WorldWideScience

Sample records for membrane antigen revealed

  1. A remote arene-binding site on prostate specific membrane antigen revealed by antibody-recruiting small molecules

    Czech Academy of Sciences Publication Activity Database

    Zhang, A.X.; Murelli, R.P.; Bařinka, Cyril; Michel, J.; Cocleaza, A.; Jorgensen, W.L.; Lubkowski, J.; Spiegel, D.A.

    2010-01-01

    Roč. 132, č. 36 (2010), s. 12711-12716 ISSN 0002-7863 Institutional research plan: CEZ:AV0Z50520701 Keywords : Prostate -specific membrane antigen * antibody recruiting molecules * Structure-activity relationship Subject RIV: CE - Biochemistry Impact factor: 9.019, year: 2010

  2. Herpesvirus glycoproteins undergo multiple antigenic changes before membrane fusion.

    Directory of Open Access Journals (Sweden)

    Daniel L Glauser

    Full Text Available Herpesvirus entry is a complicated process involving multiple virion glycoproteins and culminating in membrane fusion. Glycoprotein conformation changes are likely to play key roles. Studies of recombinant glycoproteins have revealed some structural features of the virion fusion machinery. However, how the virion glycoproteins change during infection remains unclear. Here using conformation-specific monoclonal antibodies we show in situ that each component of the Murid Herpesvirus-4 (MuHV-4 entry machinery--gB, gH/gL and gp150--changes in antigenicity before tegument protein release begins. Further changes then occurred upon actual membrane fusion. Thus virions revealed their final fusogenic form only in late endosomes. The substantial antigenic differences between this form and that of extracellular virions suggested that antibodies have only a limited opportunity to block virion membrane fusion.

  3. Protein modeling of apical membrane antigen-1(AMA-1) of ...

    African Journals Online (AJOL)

    Apical membrane Antigen-1(AMA-1), an asexual blood stage antigen of Plasmodium cynomolgi, is an important candidate for testing as a component of malarial vaccine. The degree of conservation of. AMA-1 sequences implies a conserved function for this molecule across different species of Plasmodium. Since the AMA-1 ...

  4. An anti-phospholipase A2 receptor quantitative immunoassay and epitope analysis in membranous nephropathy reveals different antigenic domains of the receptor.

    Directory of Open Access Journals (Sweden)

    Astrid Behnert

    Full Text Available The phospholipase A2 receptor (PLA2R was recently discovered as a target autoantigen in patients with idiopathic membranous nephropathy (IMN. Published evidence suggests that the autoantibodies directed towards a conformation dependent epitope are currently effectively detected by a cell based assay (CBA utilizing indirect immunofluorescence (IIF on tissue culture cells transfected with the PLA2R cDNA. Limitations of such IIF-CBA assays include observer dependent subjective evaluation of semi-quantitative test results and the protocols are not amenable to high throughput diagnostic testing. We developed a quantitative, observer independent, high throughput capture immunoassay for detecting PLA2R autoantibodies on an addressable laser bead immunoassay (ALBIA platform. Since reactive domains of PLA2R (i.e. epitopes could be used to improve diagnostic tests by using small peptides in various high throughput diagnostic platforms, we identified PLA2R epitopes that bound autoantibodies of IMN patients. These studies confirmed that inter-molecular epitope spreading occurs in IMN but use of the cognate synthetic peptides in immunoassays was unable to conclusively distinguish between IMN patients and normal controls. However, combinations of these peptides were able to effectively absorb anti-PLA2R reactivity in IIF-CBA and an immunoassay that employed a lysate derived from HEK cells tranfected with and overexpressing PLA2R. While we provide evidence of intermolecular epitope spreading, our data indicates that in addition to conformational epitopes, human anti-PLA2R reactivity in a commercially available CBA and an addressable laser bead immunoassay is significantly absorbed by peptides representing epitopes of PLA2R.

  5. Characterization of plant plasma membrane antigens: [Annual] progress report

    International Nuclear Information System (INIS)

    Galbraith, D.W.; Afonso, C.L.; Meyer, D.; Harkins, K.R.

    1987-01-01

    Protoplast plasma membranes were used to raise antibodies in mice to cell surface antigens. Monoclonal antibodies were selected from those produced and used for indirect immunofluorescence microscopic analysis of N. tabacum cells. In parallel studies cDNA expression libraries were prepared. (DT)

  6. Prostate-specific membrane antigen and its truncated form PSM'

    Czech Academy of Sciences Publication Activity Database

    Mlčochová, Petra; Bařinka, Cyril; Tykvart, Jan; Šácha, Pavel; Konvalinka, Jan

    2009-01-01

    Roč. 69, č. 5 (2009), s. 471-479 ISSN 0270-4137 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : prostate specific membrane antigen * glutamate carboxypeptidase II * prostate cancer Subject RIV: CE - Biochemistry Impact factor: 3.081, year: 2009

  7. Immunochemical identification of human trophoblast membrane antigens using monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P J; Molloy, C M; Johnson, P M [Liverpool Univ. (UK). Dept. of Immunology

    1983-11-01

    Human trophoblast membrane antigens recognised by monoclonal antibodies (H310, H315, H316 and H317) have been identified using combinations of radioimmunoprecipitation, SDS-PAGE, electroblotting, chromatographic and ELISA-type techniques. H317 is known to identify heat-stable placental-type alkaline phosphatase and accordingly was shown to react with a protein of subunit Msub(r) of 68000. H310 and H316 both recognise an antigen with a subunit Msub(r) of 34000 under reducing conditions. In non-reducing conditions, the H310/316 antigen gave oligomers of a component of Msub(r) 62000. It is unknown whether this 62000 dalton component is a dimer of the 34000 dalton protein with either itself or a second protein chain of presumed Msub(r) around 28000. H315 recognises an antigen with subunit Msub(r) of 36000; in non-reducing conditions this component readily associates to oligomeric structures. The epitope recognised by H315 may be sensitive to SDS. The two proteins recognised by H310/316 and H315 have been termed the p34 and p36 trophoblast membrane proteins, respectively.

  8. Subdominant Outer Membrane Antigens in Anaplasma marginale: Conservation, Antigenicity, and Protective Capacity Using Recombinant Protein.

    Directory of Open Access Journals (Sweden)

    Deirdre R Ducken

    Full Text Available Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP extracts or a defined surface protein complex reproducibly induce protective immunity. However, there are several knowledge gaps limiting progress in vaccine development. First, are these OMPs conserved among the diversity of A. marginale strains circulating in endemic regions? Second, are the most highly conserved outer membrane proteins in the immunogens recognized by immunized and protected animals? Lastly, can this subset of OMPs recognized by antibody from protected vaccinates and conserved among strains recapitulate the protection of outer membrane vaccines? To address the first goal, genes encoding OMPs AM202, AM368, AM854, AM936, AM1041, and AM1096, major subdominant components of the outer membrane, were cloned and sequenced from geographically diverse strains and isolates. AM202, AM936, AM854, and AM1096 share 99.9 to 100% amino acid identity. AM1041 has 97.1 to 100% and AM368 has 98.3 to 99.9% amino acid identity. While all four of the most highly conserved OMPs were recognized by IgG from animals immunized with outer membranes, linked surface protein complexes, or unlinked surface protein complexes and shown to be protected from challenge, the highest titers and consistent recognition among vaccinates were to AM854 and AM936. Consequently, animals were immunized with recombinant AM854 and AM936 and challenged. Recombinant vaccinates and purified outer membrane vaccinates had similar IgG and IgG2 responses to both proteins. However, the recombinant vaccinates developed higher bacteremia after challenge as compared to adjuvant-only controls and outer membrane vaccinates. These results provide the first evidence that vaccination with specific antigens may exacerbate disease. Progressing from the protective capacity of outer membrane formulations to

  9. Prostate Specific Membrane Antigen (PSMA) Targeted Bio-orthogonal Therapy for Metastatic Prostate Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0595 TITLE: Prostate-Specific Membrane Antigen (PSMA) Targeted Bio -orthogonal Therapy for Metastatic Prostate Cancer...Sep 2016 - 14 Sep 2017 4. TITLE AND SUBTITLE Prostate-Specific Membrane Antigen (PSMA) Targeted Bio -orthogonal Therapy for Metastatic Prostate

  10. Immunoprotection of mice against Schistosomiasis mansoni using solubilized membrane antigens.

    Directory of Open Access Journals (Sweden)

    Guidenn Sulbarán

    Full Text Available BACKGROUND: Schistosomiasis continues to be one of the most prevalent parasitic diseases in the world. Despite the existence of a highly effective antischistosome drug, the disease is spreading into new areas, and national control programs do not arrive to complete their tasks particularly in low endemic areas. The availability of a vaccine could represent an additional component to chemotherapy. Experimental vaccination studies are however necessary to identify parasite molecules that would serve as vaccine candidates. In the present work, C57BL/6 female mice were subcutaneously immunized with an n-butanol extract of the adult worm particulate membranous fraction (AWBE and its protective effect against a S. mansoni challenge infection was evaluated. METHODOLOGY AND FINDINGS: Water-saturated n-butanol release into the aqueous phase a set of membrane-associated (glycoproteins that are variably recognized by antibodies in schistosome-infected patients; among the previously identified AWBE antigens there is Alkaline Phosphatase (SmAP which has been associated with resistance to the infection in mice. As compared to control, a significantly lower number of perfuse parasites was obtained in the immunized/challenged mouse group (P<0.05, t test; and consequently, a lower number of eggs and granulomas (with reduced sizes, overall decreasing pathology. Immunized mice produced high levels of sera anti-AWBE IgG recognizing antigens of ∼190-, 130-, 98-, 47-, 28-23, 14-, and 9-kDa. The ∼130-kDa band (the AP dimer exhibited in situ SmAP activity after addition of AP substrate and the activity was not apparently inhibited by host antibodies. A preliminary proteomic analysis of the 25-, 27-, and 28-kDa bands in the immunodominant 28-23 kDa region suggested that they are composed of actin. CONCLUSIONS: Immunization with AWBE induced the production of specific antibodies to various adult worm membrane molecules (including AP and a partial (43% protection

  11. Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses.

    Science.gov (United States)

    Zeelenberg, Ingrid S; Ostrowski, Matias; Krumeich, Sophie; Bobrie, Angélique; Jancic, Carolina; Boissonnas, Alexandre; Delcayre, Alain; Le Pecq, Jean-Bernard; Combadière, Béhazine; Amigorena, Sebastian; Théry, Clotilde

    2008-02-15

    Expression of non-self antigens by tumors can induce activation of T cells in vivo, although this activation can lead to either immunity or tolerance. CD8+ T-cell activation can be direct (if the tumor expresses MHC class I molecules) or indirect (after the capture and cross-presentation of tumor antigens by dendritic cells). The modes of tumor antigen capture by dendritic cells in vivo remain unclear. Here we examine the immunogenicity of the same model antigen secreted by live tumors either in association with membrane vesicles (exosomes) or as a soluble protein. We have artificially addressed the antigen to secreted vesicles by coupling it to the factor VIII-like C1C2 domain of milk fat globule epidermal growth factor-factor VIII (MFG-E8)/lactadherin. We show that murine fibrosarcoma tumor cells that secrete vesicle-bound antigen grow slower than tumors that secrete soluble antigen in immunocompetent, but not in immunodeficient, host mice. This growth difference is due to the induction of a more potent antigen-specific antitumor immune response in vivo by the vesicle-bound than by the soluble antigen. Finally, in vivo secretion of the vesicle-bound antigen either by tumors or by vaccination with naked DNA protects against soluble antigen-secreting tumors. We conclude that the mode of secretion can determine the immunogenicity of tumor antigens and that manipulation of the mode of antigen secretion may be used to optimize antitumor vaccination protocols.

  12. Quantitative radioimmunoassay for membranous and soluble H-Y antigen typing

    Energy Technology Data Exchange (ETDEWEB)

    Casanova-Bettane, M.; Latron, F.; Jakob, H.; Fellous, M.

    1981-01-01

    Two sensitive and quantitative methods for membranous or soluble H-Y antigen typing using rat anti-H-Y immune sera and /sup 125/I labelled protein A were carried out. These techniques were used to study H-Y antigen expression in human cell lines, and to refine the hypothesis that ..beta../sub 2/m serves as an anchorage point for H-Y antigen.

  13. Library of monoclonal antibodies against brush border membrane epithelial antigens

    International Nuclear Information System (INIS)

    Behar, M.; Katz, A.; Silverman, M.

    1986-01-01

    A purified fraction of proximal tubule brush border membranes (BBM) was prepared from dog kidney and used to immunize mice. The standard technique of hybridoma production was followed as described by Kohler and Milstein. Production of antibodies was detected by indirect immunofluorescence on dog kidney slices and by immunodot against the purified fraction on nitrocellulose. Five hybrids exhibited anti BBM activity. These were cloned twice and yielded stable cell lines producing IgG type monoclonal antibodies against BBM. They were designated A 1 , C 7 , D 3 , D 7 and H 4 . As a family these five monoclonals have broad tissue specificity, i.e. positive staining of the surface mucosa of intestinal kidney proximal tubules. D 3 exhibits even broader specificity for epithelium reacting with bile canaliculi and choroid plexus. The authors have verified that at least 4/5 antibodies are directed against BBM protein as revealed by immunoprecipitation of solubilized BBM and detected by Coomassie blue staining or autoradiography of lactoperoxidase labelled BBM. Most interestingly all antibodies bind to the surface of LL CPK 1 cells, a continuous pig kidney cell line of undefined origin but exhibiting many characteristics of proximal tubule cells. The library of monoclonal antibodies obtained provide important probes with which to study membrane biogenesis and polarization in epithelial cells

  14. Effects of radiation on the expression of antigens on the membranes of human adenocarcinoma cells

    International Nuclear Information System (INIS)

    Hareyama, Masato; Imai, Kozo; Oouchi, Atsushi; Shidou, Mitsuo; Takahashi, Hiroki; Koshiba, Hirohumi; Yachi, Akira; Morita, Kazuo

    1992-01-01

    We have investigated the effects of irradiation on the membranes of tumor cells. X-ray irradiation caused remarkable increases in the expression of tumor-associated antigens (YH206, CEA) and c-erbB-2 protein by flow cytometry, whereas IFN had no obvious effect on the expression of tumor-associated antigens and c-erbB-2 protein. On the other hand, the expression of MHC Class I and ICAM-1 antigen on the membrane by flow cytometry was enhanced by both irradiation and IFN. In addition, the irradiated cells, when analyzed using a CEA specific probe, showed remarkable increases in the CEA mRNA compared to IFN-treated cells. It is possible that enhancement of the expression of tumor-associated antigens and c-erbB-2 protein, together with the enhancement of that of MHC-Class I and ICAM-1, would help cytotoxic killer cells recognize the tumor cells. (author)

  15. Quantification of an Epstein-Barr virus-associated membrane antigen component

    International Nuclear Information System (INIS)

    North, J.R.; Morgan, A.J.; Thompson, J.L.; Epstein, M.A.

    1982-01-01

    A method is described for the preparation of a 125 I-labelled membrane antigen (MA) component (gp340) from B95-8 cell membranes using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Good yields of antigenic material were obtained when renaturation of the [ 125 I]gp340 was carried out by removal of SDS in the presence of urea and subsequent removal of the urea. The availability of purified, radiolabelled gp340 has provided the essential basis for the development of a radioimmunoassay which, for the first time, permits quantification of this antigen. The assay has been used to demonstrate that cell membrane MA is a better source of gp340 for large-scale work than is the Epstein-Barr virus envelope and to measure the increase in expression of gp340 following treatment of cells with 12-O-tetradecanoyl-phorbol-13-acetate (TPA). (Auth.)

  16. Common tree shrews and primates share leukocyte membrane antigens.

    Science.gov (United States)

    Palley, L S; Schlossman, S F; Letvin, N L

    1984-01-01

    Monoclonal antibodies reactive with human peripheral blood lymphocyte and myeloid cell surface antigens were utilized to study the phylogeny of the common tree shrew. Blood cells from the common tree shrew, but not the bat or short-tailed shrew, react with certain of these antibodies. These data strengthen the argument that the Tupaiidae are primitive primates rather than insectivores. They also indicate that this approach should be useful for further work in taxonomic systemization.

  17. Localization of ras antigenicity in rat hepatocyte plasma membrane and rough endoplasmic reticulum fractions

    International Nuclear Information System (INIS)

    Dominguez, J.M.; Lanoix, J.; Paiement, J.

    1991-01-01

    We have examined the antigenicity of plasma membrane (PM) and rough microsomal (RM) fractions from rat liver using anti-ras monoclonal antibodies 142-24EO5 and Y13-259 and immunochemistry as well as electron microscope immunocytochemistry. Proteins immunoprecipitated with monoclonal antibody 142-24E05 were separated using single-dimensional gradient-gel electrophoresis. The separated proteins were then blotted onto nitrocellulose sheets and incubated with [alpha-32P]GTP. Radioautograms of blots indicated the presence of specific 21.5- and 22-kDa labeled proteins in the PM fraction. A 23.5-kDa [alpha- 32 P] GTP-binding protein was detected in immunoprecipitates of both PM and RM fractions. Monoclonal antibody Y13-259 reacted only with the 21.5-kDa [alpha- 32 P] GTP-binding protein in the plasma membrane fraction. When anti-ras monoclonal antibody 142-24E05 and the immunogold technique were applied to membrane fractions using a preembedding immunocytochemical method, specific labeling was observed in association with both vesicular structures and membrane sheets in the PM fraction but only with electron-dense vesicular structures in the RM fraction. Thus ras antigenicity is associated with hepatocyte plasma membranes and ras-like antigenicity is probably associated with vesicular (secretory/endocytic) elements in both plasma membrane and rough microsomal preparations

  18. Radioimmunoassay for antibodies against surface membrane antigens using adhering cells

    Energy Technology Data Exchange (ETDEWEB)

    Tax, A; Manson, L A [Wistar Inst. of Anatomy and Biology, Philadelphia, Pa. (USA)

    1976-07-01

    A radioimmunoassay using cells adhering to plastic is described. In this assay, A-10 mammary carcinoma attached to the surface of plastic in microtiter plates were permitted to bind antibody and the bound antibody was detected with purified rabbit /sup 125/I-antimouse-Fab. The bound radioactive material was eluted with glycine-HCl buffer (pH 2.5), and the acid eluates were counted in a gamma counter. This assay can be used to detect cytolic or noncytolic antibody to cell surface antigens in studies with any tumor or normal cell that will adhere to a solid surface.

  19. Evidence that a glycolipid tail anchors antigen 117 to the plasma membrane of Dictyostelium discoideum cells

    International Nuclear Information System (INIS)

    Sadeghi, H.; Da Silva, A.M.; Klein, C.

    1988-01-01

    The authors describe the biochemical features of the putative cell cohesion molecule antigen 117, indicating that it is anchored to the plasma membrane by a glycolipid tail. Antigen 117 can be radiolabeled with [ 3 H]myristate, [ 3 H]palmitate, and [ 14 C]ethanolamine. The fatty acid label is removed by periodate oxidation and nitrous acid deamination, indicating that the fatty acid is attached to the protein by a structure containing carbohydrate and an unsubstituted glucosamine. As cells develop aggregation competence, the antigen is released from the cell surface in a soluble form that can still be radiolabeled with [ 14 C]ethanolamine but not with [ 3 H]myristate of [ 3 H]-palmitate. The molecular weight of the released antigen is similar to that found in the plasma membrane, but it preferentially partitions in Triton X-114 as a hydrophilic, as opposed to a hydrophobic, protein. Plasma membranes contain the enzyme activity responsible for the release of the antigen in a soluble form

  20. Detection and quantification of Duffy antigen on bovine red blood cell membranes using a polyclonal antibody

    Directory of Open Access Journals (Sweden)

    Ana Teresa B.F. Antonangelo

    2012-09-01

    Full Text Available Babesiosis is one of the most important diseases affecting livestock agriculture worldwide. Animals from the subspecies Bos taurus indicus are more resistant to babesiosis than those from Bos taurus taurus. The genera Babesia and Plasmodium are Apicomplexa hemoparasites and share features such as invasion of red blood cells (RBC. The glycoprotein Duffy is the only human erythrocyte receptor for Pasmodium vivax and a mutation which abolishes expression of this glycoprotein on erythrocyte surfaces is responsible for making the majority of people originating from the indigenous populations of West Africa resistant to P. vivax. The current work detected and quantified the Duffy antigen on Bos taurus indicus and Bos taurus taurus erythrocyte surfaces using a polyclonal antibody in order to investigate if differences in susceptibility to Babesia are due to different levels of Duffy antigen expression on the RBCs of these animals, as is known to be the case in human beings for interactions of Plasmodium vivax-Duffy antigen. ELISA tests showed that the antibody that was raised against Duffy antigens detected the presence of Duffy antigen in both subspecies and that the amount of this antigen on those erythrocyte membranes was similar. These results indicate that the greater resistance of B. taurus indicus to babesiosis cannot be explained by the absence or lower expression of Duffy antigen on RBC surfaces.

  1. [New Radiopharmaceuticals Based on Prostate-Specific Inhibitors of Membrane Antigen for Diagnostics and Therapy of Metastatic Prostate Cancer].

    Science.gov (United States)

    Vlasova, O P; German, K E; Krilov, V V; Petriev, V M; Epstein, N B

    2015-01-01

    About 10.7% cases of prostate cancer were registered in Russia in 2011 (40,000 patients). More than half of cancer cases were revealed in advanced (III-IV) stages when metastases inevitably developed quickly. Clinical problem of early diagnostics and treatment of metastatic prostate cancer is still not solved. Anatomical imaging techniques have low sensitivity and specificity for the detection of this disease. Metabolic visualization methods which use prostate specific antigen (PSA) as a marker are also ineffective. This article describes prostate-specific membrane antigens (PSMA) that are proposed as a marker for diagnostics and therapy of prostate cancer. The most promising PSMA-based radiopharmaceutical agent for diagnostics has been developed and clinically tested in the European countries. These pharmaceuticals are based on small peptide molecules modified with urea, and have the highest affinity to PSMA. Favorable phannacokinetics, rapid accumulation in the tumor and rapid excretion from the body are beneficial features of these pharmaceuticals.

  2. Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations.

    Science.gov (United States)

    Marcoline, Frank V; Bethel, Neville; Guerriero, Christopher J; Brodsky, Jeffrey L; Grabe, Michael

    2015-08-04

    The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem, including full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane-induced pKa shifts, calculation of non-polar energies, and command-line scripting for large-scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane, potentially revealing interesting functional information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Identification and characterization of Eimeria tenella apical membrane antigen-1 (AMA1.

    Directory of Open Access Journals (Sweden)

    Lianlian Jiang

    Full Text Available Apical membrane antigen-1 (AMA1 is a micronemal protein of apicomplexan parasites that appears to be essential during the invasion of host cells. In this study, a full-length cDNA of AMA1 was identified from Eimeria tenella (Et using expressed sequence tag and the rapid amplification of cDNA ends technique. EtAMA1 had an open reading frame of 1608 bp encoding a protein of 535 amino acids. Quantitative real-time PCR analysis revealed that EtAMA1 was expressed at higher levels in sporozoites than in the other developmental stages (unsporulated oocysts, sporulated oocysts and second-generation merozoites. The ectodomain sequence was expressed as recombinant EtAMA1 (rEtAMA1 and rabbit polyclonal antibodies raised against the rEtAMA1 recognized a 58-kDa native parasite protein by Western Blotting and had a potent inhibitory effect on parasite invasion, decreasing it by approximately 70%. Immunofluorescence analysis and immunohistochemistry analysis showed EtAMA1 might play an important role in sporozoite invasion and development.

  4. Cancer Patient T Cells Genetically Targeted to Prostate-Specific Membrane Antigen Specifically Lyse Prostate Cancer Cells and Release Cytokines in Response to Prostate-Specific Membrane Antigen

    Directory of Open Access Journals (Sweden)

    Michael C. Gong

    1999-06-01

    Full Text Available The expression of immunoglobulin-based artificial receptors in normal T lymphocytes provides a means to target lymphocytes to cell surface antigens independently of major histocompatibility complex restriction. Such artificial receptors have been previously shown to confer antigen-specific tumoricidal properties in murine T cells. We constructed a novel ζ chain fusion receptor specific for prostate-specific membrane antigen (PSMA termed Pz-1. PSMA is a cell-surface glycoprotein expressed on prostate cancer cells and the neovascular endothelium of multiple carcinomas. We show that primary T cells harvested from five of five patients with different stages of prostate cancer and transduced with the Pz-1 receptor readily lyse prostate cancer cells. Having established a culture system using fibroblasts that express PSMA, we next show that T cells expressing the Pz-1 receptor release cytokines in response to cell-bound PSMA. Furthermore, we show that the cytokine release is greatly augmented by B7.1-mediated costimulation. Thus, our findings support the feasibility of adoptive cell therapy by using genetically engineered T cells in prostate cancer patients and suggest that both CD4+ and CD8+ T lymphocyte functions can be synergistically targeted against tumor cells.

  5. Biosynthetic incorporation of [75Se]selenomethionine: a new method for labelling lymphocyte membrane antigens

    International Nuclear Information System (INIS)

    Dosseto, M.; Rohner, C.; Pierres, M.; Goridis, C.

    1981-01-01

    A novel approach for radiolabelling lymphocyte membrane antigens is described. This technique is based on the use of the γ-emitting amino acid analogue [ 75 Se]selenomethionine. Human HLA-A, B, C and DR heavy and light chains and mouse Ia antigens were efficiently labelled by this technique and were precipitated with monoclonal antibodies. Approximately the same radioactivity was incorporated into the HLA-A, B, C chains whether [ 75 Se]selenomethionine, [ 35 S]methionine or [ 3 H]leucine were used as precursors. Easily detectable as a γ-emitter, [ 75 Se]selenomethionine thus constitutes a useful biosynthetic label of lymphocyte surface antigens. The same method was used to label immunoglobulins produced by hybridomas and to determine the nature of the secreted light chains. (Auth.)

  6. Molecular cloning, characterization and antigenicity of Babesia sp. BQ1 (Lintan) (Babesia cf. motasi) apical membrane antigen-1 (AMA-1).

    Science.gov (United States)

    Niu, Qingli; Liu, Zhijie; Yang, Jifei; Guan, Guiquan; Pan, Yuping; Luo, Jianxun; Yin, Hong

    2017-04-01

    Apical membrane antigen-1 (AMA-1) has been described as a potential vaccine candidate in apicomplexan parasites. Here we characterize the ama-1 gene. The full-length ama-1 gene of Babesia sp. BQ1 (Lintan) (BLTAMA-1) is 1785 bp, which contains an open reading frame (ORF) encoding a 65-kDa protein of 594 amino acid residues; by definition, the 5' UTR precedes the first methionine of the ORF. Phylogenetic analysis based on AMA-1 amino acid sequences clearly separated Piroplasmida from other Apicomplexa parasites. The Babesia sp. BQ1 (Lintan) AMA-1 sequence is most closely associated with that of B. ovata and B. bigemina, with high bootstrap value. A recombinant protein encoding a conserved region and containing ectodomains I and II of BLTAMA-1 was constructed. BLTrAMA-1-DI/DII proteins were tested for reactivity with sera from sheep infected by Babesia sp. BQ1 (Lintan). In Western-blot analysis, native Babesia sp. BQ1 (Lintan) AMA-1 proteins were recognized by antibodies raised in rabbits against BLTrAMA-1 in vitro. The results of this study are discussed in terms of gene characterization, taxonomy and antigenicity.

  7. Outer membrane proteins analysis of Shigella sonnei and evaluation of their antigenicity in Shigella infected individuals.

    Directory of Open Access Journals (Sweden)

    Hemavathy Harikrishnan

    Full Text Available Bacillary dysentery caused by infection with Shigella spp. remains as serious and common health problem throughout the world. It is a highly multi drug resistant organism and rarely identified from the patient at the early stage of infection. S. sonnei is the most frequently isolated species causing shigellosis in industrialized countries. The antigenicity of outer membrane protein of this pathogen expressed during human infection has not been identified to date. We have studied the antigenic outer membrane proteins expressed by S. sonnei, with the aim of identifying presence of specific IgA and IgG in human serum against the candidate protein biomarkers. Three antigenic OMPs sized 33.3, 43.8 and 100.3 kDa were uniquely recognized by IgA and IgG from patients with S. sonnei infection, and did not cross-react with sera from patients with other types of infection. The antigenic proteome data generated in this study are a first for OMPs of S. sonnei, and they provide important insights of human immune responses. Furthermore, numerous prime candidate proteins were identified which will aid the development of new diagnostic tools for the detection of S. sonnei.

  8. Expression of the Gastrin-Releasing Peptide Receptor, the Prostate Stem Cell Antigen and the Prostate-Specific Membrane Antigen in Lymph Node and Bone Metastases of Prostate Cancer

    NARCIS (Netherlands)

    Ananias, Hildo J. K.; van den Heuvel, Marius C.; Helfrich, Wijnand; de Jong, Igle J.

    2009-01-01

    OBJECTIVE. Cell membrane antigens like the gastrin-releasing peptide receptor (GRPR), the prostate stem cell antigen (PSCA), and the prostate-specific membrane antigen (PSMA), expressed in prostate cancer, are attractive targets for new therapeutic and diagnostic applications. Therefore, we

  9. Characterization of Prostate-Specific Membrane Antigen (PSMA) for Use in Therapeutic and Diagnostic Strategies Against Prostate Cancer

    National Research Council Canada - National Science Library

    O'Keefe, Denise

    2002-01-01

    Prostate-Specific Membrane Antigen (PSMA) appears to be an ideal prostate cancer marker and potential therapeutic target, however there have been reports of PSMA expression in non-prostatic tissues, including brain, kidney and liver...

  10. Prostate-Specific Membrane Antigen Targeted Gold Nanoparticles for Theranostics of Prostate Cancer.

    Science.gov (United States)

    Mangadlao, Joey Dacula; Wang, Xinning; McCleese, Christopher; Escamilla, Maria; Ramamurthy, Gopalakrishnan; Wang, Ziying; Govande, Mukul; Basilion, James P; Burda, Clemens

    2018-04-24

    Prostate cancer is one of the most common cancers and among the leading causes of cancer deaths in the United States. Men diagnosed with the disease typically undergo radical prostatectomy, which often results in incontinence and impotence. Recurrence of the disease is often experienced by most patients with incomplete prostatectomy during surgery. Hence, the development of a technique that will enable surgeons to achieve a more precise prostatectomy remains an open challenge. In this contribution, we report a theranostic agent (AuNP-5kPEG-PSMA-1-Pc4) based on prostate-specific membrane antigen (PSMA-1)-targeted gold nanoparticles (AuNPs) loaded with a fluorescent photodynamic therapy (PDT) drug, Pc4. The fabricated nanoparticles are well-characterized by spectroscopic and imaging techniques and are found to be stable over a wide range of solvents, buffers, and media. In vitro cellular uptake experiments demonstrated significantly higher nanoparticle uptake in PSMA-positive PC3pip cells than in PSMA-negative PC3flu cells. Further, more complete cell killing was observed in Pc3pip than in PC3flu cells upon exposure to light at different doses, demonstrating active targeting followed by Pc4 delivery. Likewise, in vivo studies showed remission on PSMA-expressing tumors 14 days post-PDT. Atomic absorption spectroscopy revealed that targeted AuNPs accumulate 4-fold higher in PC3pip than in PC3flu tumors. The nanoparticle system described herein is envisioned to provide surgical guidance for prostate tumor resection and therapeutic intervention when surgery is insufficient.

  11. A solid phase radio immunoassay on hydrophobic membrane filters: detection of antibodies to gonocal surface antigens

    International Nuclear Information System (INIS)

    Lambden, P.R.; Watt, P.J.

    1978-01-01

    A solid phase radioimmunoassay (SPRIA) has been developed for detection of IgG antibodies to gonococcal outer membrane components. Gonococcal antigens was immobilised on a solid support by covalent coupling to CNBr-activated Sepharose in the presence of the detergent Triton X-100. Binding of specific antibody to the Sepharose-antigen complex was detected using radiolabelled Protein A as the antiglobulin. Protein A was labelled by radioacetylation with tritiated acetic anhydride, yielding a product of high specific activity and high stability. No detectable loss of activity was observed over a ten month period. The entire assay was performed on Mitex teflon hydrophobic membrane filters which held the Sepharose beads and aqueous supernatant as a discrete drop of liquid. The supernatants and incubation were easily and rapidly removed from the beads by suction on a specially-designed manifold system. This procedure removed the need for repeated and time-consuming centrifugations. Titres were obtained graphically from double log plots of cpm bound versus antiserum dilution by extrapolation of the straight line to a point corresponding to twice the control level of radioactivity binding. The assay proved to be a very reliable and simple procedure for the detection of IgG antibodies to gonococcal surface antigens. (Auth.)

  12. Structure-guided investigation of lipopolysaccharide O-antigen chain length regulators reveals regions critical for modal length control.

    Science.gov (United States)

    Kalynych, Sergei; Ruan, Xiang; Valvano, Miguel A; Cygler, Miroslaw

    2011-08-01

    The O-antigen component of the lipopolysaccharide (LPS) represents a population of polysaccharide molecules with nonrandom (modal) chain length distribution. The number of the repeat O units in each individual O-antigen polymer depends on the Wzz chain length regulator, an inner membrane protein belonging to the polysaccharide copolymerase (PCP) family. Different Wzz proteins confer vastly different ranges of modal lengths (4 to >100 repeat units), despite having remarkably conserved structural folds. The molecular mechanism responsible for the selective preference for a certain number of O units is unknown. Guided by the three-dimensional structures of PCPs, we constructed a panel of chimeric molecules containing parts of two closely related Wzz proteins from Salmonella enterica and Shigella flexneri which confer different O-antigen chain length distributions. Analysis of the O-antigen length distribution imparted by each chimera revealed the region spanning amino acids 67 to 95 (region 67 to 95), region 200 to 255, and region 269 to 274 as primarily affecting the length distribution. We also showed that there is no synergy between these regions. In particular, region 269 to 274 also influenced chain length distribution mediated by two distantly related PCPs, WzzB and FepE. Furthermore, from the 3 regions uncovered in this study, region 269 to 274 appeared to be critical for the stability of the oligomeric form of Wzz, as determined by cross-linking experiments. Together, our data suggest that chain length determination depends on regions that likely contribute to stabilize a supramolecular complex.

  13. Nephritogenic antigen determinants in epidermal and renal basement membranes of kindreds with Alport-type familial nephritis.

    Science.gov (United States)

    Kashtan, C; Fish, A J; Kleppel, M; Yoshioka, K; Michael, A F

    1986-10-01

    We probed epidermal basement membranes (EBM) of acid-urea denatured skin from members of kindreds with Alport-type familial nephritis (FN) for the presence of antigens reactive with Goodpasture sera (GPS) and serum (FNS) from an Alport patient who developed anti-glomerular basement membrane (GBM) nephritis in a renal allograft. By immunoblotting, GPS reacted primarily with the 28,000 molecular weight (mol wt) monomer but also the 24,000 mol wt and 26,000 mol wt monomers of the noncollagenous globular domain (NC1) of type IV collagen from normal human GBM, while FNS identified only the 26,000-mol wt monomer. FNS reacted with EBM of 12 controls and nine unaffected male kindred members but not EBM of eight affected males. Five affected females exhibited interrupted reactivity of FNS with EBM. GPS showed variable reactivity with EBM and was not discriminating with respect to Alport-type FN. FNS did not stain renal basement members of five affected males. However, the EBM, tubular basement membrane, and Bowman's capsules of affected males contained antigens reactive with GPS. These immunochemical studies suggest that the FNS antigen is distinct from Goodpasture antigen(s). The expression of FNS antigen located on the NC1 domain of type IV collagen is altered in basement membranes of patients with Alport-type FN, and the distribution of this antigenic anomaly within kindreds suggests X-linked dominant transmission of a defective gene.

