monitored and the control strategies of heated humidifiers to be adopted. In the present paper, we describe the heat and fluid exchange occurring in a heated humidifier in mathematical terms; we analyze the sensitivity of the relative humidity of outlet gas as a function of thermo-hygrometric and fluid-dynamic parameters of delivered gas; we propose a control strategy that will enable the stability of outlet gas thermo-hygrometric conditions. The mathematical model is represented by a hyper-surface containing the functional relations between the input variables, which must be measured, and the output variables, which have to remain constant. Model sensitivity analysis shows that heated humidifier efficacy and stability of outlet gas thermo-hygrometric conditions are principally influenced by four parameters: liquid surface temperature, gas flow rate, inlet gas temperature and inlet gas relative humidity. The theoretical model has been experimentally validated in typical working conditions of neonatal applications. The control strategy has been implemented by a minimal measurement system composed of three thermometers, a humidity sensor, and a flow rate sensor, and based on the theoretical model. Outlet relative humidity, contained in the range 90+/-4% and 94+/-4%, corresponding with temperature variations in the range 28+/-2 degrees C and 38+/-2 degrees C respectively, has been obtained in the whole flow rate range typical of neonatal ventilation from 1 to 10 L/min. We conclude that in order to obtain the stability of the thermo-hygrometric conditions of the delivered gas mixture: (a) a control strategy with a more complex measurement system must be implemented (i.e. providing more input variables); (b) and the gas may also need to be pre-warmed before entering the humidifying

  7. Lignin-based membranes for electrolyte transference

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao; Garcia-Valls, Ricard [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona (Spain); Benavente, Juana [Department of Applied Fisics, Faculty of Science, University of Malaga, Malaga (Spain)

    2005-08-18

    Homogeneous PSf-LS membranes are formed by incorporating Lignosulfonate (LS) into the Polysulfone (PSf) network. LS obtained from sulfite pulping process contains sulfonic acid groups that will act as proton transport media. PSf-LS membranes were characterized by reflectance Infrared and scanning electron microscopy. LS showed significant influence on membrane morphology. Higher LS concentration caused a decrease in macrovoid formation and induced larger pores. Precipitation temperature was investigated as influencing parameter. Proton fluxes through PSf-LS membranes were measured by transport experiments. Impedance analysis confirmed that PSf-LS membranes possess ion conductivity. The selected PSf-LS membranes exhibited high selectivity for proton over methanol, which indicates their potential applicability in direct methanol fuel cell (DMFC). (author)

  8. An Adsorption Type Humidifier for Automobiles and Interior Air Quality Improvement

    Science.gov (United States)

    Moriya, Yoshifumi; Ishii, Noriaki

    This study presents a new adsorption material type humidifier for automobiles, in which the moisture in the outside air is adsorbed onto a solid desiccant material and the adsorbed water is then used as the humidifying source for the interior air of the car, that is, no additional water supply for humidification is required. The new humidifier was installed in a test car under actual conditions, and the humidification performance and the interior air quality, as determined by CO2, O2, dust concentration and SnO2, output, were measured. A comparison between the data for the new humidifier and those for an ultrasonic humidifier showed that the humidification ability was adequate but the interior air quality was far better when the new humidifier was used. Finally, the results of longevity tests, repeated adsorption/desorption tests and acid-gas poisoning tests are presented.

  9. A novel control strategy to improve the performances of heated wire humidifiers in artificial neonatal ventilation

    International Nuclear Information System (INIS)

    Schena, E; Saccomandi, P; Ramandi, C; Silvestri, S

    2012-01-01

    Controlling thermo-hygrometric conditions of gas delivered in neonatal mechanical ventilation shows some unresolved issues due to the design and control strategies implemented in heated wire humidifiers. We perform an in vitro evaluation of humidifier performances, which use a control strategy based on a single-point temperature as feedback, and propose a novel design of the control which consists in pre-warming the gas upwards in the humidification chamber. The ad hoc developed control approach based on a theoretical model is implemented in vitro with and without pre-warming for comparative purposes. Without pre-warming, gas at the chamber outlet needs further post-warming and, depending on the flow rate, the vapour content condensates along the breathing circuit. Whereas, with pre-warming, the proposed control strategy allows us to considerably improve steady-state thermo-hygrometric conditions (T = 37 ± 1 °C, RH = 96% ± 4%) of gas, reaching the Y-piece near to ideal ones in the whole flow rate range, even though a high inlet chamber temperature is required at low flow rate values. The proposed solution, as theoretically predicted, also allows us to limit the vapour condensation along the circuit. (paper)

  10. Mechanical ventilation with heated humidifiers: measurements of condensed water mass within the breathing circuit according to ventilatory settings

    International Nuclear Information System (INIS)

    Schena, E; Saccomandi, P; Cappelli, S; Silvestri, S

    2013-01-01

    Heated wire humidifiers (HWHs) are widely used to heat and humidify gases during mechanical ventilation. The control strategy implemented on commercial HWHs, based on maintaining constant gas temperature at the chamber outlet, shows weaknesses: humidifying performances depend on environmental temperature and ventilatory settings, and often condensation occurs. Herein, we analyzed in vitro HWH performances focusing on the condensation amount according to ventilatory settings. We used a physical model to define the parameters which mainly influence the HWH performances. In order to investigate the influence of minute volume (MV) and frequency rate (f r ) on condensation, the other influencing parameters were kept constant during experiments, and we introduced a novel approach to estimate the condensation. The method, based on measuring the condensed vapor mass (Δm), provided more objective information than the visual-based scale used in previous studies. Thanks to both the control of other influencing factors and the accurate Δm measures, the investigation showed the Δm increase with MV and f r . Substantial condensation after 7 h of ventilation and the influence of MV and f r on Δm (i.e., Δm = 3 g at MV = 1.5 L min −1 and f r = 8 bpm and Δm = 9.4 g at MV = 8 L min −1 and f r = 20 bpm) confirm the weaknesses of 'single-point temperature' control strategies. (paper)

  11. Heat Losses from a Breathing System with a Heated-water Humidifier

    Science.gov (United States)

    Lunn, J. N.; Mapleson, W. W.; Hillard, E. K.

    1971-01-01

    Air was “breathed” in the laboratory through a heated-water humidifier and a breathing tube. Several different humidifiers and tubes were used. The temperature rise of the air on passing through the humidifier and the temperature drop on passing through the tube were measured. Both were dependent on ventilation. Insulating the tube and humidifier together with the insertion of baffles in the latter reduced the rise and fall and their dependence on ventilation. With suitable design the dependence on ventilation and the need to use high water temperatures could be greatly reduced. In addition, a thermostat with a reduced dead zone is needed. PMID:5289685

  12. Microbiological contamination in high and low flow oxygen humidifiers: A systematic review.

    Science.gov (United States)

    de la Fuente-Sancho, I; Romeu-Bordas, Ó; Fernández-Aedo, I; Vallejo De la Hoz, G; Ballesteros-Peña, S

    2017-12-16

    To determine the risk of microbiological contamination with hospital use high- and low-flow bubbling humidifiers. A systematic literature review was carried out in 6 databases. Observational or experimental studies published between 1990 and 2016 were selected, written in English or Spanish, and in which microbiological contamination with hospital use high- and low-flow bubbling humidifiers was investigated. A total of 12 articles were included: 4 analyzed the water from reusable humidifiers, 4 analyzed the water from prefilled system humidifiers, and the rest compared samples from both models. Microbial contamination was observed in all studies in which reusable humidifiers were evaluated, usually involving common bacteria from the skin flora, while potential pathogenic species were notified in 2 studies. No microbial contamination was isolated from reusable humidifiers, regardless of whether they had been consecutively used over time by a single patient or by several patients. On one hand, there seems to be a low risk of contamination during the first weeks of use of prefilled humidifiers, which allows multiple use in different patients, without a risk of cross-contamination. On the other hand, it should be underscored that handling reusable humidifiers without correct aseptic measures can increase the risk of contamination; replacing reusable humidifiers with prefilled models therefore could be the safest option. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  13. Design and development of an air humidifier using finite difference method for a solar desalination plant

    Science.gov (United States)

    Chiranjeevi, C.; Srinivas, T.

    2017-11-01

    Humidifier is an important component in air humidification-dehumidification desalination plant for fresh water production. Liquid to air flow rate ratio is optimization is reported for an industrial cooling towers but for an air humidifier it is not addressed. The current work is focused on the design and analysis of an air humidifier for solar desalination plant to maximize the yield with better humidification, using finite difference method (FDM). The outlet conditions of air from the humidifier are theoretically predicted by FDM with the given inlet conditions, which will be further used in the design calculation of the humidifier. Hot water to air flow rate ratio and inlet hot water temperature are identified as key operating parameters to evaluate the humidifier performance. The maximum and optimal values of mass flow rate ratio of water to air are found to be 2.15 and 1.5 respectively using packing function and Merkel Integral. The height of humidifier is constrained to 1.5 m and the diameter of the humidifier is found as 0.28m. The performance of humidifier and outlet conditions of air are simulated using FDM and compared with experimental results. The obtained results are within an agreeable range of deviation.

  14. Styrene-Based Copolymer for Polymer Membrane Modifications

    OpenAIRE

    Harsha Srivastava; Harshad Lade; Diby Paul; G. Arthanareeswaran; Ji Hyang Kweon

    2016-01-01

    Poly(vinylidene fluoride) (PVDF) was modified with a styrene-based copolymer. The crystalline behavior, phase, thermal stability, and surface morphology of the modified membranes were analyzed. The membrane surface roughness showed a strong dependence on the styrene-acrylonitrile content and was reduced to 34% for a PVDF/styrene-acrylonitrile blend membrane with a 40/60 ratio. The thermal and crystalline behavior confirmed the blend miscibility of both polymers. It was observed in X-ray diffr...

  15. Novel thermal efficiency-based model for determination of thermal conductivity of membrane distillation membranes

    International Nuclear Information System (INIS)

    Vanneste, Johan; Bush, John A.; Hickenbottom, Kerri L.; Marks, Christopher A.; Jassby, David

    2017-01-01

    Development and selection of membranes for membrane distillation (MD) could be accelerated if all performance-determining characteristics of the membrane could be obtained during MD operation without the need to recur to specialized or cumbersome porosity or thermal conductivity measurement techniques. By redefining the thermal efficiency, the Schofield method could be adapted to describe the flux without prior knowledge of membrane porosity, thickness, or thermal conductivity. A total of 17 commercially available membranes were analyzed in terms of flux and thermal efficiency to assess their suitability for application in MD. The thermal-efficiency based model described the flux with an average %RMSE of 4.5%, which was in the same range as the standard deviation on the measured flux. The redefinition of the thermal efficiency also enabled MD to be used as a novel thermal conductivity measurement device for thin porous hydrophobic films that cannot be measured with the conventional laser flash diffusivity technique.

  16. Ultrafiltration and Nanofiltration Multilayer Membranes Based on Cellulose

    KAUST Repository

    Livazovic, Sara

    2016-06-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose, has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. In the search for less harsh, greener membrane manufacture, the combination of cellulose and ionic liquid is of high interest. Due to the abundance of OH groups and hydrophilicity, cellulose-based membranes have high permeability and low fouling tendency. Membrane fouling is one of the biggest challenges in membrane industry and technology. Accumulation and deposition of foulants onto the surface reduce membrane efficiency and requires harsh chemical cleaning, therefore increasing the cost of maintenance and replacement. In this work the resistance of cellulose 5 membranes towards model organic foulants such as Suwanee River Humic Acid (SRHA) and crude oil have been investigated. Cellulose membrane was tested in this work for oil-water (o/w) separation and exhibited practically 100 % oil rejection with good flux recovery ratio and membrane resistivity. The influence of anionic, cationic and ionic surfactant as well as pH and crude oil concentration on oil separation was investigated, giving a valuable insight in experimental and operational planning.

  17. Proton Conductivity and Operational Features Of PBI-Based Membranes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Jensen, Jens Oluf; Precht Noyé, Pernille

    2005-01-01

    As an approach to high temperature operation of PEMFCs, acid-doped PBI membranes are under active development. The membrane exhibits high proton conductivity under low water contents at temperatures up to 200°C. Mechanisms of proton conduction for the membranes have been proposed. Based on the me...... on the membranes fuel cell tests have been demonstrated. Operating features of the PBI cell include no humidification, high CO tolerance, better heat utilization and possible integration with fuel processing units. Issues for further development are also discussed....

  18. Stress-sensor device based on flexoelectric liquid crystalline membranes.

    Science.gov (United States)

    Rey, Alejandro D; Servio, Phillip; Herrera Valencia, Edtson Emilio

    2014-05-19

    Membrane flexoelectricity is an electromechanical coupling process that describes membrane bending and membrane electrical polarization caused by bending under electric fields. In this paper we propose, formulate, and characterize a stress-sensor device for mechanically loaded solids, consisting of a soft flexoelectric thin membrane attached to the loaded deformed solid. Because the curvature of the deformed solid is transferred to the attached flexoelectric membrane, the electromechanical transduction of the latter produces a charge that is proportional to the stress of the solid. The model of the stress-sensor device is based on the integration of the thermodynamics of polarizable membranes with isotropic solid elasticity, leading to a transfer function that identifies the elastic, electromechanical, and geometrical parameters involved in electrical-signal generation. The model is applied to representative normal bending and then to more complex off-axis bending of elastic bars. In all cases, a common transfer function shows the generic material and its geometric contributions. The sensor sensitivity increases linearly with flexoelectricity and the membrane-solid interface, and the sensitivity decreases with increasing membrane thickness and Young's modulus of the solid. The theoretical results contribute to ongoing experimental efforts towards the development of anisotropic soft-matter-based stress-sensor devices through solid-membrane interactions and electromechanical transduction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Durability Issues of High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    To achieve high temperature operation of proton exchange membrane fuel cells (PEMFC), preferably under ambient pressure, phosphoric acid doped polybenzimidazole (PBI) membrane represents an effective approach, which in recent years has motivated extensive research activities with great progress....... As a critical concern, issues of long term durability of PBI based fuel cells are addressed in this talk, including oxidative degradation of the polymer, mechanical failures of the membrane, acid leaching out, corrosion of carbon support and sintering of catalysts particles. Excellent polymer durability has...

  20. NMR-based screening of membrane protein ligands

    NARCIS (Netherlands)

    Yanamala, Naveena; Dutta, Arpana; Beck, Barbara; Van Fleet, Bart; Hay, Kelly; Yazbak, Ahmad; Ishima, Rieko; Doemling, Alexander; Klein-Seetharaman, Judith

    2010-01-01

    Membrane proteins pose problems for the application of NMR-based ligand-screening methods because of the need to maintain the proteins in a membrane mimetic environment such as detergent micelles: they add to the molecular weight of the protein, increase the viscosity of the solution, interact with

  1. Fabrication and Characterisation of Membrane-Based Gold Electrodes

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Kwasny, Dorota; Dimaki, Maria

    2015-01-01

    This work presents a versatile, membrane based electrochemical sensor with thin film electrodes fabricated through Ebeam evaporation directly on porous materials (membranes). Here, the fabrication of the electrodes is described along with possible methods for integration in fluidic systems and ch...

  2. New Development of Membrane Base Optoelectronic Devices

    Directory of Open Access Journals (Sweden)

    Leon Hamui

    2017-12-01

    Full Text Available It is known that one factor that affects the operation of optoelectronic devices is the effective protection of the semiconductor materials against environmental conditions. The permeation of atmospheric oxygen and water molecules into the device structure induces degradation of the electrodes and the semiconductor. As a result, in this communication we report the fabrication of semiconductor membranes consisting of Magnesium Phthalocyanine-allene (MgPc-allene particles dispersed in Nylon 11 films. These membranes combine polymer properties with organic semiconductors properties and also provide a barrier effect for the atmospheric gas molecules. They were prepared by high vacuum evaporation and followed by thermal relaxation technique. For the characterization of the obtained membranes, Fourier-transform infrared spectroscopy (FT-IR, scanning electron microscopy (SEM, and energy dispersive spectroscopy (EDS were used to determine the chemical and microstructural properties. UV-ViS, null ellipsometry, and visible photoluminescence (PL at room temperature were used to characterize the optoelectronic properties. These results were compared with those obtained for the organic semiconductors: MgPc-allene thin films. Additionally, semiconductor membranes devices have been prepared, and a study of the device electronic transport properties was conducted by measuring electrical current density-voltage (J-V characteristics by four point probes with different wavelengths. The resistance properties against different environmental molecules are enhanced, maintaining their semiconductor functionality that makes them candidates for optoelectronic applications.

  3. Styrene-Based Copolymer for Polymer Membrane Modifications

    Directory of Open Access Journals (Sweden)

    Harsha Srivastava

    2016-05-01

    Full Text Available Poly(vinylidene fluoride (PVDF was modified with a styrene-based copolymer. The crystalline behavior, phase, thermal stability, and surface morphology of the modified membranes were analyzed. The membrane surface roughness showed a strong dependence on the styrene-acrylonitrile content and was reduced to 34% for a PVDF/styrene-acrylonitrile blend membrane with a 40/60 ratio. The thermal and crystalline behavior confirmed the blend miscibility of both polymers. It was observed in X-ray diffraction (XRD experiments that the modified PVDF membranes show a drastic reduction in their crystallinity. The neat PVDF membrane has the highest degradation rate, which decreased with the addition of the styrene-based copolymer.

  4. An experimental investigation of a novel design air humidifier using direct solar thermal heating

    International Nuclear Information System (INIS)

    Abd-ur-Rehman, Hafiz M.; Al-Sulaiman, Fahad A.

    2016-01-01

    Highlights: • A novel solar driven multi-stage bubble column humidifier is developed and tested. • Single stage, two stage, and three stage configuration were tested. • Average day round absolute humidity is increased by 9% for 2 stage configuration. • Average day round absolute humidity is increased by 23% for 3 stage configuration. • Air absolute humidity increases up to 26% with the integration of Fresnel lens. - Abstract: In this study, a novel solar heated multi-stage bubble column humidifier is designed and tested. The overall objective of this work is to investigate the main operating parameters of the new humidifier. The study addresses the significance of the perforated plate geometric features, optimum balance of air superficial velocity and water column height, and the influence of inlet water temperature and inlet air relative humidity on the performance of the humidifier. The day round performance of the humidifier is investigated in single stage, two stage, and three stage configuration, in which each configuration was tested with and without the integration of the Fresnel lens. Findings show that the average day round absolute humidity, without Fresnel lens, increased up to 9% for the two stage configuration and 23% for the three stage configuration as compared to the single stage configuration of the humidifier. The integration of the Fresnel lens further increased the absolute humidity up to 25% as compared to the results obtained without the integration of the Fresnel lens under the same prevailing conditions, which is significant. Moreover, the current humidifier shows a higher humidification efficiency in the climatic conditions that have a lower inlet air relative humidity. Furthermore, the finding demonstrates that the newly developed multi-stage bubble column humidifier has better performance as compared to the conventional single stage bubble column humidifier. The findings from this study are of pivotal importance to understand

  5. A novel PTFE-based proton-conductive membrane

    Science.gov (United States)

    Reichman, S.; Duvdevani, T.; Aharon, A.; Philosoph, M.; Golodnitsky, D.; Peled, E.

    The demand for a solid polymer electrolyte membrane (SPEM) for fuel-cell systems, capable of withstanding temperatures above 130 °C, decreasing the electrode-catalyst loadings and reducing poisoning by carbon monoxide, has prompted this study. A novel, low-cost, highly conductive, nanoporous proton-conducting membrane (NP-PCM) based on a polytetrafluoroethylene (PTFE) backbone has been developed. It comprises non-conductive nano-size ceramic powder, PTFE binder and an aqueous acid. The preparation procedures were studied and the membrane was characterized with the use of: SEM, EDS, pore-size-distribution measurements (PSD), TGA-DTA and electrochemical methods. The ionic conductivity of a membrane doped with 3 M sulfuric acid increases with the ceramic powder content and reaches 0.22 S cm -1 at 50% (v/v) silica. A non-optimized direct-methanol fuel cell (DMFC) with a 250 μm thick membrane has been assembled. It demonstrated 50 and 130 mW cm -2 at 80 and 130 °C, respectively. Future study will be directed to improving the membrane-preparation process, getting thinner membranes and using this membrane in a hydrogen-fed fuel cell.

  6. Ultrafast permeation of water through protein-based membranes.

    Science.gov (United States)

    Peng, Xinsheng; Jin, Jian; Nakamura, Yoshimichi; Ohno, Takahisa; Ichinose, Izumi

    2009-06-01

    Pressure-driven filtration by porous membranes is widely used in the production of drinking water from ground and surface water. Permeation theory predicts that filtration rate is proportional to the pressure difference across the filtration membrane and inversely proportional to the thickness of the membrane. However, these membranes need to be able to withstand high water fluxes and pressures, which means that the active separation layers in commercial filtration systems typically have a thickness of a few tens to several hundreds of nanometres. Filtration performance might be improved by the use of ultrathin porous silicon membranes or carbon nanotubes immobilized in silicon nitride or polymer films, but these structures are difficult to fabricate. Here, we report a new type of filtration membrane made of crosslinked proteins that are mechanically robust and contain channels with diameters of less than 2.2 nm. We find that a 60-nm-thick membrane can concentrate aqueous dyes from fluxes up to 9,000 l h(-1) m(-2) bar(-1), which is approximately 1,000 times higher than the fluxes that can be withstood by commercial filtration membranes with similar rejection properties. Based on these results and molecular dynamics simulations, we propose that protein-surrounded channels with effective lengths of less than 5.8 nm can separate dye molecules while allowing the ultrafast permeation of water at applied pressures of less than 1 bar.

  7. Membrane-based seawater desalination: Present and future prospects

    KAUST Repository

    Amy, Gary L.

    2016-10-20

    Given increasing regional water scarcity and that almost half of the world\\'s population lives within 100 km of an ocean, seawater represents a virtually infinite water resource. However, its exploitation is presently limited by the significant specific energy consumption (kWh/m) required by conventional desalination technologies, further exasperated by high unit costs ($/m) and environmental impacts including GHG emissions (g CO-eq/m), organism impingement/entrainment through intakes, and brine disposal through outfalls. This paper explores the state-of-the-art in present seawater desalination practice, emphasizing membrane-based technologies, while identifying future opportunities in step improvements to conventional technologies and development of emerging, potentially disruptive, technologies through advances in material science, process engineering, and system integration. In this paper, seawater reverse osmosis (RO) serves as the baseline conventional technology. The discussion extends beyond desalting processes into membrane-based salinity gradient energy production processes, which can provide an energy offset to desalination process energy requirements. The future membrane landscape in membrane-based desalination and salinity gradient energy is projected to include ultrahigh permeability RO membranes, renewable-energy driven desalination, and emerging processes including closed-circuit RO, membrane distillation, forward osmosis, pressure retarded osmosis, and reverse electrodialysis according various niche applications and/or hybrids, operating separately or in conjunction with RO.

  8. Membrane-based removal of volatile methylsiloxanes from biogas

    Energy Technology Data Exchange (ETDEWEB)

    Ajhar, Marc

    2011-12-16

    This work investigates the removal of volatile methylsiloxanes (VMS) from biogas using dense, rubbery membranes. It consists of the following: a) thorough overview of already established and still developing siloxane removal technologies, b) detailed investigation of a viable sampling and analytical method, c) screening of different elastomers to identify siloxane-selective membrane materials, d) design of a suitable membrane structure, i.e. theoretical considerations about the thicknesses of the active separation layer and the porous support layer, e) assessment of the siloxane separation performance of a silicone membrane module using both synthetic gas under laboratory conditions and real landfill gas, f) comparison between the state-of-the-art technology (adsorption on activated carbon) and membrane-based processes. Suitable polymers for siloxane removal from biogas exist, however, they are not commercially available as membranes. Among the elastomers studied, Pebax registered 2533 is particularly promising. The use of a membrane made of this material could potentially become new state-of-the-art technology.

  9. Nanofiber based triple layer hydro-philic/-phobic membrane - a solution for pore wetting in membrane distillation

    Science.gov (United States)

    Prince, J. A.; Rana, D.; Matsuura, T.; Ayyanar, N.; Shanmugasundaram, T. S.; Singh, G.

    2014-11-01

    The innovative design and synthesis of nanofiber based hydro-philic/phobic membranes with a thin hydro-phobic nanofiber layer on the top and a thin hydrophilic nanofiber layer on the bottom of the conventional casted micro-porous layer which opens up a solution for membrane pore wetting and improves the pure water flux in membrane distillation.

  10. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng

    2013-01-01

    confirmed by the post TEM and XRD analysis. A strong dependence of the fuel cell performance degradation on the catalyst supports was observed. Graphitization of the carbon blacks improved the stability and catalyst durability though at the expense of a significant decrease in the specific surface area......Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black...... and multi‐walled carbon nanotubes were used as supports for electrode catalysts and evaluated in accelerated durability tests under potential cycling at 150 °C. Measurements of open circuit voltage, area specific resistance and hydrogen permeation through the membrane were carried out, indicating little...

  11. Amine-based solvents regeneration in gas-liquid membrane contactor based on asymmetric PVTMS

    NARCIS (Netherlands)

    Volkov, A.V.; Tsarkov, S.E.; Goetheer, E.L.V.; Volkov, V.V.

    2015-01-01

    Asymmetric flat-sheet membranes made of poly(vinyltrimethylsilane) (PVTMS) were studied for the regeneration of amine-based absorption solvents in a membrane gas-liquid contactor at 100°C. It was shown that PVTMS membrane possesses good mechanical and chemical stability in contact with 4 M

  12. Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane

    Science.gov (United States)

    Zettl, Alexander K.; Meyer, Jannik Christian

    2013-04-02

    An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.

  13. Membrane-based aberration-corrected tunable micro-lenses

    Science.gov (United States)

    Waibel, Philipp; Ermantraut, Eugen; Mader, Daniel; Zappe, Hans; Seifert, Andreas

    2010-05-01

    We present measurements and simulations of membrane-based micro-lens stacks, tunable in focal length in the range of 10mm to 50mm without chromatic aberration. The pressure-actuated, liquid-filled, membrane-based micro-lenses are fabricated by an all-silicone molding approach and consist of three chambers separated by two highly flexible silicone-membranes. Based on the idea of the classical achromatic Fraunhofer doublet, two different liquids with suitable optical properties are used. Pressure-dependent surface topologies are measured by profilometry for determining the correlation between refraction and applied pressure. The profiles are fit to polynomials; the coefficients of the polynomials are pressure-dependent and fit to empirically determined functions which are then used as an input for optical ray-tracing. Using this approach, the focal length is tunable while compensating for chromatic aberration by suitably applied pressures.

  14. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    Science.gov (United States)

    Habel, Joachim; Hansen, Michael; Kynde, Søren; Larsen, Nanna; Midtgaard, Søren Roi; Jensen, Grethe Vestergaard; Bomholt, Julie; Ogbonna, Anayo; Almdal, Kristoffer; Schulz, Alexander; Hélix-Nielsen, Claus

    2015-01-01

    In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs), block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes. PMID:26264033

  15. Deoxycholate-Based Glycosides (DCGs) for Membrane Protein Stabilisation

    DEFF Research Database (Denmark)

    Bae, Hyoung Eun; Gotfryd, Kamil; Thomas, Jennifer

    2015-01-01

    reported deoxycholate-based N-oxides (DCAOs). Membrane proteins in these agents, particularly the branched diglucoside-bearing amphiphiles DCG-1 and DCG-2, displayed favourable behaviour compared to previously reported parent compounds (DCAOs) and conventional detergents (LDAO and DDM). Given...

  16. based anion exchange membrane for alkaline polymer electrolyte

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Hydroxyl ion (OH–) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl.

  17. Fullerene and dendrimer based nano-composite gas separation membranes

    NARCIS (Netherlands)

    Sterescu, D.M.

    2007-01-01

    This thesis describes the development of new materials for membrane based gas separation processes. Long-term stable, loosely packed (high free volume) amorphous polymer films were prepared by introduction of super-molecular pendant groups, which possess hardsphere properties to avoid dense

  18. Sulfonated carbon black-based composite membranes for fuel cell ...

    Indian Academy of Sciences (India)

    Sci., Vol. 36, No. 4, August 2013, pp. 563–573. c Indian Academy of Sciences. Sulfonated carbon black-based composite membranes for fuel cell applications .... All data were collected from a second heating cycle and glass tran- sition temperatures (Tg) were calculated as a midpoint of thermogram. 2.5d FTIR studies: FTIR ...

  19. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    International Nuclear Information System (INIS)

    Saefurohman, Asep; Buchari,; Noviandri, Indra; Syoni

    2014-01-01

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm −1 , 1031 cm −1 and 794.7 cm −1 for P=O stretching and stretching POC from group −OP =O. The result showed shift wave number for P =O stretching of the cluster (−OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm −1 indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R 3 P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10 −3 M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10 −5 and 10 −1 M

  20. Carbon Nano tubes Based Mixed Matrix Membrane for Gas Separation

    International Nuclear Information System (INIS)

    Sanip, S.M.; Ismail, A.F.; Goh, P.S.; Norrdin, M.N.A.; Soga, T.; Tanemura, M.; Yasuhiko, H.

    2011-01-01

    Carbon nano tubes based mixed matrix membrane (MMM) was prepared by the solution casting method in which the functionalized multi walled carbon nano tubes (f-MWNTs) were embedded into the polyimide membrane and the resulting membranes were characterized. The effect of nominal MWNTs content between 0.5 and 1.0 wt % on the gas separation properties were looked into. The morphologies of the MMM also indicated that at 0.7 % loading of f- MWNTs, the structures of the MMM showed uniform finger-like structures which have facilitated the fast gas transport through the polymer matrix. It may also be concluded that addition of open ended and shortened MWNTs to the polymer matrix can improve its permeability by increasing diffusivity through the MWNTs smooth cavity. (author)

  1. Weaning from ventilator and effect of Blender-Humidifier on outcome of it

    Directory of Open Access Journals (Sweden)

    Nemat Bilan

    2014-11-01

    Full Text Available Background and objectives: the weaning procedure of mechanical ventilation in many patients is a difficult and long process and increases the time of mechanical ventilation. There are numerous ways to achieve this goal. One common way is using CPAP-ventilator. Considering the lower price of Blender-Humidifier compared to CPAPof ventilator and the limited number of studies in this field, this study was aimed to compare these two procedures.Methods: 102 patients in pediatric Intensive Care Unit (PICU were allocated randomly in one group: CPAP-ventilator and Blender-Humidifier. Duration of hospital and PICU stay, the number of days of mechanichal ventilation, the frequency of re-intubation, and the mortality of the patients were recorded. Results: the study was conducted on 66 male and 36 female patients (64.7% and 35.3% respectively. The average age was 22.5 ± 4.5 months. The most frequent complaint of the patients at the time of visit was coughing (35%, hyperventilation and respiratory distress (21.6%. Hospital stay was 23±14 and 20±12days in humidifier and cpap groups respectively (p=0/52.PICU stay was 15± 11and 20±11 days in humidifier and cpap groups respectively (p=0/18.Re- intubation rate was 16/2% and 33/5% in humidifier and cpap groups respectively (p=0/15.Mortality rate 8/4% and 21.5% in humidifier and cpap groups respectively (p=0/06. Conclusion: Although there was no statistically significant difference between two groups, considering the differences in mortality rate, the need for re-intubation, rate of hospital and PICU stay, and at the same time, with easy availability and low prices, using Blender- Humidifier is recommended.

  2. Heat and moisture exchangers versus heated humidifiers for mechanically ventilated adults and children.

    Science.gov (United States)

    Gillies, Donna; Todd, David A; Foster, Jann P; Batuwitage, Bisanth T

    2017-09-14

    Invasive ventilation is used to assist or replace breathing when a person is unable to breathe adequately on their own. Because the upper airway is bypassed during mechanical ventilation, the respiratory system is no longer able to warm and moisten inhaled gases, potentially causing additional breathing problems in people who already require assisted breathing. To prevent these problems, gases are artificially warmed and humidified. There are two main forms of humidification, heat and moisture exchangers (HME) or heated humidifiers (HH). Both are associated with potential benefits and advantages but it is unclear whether HME or HH are more effective in preventing some of the negative outcomes associated with mechanical ventilation. This review was originally published in 2010 and updated in 2017. To assess whether heat and moisture exchangers or heated humidifiers are more effective in preventing complications in people receiving invasive mechanical ventilation and to identify whether the age group of participants, length of humidification, type of HME, and ventilation delivered through a tracheostomy had an effect on these findings. We searched the Cochrane Central Register of Controlled Trials, MEDLINE, Embase and CINAHL up to May 2017 to identify randomized controlled trials (RCTs) and reference lists of included studies and relevant reviews. There were no language limitations. We included RCTs comparing HMEs to HHs in adults and children receiving invasive ventilation. We included randomized cross-over studies. We assessed the quality of each study and extracted the relevant data. Where possible, we analysed data through meta-analysis. For dichotomous outcomes, we calculated the risk ratio (RR) and 95% confidence interval (95% CI). For continuous outcomes, we calculated the mean difference (MD) and 95% CI or standardized mean difference (SMD) and 95% CI for parallel studies. For cross-over trials, we calculated the MD and 95% CI using correlation estimates to

  3. Randomized Trial of Desktop Humidifier for Dry Eye Relief in Computer Users.

    Science.gov (United States)

    Wang, Michael T M; Chan, Evon; Ea, Linda; Kam, Clifford; Lu, Yvonne; Misra, Stuti L; Craig, Jennifer P

    2017-11-01

    Dry eye is a frequently reported problem among computer users. Low relative humidity environments are recognized to exacerbate signs and symptoms of dry eye, yet are common in offices of computer operators. Desktop USB-powered humidifiers are available commercially, but their efficacy for dry eye relief has not been established. This study aims to evaluate the potential for a desktop USB-powered humidifier to improve tear-film parameters, ocular surface characteristics, and subjective comfort of computer users. Forty-four computer users were enrolled in a prospective, masked, randomized crossover study. On separate days, participants were randomized to 1 hour of continuous computer use, with and without exposure to a desktop humidifier. Lipid-layer grade, noninvasive tear-film breakup time, and tear meniscus height were measured before and after computer use. Following the 1-hour period, participants reported whether ocular comfort was greater, equal, or lesser than that at baseline. The desktop humidifier effected a relative difference in humidity between the two environments of +5.4 ± 5.0% (P .05). However, a relative increase in the median noninvasive tear-film breakup time of +4.0 seconds was observed in the humidified environment (P computer use.Trial registration no: ACTRN12617000326392.

  4. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Directory of Open Access Journals (Sweden)

    Catia Algieri

    2014-07-01

    Full Text Available An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported.

  5. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Science.gov (United States)

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. PMID:25196110

  6. GA-Based Membrane Evolutionary Algorithm for Ensemble Clustering

    Directory of Open Access Journals (Sweden)

    Yanhua Wang

    2017-01-01

    Full Text Available Ensemble clustering can improve the generalization ability of a single clustering algorithm and generate a more robust clustering result by integrating multiple base clusterings, so it becomes the focus of current clustering research. Ensemble clustering aims at finding a consensus partition which agrees as much as possible with base clusterings. Genetic algorithm is a highly parallel, stochastic, and adaptive search algorithm developed from the natural selection and evolutionary mechanism of biology. In this paper, an improved genetic algorithm is designed by improving the coding of chromosome. A new membrane evolutionary algorithm is constructed by using genetic mechanisms as evolution rules and combines with the communication mechanism of cell-like P system. The proposed algorithm is used to optimize the base clusterings and find the optimal chromosome as the final ensemble clustering result. The global optimization ability of the genetic algorithm and the rapid convergence of the membrane system make membrane evolutionary algorithm perform better than several state-of-the-art techniques on six real-world UCI data sets.

  7. GA-Based Membrane Evolutionary Algorithm for Ensemble Clustering.

    Science.gov (United States)

    Wang, Yanhua; Liu, Xiyu; Xiang, Laisheng

    2017-01-01

    Ensemble clustering can improve the generalization ability of a single clustering algorithm and generate a more robust clustering result by integrating multiple base clusterings, so it becomes the focus of current clustering research. Ensemble clustering aims at finding a consensus partition which agrees as much as possible with base clusterings. Genetic algorithm is a highly parallel, stochastic, and adaptive search algorithm developed from the natural selection and evolutionary mechanism of biology. In this paper, an improved genetic algorithm is designed by improving the coding of chromosome. A new membrane evolutionary algorithm is constructed by using genetic mechanisms as evolution rules and combines with the communication mechanism of cell-like P system. The proposed algorithm is used to optimize the base clusterings and find the optimal chromosome as the final ensemble clustering result. The global optimization ability of the genetic algorithm and the rapid convergence of the membrane system make membrane evolutionary algorithm perform better than several state-of-the-art techniques on six real-world UCI data sets.

  8. Improved fluid management utilizing humidified incubators in extremely low birth weight infants.

    Science.gov (United States)

    Gaylord, M S; Wright, K; Lorch, K; Lorch, V; Walker, E

    2001-01-01

    To compare fluid and electrolyte management in extremely low birth weight (ELBW) infants nursed in humidified versus nonhumidified incubators. Setting--tertiary intensive care nursery. Subjects--all infants with birth weight incubators and survived for > 96 hours (N = 155). Intervention--retrospective comparison of daily weights, fluid intakes, urine outputs, and serum electrolytes between group 1 (n = 70, nonhumidified incubators, born 1/95 to 1/97) and group 2 (n = 85, humidified incubators, born 1/97 to 1/99) over the first 4 days after birth. Despite similar daily weight losses between groups, group 1 infants received higher fluid intakes, had lower urine outputs, and had a higher incidence of hypernatremia, hyperkalemia, and azotemia (p incubators. ELBW weight infants nursed in humidified incubators have lower fluid requirements, improved electrolyte balance, and higher urine outputs during the first 4 days after birth compared to those nursed in nonhumidified incubators.

  9. Membrane-based techniques for the separation and purification of proteins: an overview.

    Science.gov (United States)

    Saxena, Arunima; Tripathi, Bijay P; Kumar, Mahendra; Shahi, Vinod K

    2009-01-30

    Membrane processes are increasingly reported for various applications in both upstream and downstream technology, such as microfiltration, ultrafiltration, emerging processes as membrane chromatography, high performance tangential flow filtration and electrophoretic membrane contactor. Membrane-based processes are playing critical role in the field of separation/purification of biotechnological products. Membranes became an integral part of biotechnology and improvements in membrane technology are now focused on high resolution of bioproduct. In bioseparation, applications of membrane technologies include protein production/purification, protein-virus separation. This manuscript provides an overview of recent developments and published literature in membrane technology, focusing on special characteristics of the membranes and membrane-based processes that are now used for the production and purification of proteins.

  10. Continuous Membrane-Based Screening System for Biocatalysis

    Directory of Open Access Journals (Sweden)

    Matthias Kraume

    2011-02-01

    Full Text Available The use of membrane reactors for enzymatic and co-factor regenerating reactions offers versatile advantages such as higher conversion rates and space-time-yields and is therefore often applied in industry. However, currently available screening and kinetics characterization systems are based on batch and fed-batch operated reactors and were developed for whole cell biotransformations rather than for enzymatic catalysis. Therefore, the data obtained from such systems has only limited transferability for continuous membrane reactors. The aim of this study is to evaluate and to improve a novel screening and characterization system based on the membrane reactor concept using the enzymatic hydrolysis of cellulose as a model reaction. Important aspects for the applicability of the developed system such as long-term stability and reproducibility of continuous experiments were very high. The concept used for flow control and fouling suppression allowed control of the residence time with a high degree of precision (±1% accuracy in a long-term study (>100 h.

  11. MEMS-Based Fuel Reformer with Suspended Membrane Structure

    Science.gov (United States)

    Chang, Kuei-Sung; Tanaka, Shuji; Esashi, Masayoshi

    We report a MEMS-based fuel reformer for supplying hydrogen to micro-fuel cells for portable applications. A combustor and a reforming chamber are fabricated at either side of a suspended membrane structure. This design is used to improve the overall thermal efficiency, which is a critical issue to realize a micro-fuel reformer. The suspended membrane structure design provided good thermal isolation. The micro-heaters consumed 0.97W to maintain the reaction zone of the MEMS-based fuel reformer at 200°C, but further power saving is necessary by improving design and fabrication. The conversion rate of methanol to hydrogen was about 19% at 180°C by using evaporated copper as a reforming catalyst. The catalytic combustion of hydrogen started without any assistance of micro-heaters. By feeding the fuel mixture of an equivalence ratio of 0.35, the temperature of the suspended membrane structure was maintained stable at 100°C with a combustion efficiency of 30%. In future works, we will test a micro-fuel reformer by using a micro-combustor to supply heat.

  12. Multiset-based Tree Model for Membrane Computing

    Directory of Open Access Journals (Sweden)

    D. Singh

    2011-06-01

    Full Text Available In this paper, we introduce a new paradigm - multiset-based tree model. We show that trees can be represented in the form of wellfounded multisets. We also show that the conventional approach for this representation is not injective from a set of trees to the class of multisets representing such trees. We establish a one-to-one correspondence between trees and suitable permutations of a wellfounded multiset, which we call \\textit{tree structures}. We give formal definitions of a \\textit{tree structure} and a \\textit{subtree structure} of a tree structure. Finally, we represent membrane structures in the form of tree structures - a form in which membrane structures can suitably be represented at programming level.

  13. An adhesion-based method for plasma membrane isolation: evaluating cholesterol extraction from cells and their membranes.

    Science.gov (United States)

    Bezrukov, Ludmila; Blank, Paul S; Polozov, Ivan V; Zimmerberg, Joshua

    2009-11-15

    A method to isolate large quantities of directly accessible plasma membrane from attached cells is presented. The method is based on the adhesion of cells to an adsorbed layer of polylysine on glass plates, followed by hypotonic lysis with ice-cold distilled water and subsequent washing steps. Optimal conditions for coating glass plates and time for cell attachment were established. No additional chemical or mechanical treatments were used. Contamination of the isolated plasma membrane by cell organelles was less than 5%. The method uses inexpensive, commercially available polylysine and reusable glass plates. Plasma membrane preparations can be made in 15 min. Using this method, we determined that methyl-beta-cyclodextrin differentially extracts cholesterol from fibroblast cells and their plasma membranes and that these differences are temperature dependent. Determination of the cholesterol/phospholipid ratio from intact cells does not reflect methyl-beta-cyclodextrin plasma membrane extraction properties.

  14. Legionella bacteria in combustion air humidifiers; Legionella i luftuppfuktare foer foerbraenningsluft

    Energy Technology Data Exchange (ETDEWEB)

    Jeppesen, Jessica; Hansson, Helen; Cederfeldt, Ola; Axby, Fredrik

    2007-10-15

    Over the last couple of years several outbreaks of Legionnaires' disease has occurred around the world. The source of infection varies, but in many cases the bacteria has been traced back to cooling towers. The common denominator for most of the sources of infection has been water systems with high oxygen levels and a system temperature ranging from 20 to 40 deg C. If a water system furthermore has high levels of other bacteria/microorganisms, then it is also probable that favorable conditions for legionella bacteria exist within the system. These conditions consist well with conditions in combustion air humidifiers in district heating plants and therefore it can be suspected that legionella may thrive also in these types of air humidifiers. In order to examine if legionella bacteria exists in combustion air humidifiers, and in what quantity, ten different district heating plants where selected for a survey. The goal of the survey is to get a general picture of the extent of the occurrence of legionella bacteria in different types of air humidifiers. This was done by taking legionella tests in three different types of air humidifiers in district heating plants. The first step of the testing was conducted by measuring the level of legionella bacteria in water samples from the air humidifiers in the different plants. The water samples were taken from water that circulates in the air humidifiers. A few months later another water sample was taken from the same location. Two district heating plants, where legionella bacteria had been detected, were selected for further testing after compiling the results from the first two tests. The further testing involved fuel gas analysis to see if any of the plants fuel gas contained legionella bacteria. The test results show that a major part of the district heating plants in the survey have heterotrophic bacteria in their water systems, which implies the possibility of growth of legionella bacteria. About half of the plants

  15. Fluorine NMR-based screening on cell membrane extracts.

    Science.gov (United States)

    Veronesi, Marina; Romeo, Elisa; Lambruschini, Chiara; Piomelli, Daniele; Bandiera, Tiziano; Scarpelli, Rita; Garau, Gianpiero; Dalvit, Claudio

    2014-02-01

    The possibility of measuring the action of inhibitors of specific enzymatic reactions in intact cells, cell lysates or membrane preparations represents a major advance in the lead discovery process. Despite the relevance of assaying in physiological conditions, only a small number of biophysical techniques, often requiring complex set-up, are applicable to these sample types. Here, we demonstrate the first application of n-fluorine atoms for biochemical screening (n-FABS), a homogeneous and versatile assay based on (19) F NMR spectroscopy, to the detection of high- and low-affinity inhibitors of a membrane enzyme in cell extracts and determination of their IC50 values. Our approach can allow the discovery of novel binding fragments against targets known to be difficult to purify or where membrane-association is required for activity. These results pave the way for future applications of the methodology to these relevant and complex biological systems. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Artificial plasma membrane models based on lipidomic profiling.

    Science.gov (United States)

    Essaid, Donia; Rosilio, Véronique; Daghildjian, Katia; Solgadi, Audrey; Vergnaud, Juliette; Kasselouri, Athena; Chaminade, Pierre

    2016-11-01

    Phospholipid monolayers are often described as membrane models for analyzing drug-lipid interactions. In many works, a single phosphatidylcholine is chosen, sometimes with one or two additional components. Drug penetration is studied at 30mN/m, a surface pressure considered as corresponding to the pressure in bilayers, independently of the density of lipid molecular packing. In this work, we have extracted, identified, and quantified the major lipids constituting the lipidome of plasma and mitochondrial membranes of retinoblastoma (Y79) and retinal pigment epithelium cells (ARPE-19), using liquid chromatography coupled to high-resolution mass spectrometry (LC-MS/MS). The results obtained from this lipidomic analysis were used in an attempt to build an artificial lipid monolayer with a composition mimicking that of the plasma membrane of Y79 cells, better than a single phospholipid. The variety and number of lipid classes and species in cell extracts monolayers exceeding by far those of the phospholipids chosen to mimic them, the π-A isotherms of model monolayers differed from those of lipid extracts in shape and apparent packing density. We propose a model monolayer based on the most abundant species identified in the extracts, with a surface compressional modulus at 30mN/m close to the one of the lipid extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Membrane-based processes for sustainable power generation using water

    KAUST Repository

    Logan, Bruce E.

    2012-08-15

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production. © 2012 Macmillan Publishers Limited. All rights reserved.

  18. Membrane-based processes for sustainable power generation using water.

    Science.gov (United States)

    Logan, Bruce E; Elimelech, Menachem

    2012-08-16

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production.

  19. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review.

    Science.gov (United States)

    Ma, Lining; Dong, Xinfa; Chen, Mingliang; Zhu, Li; Wang, Chaoxian; Yang, Fenglin; Dong, Yingchao

    2017-03-18

    Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs)-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization techniques of CNTs, and then reviews the fabrication methods for CNTs-based composite membranes in detail. The applications of CNTs-based composite membranes in water treatment are comprehensively reviewed, including seawater or brine desalination, oil-water separation, removal of heavy metal ions and emerging pollutants as well as membrane separation coupled with assistant techniques. Furthermore, the future direction and perspective for CNTs-based composite membranes are also briefly outlined.

  20. Biological evaluation of silver nanoparticles incorporated into chitosan-based membranes

    NARCIS (Netherlands)

    Shao, J.; Yu, N.; Kolwijck, E.; Wang, B.; Tan, K.W.; Jansen, J.A.; Walboomers, X.F.; Yang, F.

    2017-01-01

    AIM: To evaluate the antibacterial potential and biological performance of silver nanoparticles in chitosan-based membranes. MATERIALS & METHODS: Electrospun chitosan/poly(ethylene oxide) membranes with different amounts of silver nanoparticles were evaluated for antibacterial properties and

  1. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs-Based Composite Membranes: A Review

    Directory of Open Access Journals (Sweden)

    Lining Ma

    2017-03-01

    Full Text Available Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization techniques of CNTs, and then reviews the fabrication methods for CNTs-based composite membranes in detail. The applications of CNTs-based composite membranes in water treatment are comprehensively reviewed, including seawater or brine desalination, oil-water separation, removal of heavy metal ions and emerging pollutants as well as membrane separation coupled with assistant techniques. Furthermore, the future direction and perspective for CNTs-based composite membranes are also briefly outlined.

  2. Follow up investigation of workers in synthetic fibre plants with humidifier disease and work related asthma

    NARCIS (Netherlands)

    Pal, TM; de Monchy, JGR; Groothoff, JW; Post, D

    Objective-To investigate the clinical and sociomedical outcome in patients with various clinical manifestations of humidifier disease and work related asthma after removal from further exposure. Methods-Follow up investigation (range 1-13 years) of respiratory symptoms, spirometry, airway

  3. Fuel cell membrane preparation: effects of base polymer

    Energy Technology Data Exchange (ETDEWEB)

    Brack, H.P.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Radiation grafted films and membranes prepared from the partially fluorinated base copolymer poly(ethylene-alt-tetrafluoroethylene) or ETFE have better mechanical properties than those prepared from poly(tetrafluoroethylene-co-hexafluoropropylene) or FEP. The influence of the base copolymer film type on the grafting rate and yields is reported in the present investigation. An understanding of the effects of these parameters is important so that the grafting process can be carried out reproducibly in as short a time as possible. The grafting rate and yield as a function of the irradiation dose has been found to be much higher for the partially fluorinated base copolymer ETFE. (author) 2 figs., 1 tab., 5 refs.

  4. Ultrasonic-based membrane aided sample preparation of urine proteomes.

    Science.gov (United States)

    Jesus, Jemmyson Romário; Santos, Hugo M; López-Fernández, H; Lodeiro, Carlos; Arruda, Marco Aurélio Zezzi; Capelo, J L

    2018-02-01

    A new ultrafast ultrasonic-based method for shotgun proteomics as well as label-free protein quantification in urine samples is developed. The method first separates the urine proteins using nitrocellulose-based membranes and then proteins are in-membrane digested using trypsin. The enzymatic digestion process is accelerated from overnight to four minutes using a sonoreactor ultrasonic device. Overall, the sample treatment pipeline comprising protein separation, digestion and identification is done in just 3h. The process is assessed using urine of healthy volunteers. The method shows that male can be differentiated from female using the protein content of urine in a fast, easy and straightforward way. 232 and 226 proteins are identified in urine of male and female, respectively. From this, 162 are common to both genders, whilst 70 are unique to male and 64 to female. From the 162 common proteins, 13 are present at levels statistically different (p minimalism concept as outlined by Halls, as each stage of this analysis is evaluated to minimize the time, cost, sample requirement, reagent consumption, energy requirements and production of waste products. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Chaos Time Series Prediction Based on Membrane Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Meng Li

    2015-01-01

    Full Text Available This paper puts forward a prediction model based on membrane computing optimization algorithm for chaos time series; the model optimizes simultaneously the parameters of phase space reconstruction (τ,m and least squares support vector machine (LS-SVM (γ,σ by using membrane computing optimization algorithm. It is an important basis for spectrum management to predict accurately the change trend of parameters in the electromagnetic environment, which can help decision makers to adopt an optimal action. Then, the model presented in this paper is used to forecast band occupancy rate of frequency modulation (FM broadcasting band and interphone band. To show the applicability and superiority of the proposed model, this paper will compare the forecast model presented in it with conventional similar models. The experimental results show that whether single-step prediction or multistep prediction, the proposed model performs best based on three error measures, namely, normalized mean square error (NMSE, root mean square error (RMSE, and mean absolute percentage error (MAPE.

  6. A microgrooved membrane based gas–liquid contactor

    NARCIS (Netherlands)

    Jani, J.M.; Wessling, Matthias; Lammertink, Rob G.H.

    2012-01-01

    This research presents an approach for applying microgrooved membranes for improved gas–liquid contacting. The study involves analysis of the performance of the microdevice by quantifying the flux enhancement for different membrane configurations. Two kinds of configurations, continuous and

  7. Sulfonated carbon black-based composite membranes for fuel cell ...

    Indian Academy of Sciences (India)

    Pristine and composite membranes prepared from SPEEK82 decomposed completely in <1 h, which is undesirable for fuel cell applications. SPEEK60 membrane having wt% of 0.25–0.5 with S–C particles led to higher proton conductivity than that of pristine membrane. No positive effect was observed on the properties of ...

  8. Crosslinked wholly aromatic polyether membranes based on quinoline derivatives and their application in high temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Kallitsis, K. J.; Nannou, R.; Andreopoulou, A. K.; Daletou, M. K.; Papaioannou, D.; Neophytides, S. G.; Kallitsis, J. K.

    2018-03-01

    An AB type difunctional quinoline based monomer bearing a pentafluorophenyl unit combined with a phenol functionality is being synthesized and homopolymerized to create linear aromatic polyethers as polymer electrolytes for HT-PEM FCs applications. Several conditions are tested for the optimized synthesis of the monomer and homopolymer. Additionally, covalent crosslinking through aromatic polyether bond formation enables the creation of wholly aromatic crosslinked polymeric electrolyte membranes. More specifically, the perfluorophenyl units are crosslinked with other hydroxyl end functionalized moieties, providing membranes with enhanced chemical and mechanical properties that are moreover easily doped with phosphoric acid even at ambient temperatures. All membranes are evaluated for their structural and thermal characteristics and their doping ability with phosphoric acid. Selected crosslinked membranes are further tested in terms of their single cell performance at the temperature range 160 °C-200 °C showing promising performance and high conductivity values even up to 0.2 S cm-1 in some cases.

  9. A new membrane-based crystallization technique: tests on lysozyme

    Science.gov (United States)

    Curcio, Efrem; Profio, Gianluca Di; Drioli, Enrico

    2003-01-01

    The great importance of protein science both in industrial and scientific fields, in conjunction with the intrinsic difficulty to grow macromolecular crystals, stimulates the development of new observations and ideas that can be useful in initiating more systematic studies using novel approaches. In this regard, an innovative technique, based on the employment of microporous hydrophobic membranes in order to promote the formation of lysozyme crystals from supersaturated solutions, is introduced in this work. Operational principles and possible advantages, both in terms of controlled extraction of solvent by acting on the concentration of the stripping solution and reduced induction times, are outlined. Theoretical developments and experimental results concerning the mass transfer, in vapour phase, through the membrane are presented, as well as the results from X-ray diffraction to 1.7 Å resolution of obtained lysozyme crystals using NaCl as the crystallizing agent and sodium acetate as the buffer. Crystals were found to be tetragonal with unit cell dimensions of a= b=79.1 Å and c=37.9 Å; the overall Rmerge on intensities in the resolution range from 25 to 1.7 Å was, in the best case, 4.4%.

  10. Cellulose acetate-based molecularly imprinted polymeric membrane for separation of vanillin and o-vanillin

    OpenAIRE

    Zhang,Chunjing; Zhong,Shian; Yang,Zhengpeng

    2008-01-01

    Cellulose acetate-based molecularly imprinted polymeric membranes were prepared using vanillin as template molecule. The microscopic structure of the resultant polymeric membranes was characterized by SEM and FTIR spectroscopy, and the selective binding properties and separation capacity of the membranes for vanillin and o-vanillin were tested with binding experiments and separate experiments, respectively. The results showed that the vanillin-imprinted polymeric membranes displayed higher bi...

  11. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review

    OpenAIRE

    Ma, Lining; Dong, Xinfa; Chen, Mingliang; Zhu, Li; Wang, Chaoxian; Yang, Fenglin; Dong, Yingchao

    2017-01-01

    Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs)-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization tec...

  12. Microporous Organic Materials for Membrane-Based Gas Separation.

    Science.gov (United States)

    Zou, Xiaoqin; Zhu, Guangshan

    2018-01-01

    Membrane materials with excellent selectivity and high permeability are crucial to efficient membrane gas separation. Microporous organic materials have evolved as an alternative candidate for fabricating membranes due to their inherent attributes, such as permanent porosity, high surface area, and good processability. Herein, a unique pore-chemistry concept for the designed synthesis of microporous organic membranes, with an emphasis on the relationship between pore structures and membrane performances, is introduced. The latest advances in microporous organic materials for potential membrane application in gas separation of H 2 , CO 2 , O 2 , and other industrially relevant gases are summarized. Representative examples of the recent progress in highly selective and permeable membranes are highlighted with some fundamental analyses from pore characteristics, followed by a brief perspective on future research directions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hollow fiber membrane based technology and pressure driven membrane processes in nuclear fuel cycle: current status and challenges

    International Nuclear Information System (INIS)

    Pabby, Anil K.

    2013-01-01

    One of the major challenges in the nuclear energy programme has, however, been the radioactive waste management in a manner which allays apprehension about its adverse impact on the environment. Innovative approaches are being devised internationally to treat spent nuclear fuel as a source of valuables. Separation of long-lived radionuclides such as actinides and fission products from high level radioactive waste is a challenging task for the chemists and engineers working on the nuclear spent fuel reprocessing and subsequent waste management processes involved at the tail end of nuclear fuel cycle. The nuclear engineering community is already paying significant attention to the quest for technologies that would lead us to the goal of technological sustainability. The growth of membrane science is largely due to the impressive developments in the field of membrane material science and the evolution of different membrane related equipments. Amongst the various separation techniques, membrane based separation methods are getting increasingly popular due to factors such as high efficiency, low power consumption and easy scale-up due to a compact design etc. Also, membrane contactors have proved to be efficient contacting devices, due to their high area per unit volume that results in high mass transfer rates. They are not only compact but also eliminate several of the problems faced in conventional processes such as ion exchange, solvent extraction, and precipitation. Membrane contactor processes, in which phase contacting is performed or facilitated by the structure and shape of the porous membrane, provide a new dimension to the growth of membrane science and technology and also satisfy the requirements for process intensification. In the field of analytical applications, these techniques exhibit high selectivity, and they concentrate analytes during the separation process. For this reason, these techniques have undergone significant development in the last decade

  14. Novel composite membranes based on PBI and dicationic ionic liquids for high temperature polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Hooshyari, Khadijeh; Javanbakht, Mehran; Adibi, Mina

    2016-01-01

    Two types of innovative composite membranes based on polybenzimidazole (PBI) containing dicationic ionic liquid 1,3-di(3-methylimidazolium) propane bis (trifluoromethylsulfonyl) imide (PDC 3 ) and monocationic ionic liquid 1-hexyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (PMC 6 ) are prepared as electrolyte for high temperature fuel cells applications under anhydrous conditions. The analyses of results display promising characteristics such as high proton conductivity and thermal stability. Moreover the fuel cell performance of PA doped PDC 3 composite membranes is enhanced in comparison with PA doped PMC 6 and PA doped PBI membranes at high temperatures. Dicationic ionic liquid with high number of charge carriers provides well-developed ionic channels which form facile pathways and considerably develop the anhydrous proton conductivity. The highest proton conductivity of 81 mS/cm is achieved for PA doped PDC 3 composite membranes with PBI/IL mole ratio: 4 at 180 °C. A power density of 0.44 W/cm 2 is obtained at 0.5 V and 180 °C for PA doped PDC 3 composite membranes, which proves that these developed composite membranes can be considered as most promising candidates for high temperature fuel cell applications with enhanced proton conductivity.

  15. Novel fluoropolymer anion exchange membranes for alkaline direct methanol fuel cells.

    Science.gov (United States)

    Zhang, Yanmei; Fang, Jun; Wu, Yongbin; Xu, Hankun; Chi, Xianjun; Li, Wei; Yang, Yixu; Yan, Ge; Zhuang, Yongze

    2012-09-01

    A series of novel fluoropolymer anion exchange membranes based on the copolymer of vinylbenzyl chloride, butyl methacrylate, and hexafluorobutyl methacrylate has been prepared. Fourier transform infrared (FT-IR) spectroscopy and elemental analysis techniques are used to study the chemical structure and chemical composition of the membranes. The water uptake, ion-exchange capacity (IEC), conductivity, methanol permeability, and chemical stability of the membranes are also determined. The membranes exhibit high anionic conductivity in deionized water at 65 °C ranging from 3.86×10(-2) S cm(-1) to 4.36×10(-2) S cm(-1). The methanol permeability coefficients of the membranes are in the range of 4.21-5.80×10(-8) cm(2) s(-1) at 65 °C. The novel membranes also show good chemical and thermal stability. An open-circuit voltage of 0.7 V and a maximum power density of 53.2 mW cm(-2) of alkaline direct methanol fuel cell (ADMFC) with the membrane C, 1 M methanol, 1 M NaOH, and humidified oxygen are achieved at 65 °C. Therefore, these membranes have great potential for applications in fuel cell systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Composite proton exchange membrane based on sulfonated organic nanoparticles

    Science.gov (United States)

    Pitia, Emmanuel Sokiri

    exchange was characterized with solid state 13C NMR spectroscopy, FTIR spectroscopy, TGA, elemental analysis, and titration. The results indicate the extent of ion exchange was ~ 70-80%. Due to the mass of QAA, the remaining QAA reduced the IEC of the nanoparticles to < 2.2 meq/g. In fabricating the composite membranes, the nanoparticles and polystyrene were solution cast in a continuous process with and without electric field. The electric field had no effect on the water uptake. Based on the morphology and the proton conductivity, it appears orientation of the nanoparticles did not occur. We hypothesize the lack of orientation was caused by swelling of the particles with the solvent. The solvent inside the particle minimized polarizability, and thus prevented orientation. The composite membranes were limited to low proton conductivity of ~ 10-5 S/cm due to low IEC of the nanoparticles, but good dispersion of the nanoparticles was achieved. Future work should look into eliminating the QAA during synthesis and developing a rigid core for the nanoparticles.