  14. Comparative analysis of monoclonal antibodies against prostate-specific membrane antigen (PSMA)

    Czech Academy of Sciences Publication Activity Database

    Tykvart, Jan; Navrátil, Václav; Sedlák, František; Corey, E.; Colombatti, M.; Fracasso, G.; Koukolík, F.; Bařinka, Cyril; Šácha, Pavel; Konvalinka, Jan

    2014-01-01

    Roč. 74, č. 16 (2014), s. 1674-1690 ISSN 0270-4137 R&D Projects: GA ČR GAP304/12/0847; GA MŠk LO1302; GA ČR GAP301/12/1513; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388963 ; RVO:86652036 Keywords : glutamate carboxypeptidase II * prostate -specific membrane antigen * folate hydrolase * NAALADase * Western blot * immunohistochemistry * ELISA * flow cytometry * surface plasmon resonance Subject RIV: CE - Biochemistry Impact factor: 3.565, year: 2014

  15. Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy

    DEFF Research Database (Denmark)

    Denmeade, Samuel R; Mhaka, Annastasiah M; Rosen, D Marc

    2012-01-01

    adenosine triphosphatase (SERCA) pump, whose proper function is required by all cell types for viability. To achieve targeted inhibition, we took advantage of the unique expression of the carboxypeptidase prostate-specific membrane antigen (PSMA) by tumor endothelial cells within the microenvironment...... of solid tumors. We generated a prodrug, G202, consisting of a PSMA-specific peptide coupled to an analog of the potent SERCA pump inhibitor thapsigargin. G202 produced substantial tumor regression against a panel of human cancer xenografts in vivo at doses that were minimally toxic to the host...

  16. [Expression changes of major outer membrane protein antigens in Leptospira interrogans during infection and its mechanism].

    Science.gov (United States)

    Zheng, Linli; Ge, Yumei; Hu, Weilin; Yan, Jie

    2013-03-01

    To determine expression changes of major outer membrane protein(OMP) antigens of Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai strain Lai during infection of human macrophages and its mechanism. OmpR encoding genes and OmpR-related histidine kinase (HK) encoding gene of L.interrogans strain Lai and their functional domains were predicted using bioinformatics technique. mRNA level changes of the leptospiral major OMP-encoding genes before and after infection of human THP-1 macrophages were detected by real-time fluorescence quantitative RT-PCR. Effects of the OmpR-encoding genes and HK-encoding gene on the expression of leptospiral OMPs during infection were determined by HK-peptide antiserum block assay and closantel inhibitive assays. The bioinformatics analysis indicated that LB015 and LB333 were referred to OmpR-encoding genes of the spirochete, while LB014 might act as a OmpR-related HK-encoding gene. After the spirochete infecting THP-1 cells, mRNA levels of leptospiral lipL21, lipL32 and lipL41 genes were rapidly and persistently down-regulated (P Expression levels of L.interrogans strain Lai major OMP antigens present notable changes during infection of human macrophages. There is a group of OmpR-and HK-encoding genes which may play a major role in down-regulation of expression levels of partial OMP antigens during infection.

  17. Comparison of Colorimetric Assays with Quantitative Amino Acid Analysis for Protein Quantification of Generalized Modules for Membrane Antigens (GMMA)

    OpenAIRE

    Rossi, Omar; Maggiore, Luana; Necchi, Francesca; Koeberling, Oliver; MacLennan, Calman A.; Saul, Allan; Gerke, Christiane

    2014-01-01

    Genetically induced outer membrane particles from Gram-negative bacteria, called Generalized Modules for Membrane Antigens (GMMA), are being investigated as vaccines. Rapid methods are required for estimating the protein content for in-process assays during production. Since GMMA are complex biological structures containing lipid and polysaccharide as well as protein, protein determinations are not necessarily straightforward. We compared protein quantification by Bradford, Lowry, and Non-Int...

  18. Development of a PET Prostate-Specific Membrane Antigen Imaging Agent: Preclinical Translation for Future Clinical Application

    Science.gov (United States)

    2017-10-01

    are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by...phase 0) application to the FDA by the end of the funding period. The small molecule imaging agents under study home to prostate specific membrane...funding period. The small molecule imaging agents under study home to prostate specific membrane antigen (PSMA) that is prevalent on a majority of

  19. Prostate specific membrane antigen- a target for imaging and therapy with radionuclides

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Choyke, Peter L; Capala, Jacek

    2010-01-01

    Prostate cancer continues to represent a major health problem, and yet there is no effective treatment available for advanced metastatic disease. Thus, there is an urgent need for the development of more effective treatment modalities that could improve the outcome. Because prostate specific...... membrane antigen (PSMA), a transmembrane protein, is expressed by virtually all prostate cancers, and its expression is further increased in poorly differentiated, metastatic, and hormone-refractory carcinomas, it is a very attractive target. Molecules targeting PSMA can be labelled with radionuclides...... to become both diagnostic and/or therapeutic agents. The use of PSMA binding agents, labelled with diagnostic and therapeutic radio-isotopes, opens up the potential for a new era of personalized management of metastatic prostate cancer....

  20. Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy.

    Science.gov (United States)

    Denmeade, Samuel R; Mhaka, Annastasiah M; Rosen, D Marc; Brennen, W Nathaniel; Dalrymple, Susan; Dach, Ingrid; Olesen, Claus; Gurel, Bora; Demarzo, Angelo M; Wilding, George; Carducci, Michael A; Dionne, Craig A; Møller, Jesper V; Nissen, Poul; Christensen, S Brøgger; Isaacs, John T

    2012-06-27

    Heterogeneous expression of drug target proteins within tumor sites is a major mechanism of resistance to anticancer therapies. We describe a strategy to selectively inhibit, within tumor sites, the function of a critical intracellular protein, the sarcoplasmic/endoplasmic reticulum calcium adenosine triphosphatase (SERCA) pump, whose proper function is required by all cell types for viability. To achieve targeted inhibition, we took advantage of the unique expression of the carboxypeptidase prostate-specific membrane antigen (PSMA) by tumor endothelial cells within the microenvironment of solid tumors. We generated a prodrug, G202, consisting of a PSMA-specific peptide coupled to an analog of the potent SERCA pump inhibitor thapsigargin. G202 produced substantial tumor regression against a panel of human cancer xenografts in vivo at doses that were minimally toxic to the host. On the basis of these data, a phase 1 dose-escalation clinical trial has been initiated with G202 in patients with advanced cancer.

  1. Advances in prostate-specific membrane antigen PET of prostate cancer.

    Science.gov (United States)

    Bouchelouche, Kirsten; Choyke, Peter L

    2018-05-01

    In recent years, a large number of reports have been published on prostate-specific membrane antigen (PSMA)/PET in prostate cancer (PCa). This review highlights advances in PSMA PET in PCa during the past year. PSMA PET/computed tomography (CT) is useful in detection of biochemical recurrence, especially at low prostate-specific antigen (PSA) values. The detection rate of PSMA PET is influenced by PSA level. For primary PCa, PSMA PET/CT shows promise for tumour localization in the prostate, especially in combination with multiparametric MRI (mpMRI). For primary staging, PSMA PET/CT can be used in intermediate and high-risk PCa. Intraoperative PSMA radioligand guidance seems promising for detection of malignant lymph nodes. While the use of PSMA PET/MRI in primary localized disease is limited to high and intermediate-risk patients and localized staging, in the recurrence setting, PET/MRI can be particularly helpful when the lesions are subtle. PSMA PET/CT is superior to choline PET/CT and other conventional imaging modalities. Molecular imaging with PSMA PET continues to pave the way for personalized medicine in PCa.However, large prospective clinical studies are still needed to fully evaluate the role of PSMA PET/CT and PET/MRI in the clinical workflow of PCa.

  2. ION-EXCHANGE IMMUNOAFFINITY PURIFICATION OF A RECOMBINANT BACULOVIRUS PLASMODIUM-FALCIPARUM APICAL MEMBRANE ANTIGEN, PF83/AMA-1

    NARCIS (Netherlands)

    NARUM, DL; WELLING, GW; THOMAS, AW

    1993-01-01

    A two-step purification regime has been developed for a quantitatively minor, putatively transmembrane, M(r) 83 000, apical membrane blood stage vaccine candidate antigen of Plasmodium falciparum (PF83/AMA-1), that has been expressed as a full-length baculovirus recombinant protein, PF83-FG8-1. The

  3. Prostate-specific membrane antigen-directed nanoparticle targeting for extreme nearfield ablation of prostate cancer cells.

    Science.gov (United States)

    Lee, Seung S; Roche, Philip Jr; Giannopoulos, Paresa N; Mitmaker, Elliot J; Tamilia, Michael; Paliouras, Miltiadis; Trifiro, Mark A

    2017-03-01

    Almost all biological therapeutic interventions cannot overcome neoplastic heterogeneity. Physical ablation therapy is immune to tumor heterogeneity, but nearby tissue damage is the limiting factor in delivering lethal doses. Multi-walled carbon nanotubes offer a number of unique properties: chemical stability, photonic properties including efficient light absorption, thermal conductivity, and extensive surface area availability for covalent chemical ligation. When combined together with a targeting moiety such as an antibody or small molecule, one can deliver highly localized temperature increases and cause extensive cellular damage. We have functionalized multi-walled carbon nanotubes by conjugating an antibody against prostate-specific membrane antigen. In our in vitro studies using prostate-specific membrane antigen-positive LNCaP prostate cancer cells, we have effectively demonstrated cell ablation of >80% with a single 30-s exposure to a 2.7-W, 532-nm laser for the first time without bulk heating. We also confirmed the specificity and selectivity of prostate-specific membrane antigen targeting by assessing prostate-specific membrane antigen-null PC3 cell lines under the same conditions (<10% cell ablation). This suggests that we can achieve an extreme nearfield cell ablation effect, thus restricting potential tissue damage when transferred to in vivo clinical applications. Developing this new platform will introduce novel approaches toward current therapeutic modalities and will usher in a new age of effective cancer treatment squarely addressing tumoral heterogeneity.

  4. Population genetic structure and natural selection of apical membrane antigen-1 in Plasmodium vivax Korean isolates.

    Science.gov (United States)

    Kang, Jung-Mi; Lee, Jinyoung; Cho, Pyo-Yun; Moon, Sung-Ung; Ju, Hye-Lim; Ahn, Seong Kyu; Sohn, Woon-Mok; Lee, Hyeong-Woo; Kim, Tong-Soo; Na, Byoung-Kuk

    2015-11-16

    Plasmodium vivax apical membrane antigen-1 (PvAMA-1) is a leading candidate antigen for blood stage malaria vaccine. However, antigenic variation is a major obstacle in the development of an effective vaccine based on this antigen. In this study, the genetic structure and the effect of natural selection of PvAMA-1 among Korean P. vivax isolates were analysed. Blood samples were collected from 66 Korean patients with vivax malaria. The entire PvAMA-1 gene was amplified by polymerase chain reaction and cloned into a TA cloning vector. The PvAMA-1 sequence of each isolate was sequenced and the polymorphic characteristics and effect of natural selection were analysed using the DNASTAR, MEGA4, and DnaSP programs. Thirty haplotypes of PvAMA-1, which were further classified into seven different clusters, were identified in the 66 Korean P. vivax isolates. Domain II was highly conserved among the sequences, but substantial nucleotide diversity was observed in domains I and III. The difference between the rates of non-synonymous and synonymous mutations suggested that the gene has evolved under natural selection. No strong evidence indicating balancing or positive selection on PvAMA-1 was identified. Recombination may also play a role in the resulting genetic diversity of PvAMA-1. This study is the first comprehensive analysis of nucleotide diversity across the entire PvAMA-1 gene using a single population sample from Korea. Korean PvAMA-1 had limited genetic diversity compared to PvAMA-1 in global isolates. The overall pattern of genetic polymorphism of Korean PvAMA-1 differed from other global isolates and novel amino acid changes were also identified in Korean PvAMA-1. Evidences for natural selection and recombination event were observed, which is likely to play an important role in generating genetic diversity across the PvAMA-1. These results provide useful information for the understanding the population structure of P. vivax circulating in Korea and have important

  5. Population genetic structure and natural selection of Plasmodium falciparum apical membrane antigen-1 in Myanmar isolates.

    Science.gov (United States)

    Kang, Jung-Mi; Lee, Jinyoung; Moe, Mya; Jun, Hojong; Lê, Hương Giang; Kim, Tae Im; Thái, Thị Lam; Sohn, Woon-Mok; Myint, Moe Kyaw; Lin, Khin; Shin, Ho-Joon; Kim, Tong-Soo; Na, Byoung-Kuk

    2018-02-07

    Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is one of leading blood stage malaria vaccine candidates. However, genetic variation and antigenic diversity identified in global PfAMA-1 are major hurdles in the development of an effective vaccine based on this antigen. In this study, genetic structure and the effect of natural selection of PfAMA-1 among Myanmar P. falciparum isolates were analysed. Blood samples were collected from 58 Myanmar patients with falciparum malaria. Full-length PfAMA-1 gene was amplified by polymerase chain reaction and cloned into a TA cloning vector. PfAMA-1 sequence of each isolate was sequenced. Polymorphic characteristics and effect of natural selection were analysed with using DNASTAR, MEGA4, and DnaSP programs. Polymorphic nature and natural selection in 459 global PfAMA-1 were also analysed. Thirty-seven different haplotypes of PfAMA-1 were identified in 58 Myanmar P. falciparum isolates. Most amino acid changes identified in Myanmar PfAMA-1 were found in domains I and III. Overall patterns of amino acid changes in Myanmar PfAMA-1 were similar to those in global PfAMA-1. However, frequencies of amino acid changes differed by country. Novel amino acid changes in Myanmar PfAMA-1 were also identified. Evidences for natural selection and recombination event were observed in global PfAMA-1. Among 51 commonly identified amino acid changes in global PfAMA-1 sequences, 43 were found in predicted RBC-binding sites, B-cell epitopes, or IUR regions. Myanmar PfAMA-1 showed similar patterns of nucleotide diversity and amino acid polymorphisms compared to those of global PfAMA-1. Balancing natural selection and intragenic recombination across PfAMA-1 are likely to play major roles in generating genetic diversity in global PfAMA-1. Most common amino acid changes in global PfAMA-1 were located in predicted B-cell epitopes where high levels of nucleotide diversity and balancing natural selection were found. These results highlight the

  6. Discriminatory Role of Detergent-Resistant Membranes in the Dimerization and Endocytosis of Prostate-Specific Membrane Antigen

    Science.gov (United States)

    Schmidt, Sonja; Gericke, Birthe; Fracasso, Giulio; Ramarli, Dunia; Colombatti, Marco; Naim, Hassan Y.

    2013-01-01

    Prostate-specific membrane antigen (PSMA) is a type-II membrane glycoprotein that was initially identified in LNCaP cells. It is expressed at elevated levels in prostate cancer. In view of the correlation between the expression levels of PSMA and disease grade and stage, PSMA is considered to be one of the most promising biomarkers in the diagnosis and treatment of prostate cancer. In LNCaP cells PSMA undergoes internalization via clathrin-coated pits followed by accumulation in the endosomes. PSMA associates with different types of detergent-resistant membranes (DRMs) along the secretory pathway. Its mature form is mainly insoluble in Lubrol WX, but does not associate with Triton X-100-DRMs. To understand the mechanism of PSMA internalization we investigated its association during internalization with DRMs. For this purpose, internalization was induced by antibody cross-linking. We demonstrate at the biochemical and cell biological levels that: [i] exclusively homodimers of PSMA are associated with Lubrol WX-DRMs, [ii] antibody-induced cross-linking of PSMA molecules results in a time-dependent partitioning into another DRMs type, namely Triton X-100-DRMs, and [iii] concomitant with its association with Triton-X-100-DRMs internalization of PSMA occurs along tubulin filaments. In a previous work (Colombatti et al. (2009) PLoS One 4: e4608) we demonstrated that the small GTPases RAS and RAC1 and the MAPKs p38 and ERK1/2 are activated during antibody cross-linking. As downstream effects of this activation we observed a strong induction of NF-kB associated with an increased expression of IL-6 and CCL5 genes and that IL-6 and CCL5 enhanced the proliferative potential of LNCaP cells synergistically. These observations together with findings reported here hypothesize a fundamental role of DRMs during activation of PSMA as platforms for trafficking, endocytosis and signalling. Understanding these mechanisms constitutes an essential prerequisite for utilization of PSMA as

  7. Discriminatory Role of Detergent-Resistant Membranes in the Dimerization and Endocytosis of Prostate-Specific Membrane Antigen.

    Directory of Open Access Journals (Sweden)

    Sonja Schmidt

    Full Text Available Prostate-specific membrane antigen (PSMA is a type-II membrane glycoprotein that was initially identified in LNCaP cells. It is expressed at elevated levels in prostate cancer. In view of the correlation between the expression levels of PSMA and disease grade and stage, PSMA is considered to be one of the most promising biomarkers in the diagnosis and treatment of prostate cancer. In LNCaP cells PSMA undergoes internalization via clathrin-coated pits followed by accumulation in the endosomes. PSMA associates with different types of detergent-resistant membranes (DRMs along the secretory pathway. Its mature form is mainly insoluble in Lubrol WX, but does not associate with Triton X-100-DRMs. To understand the mechanism of PSMA internalization we investigated its association during internalization with DRMs. For this purpose, internalization was induced by antibody cross-linking. We demonstrate at the biochemical and cell biological levels that: [i] exclusively homodimers of PSMA are associated with Lubrol WX-DRMs, [ii] antibody-induced cross-linking of PSMA molecules results in a time-dependent partitioning into another DRMs type, namely Triton X-100-DRMs, and [iii] concomitant with its association with Triton-X-100-DRMs internalization of PSMA occurs along tubulin filaments. In a previous work (Colombatti et al. (2009 PLoS One 4: e4608 we demonstrated that the small GTPases RAS and RAC1 and the MAPKs p38 and ERK1/2 are activated during antibody cross-linking. As downstream effects of this activation we observed a strong induction of NF-kB associated with an increased expression of IL-6 and CCL5 genes and that IL-6 and CCL5 enhanced the proliferative potential of LNCaP cells synergistically. These observations together with findings reported here hypothesize a fundamental role of DRMs during activation of PSMA as platforms for trafficking, endocytosis and signalling. Understanding these mechanisms constitutes an essential prerequisite for

  8. Synergistic co-targeting of prostate-specific membrane antigen and androgen receptor in prostate cancer.

    Science.gov (United States)

    Murga, Jose D; Moorji, Sameer M; Han, Amy Q; Magargal, Wells W; DiPippo, Vincent A; Olson, William C

    2015-02-15

    Antibody-drug conjugates (ADCs) are an emerging class of cancer therapies that have demonstrated favorable activity both as single agents and as components of combination regimens. Phase 2 testing of an ADC targeting prostate-specific membrane antigen (PSMA) in advanced prostate cancer has shown antitumor activity. The present study examined PSMA ADC used in combination with potent antiandrogens (enzalutamide and abiraterone) and other compounds. Antiproliferative activity and expression of PSMA, prostate-specific antigen and androgen receptor were evaluated in the prostate cancer cell lines LNCaP and C4-2. Cells were tested for susceptibility to antiandrogens or other inhibitors, used alone and in combination with PSMA ADC. Potential drug synergy or antagonism was evaluated using the Bliss independence method. Enzalutamide and abiraterone demonstrated robust, statistically significant synergy when combined with PSMA ADC. Largely additive activity was observed between the antiandrogens and the individual components of the ADC (free drug and unmodified antibody). Rapamycin also synergized with PSMA ADC in certain settings. Synergy was linked in part to upregulation of PSMA expression. In androgen-dependent LNCaP cells, enzalutamide and abiraterone each inhibited proliferation, upregulated PSMA expression, and synergized with PSMA ADC. In androgen-independent C4-2 cells, enzalutamide and abiraterone showed no measurable antiproliferative activity on their own but increased PSMA expression and synergized with PSMA ADC nonetheless. PSMA expression increased progressively over 3 weeks with enzalutamide and returned to baseline levels 1 week after enzalutamide removal. The findings support exploration of clinical treatment regimens that combine potent antiandrogens and PSMA-targeted therapies for prostate cancer. © 2014 Wiley Periodicals, Inc.

  9. Advanced generation anti-prostate specific membrane antigen designer T cells for prostate cancer immunotherapy.

    Science.gov (United States)

    Ma, Qiangzhong; Gomes, Erica M; Lo, Agnes Shuk-Yee; Junghans, Richard P

    2014-02-01

    Adoptive immunotherapy by infusion of designer T cells (dTc) engineered with chimeric antigen receptors (CARs) for tumoricidal activity represents a potentially highly specific modality for the treatment of cancer. In this study, 2nd generation (gen) anti-prostate specific membrane antigen (PSMA) dTc were developed for improving the efficacy of previously developed 1st gen dTc for prostate cancer immunotherapy. The 1st gen dTc are modified with chimeric immunoglobulin-T cell receptor (IgTCR) while the 2nd gen dTc are engineered with an immunoglobulin-CD28-T cell receptor (IgCD28TCR), which incorporates a CD28 costimulatory signal for optimal T cell activation. A 2nd gen anti-PSMA IgCD28TCR CAR was constructed by inserting the CD28 signal domain into the 1st gen CAR. 1st and 2nd gen anti-PSMA dTc were created by transducing human T cells with anti-PSMA CARs and their antitumor efficacy was compared for specific activation on PSMA-expressing tumor contact, cytotoxicity against PSMA-expressing tumor cells in vitro, and suppression of tumor growth in an animal model. The 2nd gen dTc can be optimally activated to secrete larger amounts of cytokines such as IL2 and IFNγ than 1st gen and to proliferate more vigorously on PSMA-expressing tumor contact. More importantly, the 2nd gen dTc preserve the PSMA-specific cytotoxicity in vitro and suppress tumor growth in animal models with significant higher potency. Our results demonstrate that 2nd gen anti-PSMA designer T cells exhibit superior antitumor functions versus 1st gen, providing a rationale for advancing this improved agent toward clinical application in prostate cancer immunotherapy. © 2013 Wiley Periodicals, Inc.

  10. Mutational scanning reveals the determinants of protein insertion and association energetics in the plasma membrane.

    Science.gov (United States)

    Elazar, Assaf; Weinstein, Jonathan; Biran, Ido; Fridman, Yearit; Bibi, Eitan; Fleishman, Sarel Jacob

    2016-01-29

    Insertion of helix-forming segments into the membrane and their association determines the structure, function, and expression levels of all plasma membrane proteins. However, systematic and reliable quantification of membrane-protein energetics has been challenging. We developed a deep mutational scanning method to monitor the effects of hundreds of point mutations on helix insertion and self-association within the bacterial inner membrane. The assay quantifies insertion energetics for all natural amino acids at 27 positions across the membrane, revealing that the hydrophobicity of biological membranes is significantly higher than appreciated. We further quantitate the contributions to membrane-protein insertion from positively charged residues at the cytoplasm-membrane interface and reveal large and unanticipated differences among these residues. Finally, we derive comprehensive mutational landscapes in the membrane domains of Glycophorin A and the ErbB2 oncogene, and find that insertion and self-association are strongly coupled in receptor homodimers.

  11. Molecular insights into the interaction between Plasmodium falciparum apical membrane antigen 1 and an invasion-inhibitory peptide.

    Directory of Open Access Journals (Sweden)

    Geqing Wang

    Full Text Available Apical membrane antigen 1 (AMA1 of the human malaria parasite Plasmodium falciparum has been implicated in invasion of the host erythrocyte. It interacts with malarial rhoptry neck (RON proteins in the moving junction that forms between the host cell and the invading parasite. Agents that block this interaction inhibit invasion and may serve as promising leads for anti-malarial drug development. The invasion-inhibitory peptide R1 binds to a hydrophobic cleft on AMA1, which is an attractive target site for small molecules that block parasite invasion. In this work, truncation and mutational analyses show that Phe5-Phe9, Phe12 and Arg15 in R1 are the most important residues for high affinity binding to AMA1. These residues interact with two well-defined binding hot spots on AMA1. Computational solvent mapping reveals that one of these hot spots is suitable for small molecule targeting. We also confirm that R1 in solution binds to AMA1 with 1:1 stoichiometry and adopts a secondary structure consistent with the major form of R1 observed in the crystal structure of the complex. Our results provide a basis for designing high affinity inhibitors of the AMA1-RON2 interaction.

  12. Prostate-Specific Membrane Antigen Targeted Therapy of Prostate Cancer Using a DUPA-Paclitaxel Conjugate.

    Science.gov (United States)

    Lv, Qingzhi; Yang, Jincheng; Zhang, Ruoshi; Yang, Zimeng; Yang, Zhengtao; Wang, Yongjun; Xu, Youjun; He, Zhonggui

    2018-05-07

    Prostate cancer (PCa) is the most prevalent cancer among men in the United States and remains the second-leading cause of cancer mortality in men. Paclitaxel (PTX) is the first line chemotherapy for PCa treatment, but its therapeutic efficacy is greatly restricted by the nonspecific distribution in vivo. Prostate-specific membrane antigen (PSMA) is overexpressed on the surface of most PCa cells, and its expression level increases with cancer aggressiveness, while being present at low levels in normal cells. The high expression level of PSMA in PCa cells offers an opportunity for target delivery of nonspecific cytotoxic drugs to PCa cells, thus improving therapeutic efficacy and reducing toxicity. PSMA has high affinity for DUPA, a glutamate urea ligand. Herein, a novel DUPA-PTX conjugate is developed using DUPA as the targeting ligand to deliver PTX specifically for treatment of PSMA expressing PCa. The targeting ligand DUPA enhances the transport capability and selectivity of PTX to tumor cells via PSMA mediated endocytosis. Besides, DUPA is conjugated with PTX via a disulfide bond, which facilitates the rapid and differential drug release in tumor cells. The DUPA-PTX conjugate exhibits potent cytotoxicity in PSMA expressing cell lines and induces a complete cessation of tumor growth with no obvious toxicity. Our findings give new insight into the PSMA-targeted delivery of chemotherapeutics and provide an opportunity for the development of novel active targeting drug delivery systems for PCa therapy.

  13. Nephritogenic antigen determinants in epidermal and renal basement membranes of kindreds with Alport-type familial nephritis.

    OpenAIRE

    Kashtan, C; Fish, A J; Kleppel, M; Yoshioka, K; Michael, A F

    1986-01-01

    We probed epidermal basement membranes (EBM) of acid-urea denatured skin from members of kindreds with Alport-type familial nephritis (FN) for the presence of antigens reactive with Goodpasture sera (GPS) and serum (FNS) from an Alport patient who developed anti-glomerular basement membrane (GBM) nephritis in a renal allograft. By immunoblotting, GPS reacted primarily with the 28,000 molecular weight (mol wt) monomer but also the 24,000 mol wt and 26,000 mol wt monomers of the noncollagenous ...

  14. Tissue expression and enzymologic characterization of human prostate specific membrane antigen and its rat and pig orthologs

    Czech Academy of Sciences Publication Activity Database

    Rovenská, Miroslava; Hlouchová, Klára; Šácha, Pavel; Mlčochová, Petra; Horák, Vratislav; Zámečník, J.; Bařinka, C.; Konvalinka, Jan

    2008-01-01

    Roč. 68, č. 2 (2008), s. 171-182 ISSN 0270-4137 R&D Projects: GA MŠk 1M0508; GA ČR GA524/04/0102 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50450515 Keywords : prostate specific membrane antigen * glutamate carboxypeptidase II * animal orthologs * prostate cancer * animal model Subject RIV: CE - Biochemistry Impact factor: 3.069, year: 2008

  15. Conserved antigenic sites between MERS-CoV and Bat-coronavirus are revealed through sequence analysis.

    Science.gov (United States)

    Sharmin, Refat; Islam, Abul B M M K

    2016-01-01

    MERS-CoV is a newly emerged human coronavirus reported closely related with HKU4 and HKU5 Bat coronaviruses. Bat and MERS corona-viruses are structurally related. Therefore, it is of interest to estimate the degree of conserved antigenic sites among them. It is of importance to elucidate the shared antigenic-sites and extent of conservation between them to understand the evolutionary dynamics of MERS-CoV. Multiple sequence alignment of the spike (S), membrane (M), enveloped (E) and nucleocapsid (N) proteins was employed to identify the sequence conservation among MERS and Bat (HKU4, HKU5) coronaviruses. We used various in silico tools to predict the conserved antigenic sites. We found that MERS-CoV shared 30 % of its S protein antigenic sites with HKU4 and 70 % with HKU5 bat-CoV. Whereas 100 % of its E, M and N protein's antigenic sites are found to be conserved with those in HKU4 and HKU5. This sharing suggests that in case of pathogenicity MERS-CoV is more closely related to HKU5 bat-CoV than HKU4 bat-CoV. The conserved epitopes indicates their evolutionary relationship and ancestry of pathogenicity.

  16. Development of a Novel, Ultra-rapid Biosensor for the Qualitative Detection of Hepatitis B Virus-associated Antigens and Anti-HBV, Based on “Membrane-engineered” Fibroblast Cells with Virus-Specific Antibodies and Antigens

    Directory of Open Access Journals (Sweden)

    Antonios Perdikaris

    2009-03-01

    Full Text Available A novel miniature cell biosensor detection system for the detection of Hepatis B virus (HBV-associated antigens and anti-HBV is described. The biosensor is based on “membrane-engineered” Vero fibroblast cells immobilized in an alginate matrix. The membrane-engineering process involved the electroinsertion of anti-HBV specific antibodies (anti-HBs, anti-HBe or antigens (HBsAg in the membranes of the Vero cells. The attachment of a homologous antigen to the electroinserted antibody (or, respectively, of the antibody to the electroinserted antigen triggered specific changes to the cell membrane potential that were measured by appropriate microelectrodes, according to the principle of the Bioelectric Recognition Assay (BERA. The sensor was used for screening 133 clinical blood serum samples according to a double-blind protocol. Considerably higher sensor responses were observed against HBV-positive samples, compared with responses against negative samples or samples positive for heterologous hepatitis viruses such as Hepatitis C (HCV virus. Detection of anti-HBs antibodies was made possible by using a biosensor based on immobilized Vero cells bearing the respective antigen (HBsAg. The observed response was rapid (45 sec and quite reproducible. Fluorescence microscopy observations showed that attachment of HBV particles to cells membrane-engineered with anti-HBs was associated with a decrease of [Ca2+]cyt. The perspectives for using the novel biosensor as a qualitative, rapid screening, high throughput assay for HBV antigens and anti-HBs in clinical samples is discussed.

  17. The preterm cervix reveals a transcriptomic signature in the presence of premature prelabor rupture of membranes.

    Science.gov (United States)

    Makieva, Sofia; Dubicke, Aurelija; Rinaldi, Sara F; Fransson, Emma; Ekman-Ordeberg, Gunvor; Norman, Jane E

    2017-06-01

    Premature prelabor rupture of fetal membranes accounts for 30% of all premature births and is associated with detrimental long-term infant outcomes. Premature cervical remodeling, facilitated by matrix metalloproteinases, may trigger rupture at the zone of the fetal membranes overlying the cervix. The similarities and differences underlying cervical remodeling in premature prelabor rupture of fetal membranes and spontaneous preterm labor with intact membranes are unexplored. We aimed to perform the first transcriptomic assessment of the preterm human cervix to identify differences between premature prelabor rupture of fetal membranes and preterm labor with intact membranes and to compare the enzymatic activities of matrix metalloproteinases-2 and -9 between premature prelabor rupture of fetal membranes and preterm labor with intact membranes. Cervical biopsies were collected following preterm labor with intact membranes (n = 6) and premature prelabor rupture of fetal membranes (n = 5). Biopsies were also collected from reference groups at term labor (n = 12) or term not labor (n = 5). The Illumina HT-12 version 4.0 BeadChips microarray was utilized, and a novel network graph approach determined the specificity of changes between premature prelabor rupture of fetal membranes and preterm labor with intact membranes. Quantitative reverse transcription-polymerase chain reaction and Western blotting confirmed the microarray findings. Immunofluorescence was used for localization studies and gelatin zymography to assess matrix metalloproteinase activity. PML-RARA-regulated adapter molecule 1, FYVE-RhoGEF and PH domain-containing protein 3 and carcinoembryonic antigen-ralated cell adhesion molecule 3 were significantly higher, whereas N-myc downstream regulated gene 2 was lower in the premature prelabor rupture of fetal membranes cervix when compared with the cervix in preterm labor with intact membranes, term labor, and term not labor. PRAM1 and CEACAM3 were localized

  18. Novel Monoclonal Antibodies Recognizing Human Prostate-Specific Membrane Antigen (PSMA) as Research and Theranostic Tools.

    Science.gov (United States)

    Nováková, Zora; Foss, Catherine A; Copeland, Benjamin T; Morath, Volker; Baranová, Petra; Havlínová, Barbora; Skerra, Arne; Pomper, Martin G; Barinka, Cyril

    2017-05-01

    Prostate-specific membrane antigen (PSMA) is a validated target for the imaging and therapy of prostate cancer. Here, we report the detailed characterization of four novel murine monoclonal antibodies (mAbs) recognizing human PSMA as well as PSMA orthologs from different species. Performance of purified mAbs was assayed using a comprehensive panel of in vitro experimental setups including Western blotting, immunofluorescence, immunohistochemistry, ELISA, flow cytometry, and surface-plasmon resonance. Furthermore, a mouse xenograft model of prostate cancer was used to compare the suitability of the mAbs for in vivo applications. All mAbs demonstrate high specificity for PSMA as documented by the lack of cross-reactivity to unrelated human proteins. The 3F11 and 1A11 mAbs bind linear epitopes spanning residues 226-243 and 271-288 of human PSMA, respectively. 3F11 is also suitable for the detection of PSMA orthologs from mouse, pig, dog, and rat in experimental setups where the denatured form of PSMA is used. 5D3 and 5B1 mAbs recognize distinct surface-exposed conformational epitopes and are useful for targeting PSMA in its native conformation. Most importantly, using a mouse xenograft model of prostate cancer we show that both the intact 5D3 and its Fab fragment are suitable for in vivo imaging. With apparent affinities of 0.14 and 1.2 nM as determined by ELISA and flow cytometry, respectively, 5D3 has approximately 10-fold higher affinity for PSMA than the clinically validated mAb J591 and, therefore, is a prime candidate for the development of next-generation theranostics to target PSMA. Prostate 77:749-764, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. 19-DEJ-1, a hemidesmosome-anchoring filament complex-associated monoclonal antibody. Definition of a new skin basement membrane antigenic defect in junctional and dystrophic epidermolysis bullosa

    DEFF Research Database (Denmark)

    Fine, J D; Horiguchi, Y; Couchman, J R

    1989-01-01

    A murine monoclonal antibody (19-DEJ-1) was recently produced that recognizes a unique antigenic epitope of human skin basement membrane localized to the midlamina lucida exclusively in those areas bordered by overlying hemidesmosomes. To determine whether the antigen defined by 19-DEJ-1 is norma...

  20. Amyloid and membrane complexity: The toxic interplay revealed by AFM.

    Science.gov (United States)

    Canale, Claudio; Oropesa-Nuñez, Reinier; Diaspro, Alberto; Dante, Silvia

    2018-01-01

    Lipid membranes play a fundamental role in the pathological development of protein misfolding diseases. Several pieces of evidence suggest that the lipid membrane could act as a catalytic surface for protein aggregation. Furthermore, a leading theory indicates the interaction between the cell membrane and misfolded oligomer species as the responsible for cytotoxicity, hence, for neurodegeneration in disorders such as Alzheimer's and Parkinson's disease. The definition of the mechanisms that drive the interaction between pathological protein aggregates and plasma membrane is fundamental for the development of effective therapies for a large class of diseases. Atomic force microscopy (AFM) has been employed to study how amyloid aggregates affect the cell physiological properties. Considerable efforts were spent to characterize the interaction with model systems, i.e., planar supported lipid bilayers, but some works also addressed the problem directly on living cells. Here, an overview of the main works involving the use of the AFM on both model system and living cells will be provided. Different kind of approaches will be presented, as well as the main results derived from the AFM analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Antigen sequence typing of outer membrane protein (fetA gene of Neisseria meningitidis serogroup A from Delhi & adjoining areas

    Directory of Open Access Journals (Sweden)

    S Dwivedi

    2014-01-01

    Full Text Available Background & objectives: Meningitis caused by Neisseria meningitidis is a fatal disease. Meningococcal meningitis is an endemic disease in Delhi and irregular pattern of outbreaks has been reported in India. All these outbreaks were associated with serogroup A. Detailed molecular characterization of N. meningitidis is required for the management of this fatal disease. In this study, we characterized antigenic diversity of surface exposed outer membrane protein (OMP FetA antigen of N. meningitidis serogroup A isolates obtained from cases of invasive meningococcal meningitis in Delhi, India. Methods: Eight isolates of N. meningitidis were collected from cerebrospinal fluid during October 2008 to May 2011 from occasional cases of meningococcal meningitis. Seven isolates were from outbreaks of meningococcal meningitis in 2005-2006 in Delhi and its adjoining areas. These were subjected to molecular typing of fetA gene, an outer membrane protein gene. Results: All 15 N. meningitides isolates studied were serogroup A. This surface exposed porin is putatively under immune pressure. Hence as a part of molecular characterization, genotyping was carried out to find out the diversity in outer membrane protein (FetA gene among the circulating isolates of N. meningitidis. All 15 isolates proved to be of the same existing allele type of FetA variable region (VR when matched with global database. The allele found was F3-1 for all the isolates. Interpretation & conclusions: There was no diversity reported in the outer membrane protein FetA in the present study and hence this protein appeared to be a stable molecule. More studies on molecular characterization of FetA antigen are required from different serogroups circulating in different parts of the world.

  2. Prostate-specific membrane antigen-based imaging in prostate cancer: impact on clinical decision making process.

    Science.gov (United States)

    Demirkol, Mehmet Onur; Acar, Ömer; Uçar, Burcu; Ramazanoğlu, Sultan Rana; Sağlıcan, Yeşim; Esen, Tarık

    2015-05-01

    There is an ongoing need for an accurate imaging modality which can be used for staging purposes, metastatic evaluation, predicting biologic aggresiveness and investigating recurrent disease in prostate cancer. Prostate specific membrane antigen, given its favorable molecular characteristics, holds a promise as an ideal target for prostate cancer-specific nuclear imaging. In this study, we evaluated our initial results of PSMA based PET/CT imaging in prostate cancer. A total of 22 patients with a median age and serum PSA level of 68 years and 4.15 ng/ml, respectively underwent Ga-68 PSMA PET/CT in our hospital between Februrary and August 2014. Their charts were retrospectively reviewed in order to document the clinical characteristics, the indications for and the results of PSMA based imaging and the impact of Ga-68 PSMA PET/CT findings on disease management. The most common indications were rising PSA after local ± adjuvant treatment followed by staging and metastatic evaluation before definitive or salvage treatment. All except 2 patients had prostatic ± extraprostatic PSMA positive lesions. For those who had a positive result; treatment strategies were tailored accordingly. Above the PSA level of 2 ng/ml, none of the PSMA based nuclear imaging studies revealed negative results. PSMA based nuclear imaging has significantly impacted our way of handling patients with prostate cancer. Its preliminary performance in different clinical scenarios and ability to detect lesions even in low PSA values seems fairly promising and deserves to be supplemented with further clinical studies. © 2015 Wiley Periodicals, Inc.

  3. Prostate-Specific Membrane Antigen Positron Emission Tomography-Computed Tomography for Prostate Cancer: Distribution of Disease and Implications for Radiation Therapy Planning.

    Science.gov (United States)

    Gupta, Sandeep K; Watson, Tahne; Denham, Jim; Shakespeare, Thomas P; Rutherford, Natalie; McLeod, Nicholas; Picton, Kevin; Ainsworth, Paul; Bonaventura, Tony; Martin, Jarad M

    2017-11-01

    To explore the prostate-specific membrane antigen (PSMA)-avid distribution of prostate cancer (PC) on positron emission tomography (PET), both at the time of initial diagnosis and at the time of relapse after definitive local treatment. A total of 179 PSMA PET scans in patients with nil or ≤3 lesions on conventional imaging were retrospectively categorized into 3 subgroups: group A, high-risk PC with no prior definitive therapy (n=34); group B, prior prostatectomy (n=75); and group C, prior radiation therapy (n=70). The numbers and locations of the PSMA-avid lesions were mapped. The PSMA-positive lesions were identified subjectively by a nuclear medicine physician on the basis of clinical experience and taking into account the recent literature and artefacts. A total of 893 PSMA-avid lesions were identified; at least 1 lesion was detected in 80% of all scans. A high detection rate was present even at very low serum PSA levels (eg, at PSA ≤0.20 ng/mL in group B, the detection rate was 46%). Thirty-eight percent of studies revealed extrapelvic disease (41%, 31%, and 46% in groups A, B, and C, respectively). Almost one-third of all studies showed only oligometastases (24%, 36%, and 31% in groups A, B, and C, respectively). A large proportion of these (40%) were a solitary lesion. Prostate-specific membrane antigen PET demonstrated a large number of otherwise unknown metastatic lesions. Therefore we recommend PSMA PET for more accurate assessment of disease burden in initial staging of high-risk PC, as well as for restaging in patients with prostate-specific antigen relapse after primary therapies. Furthermore, a high proportion of oligometastases on PSMA PET provides a prime opportunity to investigate the role of targeted local therapies for oligometastatic PCs. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  4. An Extended Surface Loop on Toxoplasma gondii Apical Membrane Antigen 1 (AMA1 Governs Ligand Binding Selectivity.

    Directory of Open Access Journals (Sweden)

    Michelle L Parker

    Full Text Available Apicomplexan parasites are the causative agents of globally prevalent diseases including malaria and toxoplasmosis. These obligate intracellular pathogens have evolved a sophisticated host cell invasion strategy that relies on a parasite-host cell junction anchored by interactions between apical membrane antigens (AMAs on the parasite surface and rhoptry neck 2 (RON2 proteins discharged from the parasite and embedded in the host cell membrane. Key to formation of the AMA1-RON2 complex is displacement of an extended surface loop on AMA1 called the DII loop. While conformational flexibility of the DII loop is required to expose the mature RON2 binding groove, a definitive role of this substructure has not been elucidated. To establish a role of the DII loop in Toxoplasma gondii AMA1, we engineered a form of the protein where the mobile portion of the loop was replaced with a short Gly-Ser linker (TgAMA1ΔDIIloop. Isothermal titration calorimetry measurements with a panel of RON2 peptides revealed an influential role for the DII loop in governing selectivity. Most notably, an Eimeria tenella RON2 (EtRON2 peptide that showed only weak binding to TgAMA1 bound with high affinity to TgAMA1ΔDIIloop. To define the molecular basis for the differential binding, we determined the crystal structure of TgAMA1ΔDIIloop in complex with the EtRON2 peptide. When analyzed in the context of existing AMA1-RON2 structures, spatially distinct anchor points in the AMA1 groove were identified that, when engaged, appear to provide the necessary traction to outcompete the DII loop. Collectively, these data support a model where the AMA1 DII loop serves as a structural gatekeeper to selectively filter out ligands otherwise capable of binding with high affinity in the AMA1 apical groove. These data also highlight the importance of considering the functional implications of the DII loop in the ongoing development of therapeutic intervention strategies targeting the AMA1-RON

  5. Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine.

    Science.gov (United States)

    Dick, Lawrence W; Mehl, John T; Loughney, John W; Mach, Anna; Rustandi, Richard R; Ha, Sha; Zhang, Lan; Przysiecki, Craig T; Dieter, Lance; Hoang, Van M

    2015-01-01

    The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90-110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques.

  6. Large Scale Immune Profiling of Infected Humans and Goats Reveals Differential Recognition of Brucella melitensis Antigens

    Science.gov (United States)

    Liang, Li; Leng, Diana; Burk, Chad; Nakajima-Sasaki, Rie; Kayala, Matthew A.; Atluri, Vidya L.; Pablo, Jozelyn; Unal, Berkay; Ficht, Thomas A.; Gotuzzo, Eduardo; Saito, Mayuko; Morrow, W. John W.; Liang, Xiaowu; Baldi, Pierre; Gilman, Robert H.; Vinetz, Joseph M.; Tsolis, Renée M.; Felgner, Philip L.

    2010-01-01

    Brucellosis is a widespread zoonotic disease that is also a potential agent of bioterrorism. Current serological assays to diagnose human brucellosis in clinical settings are based on detection of agglutinating anti-LPS antibodies. To better understand the universe of antibody responses that develop after B. melitensis infection, a protein microarray was fabricated containing 1,406 predicted B. melitensis proteins. The array was probed with sera from experimentally infected goats and naturally infected humans from an endemic region in Peru. The assay identified 18 antigens differentially recognized by infected and non-infected goats, and 13 serodiagnostic antigens that differentiate human patients proven to have acute brucellosis from syndromically similar patients. There were 31 cross-reactive antigens in healthy goats and 20 cross-reactive antigens in healthy humans. Only two of the serodiagnostic antigens and eight of the cross-reactive antigens overlap between humans and goats. Based on these results, a nitrocellulose line blot containing the human serodiagnostic antigens was fabricated and applied in a simple assay that validated the accuracy of the protein microarray results in the diagnosis of humans. These data demonstrate that an experimentally infected natural reservoir host produces a fundamentally different immune response than a naturally infected accidental human host. PMID:20454614

  7. Biochemical characterization of prostate-specific membrane antigen from canine prostate carcinoma cells.

    Science.gov (United States)

    Wu, Lisa Y; Johnson, Jacqueline M; Simmons, Jessica K; Mendes, Desiree E; Geruntho, Jonathan J; Liu, Tiancheng; Dirksen, Wessel P; Rosol, Thomas J; Davis, William C; Berkman, Clifford E

    2014-05-01

    Prostate-specific membrane antigen (PSMA) remains an important target for diagnostic and therapeutic application for human prostate cancer. Model cell lines have been recently developed to study canine prostate cancer but their PSMA expression and enzymatic activity have not been elucidated. The present study was focused on determining PSMA expression in these model canine cell lines and the use of fluorescent small-molecule enzyme inhibitors to detect canine PSMA expression by flow cytometry. Western blot and RT-PCR were used to determine the transcriptional and translational expression of PSMA on the canine cell lines Leo and Ace-1. An endpoint HPLC-based assay was used to monitor the enzymatic activity of canine PSMA and the potency of enzyme inhibitors. Flow cytometry was used to detect the PSMA expressed on Leo and Ace-1 cells using a fluorescently tagged PSMA enzyme inhibitor. Canine PSMA expression on the Leo cell line was confirmed by Western blot and RT-PCR, the enzyme activity, and flow cytometry. Kinetic parameters Km and Vmax of PSMA enzymatic activity for the synthetic substrate (PABGγG) were determined to be 393 nM and 220 pmol min(-1)  mg protein(-1) , respectively. The inhibitor core 1 and fluorescent inhibitor 2 were found to be potent reversible inhibitors (IC50  = 13.2 and 1.6 nM, respectively) of PSMA expressed on the Leo cell line. Fluorescent labeling of Leo cells demonstrated that the fluorescent PSMA inhibitor 2 can be used for the detection of PSMA-positive canine prostate tumor cells. Expression of PSMA on Ace-1 was low and not detectable by flow cytometry. The results described herein have demonstrated that PSMA is expressed on canine prostate tumor cells and exhibits similar enzymatic characteristics as human PSMA. The findings show that the small molecule enzyme inhibitors currently being studied for use in diagnosis and therapy of human prostate cancer can also be extended to include canine prostate cancer. Importantly

  8. Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen.

    Science.gov (United States)

    Zhu, Haiyan; Fang, Xiaoyun; Zhang, Dongmei; Wu, Weicheng; Shao, Miaomiao; Wang, Lan; Gu, Jianxin

    2016-01-01

    Heat shock proteins (HSPs) were originally identified as stress-responsive proteins and serve as molecular chaperones in different intracellular compartments. Translocation of HSPs to the cell surface and release of HSPs into the extracellular space have been observed during the apoptotic process and in response to a variety of cellular stress. Here, we report that UV irradiation and cisplatin treatment rapidly induce the expression of membrane-bound Hsp60, Hsp70, and Hsp90 upstream the phosphatidylserine exposure. Membrane-bound Hsp60, Hsp70 and Hsp90 could promote the release of IL-6 and IL-1β as well as DC maturation by the evaluation of CD80 and CD86 expression. On the other hand, Hsp60, Hsp70 and Hsp90 on cells could facilitate the uptake of dying cells by bone marrow-derived dendritic cells. Lectin-like oxidized LDL receptor-1 (LOX-1), as a common receptor for Hsp60, Hsp70, and Hsp90, is response for their recognition and mediates the uptake of dying cells. Furthermore, membrane-bound Hsp60, Hsp70 and Hsp90 could promote the cross-presentation of OVA antigen from E.G7 cells and inhibition of the uptake of dying cells by LOX-1 decreases the cross-presentation of cellular antigen. Therefore, the rapid exposure of HSPs on dying cells at the early stage allows for the recognition by and confers an activation signal to the immune system.

  9. Genome analysis of Excretory/Secretory proteins in Taenia solium reveals their Abundance of Antigenic Regions (AAR).

    Science.gov (United States)

    Gomez, Sandra; Adalid-Peralta, Laura; Palafox-Fonseca, Hector; Cantu-Robles, Vito Adrian; Soberón, Xavier; Sciutto, Edda; Fragoso, Gladis; Bobes, Raúl J; Laclette, Juan P; Yauner, Luis del Pozo; Ochoa-Leyva, Adrián

    2015-05-19

    Excretory/Secretory (ES) proteins play an important role in the host-parasite interactions. Experimental identification of ES proteins is time-consuming and expensive. Alternative bioinformatics approaches are cost-effective and can be used to prioritize the experimental analysis of therapeutic targets for parasitic diseases. Here we predicted and functionally annotated the ES proteins in T. solium genome using an integration of bioinformatics tools. Additionally, we developed a novel measurement to evaluate the potential antigenicity of T. solium secretome using sequence length and number of antigenic regions of ES proteins. This measurement was formalized as the Abundance of Antigenic Regions (AAR) value. AAR value for secretome showed a similar value to that obtained for a set of experimentally determined antigenic proteins and was different to the calculated value for the non-ES proteins of T. solium genome. Furthermore, we calculated the AAR values for known helminth secretomes and they were similar to that obtained for T. solium. The results reveal the utility of AAR value as a novel genomic measurement to evaluate the potential antigenicity of secretomes. This comprehensive analysis of T. solium secretome provides functional information for future experimental studies, including the identification of novel ES proteins of therapeutic, diagnosis and immunological interest.

  10. Surface-enhanced Raman scattering reveals adsorption of mitoxantrone on plasma membrane of living cells

    International Nuclear Information System (INIS)

    Breuzard, G.; Angiboust, J.-F.; Jeannesson, P.; Manfait, M.; Millot, J.-M.

    2004-01-01

    Surface-enhanced Raman scattering (SERS) spectroscopy was applied to analyze mitoxantrone (MTX) adsorption on the plasma membrane microenvironment of sensitive (HCT-116 S) or BCRP/MXR-type resistant (HCT-116 R) cells. The addition of silver colloid to MTX-treated cells revealed an enhanced Raman scattering of MTX. Addition of extracellular DNA induced a total extinction of MTX Raman intensity for both cell lines, which revealed an adsorption of MTX on plasma membrane. A threefold higher MTX Raman intensity was observed for HCT-116 R, suggesting a tight MTX adsorption in the plasma membrane microenvironment. Fluorescence confocal microscopy confirmed a relative MTX emission around plasma membrane for HCT-116 R. After 30 min at 4 deg. C, a threefold decrease of the MTX Raman scattering was observed for HCT-116 R, contrary to HCT-116 S. Permeation with benzyl alcohol revealed a threefold decrease of membrane MTX adsorption on HCT-116 R, exclusively. This additional MTX adsorption should correspond to the drug bound to an unstable site on the HCT-116 R membrane. This study showed that SERS spectroscopy could be a direct method to reveal drug adsorption to the membrane environment of living cells

  11. Screening of random peptide library of hemagglutinin from pandemic 2009 A(H1N1 influenza virus reveals unexpected antigenically important regions.

    Directory of Open Access Journals (Sweden)

    Wanghui Xu

    Full Text Available The antigenic structure of the membrane protein hemagglutinin (HA from the 2009 A(H1N1 influenza virus was dissected with a high-throughput screening method using complex antisera. The approach involves generating yeast cell libraries displaying a pool of random peptides of controllable lengths on the cell surface, followed by one round of fluorescence-activated cell sorting (FACS against antisera from mouse, goat and human, respectively. The amino acid residue frequency appearing in the antigenic peptides at both the primary sequence and structural level was determined and used to identify "hot spots" or antigenically important regions. Unexpectedly, different antigenic structures were seen for different antisera. Moreover, five antigenic regions were identified, of which all but one are located in the conserved HA stem region that is responsible for membrane fusion. Our findings are corroborated by several recent studies on cross-neutralizing H1 subtype antibodies that recognize the HA stem region. The antigenic peptides identified may provide clues for creating peptide vaccines with better accessibility to memory B cells and better induction of cross-neutralizing antibodies than the whole HA protein. The scheme used in this study enables a direct mapping of the antigenic regions of viral proteins recognized by antisera, and may be useful for dissecting the antigenic structures of other viral proteins.

  12. Microdomains in the membrane landscape shape antigen-presenting cell function

    NARCIS (Netherlands)

    Zuidscherwoude, M.; Winde, C.M. de; Cambi, A.; Spriel, A.B. van

    2014-01-01

    The plasma membrane of immune cells is a highly organized cell structure that is key to the initiation and regulation of innate and adaptive immune responses. It is well-established that immunoreceptors embedded in the plasma membrane have a nonrandom spatial distribution that is important for

  13. Metastasis in urothelial carcinoma mimicking prostate cancer metastasis in Ga-68 prostate-specific membrane antigen positron emission tomography-computed tomography in a case of synchronous malignancy

    International Nuclear Information System (INIS)

    Gupta, Manoj; Choudhury, Partha Sarathi; Gupta, Gurudutt; Gandhi, Jatin

    2016-01-01

    Prostate cancer is the second most common cancer in man. It commonly presents with urinary symptoms, bone pain, or diagnosed with elevated prostate-specific antigen.(PSA) levels. Correct staging and early diagnosis of recurrence by a precise imaging tool are the keys for optimum management. Molecular imaging of prostate cancer with Ga-68 prostate-specific membrane antigen.(PSMA), positron emission tomography-computed tomography.(PET-CT) has recently received significant attention and frequently used with a signature to prostate cancer-specific remark. However, this case will highlight the more cautious use of it. A-72-year-old male treated earlier for synchronous double malignancy.(invasive papillary urothelial carcinoma right ureter and carcinoma prostate) presented with rising PSA.(0.51.ng/ml) and referred for Ga-68 PSMA PET-CT, which showed a positive enlarged left supraclavicular lymph node. Lymph node biopsy microscopic and immunohistochemistry examination revealed metastatic carcinoma favoring urothelial origin. Specificity of PSMA scan to prostate cancer has been seen to be compromised in a certain situation mostly due to neoangiogenesis, and false positives emerged in renal cell cancer, differentiated thyroid cancer, glioblastoma, breast cancer brain metastasis, and paravertebral schwannomas. Understanding the causes of false positive will further enhance the confidence of interpretating PSMA scans

  14. Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers.

    Directory of Open Access Journals (Sweden)

    Heidi Koldsø

    2014-10-01

    Full Text Available Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2, in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins.

  15. A Genome-wide multidimensional RNAi screen reveals pathways controlling MHC class II antigen presentation

    NARCIS (Netherlands)

    Paul, Petra; van den Hoorn, Tineke; Jongsma, Marlieke L. M.; Bakker, Mark J.; Hengeveld, Rutger; Janssen, Lennert; Cresswell, Peter; Egan, David A.; van Ham, Marieke; ten Brinke, Anja; Ovaa, Huib; Beijersbergen, Roderick L.; Kuijl, Coenraad; Neefjes, Jacques

    2011-01-01

    MHC class II molecules (MHC-II) present peptides to T helper cells to facilitate immune responses and are strongly linked to autoimmune diseases. To unravel processes controlling MHC-II antigen presentation, we performed a genome-wide flow cytometry-based RNAi screen detecting MHC-II expression and

  16. Thermodynamics of antibody-antigen interaction revealed by mutation analysis of antibody variable regions.

    Science.gov (United States)

    Akiba, Hiroki; Tsumoto, Kouhei

    2015-07-01

    Antibodies (immunoglobulins) bind specific molecules (i.e. antigens) with high affinity and specificity. In order to understand their mechanisms of recognition, interaction analysis based on thermodynamic and kinetic parameters, as well as structure determination is crucial. In this review, we focus on mutational analysis which gives information about the role of each amino acid residue in antibody-antigen interaction. Taking anti-hen egg lysozyme antibodies and several anti-small molecule antibodies, the energetic contribution of hot-spot and non-hot-spot residues is discussed in terms of thermodynamics. Here, thermodynamics of the contribution from aromatic, charged and hydrogen bond-forming amino acids are discussed, and their different characteristics have been elucidated. The information gives fundamental understanding of the antibody-antigen interaction. Furthermore, the consequences of antibody engineering are analysed from thermodynamic viewpoints: humanization to reduce immunogenicity and rational design to improve affinity. Amino acid residues outside hot-spots in the interface play important roles in these cases, and thus thermodynamic and kinetic parameters give much information about the antigen recognition. Thermodynamic analysis of mutant antibodies thus should lead to advanced strategies to design and select antibodies with high affinity. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  17. Energetic changes caused by antigenic module insertion in a virus-like particle revealed by experiment and molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    Full Text Available The success of recombinant virus-like particles (VLPs for human papillomavirus and hepatitis B demonstrates the potential of VLPs as safe and efficacious vaccines. With new modular designs emerging, the effects of antigen module insertion on the self-assembly and structural integrity of VLPs should be clarified so as to better enabling improved design. Previous work has revealed insights into the molecular energetics of a VLP subunit, capsomere, comparing energetics within various solution conditions known to drive or inhibit self-assembly. In the present study, molecular dynamics (MD simulations coupled with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA method were performed to examine the molecular interactions and energetics in a modular capsomere of a murine polyomavirus (MPV VLP designed to protect against influenza. Insertion of an influenza antigenic module is found to lower the binding energy within the capsomere, and a more active state is observed in Assembly Buffer as compared with that in Stabilization Buffer, which has been experimentally validated through measurements using differential scanning calorimetry. Further in-depth analysis based on free-energy decomposition indicates that destabilized binding can be attributed to electrostatic interaction induced by the chosen antigen module. These results provide molecular insights into the conformational stability of capsomeres and their abilities to be exploited for antigen presentation, and are expected to be beneficial for the biomolecular engineering of VLP vaccines.

  18. Exposure to the Epstein–Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo

    Directory of Open Access Journals (Sweden)

    Yakov Lomakin

    2017-07-01

    Full Text Available Multiple sclerosis (MS is an autoimmune chronic inflammatory disease of the central nervous system (CNS. Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP-specific antibodies from MS patients cross-react with Epstein–Barr virus (EBV latent membrane protein 1 (LMP1. In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo. We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20–50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading.

  19. Exposure to the Epstein–Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo

    Science.gov (United States)

    Lomakin, Yakov; Arapidi, Georgii Pavlovich; Chernov, Alexander; Ziganshin, Rustam; Tcyganov, Evgenii; Lyadova, Irina; Butenko, Ivan Olegovich; Osetrova, Maria; Ponomarenko, Natalia; Telegin, Georgy; Govorun, Vadim Markovich; Gabibov, Alexander; Belogurov, Alexey

    2017-01-01

    Multiple sclerosis (MS) is an autoimmune chronic inflammatory disease of the central nervous system (CNS). Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP)-specific antibodies from MS patients cross-react with Epstein–Barr virus (EBV) latent membrane protein 1 (LMP1). In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo. We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20–50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs) or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading. PMID:28729867

  20. Exposure to the Epstein-Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo.

    Science.gov (United States)

    Lomakin, Yakov; Arapidi, Georgii Pavlovich; Chernov, Alexander; Ziganshin, Rustam; Tcyganov, Evgenii; Lyadova, Irina; Butenko, Ivan Olegovich; Osetrova, Maria; Ponomarenko, Natalia; Telegin, Georgy; Govorun, Vadim Markovich; Gabibov, Alexander; Belogurov, Alexey

    2017-01-01

    Multiple sclerosis (MS) is an autoimmune chronic inflammatory disease of the central nervous system (CNS). Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP)-specific antibodies from MS patients cross-react with Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1). In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo . We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20-50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs) or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading.

  1. Microdomains in the membrane landscape shape antigen-presenting cell function.

    Science.gov (United States)

    Zuidscherwoude, Malou; de Winde, Charlotte M; Cambi, Alessandra; van Spriel, Annemiek B

    2014-02-01

    The plasma membrane of immune cells is a highly organized cell structure that is key to the initiation and regulation of innate and adaptive immune responses. It is well-established that immunoreceptors embedded in the plasma membrane have a nonrandom spatial distribution that is important for coupling to components of intracellular signaling cascades. In the last two decades, specialized membrane microdomains, including lipid rafts and TEMs, have been identified. These domains are preformed structures ("physical entities") that compartmentalize proteins, lipids, and signaling molecules into multimolecular assemblies. In APCs, different microdomains containing immunoreceptors (MHC proteins, PRRs, integrins, among others) have been reported that are imperative for efficient pathogen recognition, the formation of the immunological synapse, and subsequent T cell activation. In addition, recent work has demonstrated that tetraspanin microdomains and lipid rafts are involved in BCR signaling and B cell activation. Research into the molecular mechanisms underlying membrane domain formation is fundamental to a comprehensive understanding of membrane-proximal signaling and APC function. This review will also discuss the advances in the microscopy field for the visualization of the plasma membrane, as well as the recent progress in targeting microdomains as novel, therapeutic approach for infectious and malignant diseases.

  2. Concentration of membrane antigens by forward transport and trapping in neuronal growth cones.

    Science.gov (United States)

    Sheetz, M P; Baumrind, N L; Wayne, D B; Pearlman, A L

    1990-04-20

    Formation of the nervous system requires that neuronal growth cones follow specific paths and then stop at recognition signals, sensed at the growth cone's leading edge. We used antibody-coated gold particles viewed by video-enhanced differential interference contrast microscopy to observe the distribution and movement of two cell surface molecules, N-CAM and the 2A1 antigen, on growth cones of cultured cortical neurons. Gold particles are occasionally transported forward at 1-2 microns/s to the leading edge where they are trapped but continue to move. Concentration at the edge persists after cytochalasin D treatment or ATP depletion, but active movements to and along edges cease. We also observed a novel outward movement of small cytoplasmic aggregates at 1.8 microns/s in filopodia. We suggest that active forward transport and trapping involve reversible attachment of antigens to and transport along cytoskeletal elements localized to edges of growth cones.

  3. Proteomic analysis reveals the diversity and complexity of membrane proteins in chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Jaiswal Dinesh Kumar

    2012-10-01

    Full Text Available Abstract Background Compartmentalization is a unique feature of eukaryotes that helps in maintaining cellular homeostasis not only in intra- and inter-organellar context, but also between the cells and the external environment. Plant cells are highly compartmentalized with a complex metabolic network governing various cellular events. The membranes are the most important constituents in such compartmentalization, and membrane-associated proteins play diverse roles in many cellular processes besides being part of integral component of many signaling cascades. Results To obtain valuable insight into the dynamic repertoire of membrane proteins, we have developed a proteome reference map of a grain legume, chickpea, using two-dimensional gel electrophoresis. MALDI-TOF/TOF and LC-ESI-MS/MS analysis led to the identification of 91 proteins involved in a variety of cellular functions viz., bioenergy, stress-responsive and signal transduction, metabolism, protein synthesis and degradation, among others. Significantly, 70% of the identified proteins are putative integral membrane proteins, possessing transmembrane domains. Conclusions The proteomic analysis revealed many resident integral membrane proteins as well as membrane-associated proteins including those not reported earlier. To our knowledge, this is the first report of membrane proteome from aerial tissues of a crop plant. The findings may provide a better understanding of the biochemical machinery of the plant membranes at the molecular level that might help in functional genomics studies of different developmental pathways and stress-responses.

  4. Plasma membrane associated, virus-specific polypeptides required for the formation of target antigen complexes recognized by virus-specific cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Domber, E.A.

    1986-01-01

    These studies were undertaken to define some of the poxvirus-specific target antigens which are synthesized in infected cells and recognized by vaccinia virus-specific CTLs (VV-CTLs). Since vaccinia virus infected, unmanipulated target cells express numerous virus-specific antigens on the plasma membrane, attempts were made to manipulate expression of the poxvirus genome after infection so that one or a few defined virus-specified antigens were expressed on the surface of infected cells. In vitro [ 51 Cr]-release assays determined that viral DNA synthesis and expression of late viral proteins were not necessary to form a target cell which was fully competent for lysis by VV-CTLs. Under the conditions employed in these experiments, 90-120 minutes of viral protein synthesis were necessary to produce a competent cell for lysis by VV-CTLs. In order to further inhibit the expression of early viral proteins in infected cells, partially UV-inactivated vaccinia virus was employed to infect target cells. It was determined that L-cells infected with virus preparations which had been UV-irradiated for 90 seconds were fully competent for lysis by VV-CTLs. Cells infected with 90 second UV-irr virus expressed 3 predominant, plasma membrane associated antigens of 36-37K, 27-28K, and 19-17K. These 3 viral antigens represent the predominant membrane-associated viral antigens available for interaction with class I, major histocompatibility antigens and hence are potential target antigens for VV-CTLs

  5. Prostate-specific membrane antigen PET/MRI validation of MR textural analysis for detection of transition zone prostate cancer.

    Science.gov (United States)

    Bates, Anthony; Miles, Kenneth

    2017-12-01

    To validate MR textural analysis (MRTA) for detection of transition zone (TZ) prostate cancer through comparison with co-registered prostate-specific membrane antigen (PSMA) PET-MR. Retrospective analysis was performed for 30 men who underwent simultaneous PSMA PET-MR imaging for staging of prostate cancer. Thirty texture features were derived from each manually contoured T2-weighted, transaxial, prostatic TZ using texture analysis software that applies a spatial band-pass filter and quantifies texture through histogram analysis. Texture features of the TZ were compared to PSMA expression on the corresponding PET images. The Benjamini-Hochberg correction controlled the false discovery rate at prostate cancer. • Prostate transition zone (TZ) MR texture analysis may assist in prostate cancer detection. • Abnormal transition zone PSMA expression correlates with altered texture on T2-weighted MR. • TZ with abnormal PSMA expression demonstrates significantly reduced MI, SD and MPP.

  6. The major antigenic membrane protein of "Candidatus Phytoplasma asteris" selectively interacts with ATP synthase and actin of leafhopper vectors.

    Directory of Open Access Journals (Sweden)

    Luciana Galetto

    Full Text Available Phytoplasmas, uncultivable phloem-limited phytopathogenic wall-less bacteria, represent a major threat to agriculture worldwide. They are transmitted in a persistent, propagative manner by phloem-sucking Hemipteran insects. Phytoplasma membrane proteins are in direct contact with hosts and are presumably involved in determining vector specificity. Such a role has been proposed for phytoplasma transmembrane proteins encoded by circular extrachromosomal elements, at least one of which is a plasmid. Little is known about the interactions between major phytoplasma antigenic membrane protein (Amp and insect vector proteins. The aims of our work were to identify vector proteins interacting with Amp and to investigate their role in transmission specificity. In controlled transmission experiments, four Hemipteran species were identified as vectors of "Candidatus Phytoplasma asteris", the chrysanthemum yellows phytoplasmas (CYP strain, and three others as non-vectors. Interactions between a labelled (recombinant CYP Amp and insect proteins were analysed by far Western blots and affinity chromatography. Amp interacted specifically with a few proteins from vector species only. Among Amp-binding vector proteins, actin and both the α and β subunits of ATP synthase were identified by mass spectrometry and Western blots. Immunofluorescence confocal microscopy and Western blots of plasma membrane and mitochondrial fractions confirmed the localisation of ATP synthase, generally known as a mitochondrial protein, in plasma membranes of midgut and salivary gland cells in the vector Euscelidius variegatus. The vector-specific interaction between phytoplasma Amp and insect ATP synthase is demonstrated for the first time, and this work also supports the hypothesis that host actin is involved in the internalization and intracellular motility of phytoplasmas within their vectors. Phytoplasma Amp is hypothesized to play a crucial role in insect transmission specificity.

  7. Sequence diversity and natural selection at domain I of the apical membrane antigen 1 among Indian Plasmodium falciparum populations

    Directory of Open Access Journals (Sweden)

    Kumar Ashwani

    2007-11-01

    Full Text Available Abstract Background The Plasmodium falciparum apical membrane antigen 1 (AMA1 is a leading malaria vaccine candidate antigen. The complete AMA1 protein is comprised of three domains where domain I exhibits high sequence polymorphism and is thus named as the hyper-variable region (HVR. The present study describes the extent of genetic polymorphism and natural selection at domain I of the ama1 gene among Indian P. falciparum isolates. Methods The part of the ama1 gene covering domain I was PCR amplified and sequenced from 157 P. falciparum isolates collected from five different geographical regions of India. Statistical and phylogenetic analyses of the sequences were done using DnaSP ver. 4. 10. 9 and MEGA version 3.0 packages. Results A total of 57 AMA1 haplotypes were observed among 157 isolates sequenced. Forty-six of these 57 haplotypes are being reported here for the first time. The parasites collected from the high malaria transmission areas (Assam, Orissa, and Andaman and Nicobar Islands showed more haplotypes (H and nucleotide diversity π as compared to low malaria transmission areas (Uttar Pradesh and Goa. The comparison of all five Indian P. falciparum subpopulations indicated moderate level of genetic differentiation and limited gene flow (Fixation index ranging from 0.048 to 0.13 between populations. The difference between rates of non-synonymous and synonymous mutations, Tajima's D and McDonald-Kreitman test statistics suggested that the diversity at domain I of the AMA1 antigen is due to positive natural selection. The minimum recombination events were also high indicating the possible role of recombination in generating AMA1 allelic diversity. Conclusion The level of genetic diversity and diversifying selection were higher in Assam, Orissa, and Andaman and Nicobar Islands populations as compared to Uttar Pradesh and Goa. The amounts of gene flow among these populations were moderate. The data reported here will be valuable for the

  8. A radioimmunoassay for antibodies against surface membrane antigens using adhering cells

    International Nuclear Information System (INIS)

    Tax, A.; Manson, L.A.