  17. Randomized controlled trial on postoperative pulmonary humidification after total laryngectomy: external humidifier versus heat and moisture exchanger

    NARCIS (Netherlands)

    Mérol, J.-C.; Charpiot, A.; Langagne, T.; Hémar, P.; Ackerstaff, A.H.; Hilgers, F.J.M.

    2012-01-01

    Objectives/Hypothesis: Assessment of immediate postoperative airway humidification after total laryngectomy (TLE), comparing the use of an external humidifier (EH) with humidification through a heat and moisture exchanger (HME). Study Design: Randomized controlled trial (RCT). Methods: Fifty-three

  18. Randomized controlled trial on postoperative pulmonary humidification after total laryngectomy: External humidifier versus heat and moisture exchanger

    NARCIS (Netherlands)

    Mérol, Jean-Claude; Charpiot, Anne; Langagne, Thibault; Hémar, Patrick; Ackerstaff, Annemieke H.; Hilgers, Frans J. M.

    2012-01-01

    Objectives/Hypothesis: Assessment of immediate postoperative airway humidification after total laryngectomy (TLE), comparing the use of an external humidifier (EH) with humidification through a heat and moisture exchanger (HME). Study Design: Randomized controlled trial (RCT). Methods: Fifty-three

  19. Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2015-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2 and meth......Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2...... to the corrosion of carbon support in the catalyst layer and degradation of the PBI membrane. During the continuous test with methanol containing H2 as the fuel the reaction kinetic resistance and mass transfer resistance of both single cells increased, which may be caused by the adsorption of methanol...

  20. A Review of Membrane-Based Biosensors for Pathogen Detection.

    Science.gov (United States)

    van den Hurk, Remko; Evoy, Stephane

    2015-06-15

    Biosensors are of increasing interest for the detection of bacterial pathogens in many applications such as human, animal and plant health, as well as food and water safety. Membranes and membrane-like structures have been integral part of several pathogen detection platforms. Such structures may serve as simple mechanical support, function as a part of the transduction mechanism, may be used to filter out or concentrate pathogens, and may be engineered to specifically house active proteins. This review focuses on membrane materials, their associated biosensing applications, chemical linking procedures, and transduction mechanisms. The sensitivity of membrane biosensors is discussed, and the state of the field is evaluated and summarized.

  1. The effects of passive humidifier dead space on respiratory variables in paralyzed and spontaneously breathing patients.

    Science.gov (United States)

    Campbell, R S; Davis, K; Johannigman, J A; Branson, R D

    2000-03-01

    Passive humidifiers have gained acceptance in the intensive care unit because of their low cost, simple operation, and elimination of condensate from the breathing circuit. However, the additional dead space of these devices may adversely affect respiratory function in certain patients. This study evaluates the effects of passive humidifier dead space on respiratory function. Two groups of patients were studied. The first group consisted of patients recovering from acute lung injury and breathing spontaneously on pressure support ventilation. The second group consisted of patients who were receiving controlled mechanical ventilation and were chemically paralyzed following operative procedures. All patients used 3 humidification devices in random order for one hour each. The devices were a heated humidifier (HH), a hygroscopic heat and moisture exchanger (HHME) with a dead space of 28 mL, and a heat and moisture exchanger (HME) with a dead space of 90 mL. During each measurement period the following were recorded: tidal volume, minute volume, respiratory frequency, oxygen consumption, carbon dioxide production, ratio of dead space volume to tidal volume (VD/VT), and blood gases. In the second group, intrinsic positive end-expiratory pressure was also measured. Addition of either of the passive humidifiers was associated with increased VD/VT. In spontaneously breathing patients, VD/VT increased from 59 +/- 13 (HH) to 62 +/- 13 (HHME) to 68 +/- 11% (HME) (p < 0.05). In these patients, constant alveolar ventilation was maintained as a result of increased respiratory frequency, from 22.1 +/- 6.6 breaths/min (HH) to 24.5 +/- 6.9 breaths/min (HHME) to 27.7 +/- 7.4 breaths/min (HME) (p < 0.05), and increased minute volume, from 9.1 +/- 3.5 L/min (HH) to 9.9 +/- 3.6 L/min (HHME) to 11.7 +/- 4.2 L/min (HME) (p < 0.05). There were no changes in blood gases or carbon dioxide production. In the paralyzed patient group, VD/VT increased from 54 +/- 12% (HH) to 56 +/- 10% (HHME

  2. Studies of rubidium selenate with secondary phase of RbOH under humidified reducing atmosphere

    DEFF Research Database (Denmark)

    Beyribey, Berceste; Hallinder, Jonathan; Poulsen, Finn Willy

    2012-01-01

    The high temperature properties of Rb2SeO4 have been studied by calorimetry, impedance spectroscopy and X-ray powder diffraction. As synthesized, Rb2SeO4 includes a second phase of Rb2SeO3, which can be eliminated upon heating the compound. As expected, no conductivity is observed in dry (pH2O ....001 bar) air. By changing to humidified (pH2O = 0.1 bar) air at 176 deg. C, the conductivity increases sharply from 8.6·10-8 to 1.7·10-6 S cm-1. Under humidified (pH2O = 0.1 bar) reducing atmosphere (9%H2 in N2), the conductivity increases to 2.0·10-4 S cm-1 at 317 C. Degradation of Rb2SeO3 and Rb2SeO4...

  3. Development and characterization of polyacrylonitrile (PAN based carbon hollow fiber membrane

    Directory of Open Access Journals (Sweden)

    Syed Mohd Saufi

    2002-11-01

    Full Text Available This paper reports the development and characterization of polyacrylonitrile (PAN based carbon hollow fiber membrane. Nitrogen was used as an inert gas during pyrolysis of the PAN hollow fiber membrane into carbon membrane. PAN membranes were pyrolyzed at temperature ranging from 500oC to 800oC for 30 minutes of thermal soak time. Scanning Electron Microscope (SEM, Fourier Transform Infrared Spectroscopy (FTIR and gas sorption analysis were applied to characterize the PAN based carbon membrane. Pyrolysis temperature was found to significantly change the structure and properties of carbon membrane. FTIR results concluded that the carbon yield still could be increased by pyrolyzing PAN membranes at temperature higher than 800oC since the existence of other functional group instead of CH group. Gas adsorption analysis showed that the average pore diameter increased up to 800oC.

  4. MEDELLER: homology-based coordinate generation for membrane proteins.

    Science.gov (United States)

    Kelm, Sebastian; Shi, Jiye; Deane, Charlotte M

    2010-11-15

    Membrane proteins (MPs) are important drug targets but knowledge of their exact structure is limited to relatively few examples. Existing homology-based structure prediction methods are designed for globular, water-soluble proteins. However, we are now beginning to have enough MP structures to justify the development of a homology-based approach specifically for them. We present a MP-specific homology-based coordinate generation method, MEDELLER, which is optimized to build highly reliable core models. The method outperforms the popular structure prediction programme Modeller on MPs. The comparison of the two methods was performed on 616 target-template pairs of MPs, which were classified into four test sets by their sequence identity. Across all targets, MEDELLER gave an average backbone root mean square deviation (RMSD) of 2.62 Å versus 3.16 Å for Modeller. On our 'easy' test set, MEDELLER achieves an average accuracy of 0.93 Å backbone RMSD versus 1.56 Å for Modeller. http://medeller.info; Implemented in Python, Bash and Perl CGI for use on Linux systems; Supplementary data are available at http://www.stats.ox.ac.uk/proteins/resources.

  5. The Role of Heated Humidified High-flow Nasal Cannula as Noninvasive Respiratory Support in Neonates

    Directory of Open Access Journals (Sweden)

    Ke-Yun Chao

    2017-08-01

    Full Text Available Recently, heated humidified high-flow nasal cannula (HHHFNC has been introduced and applied as a noninvasive respiratory support in neonates. Although HHHFNC is widely used in neonates presenting with respiratory distress, the efficiency and safety when compared with nasal continuous positive airway pressure or noninvasive positive pressure ventilation are still controversial. This review aims to evaluate the performance and applications of HHHFNC in neonates.

  6. Development of hydrophobic clay–alumina based capillary membrane for desalination of brine by membrane distillation

    Directory of Open Access Journals (Sweden)

    Rakhi Das

    2016-09-01

    Full Text Available Clay–alumina compositions of 0, 20, 40 and 55 weight percent (wt% clay and rest alumina were maintained in porous support preparation by extrusion followed by sintering at 1300 °C for 2.5 h to obtain 3 mm/2 mm (outer diameter/inner diameter capillary. 1H,1H,2H,2H-perfluorodecyltriethoxysilane (97% (C8 was used to modify the capillary surface of all compositions without any intermediate membrane layer to impart hydrophobic characteristics and compared in terms of contact angle produced by the capillaries with water and liquid entry pressure (LEPw. FTIR analysis showed that the hydrophilic surface of the capillary membranes was efficiently modified by the proposed grafting method. Capillary with 55 wt% clay produced a pore size of 1.43 micron and was considered as an ideal candidate for grafting with C8 polymer to impart surface hydrophobicity. The contact angle and LEPw value obtained for this modified membrane (C-55-M were 145° and 1 bar, respectively. The modified capillary membrane was applied for desalination of brine by air gap membrane distillation (AGMD at a feed pressure of 0.85 bar. Maximum flux obtained for C-55-M membrane was 98.66 L/m2 day at a temperature difference of 60 °C with salt rejection of 99.96%. Mass transfer coefficient of C-55-M was 16 × 10−3 mm/s at feed temperature of 70 °C.

  7. Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2

    International Nuclear Information System (INIS)

    Pu Hongting; Liu Lu; Chang Zhihong; Yuan Junjie

    2009-01-01

    Organic/inorganic composite membranes based on polybenzimidazole (PBI) and nano-SiO 2 were prepared in this work. However, the preparation of PBI/SiO 2 composite membrane is not easy since PBI is insoluble in water, while nano-SiO 2 is hydrophilic due to the hydrophilicity of nano-SiO 2 and water-insolubility of PBI. Thus, a solvent-exchange method was employed to prepare the composite membrane. The morphology of the composite membranes was studied by scanning electron microscopy (SEM). It was revealed that inorganic particles were dispersed homogenously in the PBI matrix. The thermal stability of the composite membrane is higher than that of pure PBI, both for doped and undoped membranes. PBI/SiO 2 composite membranes with up to 15 wt% SiO 2 exhibited improved mechanical properties compared with PBI membranes. The proton conductivity of the composite membranes containing phosphoric acid was studied. The nano-SiO 2 in the composite membranes enhanced the ability to trap phosphoric acid, which improved the proton conductivity of the composite membranes. The membrane with 15 wt% of inorganic material is oxidatively stable and has a proton conductivity of 3.9 x 10 -3 S/cm at 180 deg. C.

  8. based anion exchange membrane for alkaline polymer electrolyte

    Indian Academy of Sciences (India)

    Administrator

    Alkaline polymer electrolyte fuel cell; anion exchange membrane; PPO; homogeneous quaterni- zation. 1. Introduction. Presently, alkaline polymer electrolyte fuel cells (APEFCs) using anion exchange membranes have received an immense interest among researchers (Varcoe and Slade. 2005). The advantages of ...

  9. Pressure effects on membrane-based functions and energy ...

    African Journals Online (AJOL)

    This review will consider the effects of hydrostatic pressure on some cellular functions related to membrane- localized processes. After a general survey of experimental evidence showing the wide variety of membrane- linked mechanisms that are perturbed by changes in hydrostatic pressure, it will focus on the ...

  10. Sulfonated carbon black-based composite membranes for fuel cell

    Indian Academy of Sciences (India)

    Composite membranes were then prepared using S–C as fillers and sulfonated poly(ether ether ketone) (SPEEK) as polymer matrix with three different sulfonation degrees (DS = 60, 70 and 82%). Structure and properties of the composite membranes were characterized by FTIR, TGA, scanning electron microscopy, proton ...

  11. Modeling of a Membrane-Based Absorption Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Woods, J.; Pellegrino, J.; Kozubal, E.; Slayzak, S.; Burch, J.

    2009-01-01

    In this paper, a membrane heat pump is proposed and analyzed. Fundamentally, the proposed heat pump consists of an aqueous CaCl{sub 2} solution flow separated from a water flow by a vapor-permeable membrane. The low activity of the solution results in a net flux of water vapor across the membrane, which heats the solution stream and cools the water stream. This mechanism upgrades water-side low-temperature heat to solution-side high-temperature heat, creating a 'temperature lift.' The modeling results show that using two membranes and an air gap instead of a single membrane increases the temperature lift by 185%. The model predicts temperature lifts for the air-gap design of 24, 16, and 6 C for inlet temperatures of 55, 35, and 15 C, respectively. Membranes with lower thermal conductivities and higher porosities improve the performance of single-membrane designs while thinner membranes improve the performance of air-gap designs. This device can be used with a solar heating system which already uses concentrated salt solutions for liquid-desiccant cooling.

  12. Low cost membrane contactors based on hollow fibres

    Science.gov (United States)

    Dohnal, Mirko; Vesely, Tomas; Raudensky, Miroslav

    2012-04-01

    Membrane contactors are used to solve different chemical engineering tasks (e.g. water saturation with gases). Such elements are traditionally used for bubble less oxidation of blood. However, their industrial applications are rather limited by their high investment costs. This is probably the main reason why membrane contactors are not used so widely, e.g. classical absorbers, etc. If potted bundles of hollow fibres are available, then it is a relatively simple task to design an ad hoc membrane contactor. However, it must be emphasised that to achieve the highest mass transfer efficiency requires a rather time-consuming tuning of each ad hoc designed contactor. To check the differences by water evaporation were aligned two modes, the water inside the hollow fibre membrane and fan air outside, next with the water outsides and flowing pressure air inside the membrane.

  13. Low cost membrane contactors based on hollow fibres

    Directory of Open Access Journals (Sweden)

    Raudensky Miroslav

    2012-04-01

    Full Text Available Membrane contactors are used to solve different chemical engineering tasks (e.g. water saturation with gases. Such elements are traditionally used for bubble less oxidation of blood. However, their industrial applications are rather limited by their high investment costs. This is probably the main reason why membrane contactors are not used so widely, e.g. classical absorbers, etc. If potted bundles of hollow fibres are available, then it is a relatively simple task to design an ad hoc membrane contactor. However, it must be emphasised that to achieve the highest mass transfer efficiency requires a rather time-consuming tuning of each ad hoc designed contactor. To check the differences by water evaporation were aligned two modes, the water inside the hollow fibre membrane and fan air outside, next with the water outsides and flowing pressure air inside the membrane.

  14. Dense ceramic membranes based on ion conducting oxides

    International Nuclear Information System (INIS)

    Fontaine, M.L.; Larring, Y.; Bredesen, R.; Norby, T.; Grande, T.

    2007-01-01

    This chapter reviews the recent progress made in the fields of high temperature oxygen and hydrogen separation membranes. Studies of membranes for oxygen separation are mainly focusing on materials design to improve flux, and to lesser extent, related to stability issues. High oxygen fluxes satisfying industrial requirements can be obtained but, for many materials, the surface exchange rate is limiting the performance. The current status on electrolyte-type and mixed proton and electron conducting membranes is outlined, highlighting materials with improved stability in typical applications as solid oxide fuel cell technology and gas separation. In our presentation more fundamental aspects related to transport properties, chemical and mechanical stability of membrane materials are also treated. It is concluded that a significantly better understanding of the long term effects of operation in chemical gradients is needed for these types of membrane materials. (authors)

  15. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  16. System and method for temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M.

    2017-02-21

    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  17. The spectrin-based membrane skeleton stabilizes mouse megakaryocyte membrane systems and is essential for proplatelet and platelet formation

    Science.gov (United States)

    Patel-Hett, Sunita; Wang, Hongbei; Begonja, Antonija J.; Thon, Jonathan N.; Alden, Eva C.; Wandersee, Nancy J.; An, Xiuli; Mohandas, Narla; Hartwig, John H.

    2011-01-01

    Megakaryocytes generate platelets by remodeling their cytoplasm first into proplatelets and then into preplatelets, which undergo fission to generate platelets. Although the functions of microtubules and actin during platelet biogenesis have been defined, the role of the spectrin cytoskeleton is unknown. We investigated the function of the spectrin-based membrane skeleton in proplatelet and platelet production in murine megakaryocytes. Electron microscopy revealed that, like circulating platelets, proplatelets have a dense membrane skeleton, the main fibrous component of which is spectrin. Unlike other cells, megakaryocytes and their progeny express both erythroid and nonerythroid spectrins. Assembly of spectrin into tetramers is required for invaginated membrane system maturation and proplatelet extension, because expression of a spectrin tetramer–disrupting construct in megakaryocytes inhibits both processes. Incorporation of this spectrin-disrupting fragment into a novel permeabilized proplatelet system rapidly destabilizes proplatelets, causing blebbing and swelling. Spectrin tetramers also stabilize the “barbell shapes” of the penultimate stage in platelet production, because addition of the tetramer-disrupting construct converts these barbell shapes to spheres, demonstrating that membrane skeletal continuity maintains the elongated, pre-fission shape. The results of this study provide evidence for a role for spectrin in different steps of megakaryocyte development through its participation in the formation of invaginated membranes and in the maintenance of proplatelet structure. PMID:21566095

  18. Hydrocarbon-based fuel cell membranes: Sulfonated crosslinked poly(1,3-cyclohexadiene) membranes for high temperature polymer electrolyte fuel cells

    OpenAIRE

    Deng, Suxiang; Hassan, Mohammad K.; Mauritz, Kenneth A.; Mays, Jimmy W.

    2015-01-01

    High temperature fuel cell membranes based on poly(1,3-cyclohexadiene) were prepared by a Polymerization-Crosslinking-Sulfonation (PCS) approach, and a broad range of membrane compositions were achieved using various sulfonating reagents and reaction conditions. Membranes were characterized for their proton conductivity and thermal degradation behavior. Some of the membranes showed up to a 68% increase in proton conductivity as compared to Nafion under the same conditions (100% relative humid...

  19. Novel Blend Membranes Based on Acid-Base Interactions for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yongzhu Fu

    2012-10-01

    Full Text Available Fuel cells hold great promise for wide applications in portable, residential, and large-scale power supplies. For low temperature fuel cells, such as the proton exchange membrane fuel cells (PEMFCs and direct methanol fuel cells (DMFCs, proton-exchange membranes (PEMs are a key component determining the fuel cells performance. PEMs with high proton conductivity under anhydrous conditions can allow PEMFCs to be operated above 100 °C, enabling use of hydrogen fuels with high-CO contents and improving the electrocatalytic activity. PEMs with high proton conductivity and low methanol crossover are critical for lowering catalyst loadings at the cathode and improving the performance and long-term stability of DMFCs. This review provides a summary of a number of novel acid-base blend membranes consisting of an acidic polymer and a basic compound containing N-heterocycle groups, which are promising for PEMFCs and DMFCs.

  20. Synthesis and Characterization of Sulfonated Graphene Oxide Reinforced Sulfonated Poly (Ether Ether Ketone) (SPEEK) Composites for Proton Exchange Membrane Materials.

    Science.gov (United States)

    Cao, Ning; Zhou, Chaofan; Wang, Yong; Ju, Hong; Tan, Dongyang; Li, Jin

    2018-03-28

    As a clean energy utilization device, full cell is gaining more and more attention. Proton exchange membrane (PEM) is a key component of the full cell. The commercial-sulfonated, tetrafluoroethylene-based fluoropolymer-copolymer (Nafion) membrane exhibits excellent proton conductivity under a fully humidified environment. However, it also has some disadvantages in practice, such as high fuel permeability, a complex synthesis process, and high cost. To overcome these disadvantages, a low-cost and novel membrane was developed. The sulfonated poly (ether ether ketone) (SPEEK) was selected as the base material of the proton exchange membrane. Sulfonated graphene (SG) was cross-linked with SPEEK through the elimination reaction of hydrogen bonds. It was found that the sulfonic acid groups and hydrophilic oxygen groups increased obviously in the resultant membrane. Compared with the pure SPEEK membrane, the SG-reinforced membrane exhibited better proton conductivity and methanol permeability prevention. The results indicate that the SG/SPEEK could be applied as a new proton exchange membrane in fuel cells.

  1. Synthesis and Characterization of Sulfonated Graphene Oxide Reinforced Sulfonated Poly (Ether Ether Ketone (SPEEK Composites for Proton Exchange Membrane Materials

    Directory of Open Access Journals (Sweden)

    Ning Cao

    2018-03-01

    Full Text Available As a clean energy utilization device, full cell is gaining more and more attention. Proton exchange membrane (PEM is a key component of the full cell. The commercial-sulfonated, tetrafluoroethylene-based fluoropolymer-copolymer (Nafion membrane exhibits excellent proton conductivity under a fully humidified environment. However, it also has some disadvantages in practice, such as high fuel permeability, a complex synthesis process, and high cost. To overcome these disadvantages, a low-cost and novel membrane was developed. The sulfonated poly (ether ether ketone (SPEEK was selected as the base material of the proton exchange membrane. Sulfonated graphene (SG was cross-linked with SPEEK through the elimination reaction of hydrogen bonds. It was found that the sulfonic acid groups and hydrophilic oxygen groups increased obviously in the resultant membrane. Compared with the pure SPEEK membrane, the SG-reinforced membrane exhibited better proton conductivity and methanol permeability prevention. The results indicate that the SG/SPEEK could be applied as a new proton exchange membrane in fuel cells.

  2. Studies Regarding the Membranous Support of a Glucose Biosensor Based on Gox

    Directory of Open Access Journals (Sweden)

    Otilia Bizerea-Spiridon

    2010-05-01

    Full Text Available To obtain glucose biosensors based on glucose oxidase (GOx, the enzyme can be immobilized on the sensitive surface of a glass electrode by different techniques: deposition on membranous support (cellophane or other macromolecular material or entrapment in a matrix. Deposition on membranous support also involves cross-linking with glutaraldehyde or entrapment in silica gel, following the sol-gel procedure. The aim of this preliminary work was to study the influence of cellophane replacement with a PVA based membranous support on the glucose biosensor performance. The data obtained at pH measurements of buffer solutions with cellophane and PVA membranous supports respectively, show that the PVA based membrane assures superior performances of the biosensor for low glucose concentrations determination (about 10-4 M. These results allow the transition to an improved immobilization technique, namely the enzyme entrapment in membranous material.

  3. Chitosan cushioned phospholipid membrane and its application in imaging ellipsometry based-biosensor

    International Nuclear Information System (INIS)

    Zhang Yibang; Chen Yanyan; Jin Gang

    2011-01-01

    Chitosan cushion can support the air stability of phospholipid membrane, but the problem of serum solubility of phospholipid membrane prevents it from use in serum detection applications. Poly (ethylene glycol) (PEG) shielding promises both stability and non-specific adsorption resistance for phospholipid membrane. An air stable phospholipid membrane microarray has been successfully fabricated on chitosan modified silicon wafer. We have demonstrated the potential application of PEGylated phospholipid membrane in imaging ellipsometry-based protein biosensor. Because of the strong resistance against non-specific adsorption of serum, antigens are immobilized onto the membrane surface through chemical activation and further bind their antibodies without using blocking agent. Taking advantage of the multiple and parallel reaction capabilities of microfluidic reactor system, we have assayed the binding by varying both the density of antigen on the membrane surface and the concentration of antibody in solution.

  4. Use of Normothermic Default Humidifier Settings Causes Excessive Humidification of Respiratory Gases During Therapeutic Hypothermia.

    Science.gov (United States)

    Tanaka, Shoichiro; Iwata, Sachiko; Kinoshita, Masahiro; Tsuda, Kennosuke; Sakai, Sayaka; Saikusa, Mamoru; Shindo, Ryota; Harada, Eimei; Okada, Junichiro; Hisano, Tadashi; Kanda, Hiroshi; Maeno, Yasuki; Araki, Yuko; Ushijima, Kazuo; Sakamoto, Teruo; Yamashita, Yushiro; Iwata, Osuke

    2016-12-01

    Adult patients frequently suffer from serious respiratory complications during therapeutic hypothermia. During therapeutic hypothermia, respiratory gases are humidified close to saturated vapor at 37°C (44 mg/L) despite that saturated vapor reduces considerably depending on temperature reduction. Condensation may cause serious adverse events, such as bronchial edema, mucosal dysfunction, and ventilator-associated pneumonia during cooling. To determine clinical variables associated with inadequate humidification of respiratory gases during cooling, humidity of inspiratory gases was measured in 42 cumulative newborn infants who underwent therapeutic hypothermia. Three humidifier settings of 37-default (chamber outlet, 37°C; distal circuit, 40°C), 33.5-theoretical (chamber outlet, 33.5°C; distal circuit, 36.5°C), and 33.5-adjusted (optimized setting to achieve 36.6 mg/L using feedback from a hygrometer) were tested to identify independent variables of excessively high humidity >40.7 mg/L and low humidity <32.9 mg/L. The mean (SD) humidity at the Y-piece was 39.2 (5.2), 33.3 (4.1), and 36.7 (1.2) mg/L for 37-default, 33.5-theoretical, and 33.5-adjusted, respectively. The incidence of excessive high humidity was 10.3% (37-default, 31.0%; 33.5-theoretical, 0.0%; 33.5-adjusted, 0.0%), which was positively associated with the use of a counter-flow humidifier (p < 0.001), 37-default (compared with 33.5-theoretical and 33.5-adjusted, both p < 0.001) and higher fraction of inspired oxygen (p = 0.003). The incidence of excessively low humidity was 17.5% (37-default, 7.1%; 33.5-theoretical, 45.2%; 33.5-adjusted, 0.0%), which was positively associated with the use of a pass-over humidifier and 33.5-theoretical (both p < 0.001). All patients who used a counter-flow humidifier achieved the target gas humidity at the Y-piece (36.6 ± 0.5 mg/L) required for 33.5-adjusted with 33.5-theoretical. During cooling, 37-default is associated with

  5. Membrane-Based Functions in the Origin of Cellular Life

    Science.gov (United States)

    Wilson, Michael A.

    2003-01-01

    How simple membrane peptides performed such essential proto-cellular functions as transport of ions and organic matter across membranes separating the interior of the cell from the environment, capture and utilization of energy, and transduction of environmental signals, is a key question in protobiological evolution. On the basis of detailed, molecular-level computer simulations we investigate how these peptides insert into membranes, self-assemble into higher-order structures and acquire functions. We have studied the insertion of an a-helical peptide containing leucine (L) and serine (S) of the form (LSLLLSL)S into a model membrane. The transmembrane state is metastable, and approximately 15 kcal/mol is required to insert the peptide into the membrane. Investigations of dimers formed by (LSLLLSL)S and glycophorin A demonstrate how the favorable free energy of helix association can offset the unfavorable free energy of insertion, leading to self- assembly of peptide helices in the membrane. An example of a self-assembled structure is the tetrameric transmembrane pore of the influenza virus M2 protein, which is an efficient and selective voltage-gated proton channel. Our simulations explain the gating mechanism and provide guidelines how to reengineering the channel to act as a simple proton pump. In general, emergence of integral membrane proteins appears to be quite feasible and may be easier to envision than the emergence of water-soluble proteins.

  6. Simple membrane-based model of the Min oscillator

    Science.gov (United States)

    Petrášek, Zdeněk; Schwille, Petra

    2015-04-01

    Min proteins in E. coli bacteria organize into a dynamic pattern oscillating between the two cell poles. This process identifies the middle of the cell and enables symmetric cell division. In an experimental model system consisting of a flat membrane with effectively infinite supply of proteins and energy source, the Min proteins assemble into travelling waves. Here we propose a simple one-dimensional model of the Min dynamics that, unlike the existing models, reproduces the sharp decrease of Min concentration when the majority of protein detaches from the membrane, and even the narrow MinE maximum immediately preceding the detachment. The proposed model thus provides a possible mechanism for the formation of the MinE ring known from cells. The model is restricted to one dimension, with protein interactions described by chemical kinetics allowing at most bimolecular reactions, and explicitly considering only three, membrane-bound, species. The bulk solution above the membrane is approximated as being well-mixed, with constant concentrations of all species. Unlike other models, our proposal does not require autocatalytic binding of MinD to the membrane. Instead, it is assumed that two MinE molecules are necessary to induce the dissociation of the MinD dimer and its subsequent detachment from the membrane. We investigate which reaction schemes lead to unstable homogeneous steady states and limit cycle oscillations, and how diffusion affects their stability. The suggested model qualitatively describes the shape of the Min waves observed on flat membranes, and agrees with the experimental dependence of the wave period on the MinE concentration. These results highlight the importance of MinE presence on the membrane without being bound to MinD, and of the reactions of Min proteins on the membrane.

  7. Simple membrane-based model of the Min oscillator

    International Nuclear Information System (INIS)

    Petrášek, Zdeněk; Schwille, Petra

    2015-01-01

    Min proteins in E. coli bacteria organize into a dynamic pattern oscillating between the two cell poles. This process identifies the middle of the cell and enables symmetric cell division. In an experimental model system consisting of a flat membrane with effectively infinite supply of proteins and energy source, the Min proteins assemble into travelling waves. Here we propose a simple one-dimensional model of the Min dynamics that, unlike the existing models, reproduces the sharp decrease of Min concentration when the majority of protein detaches from the membrane, and even the narrow MinE maximum immediately preceding the detachment. The proposed model thus provides a possible mechanism for the formation of the MinE ring known from cells. The model is restricted to one dimension, with protein interactions described by chemical kinetics allowing at most bimolecular reactions, and explicitly considering only three, membrane-bound, species. The bulk solution above the membrane is approximated as being well-mixed, with constant concentrations of all species. Unlike other models, our proposal does not require autocatalytic binding of MinD to the membrane. Instead, it is assumed that two MinE molecules are necessary to induce the dissociation of the MinD dimer and its subsequent detachment from the membrane. We investigate which reaction schemes lead to unstable homogeneous steady states and limit cycle oscillations, and how diffusion affects their stability. The suggested model qualitatively describes the shape of the Min waves observed on flat membranes, and agrees with the experimental dependence of the wave period on the MinE concentration. These results highlight the importance of MinE presence on the membrane without being bound to MinD, and of the reactions of Min proteins on the membrane. (paper)

  8. Inhomogeneity Based Characterization of Distribution Patterns on the Plasma Membrane.

    Directory of Open Access Journals (Sweden)

    Laura Paparelli

    2016-09-01

    Full Text Available Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH. We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided.

  9. Solar assisted liquid desiccant cooling using clay based membranes

    Directory of Open Access Journals (Sweden)

    Priya S. Shanmuga

    2018-01-01

    Full Text Available The environmental concerns have led to the urge of the usage of non-conventional energy resources like solar, wind, thermal, geothermal etc. which provide enormous source of energy without causing any further diminution of the environment. Instead of the conventional HVAC systems that cause colossal environmental perils, usage of liquid desiccants in coming in vogue whereby reducing ecological threats. Moreover, solar assisted systems provide further impulse to such systems. This paper discusses about the various comparisons between liquid desiccants: Lithium chloride, Potassium formate and Calcium chloride and concludes that potassium formate is the best desiccant to be used among the three. Potassium formate (HCOOK is used which is cheaper and less corrosive as compared to the other aqueous salts, and has a negative crystallization temperature. Potassium formate is a new liquid desiccant and thus, not much research is available currently. The weather conditions of Manipal provide an appropriate condition for the experimentations of solar aided liquid desiccant evaporative cooling systems due to its humid climate and intense solar radiation obtained. The small scale experimentation also encounters the problem of liquid desiccant carryover by the air flow, with the help of clay based membranes which are again cheap, environmentally benign and obtained in a facile way. The projected system takes complete advantage of pure solar energy aimed at the regeneration of liquid desiccant.

  10. Evaluation of thin film ceria membranes for syngas membrane reactors—Preparation, characterization and testing

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Foghmoes, Søren Preben Vagn; Chatzichristodoulou, Christodoulos

    2011-01-01

    , up to 16Nmlcm−2min−1 at 900°C, were obtained when placing the membrane between air and humidified hydrogen (H2/H2O=20). Initial experiments for syngas production were performed by testing the CGO10 membrane with methane and steam feed.The mechanical integrity of CGO10 membranes during operation (heat...... film CGO membrane should therefore lie below the expansion limit of 0.1% expected to be critical for mechanical stability and thereby allows for operation at high temperatures and low oxygen partial pressures....

  11. Morin-based nanofiltration membranes for organic solvent separation processes

    KAUST Repository

    Perez Manriquez, Liliana

    2018-02-26

    In this work we demonstrate the successful optimization of the interfacial polymerization reaction for the manufacture of organic solvent nanofiltration membranes by replacing the toxic amines commonly used for this method with the natural occurring bio-polyphenol morin. For the manufacture of this type of OSN membrane a crosslinked PAN support was coated by interfacial polymerization using morin as the monomer of the aqueous phase and terephtaloyl chloride as the monomer of the organic phase. These membranes showed an exceptional performance and resistance to NMP by having a a permeance of 0.3L/m2 h bar in NMP with a rejection of 96% of Brilliant Blue dye which has a molecular weight of 825.97g/mol, making these membranes attractive for harsh industrial separation processes due to their ease of manufacture, low cost, and excellent performance.

  12. Nafion-based nanocomposite membranes for fuel cells

    CSIR Research Space (South Africa)

    Cele, NP

    2008-11-01

    Full Text Available , mechanical properties and electrical conductivity of nafion membrane for fuel cell applications. The results showed an improvement on the thermal behaviour of prepared nation nanocomposites compared to pure Nafion with an addition of only 1 wt% MWCNTs....

  13. Carbon nanotubes based nafion composite membranes for fuel cell applications

    CSIR Research Space (South Africa)

    Cele, NP

    2009-01-01

    Full Text Available composite membranes. Keywords: Carbon Nanotubes, Conductivity, Fuel Cell, Nafion, Nanocomposite Membranes, Thermal Properties, Water Uptake FUEL CELLS 00, 0000, No. 0, 1–8 ? 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1 ORIGINA L RESEAR CH PAPE... used strategies to overcome these drawbacks is the modification of Nafion by using polymer nanocomposite (PNC) technology. PNCs have recently shown a worldwide growth effort especially in the fabrication of high temperature PEM for fuel cells [18...

  14. Electrochemical characterization and transport phenomena of polystyrene based barium–magnesium phosphate composite membrane

    Directory of Open Access Journals (Sweden)

    Mohammad Mujahid Ali Khan

    2016-09-01

    Full Text Available The polystyrene based barium–magnesium (BMP composite membrane was prepared by sol–gel method. The physico-chemical characterization of the BMP composite membrane was established by XRD, FTIR and simultaneous SEM studies. The membrane was found to be crystalline in nature with uniform arrangement of particles indicating no sign of visible cracks. Membrane potential is a measurable and important parameter to characterize the charge property of the membrane. Membrane potentials have been measured across the polystyrene based barium–magnesium (BMP composite membrane separating various 1:1 electrolytes at different concentrations and followed the order KCl < NaCl < LiCl. The membrane was found to be cation-selective. Membrane potentials have been used to calculate transport number, mobility ratio, distribution coefficient, charge effectiveness, and also the fixed charge density which is a central parameter governing the membrane phenomena by utilizing Teorell, Meyer, and Sievers method. The order of surface charge density for uni-univalent electrolytes solution was found to be LiCl < NaCl < KCl.

  15. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    DEFF Research Database (Denmark)

    Li, Zhenyu; Linares, Rodrigo Valladares; Bucs, Szilard

    2017-01-01

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused, by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquaporin...... based biomimetic membrane in simulated membrane cleaning processes. The effects of cleaning agents on water flux and salt rejection were evaluated. The membrane showed a good resistance to the chemical agents. The water flux after chemical cleaning showed significant increases, particularly after...... with secondary wastewater effluent as the feed solution and seawater as the draw solution showed a stable flux and high salt rejection. The average rejection of the dissolved organic carbon from wastewater after the 15-day test was 90%. The results demonstrated that the aquaporin based biomimetic FO membrane...

  16. Process intensification on membrane-based process for blackcurrant juice concentration

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Rong, Ben-Guang; Christensen, Knud Villy

    Juice concentrate production is a field where process intensification and novel concentration processes need to be implemented. The paper presents a systematic approach for process synthesis based on membrane processes for the concentration of blackcurrant juice, exemplified by the aroma recovery...... using combinations of vacuum membrane distillation and traditional distillation. Furthermore, the paper further suggests a novel method for the combination of nanofiltration, reverse osmosis and membrane distillation for the concentration of the dearomatized juice....

  17. Process intensification on membrane-based process for blackcurrant juice concentration

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Rong, Ben-Guang; Christensen, Knud Villy

    using combinations of vacuum membrane distillation and traditional distillation. Furthermore, the paper further suggests a novel method for the combination of nanofiltration, reverse osmosis and membrane distillation for the concentration of the dearomatized juice.......Juice concentrate production is a field where process intensification and novel concentration processes need to be implemented. The paper presents a systematic approach for process synthesis based on membrane processes for the concentration of blackcurrant juice, exemplified by the aroma recovery...

  18. Poly (Ethylene-Alit-Tetrafluoroethylene) Based Membranes For Fuel Cells: Synthesis And Fuel Cell Performance

    Energy Technology Data Exchange (ETDEWEB)

    Alkan Guersel, S.; Gubler, L.; Scherer, G.G.

    2005-03-01

    Proton exchange membranes have been synthesized by pre-irradiation grafting of styrene onto poly (ethylene-alt-tetrafluoroethylene) (ETFE) in the presence of divinyl benzene (DVB) as the cross linker and characterized ex-situ for their fuel cell relevant properties. The optimum graft level was determined as between 20 and 30 %. ETFE based membranes exhibited encouraging fuel cell performance yet, there is room for improvement through optimization of the membrane-electrode interface. (author)

  19. High-performance membrane electrode assembly with multi-functional Pt/SnO2eSiO2/C catalyst for proton exchange membrane fuel cell operated under low-humidity conditions

    CSIR Research Space (South Africa)

    Hou, S

    2016-06-01

    Full Text Available A novel self-humidifying membrane electrode assembly (MEA) with homemade multifunctional Pt/SnO(sub2)-SiO(sub2)/C as the anode was developed to improve the performance of a proton exchange membrane fuel cell under low humidity. The MEAs' performance...

  20. Effect of MWCNT Filler on Properties and Flux of Chitosan/ PEG based Nanocomposites Membranes

    Directory of Open Access Journals (Sweden)

    Khoerunnisa Fitri

    2018-01-01

    Full Text Available Biopolymer are expected to be environmentally compatible and to have great potential application as membranes material. The chitosan-poly (ethylene glycol/PEG based composite membranes was successfully synthesized via inversed phase method. The effect of multiwalled carbon nanotubes (MWCNT as nanofiller on properties and performances of composite membranes were intensively evaluated. The membrane was prepared by mixing of chitosan and PEG solutions at the same composition ratio while MWCNT amount in the mixture was varied. The synthesized membrane was characterized by means of FTIR spectroscopy, scanning electron microscopy (SEM, contact angle, and tensile strength measurement. The performance of composite membrane on filtration was evaluated in term of flux (permeability and rejection (rejection tests. The results showed that the optimum volume ratio of composite membrane solution was found at 30:10:7.5 for chitosan/ PEG/ MWCNT, respectively, as indicated by the largest flux. Insertion of MWCNT nanofiller notably enhanced hydrophilicity, porosity, and mechanical properties of composites membranes that are confirmed by contact angle, SEM images and elongation forces value, respectively. The MWCNT nanofiller remarkably increased both of flux and rejection of composite membranes up to 60 Lm2h-1 and 96%, respectively. The remarkable enhancement of composite membrane performance is attributed to the effective interaction of MWCNT with polymeric matrix.

  1. Bioinspired model of mechanical energy harvesting based on flexoelectric membranes.

    Science.gov (United States)

    Rey, Alejandro D; Servio, P; Herrera-Valencia, E E

    2013-02-01

    Membrane flexoelectricity is an electromechanical coupling process that describes membrane electrical polarization due to bending and membrane bending under electric fields. In this paper we propose, formulate, and characterize a mechanical energy harvesting system consisting of a deformable soft flexoelectric thin membrane subjected to harmonic forcing from contacting bulk fluids. The key elements of the energy harvester are formulated and characterized, including (i) the mechanical-to-electrical energy conversion efficiency, (ii) the electromechanical shape equation connecting fluid forces with membrane curvature and electric displacement, and (iii) the electric power generation and efficiency. The energy conversion efficiency is cast as the ratio of flexoelectric coupling to the product of electric and bending elasticity. The device is described by a second-order curvature dynamics coupled to the electric displacement equation and as such results in mechanical power absorption with a resonant peak whose amplitude decreases with bending viscosity. The electric power generation is proportional to the conversion factor and the power efficiency decreases with frequency. Under high bending viscosity, the power efficiency increases with the conversion factor and under low viscosities it decreases with the conversion factor. The theoretical results presented contribute to the ongoing experimental efforts to develop mechanical energy harvesting from fluid flow energy through solid-fluid interactions and electromechanical transduction.

  2. Development of hydrophobic clay–alumina based capillary membrane for desalination of brine by membrane distillation

    OpenAIRE

    Rakhi Das; Kartik Sondhi; Swachchha Majumdar; Sandeep Sarkar

    2016-01-01

    Clay–alumina compositions of 0, 20, 40 and 55 weight percent (wt%) clay and rest alumina were maintained in porous support preparation by extrusion followed by sintering at 1300 °C for 2.5 h to obtain 3 mm/2 mm (outer diameter/inner diameter) capillary. 1H,1H,2H,2H-perfluorodecyltriethoxysilane (97%) (C8) was used to modify the capillary surface of all compositions without any intermediate membrane layer to impart hydrophobic characteristics and compared in terms of contact angle produced by ...

  3. Novel membrane-based electrochemical sensor for real-time bio-applications

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya; Dimaki, Maria

    2014-01-01

    experiments showed that the membrane-sensor was suitable as a cell culturing substrate for bio-applications. Real-time measurements of dopamine exocytosis in cell cultures were performed, where the transmitter release was recorded at the point of release. The developed membrane-sensor provides a new......This article presents a novel membrane-based sensor for real-time electrochemical investigations of cellular- or tissue cultures. The membrane sensor enables recording of electrical signals from a cell culture without any signal dilution, thus avoiding loss of sensitivity. Moreover, the porosity...

  4. Preparation and characterization of polystyrene based Nickel molybdate composite membrane electrical–electrochemical properties

    Directory of Open Access Journals (Sweden)

    Urfi Ishrat

    2016-09-01

    Full Text Available The functional properties of the polystyrene based Nickel Molybdate composite membrane prepared by applying 70 MPa pressure are described. The fabricated membrane was characterized by using Fourier Transform Infrared, X-ray diffraction, particle size analyzer and Scanning electron microscopy technique and has been investigated for its functional, diffusive, electrochemical and electrical properties. The impedance data of membrane having capacitive and resistive components are plotted, which show the sequence of semicircles representing an electrical phenomenon due to grain material, grain boundary and interfacial phenomenon. The diffusion of electrolytes was determined by the TMS method revealing dependence of membrane potential on the charge on the membrane matrix, charge and size of permeating ions. The membrane determined the activity of cations with good accuracy in the higher concentration range and shows a great selectivity for K+. Other electrochemical properties like transport number have been discussed its selectivity.

  5. Carbon Molecular Sieve Membranes Derived from Tröger's Base-Based Microporous Polyimide for Gas Separation.

    Science.gov (United States)

    Wang, Zhenggong; Ren, Huiting; Zhang, Shenxiang; Zhang, Feng; Jin, Jian

    2018-03-09

    Carbon molecular sieve (CMS)-based membranes have attracted great attention because of their outstanding gas-separation performance. The polymer precursor is a key point for the preparation of high-performance CMS membranes. In this work, a microporous polyimide precursor containing a Tröger's base unit was used for the first time to prepare CMS membranes. By optimizing the pyrolysis procedure and the soaking temperature, three TB-CMS membranes were obtained. Gas-permeation tests revealed that the comprehensive gas-separation performance of the TB-CMS membranes was greatly enhanced relative to that of most state-of-the-art CMS membranes derived from polyimides reported so far. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    KAUST Repository

    Li, Zhenyu

    2017-07-27

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquaporin based biomimetic membrane in simulated membrane cleaning processes. The effects of cleaning agents on water flux and salt rejection were evaluated. The membrane showed a good resistance to the chemical agents. The water flux after chemical cleaning showed significant increases, particularly after cleaning with NaOCl and Alconox. Changes in the membrane structure and increased hydrophilicity in the surrounding areas of the aquaporin may be accountable for the increase in water permeability. The membrane shows stable salt rejection up to 99% after all cleaning agents were tested. A 15-day experiment with secondary wastewater effluent as the feed solution and seawater as the draw solution showed a stable flux and high salt rejection. The average rejection of the dissolved organic carbon from wastewater after the 15-day test was 90%. The results demonstrated that the aquaporin based biomimetic FO membrane exhibits chemical resistance for most agents used in membrane cleaning procedures, maintaining a stable flux and high salt rejection.

  7. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    International Nuclear Information System (INIS)

    Rybak, Aleksandra; Kaszuwara, Waldemar

    2015-01-01

    Magnetic hybrid membranes based on ethylcellulose (EC), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and various magnetic praseodymium and neodymium powder microparticles as fillers were obtained. Permeability, diffusion and sorption coefficients of O 2 , N 2 and synthetic air components were estimated for homogeneous and heterogeneous membranes using the Time Lag method based on constant pressure permeation technique. The microstructure studies and the phase analysis of magnetic membranes were also performed using SEM and XRD. The influence of magnetic parameters, like coercivity, remanence and saturation magnetization of created membranes on the gas transport properties was studied. The results showed that their coercivity depended on composition and microstructure of the magnetic powder. On the other hand, remanence and saturation magnetization increased with the increase of the powder addition in the membrane. It was found that the magnetic membrane's gas transport properties were improved with the increase of membrane's remanence, saturation magnetization and magnetic particle filling. The decrease in powder particle size and associated increase of the membrane's coercivity also positively influenced the gas transport and separation properties of investigated membranes. It was observed that the magnetic ethylcellulose and poly(2,6-dimethyl-1,4-phenylene oxide) membranes had higher gas permeability, while their permselectivity and solubility coefficient values were rather maintained or slightly increased. The results also showed that the magnetic powder content enhanced significantly gas diffusivity in EC and PPO membranes. It was also analyzed the dependence of the drift coefficient w on the magnetic parameters of investigated membranes. The correlation between the membrane selectivity, permeability and magnetic properties with their XRD characteristics was stated. - Highlights: • Membrane's production consisting of EC or PPO polymers and

  8. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Rybak, Aleksandra, E-mail: Aleksandra.Rybak@polsl.pl [Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Kaszuwara, Waldemar [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warszawa (Poland)

    2015-11-05

    Magnetic hybrid membranes based on ethylcellulose (EC), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and various magnetic praseodymium and neodymium powder microparticles as fillers were obtained. Permeability, diffusion and sorption coefficients of O{sub 2}, N{sub 2} and synthetic air components were estimated for homogeneous and heterogeneous membranes using the Time Lag method based on constant pressure permeation technique. The microstructure studies and the phase analysis of magnetic membranes were also performed using SEM and XRD. The influence of magnetic parameters, like coercivity, remanence and saturation magnetization of created membranes on the gas transport properties was studied. The results showed that their coercivity depended on composition and microstructure of the magnetic powder. On the other hand, remanence and saturation magnetization increased with the increase of the powder addition in the membrane. It was found that the magnetic membrane's gas transport properties were improved with the increase of membrane's remanence, saturation magnetization and magnetic particle filling. The decrease in powder particle size and associated increase of the membrane's coercivity also positively influenced the gas transport and separation properties of investigated membranes. It was observed that the magnetic ethylcellulose and poly(2,6-dimethyl-1,4-phenylene oxide) membranes had higher gas permeability, while their permselectivity and solubility coefficient values were rather maintained or slightly increased. The results also showed that the magnetic powder content enhanced significantly gas diffusivity in EC and PPO membranes. It was also analyzed the dependence of the drift coefficient w on the magnetic parameters of investigated membranes. The correlation between the membrane selectivity, permeability and magnetic properties with their XRD characteristics was stated. - Highlights: • Membrane's production consisting of EC or PPO

  9. Protective clothing based on permselective membrane and carbon adsorption

    International Nuclear Information System (INIS)

    Gottschlich, D.; Baker, R.

    1995-01-01

    This paper is a description of Phase I of the US DOE's program to develop improved protective clothing for use by workers engaged in decommissioning and decontamination of former DOE sites, including those used for atomic weapons research and production. Membrane Technology and Research has been developing the clothing with an innovative feature of an ultrathin, permselective outer membrane that is extremely permeable to water but impermeable to toxic organic compounds. Phase I (as described herein) includes fabric optimization, commercial-scale fabric production, and prototype suit evaluation. This phase is complete, with the results discussed in this document

  10. Membrane-based ethylene/ethane separation: The upper bound and beyond

    KAUST Repository

    Rungta, Meha

    2013-08-02

    Ethylene/ethane separation via cryogenic distillation is extremely energy-intensive, and membrane separation may provide an attractive alternative. In this paper, ethylene/ethane separation performance using polymeric membranes is summarized, and an experimental ethylene/ethane polymeric upper bound based on literature data is presented. A theoretical prediction of the ethylene/ethane upper bound is also presented, and shows good agreement with the experimental upper bound. Further, two ways to overcome the ethylene/ethane upper bound, based on increasing the sorption or diffusion selectivity, is also discussed, and a review on advanced membrane types such as facilitated transport membranes, zeolite and metal organic framework based membranes, and carbon molecular sieve membranes is presented. Of these, carbon membranes have shown the potential to surpass the polymeric ethylene/ethane upper bound performance. Furthermore, a convenient, potentially scalable method for tailoring the performance of carbon membranes for ethylene/ethane separation based on tuning the pyrolysis conditions has also been demonstrated. © 2013 American Institute of Chemical Engineers.

  11. Field testing of polymeric mesh and ash-based ceramic membranes ...

    African Journals Online (AJOL)

    This paper presents the initial findings of field testing of 2 low-cost membrane filters, viz. 30 ìm polymeric mesh and 2–6 ìm macroporous waste-ash based ceramic filter, in a submerged membrane bioreactor (MBR) employing batch anoxic and aerobic conditions. The influent was raw wastewater from a residential complex ...

  12. Thermally rearranged (TR) bismaleimide-based network polymers for gas separation membranes.

    Science.gov (United States)

    Do, Yu Seong; Lee, Won Hee; Seong, Jong Geun; Kim, Ju Sung; Wang, Ho Hyun; Doherty, Cara M; Hill, Anita J; Lee, Young Moo

    2016-11-15

    Highly permeable, thermally rearranged polymer membranes based on bismaleimide derivatives that exhibit excellent CO 2 permeability up to 5440 Barrer with a high BET surface area (1130 m 2 g -1 ) are reported for the first time. In addition, the membranes can be easily used to form semi-interpenetrating networks with other polymers endowing them with superior gas transport properties.

  13. Studies of rubidium selenate with secondary phase of RbOH under humidified reducing atmosphere

    International Nuclear Information System (INIS)

    Beyribey, Berceste; Hallinder, Jonathan; Poulsen, Finn Willy; Bonanos, Nikolaos; Mogensen, Mogens

    2012-01-01

    Highlights: ► Degradation of Rb 2 SeO 3 and Rb 2 SeO 4 to form RbOH provide protonic conductivity. ► The conductivity increases by increasing temperature. ► The highest conductivity value of 2.01·10 −4 S cm −1 is observed at 317 °C. ► The work may state conductivity rise in solid acid electrolytes upon decomposition. - Abstract: The high temperature properties of Rb 2 SeO 4 have been studied by calorimetry, impedance spectroscopy and X-ray powder diffraction. As synthesized, Rb 2 SeO 4 includes a second phase of Rb 2 SeO 3 , which can be eliminated upon heating the compound. As expected, no conductivity is observed in dry (pH 2 O 2 O = 0.1 bar) air at 176 °C, the conductivity increases sharply from 8.6·10 −8 to 1.7·10 −6 S cm −1 . Under humidified (pH 2 O = 0.1 bar) reducing atmosphere (9%H 2 in N 2 ), the conductivity increases to 2.0·10 −4 S cm −1 at 317 °C. Degradation of Rb 2 SeO 3 and Rb 2 SeO 4 to form RbOH, which is known as a proton conductor, are thought to be responsible for the observed conductivity in humidified atmospheres. Our observations may explain the conductivity rise in other solid acid electrolytes, including sulfate and selenate groups, around their decomposition temperatures, in humidified atmospheres.

  14. PVC-MEMBRANE POTENTIOMETRIC SENSORS BASED ON A ...

    African Journals Online (AJOL)

    Preferred Customer

    ethylimino)-1,3-dihydro-indol-. 2-one (DEDIO) as an ionophore in poly(vinyl chloride) (PVC) matrix, is reported. The plasticized membrane sensor exhibits a Nernstian response for Fe(III) ions over a wide concentration range (2.0 × 10-6 - 5.0 ...

  15. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    DEFF Research Database (Denmark)

    Habel, Joachim Erich Otto; Hansen, Michael; Kynde, Søren

    2015-01-01

    In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs...

  16. Pressure effects on membrane-based functions and energy ...

    African Journals Online (AJOL)

    1997-11-06

    Nov 6, 1997 ... linked mechanisms that are perturbed by changes in hydrostatic pressure, it will focus on the pressure-sensitiv-. ~y of the processes involved in ionic and osmotic regulation in crabs and fish, including membrane-localized. ATPases and oxidative metabolism. The resu~s of long-term exposure (30 days) of ...

  17. Sulfonated carbon black-based composite membranes for fuel cell ...

    Indian Academy of Sciences (India)

    C/min under nitrogen atmosphere. All data were collected from a second heating cycle and glass tran- sition temperatures (Tg) were calculated as a midpoint of thermogram. 2.5d FTIR studies: FTIR spectra were recorded for mem- branes using Perkin Elmer Pyris 1 FTIR spectrophoto- meter. Membrane and carbon black ...

  18. Protective clothing based on permselective membrane and carbon adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.

    1995-03-01

    The objective of this program is to develop improved protective clothing for use by workers engaged in decomissioning and decontamination of former DOE sites. The proposed technology concerns a new protective clothing fabric that combines a permselective membrane layer (for water transmission and breathability) with a sorptive layer.

  19. Silver nanoparticles delivery system based on natural rubber latex membranes

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, Eder Jose, E-mail: ederguidelli@gmail.com [Universidade de Sao Paulo/FFCLRP-DF (Brazil); Kinoshita, Angela [Universidade do Sagrado Coracao (Brazil); Ramos, Ana Paula [Universidade de Sao Paulo/FFCLRP-DQ (Brazil); Baffa, Oswaldo [Universidade de Sao Paulo/FFCLRP-DF (Brazil)

    2013-04-15

    The search for new materials for biomedical applications is extremely important. Here, we present results on the performance of a silver nanoparticles delivery system using natural rubber latex (NRL) as the polymeric matrix. Our aim was to obtain an optimized wound dressing by combining materials with potential healing action. The synthesis of silver nanoparticles and their characterization by UV-Vis spectroscopy, transmission electron microscopy, zeta potential, dynamic light scattering, and Fourier transform infrared spectroscopy (FTIR) are depicted. The NRL membranes are good matrix for silver nanoparticles and allow for their gradual release. The release of 30 nm silver nanoparticles by the NRL membranes depends on their mass percentage in NRL membranes. The total concentration of AgNP released by the NRL membranes was calculated. The AgNP attached to the cis-isoprene molecules in the NRL matrix remain attached to the membrane ({approx}0.1 % w/w). So, only the AgNP bound to the non-rubber molecules are released. FTIR spectra suggest that non-rubber molecules, like aminoacids and proteins, associated with the serum fraction of the NRL may be attached to the surfaces of the released nanoparticles, thereby increasing the release of such molecules. The released silver nanoparticles are sterically stabilized, more stable and well dispersed. Because the serum fraction of the NRL is responsible for the angiogenic properties of the matrix, the silver nanoparticles could increment the angiogenic properties of NRL. This biomaterial has desirable properties for the fabrication of a wound dressing with potential healing action, since it combines the angiogenic and antibacterial properties of the silver nanoparticles with the increased angiogenic properties of the NRL.Graphical AbstractThe AgNP attached to the cis-isoprene molecules remain in the NRL matrix and only the AgNP bound to the non-rubber molecules (NRL serum fraction) are released. The released AgNP are

  20. Silver nanoparticles delivery system based on natural rubber latex membranes

    Science.gov (United States)

    Guidelli, Éder José; Kinoshita, Angela; Ramos, Ana Paula; Baffa, Oswaldo

    2013-04-01

    The search for new materials for biomedical applications is extremely important. Here, we present results on the performance of a silver nanoparticles delivery system using natural rubber latex (NRL) as the polymeric matrix. Our aim was to obtain an optimized wound dressing by combining materials with potential healing action. The synthesis of silver nanoparticles and their characterization by UV-Vis spectroscopy, transmission electron microscopy, zeta potential, dynamic light scattering, and Fourier transform infrared spectroscopy (FTIR) are depicted. The NRL membranes are good matrix for silver nanoparticles and allow for their gradual release. The release of 30 nm silver nanoparticles by the NRL membranes depends on their mass percentage in NRL membranes. The total concentration of AgNP released by the NRL membranes was calculated. The AgNP attached to the cis-isoprene molecules in the NRL matrix remain attached to the membrane ( 0.1 % w/w). So, only the AgNP bound to the non-rubber molecules are released. FTIR spectra suggest that non-rubber molecules, like aminoacids and proteins, associated with the serum fraction of the NRL may be attached to the surfaces of the released nanoparticles, thereby increasing the release of such molecules. The released silver nanoparticles are sterically stabilized, more stable and well dispersed. Because the serum fraction of the NRL is responsible for the angiogenic properties of the matrix, the silver nanoparticles could increment the angiogenic properties of NRL. This biomaterial has desirable properties for the fabrication of a wound dressing with potential healing action, since it combines the angiogenic and antibacterial properties of the silver nanoparticles with the increased angiogenic properties of the NRL.

  1. Novel proton exchange membrane based on crosslinked poly(vinyl alcohol) for direct methanol fuel cells

    Science.gov (United States)

    Liu, Chien-Pan; Dai, Chi-An; Chao, Chi-Yang; Chang, Shoou-Jinn

    2014-03-01

    In this study, we report the synthesis and the characterization of poly (vinyl alcohol) based proton conducting membranes. In particular, we describe a novel physically and chemically PVA/HFA (poly (vinyl alcohol)/hexafluoroglutaric acid) blending membranes with BASANa (Benzenesulfonic acid sodium salt) and GA (Glutaraldehyde) as binary reaction agents. The key PEM parameters such as ion exchange capacity (IEC), water uptake, proton conductivity, and methanol permeability were controlled by adjusting the chemical composition of the membranes. The IEC value of the membrane is found to be an important parameter in affecting water uptake, conductivity as well as the permeability of the resulting membrane. Plots of the water uptake, conductivity, and methanol permeability vs. IEC of the membranes show a distinct change in the slope of their curves at roughly the same IEC value which suggests a transition of structural changes in the network. The proton conductivities and the methanol permeability of all the membranes are in the range of 10-3-10-2 S cm-1 and 10-8-10-7 cm2 s-1, respectively, depending on its binary crosslinking density, and it shows great selectivity compared with those of Nafion®-117. The membranes display good mechanical properties which suggest a good lifetime usage of the membranes applied in DMFCs.

  2. Leucine-based receptor sorting motifs are dependent on the spacing relative to the plasma membrane

    DEFF Research Database (Denmark)

    Geisler, C; Dietrich, J; Nielsen, B L

    1998-01-01

    Many integral membrane proteins contain leucine-based motifs within their cytoplasmic domains that mediate internalization and intracellular sorting. Two types of leucine-based motifs have been identified. One type is dependent on phosphorylation, whereas the other type, which includes an acidic...... amino acid, is constitutively active. In this study, we have investigated how the spacing relative to the plasma membrane affects the function of both types of leucine-based motifs. For phosphorylation-dependent leucine-based motifs, a minimal spacing of 7 residues between the plasma membrane...... and the phospho-acceptor was required for phosphorylation and thereby activation of the motifs. For constitutively active leucine-based motifs, a minimal spacing of 6 residues between the plasma membrane and the acidic residue was required for optimal activity of the motifs. In addition, we found that the acidic...

  3. Effect of sintering temperature on the morphology and mechanical properties of PTFE membranes as a base substrate for proton exchange membrane

    Directory of Open Access Journals (Sweden)

    Nor Aida Zubir

    2002-11-01

    Full Text Available This paper reports the development of PTFE membranes as the base substrates for producing proton exchange membrane by using radiation-grafting technique. An aqueous dispersion of PTFE, which includes sodium benzoate, is cast in order to form suitable membranes. The casting was done by usinga pneumatically controlled flat sheet membrane-casting machine. The membrane is then sintered to fuse the polymer particles and cooled. After cooling process, the salt crystals are leached from the membrane by dissolution in hot bath to leave a microporous structure, which is suitable for such uses as a filtration membrane or as a base substrate for radiation grafted membrane in PEMFC. The effects of sintering temperature on the membrane morphology and tensile strength were investigated at 350oC and 385oC by using scanning electron microscopy (SEM and EX 20, respectively. The pore size and total void space are significantly smaller at higher sintering temperature employed with an average pore diameter of 11.78 nm. The tensile strength and tensile strain of sintered PTFE membrane at 385oC are approximately 19.02 + 1.46 MPa and 351.04 + 23.13 %, respectively. These results were indicated at 385oC, which represents significant improvements in tensile strength and tensile strain, which are nearly twice those at 350oC.

  4. Performance of membrane electrode assemblies based on proton exchange membranes prepared by pre-irradiation induced grafting

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jingye; Matsuura, Akio; Kakigi, Tomoyuki; Miura, Takaharu; Oshima, Akihiro; Washio, Masakazu [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2006-10-20

    Proton exchange membranes (PEMs) were prepared by pre-irradiation induced grafting of styrene (S) or styrene/divinylbenzene (S/DVB) into the radiation-crosslinked polytetrafluoroethylene (RX-PTFE) films and then sulfonated. The thicknesses of the obtained PEMs were lower than 20{mu}m and the ion exchange capacity (IEC) values were around 2meqg{sup -1}. The surfaces of the PEMs and carbon electrodes were coated with Nafion{sup (R)} dispersion, and then membrane electrode assembles (MEAs) were prepared by hot-pressing them together. A MEA based on a Nafion{sup (R)} 112 membrane was also prepared under same procedure for comparison. The performances of the MEAs in a single cell were tested under different cell temperatures and humidifications. Electrochemical impedance spectra (EIS) were measured with ac frequencies which ranged from 100kHz to 1Hz at a dc density of 0.5Acm{sup -2}. The obtained impedance curves in Nyquist representation were semicircular. (author)

  5. Interactions of sugar-based bolaamphiphiles with biomimetic systems of plasma membranes.

    Science.gov (United States)

    Nasir, Mehmet Nail; Crowet, Jean-Marc; Lins, Laurence; Obounou Akong, Firmin; Haudrechy, Arnaud; Bouquillon, Sandrine; Deleu, Magali

    2016-11-01

    Glycolipids constitute a class of molecules with various biological activities. Among them, sugar-based bolaamphiphiles characterized by their biocompatibility, biodegradability and lower toxicity, became interesting for the development of efficient and low cost lipid-based drug delivery systems. Their activity seems to be closely related to their interactions with the lipid components of the plasma membrane of target cells. Despite many works devoted to the chemical synthesis and characterization of sugar-based bolaamphiphiles, their interactions with plasma membrane have not been completely elucidated. In this work, two sugar-based bolaamphiphiles differing only at the level of their sugar residues were chemically synthetized. Their interactions with membranes have been investigated using model membranes containing or not sterol and with in silico approaches. Our findings indicate that the nature of sugar residues has no significant influence for their membrane interacting properties, while the presence of sterol attenuates the interactions of both bolaamphiphiles with the membrane systems. The understanding of this distinct behavior of bolaamphiphiles towards sterol-containing membrane systems could be useful for their applications as drug delivery systems. Copyright © 2016. Published by Elsevier B.V.

  6. Clinical review: Humidifiers during non-invasive ventilation - key topics and practical implications

    Science.gov (United States)

    2012-01-01

    Inadequate gas conditioning during non-invasive ventilation (NIV) can impair the anatomy and function of nasal mucosa. The resulting symptoms may have a negative effect on patients' adherence to ventilatory treatment, especially for chronic use. Several parameters, mostly technical aspects of NIV, contribute to inefficient gas conditioning. Factors affecting airway humidity during NIV include inspiratory flow, inspiratory oxygen fraction, leaks, type of ventilator, interface used to deliver NIV, temperature and pressure of inhaled gas, and type of humidifier. The correct application of a humidification system may avoid the effects of NIV-induced drying of the airway. This brief review analyses the consequences of airway dryness in patients receiving NIV and the technical tools necessary to guarantee adequate gas conditioning during ventilatory treatment. Open questions remain about the timing of gas conditioning for acute or chronic settings, the choice and type of humidification device, the interaction between the humidifier and the underlying disease, and the effects of individual humidification systems on delivered humidity. PMID:22316078

  7. Humidifier disinfectant-associated lung injury in adults: Prognostic factors in predicting short-term outcome

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Hyun Jung; Do, Kyung-Hyun; Chae, Eun Jin [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Songpa-gu, Seoul (Korea, Republic of); Kim, Hwa Jung [University of Ulsan College of Medicine, Cancer Center, Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, Seoul (Korea, Republic of); Song, Joon Seon; Jang, Se Jin [University of Ulsan College of Medicine, Department of Pathology, Asan Medical Center, Seoul (Korea, Republic of); Hong, Sang-Bum; Huh, Jin Won [University of Ulsan College of Medicine, Department of Pulmonary and Critical Care Medicine, Asan Medical Center, Seoul (Korea, Republic of); Lee, En [Inje University Haundae Paik Hospital, Department of Pediatrics, Busan (Korea, Republic of); Hong, Soo-Jong [University of Ulsan College of Medicine, Department of Pediatrics, Childhood Asthma and Atopy Center, Environmental Health Center, Asan Medical Center, Seoul (Korea, Republic of)

    2017-01-15

    To identify clinical and radiologic findings that affect disease severity and short-term prognosis of humidifier disinfectant-associated lung injury in adults and to compare computed tomography (CT) findings between the patients with and without death or lung transplantation. Fifty-nine adults (mean age, 34 years; M/F = 12:47) were enrolled in this retrospective study. Medical records and prospective surveillance data were used to assess clinical and radiological factors associated with a poor clinical outcome. Multivariate generalized estimating equation models were used to analyse serial CT findings. Overall cumulative major events including lung transplantation and mortality were assessed using the Kaplan-Meier method. Almost half needed ICU admission (47.5 %) and 17 died (28.8 %). Young age, peripartum and low O{sub 2} saturation were factors associated with ICU admission. On initial chest radiographs, consolidation (P < 0.001) and ground-glass opacity (P = 0.01) were significantly noted in patients who required ICU admission. CT findings including consolidation (odds ratio (OR), 1.02), pneumomediastinum (OR, 1.66) and pulmonary interstitial emphysema (OR, 1.61) were the risk factors for lung transplantation and mortality. Clinical and radiologic findings are related to the risks of lung transplantation and mortality of humidifier disinfectant-associated lung injury. Consolidation, pneumomediastinum and pulmonary interstitial emphysema were short-term prognostic CT findings. (orig.)

  8. Samarium (III Selective Membrane Sensor Based on Tin (IV Boratophosphate

    Directory of Open Access Journals (Sweden)

    Ashok S. K. Kumar

    2004-08-01

    Full Text Available Abstract: A number of Sm (III selective membranes of varying compositions using tin (IV boratophosphate as electroactive material were prepared. Polyvinyl chloride, polystyrene and epoxy resin were used as binding materials. Membrane having composition of 40% exchanger and 60% epoxy resin exhibited best performance. This membrane worked well over a wide concentration range of 1x10-5M to 1x10-1 M of samarium ions with a Super-Nernstian slope of 40 mV/decade. It has a fast response time of less than 10 seconds and can be used for at least six months without any considerable divergence in potentials. The proposed sensor revealed good selectivities with respect to alkali, alkaline earth, some transition and rare earth metal ions and can be used in the pH range of 4.0-10.0. It was used as an indicator electrode in the potentiometric titration of Sm (III ions against EDTA. Effect of internal solution was studied and the electrode was successfully used in non-aqueous media, too.

  9. Structure-based membrane dome mechanism for Piezo mechanosensitivity.

    Science.gov (United States)

    Guo, Yusong R; MacKinnon, Roderick

    2017-12-12

    Mechanosensitive ion channels convert external mechanical stimuli into electrochemical signals for critical processes including touch sensation, balance, and cardiovascular regulation. The best understood mechanosensitive channel, MscL, opens a wide pore, which accounts for mechanosensitive gating due to in-plane area expansion. Eukaryotic Piezo channels have a narrow pore and therefore must capture mechanical forces to control gating in another way. We present a cryo-EM structure of mouse Piezo1 in a closed conformation at 3.7Å-resolution. The channel is a triskelion with arms consisting of repeated arrays of 4-TM structural units surrounding a pore. Its shape deforms the membrane locally into a dome. We present a hypothesis in which the membrane deformation changes upon channel opening. Quantitatively, membrane tension will alter gating energetics in proportion to the change in projected area under the dome. This mechanism can account for highly sensitive mechanical gating in the setting of a narrow, cation-selective pore. © 2017, Guo et al.

  10. Tailored freestanding multilayered membranes based on chitosan and alginate.

    Science.gov (United States)

    Silva, Joana M; Duarte, Ana Rita C; Caridade, Sofia G; Picart, Catherine; Reis, Rui L; Mano, João F

    2014-10-13

    Engineering metabolically demanding tissues requires the supply of nutrients, oxygen, and removal of metabolic byproducts, as well as adequate mechanical properties. In this work, we propose the development of chitosan (CHIT)/alginate (ALG) freestanding membranes fabricated by layer-by-layer (LbL) assembly. CHIT/ALG membranes were cross-linked with genipin at a concentration of 1 mg·mL(-1) or 5 mg·mL(-1). Mass transport properties of glucose and oxygen were evaluated on the freestanding membranes. The diffusion of glucose and oxygen decreases with increasing cross-linking concentration. Mechanical properties were also evaluated in physiological-simulated conditions. Increasing cross-linking density leads to an increase of storage modulus, Young modulus, and ultimate tensile strength, but to a decrease in the maximum hydrostatic pressure. The in vitro biological performance demonstrates that cross-linked films are more favorable for cell adhesion. This work demonstrates the versatility and feasibility of LbL assembly to generate nanostructured constructs with tunable permeability, mechanical, and biological properties.

  11. Preparation of carbon quantum dots based high photostability luminescent membranes.

    Science.gov (United States)

    Zhao, Jinxing; Liu, Cui; Li, Yunchuan; Liang, Jiyuan; Liu, Jiyan; Qian, Tonghui; Ding, Jianjun; Cao, Yuan-Cheng

    2017-06-01

    Urethane acrylate (UA) was used to prepare carbon quantum dots (C-dots) luminescent membranes and the resultants were examined with FT-IR, mechanical strength, scanning electron microscope (SEM) and quantum yields (QYs). FT-IR results showed the polyurethane acrylate (PUA) prepolymer -C = C-vibration at 1101 cm -1 disappeared but there was strong vibration at1687cm -1 which was contributed from the-C = O groups in cross-linking PUA. Mechanical strength results showed that the different quantity of C-dots loadings and UV-curing time affect the strength. SEM observations on the cross-sections of the membranes are uniform and have no structural defects, which prove that the C-dots are compatible with the water-soluble PUA resin. The C-dot loading was increased from 0 to 1 g, the maximum tensile stress was nearly 2.67 MPa, but the tensile strain was decreased from 23.4% to 15.1% and 7.2% respectively. QYs results showed that the C-dots in the membrane were stable after 120 h continuous irradiation. Therefore, the C-dots photoluminescent film is the promising material for the flexible devices in the future applications. Copyright © 2016 John Wiley & Sons, Ltd.

  12. A skin substitute based on human amniotic membrane.

    Science.gov (United States)

    Tauzin, Hélène; Rolin, Gwenaël; Viennet, Céline; Saas, Philippe; Humbert, Philippe; Muret, Patrice

    2014-06-01

    Human amniotic membrane (HAM) has biological properties which are useful for wound healing. HAM is notably one of the therapeutic alternatives for venous leg ulcer care. Indeed, a prospective clinical study has demonstrated that cryopreserved HAM transplantation for leg ulcer is feasible, safe and has beneficial effects: 80 % of the patients had a significant clinical response. Nevertheless, at the end of the 3-month follow-up period, only 20 % of the ulcers were totally closed. The aim of this work was to create and characterize a model of epidermized HAM. The method of HAM desepithelialization was validated by histology, immunohistochemistry and scanning electron microscopy. Then, de-epithelialized HAM was seeded with primary keratinocytes. After 21 days of culture, 15 at the air-liquid interface, the model obtained was analyzed histologically and by immunohistochemistry. The amniotic basement membrane was preserved during enzymatic desepithelialization of HAM. Primary keratinocytes proliferated on HAM: the model obtained showed involucrin expression and had a good basement membrane. As re-epithelialization is an important step for ulcer closure, a model of epidermized HAM could be used to speed up the healing of such wounds.

  13. CHEMICALLY MODIFIED FIELD-EFFECT TRANSISTORS - POTENTIOMETRIC AG+ SELECTIVITY OF PVC MEMBRANES BASED ON MACROCYCLIC THIOETHERS

    NARCIS (Netherlands)

    BRZOZKA, Z; COBBEN, PLHM; REINHOUDT, DN; EDEMA, JJH; KELLOGG, RM

    1993-01-01

    A chemically modified field-effect transistor (CHEMFET) with satisfactory Ag+ selectivity is described. The potentiometric Ag+ selectivities of CHEMFETs with plasticized PVC membranes based on macrocyclic thioethers have been determined. All the macrocyclic thioethers tested showed silver response

  14. New Highly-Sensitive Methods for Electroanalytical Chemistry Based on Nanotubule Membranes

    National Research Council Canada - National Science Library

    Kobayashi, Yoshio

    1999-01-01

    Two new methods of electroanalysis are described. These methods are based on membranes containing monodisperse Au nanotubules with inside diameters approaching molecular dimensions (approx. 1 to approx. 3 nm...

  15. Tandem malonate-based glucosides (TMGs) for membrane protein structural studies

    DEFF Research Database (Denmark)

    Hussain, Hazrat; Mortensen, Jonas S.; Du, Yang

    2017-01-01

    High-resolution membrane protein structures are essential for understanding the molecular basis of diverse biological events and important in drug development. Detergents are usually used to extract these bio-macromolecules from the membranes and maintain them in a soluble and stable state...... in aqueous solutions for downstream characterization. However, many eukaryotic membrane proteins solubilized in conventional detergents tend to undergo structural degradation, necessitating the development of new amphiphilic agents with enhanced properties. In this study, we designed and synthesized a novel...... class of glucoside amphiphiles, designated tandem malonate-based glucosides (TMGs). A few TMG agents proved effective at both stabilizing a range of membrane proteins and extracting proteins from the membrane environment. These favourable characteristics, along with synthetic convenience, indicate...

  16. Morphologies and separation characteristics of polyphenyl sulfone-based solvent resistant nanofiltration membranes: Effect of polymer concentration in casting solution and membrane pretreatment condition

    International Nuclear Information System (INIS)

    Sani, Nur Aimie Abdullah; Lau, Woei Jye; Ismail, Ahmad Fauzi

    2015-01-01

    The performance of polyphenylsulfone (PPSU) solvent resistant nanofiltration (SRNF)-based flat sheet membranes prepared from phase inversion method was investigated by varying the concentration of polymer in the dope solution and condition of membrane pretreatment process. The membrane properties were characterized by SEM, FTIR, AFM and contact angle goniometer, while their performance was evaluated by measuring methanol flux and rejection of different molecular weight of dyes (ranging from 269 to 1,470 g/mol) in methanol. The experimental results showed that the polymer concentration has great impact not only on the final membrane morphology but also its separation characteristics. Increasing polymer concentration from 17 to 25wt% tended to suppress finger-like structure and more pear-like pores were developed, causing methanol flux to decrease. This can be explained by the decrease in molecular weight cut off (MWCO) of the membrane prepared at high polymer concentration. With respect to the effect of membrane pretreatment conditions, the rejection of membrane was negatively affected with longer immersion period in methanol solution prior to filtration experiment. The variation in membrane rejection can be attributed to the rearrangement of the polymer chain, which results in membrane swelling and/or change of membrane surface hydrophilicity

  17. Morphologies and separation characteristics of polyphenyl sulfone-based solvent resistant nanofiltration membranes: Effect of polymer concentration in casting solution and membrane pretreatment condition

    Energy Technology Data Exchange (ETDEWEB)

    Sani, Nur Aimie Abdullah; Lau, Woei Jye; Ismail, Ahmad Fauzi [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2015-04-15

    The performance of polyphenylsulfone (PPSU) solvent resistant nanofiltration (SRNF)-based flat sheet membranes prepared from phase inversion method was investigated by varying the concentration of polymer in the dope solution and condition of membrane pretreatment process. The membrane properties were characterized by SEM, FTIR, AFM and contact angle goniometer, while their performance was evaluated by measuring methanol flux and rejection of different molecular weight of dyes (ranging from 269 to 1,470 g/mol) in methanol. The experimental results showed that the polymer concentration has great impact not only on the final membrane morphology but also its separation characteristics. Increasing polymer concentration from 17 to 25wt% tended to suppress finger-like structure and more pear-like pores were developed, causing methanol flux to decrease. This can be explained by the decrease in molecular weight cut off (MWCO) of the membrane prepared at high polymer concentration. With respect to the effect of membrane pretreatment conditions, the rejection of membrane was negatively affected with longer immersion period in methanol solution prior to filtration experiment. The variation in membrane rejection can be attributed to the rearrangement of the polymer chain, which results in membrane swelling and/or change of membrane surface hydrophilicity.

  18. Novel polyvinyl alcohol-bioglass 45S5 based composite nanofibrous membranes as bone scaffolds

    International Nuclear Information System (INIS)

    Shankhwar, Nisha; Kumar, Manishekhar; Mandal, Biman B.; Srinivasan, A.

    2016-01-01

    Composite nanofibrous membranes based on sol-gel derived 45SiO 2 24.5CaO 24.5 Na 2 O 6 P 2 O 5 (bioglass, BG) and 43SiO 2 24.5CaO 24.5 Na 2 O 6 P 2 O 5 2Fe 2 O 3 (magnetic bioglass, MBG) blended with polyvinyl alcohol (PVA) have been electrospun. These low cost membranes were mostly amorphous in structure with minor crystalline (sodium calcium phosphate) precipitates. All membranes were biodegradable. Among these, the composites exhibited higher tensile strength, better proliferation of human osteosarcoma MG63 cells and higher alkaline phosphatase enzyme activity than the bare PVA membrane, indicating their potential in bone tissue engineering. The magnetic PVA-MBG scaffold was also found to be a promising candidate for magnetic hyperthermia application. - Highlights: • Electrospun low-cost PVA-45S5 bioglass (BG) nanofibrous membranes • PVA-BG membranes containing 2 wt.% Fe 2 O 3 exhibit spontaneous magnetization. • BG fillers strongly enhanced mechanical strength and bioresponse of membranes. • Membranes show promise for bone scaffold and hyperthermia applications.

  19. Novel Membrane-Based Electrochemical Sensor for Real-Time Bio-Applications

    Directory of Open Access Journals (Sweden)

    Fatima AlZahra'a Alatraktchi

    2014-11-01

    Full Text Available This article presents a novel membrane-based sensor for real-time electrochemical investigations of cellular- or tissue cultures. The membrane sensor enables recording of electrical signals from a cell culture without any signal dilution, thus avoiding loss of sensitivity. Moreover, the porosity of the membrane provides optimal culturing conditions similar to existing culturing techniques allowing more efficient nutrient uptake and molecule release. The patterned sensor electrodes were fabricated on a porous membrane by electron-beam evaporation. The electrochemical performance of the membrane electrodes was characterized by cyclic voltammetry and chronoamperometry, and the detection of synthetic dopamine was demonstrated down to a concentration of 3.1 pM. Furthermore, to present the membrane-sensor functionality the dopamine release from cultured PC12 cells was successfully measured. The PC12 cells culturing experiments showed that the membrane-sensor was suitable as a cell culturing substrate for bio-applications. Real-time measurements of dopamine exocytosis in cell cultures were performed, where the transmitter release was recorded at the point of release. The developed membrane-sensor provides a new functionality to the standard culturing methods, enabling sensitive continuous in vitro monitoring and closely mimicking the in vivo conditions.

  20. Novel flexible chemical gas sensor based on poly(3,4-ethylenedioxythiophene) nanotube membrane.

    Science.gov (United States)

    Kwon, Oh Seok; Park, Eunyu; Kweon, O Young; Park, Seon Joo; Jang, Jyongsik

    2010-09-15

    Poly(3,4-ethylenedioxythiophene) nanotubes (PEDOT NTs) flexible membrane was successfully fabricated by vapor deposition polymerization (VDP) mediated electrospinning for ammonia gas detection. PVA nanofibers (NFs) were electrospun as a core part and polyvinyl alcohol (PVA)/PEDOT coaxial nanocables (NCs) were prepared by VDP method via EDOT monomer adsorption onto the electrospun PVA NFs as templates. To obtain the PEDOT NTs membrane, the PVA NFs were removed from PVA/PEDOT coaxial NCs with distilled water. PVA/PEDOT coaxial NCs and PEDOT NTs had the conductivities of 71 and 61 Scm(-1) and were applied as a transducer for ammonia gas detection in the range of 1-100 parts per million (ppm) of NH(3) gas. They exhibited the minimum detectable level of ca. 5 parts per million (ppm) and fast response time (less than 1s) towards ammonia gas. In a recovery time, the PEDOT NTs membrane sensor was ca. 30s and shorter compared to that of the membrane sensor based on the PVA/PEDOT NCs (ca. 50s). In addition, sensor performance of PEDOT NTs membrane was also undertaken as a function of membrane thickness. Thick membrane sensor (30 microm) had the enhanced sensitivity and the sensitivity on the membrane thickness was in the order of 30 microm>20 microm>10 microm at 60 ppm of NH(3) gas. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  1. A photo-tunable membrane based on inter-particle crosslinking for decreasing diffusion rates

    KAUST Repository

    Li, Song

    2015-01-01

    Functional polymeric membranes are widely used to adjust and control the diffusion of molecules. Herein, photosensitive poly(hydroxycinnamic acid) (PHCA) microspheres, which were fabricated by an emulsification solvent-evaporation method, were embedded into an ethyl cellulose matrix to fabricate composite membranes with a photo-tunable property. The photoreaction of PHCA is based on the [2 + 2] cycloaddition of cinnamic moieties upon irradiation with 365 nm light. Intra-particle crosslinking in PHCA microspheres was confirmed in the solution phase, while inter-particle crosslinking between adjacent PHCA microspheres dominated the solid membrane phase. The inter-particle crosslinking turned down the permeability of the composite membranes by 74%. To prove the applicability of the designed system, the composite membrane was coated on a model drug reservoir tablet. Upon irradiating the tablet with UV light, the original permeability decreased by 57%, and consequently the diffusion rate of the cargo (Rhodamine B) from the tablet slowed down. Most importantly, the tablet showed sustained release for over 10 days. This controllability can be further tuned by adjusting the membrane thickness. Composite membranes showed excellent processing reproducibility together with consistent mechanical properties. These results demonstrate that the incorporation of photosensitive PHCA microspheres in polymeric membranes provides a promising photo-tunable material for different applications including coating and separation. This journal is © The Royal Society of Chemistry 2015.

  2. Vanadium Redox Flow Batteries Using meta-Polybenzimidazole-Based Membranes of Different Thicknesses.

    Science.gov (United States)

    Noh, Chanho; Jung, Mina; Henkensmeier, Dirk; Nam, Suk Woo; Kwon, Yongchai

    2017-10-25

    15, 25, and 35 μm thick meta-polybenzimidazole (PBI) membranes are doped with H 2 SO 4 and tested in a vanadium redox flow battery (VRFB). Their performances are compared with those of Nafion membranes. Immersed in 2 M H 2 SO 4 , PBI absorbs about 2 mol of H 2 SO 4 per mole of repeat unit. This results in low conductivity and low voltage efficiency (VE). In ex-situ tests, meta-PBI shows a negligible crossover of V 3+ and V 4+ ions, much lower than that of Nafion. This is due to electrostatic repulsive forces between vanadium cations and positively charged protonated PBI backbones, and the molecular sieving effect of PBI's nanosized pores. It turns out that charge efficiency (CE) of VRFBs using meta-PBI-based membranes is unaffected by or slightly increases with decreasing membrane thickness. Thick meta-PBI membranes require about 100 mV larger potentials to achieve the same charging current as thin meta-PBI membranes. This additional potential may increase side reactions or enable more vanadium ions to overcome the electrostatic energy barrier and to enter the membrane. On this basis, H 2 SO 4 -doped meta-PBI membranes should be thin to achieve high VE and CE. The energy efficiency of 15 μm thick PBI reaches 92%, exceeding that of Nafion 212 and 117 (N212 and N117) at 40 mA cm -2 .

  3. Preparation and characterization of novel antibacterial castor oil-based polyurethane membranes for wound dressing application.

    Science.gov (United States)

    Yari, Abbas; Yeganeh, Hamid; Bakhshi, Hadi; Gharibi, Reza

    2014-01-01

    Preparation of novel antibacterial and cytocompatible polyurethane membranes as occlusive dressing, which can provide moist and sterile environment over mild exudative wounds is considered in this work. In this regard, an epoxy-terminated polyurethane (EPU) prepolymer based on castor oil and glycidyltriethylammonium chloride (GTEAC) as a reactive bactericidal agent were synthesized. Polyurethane membranes were prepared through cocuring of EPU and different content of GTEAC with 1,4-butane diamine. The physical and mechanical properties, as well as cytocompatibility and antibacterial performance of prepared membranes were studied. Depending on their chemical formulations, the equilibrium water absorption and water vapor transmission rate values of the membranes were in ranges of 3-85% and 53-154g m(-2) day(-1), respectively. Therefore, these transparent membranes can maintain for a long period the moist environment over the wounds with low exudates. Detailed cytotoxicity analysis of samples against mouse L929 fibroblast and MCA-3D keratinocyte cells showed good level of cytocompatibility of membranes after purification via extraction of residual unreacted GTEAC moieties. The antibacterial activity of the membranes against Escherichia coli and Staphylococcus aureus bacteria was also studied. The membrane containing 50% GTEAC exhibited an effective antibacterial activity, while showed acceptable cytocompatibility and therefore, can be applied as an antibacterial occlusive wound dressing. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  4. Particle-based membrane model for mesoscopic simulation of cellular dynamics

    Science.gov (United States)

    Sadeghi, Mohsen; Weikl, Thomas R.; Noé, Frank

    2018-01-01

    We present a simple and computationally efficient coarse-grained and solvent-free model for simulating lipid bilayer membranes. In order to be used in concert with particle-based reaction-diffusion simulations, the model is purely based on interacting and reacting particles, each representing a coarse patch of a lipid monolayer. Particle interactions include nearest-neighbor bond-stretching and angle-bending and are parameterized so as to reproduce the local membrane mechanics given by the Helfrich energy density over a range of relevant curvatures. In-plane fluidity is implemented with Monte Carlo bond-flipping moves. The physical accuracy of the model is verified by five tests: (i) Power spectrum analysis of equilibrium thermal undulations is used to verify that the particle-based representation correctly captures the dynamics predicted by the continuum model of fluid membranes. (ii) It is verified that the input bending stiffness, against which the potential parameters are optimized, is accurately recovered. (iii) Isothermal area compressibility modulus of the membrane is calculated and is shown to be tunable to reproduce available values for different lipid bilayers, independent of the bending rigidity. (iv) Simulation of two-dimensional shear flow under a gravity force is employed to measure the effective in-plane viscosity of the membrane model and show the possibility of modeling membranes with specified viscosities. (v) Interaction of the bilayer membrane with a spherical nanoparticle is modeled as a test case for large membrane deformations and budding involved in cellular processes such as endocytosis. The results are shown to coincide well with the predicted behavior of continuum models, and the membrane model successfully mimics the expected budding behavior. We expect our model to be of high practical usability for ultra coarse-grained molecular dynamics or particle-based reaction-diffusion simulations of biological systems.

  5. Membrane morphological study nanostructured based hydrophobic/hydrophilic applied in devices of PEMFC

    International Nuclear Information System (INIS)

    Loureiro, Felipe Augusto M.; Dahmouche, K; Rocco, Ana Maria

    2015-01-01

    The increasingly high energy demand generated by the increase of world population and consumption of fuels based on non-renewable sources has stimulated, in recent decades, the development of alternatives with less environmental impact and are based on renewable sources. Among these, the fuel cells (FC) have extremely promising possibilities. For the development of FC with market viability, it is necessary to obtain materials with optimized properties, among which the proton conducting membranes. In this work, we developed semi-interpenetrating polymer membranes (SIPN) based on diglycidyl ether of bisphenol-A (DGEBA) and polyethyleneimine (PEI), aiming their application in PEMFC. The membranes nanostructure was studied by AFM and SAXS means and it was identified ordinate hydrophobic/hydrophilic nano domains, which have determined the membrane properties, specially the proton conductivity. (author)

  6. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream

    Science.gov (United States)

    Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.

    2016-09-27

    A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.

  7. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    Science.gov (United States)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  8. Radiolytic synthesis and characterization of PVA and chitosan based conductive polymer membranes for alkaline fuel cells

    Directory of Open Access Journals (Sweden)

    Stoševski Ivan D.

    2014-01-01

    Full Text Available Poly(vinyl alcohol (PVA and chitosan (CS based polymer membranes for alkaline fuel cells were synthesized by gamma irradiation method. They were swollen with 6 M KOH solution and their ionic conductivity and gas permeance were investigated as a function of temperature. They show high ionic conductivities at room temperature, which wasn't reduced over a period of few months. No gas flow through membranes was detected at any temperature and pressure. These properties show that the membranes could be potentially applied in alkaline fuel cells.

  9. Ion-Exchange Membranes Based on Polynorbornenes with Fluorinated Imide Side Chain Groups

    Directory of Open Access Journals (Sweden)

    Arlette A. Santiago

    2012-01-01

    Full Text Available The electrochemical characteristics of cation-exchange membranes based on polynorbornenes with fluorinated and sulfonated dicarboximide side chain groups were reported. This study was extended to a block copolymer containing structural units with phenyl and 4-oxybenzenesulfonic acid, 2,3,5,6-tetrafluorophenyl moieties replacing the hydrogen atom of the dicarboximide group. A thorough study on the electrochemical characteristics of the membranes involving electromotive forces of concentration cells and proton conductivity is reported. The proton permselectivity of the membranes is also discussed.

  10. Performance Degradation Tests of Phosphoric Acid Doped PBI Membrane Based High Temperature PEM Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2014-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation. Continuous tests with H2 and simulated reformate which was composed...... to the redistribution of PA between the membrane and electrodes. EIS measurement of first fuel cell during the start/stop test showed that the mass transfer resistance and ohmic resistance increased which can be attributed to the corrosion of carbon support in the catalyst layer and degradation of the PBI membrane...

  11. Long-Time Plasma Membrane Imaging Based on a Two-Step Synergistic Cell Surface Modification Strategy.

    Science.gov (United States)

    Jia, Hao-Ran; Wang, Hong-Yin; Yu, Zhi-Wu; Chen, Zhan; Wu, Fu-Gen

    2016-03-16

    Long-time stable plasma membrane imaging is difficult due to the fast cellular internalization of fluorescent dyes and the quick detachment of the dyes from the membrane. In this study, we developed a two-step synergistic cell surface modification and labeling strategy to realize long-time plasma membrane imaging. Initially, a multisite plasma membrane anchoring reagent, glycol chitosan-10% PEG2000 cholesterol-10% biotin (abbreviated as "GC-Chol-Biotin"), was incubated with cells to modify the plasma membranes with biotin groups with the assistance of the membrane anchoring ability of cholesterol moieties. Fluorescein isothiocyanate (FITC)-conjugated avidin was then introduced to achieve the fluorescence-labeled plasma membranes based on the supramolecular recognition between biotin and avidin. This strategy achieved stable plasma membrane imaging for up to 8 h without substantial internalization of the dyes, and avoided the quick fluorescence loss caused by the detachment of dyes from plasma membranes. We have also demonstrated that the imaging performance of our staining strategy far surpassed that of current commercial plasma membrane imaging reagents such as DiD and CellMask. Furthermore, the photodynamic damage of plasma membranes caused by a photosensitizer, Chlorin e6 (Ce6), was tracked in real time for 5 h during continuous laser irradiation. Plasma membrane behaviors including cell shrinkage, membrane blebbing, and plasma membrane vesiculation could be dynamically recorded. Therefore, the imaging strategy developed in this work may provide a novel platform to investigate plasma membrane behaviors over a relatively long time period.

  12. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment

    Directory of Open Access Journals (Sweden)

    Ruixiang Li

    2018-01-01

    Full Text Available Taking inspiration from nature, the biomimetic concept has been integrated into drug delivery systems in cancer therapy. Disguised with cell membranes, the nanoparticles can acquire various functions of natural cells. The cell membrane-coating technology has pushed the limits of common nano-systems (fast elimination in circulation to more effectively navigate within the body. Moreover, because of the various functional molecules on the surface, cell membrane-based nanoparticles (CMBNPs are capable of interacting with the complex biological microenvironment of the tumor. Various sources of cell membranes have been explored to camouflage CMBNPs and different tumor-targeting strategies have been developed to enhance the anti-tumor drug delivery therapy. In this review article we highlight the most recent advances in CMBNP-based cancer targeting systems and address the challenges and opportunities in this field.

  13. Comparative ex vivo study on humidifying function of three speaking valves with integrated heat and moisture exchanger for tracheotomised patients

    NARCIS (Netherlands)

    van den Boer, C.; Lansaat, L.; Muller, S.H.; van den Brekel, M.W.M.; Hilgers, F.J.M.

    2015-01-01

    Objective Assessment of humidifying function of tracheotomy speaking valves with integrated heat and moisture exchanger. Design Ex vivo measurement of water exchange and storage capacity of three tracheotomy speaking valves: Humidiphon Plus, Spiro and ProTrach DualCare (with two different heat and

  14. Comparative ex vivo study on humidifying function of three speaking valves with integrated heat and moisture exchanger for tracheotomised patients

    NARCIS (Netherlands)

    van den Boer, C.; Lansaat, L.; Muller, S. H.; van den Brekel, M. W. M.; Hilgers, F. J. M.

    2015-01-01

    Assessment of humidifying function of tracheotomy speaking valves with integrated heat and moisture exchanger. Ex vivo measurement of water exchange and storage capacity of three tracheotomy speaking valves: Humidiphon Plus, Spiro and ProTrach DualCare (with two different heat and moisture

  15. PEMFC performance of MEAS based on Nafion{sup R} and sPSEBS hybrid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Carretero, F.J.; Compan, V. [Univ, Politecnica de Valencia, Valencia (Spain). Dept. Termodinamica Aplicada; Suarez, K.; Solorza, O. [Inst. Politecnico Nacional, Centro de Investigacion y de Estudios Avanzados, Mexico City (Mexico). Dept. de Quimica; Riande, E. [Inst. de Ciencia y Tecnologia de Polimeros, Madrid (Spain)

    2010-07-15

    Important scientific, technical and economic problems must be solved before widespread commercialization of polymer electrolyte membrane fuel cells (PEMFC). The main issues facing the development of commercial low temperature fuel cells are the synthesis of efficient solid electrolytes separating the anode from the cathode as well as the development of cheaper catalysts for fuel oxidation. This study involved the preparation of hybrid membranes based on Nafion 117 and sulfonated Calprene H6120 containing partially sulfonated inorganic fillers such as silica, SBA-15 and sepiolite. The feasibility of using the membranes as polyelectrolytes for low temperature fuel cells was then evaluated. The water uptake of Nafion hybrid membranes is 1/3 to 1/4 of that in composite membranes based on sulfonated Calprene H6120. The proton conductivity of Nafion 117 hybrid membranes-electrode assemblies is nearly 1/5 of the pristine Nafion membrane assembly. Sulfonated Calprene H6120 hybrid membranes typically have better proton conductivity than the Nafion 117 composites. The performance of fuel cells containing different MEAs was examined by measuring their polarization curves in different operating conditions. The kinetic parameters governing the voltage dependence on current density were also estimated. It was concluded that the superior performance of the fuel cells with MEAs of NAF-SEP, sPSEBS-SIL and sPSEBS-SBA is not due to the membranes themselves, but to the kinetic processes that occur at the electrodes, which in this study were less efficient for fuel cells with the Nafion MEA. 34 refs., 3 tabs., 9 figs.

  16. Dimer-based model for heptaspanning membrane receptors.

    Science.gov (United States)

    Franco, Rafael; Casadó, Vicent; Mallol, Josefa; Ferré, Sergi; Fuxe, Kjell; Cortés, Antonio; Ciruela, Francisco; Lluis, Carmen; Canela, Enric I

    2005-07-01

    The existence of intramembrane receptor-receptor interactions for heptaspanning membrane receptors is now fully accepted, but a model considering dimers as the basic unit that binds to two ligand molecules is lacking. Here, we propose a two-state-dimer model in which the ligand-induced conformational changes from one component of the dimer are communicated to the other. Our model predicts cooperativity in binding, which is relevant because the other current models fail to address this phenomenon satisfactorily. Our two-state-dimer model also predicts the variety of responses elicited by full or partial agonists, neutral antagonists and inverse agonists. This model can aid our understanding of the operation of heptaspanning receptors and receptor channels, and, potentially, be important for improving the treatment of cardiovascular, neurological and neuropsychyatric diseases.

  17. Structural and Electrochemical Analysis of PMMA Based Gel Electrolyte Membranes

    Directory of Open Access Journals (Sweden)

    Chithra M. Mathew

    2015-01-01

    Full Text Available New gel polymer electrolytes containing poly(vinylidene chloride-co-acrylonitrile and poly(methyl methacrylate are prepared by solution casting method. With the addition of 60 wt.% of EC to PVdC-AN/PMMA blend, ionic conductivity value 0.398×10-6 S cm−1 has been achieved. XRD and FT-IR studies have been conducted to investigate the structure and complexation in the polymer gel electrolytes. The FT-IR spectra show that the functional groups C=O and C≡N play major role in ion conduction. Thermal stability of the prepared membranes is found to be about 180°C.

  18. Separation of tritiated water using graphene oxide membrane

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, Gary J. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Motkuri, Radha K. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Gotthold, David W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Frost, Anthony P. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Bratton, Wesley [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-06-28

    In future nuclear fuel reprocessing plants and possibly for nuclear power plants, the cleanup of tritiated water will be needed for hundreds of thousands of gallons of water with low activities of tritium. This cleanup concept utilizes graphene oxide laminar membranes (GOx) for the separation of low-concentration (10-3-10 µCi/g) tritiated water to create water that can be released to the environment and a much smaller waste stream with higher tritium concentrations. Graphene oxide membranes consist of hierarchically stacked, overlapping molecular layers and represent a new class of materials. A permeation rate test was performed with a 2-µm-thick cast Asbury membrane using mixed gas permeability testing with zero air (highly purified atmosphere) and with air humidified with either H2O or D2O to a nominal 50% relative humidity. The membrane permeability for both H2O and D2O was high with N2 and O2 at the system measurement limit. The membrane water permeation rate was compared to a Nafion® membrane and the GOx permeation was approximately twice as high at room temperature. The H2O vapor permeation rate was 5.9 × 102 cc/m2/min (1.2 × 10-6 g/min-cm2), which is typical for graphene oxide membranes. To demonstrate the feasibility of such isotopic water separation through GOX laminar membranes, an experimental setup was constructed to use pressure-driven separation by heating the isotopic water mixture at one side of the membrane to create steam while cooling the other side. Several membranes were tested and were prepared using different starting materials and by different pretreatment methods. The average separation result was 0.8 for deuterium and 0.6 for tritium. Higher or lower temperatures may also improve separation efficiency but neither has been tested yet. A rough estimate of cost compared to current technology was also included as an indication of potential viability of the process. The relative process costs were based on the rough size of facility to

  19. Remediation of textile effluents by membrane based treatment techniques: a state of the art review.

    Science.gov (United States)

    Dasgupta, Jhilly; Sikder, Jaya; Chakraborty, Sudip; Curcio, Stefano; Drioli, Enrico

    2015-01-01

    The textile industries hold an important position in the global industrial arena because of their undeniable contributions to basic human needs satisfaction and to the world economy. These industries are however major consumers of water, dyes and other toxic chemicals. The effluents generated from each processing step comprise substantial quantities of unutilized resources. The effluents if discharged without prior treatment become potential sources of pollution due to their several deleterious effects on the environment. The treatment of heterogeneous textile effluents therefore demands the application of environmentally benign technology with appreciable quality water reclamation potential. These features can be observed in various innovative membrane based techniques. The present review paper thus elucidates the contributions of membrane technology towards textile effluent treatment and unexhausted raw materials recovery. The reuse possibilities of water recovered through membrane based techniques, such as ultrafiltration and nanofiltration in primary dye houses or auxiliary rinse vats have also been explored. Advantages and bottlenecks, such as membrane fouling associated with each of these techniques have also been highlighted. Additionally, several pragmatic models simulating transport mechanism across membranes have been documented. Finally, various accounts dealing with techno-economic evaluation of these membrane based textile wastewater treatment processes have been provided. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Improving the mechanical properties of collagen-based membranes using silk fibroin for corneal tissue engineering.

    Science.gov (United States)

    Long, Kai; Liu, Yang; Li, Weichang; Wang, Lin; Liu, Sa; Wang, Yingjun; Wang, Zhichong; Ren, Li

    2015-03-01

    Although collagen with outstanding biocompatibility has promising application in corneal tissue engineering, the mechanical properties of collagen-based scaffolds, especially suture retention strength, must be further improved to satisfy the requirements of clinical applications. This article describes a toughness reinforced collagen-based membrane using silk fibroin. The collagen-silk fibroin membranes based on collagen [silk fibroin (w/w) ratios of 100:5, 100:10, and 100:20] were prepared by using silk fibroin and cross-linking by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. These membranes were analyzed by scanning electron microscopy and their optical property, and NaCl and tryptophan diffusivity had been tested. The water content was found to be dependent on the content of silk fibroin, and CS10 membrane (loading 10 wt % of silk fibroin) performed the optimal mechanical properties. Also the suture experiments have proved CS10 has high suture retention strength, which can be sutured in rabbit eyes integrally. Moreover, the composite membrane proved good biocompatibility for the proliferation of human corneal epithelial cells in vitro. Lamellar keratoplasty shows that CS10 membrane promoted complete epithelialization in 35 ± 5 days, and their transparency is restored quickly in the first month. Corneal rejection reaction, neovascularization, and keratoconus are not observed. The composite films show potential for use in the field of corneal tissue engineering. © 2014 Wiley Periodicals, Inc.

  1. Theoretical studies on membrane-based gas separation using computational fluid dynamics (CFD) of mass transfer

    International Nuclear Information System (INIS)

    Sohrabi, M.R.; Marjani, A.; Davallo, M.; Moradi, S.; Shirazian, S.

    2011-01-01

    A 2D mass transfer model was developed to study carbon dioxide removal by absorption in membrane contactors. The model predicts the steady state absorbent and carbon dioxide concentrations in the membrane by solving the conservation equations. The continuity equations for three sub domains of the membrane contactor involving the tube; membrane and shell were obtained and solved by finite element method (FEM). The model was based on 'non-wetted mode' in which the gas phase filled the membrane pores. Laminar parabolic velocity profile was used for the liquid flow in the tube side; whereas, the gas flow in the shell side was characterized by Happel's free surface model. Axial and radial diffusion transport inside the shell, through the membrane, and within the tube side of the contactor was considered in the mass transfer model. The predictions of percent CO/sub 2/ removal obtained by modeling were compared with the experimental values obtained from literature. They were the experimental results for CO/sub 2/ removal from CO/sub 2//N/sub 2/ gas mixture with amines aqueous solutions as the liquid solvent using polypropylene membrane contactor. The modeling predictions were in good agreement with the experimental values for different values of gas and liquid flow rates. (author)

  2. Impact of monoolein on aquaporin1-based supported lipid bilayer membranes

    International Nuclear Information System (INIS)

    Wang, Zhining; Wang, Xida; Ding, Wande; Wang, Miaoqi; Gao, Congjie; Qi, Xin

    2015-01-01

    Aquaporin (AQP) based biomimetic membranes have attracted considerable attention for their potential water purification applications. In this paper, AQP1 incorporated biomimetic membranes were prepared and characterized. The morphology and structure of the biomimetic membranes were characterized by in situ atomic force microscopy (AFM), infrared absorption spectroscopy, fluorescence microscopy, and contact angle measurements. The nanofiltration performance of the AQP1 incorporated membranes was investigated at 4 bar by using 2 g l −1 NaCl as feed solution. Lipid mobility plays an important role in the performance of the AQP1 incorporated supported lipid bilayer (SLB) membranes. We demonstrated that the lipid mobility is successfully tuned by the addition of monoolein (MO). Through in situ AFM and fluorescence recovery after photo-bleaching (FRAP) measurements, the membrane morphology and the molecular mobility were studied. The lipid mobility increased in the sequence DPPC < DPPC/MO (R MO = 5/5) < DOPC/MO (R MO = 5/5) < DOPC, which is consistent with the flux increment and salt rejection. This study may provide some useful insights for improving the water purification performance of biomimetic membranes. (paper)

  3. Experimental study on vacuum membrane distillation based on brine desalination by PVDF

    Science.gov (United States)

    Yan, Xuesheng; Wang, Caiyun

    2017-05-01

    Based on polyvinylidene fluoride (PVDF) hollow fiber hydrophobic porous membrane, vacuum membrane distillation desalination test bench was built to study the effects of operating parameters such as temperature of feed solution, flow rate of feed solution, concentration of feed solution and vacuum degree on the performance of vacuum membrane distillation process. Experimental results showed that with an increase in the vacuum degree and temperature of the flux of membrane is increased. While with an increase in the concentration of feed solution of the flux of membrane is decreased and retention rate were essentially the same, with an increase in the flow rate of feed solution of he flux of membrane changed slowly (increase slightly). When temperature of the feed solution was 88°C, the flow rate of feed solution was 270cm/min, the vacuum degree was 0.081MPa, the concentration of feed solution was 5%, the flux of membrane was 14.1kg/ (m2.h), the retention rate was 99.8%, the electrical conductivity of fresh water was maintained at 12us/cm.

  4. Sulfonated polyphosphazene-based membranes for use in direct methanol fuel cells

    Science.gov (United States)

    Carter, Roy Lee

    Novel crosslinked and sulfonated poly[bis(3-methylphenoxy)phosphazene] blended proton exchange membranes were fabricated for use as the solid polymer electrolyte in a direct methanol fuel cell. Three polymers, polybenzimidazole, polyacrylonitrile and polyvinylidene fluoride-co-polyhexafluoropropylene were found to be compatible for blending with sulfonated polyphosphazene. A combination of blending and crosslinking was shown to be an effective method of producing durable, low water swelling films with acceptable proton conductivity. A novel tracer-diffusion 1H NMR method was developed and used to measure the mutual diffusion of methanol in non-crosslinked and crosslinked membranes composed of sulfonated polyphosphazene. The technique measures the growth of a solute NMR signal in the bulk (external) solution as it diffuses out of a thin film membrane. The transient increase in methanol peak height during analyte (methanol) desorption was fitted to a simple theoretical diffusion model using the methanol diffusion coefficient as an adjustable parameter. This method was found to be fast, reproducible, and accurate to within about +/-20%. Diffusion coefficients at 25°C were in the range of 1.0 x 10-8 cm2/s to 4.0 x 10-7 cm2/s for methanol concentrations of 1.0--5.0 M and were significantly smaller than those reported for a NafionRTM perfluorosulfonic acid membrane. Direct liquid methanol fuel cell tests were performed with membrane electrode assemblies (MEAs) fabricated with polyphosphazene-based proton-exchange membranes. MEAs worked best when high ion-exchange capacity (high conductivity) polyphosphazene membrane contacted the electrodes, in which case the fuel cell power output was nearly the same as that with Nafion 117 (for current densities ≤0.15 A/cm2), but the methanol crossover was three times lower than that of Nafion. The electrochemical performance of single-membrane MEAs with low conductivity S-POP/PAN films was poor, although the methanol crossover was

  5. Reforming of Liquid Hydrocarbons in a Novel Hydrogen-Selective Membrane-Based Fuel Processor

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2006-03-10

    In this work, asymmetric dense Pd/porous stainless steel composite membranes were fabricated by depositing palladium on the outer surface of the tubular support. The electroless plating method combined with an osmotic pressure field was used to deposit the palladium film. Surface morphology and microstructure of the composite membranes were characterized by SEM and EDX. The SEM and EDX analyses revealed strong adhesion of the plated pure palladium film on the substrate and dense coalescence of the Pd film. Membranes were further characterized by conducting permeability experiments with pure hydrogen, nitrogen, and helium gases at temperatures from 325 to 450 C and transmembrane pressure differences from 5 to 45 psi. The permeation results showed that the fabricated membranes have both high hydrogen permeability and selectivity. For example, the hydrogen permeability for a composite membrane with a 20 {micro}m Pd film was 3.02 x 10{sup -5} moles/m{sup 2}.s.Pa{sup 0.765} at 450 C. Hydrogen/nitrogen selectivity for this composite membrane was 1000 at 450 C with a transmembrane pressure difference of 14.7 psi. Steam reforming of methane is one of the most important chemical processes in hydrogen and syngas production. To investigate the usefulness of palladium-based composite membranes in membrane-reactor configuration for simultaneous production and separation of hydrogen, steam reforming of methane by equilibrium shift was studied. The steam reforming of methane using a packed-bed inert membrane tubular reactor (PBIMTR) was simulated. A two-dimensional pseudo-homogeneous reactor model with parallel flow configuration was developed for steam reforming of methane. The shell volume was taken as the feed and sweep gas was fed to the inside of the membrane tube. Radial diffusion was taken into account for concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential

  6. Development and understanding of new membranes based on aromatic polymers and heterocycles for fuel cells

    Science.gov (United States)

    Li, Wen

    Direct methanol fuel cells (DMFC) are appealing as a power source for portable devices as they do not require recharging with an electrical outlet. However, the DMFC technology is confronted with the high crossover of methanol fuel from the anode to the cathode through the currently used Nafion membrane, which not only wastes the fuel but also poisons the cathode platinum catalyst. With an aim to overcome the problems encountered with the Nafion membrane, this dissertation focuses on the design and development of new polymeric membrane materials for DMFC and a fundamental understanding of their structure-property-performance relationships. Several polymeric blend membranes based on acid-base interactions between an aromatic acidic polymer such as sulfonated ploy(ether ether ketone) (SPEEK) and an aromatic basic polymer such as heterocycle tethered poly(sulfone) (PSf) have been explored. Various heterochylces like nitro-benzimidazole (NBIm), 1H-Perimidine (PImd), and 5-amino-benzotriazole (BTraz) have been tethered to PSf to understand the influence of pKa values and the size of the hetrocycles. The blend membranes show lower methanol crossover and better performance in DMFC than plain SPEEK due to an enhancement in proton conductivity through acid-base interactions and an insertion of the heterocycle side groups into the ionic clusters of SPEEK as indicated by small angle X-ray scattering and TEM data. The SPEEK/PSf-PImd blend membrane shows the lowest methanol crossover due to the larger size of the side groups, while the SPEEK/PSf-BTraz blend membrane shows the highest proton conductivity and maximum power density. To further investigate the methanol-blocking effect of the heterocycles, N,N'-Bis-(1H-benzimidazol-2-yl)-isophthalamide (BBImIP) having two amino-benzimidazole groups bonded to a phenyl ring has been incorporated into sulfonated polysulfone (SPSf) and SPEEK membranes. With two 2-amino-benzimidazole groups, which could greatly increase the proton

  7. Co2+-selective membrane electrode based on the Schiff Base NADS.

    Science.gov (United States)

    Mashhadizadeh, Mohammad Hossein; Sheikhshoaie, Iran

    2003-03-01

    A new PVC membrane electrode for cobalt(II) ions based on a recently synthesized Schiff base of 5-((4-nitrophenyl)azo)- N-(2',4'-dimethoxyphenyl)salicylaldimine is reported. The electrode exhibits a Nernstian response for Co(2+) ions over a wide concentration range (9.0 x 10(-7)-1.0 x 10(-2) M) with a slope of 29(+/-1). The limit of detection is 8.0 x 10(-7) M. The proposed sensor revealed good selectivities over a wide variety of other cations including hard and soft metals. This electrode could be used in a pH range of 3.5-6.0. It was used as an indicator electrode in potentiometric titrations of cobalt(II) ions and can be used in the direct determination of Co(2+) in aqueous solutions.

  8. Humidification performance of humidifying devices for tracheostomized patients with spontaneous breathing: a bench study.

    Science.gov (United States)

    Chikata, Yusuke; Oto, Jun; Onodera, Mutsuo; Nishimura, Masaji

    2013-09-01

    Heat and moisture exchangers (HMEs) are commonly used for humidifying respiratory gases administered to mechanically ventilated patients. While they are also applied to tracheostomized patients with spontaneous breathing, their performance in this role has not yet been clarified. We carried out a bench study to investigate the effects of spontaneous breathing parameters and oxygen flow on the humidification performance of 11 HMEs. We evaluated the humidification provided by 11 HMEs for tracheostomized patients, and also by a system delivering high-flow CPAP, and an oxygen mask with nebulizer heater. Spontaneous breathing was simulated with a mechanical ventilator, lung model, and servo-controlled heated humidifier at tidal volumes of 300, 500, and 700 mL, and breathing frequencies of 10 and 20 breaths/min. Expired gas was warmed to 37°C. The high-flow CPAP system was set to deliver 15, 30, and 45 L/min. With the 8 HMEs that were equipped with ports to deliver oxygen, and with the high-flow CPAP system, measurements were taken when delivering 0 and 3 L/min of dry oxygen. After stabilization we measured the absolute humidity (AH) of inspired gas with a hygrometer. AH differed among HMEs applied to tracheostomized patients with spontaneous breathing. For all the HMEs, as tidal volume increased, AH decreased. At 20 breaths/min, AH was higher than at 10 breaths/min. For all the HMEs, when oxygen was delivered, AH decreased to below 30 mg/L. With an oxygen mask and high-flow CPAP, at all settings, AH exceeded 30 mg/L. None of the HMEs provided adequate humidification when supplemental oxygen was added. In the ICU, caution is required when applying HME to tracheostomized patients with spontaneous breathing, especially when supplemental oxygen is required.

  9. Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes

    International Nuclear Information System (INIS)

    Jung, Hong-Ryun; Ju, Dong-Hyuk; Lee, Wan-Jin; Zhang, Xiangwu; Kotek, Richard

    2009-01-01

    Hydrophilic fumed silica (SiO 2 )/polyacrylonitrile (PAN) composite electrolyte membranes were prepared by electrospinning composite solutions of SiO 2 and PAN in N,N-dimethylformamide (DMF). Among electrospinning solutions with various SiO 2 contents, the 12 wt% SiO 2 in PAN solution has highest zeta potential (-40.82 mV), and exhibits the best dispersibility of SiO 2 particles. The resultant 12 wt% SiO 2 /PAN nanofiber membrane has the smallest average fiber diameter, highest porosity, and largest specific surface area. In addition, this membrane has a three-dimensional network structure, which is fully interconnected with combined mesopores and macropores because of a good SiO 2 dispersion. Composite electrolyte membranes were prepared by soaking these porous nanofiber membranes in 1 M lithium hexafluorophosphate (LiPF 6 ) in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1 vol%). It is found that 12 wt% SiO 2 /PAN electrolyte membrane has the highest conductivity (1.1 x 10 -2 S cm -1 ) due to the large liquid electrolyte uptake (about 490%). In addition, the electrochemical performance of composite electrolyte membranes is also improved after the introduction of SiO 2 . For initial cycle, 12 wt% SiO 2 /PAN composite electrolyte membrane delivers the discharge capacity of 139 mAh g -1 as 98% of theoretical value, and still retains a high value of 127 mAh g -1 as 89% at 150th cycle, which is significantly higher that of pure PAN nanofiber-based electrolyte membranes.

  10. Development of novel membranes for blood purification therapies based on copolymers of N-vinylpyrrolidone and n-butylmethacrylate

    NARCIS (Netherlands)

    Tijink, M.S.L.; Janssen, J.; Timmer, M.; Austen, J.; Aldenhoff, Y.; Kooman, J.; Koole, L.H.; Damoiseaux, J.; van Oerle, R.; Henskens, Y.; Stamatialis, Dimitrios

    2013-01-01

    Developments in membrane based blood purification therapies often come with longer treatment times and therefore longer blood–material contact, which requires long-term membrane biocompatibility. In this study, we develop for the first time membranes for blood purification using the material

  11. Preparation and characterization of monovalent ion selective cation exchange membranes based on sulphonated poly(ether ether ketone)

    NARCIS (Netherlands)

    Balster, J.H.; Krupenko, O.; Krupenko, O.; Punt, Ineke G.M.; Stamatialis, Dimitrios; Wessling, Matthias

    2005-01-01

    This paper analyses the separation properties of various commercial cation exchange membranes (CEMs) and tailor made membranes based on sulphonated poly(ether ether ketone) and poly(ether sulphone) for binary electrolyte solutions containing protons and calcium ions. All membranes are thoroughly

  12. Cross-linked PAN-based thin-film composite membranes for non-aqueous nanofiltration

    KAUST Repository

    Pérez-Manríquez, Liliana

    2015-01-01

    A new approach on the development of cross-linked PAN based thin film composite (TFC) membranes for non-aqueous application is presented in this work. Polypropylene backed neat PAN membranes fabricated by phase inversion process were cross-linked with hydrazine to get excellent solvent stability toward dimethylformamide (DMF). By interfacial polymerization a selective polyamide active layer was coated over the cross-linked PAN using N,N′-diamino piperazine (DAP) and trimesoyl chloride (TMC) as monomers. Permeation and molecular weight cut off (MWCO) experiments using various dyes were done to evaluate the performance of the membranes. Membranes developed by such method show excellent solvent stability toward DMF with a permeance of 1.7 L/m2 h bar and a molecular weight cut-off of less than 600 Da.

  13. Effects of the operational conditions on the membrane and electrode properties of a polymer electrolyte fuel cell

    Directory of Open Access Journals (Sweden)

    Passos Raimundo R.

    2002-01-01

    Full Text Available The effects of the operational conditions on the membrane and electrode properties on a polymer electrolyte fuel cell (PEFC were investigated as a function of the cell and the gas humidifiers temperatures, the thickness of the membrane, the impregnation with phosphotungstic acid (PWA, and the variation of the Nafion and Teflon contents in the gas diffusion electrodes. An increase of the membrane resistance was observed when the PEFC is operated at temperatures equal or higher than those of the gas humidifiers, and this is more apparent for thicker electrolyte films. In the presence of PWA, the physicochemical properties of the membrane do not appreciably change with temperature. However, in this case, a lower humidification temperature affects the electrode performance. Changes on the Nafion loading in the electrodes do not lead to any significant effect in the electrode and membrane properties. For high Teflon contents there is a small lowering of the membrane conductivity.

  14. Conductivity Scaling Relationships in Nanostructured Membranes based on Protic Polymerized Ionic Liquids

    Science.gov (United States)

    Sanoja, Gabriel; Lynd, Nathaniel; Segalman, Rachel

    2015-03-01

    Nanostructured membranes based on protic polymerized ionic liquids are of great interest for a variety of electrochemical applications. Understanding the relationship between composition, structure, and ionic conductivity for these materials is essential for designing novel membranes with improved properties. In this work, we explore the effect of volume fraction of ionic liquid on conductivity, σ using a model system composed of poly[isoprene-block-(ethylene oxide-stat-histamine glycidyl ether) diblock copolymers [PI- b - P(EO-stat-HGE)] and the resulting [PI- b - P(EO-stat-IL)] obtained after treatment with trifluoroacetic acid. These materials self-assemble into lamellar structures with volume fractions of ionic liquid ranging from 0.50 to 0.90 as demonstrated by SAXS. PI- b - P(EO-stat-IL) membranes exhibit conductivities up to 4 x 10-3 S/cm at room temperature. In addition, PI- b - P(EO-stat-IL) based membranes have lower water uptake (λ = 8-10) in comparison with most proton conducting membranes reported elsewhere. The low λ in these membranes might translate into a stronger effect of morphology on transport properties. Joint Center for Artificial Photosynthesis.