    1976-01-01

    A radioimmunoassay using cells adhering to plastic is described. In this assay, A-10 mammary carcinoma attached to the surface of plastic in microtiter plates were permitted to bind antibody and the bound antibody was detected with purified rabbit 125 I-antimouse-Fab. The bound radioactive material was eluted with glycine-HCl buffer (pH 2.5), and the acid eluates were counted in a gamma counter. This assay can be used to detect cytolic or noncytolic antibody to cell surface antigens in studies with any tumor or normal cell that will adhere to a solid surface

  9. Deposition of nucleosomal antigens (histones and DNA) in the epidermal basement membrane in human lupus nephritis.

    NARCIS (Netherlands)

    Grootscholten, C.; Bruggen, M.C.J. van; Pijl, J.W. van der; Jong, E.M.G.J. de; Ligtenberg, G.; Derksen, R.H.W.M.; Berden, J.H.M.

    2003-01-01

    OBJECTIVE: Antinuclear autoantibodies complexed to nucleosomes can bind to heparan sulfate (HS) in the glomerular basement membrane. This binding is due to the binding of the positively charged histones to the strongly anionic HS. Nucleosomes and histones have been identified in glomerular deposits

  10. Genomic Analysis of Hepatitis B Virus Reveals Antigen State and Genotype as Sources of Evolutionary Rate Variation

    Science.gov (United States)

    Harrison, Abby; Lemey, Philippe; Hurles, Matthew; Moyes, Chris; Horn, Susanne; Pryor, Jan; Malani, Joji; Supuri, Mathias; Masta, Andrew; Teriboriki, Burentau; Toatu, Tebuka; Penny, David; Rambaut, Andrew; Shapiro, Beth

    2011-01-01

    Hepatitis B virus (HBV) genomes are small, semi-double-stranded DNA circular genomes that contain alternating overlapping reading frames and replicate through an RNA intermediary phase. This complex biology has presented a challenge to estimating an evolutionary rate for HBV, leading to difficulties resolving the evolutionary and epidemiological history of the virus. Here, we re-examine rates of HBV evolution using a novel data set of 112 within-host, transmission history (pedigree) and among-host genomes isolated over 20 years from the indigenous peoples of the South Pacific, combined with 313 previously published HBV genomes. We employ Bayesian phylogenetic approaches to examine several potential causes and consequences of evolutionary rate variation in HBV. Our results reveal rate variation both between genotypes and across the genome, as well as strikingly slower rates when genomes are sampled in the Hepatitis B e antigen positive state, compared to the e antigen negative state. This Hepatitis B e antigen rate variation was found to be largely attributable to changes during the course of infection in the preCore and Core genes and their regulatory elements. PMID:21765983

  11. Multiparameter flow cytometry reveals myelodysplasia-related aberrant antigen expression in myelodysplastic/myeloproliferative neoplasms.

    Science.gov (United States)

    Kern, Wolfgang; Bacher, Ulrike; Schnittger, Susanne; Alpermann, Tamara; Haferlach, Claudia; Haferlach, Torsten

    2013-05-01

    Within the myelodysplastic/myeloproliferative neoplasm (MDS/MPN) category of the WHO (2008), only chronic myelomonocytic leukemia was so far evaluated by multiparameter flow cytometry (MFC). To investigate the potential of MFC for MDS/MPNs, unclassifiable (MDS/MPNu), and refractory anemia associated with ring sideroblasts and marked thrombocytosis (RARS-T), we studied 91 patients with these entities (60 males/31 females; 35.3-87.4 years) for MDS-related aberrant immunophenotypes (≥ 2 different cell lineages with ≥ 3 aberrantly expressed antigens). Data were correlated with cytomorphology and cytogenetics. MFC identified MDS-related immunophenotypes in 54/91 (59.3%) of patients. Patients with or without MDS-related immunophenotype did not differ significantly by demographic characteristics, blood values, or median overall survival. MDS-related immunophenotype cases showed a higher number of aberrantly expressed antigens (mean ± SD, 4.9 ± 2.4 vs. 2.0 ± 1.4; P MPNu and RARS-T. MFC therefore may be helpful to separate cases into more "MDS-like" or "MPN-like" subgroups. Copyright © 2012 International Clinical Cytometry Society.

  12. Modulators of Stomatal Lineage Signal Transduction Alter Membrane Contact Sites and Reveal Specialization among ERECTA Kinases.

    Science.gov (United States)

    Ho, Chin-Min Kimmy; Paciorek, Tomasz; Abrash, Emily; Bergmann, Dominique C

    2016-08-22

    Signal transduction from a cell's surface to its interior requires dedicated signaling elements and a cellular environment conducive to signal propagation. Plant development, defense, and homeostasis rely on plasma membrane receptor-like kinases to perceive endogenous and environmental signals, but little is known about their immediate downstream targets and signaling modifiers. Using genetics, biochemistry, and live-cell imaging, we show that the VAP-RELATED SUPPRESSOR OF TMM (VST) family is required for ERECTA-mediated signaling in growth and cell-fate determination and reveal a role for ERECTA-LIKE2 in modulating signaling by its sister kinases. We show that VSTs are peripheral plasma membrane proteins that can form complexes with integral ER-membrane proteins, thereby potentially influencing the organization of the membrane milieu to promote efficient and differential signaling from the ERECTA-family members to their downstream intracellular targets. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Comparison of colorimetric assays with quantitative amino acid analysis for protein quantification of Generalized Modules for Membrane Antigens (GMMA).

    Science.gov (United States)

    Rossi, Omar; Maggiore, Luana; Necchi, Francesca; Koeberling, Oliver; MacLennan, Calman A; Saul, Allan; Gerke, Christiane

    2015-01-01

    Genetically induced outer membrane particles from Gram-negative bacteria, called Generalized Modules for Membrane Antigens (GMMA), are being investigated as vaccines. Rapid methods are required for estimating the protein content for in-process assays during production. Since GMMA are complex biological structures containing lipid and polysaccharide as well as protein, protein determinations are not necessarily straightforward. We compared protein quantification by Bradford, Lowry, and Non-Interfering assays using bovine serum albumin (BSA) as standard with quantitative amino acid (AA) analysis, the most accurate currently available method for protein quantification. The Lowry assay has the lowest inter- and intra-assay variation and gives the best linearity between protein amount and absorbance. In all three assays, the color yield (optical density per mass of protein) of GMMA was markedly different from that of BSA with a ratio of approximately 4 for the Bradford assay, and highly variable between different GMMA; and approximately 0.7 for the Lowry and Non-Interfering assays, highlighting the need for calibrating the standard used in the colorimetric assay against GMMA quantified by AA analysis. In terms of a combination of ease, reproducibility, and proportionality of protein measurement, and comparability between samples, the Lowry assay was superior to Bradford and Non-Interfering assays for GMMA quantification.

  14. Employing Escherichia coli-derived outer membrane vesicles as an antigen delivery platform elicits protective immunity against Acinetobacter baumannii infection

    Science.gov (United States)

    Huang, Weiwei; Wang, Shijie; Yao, Yufeng; Xia, Ye; Yang, Xu; Li, Kui; Sun, Pengyan; Liu, Cunbao; Sun, Wenjia; Bai, Hongmei; Chu, Xiaojie; Li, Yang; Ma, Yanbing

    2016-11-01

    Outer membrane vesicles (OMVs) have proven to be highly immunogenic and induced an immune response against bacterial infection in human clinics and animal models. We sought to investigate whether engineered OMVs can be a feasible antigen-delivery platform for efficiently inducing specific antibody responses. In this study, Omp22 (an outer membrane protein of A. baumannii) was displayed on E. coli DH5α-derived OMVs (Omp22-OMVs) using recombinant gene technology. The morphological features of Omp22-OMVs were similar to those of wild-type OMVs (wtOMVs). Immunization with Omp22-OMVs induced high titers of Omp22-specific antibodies. In a murine sepsis model, Omp22-OMV immunization significantly protected mice from lethal challenge with a clinically isolated A. baumannii strain, which was evidenced by the increased survival rate of the mice, the reduced bacterial burdens in the lung, spleen, liver, kidney, and blood, and the suppressed serum levels of inflammatory cytokines. In vitro opsonophagocytosis assays showed that antiserum collected from Omp22-OMV-immunized mice had bactericidal activity against clinical isolates, which was partly specific antibody-dependent. These results strongly indicated that engineered OMVs could display a whole heterologous protein (~22 kDa) on the surface and effectively induce specific antibody responses, and thus OMVs have the potential to be a feasible vaccine platform.

  15. Protective effect of intranasal immunization with Neospora caninum membrane antigens against murine neosporosis established through the gastrointestinal tract

    Science.gov (United States)

    Ferreirinha, Pedro; Dias, Joana; Correia, Alexandra; Pérez-Cabezas, Begoña; Santos, Carlos; Teixeira, Luzia; Ribeiro, Adília; Rocha, António; Vilanova, Manuel

    2014-01-01

    Neospora caninum is an Apicomplexa parasite that in the last two decades was acknowledged as the main pathogenic agent responsible for economic losses in the cattle industry. In the present study, the effectiveness of intranasal immunization with N. caninum membrane antigens plus CpG adjuvant was assessed in a murine model of intragastrically established neosporosis. Immunized mice presented a lower parasitic burden in the brain on infection with 5 × 107 tachyzoites, showing that significant protection was achieved by this immunization strategy. Intestinal IgA antibodies raised by immunization markedly agglutinated live N. caninum tachyzoites whereas previous opsonization with IgG antibodies purified from immunized mice sera reduced parasite survival within macrophage cells. Although an IgG1 : IgG2a ratio < 1 was detected in the immunized mice before and after infection, indicative of a predominant T helper type 1 immune response, no increased production of interferon-γ was detected in the spleen or mesenteric lymph nodes of the immunized mice. Altogether, these results show that mucosal immunization with N. caninum membrane proteins plus CpG adjuvant protect against intragastrically established neosporosis and indicate that parasite-specific mucosal and circulating antibodies have a protective role against this parasitic infection. PMID:24128071

  16. Prostate-specific membrane antigen (PSMA)-mediated laminin proteolysis generates a pro-angiogenic peptide

    Czech Academy of Sciences Publication Activity Database

    Conway, R. E.; Rojas, C.; Alt, J.; Nováková, Zora; Richardson, S. M.; Rodrick, T. C.; Fuentes, J. L.; Richardson, N. H.; Attalla, J.; Stewart, S.; Fahmy, B.; Bařinka, Cyril; Ghosh, M.; Shapiro, L. H.; Slusher, B. S.

    2016-01-01

    Roč. 19, č. 4 (2016), s. 487-500 ISSN 0969-6970 R&D Projects: GA ČR GAP301/12/1513; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : TUMOR-ASSOCIATED NEOVASCULATURE * BASEMENT-MEMBRANE * DISTINCT ANTITUMOR PROPERTIES Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 5.253, year: 2016

  17. Human Monoclonal Islet Cell Antibodies From a Patient with Insulin- Dependent Diabetes Mellitus Reveal Glutamate Decarboxylase as the Target Antigen

    Science.gov (United States)

    Richter, Wiltrud; Endl, Josef; Eiermann, Thomas H.; Brandt, Michael; Kientsch-Engel, Rosemarie; Thivolet, Charles; Jungfer, Herbert; Scherbaum, Werner A.

    1992-09-01

    The autoimmune phenomena associated with destruction of the β cell in pancreatic islets and development of type 1 (insulin-dependent) diabetes mellitus (IDDM) include circulating islet cell antibodies. We have immortalized peripheral blood lymphocytes from prediabetic individuals and patients with newly diagnosed IDDM by Epstein-Barr virus transformation. IgG-positive cells were selected by anti-human IgG-coupled magnetic beads and expanded in cell culture. Supernatants were screened for cytoplasmic islet cell antibodies using the conventional indirect immunofluorescence test on cryostat sections of human pancreas. Six islet cell-specific B-cell lines, originating from a patient with newly diagnosed IDDM, could be stabilized on a monoclonal level. All six monoclonal islet cell antibodies (MICA 1-6) were of the IgG class. None of the MICA reacted with human thyroid, adrenal gland, anterior pituitary, liver, lung, stomach, and intestine tissues but all six reacted with pancreatic islets of different mammalian species and, in addition, with neurons of rat cerebellar cortex. MICA 1-6 were shown to recognize four distinct antigenic epitopes in islets. Islet cell antibody-positive diabetic sera but not normal human sera blocked the binding of the monoclonal antibodies to their target epitopes. Immunoprecipitation of 35S-labeled human islet cell extracts revealed that a protein of identical size to the enzyme glutamate decarboxylase (EC 4.1.1.15) was a target of all MICA. Furthermore, antigen immunotrapped by the MICA from brain homogenates showed glutamate decarboxylase enzyme activity. MICA 1-6 therefore reveal glutamate decarboxylase as the predominant target antigen of cytoplasmic islet cell autoantibodies in a patient with newly diagnosed IDDM.

  18. Non-Native Metal Ion Reveals the Role of Electrostatics in Synaptotagmin 1-Membrane Interactions.

    Science.gov (United States)

    Katti, Sachin; Nyenhuis, Sarah B; Her, Bin; Srivastava, Atul K; Taylor, Alexander B; Hart, P John; Cafiso, David S; Igumenova, Tatyana I

    2017-06-27

    C2 domains are independently folded modules that often target their host proteins to anionic membranes in a Ca 2+ -dependent manner. In these cases, membrane association is triggered by Ca 2+ binding to the negatively charged loop region of the C2 domain. Here, we used a non-native metal ion, Cd 2+ , in lieu of Ca 2+ to gain insight into the contributions made by long-range Coulombic interactions and direct metal ion-lipid bridging to membrane binding. Using X-ray crystallography, NMR, Förster resonance energy transfer, and vesicle cosedimentation assays, we demonstrate that, although Cd 2+ binds to the loop region of C2A/B domains of synaptotagmin 1 with high affinity, long-range Coulombic interactions are too weak to support membrane binding of individual domains. We attribute this behavior to two factors: the stoichiometry of Cd 2+ binding to the loop regions of the C2A and C2B domains and the impaired ability of Cd 2+ to directly coordinate the lipids. In contrast, electron paramagnetic resonance experiments revealed that Cd 2+ does support membrane binding of the C2 domains in full-length synaptotagmin 1, where the high local lipid concentrations that result from membrane tethering can partially compensate for lack of a full complement of divalent metal ions and specific lipid coordination in Cd 2+ -complexed C2A/B domains. Our data suggest that long-range Coulombic interactions alone can drive the initial association of C2A/B with anionic membranes and that Ca 2+ further augments membrane binding by the formation of metal ion-lipid coordination bonds and additional Ca 2+ ion binding to the C2 domain loop regions.

  19. Peptide Probes Reveal a Hydrophobic Steric Ratchet in the Anthrax Toxin Protective Antigen Translocase.

    Science.gov (United States)

    Colby, Jennifer M; Krantz, Bryan A

    2015-11-06

    Anthrax toxin is a tripartite virulence factor produced by Bacillus anthracis during infection. Under acidic endosomal pH conditions, the toxin's protective antigen (PA) component forms a transmembrane channel in host cells. The PA channel then translocates its two enzyme components, lethal factor and edema factor, into the host cytosol under the proton motive force. Protein translocation under a proton motive force is catalyzed by a series of nonspecific polypeptide binding sites, called clamps. A 10-residue guest/host peptide model system, KKKKKXXSXX, was used to functionally probe polypeptide-clamp interactions within wild-type PA channels. The guest residues were Thr, Ala, Leu, Phe, Tyr, and Trp. In steady-state translocation experiments, the channel blocked most tightly with peptides that had increasing amounts of nonpolar surface area. Cooperative peptide binding was observed in the Trp-containing peptide sequence but not the other tested sequences. Trp substitutions into a flexible, uncharged linker between the lethal factor amino-terminal domain and diphtheria toxin A chain expedited translocation. Therefore, peptide-clamp sites in translocase channels can sense large steric features (like tryptophan) in peptides, and while these steric interactions may make a peptide translocate poorly, in the context of folded domains, they can make the protein translocate more rapidly presumably via a hydrophobic steric ratchet mechanism. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Variability in surface antigen expression on neuroblastoma cells as revealed by monoclonal antibodies

    International Nuclear Information System (INIS)

    Malpas, J.S.; Kemshead, J.T.; Pritchard, J.; Greaves, M.F.

    1982-01-01

    In treatment programmes for neuroblastoma involving autologous bone marrow transplantation, a problem exists in the identification of small numbers of metastatic tumour cells present in the marrow aspirates. Reinfusion of tumour cells along with normal bone marrow may reseed the tumour within a patient who has received high dose chemotherapy. Formalin-induced fluorescence in neuroblastoma is a possible diagnostic aid, but this method has no therapeutic potential. Other methods of detecting tumour relying on gross physiological changes in the patient are not suitable for diagnosis of minimal metastatic disease. As an immunological approach to the problem, rabbit antisera to neuroblastoma have been raised but these reagents suffer from low titre after absorption to make them specific. The authors have used the technique of somatic cell hybridisation to raise monoclonal antibodies which bind to neuroblastoma cells and not to normal haemopoietic progenitors. A panel of such reagents to demonstrate heterogeneity in antigen expression amongst metastatic neuroblastoma cells was employed in a radioimmunoassay as diagnostic aid for this problem. (Auth.)

  1. Tetrahymena gene encodes a protein that is homologous with the liver-specific F-antigen and associated with membranes of the Golgi apparatus and transport vesicles

    DEFF Research Database (Denmark)

    Hummel, R; Nørgaard, P; Andreasen, P H

    1992-01-01

    The F-antigen is a prominent liver protein which has been extensively used in studies on natural and induced immunological tolerance. However, its intracellular localization and biological function have remained elusive. It has generally been assumed that the F-antigen is confined phylogenetically...... of the Golgi apparatus and transport vesicles pointing to a role of TF-ag in membrane trafficking. Transcription of the TF-ag gene, as determined by run-on analyses, was only detectable in growing cells, and following transfer to starvation condition pre-existing TF-ag mRNA was rapidly degraded. The abundance...

  2. Antigenic Fingerprinting following Primary RSV Infection in Young Children Identifies Novel Antigenic Sites and Reveals Unlinked Evolution of Human Antibody Repertoires to Fusion and Attachment Glycoproteins.

    Directory of Open Access Journals (Sweden)

    Sandra Fuentes

    2016-04-01

    Full Text Available Respiratory Syncytial Virus (RSV is the major cause of pneumonia among infants. Here we elucidated the antibody repertoire following primary RSV infection and traced its evolution through adolescence and adulthood. Whole genome-fragment phage display libraries (GFPDL expressing linear and conformational epitopes in the RSV fusion protein (F and attachment protein (G were used for unbiased epitope profiling of infant sera prior to and following RSV infection. F-GFPDL analyses demonstrated modest changes in the anti-F epitope repertoires post-RSV infection, while G-GFPDL analyses revealed 100-fold increase in number of bound phages. The G-reactive epitopes spanned the N- and C-terminus of the G ectodomain, along with increased reactivity to the central conserved domain (CCD. Panels of F and G antigenic sites were synthesized to evaluate sera from young children (<2 yr, adolescents (14-18 yr and adults (30-45 yr in SPR real-time kinetics assays. A steady increase in RSV-F epitope repertoires from young children to adults was observed using peptides and F proteins. Importantly, several novel epitopes were identified in pre-fusion F and an immunodominant epitope in the F-p27. In all age groups, antibody binding to pre-fusion F was 2-3 folds higher than to post-fusion form. For RSV-G, antibody responses were high following early RSV infection in children, but declined significantly in adults, using either G proteins or peptides. This study identified unlinked evolution of anti-F and anti G responses and supportive evidence for immune pressure driven evolution of RSV-G. These findings could help development of effective countermeasures including vaccines.

  3. Live Imaging of Influenza Infection of the Trachea Reveals Dynamic Regulation of CD8+ T Cell Motility by Antigen.

    Science.gov (United States)

    Lambert Emo, Kris; Hyun, Young-Min; Reilly, Emma; Barilla, Christopher; Gerber, Scott; Fowell, Deborah; Kim, Minsoo; Topham, David J

    2016-09-01

    During a primary influenza infection, cytotoxic CD8+ T cells need to infiltrate the infected airways and engage virus-infected epithelial cells. The factors that regulate T cell motility in the infected airway tissue are not well known. To more precisely study T cell infiltration of the airways, we developed an experimental model system using the trachea as a site where live imaging can be performed. CD8+ T cell motility was dynamic with marked changes in motility on different days of the infection. In particular, significant changes in average cell velocity and confinement were evident on days 8-10 during which the T cells abruptly but transiently increase velocity on day 9. Experiments to distinguish whether infection itself or antigen affect motility revealed that it is antigen, not active infection per se that likely affects these changes as blockade of peptide/MHC resulted in increased velocity. These observations demonstrate that influenza tracheitis provides a robust experimental foundation to study molecular regulation of T cell motility during acute virus infection.

  4. Live Imaging of Influenza Infection of the Trachea Reveals Dynamic Regulation of CD8+ T Cell Motility by Antigen.

    Directory of Open Access Journals (Sweden)

    Kris Lambert Emo

    2016-09-01

    Full Text Available During a primary influenza infection, cytotoxic CD8+ T cells need to infiltrate the infected airways and engage virus-infected epithelial cells. The factors that regulate T cell motility in the infected airway tissue are not well known. To more precisely study T cell infiltration of the airways, we developed an experimental model system using the trachea as a site where live imaging can be performed. CD8+ T cell motility was dynamic with marked changes in motility on different days of the infection. In particular, significant changes in average cell velocity and confinement were evident on days 8-10 during which the T cells abruptly but transiently increase velocity on day 9. Experiments to distinguish whether infection itself or antigen affect motility revealed that it is antigen, not active infection per se that likely affects these changes as blockade of peptide/MHC resulted in increased velocity. These observations demonstrate that influenza tracheitis provides a robust experimental foundation to study molecular regulation of T cell motility during acute virus infection.

  5. Membrane and envelope virus proteins co-expressed as lysosome associated membrane protein (LAMP fused antigens: a potential tool to develop DNA vaccines against flaviviruses

    Directory of Open Access Journals (Sweden)

    Rafael Dhalia

    2009-12-01

    Full Text Available Vaccination is the most practical and cost-effective strategy to prevent the majority of the flavivirus infection to which there is an available vaccine. However, vaccines based on attenuated virus can potentially promote collateral side effects and even rare fatal reactions. Given this scenario, the developent of alternative vaccination strategies such as DNA-based vaccines encoding specific flavivirus sequences are being considered. Endogenous cytoplasmic antigens, characteristically plasmid DNA-vaccine encoded, are mainly presented to the immune system through Major Histocompatibility Complex class I - MHC I molecules. The MHC I presentation via is mostly associated with a cellular cytotoxic response and often do not elicit a satisfactory humoral response. One of the main strategies to target DNA-encoded antigens to the MHC II compartment is expressing the antigen within the Lysosome-Associated Membrane Protein (LAMP. The flavivirus envelope protein is recognized as the major virus surface protein and the main target for neutralizing antibodies. Different groups have demonstrated that co-expression of flavivirus membrane and envelope proteins in mammalian cells, fused with the carboxyl-terminal of LAMP, is able to induce satisfactory levels of neutralizing antibodies. Here we reviewed the use of the envelope flavivirus protein co-expression strategy as LAMP chimeras with the aim of developing DNA vaccines for dengue, West Nile and yellow fever viruses.A vacinação é a estratégia mais prática e o melhor custo-benefício para prevenir a maioria das infecções dos flavivirus, para os quais existe vacina disponível. Entretanto, as vacinas baseadas em vírus atenuados podem potencialmente promover efeitos colaterais e, mais raramente, reações fatais. Diante deste cenário, o desenvolvimento de estratégias alternativas de vacinação, como vacinas baseadas em DNA codificando seqüências específicas dos flavivirus, está sendo considerado

  6. The asymmetrical structure of Golgi apparatus membranes revealed by in situ atomic force microscope.

    Directory of Open Access Journals (Sweden)

    Haijiao Xu

    Full Text Available The Golgi apparatus has attracted intense attentions due to its fascinating morphology and vital role as the pivot of cellular secretory pathway since its discovery. However, its complex structure at the molecular level remains elusive due to limited approaches. In this study, the structure of Golgi apparatus, including the Golgi stack, cisternal structure, relevant tubules and vesicles, were directly visualized by high-resolution atomic force microscope. We imaged both sides of Golgi apparatus membranes and revealed that the outer leaflet of Golgi membranes is relatively smooth while the inner membrane leaflet is rough and covered by dense proteins. With the treatment of methyl-β-cyclodextrin and Triton X-100, we confirmed the existence of lipid rafts in Golgi apparatus membrane, which are mostly in the size of 20 nm -200 nm and appear irregular in shape. Our results may be of significance to reveal the structure-function relationship of the Golgi complex and pave the way for visualizing the endomembrane system in mammalian cells at the molecular level.

  7. Comparative Membrane Proteomics Reveals a Nonannotated E. coli Heat Shock Protein.

    Science.gov (United States)

    Yuan, Peijia; D'Lima, Nadia G; Slavoff, Sarah A

    2018-01-09

    Recent advances in proteomics and genomics have enabled discovery of thousands of previously nonannotated small open reading frames (smORFs) in genomes across evolutionary space. Furthermore, quantitative mass spectrometry has recently been applied to analysis of regulated smORF expression. However, bottom-up proteomics has remained relatively insensitive to membrane proteins, suggesting they may have been underdetected in previous studies. In this report, we add biochemical membrane protein enrichment to our previously developed label-free quantitative proteomics protocol, revealing a never-before-identified heat shock protein in Escherichia coli K12. This putative smORF-encoded heat shock protein, GndA, is likely to be ∼36-55 amino acids in length and contains a predicted transmembrane helix. We validate heat shock-regulated expression of the gndA smORF and demonstrate that a GndA-GFP fusion protein cofractionates with the cell membrane. Quantitative membrane proteomics therefore has the ability to reveal nonannotated small proteins that may play roles in bacterial stress responses.

  8. Formulation of an inhibitor radiopharmaceutical of prostatic antigen of 177Lu-Glu-Nh-CO-Nh-Lys membrane

    International Nuclear Information System (INIS)

    Ortega S, D.

    2015-01-01

    The prostate specific membrane antigen (PSMA) is a zinc metalloenzyme that is expressed on the cell membrane and highly expressed in prostate cancer. Recently, it has been demonstrated that the peptide sequence Glu-Nh-CO-Nh-Lys inhibit PSMA activity through an electrostatic interaction with the Zn. Several theragnostic radiopharmaceuticals with base in 177 Lu have been developed for radiotherapy of specific molecular targets because gamma and beta emissions of the radionuclide (β = 0.498 MeV and γ= 0.133 MeV). However, there is currently no label a formulation for preparing a radiopharmaceutical of 177 Lu-Glu-Nh-CO-Nh-Lys useful treatment of prostate cancer. The aim of this research was to optimize and document the process of production of the radiopharmaceutical 177 Lu-Glu-Nh-CO-Nh-Lys for sanitary registration application before the Comision Federal para la Proteccion contra Riesgos Sanitarios (COFEPRIS). The optimization of the production process was assessed a factorial design of three variables with mixed levels (3 x 3 x 2) where the dependent variable is the radiochemical purity, the analytical method was validated by UV-Vis spectrophotometry. Next, process validation was carried out by labeling 3 lots of the optimized formulation of the radiopharmaceutical (5.55 GBq (2.16 μg) of 177 LuCl 3 , 90 mg peptide PSMA, 50 mg ascorbic acid and 150 μL of acetate buffer 1 M ph 5), long-term stability was performed by high resolution liquid chromatography) to determine its useful shelf life. 3 validation batches were prepared under protocols of Good Manufacturing Practice (GMP) in the Production Plant of Radiopharmaceuticals of the Instituto Nacional de Investigaciones Nucleares (ININ), meet specifications preset by obtaining a sterile and free development of bacterial endotoxin yields of labeled 100% and which retains its quality characteristics radiochemical purity greater than 90% for at least 15 days. (Author)

  9. Pearls and pitfalls in clinical interpretation of prostate-specific membrane antigen (PSMA)-targeted PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhbahaei, Sara; Solnes, Lilja B.; Javadi, Mehrbod S.; Pomper, Martin G.; Rowe, Steven P. [Johns Hopkins University School of Medicine, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Afshar-Oromieh, Ali; Haberkorn, Uwe [Heidelberg University Hospital, Department of Nuclear Medicine, Heidelberg (Germany); Eiber, Matthias [David Geffen School of Medicine at UCLA, Department of Molecular and Medical Pharmacology, Los Angeles, CA (United States); Technical University of Munich, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Ross, Ashley E.; Pienta, Kenneth J.; Allaf, Mohamad E.; Gorin, Michael A. [Johns Hopkins University School of Medicine, The James Buchanan Brady Urological Institute and Department of Urology, Baltimore, MD (United States)

    2017-11-15

    The rapidly expanding clinical adaptation of prostate-specific membrane antigen (PSMA)-targeted PET imaging in the evaluation of patients with prostate cancer has placed an increasing onus on understanding both the potential pearls of interpretation as well as limitations of this new technique. As with any new molecular imaging modality, accurate characterization of abnormalities on PSMA-targeted PET imaging can be accomplished only if one is aware of the normal distribution pattern, physiological variants of radiotracer uptake, and potential sources of false-positive and false-negative imaging findings. In recent years, a growing number of reports have come to light describing incidental non-prostatic benign or malignant pathologies with high uptake on PSMA-targeted PET imaging. In this review, we have summarized the published literature regarding the potential pearls and technical and interpretive pitfalls of this imaging modality. Knowledge of these limitations can increase the confidence of interpreting physicians and thus improve patient care. As PSMA-targeted PET is expected to be evaluated in larger prospective trials, the dissemination of potential diagnostic pitfalls and the biologic underpinning of those findings will be of increased importance. (orig.)

  10. Love Wave Sensor for Prostate-Specific Membrane Antigen Detection Based on Hydrophilic Molecularly-Imprinted Polymer

    Directory of Open Access Journals (Sweden)

    Pingping Tang

    2018-05-01

    Full Text Available Prostate-specific membrane antigen (PSMA is a biomarker for prostate cancer (PCa, and a specific and reliable detection technique of PSMA is urgently required for PCa early diagnosis. A Love wave sensor has been widely studied for real-time sensing and highly sensitive applications, but the sensing unit needs special handling for selective detection purpose. In this study, we prepared a versatile Love wave sensor functionalized with molecularly-imprinted polymers (MIP, PSMA as the template molecule. To enhance the specific template bindings of MIP in pure aqueous solutions, facile reversible addition/fragmentation chain transfer (RAFT precipitation polymerization (RAFTPP was used to produce surface hydrophilic polymer brushes on MIP. The presence of hydrophilic polymer brushes on MIP improved its surface hydrophilicity and significantly reduced their hydrophobic interactions with template molecules in pure aqueous media. In detection process, the acoustic delay-line is confederative to a microfluidic chip and inserted in an oscillation loop. The real-time resonance frequency of the MIP-based Love wave sensor to different concentrations of PSMA was investigated. The limit of detection (LOD for this Love SAW sensor was 0.013 ng mL−1, which demonstrates that this sensor has outstanding performance in terms of the level of detection.

  11. Molecular cloning of the common acute lymphoblastic leukemia antigen (CALLA) identifies a type II integral membrane protein

    International Nuclear Information System (INIS)

    Shipp, M.A.; Richardson, N.E.; Sayre, P.H.; Brown, N.R.; Masteller, E.L.; Clayton, L.K.; Ritz, J.; Reinherz, E.L.

    1988-01-01

    Common acute lymphoblastic leukemia antigen (CALLA) is a 100-kDa cell-surface glycoprotein expressed on most acute lymphoblastic leukemias and certain other immature lymphoid malignancies and on normal lymphoid progenitors. The latter are either uncommitted to B- or T-cell lineage or committed to only the earliest stages of B- or T-lymphocyte maturation. To elucidate the primary structure of CALLA, the authors purified the protein to homogeneity, obtained the NH 2 -terminal sequence from both the intact protein and derived tryptic and V8 protease peptides and isolated CALLA cDNAs from a Nalm-6 cell line λgt10 library using redundant oligonucleotide probes. The CALLA cDNA sequence predicts a 750-amino acid integral membrane protein with a single 24-amino acid hydrophobic segment that could function as both a transmembrane region and a signal peptide. The COOH-terminal 700 amino acids, including six potential N-linked glycosylation sites compose the extracellular protein segment, whereas the 25 NM 2 -terminal amino acids remaining after cleavage of the initiation methionine form the cytoplasmic tail. CALLA + cells contain CALLA transcripts of 2.7 to 5.7 kilobases with the major 5.7- and 3.7-kilobase mRNAs being preferentially expressed in specific cell types

  12. Spacer length impacts the efficacy of targeted docetaxel conjugates in prostate-specific membrane antigen expressing prostate cancer.

    Science.gov (United States)

    Peng, Zheng-Hong; Sima, Monika; Salama, Mohamed E; Kopečková, Pavla; Kopeček, Jindřich

    2013-12-01

    Combination of targeted delivery and controlled release is a powerful technique for cancer treatment. In this paper, we describe the design, synthesis, structure validation and biological properties of targeted and non-targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-docetaxel conjugates. Docetaxel (DTX) was conjugated to HPMA copolymer via a tetrapeptide spacer (-GFLG-). 3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid (DUPA) was used as the targeting moiety to actively deliver DTX for treatment of Prostate-Specific Membrane Antigen (PSMA) expressing prostate cancer. Short and long spacer DUPA monomers were prepared, and four HPMA copolymer--DTX conjugates (non-targeted, two targeted with short spacer of different molecular weight and targeted with long spacer) were prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT) copolymerization. Following confirmation of PSMA expression on C4-2 cell line, the DTX conjugates' in vitro cytotoxicity was tested against C4-2 tumor cells and their anticancer efficacies were assessed in nude mice bearing s.c. human prostate adenocarcinoma C4-2 xenografts. The in vivo results show that the spacer length between targeting moieties and HPMA copolymer backbone can significantly affect the treatment efficacy of DTX conjugates against C4-2 tumor bearing nu/nu mice. Moreover, histological analysis indicated that the DUPA-targeted DTX conjugate with longer spacer had no toxicity in major organs of treated mice.

  13. Pearls and pitfalls in clinical interpretation of prostate-specific membrane antigen (PSMA)-targeted PET imaging

    International Nuclear Information System (INIS)

    Sheikhbahaei, Sara; Solnes, Lilja B.; Javadi, Mehrbod S.; Pomper, Martin G.; Rowe, Steven P.; Afshar-Oromieh, Ali; Haberkorn, Uwe; Eiber, Matthias; Ross, Ashley E.; Pienta, Kenneth J.; Allaf, Mohamad E.; Gorin, Michael A.

    2017-01-01

    The rapidly expanding clinical adaptation of prostate-specific membrane antigen (PSMA)-targeted PET imaging in the evaluation of patients with prostate cancer has placed an increasing onus on understanding both the potential pearls of interpretation as well as limitations of this new technique. As with any new molecular imaging modality, accurate characterization of abnormalities on PSMA-targeted PET imaging can be accomplished only if one is aware of the normal distribution pattern, physiological variants of radiotracer uptake, and potential sources of false-positive and false-negative imaging findings. In recent years, a growing number of reports have come to light describing incidental non-prostatic benign or malignant pathologies with high uptake on PSMA-targeted PET imaging. In this review, we have summarized the published literature regarding the potential pearls and technical and interpretive pitfalls of this imaging modality. Knowledge of these limitations can increase the confidence of interpreting physicians and thus improve patient care. As PSMA-targeted PET is expected to be evaluated in larger prospective trials, the dissemination of potential diagnostic pitfalls and the biologic underpinning of those findings will be of increased importance. (orig.)

  14. Prostate-specific membrane antigen PET/MRI validation of MR textural analysis for detection of transition zone prostate cancer

    International Nuclear Information System (INIS)

    Bates, Anthony; Miles, Kenneth

    2017-01-01

    To validate MR textural analysis (MRTA) for detection of transition zone (TZ) prostate cancer through comparison with co-registered prostate-specific membrane antigen (PSMA) PET-MR. Retrospective analysis was performed for 30 men who underwent simultaneous PSMA PET-MR imaging for staging of prostate cancer. Thirty texture features were derived from each manually contoured T2-weighted, transaxial, prostatic TZ using texture analysis software that applies a spatial band-pass filter and quantifies texture through histogram analysis. Texture features of the TZ were compared to PSMA expression on the corresponding PET images. The Benjamini-Hochberg correction controlled the false discovery rate at <5%. Eighty-eight T2-weighted images in 18 patients demonstrated abnormal PSMA expression within the TZ on PET-MR. 123 images were PSMA negative. Based on the corrected p-value of 0.005, significant differences between PSMA positive and negative slices were found for 16 texture parameters: Standard deviation and mean of positive pixels for all spatial filters (p = <0.0001 for both at all spatial scaling factor (SSF) values) and mean intensity following filtration for SSF 3-6 mm (p = 0.0002-0.0018). Abnormal expression of PSMA within the TZ is associated with altered texture on T2-weighted MR, providing validation of MRTA for the detection of TZ prostate cancer. (orig.)

  15. Prostate-specific membrane antigen PET/MRI validation of MR textural analysis for detection of transition zone prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Anthony [Princess Alexandra Hospital, Brisbane (Australia); Miles, Kenneth [Princess Alexandra Hospital, Department of Diagnostic Radiology, Brisbane, QLD (Australia); University College London, Institute of Nuclear Medicine, London (United Kingdom)

    2017-12-15

    To validate MR textural analysis (MRTA) for detection of transition zone (TZ) prostate cancer through comparison with co-registered prostate-specific membrane antigen (PSMA) PET-MR. Retrospective analysis was performed for 30 men who underwent simultaneous PSMA PET-MR imaging for staging of prostate cancer. Thirty texture features were derived from each manually contoured T2-weighted, transaxial, prostatic TZ using texture analysis software that applies a spatial band-pass filter and quantifies texture through histogram analysis. Texture features of the TZ were compared to PSMA expression on the corresponding PET images. The Benjamini-Hochberg correction controlled the false discovery rate at <5%. Eighty-eight T2-weighted images in 18 patients demonstrated abnormal PSMA expression within the TZ on PET-MR. 123 images were PSMA negative. Based on the corrected p-value of 0.005, significant differences between PSMA positive and negative slices were found for 16 texture parameters: Standard deviation and mean of positive pixels for all spatial filters (p = <0.0001 for both at all spatial scaling factor (SSF) values) and mean intensity following filtration for SSF 3-6 mm (p = 0.0002-0.0018). Abnormal expression of PSMA within the TZ is associated with altered texture on T2-weighted MR, providing validation of MRTA for the detection of TZ prostate cancer. (orig.)

  16. Expression of nestin, mesothelin and epithelial membrane antigen (EMA) in developing and adult human meninges and meningiomas.

    Science.gov (United States)

    Petricevic, Josko; Forempoher, Gea; Ostojic, Ljerka; Mardesic-Brakus, Snjezana; Andjelinovic, Simun; Vukojevic, Katarina; Saraga-Babic, Mirna

    2011-11-01

    The spatial and temporal pattern of appearance of nestin, epithelial membrane antigen (EMA) and mesothelin proteins was immunohistochemically determined in the cells of normal developing and adult human meninges and meningiomas. Human meninges developed as two mesenchymal condensations in the head region. The simple squamous epithelium on the surface of leptomeninges developed during mesenchymal to epithelial transformation. Nestin appeared for the first time in week 7, EMA in week 8, while mesothelin appeared in week 22 of development. In the late fetal period and after birth, nestin expression decreased, whereas expression of EMA and mesothelin increased. EMA appeared in all surface epithelial cells and nodules, while mesothelin was found only in some of them. In adult meninges, all three proteins were predominantly localized in the surface epithelium and meningeal nodules. In meningothelial meningiomas (WHO grade I), EMA was detected in all tumor cells except in the endothelial cells, mesothelin characterized nests of tumor cells, while nestin was found predominantly in the walls of blood vessels. The distribution pattern of those proteins in normal meningeal and tumor cells indicates that nestin might characterize immature cells, while EMA and mesothelin appeared in maturing epithelial cells. Neoplastic transformation of these specific cell lineages contributes to the cell population in meningiomas. Copyright © 2010 Elsevier GmbH. All rights reserved.

  17. Prostate cancer nodal oligometastasis accurately assessed using prostate-specific membrane antigen positron emission tomography-computed tomography and confirmed histologically following robotic-assisted lymph node dissection.

    Science.gov (United States)

    O'Kane, Dermot B; Lawrentschuk, Nathan; Bolton, Damien M

    2016-01-01

    We herein present a case of a 76-year-old gentleman, where prostate-specific membrane antigen positron emission tomography-computed tomography (PSMA PET-CT) was used to accurately detect prostate cancer (PCa), pelvic lymph node (LN) metastasis in the setting of biochemical recurrence following definitive treatment for PCa. The positive PSMA PET-CT result was confirmed with histological examination of the involved pelvic LNs following pelvic LN dissection.

  18. Prostate cancer nodal oligometastasis accurately assessed using prostate-specific membrane antigen positron emission tomography-computed tomography and confirmed histologically following robotic-assisted lymph node dissection

    Directory of Open Access Journals (Sweden)

    Dermot B O′Kane

    2016-01-01

    Full Text Available We herein present a case of a 76-year-old gentleman, where prostate-specific membrane antigen positron emission tomography-computed tomography (PSMA PET-CT was used to accurately detect prostate cancer (PCa, pelvic lymph node (LN metastasis in the setting of biochemical recurrence following definitive treatment for PCa. The positive PSMA PET-CT result was confirmed with histological examination of the involved pelvic LNs following pelvic LN dissection.

  19. Nanoscale Electric Characteristics and Oriented Assembly of Halobacterium salinarum Membrane Revealed by Electric Force Microscopy

    Directory of Open Access Journals (Sweden)

    Denghua Li

    2016-11-01

    Full Text Available Purple membranes (PM of the bacteria Halobacterium salinarum are a unique natural membrane where bacteriorhodopsin (BR can convert photon energy and pump protons. Elucidating the electronic properties of biomembranes is critical for revealing biological mechanisms and developing new devices. We report here the electric properties of PMs studied by using multi-functional electric force microscopy (EFM at the nanoscale. The topography, surface potential, and dielectric capacity of PMs were imaged and quantitatively measured in parallel. Two orientations of PMs were identified by EFM because of its high resolution in differentiating electrical characteristics. The extracellular (EC sides were more negative than the cytoplasmic (CP side by 8 mV. The direction of potential difference may facilitate movement of protons across the membrane and thus play important roles in proton pumping. Unlike the side-dependent surface potentials observed in PM, the EFM capacitive response was independent of the side and was measured to be at a dC/dz value of ~5.25 nF/m. Furthermore, by modification of PM with de novo peptides based on peptide-protein interaction, directional oriented PM assembly on silicon substrate was obtained for technical devices. This work develops a new method for studying membrane nanoelectronics and exploring the bioelectric application at the nanoscale.

  20. Membrane bioreactor wastewater treatment plants reveal diverse yeast and protist communities of potential significance in biofouling.

    Science.gov (United States)

    Liébana, Raquel; Arregui, Lucía; Belda, Ignacio; Gamella, Luis; Santos, Antonio; Marquina, Domingo; Serrano, Susana

    2015-01-01

    The yeast community was studied in a municipal full-scale membrane bioreactor wastewater treatment plant (MBR-WWTP). The unexpectedly high diversity of yeasts indicated that the activated sludge formed a suitable environment for them to proliferate, with cellular concentrations of 2.2 ± 0.8 × 10(3) CFU ml(-1). Sixteen species of seven genera were present in the biological reactor, with Ascomycetes being the most prevalent group (93%). Most isolates were able to grow in a synthetic wastewater medium, adhere to polyethylene surfaces, and develop biofilms of variable complexity. The relationship between yeast populations and the protists in the MBR-WWTP was also studied, revealing that some protist species preyed on and ingested yeasts. These results suggest that yeast populations may play a role in the food web of a WWTP and, to some extent, contribute to membrane biofouling in MBR systems.

  1. Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics.

    Science.gov (United States)

    Sinha, Sudhir; Kosalai, K; Arora, Shalini; Namane, Abdelkader; Sharma, Pawan; Gaikwad, Anil N; Brodin, Priscille; Cole, Stewart T

    2005-07-01

    Membrane-associated proteins of Mycobacterium tuberculosis offer a challenge, as well as an opportunity, in the quest for better therapeutic and prophylactic interventions against tuberculosis. The authors have previously reported that extraction with the detergent Triton X-114 (TX-114) is a useful step in proteomic analysis of mycobacterial cell membranes, and detergent-soluble membrane proteins of mycobacteria are potent stimulators of human T cells. In this study 1-D and 2-D gel electrophoresis-based protocols were used for the analysis of proteins in the TX-114 extract of M. tuberculosis membranes. Peptide mass mapping (using MALDI-TOF-MS, matrix assisted laser desorption/ionization time of flight mass spectrometry) of 116 samples led to the identification of 105 proteins, 9 of which were new to the M. tuberculosis proteome. Functional orthologues of 73 of these proteins were also present in Mycobacterium leprae, suggesting their relative importance. Bioinformatics predicted that as many as 73% of the proteins had a hydrophobic disposition. 1-D gel electrophoresis revealed more hydrophobic/transmembrane and basic proteins than 2-D gel electrophoresis. Identified proteins fell into the following major categories: protein synthesis, cell wall biogenesis/architecture and conserved hypotheticals/unknowns. To identify immunodominant proteins of the detergent phase (DP), 14 low-molecular-mass fractions prepared by continuous-elution gel electrophoresis were subjected to T cell activation assays using blood samples from BCG-vaccinated healthy donors from a tuberculosis endemic area. Analysis of the responses (cell proliferation and IFN-gamma production) showed that the immunodominance of certain DP fractions was most probably due to ribosomal proteins, which is consistent with both their specificity for mycobacteria and their abundance. Other membrane-associated proteins, including transmembrane proteins/lipoproteins and ESAT-6, did not appear to contribute

  2. Quantitative membrane proteomics reveals a role for tetraspanin enriched microdomains during entry of human cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Kasinath Viswanathan

    Full Text Available Human cytomegalovirus (HCMV depends on and modulates multiple host cell membrane proteins during each stage of the viral life cycle. To gain a global view of the impact of HCMV-infection on membrane proteins, we analyzed HCMV-induced changes in the abundance of membrane proteins in fibroblasts using stable isotope labeling with amino acids (SILAC, membrane fractionation and protein identification by two-dimensional liquid chromatography and tandem mass spectrometry. This systematic approach revealed that CD81, CD44, CD98, caveolin-1 and catenin delta-1 were down-regulated during infection whereas GRP-78 was up-regulated. Since CD81 downregulation was also observed during infection with UV-inactivated virus we hypothesized that this tetraspanin is part of the viral entry process. Interestingly, additional members of the tetraspanin family, CD9 and CD151, were also downregulated during HCMV-entry. Since tetraspanin-enriched microdomains (TEM cluster host cell membrane proteins including known CMV receptors such as integrins, we studied whether TEMs are required for viral entry. When TEMs were disrupted with the cholesterol chelator methyl-β-cylcodextrin, viral entry was inhibited and this inhibition correlated with reduced surface levels of CD81, CD9 and CD151, whereas integrin levels remained unchanged. Furthermore, simultaneous siRNA-mediated knockdown of multiple tetraspanins inhibited viral entry whereas individual knockdown had little effect suggesting essential, but redundant roles for individual tetraspanins during entry. Taken together, our data suggest that TEM act as platforms for receptors utilized by HCMV for entry into cells.

  3. Microfluidic-integrated patterned ITO immunosensor for rapid detection of prostate-specific membrane antigen biomarker in prostate cancer.

    Science.gov (United States)

    Seenivasan, Rajesh; Singh, Chandra K; Warrick, Jay W; Ahmad, Nihal; Gunasekaran, Sundaram

    2017-09-15

    An optically transparent patterned indium tin oxide (ITO) three-electrode sensor integrated with a microfluidic channel was designed for label-free immunosensing of prostate-specific membrane antigen (PSMA), a prostate cancer (PCa) biomarker, expressed on prostate tissue and circulating tumor cells but also found in serum. The sensor relies on cysteamine capped gold nanoparticles (N-AuNPs) covalently linked with anti-PSMA antibody (Ab) for target specificity. A polydimethylsiloxane (PDMS) microfluidic channel is used to efficiently and reproducibly introduce sample containing soluble proteins/cells to the sensor. The PSMA is detected and quantified by measuring the change in differential pulse voltammetry signal of a redox probe ([Fe(CN) 6 ] 3- /[Fe(CN) 6 ] 4- ) that is altered upon binding of PSMA with PSMA-Ab immobilized on N-AuNPs/ITO. Detection of PSMA expressing cells and soluble PSMA was tested. The limit of detection (LOD) of the sensor for PSMA-based PCa cells is 6/40µL (i.e., 150 cells/mL) (n=3) with a linear range of 15-400 cells/40µL (i.e., 375-10,000 cells/mL), and for the soluble PSMA is 0.499ng/40µL (i.e., 12.5ng/mL) (n=3) with the linear range of 0.75-250ng/40µL (i.e., 19-6250ng/mL), both with an incubation time of 10min. The results indicate that the sensor has a suitable sensitivity and dynamic range for routine detection of PCa circulating tumor cells and can be adapted to detect other biomarkers/cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effect of prostate-specific membrane antigen positron emission tomography on the decision-making of radiation oncologists

    International Nuclear Information System (INIS)

    Shakespeare, Thomas P.

    2015-01-01

    Positron emission tomography (PET) imaging is routinely used in many cancer types, although is not yet a standard modality for prostate carcinoma. Prostate-specific membrane antigen (PSMA) PET is a promising new modality for staging prostate cancer, with recent studies showing potential advantages over traditional computed tomography (CT), magnetic resonance imaging (MRI) and nuclear medicine bone scan imaging. However, the impact of PSMA PET on the decision-making of radiation oncologists and outcomes after radiotherapy is yet to be determined. Our aim was to determine the impact of PSMA PET on a radiation oncologist’s clinical practice. Patients in a radiation oncology clinic who underwent PSMA PET were prospectively recorded in an electronic oncology record. Patient demographics, outcomes of imaging, and impact on decision-making were evaluated. Fifty-four patients underwent PSMA PET between January and May 2015. The major reasons for undergoing PET included staging before definitive (14.8 %) or post-prostatectomy (33.3 %) radiotherapy, and investigation of PSA failures following definitive (16.7 %) or post-prostatectomy (33.3 %) radiotherapy. In 46.3 % of patients PSMA was positive after negative traditional imaging, in 9.3 % PSMA was positive after equivocal imaging, and in 13.0 % PSMA was negative after equivocal imaging. PSMA PET changed radiotherapy management in 46.3 % of cases, and hormone therapy in 33.3 % of patients, with an overall change in decision-making in 53.7 % of patients. PSMA PET has the potential to significantly alter the decision-making of radiation oncologists, and may become a valuable imaging tool in the future

  5. Effect of prostate-specific membrane antigen positron emission tomography on the decision-making of radiation oncologists.

    Science.gov (United States)

    Shakespeare, Thomas P

    2015-11-18

    Positron emission tomography (PET) imaging is routinely used in many cancer types, although is not yet a standard modality for prostate carcinoma. Prostate-specific membrane antigen (PSMA) PET is a promising new modality for staging prostate cancer, with recent studies showing potential advantages over traditional computed tomography (CT), magnetic resonance imaging (MRI) and nuclear medicine bone scan imaging. However, the impact of PSMA PET on the decision-making of radiation oncologists and outcomes after radiotherapy is yet to be determined. Our aim was to determine the impact of PSMA PET on a radiation oncologist's clinical practice. Patients in a radiation oncology clinic who underwent PSMA PET were prospectively recorded in an electronic oncology record. Patient demographics, outcomes of imaging, and impact on decision-making were evaluated. Fifty-four patients underwent PSMA PET between January and May 2015. The major reasons for undergoing PET included staging before definitive (14.8%) or post-prostatectomy (33.3%) radiotherapy, and investigation of PSA failures following definitive (16.7%) or post-prostatectomy (33.3%) radiotherapy. In 46.3% of patients PSMA was positive after negative traditional imaging, in 9.3% PSMA was positive after equivocal imaging, and in 13.0% PSMA was negative after equivocal imaging. PSMA PET changed radiotherapy management in 46.3% of cases, and hormone therapy in 33.3% of patients, with an overall change in decision-making in 53.7% of patients. PSMA PET has the potential to significantly alter the decision-making of radiation oncologists, and may become a valuable imaging tool in the future.

  6. Vascular targeted therapy with anti-prostate-specific membrane antigen monoclonal antibody J591 in advanced solid tumors.

    Science.gov (United States)

    Milowsky, Matthew I; Nanus, David M; Kostakoglu, Lale; Sheehan, Christine E; Vallabhajosula, Shankar; Goldsmith, Stanley J; Ross, Jeffrey S; Bander, Neil H

    2007-02-10

    Based on prostate-specific membrane antigen (PSMA) expression on the vasculature of solid tumors, we performed a phase I trial of antibody J591, targeting the extracellular domain of PSMA, in patients with advanced solid tumor malignancies. This was a proof-of-principle evaluation of PSMA as a potential neovascular target. The primary end points were targeting,toxicity, maximum-tolerated dose, pharmacokinetics (PK), and human antihuman antibody (HAHA) response. Patients had advanced solid tumors previously shown to express PSMA on the neovasculature. They received 111Indium (111ln)-J591 for scintigraphy and PK, followed 2 weeks later by J591 with a reduced amount of 111In for additional PK measurements. J591 dose levels were 5, 10, 20, 40, and 80 mg. The protocol was amended for six weekly administrations of unchelated J591. Patients with a response or stable disease were eligible for re-treatment. Immunohistochemistry assessed PSMA expression in tumor tissues. Twenty-seven patients received monoclonal antibody (mAb) J591. Treatment was well tolerated. Twenty (74%) of 27 patients had at least one area of known metastatic disease targeted by 111In-J591, with positive imaging seen in patients with kidney, bladder, lung, breast, colorectal, and pancreatic cancers, and melanoma. Seven of 10 patient specimens available for immunohistochemical assessment of PSMA expression in tumor-associated vasculature demonstrated PSMA staining. No HAHA response was seen. Three patients of 27 with stable disease received re-treatment. Acceptable toxicity and excellent targeting of known sites of metastases were demonstrated in patients with multiple solid tumor types, highlighting a potential role for the anti-PSMA antibody J591 as a vascular-targeting agent.

  7. Bioinformatic Analysis of Chlamydia trachomatis Polymorphic Membrane Proteins PmpE, PmpF, PmpG and PmpH as Potential Vaccine Antigens.

    Directory of Open Access Journals (Sweden)

    Alexandra Nunes

    Full Text Available Chlamydia trachomatis is the most important infectious cause of infertility in women with important implications in public health and for which a vaccine is urgently needed. Recent immunoproteomic vaccine studies found that four polymorphic membrane proteins (PmpE, PmpF, PmpG and PmpH are immunodominant, recognized by various MHC class II haplotypes and protective in mouse models. In the present study, we aimed to evaluate genetic and protein features of Pmps (focusing on the N-terminal 600 amino acids where MHC class II epitopes were mapped in order to understand antigen variation that may emerge following vaccine induced immune selection. We used several bioinformatics platforms to study: i Pmps' phylogeny and genetic polymorphism; ii the location and distribution of protein features (GGA(I, L/FxxN motifs and cysteine residues that may impact pathogen-host interactions and protein conformation; and iii the existence of phase variation mechanisms that may impact Pmps' expression. We used a well-characterized collection of 53 fully-sequenced strains that represent the C. trachomatis serovars associated with the three disease groups: ocular (N=8, epithelial-genital (N=25 and lymphogranuloma venereum (LGV (N=20. We observed that PmpF and PmpE are highly polymorphic between LGV and epithelial-genital strains, and also within populations of the latter. We also found heterogeneous representation among strains for GGA(I, L/FxxN motifs and cysteine residues, suggesting possible alterations in adhesion properties, tissue specificity and immunogenicity. PmpG and, to a lesser extent, PmpH revealed low polymorphism and high conservation of protein features among the genital strains (including the LGV group. Uniquely among the four Pmps, pmpG has regulatory sequences suggestive of phase variation. In aggregate, the results suggest that PmpG may be the lead vaccine candidate because of sequence conservation but may need to be paired with another protective

  8. Global Proteomic Analysis Reveals an Exclusive Role of Thylakoid Membranes in Bioenergetics of a Model Cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Liberton, Michelle; Saha, Rajib; Jacobs, Jon M.; Nguyen, Amelia Y.; Gritsenko, Marina A.; Smith, Richard D.; Koppenaal, David W.; Pakrasi, Himadri B.

    2016-04-07

    Cyanobacteria are photosynthetic microbes with highly differentiated membrane systems. These organisms contain an outer membrane, plasma membrane, and an internal system of thylakoid membranes where the photosynthetic and respiratory machinery are found. This existence of compartmentalization and differentiation of membrane systems poses a number of challenges for cyanobacterial cells in terms of organization and distribution of proteins to the correct membrane system. Proteomics studies have long sought to identify the components of the different membrane systems, and to date about 450 different proteins have been attributed to either the plasma membrane or thylakoid membrane. Given the complexity of these membranes, many more proteins remain to be identified in these membrane systems, and a comprehensive catalog of plasma membrane and thylakoid membrane proteins is needed. Here we describe the identification of 635 proteins in Synechocystis sp. PCC 6803 by quantitative iTRAQ isobaric labeling; of these, 459 proteins were localized to the plasma membrane and 176 were localized to the thylakoid membrane. Surprisingly, we found over 2.5 times the number of unique proteins identified in the plasma membrane compared to the thylakoid membrane. This suggests that the protein composition of the thylakoid membrane is more homogeneous than the plasma membrane, consistent with the role of the plasma membrane in diverse cellular processes including protein trafficking and nutrient import, compared to a more specialized role for the thylakoid membrane in cellular energetics. Overall, the protein composition of the Synechocystis 6803 plasma membrane and thylakoid membrane is quite similar to the E.coli plasma membrane and Arabidopsis thylakoid membrane, respectively. Synechocystis 6803 can therefore be described as a gram-negative bacterium that has an additional internal membrane system that fulfils the energetic requirements of the cell.

  9. Global Proteomic Analysis Reveals an Exclusive Role of Thylakoid Membranes in Bioenergetics of a Model Cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Liberton, Michelle; Saha, Rajib; Jacobs, Jon M.; Nguyen, Amelia Y.; Gritsenko, Marina A.; Smith, Richard D.; Koppenaal, David W.; Pakrasi, Himadri B.

    2016-04-07

    Cyanobacteria are photosynthetic microbes with highlydifferentiated membrane systems. These organisms contain an outer membrane, plasma membrane, and an internal system of thylakoid membranes where the photosynthetic and respiratory machinery are found. This existence of compartmentalization and differentiation of membrane systems poses a number of challenges for cyanobacterial cells in terms of organization and distribution of proteins to the correct membrane system. Proteomics studies have long sought to identify the components of the different membrane systems in cyanobacteria, and to date about 450 different proteins have been attributed to either the plasma membrane or thylakoid membrane. Given the complexity of these membranes, many more proteins remain to be identified, and a comprehensive catalogue of plasma membrane and thylakoid membrane proteins is needed. Here we describe the identification of 635 differentially localized proteins in Synechocystis sp. PCC 6803 by quantitative iTRAQ isobaric labeling; of these, 459 proteins were localized to the plasma membrane and 176 were localized to the thylakoid membrane. Surprisingly, we found over 2.5 times the number of unique proteins identified in the plasma membrane compared with the thylakoid membrane. This suggests that the protein composition of the thylakoid membrane is more homogeneous than the plasma membrane, consistent with the role of the plasma membrane in diverse cellular processes including protein trafficking and nutrient import, compared with a more specialized role for the thylakoid membrane in cellular energetics. Thus, our data clearly define the two membrane systems with distinct functions. Overall, the protein compositions of the Synechocystis 6803 plasma membrane and thylakoid membrane are quite similar to that of the plasma membrane of Escherichia coli and thylakoid membrane of Arabidopsis chloroplasts, respectively. Synechocystis 6803 can therefore be described as a Gram

  10. Mass Spectrometry Reveals Changes in MHC I Antigen Presentation After Lentivector Expression of a Gene Regulation System

    Directory of Open Access Journals (Sweden)

    Roland Vogel

    2013-01-01

    Full Text Available The rapamycin-inducible gene regulation system was designed to minimize immune reactions in man and may thus be suited for gene therapy. We assessed whether this system indeed induces no immune responses. The protein components of the regulation system were produced in the human cell lines HEK 293T, D407, and HER 911 following lentiviral transfer of the corresponding genes. Stable cell lines were established, and the peptides presented by major histocompatibility complex class I (MHC I molecules on transduced and wild-type (wt cells were compared by differential mass spectrometry. In all cell lines examined, expression of the transgenes resulted in prominent changes in the repertoire of MHC I-presented self-peptides. No MHC I ligands originating from the transgenic proteins were detected. In vitro analysis of immunogenicity revealed that transduced D407 cells displayed slightly higher capacity than wt controls to promote proliferation of cytotoxic T cells. These results indicate that therapeutic manipulations within the genome of target cells may affect pathways involved in the processing of peptide antigens and their presentation by MHC I. This makes the genomic modifications visible to the immune system which may recognize these events and respond. Ultimately, the findings call attention to a possible immune risk.

  11. REDOR NMR Reveals Multiple Conformers for a Protein Kinase C Ligand in a Membrane Environment

    Directory of Open Access Journals (Sweden)

    Hao Yang

    2018-01-01

    Full Text Available Bryostatin 1 (henceforth bryostatin is in clinical trials for the treatment of Alzheimer’s disease and for HIV/AIDS eradication. It is also a preclinical lead for cancer immunotherapy and other therapeutic indications. Yet nothing is known about the conformation of bryostatin bound to its protein kinase C (PKC target in a membrane microenvironment. As a result, efforts to design more efficacious, better tolerated, or more synthetically accessible ligands have been limited to structures that do not include PKC or membrane effects known to influence PKC–ligand binding. This problem extends more generally to many membrane-associated proteins in the human proteome. Here, we use rotational-echo double-resonance (REDOR solid-state NMR to determine the conformations of PKC modulators bound to the PKCδ-C1b domain in the presence of phospholipid vesicles. The conformationally limited PKC modulator phorbol diacetate (PDAc is used as an initial test substrate. While unanticipated partitioning of PDAc between an immobilized protein-bound state and a mobile state in the phospholipid assembly was observed, a single conformation in the bound state was identified. In striking contrast, a bryostatin analogue (bryolog was found to exist exclusively in a protein-bound state, but adopts a distribution of conformations as defined by three independent distance measurements. The detection of multiple PKCδ-C1b-bound bryolog conformers in a functionally relevant phospholipid complex reveals the inherent dynamic nature of cellular systems that is not captured with single-conformation static structures. These results indicate that binding, selectivity, and function of PKC modulators, as well as the design of new modulators, are best addressed using a dynamic multistate model, an analysis potentially applicable to other membrane-associated proteins.

  12. Genetic diversity of the Plasmodium falciparum apical membrane antigen I gene in parasite population from the China-Myanmar border area.

    Science.gov (United States)

    Zhu, Xiaotong; Zhao, Zhenjun; Feng, Yonghui; Li, Peipei; Liu, Fei; Liu, Jun; Yang, Zhaoqing; Yan, Guiyun; Fan, Qi; Cao, Yaming; Cui, Liwang

    2016-04-01

    To investigate the genetic diversity of the Plasmodium falciparum apical membrane antigen 1 (PfAMA1) gene in Southeast Asia, we determined PfAMA1 sequences from 135 field isolates collected from the China-Myanmar border area and compared them with 956 publically available PfAMA1 sequences from seven global P. falciparum populations. This analysis revealed high genetic diversity of PfAMA1 in global P. falciparum populations with a total of 229 haplotypes identified. The genetic diversity of PfAMA1 gene from the China-Myanmar border is not evenly distributed in the different domains of this gene. Sequence diversity in PfAMA1 from the China-Myanmar border is lower than that observed in Thai, African and Oceanian populations, but higher than that in the South American population. This appeared to correlate well with the levels of endemicity of different malaria-endemic regions, where hyperendemic regions favor genetic cross of the parasite isolates and generation of higher genetic diversity. Neutrality tests show significant departure from neutrality in the entire ectodomain and Domain I of PfAMA1 in the China-Myanmar border parasite population. We found evidence supporting a substantial continent-wise genetic structure among P. falciparum populations, with the highest genetic differentiation detected between the China-Myanmar border and the South American populations. Whereas no alleles were unique to a specific region, there were considerable geographical differences in major alleles and their frequencies, highlighting further necessity to include more PfAMA1 alleles in vaccine designs. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. High antibody titer against apical membrane antigen-1 is required to protect against malaria in the Aotus model.

    Directory of Open Access Journals (Sweden)

    Sheetij Dutta

    Full Text Available A Plasmodium falciparum 3D7 strain Apical Membrane Antigen-1 (AMA1 vaccine, formulated with AS02(A adjuvant, slowed parasite growth in a recent Phase 1/2a trial, however sterile protection was not observed. We tested this AS02(A, and a Montanide ISA720 (ISA formulation of 3D7 AMA1 in Aotus monkeys. The 3D7 parasite does not invade Aotus erythrocytes, hence two heterologous strains, FCH/4 and FVO, were used for challenge, FCH/4 AMA1 being more homologous to 3D7 than FVO AMA1. Following three vaccinations, the monkeys were challenged with 50,000 FCH/4 or 10,000 FVO parasites. Three of the six animals in the AMA+ISA group were protected against FCH/4 challenge. One monkey did not become parasitemic, another showed only a short period of low level parasitemia that self-cured, and a third animal showed a delay before exhibiting its parasitemic phase. This is the first protection shown in primates with a recombinant P. falciparum AMA1 without formulation in Freund's complete adjuvant. No animals in the AMA+AS02(A group were protected, but this group exhibited a trend towards reduced growth rate. A second group of monkeys vaccinated with AMA+ISA vaccine was not protected against FVO challenge, suggesting strain-specificity of AMA1-based protection. Protection against FCH/4 strain correlated with the quantity of induced antibodies, as the protected animals were the only ones to have in vitro parasite growth inhibitory activity of >70% at 1:10 serum dilution; immuno-fluorescence titers >8,000; ELISA titers against full-length AMA1 >300,000 and ELISA titer against AMA1 domains1+2 >100,000. A negative correlation between log ELISA titer and day 11 cumulative parasitemia (Spearman rank r = -0.780, p value = 0.0001, further confirmed the relationship between antibody titer and protection. High titers of cross-strain inhibitory antibodies against AMA1 are therefore critical to confer solid protection, and the Aotus model can be used to down-select future AMA1

  14. Recombinant major outer membrane protein (MOMP) of Chlamydophila abortus, Chlamydophila pecorum, and Chlamydia suis as antigens to distinguish chlamydial species-specific antibodies in animal sera.

    Science.gov (United States)

    Hoelzle, Ludwig E; Hoelzle, Katharina; Wittenbrink, Max M

    2004-10-05

    Recombinant major outer membrane proteins (rMOMP) of Chlamydophila (Ch.) abortus, Ch. pecorum, and Chlamydia (C.) suis were used as antigens to distinguish chlamydial species-specific antibodies in (i) immune sera from six rabbits and three pigs raised against native purified elementary bodies, (ii) serum samples from 25 sows vaccinated with Ch. abortus, and (iii) 40 serum samples from four heifers experimentally infected with Ch. abortus. All post-exposition sera contained chlamydial antibodies as confirmed by strong ELISA seroreactivities against the chlamydial LPS. For the rMOMP ELISA mean IgG antibody levels were at least 5.8-fold higher with the particular rMOMP homologous to the chlamydial species used for immunisation or infection than with heterologous rMOMPs (P <0.001). Preferential rMOMP ELISA reactivities of sera were confirmed by Western blotting. The results suggest that the entire chlamydial rMOMP could provide a species-specific serodiagnostic antigen.

  15. Simultaneous targeting of prostate stem cell antigen and prostate-specific membrane antigen improves the killing of prostate cancer cells using a novel modular T cell-retargeting system.

    Science.gov (United States)

    Arndt, Claudia; Feldmann, Anja; Koristka, Stefanie; Cartellieri, Marc; Dimmel, Maria; Ehninger, Armin; Ehninger, Gerhard; Bachmann, Michael

    2014-09-01

    Recently, we described a novel modular platform technology in which T cell-recruitment and tumor-targeting domains of conventional bispecific antibodies are split to independent components, a universal effector module (EM) and replaceable monospecific/monovalent target modules (TMs) that form highly efficient T cell-retargeting complexes. Theoretically, our unique strategy should allow us to simultaneously retarget T cells to different tumor antigens by combining the EM with two or more different monovalent/monospecific TMs or even with bivalent/bispecific TMs, thereby overcoming limitations of a monospecific treatment such as the selection of target-negative tumor escape variants. In order to advance our recently introduced prostate stem cell antigen (PSCA)-specific modular system for a dual-targeting of prostate cancer cells, two additional TMs were constructed: a monovalent/monospecific TM directed against the prostate-specific membrane antigen (PSMA) and a bivalent/bispecific TM (bsTM) with specificity for PSMA and PSCA. The functionality of the novel dual-targeting strategies was analyzed by performing T cell activation and chromium release assays. Similar to the PSCA-specific modular system, the novel PSMA-specific modular system mediates an efficient target-dependent and -specific tumor cell lysis at low E:T ratios and picomolar Ab concentrations. Moreover, by combination of the EM with either the bispecific TM directed to PSMA and PSCA or both monospecifc TMs directed to either PSCA or PSMA, dual-specific targeting complexes were formed which allowed us to kill potential escape variants expressing only one or the other target antigen. Overall, the novel modular system represents a promising tool for multiple tumor targeting. © 2014 Wiley Periodicals, Inc.

  16. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI

    Science.gov (United States)

    Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing; Yang, Jenny J.