  15. Shape Selection in Self-Assembled Chiral Membranes: New Mechanism Based on the Flexoelectric Effect

    Science.gov (United States)

    Lu, Zhao; Selinger, Robin; Selinger, Jonathan

    2006-03-01

    Many biological materials self-assemble into chiral microstructures such as cylindrical tubules and helical ribbons. A chiral elastic theory proposed by Selinger et al., based on the elastic properties and chirality of amphiphilic lipid molecules, has been successful in explaining the formation of tubules and helical ribbons. Recently, an experiment has shown that achiral lipid molecules can also form chiral microstructures. This challenges the previous theory based on molecular chirality. Toward understanding this problem, we develop a new model for membrane shape selection based on the flexoelectric effect. We investigate this model through both analytical calculations and dissipative particle dynamic simulations on tethered membranes.

  16. Microalgae dewatering based on forward osmosis employing proton exchange membrane.

    Science.gov (United States)

    Son, Jieun; Sung, Mina; Ryu, Hoyoung; Oh, You-Kwan; Han, Jong-In

    2017-11-01

    In this study, electrically-facilitated forward osmosis (FO) employing proton exchange membrane (PEM) was established for the purpose of microalgae dewatering. An increase in water flux was observed when an external voltage was applied to the FO equipped with the PEM; as expected, the trend became more dramatic with both concentration of draw solution and applied voltage raised. With this FO used for microalgae dewatering, 247% of increase in flux and 86% in final biomass concentration were observed. In addition to the effect on flux improvement, the electrically-facilitated FO exhibited the ability to remove chlorophyll from the dewatered biomass, down to 0.021±0015mg/g cell. All these suggest that the newly suggested electrically-facilitated FO, one particularly employed PEM, can indeed offer a workable way of dewatering of microalgae; it appeared to be so because it can also remove the ever-problematic chlorophyll from extracted lipids in a simultaneous fashion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Nanodisc-based Co-immunoprecipitation for Mass Spectrometric Identification of Membrane-interacting Proteins

    DEFF Research Database (Denmark)

    Borch-Jensen, Jonas; Roepstorff, Peter; Møller-Jensen, Jakob

    2011-01-01

    Proteomic identification of protein interactions with membrane associated molecules in their native membrane environment pose a challenge because of technical problems of membrane handling. We investigate the possibility of employing membrane nanodiscs for harboring the membrane associated molecu...

  18. Influence of thermal post-curing on the degradation of a cross-linked polybenzimidazole-based membrane for high temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Ossiander, T.; Perchthaler, M.; Heinzl, C.; Scheu, C.

    2014-12-01

    The lifetime stability of membranes is one of the main requirements regarding reliability of high temperature polymer electrolyte membrane fuel cells. The present work has improved durability under cycled operation by thermal post-curing of cross-linked polybenzimidazole (PBI)-based membranes. The membranes were dried over 1, 2 and 3 h at 250 °C under air. Ex-situ experiments proved an increase in stability by post-curing. The liquid uptake and swelling in phosphoric acid increased with longer curing periods. The effect of thermal treatments on cycle stability, lifetime and begin-of-life performance of the membrane electrode assemblies (MEAs) was investigated. Longer post-curing periods of the membranes had no influence on the MEAs' begin-of-life performance and constant current behavior over 2300 h. However, the 3 h post-cured MEAs showed enhanced cycle stability. Post-mortem analysis was carried out to identify the occurring degradation mechanisms. While a significant loss of phosphoric acid and a reduction of electrochemical surface activity on the cathode were observed for both post-cured MEAs, the 3 h dried membrane sample had a significantly higher resistance against pinhole formation during the long term test. Altogether, this work presents thermal post-curing as a promising method for the reduction of degradation determining effects in fuel cell membranes.

  19. Membrane-Based Characterization of a Gas Component — A Transient Sensor Theory

    Directory of Open Access Journals (Sweden)

    Detlef Lazik

    2014-03-01

    Full Text Available Based on a multi-gas solution-diffusion problem for a dense symmetrical membrane this paper presents a transient theory of a planar, membrane-based sensor cell for measuring gas from both initial conditions: dynamic and thermodynamic equilibrium. Using this theory, the ranges for which previously developed, simpler approaches are valid will be discussed; these approaches are of vital interest for membrane-based gas sensor applications. Finally, a new theoretical approach is introduced to identify varying gas components by arranging sensor cell pairs resulting in a concentration independent gas-specific critical time. Literature data for the N2, O2, Ar, CH4, CO2, H2 and C4H10 diffusion coefficients and solubilities for a polydimethylsiloxane membrane were used to simulate gas specific sensor responses. The results demonstrate the influence of (i the operational mode; (ii sensor geometry and (iii gas matrices (air, Ar on that critical time. Based on the developed theory the case-specific suitable membrane materials can be determined and both operation and design options for these sensors can be optimized for individual applications. The results of mixing experiments for different gases (O2, CO2 in a gas matrix of air confirmed the theoretical predictions.

  20. Origins and Evolution of Inorganic-Based and MOF-Based Mixed-Matrix Membranes for Gas Separations

    Directory of Open Access Journals (Sweden)

    Edson V. Perez

    2016-09-01

    Full Text Available Gas separation for industrial, energy, and environmental applications requires low energy consumption and small footprint technology to minimize operating and capital costs for the processing of large volumes of gases. Among the separation methods currently being used, like distillation, amine scrubbing, and pressure and temperature swing adsorption, membrane-based gas separation has the potential to meet these demands. The key component, the membrane, must then be engineered to allow for high gas flux, high selectivity, and chemical and mechanical stability at the operating conditions of feed composition, pressure, and temperature. Among the new type of membranes studied that show promising results are the inorganic-based and the metal-organic framework-based mixed-matrix membranes (MOF-MMMs. A MOF is a unique material that offers the possibility of tuning the porosity of a membrane by introducing diffusional channels and forming a compatible interface with the polymer. This review details the origins of these membranes and their evolution since the first inorganic/polymer and MOF/polymer MMMs were reported in the open literature. The most significant advancements made in terms of materials, properties, and testing conditions are described in a chronological fashion.

  1. Model-based fault detection for proton exchange membrane fuel cell ...

    African Journals Online (AJOL)

    In this paper, an intelligent model-based fault detection (FD) is developed for proton exchange membrane fuel cell (PEMFC) dynamic systems using an independent radial basis function (RBF) networks. The novelty is that this RBF networks is used to model the PEMFC dynamic systems and residuals are generated based ...

  2. Solvent-extraction and Langmuir-adsorption-based transport in chemically functionalized nanopore membranes.

    Science.gov (United States)

    Odom, Damian J; Baker, Lane A; Martin, Charles R

    2005-11-10

    We have investigated the transport properties of nanopore alumina membranes that were rendered hydrophobic by functionalization with octadecyltrimethoxysilane (ODS). The pores in these ODS-modified membranes are so hydrophobic that they are not wetted by water. Nevertheless, nonionic molecules can be transported from an aqueous feed solution on one side of the membrane, through the dry nanopores, and into an aqueous receiver solution on the other side. The transport mechanism involves Langmuir-type adsorption of the permeating molecule onto the ODS layers lining the pore walls, followed by solid-state diffusion along these ODS layers; we have measured the diffusion coefficients associated with this transport process. We have also investigated the transport properties of membranes prepared by filling the ODS-modified pores with the water-immiscible (hydrophobic) liquid mineral oil. In this case the transport mechanism involves solvent extraction of the permeating molecule into the mineral oil subphase confined with the pores, followed by solution-based diffusion through this liquid subphase. Because of this different transport mechanism, the supported-liquid membranes show substantially better transport selectivity than the ODS-modified membranes that contain no liquid subphase.

  3. Functionalized carbon nanotube via distillation precipitation polymerization and its application in nafion-based composite membranes.

    Science.gov (United States)

    He, Guangwei; Zhao, Jing; Hu, Shen; Li, Lingqiao; Li, Zongyu; Li, Yifan; Li, Zhen; Wu, Hong; Yang, Xinlin; Jiang, Zhongyi

    2014-09-10

    The objective of this study is to develop a novel approach to in situ functionalizing multiwalled carbon nanotubes (MWCNTs) and exploring their application in Nafion-based composite membranes for efficient proton conduction. Covalent grafting of acrylate-modified MWCNTs with poly(methacrylic acid-co-ethylene glycol dimethacrylate), poly(vinylphosphonic acid-co-ethylene glycol dimethacrylate), and sulfonated poly(styrene-co-divinylbenzene) was achieved via surface-initiated distillation precipitation polymerization. The formation of core-shell structure was verified by TEM images, and polymer layers with thickness around 30 nm were uniformly covered on the MWCNTs. The graft yield reached up to 93.3 wt % after 80 min of polymerization. The functionalized CNTs (FCNTs) were incorporated into the Nafion matrix to prepare composite membranes. The influence of various functional groups (-COOH, -PO3H2, and -SO3H) in FCNTs on proton transport of the composite membranes was studied. The incorporation of FCNTs afforded the composite membranes significantly enhanced proton conductivities under reduced relative humidity. The composite membrane containing 5 wt % phosphorylated MWCNTs (PCNTs) showed the highest proton conductivity, which was attributed to the construction of lower-energy-barrier proton transport pathways by PCNTs, and excellent water-retention and proton-conduction properties of the cross-linked polymer in PCNTs. Moreover, the composite membranes exhibited an enhanced mechanical stability.

  4. Biocatalytic Membrane Based on Polydopamine Coating: A Platform for Studying Immobilization Mechanisms.

    Science.gov (United States)

    Zhang, Huiru; Luo, Jianquan; Li, Sushuang; Wei, Yuping; Wan, Yinhua

    2018-02-27

    Application of biocatalytic membrane is promising in food, pharmaceutical, and water treatment industries, whereas enzyme immobilization is the key step of biocatalytic membrane preparation. Thus, how to minimize the negative effect of immobilization on enzyme performance is required to answer. In this work, we proposed a platform for biocatalytic membrane preparation and immobilization mechanism investigation based on polydopamine (PDA) coating, which was demonstrated by immobilizing five commonly used enzymes (laccase, glucose oxidase, lipase, pepsin, and dextranase) on three commercially available membranes via three immobilization mechanisms (electrostatic attraction, covalent bonding, and hydrophobic adsorption), respectively. By examining the enzyme loading, activity, and kinetics under different immobilization mechanisms, we found that except for dextranase, enzyme immobilization via electrostatic attraction retained the most activity, whereas covalent bonding and hydrophobic adsorption were detrimental to enzyme conformation. Enzyme immobilization via covalent bonding ensured a high enzyme loading, and hydrophobic adsorption was only suitable for lipase and dextranase immobilization. Moreover, the properties of functional groups around the enzyme active center should be considered for the selection of suitable immobilization strategy (i.e., avoid covering the active center by membrane carrier). This work not only established a versatile platform for biocatalytic membrane preparation but also provided a novel methodology to evaluate the effect of immobilization mechanisms on enzyme performance.

  5. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan

    2017-09-13

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  6. Regeneration of Alkanolamine Solutions in Membrane Contactor Based on Novel Polynorbornene

    Directory of Open Access Journals (Sweden)

    Shutova A.A.

    2014-11-01

    Full Text Available For the first time, a novel highly permeable glassy polymer, addition poly[bis(trimethylsilyltricyclononene] (PBTMST, was proposed for its use in a gas-liquid membrane contactor for the regeneration of CO2 absorption liquids (desorption of CO2. This membrane material possesses a good chemical stability and high barrier properties for a number of alkanolmines (30 wt% solutions of MEA, DEA, MDEA, AMP, DEAE or AEAE under typical regeneration conditions (T = 100°C. Studies on gas transport properties of PBTMST (100°C and 1-40 bar show that permeability coefficients of oxygen, nitrogen and carbon dioxide initially tend to decrease, and then level off after first 6-8 hours of operation. This behavior can be explained by partial relaxation of the free-volume structure of PBTMST, no chemical degradation of polymer material at high temperature was confirmed by IR analysis. At the same time, this membrane material preserves high gas permeability coefficients which are higher than those of conventional materials used in the membrane contactors. Gas-liquid membrane contactor based on dense PBTMST membrane shows a good, stable performance; particularly, CO2 loading in diethanolamine solution (30 wt% can be reduced for 0.05-0.34 mole/mole by single pass through the membrane desorber at 100°C and elevated pressure. It seems that desorption rate here is mainly controlled by liquid phase because decreasing of membrane thickness by 50% (from 31 to 21 μm leads to improvement of DEA regeneration only by 1.5-8.5%.

  7. Correcting the wavefront aberration of membrane mirror based on liquid crystal spatial light modulator

    Science.gov (United States)

    Yang, Bin; Wei, Yin; Chen, Xinhua; Tang, Minxue

    2014-11-01

    Membrane mirror with flexible polymer film substrate is a new-concept ultra lightweight mirror for space applications. Compared with traditional mirrors, membrane mirror has the advantages of lightweight, folding and deployable, low cost and etc. Due to the surface shape of flexible membrane mirror is easy to deviate from the design surface shape, it will bring wavefront aberration to the optical system. In order to solve this problem, a method of membrane mirror wavefront aberration correction based on the liquid crystal spatial light modulator (LCSLM) will be studied in this paper. The wavefront aberration correction principle of LCSLM is described and the phase modulation property of a LCSLM is measured and analyzed firstly. Then the membrane mirror wavefront aberration correction system is designed and established according to the optical properties of a membrane mirror. The LCSLM and a Hartmann-Shack sensor are used as a wavefront corrector and a wavefront detector, respectively. The detected wavefront aberration is calculated and converted into voltage value on LCSLM for the mirror wavefront aberration correction by programming in Matlab. When in experiment, the wavefront aberration of a glass plane mirror with a diameter of 70 mm is measured and corrected for verifying the feasibility of the experiment system and the correctness of the program. The PV value and RMS value of distorted wavefront are reduced and near diffraction limited optical performance is achieved. On this basis, the wavefront aberration of the aperture center Φ25 mm in a membrane mirror with a diameter of 200 mm is corrected and the errors are analyzed. It provides a means of correcting the wavefront aberration of membrane mirror.

  8. Facile Fabrication of a Gold Nanocluster-Based Membrane for the Detection of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Pu Zhang

    2016-07-01

    Full Text Available In this work, we present a simple and rapid method to synthesize red luminescent gold nanoclusters (AuNCs with high quantum yield (QY, ~16%, excellent photostability and biocompatibility. Next, we fabricated a solid membrane by loading the as-prepared AuNCs in an agar matrix. Different from nanomaterials dispersed in solution, the AuNCs-based solid membrane has distinct advantages including convenience of transportation, while still maintaining strong red luminescence, and relatively long duration storage without aggregation. Taking hydrogen peroxide (H2O2 as a typical example, we then employed the AuNCs as a luminescent probe and investigated their sensing performance, either in solution phase or on a solid substrate. The detection of H2O2 could be achieved in wide concentration ranges over 805 nM–1.61 mM and 161 μM–19.32 mM in solution and on a solid membrane, respectively, with limits of detection (LOD of 80 nM and 20 μM. Moreover, the AuNCs-based membrane could also be used for visual detection of H2O2 in the range of 0–3.22 mM. In view of the convenient synthesis route and attractive luminescent properties, the AuNCs-based membrane presented in this work is quite promising for applications such as optical sensing, fluorescent imaging, and photovoltaics.

  9. Dye-sensitized solar cells based on electrospun polyacrylonitrile (PAN) nanofibre membrane gel electrolyte

    International Nuclear Information System (INIS)

    Dissanayake, M.A.K.L.; Divarathne, H.K.D.W.M.N.R.; Thotawatthage, C.A.; Dissanayake, C.B.; Senadeera, G.K.R.; Bandara, B.M.R.

    2014-01-01

    Highlights: • Dye sensitized solar cells based on nanofibre membrane gel electrolyte, PAN:KI:PC:I 2 were fabricated and characterized. • The solar cell with membrane electrolyte of thickness 9.14 μm showed the highest efficiency of 5.2%. • An identical solar cell based on corresponding liquid electrolyte showed an efficiency of 5.3%. • The open circuit voltage and short circuit current density of the nanofibre based solar cell were 0.67 V and 13.31 mA cm −2 . • Dye solar cells with nanofibre gel electrolytes can yield efficiencies comparable to cells with solution electrolytes. - Abstract: Dye Sensitized Solar Cells (DSSCs) based on electrospun nanofibre membrane electrolytes offer several advantages over liquid electrolyte based solar cells. Nanofibre membranes having different thicknesses were prepared by electrospinning on platinum electrodes from a 11 wt% solution of polyacrylonitrile (PAN) in N,N-dimethylformamide (DMF) at an applied voltage of 8 kV. The membranes were then activated by immersing in a solution containing potassium iodide (KI) (0.06 g), propylene carbonate (PC) (0.8 g) and iodine (I 2 ) (0.0092 g) for 30 minutes to obtain “gel” type membrane electrolytes with different thicknesses. These nanofibre membrane electrolytes were used to fabricate quasi-solid state (gel) DSSCs and the performance of these solar cells were compared with DSSCs fabricated with liquid electrolyte (KI:PC:I 2 ) and conventional PAN based gel electrolyte (PAN:KI:PC:I 2 ). DSSC with nanofibre membrane electrolyte of thickness 9.14 μm showed the highest light-to-electricity conversion efficiency of 5.2% whereas an identical cell based on corresponding liquid electrolyte showed an efficiency of 5.3%. The open circuit voltage (V OC ), short circuit current density (J Sc ) and fill factor for the solar cell based on this electrolyte was 0.67 V, 13.31 mA cm −2 and 59% respectively at an incident light intensity of 1000 W m −2 with a 1.5 AM filter

  10. Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications

    International Nuclear Information System (INIS)

    Liu, Shuai; Wang, Lihua; Ding, Yue; Liu, Biqian; Han, Xutong; Song, Yanlin

    2014-01-01

    Highlights: • SPEEK/PEI acid-base blend membranes are prepared for VRB applications. • The acid-base blend membranes have much lower vanadium ion permeability. • The energy efficiency of SPEEK/PEI maintain around 86.9% after 50 cycles. - Abstract: Novel acid-base blend membranes composed of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared for vanadium redox flow battery (VRB). The blend membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electronic microscopy (SEM). The ion exchange capacity (IEC), proton conductivity, water uptake, vanadium ion permeability and mechanical properties were measured. As a result, the acid-base blend membranes exhibit higher water uptake, IEC and lower vanadium ion permeability compared to Nafion117 membranes and all these properties decrease with the increase of PEI. In VRB single cell test, the VRB with blend membranes shows lower charge capacity loss, higher coulombic efficiency (CE) and energy efficiency (EE) than Nafion117 membrane. Furthermore, the acid-base blend membranes present stable performance up to 50 cycles with no significant decline in CE and EE. All experimental results indicate that the SPEEK/PEI (S/P) acid-base blend membranes show promising prospects for VRB

  11. Reduction of thrombogenicity of PVC-based sodium selective membrane electrodes using heparin-modified chitosan.

    Science.gov (United States)

    Badr, Ibrahim H A; Gouda, M; Abdel-Sattar, R; Sayour, Hossam E M

    2014-01-01

    Heparin-modified chitosan (H-chitosan) membrane was utilized to enhance biocompatibility of sodium selective membrane electrode based on the highly thrombogenic polyvinyl chloride (PVC). Sodium ion sensing film was prepared using PVC, sodium ionophore-X, potassium tetrakis(chlorophenyl)-borate, and o-nitrophenyloctylether. The PVC-based sensing film was sandwiched to chitosan or H-chitosan to prevent platelet adhesion on the surface of PVC. Potentiometric response characteristics of PVC-chitosan and PVC-H-chitosan membrane electrodes were found to be comparable to that of a control PVC based sodium-selective electrode. This indicates that chitosan and H-chitosan layers do not alter the response behaviour of the PVC-based sensing film. Biocompatibility of H-chitosan was confirmed by in vitro platelet adhesion study. The platelet adhesion investigations indicated that H-chitosan film is less thrombogenic compared to PVC, which could result in enhancement of biocompatibility of sodium selective membrane electrodes based on PVC, while maintaining the overall electrochemical performance of the PVC-based sensing film. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Electrode-analytical properties of polyvinylchloride membranes based on triple metal-polymeric complexes

    Directory of Open Access Journals (Sweden)

    Katerina V. Matorina

    2015-10-01

    Full Text Available The influence of the nature of the electrode-active substances (EAS, the composition of the external and internal solutions on the formation of the analytical signal of polyvinylchloride (PVC membranes based on associates and triple metal-polymeric complexes (TMPC was established. Dehumidification of synthesized membranes increases with the content of polyvinylpyrrolidone (PVP. The value of the swelling degree is more than two times greater for membranes, which contain as EAS TMPC, relative to membranes based on associates. The value of water absorption of membranes is determined by the nature of EAS. They formed a series of increasing of the swelling degree such as associate < background membrane < TMPC. Swelling of the background membrane is explained by the physical sorption of water molecules on the surface of plasticized membrane. Hydration of PVP macromolecules varies with the introduction of metal ions, macromolecules unit undergoes a conformational transition. PVP macromolecules form tunnels or cavities where complex particles distributed and additional water accumulated through the second coordination layer. Constructed sensors based on TMPC have slope of electrode function equal to 25 mV/pC. Linear dependence of potential on the polymer concentration is observed in the range of 5–7 pC units. Sensors based on associates have slope of the electrode function of 20–25 mV/pC that can be varied depending on the nature of the EAS. Working range is 4–8 pC. Response time of sensor is less than 1 min. The optimal time for conditioning of the synthesized PVC membrane is 24 hours. Potentiometric sensors have been developed for the determination of residual amounts of low molecular PVP which is a food additive E 1201 commonly used for thickening, stabilizing and clarifying of food products. The content of PVP was determined in real objects (apple juice, beer, red wine and cognac with using the polyvinylpyrrolidone sensors (Sr < 0.08. The

  13. Tröger’s Base Ladder Polymer for Membrane-Based Hydrocarbon Separation

    KAUST Repository

    Alhazmi, Abdulrahman

    2017-05-01

    The use of polymeric membranes for natural gas separation has rapidly increased during the past three decades, particularly for carbon dioxide separation from natural gas. Another valuable application is the separation of heavy hydrocarbons from methane (fuel gas conditioning), more importantly for remote area and off-shore applications. A new potential polymeric membrane that might be utilized for natural gas separations is a Tröger’s base ladder polymer (PIM-Trip-TB-2). This glassy polymeric membrane was synthesized by the polymerization reaction of 9, 10-dimethyl-2,6 (7) diaminotriptycene with dimethoxymethane. In this research, the polymer was selected due to its high surface area and highly interconnected microporous structure. Sorption isotherms of nitrogen (N2), oxygen (O¬2), methane (CH4), carbon dioxide (CO2), ethane (C2H6), propane (C3H8), and n-butane (n-C4H10) were measured at 35 °C over a range of pressures using a Hiden Intelligent Gravimetric Analyzer, IGA. The more condensable gases (C2H6, CO2, C3H8, and n-C4H10) showed high solubility due to their high affinity to the polymer matrix. The permeation coefficients were determined for various gases at 35 °C and pressure difference of 5 bar via the constant-pressure/variable-volume method. The PIM-Trip-TB-2 film exhibited high performance for several high-impact applications, such as O2/N2, H2/N2 and H2/CH4. Also, physical aging for several gases was examined by measuring the permeability coefficients at different periods of time. Moreover, a series of mixed-gas permeation tests was performed using 2 vol.% n-C4H10/98 vol.% CH4 and the results showed similar transport characteristics to other microporous polymers with pores of less than 2 nm. The work performed in this research suggested that PIM-Trip-TB-2 is suitable for the separation of: (i) higher hydrocarbons from methane and (ii) small, non-condensable gases such as O2/N2 and H2/CH4.

  14. GA-Based Membrane Evolutionary Algorithm for Ensemble Clustering

    OpenAIRE

    Wang, Yanhua; Liu, Xiyu; Xiang, Laisheng

    2017-01-01

    Ensemble clustering can improve the generalization ability of a single clustering algorithm and generate a more robust clustering result by integrating multiple base clusterings, so it becomes the focus of current clustering research. Ensemble clustering aims at finding a consensus partition which agrees as much as possible with base clusterings. Genetic algorithm is a highly parallel, stochastic, and adaptive search algorithm developed from the natural selection and evolutionary mechanism of...

  15. Determination of Nitrite in Meat Products using a Metalloporphyrin Based Nitrite-Selective Membrane Electrode

    Directory of Open Access Journals (Sweden)

    Dana VLASCICI

    2006-07-01

    Full Text Available The potentiometric response characteristics of a nitrite-selective electrode based on Co (III tetraphenylporphyrins (TPP in o-nitrophenyloctylether plasticized polyvinyl chloride membranes are compared. To establish the optimum composition of the membrane, different molar percents of cationic derivative (0-100 mol% relative to ionophore were used. The influence of different plasticizers: o-nitrophenyloctylether, dioctylphtalate and tricresilphosphate on potentiometric answer were studied. Electrodes formulated with membranes containing 1 wt% ClCoTPP, 66 wt% o-NPOE, 33 wt% PVC (plasticizer:PVC = 2:1 and the lipophilic cationic derivative (10 mol% are shown to exhibit high selectivity for nitrite over many anions, except the lipophilic anions perchlorate and thiocyanate. The electrodes based on Co (III porphyrins were used for the potentiometric determination of nitrites in meat products. The results were compared with a colorimetric method used as the reference method. There was a good agreement between the potentiometric and colorimetric procedures.

  16. Micron-Sized Pored Membranes Based on Polyvinylidene Difluoride Hexafluoropropylene Prepared by Phase Inversion Techniques

    Directory of Open Access Journals (Sweden)

    Andreas Hofmann

    2017-10-01

    Full Text Available In this study, micron-sized pored membranes, based on the co-polymer polyvinylidene difluoride hexafluoropropylene (PVdF-HFP were prepared via phase inversion techniques. The aim of the approach was to find less harmful and less toxic solvents to fabricate such films. Therefore, the Hansen solubility approach was used to identify safer and less toxic organic solvents for the phase inversion process, relative to present solvent mixtures, based on acetone, dimethyl formamide, dimethyl acetamide or methanol. With this approach, it was possible to identify cyclopentanone, ethylene glycol and benzyl alcohol as suitable solvents for the membrane preparation process. Physicochemical and mechanical properties were analyzed and compared, which revealed a uniform membrane structure through the cross section. Differences were observed at the top surface, in dependence of both preparation approaches, which are described in detail.

  17. Multiple dynamic Al-based floc layers on ultrafiltration membrane surfaces for humic acid and reservoir water fouling reduction.

    Science.gov (United States)

    Ma, Baiwen; Li, Wenjiang; Liu, Ruiping; Liu, Gang; Sun, Jingqiu; Liu, Huijuan; Qu, Jiuhui; van der Meer, Walter

    2018-04-05

    The integration of adsorbents with ultrafiltration (UF) membranes is a promising method for alleviating membrane fouling and reducing land use. However, adsorbents typically are only injected into the membrane tank once, resulting in a single dynamic protection layer and low removal efficiency over long-term operation. In addition, the granular adsorbents used can cause membrane surface damage. To overcome these disadvantages, we injected inexpensive and loose aluminum (Al)-based flocs directly into a membrane tank with bottom aeration in the presence of humic acid (HA) or raw water taken from the Miyun Reservoir (Beijing, China). Results showed that the flocs were well suspended in the membrane tank, and multiple dynamic floc protection layers were formed (sandwich-like) on the membrane surface with multiple batch injections. Higher frequency floc injections resulted in better floc utilization efficiency and less severe membrane fouling. With continuous injection, acid solutions demonstrated better performance in removing HA molecules, especially those with small molecular weight, and in alleviating membrane fouling compared with the use of high aeration rate or polyacrylamide injection. This was attributed to the small particle size, large specific surface area, and high zeta potential of the flocs. Additionally, excellent UF membrane performance was exhibited by reservoir water with continuous injection and acid solution. Based on the outstanding UF membrane performance, this innovative integrated filtration with loose Al-based flocs has great application potential for water treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Membrane Based Measurement Technology for in situ Monitoring of Gases in Soil

    Directory of Open Access Journals (Sweden)

    Helmut Geistlinger

    2009-02-01

    Full Text Available The representative measurement of gas concentration and fluxes in heterogeneous soils is one of the current challenges when analyzing the interactions of biogeochemical processes in soils and global change. Furthermore, recent research projects on CO2-sequestration have an urgent need of CO2-monitoring networks. Therefore, a measurement method based on selective permeation of gases through tubular membranes has been developed. Combining the specific permeation rates of gas components for a membrane and Dalton’s principle, the gas concentration (or partial pressure can be determined by the measurement of physical quantities (pressure or volume only. Due to the comparatively small permeation constants of membranes, the influence of the sensor on its surrounding area can be neglected. The design of the sensor membranes can be adapted to the spatial scale from the bench scale to the field scale. The sensitive area for the measurement can be optimized to obtain representative results. Furthermore, a continuous time-averaged measurement is possible where the time for averaging is simply controlled by the wall-thickness of the membrane used. The measuring method is demonstrated for continuous monitoring of O2 and CO2 inside of a sand filled Lysimeter. Using three sensor planes inside the sand pack, which were installed normal to the gas flow direction and a reference measurement system, we demonstrate the accuracy of the gas-detection for different flux-based boundary conditions.

  19. Freestanding eggshell membrane-based electrodes for high-performance supercapacitors and oxygen evolution reaction.

    Science.gov (United States)

    Geng, Jing; Wu, Hao; Al-Enizi, Abdullah M; Elzatahry, Ahmed A; Zheng, Gengfeng

    2015-09-14

    A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific capacitances at current densities from 1 to 20 A g(-1), with excellent capacitance retention (>90%) at 10 A g(-1) for over 10,000 cycles. When employed as an OER catalyst, this eggshell membrane-based electrode exhibits an OER onset potential of 1.53 V vs. the reversible hydrogen electrode (RHE), and a stable catalytic current density of 20 mA cm(-2) at 1.65 V vs. the RHE.

  20. Two-Dimensional Metal-Organic Framework Nanosheets for Membrane-Based Gas Separation.

    Science.gov (United States)

    Peng, Yuan; Li, Yanshuo; Ban, Yujie; Yang, Weishen

    2017-08-07

    Metal-organic framework (MOF) nanosheets could serve as ideal building blocks of molecular sieve membranes owing to their structural diversity and minimized mass-transfer barrier. To date, discovery of appropriate MOF nanosheets and facile fabrication of high performance MOF nanosheet-based membranes remain as great challenges. A modified soft-physical exfoliation method was used to disintegrate a lamellar amphiprotic MOF into nanosheets with a high aspect ratio. Consequently sub-10 nm-thick ultrathin membranes were successfully prepared, and these demonstrated a remarkable H 2 /CO 2 separation performance, with a separation factor of up to 166 and H 2 permeance of up to 8×10 -7  mol m -2  s -1  Pa -1 at elevated testing temperatures owing to a well-defined size-exclusion effect. This nanosheet-based membrane holds great promise as the next generation of ultrapermeable gas separation membrane. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Mesoporous Silica Thin Membranes with Large Vertical Mesochannels for Nanosize-Based Separation.

    Science.gov (United States)

    Liu, Yupu; Shen, Dengke; Chen, Gang; Elzatahry, Ahmed A; Pal, Manas; Zhu, Hongwei; Wu, Longlong; Lin, Jianjian; Al-Dahyan, Daifallah; Li, Wei; Zhao, Dongyuan

    2017-09-01

    Membrane separation technologies are of great interest in industrial processes such as water purification, gas separation, and materials synthesis. However, commercial filtration membranes have broad pore size distributions, leading to poor size cutoff properties. In this work, mesoporous silica thin membranes with uniform and large vertical mesochannels are synthesized via a simple biphase stratification growth method, which possess an intact structure over centimeter size, ultrathin thickness (≤50 nm), high surface areas (up to 1420 m 2 g -1 ), and tunable pore sizes from ≈2.8 to 11.8 nm by adjusting the micelle parameters. The nanofilter devices based on the free-standing mesoporous silica thin membranes show excellent performances in separating differently sized gold nanoparticles (>91.8%) and proteins (>93.1%) due to the uniform pore channels. This work paves a promising way to develop new membranes with well-defined pore diameters for highly efficient nanosize-based separation at the macroscale. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries

    DEFF Research Database (Denmark)

    Miao, Ruiying; Liu, Bowen; Zhu, Zhongzheng

    2008-01-01

    As a potential electrolyte for lithium-ion batteries, a porous polymer electrolyte membrane based on poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) was prepared by a phase inversion method. The casting solution, effects of the solvent and non-solvent and addition of micron scale TiO2 par...... particles to the polymer electrolyte was found to enhance the tensile strength, electrolyte uptake, ion conductivity and the electrolyte/electrode interfacial stability of the membrane.......As a potential electrolyte for lithium-ion batteries, a porous polymer electrolyte membrane based on poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) was prepared by a phase inversion method. The casting solution, effects of the solvent and non-solvent and addition of micron scale TiO2...... particles were investigated. The membranes were characterized by SEM, XRD, AC impedance, and charge/discharge tests. By using acetone as the solvent and water as the non-solvent, the prepared membranes showed good ability to absorb and retain the lithium ion containing electrolyte. Addition of micron TiO2...

  3. Evaluation of castor oil-based polyurethane membranes in rat bone-marrow cell culture.

    Science.gov (United States)

    Cerejo, Sofia de Amorim; Rahal, Sheila Canevese; Lima Neto, João Ferreira de; Voorwald, Fabiana Azevedo; Alvarenga, Fernanda da Cruz Landim e

    2011-10-01

    To evaluate three methods to isolate rats MSCs and to analyze the potential of a castor oil polyurethane base membrane as a scaffold for MSCs. Four male Wistar rats, aged 20-30 days were used. Bone marrow aspirates from femur and tibia were harvested using DMEM high glucose and heparin. The cell culture was performed in three different ways: direct culture and two types of density gradients. After 15 days, was made the 1st passage and analyzed cell viability with markers Hoerscht 33342 and propidium iodide. The MSCs were characterized by surface markers with the aid of flow cytometry. After this, three types of castor oil polyurethane membranes associated with the MSCs were kept on the 6-well plate for 5 days and were analyzed by optical microscopy to confirm cell aggregation and growth. Separation procedures 1 and 2 allowed adequate isolation of MSCs and favored cell growth with the passage being carried out at 70% confluence after 15 days in culture. The cells could not be isolated using procedure 3. When the 3 castor oil polyurethane membrane types were compared it was possible to observe that the growth of MSCs was around 80% in membrane type 3, 20% in type 2, and 10% in type 1. Both Ficoll-Hypaque densities allow isolation of rat MSCs, and especially castor oil-based membrane type 3 may be used as a scaffold for MSCs.

  4. Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells.

    Science.gov (United States)

    Nawn, Graeme; Pace, Giuseppe; Lavina, Sandra; Vezzù, Keti; Negro, Enrico; Bertasi, Federico; Polizzi, Stefano; Di Noto, Vito

    2015-04-24

    Owing to the numerous benefits obtained when operating proton exchange membrane fuel cells at elevated temperature (>100 °C), the development of thermally stable proton exchange membranes that demonstrate conductivity under anhydrous conditions remains a significant goal for fuel cell technology. This paper presents composite membranes consisting of poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI4N) impregnated with a ZrO2 nanofiller of varying content (ranging from 0 to 22 wt %). The structure-property relationships of the acid-doped and undoped composite membranes have been studied using thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, wide-angle X-ray scattering, infrared spectroscopy, and broadband electrical spectroscopy. Results indicate that the level of nanofiller has a significant effect on the membrane properties. From 0 to 8 wt %, the acid uptake as well as the thermal and mechanical properties of the membrane increase. As the nanofiller level is increased from 8 to 22 wt % the opposite effect is observed. At 185 °C, the ionic conductivity of [PBI4N(ZrO2 )0.231 ](H3 PO4 )13 is found to be 1.04×10(-1)  S cm(-1) . This renders membranes of this type promising candidates for use in high-temperature proton exchange membrane fuel cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Adamantane-based amphiphiles (ADAs) for membrane protein study: importance of a detergent hydrophobic group in membrane protein solubilisation.

    Science.gov (United States)

    Chae, Pil Seok; Bae, Hyoung Eun; Das, Manabendra

    2014-10-21

    We prepared adamantane-containing amphiphiles and evaluated them using a large membrane protein complex in terms of protein solubilisation and stabilization efficacy. These agents were superior to conventional detergents, especially in terms of the membrane protein solubilisation efficiency, implying a new detergent structure-property relationship.

  6. Mechanism of Action of a Membrane-Active Quinoline-Based Antimicrobial on Natural and Model Bacterial Membranes.

    Science.gov (United States)

    Hubbard, Alasdair T M; Barker, Robert; Rehal, Reg; Vandera, Kalliopi-Kelli A; Harvey, Richard D; Coates, Anthony R M

    2017-02-28

    HT61 is a quinoline-derived antimicrobial, which exhibits bactericidal potency against both multiplying and quiescent methicillin resistant and sensitive Staphylococcus aureus, and has been proposed as an adjunct for other antimicrobials to extend their usefulness in the face of increasing antimicrobial resistance. In this study, we have examined HT61's effect on the permeability of S. aureus membranes and whether this putative activity can be attributed to an interaction with lipid bilayers. Using membrane potential and ATP release assays, we have shown that HT61 disrupts the membrane enough to result in depolarization of the membrane and release of intercellular constituents at concentrations above and below the minimum inhibitory concentration of the drug. Utilizing both monolayer subphase injection and neutron reflectometry, we have shown that increasing the anionic lipid content of the membrane leads to a more marked effect of the drug. In bilayers containing 25 mol % phosphatidylglycerol, neutron reflectometry data suggest that exposure to HT61 increases the level of solvent in the hydrophobic region of the membrane, which is indicative of gross structural damage. Increasing the proportion of PG elicits a concomitant level of membrane damage, resulting in almost total destruction when 75 mol % phosphatidylglycerol is present. We therefore propose that HT61's primary action is directed toward the cytoplasmic membrane of Gram-positive bacteria.

  7. Stable proton-conducting Ca-doped LaNbO4 thin electrolyte-based protonic ceramic membrane fuel cells by in situ screen printing

    International Nuclear Information System (INIS)

    Lin Bin; Wang Songlin; Liu Xingqin; Meng Guangyao

    2009-01-01

    In order to develop a simple and cost-effective route to fabricate protonic ceramic membrane fuel cells (PCMFCs), a stable proton-conducting La 0.99 Ca 0.01 NbO 4 (LCN) thin electrolyte was fabricated on a porous NiO-La 0.5 Ce 0.5 O 1.75 (NiO-LDC) anode by in situ screen printing. The key part of this process is to directly print well-mixed ink of La 2 O 3 , CaCO 3 and Nb 2 O 5 instead of pre-synthesized LCN ceramic powder on the anode substrate. After sintering at 1400 deg. C for 5 h, the full dense electrolyte membrane in the thickness of 20 μm was obtained. A single cell was assembled with (La 0.8 Sr 0.2 ) 0.9 MnO 3-δ -La 0.5 Ce 0.5 O 1.75 (LSM-LDC) as cathode and tested with humidified hydrogen as fuel and static air as oxidant. The open circuit voltage (OCV) and maximum power density respectively reached 0.98 V and 65 mW cm -2 at 800 deg. C. Interface resistance of cell under open circuit condition was also investigated.

  8. Numerical modeling transport phenomena in proton exchange membrane fuel cells

    Science.gov (United States)

    Suh, DongMyung

    To study the coupled phenomena occurring in proton exchange membrane fuel cells, a two-phase, one-dimensional, non-isothermal model is developed in the chapter 1. The model includes water phase change, proton transport in the membrane and electro-osmotic effect. The thinnest, but most complex layer in the membrane electrode assembly, catalyst layer, is considered an interfacial boundary between the gas diffusion layer and the membrane. Mass and heat transfer and electro-chemical reaction through the catalyst layer are formulated into equations, which are applied to boundary conditions for the gas diffusion layer and the membrane. Detail accounts of the boundary equations and the numerical solving procedure used in this work are given. The polarization curve is calculated at different oxygen pressures and compared with the experimental results. When the operating condition is changed along the polarization curve, the change of physicochemical variables in the membrane electrode assembly is studied. In particular, the over-potential diagram presents the usage of the electrochemical energy at each layer of the membrane electrode assembly. Humidity in supplying gases is one of the most important factors to consider for improving the performance of PEMFE. Both high and low humidity conditions can result in a deteriorating cell performance. The effect of humidity on the cell performance is studied in the chapter 2. First, a numerical model based on computational fluid dynamics is developed. Second, the cell performances are simulated, when the relative humidity is changed from 0% to 100% in the anode and the cathode channel. The simulation results show how humidity in the reactant gases affects the water content distribution in the membrane, the over-potential at the catalyst layers and eventually the cell performance. In particular, the rapid enhancement in the cell performance caused by self-hydrating membrane is captured by the simulation. Fully humidifying either H2

  9. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    International Nuclear Information System (INIS)

    Zhang, Xiaojun; Chen, Yuan; Chen, Yong

    2014-01-01

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM) has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release

  10. High flux and antifouling filtration membrane based on non-woven fabric with chitosan coating for membrane bioreactors.

    Science.gov (United States)

    Wang, Chanchan; Yang, Fenglin; Meng, Fangang; Zhang, Hanmin; Xue, Yuan; Fu, Gang

    2010-07-01

    To prepare a high flux and antifouling filtration membrane used for submerged membrane bioreactors, non-woven fabric (NWF) was modified by coating chitosan (CS) on both internal and outer surface. Chemical structural and morphological changes were characterized. The changes of surface free energy were monitored by dynamic contact angle, which showed an increase after modification. The CS/NWF composite membranes were found to be with high flux, high effluent quality and excellent antifouling property. The results of fouling resistance distribution indicated that irreversible fouling resistance was decreased by coating CS. Especially, there were fewer gel layers existing on the outer surface. The adsorption of EPS on the NWF membrane internal surface decreased after being coated with CS. Modification improved filtration performance, and made fouling less troublesome and membrane regeneration efficient. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Size-dependent chemical ageing of oleic acid aerosol under dry and humidified conditions

    Directory of Open Access Journals (Sweden)

    S. S. Al-Kindi

    2016-12-01

    Full Text Available A chemical reaction chamber system has been developed for the processing of oleic acid aerosol particles with ozone under two relative humidity conditions: dry and humidified to 65 %. The apparatus consists of an aerosol flow tube, in which the ozonolysis occurs, coupled to a scanning mobility particle sizer (SMPS and an aerosol time-of-flight mass spectrometer (ATOFMS which measure the evolving particle size and composition. Under both relative humidity conditions, ozonolysis results in a significant decrease in particle size and mass which is consistent with the formation of volatile products that partition from the particle to the gas phase. Mass spectra derived from the ATOFMS reveal the presence of the typically observed reaction products: azelaic acid, nonanal, oxononanoic acid and nonanoic acid, as well as a range of higher molecular weight products deriving from the reactions of reaction intermediates with oleic acid and its oxidation products. These include octanoic acid and 9- and 10-oxooctadecanoic acid, as well as products of considerably higher molecular weight. Quantitative evaluation of product yields with the ATOFMS shows a marked dependence upon both particle size association (from 0.3 to 2.1 µm diameter and relative humidity. Under both relative humidity conditions, the percentage residual of oleic acid increases with increasing particle size and the main lower molecular weight products are nonanal and oxononanoic acid. Under dry conditions, the percentage of higher molecular weight products increases with increasing particle size due to the poorer internal mixing of the larger particles. Under humidified conditions, the percentage of unreacted oleic acid is greater, except in the smallest particle fraction, with little formation of high molecular weight products relative to the dry particles. It is postulated that water reacts with reactive intermediates, competing with the processes which produce high molecular weight

  12. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    Science.gov (United States)

    Paul, Heather L.; Sompayrac, Robert; Conger, Bruce; Chamberlain, Mateo

    2009-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  13. Ultra-thin and strong formvar-based membranes with controlled porosity for micro- and nano-scale systems

    Science.gov (United States)

    Auchter, Eric; Marquez, Justin; Stevens, Garrison; Silva, Rebecca; Mcculloch, Quinn; Guengerich, Quintessa; Blair, Andrew; Litchfield, Sebastian; Li, Nan; Sheehan, Chris; Chamberlin, Rebecca; Yarbro, Stephen L.; Dervishi, Enkeleda

    2018-05-01

    We present a methodology for developing ultra-thin and strong formvar-based membranes with controlled morphologies. Formvar is a thin hydrophilic and oleophilic polymer inert to most chemicals and resistant to radiation. The formvar-based membranes are viable materials as support structures in micro- and macro-scale systems depending on thinness and porosity control. Tunable sub-micron thick porous membranes with 20%–65% porosity were synthesized by controlling the ratios of formvar, glycerol, and chloroform. This synthesis process does not require complex separation or handling methods and allows for the production of strong, thin, and porous formvar-based membranes. An expansive array of these membrane characterizations including chemical compatibility, mechanical responses, wettability, as well as the mathematical simulations as a function of porosity has been presented. The wide range of chemical compatibility allows for membrane applications in various environments, where other polymers would not be suitable. Our formvar-based membranes were found to have an elastic modulus of 7.8 GPa, a surface free energy of 50 mN m‑1 and an average thickness of 125 nm. Stochastic model simulations indicate that formvar with the porosity of ∼50% is the optimal membrane formulation, allowing the most material transfer across the membrane while also withstanding the highest simulated pressure loadings before tearing. Development of novel, resilient and versatile membranes with controlled porosity offers a wide range of exciting applications in the fields of nanoscience, microfluidics, and MEMS.

  14. A monolithic silicon-based membrane-electrode assembly for micro fuel cells

    Science.gov (United States)

    Yuzova, V. A.; Merkushev, F. F.; Semenova, O. V.

    2017-08-01

    We report the basic possibility of creating a micro fuel cell (MFC) with a monolithic silicon-based membrane-electrode assembly (MEA), which employs a porous three-layer framework structure manufactured by two-sided anodic etching of a 500-μm-thick silicon wafer. A technology of MEAs for MFCs is described.

  15. New cross-linked PVA based polymer electrolyte membranes for alkaline fuel cells

    NARCIS (Netherlands)

    Merle, Geraldine; Hosseiny, Seyed Schwan; Wessling, Matthias; Nijmeijer, Dorothea C.

    2012-01-01

    In this paper, we report a cheap and easy method for the preparation of anion exchange membranes based on a KOH doped and crosslinked poly(vinyl alcohol) (PVA) for alkaline fuel cells. Ionic conductivity and thermal and chemical stability are investigated as a function of the crosslinking density.

  16. Broadband passive InP membrane regenerator for silicon-based optical interconnect applications

    OpenAIRE

    Tassaert, Martijn; Dorren, HJS; Roelkens, Günther; Raz, O

    2013-01-01

    Improved passive signal regeneration performance based on bonded InP membrane waveguides is demonstrated. A tripling of the ER and receiver sensitivity enhancement of >3.6dB is achieved over the entire C-band at a bitrate of 2.5Gb/s

  17. On the optimal design of membrane-based gas separation processes

    NARCIS (Netherlands)

    Gabrielli, Paolo; Gazzani, Matteo; Mazzotti, Marco

    2017-01-01

    Gas-separation processes are of paramount importance for several industrial applications. In this context, membrane-based gas separation has a great innovation potential in term of limiting the energy consumption and simplifying the process operation and control. Much of the research in this field

  18. Ionomeric membranes based on partially sulfonated poly(styrene) : synthesis, proton conduction and methanol permeation

    NARCIS (Netherlands)

    Picchioni, F.; Tricoli, V.; Carretta, N.

    2000-01-01

    Homogeneuosly sulfonated poly(styrene) (SPS) was prepared with various concentration of sulfonic acid groups in the base polymer. Membranes cast from these materials were investigated in relation to proton conductivity and methanol permeability in the temperature range from 20°C to 60°C. It was

  19. High-Performance Palladium Based Membrane for Hydrogen Separation and Purification

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Scott

    2012-01-31

    The mission of the DOE's Fuel Cell Technologies'Hydrogen Fuels R&D effort is to research, develop, and validate technologies for producing, storing, and delivering hydrogen in an efficient, clean, safe, reliable, and affordable manner. A key program technical milestone for hydrogen technology readiness is to produce hydrogen from diverse, domestic resources at $2.00-$3.00 per gallon of gasoline equivalent (gge) delivered, untaxed. Low-cost, high-temperature hydrogen separation membranes represent a key enabling technology for small-scale distributed hydrogen production units. Availability of such membranes with high selectivity and high permeability for hydrogen will allow their integration with hydrocarbon reforming and water gas shift reactions, potentially reducing the cost of hydrogen produced. Pd-metal-based dense membranes are known for their excellent hydrogen selectivity and permeability characteristics, however, utilization of these membranes has so far been limited to small scale niche markets for hydrogen purification primarily due to the relatively high cost of Pd-alloy tubes compared to pressure swing adsorption (PSA) units. This project was aimed at development of thin-film Pd-alloy membranes deposited on Pall Corporation's DOE-based AccuSep® porous metal tube substrates to form a composite hydrogen separation membrane for these applications. Pall's composite membrane development addressed the typical limitations of composite structures by developing robust membranes capable of withstanding thermal and mechanical stresses resulting from high temperature (400C), high pressure (400 psi steam methane reformer and 1000 psi coal) operations and thermal cycling involved in conventional hydrogen production. In addition, the Pd-alloy membrane composition was optimized to be able to offer the most stability in the typical synthesis gas environments produced by reforming of natural gas and bio-derived liquid fuels (BILI) validating the

  20. Copper (II) ion selective liquid membrane electrode based on new Schiff base carrier.

    Science.gov (United States)

    Sadeghi, Susan; Vardini, Mohammad Taghi; Naeimi, Hossein

    2006-01-01

    Cu2+ selective PVC membrane electrode based on new Schiff base 2, 2'-[1,9 nonanediyl bis (nitriloethylidyne)]-bis-(1-naphthol) as a selective carrier was constructed. The electrode exhibited a linear potential response within the activity range of 1.0 x 10(-6) - 5.0 x 10(-3) moll(-1) with a Nernstian slope of 29 +/- 1 mV decade(-1) of Cu2+ activity and a limit of detection 8.0 x 10(-7) mol l(-1). The response time of the electrode was fast, 10 s, and stable potentials were obtained within the pH range of 3.5- 6.5. The potentiometric selectivity coefficients were evaluated using two solution method and revealed no important interferences except for Ag+ ion. The proposed electrode was applied as an indicator electrode to potentiometric titration of Cu2+ ions and determination of Cu2+ content in real samples such as black tea leaves and multivitamin capsule.

  1. Development of immobilized membrane-based affinity columns for use in the online characterization of membrane bound proteins and for targeted affinity isolations

    International Nuclear Information System (INIS)

    Moaddel, Ruin; Wainer, Irving W.

    2006-01-01

    Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (K d values) and non-linear chromatography can be used to assess the association (k on ) and dissociation (k off ) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein

  2. Development of immobilized membrane-based affinity columns for use in the online characterization of membrane bound proteins and for targeted affinity isolations

    Energy Technology Data Exchange (ETDEWEB)

    Moaddel, Ruin [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States); Wainer, Irving W. [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States)]. E-mail: Wainerir@grc.nia.nih.gov

    2006-03-30

    Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (K {sub d} values) and non-linear chromatography can be used to assess the association (k {sub on}) and dissociation (k {sub off}) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein.

  3. Prepare and characterization of nanocomposite - mixed matrix membranes based on polycarbonate

    International Nuclear Information System (INIS)

    Paranhos, Caio M.; Pessan, Luiz A.; Gomes, Ana C. de O.

    2009-01-01

    Mixed matrix membranes based on polycarbonate with different content of sepiolite were prepared by casting. The obtained membranes were characterized by wide-angle X-ray diffraction, thermal analysis, optical transparency and permeation to oxygen. The presence of sepiolite leads to the formation of a polymer-clay interface. The presence of the interface causes the increase in O 2 permeation. Increasing content of sepiolite results in aggregates of sepiolite, which forms preferential channels to the O 2 molecules. This fact is directly related to the strong increasing observed in O 2 permeability. (author)

  4. Invariant-based inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system

    Science.gov (United States)

    Chen, Ye-Hong; Shi, Zhi-Cheng; Song, Jie; Xia, Yan

    2018-02-01

    In this paper, by invariant-based inverse engineering, we design classical driving fields to transfer quantum fluctuations between two suspended membranes in an optomechanical cavity system. The transfer can be quickly attained through a nonadiabatic evolution path determined by a so-called dynamical invariant. Such an evolution path allows one to optimize the occupancies of the unstable "intermediate" states; thus, the influence of cavity decays can be suppressed. Numerical simulation demonstrates that a perfect fluctuation transfer between two membranes can be rapidly achieved in one step, and the transfer is robust to both the amplitude noises and cavity decays.

  5. Microchemical device based on microscopic bilayer lipid membranes; Bisho 2 bunshimaku wo mochiiita maikuro kagaku debaisu

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, H. [Electrotechnical Lab., Ibaraki (Japan)

    1996-04-01

    If an organism is regarded as a macromolecular system, the element device to construct the same is the molecular structure of nano meter scale formed by the functional protein existing in biomembranes. A lot of essential functions of organism such as the sense reception including vision, gustation, etc., photosynthesis, energy-substance production and so on are performed therein. In this paper, the structure, preparing process and the functions of the microchemical device using micro-bilipid membranes are described. The simulation of the sense receiving functions of organisms is tried by said microchemical device wherein, same as biomembranes, the base is bilayer lipid molecular membrane and the receptive protein for receiving signals from exterior and output molecules such as ion channels connected to said receptive protein and the like are incorporated in the membranes. Recently, it becomes possible to make a partial imaging of the bilayer lipid membranes fixed on porous membrane by the observation with scanning Maxwell-stress microscope. 4 refs., 3 figs.

  6. Triple-bore hollow fiber membrane contactor for liquid desiccant based air dehumidification

    KAUST Repository

    Bettahalli Narasimha, Murthy Srivatsa

    2016-04-26

    Dehumidification is responsible for a large part of the energy consumption in cooling systems in high humidity environments worldwide. Improving efficiency is therefore essential. Liquid desiccants offer a promising solution for dehumidification, as desired levels of humidity removal could be easily regulated. The use of membrane contactors in combination with liquid desiccant is attractive for dehumidification because they prevent direct contact between the humid air and the desiccant, removing both the potential for desiccant carryover to the air and the potential for contamination of the liquid desiccant by dust and other airborne materials, as well as minimizing corrosion. However, the expected additional mass transport barrier of the membrane surface can lower the expected desiccation rate per unit of desiccant surface area. In this context, hollow fiber membranes present an attractive option for membrane liquid desiccant contactors because of their high surface area per unit volume. We demonstrate in this work the performance of polyvinylidene fluoride (PVDF) based triple-bore hollow fiber membranes as liquid desiccant contactors, which are permeable to water vapor but impermeable to liquid water, for dehumidification of hot and humid air.

  7. Sulfonated poly(ether ether ketone) based membranes for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, Kimball S.

    2010-07-01

    The decreasing availability of fossil fuels and the increasing impact of greenhouse gases on the environment lead to an extensive development of more efficient or renewable energy sources. The direct alcohol fuel cell (DAFC) as a portable energy source is a promising and fast growing technology which meets these demands. Up to now, methanol is mostly studied as a fuel for these devices, however, applying ethanol has some evident advantages over methanol. The major challenges in direct ethanol fuel cell (DEFC) research on component level are the catalyst development and the electrolyte membrane development. The focus of this thesis lies on the development and characterization of proton conductive membranes for application in direct ethanol fuel cells (DEFC). Sulfonated poly(ether ether ketone) (sPEEK) based organic-inorganic mixed-matrix membranes are developed and, in addition, the inorganic phase is modified with functional silanes carrying basic groups. The membranes are characterized with respect to fuel crossover, proton conductivity, membrane stability and direct ethanol fuel cell tests. (orig.)

  8. Development of miniaturized sorbent membrane funnel-based spray platform for biological analysis.

    Science.gov (United States)

    Yeung, Hoi Sze; Chen, Xiangfeng; Li, Wan; Wang, Ze; Wong, Y L Elaine; Chan, T-W Dominic

    2015-03-17

    In this work, a miniaturized solid-phase extraction (SPE) platform, called sorbent membrane funnel, which permits in situ cleanup prior to membrane funnel-based spray analysis was developed. The fabrication of funnel and the mounting of SPE sorbent were simple and straightforward by a homemade punching system. Using different sorbents, the SPE sorbent funnel has been successfully applied in spray analysis of drug molecules spiked in human plasma, trypsin digested solution of bovine serum albumin in the presence of high concentration of chaotropic reagents, and phosphopeptides in the tryptic digested solution of casein. The results demonstrated that SPE sorbent attached membrane funnels can be a useful tool in common metabolomic and proteomic applications.

  9. Silica based composite membranes for methanol fuel cells operating at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, A.; Guzman, C.; Peza-Ledesma, C.; Godinez, Luis A.; Nava, R.; Duron-Torres, S.M.; Ledesma-Garcia, J.; Arriaga, L.G.

    2011-01-15

    Direct methanol fuel cells (DMFCs) are seen as an alternative energy source for several applications, particularly portable power sources. Nafion membranes constitute a well known proton exchange system for DMFC systems due to their convenient electrochemical, mechanical and thermal stability and high proton conductivity properties. But there are problems currently associated with the direct methanol fuel cell technology. Intensive efforts to decrease the methanol crossover are focused mainly on the development of new polymer electrolyte membranes. In this study, Nafion polymer was modified by means of the incorporation of inorganic oxides with different structural properties (SBA-15 and SiO2), both prepared by sol-gel method in order to increase the proton conductivity at high temperature of fuel cell and to contribute decrementing the methanol crossover effect. Composite membranes based in inorganic fillers showed a significant decrease in the concentration of methanol permeation.

  10. Optical Antenna-Based Fluorescence Correlation Spectroscopy to Probe the Nanoscale Dynamics of Biological Membranes.

    Science.gov (United States)

    Winkler, Pamina M; Regmi, Raju; Flauraud, Valentin; Brugger, Jürgen; Rigneault, Hervé; Wenger, Jérôme; García-Parajo, María F

    2018-01-04

    The plasma membrane of living cells is compartmentalized at multiple spatial scales ranging from the nano- to the mesoscale. This nonrandom organization is crucial for a large number of cellular functions. At the nanoscale, cell membranes organize into dynamic nanoassemblies enriched by cholesterol, sphingolipids, and certain types of proteins. Investigating these nanoassemblies known as lipid rafts is of paramount interest in fundamental cell biology. However, this goal requires simultaneous nanometer spatial precision and microsecond temporal resolution, which is beyond the reach of common microscopes. Optical antennas based on metallic nanostructures efficiently enhance and confine light into nanometer dimensions, breaching the diffraction limit of light. In this Perspective, we discuss recent progress combining optical antennas with fluorescence correlation spectroscopy (FCS) to monitor microsecond dynamics at nanoscale spatial dimensions. These new developments offer numerous opportunities to investigate lipid and protein dynamics in both mimetic and native biological membranes.

  11. Efficacy of oligodynamic metals in the control of bacteria growth in humidifier water tanks and mist droplets.

    Science.gov (United States)

    Collart, David; Mehrabi, Sharifeh; Robinson, Liah; Kepner, Bryan; Mintz, Eric A

    2006-06-01

    Antimicrobial capsules were evaluated for their effectiveness to control bacterial contamination of cool mist humidifiers. These capsules contain a mixture of silver and copper promoted alumina beads designed to release low concentrations of these oligodynamic metals into the reservoir water for bacteria control. The reservoir water and mist droplets from the humidifier units were tested for the presence of bacteria over a three-week period. A control unit (without capsule) showed significant bacterial contamination by day three, which increased throughout the three-week test period, in both the reservoir and mist droplets, whereas the antimicrobial capsules reduced contamination during the first week, and minimized the presence of bacteria, in both the reservoir water and mist droplets, to less than 2% of the control unit throughout the three-week test period. It was also observed that, after each inactive weekend, the initial discharge of bacteria via the mist droplets in the control unit was significantly higher than during daily use. However, initial bacterial discharge from the test unit following weekend inactivity never exceeded 0.5% of the control unit. In conclusion, these capsules containing oligodynamic metals are effective in controlling bacteria growth in humidifier water tanks and mist droplets.

  12. Insufflation with Humidified and Heated Carbon Dioxide in Short-Term Laparoscopy: A Double-Blinded Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Anja Herrmann

    2015-01-01

    Full Text Available Background. We tested the hypothesis that warm-humidified carbon dioxide (CO2 insufflation would reduce postoperative pain and morphine requirement compared to cold-dry CO2 insufflation. Methods. A double-blinded, randomized, controlled trial was conducted to compare warm, humidified CO2 and cold-dry CO2. Patients with benign uterine diseases were randomized to either treatment (n=48 or control (n=49 group during laparoscopically assisted vaginal hysterectomy. Primary endpoints of the study were rest pain, movement pain, shoulder-tip pain, and cough pain at 2, 4, 6, 24, and 48 hours postoperatively, measured by visual analogue scale. Secondary outcomes were morphine consumption, rejected boli, temperature change, recovery room stay, and length of hospital stay. Results. There were no significant differences in all baseline characteristics. Shoulder-tip pain at 6 h postoperatively was significantly reduced in the intervention group. Pain at rest, movement pain, and cough pain did not differ. Total morphine consumption and rejected boli at 24 h postoperatively were significantly higher in the control group. Temperature change, recovery room stay, and length of hospital were similar. Conclusions. Warm, humidified insufflation gas significantly reduces postoperative shoulder-tip pain as well as morphine demand. This trial is registered with Clinical Trial Registration Number  DRKS00003853 (German Clinical Trials Register (DRKS.

  13. A smart thermo- and pH-responsive microfiltration membrane based on three-dimensional inverse colloidal crystals.

    Science.gov (United States)

    Yu, Bing; Song, Qianqian; Cong, Hailin; Xu, Xiaodan; Han, Dongwei; Geng, Zhongmin; Zhang, Xiaoyan; Usman, Muhammad

    2017-09-21

    In this paper, a thermo- and pH-responsive microfiltration membrane was prepared based on three-dimensional (3D) inverse colloidal crystals (ICC). To manufacture the smart ICC membrane, the typical thermo-responsive N-isopropylacrylamide (NIPAM) and pH-responsive methacrylic acid (MAA) were polymerized inside silica colloidal crystals. The smart ICC membranes were characterized by SEM, IR and contact angle measurements. Moreover, the permeability of smart microfiltration membrane was carried out by the KCl diffusion tests. The result showed that effective diameter of the polymer ICC membrane can be reversible tuned by temperature and pH. Besides, the functional ICC membrane showed outstanding temperature- and pH-responsive gating property, which was applied to separate particles of different sizes. The savvy environment-responsive gating membranes have potential uses in filtration, separation, purification, sensor and other applications.

  14. Paper membrane-based SERS platform for the determination of glucose in blood samples.

    Science.gov (United States)

    Torul, Hilal; Çiftçi, Hakan; Çetin, Demet; Suludere, Zekiye; Boyacı, Ismail Hakkı; Tamer, Uğur

    2015-11-01

    In this report, we present a paper membrane-based surface-enhanced Raman scattering (SERS) platform for the determination of blood glucose level using a nitrocellulose membrane as substrate paper, and the microfluidic channel was simply constructed by wax-printing method. The rod-shaped gold nanorod particles were modified with 4-mercaptophenylboronic acid (4-MBA) and 1-decanethiol (1-DT) molecules and used as embedded SERS probe for paper-based microfluidics. The SERS measurement area was simply constructed by dropping gold nanoparticles on nitrocellulose membrane, and the blood sample was dropped on the membrane hydrophilic channel. While the blood cells and proteins were held on nitrocellulose membrane, glucose molecules were moved through the channel toward the SERS measurement area. Scanning electron microscopy (SEM) was used to confirm the effective separation of blood matrix, and total analysis is completed in 5 min. In SERS measurements, the intensity of the band at 1070 cm(-1) which is attributed to B-OH vibration decreased depending on the rise in glucose concentration in the blood sample. The glucose concentration was found to be 5.43 ± 0.51 mM in the reference blood sample by using a calibration equation, and the certified value for glucose was 6.17 ± 0.11 mM. The recovery of the glucose in the reference blood sample was about 88 %. According to these results, the developed paper-based microfluidic SERS platform has been found to be suitable for use for the detection of glucose in blood samples without any pretreatment procedure. We believe that paper-based microfluidic systems may provide a wide field of usage for paper-based applications.

  15. Physically Gelled Room-Temperature Ionic Liquid-Based Composite Membranes for CO2/N-2 Separation: Effect of Composition and Thickness on Membrane Properties and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, PT; Voss, BA; Wiesenauer, EF; Gin, DL; Nobe, RD

    2013-07-03

    An aspartame-based, low molecular-weight organic gelator (LMOG) was used to form melt-infused and composite membranes with two different imidazolium-based room-temperature ionic liquids (RTILs) for CO2 separation from N-2. Previous work demonstrated that LMOGs can gel RTILs at low, loading levels, and this aspartame-based LMOG was selected because it has been reported to gel a large number of RTILs. The imidazolium-based RTILs were used because of their inherent good properties for CO2/light gas separations. Analysis of the resulting bulk RTIL/LMOG physical gels showed that these materials have high sol-gel transition temperatures (ca. 135 degrees C) suitable for flue gas applications. Gas permeabilities and burst pressure measurements of thick, melt infused membranes revealed a trade-off between high CO2 permeabilities and good mechanical stability as a function of the LMOG loading. Defect-free, composite membranes of the gelled RTILs were successfully fabricated by choosing an appropriate porous membrane support (hydrophobic PTFE) using a suitable coating technique (roller coating). The thicknesses of the applied composite gel layers ranged from 10.3 to 20.7 mu m, which represents an order of magnitude decrease in active layer thickness, compared to the original melt-infused gel RTIL membranes.

  16. A simple cellulose acetate membrane-based small lanes technique for protein electrophoresis.

    Science.gov (United States)

    Na, Na; Liu, Tingting; Yang, Xiaojun; Sun, Binjie; Ouyang, Jenny; Ouyang, Jin

    2012-08-01

    Combining electrophoresis with a cellulose acetate membrane-based technique, we developed a simple and low-cost method, named cellulose acetate membrane-based small lanes (CASL), for protein electrophoresis. A home-made capillary plotter controlled by a 3D moving stage was used to create milli-to-micro channels by printing poly(dimethylsiloxane) on to a hydrophilic cellulose acetate membrane. In the hydrophilic channels, 5 nL protein mixture was separated on the basis of electro-migration under an electric field. Compared with polyacrylamide gel electrophoresis (PAGE), CASL resulted in higher protein signal intensity for separation of mixtures containing the same mass of protein. The platform was easily fabricated at low cost (approx. $0.005 for each 1-mm-wide channel), and separation of three protein mixtures was completed in 15 min. Both electrophoresis time and potential affected the separation. Rather than chromatographic separation, this method accomplished application of microchannel techniques for cellulose acetate membrane-based protein electrophoresis. It has potential in proteomic analysis, especially for rapid, low-cost, and low-volume sample analysis in clinical diagnosis.

  17. The humidifier disinfectant case and the legislative challenges of the 20th Congress

    Directory of Open Access Journals (Sweden)

    Taehyun Park

    2016-08-01

    Full Text Available A number of absurdities surrounding the humidifier disinfectant (HD incident may have occurred because 1 a judicial system operates on the underlying false assumption that the involved parties are equals in knowledge, information and resource mobilization capabilities, regardless of respective real status as company or individual; 2 there is a lack of a system that mandates a company to prevent and actively manage possible catastrophes; 3 the regulatory scheme makes companies believe that as long as they are complying with the existing regulations, they have satisfied all of their responsibilities. I believe that this issue is an opportunity to bring about changes in the judicial redress system, the system of internal management of manufacturers, and the regulatory system of the government. The following regulation amendments are needed to move towards the changes stated above. First, legislation relating to victim relief that is applicable to the HD incident must be established. Second, a risk management system must be formed within the manufacturing company and to this end an institutional environment for the system must be established within regulatory framework. Furthermore, legislation must be passed that could punish companies themselves that have caused severe damage to individuals because they had failed to take necessary actions to avoid foreseeable harm. Finally, the framework of regulation must be changed so that the company, who has the necessary information regarding the product and the component chemicals used in the product, must self-directed experiment and assessment of the safety of their own products.

  18. Long term high flow humidified oxygen treatment in COPD – effect on blood gases

    DEFF Research Database (Denmark)

    Storgaard, Line; Weinreich, Ulla; Hockey, Hans

    2017-01-01

    .Aim: To investigate the treatment effect on arterial blood gases (PaO2, PaCO2 and SaO2) in patients with resting hypoxemia over 12 months.Method: In this prospective, randomized controlled, one-year study, 200 COPD patients treated with LTOT, all GOLD class 4, were randomized to NHF (n=100) or usual care (n=100......Introduction: Long term oxygen therapy (LTOT) improves survival in patients with COPD with resting hypoxemia. The AIRVO device delivering nasal high flow (NHF) warmed and humidified oxygen-enriched air to COPD patients in need of LTOT. Short term studies suggest that this may reduce PaCO2 in COPD.......05 kPa for AIRVO-NHF and 0.40 kPa for control patients.Conclusion: These results show a significant difference in change of PaCO2 of 0.35 kPA more for control than for the AIRVO-NHF group of COPD patients needing LTOT....

  19. Improved care and growth outcomes by using hybrid humidified incubators in very preterm infants.

    Science.gov (United States)

    Kim, Sung Mi; Lee, Edward Y; Chen, Jie; Ringer, Steven Alan

    2010-01-01

    To identify changes in temperature, fluid and electrolyte management, growth, and short-term outcome in extremely low birth weight (ELBW) infants nursed in humidified hybrid incubators (HI group) compared with a cohort of patients cared for in nonhumidified conventional incubators (CI group). Body temperature (BT), fluid and electrolyte balance, and growth velocity (GV) were collected retrospectively on 182 ELBW infants. The CI group included ELBW infants cared for with radiant warmers followed by an incubator without humidity. The HI group included ELBW infants cared for in the radiant warmer mode in a Giraffe OmniBed, followed by the incubator mode using high humidity. The CI group included more multiple births (50.6%) than the HI group (35.8%; P incubator improved care for ELBW infants by making it possible to decrease fluid intake, improve electrolyte balance, and enhance GV without a disturbance of BT compared with conventional care. By adjusting fluid intake when using these devices, benefits may be enhanced and the risk of BPD and severe BPD may be reduced.

  20. Anion exchange membrane based on alkali doped poly(2,5-benzimidazole) for alkaline membrane fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2010-03-01

    Full Text Available Alkaline membrane fuel cell (AMFC) has been received increasing attention among the different types of fuel cells. Ammonium quaternized polymers such as poly (arylene ether sulfones) are being developed and studied as candidates of ionomeric...

  1. PROTECTIVE CLOTHING BASED ON PERMSELECTIVE MEMBRANE AND CARBON ADSORPTION

    International Nuclear Information System (INIS)

    Wijmans, J.G.; Stull, J.O.

    2001-01-01

    . Protective suits were prepared in collaboration with Kimberly-Clark Corporation and heat stress testing with human test subjects was carried out by the International Union of Operating Engineers (IUOE). The tests confirmed that the MTR protective fabric is significantly more comfortable than non-breathable materials. A cost analysis was developed from the properties of the optimized protective fabric and the results of the of the IUOE field study to determine the potential for the MTR material technology within the chemical protective clothing market. A detailed assessment of the specific chemical protective clothing applications for which the material can be used and its competitiveness with existing material technology, based both on expected performance and material/end item costs, was prepared. Three specific market opportunities identified for the novel protective fabric are: (1) liquid splash protective clothing for hazardous waste site operations, (2) liquid splash protective clothing for emergency response, and (3) Class 3 NFPA 1994-compliant protective clothing for civilian use during chemical terrorism incidents

  2. PROTECTIVE CLOTHING BASED ON PERMSELECTIVE MEMBRANE AND CARBON ADSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    J.G. Wijmans; J.O. Stull

    2001-11-07

    . Protective suits were prepared in collaboration with Kimberly-Clark Corporation and heat stress testing with human test subjects was carried out by the International Union of Operating Engineers (IUOE). The tests confirmed that the MTR protective fabric is significantly more comfortable than non-breathable materials. A cost analysis was developed from the properties of the optimized protective fabric and the results of the of the IUOE field study to determine the potential for the MTR material technology within the chemical protective clothing market. A detailed assessment of the specific chemical protective clothing applications for which the material can be used and its competitiveness with existing material technology, based both on expected performance and material/end item costs, was prepared. Three specific market opportunities identified for the novel protective fabric are: (1) liquid splash protective clothing for hazardous waste site operations, (2) liquid splash protective clothing for emergency response, and (3) Class 3 NFPA 1994-compliant protective clothing for civilian use during chemical terrorism incidents.

  3. Reclamation from palm oil mill effluent using an integrated zero discharge membrane-based process

    Directory of Open Access Journals (Sweden)

    Ahmad A.L.

    2015-12-01

    Full Text Available This research emphasizes eloquently on membrane technology for treatment of palm oil mill effluent (POME as it is the Malaysia’s largest and most important agro based industry. Findings established significant quality improvement with an efficient recovery of water from palm oil mill via innovative membrane application. Conventional bio-methods, whilst adhering to the Department of Environment’s (DOE discharge regulations, produces brownish liquid which pales in comparison to the crystal clear water obtained through membrane treatment. The pre-treatment process consists of coagulation-flocculation using green environmental coagulant bases such as Moringa oleifera (MO seeds. The ultrafiltration polyvinylidene difluoride (PVDF and thin film composite (TFC reverse osmosis were vital for the membrane processes. The system gave 99% suspended solids reduction in suspended solid and 78% of water present was successfully recovered. This technology guarantees water recovery with drinking water quality; meeting the US Environmental Protection Agency (USEPA standard or could be recycled into the plant with sludge utilization for palm oil estates, thus enabling the concept of zero discharge to be executed in the industries. In addition, green and healthy antioxidants such as oil and beta-carotene can be recovered from POME further demonstrate. Silica gel showed better performance in separation of carotenes from oil at temperature 40°C using adsorption chromatography with 1154.55 ppm. The attractiveness of this technology, enabling the utilization of reuse of agricultural waste into potentially value added products.

  4. Calculations of helium separation via uniform pores of stanene-based membranes

    Directory of Open Access Journals (Sweden)

    Guoping Gao

    2015-12-01

    Full Text Available The development of low energy cost membranes to separate He from noble gas mixtures is highly desired. In this work, we studied He purification using recently experimentally realized, two-dimensional stanene (2D Sn and decorated 2D Sn (SnH and SnF honeycomb lattices by density functional theory calculations. To increase the permeability of noble gases through pristine 2D Sn at room temperature (298 K, two practical strategies (i.e., the application of strain and functionalization are proposed. With their high concentration of large pores, 2D Sn-based membrane materials demonstrate excellent helium purification and can serve as a superior membrane over traditionally used, porous materials. In addition, the separation performance of these 2D Sn-based membrane materials can be significantly tuned by application of strain to optimize the He purification properties by taking both diffusion and selectivity into account. Our results are the first calculations of He separation in a defect-free honeycomb lattice, highlighting new interesting materials for helium separation for future experimental validation.

  5. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review.

    Science.gov (United States)

    Huang, Xiaolin; Aguilar, Zoraida P; Xu, Hengyi; Lai, Weihua; Xiong, Yonghua

    2016-01-15

    Membrane-based lateral flow immunochromatographic strip (LFICS) is widely used in various fields because of its simplicity, rapidity (detection within 10min), and low cost. However, early designs of membrane-based LFICS for preliminary screening only provide qualitative ("yes/no" signal) or semi-quantitative results without quantitative information. These designs often suffer from low-signal intensity and poor sensitivity and are only capable of single analyte detection, not simultaneous multiple detections. The performance of existing techniques used for detection using LFICS has been considerably improved by incorporating different kinds of nanoparticles (NPs) as reporters. NPs can serve as alternative labels and improve analytical sensitivity or limit of detection of LFICS because of their unique properties, such as optical absorption, fluorescence spectra, and magnetic properties. The controlled manipulation of NPs allows simultaneous or multiple detections by using membrane-based LFICS. In this review, we discuss how colored (e.g., colloidal gold, carbon, and colloidal selenium NPs), luminescent (e.g., quantum dots, up-converting phosphor NPs, and dye-doped NPs), and magnetic NPs are integrated into membrane-based LFICS for the detection of target analytes. Gold NPs are also featured because of their wide applications. Different types and unique properties of NPs are briefly explained. This review focuses on examples of NP-based LFICS to illustrate novel concepts in various devices with potential applications as screening tools. This review also highlights the superiority of NP-based approaches over existing conventional strategies for clinical analysis, food safety, and environmental monitoring. This paper is concluded by a short section on future research trends regarding NP-based LFICS. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A PEM fuel cell based on electrocatalyst and membrane materials modified by PANAM dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Ledesma-Garcia, J.; Chapman, T.W.; Godinez, L.A. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Queretaro (Mexico)

    2008-10-15

    Due to its high energy conversion efficiency and low emission of pollutants, fuel-cell technology has been generally recognized as a key twenty-first century energy source. For polymer electrolyte membrane fuel cells (PEMFC), it has been found that platinum and its alloys exhibit the best electrocatalytic activity for oxygen reduction. The highest electrocatalytic activity of platinum and its alloys can be achieved when the particles are produced in the nanometer range. In this context, organic molecules have been adopted as templates to control the size of metal nanoparticles. Dendrimers, in particular, have shown promising properties for this application, and strategies that include direct adsorption, electrostatic attachment and covalent bonding have been developed for connecting metal-bearing dendrimers to conducting substrates. This paper reported on the preliminary results of a study that involved the construction and testing of a hydrogen-oxygen PEM fuel cell based on carbon-fiber-paper electrodes coated with hydroxyl-terminated dendrimers that encapsulated nanoparticles of platinum. This prototype cell also employed an ion exchange membrane comprising a cellulose acetate filter functionalized with proton-exchanging dendrimers. A proton-exchange membrane was prepared by binding duplex amine-carboxylate dendrimers to a cellulose-acetate support. With these dendrimer-based materials, a hydrogen-oxygen fuel cell was assembled and the performance compared with cells prepared with Nafion-based membranes. The voltage-current profiles and the power-density curves from the new cell provide encouragement to continue work with these dendrimer-modified materials. The paper discussed the experimental methods, with particular reference to materials; electrode preparation and characterization; proton-exchange membrane preparation; and PEM fuel-cell assembly and testing. It was concluded that the use of the dendritic macromolecules as supports for the nanoparticulate

  7. Gas Separation Performance of Carbon Molecular Sieve Membranes Based on 6FDA-mPDA/DABA (3:2) Polyimide

    KAUST Repository

    Qiu, Wulin

    2014-02-23

    6FDA-mPDA/DABA (3:2) polyimide was synthesized and characterized for uncross-linked, thermally crosslinked, and carbon molecular sieve (CMS) membranes. The membranes were characterized with thermogravimetric analysis, FTIR spectroscopy, wide-angle X-ray diffraction, and gas permeation tests. Variations in the d spacing, the formation of pore structures, and changes in the pore sizes of the CMS membranes were discussed in relation to pyrolysis protocols. The uncross-linked polymer membranes showed high CO 2/CH4 selectivity, whereas thermally crosslinked membranes exhibited significantly improved CO2 permeability and excellent CO2 plasticization resistance. The CMS membranes showed even higher CO2 permeability and CO2/CH4 selectivity. An increase in the pyrolysis temperature resulted in CMS membranes with lower gas permeability but higher selectivity. The 550 °C pyrolyzed CMS membranes showed CO2 permeability as high as 14 750 Barrer with CO 2/CH4 selectivity of approximately 52. Even 800 °C pyrolyzed CMS membranes still showed high CO2 permeability of 2610 Barrer with high CO2/CH4 selectivity of approximately 118. Both polymer membranes and the CMS membranes are very attractive in aggressive natural gas purification applications. Permeating through: Polyimide-based uncross-linked, thermally crosslinked, and carbon molecular sieve (CMS) membranes are prepared. Variations in the d spacing, the formation of pore structures, and changes in the pore sizes of the CMS membranes are discussed in relation to pyrolysis protocols. Both the polymer and CMS membranes are very attractive in aggressive natural gas purification applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nanostructure-based proton exchange membrane for fuel cell applications at high temperature.

    Science.gov (United States)

    Li, Junsheng; Wang, Zhengbang; Li, Junrui; Pan, Mu; Tang, Haolin

    2014-02-01

    As a clean and highly efficient energy source, the proton exchange membrane fuel cell (PEMFC) has been considered an ideal alternative to traditional fossil energy sources. Great efforts have been devoted to realizing the commercialization of the PEMFC in the past decade. To eliminate some technical problems that are associated with the low-temperature operation (such as catalyst poisoning and poor water management), PEMFCs are usually operated at elevated temperatures (e.g., > 100 degrees C). However, traditional proton exchange membrane (PEM) shows poor performance at elevated temperature. To achieve a high-performance PEM for high temperature fuel cell applications, novel PEMs, which are based on nanostructures, have been developed recently. In this review, we discuss and summarize the methods for fabricating the nanostructure-based PEMs for PEMFC operated at elevated temperatures and the high temperature performance of these PEMs. We also give an outlook on the rational design and development of the nanostructure-based PEMs.

  9. Reduction of VOC emissions by a membrane-based gas absorption process.

    Science.gov (United States)

    Li, Rui; Xu, Jun; Wang, Lianjun; Li, Jiansheng; Sun, Xiuyun

    2009-01-01

    A membrane-based gas absorption (MGA) process was evaluated for the removal of volatile organic compounds (VOCs) based on C6H6/N2 mixture. The absorption of C6H6 from a C6H6/N2 mixture was investigated using a hydrophobic polypropylene hollow fiber membrane contactor and the aqueous solution of N-formyl morpholine (NFM) as absorbent. The effects of various factors on the overall mass transfer coefficient was investigated. The experimental results showed that the removal efficiency of C6H6 could reach 99.5% in present studied system. A mathematical model based on resistance-in-series concept was presented to predict the value of overall mass transfer coefficient. The average error between the predicted and experimental values is 7.9%. In addition, conventional packed columns for VOCs removal was also evaluated for comparison.

  10. New Polymer Electrolyte Membranes Based on Acid Doped PBI For Fuel Cells Operating above 100°C

    DEFF Research Database (Denmark)

    Li, Qingfeng

    2003-01-01

    The technical achievement and challenges for the PEMFC technology based on perfluorosulfonic acid (PFSA) polymer membranes (e.g. Nafion®) are briefly discussed. The newest development for alternative polymer electrolytes for operation above 100°C. As one of the successful approaches to high opera...... operational temperatures, the development and evaluation of acid doped PBI membranes are reviewed, covering polymer synthesis, membrane casting, acid doping, physiochemical characterization and fuel cell tests....

  11. The theoretical advantage of affinity membrane-based immunoadsorption therapy of hypercholesterolemia

    International Nuclear Information System (INIS)

    Green, P.; Odell, R.; Schindhelm, K.

    1996-01-01

    Full text: Therapy of hypercholesterolemia using immunoadsorption of Low Density Lipoprotein (LDL) to a gel substrate is a current clinical technique (Bosch T., Biomat., Art. Cells and Immob. Biotech, 20: 1165- 1169, 1992). Recently, Affinity Membranes have been proposed as an alternate substrate for immunoadsorption (Brandt S and others, Bio Technology, 6:779-782, 1988). Potentially, the overall rate of adsorption to a membrane may be faster than to a gel because of the different geometry (ibid). This implies that for the same conditions, a membrane-based device will have a higher Number of Transfer Units, more efficient adsorption and a smaller device size than a gel. To test this hypothesis, we calculated two key theoretical design parameters: Separation Factor, R, and the Number of Transfer Units, N, for a functioning clinical-scale affinity membrane device: R=K d /K d +C 0 . Kd: Equilibrium Dissociation Constant (M) and Co: Feed Concentration (M) N=k a Q max V m /F. ka: Intrinsic reaction rate constant (M -1 min -1 ), Qmax: Substrate capacity (M), Vm: Membrane volume (m1) and F: Flow Rate (m1 min -1 ). We assumed 1 hr treatment time during which 1 plasma volume (3L) is treated, hence F=50 (m1 min -1 ). If we assume 2/3 of LDL is removed from an initial level of 3 g/L, we can calculate an average feed concentration Co = 2 g / L. There is some data available in the literature for typical values of Kd (10 -8 M) and ka ( 10 3 M -1 s -1 to 3 x 10 5 M -1 s -1 ) (Olsen WC and others, Molec. Immun: 26: 129-136, 1989). Since the intrinsic reaction kinetics may vary from very slow (10 3 M) to very fast (3 x 10 5 M), the Number of Transfer Units, N may vary from small (2) to large (650). Hence for a membrane device, we must select the antibody with the fastest reaction, ka, and highest capacity (Qmax) otherwise, there may be no advantage in a membrane-based device over a gel-based device

  12. Fabrication and Scale-up of Polybenzimidazole (PBI) Membrane Based System for Precombustion-Based Capture of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Gopala; Jayaweera, Indira; Sanjrujo, Angel; O' Brien, Kevin; Callahan, Richard; Berchtold, Kathryn; Roberts, Daryl-Lynn; Johnson, Will

    2012-03-31

    The primary objectives of this project are to (1) demonstrate the performance and fabrication of a technically and economically viable pre-combustion-based CO{sub 2} capture system based on the high temperature stability and permeance of PBI membranes, (2) optimize a plan for integration of PBI capture system into an IGCC plant and (3) develop a commercialization plan that addresses technical issues and business issues to outline a clear path for technology transfer of the PBI membrane technology. This report describes research conducted from April 1, 2007 to March 30, 2012 and focused on achieving the above objectives. PBI-based hollow fibers have been fabricated at kilometer lengths and bundled as modules at a bench-scale level for the separation of CO{sub 2} from H{sub 2} at high temperatures and pressures. Long term stability of these fibers has been demonstrated with a relatively high H{sub 2}/CO{sub 2} selectivity (35 to 50) and H{sub 2} permeance (80 GPU) at temperatures exceeding 225°C. Membrane performance simulations and systems analysis of an IGCC system incorporating a PBI hollow fiber membrane modules have demonstrated that the cost of electricity for CO{sub 2} capture (<10%) using such a high temperature separator. When the cost of transporting, storing, and monitoring the CO{sub 2} is accounted for, the increase in the COE is only 14.4%.

  13. Novel Water Treatment Processes Based on Hybrid Membrane-Ozonation Systems: A Novel Ceramic Membrane Contactor for Bubbleless Ozonation of Emerging Micropollutants

    Directory of Open Access Journals (Sweden)

    Stylianos K. Stylianou

    2015-01-01

    Full Text Available The aim of this study is the presentation of novel water treatment systems based on ozonation combined with ceramic membranes for the treatment of refractory organic compounds found in natural water sources such as groundwater. This includes, firstly, a short review of possible membrane based hybrid processes for water treatment from various sources. Several practical and theoretical aspects for the application of hybrid membrane-ozonation systems are discussed, along with theoretical background regarding the transformation of target organic pollutants by ozone. Next, a novel ceramic membrane contactor, bringing into contact the gas phase (ozone and water phase without the creation of bubbles (bubbleless ozonation, is presented. Experimental data showing the membrane contactor efficiency for oxidation of atrazine, endosulfan, and methyl tert-butyl ether (MTBE are shown and discussed. Almost complete endosulfan degradation was achieved with the use of the ceramic contactor, whereas atrazine degradation higher than 50% could not be achieved even after 60 min of reaction time. Single ozonation of water containing MTBE could not result in a significant MTBE degradation. MTBE mineralization by O3/H2O2 combination increased at higher pH values and O3/H2O2 molar ratio of 0.2 reaching a maximum of around 65%.

  14. Recent Development of Pd-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Hui Meng

    2015-07-01

    Full Text Available This review selectively summarizes the latest developments in the Pd-based cataysts for low temperature proton exchange membrane fuel cells, especially in the application of formic acid oxidation, alcohol oxidation and oxygen reduction reaction. The advantages and shortcomings of the Pd-based catalysts for electrocatalysis are analyzed. The influence of the structure and morphology of the Pd materials on the performance of the Pd-based catalysts were described. Finally, the perspectives of future trends on Pd-based catalysts for different applications were considered.

  15. Acid and base recovery from brine solution using PVP intermediate-based bipolar membrane through water splitting technology

    Science.gov (United States)

    Venugopal, Krishnaveni; Murugappan, Minnoli; Dharmalingam, Sangeetha

    2017-07-01

    Potable water has become a scarce resource in many countries. In fact, the world is not running out of water, but rather, the relatively fixed quantity is becoming too contaminated for many applications. Hence, the present work was designed to evaluate the desalination efficiency of resin and glass fiber-reinforced Polysulfone polymer-based monopolar and bipolar (BPM) ion exchange membranes (with polyvinyl pyrrolidone as the intermediate layer) on a real sample brine solution for 8 h duration. The prepared ion exchange membranes (IEMs) were characterized using FTIR, SEM, TGA, water absorption, and contact angle measurements. The BPM efficiency, electrical conductivity, salinity, sodium, and chloride ion concentration were evaluated for both prepared and commercial-based IEM systems. The current efficiency and energy consumption values obtained during BPMED process were found to be 45 % and 0.41 Wh for RPSu-PVP-based IEM system and 38 % and 1.60 Wh for PSDVB-based IEM system, respectively.

  16. Flow methodology for methanol determination in biodiesel exploiting membrane-based extraction

    International Nuclear Information System (INIS)

    Araujo, Andre R.T.S.; Saraiva, M. Lucia M.F.S.; Lima, Jose L.F.C.; Korn, M. Gracas A.

    2008-01-01

    A methodology based in flow analysis and membrane-based extraction has been applied to the determination of methanol in biodiesel samples. A hydrophilic membrane was used to perform the liquid-liquid extraction in the system with the organic sample fed to the donor side of the membrane and the methanol transfer to an aqueous acceptor buffer solution. The quantification of the methanol was then achieved in aqueous solution by the combined use of immobilised alcohol oxidase (AOD), soluble peroxidase and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The optimization of parameters such as the type of membrane, the groove volume and configuration of the membrane unit, the appropriate organic solvent, sample injection volume, as well as immobilised packed AOD reactor was performed. Two dynamic analytical working ranges were achieved, up to 0.015% and up to 0.200% (m/m) methanol concentrations, just by changing the volume of acceptor aqueous solution. Detection limits of 0.0002% (m/m) and 0.007% (m/m) methanol were estimated, respectively. The decision limit (CCα) and the detection capacity (CCβ) were 0.206 and 0.211% (m/m), respectively. The developed methodology showed good precision, with a relative standard deviation (R.S.D.) <5.0% (n = 10). Biodiesel samples from different sources were then directly analyzed without any sample pre-treatment. Statistical evaluation showed good compliance, for a 95% confidence level, between the results obtained with the flow system and those furnished by the gas chromatography reference method. The proposed methodology turns out to be more environmental friendly and cost-effective than the reference method

  17. Approach for Self-Calibrating CO2 Measurements with Linear Membrane-Based Gas Sensors

    Directory of Open Access Journals (Sweden)

    Detlef Lazik

    2016-11-01

    Full Text Available Linear membrane-based gas sensors that can be advantageously applied for the measurement of a single gas component in large heterogeneous systems, e.g., for representative determination of CO2 in the subsurface, can be designed depending on the properties of the observation object. A resulting disadvantage is that the permeation-based sensor response depends on operating conditions, the individual site-adapted sensor geometry, the membrane material, and the target gas component. Therefore, calibration is needed, especially of the slope, which could change over several orders of magnitude. A calibration-free approach based on an internal gas standard is developed to overcome the multi-criterial slope dependency. This results in a normalization of sensor response and enables the sensor to assess the significance of measurement. The approach was proofed on the example of CO2 analysis in dry air with tubular PDMS membranes for various CO2 concentrations of an internal standard. Negligible temperature dependency was found within an 18 K range. The transformation behavior of the measurement signal and the influence of concentration variations of the internal standard on the measurement signal were shown. Offsets that were adjusted based on the stated theory for the given measurement conditions and material data from the literature were in agreement with the experimentally determined offsets. A measurement comparison with an NDIR reference sensor shows an unexpectedly low bias (<1% of the non-calibrated sensor response, and comparable statistical uncertainty.

  18. Approach for Self-Calibrating CO₂ Measurements with Linear Membrane-Based Gas Sensors.

    Science.gov (United States)

    Lazik, Detlef; Sood, Pramit

    2016-11-17

    Linear membrane-based gas sensors that can be advantageously applied for the measurement of a single gas component in large heterogeneous systems, e.g., for representative determination of CO₂ in the subsurface, can be designed depending on the properties of the observation object. A resulting disadvantage is that the permeation-based sensor response depends on operating conditions, the individual site-adapted sensor geometry, the membrane material, and the target gas component. Therefore, calibration is needed, especially of the slope, which could change over several orders of magnitude. A calibration-free approach based on an internal gas standard is developed to overcome the multi-criterial slope dependency. This results in a normalization of sensor response and enables the sensor to assess the significance of measurement. The approach was proofed on the example of CO₂ analysis in dry air with tubular PDMS membranes for various CO₂ concentrations of an internal standard. Negligible temperature dependency was found within an 18 K range. The transformation behavior of the measurement signal and the influence of concentration variations of the internal standard on the measurement signal were shown. Offsets that were adjusted based on the stated theory for the given measurement conditions and material data from the literature were in agreement with the experimentally determined offsets. A measurement comparison with an NDIR reference sensor shows an unexpectedly low bias (sensor response, and comparable statistical uncertainty.

  19. Schiff's Bases and Crown Ethers as Supramolecular Sensing Materials in the Construction of Potentiometric Membrane Sensors

    Directory of Open Access Journals (Sweden)

    Siavash Riahi

    2008-03-01

    Full Text Available Ionophore incorporated PVC membrane sensors are well-established analyticaltools routinely used for the selective and direct measurement of a wide variety of differentions in complex biological and environmental samples. Potentiometric sensors have someoutstanding advantages including simple design and operation, wide linear dynamic range,relatively fast response and rational selectivity. The vital component of such plasticizedPVC members is the ionophore involved, defining the selectivity of the electrodes' complexformation. Molecular recognition causes the formation of many different supramolecules.Different types of supramolecules, like calixarenes, cyclodextrins and podands, have beenused as a sensing material in the construction of ion selective sensors. Schiff's bases andcrown ethers, which feature prominently in supramolecular chemistry, can be used assensing materials in the construction of potentiometric ion selective electrodes. Up to now,more than 200 potentiometric membrane sensors for cations and anions based on Schiff'sbases and crown ethers have been reported. In this review cation binding and anioncomplexes will be described. Liquid membrane sensors based on Schiff's bases and crownethers will then be discussed.

  20. STUDY ON HIGH RESOLUTION MEMBRANE-BASED DIFFRACTIVE OPTICAL IMAGING ON GEOSTATIONARY ORBIT

    Directory of Open Access Journals (Sweden)

    J. Jiao

    2017-05-01

    Full Text Available Diffractive optical imaging technology provides a new way to realize high resolution earth observation on geostationary orbit. There are a lot of benefits to use the membrane-based diffractive optical element in ultra-large aperture optical imaging system, including loose tolerance, light weight, easy folding and unfolding, which make it easy to realize high resolution earth observation on geostationary orbit. The implementation of this technology also faces some challenges, including the configuration of the diffractive primary lens, the development of high diffraction efficiency membrane-based diffractive optical elements, and the correction of the chromatic aberration of the diffractive optical elements. Aiming at the configuration of the diffractive primary lens, the “6+1” petal-type unfold scheme is proposed, which consider the compression ratio, the blocking rate and the development complexity. For high diffraction efficiency membrane-based diffractive optical element, a self-collimating method is proposed. The diffraction efficiency is more than 90 % of the theoretical value. For the chromatic aberration correction problem, an optimization method based on schupmann is proposed to make the imaging spectral bandwidth in visible light band reach 100 nm. The above conclusions have reference significance for the development of ultra-large aperture diffractive optical imaging system.

  1. Tannin-based thin-film composite membranes for solvent nanofiltration

    KAUST Repository

    Perez Manriquez, Liliana

    2017-06-28

    The natural oligomer tannic acid was used as a reactant for an interfacial polymerisation on top of a crosslinked polyacrylonitrile (PAN) membrane. The PAN membrane was soaked with the aqueous tannic acid solution and contacted with a dilute solution of teraphtaloylchloride in hexane. Since both layers, the PAN support and the thin tannin-based layer, are highly crosslinked, the resulting thin film composite membrane is stable in harsh solvent environments such as N-Methyl-2-pyrrolidone (NMP). NMP permeances of up to 0.09L/m2 h bar with a molecular weight cut-off of approximately 800g/mol were obtained. The exceptional stability in NMP and the incorporation of natural compounds like tannic acid for the manufacture of organic solvent nanofiltration membranes provides a cost-effective alternative for industrial separations due to the simplicity of the interfacial reaction and the replacement of the commonly applied toxic aromatic amines. The scale up of the manufacturing process is not difficult; the low price of the natural tannic acid is another advantage.

  2. Mass diffusion-based separation of sugars in a microfluidic contactor with nanofiltration membranes.

    Science.gov (United States)

    Kolfschoten, Ruben C; Janssen, Anja E M; Boom, Remko M

    2011-06-01

    Processes such as chromatographic separation and nanofiltration can remove low molecular weight sugars from liquid mixtures of oligosaccharides. As an alternative for the separation of such liquid mixtures, we studied mass diffusion separation of such sugars in a microfluidic device with incorporated nanofiltration membranes. This separation method is based on differences between diffusivities of components and does not require high transmembrane pressures. The effects of channel depth and flow rate were studied in experiments. The key parameters selectivity and rejection increased with increasing channel depth due to increased external mass transfer limitations. Among the studied membranes, the obtained selectivities and rejections correlated to the specified retention values by the manufacturers. Compared to more conventional nanofiltration where high pressure forces solutes through membranes, we obtained corresponding selectivities and fluxes of only an order of magnitude smaller. Simulated results indicated that with optimized microchannel and membrane dimensions, the presented separation process can compete with currently available separation technologies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Schiff bases as cadmium(II) selective ionophores in polymeric membrane electrodes

    International Nuclear Information System (INIS)

    Gupta, V.K.; Singh, A.K.; Gupta, Barkha

    2007-01-01

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, N,N'-[bis(pyridin-2-yl)formylidene]butane-1,4-diamine (S 1 ) and N-(2-pyridinylmethylene)-1,2-benzenediamine (S 2 ) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (S 1 ) (2.15%):PVC (32.2%):o-NPOE (64.5%):KTpClPB (1.07%). The proposed electrode exhibits Nernstian response in the concentration range of 7.9 x 10 -8 to 1.0 x 10 -1 M Cd 2+ with limit of detection 5.0 x 10 -8 M, performs satisfactorily over wide pH range (2.0-8.0) with a fast response time (10 s). The sensor has been found to work satisfactorily in partially non-aqueous media up to 30% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in real samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants

  4. Schiff bases as cadmium(II) selective ionophores in polymeric membrane electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, V.K. [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)]. E-mail: vinodfcy@iitr.ernet.in; Singh, A.K. [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India); Gupta, Barkha [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)

    2007-02-05

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, N,N'-[bis(pyridin-2-yl)formylidene]butane-1,4-diamine (S{sub 1}) and N-(2-pyridinylmethylene)-1,2-benzenediamine (S{sub 2}) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (S{sub 1}) (2.15%):PVC (32.2%):o-NPOE (64.5%):KTpClPB (1.07%). The proposed electrode exhibits Nernstian response in the concentration range of 7.9 x 10{sup -8} to 1.0 x 10{sup -1} M Cd{sup 2+} with limit of detection 5.0 x 10{sup -8} M, performs satisfactorily over wide pH range (2.0-8.0) with a fast response time (10 s). The sensor has been found to work satisfactorily in partially non-aqueous media up to 30% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in real samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants.

  5. Efficient synthesis of tension modulation in strings and membranes based on energy estimation.

    Science.gov (United States)

    Avanzini, Federico; Marogna, Riccardo; Bank, Balázs

    2012-01-01

    String and membrane vibrations cannot be considered as linear above a certain amplitude due to the variation in string or membrane tension. A relevant special case is when the tension is spatially constant and varies in time only in dependence of the overall string length or membrane surface. The most apparent perceptual effect of this tension modulation phenomenon is the exponential decay of pitch in time. Pitch glides due to tension modulation are an important timbral characteristic of several musical instruments, including the electric guitar and tom-tom drum, and many ethnic instruments. This paper presents a unified formulation to the tension modulation problem for one-dimensional (1-D) (string) and two-dimensional (2-D) (membrane) cases. In addition, it shows that the short-time average of the tension variation, which is responsible for pitch glides, is approximately proportional to the system energy. This proportionality allows the efficient physics-based sound synthesis of pitch glides. The proposed models require only slightly more computational resources than linear models as opposed to earlier tension-modulated models of higher complexity. © 2012 Acoustical Society of America.

  6. Dynamic behavior of ultra large graphene-based membranes using electrothermal transduction

    Science.gov (United States)

    Al-mashaal, A. K.; Wood, G. S.; Torin, A.; Mastropaolo, E.; Newton, M. J.; Cheung, R.

    2017-12-01

    This letter reports an experimental study of an electrothermal actuator made from an ultra-large graphene-based bilayer thin film with a diameter to thickness aspect ratio of ˜10 000. Suspended thin films consisting of multilayer graphene and 350-500 nm-thick Poly(methyl methacrylate) have been transferred over circular cavities with a diameter of 3.5 mm. The use of bilayer materials with different mechanical and thermal properties results in thin film structures that can be induced to vibrate mechanically under the electrothermal transduction mechanism. The dynamic response of the bilayer has been investigated electrothermally by driving the structures with a combination of alternating current and direct current actuation voltages ( Va c and Vd c) and characterizing their resonant frequencies. It has been found that the bilayer thin film structure behaves as a membrane. In addition, the actuation configurations affect not only the amplitude of vibration but also the tuning of the resonant frequency of the vibrating membranes. The existence of Joule heating-induced tension lowers the mechanical stiffness of the membrane and hence shifts the resonant frequency downwards by -108187 ppm. A resonant frequency of 3.26 kHz with a vibration amplitude of 4.34 nm has been achieved for 350 nm-thick membranes under actuation voltages of 1 V of Va c and 8 V of Vd c.

  7. Fabrication of high-transmission microporous membranes by proton beam writing-based molding technique

    Science.gov (United States)

    Wang, Liping; Meyer, Clemens; Guibert, Edouard; Homsy, Alexandra; Whitlow, Harry J.

    2017-08-01

    Porous membranes are widely used as filters in a broad range of micro and nanofluidic applications, e.g. organelle sorters, permeable cell growth substrates, and plasma filtration. Conventional silicon fabrication approaches are not suitable for microporous membranes due to the low mechanical stability of thin film substrates. Other techniques like ion track etching are limited to the production of randomly distributed and randomly orientated pores with non-uniform pore sizes. In this project, we developed a procedure for fabricating high-transmission microporous membranes by proton beam writing (PBW) with a combination of spin-casting and soft lithography. In this approach, focused 2 MeV protons were used to lithographically write patterns consisting of hexagonal arrays of high-density pillars of few μm size in a SU-8 layer coated on a silicon wafer. After development, the pillars were conformably coated with a thin film of poly-para-xylylene (Parylene)-C release agent and spin-coated with polydimethylsiloxane (PDMS). To facilitate demolding, a special technique based on the use of a laser-cut sealing tape ring was developed. This method facilitated the successful delamination of 20-μm thick PDMS membrane with high-density micropores from the mold without rupture or damage.

  8. Membrane-based assay for iodide ions based on anti-leaching of gold nanoparticles.

    Science.gov (United States)

    Shen, Yu-Wei; Hsu, Pang-Hung; Unnikrishnan, Binesh; Li, Yu-Jia; Huang, Chih-Ching

    2014-02-26

    We report a label-free colorimetric strategy for the highly selective and sensitive detection of iodide (I(-)) ions in human urine sample, seawater and edible salt. A poly(N-vinyl-2-pyrrolidone)-stabilized Au nanoparticle (34.2-nm) was prepared to detect I(-) ions using silver (Ag(+)) and cyanide (CN(-)) ions as leaching agents in a glycine-NaOH (pH 9.0) solution. For the visual detection of the I(-) ions by naked eye, and for long time stability of the probe, Au nanoparticles (NPs) decorated mixed cellulose ester membrane (MCEM) was prepared (Au NPs/MCEM). The Au NPs-based probe (CN(-)/Ag(+)-Au NPs/MCEM) operates on the principle that Ag(+) ions form a monolyar silver atoms/ions by aurophilic/argentophilic interactions on the Au NPs and it accelerates the leaching rate of Au atoms in presence of CN(-) ions. However, when I(-) is introduced into this system, it inhibits the leaching of Au atoms because of the strong interactions between Ag/Au ions and I(-) ions. Inductively coupled plasma mass spectrometry, surface-assisted laser desorption/ionization time-of-flight mass spectrometry were used to characterize the surface properties of the Au NPs in the presence of Ag(+) and I(-). Under optimal solution conditions, the CN(-)/Ag(+)-Au NPs/MCEM probe enabled the detection of I(-) by the naked eye at nanomolar concentrations with high selectivity (at least 1000-fold over other anions). In addition, this cost-effective probe allowed the determination of I(-) ions in complex samples, such as urine, seawater, and edible salt samples.

  9. Fe0.4Ta0.5P2O7-based composite membrane for high-temperature, low-humidity proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Heo, Pilwon; Shen, Yanbai; Kojima, Keijiro; Pak, Chanho; Choi, Kyoung Hwan; Hibino, Takashi

    2014-01-01

    Highlights: • Fe 0.4 Ta 0.5 P 2 O 7 based composite membranes were prepared with a satisfactory mechanical strength. • It showed high proton conductivity of 0.01 S cm −1 at 150 °C in an unhumidified condition. • The membrane (t > 50 μm) has a gas-impermeability and low area-specific resistance (ASR). • The ASR is 0.17 Ω cm 2 at high temperature of 150 °C and low humidity of 6.6%RH. - Abstract: An inorganic–organic composite membrane composed of Fe 0.4 Ta 0.5 P 2 O 7 (FTPO) and sulfonated polystyrene-b-poly(ethylene/butylene)-b-polystyrene (sSEBS) is prepared and characterized. To gain satisfaction of both the proton conductivity and mechanical strength in composite membranes, the optimal content of sSEBS was determined to be 30 wt%, which resulted in high proton conductivities of approximately 0.01 S cm −1 between 50 and 150 °C even under an unhumidified condition, a tensile strength of 4.1 MPa, and an elongation at break of 613%. A homogeneous distribution of the FTPO particles in the matrix was achieved at the composite membrane thickness greater than 50 μm, providing gas-impermeability and low area-specific resistance (ASR) of the membrane (0.17 Ω cm 2 at 150 °C and H 2 O vapor concentration of 30.8 vol%). Fuel cell tests using the composite membrane provided peak power densities of 265 and 303 mW cm −2 at 150 °C under an unhumidified condition and at a H 2 O vapor concentration of 30.8 vol%, respectively

  10. Modeling and Simulation of Membrane-Based Dehumidification and Energy Recovery Process

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiming [ORNL; Abdelaziz, Omar [ORNL; Qu, Ming [ORNL

    2017-01-01

    This paper introduces a first-order physics-based model that accounts for the fundamental heat and mass transfer between a humid-air vapor stream on feed side to another flow stream on permeate side. The model comprises a few optional submodels for membrane mass transport; and it adopts a segment-by-segment method for discretizing heat and mass transfer governing equations for flow streams on feed and permeate sides. The model is able to simulate both dehumidifiers and energy recovery ventilators in parallel-flow, cross-flow, and counter-flow configurations. The predicted tresults are compared reasonably well with the measurements. The open-source codes are written in C++. The model and open-source codes are expected to become a fundament tool for the analysis of membrane-based dehumidification in the future.

  11. Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes

    Science.gov (United States)

    Verschueren, Daniel V.; Yang, Wayne; Dekker, Cees

    2018-04-01

    We report a simple and scalable technique for the fabrication of nanopore arrays on freestanding SiN and graphene membranes based on electron-beam lithography and reactive ion etching. By controlling the dose of the single-shot electron-beam exposure, circular nanopores of any size down to 16 nm in diameter can be fabricated in both materials at high accuracy and precision. We demonstrate the sensing capabilities of these nanopores by translocating dsDNA through pores fabricated using this method, and find signal-to-noise characteristics on par with transmission-electron-microscope-drilled nanopores. This versatile lithography-based approach allows for the high-throughput manufacturing of nanopores and can in principle be used on any substrate, in particular membranes made out of transferable two-dimensional materials.

  12. Nitrocellulose membrane-based enzyme-linked immunoassay for dengue serotype-1 IgM detection

    International Nuclear Information System (INIS)

    Leon, S.; Guevara, C.; Chunga, A.

    1999-01-01

    To evaluate the sensitivity and specifity of a nitrocellulose membrane-based immunoassay for dengue IgM, with respect to capture enzyme immunoassay, for the diagnosis of dengue virus infection. 101 serum samples were processed and divided into 2 groups: 53 from dengue serotype 1 (DEN1) infected patients, and 48 from healthy subjects. Both groups were tested with a nitrocellulose membrane-based IgM capture enzyme immunoassay (NMB-EIA) and also with an ELISA as referential pattern. NMB-EIA testing detected IgM anti-DEN1 in 94,34% of samples from infected patients, and in 14,58% of control samples, whereas ELISA fails to report false positive or false negative results: NMB-EIA appears to be a good alternative for dengue infection diagnosis. (authors)

  13. Glucose oxidase as a biocatalytic enzyme-based bio-fuel cell using Nafion membrane limiting crossover

    International Nuclear Information System (INIS)

    Naidoo, S; Blottnitz, H; Naidoo, Q; Vaivars, G

    2013-01-01

    A novel combination for an Enzyme-based Biofuel cell included a Nafion membrane as an ion transporter that maintained a working cell charge and inhibited membrane degradation. The prototype cell chamber used oxygen (O 2 ) in the cathode cell and glucose in the anode. The Nafion membrane stability studied here was evidently in the region of 0% loss of conductivity as the charge was constant and increased after the addition of glucose. The prototype cell chamber used NaCl in the cathode cell and glucose oxidase (GOx) in the anodic chamber was successfully studied for membrane stability showed in this study no evidence of poisoning from membrane leakage in a controlled pH environment. There was no crossover at the anaerobic operating ambient temperatures and under physiological pH 5 – 7 conditions. In this research we have successfully used a Nafion membrane together with GOx and under controlled conditions produced respectable power densities

  14. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide

    Science.gov (United States)

    Akbari, Abozar; Sheath, Phillip; Martin, Samuel T.; Shinde, Dhanraj B.; Shaibani, Mahdokht; Banerjee, Parama Chakraborty; Tkacz, Rachel; Bhattacharyya, Dibakar; Majumder, Mainak

    2016-03-01

    Graphene-based membranes demonstrating ultrafast water transport, precise molecular sieving of gas and solvated molecules shows great promise as novel separation platforms; however, scale-up of these membranes to large-areas remains an unresolved problem. Here we demonstrate that the discotic nematic phase of graphene oxide (GO) can be shear aligned to form highly ordered, continuous, thin films of multi-layered GO on a support membrane by an industrially adaptable method to produce large-area membranes (13 × 14 cm2) in 90%) for charged and uncharged organic probe molecules with a hydrated radius above 5 Å as well as modest (30-40%) retention of monovalent and divalent salts. The highly ordered graphene sheets in the plane of the membrane make organized channels and enhance the permeability (71+/-5 l m-2 hr-1 bar-1 for 150+/-15 nm thick membranes).

  15. Heated, humidified high-flow nasal cannula versus nasal CPAP for respiratory support in neonates.

    Science.gov (United States)

    Yoder, Bradley A; Stoddard, Ronald A; Li, Ma; King, Jerald; Dirnberger, Daniel R; Abbasi, Soraya

    2013-05-01

    Heated, humidified high-flow nasal cannula (HHHFNC) is commonly used as a noninvasive mode of respiratory support in the NICU. The safety and efficacy of HHHFNC have not been compared with other modes of noninvasive support in large randomized trials. The objective was to assess the efficacy and safety of HHHFNC compared with nasal continuous positive airway pressure (nCPAP) for noninvasive respiratory support in the NICU. Randomized, controlled, unblinded noncrossover trial in 432 infants ranging from 28 to 42 weeks' gestational age with planned nCPAP support, as either primary therapy or postextubation. The primary outcome was defined as a need for intubation within 72 hours of applied noninvasive therapy. There was no difference in early failure for HHHFNC (23/212 [10.8%]) versus nCPAP (18/220 [8.2%]; P = .344), subsequent need for any intubation (32/212 [15.1%] vs 25/220 [11.4%]; P = .252), or in any of several adverse outcomes analyzed, including air leak. HHHFNC infants remained on the study mode significantly longer than nCPAP infants (median: 4 vs 2 days, respectively; P < .01), but there were no differences between study groups for days on supplemental oxygen (median: 10 vs 8 days), bronchopulmonary dysplasia (20% vs 16%), or discharge from the hospital on oxygen (19% vs 18%). Among infants ≥28 weeks' gestational age, HHHFNC appears to have similar efficacy and safety to nCPAP when applied immediately postextubation or early as initial noninvasive support for respiratory dysfunction.

  16. A Triboelectric-Based Artificial Basilar Membrane to Mimic Cochlear Tonotopy.

    Science.gov (United States)

    Jang, Jongmoon; Lee, JangWoo; Jang, Jeong Hun; Choi, Hongsoo

    2016-10-01

    A triboelectric-based artificial basilar membrane (TEABM) can mimic cochlear tonotopy by triboelectrification between Kapton film and aluminum foil. The two films are stacked and clamped to form a beam structure. The TEABM tonotopy is tested using an animal model to verify the feasibility of a self-powered acoustic sensor for a prototype cochlear implant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Novel high-performance nanohybrid polyelectrolyte membranes based on bio-functionalized montmorillonite for fuel cell applications.

    Science.gov (United States)

    Hasani-Sadrabadi, Mohammad Mahdi; Dashtimoghadam, Erfan; Majedi, Fatemeh S; Kabiri, Kourosh; Mokarram, Nassir; Solati-Hashjin, Mehran; Moaddel, Homayoun

    2010-09-21

    This study is concerned with electrochemical investigation of novel high-performance proton exchange membranes based on bio-functionalized montmorillonite and Nafion. It was found that the incorporation of 2 wt% BMMT into Nafion polyelectrolyte matrix results in significantly improved methanol-air fuel cell efficiency of 30% compared to 14% for Nafion(R)117, and about 23-times higher membrane selectivity.

  18. Detection of Sudan Dyes Based on Inner-Filter Effect with Reusable Conjugated Polymer Fibrous Membranes.

    Science.gov (United States)

    Wu, Ming; Sun, Lijuan; Miao, Kesong; Wu, Yingzhong; Fan, Li-Juan

    2018-02-26

    Developing effective methods for detecting illegal additives in food or seasoning is of great significance. In this study, a sensing strategy for selective detection of Sudan dyes was designed based on the fluorescence inner-filter effect (IFE) by using poly(phenylenevinylene) (PPV) solid materials in combination with an optimized experimental protocol. Two types of fluorescent solid materials, electrospun fibrous membranes and drop-cast films, were fabricated with PPV as the fluorophore and poly(vinyl alcohol) as the matrix, respectively. Sudan dyes greatly quenched the fluorescence of the membrane and film, whereas other food colorings or possible food ingredients displayed a much smaller or negligible quenching effect. The sensing mechanism was studied, and the selectivity was ascribed to IFE, which requires the overlap between the absorption of the analyte and absorption/emission of the sensing material. The form of materials (membrane or film), the content of PPV, and the cross-linking process did not have much influence on the selectivity and sensitivity, which is consistent with the IFE mechanism and demonstrates the advantage of not requiring strict control of the preparative process. All the cross-linked materials were found to be stable against water/humidity and displayed good reversibility in sensing and can be reused at least for 10 cycles with negligible influence on the sensing performance. A cross-linked membrane was selected for detecting Sudan dyes in chili powder because folding did not affect the mechanical stability of the membrane. Two different protocols were used to pretreat the chili samples, which allowed the detection of Sudan dyes in chili powder as well as the discrimination of Sudan dyes from synthetic food coloring such as allura red. This study provides a facile and cost-effective method for preparing reusable sensing materials for detecting some dyes in commercial foods or food seasonings.

  19. A durable alternative for proton-exchange membranes: sulfonated poly(benzoxazole thioether sulfone)s

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Jinhuan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Song, Min-Kyu; Liu, Meilin [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Yi, Baolian; Zhang, Huamin [Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China)

    2011-03-18

    To develop a durable proton-exchange membrane (PEM) for fuel-cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s (SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid-base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier-transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy ({sup 1}H NMR and {sup 19}F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three-electrode cell configuration. The physicochemical properties of the membranes vital to fuel-cell performance are also carefully evaluated under conditions relevant to fuel-cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25 C to 90 C and excellent thermal stability up to 250 C. Upon elimination of unstable end groups, the co-polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO-HFB-60 (HFB-60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel-cell performance to that of an NRE 212 membrane at 80 C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel-cell applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. A Durable Alternative for Proton-Exchange Membranes: Sulfonated Poly(Benzoxazole Thioether Sulfone)s

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan; Li, Jin Hui; Song, Min Kyu; Yi, Baolian; Zhang, Huamin; Liu, Meilin

    2011-02-24

    To develop a durable proton-exchange membrane (PEM) for fuel-cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s ( SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid–base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier-transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy ({sup 1}H NMR and {sup 19}F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three-electrode cell configuration. The physicochemical properties of the membranes vital to fuel-cell performance are also carefully evaluated under conditions relevant to fuel-cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25°C to 90°C and excellent thermal stability up to 250°C. Upon elimination of unstable end groups, the co-polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO-HFB-60 (HFB-60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel-cell performance to that of an NRE 212 membrane at 80°C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel-cell applications.

  1. Pentiptycene-based polyurethane with enhanced mechanical properties and CO2-plasticization resistance for thin film gas separation membranes.

    Science.gov (United States)

    Pournaghshband Isfahani, Ali; Sadeghi, Morteza; Wakimoto, Kazuki; Shrestha, Binod Babu; Bagheri, Rouhollah; Sivaniah, Easan; Ghalei, Behnam

    2018-04-30

    Development of thin film composite (TFC) membranes offers an opportunity to achieve the permeability/selectivity requirements for optimum CO2 separation performance. However, the durability and performance of thin film gas separation membranes are mostly challenged by weak mechanical properties and high CO2 plasticization. Here, we designed new polyurethane (PU) structures with bulky aromatic chain extenders that afford preferred mechanical properties for ultra-thin film formation. An improvement of about 1500% in Young's modulus and 600% in hardness was observed for pentiptycene-based PUs compared to typical PU membranes. Single (CO2, H2, CH4, and N2) and mixed (CO2/N2 and CO2/CH4) gas permeability tests were performed on the PU membranes. The resulting TFC membranes showed a high CO2 permeance up to 1400 GPU (10-6 cm3(STP) cm-2s-1 cmHg-1) and the CO2/N2 and CO2/H2 selectivities of about 22 and 2.1, respectively. The enhanced mechanical properties of pentiptycene-based PUs results in high performance thin membranes with the similar selectivity of the bulk polymer. The thin film membranes prepared from pentiptycene-based PUs also showed a two-fold enhanced plasticization resistance compared to non-pentiptycene containing PU membranes.

  2. Process for production of electrical energy from the neutralization of acid and base in a bipolar membrane cell

    International Nuclear Information System (INIS)

    Walther, J.F.