    2016-06-01

    Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 +/- 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 +/- 0.1 × 10-22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM-1 s-1 and r2 of 37.9 mM-1 s-1 per Gd (55.2 and 75.8 mM-1 s-1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM-1 s-1 per Gd (188.0 mM-1 s-1 per molecule) and r1 of 18.6 mM-1 s-1 per Gd (37.2 mM-1 s-1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI.Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high

  17. Fluorodeoxyglucose positron emission tomography scan may be helpful in the case of ductal variant prostate cancer when prostate specific membrane antigen ligand positron emission tomography scan is negative

    International Nuclear Information System (INIS)

    McEwan, Louise M.; Wong, David; Yaxley, John

    2017-01-01

    Gallium-68 prostate specific membrane antigen ligand (Ga-68 PSMA) positron emission tomography/computed tomography (PET/CT) scanning is emerging as a useful imaging modality for the staging of suspected and known recurrent or metastatic prostate cancer and in staging of newly diagnosed higher grade prostate cancer. However, we have observed at our institution that in some cases of the more aggressive ductal variant, Ga-68 PSMA uptake has sometimes been poor compared with prominent 18-fluorodeoxyglucose (F-18 FDG) avidity seen in F-18 FDG PET/CT, which would suggest that FDG PET/CT scans are important in staging of ductal pattern prostate cancer.

  18. Comparative Analysis of Membrane Vesicles from Three Piscirickettsia salmonis Isolates Reveals Differences in Vesicle Characteristics.

    Directory of Open Access Journals (Sweden)

    Julia I Tandberg

    Full Text Available Membrane vesicles (MVs are spherical particles naturally released from the membrane of Gram-negative bacteria. Bacterial MV production is associated with a range of phenotypes including biofilm formation, horizontal gene transfer, toxin delivery, modulation of host immune responses and virulence. This study reports comparative profiling of MVs from bacterial strains isolated from three widely disperse geographical areas. Mass spectrometry identified 119, 159 and 142 proteins in MVs from three different strains of Piscirickettsia salmonis isolated from salmonids in Chile (LF-89, Norway (NVI 5692 and Canada (NVI 5892, respectively. MV comparison revealed several strain-specific differences related to higher virulence capability for LF-89 MVs, both in vivo and in vitro, and stronger similarities between the NVI 5692 and NVI 5892 MV proteome. The MVs were similar in size and appearance as analyzed by electron microscopy and dynamic light scattering. The MVs from all three strains were internalized by both commercial and primary immune cell cultures, which suggest a potential role of the MVs in the bacterium's utilization of leukocytes. When MVs were injected into an adult zebrafish infection model, an upregulation of several pro-inflammatory genes were observed in spleen and kidney, indicating a modulating effect on the immune system. The present study is the first comparative analysis of P. salmonis derived MVs, highlighting strain-specific vesicle characteristics. The results further illustrate that the MV proteome from one bacterial strain is not representative of all bacterial strains within one species.

  19. Protein array profiling of tic patient sera reveals a broad range and enhanced immune response against Group A Streptococcus antigens.

    Directory of Open Access Journals (Sweden)

    Mauro Bombaci

    Full Text Available The human pathogen Group A Streptococcus (Streptococcus pyogenes, GAS is widely recognized as a major cause of common pharyngitis as well as of severe invasive diseases and non-suppurative sequelae associated with the existence of GAS antigens eliciting host autoantibodies. It has been proposed that a subset of paediatric disorders characterized by tics and obsessive-compulsive symptoms would exacerbate in association with relapses of GAS-associated pharyngitis. This hypothesis is however still controversial. In the attempt to shed light on the contribution of GAS infections to the onset of neuropsychiatric or behavioral disorders affecting as many as 3% of children and adolescents, we tested the antibody response of tic patient sera to a representative panel of GAS antigens. In particular, 102 recombinant proteins were spotted on nitrocellulose-coated glass slides and probed against 61 sera collected from young patients with typical tic neuropsychiatric symptoms but with no overt GAS infection. Sera from 35 children with neither tic disorder nor overt GAS infection were also analyzed. The protein recognition patterns of these two sera groups were compared with those obtained using 239 sera from children with GAS-associated pharyngitis. This comparative analysis identified 25 antigens recognized by sera of the three patient groups and 21 antigens recognized by tic and pharyngitis sera, but poorly or not recognized by sera from children without tic. Interestingly, these antigens appeared to be, in quantitative terms, more immunogenic in tic than in pharyngitis patients. Additionally, a third group of antigens appeared to be preferentially and specifically recognized by tic sera. These findings provide the first evidence that tic patient sera exhibit immunological profiles typical of individuals who elicited a broad, specific and strong immune response against GAS. This may be relevant in the context of one of the hypothesis proposing that GAS

  20. Monoclonal antibodies to murine thrombospondin-1 and thrombospondin-2 reveal differential expression patterns in cancer and low antigen expression in normal tissues

    International Nuclear Information System (INIS)

    Bujak, Emil; Pretto, Francesca; Ritz, Danilo; Gualandi, Laura; Wulhfard, Sarah; Neri, Dario

    2014-01-01

    There is a considerable interest for the discovery and characterization of tumor-associated antigens, which may facilitate antibody-based pharmacodelivery strategies. Thrombospondin-1 and thrombospondin-2 are homologous secreted proteins, which have previously been reported to be overexpressed during remodeling typical for wound healing and tumor progression and to possibly play a functional role in cell proliferation, migration and apoptosis. To our knowledge, a complete immunohistochemical characterization of thrombospondins levels in normal rodent tissues has not been reported so far. Using antibody phage technology, we have generated and characterized monoclonal antibodies specific to murine thrombospondin-1 and thrombospondin-2, two antigens which share 62% aminoacid identity. An immunofluorescence analysis revealed that both antigens are virtually undetectable in normal mouse tissues, except for a weak staining of heart tissue by antibodies specific to thrombospondin-1. The analysis also showed that thrombospondin-1 was strongly expressed in 5/7 human tumors xenografted in nude mice, while it was only barely detectable in 3/8 murine tumors grafted in immunocompetent mice. By contrast, a high-affinity antibody to thrombospondin-2 revealed a much lower level of expression of this antigen in cancer specimens. Our analysis resolves ambiguities related to conflicting reports on thrombosponding expression in health and disease. Based on our findings, thrombospondin-1 (and not thrombospondin-2) may be considered as a target for antibody-based pharmacodelivery strategies, in consideration of its low expression in normal tissues and its upregulation in cancer. - Highlights: • High affinity monoclonal antibodies to murine and human TSP1 and 2 were raised. • Both antigens are virtually undetectable in normal mouse tissues. • Strong positivity of human tumor xenografts for TSP1 was detected. • Study revealed much lower level of TSP2 expression in cancer specimens

  1. Monoclonal antibodies to murine thrombospondin-1 and thrombospondin-2 reveal differential expression patterns in cancer and low antigen expression in normal tissues

    Energy Technology Data Exchange (ETDEWEB)

    Bujak, Emil [Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 2, CH-8093 Zurich (Switzerland); Pretto, Francesca; Ritz, Danilo; Gualandi, Laura; Wulhfard, Sarah [Philochem AG, Libernstrasse 3, CH-8112 Otelfingen (Switzerland); Neri, Dario, E-mail: neri@pharma.ethz.ch [Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 2, CH-8093 Zurich (Switzerland)

    2014-09-10

    There is a considerable interest for the discovery and characterization of tumor-associated antigens, which may facilitate antibody-based pharmacodelivery strategies. Thrombospondin-1 and thrombospondin-2 are homologous secreted proteins, which have previously been reported to be overexpressed during remodeling typical for wound healing and tumor progression and to possibly play a functional role in cell proliferation, migration and apoptosis. To our knowledge, a complete immunohistochemical characterization of thrombospondins levels in normal rodent tissues has not been reported so far. Using antibody phage technology, we have generated and characterized monoclonal antibodies specific to murine thrombospondin-1 and thrombospondin-2, two antigens which share 62% aminoacid identity. An immunofluorescence analysis revealed that both antigens are virtually undetectable in normal mouse tissues, except for a weak staining of heart tissue by antibodies specific to thrombospondin-1. The analysis also showed that thrombospondin-1 was strongly expressed in 5/7 human tumors xenografted in nude mice, while it was only barely detectable in 3/8 murine tumors grafted in immunocompetent mice. By contrast, a high-affinity antibody to thrombospondin-2 revealed a much lower level of expression of this antigen in cancer specimens. Our analysis resolves ambiguities related to conflicting reports on thrombosponding expression in health and disease. Based on our findings, thrombospondin-1 (and not thrombospondin-2) may be considered as a target for antibody-based pharmacodelivery strategies, in consideration of its low expression in normal tissues and its upregulation in cancer. - Highlights: • High affinity monoclonal antibodies to murine and human TSP1 and 2 were raised. • Both antigens are virtually undetectable in normal mouse tissues. • Strong positivity of human tumor xenografts for TSP1 was detected. • Study revealed much lower level of TSP2 expression in cancer specimens

  2. Proteomic study via a non-gel based approach of meningococcal outer membrane vesicle vaccine obtained from strain CU385: a road map for discovering new antigens.

    Science.gov (United States)

    Gil, Jeovanis; Betancourt, L Zaro H; Sardiñas, Gretel; Yero, Daniel; Niebla, Olivia; Delgado, Maité; García, Darien; Pajón, Rolando; Sánchez, Aniel; González, Luis J; Padrón, Gabriel; Campa, Concepción; Sotolongo, Franklin; Barberó, Ramón; Guillén, Gerardo; Herrera, Luis; Besada, Vladimir

    2009-05-01

    This work presents the results from a study of the protein composition of outer membrane vesicles from VA-MENGOC-BC (Finlay Institute, Cuba), an available vaccine against serogroup B Neisseria meningitidis. Proteins were identified by means of SCAPE, a 2DE-free method for proteome studies. More than one hundred proteins were detected by tandem liquid chromatographymass spectrometry analysis of fractions enriched in peptides devoid of histidine or arginine residues, providing a detailed description of the vaccine. A bioinformatic analysis of the identified components resulted in the identification of 31 outer membrane proteins and three conserved hypothetical proteins, allowing the cloning, expression, purification and immunological study of two of them (NMB0088 and NMB1796) as new antigens.

  3. Outer Membrane Protein A Conservation among Orientia tsutsugamushi Isolates Suggests Its Potential as a Protective Antigen and Diagnostic Target

    Directory of Open Access Journals (Sweden)

    Sean M. Evans

    2018-06-01

    Full Text Available Scrub typhus threatens one billion people in the Asia-Pacific area and cases have emerged outside this region. It is caused by infection with any of the multitude of strains of the bacterium Orientia tsutsugamushi. A vaccine that affords heterologous protection and a commercially-available molecular diagnostic assay are lacking. Herein, we determined that the nucleotide and translated amino acid sequences of outer membrane protein A (OmpA are highly conserved among 51 O. tsutsugamushi isolates. Molecular modeling revealed the predicted tertiary structure of O. tsutsugamushi OmpA to be very similar to that of the phylogenetically-related pathogen, Anaplasma phagocytophilum, including the location of a helix that contains residues functionally essential for A. phagocytophilum infection. PCR primers were developed that amplified ompA DNA from all O. tsutsugamushi strains, but not from negative control bacteria. Using these primers in quantitative PCR enabled sensitive detection and quantitation of O. tsutsugamushi ompA DNA from organs and blood of mice that had been experimentally infected with the Karp or Gilliam strains. The high degree of OmpA conservation among O. tsutsugamushi strains evidences its potential to serve as a molecular diagnostic target and justifies its consideration as a candidate for developing a broadly-protective scrub typhus vaccine.

  4. Purification of the Membrane Compartment for Endoplasmic Reticulum-associated Degradation of Exogenous Antigens in Cross-presentation.

    Science.gov (United States)

    Imai, Jun; Otani, Mayu; Sakai, Takahiro; Hatta, Shinichi

    2017-08-21

    Dendritic cells (DCs) are highly capable of processing and presenting internalized exogenous antigens upon major histocompatibility class (MHC) I molecules also known as cross-presentation (CP). CP plays an important role not only in the stimulation of naïve CD8 + T cells and memory CD8 + T cells for infectious and tumor immunity but also in the inactivation of self-acting naïve T cells by T cell anergy or T cell deletion. Although the critical molecular mechanism of CP remains to be elucidated, accumulating evidence indicates that exogenous antigens are processed through endoplasmic reticulum-associated degradation (ERAD) after export from non-classical endocytic compartments. Until recently, characterizations of these endocytic compartments were limited because there were no specific molecular markers other than exogenous antigens. The method described here is a new vesicle isolation protocol, which allows for the purification of these endocytic compartments. Using this purified microsome, we reconstituted the ERAD-like transport, ubiquitination, and processing of the exogenous antigen in vitro, suggesting that the ubiquitin-proteasome system processed the exogenous antigen after export from this cellular compartment. This protocol can be further applied to other cell types to clarify the molecular mechanism of CP.

  5. Solution Structure, Membrane Interactions, and Protein Binding Partners of the Tetraspanin Sm-TSP-2, a Vaccine Antigen from the Human Blood Fluke Schistosoma mansoni*

    Science.gov (United States)

    Jia, Xinying; Schulte, Leigh; Loukas, Alex; Pickering, Darren; Pearson, Mark; Mobli, Mehdi; Jones, Alun; Rosengren, Karl J.; Daly, Norelle L.; Gobert, Geoffrey N.; Jones, Malcolm K.; Craik, David J.; Mulvenna, Jason

    2014-01-01

    The tetraspanins (TSPs) are a family of integral membrane proteins that are ubiquitously expressed at the surface of eukaryotic cells. TSPs mediate a range of processes at the surface of the plasma membrane by providing a scaffold for the assembly of protein complexes known as tetraspanin-enriched microdomains (TEMs). We report here the structure of the surface-exposed EC2 domain from Sm-TSP-2, a TSP from Schistosoma mansoni and one of the better prospects for the development of a vaccine against schistosomiasis. This is the first solution structure of this domain, and our investigations of its interactions with lipid micelles provide a general model for interactions between TSPs, membranes, and other proteins. Using chemical cross-linking, eight potential protein constituents of Sm-TSP-2-mediated TEMs were also identified. These include proteins important for membrane maintenance and repair, providing further evidence for the functional role of Sm-TSP-2- and Sm-TSP-2-mediated TEMs. The identification of calpain, Sm29, and fructose-bisphosphate aldolase, themselves potential vaccine antigens, suggests that the Sm-TSP-2-mediated TEMs could be disrupted via multiple targets. The identification of further Sm-TSP-2-mediated TEM proteins increases the available candidates for multiplex vaccines and/or novel drugs targeting TEMs in the schistosome tegument. PMID:24429291

  6. Solution structure, membrane interactions, and protein binding partners of the tetraspanin Sm-TSP-2, a vaccine antigen from the human blood fluke Schistosoma mansoni.

    Science.gov (United States)

    Jia, Xinying; Schulte, Leigh; Loukas, Alex; Pickering, Darren; Pearson, Mark; Mobli, Mehdi; Jones, Alun; Rosengren, Karl J; Daly, Norelle L; Gobert, Geoffrey N; Jones, Malcolm K; Craik, David J; Mulvenna, Jason

    2014-03-07

    The tetraspanins (TSPs) are a family of integral membrane proteins that are ubiquitously expressed at the surface of eukaryotic cells. TSPs mediate a range of processes at the surface of the plasma membrane by providing a scaffold for the assembly of protein complexes known as tetraspanin-enriched microdomains (TEMs). We report here the structure of the surface-exposed EC2 domain from Sm-TSP-2, a TSP from Schistosoma mansoni and one of the better prospects for the development of a vaccine against schistosomiasis. This is the first solution structure of this domain, and our investigations of its interactions with lipid micelles provide a general model for interactions between TSPs, membranes, and other proteins. Using chemical cross-linking, eight potential protein constituents of Sm-TSP-2-mediated TEMs were also identified. These include proteins important for membrane maintenance and repair, providing further evidence for the functional role of Sm-TSP-2- and Sm-TSP-2-mediated TEMs. The identification of calpain, Sm29, and fructose-bisphosphate aldolase, themselves potential vaccine antigens, suggests that the Sm-TSP-2-mediated TEMs could be disrupted via multiple targets. The identification of further Sm-TSP-2-mediated TEM proteins increases the available candidates for multiplex vaccines and/or novel drugs targeting TEMs in the schistosome tegument.

  7. Lipid engineering reveals regulatory roles for membrane fluidity in yeast flocculation and oxygen-limited growth

    DEFF Research Database (Denmark)

    Degreif, Daniel; de Rond, Tristan; Bertl, Adam

    2017-01-01

    Cells modulate lipid metabolism in order to maintain membrane homeostasis. Here we use a metabolic engineering approach to manipulate the stoichiometry of fatty acid unsaturation, a regulator of cell membrane fluidity, in Saccharomyces cerevisiae. Unexpectedly, reduced lipid unsaturation triggere...

  8. Solid-phase radioimmunoassay for Epstein-Barr virus-associated membrane antigen prepared from B95-8 cell culture supernatants

    International Nuclear Information System (INIS)

    Doelken, G.; Klein, G.

    1977-01-01

    Epstein-Barr virus (EBV)-associated membrane antigen (MA) was concentrated from B95-8 cell culture media by precipitation with polyethylene glycol followed by chromatography on Bio-Gel A-50m. In a RAJI cell-binding assay, MA-positive material could only be found in the void volume of the column. After ultracentrifugation all antigenic activity appeared in the pellet, which suggested that MA was present in aggregates, presumably fragments of cellular membranes and/or virus envelopes. The MA-containing preparation was photopolymerized in polyacrylamide gel. The homogenized gel was used in a solid-phase radioimmunoassay with 125 I-labeled IgG from an anti-MA positive reference serum and an anti-MA negative control serum. The specificity of the reaction was confirmed in blocking tests with anti-EBV positive and negative sera. A good correlation was found between the results obtained in the radioimmunoassay and the results obtained in direct immunofluorescence tests for the detection of MA. The existence of at least two subspecificities of the MA complex could be confirmed by this radioimmunoassay

  9. Image Restoration and Analysis of Influenza Virions Binding to Membrane Receptors Reveal Adhesion-Strengthening Kinetics.

    Directory of Open Access Journals (Sweden)

    Donald W Lee

    Full Text Available With the development of single-particle tracking (SPT microscopy and host membrane mimics called supported lipid bilayers (SLBs, stochastic virus-membrane binding interactions can be studied in depth while maintaining control over host receptor type and concentration. However, several experimental design challenges and quantitative image analysis limitations prevent the widespread use of this approach. One main challenge of SPT studies is the low signal-to-noise ratio of SPT videos, which is sometimes inevitable due to small particle sizes, low quantum yield of fluorescent dyes, and photobleaching. These situations could render current particle tracking software to yield biased binding kinetic data caused by intermittent tracking error. Hence, we developed an effective image restoration algorithm for SPT applications called STAWASP that reveals particles with a signal-to-noise ratio of 2.2 while preserving particle features. We tested our improvements to the SPT binding assay experiment and imaging procedures by monitoring X31 influenza virus binding to α2,3 sialic acid glycolipids. Our interests lie in how slight changes to the peripheral oligosaccharide structures can affect the binding rate and residence times of viruses. We were able to detect viruses binding weakly to a glycolipid called GM3, which was undetected via assays such as surface plasmon resonance. The binding rate was around 28 folds higher when the virus bound to a different glycolipid called GD1a, which has a sialic acid group extending further away from the bilayer surface than GM3. The improved imaging allowed us to obtain binding residence time distributions that reflect an adhesion-strengthening mechanism via multivalent bonds. We empirically fitted these distributions using a time-dependent unbinding rate parameter, koff, which diverges from standard treatment of koff as a constant. We further explain how to convert these models to fit ensemble-averaged binding data

  10. Modulation of endotoxicity of Shigella generalized modules for membrane antigens (GMMA) by genetic lipid A modifications: relative activation of TLR4 and TLR2 pathways in different mutants.

    Science.gov (United States)

    Rossi, Omar; Pesce, Isabella; Giannelli, Carlo; Aprea, Susanna; Caboni, Mariaelena; Citiulo, Francesco; Valentini, Sara; Ferlenghi, Ilaria; MacLennan, Calman Alexander; D'Oro, Ugo; Saul, Allan; Gerke, Christiane

    2014-09-05

    Outer membrane particles from Gram-negative bacteria are attractive vaccine candidates as they present surface antigens in their natural context. We previously developed a high yield production process for genetically derived particles, called generalized modules for membrane antigens (GMMA), from Shigella. As GMMA are derived from the outer membrane, they contain immunostimulatory components, especially lipopolysaccharide (LPS). We examined ways of reducing their reactogenicity by modifying lipid A, the endotoxic part of LPS, through deletion of late acyltransferase genes, msbB or htrB, in GMMA-producing Shigella sonnei and Shigella flexneri strains. GMMA with resulting penta-acylated lipid A from the msbB mutants showed a 600-fold reduced ability, and GMMA from the S. sonnei ΔhtrB mutant showed a 60,000-fold reduced ability compared with GMMA with wild-type lipid A to stimulate human Toll-like receptor 4 (TLR4) in a reporter cell line. In human peripheral blood mononuclear cells, GMMA with penta-acylated lipid A showed a marked reduction in induction of inflammatory cytokines (S. sonnei ΔhtrB, 800-fold; ΔmsbB mutants, 300-fold). We found that the residual activity of these GMMA is largely due to non-lipid A-related TLR2 activation. In contrast, in the S. flexneri ΔhtrB mutant, a compensatory lipid A palmitoleoylation resulted in GMMA with hexa-acylated lipid A with ∼10-fold higher activity to stimulate peripheral blood mononuclear cells than GMMA with penta-acylated lipid A, mostly due to retained TLR4 activity. Thus, for use as vaccines, GMMA will likely require lipid A penta-acylation. The results identify the relative contributions of TLR4 and TLR2 activation by GMMA, which need to be taken into consideration for GMMA vaccine development. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Liberton, Michelle; Austin II, Jotham R; Berg, R. Howard; Pakrasi, Himadri B

    2011-04-01

    Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

  12. Unique Thylakoid Membrane Architecture of a Unicellular N2-Fixing Cyanobacterium Revealed by Electron Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Liberton, Michelle L.; Austin, Jotham R.; Berg, R. H.; Pakrasi, Himadri B.

    2011-04-01

    Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

  13. Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses

    DEFF Research Database (Denmark)

    Benninger, Richard K P; Vanherberghen, Bruno; Young, Stephen

    2009-01-01

    We have applied fluorescence imaging of two-photon linear dichroism to measure the subresolution organization of the cell membrane during formation of the activating (cytolytic) natural killer (NK) cell immune synapse (IS). This approach revealed that the NK cell plasma membrane is convoluted...... into ruffles at the periphery, but not in the center of a mature cytolytic NK cell IS. Time-lapse imaging showed that the membrane ruffles formed at the initial point of contact between NK cells and target cells and then spread radialy across the intercellular contact as the size of the IS increased, becoming...... absent from the center of the mature synapse. Understanding the role of such extensive membrane ruffling in the assembly of cytolytic synapses is an intriguing new goal....

  14. Transverse relaxation dispersion of the p7 membrane channel from hepatitis C virus reveals conformational breathing

    Energy Technology Data Exchange (ETDEWEB)

    Dev, Jyoti; Brüschweiler, Sven [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States); Ouyang, Bo [Chinese Academy of Sciences, State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology (China); Chou, James J., E-mail: james-chou@hms.harvard.edu [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States)

    2015-04-15

    The p7 membrane protein encoded by hepatitis C virus (HCV) assembles into a homo-hexamer that selectively conducts cations. An earlier solution NMR structure of the hexameric complex revealed a funnel-like architecture and suggests that a ring of conserved asparagines near the narrow end of the funnel are important for cation interaction. NMR based drug-binding experiments also suggest that rimantadine can allosterically inhibit ion conduction via a molecular wedge mechanism. These results suggest the presence of dilation and contraction of the funnel tip that are important for channel activity and that the action of the drug is attenuating this motion. Here, we determined the conformational dynamics and solvent accessibility of the p7 channel. The proton exchange measurements show that the cavity-lining residues are largely water accessible, consistent with the overall funnel shape of the channel. Our relaxation dispersion data show that residues Val7 and Leu8 near the asparagine ring are subject to large chemical exchange, suggesting significant intrinsic channel breathing at the tip of the funnel. Moreover, the hinge regions connecting the narrow and wide regions of the funnel show strong relaxation dispersion and these regions are the binding sites for rimantadine. Presence of rimantadine decreases the conformational dynamics near the asparagine ring and the hinge area. Our data provide direct observation of μs–ms dynamics of the p7 channel and support the molecular wedge mechanism of rimantadine inhibition of the HCV p7 channel.

  15. Transverse relaxation dispersion of the p7 membrane channel from hepatitis C virus reveals conformational breathing

    International Nuclear Information System (INIS)

    Dev, Jyoti; Brüschweiler, Sven; Ouyang, Bo; Chou, James J.

    2015-01-01

    The p7 membrane protein encoded by hepatitis C virus (HCV) assembles into a homo-hexamer that selectively conducts cations. An earlier solution NMR structure of the hexameric complex revealed a funnel-like architecture and suggests that a ring of conserved asparagines near the narrow end of the funnel are important for cation interaction. NMR based drug-binding experiments also suggest that rimantadine can allosterically inhibit ion conduction via a molecular wedge mechanism. These results suggest the presence of dilation and contraction of the funnel tip that are important for channel activity and that the action of the drug is attenuating this motion. Here, we determined the conformational dynamics and solvent accessibility of the p7 channel. The proton exchange measurements show that the cavity-lining residues are largely water accessible, consistent with the overall funnel shape of the channel. Our relaxation dispersion data show that residues Val7 and Leu8 near the asparagine ring are subject to large chemical exchange, suggesting significant intrinsic channel breathing at the tip of the funnel. Moreover, the hinge regions connecting the narrow and wide regions of the funnel show strong relaxation dispersion and these regions are the binding sites for rimantadine. Presence of rimantadine decreases the conformational dynamics near the asparagine ring and the hinge area. Our data provide direct observation of μs–ms dynamics of the p7 channel and support the molecular wedge mechanism of rimantadine inhibition of the HCV p7 channel

  16. Crystal structure of a TAPBPR–MHC I complex reveals the mechanism of peptide editing in antigen presentation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiansheng; Natarajan, Kannan; Boyd, Lisa F.; Morozov, Giora I.; Mage, Michael G.; Margulies, David H. (NIH); (Hebrew)

    2017-10-12

    Central to CD8+ T cell–mediated immunity is the recognition of peptide–major histocompatibility complex class I (p–MHC I) proteins displayed by antigen-presenting cells. Chaperone-mediated loading of high-affinity peptides onto MHC I is a key step in the MHC I antigen presentation pathway. However, the structure of MHC I with a chaperone that facilitates peptide loading has not been determined. We report the crystal structure of MHC I in complex with the peptide editor TAPBPR (TAP-binding protein–related), a tapasin homolog. TAPBPR remodels the peptide-binding groove of MHC I, resulting in the release of low-affinity peptide. Changes include groove relaxation, modifications of key binding pockets, and domain adjustments. This structure captures a peptide-receptive state of MHC I and provides insights into the mechanism of peptide editing by TAPBPR and, by analogy, tapasin.

  17. Revealing Linear Aggregates of Light Harvesting Antenna Proteins in Photosynthetic Membranes

    OpenAIRE

    He, Yufan; Zeng, Xiaohua; Mukherjee, Saptarshi; Rajapaksha, Suneth; Kaplan, Samuel; Lu, H. Peter

    2010-01-01

    How light energy is harvested in a natural photosynthetic membrane through energy transfer is closely related to the stoichiometry and arrangement of light harvesting antenna proteins in the membrane. The specific photosynthetic architecture facilitates a rapid and efficient energy transfer among the light harvesting proteins (LH2 and LH1) and to the reaction center. Here we report the identification of linear aggregates of light harvesting proteins, LH2, in the photosynthetic membranes under...

  18. Unusual Self-Assembly of the Recombinant Chlamydia trachomatis Major Outer Membrane Protein-Based Fusion Antigen CTH522 Into Protein Nanoparticles

    DEFF Research Database (Denmark)

    Rose, Fabrice; Karlsen, Kasper; Jensen, Pernille

    2018-01-01

    Sexually transmitted Chlamydia trachomatis (Ct) infects more than 100 million people annually, and untreated chlamydia infections can cause severe complications. Therefore, there is an urgent need for a chlamydia vaccine. The Ct major outer membrane protein (MOMP) is highly immunogenic but is a c......Sexually transmitted Chlamydia trachomatis (Ct) infects more than 100 million people annually, and untreated chlamydia infections can cause severe complications. Therefore, there is an urgent need for a chlamydia vaccine. The Ct major outer membrane protein (MOMP) is highly immunogenic...... but is a challenging vaccine candidate by being an integral membrane protein, and the immunogenicity depends on a correctly folded structure. We investigated the biophysical properties of the recombinant MOMP-based fusion antigen CTH522, which is tested in early human clinical trials. It consists of a truncated......-defined secondary structural elements, and no thermal transitions were measurable. Chemical unfolding resulted monomers that upon removal of the denaturant self-assembled into higher order structures, comparable to the structure of the native protein. The conformation of CTH522 in nanoparticles is thus not entirely...

  19. DHA-fluorescent probe is sensitive to membrane order and reveals molecular adaptation of DHA in ordered lipid microdomains☆

    Science.gov (United States)

    Teague, Heather; Ross, Ron; Harris, Mitchel; Mitchell, Drake C.; Shaikh, Saame Raza

    2012-01-01

    Docosahexaenoic acid (DHA) disrupts the size and order of plasma membrane lipid microdomains in vitro and in vivo. However, it is unknown how the highly disordered structure of DHA mechanistically adapts to increase the order of tightly packed lipid microdomains. Therefore, we studied a novel DHA-Bodipy fluorescent probe to address this issue. We first determined if the DHA-Bodipy probe localized to the plasma membrane of primary B and immortal EL4 cells. Image analysis revealed that DHA-Bodipy localized into the plasma membrane of primary B cells more efficiently than EL4 cells. We then determined if the probe detected changes in plasma membrane order. Quantitative analysis of time-lapse movies established that DHA-Bodipy was sensitive to membrane molecular order. This allowed us to investigate how DHA-Bodipy physically adapted to ordered lipid microdomains. To accomplish this, we employed steady-state and time-resolved fluorescence anisotropy measurements in lipid vesicles of varying composition. Similar to cell culture studies, the probe was highly sensitive to membrane order in lipid vesicles. Moreover, these experiments revealed, relative to controls, that upon incorporation into highly ordered microdomains, DHA-Bodipy underwent an increase in its fluorescence lifetime and molecular order. In addition, the probe displayed a significant reduction in its rotational diffusion compared to controls. Altogether, DHA-Bodipy was highly sensitive to membrane order and revealed for the first time that DHA, despite its flexibility, could become ordered with less rotational motion inside ordered lipid microdomains. Mechanistically, this explains how DHA acyl chains can increase order upon formation of lipid microdomains in vivo. PMID:22841541

  20. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction

    KAUST Repository

    Jackson, Andrew P.

    2014-05-05

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5? ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. 2014 The Author(s) 2014.

  1. Systems Analysis Reveals High Genetic and Antigen-Driven Predetermination of Antibody Repertoires throughout B Cell Development

    Directory of Open Access Journals (Sweden)

    Victor Greiff

    2017-05-01

    Full Text Available Antibody repertoire diversity and plasticity is crucial for broad protective immunity. Repertoires change in size and diversity across multiple B cell developmental stages and in response to antigen exposure. However, we still lack fundamental quantitative understanding of the extent to which repertoire diversity is predetermined. Therefore, we implemented a systems immunology framework for quantifying repertoire predetermination on three distinct levels: (1 B cell development (pre-B cell, naive B cell, plasma cell, (2 antigen exposure (three structurally different proteins, and (3 four antibody repertoire components (V-gene usage, clonal expansion, clonal diversity, repertoire size extracted from antibody repertoire sequencing data (400 million reads. Across all three levels, we detected a dynamic balance of high genetic (e.g., >90% for V-gene usage and clonal expansion in naive B cells and antigen-driven (e.g., 40% for clonal diversity in plasma cells predetermination and stochastic variation. Our study has implications for the prediction and manipulation of humoral immunity.

  2. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction

    KAUST Repository

    Jackson, Andrew P.; Otto, Thomas D.; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B.; Moussa, Ehab; Nair, Mridul; Reid, Adam J.; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A.; Weir, William; Wastling, Jonathan M.; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R.; Pain, Arnab

    2014-01-01

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5? ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. 2014 The Author(s) 2014.

  3. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host–parasite interaction

    Science.gov (United States)

    Jackson, Andrew P.; Otto, Thomas D.; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B.; Moussa, Ehab; Nair, Mridul; Reid, Adam J.; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A.; Weir, William; Wastling, Jonathan M.; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R.; Pain, Arnab

    2014-01-01

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5′ ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. PMID:24799432

  4. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction.

    Science.gov (United States)

    Jackson, Andrew P; Otto, Thomas D; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B; Moussa, Ehab; Nair, Mridul; Reid, Adam J; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A; Weir, William; Wastling, Jonathan M; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R; Pain, Arnab

    2014-06-01

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5' ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Codon optimisation to improve expression of a Mycobacterium avium ssp. paratuberculosis-specific membrane-associated antigen by Lactobacillus salivarius.

    Science.gov (United States)

    Johnston, Christopher; Douarre, Pierre E; Soulimane, Tewfik; Pletzer, Daniel; Weingart, Helge; MacSharry, John; Coffey, Aidan; Sleator, Roy D; O'Mahony, Jim

    2013-06-01

    Subunit and DNA-based vaccines against Mycobacterium avium ssp. paratuberculosis (MAP) attempt to overcome inherent issues associated with whole-cell formulations. However, these vaccines can be hampered by poor expression of recombinant antigens from a number of disparate hosts. The high G+C content of MAP invariably leads to a codon bias throughout gene expression. To investigate if the codon bias affects recombinant MAP antigen expression, the open reading frame of a MAP-specific antigen MptD (MAP3733c) was codon optimised for expression against a Lactobacillus salivarius host. Of the total 209 codons which constitute MAP3733c, 172 were modified resulting in a reduced G+C content from 61% for the native gene to 32.7% for the modified form. Both genes were placed under the transcriptional control of the PnisA promoter; allowing controlled heterologous expression in L. salivarius. Expression was monitored using fluorescence microscopy and microplate fluorometry via GFP tags translationally fused to the C-termini of the two MptD genes. A > 37-fold increase in expression was observed for the codon-optimised MAP3733synth variant over the native gene. Due to the low cost and improved expression achieved, codon optimisation significantly improves the potential of L. salivarius as an oral vaccine stratagem against Johne's disease. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Immunophenotyping of Waldenstroms macroglobulinemia cell lines reveals distinct patterns of surface antigen expression: potential biological and therapeutic implications.