    1982-01-01

    Electrical energy is generated from acid-base neutralization reactions in electrodialytic cells. Permselective bipolar membranes in these cells are contacted on their cation selective faces by aqueous acid streams and on their anion-selective faces by aqueous base streams. Spontaneous neutralization reactions between the basic anions and acidic cations through the bipolar membranes produce electrical potential differences between the acid and base streams. These potential differences are transmitted to electrodes to produce electrical energy which is withdrawn from the cell

  3. Voltage-Gated Transport of Nanoparticles across Free-Standing All-Carbon-Nanotube-Based Hollow-Fiber Membranes.

    Science.gov (United States)

    Wei, Gaoliang; Quan, Xie; Chen, Shuo; Fan, Xinfei; Yu, Hongtao; Zhao, Huimin

    2015-07-15

    Understanding the mechanism underlying controllable transmembrane transport observed in biological membranes benefits the development of next-generation separation membranes for a variety of important applications. In this work, on the basis of common structural features of cell membranes, a very simple biomimetic membrane system exhibiting gated transmembrane performance has been constructed using all-carbon-nanotube (CNT)-based hollow-fiber membranes. The conductive CNT membranes with hydrophobic pore channels can be positively or negatively charged and are consequently capable of regulating the transport of nanoparticles across their pore channels by their "opening" or "closing". The switch between penetration and rejection of nanoparticles through/by CNT membranes is of high efficiency and especially allows dynamic control. The underlying mechanism is that CNT pore channels with different polarities can prompt or prevent the formation of their noncovalent interactions with charged nanoparticles, resulting in their rejection or penetration by/through the CNT membranes. The theory about noncovalent interactions and charged pore channels may provide new insight into understanding the complicated ionically and bimolecularly gated transport across cell membranes and can contribute to many other important applications beyond the water purification and resource recovery demonstrated in this study.

  4. Fiber Temperature Sensor Based on Micro-mechanical Membranes and Optical Interference Structure

    International Nuclear Information System (INIS)

    Liu Yueming; Tian Weijian; Hua Jing

    2011-01-01

    A novel fiber temperature sensor is presented theoretically and experimentally in this paper. Its working principle is based on Optical Fabry-Perot interference structure that is formed between a polished optical fiber end and micro-mechanical Bi-layered membranes. When ambient temperature is varying, Bi-layered membranes will be deflected and the length of Fabry-Perot cavity will be changed correspondingly. By detecting the reflecting optical intensity from the Fabry-Perot cavity, the ambient temperature can be measured. Using finite element software ANSYS, the sensor structure was optimized based on optical Interference theory and Bi-layered membranes thermal expansion theory, and theoretical characteristics was simulated by computer software. In the end, using optical fiber 2x2 coupler and photo-electrical detector, the fabricated sample sensor was tested successfully by experiment that demonstrating above theoretical analysis and simulation results. This sensor has some favorable features, such as: micro size owing to its micro-mechanical structure, high sensitivity owing to its working Fabry-Perot interference cavity structure, and optical integration character by using optical fiber techniques.

  5. Analysis of direct contact membrane distillation based on a lumped-parameter dynamic predictive model

    KAUST Repository

    Karam, Ayman M.

    2016-10-03

    Membrane distillation (MD) is an emerging technology that has a great potential for sustainable water desalination. In order to pave the way for successful commercialization of MD-based water desalination techniques, adequate and accurate dynamical models of the process are essential. This paper presents the predictive capabilities of a lumped-parameter dynamic model for direct contact membrane distillation (DCMD) and discusses the results under wide range of steady-state and dynamic conditions. Unlike previous studies, the proposed model captures the time response of the spacial temperature distribution along the flow direction. It also directly solves for the local temperatures at the membrane interfaces, which allows to accurately model and calculate local flux values along with other intrinsic variables of great influence on the process, like the temperature polarization coefficient (TPC). The proposed model is based on energy and mass conservation principles and analogy between thermal and electrical systems. Experimental data was collected to validated the steady-state and dynamic responses of the model. The obtained results shows great agreement with the experimental data. The paper discusses the results of several simulations under various conditions to optimize the DCMD process efficiency and analyze its response. This demonstrates some potential applications of the proposed model to carry out scale up and design studies. © 2016

  6. Porous graphene-based membranes for water purification from metal ions at low differential pressures.

    Science.gov (United States)

    Park, Jaewoo; Bazylewski, Paul; Fanchini, Giovanni

    2016-05-14

    A new generation of membranes for water purification based on weakly oxidized and nanoporous few-layer graphene is here introduced. These membranes dramatically decrease the high energy requirements of water purification by reverse osmosis. They combine the advantages of porous and non-oxidized single-layer graphene, offering energy-efficient water filtration at relatively low differential pressures, and highly oxidized graphene oxide, exhibiting high performance in terms of impurity adsorption. In the reported fabrication process, leaks between juxtaposed few-layer graphene flakes are sealed by thermally annealed colloidal silica, in a treatment that precedes the opening of (sub)nanometre-size pores in graphene. This process, explored for the first time in this work, results in nanoporous graphene flakes that are water-tight at the edges without occluding the (sub)nanopores. With this method, removal of impurities from water occurs through a combination of size-based pore rejection and pore-edge adsorption. Thinness of graphene flakes allows these membranes to achieve water purification from metal ions in concentrations of few parts-per-million at differential pressures as low as 30 kPa, outperforming existing graphene or graphene oxide purification systems with comparable flow rates.

  7. Polyethersulfone-based ultrafiltration hollow fibre membrane for drinking water treatment systems

    Science.gov (United States)

    Chew, Chun Ming; Ng, K. M. David; Ooi, H. H. Richard

    2017-12-01

    Conventional media/sand filtration has been the mainstream water treatment process for most municipal water treatment plants in Malaysia. Filtrate qualities of conventional media/sand filtration are very much dependent on the coagulation-flocculation process prior to filtration and might be as high as 5 NTU. However, the demands for better quality of drinking water through public piped-water supply systems are growing. Polymeric ultrafiltration (UF) hollow fibre membrane made from modified polyethersulfone (PES) material is highly hydrophilic with high tensile strength and produces excellent quality filtrate of below 0.3 NTU in turbidity. This advanced membrane filtration material is also chemical resistance which allows a typical lifespan of 5 years. Comparisons between the conventional media/sand filtration and PES-based UF systems are carried out in this paper. UF has been considered as the emerging technology in municipal drinking water treatment plants due to its consistency in producing high quality filtrates even without the coagulation-flocculation process. The decreasing cost of PES-based membrane due to mass production and competitive pricing by manufacturers has made the UF technology affordable for industrial-scale water treatment plants.

  8. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Taisa R.; Pértile, Renata A.N. [Integrated Technologies Laboratory, Department of Chemical and Food Engineering (Brazil); Rambo, Carlos R., E-mail: rambo@intelab.ufsc.br [Department of Electrical Engineering, Federal University of Santa Catarina, Florianópolis 88040-900 (Brazil); Porto, Luismar M. [Integrated Technologies Laboratory, Department of Chemical and Food Engineering (Brazil)

    2013-12-01

    Bacterial cellulose (BC) produced by Gluconacetobacter hansenii is a suitable biopolymer for biomedical applications. In order to modulate the properties of BC and expand its use as substrate for tissue engineering mainly in the form of biomembranes, glucose or dextrin were added into a BC fermentation mannitol-based medium (BCGl and BCDe, respectively) under static culture conditions. SEM images showed effects on fiber density and porosity on both sides of the BC membranes. Both enriched media decreased the BET surface area, water holding capacity, and rehydration rate. Fourier transform infrared (attenuated total reflectance mode) spectroscopy (FTIR-ATR) analysis revealed no change in the chemical structure of BC. L929 fibroblast cells were seeded on all BC-based membranes and evaluated in aspects of cell adhesion, proliferation and morphology. BCG1 membranes showed the highest biological performance and hold promise for the use in tissue engineering applications. - Highlights: • Glucose and dextrin were used to modify culture media for BC production. • Microarchitecture of BC was different depending on the enriching agent. • Fibroblasts adhered on the surface of BC modified microarchitectures. • Fibroblasts adhered on glucose modified BC exhibited healthy cell morphology.

  9. Fabrication and Characterization of Magnetoresponsive Electrospun Nanocomposite Membranes Based on Methacrylic Random Copolymers and Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ioanna Savva

    2012-01-01

    Full Text Available Magnetoresponsive polymer-based fibrous nanocomposites belonging to the broad category of stimuli-responsive materials, is a relatively new class of “soft” composite materials, consisting of magnetic nanoparticles embedded within a polymeric fibrous matrix. The presence of an externally applied magnetic field influences the properties of these materials rendering them useful in numerous technological and biomedical applications including sensing, magnetic separation, catalysis and magnetic drug delivery. This study deals with the fabrication and characterization of magnetoresponsive nanocomposite fibrous membranes consisting of methacrylic random copolymers based on methyl methacrylate (MMA and 2-(acetoacetoxyethyl methacrylate (AEMA (MMA-co-AEMA and oleic acid-coated magnetite (OA·Fe3O4 nanoparticles. The AEMA moieties containing β-ketoester side-chain functionalities were introduced for the first time in this type of materials, because of their inherent ability to bind effectively onto inorganic surfaces providing an improved stabilization. For membrane fabrication the electrospinning technique was employed and a series of nanocomposite membranes was prepared in which the polymer content was kept constant and only the inorganic (OA·Fe3O4 content varied. Further to the characterization of these materials in regards to their morphology, composition and thermal properties, assessment of their magnetic characteristics disclosed tunable superparamagnetic behaviour at ambient temperature.

  10. Miniaturizable Ion-Selective Arrays Based on Highly Stable Polymer Membranes for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Mònica Mir

    2014-07-01

    Full Text Available Poly(vinylchloride (PVC is the most common polymer matrix used in the fabrication of ion-selective electrodes (ISEs. However, the surfaces of PVC-based sensors have been reported to show membrane instability. In an attempt to overcome this limitation, here we developed two alternative methods for the preparation of highly stable and robust ion-selective sensors. These platforms are based on the selective electropolymerization of poly(3,4-ethylenedioxythiophene (PEDOT, where the sulfur atoms contained in the polymer covalently interact with the gold electrode, also permitting controlled selective attachment on a miniaturized electrode in an array format. This platform sensor was improved with the crosslinking of the membrane compounds with poly(ethyleneglycol diglycidyl ether (PEG, thus also increasing the biocompatibility of the sensor. The resulting ISE membranes showed faster signal stabilization of the sensor response compared with that of the PVC matrix and also better reproducibility and stability, thus making these platforms highly suitable candidates for the manufacture of robust implantable sensors.

  11. A thermodynamic perspective to study energy performance of vacuum-based membrane dehumidification

    KAUST Repository

    Bui, Thuan Duc

    2017-05-13

    In humid environments, decoupling the latent and sensible cooling loads - dehumidifying - can significantly improve chiller efficiency. Here, a basic limit for dehumidification efficiency is established from fundamental thermodynamics. This is followed by the derivation of how this limit is modified when the pragmatic constraint of a finite flux must be accommodated. These limits allow one to identify promising system modifications, and to quantify their impact. The focus is on vacuum-based membrane dehumidification. New high-efficiency configurations are formulated, most notably, by coupling pumping with condensation. More than an order-of-magnitude improvement in efficiency is achievable. It is contingent on water vapor exiting at its saturation pressure rather than at ambient pressure. Sensitivity studies to recovery ratio, temperature, relative humidity and membrane selectivity are also presented.

  12. Nonlinear Lyapunov-based boundary control of distributed heat transfer mechanisms in membrane distillation plant

    KAUST Repository

    Eleiwi, Fadi

    2015-07-01

    This paper presents a nonlinear Lyapunov-based boundary control for the temperature difference of a membrane distillation boundary layers. The heat transfer mechanisms inside the process are modeled with a 2D advection-diffusion equation. The model is semi-descretized in space, and a nonlinear state-space representation is provided. The control is designed to force the temperature difference along the membrane sides to track a desired reference asymptotically, and hence a desired flux would be generated. Certain constraints are put on the control law inputs to be within an economic range of energy supplies. The effect of the controller gain is discussed. Simulations with real process parameters for the model, and the controller are provided. © 2015 American Automatic Control Council.

  13. Multifunctional membranes based on spinning technologies: the synergy of nanofibers and nanoparticles

    International Nuclear Information System (INIS)

    Roso, Martina; Modesti, Michele; Sundarrajan, Subramanian; Pliszka, Damian; Ramakrishna, Seeram

    2008-01-01

    A multicomponent membrane based on polysulfone nanofibers and titanium dioxide nanoparticles is produced by the coupling of electrospinning and electrospraying techniques. The manufactured product can satisfy a number of conflicting requirements begetting its technical and functional versatility as well as the reliability of the process. As nanoparticle dispersion is a critical issue in nanoparticle technology, their distribution and morphology have been extensively studied before and after electrospraying, and process optimization has been carried out to obtain nanoparticles uniformly spread over electrospun nanofibers. These membranes have been proved to be a good candidate for supported catalysis due to the photocatalytic activity of TiO 2 , tested for degradation of CEPS, a mustard agent simulant. At the same time, an effective improvement in filtering properties in terms of pressure drop has also been studied

  14. Adhesive coatings based on melanin-like nanoparticles for surgical membranes.

    Science.gov (United States)

    Scognamiglio, Francesca; Travan, Andrea; Turco, Gianluca; Borgogna, Massimiliano; Marsich, Eleonora; Pasqua, Mattia; Paoletti, Sergio; Donati, Ivan

    2017-07-01

    Adhesive coatings for implantable biomaterials can be designed to prevent material displacement from the site of implant. In this paper, a strategy based on the use of melanin-like nanoparticles (MNPs) for the development of adhesive coatings for polysaccharidic membranes was devised. MNPs were synthesized in vitro and characterized in terms of dimensions and surface potential, as a function of pH and ionic strength. The in vitro biocompatibility of MNPs was investigated on fibroblast cells, while the antimicrobial properties of MNPs in suspension were evaluated on E. coli and S. aureus cultures. The manufacturing of the adhesive coatings was carried out by spreading MNPs over the surface of polysaccharidic membranes; the adhesive properties of the nano-engineered coating to the target tissue (intestinal serosa) were studied in simulated physiological conditions. Overall, this study opens for novel approaches in the design of naturally inspired nanostructured adhesive systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Green Materials Science and Engineering Reduces Biofouling: Approaches for Medical and Membrane-based Technologies

    Directory of Open Access Journals (Sweden)

    Kerianne M Dobosz

    2015-03-01

    Full Text Available Numerous engineered and natural environments suffer deleterious effects from biofouling and/or biofilm formation. For instance, bacterial contamination on biomedical devices pose serious health concerns. In membrane-based technologies, such as desalination and wastewater reuse, biofouling decreases membrane lifetime and increases the energy required to produce clean water. Traditionally, approaches have combatted bacteria using bactericidal agents. However, due to globalization, a decline in antibiotic discovery, and the widespread resistance of microbes to many commercial antibiotics and metallic nanoparticles, new materials and approaches to reduce biofilm formation are needed. In this mini-review, we cover the recent strategies that have been explored to combat microbial contamination without exerting evolutionary pressure on microorganisms. Renewable feedstocks, relying on structure-property relationships, bioinspired/nature-derived compounds, and green processing methods are discussed. Greener strategies that mitigate biofouling hold great potential to positively impact human health and safety.

  16. Copper(II)-selective membrane electrode based on a recently synthesized naphthol-derivative Schiff's base

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, N.; Ershad, S. [Dept. of Chemistry, Tarbiat Moderres Univ., Tehran (Iran); Naeimi, H.; Sharghi, H. [Dept. of Chemistry, Shiraz Univ. (Iran); Shamsipur, M. [Dept. of Chemistry, Razi Univ., Kermanshah (Iran)

    1999-11-01

    A PVC membrane electrode for copper(II) ions based on a recently synthesized naphthol-derivative Schiff's base as membrane carrier was prepared. The sensor exhibits a Nernstian response for Cu{sup 2+} ions over a wide concentration range (5.0 x 10{sup -6}-5.0 x 10{sup -2} mol/L) with a detection limit of 3.1 x 10{sup -6} mol/L (0.2 {mu}g/mL). It has a very short response time of about 5 s and can be used for 3 months without any divergence in potential. The proposed electrode revealed good selectivities over a wide variety of other cations including alkali, alkaline earth, transition and heavy metal ions and could be used in a pH range of 4.0-7.0. It was successfully applied to the direct determination and potentiometric titration of copper ion. (orig.)

  17. Iodide selective membrane electrodes based on a Molybdenum-Salen as a neutral carrier

    Energy Technology Data Exchange (ETDEWEB)

    Ghanei-Motlagh, Masoud [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Taher, Mohammad Ali, E-mail: ma_taher@yahoo.com [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Ahmadi, Kyoumars [AJA University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sheikhshoaie, Iran [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2011-12-01

    A new polymeric membrane electrode (PME) and a coated platinum disk electrode (CPtE) based on Schiff base complex of Mo(VI) as a suitable carrier for I{sup -} ion were described. The influence of membrane composition, pH and possible interfering anions were investigated on the response properties of the electrodes. The electrodes exhibited a Nernstian slope of 63.0 {+-} 0.5 (CPtE) and 60.3 {+-} 0.4 (PME) mV decade{sup -1} in I{sup -} ion over a wide concentration range from 7.9 x 10{sup -7} to 1.0 x 10{sup -1} M for CPtE and 9.1 x 10{sup -6} to 1.0 x 10{sup -1} M I{sup -} for PME. The potentiometric response of the electrodes was independent of the pH of the test solution in the pH range 2.0-8.5 with a fast response time (< 10 s). The process of transfer of iodide across the membrane interface was investigated by use of the AC impedance technique. The proposed sensors were successfully applied to direct determination of iodide in samples containing interfering anions, waste water and as indicator electrodes in precipitation titrations. Highlights: {yields} We study new selective membrane electrodes for iodide ions. {yields} To the best of our knowledge this is the first coated platinum disk electrode of I{sup -}. {yields} The sensors have a wide concentration range with a fast response time. {yields} Efforts have been made to improve the selectivity with the use of CPtE.

  18. Developing a high-quality scoring function for membrane protein structures based on specific inter-residue interactions

    Science.gov (United States)

    Heim, Andrew J.; Li, Zhijun

    2012-03-01

    Membrane proteins are of particular biological and pharmaceutical importance, and computational modeling and structure prediction approaches play an important role in studies of membrane proteins. Developing an accurate model quality assessment program is of significance to the structure prediction of membrane proteins. Few such programs are proposed that can be applied to a broad range of membrane protein classes and perform with high accuracy. We developed a new model scoring function Interaction-based Quality assessment (IQ), based on the analysis of four types of inter-residue interactions within the transmembrane domains of helical membrane proteins. This function was tested using three high-quality model sets: all 206 models of GPCR Dock 2008, all 284 models of GPCR Dock 2010, and all 92 helical membrane protein models of the HOMEP set. For all three sets, the scoring function can select the native structures among all of the models with the success rates of 93, 85, and 100% respectively. For comparison, these three model sets were also adopted for a recently published model assessment program for membrane protein structures, ProQM, which gave the success rates of 85, 79, and 92% separately. These results suggested that IQ outperforms ProQM when only the transmembrane regions of the models are considered. This scoring function should be useful for the computational modeling of membrane proteins.

  19. Polymeric membrane sensors based on Cd(II) Schiff base complexes for selective iodide determination in environmental and medicinal samples.

    Science.gov (United States)

    Singh, Ashok Kumar; Mehtab, Sameena

    2008-01-15

    The two cadmium chelates of schiff bases, N,N'-bis(salicylidene)-1,4-diaminobutane, (Cd-S(1)) and N,N'-bis(salicylidene)-3,4-diaminotoluene (Cd-S(2)), have been synthesized and explored as ionophores for preparing PVC-based membrane sensors selective to iodide(I) ion. Potentiometric investigations indicate high affinity of these receptors for iodide ion. Polyvinyl chloride (PVC)-based membranes of Cd-S(1) and Cd-S(2) using as hexadecyltrimethylammonium bromide (HTAB) cation discriminator and o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), acetophenone (AP) and tributylphosphate (TBP) as plasticizing solvent mediators were prepared and investigated as iodide-selective sensors. The best performance was shown by the membrane of composition (w/w) of (Cd-S(1)) (7%):PVC (31%):DBP (60%):HTAB (2%). The sensor works well over a wide concentration range 5.3x10(-7) to 1.0x10(-2)M with Nernstian compliance (59.2mVdecade(-1) of activity) within pH range 2.5-9.0 with a response time of 11s and showed good selectivity for iodide ion over a number of anions. The sensor exhibits adequate life (3 months) with good reproducibility (S.D.+/-0.24mV) and could be used successfully for the determination of iodide content in environmental water samples and mouth wash samples.

  20. Membrane funnel-based spray ionization for protein/peptide analysis by Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Yeung, Hoi Sze; Li, Wan; Wang, Ze; Wong, Y L Elaine; Chen, Xiangfeng; Chan, T-W Dominic

    2015-02-28

    Samples analyzed in proteomic studies by nanoelectrospray ionization (nanoESI) are extremely limited in quantity requiring careful sample handling to prevent loss upon transfer and to maintain sample concentration. To alleviate the operational process and reduce the cost of nanoESI, it is essential to develop more robust, simple and sensitive analytical variants of the process. Membrane funnel-based spray was developed for analysis of proteins/peptides in this study. The membrane funnel was fabricated from thin flexible membrane by a punching method using a homemade device. The performance of the membrane funnel-based spray was demonstrated by analyzing peptides, proteins and trypsin-digested samples in comparison of nanoESI and the Teflon sheet based microfunnel. Compared with the microfunnel, the membrane funnel can be fabricated easily by punching a thin flexible membrane using a sharp needle. Only 50 nL of sample was required for an analysis. The membrane funnel enhanced the spray sensitivity 100-fold. A total of 5 amol of on-spot sample loading was sufficient to provide a measurable signal on a 9.4 Tesla Fourier transform ion cyclotron resonance mass spectrometry system. High-mass proteins (up to 66 kDa) could be analyzed using this funnel-based spray system. Good sequence coverage was obtained for tryptic digested samples. A rapid, simple and cheap membrane funnel-based sample plate fabrication method was developed. The membrane funnel-based spray is a promising new variant of nanoESI capable of fast and sensitive analysis of peptides/proteins with great potential that could be extended to other applications, including quantitative analysis at high throughput and imaging mass spectrometry. Copyright © 2015 John Wiley & Sons, Ltd.

  1. A Fluid Membrane-Based Soluble Ligand Display System for Live CellAssays

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jwa-Min; Nair, Pradeep N.; Neve, Richard M.; Gray, Joe W.; Groves, Jay T.

    2005-10-14

    Cell communication modulates numerous biological processes including proliferation, apoptosis, motility, invasion and differentiation. Correspondingly, there has been significant interest in the development of surface display strategies for the presentation of signaling molecules to living cells. This effort has primarily focused on naturally surface-bound ligands, such as extracellular matrix components and cell membranes. Soluble ligands (e.g. growth factors and cytokines) play an important role in intercellular communications, and their display in a surface-bound format would be of great utility in the design of array-based live cell assays. Recently, several cell microarray systems that display cDNA, RNAi, or small molecules in a surface array format were proven to be useful in accelerating high-throughput functional genetic studies and screening therapeutic agents. These surface display methods provide a flexible platform for the systematic, combinatorial investigation of genes and small molecules affecting cellular processes and phenotypes of interest. In an analogous sense, it would be an important advance if one could display soluble signaling ligands in a surface assay format that allows for systematic, patterned presentation of soluble ligands to live cells. Such a technique would make it possible to examine cellular phenotypes of interest in a parallel format with soluble signaling ligands as one of the display parameters. Herein we report a ligand-modified fluid supported lipid bilayer (SLB) assay system that can be used to functionally display soluble ligands to cells in situ (Figure 1A). By displaying soluble ligands on a SLB surface, both solution behavior (the ability to become locally enriched by reaction-diffusion processes) and solid behavior (the ability to control the spatial location of the ligands in an open system) could be combined. The method reported herein benefits from the naturally fluid state of the supported membrane, which allows

  2. Work of breathing during CPAP and heated humidified high-flow nasal cannula.

    Science.gov (United States)

    Shetty, Sandeep; Hickey, Ann; Rafferty, Gerrard F; Peacock, Janet L; Greenough, Anne

    2016-09-01

    To determine whether continuous positive airway pressure (CPAP) compared with heated humidified, high-flow nasal cannula (HHFNC) in infants with evolving or established bronchopulmonary dysplasia (BPD) reduced the work of breathing (WOB) and thoracoabdominal asynchrony (TAA) and improved oxygen saturation (SaO2). Randomised crossover study. Tertiary neonatal unit. 20 infants (median gestational age of 27.6 weeks (range 24.6-31.9 weeks)) were studied at a median postnatal age of 30.9 weeks (range 28.1-39.1 weeks). Infants were studied on 2 consecutive days. On the first study day, they were randomised to either CPAP or HHFNC each for 2 h, the order being reversed on the second day. The WOB was assessed by measuring the pressure time product of the diaphragm (PTPdi). PTPdi, TAA and SaO2 were assessed during the final 5 min of each 2 h period and the results on the two study days were meaned. There were no significant differences in the results on CPAP versus HHFNC: mean PTPdi 226 (range 126-294) versus 224 cm H2O/s/min (95% CI for difference: -27 to 22; p=0.85) (range 170-318) (p=0.82), mean TAA 13.4° (range 4.51°-23.32°) versus 14.01° (range 4.25°-23.86°) (95% CI for difference: -3.9 to 2.8: p=0.73) (p=0.63) and mean SaO2 95% (range 93%-100%) versus 95% (94%-99%), (95% CI for difference -1.8 to 0.5; p=0.25) (p=0.45). In infants with evolving or established BPD, CPAP compared with HHFNC offered no significant advantage with regard to the WOB, degree of asynchrony or oxygen saturation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  3. Portable e-Tongue based on Multi-channel LAPS Array with PVC Membrane for Rapid Environment Detection

    Science.gov (United States)

    Ha, D.; Yu, H.; Hu, N.; Wu, C. X.; Zhou, J.; Kirsanov, Dmitry; Legin, Andrey; Wang, P.

    2011-09-01

    A new kind of portable e-Tongue based on multi-channel LAPS array with PVC membrane has been designed for the rapid detection of environment situation, especially the seawater. It has the great advantages of depositing membranes which are offered by Chemistry Department, Saint-Petersburg State University on the sensors artificially with convenience and efficiency. To detect various heavy metal ions (Pb2+, Cd2+, Zn2+) simultaneously, respective Polyvinyl Chloride (PVC) membrane could be prepared on the surface of the silicon-based sensor in different channel.

  4. Nonlinear observer-based Lyapunov boundary control of distributed heat transfer mechanisms for membrane distillation plant

    KAUST Repository

    Eleiwi, Fadi

    2016-09-19

    This paper presents a nonlinear observer-based Lyapunov control for a membrane distillation (MD) process. The control considers the inlet temperatures of the feed and the permeate solutions as inputs, transforming it to boundary control process, and seeks to maintain the temperature difference along the membrane boundaries around a sufficient level to promote water production. MD process is modeled with advection diffusion equation model in two dimensions, where the diffusion and convection heat transfer mechanisms are best described. Model analysis, effective order reduction and parameters physical interpretation, are provided. Moreover, a nonlinear observer has been designed to provide the control with estimates of the temperature evolution at each time instant. In addition, physical constraints are imposed on the control to have an acceptable range of feasible inputs, and consequently, better energy consumption. Numerical simulations for the complete process with real membrane parameter values are provided, in addition to detailed explanations for the role of the controller and the observer. (C) 2016 Elsevier Ltd. All rights reserved.

  5. Design of air blast pressure sensors based on miniature silicon membrane and piezoresistive gauges

    Science.gov (United States)

    Riondet, J.; Coustou, A.; Aubert, H.; Pons, P.; Lavayssière, M.; Luc, J.; Lefrançois, A.

    2017-11-01

    Available commercial piezoelectric pressure sensors are not able to accurately reproduce the ultra-fast transient pressure occurring during an air blast experiment. In this communication a new pressure sensor prototype based on a miniature silicon membrane and piezoresistive gauges is reported for significantly improving the performances in terms of time response. Simulation results demonstrate the feasibility of a pressure transducer having a fundamental resonant frequency almost ten times greater than the commercial piezoelectric sensors one. The sensor uses a 5μm-thick SOI membrane and four P-type silicon gauges (doping level ≅ 1019 at/cm3) in Wheatstone bridge configuration. To obtain a good trade-off between the fundamental mechanical resonant frequency and pressure sensitivity values, the typical dimension of the rectangular membrane is fixed to 30μm x 90μm with gauge dimension of 1μm x 5μm. The achieved simulated mechanical resonant frequency of these configuration is greater than 40MHz with a sensitivity of 0.04% per bar.

  6. Composite hollow fiber membranes for organic solvent-based liquid-liquid extraction

    NARCIS (Netherlands)

    He, T.; Bolhuis-Versteeg, Lydia A.M.; Mulder, M.H.V.; Wessling, Matthias

    2004-01-01

    Instability issues of liquid membranes extraction significantly limit its wide application in industry. We report research on the application of a new composite hollow fiber membrane to stabilizing liquid membrane extraction. These type of composite membranes have either a polysulfone (PSf)

  7. Carbon-based building blocks for alcohol dehydration membranes with disorder-enhanced water permeability

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Etmimi, H.; Mallon, P.E.

    2017-01-01

    separation membranes. In this work, a humic acid-like biopolymer (HAL), extracted from organic compost with a yield of ~ 20%, was used to fabricate composite GO-HAL membranes. The HAL brings a high degree of disorder to the membrane structure, with the benefit of an increased water permeation rate. Upon......-HAL membranes promising devices for alcohol dehydration technologies....

  8. Preparation of fluoropolymer-based ion-track membranes. Structure of latent tracks and pretreatment effect

    International Nuclear Information System (INIS)

    Yamaki, Tetsuya; Nuryanthi, Nuryanthi; Koshikawa, Hiroshi; Sawada, Shinichi; Hakoda, Teruyuki; Hasegawa, Shin; Asano, Masaharu; Maekawa, Yasunari

    2012-01-01

    High-energy heavy-ion induced damage, called latent tracks m organic polymers can sometimes be etched out chemically to give submicro- and nano-sized pores. Our focus is placed on ion-track membranes of poly(vinylidene fluoride) (PVDF), a type of fluoropolymer, which were previously considered as a matrix of polymer electrolyte fuel-cell membranes. There have been no optimized methods of preparing the PVDF-based ion-track membranes. We thus examined chemical structures of the defects created in the track, and accordingly, presented a pretreatment technique for achieving more efficient track etching. A 25 μm-thick PVDF film was bombarded with 1.1 GeV 238 U or 450 MeV 129 Xe ions. In the multi-purpose chamber, degradation processes were monitored in-situ by FT-IR spectroscopy and residual gas analysis as a function of the fluence up to 6.0 x 10 11 ions/cm 2 . The films irradiated at 8 ions/cm 2 were etched in a 9 M KOH aqueous solution at 80degC. We also performed the conductometric etching, which allows monitoring of pore evolution versus etching time by recording the electrical conductance through the membrane. At fluences above 1 x 10 10 ions/cm 2 , the film showed two new absorption bands identified as double-bond stretching vibrations of in-chain unsaturations -CH=CF- and fluorinated vinyl groups -CF 2 CH=CF 2 . These defects would result from the evolution of HF. The knowledge of the solubility in a permanganate alkaline solution and our preliminary experiment suggested the importance of oxidized tracks for the easy introduction of the etching agent. We finally found that the pretreatment with ozone could oxidize the double bonds in the tracks, thereby vigorously promoting track etching before breakthrough. (author)

  9. Biologically constrained optimization based cell membrane segmentation in C. elegans embryos.

    Science.gov (United States)

    Azuma, Yusuke; Onami, Shuichi

    2017-06-19

    Recent advances in bioimaging and automated analysis methods have enabled the large-scale systematic analysis of cellular dynamics during the embryonic development of Caenorhabditis elegans. Most of these analyses have focused on cell lineage tracing rather than cell shape dynamics. Cell shape analysis requires cell membrane segmentation, which is challenging because of insufficient resolution and image quality. This problem is currently solved by complicated segmentation methods requiring laborious and time consuming parameter adjustments. Our new framework BCOMS (Biologically Constrained Optimization based cell Membrane Segmentation) automates the extraction of the cell shape of C. elegans embryos. Both the segmentation and evaluation processes are automated. To automate the evaluation, we solve an optimization problem under biological constraints. The performance of BCOMS was validated against a manually created ground truth of the 24-cell stage embryo. The average deviation of 25 cell shape features was 5.6%. The deviation was mainly caused by membranes parallel to the focal planes, which either contact the surfaces of adjacent cells or make no contact with other cells. Because segmentation of these membranes was difficult even by manual inspection, the automated segmentation was sufficiently accurate for cell shape analysis. As the number of manually created ground truths is necessarily limited, we compared the segmentation results between two adjacent time points. Across all cells and all cell cycles, the average deviation of the 25 cell shape features was 4.3%, smaller than that between the automated segmentation result and ground truth. BCOMS automated the accurate extraction of cell shapes in developing C. elegans embryos. By replacing image processing parameters with easily adjustable biological constraints, BCOMS provides a user-friendly framework. The framework is also applicable to other model organisms. Creating the biological constraints is a

  10. The cell-based L-glutathione protection assays to study endocytosis and recycling of plasma membrane proteins.

    Science.gov (United States)

    Cihil, Kristine M; Swiatecka-Urban, Agnieszka

    2013-12-13

    Membrane trafficking involves transport of proteins from the plasma membrane to the cell interior (i.e. endocytosis) followed by trafficking to lysosomes for degradation or to the plasma membrane for recycling. The cell based L-glutathione protection assays can be used to study endocytosis and recycling of protein receptors, channels, transporters, and adhesion molecules localized at the cell surface. The endocytic assay requires labeling of cell surface proteins with a cell membrane impermeable biotin containing a disulfide bond and the N-hydroxysuccinimide (NHS) ester at 4 ºC - a temperature at which membrane trafficking does not occur. Endocytosis of biotinylated plasma membrane proteins is induced by incubation at 37 ºC. Next, the temperature is decreased again to 4 ºC to stop endocytic trafficking and the disulfide bond in biotin covalently attached to proteins that have remained at the plasma membrane is reduced with L-glutathione. At this point, only proteins that were endocytosed remain protected from L-glutathione and thus remain biotinylated. After cell lysis, biotinylated proteins are isolated with streptavidin agarose, eluted from agarose, and the biotinylated protein of interest is detected by western blotting. During the recycling assay, after biotinylation cells are incubated at 37 °C to load endocytic vesicles with biotinylated proteins and the disulfide bond in biotin covalently attached to proteins remaining at the plasma membrane is reduced with L-glutathione at 4 ºC as in the endocytic assay. Next, cells are incubated again at 37 °C to allow biotinylated proteins from endocytic vesicles to recycle to the plasma membrane. Cells are then incubated at 4 ºC, and the disulfide bond in biotin attached to proteins that recycled to the plasma membranes is reduced with L-glutathione. The biotinylated proteins protected from L-glutathione are those that did not recycle to the plasma membrane.

  11. Membrane-Based Technologies in the Pharmaceutical Industry and Continuous Production of Polymer-Coated Crystals/Particles.

    Science.gov (United States)

    Chen, Dengyue; Sirkar, Kamalesh K; Jin, Chi; Singh, Dhananjay; Pfeffer, Robert

    2017-01-01

    Membrane technologies are of increasing importance in a variety of separation and purification applications involving liquid phases and gaseous mixtures. Although the most widely used applications at this time are in water treatment including desalination, there are many applications in chemical, food, healthcare, paper and petrochemical industries. This brief review is concerned with existing and emerging applications of various membrane technologies in the pharmaceutical and biopharmaceutical industry. The goal of this review article is to identify important membrane processes and techniques which are being used or proposed to be used in the pharmaceutical and biopharmaceutical operations. How novel membrane processes can be useful for delivery of crystalline/particulate drugs is also of interest. Membrane separation technologies are extensively used in downstream processes for bio-pharmaceutical separation and purification operations via microfiltration, ultrafiltration and diafiltration. Also the new technique of membrane chromatography allows efficient purification of monoclonal antibodies. Membrane filtration techniques of reverse osmosis and nanofiltration are being combined with bioreactors and advanced oxidation processes to treat wastewaters from pharmaceutical plants. Nanofiltration with organic solvent-stable membranes can implement solvent exchange and catalyst recovery during organic solvent-based drug synthesis of pharmaceutical compounds/intermediates. Membranes in the form of hollow fibers can be conveniently used to implement crystallization of pharmaceutical compounds. The novel crystallization methods of solid hollow fiber cooling crystallizer (SHFCC) and porous hollow fiber anti-solvent crystallization (PHFAC) are being developed to provide efficient methods for continuous production of polymer-coated drug crystals in the area of drug delivery. This brief review provides a general introduction to various applications of membrane technologies in

  12. Development of Nanostructured Water Treatment Membranes Based on Thermotropic Liquid Crystals: Molecular Design of Sub-Nanoporous Materials.

    Science.gov (United States)

    Sakamoto, Takeshi; Ogawa, Takafumi; Nada, Hiroki; Nakatsuji, Koji; Mitani, Masato; Soberats, Bartolome; Kawata, Ken; Yoshio, Masafumi; Tomioka, Hiroki; Sasaki, Takao; Kimura, Masahiro; Henmi, Masahiro; Kato, Takashi

    2018-01-01

    Supply of safe fresh water is currently one of the most important global issues. Membranes technologies are essential to treat water efficiently with low costs and energy consumption. Here, the development of self-organized nanostructured water treatment membranes based on ionic liquid crystals composed of ammonium, imidazolium, and pyridinium moieties is reported. Membranes with preserved 1D or 3D self-organized sub-nanopores are obtained by photopolymerization of ionic columnar or bicontinuous cubic liquid crystals. These membranes show salt rejection ability, ion selectivity, and excellent water permeability. The relationships between the structures and the transport properties of water molecules and ionic solutes in the sub-nanopores in the membranes are examined by molecular dynamics simulations. The results suggest that the volume of vacant space in the nanochannel greatly affects the water and ion permeability.

  13. Intra-operative tissue oxygen tension is increased by local insufflation of humidified-warm CO2 during open abdominal surgery in a rat model.

    Directory of Open Access Journals (Sweden)

    Jean K Marshall

    Full Text Available Maintenance of high tissue oxygenation (PtO2 is recommended during surgery because PtO2 is highly predictive of surgical site infection and colonic anastomotic leakage. However, surgical site perfusion is often sub-optimal, creating an obstructive hurdle for traditional, systemically applied therapies to maintain or increase surgical site PtO2. This research tested the hypothesis that insufflation of humidified-warm CO2 into the abdominal cavity would increase sub-peritoneal PtO2 during open abdominal surgery.15 Wistar rats underwent laparotomy under general anesthesia. Three sets of randomized cross-over experiments were conducted in which the abdominal cavity was subjected to alternating exposure to 1 humidified-warm CO2 & ambient air; 2 humidified-warm CO2 & dry-cold CO2; and 3 dry-cold CO2 & ambient air. Sub-peritoneal PtO2 and tissue temperature were measured with a polarographic oxygen probe.Upon insufflation of humidified-warm CO2, PtO2 increased by 29.8 mmHg (SD 13.3; p<0.001, or 96.6% (SD 51.9, and tissue temperature by 3.0°C (SD 1.7 p<0.001, in comparison with exposure to ambient air. Smaller, but significant, increases in PtO2 were seen in experiments 2 and 3. Tissue temperature decreased upon exposure to dry-cold CO2 compared with ambient air (-1.4°C, SD 0.5, p = 0.001.In a rat model, insufflation of humidified-warm CO2 into the abdominal cavity during open abdominal surgery causes an immediate and potentially clinically significant increase in PtO2. The effect is an additive result of the delivery of CO2 and avoidance of evaporative cooling via the delivery of the CO2 gas humidified at body temperature.

  14. Tuning PIM-PI-Based Membranes for Highly Selective Transport of Propylene/Propane

    KAUST Repository

    Swaidan, Ramy J.

    2016-12-06

    To date there exists a great deal of energetic and economic inefficiency in the separation of olefins from paraffins because the principal means of achieving industrial purity requirements is accomplished with very energy intensive cryogenic distillation. Mitigation of the severe energy intensity of the propylene/propane separation has been identified as one of seven chemical separations which can change the landscape of global energy use, and membranes have been targeted as an emerging technology because they offer scalability and lower capital and operating costs. The focus of this work was to evaluate a new direction of material development for the very industrially relevant propylene/propane separation using membranes. The objective was to develop a rational design approach for generating highly selective membranes using a relatively new platform of materials known as polyimides of intrinsic microporosity (PIM-PIs), the prospects of which have never been examined for the propylene/propane separation. Structurally, PIMs comprise relatively inflexible macromolecular architectures integrating contortion sites that help disrupt packing and trap microporous free volume elements (< 20 Å). To date most of the work reported in the literature on this separation is based on conventional low free volume 6FDA-based polyimides which in the best case show moderate C3H6/C3H8 selectivities (<20) with C3H6 permeabilities too low to garner industrial interest. Due to propylene and propane’s relatively large molecular size, we hypothesized that the use of more open structures can provide greater accessibility to the pores necessary to enhance membrane sieving and flux. It has been shown for numerous key gas separations that introduction of microporosity into a polymer structure can defy the notorious permeability/selectivity tradeoff curve and induce simultaneous boosts in both permeability and selectivity. The cornerstone approach to designing state of the art high

  15. Shivering and rewarming after cardiac surgery: comparison of ventilator circuits with humidifier and heated wires to heat and moisture exchangers.

    Science.gov (United States)

    McEvoy, M T; Carey, T J

    1995-07-01

    Detrimental physiologic effects of shivering in the cardiac surgery patient have been well documented. Rewarming techniques have been compared, with noted differences in the incidence of shivering. Ventilator circuits have not been examined independently from other rewarming variables. To compare heated wire humidification circuits with heat and moisture exchanger circuits on the incidence of shivering and speed and pattern of rewarming in mechanically ventilated patients. A prospective, descriptive, correlational study was done on 140 adult cardiac surgery patients in a university teaching medical center. All subjects underwent cardiac surgical procedures with hypothermic cardiopulmonary bypass. Subjects were randomized to humidified, heated wire circuits (n = 70) or heat and moisture exchanger circuits (n = 70). Heated water blankets were used on all patients. Mean intensive care unit admission temperature was 35.28 degrees C. No statistical differences were found in preoperative, demographic, or operative course data between treatment and control groups. Shivering was more common in the heat and moisture exchanger group than in the heated wire group. In our analysis, the only variable associated with shivering was the type of ventilator circuit. Patients using heated wire systems rewarmed more rapidly and had significantly higher temperatures than did patients using heat and moisture exchangers. These data suggest that use of heated wire humidified ventilator circuits with heated water blankets in adult cardiac surgery patients significantly reduces the incidence of shivering and results in a more rapid return to normothermia.

  16. Moisture transfer and pressure drop of humidifying elements made of non-woven fabric (Rayon/PET)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nae-Hyun [Incheon National University, Incheon (Korea, Republic of)

    2017-06-15

    In modern buildings, humidity control is an essential constituent of the building management, where spray-type humidifying element is widely used. For the spray-type element, there is a concern about the durability and the resistance to formation of mold. In this study, we made new humidifying elements were made using non-woven fabric rayon/PET and investigated the moisture transfer and pressure drop characteristics. Samples consisted of two different rayon compositions (30 % and 50 %). From the results the sample with 50 % rayon and 50 % PET showed superior moisture transfer performance than the sample with 50 % Kraft fiber and 50 % PET, probably due to better water absorption characteristics of rayon over Kraft fiber. However, pressure drop of the rayon/PET sample was larger than Kraft fiber/PET sample due to increased surface roughness. The moisture transfer performance of the rayon/PET sample deteriorated as the rayon content decreased. The efficiency (j{sub m}/{sup f}1/3) was the largest for rayon/PET (5:5) sample, followed by Kraft fiber/PET and rayon/PET (3:7) sample. The efficiency of commercially available Glasdek was much lower than other samples.

  17. Moisture transfer and pressure drop of humidifying elements made of non-woven fabric (Rayon/PET)

    International Nuclear Information System (INIS)

    Kim, Nae-Hyun

    2017-01-01

    In modern buildings, humidity control is an essential constituent of the building management, where spray-type humidifying element is widely used. For the spray-type element, there is a concern about the durability and the resistance to formation of mold. In this study, we made new humidifying elements were made using non-woven fabric rayon/PET and investigated the moisture transfer and pressure drop characteristics. Samples consisted of two different rayon compositions (30 % and 50 %). From the results the sample with 50 % rayon and 50 % PET showed superior moisture transfer performance than the sample with 50 % Kraft fiber and 50 % PET, probably due to better water absorption characteristics of rayon over Kraft fiber. However, pressure drop of the rayon/PET sample was larger than Kraft fiber/PET sample due to increased surface roughness. The moisture transfer performance of the rayon/PET sample deteriorated as the rayon content decreased. The efficiency (j m / f 1/3) was the largest for rayon/PET (5:5) sample, followed by Kraft fiber/PET and rayon/PET (3:7) sample. The efficiency of commercially available Glasdek was much lower than other samples.

  18. Review of Supported Pd-Based Membranes Preparation by Electroless Plating for Ultra-Pure Hydrogen Production

    Directory of Open Access Journals (Sweden)

    David Alique

    2018-01-01

    Full Text Available In the last years, hydrogen has been considered as a promising energy vector for the oncoming modification of the current energy sector, mainly based on fossil fuels. Hydrogen can be produced from water with no significant pollutant emissions but in the nearest future its production from different hydrocarbon raw materials by thermochemical processes seems to be more feasible. In any case, a mixture of gaseous compounds containing hydrogen is produced, so a further purification step is needed to purify the hydrogen up to required levels accordingly to the final application, i.e., PEM fuel cells. In this mean, membrane technology is one of the available separation options, providing an efficient solution at reasonable cost. Particularly, dense palladium-based membranes have been proposed as an ideal chance in hydrogen purification due to the nearly complete hydrogen selectivity (ideally 100%, high thermal stability and mechanical resistance. Moreover, these membranes can be used in a membrane reactor, offering the possibility to combine both the chemical reaction for hydrogen production and the purification step in a unique device. There are many papers in the literature regarding the preparation of Pd-based membranes, trying to improve the properties of these materials in terms of permeability, thermal and mechanical resistance, poisoning and cost-efficiency. In this review, the most relevant advances in the preparation of supported Pd-based membranes for hydrogen production in recent years are presented. The work is mainly focused in the incorporation of the hydrogen selective layer (palladium or palladium-based alloy by the electroless plating, since it is one of the most promising alternatives for a real industrial application of these membranes. The information is organized in different sections including: (i a general introduction; (ii raw commercial and modified membrane supports; (iii metal deposition insights by electroless-plating; (iv

  19. Review of Supported Pd-Based Membranes Preparation by Electroless Plating for Ultra-Pure Hydrogen Production

    Science.gov (United States)

    Alique, David; Martinez-Diaz, David; Sanz, Raul

    2018-01-01

    In the last years, hydrogen has been considered as a promising energy vector for the oncoming modification of the current energy sector, mainly based on fossil fuels. Hydrogen can be produced from water with no significant pollutant emissions but in the nearest future its production from different hydrocarbon raw materials by thermochemical processes seems to be more feasible. In any case, a mixture of gaseous compounds containing hydrogen is produced, so a further purification step is needed to purify the hydrogen up to required levels accordingly to the final application, i.e., PEM fuel cells. In this mean, membrane technology is one of the available separation options, providing an efficient solution at reasonable cost. Particularly, dense palladium-based membranes have been proposed as an ideal chance in hydrogen purification due to the nearly complete hydrogen selectivity (ideally 100%), high thermal stability and mechanical resistance. Moreover, these membranes can be used in a membrane reactor, offering the possibility to combine both the chemical reaction for hydrogen production and the purification step in a unique device. There are many papers in the literature regarding the preparation of Pd-based membranes, trying to improve the properties of these materials in terms of permeability, thermal and mechanical resistance, poisoning and cost-efficiency. In this review, the most relevant advances in the preparation of supported Pd-based membranes for hydrogen production in recent years are presented. The work is mainly focused in the incorporation of the hydrogen selective layer (palladium or palladium-based alloy) by the electroless plating, since it is one of the most promising alternatives for a real industrial application of these membranes. The information is organized in different sections including: (i) a general introduction; (ii) raw commercial and modified membrane supports; (iii) metal deposition insights by electroless-plating; (iv) trends in

  20. Review of Supported Pd-Based Membranes Preparation by Electroless Plating for Ultra-Pure Hydrogen Production.

    Science.gov (United States)

    Alique, David; Martinez-Diaz, David; Sanz, Raul; Calles, Jose A

    2018-01-23

    In the last years, hydrogen has been considered as a promising energy vector for the oncoming modification of the current energy sector, mainly based on fossil fuels. Hydrogen can be produced from water with no significant pollutant emissions but in the nearest future its production from different hydrocarbon raw materials by thermochemical processes seems to be more feasible. In any case, a mixture of gaseous compounds containing hydrogen is produced, so a further purification step is needed to purify the hydrogen up to required levels accordingly to the final application, i.e., PEM fuel cells. In this mean, membrane technology is one of the available separation options, providing an efficient solution at reasonable cost. Particularly, dense palladium-based membranes have been proposed as an ideal chance in hydrogen purification due to the nearly complete hydrogen selectivity (ideally 100%), high thermal stability and mechanical resistance. Moreover, these membranes can be used in a membrane reactor, offering the possibility to combine both the chemical reaction for hydrogen production and the purification step in a unique device. There are many papers in the literature regarding the preparation of Pd-based membranes, trying to improve the properties of these materials in terms of permeability, thermal and mechanical resistance, poisoning and cost-efficiency. In this review, the most relevant advances in the preparation of supported Pd-based membranes for hydrogen production in recent years are presented. The work is mainly focused in the incorporation of the hydrogen selective layer (palladium or palladium-based alloy) by the electroless plating, since it is one of the most promising alternatives for a real industrial application of these membranes. The information is organized in different sections including: (i) a general introduction; (ii) raw commercial and modified membrane supports; (iii) metal deposition insights by electroless-plating; (iv) trends in

  1. Computational Screening of MOF-Based Mixed Matrix Membranes for CO2/N2 Separations

    Directory of Open Access Journals (Sweden)

    Zeynep Sumer

    2016-01-01

    Full Text Available Atomically detailed simulations were used to examine CO2/N2 separation potential of metal organic framework- (MOF- based mixed matrix membranes (MMMs in this study. Gas permeability and selectivity of 700 new MMMs composed of 70 different MOFs and 10 different polymers were calculated for CO2/N2 separation. This is the largest number of MOF-based MMMs for which computational screening is done to date. Selecting the appropriate MOFs as filler particles in polymers resulted in MMMs that have higher CO2/N2 selectivities and higher CO2 permeabilities compared to pure polymer membranes. We showed that, for polymers that have low CO2 permeabilities but high CO2 selectivities, the identity of the MOF used as filler is not important. All MOFs enhanced the CO2 permeabilities of this type of polymers without changing their selectivities. Several MOF-based MMMs were identified to exceed the upper bound established for polymers. The methods we introduced in this study will create many opportunities to select the MOF/polymer combinations with useful properties for CO2 separation applications.

  2. Application of the mass-based UNIQUAC model to membrane systems: A critical revision

    International Nuclear Information System (INIS)

    Chovau, S.; Van der Bruggen, B.; Luis, P.

    2012-01-01

    Highlights: ► UNIQUAC model in mass-based terms is considered for the description of sorption equilibria in membrane systems. ► Model validation of molar and mass-based model is performed on simple (vapor + liquid) equilibrium. ► Discrepancy is found between molar and mass-based model, which is attributed to an incorrect conversion. ► Novel model based on correct thermodynamics is provided for future research. - Abstract: The UNIQUAC model is very suitable in describing (liquid + liquid) as well as (vapor + liquid) equilibrium for a wide range of systems. It can be extended to (solvent + polymer) systems for describing sorption equilibria. The original model is expressed in molar-based terms, but requires knowledge of structural parameters and molar masses of all components. Since these cannot always be easily determined for membranes, a conversion to mass-based terms is often performed, which eliminates this issue. Many studies use this model to calculate sorption equilibria in (solvent + polymer) systems. Nevertheless, in this work the conversion from molar to mass-based parameters is postulated to be erroneous. This even leads to an incorrect description of simple (vapor + liquid) equilibrium of pure liquid mixtures and hence it is advised not to use this model for further modeling of sorption equilibrium in (solvent + polymer) systems. In this paper, the errors in the conversion are pinpointed, and the effects it can have on the description of (vapor + liquid) equilibrium, if used improvident, are demonstrated. Furthermore, it is shown that in fact a simple and straightforward conversion can be performed. Finally, in the case when polymers are involved, an adaption and simplification to the model was successfully applied.

  3. Magnetoresponsive Poly(ether sulfone)-Based Iron Oxide cum Hydrogel Mixed Matrix Composite Membranes for Switchable Molecular Sieving.

    Science.gov (United States)

    Lin, Xi; Nguyen Quoc, Bao; Ulbricht, Mathias

    2016-10-26

    Stimuli-responsive membranes that can adjust mass transfer and interfacial properties "on demand" have drawn large interest over the last few decades. Here, we designed and prepared a novel magnetoresponsive separation membrane with remote switchable molecular sieving effect by simple one-step and scalable nonsolvent induced phase separation (NIPS) process. Specifically, poly(ether sulfone) (PES) as matrix for an anisotropic membrane, prefabricated poly(N-isopropylacrylamide) (PNIPAAm) nanogel (NG) particles as functional gates, and iron oxide magnetic nanoparticles (MNP) as localized heaters were combined in a synergistic way. Before membrane casting, the properties of the building blocks, including swelling property and size distribution for NG, and magnetic property and heating efficiency for MNP, were investigated. Further, to identify optimal film casting conditions for membrane preparation by NIPS, in-depth rheological study of the effects of composition and temperature on blend dope solutions was performed. At last, a composite membrane with 10% MNP and 10% NG blended in a porous PES matrix was obtained, which showed a large, reversible, and stable magneto-responsivity. It had 9 times higher water permeability at the "on" state of alternating magnetic field (AMF) than at the "off"-state. Moreover, the molecular weight cutoff of such membrane could be reversibly shifted from ∼70 to 1750 kDa by switching off or on the external AMF, as demonstrated in dextran ultrafiltration tests. Overall, it has been proved that the molecular sieving performance of the novel mixed matrix composite membrane can be controlled by the swollen/shrunken state of PNIPAAm NG embedded in the nanoporous barrier layer of a PES-based anisotropic porous matrix, via the heat generation of nearby MNP. And the structure of such membrane can be tailored by the NIPS process conditions. Such membrane has potential as enabling material for remote-controlled drug release systems or devices for

  4. Nano level detection of Cd(II) using poly(vinyl chloride) based membranes of Schiff bases.

    Science.gov (United States)

    Gupta, Vinod K; Al Khayat, Maysoon; Singh, Ashok K; Pal, Manoj K

    2009-02-16

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, 2,2'-(1Z,1'Z)-(1E,1'E)-(1,2-phenylenebis(methan-1-yl-1-ylidene))bis(azaan-1-yl-1-ylidene)bis(methylene)bis(azan-1-yl-1-ylidene)bis(methan-1-yl-ylidene)diphenol (L(1)) and 4,4'-(1E,1'E)-(butane-1,4-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)dinaphthalen-1-ol (L(2)) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (L(1)) (2.6%):PVC (31.6%):DOP (63.2%):NaTPB (2.6%). The proposed electrode exhibits Nernstian response in the concentration range 5.0 x 10(-9) to 1.0 x 10(-1)M Cd(2+) with limit of detection 3.1 x 10(-9), performs satisfactorily over wide pH range (2.0-8.5) with a fast response time (11s). The electrode has been found to work satisfactorily in partially non-aqueous media up to 40% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2.5 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in cigarette samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants.

  5. Nano level detection of Cd(II) using poly(vinyl chloride) based membranes of Schiff bases

    International Nuclear Information System (INIS)

    Gupta, Vinod K.; Al Khayat, Maysoon; Singh, Ashok K.; Pal, Manoj K.

    2009-01-01

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, 2,2'-(1Z,1'Z)-(1E,1'E)-(1,2-phenylenebis(methan-1-yl-1-ylidene)) bis(azaan-1-yl-1-ylidene)bis(methylene)bis(azan-1-yl-1-ylidene) bis(methan-1-yl-ylidene)diphenol (L 1 ) and 4,4'-(1E,1'E)-(butane-1,4-diylbis(azan-1-yl-1-ylidene)) bis(methan-1-yl-1-ylidene)dinaphthalen-1-ol (L 2 ) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (L 1 ) (2.6%):PVC (31.6%):DOP (63.2%):NaTPB (2.6%). The proposed electrode exhibits Nernstian response in the concentration range 5.0 x 10 -9 to 1.0 x 10 -1 M Cd 2+ with limit of detection 3.1 x 10 -9 , performs satisfactorily over wide pH range (2.0-8.5) with a fast response time (11 s). The electrode has been found to work satisfactorily in partially non-aqueous media up to 40% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2.5 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in cigarette samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants

  6. Nano level detection of Cd(II) using poly(vinyl chloride) based membranes of Schiff bases

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinod K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667 (India)], E-mail: vinodfcy@iitr.ernet.in; Al Khayat, Maysoon [Department of Chemistry, College of Sciences, University of Sharjah, Sharjah (United Arab Emirates); Singh, Ashok K.; Pal, Manoj K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667 (India)

    2009-02-16

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, 2,2'-(1Z,1'Z)-(1E,1'E)-(1,2-phenylenebis(methan-1-yl-1-ylidene)) bis(azaan-1-yl-1-ylidene)bis(methylene)bis(azan-1-yl-1-ylidene) bis(methan-1-yl-ylidene)diphenol (L{sub 1}) and 4,4'-(1E,1'E)-(butane-1,4-diylbis(azan-1-yl-1-ylidene)) bis(methan-1-yl-1-ylidene)dinaphthalen-1-ol (L{sub 2}) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (L{sub 1}) (2.6%):PVC (31.6%):DOP (63.2%):NaTPB (2.6%). The proposed electrode exhibits Nernstian response in the concentration range 5.0 x 10{sup -9} to 1.0 x 10{sup -1} M Cd{sup 2+} with limit of detection 3.1 x 10{sup -9}, performs satisfactorily over wide pH range (2.0-8.5) with a fast response time (11 s). The electrode has been found to work satisfactorily in partially non-aqueous media up to 40% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2.5 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in cigarette samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants.

  7. Comparing and Contrasting Traditional Membrane Bioreactor Models with Novel Ones Based on Time Series Analysis

    Directory of Open Access Journals (Sweden)

    Parneet Paul

    2013-02-01

    Full Text Available The computer modelling and simulation of wastewater treatment plant and their specific technologies, such as membrane bioreactors (MBRs, are becoming increasingly useful to consultant engineers when designing, upgrading, retrofitting, operating and controlling these plant. This research uses traditional phenomenological mechanistic models based on MBR filtration and biochemical processes to measure the effectiveness of alternative and novel time series models based upon input–output system identification methods. Both model types are calibrated and validated using similar plant layouts and data sets derived for this purpose. Results prove that although both approaches have their advantages, they also have specific disadvantages as well. In conclusion, the MBR plant designer and/or operator who wishes to use good quality, calibrated models to gain a better understanding of their process, should carefully consider which model type is selected based upon on what their initial modelling objectives are. Each situation usually proves unique.

  8. A process synthesis-intensification framework for the development of sustainable membrane-based operations

    DEFF Research Database (Denmark)

    Babi, Deenesh Kavi; Lutze, Philip; Woodley, John

    2014-01-01

    is synthesized through the sequencing of unit operations and subsequently analyzed for identifying process hot-spots using economic, life cycle and sustainability metrics. These hot-spots are limitations/bottlenecks associated with tasks that may be targeted for overall process improvement. At the second level......In this paper a multi-level, multi-scale framework for process synthesis-intensification that aims to make the process more sustainable than a base-case, which may represent a new process or an existing process, is presented. At the first level (operation-scale) a conceptual base case design...... larger-scale. Those alternatives that are able to address the identified hot-spots therefore give innovative and more sustainable process designs that otherwise could not be found from the larger-scales. In this paper, membrane-based operations identified through this framework are highlighted in terms...

  9. Poly(hydroxyethyl methacrylate) based affinity membranes for in vitro removal of anti-dsDNA antibodies from SLE plasma.

    Science.gov (United States)

    Uzun, Lokman; Yavuz, Handan; Osman, Bilgen; Celik, Hamdi; Denizli, Adil

    2010-07-01

    The preparation of polymeric membrane using affinity technology for application in blood filtration devices is described here. DNA attached poly(hydroxyethyl methacrylate) (PHEMA) based microporous affinity membrane was prepared for selective removal of anti-dsDNA antibodies from systemic lupus erythematosus (SLE) patient plasma in in vitro. In order to further increase blood-compatibility of affinity membrane, aminoacid based comonomer N-methacryloyl-L-alanine (MAAL) was included in the polymerization recipe. PHEMAAL membrane was produced by a photopolymerization technique and then characterized by swelling tests and scanning electron microscope (SEM) studies. Blood-compatibility tests were also performed. The water swelling ratio of PHEMAAL membrane increased significantly (133.2%) compared with PHEMA (58%). PHEMAAL membrane has large pores around in the range of 5-10 microm. All the clotting times increased when compared with PHEMA membrane. Loss of platelets and leukocytes was very low. DNA loading was 7.8 mg/g. There was a very low anti-dsDNA-antibody adsorption onto the plain PHEMAAL membrane, about 78 IU/g. The PHEMAAL-DNA membrane adsorbed anti-dsDNA-antibody in the range of 10-68 x 10(3)IU/g from SLE plasma. Anti-dsDNA-antibody concentration decreased significantly from 875 to 144 IU/ml with the time. Anti-dsDNA-antibodies could be repeatedly adsorbed and eluted without noticeable loss in the anti-dsDNA-antibody adsorption amount. (c) 2010 Elsevier B.V. All rights reserved.