    Directory of Open Access Journals (Sweden)

    Aneel Paulus

    Full Text Available Waldenströms macroglobulinemia (WM is a subtype of Non-Hodgkin's lymphoma in which the tumor cell population is markedly heterogeneous, consisting of immunoglobulin-M secreting B-lymphocytes, plasmacytoid lymphocytes and plasma cells. Due to rarity of disease and scarcity of reliable preclinical models, many facets of WM molecular and phenotypic architecture remain incompletely understood. Currently, there are 3 human WM cell lines that are routinely used in experimental studies, namely, BCWM.1, MWCL-1 and RPCI-WM1. During establishment of RPCI-WM1, we observed loss of the CD19 and CD20 antigens, which are typically present on WM cells. Intrigued by this observation and in an effort to better define the immunophenotypic makeup of this cell line, we conducted a more comprehensive analysis for the presence or absence of other cell surface antigens that are present on the RPCI-WM1 model, as well as those on the two other WM cell lines, BCWM.1 and MWCL-1. We examined expression of 65 extracellular and 4 intracellular antigens, comprising B-cell, plasma cell, T-cell, NK-cell, myeloid and hematopoietic stem cell surface markers by flow cytometry analysis. RPCI-WM1 cells demonstrated decreased expression of CD19, CD20, and CD23 with enhanced expression of CD28, CD38 and CD184, antigens that were differentially expressed on BCWM.1 and MWCL-1 cells. Due to increased expression of CD184/CXCR4 and CD38, RPCI-WM1 represents a valuable model in which to study the effects anti-CXCR4 or anti-CD38 targeted therapies that are actively being developed for treatment of hematologic cancers. Overall, differences in surface antigen expression across the 3 cell lines may reflect the tumor clone population predominant in the index patients, from whom the cell lines were developed. Our analysis defines the utility of the most commonly employed WM cell lines as based on their immunophenotype profiles, highlighting unique differences that can be further studied for

  7. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    KAUST Repository

    Noutsi, Bakiza Kamal; Gratton, Enrico; Chaieb, Saharoui

    2016-01-01

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  8. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    KAUST Repository

    Noutsi, Bakiza Kamal

    2016-06-30

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  9. Reversible membrane reorganizations during photosynthesis in vivo: revealed by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Nagy, Gergely; Posselt, Dorthe; Kovacs, Laszlo

    2011-01-01

    In the present study, we determined characteristic repeat distances of the photosynthetic membranes in living cyanobacterial and eukaryotic algal cells, and in intact thylakoid membranes isolated from higher plants with time-resolved small-angle neutron scattering. This non-invasive technique...

  10. Glycan analysis of Fonsecaea monophora from clinical and environmental origins reveals different structural profile and human antigenic response

    Directory of Open Access Journals (Sweden)

    Juliana Reis Burjack

    2014-10-01

    Full Text Available Dematiaceous fungi constitute a large and heterogeneous group, characterized by having a dark pigment, the dihydroxynaftalen melanin - DHN, inside their cell walls. In nature they are found mainly as soil microbiota or decomposing organic matter, and are spread in tropical and subtropical regions. The fungus Fonsecaea monophora causes chromoblastomycosis in humans, and possesses essential mechanisms that may enhance pathogenicity, proliferation and dissemination inside the host. Glycoconjugates confer important properties to these pathogenic microorganisms. In this work, structural characterization of glycan structures present in two different strains of F. monophora MMHC82 and FE5p4, from clinical and environmental origins, respectively, was performed. Each one were grown on Minimal Medium (MM and Czapeck-Dox (CD medium, and the water soluble cell wall glycoconjugates and exopolysaccharides (EPS were evaluated by NMR, methylation and principal component analysis (PCA. By combining the methylation and 2D NMR analyses, it was possible to visualize the glycosidic profiles of the complex carbohydrate mixtures. Significant differences were observed in β-D-Galf-(1→5 and (1→6 linkages, α- and β-D-Glcp-(1→3, (1→4 and (1→6 units, as well as in α-D-Manp. PCA from 1H-NMR data showed that MMHC82 from CD medium showed a higher variation in the cell wall carbohydrates, mainly related to O-2 substituted β-D-Galf (δ 106.0/5.23 and δ 105.3/5.23 units. In order to investigate the antigenic response of the glycoconjugates, these were screened against serum from chromoblastomycosis patients. The antigen which contained the cell wall of MMHC82 grown in MM had β-D-Manp units that promoted higher antigenic response. The distribution of these fungal species in nature and the knowledge of how cell wall polysaccharides and glycoconjugates structure vary, may contribute to the better understanding and the elucidation of the pathology caused by this

  11. Study of CD69 antigen expression and integrity of leukocyte cellular membrane in stored platelet concentrates following irradiation and treatment with Mirasol® PRT System.

    Science.gov (United States)

    Lachert, Elżbieta; Woźniak, Jolanta; Antoniewicz-Papis, Jolanta; Krzywdzińska, Agnieszka; Kubis, Jolanta; Mikołowska, Agata; Letowska, Magdalena

    2017-01-01

    Leukocytes in transfused blood components, particularly residual lymphocytes, have been shown to contribute to the occurrence of various adverse reactions. One of the most severe is transfusionassociated graft versus host disease (TA-GvHD) following transfusion of blood components contaminated with immunocompetent T lymphocytes. Irradiation is a routine method for protection against TA-GvHD. According to the literature, some pathogen reduction methods have also been proven effective for the inactivation of T lymphocytes, and so they may be considered as an alternative to irradiation. Comparison of CD69 antigen expression and the integrity of the leukocyte cellular membrane in stored platelet concentrates (PCs) following irradiation with the Gammacell 3000 Elan (Nordion Inc., Ottawa, Canada) and treatment with the Mirasol® Pathogen Reduction Technology (PRT) System (Terumo BCT, Lakewood, USA). The study included seven experiments. For each experiment we used 3 PCs, for Mirasol® PRT System treatment (M), for Gammacell 3000 Elan irradiation (R), and for the control (C). 7-amino-actinomycin D (7-AAD, Becton Dickinson, Franklin Lakes, USA) permeability was used to determine lymphocyte viability while CD69 antigen expression was the marker of lymphocyte activation. Analyses of 7-AAD and CD69 antigen expression were performed in a FACS Canto I flow cytometer (Becton Dickinson, USA). During 6 storage days, viable lymphocyte count decreased to 28% (p = 0.001) in the Mirasol® PRT System treated PCs and to 65% (p = 0.004) in the irradiated PCs. A statistically significant increase in CD69 expression in the irradiated PCs was observed; 1.3-fold on day 3 and 1.5-fold on day 6. In the Mirasol ® PRT System treated PCs, no statistically significant increase was observed. The in vitro results suggest that the Mirasol® PRT System is as effective as irradiation due to donor leukocyte inactivation capacity.

  12. Anti-nucleosome antibodies complexed to nucleosomal antigens show anti-DNA reactivity and bind to rat glomerular basement membrane in vivo.

    Science.gov (United States)

    Kramers, C; Hylkema, M N; van Bruggen, M C; van de Lagemaat, R; Dijkman, H B; Assmann, K J; Smeenk, R J; Berden, J H

    1994-01-01

    Histones can mediate the binding of DNA and anti-DNA to the glomerular basement membrane (GBM). In ELISA histone/DNA/anti-DNA complexes are able to bind to heparan sulfate (HS), an intrinsic constituent of the GBM. We questioned whether histone containing immune complexes are able to bind to the GBM, and if so, whether the ligand in the GBM is HS. Monoclonal antibodies (mAbs) complexed to nucleosomal antigens and noncomplexed mAbs were isolated from culture supernatants of four IgG anti-nuclear mAbs. All noncomplexed mAbs showed strong anti-nucleosome reactivity in ELISA. One of them showed in addition anti-DNA reactivity in noncomplexed form. The other three mAbs only showed anti-DNA reactivity when they were complexed to nucleosomal antigens. After renal perfusion a fine granular binding of complexed mAbs to the glomerular capillary wall and activation of complement was observed in immunofluorescence, whereas noncomplexed mAbs did not bind. Immuno-electron microscopy showed binding of complexes to the whole width of the GBM. When HS in the GBM was removed by renal heparinase perfusion the binding of complexed mAb decreased, but did not disappear completely. We conclude that anti-nucleosome mAbs, which do not bind DNA, become DNA reactive once complexed to nucleosomal antigens. These complexed mAbs can bind to the GBM. The binding ligand in the GBM is partly, but not solely, HS. Binding to the GBM of immune complexes containing nucleosomal material might be an important event in the pathogenesis of lupus nephritis. Images PMID:8040312

  13. Potential Impact of Seasonal Malaria Chemoprevention on the Acquisition of Antibodies Against Glutamate-Rich Protein and Apical Membrane Antigen 1 in Children Living in Southern Senegal

    DEFF Research Database (Denmark)

    Ndiaye, Magatte; Sylla, Khadime; Sow, Doudou

    2015-01-01

    Seasonal malaria chemoprevention (SMC) is defined as the intermittent administration of full treatment courses of an antimalarial drug to children during the peak of malaria transmission season with the aim of preventing malaria-associated mortality and morbidity. SMC using sulfadoxine-pyrimetham......Seasonal malaria chemoprevention (SMC) is defined as the intermittent administration of full treatment courses of an antimalarial drug to children during the peak of malaria transmission season with the aim of preventing malaria-associated mortality and morbidity. SMC using sulfadoxine......-pyrimethamine (SP) combined with amodiaquine (AQ) is a promising strategy to control malaria morbidity in areas of highly seasonal malaria transmission. However, a concern is whether SMC can delay the natural acquisition of immunity toward malaria parasites in areas with intense SMC delivery. To investigate this......, total IgG antibody (Ab) responses to Plasmodium falciparum antigens glutamate-rich protein R0 (GLURP-R0) and apical membrane antigen 1 (AMA-1) were measured by enzyme-linked immunosorbent assay in Senegalese children under the age of 10 years in 2010 living in Saraya and Velingara districts (with SMC...

  14. SYNOVIAL MEMBRANE CHANGES IN PATIENTS WITH RHEUMATOID ARTHRITIS REVEALED DURING ARTHROSCOPY

    Directory of Open Access Journals (Sweden)

    E. B. Komarova

    2017-01-01

    Full Text Available Exudative or proliferative processes accompanied by joint destruction may predominate in the synovial membrane (SM in different stages of rheumatoid arthritis (RA. The features of SM changes should be considered in the early diagnosis of RA and in the development of combination treatment for this disease.Objective: to study arthroscopic SM changes in patients with different RA durations and different blood anti-cyclic citrullinated peptide (anti-CCP antibody levels.Subjects and methods. 37 patients with RA underwent arthroscopy with an arthroscope of a 2.4-mm diameter and 30° angle (Karl Storz GmbH, Germany. RA duration was <2 years in 17 patients and ranged from 2 to 8 years in 20; the blood level of anti-CCP antibodies did not exceed 60 IU/ml in 15 patients and it was higher in 22. SM changes were assessed by a semiquantitative method.Results and discussion. Arthroscopy revealed a preponderance of SM hyperemia with an increased vascular pattern (p<0.01 and fibrin deposits (p<0.05 in patients with a RA duration of < 2 years and that of villous hyperplasia with the formation of club-shaped villi (p<0.05 in those with a RA duration of >2 years. The increase in anti-CCP by >60 U/ml was associated with a predominance of inflammatory hyperplasia (p < 0.01, SM hyperemia with a pronounced vascular pattern (p<0.05, as well as with the presence of pannus (pp<0.01.

  15. Quantitative Proteomics Reveals Distinct Differences in the Protein Content of Outer Membrane Vesicle Vaccines

    NARCIS (Netherlands)

    Waterbeemd, van de B.; Mommen, G.P.M.; Pennings, J.L.A.; Eppink, M.H.M.; Wijffels, R.H.; Pol, van der L.A.; Jong, de A.P.J.M.

    2013-01-01

    At present, only vaccines containing outer membrane vesicles (OMV) have successfully stopped Neisseria meningitidis serogroup B epidemics. These vaccines however require detergent-extraction to remove endotoxin, which changes immunogenicity and causes production difficulties. To investigate this in

  16. 18F-DCFBC Prostate-Specific Membrane Antigen-Targeted PET/CT Imaging in Localized Prostate Cancer: Correlation With Multiparametric MRI and Histopathology.

    Science.gov (United States)

    Turkbey, Baris; Mena, Esther; Lindenberg, Liza; Adler, Stephen; Bednarova, Sandra; Berman, Rose; Ton, Anita T; McKinney, Yolanda; Eclarinal, Philip; Hill, Craig; Afari, George; Bhattacharyya, Sibaprasad; Mease, Ronnie C; Merino, Maria J; Jacobs, Paula M; Wood, Bradford J; Pinto, Peter A; Pomper, Martin G; Choyke, Peter L

    2017-10-01

    To assess the ability of (N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-F-fluorobenzyl-L-cysteine) (F-DCFBC), a prostate-specific membrane antigen-targeted PET agent, to detect localized prostate cancer lesions in correlation with multiparametric MRI (mpMRI) and histopathology. This Health Insurance Portability and Accountability Act of 1996-compliant, prospective, institutional review board-approved study included 13 evaluable patients with localized prostate cancer (median age, 62.8 years [range, 51-74 years]; median prostate-specific antigen, 37.5 ng/dL [range, 3.26-216 ng/dL]). Patients underwent mpMRI and F-DCFBC PET/CT within a 3 months' window. Lesions seen on mpMRI were biopsied under transrectal ultrasound/MRI fusion-guided biopsy, or a radical prostatectomy was performed. F-DCFBC PET/CT and mpMRI were evaluated blinded and separately for tumor detection on a lesion basis. For PET image analysis, MRI and F-DCFBC PET images were fused by using software registration; imaging findings were correlated with histology, and uptake of F-DCFBC in tumors was compared with uptake in benign prostatic hyperplasia nodules and normal peripheral zone tissue using the 80% threshold SUVmax. A total of 25 tumor foci (mean size, 1.8 cm; median size, 1.5 cm; range, 0.6-4.7 cm) were histopathologically identified in 13 patients. Sensitivity rates of F-DCFBC PET/CT and mpMRI were 36% and 96%, respectively, for all tumors. For index lesions, the largest tumor with highest Gleason score, sensitivity rates of F-DCFBC PET/CT and mpMRI were 61.5% and 92%, respectively. The average SUVmax for primary prostate cancer was higher (5.8 ± 4.4) than that of benign prostatic hyperplasia nodules (2.1 ± 0.3) or that of normal prostate tissue (2.1 ± 0.4) at 1 hour postinjection (P = 0.0033). The majority of index prostate cancers are detected with F-DCFBC PET/CT, and this may be a prognostic indicator based on uptake and staging. However, for detecting prostate cancer with high sensitivity, it

  17. Phase 1/2a study of the malaria vaccine candidate apical membrane antigen-1 (AMA-l) administered in adjuvant system AS01B or AS02A

    NARCIS (Netherlands)

    M.D. Spring (Michele Donna); J.F. Cummings (James); C.F. Ockenhouse (Christian); S. Dutta (Shantanu); R. Reidler (Randall); E. Angov (Evelina); E. Bergmann-Leitner (Elke); V.A. Stewart (Ann); S. Bittner (Stacey); L. Juompan (Laure); M.G. Kortepeter (Mark); R. Nielsen (Robin); U. Krzych (Urszula); E. Tierney (Ev); L.A. Ware (Lisa); M. Dowler (Megan); C.C. Hermsen (Cornelus); R.W. Sauerwein (Robert); S.J. de Vlas (Sake); O. Ofori-Anyinam (Opokua); D.E. Lanar (David); J.L. Williams (Jack); K.E. Kester (Kent); K. Tucker (Kathryn); M. Shi (Meng); E. Malkin (Elissa); C. Long (Carole); C.L. Diggs (Carter); L. Soisson (Lorraine Amory); M.C. Dubois; W.R. Ballou (Ripley); J. Cohen (Joe); D.G. Heppner (Gray)

    2009-01-01

    textabstractBackground: This Phase 1/2a study evaluated the safety, immunogenicity, and efficacy of an experimental malaria vaccine comprised of the recombinant Plasmodium falciparum protein apical membrane antigen-1 (AMA-1) representing the 3D7 allele formulated with either the AS01B or AS02A

  18. A bioinformatics prediction approach towards analyzing the glycosylation, co-expression and interaction patterns of epithelial membrane antigen (EMA/MUC1)

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, Rajkumar S., E-mail: renu-wadhwa@aist.go.jp; Wadhwa, Renu, E-mail: renu-wadhwa@aist.go.jp [Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science and Technology (AIST Central 4), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan)

    2015-02-27

    Epithelial membrane antigen (EMA or MUC1) is a heavily glycosylated, type I transmembrane glycoprotein commonly expressed by epithelial cells of duct organs. It has been shown to be aberrantly glycosylated in several diseases including cancer. Protein sequence based annotation and analysis of glycosylation profile of glycoproteins by robust computational and comprehensive algorithms provides possible insights to the mechanism(s) of anomalous glycosylation. In present report, by using a number of bioinformatics applications we studied EMA/MUC1 and explored its trans-membrane structural domain sequence that is widely subjected to glycosylation. Exploration of different extracellular motifs led to prediction of N and O-linked glycosylation target sites. Based on the putative O-linked target sites, glycosylated moieties and pathways were envisaged. Furthermore, Protein network analysis demonstrated physical interaction of EMA with a number of proteins and confirmed its functional involvement in cell growth and proliferation pathways. Gene Ontology analysis suggested an involvement of EMA in a number of functions including signal transduction, protein binding, processing and transport along with glycosylation. Thus, present study explored potential of bioinformatics prediction approach in analyzing glycosylation, co-expression and interaction patterns of EMA/MUC1 glycoprotein.

  19. A bioinformatics prediction approach towards analyzing the glycosylation, co-expression and interaction patterns of epithelial membrane antigen (EMA/MUC1)

    International Nuclear Information System (INIS)

    Kalra, Rajkumar S.; Wadhwa, Renu

    2015-01-01

    Epithelial membrane antigen (EMA or MUC1) is a heavily glycosylated, type I transmembrane glycoprotein commonly expressed by epithelial cells of duct organs. It has been shown to be aberrantly glycosylated in several diseases including cancer. Protein sequence based annotation and analysis of glycosylation profile of glycoproteins by robust computational and comprehensive algorithms provides possible insights to the mechanism(s) of anomalous glycosylation. In present report, by using a number of bioinformatics applications we studied EMA/MUC1 and explored its trans-membrane structural domain sequence that is widely subjected to glycosylation. Exploration of different extracellular motifs led to prediction of N and O-linked glycosylation target sites. Based on the putative O-linked target sites, glycosylated moieties and pathways were envisaged. Furthermore, Protein network analysis demonstrated physical interaction of EMA with a number of proteins and confirmed its functional involvement in cell growth and proliferation pathways. Gene Ontology analysis suggested an involvement of EMA in a number of functions including signal transduction, protein binding, processing and transport along with glycosylation. Thus, present study explored potential of bioinformatics prediction approach in analyzing glycosylation, co-expression and interaction patterns of EMA/MUC1 glycoprotein

  20. Molecular characterization of atypical antigenic variants of canine rabies virus reveals its reintroduction by wildlife vectors in southeastern Mexico.

    Science.gov (United States)

    Garcés-Ayala, Fabiola; Aréchiga-Ceballos, Nidia; Ortiz-Alcántara, Joanna M; González-Durán, Elizabeth; Pérez-Agüeros, Sandra I; Méndez-Tenorio, Alfonso; Torres-Longoria, Belem; López-Martínez, Irma; Hernández-Rivas, Lucía; Díaz-Quiñonez, José Alberto; Ramírez-González, José Ernesto

    2017-12-01

    Rabies is an infectious viral disease that is practically always fatal following the onset of clinical signs. In Mexico, the last case of human rabies transmitted by dogs was reported in 2006 and canine rabies has declined significantly due to vaccination campaigns implemented in the country. Here we report on the molecular characterization of six rabies virus strains found in Yucatan and Chiapas, remarkably, four of them showed an atypical reaction pattern when antigenic characterization with a reduced panel of eight monoclonal antibodies was performed. Phylogenetic analyses on the RNA sequences unveiled that the three atypical strains from Yucatan are associated with skunks. Analysis using the virus entire genome showed that they belong to a different lineage distinct from the variants described for this animal species in Mexico. The Chiapas atypical strain was grouped in a lineage that was considered extinct, while the others are clustered within classic dog variants.

  1. Circulating MicroRNAs in Plasma of Hepatitis B e Antigen Positive Children Reveal Liver-Specific Target Genes

    DEFF Research Database (Denmark)

    Winther, Thilde Nordmann; Jacobsen, Kari Stougaard; Mirza, Aashiq Hussain

    2014-01-01

    Background and Aim. Hepatitis B e antigen positive (HBeAg-positive) children are at high risk of severe complications such as hepatocellular carcinoma and cirrhosis. Liver damage is caused by the host immune response to infected hepatocytes, and we hypothesise that specific microRNAs play a role...... in this complex interaction between virus and host. The study aimed to identify microRNAs with aberrant plasma expressions in HBeAg-positive children and with liver-specific target genes. Methods. By revisiting our previous screen of microRNA plasma levels in HBeAg-positive and HBeAg-negative children...... with chronic hepatitis B (CHB) and in healthy controls, candidate microRNAs with aberrant plasma expressions in HBeAg-positive children were identified. MicroRNAs targeting liver-specific genes were selected based on bioinformatics analysis and validated by qRT-PCR using plasma samples from 34 HBe...

  2. Dynamic membrane interactions of antibacterial and antifungal biomolecules, and amyloid peptides, revealed by solid-state NMR spectroscopy.

    Science.gov (United States)

    Naito, Akira; Matsumori, Nobuaki; Ramamoorthy, Ayyalusamy

    2018-02-01

    A variety of biomolecules acting on the cell membrane folds into a biologically active structure in the membrane environment. It is, therefore, important to determine the structures and dynamics of such biomolecules in a membrane environment. While several biophysical techniques are used to obtain low-resolution information, solid-state NMR spectroscopy is one of the most powerful means for determining the structure and dynamics of membrane bound biomolecules such as antibacterial biomolecules and amyloidogenic proteins; unlike X-ray crystallography and solution NMR spectroscopy, applications of solid-state NMR spectroscopy are not limited by non-crystalline, non-soluble nature or molecular size of membrane-associated biomolecules. This review article focuses on the applications of solid-state NMR techniques to study a few selected antibacterial and amyloid peptides. Solid-state NMR studies revealing the membrane inserted bent α-helical structure associated with the hemolytic activity of bee venom melittin and the chemical shift oscillation analysis used to determine the transmembrane structure (with α-helix and 3 10 -helix in the N- and C-termini, respectively) of antibiotic peptide alamethicin are discussed in detail. Oligomerization of an amyloidogenic islet amyloid polypeptide (IAPP, or also known as amylin) resulting from its aggregation in a membrane environment, molecular interactions of the antifungal natural product amphotericin B with ergosterol in lipid bilayers, and the mechanism of lipid raft formation by sphingomyelin studied using solid state NMR methods are also discussed in this review article. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Proteomic analysis of Herbaspirillum seropedicae reveals ammonium-induced AmtB-dependent membrane sequestration of PII proteins.

    Science.gov (United States)

    Huergo, Luciano F; Noindorf, Lilian; Gimenes, Camila; Lemgruber, Renato S P; Cordellini, Daniela F; Falarz, Lucas J; Cruz, Leonardo M; Monteiro, Rose A; Pedrosa, Fábio O; Chubatsu, Leda S; Souza, Emanuel M; Steffens, Maria B R

    2010-07-01

    This study was aimed at describing the spectrum and dynamics of proteins associated with the membrane in the nitrogen-fixing bacterium Herbaspirillum seropedicae according to the availability of fixed nitrogen. Using two-dimensional electrophoresis we identified 79 protein spots representing 45 different proteins in the membrane fraction of H. seropedicae. Quantitative analysis of gel images of membrane extracts indicated two spots with increased levels when cells were grown under nitrogen limitation in comparison with nitrogen sufficiency; these spots were identified as the GlnK protein and as a conserved noncytoplasmic protein of unknown function which was encoded in an operon together with GlnK and AmtB. Comparison of gel images of membrane extracts from cells grown under nitrogen limitation or under the same regime but collected after an ammonium shock revealed two proteins, GlnB and GlnK, with increased levels after the shock. The P(II) proteins were not present in the membrane fraction of an amtB mutant. The results reported here suggest that changes in the cellular localization of P(II) might play a role in the control of nitrogen metabolism in H. seropedicae.

  4. The Disulfide Bond Cys255-Cys279 in the Immunoglobulin-Like Domain of Anthrax Toxin Receptor 2 Is Required for Membrane Insertion of Anthrax Protective Antigen Pore.

    Directory of Open Access Journals (Sweden)

    Pedro Jacquez

    Full Text Available Anthrax toxin receptors act as molecular clamps or switches that control anthrax toxin entry, pH-dependent pore formation, and translocation of enzymatic moieties across the endosomal membranes. We previously reported that reduction of the disulfide bonds in the immunoglobulin-like (Ig domain of the anthrax toxin receptor 2 (ANTXR2 inhibited the function of the protective antigen (PA pore. In the present study, the disulfide linkage in the Ig domain was identified as Cys255-Cys279 and Cys230-Cys315. Specific disulfide bond deletion mutants were achieved by replacing Cys residues with Ala residues. Deletion of the disulfide bond C255-C279, but not C230-C315, inhibited the PA pore-induced release of the fluorescence dyes from the liposomes, suggesting that C255-C279 is essential for PA pore function. Furthermore, we found that deletion of C255-C279 did not affect PA prepore-to-pore conversion, but inhibited PA pore membrane insertion by trapping the PA membrane-inserting loops in proteinaceous hydrophobic pockets. Fluorescence spectra of Trp59, a residue adjacent to the PA-binding motif in von Willebrand factor A (VWA domain of ANTXR2, showed that deletion of C255-C279 resulted in a significant conformational change on the receptor ectodomain. The disulfide deletion-induced conformational change on the VWA domain was further confirmed by single-particle 3D reconstruction of the negatively stained PA-receptor heptameric complexes. Together, the biochemical and structural data obtained in this study provides a mechanistic insight into the role of the receptor disulfide bond C255-C279 in anthrax toxin action. Manipulation of the redox states of the receptor, specifically targeting to C255-C279, may become a novel strategy to treat anthrax.

  5. Cell membrane conformation at vertical nanowire array interface revealed by fluorescence imaging

    International Nuclear Information System (INIS)

    Berthing, Trine; Bonde, Sara; Rostgaard, Katrine R; Martinez, Karen L; Madsen, Morten Hannibal; Sørensen, Claus B; Nygård, Jesper

    2012-01-01

    The perspectives offered by vertical arrays of nanowires for biosensing applications in living cells depend on the access of individual nanowires to the cell interior. Recent results on electrical access and molecular delivery suggest that direct access is not always obtained. Here, we present a generic approach to directly visualize the membrane conformation of living cells interfaced with nanowire arrays, with single nanowire resolution. The method combines confocal z-stack imaging with an optimized cell membrane labelling strategy which was applied to HEK293 cells interfaced with 2–11 μm long and 3–7 μm spaced nanowires with various surface coatings (bare, aminosilane-coated or polyethyleneimine-coated indium arsenide). We demonstrate that, for all commonly used nanowire lengths, spacings and surface coatings, nanowires generally remain enclosed in a membrane compartment, and are thereby not in direct contact with the cell interior. (paper)

  6. Structural changes in plasma membranes prepared from irradiated Chinese hamster V79 cells as revealed by Raman spectroscopy

    International Nuclear Information System (INIS)

    Verma, S.P.; Sonwalkar, N.

    1991-01-01

    The effect of gamma irradiation on the integrity of plasma membranes isolated from Chinese hamster V79 cells was investigated by Raman spectroscopy. Plasma membranes of control V79 cells show transitions between -10 and 5 degree C (low-temperature transition), 10 and 22 degree C (middle-temperature transition), and 32 and 40 degree C (high-temperature transition). Irradiation (5 Gy) alters these transitions markedly. First, the low-temperature transition shifts to higher temperature (onset and completion temperatures 4 and 14 degree C). Second, the middle-temperature transition shifts up to the range of about 20-32 degree C, but the width remains unchanged. Third, the higher temperature transition broadens markedly and shifts to the range of about 15-40 degree C. Protein secondary structure as determined by least-squares analysis of the amide I bands shows 36% total helix, 55% total beta-strand, and 9% turn plus undefined for control plasma membrane proteins. Plasma membrane proteins of irradiated V79 cells show an increase in total helix (40 and 45% at 5 and 10 Gy, respectively) and a decrease in the total beta-strand (48 and 44% at 5 and 10 Gy, respectively) structures. The qualitative analysis of the Raman features of plasma membranes and model compounds in the 1600 cm-1 region, assigned to tyrosine groups, revealed that irradiation alters the microenvironment of these groups. We conclude that the radiation dose used in the survival range of Chinese hamster V79 cells can cause damage to plasma membrane proteins without detectable lipid peroxidation, and that the altered proteins react differently with lipids, yielding a shift in the thermal transition properties

  7. Quantitative Proteomics Reveals Membrane Protein-Mediated Hypersaline Sensitivity and Adaptation in Halophilic Nocardiopsis xinjiangensis.

    Science.gov (United States)

    Zhang, Yao; Li, Yanchang; Zhang, Yongguang; Wang, Zhiqiang; Zhao, Mingzhi; Su, Na; Zhang, Tao; Chen, Lingsheng; Wei, Wei; Luo, Jing; Zhou, Yanxia; Xu, Yongru; Xu, Ping; Li, Wenjun; Tao, Yong

    2016-01-04

    The genus Nocardiopsis is one of the most dominant Actinobacteria that survives in hypersaline environments. However, the adaptation mechanisms for halophilism are still unclear. Here, we performed isobaric tags for relative and absolute quantification based quantitative proteomics to investigate the functions of the membrane proteome after salt stress. A total of 683 membrane proteins were identified and quantified, of which 126 membrane proteins displayed salt-induced changes in abundance. Intriguingly, bioinformatics analyses indicated that these differential proteins showed two expression patterns, which were further validated by phenotypic changes and functional differences. The majority of ABC transporters, secondary active transporters, cell motility proteins, and signal transduction kinases were up-regulated with increasing salt concentration, whereas cell differentiation, small molecular transporter (ions and amino acids), and secondary metabolism proteins were significantly up-regulated at optimum salinity, but down-regulated or unchanged at higher salinity. The small molecule transporters and cell differentiation-related proteins acted as sensing proteins that played a more important biological role at optimum salinity. However, the ABC transporters for compatible solutes, Na(+)-dependent transporters, and cell motility proteins acted as adaptive proteins that actively counteracted higher salinity stress. Overall, regulation of membrane proteins may provide a major protection strategy against hyperosmotic stress.

  8. Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer.

    Science.gov (United States)

    Milowsky, Matthew I; Nanus, David M; Kostakoglu, Lale; Vallabhajosula, Shankar; Goldsmith, Stanley J; Bander, Neil H

    2004-07-01

    To determine the maximum-tolerated dose (MTD), toxicity, human antihuman antibody (HAHA) response, pharmacokinetics, organ dosimetry, targeting, and preliminary efficacy of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 ((90)Y-J591) in patients with androgen-independent prostate cancer (PC). Patients with androgen-independent PC and evidence of disease progression received indium-111-J591 for pharmacokinetic and biodistribution determinations followed 1 week later by (90)Y-J591 at five dose levels: 5, 10, 15, 17.5, and 20 mCi/m(2). Patients were eligible for up to three re-treatments if platelet and neutrophil recovery was satisfactory. Twenty-nine patients with androgen-independent PC received (90)Y-J591, four of whom were re-treated. Dose limiting toxicity (DLT) was seen at 20 mCi/m(2), with two patients experiencing thrombocytopenia with non-life-threatening bleeding episodes requiring platelet transfusions. The 17.5-mCi/m(2) dose level was determined to be the MTD. No re-treated patients experienced DLT. Nonhematologic toxicity was not dose limiting. Targeting of known sites of bone and soft tissue metastases was seen in the majority of patients. No HAHA response was seen. Antitumor activity was seen, with two patients experiencing 85% and 70% declines in prostate-specific antigen (PSA) levels lasting 8 and 8.6 months, respectively, before returning to baseline. Both patients had objective measurable disease responses. An additional six patients (21%) experienced PSA stabilization. The recommended dose for (90)Y-J591 is 17.5 mCi/m(2). Acceptable toxicity, excellent targeting of known sites of PC metastases, and biologic activity in patients with androgen-independent PC warrant further investigation of (90)Y-J591 in the treatment of patients with PC.

  9. Comparison of clinical performance of antigen basedenzyme immunoassay (EIA and major outer membrane protein (MOMP-PCR for detection of genital Chlamydia trachomatis infection

    Directory of Open Access Journals (Sweden)

    Mahmoud Nateghi Rostami

    2016-06-01

    Full Text Available Background: Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen worldwide. Early detection and treatment of C.trachomatis genital infection prevent serious reproductive complications. Objective: Performances of enzyme immunoassay (EIA and major outer membrane protein (MOMP-polymerase chain reaction (PCR for diagnosis of genital C.trachomatis infection in women were compared. Materials and Methods: In this cross sectional study a total of 518 women volunteers were included (33.67±8.3 yrs who had been referred to Gynecology clinics of Qom province, Iran, were included. Endocervical swab specimens were collected to detect lipopolysaccharide (LPS antigen in EIA and to amplify MOMP gene of C.trachomatis in PCR. Results were confirmed using ompI nested-PCR. Sensitivity, specificity, positive (PPV and negative predictive values (NPV were calculated for performance of the tests. Odds ratios were determined using binary logistic regression analysis. Results: In total, 37 (7.14% cases were positive by EIA and/or MOMP-PCR. All discrepant results were confirmed by nested-PCR. Sensitivity, specificity, PPV and NPV values of EIA were 59.46%, 100%, 100% and 96.98%, and those of MOMPPCR were 97.30%, 100%, 100%, 99.79%, respectively. Reproductive complications including 2.7% ectopic pregnancy, 5.4% stillbirth, 5.4% infertility, and 10.8% PROM were recorded. The risk of developing chlamydiosis was increased 4.8-fold in volunteers with cervicitis (p<0.05; OR 4.80; 95% CI 1.25-18.48. Conclusion: C.trachomatis infection should be regarded in women of reproductive ages especially those with cervicitis. Primary screening of women by using the low cost antigen-EIA is recommended; however, due to the low sensitivity of Ag-EIA, verification of the negative results by a DNA amplification method is needed.

  10. Comparison of clinical performance of antigen based-enzyme immunoassay (EIA) and major outer membrane protein (MOMP)-PCR for detection of genital Chlamydia trachomatis infection.

    Science.gov (United States)

    Nateghi Rostami, Mahmoud; Hossein Rashidi, Batool; Aghsaghloo, Fatemeh; Nazari, Razieh

    2016-06-01

    Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen worldwide. Early detection and treatment of C.trachomatis genital infection prevent serious reproductive complications. Performances of enzyme immunoassay (EIA) and major outer membrane protein (MOMP)-polymerase chain reaction (PCR) for diagnosis of genital C.trachomatis infection in women were compared. In this cross sectional study a total of 518 women volunteers were included (33.67±8.3 yrs) who had been referred to Gynecology clinics of Qom province, Iran, were included. Endocervical swab specimens were collected to detect lipopolysaccharide (LPS) antigen in EIA and to amplify MOMP gene of C.trachomatis in PCR. Results were confirmed using ompI nested-PCR. Sensitivity, specificity, positive (PPV) and negative predictive values (NPV) were calculated for performance of the tests. Odds ratios were determined using binary logistic regression analysis. In total, 37 (7.14%) cases were positive by EIA and/or MOMP-PCR. All discrepant results were confirmed by nested-PCR. Sensitivity, specificity, PPV and NPV values of EIA were 59.46%, 100%, 100% and 96.98%, and those of MOMP-PCR were 97.30%, 100%, 100%, 99.79%, respectively. Reproductive complications including 2.7% ectopic pregnancy, 5.4% stillbirth, 5.4% infertility, and 10.8% PROM were recorded. The risk of developing chlamydiosis was increased 4.8-fold in volunteers with cervicitis (p<0.05; OR 4.80; 95% CI 1.25-18.48). C.trachomatis infection should be regarded in women of reproductive ages especially those with cervicitis. Primary screening of women by using the low cost antigen-EIA is recommended; however, due to the low sensitivity of Ag-EIA, verification of the negative results by a DNA amplification method is needed.