  10. Entrapped cells-based-anaerobic membrane bioreactor treating domestic wastewater: Performances, fouling, and bacterial community structure.

    Science.gov (United States)

    Juntawang, Chaipon; Rongsayamanont, Chaiwat; Khan, Eakalak

    2017-11-01

    A laboratory scale study on treatment performances and fouling of entrapped cells-based-anaerobic membrane bioreactor (E-AnMBR) in comparison with suspended cells-based-bioreactor (S-AnMBR) treating domestic wastewater was conducted. The difference between E-AnMBR and S-AnMBR was the uses of cells entrapped in phosphorylated polyvinyl alcohol versus planktonic cells. Bulk organic removal efficiencies by the two AnMBRs were comparable. Lower concentrations of suspended biomass, bound extracellular polymeric substances and soluble microbial products in E-AnMBR resulted in less fouling compared to S-AnMBR. S-AnMBR provided 7 days of operation time versus 11 days for E-AnMBR before chemical cleaning was required. The less frequent chemical cleaning potentially leads to a longer membrane life-span for E-AnMBR compared to S-AnMBR. Phyla Proteobacteria, Chloroflexi, Bacteroidetes and Acidobacteria were dominant in cake sludge from both AnMBRs but their abundances were different between the two AnMBRs, suggesting influence of cell entrapment on the bacteria community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Iodide selective membrane electrodes based on a Molybdenum-Salen as a neutral carrier

    International Nuclear Information System (INIS)

    Ghanei-Motlagh, Masoud; Taher, Mohammad Ali; Ahmadi, Kyoumars; Sheikhshoaie, Iran

    2011-01-01

    A new polymeric membrane electrode (PME) and a coated platinum disk electrode (CPtE) based on Schiff base complex of Mo(VI) as a suitable carrier for I - ion were described. The influence of membrane composition, pH and possible interfering anions were investigated on the response properties of the electrodes. The electrodes exhibited a Nernstian slope of 63.0 ± 0.5 (CPtE) and 60.3 ± 0.4 (PME) mV decade -1 in I - ion over a wide concentration range from 7.9 x 10 -7 to 1.0 x 10 -1 M for CPtE and 9.1 x 10 -6 to 1.0 x 10 -1 M I - for PME. The potentiometric response of the electrodes was independent of the pH of the test solution in the pH range 2.0-8.5 with a fast response time ( - . → The sensors have a wide concentration range with a fast response time. → Efforts have been made to improve the selectivity with the use of CPtE.

  12. Energy and economic optimization of a membrane-based oxyfuel steam power plant

    International Nuclear Information System (INIS)

    Nazarko, Yevgeniy

    2015-01-01

    Carbon capture and storage is one technological option for reducing CO 2 emissions. The oxyfuel process is based on the combustion of fossil fuels in an oxygen-flue gas atmosphere with the subsequent concentration of CO 2 . The oxygen is produced by cryogenic air separation with an energy demand of 245 kWh el /t O2 . The application of ceramic membranes has the potential to reduce the specific energy demand of oxygen supply with consistently high-purity oxygen. This work focuses on - determining the efficiency of an advanced oxyfuel steam power plant that can be constructed today using membranes for oxygen production, - investigating and quantifying the potential for energy optimizing the overall process by changing its flow structure, - assessing the feasibility of individual optimization options based on their investment costs under market conditions. For this work, a method developed by Forschungszentrum Juelich and patented on 25 April 2012 under EP 2214806 is used. The Oxy-Vac-Juel concept is integrated into the oxyfuel steam power plant with simple process management using standardized power plant components. The net efficiency of the base power plant is 36.6 percentage points for an oxygen separation degree of 60 %. This corresponds to a net power loss of 9.3 percentage points compared to the reference power plant without CO 2 capture. The specific electricity demand of this oxygen supply method is 176 kWh el /t O2 . To increase the efficiency, the flow structure of the base power plant is optimized using industrially available components from power plant and process engineering. The 22 analyzed optimization options consist of design optimization of the gas separation process, the modification of the flue gas recirculation and the plant-internal waste heat utilization. The energetic advantage over the base power plant, depending on the optimization option, ranges from 0.05 - 1.00 percentage points. For each optimization option, the size and cost of the power

  13. A model-based parametric analysis of a direct ethanol polymer electrolyte membrane fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Andreadis, G.M.; Podias, A.K.M.; Tsiakaras, P.E. [Department of Mechanical and Industrial Engineering, School of Engineering, University of Thessaly, Pedion Areos, 383 34, Volos (Greece)

    2009-10-20

    In the present work, a model-based parametric analysis of the performance of a direct ethanol polymer electrolyte membrane fuel cell (DE-PEMFC) is conducted with the purpose to investigate the effect of several parameters on the cell's operation. The analysis is based on a previously validated one-dimensional mathematical model that describes the operation of a DE-PEMFC in steady state. More precisely, the effect of several operational and structural parameters on (i) the ethanol crossover rate from the anode to the cathode side of the cell, (ii) the parasitic current generation (mixed potential formation) and (iii) the total cell performance is investigated. According to the model predictions it was found that the increase of the ethanol feed concentration leads to higher ethanol crossover rates, higher parasitic currents and higher mixed potential values resulting in the decrease of the cell's power density. However there is an optimum ethanol feed concentration (approximately 1.0 mol L{sup -1}) for which the cell power density reaches its highest value. The platinum (Pt) loading of the anode and the cathode catalytic layers affects strongly the cell performance. Higher values of Pt loading of the catalytic layers increase the specific reaction surface area resulting in higher cell power densities. An increase of the anode catalyst loading compared to an equal one of the cathode catalyst loading has greater impact on the cell's power density. Another interesting finding is that increasing the diffusion layers' porosity up to a certain extent, improves the cell power density despite the fact that the parasitic current increases. This is explained by the fact that the reactants' concentrations over the catalysts are increased, leading to lower activation overpotential values, which are the main source of the total cell overpotentials. Moreover, the use of a thicker membrane leads to lower ethanol crossover rate, lower parasitic current and

  14. Membrane Processes Based on Complexation Reactions of Pollutants as Sustainable Wastewater Treatments

    Directory of Open Access Journals (Sweden)

    Teresa Poerio

    2009-11-01

    Full Text Available Water is today considered to be a vital and limited resource due to industrial development and population growth. Developing appropriate water treatment techniques, to ensure a sustainable management, represents a key point in the worldwide strategies. By removing both organic and inorganic species using techniques based on coupling membrane processes and appropriate complexing agents to bind pollutants are very important alternatives to classical separation processes in water treatment. Supported Liquid Membrane (SLM and Complexation Ultrafiltration (CP-UF based processes meet the sustainability criteria because they require low amounts of energy compared to pressure driven membrane processes, low amounts of complexing agents and they allow recovery of water and some pollutants (e.g., metals. A more interesting process, on the application point of view, is the Stagnant Sandwich Liquid Membrane (SSwLM, introduced as SLM implementation. It has been studied in the separation of the drug gemfibrozil (GEM and of copper(II as organic and inorganic pollutants in water. Obtained results showed in both cases the higher efficiency of SSwLM with respect to the SLM system configuration. Indeed higher stability (335.5 vs. 23.5 hours for GEM; 182.7 vs. 49.2 for copper(II and higher fluxes (0.662 vs. 0.302 mmol·h-1·m-2 for GEM; 43.3 vs. 31.0 for copper(II were obtained by using the SSwLM. Concerning the CP-UF process, its feasibility was studied in the separation of metals from waters (e.g., from soil washing, giving particular attention to process sustainability such as water and polymer recycle, free metal and water recovery. The selectivity of the CP-UF process was also validated in the separate removal of copper(II and nickel(II both contained in synthetic and real aqueous effluents. Thus, complexation reactions involved in the SSwLM and the CP-UF processes play a key role to meet the sustainability criteria.

  15. Accessible Mannitol-Based Amphiphiles (MNAs) for Membrane Protein Solubilisation and Stabilisation

    DEFF Research Database (Denmark)

    Hussain, Hazrat; Du, Yang; Scull, Nicola J.

    2016-01-01

    Integral membrane proteins are amphipathic molecules crucial for all cellular life. The structural study of these macromolecules starts with protein extraction from the native membranes, followed by purification and crystallisation. Detergents are essential tools for these processes, but detergent...

  16. Thin film thermocouples for in situ membrane electrode assembly temperature measurements in a polybenzimidazole-based high temperature proton exchange membrane unit cell

    DEFF Research Database (Denmark)

    Ali, Syed Talat; Lebæk, Jesper; Nielsen, Lars Pleth

    2010-01-01

    This paper presents Type-T thin film thermocouples (TFTCs) fabricated on Kapton (polyimide) substrate for measuring the internal temperature of PBI(polybenzimidazole)-based high temperature proton exchange membrane fuel cell (HT-PEMFC). Magnetron sputtering technique was employed to deposit a 2 mu...... degradation. This Kapton foil with deposited TFTCs was used as sealing inside a PBI (polybenzimidazole)-based single cell test rig, which enabled measurements of in situ temperature variations of the working fuel cell MEA. The performance of the TFTCs was promising with minimal interference to the operation...

  17. Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution

    International Nuclear Information System (INIS)

    Gong, Wenyin; Cai, Zhihua

    2013-01-01

    Parameter identification of PEM (proton exchange membrane) fuel cell model is a very active area of research. Generally, it can be treated as a numerical optimization problem with complex nonlinear and multi-variable features. DE (differential evolution), which has been successfully used in various fields, is a simple yet efficient evolutionary algorithm for global numerical optimization. In this paper, with the objective of accelerating the process of parameter identification of PEM fuel cell models and reducing the necessary computational efforts, we firstly present a generic and simple ranking-based mutation operator for the DE algorithm. Then, the ranking-based mutation operator is incorporated into five highly-competitive DE variants to solve the PEM fuel cell model parameter identification problems. The main contributions of this work are the proposed ranking-based DE variants and their application to the parameter identification problems of PEM fuel cell models. Experiments have been conducted by using both the simulated voltage–current data and the data obtained from the literature to validate the performance of our approach. The results indicate that the ranking-based DE methods provide better results with respect to the solution quality, the convergence rate, and the success rate compared with their corresponding original DE methods. In addition, the voltage–current characteristics obtained by our approach are in good agreement with the original voltage–current curves in all cases. - Highlights: • A simple and generic ranking-based mutation operator is presented in this paper. • Several DE (differential evolution) variants are used to solve the parameter identification of PEMFC (proton exchange membrane fuel cells) model. • Results show that our method accelerates the process of parameter identification. • The V–I characteristics are in very good agreement with experimental data

  18. Porous CS based membranes with improved antimicrobial properties for the treatment of infected wound in veterinary applications

    Energy Technology Data Exchange (ETDEWEB)

    Tonda-Turo, C., E-mail: chiara.tondaturo@polito.it [Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin (Italy); Ruini, F. [Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin (Italy); Argentati, M. [Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin (Italy); Clinic for Exotic Animals, CVS, Via Sandro Giovannini 53, 00137 Rome (Italy); Di Girolamo, N. [Clinic for Exotic Animals, CVS, Via Sandro Giovannini 53, 00137 Rome (Italy); Robino, P.; Nebbia, P. [Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Turin (Italy); Ciardelli, G. [Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin (Italy)

    2016-03-01

    Recently, much attention has been given to the use of innovative solution for the treatment of infected wounds in animals. Current applied treatments are often un-effective leading to infection propagation and animal death. Novel engineered membranes based on chitosan (CS) can be prepared to combine local antimicrobial effect, high flexibility and easy manipulation. In this work, CS crosslinked porous membranes with improved antimicrobial properties were prepared via freeze-drying technique to promote wound healing and to reduce the bacterial proliferation in infected injuries. Silver nanoparticles (AgNPs) and gentamicin sulfate (GS) were incorporated into the CS matrices to impart antibacterial properties on a wild range of strains. CS based porous membranes were tested for their physicochemical, thermal, mechanical as well as swelling and degradation behavior at physiological condition. Additionally, GS release profile was investigated, showing a moderate burst effect in the first days followed by a decreasing release rate which it was maintained for at least 56 days. Moreover, porous membranes loaded with GS or AgNPs showed good bactericidal activity against both of Gram-positive and Gram-negative bacteria. The bacterial strains used in this work were collected in chelonians after carapace injuries to better mimic the environment after trauma. - Highlights: • Innovative scaffolds for wound healing in veterinary applications • Novel engineered membranes based on chitosan with improved antibacterial properties • Highly flexible and versatile membranes for infected wounds.

  19. Porous CS based membranes with improved antimicrobial properties for the treatment of infected wound in veterinary applications

    International Nuclear Information System (INIS)

    Tonda-Turo, C.; Ruini, F.; Argentati, M.; Di Girolamo, N.; Robino, P.; Nebbia, P.; Ciardelli, G.

    2016-01-01

    Recently, much attention has been given to the use of innovative solution for the treatment of infected wounds in animals. Current applied treatments are often un-effective leading to infection propagation and animal death. Novel engineered membranes based on chitosan (CS) can be prepared to combine local antimicrobial effect, high flexibility and easy manipulation. In this work, CS crosslinked porous membranes with improved antimicrobial properties were prepared via freeze-drying technique to promote wound healing and to reduce the bacterial proliferation in infected injuries. Silver nanoparticles (AgNPs) and gentamicin sulfate (GS) were incorporated into the CS matrices to impart antibacterial properties on a wild range of strains. CS based porous membranes were tested for their physicochemical, thermal, mechanical as well as swelling and degradation behavior at physiological condition. Additionally, GS release profile was investigated, showing a moderate burst effect in the first days followed by a decreasing release rate which it was maintained for at least 56 days. Moreover, porous membranes loaded with GS or AgNPs showed good bactericidal activity against both of Gram-positive and Gram-negative bacteria. The bacterial strains used in this work were collected in chelonians after carapace injuries to better mimic the environment after trauma. - Highlights: • Innovative scaffolds for wound healing in veterinary applications • Novel engineered membranes based on chitosan with improved antibacterial properties • Highly flexible and versatile membranes for infected wounds

  20. Improvement of a sample preparation method assisted by sodium deoxycholate for mass-spectrometry-based shotgun membrane proteomics.

    Science.gov (United States)

    Lin, Yong; Lin, Haiyan; Liu, Zhonghua; Wang, Kunbo; Yan, Yujun

    2014-11-01

    In current shotgun-proteomics-based biological discovery, the identification of membrane proteins is a challenge. This is especially true for integral membrane proteins due to their highly hydrophobic nature and low abundance. Thus, much effort has been directed at sample preparation strategies such as use of detergents, chaotropes, and organic solvents. We previously described a sample preparation method for shotgun membrane proteomics, the sodium deoxycholate assisted method, which cleverly circumvents many of the challenges associated with traditional sample preparation methods. However, the method is associated with significant sample loss due to the slightly weaker extraction/solubilization ability of sodium deoxycholate when it is used at relatively low concentrations such as 1%. Hence, we present an enhanced sodium deoxycholate sample preparation strategy that first uses a high concentration of sodium deoxycholate (5%) to lyse membranes and extract/solubilize hydrophobic membrane proteins, and then dilutes the detergent to 1% for a more efficient digestion. We then applied the improved method to shotgun analysis of proteins from rat liver membrane enriched fraction. Compared with other representative sample preparation strategies including our previous sodium deoxycholate assisted method, the enhanced sodium deoxycholate method exhibited superior sensitivity, coverage, and reliability for the identification of membrane proteins particularly those with high hydrophobicity and/or multiple transmembrane domains. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Preparation and characterization of the PVDF-based composite membrane for direct methanol fuel cells

    OpenAIRE

    Qian Liu, Laizhou Song, Zhihui Zhang, Xiaowei Liu

    2010-01-01

    The polyvinylidene fluoride-sulfonated polystyrene composite membrane with proton exchange performance, denoted as PVDF-SPS, was prepared using a thermally induced polymerization technique. The thermal stability of the PVDF-SPS composite membrane was investigated using thermogravimetric (TG) analysis. The complex formation of the composite membrane was ascertained by Fourier transform infrared spectroscopy (FTIR). The surface compositions of the PVDF-SPS membrane were analyzed using X-ray pho...

  2. New polymeric electrolyte membranes based on proton donor proton acceptor properties for direct methanol fuel cells

    NARCIS (Netherlands)

    Manea, G.C.; Mulder, M.H.V.

    2002-01-01

    In order to reduce the high methanol permeability of membranes in a direct methanol fuel cell application new and better materials are still required. In this paper membranes made from polybenzimidazole/sulfonated polysulfone are given and compared with homopolymer membranes made from sulfonated

  3. Towards new membrane-based technologies for water treatment and reuse in the textile industry

    DEFF Research Database (Denmark)

    Petrinić, Irena; Hélix-Nielsen, Claus

    2014-01-01

    Membrane Bioreactors (MBRs) and Forward Osmosis (FO) membranes as both technologies have attracted considerable interest due to the low fouling propensity of FO membranes. This makes them an intriguing supplement to existing method and we conclude this communication by highlighting some new developments...

  4. Membrane and Films Based on Novel Crown-Containing Dyes as Promising Chemosensoring Materials

    Directory of Open Access Journals (Sweden)

    Sergei Yu. Zaitsev

    2010-12-01

    Full Text Available This paper discusses several works on supramolecular systems such as monolayer and multilayer, polymer films of various crown-containing dyes, surface-active monomers and polymers. Design, production and investigation of the membrane nanostructures based on crown ethers is a rapidly developing field at the “junction” of materials sciences and nanotechnology. These nanostructures can serve as convenient models for studying the self-organization and molecular recognition processes at interfaces that are typical for biomembranes. Based on the results obtained for such structures by absorption and fluorescence spectroscopy, atomic force and Brewster-angle microscopy, surface pressure and surface potential isotherm measurements, the possibility of developing micro- and nanomaterials possessing a set of specified properties (including chemosensor, photochromic and photorefractive materials is demonstrated.

  5. Gliclazide as novel carrier in construction of PVC-based La(III)-selective membrane sensor.

    Science.gov (United States)

    Ganjali, Mohammad Reza; Daftari, Azadeh; Rezapour, Morteza; Puorsaberi, Tahereh; Haghgoo, Soheila

    2003-03-01

    A PVC-based sensor for La(3+) ions based on N-[hexahydrocyclopentapyrol-2((1H)yl)amino]carbonyl]-4-methyl benzene sulfonamide (gliclazide) as a novel carrier was prepared. The electrode exhibits a Nernstian response for La(3+) over a wide concentration range (1.0x10(-1)-1.0x10(-6) M) with a slope of 20.1 mV per decade. The limit of detection is 8.0x10(-7) M. The sensor has a very short response time (<15 s) and a useful working pH range of 4.0-8.0. The proposed membrane sensor shows excellent discriminating ability towards La(3+) ions with regard to several alkali, alkaline earth, transition and heavy metal ions. The electrode was successfully applied for determination of La(3+) in binary mixtures.

  6. Colorimetric Humidity Sensors Based on Electrospun Polyamide/CoCl2 Nanofibrous Membranes

    Science.gov (United States)

    You, Ming-Hao; Yan, Xu; Zhang, Jun; Wang, Xiao-Xiong; He, Xiao-Xiao; Yu, Miao; Ning, Xin; Long, Yun-Ze

    2017-05-01

    Humidity indicators based on composite polyamide 66/cobalt chloride (PA66/CoCl2) nanofibrous membranes (NFMs) were successfully fabricated by electrospinning. A series of NFMs with various weight percentage of CoCl2 to PA66 were prepared, and their humidity sensitivity based on color changing and quartz crystal microbalance (QCM) were studied. Due to the color change property of cobalt chloride, the as-spun composite NFMs show obviously macroscopic color change from blue to pink as relative humidity (RH) increasing from 12.4 to 97.2%. Moreover, the QCM detection showed a linear dependence on the RH changing and exhibited short response/recovery time (less than 65.4 s/11 s), small hysteresis (less than 11%), good reproducibility, and stability. Owing to the above double sensitive mechanism on RH, the PA66/CoCl2 composite NFM may show great potential applications from meticulous to coarse.

  7. An Adaptable Spectrin/Ankyrin-Based Mechanism for Long-Range Organization of Plasma Membranes in Vertebrate Tissues.

    Science.gov (United States)

    Bennett, Vann; Lorenzo, Damaris N

    2016-01-01

    early axon initial segments and epithelial lateral membranes initially were based on spectrin-ankyrin-cell adhesion molecule assemblies and subsequently served as "incubators," where ion transporters independently acquired ankyrin-binding activity through positive selection. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Long-term performance of DMFC based on the blend membrane of sulfonated poly(ether ether ketone) and poly(vinylidene fluoride)

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ho-Young [Department of Chemical Engineering, University of South Carolina, 300 Main St., Columbia, SC 29208 (United States); Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-Dong, Yuseong-Gu, Daejeon 305-701 (Korea); Park, Jung-Ki [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-Dong, Yuseong-Gu, Daejeon 305-701 (Korea)

    2009-05-15

    A small amount of incorporation of PVdF to sPEEK membrane enhanced very significantly the interfacial stability between membrane and electrode due to the improved dimensional stability of membrane. The cell based on both the blend membrane and electrode with conventional Nafion binder could achieve a long-term stability up to 1650 h at 30 C with high cell performance of 70 mW cm{sup -2}. The high chemical and dimensional stability of the blend membrane also contributed to long-term high performance of the cell. This is more meaningful because hydrocarbon-based membrane rather than Nafion membrane is used in the cell system. It is thus suggested that sPEEK (97.5 wt%)/PVdF (2.5 wt%) blend membrane can be a candidate for successful applications to high performance DMFC with high economic advantage. (author)

  9. A New Emulsion Liquid Membrane Based on a Palm Oil for the Extraction of Heavy Metals

    Directory of Open Access Journals (Sweden)

    Sanna Björkegren

    2015-04-01

    Full Text Available The extraction efficiency of hexavalent chromium, Cr(VI, from water has been investigated using a vegetable oil based emulsion liquid membrane (ELM technique. The main purpose of this study was to create a novel ELM formulation by choosing a more environmentally friendly and non-toxic diluent such as palm oil. The membrane phase so formulated includes the mobile carrier tri-n-octylmethylammonium chloride (TOMAC, to facilitate the metal transport, and the hydrophilic surfactant Tween 80 to facilitate the dispersion of the ELM phase in the aqueous solution. Span 80 is used as surfactant and butanol as co-surfactant. Our results demonstrate that this novel ELM formulation, using the vegetable palm oil as diluent, is useful for the removal of hexavalent chromium with an efficiency of over 99% and is thus competitive with the already existing, yet less environmentally friendly, ELM formulations. This result was achieved with an optimal concentration of 0.1 M NaOH as stripping agent and an external phase pH of 0.5. Different water qualities have also been investigated showing that the type of water (deionized, distilled, or tap water does not significantly influence the extraction rate.

  10. RED WINE EXTRACT OBTAINED BY MEMBRANE-BASED SUPERCRITICAL FLUID EXTRACTION: PRELIMINARY CHARACTERIZATION OF CHEMICAL PROPERTIES.

    Directory of Open Access Journals (Sweden)

    W. Silva

    Full Text Available ABSTRACT This study aims to obtain an extract from red wine by using membrane-based supercritical fluid extraction. This technique involves the use of porous membranes as contactors during the dense gas extraction process from liquid matrices. In this work, a Cabernet Sauvignon wine extract was obtained from supercritical fluid extraction using pressurized carbon dioxide as solvent and a hollow fiber contactor as extraction setup. The process was continuously conducted at pressures between 12 and 18 MPa and temperatures ranged from 30 to 50ºC. Meanwhile, flow rates of feed wine and supercritical CO2 varied from 0.1 to 0.5 mL min-1 and from 60 to 80 mL min-1 (NCPT, respectively. From extraction assays, the highest extraction percentage value obtained from the total amount of phenolic compounds was 14% in only one extraction step at 18MPa and 35ºC. A summarized chemical characterization of the obtained extract is reported in this work; one of the main compounds in this extract could be a low molecular weight organic acid with aromatic structure and methyl and carboxyl groups. Finally, this preliminary characterization of this extract shows a remarkable ORAC value equal to 101737 ± 5324 µmol Trolox equivalents (TE per 100 g of extract.

  11. Oxygen transport membrane reactor based method and system for generating electric power

    Science.gov (United States)

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  12. Tin(II Selective PVC Membrane Electrode Based on Salicylaldehyde Thiosemicarbazone as an Ionophore

    Directory of Open Access Journals (Sweden)

    Sulekh Chandra

    2013-01-01

    Full Text Available A polymeric membrane-based tin selective electrode was developed by using salicylaldehyde thiosemicarbazone (STSC. The best performance was recorded with a membrane composition of PVC : TBP : ionophore : NaTPB as 28 : 59 : 8 : 5 (w/w%. The Nernstian slope calculated from the calibration curve for Sn2+ sensor was 28.8 ± 0.4 mV/decade. The detection limit of the sensor was 2.10 × 10−8 M, in the linear concentration range of 1.0 × 10−2−1.1 × 10−7 M. It was relatively fast response time (<8 s for concentration ≥1.0×10−4 and <12 s for concentration of ≥1.0×10−6 M and can be used for 9 months without any considerable divergence in potentials. The proposed sensor exhibit relatively good selectivity and high sensitivity for tin(II as other mono-, di-, and trivalent cations and can be used in a pH range of 2.0–8.5. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of stannous in artificially made samples.

  13. Heterogeneous anion conducting membranes based on linear and crosslinked KOH doped polybenzimidazole for alkaline water electrolysis

    DEFF Research Database (Denmark)

    Aili, David; Hansen, Martin Kalmar; Renzaho, Richard Fulgence

    2013-01-01

    Polybenzimidazole is a highly hygroscopic polymer that can be doped with aqueous KOH to give a material with high ion conductivity in the 10−2Scm−1 range, which in combination with its low gas permeability makes it an interesting electrolyte material for alkaline water electrolysis. In this study...... on their linear counterpart. The technical feasibility of the membranes was evaluated by the preliminary water electrolysis tests showing performance comparable to that of commercially available cell separators with great potential of further improvement.......Polybenzimidazole is a highly hygroscopic polymer that can be doped with aqueous KOH to give a material with high ion conductivity in the 10−2Scm−1 range, which in combination with its low gas permeability makes it an interesting electrolyte material for alkaline water electrolysis. In this study...... membranes based on linear and crosslinked polybenzimidazole were evaluated for this purpose. Extensive characterization with respect to spectroscopic and physicochemical properties during aging in 6molL−1 KOH at 85°C for up to 176 days indicated structural stability of the high molecular weight specialty...

  14. Lanthanum(IlI) PVC membrane electrodes based on 1,3,5-trithiacyclohexane.

    Science.gov (United States)

    Shamsipur, Mojtaba; Yousefi, Mohammad; Hosseini, Morteza; Ganjali, Mohammad Reza

    2002-11-01

    Novel plasticized polymeric membrane (PPME) and membrane-coated graphite (MCGE) electrodes based on 1,3,5-trithiacyclohexane for highly selective determination of La3+ ion have been developed. The electrodes exhibit Nernstian responses over very wide concentration ranges (8.0 x 10(-6)-5.0 x 10(-2) M for PPME and 4.0 x 10(-8)-1.0 x 10(-2) M for MCGE). The limit of detections were 5.0 x 10(-6) and 2.0 x 10(-8) M for PPME and MCGE, respectively. The electrodes possess a fast response time of approximately 10 s and can be used for at least 6 months without observing any deviation. The proposed electrodes revealed excellent selectivities for La3+ over a wide variety of alkali, alkaline earth, transition, and heavy metal ions and could be used in a pH range of 5.0-8.0. The practical utility of the electrodes has been demonstrated by their use as indicator electrodes in the potentiometric titration of La3+ ions with EDTA and in determination of F- in some mouthwash preparations.

  15. Comparative Study of One-Step Cross-Linked Electrospun Chitosan-Based Membranes

    Directory of Open Access Journals (Sweden)

    Yanet E. Aguirre-Chagala

    2017-01-01

    Full Text Available Chitosan membranes are widely applied for tissue engineering; however, a major drawback is their low resistance in aqueous phases and therefore the structure collapses impeding their long-term use. Although there is extensive research, because of chitosan’s importance as a biomaterial, studies involving chitosan-based membranes are still needed. Herein, a detailed investigation of diverse chemical routes to cross-link fibers in situ by electrospinning process is described. In case of using genipin as cross-linker, a close relationship with the content and the mean diameter values is reported, suggesting a crucial effect over the design of nanostructures. Also, the physical resistance is enhanced for the combination of two types of methods, such as chemical and physical methods. Cross-linked fibers upon exposure to long wave ultraviolet A (UVA light change their morphology, but not their chemical composition. When they are incubated in aqueous phase for 70 days, they show an extensive improvement of their macrostructural integrity which makes them attractive candidates for tissue engineering application. As a result, the thermal properties of these materials reveal less crystallinity and higher temperature of degradation.

  16. Highly selective and sensitive monohydrogen phosphate membrane sensor based on molybdenum acetylacetonate

    International Nuclear Information System (INIS)

    Ganjali, Mohammad Reza; Norouzi, Parviz; Ghomi, Mahnaz; Salavati-Niasari, Masoud

    2006-01-01

    In this work, a highly selective and sensitive monohydrogen phosphate membrane sensor based on a molybdenum bis(2-hydroxyanil) acetylacetonate complex (MAA) is reported. The sensor shows a linear dynamic range between 1.0 x 10 -1 and 1.0 x 10 -7 M, with a nice Nernstian behavior (-29.5 ± 0.3 mV decade -1 ) in pH of 8.2. The detection limit of the electrode is 6.0 x 10 -8 M (∼6 ppb). The best performance was obtained with a membrane composition of 32% poly(vinyl chloride), 58% benzyl acetate, 2% hexadecyltrimethylammonium bromide and 8% MAA. The sensor possesses the advantages of short response time, low detection limit and especially, very good selectivity towards a large number of organic and inorganic anions including salicylate, citrate, tartarate, acetate, oxalate, fluoride, chloride, bromide, iodide, sulfite, sulfate, nitrate, nitrite, cyanide, thiocyanate, perchlorate, metavanadate, and bicarbonate ions. The electrode can be used for at least 10 weeks without any considerable divergence in its slope and detection limit. It was used as an indicator electrode in potentiometric titration of monohydrogenphosphate ion with barium chloride. The proposed sensor was successfully applied to direct determination of monohydrogenphosphate in two fertilizer samples (NPK)

  17. Capacitance pressure sensor based on GaN high-electron-mobility transistor-on-Si membrane

    International Nuclear Information System (INIS)

    Kang, B.S.; Kim, J.; Jang, S.; Ren, F.; Johnson, J.W.; Therrien, R.J.; Rajagopal, P.; Roberts, J.C.; Piner, E.L.; Linthicum, K.J.; Chu, S.N.G.; Baik, K.; Gila, B.P.; Abernathy, C.R.; Pearton, S.J.

    2005-01-01

    The changes in the capacitance of the channel of an AlGaN/GaN high-electron-mobility transistor (HEMT) membrane structure fabricated on a Si substrate were measured during the application of both tensile and compressive strain through changes in the ambient pressure. The capacitance of the channel displays a change of 7.19±0.45x10 -3 pF/μm as a function of the radius of the membrane at a fixed pressure of +9.5 bar and exhibits a linear characteristic response between -0.5 and +1 bar with a sensitivity of 0.86 pF/bar for a 600 μm radius membrane. The hysteresis was 0.4% in the linear range. These AlGaN/GaN HEMT membrane-based sensors appear to be promising for both room-temperature and elevated-temperature pressure-sensing applications

  18. Microporous membrane-based liver tissue engineering for the reconstruction of three-dimensional functional liver tissues in vitro.

    Science.gov (United States)

    Kasuya, Junichi; Tanishita, Kazuo

    2012-01-01

    To meet the increasing demand for liver tissue engineering, various three-dimensional (3D) liver cell culture techniques have been developed. Nevertheless, conventional liver cell culture techniques involving the suspending cells in extracellular matrix (ECM) components and the seeding of cells into 3D biodegradable scaffolds have an intrinsic shortcoming, low cell-scaffold ratios. We have developed a microporous membrane-based liver cell culture technique. Cell behaviors and tissue organization can be controlled by membrane geometry, and cell-dense thick tissues can be reconstructed by layering cells cultured on biodegradable microporous membranes. Applications extend from liver parenchymal cell monoculture to multi-cell type cultures for the reconstruction of 3D functional liver tissue. This review focuses on the expanding role for microporous membranes in liver tissue engineering, primarily from our research.

  19. Effect of a proton conducting filler on the physico-chemical properties of SPEEK-based membranes

    Energy Technology Data Exchange (ETDEWEB)

    Mecheri, B.; Chen, F.; Traversa, E. [Department of Chemical Science and Technology, University of Rome ' ' Tor Vergata' ' , Via della Ricerca Scientifica 1, 00133 Roma (Italy); D' Epifanio, A. [Department of Chemical Science and Technology, University of Rome ' ' Tor Vergata' ' , Via della Ricerca Scientifica 1, 00133 Roma (Italy); Hunter College of the City University of New York, New York, NY 10065 (United States); Pisani, L. [CRS4 Parco Scientifico e Tecnologico, POLARIS, 09010 Pula(CA) (Italy); Weise, F.C.; Greenbaum, S. [Hunter College of the City University of New York, New York, NY 10065 (United States); Licoccia, S.

    2009-08-15

    Composite membranes based on sulphonated polyetherether ketone (SPEEK) having a 60% degree of sulphonation (DS=0.6) and containing 23 and 50 wt.-% hydrated tin oxide (SnO{sub 2}.nH{sub 2}O) were prepared and characterised. The lower water uptake (WU) and the higher conductivity values recorded for the composite membranes with respect to pure SPEEK reference suggested the involvement of SnO{sub 2}.nH{sub 2}O in the proton conduction mechanism. Pulsed-field-gradient spin-echo (PFGSE) NMR was employed to obtain a direct measurement of water self-diffusion coefficient in the membranes. Differences were observed between the unfilled SPEEK and the composites, including departures from the normal correlation between water diffusivity and proton conductivity in the case of composites. To better understand the SnO{sub 2}.nH{sub 2}O effect on the proton transport properties of the SPEEK-based membrane, we employed an analytical model that predicts the membrane conductivity as a function of its hydration level and porous structure. The comparison of the model results with the experimental proton conductivity values demonstrated that the tin oxide phase provides additional paths between the water clusters for proton transport, resulting in reduced tortuosity and enhanced proton conductivity. Moreover, the composite showed reduced methanol crossover with respect to the unfilled membrane. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  20. Scalable Graphene-Based Membranes for Ionic Sieving with Ultrahigh Charge Selectivity.

    Science.gov (United States)

    Hong, Seunghyun; Constans, Charlotte; Surmani Martins, Marcos Vinicius; Seow, Yong Chin; Guevara Carrió, Juan Alfredo; Garaj, Slaven

    2017-02-08

    Nanostructured graphene-oxide (GO) laminate membranes, exhibiting ultrahigh water flux, are excellent candidates for next generation nanofiltration and desalination membranes, provided the ionic rejection could be further increased without compromising the water flux. Using microscopic drift-diffusion experiments, we demonstrated the ultrahigh charge selectivity for GO membranes, with more than order of magnitude difference in the permeabilities of cationic and anionic species of equivalent hydration radii. Measuring diffusion of a wide range of ions of different size and charge, we were able to clearly disentangle different physical mechanisms contributing to the ionic sieving in GO membranes: electrostatic repulsion between ions and charged chemical groups; and the compression of the ionic hydration shell within the membrane's nanochannels, following the activated behavior. The charge-selectivity allows us to rationally design membranes with increased ionic rejection and opens up the field of ion exchange and electrodialysis to the GO membranes.

  1. Novel acid-base hybrid membrane based on amine-functionalized reduced graphene oxide and sulfonated polyimide for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Cao, Li; Sun, Qingqing; Gao, Yahui; Liu, Luntao; Shi, Haifeng

    2015-01-01

    A series of novel acid-base hybrid membranes (SPI/PEI-rGO) based on sulfonated polyimide (SPI) with polyethyleneimine-functionalized reduced graphene oxide (PEI-rGO) are prepared by a solution-casting method for vanadium redox flow battery (VRB). FT-IR and XPS results prove the successful fabrication of PEI-rGO and SPI/PEI-rGO hybrid membranes, which show a dense and homogeneous structure observed by SEM. The physicochemical properties such as water uptake, swelling ratio, ion exchange capacity, proton conductivity and vanadium ion permeability are well controlled by the incorporated PEI-rGO fillers. The interfacial-formed acid-base pairs between PEI-rGO and SPI matrix effectively reduce the swelling ratio and vanadium ion permeability, increasing the stability performance of the hybrid membranes. SPI/PEI-rGO-2 hybrid membrane exhibits a higher coulombic efficiency (CE, 95%) and energy efficiency (EE, 75.6%) at 40 mA cm −2 , as compared with Nafion 117 membrane (CE, 91% and EE, 66.8%). The self-discharge time of the VRB with SPI/PEI-rGO-2 hybrid membrane (80 h) is longer than that of Nafion 117 membrane (26 h), demonstrating the excellent blocking ability for vanadium ion. After 100 charge-discharge cycles, SPI/PEI-rGO-2 membrane exhibits the good stability under strong oxidizing and acid condition, proving that SPI/PEI-rGO acid-base hybrid membranes could be used as the promising candidates for VRB applications

  2. Application and characterization of electroactive membranes based on carbon nanotubes and zerovalent iron nanoparticles.

    Science.gov (United States)

    Yanez H, Jorge E; Wang, Zi; Lege, Sascha; Obst, Martin; Roehler, Sebastian; Burkhardt, Claus J; Zwiener, Christian

    2017-01-01

    Carbon nanotube (CNT) membranes were produced from multi-walled CNTs by a filtration technique and used for the removal of the betablocker metoprolol by adsorptive and reactive processes. The reactivity of CNT membranes was enhanced by nanoparticulate zero-valent iron (NZVI) which was deposited on the CNT membranes by pulsed voltammetry applying defined number of pulses (Fe-CNT (100) and Fe-CNT (400) membranes). Surface analysis with SEM showed iron nanoparticle sizes between 19 and 425 nm. Pore size distribution for the different membranes was determined by capillary flow porometry (Galwick fluid). Pore size distribution for all membranes was similar (40 nm), which resulted in a water permeability typical for microfiltration membranes. Metoprolol was removed by the CNT membrane only by sorption, whereas the Fe-CNT membrane revealed also metoprolol degradation due to Fenton type reactions. Further application of electrochemical potentials on both the CNT and the Fe-CNT membranes improved the removal efficiencies to 74% for CNT membranes at 1 V and to 97% for Fe-CNT (400) membranes at 1 V. Seven transformation products have been identified for metoprolol by high-resolution mass spectrometry when electrochemical degradation was performed with CNT and Fe-CNT membranes. Additionally, two of the identified transformation products (TPs) were also observed for Fe-CNT membranes without the application of electrochemical potential. However, only 10% of the degraded metoprolol could be explained by the formation of TPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. [Efficacy of heat and moisture exchangers and heated humidifiers in preventing ventilator-associated pneumonia: a meta-analysis].

    Science.gov (United States)

    Mo, Min; Liu, Song-qiao; Yang, Yi

    2011-09-01

    To demonstrate the effects of heat and moisture exchangers (HME) and heated humidifiers(HH) in preventing ventilator-associated pneumonia (VAP). PubMed and Cochrane databases were searched by computer retrieval and manual retrieval to identify relevant randomized controlled trials (RCTs) using HMEs and HHs in preventing VAP from January 1st 1990 to September 1st 2010. Meta-analysis of HME and HH in preventing VAP was conducted using the methods recommended by the Cochrane Collaboration. Eleven RCTs were included. 1 121 in HME group and 1 101 in HH group. In total, the rate of VAP in HME group and HH group was 14.2% (159/1 121) and 15.9% (175/1 101) respectively, the total relative risk (RR) was 0.88, and 95% confidence interval (95%CI) 0.72-1.07, P=0.21. Compared with HH group, there was not a reduction in the risk ratio of VAP in the HME group. Even in mechanical ventilation(MV) with a duration of at least 7 days for subgroup analysis (8 RCTs, sample size: 834 in HME group and 859 in HH group), the rate of VAP in HME group and HH group was 15.2% (127/834) and 17.5% (150/859) respectively, the total RR was 0.84, 95%CI 0. 58-1.23, P=0.37, suggesting that in MV with a duration at least 7 days, there was also no reduction in the risk ratio of VAP in the HME group. This study suggests there is not a significant reduction in the incidence of VAP in patients humidified with HMEs during MV, even in patients ventilated for 7 days or longer. This finding is limited by lack of enough RCTs and blinding. Further large sample of high quality RCTs is necessary to examine the wider applicability of HMEs and their extended use.

  4. Crystalline polyoxometalate (POM)–polyethylene glycol (PEG) composites aimed as non-humidified intermediate-temperature proton conductors

    Energy Technology Data Exchange (ETDEWEB)

    Tsuboi, Masaki [Department of Basic Sciences, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Hibino, Mitsuhiro; Mizuno, Noritaka [Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Uchida, Sayaka, E-mail: csayaka@mail.ecc.u-tokyo.ac.jp [Department of Basic Sciences, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2016-02-15

    Crystalline polyoxometalate (POM)–polyethylene glycol (PEG) composites aimed as non-humidified intermediate-temperature proton conductors were synthesized and characterized by single crystal and powder XRD, solid state MASNMR, and TG-DTA measurements. Among the POM–PEG composites, Cs{sub 2.7}H{sub 0.3}[PW{sub 12}O{sub 40}]·1.2PEG1000 (CsHPW-PEG1000) possessed one-dimensional channels with diameters of ca. 6 and 8 Å, where PEG probably resided, and showed the best performance as a proton conductor (1.2×10{sup −5} S cm{sup −1} at 443 K). Proton conductivities of POM–PEG composites decreased by the increase in molecular weights of PEG (CsHPW-PEG12,000) or anion charges (CsHSiW-PEG1000). Variable contact time {sup 13}C-CP (cross polarization) MASNMR revealed that local mobility (i.e., segmental motion) of PEG is related to the trends in proton conductivities. These results show that amount of acidic protons (H{sup +}) is not the primary factor in proton conduction and that segmental motion of PEG assists the proton hopping among POMs in the crystal lattice of POM–PEG composites. - Graphical abstract: Non-humidified intermediate-temperature proton conduction in crystalline polyoxometalate (POM)–polyethylene (PEG) composites are assisted by the segmental motion of PEG. - Highlights: • Crystalline polyoxometalate–polyethlene glycol (PEG) composites were synthesized. • CsHPW-PEG1000 possessed one-dimensional channels and showed the highest proton conductivity. • {sup 13}C CPMASNMR revealed that segmental motion of PEG is related to the proton conduction.

  5. Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces

    International Nuclear Information System (INIS)

    Xu, Chen; Liu, Xiaojiu; Xie, Binbin; Yao, Chen; Hu, Wenhan; Li, Yi; Li, Xinsong

    2016-01-01

    Highlights: • Amino acids have been successfully grafted onto the surface of PES membranes via amino groups induced epoxy ring opening. • Zwitterionic PES ultrafiltration membranes exhibit excellent antifouling performance and improved permeation properties. • A facile strategy to combat fouling of PES ultrafiltration membranes is developed by grafting natural amino acids. - Abstract: In this report, a simple and facile approach to enhance the antifouling property of poly(ether sulfone) (PES) ultrafiltration membrane was developed by grafting natural amino acids onto surface. First of all, poly(ether sulfone) composite membranes blended with poly(glycidyl methacrylate) were fabricated by phase inversion method followed by grafting of different types of natural amino acids onto the membrane surface through epoxy ring opening reaction. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR) and X-ray photoelectron spectroscopy (XPS) verified the substantial enrichment of amino acids onto the surface of PES membranes. The hydrophilicity of the PES membranes was improved after grafting amino acids. The mechanical property and morphologies of the PES membranes proved that their basic performances were not obviously affected by grafting reaction, and these parameters were all still in the typical range for ultrafiltration membranes. The antifouling property of the grafted PES membranes against bovine serum albumin (BSA) and lysozyme (Lyz) was investigated in detail. It was found that PES membranes incorporated with neutral amino acids exhibited higher fouling resistance to both BSA and Lyz than the parent PES membrane. It can be ascribed to the formation of zwitterionic structure on the surface consisting of protonated secondary amino cations and carboxyl anions. Meanwhile, PES membranes grafted with charged amino acids had better antifouling properties against protein with same electric charges and improved adsorption

  6. Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen; Liu, Xiaojiu; Xie, Binbin; Yao, Chen [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China); Hu, Wenhan; Li, Yi [Suzhou Faith & Hope Membrane Technology Co., Ltd., Suzhou, 215000 (China); Li, Xinsong, E-mail: lixs@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China)

    2016-11-01

    Highlights: • Amino acids have been successfully grafted onto the surface of PES membranes via amino groups induced epoxy ring opening. • Zwitterionic PES ultrafiltration membranes exhibit excellent antifouling performance and improved permeation properties. • A facile strategy to combat fouling of PES ultrafiltration membranes is developed by grafting natural amino acids. - Abstract: In this report, a simple and facile approach to enhance the antifouling property of poly(ether sulfone) (PES) ultrafiltration membrane was developed by grafting natural amino acids onto surface. First of all, poly(ether sulfone) composite membranes blended with poly(glycidyl methacrylate) were fabricated by phase inversion method followed by grafting of different types of natural amino acids onto the membrane surface through epoxy ring opening reaction. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR) and X-ray photoelectron spectroscopy (XPS) verified the substantial enrichment of amino acids onto the surface of PES membranes. The hydrophilicity of the PES membranes was improved after grafting amino acids. The mechanical property and morphologies of the PES membranes proved that their basic performances were not obviously affected by grafting reaction, and these parameters were all still in the typical range for ultrafiltration membranes. The antifouling property of the grafted PES membranes against bovine serum albumin (BSA) and lysozyme (Lyz) was investigated in detail. It was found that PES membranes incorporated with neutral amino acids exhibited higher fouling resistance to both BSA and Lyz than the parent PES membrane. It can be ascribed to the formation of zwitterionic structure on the surface consisting of protonated secondary amino cations and carboxyl anions. Meanwhile, PES membranes grafted with charged amino acids had better antifouling properties against protein with same electric charges and improved adsorption

  7. Life cycle cost reduction through high efficiency membrane based air intake filters; Reduzierung der Lebensdauerzykluskosten durch hocheffiziente Zuluftfilter auf Membranbasis

    Energy Technology Data Exchange (ETDEWEB)

    Krah, Helmut [W.L. Gore and Associates GmbH, Putzbrunn (Germany)

    2011-07-01

    The use of highly efficient, membrane-based air intake filters means that massive savings can be made in the operation of gas turbines: on the one hand, a higher degree of efficiency can be achieved, which leads to lower fuel consumption and better turbine performance, and on the other, maintenance costs can be reduced thanks to the avoidance of erosion and corrosion. EPA (Efficient Particulate Air) filters based on fibreglass have the disadvantage that they exhibit a relatively high differential pressure, and they can frequently only be used by converting the filter house. This is where the tremendous advantage of membrane-based EPA filters comes in. Its core, a micro-porous PTFE membrane with excellent air permeability. (orig.)

  8. Enantioanalysis of S-deprenyl using enantioselective, potentiometric membrane electrodes based on C60 derivatives

    International Nuclear Information System (INIS)

    Stefan-van Staden, Raluca-Ioana

    2010-01-01

    Enantioselective, potentiometric membrane electrodes based on (1,2-methanofullerene C 60 )-61-carboxylic acid, diethyl (1,2-methanofullerene C 60 )-61-61-dicarboxylate and tert-butyl (1,2-methanofullerene C 60 )-61-carboxylic acid were proposed for the enantioanalysis of S-deprenyl in pharmaceutical compounds. Molecular modeling calculations were performed to prove the reliability of the proposed electrodes. The different characteristics involved in this analysis were explained, namely (i) the stability of each molecule using total energy, hardness and dipole moment, and (ii) the explanation of the mechanism of interaction using intermolecular forces (moderate hydrogen bond interactions), atomic charges and electrostatic potential. Electronic structures as well as molecular interaction have been investigated using Hartree-Fock theory, 3-21G(*) basis set. Stability and feasibility of all the generated structures were supported by their respective energy minima and fundamental frequencies.

  9. Fatigue Analysis of Proton Exchange Membrane Fuel Cell Stacks Based on Structural Stress Distribution

    Science.gov (United States)

    Wu, C. W.; Liu, B.; Wei, M. Y.; Liu, L. F.

    2017-05-01

    Proton exchange membrane fuel cell (PEMFC) stack usually undergoes various vibrations during packing, transportation and serving time, in particular for those used in the automobiles and portable equipment. Based on the Miner fatigue damage theory, the fatigue lives of the fuel cell components are first assessed. Then the component fatigue life contours of the stack are obtained under four working conditions, i.e. the three single-axial (in X-, Y- and Z-axis separately) and multi-axial random vibrations. Accordingly, the component damage under various vibrations is evaluated. The stress distribution on the gasket and PEM will greatly affect their fatigue lives. Finally, we compare the fatigue lives of 4-bolt- and 6-bolt-clamping stacks under the same total clamping force, and find that increasing the bolt number could improve the bolt fatigue lives.

  10. A superhydrophobic chip based on SU-8 photoresist pillars suspended on a silicon nitride membrane

    KAUST Repository

    Marinaro, Giovanni

    2014-07-28

    We developed a new generation of superhydrophobic chips optimized for probing ultrasmall sample quantities by X-ray scattering and fluorescence techniques. The chips are based on thin Si3N4 membranes with a tailored pattern of SU-8 photoresist pillars. Indeed, aqueous solution droplets can be evaporated and concentrated at predefined positions using a non-periodic pillar pattern. We demonstrated quantitatively the deposition and aggregation of gold glyconanoparticles from the evaporation of a nanomolar droplet in a small spot by raster X-ray nanofluorescence. Further, raster nanocrystallography of biological objects such as rod-like tobacco mosaic virus nanoparticles reveals crystalline macro-domain formation composed of highly oriented nanorods. © 2014 the Partner Organisations.

  11. Diffusion mediated coagulation and fragmentation based study of domain formation in lipid bilayer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Laxminarsimha V., E-mail: laxman@iitk.ac.in [Mechanics and Applied Mathematics Group, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Roy, Subhradeep [Department of Biomedical Engineering and Mechanics (MC 0219), Virginia Tech, 495 Old Turner Street, Blacksburg, VA 24061 (United States); Das, Sovan Lal [Mechanics and Applied Mathematics Group, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2017-01-15

    We estimate the equilibrium size distribution of cholesterol rich micro-domains on a lipid bilayer by solving Smoluchowski equation for coagulation and fragmentation. Towards this aim, we first derive the coagulation kernels based on the diffusion behaviour of domains moving in a two dimensional membrane sheet, as this represents the reality better. We incorporate three different diffusion scenarios of domain diffusion into our coagulation kernel. Subsequently, we investigate the influence of the parameters in our model on the coagulation and fragmentation behaviour. The observed behaviours of the coagulation and fragmentation kernels are also manifested in the equilibrium domain size distribution and its first moment. Finally, considering the liquid domains diffusing in a supported lipid bilayer, we fit the equilibrium domain size distribution to a benchmark solution.

  12. A membrane-based subsystem for very high recoveries of spacecraft waste waters

    Science.gov (United States)

    Ray, Roderick J.; Retzlaff, Sandra E.; Radke-Mitchell, Lyn; Newbold, David D.; Price, Donald F.

    1986-01-01

    This paper describes the continued development of a membrane-based subsystem designed to recover up to 99.5 percent of the water from various spacecraft waste waters. Specifically discussed are: (1) the design and fabrication of an energy-efficient reverse-osmosis (RO) breadboard subsystem; (2) data showing the performance of this subsystem when operated on a synthetic wash-water solution - including the results of a 92-day test; and (3) the results of pasteurization studies, including the design and operation of an in-line pasteurizer. Also included in this paper is a discussion of the design and performance of a second RO stage. This second stage results in higher-purity product water at a minimal energy requirement and provides a substantial redundancy factor to this subsystem.

  13. (Ce,Gd)O2−δ-based dual phase membranes for oxygen separation

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Hendriksen, Peter Vang

    2014-01-01

    Composite membranes based on selected combinations of the ionic conductor Ce0.9Gd0.1O1.95 (CGO) and electronic/mixed conductors (Ag–CuO, LaCoO3 (LC), La0.6Sr0.4CoO3−δ (LSC), La0.6Sr0.4FeO3−δ (LSF), (La0.6Sr0.4)0.99Co0.2Fe0.8O3−δ (LSCF), and La0.75Sr0.25Cr0.97V0.03O3−δ (LSCrV)) were prepared and c...

  14. Iodide-selective membrane electrode based on salophen complex of cobalt (III)

    OpenAIRE

    Zare,Hamid R.; Memarzadeh,Farkhondeh; Gorji,Alireza; Ardakani,Mohammad Mazloum

    2005-01-01

    A highly selective PVC membrane electrode based on a cobalt-salophen complex was prepared. The sensor displays an anti-Hofmeister selectivity sequence with a preference for iodide ion over many common anions. The electrode has a linear dynamic range between 5.0×10-7 to 1.0×10-1 mol L-1, with a Nernstian slope of -58.9 mV decade-1 and a detection limit of 3.0×10-7 mol L-1. The working pH range of the sensor is 3.1-9.8. It exhibits of a fast as 15 s and has a lifetime of about 2 months. The sel...

  15. Cobalt(II)-selective membrane electrode based on a recently synthesized benzo-substituted macrocyclic diamide.

    Science.gov (United States)

    Shamsipur, M; Poursaberi, T; Rouhani, S; Niknam, K; Sharghi, H; Ganjali, M R

    2001-09-01

    A PVC-membrane electrode based on a recently synthesized 18-membered macrocyclic diamide is presented. The electrode reveals a Nernstian potentiometric response for Co2+ over a wide concentration range (2.0 x 10(-6)-1.0 x 10(-2) M). The electrode has a response time of about 10 s and can be used for at least 2 months without any divergence. The proposed sensor revealed very good selectivities for Co2+ over a wide variety of other metal ions, and could be used over a wide pH range (3.0-8.0). The detection limit of the sensor is 6.0 x 10(-7) M. It was successfully applied to the direct determination and potentiometric titration of cobalt ion.

  16. Integration of Bioreactor and Membrane Separation Processes: A Model Based Approach

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres

    test. Satisfactory results are obtained regulating the pH and managing the input constraints. The design and operability of the integrated bioreactor and REED module are investigated using the developed models and control structure. The study involves two different case studies: continuous lactic acid......This work is motivated by the need for tighter integration of industrial processes in an attempt to improve process sustainability. To this end, this work considers a interesting case study around which different systematic approaches are used or developed to achieve the above goal. The thesis...... is concerned with the understanding of an integrated bioreactor and electrically driven membrane separation processes for lactic acid fermentation. This is achieved through a model based investigation of the individual units and the integrated system. Development of system understanding is the key to reveal...

  17. New sensor based on membranes with magnetic nano-inclusions for early diagnosis in periodontal disease.

    Science.gov (United States)

    Totu, Eugenia Eftimie; Isildak, Ibrahim; Nechifor, Aurelia Cristina; Cristache, Corina Marilena; Enachescu, Marius

    2018-04-15

    A series of sodium selective membranes with magnetic nano-inclusions using p-tertbutyl calix[4]arene as ionophore and polymeric matrix (polyvinyl chloride) have been developed, and the corresponding sodium selective sensors were obtained for the first time. A linear range was registered between 3.1 × 10 -5 and 10 -1 moldm -3 and near Nernstian electrochemical answer: 55.73mV/decade has been recoreded for PVC (polyvinyl chloride) - based sodium selective sensor, with a response time of 45s. Due to their small dimensions, sensors could be used for measuring ions from the gingival crevicular fluid directly into the peri-odontal pocket, avoiding the difficulties of collecting an appropriate amount of fluid for analysis. Alterations in the inorganic ions level could be evidenced with this new device, assisting the early diagnosis and prevention of periodontal disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Real time optimization of solar powered direct contact membrane distillation based on multivariable extremum seeking

    KAUST Repository

    Karam, Ayman M.

    2015-09-21

    This paper presents a real time optimization scheme for a solar powered direct contact membrane distillation (DCMD) water desalination system. The sun and weather conditions vary and are inconsistent throughout the day. Therefore, the solar powered DCMD feed inlet temperature is never constant, which influences the distilled water flux. The problem of DCMD process optimization has not been studied enough. In this work, the response of the process under various feed inlet temperatures is investigated, which demonstrates the need for an optimal controller. To address this issue, we propose a multivariable Newton-based extremum seeking controller which optimizes the inlet feed and permeate mass flow rates as the feed inlet temperature varies. Results are presented and discussed for a realistic temperature profile.

  19. Membrane-based, sedimentation-assisted plasma separator for point-of-care applications.

    Science.gov (United States)

    Liu, Changchun; Mauk, Michael; Gross, Robert; Bushman, Frederic D; Edelstein, Paul H; Collman, Ronald G; Bau, Haim H

    2013-11-05

    Often, high-sensitivity, point-of-care (POC) clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low-abundance target molecules. We report on a simple-to-use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a "blood in-plasma out" capability, consistently extracting 275 ± 33.5 μL of plasma from 1.8 mL of undiluted whole blood within less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3500, and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid testing and was successfully subjected to reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high-efficiency nucleic acid amplification.

  20. Characterization of a poly(ether urethane)-based controlled release membrane system for delivery of ketoprofen

    International Nuclear Information System (INIS)

    Macocinschi, Doina; Filip, Daniela; Vlad, Stelian; Oprea, Ana Maria; Gafitanu, Carmen Anatolia

    2012-01-01

    Highlights: ► Ketoprofen incorporation in poly(ether urethane) microporous membrane. ► Moisture sorption properties of as-cast membrane. ► Drug release mechanisms in function of pH and composition of membranes. - Abstract: A poly(ether urethane) based on polytetrahydrofuran containing hydroxypropyl cellulose for biomedical applications was tested for its biocompatibility. Ketoprofen was incorporated (3% and 6%) in the polyurethane matrix as an anti-inflammatory drug. Kinetic and drug release mechanisms were studied. The pore size and pore size distribution of the polyurethane membranes were investigated by scanning electron microscopy. Surface tension characteristics as well as moisture sorption properties such as diffusion coefficients and equilibrium moisture contents of the membrane material were studied. It was found that kinetics and release mechanisms are in function of medium pH, composition of polymer–drug system, pore morphology and pore size distribution. Prolonged nature of release of ketoprofen is assured by low amount of drug in polyurethane membrane and physiological pH.

  1. Connecting membrane fluidity and surface charge to pore-forming antimicrobial peptides resistance by an ANN-based predictive model.

    Science.gov (United States)

    Mehla, Jitender; Sood, S K

    2013-05-01

    Efficiency of antibacterial chemotherapy is gradually more challenged by the emergence of pathogenic strains exhibiting high levels of antibiotic resistance. Pore-forming antimicrobial peptides (PF-AMPs) such as alamethicin (Alm) are therefore in the focus of extensive research efforts. In the present study, an artificial neural network (ANN)-based quantitative structure-activity relationship (SAR) modeling of membrane phospholipids vs. PF-AMPs, in context to membrane fluidity and surface charge, was carried out. We observed that the potency of PF-AMPs depends on the fatty acyl chain and polar head group of phospholipids. Alm showed surface interactions with zwitterionic phospholipids however could penetrate deeper inside the hydrophobic core of anionic membranes. Here, the resistance developed in bacterial cells was coupled to membrane fluidity and surface charge, and simultaneously, these principles could be applied for combating resistance against PF-AMPs. The correlation coefficient between observed CR and predicted CR using ANN was found to be 0.757. Thus, ANN could be used as a reliable modeling method for predicting CR, given the structure of the biomimetic membrane in terms of membrane fluidity and surface charge. Fully explored mechanisms of resistance, a forward modeling step in the design cycle of AMPs, can be cross-linked to the inward modeling using ANN to complete the peptide design cycle. The SAR between membrane phospholipids and PF-AMPs could furnish valuable information regarding their design to provide us efficacious peptides against premier pathogens. So far, this is the only report available to predict and quantify interactions of PF-AMPs with membrane phospholipids.

  2. [Optimization theory and practical application of membrane science technology based on resource of traditional Chinese medicine residue].

    Science.gov (United States)

    Zhu, Hua-Xu; Duan, Jin-Ao; Guo, Li-Wei; Li, Bo; Lu, Jin; Tang, Yu-Ping; Pan, Lin-Mei

    2014-05-01

    Resource of traditional Chinese medicine residue is an inevitable choice to form new industries characterized of modem, environmental protection and intensive in the Chinese medicine industry. Based on the analysis of source and the main chemical composition of the herb residue, and for the advantages of membrane science and technology used in the pharmaceutical industry, especially membrane separation technology used in improvement technical reserves of traditional extraction and separation process in the pharmaceutical industry, it is proposed that membrane science and technology is one of the most important choices in technological design of traditional Chinese medicine resource industrialization. Traditional Chinese medicine residue is a very complex material system in composition and character, and scientific and effective "separation" process is the key areas of technology to re-use it. Integrated process can improve the productivity of the target product, enhance the purity of the product in the separation process, and solve many tasks which conventional separation is difficult to achieve. As integrated separation technology has the advantages of simplified process and reduced consumption, which are in line with the trend of the modern pharmaceutical industry, the membrane separation technology can provide a broad platform for integrated process, and membrane separation technology with its integrated technology have broad application prospects in achieving resource and industrialization process of traditional Chinese medicine residue. We discuss the principles, methods and applications practice of effective component resources in herb residue using membrane separation and integrated technology, describe the extraction, separation, concentration and purification application of membrane technology in traditional Chinese medicine residue, and systematically discourse suitability and feasibility of membrane technology in the process of traditional Chinese

  3. In vivo performance of chitosan/soy-based membranes as wound-dressing devices for acute skin wounds.

    Science.gov (United States)

    Santos, Tírcia C; Höring, Bernhard; Reise, Kathrin; Marques, Alexandra P; Silva, Simone S; Oliveira, Joaquim M; Mano, João F; Castro, António G; Reis, Rui L; van Griensven, Martijn

    2013-04-01

    Wound management represents a major clinical challenge on what concerns healing enhancement and pain control. The selection of an appropriate dressing plays an important role in both recovery and esthetic appearance of the regenerated tissue. Despite the wide range of available dressings, the progress in the wound care market relies on the increasing interest in using natural-based biomedical products. Herein, a rat wound-dressing model of partial-thickness skin wounds was used to study newly developed chitosan/soy (cht/soy)-based membranes as wound-dressing materials. Healing and repair of nondressed, cht/soy membrane-dressed, and Epigard(®)-dressed wounds were followed macroscopically and histologically for 1 and 2 weeks. cht/soy membranes performed better than the controls, promoting a faster wound repair. Re-epithelialization, observed 1 week after wounding, was followed by cornification of the outermost epidermal layer at the second week of dressing, indicating repair of the wounded tissue. The use of this rodent model, although in impaired healing conditions, may enclose some drawbacks regarding the inevitable wound contraction. Moreover, being the main purpose the evaluation of cht/soy-based membranes' performance in the absence of growth factors, the choice of a clinically relevant positive control was limited to a polymeric mesh, without any growth factor influencing skin healing/repair, Epigard. These new cht/soy membranes possess the desired features regarding healing/repair stimulation, ease of handling, and final esthetic appearance-thus, valuable properties for wound dressings.

  4. Colour-Value Based Method for Polydopamine Coating-Stability Characterization on Polyethersulfone Membranes

    Directory of Open Access Journals (Sweden)

    Thomas Bucher

    2017-12-01

    Full Text Available Porous polyethersulfone membranes as used in oenology were investigated in order to evaluate temperature-dependent permeances in a temperature range from 10 to 35 °C. A temperature correction factor was determined for this type of membrane to get accurate and comparable results for further developments. Moreover, the membranes were modified with a bio-inspired polydopamine coating in order to reduce fouling. The performance of the membranes could be increased with respect to permeance and flux recovery under cross-flow conditions. In order to test the applicability and stability of the coating layer, they were treated with basic and acidic cleaning agents as used in industry for fouled membranes. The chemical stability of the coating layer was studied under basic and acidic conditions, by systematic observation of the colour change of the coated membranes over treatment time.

  5. Colour-Value Based Method for Polydopamine Coating-Stability Characterization on Polyethersulfone Membranes.

    Science.gov (United States)

    Bucher, Thomas; Clodt, Juliana I; Grabowski, Andrej; Hein, Martin; Filiz, Volkan

    2017-12-16

    Porous polyethersulfone membranes as used in oenology were investigated in order to evaluate temperature-dependent permeances in a temperature range from 10 to 35 °C. A temperature correction factor was determined for this type of membrane to get accurate and comparable results for further developments. Moreover, the membranes were modified with a bio-inspired polydopamine coating in order to reduce fouling. The performance of the membranes could be increased with respect to permeance and flux recovery under cross-flow conditions. In order to test the applicability and stability of the coating layer, they were treated with basic and acidic cleaning agents as used in industry for fouled membranes. The chemical stability of the coating layer was studied under basic and acidic conditions, by systematic observation of the colour change of the coated membranes over treatment time.

  6. Characteristics of polyimide-based composite membranes fabricated by low-temperature plasma polymerization

    International Nuclear Information System (INIS)

    Dung Thi Tran; Mori, Shinsuke; Suzuki, Masaaki

    2008-01-01

    Composite membranes were prepared by the deposition of plasma-polymerized allylamine films onto a porous polyimide substrate. The relationship between the plasma conditions and the membrane characteristics was described in terms of monomer flow rate, plasma discharge power, plasma polymerization time, and so on. Scanning electron microscope (SEM) images indicate that the thickness of the plasma polymer layer increased and the membrane skin pore size decreased gradually with the increasing of plasma polymerization time. Fourier transform infrared (FTIR) spectra demonstrate the appearance of amine groups in the plasma deposited polymer and the contact angle measurements indicate that the hydrophilicity of the membrane surfaces increased significantly after plasma polymerization. The composite membranes can reject salt from sodium chloride feed solution, and membrane separation performance depends strongly on the plasma conditions applied during the preparation of the plasma deposited polymer films

  7. Membrane architectures for ion-channel switch-based electrochemical biosensors

    Science.gov (United States)

    Sansinena, Jose-Maria; Redondo, Antonio; Swanson, Basil I.; Yee, Chanel Kitmon; Sapuri/Butti, Annapoorna R.; Parikh, Atul N.; Yang, Calvin

    2008-10-28

    The present invention is directed to a process of forming a bilayer lipid membrane structure by depositing an organic layer having a defined surface area onto an electrically conductive substrate, removing portions of said organic layer upon said electrically conductive substrate whereby selected portions of said organic layer are removed to form defined voids within said defined surface area of said organic layer and defined islands of organic layer upon said electrically conductive substrate, and, depositing a bilayer lipid membrane over the defined voids and defined islands of organic layer upon said substrate whereby aqueous reservoirs are formed between said electrically conductive substrate and said bilayer lipid membrane, said bilayer lipid membrane characterized as spanning across the defined voids between said defined islands. A lipid membrane structure is also described together with an array of such lipid membrane structure.

  8. Highly efficient forward osmosis based on porous membranes--applications and implications.

    Science.gov (United States)

    Qi, Saren; Li, Ye; Zhao, Yang; Li, Weiyi; Tang, Chuyang Y

    2015-04-07

    For the first time, forward osmosis (FO) was performed using a porous membrane with an ultrafiltration (UF)-like rejection layer and its feasibility for high performance FO filtration was demonstrated. Compared to traditional FO membranes with dense rejection layers, the UF-like FO membrane was 2 orders of magnitude more permeable. This gave rise to respectable FO water flux even at ultralow osmotic driving force, for example, 7.6 L/m(2).h at an osmotic pressure of merely 0.11 bar (achieved by using a 0.1% poly(sodium 4-styrene-sulfonate) draw solution). The membrane was applied to oil/water separation, and a highly stable FO water flux was achieved. The adoption of porous FO membranes opens a door to many new opportunities, with potential applications ranging from wastewater treatment, valuable product recovery, and biomedical applications. The potential applications and implications of porous FO membranes are addressed in this paper.

  9. A Capacitive Humidity Sensor Based on an Electrospun PVDF/Graphene Membrane

    Directory of Open Access Journals (Sweden)

    Daniel Hernández-Rivera

    2017-05-01

    Full Text Available Humidity sensors have been widely used in areas such as agriculture, environmental conservation, medicine, instrumentation and climatology. Hydrophobicity is one of the important factors in capacitive humidity sensors: recent research has shown that the inclusion of graphene (G in polyvinylidene fluoride (PVDF improves its hydrophobicity. In this context, a methodology to fabricate electrospun membranes of PVDF blended with G was developed in order to improve the PVDF properties allowing the use of PVDF/G membrane as a capacitive humidity sensor. Micrographs of membranes were obtained by scanning electron microscopy to analyze the morphology of the fabricated samples. Subsequently, the capacitive response of the membrane, which showed an almost linear and directly proportional response to humidity, was tested. Results showed that the response time of PVDF/G membrane was faster than that of a commercial DHT11 sensor. In summary, PVDF/G membranes exhibit interesting properties as humidity sensors.

  10. Development of a Low-Cost, Durable Membrane and Membrane Electrode Assemby for Stationary and Mobile Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Foure, Michel; Gaboury, Scott; Goldbach, Jim; Mountz, David; Yi, Jung

    2008-01-31

    The development of low cost, durable membranes and membranes electrode assemblies (MEAs) remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. (formerly Atofina, Inc.) to address these shortages. Thus, this project addresses the following technical barriers from the Fuel Cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted in using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® (Arkema trade name for PVDF) provides an exceptional combination of properties that make it ideally suited for a membrane matrix. In a first phase, Arkema demonstrated the feasibility of the concept with the M31 membrane generation. After MEA optimization, it was shown that the beginning-of-life (BOL) performance of M31 MEAs was essentially on a par with that of PFSA MEAs at 60ºC under fully humidified conditions. On the other hand, long-term durability studies showed a high decay rate of 45µV/h over a 2100 hr. test. Arkema then designed several families of polyelectrolyte candidates, which, in principle, could not undergo the same failure mechanisms. A new membrane candidate was developed: M41. It offered the same generally good mechanical, ex-situ conductivity and gas barrier properties as M31. In addition, ex-situ accelerated testing suggested a several orders of magnitude improvement in chemical stability. M41 based MEAs showed comparable BOL performance with that of PFSA (80ºC, 100% RH). M41 MEAs were further shown to be able to withstand several hours temperature excursions at 120ºC without apparent damage. Accelerated studies were carried out using the DOE and/or US Fuel Cell Council

  11. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2017-05-01

    Full Text Available This review presents the past and current efforts with a brief description on the featured properties of hydrogel membranes fabricated from biopolymers and synthetic ones for wound dressing applications. Many endeavors have been exerted during past ten years for developing new artificial polymeric membranes, which fulfill the demanded conditions for the treatment of skin wounds. This review mainly focuses on representing specifications of ideal polymeric wound dressing membranes, such as crosslinked hydrogels compatible with wound dressing purposes. But as the hydrogels with single component have low mechanical strength, recent trends have offered composite or hybrid hydrogel membranes to achieve the typical wound dressing requirements.

  12. NMR-based detection of hydrogen/deuterium exchange in liposome-embedded membrane proteins.

    Directory of Open Access Journals (Sweden)

    Xuejun Yao

    Full Text Available Membrane proteins play key roles in biology. Determination of their structure in a membrane environment, however, is highly challenging. To address this challenge, we developed an approach that couples hydrogen/deuterium exchange of membrane proteins to rapid unfolding and detection by solution-state NMR spectroscopy. We show that the method allows analysis of the solvent protection of single residues in liposome-embedded proteins such as the 349-residue Tom40, the major protein translocation pore in the outer mitochondrial membrane, which has resisted structural analysis for many years.

  13. Fluorescence interference contrast based approach to study real time interaction of melittin with plasma membranes

    Science.gov (United States)

    Gupta, Sharad; Gui, Dong; Zandi, Roya; Gill, Sarjeet; Mohideen, Umar

    2014-03-01

    Melittin is an anti-bacterial and hemolytic toxic peptide found in bee venom. Cell lysis behavior of peptides has been widely investigated, but the exact interaction mechanism of lytic peptides with lipid membranes and its constituents has not been understood completely. In this paper we study the melittin interaction with lipid plasma membranes in real time using non-invasive and non-contact fluorescence interference contrast microscopy (FLIC). Particularly the interaction of melittin with plasma membranes was studied in a controlled molecular environment, where these plasma membrane were composed of saturated lipid, 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) and unsaturated lipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine(DOPC) with and without cholesterol. We found out that melittin starts to form nanometer size pores in the plasma membranes shortly after interacting with membranes. But the addition of cholesterol in plasma membrane slows down the pore formation process. Our results show that inclusion of cholesterol to the plasma membranes make them more resilient towards pore formation and lysis of membrane.

  14. Irradiation effects on properties of reverse osmosis membrane based on cross-linked aromatic polyamide

    International Nuclear Information System (INIS)

    Nakase, Yoshiaki; Yanagi, Tadashi; Uemura, Tadahiro.

    1994-01-01

    In order to develop a membrane suitable for reverse osmotic condensation of radioactive liquid wastes, a new cross-linked aromatic polyamide composite reverse osmosis membrane (ROM) was irradiated in water or in wet system, and its mechanical and some thermal properties, and the separation performance for inorganic salt were investigated. A membrane was degraded by irradiation more severely in wet system than in dry system, probably due to the reaction with OH-radicals. In the separation performance for NaCl, the salt rejection of the membrane was kept over 88% until irradiation reached 2MGy, maintaining about 90% of its original water flux. (author)

  15. Ethanol/water mixture permeation through a Nafion {sup registered} based membrane electrode assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kontou, S.; Stergiopoulos, V.; Song, S.; Tsiakaras, P. [Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos, 38 334 Volos (Greece)

    2007-09-19

    In the present work, the permeation behavior of ethanol/water mixtures through a Nafion {sup registered} -115 based membrane electrode assembly (MEA) has been investigated. The crossover measurements were carried out in a single fuel cell test apparatus. Ethanol aqueous solutions at different concentrations were supplied to the anode compartment while high-purity dry helium was fed to the cathode in order to sweep off the permeated water and ethanol. The quantitative analysis of water and ethanol from the cathode effluent has been carried out on-line by a GC under the following operation conditions: T{sub cell} = 30-90 C, ethanol aqueous solution concentration C{sub ethanol} = 0-12.0 mol L{sup -1}, helium flow rate at the cathode F{sub He} in the range of 80-1500 mL min{sup -1} and liquid solution flow rate to the anode F{sub l} = 0.2 mL min{sup -1}. It was found that the water crossover rate is almost one order of magnitude higher than ethanol's. It was also found that the ethanol crossover rate depends on ethanol concentration and presents a volcano behavior, with the peak value at ethanol concentration of 8.0 mol L{sup -1}. This could be attributed to the different swelling behavior of the Nafion {sup registered} membrane in the presence of various ethanol aqueous solutions. A similar behavior was also observed in the case of water with the peak value at 2.0 mol L{sup -1} which could be attributed to thermodynamical reasons. (author)

  16. Effect of chloride impurities on the performance and durability of polybenzimidazole-based high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Ali, Syed Talat; Li, Qingfeng; Pan, Chao

    2011-01-01

    in the Pt/C catalysts. Linear sweep voltammetry was employed to study the redox behavior of platinum in 85% phosphoric acid containing chloride ions, showing increase in oxidation and decrease in reduction current densities during the potential scans at room temperature. The potential scans at high...... temperatures in 85% phosphoric acid containing chloride ions showed both increase in oxidation and reduction current densities. The fuel cell performance, i.e. the current density at a constant voltage of 0.4 V and 0.5 V was found to be degraded as soon as HCl was introduced in the air humidifier...

  17. Crosslinked basement membrane-based coatings enhance glucose sensor function and continuous glucose monitoring in vivo.

    Science.gov (United States)

    Klueh, Ulrike; Ludzinska, Izabela; Czajkowski, Caroline; Qiao, Yi; Kreutzer, Donald L

    2018-01-01

    Overcoming sensor-induced tissue reactions is an essential element of achieving successful continuous glucose monitoring (CGM) in the management of diabetes, particularly when used in closed loop technology. Recently, we demonstrated that basement membrane (BM)-based glucose sensor coatings significantly reduced tissue reactions at sites of device implantation. However, the biocompatible BM-based biohydrogel sensor coating rapidly degraded over a less than a 3-week period, which effectively eliminated the protective sensor coating. In an effort to increase the stability and effectiveness of the BM coating, we evaluated the impact of crosslinking BM utilizing glutaraldehyde as a crosslinking agent, designated as X-Cultrex. Sensor performance (nonrecalibrated) was evaluated for the impact of these X-Cultrex coatings in vitro and in vivo. Sensor performance was assessed over a 28-day time period in a murine CGM model and expressed as mean absolute relative difference (MARD) values. Tissue reactivity of Cultrex-coated, X-Cultrex-coated, and uncoated glucose sensors was evaluated over a 28-day time period in vivo using standard histological techniques. These studies demonstrated that X-Cultrex-based sensor coatings had no effect on glucose sensor function in vitro. In vivo, glucose sensor performance was significantly enhanced following X-Cultrex coating throughout the 28-day study. Histological evaluations of X-Cultrex-treated sensors demonstrated significantly less tissue reactivity when compared to uncoated sensors. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 7-16, 2018. © 2017 Wiley Periodicals, Inc.

  18. Structure and Transport Properties of Mixed-Matrix Membranes Based on Polyimides with ZrO2 Nanostars

    Directory of Open Access Journals (Sweden)

    Maria P. Sokolova

    2016-11-01

    Full Text Available Mixed-matrix membranes based on amorphous and semi-crystalline polyimides with zirconium dioxide (ZrO2 nanostars were synthesized. Amorphous poly(4,4′-oxydiphenylenepyromellitimide and semi-crystalline polyimide prepared from 1,4-bis(4-aminophenoxybenzene and 4,4’-oxydiphthalic anhydride were used. The effect of ZrO2 nanostars on the structure and morphology of nanocomposite membranes was studied by wide-angle X-ray scattering, scanning electron microscopy, atomic force microscopy, and contact angle measurements. Thermal properties and stability were investigated by thermogravimetric analysis and differential scanning calorimetry. Transport properties of hybrid membranes containing 5 wt % ZrO2 were tested for pervaporation of a mixture of butanol–water with 10 wt % H2O content. It was found that a significant amount of the ZrO2 added to the semi-crystalline polyimide is encapsulated inside spherulites. Therefore, the beneficial influence of inorganic filler on the selectivity of mixed-matrix membrane with respect to water was hampered. Mixed-matrix membranes based on amorphous polymer demonstrated the best performance, because water molecules had higher access to inorganic particles.

  19. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    Energy Technology Data Exchange (ETDEWEB)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan; Velikokhatnyi, Oleg

    2017-02-07

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VII of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.

  20. Testing and design of radon resisting membranes based on the experience from the Czech Republic

    International Nuclear Information System (INIS)

    Jiranek, M.

    2004-01-01

    Testing of barrier properties of insulating materials against radon is usually based on the measurement of the radon diffusion coefficient. Presented report summarizes results of radon diffusion coefficients measurements in more than 120 insulating materials obtained throughout Europe. All measurements were performed by the Czech Technical University, Faculty of Civil Engineering in cooperation with the Radiation Protection Institute. We have found out that great differences exist in diffusion properties, because the diffusion coefficients vary within eight orders from 10 -15 m 2 /s to 10 -8 m 2 /s. For each material category of different chemical composition statistical evaluation of results is presented. Possibilities of usage of the radon diffusion coefficient for the design of radon resisting membranes are discussed. Based on the experience from the Czech Republic the paper is trying to show that controlling applicability of membranes by setting of the upper limit for the radon diffusion coefficient is not a convenient approach. The main reason is that it is almost impossible to choose correctly one limit value for the whole Europe. The second reason is that a great number of common waterproofing materials have their radon diffusion coefficients above the probable limit value. As a consequence of this the protection against radon will be solved preferably by materials with Al foils, which is from the technical point of view meaningless, because membranes with Al foils have very low elongation and therefore they can very easily loose their barrier properties by destroying of the Al foil. The paper will show that it seems to be reasonable to replace strict limits by the real design of the insulation in dependence on particular building and soil characteristics. The design is proposed to be based on the calculation of the insulation thickness according to the formula: d ≥ l.arc sinh ((α 1 .l.λ.C S .(A f + A w ))/C dif .n.V)) (in m), where C S is the third

  1. Membrane-associated cargo recycling by tubule-based endosomal sorting

    NARCIS (Netherlands)

    van Weering, J.R.T.; Cullen, P.J.

    2014-01-01

    The endosome system is a collection of organelles that sort membrane-associated proteins and lipids for lysosomal degradation or recycling back to their target organelle. Recycling cargo is captured in a network of membrane tubules emanating from endosomes where tubular carriers pinch off. These

  2. Identification of Salt-Tolerant Sinorhizobium sp Strain BL3 Membrane Proteins Based on Proteomics

    DEFF Research Database (Denmark)

    Tanthanuch, Waraporn; Mohammed, Shabaz; Matthiesen, Rune

    2010-01-01

    Sinorhizobium sp. BL3 is a salt-tolerant strain that can fix atmospheric nitrogen in symbiosis with leguminous host plants under salt-stress conditions. Since cell membranes are the first barrier to environmental change, it is interesting to explore the membrane proteins within this protective...

  3. Biomimetic interfaces based on S-layer proteins, lipid membranes and functional biomolecules

    Science.gov (United States)

    Schuster, Bernhard; Sleytr, Uwe B.

    2014-01-01

    Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state-of-the-art survey of how S-layer proteins, lipids and polymers may be used as basic building blocks for the assembly of S-layer-supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and, thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas in the (lab-on-a-) biochip technology are combining composite S-layer membrane systems involving specific membrane functions with the silicon world. Thus, it might become possible to create artificial noses or tongues, where many receptor proteins have to be exposed and read out simultaneously. Moreover, S-layer-coated liposomes and emulsomes copying virus envelopes constitute promising nanoformulations for the production of novel targeting, delivery, encapsulation and imaging systems. PMID:24812051

  4. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    DEFF Research Database (Denmark)

    Li, Zhenyu; Linares, Rodrigo Valladares; Bucs, Szilard

    2017-01-01

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused, by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquaporin...

  5. Sulfonated poly(ether ether ketone) based composite membranes for nanofiltration of acidic and alkaline media

    NARCIS (Netherlands)

    Dalwani, M.R.; Bargeman, Gerrald; Hosseiny, Seyed Schwan; Schwan Hosseiny, Seyed; Boerrigter, M.E.; Wessling, Matthias; Benes, Nieck Edwin

    2011-01-01

    Several thin film composite nanofiltration membranes have been prepared by spin coating a sulfonated poly(ether ether ketone) solution on a polyethersulfone support, followed by thermal treatment. The most optimal developed nanofiltration membrane shows a clean water permeance of ∼4.5 L m−2 h−1

  6. Anion exchange membrane based on alkali doped poly(2,5-benzimidazole) for fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2012-02-01

    Full Text Available The properties of alkali doped poly(2,5-benzimidazole) membrane with different alkali doping level for fuel cell application is reported in this work. The alkali doping level played an important role for the ion conductivity of the membrane. The ion...

  7. Evaluation of a membrane based carbon dioxide absorber for spacecraft ECLS applications

    NARCIS (Netherlands)

    Feron, P.H.M.; Eckhard, F.; Witt, J.

    1996-01-01

    In an on-going harmonized ESA/NIVR project, performed by Stork Comprimo and TNO-MEP, the removal of the carbon dioxide with membranes is studied. The use of membrane gas absorption for carbon dioxide removal is currently hampered by the fact that the commonly used alkanolamines result in leakage

  8. From blood dialysis to desalination: A one-size fits all block copolymer based membrane system

    Science.gov (United States)

    Sanna Kotrappanavar, Nataraj; Zavala-Rivera, Paul; Chonnon, Kevin; Almuhtaseb, Shaheen S. A.; Sivaniah, Easan; University of Cambridge Team; Qatar University Collaboration

    2011-03-01

    Asymmetric membrane with ultrahigh selective self-assembled nanoporous block copolymer layer were developed successfully on polyimide (PI) support, which demonstrated excellent thermal, chemical and mechanical stability. Membranes with specific nano- structural architectures and optimized cascades of block assemblies on the top selective skin have been used largely for separation of colour from aqueous streams, wastewater treatment, desalination, blood filtration and gas separation with dense layer transformation. A consistent and reliable method of membrane preparation and measuring separation performance has been adopted. A homologous series of ethylene oxide oligomers covering a large range was used to characterise MWCO of Membrane and were able to provide many points to give a comprehensive description of the membrane performance in the nanofiltration range.

  9. A positive feedback-based gene circuit to increase the production of a membrane protein

    Directory of Open Access Journals (Sweden)

    Gennis Robert B

    2010-05-01

    Full Text Available Abstract Background Membrane proteins are an important class of proteins, playing a key role in many biological processes, and are a promising target in pharmaceutical development. However, membrane proteins are often difficult to produce in large quantities for the purpose of crystallographic or biochemical analyses. Results In this paper, we demonstrate that synthetic gene circuits designed specifically to overexpress certain genes can be applied to manipulate the expression kinetics of a model membrane protein, cytochrome bd quinol oxidase in E. coli, resulting in increased expression rates. The synthetic circuit involved is an engineered, autoinducer-independent variant of the lux operon activator LuxR from V. fischeri in an autoregulatory, positive feedback configuration. Conclusions Our proof-of-concept experiments indicate a statistically significant increase in the rate of production of the bd oxidase membrane protein. Synthetic gene networks provide a feasible solution for the problem of membrane protein production.

  10. Preparation of geopolymer-based inorganic membrane for removing Ni{sup 2+} from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Yuanyuan; Yuan, Yuan; Wang, Kaituo; He, Yan; Cui, Xuemin, E-mail: cui-xm@tsinghua.edu.cn

    2015-12-15

    Highlights: • A type free-sintering geopolymer membrane for waste water treatment was fabricated. • The geopolymer inorganic membrane held good strength and appropriate water flux. • The mechanism of removing Ni{sup 2+} combined actions of the adsorption and rejection. • The geopolymer membrane is a promising way to remove heavy metal ions in industry. - Abstract: A type of novel free-sintering and self-supporting inorganic membrane for wastewater treatment was fabricated in this study. This inorganic membrane was synthesised using metakaolin and sodium silicate solutions moulded according to a designed molar ratio (SiO{sub 2}/Al{sub 2}O{sub 3} = 2.96, Na{sub 2}O/Al{sub 2}O{sub 3} = 0.8 and H{sub 2}O/Na{sub 2}O = 19) which formed a homogenous structure and had a relative concentration pore size distribution, via scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET) analyses. In this work, the Ni{sup 2+} removal effect of geopolymer inorganic membrane was studied under different pH value, initial concentration of Ni{sup 2+} solutions and initial operation temperature. Results showed that geopolymer inorganic membrane efficiently removes Ni{sup 2+} from wastewater because of the combined actions of the adsorption and rejection of this membrane on Ni{sup 2+} during membrane separation. Therefore, geopolymer inorganic membrane may have positive potential applications in removing Ni{sup 2+} or other heavy metal ions from aqueous industrial wastewater.

  11. Na+/K(+)pump activity in photoreceptors of the blowfly Calliphora : A model analysis based on membrane potential measurements

    NARCIS (Netherlands)

    Gerster, U; Stavenga, DG; Backhaus, W

    Na+/K+-pump activity and intracellular Na+ and K+ concentration changes in blowfly photoreceptors are derived from intracellular potential measurements in vivo with a model based on the Goldman-Hodgkin-Katz theory for membrane currents. The relation between the intracellular Na+ concentration and

  12. Impedance Analysis of the Conditioning of PBI–Based Electrode Membrane Assemblies for High Temperature PEM Fuel Cells

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Vang, Jakob Rabjerg; Andreasen, Søren Juhl

    2013-01-01

    This work analyses the conditioning of single fuel cell assemblies based on different membrane electrode assembly (MEA) types, produced by different methods. The analysis was done by means of electrochemical impedance spectroscopy, and the changes in the fitted resistances of the all the tested...

  13. Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury

    Directory of Open Access Journals (Sweden)

    Shi Riyi

    2010-01-01

    Full Text Available Abstract Background The highly reactive aldehyde acrolein is a very potent endogenous toxin with a long half-life. Acrolein is produced within cells after insult, and is a central player in slow and progressive "secondary injury" cascades. Indeed, acrolein-biomolecule complexes formed by cross-linking with proteins and DNA are associated with a number of pathologies, especially central nervous system (CNS trauma and neurodegenerative diseases. Hydralazine is capable of inhibiting or reducing acrolein-induced damage. However, since hydralazine's principle activity is to reduce blood pressure as a common anti-hypertension drug, the possible problems encountered when applied to hypotensive trauma victims have led us to explore alternative approaches. This study aims to evaluate such an alternative - a chitosan nanoparticle-based therapeutic system. Results Hydralazine-loaded chitosan nanoparticles were prepared using different types of polyanions and characterized for particle size, morphology, zeta potential value, and the efficiency of hydralazine entrapment and release. Hydralazine-loaded chitosan nanoparticles ranged in size from 300 nm to 350 nm in diameter, and with a tunable, or adjustable, surface charge. Conclusions We evaluated the utility of chitosan nanoparticles with an in-vitro model of acrolein-mediated cell injury using PC -12 cells. The particles effectively, and statistically, reduced damage to membrane integrity, secondary oxidative stress, and lipid peroxidation. This study suggests that a chitosan nanoparticle-based therapy to interfere with "secondary" injury may be possible.

  14. Electrospin-coating of nitrocellulose membrane enhances sensitivity in nucleic acid-based lateral flow assay.

    Science.gov (United States)

    Yew, Chee-Hong Takahiro; Azari, Pedram; Choi, Jane Ru; Li, Fei; Pingguan-Murphy, Belinda

    2018-06-07

    Point-of-care biosensors are important tools developed to aid medical diagnosis and testing, food safety and environmental monitoring. Paper-based biosensors, especially nucleic acid-based lateral flow assays (LFA), are affordable, simple to produce and easy to use in remote settings. However, the sensitivity of such assays to infectious diseases has always been a restrictive challenge. Here, we have successfully electrospun polycaprolactone (PCL) on nitrocellulose (NC) membrane to form a hydrophobic coating to reduce the flow rate and increase the interaction rate between the targets and gold nanoparticles-detecting probes conjugates, resulting in the binding of more complexes to the capture probes. With this approach, the sensitivity of the PCL electrospin-coated test strip has been increased by approximately ten-fold as compared to the unmodified test strip. As a proof of concept, this approach holds great potential for sensitive detection of targets at point-of-care testing. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Relationship between wettability and lubrication characteristics of the surfaces of contacting phospholipid-based membranes.

    Science.gov (United States)

    Pawlak, Zenon; Petelska, Aneta D; Urbaniak, Wieslaw; Yusuf, Kehinde Q; Oloyede, Adekunle

    2013-04-01

    The wettability of the articular surface of cartilage depends on the condition of its surface active phospholipid overlay, which is structured as multi-bilayer. Based on a hypothesis that the surface of cartilage facilitates the almost frictionless lubrication of the joint, we examined the characteristics of this membrane surface entity in both its normal and degenerated conditions using a combination of atomic force microscopy, contact angle measurement, and friction test methods. The observations have led to the conclusions that (1) the acid-base equilibrium condition influences the lubrication effectiveness of the surface of cartilage and (2) the friction coefficient is significantly dependent on the hydrophobicity of the surface of the tissue, thereby confirming the hypothesis tested in this paper. Both wettability angle and interfacial energy were obtained for varying conditions of the cartilage surface both in its wet, dry and lipid-depleted conditions. The interfacial energy also increased with mole fraction of the lipid species reaching an asymptotic value after 0.6. Also, the friction coefficient was found to decrease to an asymptotic level as the wettability angle increased. The result reveal that the interfacial energy increased with pH till pH = 4.0, and then decreased from pH = 4.0 to reach equilibrium at pH = 7.0.

  16. Simultaneous methane production and wastewater reuse by a membrane-based process: Evaluation with raw domestic wastewater

    International Nuclear Information System (INIS)

    Gao Dawen; An Rui; Tao Yu; Li Jin; Li Xinxin; Ren Nanqi

    2011-01-01

    In this study, a membrane-based process was applied to simultaneously reclaim methane and generate reused water from raw domestic wastewater. The system was comprised of up-flow anaerobic sludge fixed bed (UAFB), anoxic sink (AS) and aerobic membrane bioreactor (MBR). The hydraulic retention time of UAFB (HRT U ) was gradually shortened from 8 h to 6 h, 3 h and to 1 h, while the HRT of AS and MBR kept at 8 h. It is found that HRT U of 3 h was more suitable for the balancing production of biogas and volatile fatty acids (VFAs), and the VFAs served as carbon source for denitrification. The trans-membrane pressure (TMP) of the MBR kept lower than 0.04 MPa without wash or change of membrane sheet, however, the scanning electron microscopy (SEM) analysis indicated that microbes attached to the inner-surface of membrane, causing irreversible fouling after 133-day operation. The denaturing gradient gel electrophoresis (DGGE) profiles of amplified 16S rDNA gene fragments proved that more functional bacteria and higher microbial diversity emerged at HRT U of 3 h and 1 h. Most bacteria belonged to Betaproteobacteria and were responsible for carbon and nitrogen removal.

  17. Is the Schneiderian membrane thickness affected by periodontal disease? A cone beam computed tomography-based extended case series.

    Science.gov (United States)

    Dagassan-Berndt, Dorothea C; Zitzmann, Nicola U; Lambrecht, J Thomas; Weiger, Roland; Walter, Clemens

    2013-07-01

    The aim was to assess the thickness of Schneiderian membranes (SM) in patients with advanced periodontal disease. 17 dentate patients (DG) scheduled for periodontal surgery on maxillary molars were consecutively recruited and cone beam computed tomographies performed for preoperative diagnosis. Twenty-one patients (EG) requiring cone beam computed tomography-based planning of implant placement in the edentulous posterior maxilla served as controls. Schneiderian membrane thickness measured from cone beam computed tomography was significantly greater in the dentate group compared to the edentulous group, both in the first (p = 0.028) and second (p periodontal destruction (increased probing pocket depth or furcation involvement) were not associated with Schneiderian membrane thickness. Additional findings, such as periapical lesions (p = 0.008), and the distance between root tips and maxillary sinus revealed a significant association (p = 0.036) with Schneiderian membrane thickness. In molar regions with periodontal destruction, Schneiderian membrane thickening occurred, particularly in combination with small bone layers above the root tips or periapical lesions.

  18. Development of a pH sensing membrane electrode based on a new calix[4]arene derivative.

    Science.gov (United States)

    Kormalı Ertürün, H Elif; Demirel Özel, Ayça; Sayın, Serkan; Yılmaz, Mustafa; Kılıç, Esma

    2015-01-01

    A new pH sensing poly(vinyl chloride) (PVC) membrane electrode was developed by using recently synthesized 5,17-bis(4-benzylpiperidine-1-yl)methyl-25,26,27,28-tetrahydroxy calix[4]arene as an ionophore. The effects of membrane composition, inner filling solution and conditioning solution on the potential response of the proposed pH sensing membrane electrode were investigated. An optimum membrane composition of 3% ionophore, 67% o-nitrophenyl octyl ether (o-NPOE) as plasticizer, 30% PVC was found. The electrode exhibited a near-Nernstian slope of 58.7±1.1 mV pH(-1) in the pH range 1.9-12.7 at 20±1 °C. It showed good selectivity for H(+) ions in the presence of some cations and anions and a longer lifetime of at least 12 months when compared with the other PVC membrane pH electrodes reported in the literature. Having a wide working pH range, it was not only applied as a potentiometric indicator electrode in various acid-base titrations, but also successfully employed in different real samples. It has good reproducibility and repeatability with a response time of 6-7s. Compared to traditional glass pH electrode, it exhibited excellent potentiometric response after being used in fluoride-containing media. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Characterization of Selected Parameters of Organic-Inorganic Hybrid Membranes Based on Various Polymers and Nd-Fe-B Fillers

    Directory of Open Access Journals (Sweden)

    Rybak A.

    2016-12-01

    Full Text Available In this paper magnetic organic-inorganic hybrid membranes based on EC, PPO polymer matrices and various magnetic powder microparticles were synthesized and studied. Constant pressure permeation technique and the Time Lag method were used to obtain the gas transport coefficients. The mechanical, rheological and magnetic parameters of magnetic hybrid membranes were examined. It was found that their separation and gas transport properties (D, P, S and α were improved with the decrease in powder particle size and the increase of membrane’s remanence, saturation magnetization and magnetic particle filling. The increase of the magnetic powder addition and a decrease of its granulation improved also mechanical and rheological parameters of the tested membranes. This improvement also had a positive effect on their gas separation properties and their potential usage in the future.

  20. Preparation of geopolymer-based inorganic membrane for removing Ni(2+) from wastewater.

    Science.gov (United States)

    Ge, Yuanyuan; Yuan, Yuan; Wang, Kaituo; He, Yan; Cui, Xuemin

    2015-12-15

    A type of novel free-sintering and self-supporting inorganic membrane for wastewater treatment was fabricated in this study. This inorganic membrane was synthesised using metakaolin and sodium silicate solutions moulded according to a designed molar ratio (SiO2/Al2O3=2.96, Na2O/Al2O3=0.8 and H2O/Na2O=19) which formed a homogenous structure and had a relative concentration pore size distribution, via scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analyses. In this work, the Ni(2+) removal effect of geopolymer inorganic membrane was studied under different pH value, initial concentration of Ni(2+) solutions and initial operation temperature. Results showed that geopolymer inorganic membrane efficiently removes Ni(2+) from wastewater because of the combined actions of the adsorption and rejection of this membrane on Ni(2+) during membrane separation. Therefore, geopolymer inorganic membrane may have positive potential applications in removing Ni(2+) or other heavy metal ions from aqueous industrial wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells.

    Science.gov (United States)

    Zheng, Weiqing; Wang, Liang; Deng, Fei; Giles, Stephen A; Prasad, Ajay K; Advani, Suresh G; Yan, Yushan; Vlachos, Dionisios G

    2017-09-04

    Proton conductivity of the polymer electrolyte membranes in fuel cells dictates their performance and requires sufficient water management. Here, we report a simple, scalable method to produce well-dispersed transition metal carbide nanoparticles. We demonstrate that these, when added as an additive to the proton exchange Nafion membrane, provide significant enhancement in power density and durability over 100 hours, surpassing both the baseline Nafion and platinum-containing recast Nafion membranes. Focused ion beam/scanning electron microscope tomography reveals the key membrane degradation mechanism. Density functional theory exposes that OH• and H• radicals adsorb more strongly from solution and reactions producing OH• are significantly more endergonic on tungsten carbide than on platinum. Consequently, tungsten carbide may be a promising catalyst in self-hydrating crossover gases while retarding desorption of and capturing free radicals formed at the cathode, resulting in enhanced membrane durability.The proton conductivity of polymer electrolyte membranes in fuel cells dictates their performance, but requires sufficient water management. Here, the authors report a simple method to produce well-dispersed transition metal carbide nanoparticles as additives to enhance the performance of Nafion membranes in fuel cells.

  2. Carbon capture from natural gas using multi-walled CNTs based mixed matrix membranes.

    Science.gov (United States)

    Hussain, Abid; Farrukh, Sarah; Hussain, Arshad; Ayoub, Muhammad

    2017-12-05

    Most of the polymers and their blends, utilized in carbon capture membranes, are costly, but cellulose acetate (CA) being inexpensive is a lucrative choice. In this research, pure and mixed matrix membranes (MMMs) have been fabricated to capture carbon from natural gas. Polyethylene glycol (PEG) has been utilized in the fabrication of membranes to modify the chain flexibility of polymers. Multi-walled carbon nanotubes (MWCNTs) provide mechanical strength, thermal stability, an extra free path for CO 2 molecules and augment CO 2 /CH 4 selectivity. Membranes of pure CA, CA/PEG blend of different PEG concentrations (5%, 10%, 15%) and CA/PEG/MWCNTs blend of 10% PEG with different MWCNTs concentrations (5%, 10%, 15%) were prepared in acetone using solution casting techniques. Fabricated membranes were characterized using SEM, TGA and tensile testing. Permeation results revealed remarkable improvement in CO 2 /CH 4 selectivity. In single gas experiments, CO 2 /CH 4 selectivity is enhanced 8 times for pure membranes containing 10% PEG and 14 times for MMMs containing 10% MWCNTs. In mix gas experiments, the CO 2 /CH 4 selectivity is increased 13 times for 10% PEG and 18 times for MMMs with 10% MWCNTs. Fabricated MMMs have a tensile strength of 13 MPa and are more thermally stable than CA membranes.

  3. Transnasal humidified rapid insufflation ventilatory exchange for oxygenation of children during apnoea: a prospective randomised controlled trial.

    Science.gov (United States)

    Riva, T; Pedersen, T H; Seiler, S; Kasper, N; Theiler, L; Greif, R; Kleine-Brueggeney, M

    2018-03-01

    Transnasal humidified rapid insufflation ventilatory exchange (THRIVE) comprises the administration of heated, humidified, and blended air/oxygen mixtures via nasal cannula at rates of ≥2 litres kg -1  min -1 . The aim of this randomized controlled study was to evaluate the length of the safe apnoea time using THRIVE with two different oxygen concentrations (100% vs 30% oxygen) compared with standard low-flow 100% oxygen administration. Sixty patients, aged 1-6 yr, weighing 10-20 kg, undergoing general anaesthesia for elective surgery, were randomly allocated to receive one of the following oxygen administration methods during apnoea: 1) low-flow 100% oxygen at 0.2 litres kg -1  min -1 ; 2) THRIVE 100% oxygen at 2 litres kg -1  min -1 ; and 3) THRIVE 30% oxygen at 2 litres kg -1  min -1 . Primary outcome was time to desaturation to 95%. Termination criteria included SpO 2 decreased to 95%, transcutaneous CO 2 increased to 65 mmHg, or apnoea time of 10 min. The median (interquartile range) [range] apnoea time was 6.9 (5.7-7.8) [2.8-10.0] min for low-flow 100% oxygen, 7.6 (6.2-9.1) [5.2-10.0] min for THRIVE 100% oxygen, and 3.0 (2.4-3.7) [0.2-5.3] min for THRIVE 30% oxygen. No significant difference was detected between apnoea times with low-flow and THRIVE 100% oxygen administration (P=0.15). THRIVE with 30% oxygen demonstrated significantly shorter apnoea times (Prate of transcutaneous CO 2 increase was 0.57 (0.49-0.63) [0.29-8.92] kPa min -1 without differences between the 3 groups (P=0.25). High-flow 100% oxygen (2 litres kg -1  min -1 ) administered via nasal cannulas did not extend the safe apnoea time for children weighing 10-20 kg compared with low-flow nasal cannula oxygen (0.2 litres kg -1  min -1 ). No ventilatory effect was observed with THRIVE at 2.0 litres kg -1  min -1 . NCT02979067. Copyright © 2017 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

  4. Chlorine resistant desalination membranes based on directly sulfonated poly(arylene ether sulfone) copolymers

    Science.gov (United States)

    McGrath, James E [Blacksburg, VA; Park, Ho Bum [Austin, TX; Freeman, Benny D [Austin, TX

    2011-10-04

    The present invention provides a membrane, kit, and method of making a hydrophilic-hydrophobic random copolymer membrane. The hydrophilic-hydrophobic random copolymer membrane includes a hydrophilic-hydrophobic random copolymer. The hydrophilic-hydrophobic random copolymer includes one or more hydrophilic monomers having a sulfonated polyarylsulfone monomer and a second monomer and one or more hydrophobic monomers having a non-sulfonated third monomer and a fourth monomer. The sulfonated polyarylsulfone monomer introduces a sulfonate into the hydrophilic-hydrophobic random copolymer prior to polymerization.

  5. Study and development of membrane electrode assemblies for Proton Exchange Membrane Fuel Cell (PEMFC) with palladium based catalysts

    International Nuclear Information System (INIS)

    Bonifacio, Rafael Nogueira

    2013-01-01

    PEMFC systems are capable of generating electricity with high efficiency and low or no emissions, but durability and cost issues prevent its large commercialization. In this work MEA with palladium based catalysts were developed, Pd/C, Pt/C and alloys PdPt/C catalysts with different ratios between metals and carbon were synthesized and characterized. A study of the ratio between catalyst and Nafion Ionomer for formation of high performance triple-phase reaction was carried out, a mathematical model to implement this adjustment to catalysts with different relations between metal and support taking into account the volumetric aspects of the catalyst layer was developed and then a study of the catalyst layer thickness was performed. X-ray diffraction, Transmission and Scanning Electron Microscopy, X-ray Energy Dispersive, Gas Pycnometry, Mercury Intrusion Porosimetry, Gas adsorption according to the BET and BJH equations, and Thermo Gravimetric Analysis techniques were used for characterization and particle size, specific surface areas and lattice parameters determinations were also carried out. All catalysts were used on MEAs preparation and evaluated in 5 cm 2 single cell from 25 to 100 °C at 1 atm and the best composition was also evaluated at 3 atm. In the study of metals for reactions, to reduce the platinum applied to the electrodes without performance losses, Pd/C and PdPt/C 1:1 were selected for anodes and cathodes, respectively. The developed MEA structure used 0,25 mgPt.cm -2 , showing power densities up to 550 mW.cm -2 and power of 2.2 kW net per gram of platinum. The estimated costs showed that there was a reduction of up to 64.5 %, compared to the MEA structures previously known. Depending on the temperature and operating pressure, values from US$ 1,475.30 to prepare MEAs for each installed kilowatt were obtained. Taking into account recent studies, it was concluded that the cost of the developed MEA is compatible with PEMFC stationary application

  6. Effectiveness of transnasal humidified rapid-insufflation ventilatory exchange versus traditional preoxygenation followed by apnoeic oxygenation in delaying desaturation during apnoea: A preliminary study

    Directory of Open Access Journals (Sweden)

    Sunil Rajan

    2018-01-01

    Full Text Available Background and Aims: Transnasal humidified rapid-insufflation ventilatory exchange (THRIVE during apnoea has shown to delay desaturation. The primary objective was to compare time to desaturate to 200 mmHg even at 12 min of apnoea with a significant rise in PaCO2along with fall in pH after 6 min. Conclusion: During apnoeic periods time to desaturate to <90% was significantly prolonged with use of THRIVE.

  7. Mg(II Selective PVC Membrane Electrode Based on Methyl Phenyl Semicarbazone as an Ionophore

    Directory of Open Access Journals (Sweden)

    Sulekh Chandra

    2013-01-01

    Full Text Available A PVC-membrane-based Mg(II selective electrode was constructed using methyl phenyl semicarbazone (MPS as a neutral carrier. The sensor exhibits a Nernstian response for Mg(II ion over a wide concentration range 1.0×10-8  to  1.0×10-1 M with the slope of 28.4 mV/per decade having detection limit 1.7×10-9 M. It was relatively a fast response time (<10 s for concentration ≥1.0×10-3 and <15 s for concentration of ≥1.0×10-6 M and can be used for 8 months without any considerable divergence in potentials. The proposed sensor revealed relatively good selectivity and high sensitivity for Mg(II over a mono-, di-, and trivalent cation and can be used in a pH range of 1.0–9.5. It was also successfully used as an indicator electrode in potentiometer titration and in the analysis of concentration of magnesium in various real samples.

  8. Automated recognition of cell phenotypes in histology images based on membrane- and nuclei-targeting biomarkers

    International Nuclear Information System (INIS)

    Karaçalı, Bilge; Vamvakidou, Alexandra P; Tözeren, Aydın

    2007-01-01

    Three-dimensional in vitro culture of cancer cells are used to predict the effects of prospective anti-cancer drugs in vivo. In this study, we present an automated image analysis protocol for detailed morphological protein marker profiling of tumoroid cross section images. Histologic cross sections of breast tumoroids developed in co-culture suspensions of breast cancer cell lines, stained for E-cadherin and progesterone receptor, were digitized and pixels in these images were classified into five categories using k-means clustering. Automated segmentation was used to identify image regions composed of cells expressing a given biomarker. Synthesized images were created to check the accuracy of the image processing system. Accuracy of automated segmentation was over 95% in identifying regions of interest in synthesized images. Image analysis of adjacent histology slides stained, respectively, for Ecad and PR, accurately predicted regions of different cell phenotypes. Image analysis of tumoroid cross sections from different tumoroids obtained under the same co-culture conditions indicated the variation of cellular composition from one tumoroid to another. Variations in the compositions of cross sections obtained from the same tumoroid were established by parallel analysis of Ecad and PR-stained cross section images. Proposed image analysis methods offer standardized high throughput profiling of molecular anatomy of tumoroids based on both membrane and nuclei markers that is suitable to rapid large scale investigations of anti-cancer compounds for drug development

  9. Admittance-based measurement of membrane capacitance using the EPC-9 patch-clamp amplifier.

    Science.gov (United States)

    Gillis, K D

    2000-03-01

    A software lock-in amplifier (SLIA) was developed to allow high-time-resolution measurement of membrane capacitance as a single-cell assay of exocytosis. The unique feature of this "virtual instrument" is that it is thoroughly integrated with a computer-controlled patch-clamp amplifier (EPC-9) to allow estimation of equivalent circuit parameters based upon calibrated admittance measurements rather than just relative changes. Since the same software package ("PULSE") controls both the EPC-9 and the SLIA, instrument settings which affect admittance calculations (gain, filtering, etc.) are always "known" by the SLIA. Attenuation and phase shifts introduced within the EPC-9 by low-pass filters and other circuitry are modelled and automatically corrected by the software. In addition, changes in the measured signal introduced by whole-cell capacitance and series resistance compensation are accounted for. The noise of capacitance measurements is nearly optimal and resistive parameters can vary over a large range without inducing artifactual changes in capacitance estimates.

  10. Membrane-based oligonucleotide array developed from multiple markers for the detection of many Phytophthora species.

    Science.gov (United States)

    Chen, Wen; Djama, Zeinab Robleh; Coffey, Michael D; Martin, Frank N; Bilodeau, Guillaume J; Radmer, Lorien; Denton, Geoff; Lévesque, C André

    2013-01-01

    Most Phytophthora spp. are destructive plant pathogens; therefore, effective monitoring and accurate early detection are important means of preventing potential epidemics and outbreaks of diseases. In the current study, a membrane-based oligonucleotide array was developed that can detect Phytophthora spp. reliably using three DNA regions; namely, the internal transcribed spacer (ITS), the 5' end of cytochrome c oxidase 1 gene (cox1), and the intergenic region between cytochrome c oxidase 2 gene (cox2) and cox1 (cox2-1 spacer). Each sequence data set contained ≈250 sequences representing 98 described and 15 undescribed species of Phytophthora. The array was validated with 143 pure cultures and 35 field samples. Together, nonrejected oligonucleotides from all three markers have the ability to reliably detect 82 described and 8 undescribed Phytophthora spp., including several quarantine or regulated pathogens such as Phytophthora ramorum. Our results showed that a DNA array containing signature oligonucleotides designed from multiple genomic regions provided robustness and redundancy for the detection and differentiation of closely related taxon groups. This array has the potential to be used as a routine diagnostic tool for Phytophthora spp. from complex environmental samples without the need for extensive growth of cultures.

  11. Two-hybrid-based systems: powerful tools for investigation of membrane traffic machineries.

    Science.gov (United States)

    Stasi, Mariangela; De Luca, Maria; Bucci, Cecilia

    2015-05-20

    Protein-protein interactions regulate biological processes and are fundamental for cell functions. Recently, efforts have been made to define interactomes, which are maps of protein-protein interactions that are useful for understanding biological pathways and networks and for investigating how perturbations of these networks lead to diseases. Therefore, interactomes are becoming fundamental for establishing the molecular basis of human diseases and contributing to the discovery of effective therapies. Interactomes are constructed based on experimental data present in the literature and computational predictions of interactions. Several biochemical, genetic and biotechnological techniques have been used in the past to identify protein-protein interactions. The yeast two-hybrid system has beyond doubt represented a revolution in the field, being a versatile tool and allowing the immediate identification of the interacting proteins and isolation of the cDNA coding for the interacting peptide after in vivo screening. Recently, variants of the yeast two-hybrid assay have been developed, including high-throughput systems that promote the rapidly growing field of proteomics. In this review we will focus on the role of this technique in the discovery of Rab interacting proteins, highlighting the importance of high-throughput two-hybrid screening as a tool to study the complexity of membrane traffic machineries. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Highly sensitive oxygen sensors based on Cu(I) complex-polystyrene composite nanofibrous membranes prepared by electrospinning.

    Science.gov (United States)

    Wang, Yinghui; Li, Bin; Liu, Yanhong; Zhang, Liming; Zuo, Qinghui; Shi, Linfang; Su, Zhongmin

    2009-10-21

    The first optical oxygen sensor based on Cu(I) complex-polystyrene composite nanofibrous membranes, showing high sensitivity (I(0)/I(100) = 15.56), good linear Stern-Volmer characteristics (R(2) = 0.9966) and short response/recovery time (t(decrease) (s) = 7 and t(increase) (s) = 14), has been prepared; these results represent the best values reported for oxygen sensors based on Cu(I) complexes.

  13. High temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells

    DEFF Research Database (Denmark)

    Plackett, David; Siu, Ana; Li, Qingfeng

    2011-01-01

    dispersion of modified laponite clay was achieved in polybenzimidazole (PBI) solutions which, when cast and allowed to dry, resulted in homogeneous and transparent composite membranes containing up to 20 wt% clay in the polymer. The clay was organically modified using a series of ammonium...... and pyridinium salts with varying polarity and hydrogen-bonding capacity. Clay modification by ion-exchange reactions involving replacement of interlayer inorganic cations was confirmed using X-ray photoelectron and infrared spectroscopy techniques. The cast PBI membranes were characterized by their water uptake......-doped pristine PBI membranes. In accordance with the hydrogen permeability measurements, fuel cell tests exhibited high open circuit voltages (i.e., 1.02 V) at room temperature as well as high I–V performance compared with normal PBI membranes....

  14. Conformationally Preorganized Diastereomeric Norbornane-Based Maltosides for Membrane Protein Study

    DEFF Research Database (Denmark)

    Das, Manabendra; Du, Yang; Ribeiro, Orquidea

    2017-01-01

    Detergents are essential tools for functional and structural studies of membrane proteins. However, conventional detergents are limited in their scope and utility, particularly for eukaryotic membrane proteins. Thus, there are major efforts to develop new amphipathic agents with enhanced properties......-dodecyl-β-d-maltoside (DDM) for all membrane proteins tested. Efficacy of the individual NBMs varied depending on the overall detergent shape and alkyl chain length. Specifically, NBMs with no kink in the lipophilic region conferred greater stability to the proteins than NBMs with a kink. In addition, long alkyl chain NBMs...... novel maltoside detergents with enhanced protein-stabilizing properties but also suggests that overall detergent geometry has an important role in determining membrane protein stability. Notably, this is the first systematic study on the effect of detergent kinking on micellar properties and associated...

  15. Design and optimization of porous ceramic supports for asymmetric ceria-based oxygen transport membranes

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Foghmoes, Søren Preben Vagn; Pećanac, G.

    2016-01-01

    The microstructure, mechanical properties and gas permeability of porous supports of Ce0.9Gd0.1O1.95−δ (CGO) were investigated as a function of sintering temperature and volume fraction of pore former for use in planar asymmetric oxygen transport membranes (OTMs). With increasing the pore former ...... activity of the CGO membrane was reduced by Fe2O3 addition (replacing Co3O4 as sintering additive)....

  16. Membranes for Direct Methanol Fuel Cell Applications: analysis based on characterization, experimentation and modeling

    OpenAIRE

    Vasco S. Silva; Adélio M. Mendes; Luís M. Madeira; Suzana P. Nunes

    2005-01-01

    A critical analysis is performed about fundamental aspects regarding the direct methanol fuel cell (DMFC) technology, focusing mainly on the proton exchange membrane (PEM). First, the basic DMFC operation principles, thermodynamic background and polarization characteristics are presented with a description of each of the components that comprise the membrane electrode assembly (MEA) and of the DMFC testsystem usually used for DMFC research. Next, the paper focuses particularly on the PEM deve...

  17. Cross-linked comb-shaped anion exchange membranes with high base stability

    Energy Technology Data Exchange (ETDEWEB)

    Li, NW; Wang, LZ; Hickner, M

    2014-01-01

    A unique one-step cross-linking strategy that connects quaternary ammonium centers using Grubbs II-catalyzed olefin metathesis was developed. The cross-linked anion exchange membranes showed swelling ratios of less than 10% and hydroxide conductivities of 18 to 40 mS cm(- 1). Cross-linking improved the membranes' stability to hydroxide degradation compared to their non-cross-linked analogues.

  18. Fabrication of copper-selective PVC membrane electrode based on newly synthesized copper complex of Schiff base as carrier

    Directory of Open Access Journals (Sweden)

    Sulekh Chandra

    2016-09-01

    Full Text Available The newly synthesized copper(II complex of Schiff base p-hydroxyacetophenone semicarbazone was explored as neutral ionophore for the fabrication of poly(vinylchloride (PVC based membrane electrode selective to Cu(II ions. The electrode shows a Nernstian slope of 29.8 ± 0.3 mV/decade with improved linear range of 1.8 × 10−7 to 1.0 × 10−1 M, comparatively lower detection limit 5.7 × 10−8 M between pH range of 2.0–8.0, giving a relatively fast response within 5s and can be used for at least 16 weeks without any divergence in potential. The selectivity coefficient was calculated using the fixed interference method (FIM. The electrode can also be used in partially non-aqueous media having up to 25% (v/v methanol, ethanol or acetone content with no significant change in the value of slope or working concentration range. It was successfully applied for the direct determination of copper content in water and tea samples with satisfactory results. The electrode has been used in the potentiometric titration of Cu2+ with EDTA.

  19. Transport Asymmetry of Novel Bi-Layer Hybrid Perfluorinated Membranes on the Base of MF-4SC Modified by Halloysite Nanotubes with Platinum

    Directory of Open Access Journals (Sweden)

    Anatoly Filippov

    2018-03-01

    Full Text Available Three types of bi-layer hybrid nanocomposites on the base of perfluorinated cation-exchange membrane MF-4SC (Russian analogue of Nafion®-117 were synthesized and characterized. It was found that two membranes possess the noticeable asymmetry of the current–voltage curve (CVC under changing their orientation towards the applied electric field, despite the absence of asymmetry of diffusion permeability. These phenomena were explained in the frame of the “fine-porous model” expanded for bi-layer membranes. A special procedure to calculate the real values of the diffusion layers thickness and the limiting current density was proposed. Due to asymmetry effects of the current voltage curves of bi-layer hybrid membranes on the base of MF-4SC, halloysite nanotubes and platinum nanoparticles, it is prospective to assemble membrane switches (membrane relays or diodes with predictable transport properties, founded upon the theory developed here.

  20. High flux nanofiltration membranes based on layer-by-layer assembly modified electrospun nanofibrous substrate

    Science.gov (United States)

    Xu, Guo-Rong; Liu, Xiao-Yu; Xu, Jian-Mei; Li, Lu; Su, Hui-Chao; Zhao, He-Li; Feng, Hou-Jun

    2018-03-01

    Herein, high flux nanofiltration (NF) membranes were fabricated by combined procedures of electrospinning, layer-by-layer (LBL) assembly, and phase inversion. The membranes displayed three-dual structure constituted polyether sulfone (PES) coating layer, LBL assembly modified electrospun polyester (PET) nanofibrous mats, and non-woven supports. High flux NF membranes thus prepared are characterized by ultrathin phase inversion layer (∼10 μm) while that of conventional membranes are 100-150 μm, implying that very high flux could be expected. Various factors including electrospinning conditions, chitosan (CHI)/alginate (ALG) concentration, PES concentration, exposed time, coagulating temperature, thermal treatment, and sulfonated poly ether ketone (SPEEK) content were systematically investigated. Structures of the membranes were characterized by field emission scanning electron microscopy (FESEM), mechanical properties test, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and static contact angle measurements. The separation experiments indicated that thus prepared membranes exhibited high flux of as high as ∼75 L m-2 h-1 with Mg SO4 rejection of ∼80%.