  11. The crystal structure of Haloferax volcanii proliferating cell nuclear antigen reveals unique surface charge characteristics due to halophilic adaptation

    Directory of Open Access Journals (Sweden)

    Morroll Shaun

    2009-08-01

    Full Text Available Abstract Background The high intracellular salt concentration required to maintain a halophilic lifestyle poses challenges to haloarchaeal proteins that must stay soluble, stable and functional in this extreme environment. Proliferating cell nuclear antigen (PCNA is a fundamental protein involved in maintaining genome integrity, with roles in both DNA replication and repair. To investigate the halophilic adaptation of such a key protein we have crystallised and solved the structure of Haloferax volcanii PCNA (HvPCNA to a resolution of 2.0 Å. Results The overall architecture of HvPCNA is very similar to other known PCNAs, which are highly structurally conserved. Three commonly observed adaptations in halophilic proteins are higher surface acidity, bound ions and increased numbers of intermolecular ion pairs (in oligomeric proteins. HvPCNA possesses the former two adaptations but not the latter, despite functioning as a homotrimer. Strikingly, the positive surface charge considered key to PCNA's role as a sliding clamp is dramatically reduced in the halophilic protein. Instead, bound cations within the solvation shell of HvPCNA may permit sliding along negatively charged DNA by reducing electrostatic repulsion effects. Conclusion The extent to which individual proteins adapt to halophilic conditions varies, presumably due to their diverse characteristics and roles within the cell. The number of ion pairs observed in the HvPCNA monomer-monomer interface was unexpectedly low. This may reflect the fact that the trimer is intrinsically stable over a wide range of salt concentrations and therefore additional modifications for trimer maintenance in high salt conditions are not required. Halophilic proteins frequently bind anions and cations and in HvPCNA cation binding may compensate for the remarkable reduction in positive charge in the pore region, to facilitate functional interactions with DNA. In this way, HvPCNA may harness its environment as

  12. The crystal structure of Haloferax volcanii proliferating cell nuclear antigen reveals unique surface charge characteristics due to halophilic adaptation

    Science.gov (United States)

    Winter, Jody A; Christofi, Panayiotis; Morroll, Shaun; Bunting, Karen A

    2009-01-01

    Background The high intracellular salt concentration required to maintain a halophilic lifestyle poses challenges to haloarchaeal proteins that must stay soluble, stable and functional in this extreme environment. Proliferating cell nuclear antigen (PCNA) is a fundamental protein involved in maintaining genome integrity, with roles in both DNA replication and repair. To investigate the halophilic adaptation of such a key protein we have crystallised and solved the structure of Haloferax volcanii PCNA (HvPCNA) to a resolution of 2.0 Å. Results The overall architecture of HvPCNA is very similar to other known PCNAs, which are highly structurally conserved. Three commonly observed adaptations in halophilic proteins are higher surface acidity, bound ions and increased numbers of intermolecular ion pairs (in oligomeric proteins). HvPCNA possesses the former two adaptations but not the latter, despite functioning as a homotrimer. Strikingly, the positive surface charge considered key to PCNA's role as a sliding clamp is dramatically reduced in the halophilic protein. Instead, bound cations within the solvation shell of HvPCNA may permit sliding along negatively charged DNA by reducing electrostatic repulsion effects. Conclusion The extent to which individual proteins adapt to halophilic conditions varies, presumably due to their diverse characteristics and roles within the cell. The number of ion pairs observed in the HvPCNA monomer-monomer interface was unexpectedly low. This may reflect the fact that the trimer is intrinsically stable over a wide range of salt concentrations and therefore additional modifications for trimer maintenance in high salt conditions are not required. Halophilic proteins frequently bind anions and cations and in HvPCNA cation binding may compensate for the remarkable reduction in positive charge in the pore region, to facilitate functional interactions with DNA. In this way, HvPCNA may harness its environment as opposed to simply surviving in

  13. Super-resolution microscopy reveals the insulin-resistance-regulated reorganization of GLUT4 on plasma membranes.

    Science.gov (United States)

    Gao, Lan; Chen, Junling; Gao, Jing; Wang, Hongda; Xiong, Wenyong

    2017-01-15

    GLUT4 (also known as SLC2A4) is essential for glucose uptake in skeletal muscles and adipocytes, which play central roles in whole-body glucose metabolism. Here, using direct stochastic optical reconstruction microscopy (dSTORM) to investigate the characteristics of plasma-membrane-fused GLUT4 at the single-molecule level, we have demonstrated that insulin and insulin resistance regulate the spatial organization of GLUT4 in adipocytes. Stimulation with insulin shifted the balance of GLUT4 on the plasma membrane toward a more dispersed configuration. In contrast, insulin resistance induced a more clustered distribution of GLUT4 and increased the mean number of molecules per cluster. Furthermore, our data demonstrate that the F 5 QQI motif and lipid rafts mediate the maintenance of GLUT4 clusters on the plasma membrane. Mutation of F 5 QQI (F 5 QQA-GLUT4) induced a more clustered distribution of GLUT4; moreover, destruction of lipid rafts in adipocytes expressing F 5 QQA-GLUT4 dramatically decreased the percentage of large clusters and the mean number of molecules per cluster. In conclusion, our data clarify the effects of insulin stimulation or insulin resistance on GLUT4 reorganization on the plasma membrane and reveal new pathogenic mechanisms of insulin resistance. © 2017. Published by The Company of Biologists Ltd.

  14. Flavivirus infection from mosquitoes in vitro reveals cell entry at the plasma membrane

    International Nuclear Information System (INIS)

    Vancini, Ricardo; Kramer, Laura D.; Ribeiro, Mariana; Hernandez, Raquel; Brown, Dennis

    2013-01-01

    Dengue and West Nile viruses are enveloped RNA viruses that belong to genus Flavivirus (family Flaviviridae) and are considered important mosquito-borne viral pathogenic agents worldwide. A potential target for intervention strategies is the virus cell entry mechanism. Previous studies of flavivirus entry have focused on the effects of biochemical and molecular inhibitors on viral entry leading to controversial conclusions suggesting that the process is dependent upon endocytosis and low pH mediated membrane fusion. In this study we analyzed the early events in the infection process by means of electron microscopy and immuno-gold labeling of viral particles during cell entry, and used as a new approach for infecting cells with viruses obtained directly from mosquitoes. The results show that Dengue and West Nile viruses may infect cells by a mechanism that involves direct penetration of the host cell plasma membrane as proposed for alphaviruses.

  15. Flavivirus infection from mosquitoes in vitro reveals cell entry at the plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vancini, Ricardo [Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC (United States); Kramer, Laura D. [Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, NY (United States); Ribeiro, Mariana; Hernandez, Raquel [Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC (United States); Brown, Dennis, E-mail: dennis_brown@ncsu.edu [Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC (United States)

    2013-01-20

    Dengue and West Nile viruses are enveloped RNA viruses that belong to genus Flavivirus (family Flaviviridae) and are considered important mosquito-borne viral pathogenic agents worldwide. A potential target for intervention strategies is the virus cell entry mechanism. Previous studies of flavivirus entry have focused on the effects of biochemical and molecular inhibitors on viral entry leading to controversial conclusions suggesting that the process is dependent upon endocytosis and low pH mediated membrane fusion. In this study we analyzed the early events in the infection process by means of electron microscopy and immuno-gold labeling of viral particles during cell entry, and used as a new approach for infecting cells with viruses obtained directly from mosquitoes. The results show that Dengue and West Nile viruses may infect cells by a mechanism that involves direct penetration of the host cell plasma membrane as proposed for alphaviruses.

  16. Analysis of exocyst subunit EXO70 family reveals distinct membrane polar domains in Tobacco pollen tubes

    Czech Academy of Sciences Publication Activity Database

    Sekereš, Juraj; Pejchar, Přemysl; Šantrůček, J.; Vukašinović, Nemanja; Žárský, Viktor; Potocký, Martin

    2017-01-01

    Roč. 173, č. 3 (2017), s. 1659-1675 ISSN 0032-0889 R&D Projects: GA ČR GA13-19073S; GA ČR GA15-24711S Grant - others:OPPK(XE) CZ.2.16/3.1.00/21519 Institutional support: RVO:61389030 Keywords : PLASMA-MEMBRANE * ARABIDOPSIS-THALIANA * CELL-MIGRATION Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 6.456, year: 2016

  17. Computational Approaches for Revealing the Structure of Membrane Transporters: Case Study on Bilitranslocase

    Directory of Open Access Journals (Sweden)

    Katja Venko

    Full Text Available The structural and functional details of transmembrane proteins are vastly underexplored, mostly due to experimental difficulties regarding their solubility and stability. Currently, the majority of transmembrane protein structures are still unknown and this present a huge experimental and computational challenge. Nowadays, thanks to X-ray crystallography or NMR spectroscopy over 3000 structures of membrane proteins have been solved, among them only a few hundred unique ones. Due to the vast biological and pharmaceutical interest in the elucidation of the structure and the functional mechanisms of transmembrane proteins, several computational methods have been developed to overcome the experimental gap. If combined with experimental data the computational information enables rapid, low cost and successful predictions of the molecular structure of unsolved proteins. The reliability of the predictions depends on the availability and accuracy of experimental data associated with structural information. In this review, the following methods are proposed for in silico structure elucidation: sequence-dependent predictions of transmembrane regions, predictions of transmembrane helix–helix interactions, helix arrangements in membrane models, and testing their stability with molecular dynamics simulations. We also demonstrate the usage of the computational methods listed above by proposing a model for the molecular structure of the transmembrane protein bilitranslocase. Bilitranslocase is bilirubin membrane transporter, which shares similar tissue distribution and functional properties with some of the members of the Organic Anion Transporter family and is the only member classified in the Bilirubin Transporter Family. Regarding its unique properties, bilitranslocase is a potentially interesting drug target. Keywords: Membrane proteins, Bilitranslocase, 3D protein structure, Transmembrane region predictors, Helix–helix interactions

  18. Lipid engineering reveals regulatory roles for membrane fluidity in yeast flocculation and oxygen-limited growth

    Energy Technology Data Exchange (ETDEWEB)

    Degreif, Daniel [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Technical Univ. of Darmstadt (Germany); de Rond, Tristan [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States); Bertl, Adam [Technical Univ. of Darmstadt (Germany); Keasling, Jay D. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Technical Univ. of Denmark, Lyngby (Denmark); Budin, Itay [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States)

    2017-03-18

    Cells modulate lipid metabolism in order to maintain membrane homeostasis. In this paper, we use a metabolic engineering approach to manipulate the stoichiometry of fatty acid unsaturation, a regulator of cell membrane fluidity, in Saccharomyces cerevisiae. Unexpectedly, reduced lipid unsaturation triggered cell-cell adhesion (flocculation), a phenomenon characteristic of industrial yeast but uncommon in laboratory strains. We find that ER lipid saturation sensors induce expression of FLO1 – encoding a cell wall polysaccharide binding protein – independently of its canonical regulator. In wild-type cells, Flo1p-dependent flocculation occurs under oxygen-limited growth, which reduces unsaturated lipid synthesis and thus serves as the environmental trigger for flocculation. Transcriptional analysis shows that FLO1 is one of the most highly induced genes in response to changes in lipid unsaturation, and that the set of membrane fluidity-sensitive genes is globally activated as part of the cell's long-term response to hypoxia during fermentation. Finally, our results show how the lipid homeostasis machinery of budding yeast is adapted to carry out a broad response to an environmental stimulus important in biotechnology.

  19. Antigenic variation of the class I outer membrane protein in hyperendemic Neisseria meningitidis strains in the netherlands

    NARCIS (Netherlands)

    Bart, A.; Dankert, J.; van der Ende, A.

    1999-01-01

    Since 1980, the number of cases of meningococcal disease caused by serogroup B isolates with the P1.4 serosubtype has greatly increased in The Netherlands. Screening for this serosubtype in the strain collection of The Netherlands Reference Laboratory for Bacterial Meningitis revealed that a low

  20. Protein kinase a dependent phosphorylation of apical membrane antigen 1 plays an important role in erythrocyte invasion by the malaria parasite.

    Directory of Open Access Journals (Sweden)

    Kerstin Leykauf

    2010-06-01

    Full Text Available Apicomplexan parasites are obligate intracellular parasites that infect a variety of hosts, causing significant diseases in livestock and humans. The invasive forms of the parasites invade their host cells by gliding motility, an active process driven by parasite adhesion proteins and molecular motors. A crucial point during host cell invasion is the formation of a ring-shaped area of intimate contact between the parasite and the host known as a tight junction. As the invasive zoite propels itself into the host-cell, the junction moves down the length of the parasite. This process must be tightly regulated and signalling is likely to play a role in this event. One crucial protein for tight-junction formation is the apical membrane antigen 1 (AMA1. Here we have investigated the phosphorylation status of this key player in the invasion process in the human malaria parasite Plasmodium falciparum. We show that the cytoplasmic tail of P. falciparum AMA1 is phosphorylated at serine 610. We provide evidence that the enzyme responsible for serine 610 phosphorylation is the cAMP regulated protein kinase A (PfPKA. Importantly, mutation of AMA1 serine 610 to alanine abrogates phosphorylation of AMA1 in vivo and dramatically impedes invasion. In addition to shedding unexpected new light on AMA1 function, this work represents the first time PKA has been implicated in merozoite invasion.

  1. Quantitative characterisation of clinically significant intra-prostatic cancer by prostate-specific membrane antigen (PSMA) expression and cell density on PSMA-11.

    Science.gov (United States)

    Domachevsky, Liran; Goldberg, Natalia; Bernstine, Hanna; Nidam, Meital; Groshar, David

    2018-05-30

    To quantitatively characterize clinically significant intra-prostatic cancer (IPC) by prostate-specific membrane antigen (PSMA) expression and cell density on PSMA-11 positron emission tomography/magnetic resonance (PET/MR). Retrospective study approved by the institutional review board with informed written consent obtained. Patients with a solitary, biopsy-proven prostate cancer, Gleason score (GS) ≥7, presenting for initial evaluation by PET/computerised tomography (PET/CT), underwent early prostate PET/MR immediately after PSMA-11 tracer injection. PET/MR [MRI-based attenuation correction (MRAC)] and PET/CT [CT-based AC (CTAC)] maximal standardised uptake value (SUVmax) and minimal and mean apparent diffusion coefficient (ADCmin, ADCmean; respectively) in normal prostatic tissue (NPT) were compared to IPC area. The relationship between SUVmax, ADCmin and ADCmean measurements was obtained. Twenty-two patients (mean age 69.5±5.0 years) were included in the analysis. Forty-four prostate areas were evaluated (22 IPC and 22 NPT). Median MRAC SUVmax of NPT was significantly lower than median MRAC SUVmax of IPC (p prostate cancer patients with GS ≥ 7. • PSMA PET/MR metrics differentiate between normal and tumoural prostatic tissue. • A multi-parametric approach combining molecular and anatomical information might direct prostate biopsy. • PSMA PET/MR metrics are warranted for radiomics analysis.

  2. Crystal structure of an orthomyxovirus matrix protein reveals mechanisms for self-polymerization and membrane association.

    Science.gov (United States)

    Zhang, Wenting; Zheng, Wenjie; Toh, Yukimatsu; Betancourt-Solis, Miguel A; Tu, Jiagang; Fan, Yanlin; Vakharia, Vikram N; Liu, Jun; McNew, James A; Jin, Meilin; Tao, Yizhi J

    2017-08-08

    Many enveloped viruses encode a matrix protein. In the influenza A virus, the matrix protein M1 polymerizes into a rigid protein layer underneath the viral envelope to help enforce the shape and structural integrity of intact viruses. The influenza virus M1 is also known to mediate virus budding as well as the nuclear export of the viral nucleocapsids and their subsequent packaging into nascent viral particles. Despite extensive studies on the influenza A virus M1 (FLUA-M1), only crystal structures of its N-terminal domain are available. Here we report the crystal structure of the full-length M1 from another orthomyxovirus that infects fish, the infectious salmon anemia virus (ISAV). The structure of ISAV-M1 assumes the shape of an elbow, with its N domain closely resembling that of the FLUA-M1. The C domain, which is connected to the N domain through a flexible linker, is made of four α-helices packed as a tight bundle. In the crystal, ISAV-M1 monomers form infinite 2D arrays with a network of interactions involving both the N and C domains. Results from liposome flotation assays indicated that ISAV-M1 binds membrane via electrostatic interactions that are primarily mediated by a positively charged surface loop from the N domain. Cryoelectron tomography reconstruction of intact ISA virions identified a matrix protein layer adjacent to the inner leaflet of the viral membrane. The physical dimensions of the virion-associated matrix layer are consistent with the 2D ISAV-M1 crystal lattice, suggesting that the crystal lattice is a valid model for studying M1-M1, M1-membrane, and M1-RNP interactions in the virion.

  3. Metagenomes reveal microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor.

    Science.gov (United States)

    Ma, Jinxing; Wang, Zhiwei; Li, Huan; Park, Hee-Deung; Wu, Zhichao

    2016-06-01

    Metagenomic sequencing was used to investigate the microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor (MBR). The results showed that the microbial community in the MBR was highly diverse. Notably, function analysis of the dominant genera indicated that common genes from different phylotypes were identified for important functional potentials with the observation of variation of abundances of genes in a certain taxon (e.g., Dechloromonas). Despite maintaining similar metabolic functional potentials with a parallel full-scale conventional activated sludge (CAS) system due to treating the identical wastewater, the MBR had more abundant nitrification-related bacteria and coding genes of ammonia monooxygenase, which could well explain its excellent ammonia removal in the low-temperature period. Furthermore, according to quantification of the genes involved in exopolysaccharide and extracellular polymeric substance (EPS) protein metabolism, the MBR did not show a much different potential in producing EPS compared to the CAS system, and bacteria from the membrane biofilm had lower abundances of genes associated with EPS biosynthesis and transport compared to the activated sludge in the MBR.

  4. Raman spectroscopy of single extracellular vesicles reveals subpopulations with varying membrane content (Conference Presentation)

    Science.gov (United States)

    Smith, Zachary J.; Lee, Changwon; Rojalin, Tatu; Carney, Randy P.; Hazari, Sidhartha; Knudson, Alisha; Lam, Kit S.; Saari, Heikki; Lazaro Ibañez, Elisa; Viitala, Tapani; Laaksonen, Timo; Yliperttula, Marjo; Wachsmann-Hogiu, Sebastian

    2016-03-01

    Exosomes are small (~100nm) membrane bound vesicles excreted by cells as part of their normal biological processes. These extracellular vesicles are currently an area of intense research, since they were recently found to carry functional mRNA that allows transfer of proteins and other cellular instructions between cells. Exosomes have been implicated in a wide range of diseases, including cancer. Cancer cells are known to have increased exosome production, and may use those exosomes to prepare remote environments for metastasis. Therefore, there is a strong need to develop characterization methods to help understand the structure and function of these vesicles. However, current techniques, such as proteomics and genomics technologies, rely on aggregating a large amount of exosome material and reporting on chemical content that is averaged over many millions of exosomes. Here we report on the use of laser-tweezers Raman spectroscopy (LTRS) to probe individual vesicles, discovering distinct heterogeneity among exosomes both within a cell line, as well as between different cell lines. Through principal components analysis followed by hierarchical clustering, we have identified four "subpopulations" of exosomes shared across seven cell lines. The key chemical differences between these subpopulations, as determined by spectral analysis of the principal component loadings, are primarily related to membrane composition. Specifically, the differences can be ascribed to cholesterol content, cholesterol to phospholipid ratio, and surface protein expression. Thus, we have shown LTRS to be a powerful method to probe the chemical content of single extracellular vesicles.

  5. Membrane inlet mass spectrometry reveals that Ceriporiopsis subvermispora bicupin oxalate oxidase is inhibited by nitric oxide.

    Science.gov (United States)

    Moomaw, Ellen W; Uberto, Richard; Tu, Chingkuang

    2014-07-18

    Membrane inlet mass spectrometry (MIMS) uses a semipermeable membrane as an inlet to a mass spectrometer for the measurement of the concentration of small uncharged molecules in solution. We report the use of MIMS to characterize the catalytic properties of oxalate oxidase (E.C. 1.2.3.4) from Ceriporiopsis subvermispora (CsOxOx). Oxalate oxidase is a manganese dependent enzyme that catalyzes the oxygen-dependent oxidation of oxalate to carbon dioxide in a reaction that is coupled with the formation of hydrogen peroxide. CsOxOx is the first bicupin enzyme identified that catalyzes this reaction. The MIMS method of measuring OxOx activity involves continuous, real-time direct detection of oxygen consumption and carbon dioxide production from the ion currents of their respective mass peaks. (13)C2-oxalate was used to allow for accurate detection of (13)CO2 (m/z 45) despite the presence of adventitious (12)CO2. Steady-state kinetic constants determined by MIMS are comparable to those obtained by a continuous spectrophotometric assay in which H2O2 production is coupled to the horseradish peroxidase catalyzed oxidation of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid). Furthermore, we used MIMS to determine that NO inhibits the activity of the CsOxOx with a KI of 0.58±0.06 μM. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Hydrophilic Phage-Mimicking Membrane Active Antimicrobials Reveal Nanostructure-Dependent Activity and Selectivity.

    Science.gov (United States)

    Jiang, Yunjiang; Zheng, Wan; Kuang, Liangju; Ma, Hairong; Liang, Hongjun

    2017-09-08

    The prevalent wisdom on developing membrane active antimicrobials (MAAs) is to seek a delicate, yet unquantified, cationic-hydrophobic balance. Inspired by phages that use nanostructured protein devices to invade bacteria efficiently and selectively, we study here the antibiotic role of nanostructures by designing spherical and rod-like polymer molecular brushes (PMBs) that mimic the two basic structural motifs of bacteriophages. Three model PMBs with different well-defined geometries consisting of multiple, identical copies of densely packed poly(4-vinyl-N-methylpyridine iodide) branches are synthesized by controlled/"living" polymerization, reminiscent of the viral structural motifs comprised of multiple copies of protein subunits. We show that, while the individual linear-chain polymer branch that makes up the PMBs is hydrophilic and a weak antimicrobial, amphiphilicity is not a required antibiotic trait once nanostructures come into play. The nanostructured PMBs induce an unusual topological transition of bacterial but not mammalian membranes to form pores. The sizes and shapes of the nanostructures further help define the antibiotic activity and selectivity of the PMBs against different families of bacteria. This study highlights the importance of nanostructures in the design of MAAs with high activity, low toxicity, and target specificity.

  7. Comparative proteome analysis reveals pathogen specific outer membrane proteins of Leptospira.

    Science.gov (United States)

    Dhandapani, Gunasekaran; Sikha, Thoduvayil; Rana, Aarti; Brahma, Rahul; Akhter, Yusuf; Gopalakrishnan Madanan, Madathiparambil

    2018-04-10

    Proteomes of pathogenic Leptospira interrogans and L. borgpetersenii and the saprophytic L. biflexa were filtered through computational tools to identify Outer Membrane Proteins (OMPs) that satisfy the required biophysical parameters for their presence on the outer membrane. A total of 133, 130, and 144 OMPs were identified in L. interrogans, L. borgpetersenii, and L. biflexa, respectively, which forms approximately 4% of proteomes. A holistic analysis of transporting and pathogenic characteristics of OMPs together with Clusters of Orthologous Groups (COGs) among the OMPs and their distribution across 3 species was made and put forward a set of 21 candidate OMPs specific to pathogenic leptospires. It is also found that proteins homologous to the candidate OMPs were also present in other pathogenic species of leptospires. Six OMPs from L. interrogans and 2 from L. borgpetersenii observed to have similar COGs while those were not found in any intermediate or saprophytic forms. These OMPs appears to have role in infection and pathogenesis and useful for anti-leptospiral strategies. © 2018 Wiley Periodicals, Inc.

  8. Tracking Glideosome-associated protein 50 reveals the development and organization of the inner membrane complex of Plasmodium falciparum.

    Science.gov (United States)

    Yeoman, Jeffrey A; Hanssen, Eric; Maier, Alexander G; Klonis, Nectarios; Maco, Bohumil; Baum, Jake; Turnbull, Lynne; Whitchurch, Cynthia B; Dixon, Matthew W A; Tilley, Leann

    2011-04-01

    The most deadly of the human malaria parasites, Plasmodium falciparum, has different stages specialized for invasion of hepatocytes, erythrocytes, and the mosquito gut wall. In each case, host cell invasion is powered by an actin-myosin motor complex that is linked to an inner membrane complex (IMC) via a membrane anchor called the glideosome-associated protein 50 (PfGAP50). We generated P. falciparum transfectants expressing green fluorescent protein (GFP) chimeras of PfGAP50 (PfGAP50-GFP). Using immunoprecipitation and fluorescence photobleaching, we show that C-terminally tagged PfGAP50-GFP can form a complex with endogenous copies of the linker protein PfGAP45 and the myosin A tail domain-interacting protein (MTIP). Full-length PfGAP50-GFP is located in the endoplasmic reticulum in early-stage parasites and then redistributes to apical caps during the formation of daughter merozoites. In the final stage of schizogony, the PfGAP50-GFP profile extends further around the merozoite surface. Three-dimensional (3D) structured illumination microscopy reveals the early-stage IMC as a doubly punctured flat ellipsoid that separates to form claw-shaped apposed structures. A GFP fusion of PfGAP50 lacking the C-terminal membrane anchor is misdirected to the parasitophorous vacuole. Replacement of the acid phosphatase homology domain of PfGAP50 with GFP appears to allow correct trafficking of the chimera but confers a growth disadvantage.

  9. Lipid raft proteome reveals that oxidative phosphorylation system is associated with the plasma membrane.

    Science.gov (United States)

    Kim, Bong-Woo; Lee, Chang Seok; Yi, Jae-Sung; Lee, Joo-Hyung; Lee, Joong-Won; Choo, Hyo-Jung; Jung, Soon-Young; Kim, Min-Sik; Lee, Sang-Won; Lee, Myung-Shik; Yoon, Gyesoon; Ko, Young-Gyu

    2010-12-01

    Although accumulating proteomic analyses have supported the fact that mitochondrial oxidative phosphorylation (OXPHOS) complexes are localized in lipid rafts, which mediate cell signaling, immune response and host-pathogen interactions, there has been no in-depth study of the physiological functions of lipid-raft OXPHOS complexes. Here, we show that many subunits of OXPHOS complexes were identified from the lipid rafts of human adipocytes, C2C12 myotubes, Jurkat cells and surface biotin-labeled Jurkat cells via shotgun proteomic analysis. We discuss the findings of OXPHOS complexes in lipid rafts, the role of the surface ATP synthase complex as a receptor for various ligands and extracellular superoxide generation by plasma membrane oxidative phosphorylation complexes.

  10. Cellular pH measurements in Emiliania huxleyi reveal pronounced membrane proton permeability.

    Science.gov (United States)

    Suffrian, K; Schulz, K G; Gutowska, M A; Riebesell, U; Bleich, M

    2011-05-01

    • To understand the influence of changing surface ocean pH and carbonate chemistry on the coccolithophore Emiliania huxleyi, it is necessary to characterize mechanisms involved in pH homeostasis and ion transport. • Here, we measured effects of changes in seawater carbonate chemistry on the fluorescence emission ratio of BCECF (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein) as a measure of intracellular pH (pH(i)). Out of equilibrium solutions were used to differentiate between membrane permeation pathways for H(+), CO(2) and HCO(3)(-). • Changes in fluorescence ratio were calibrated in single cells, resulting in a ratio change of 0.78 per pH(i) unit. pH(i) acutely followed the pH of seawater (pH(e)) in a linear fashion between pH(e) values of 6.5 and 9 with a slope of 0.44 per pH(e) unit. pH(i) was nearly insensitive to changes in seawater CO(2) at constant pH(e) and HCO(3)(-). An increase in extracellular HCO(3)(-) resulted in a slight intracellular acidification. In the presence of DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid), a broad-spectrum inhibitor of anion exchangers, E. huxleyi acidified irreversibly. DIDS slightly reduced the effect of pH(e) on pH(i). • The data for the first time show the occurrence of a proton permeation pathway in E. huxleyi plasma membrane. pH(i) homeostasis involves a DIDS-sensitive mechanism. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  11. Development of myiasis vaccine: In vitro detection of immunoprotective responses of peritrophic membrane protein, first instar larva Ll supernatant and pellet antigen of fly Chrysomyia bezziana in sheep

    Directory of Open Access Journals (Sweden)

    Sukarsih

    1999-10-01

    Full Text Available Myiasis control by means of individual treatment of animals which are mainly rised extensively is time consumed and expensive. The alternative way to control this disease by vaccination is considered effective and economically accepted. However the expected vaccine is now still being developed under a collaborative project between CSIRO, Inter-University Centre on Biotechnology-ITB and Research Institute for Veterinary Science and funded by ACIAR. There are several antigens have been identified as vaccine candidates and an in vitro bioassay technique has been developed for assessing the immunoresponses of vaccine in sheep. Three antigens were used for vaccines in this study, these included protein peritrophic membrane (PM, soluble extract (SE and pellet extract (PE of 1st instar larvae of Chrysomya bezziana. Twenty four experimental sheep were divided into 4 groups of 6 animals, 3 groups of animals were injected with PM, SE and PE vaccines with the dose rate of 0.5 g PM/head, 0.8 g PE/head and 4.2 ml LE/head respectively, and the other one group was injected with 4 ml PBS/head as a control group. Vaccination with the same dose was repeated 4 weeks after the 1st vaccination as a booster, and 2 weeks after the booster the sheep were challenged with live larvae, 3 days after challenge animals were killed. Sera were collected at the day of vaccination, 4 weeks after vaccination, 2 weeks after booster, and 3 days after challenge. An in vitro bioassay technique was conducted by culturing 1st instar larvae on five media containing sera collected from each experimental animal. The effects of sera on cultivated larvae were assessed by means of larval weight and larval mortality rate. The results indicated that the growth rate and survival of cultivated larvae in media containing anti-PM sera were significantly lower (P<0.01 compared to the larvae cultivated on media with sera on the day of vaccination. The larval weight depression by anti- PM sera

  12. Construction of a recombinant adenovirus co-expressing truncated human prostate-specific membrane antigen and mouse 4-1BBL genes and its effect on dendritic cells

    Directory of Open Access Journals (Sweden)

    Xiaodong Weng

    2011-03-01

    Full Text Available Our aim was to construct a recombinant adenovirus co-expressing truncated human prostate-specific membrane antigen (tPSMA and mouse 4-1BBL genes and to determine its effect on dendritic cells (DCs generated from bone marrow suspensions harvested from C57BL/6 mice for which the effect of 4-1BBL on DCs is not clear, especially during DCs processing tumor-associated antigen. Replication deficient adenovirus AdMaxTM Expression System was used to construct recombinant adenovirus Ad-tPSMA-internal ribosome entry site-mouse 4-1BBL (Ad-tPSMA-IRES-m4-1BBL and Ad-enhanced green fluorescent protein. Day 7 proliferating DC aggregates generated from C57BL/6 mice were collected as immature DCs and further mature DCs were obtained by lipopolysaccharide activated immature DCs. After DCs were exposed to the recombinant adenovirus with 250 multiplicity of infection, the expression of tPSMA and m4-1BBL proteins were detected by Western blot, and the apoptosis and phenotype of DCs were analyzed by flow cytometry. Cytokines (IL-6 and IL-12 in the supernatant were detected by enzyme-linked immunosorbent assay (ELISA. Proliferation of T cells was detected by allogeneic mixed lymphocyte reactions. The tPSMA and m4-1BBL proteins were expressed correctly. The apoptosis rate of DCs transfected with Ad-tPSMA-IRES-m4-1BBL was 14.6%, lower than that of control DCs. The expression of co-stimulatory molecules [CD80 (81.6 ± 5.4% and CD86 (80.13 ± 2.81%] up-regulated in Ad-tPSMA-IRES-m4-1BBL-pulsed DCs, and the level of IL-6 (3960.2 ± 50.54 pg/mL and IL-12 (249.57 ± 12.51 pg/mL production in Ad-tPSMA-IRES-m4-1BBL-transduced DCs were significantly higher (P < 0.05 than those in control DCs. Ad-tPSMA-IRES-m4-1BBL induced higher T-cell proliferation (OD450 = 0.614 ± 0.018, indicating that this recombinant adenovirus can effectively enhance the activity of DCs.

  13. Atomic force microscopy reveals multiple patterns of antenna organization in purple bacteria: implications for energy transduction mechanisms and membrane modeling.

    Science.gov (United States)

    Sturgis, James N; Niederman, Robert A

    2008-01-01

    Recent topographs of the intracytoplasmic membrane (ICM) of purple bacteria obtained by atomic force microscopy (AFM) have provided the first surface views of the native architecture of a multicomponent biological membrane at submolecular resolution, representing an important landmark in structural biology. A variety of species-dependent, closely packed arrangements of light-harvesting (LH) complexes was revealed: the most highly organized was found in Rhodobacter sphaeroides in which the peripheral LH2 antenna was seen either in large clusters or in fixed rows interspersed among ordered arrays of dimeric LH1-reaction center (RC) core complexes. A more random organization was observed in other species containing both the LH1 and LH2 complexes, as typified by Rhododspirillum photometricum with randomly packed monomeric LH1-RC core complexes intermingled with large, paracrystalline domains of LH2 antenna. Surprisingly, no structures that could be identified as the ATP synthase or cytochrome bc (1) complexes were observed, which may reflect their localization at ICM vesicle poles or in curved membrane areas, out of view from the flat regions imaged by AFM. This possible arrangement of energy transducing complexes has required a reassessment of energy tranduction mechanisms which place the cytochrome bc (1) complex in close association with the RC. Instead, more plausible proposals must account for the movement of quinone redox species over considerable membrane distances on appropriate time scales. AFM, together with atomic resolution structures are also providing the basis for molecular modeling of the ICM that is leading to an improved picture of the supramolecular organization of photosynthetic complexes, as well as the forces that drive their segregation into distinct domains.

  14. Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response.

    Science.gov (United States)

    Xue, Qiong; Bettini, Emily; Paczkowski, Patrick; Ng, Colin; Kaiser, Alaina; McConnell, Timothy; Kodrasi, Olja; Quigley, Máire F; Heath, James; Fan, Rong; Mackay, Sean; Dudley, Mark E; Kassim, Sadik H; Zhou, Jing

    2017-11-21

    It remains challenging to characterize the functional attributes of chimeric antigen receptor (CAR)-engineered T cell product targeting CD19 related to potency and immunotoxicity ex vivo, despite promising in vivo efficacy in patients with B cell malignancies. We employed a single-cell, 16-plex cytokine microfluidics device and new analysis techniques to evaluate the functional profile of CD19 CAR-T cells upon antigen-specific stimulation. CAR-T cells were manufactured from human PBMCs transfected with the lentivirus encoding the CD19-BB-z transgene and expanded with anti-CD3/anti-CD28 coated beads. The enriched CAR-T cells were stimulated with anti-CAR or control IgG beads, stained with anti-CD4 RPE and anti-CD8 Alexa Fluor 647 antibodies, and incubated for 16 h in a single-cell barcode chip (SCBC). Each SCBC contains ~12,000 microchambers, covered with a glass slide that was pre-patterned with a complete copy of a 16-plex antibody array. Protein secretions from single CAR-T cells were captured and subsequently analyzed using proprietary software and new visualization methods. We demonstrate a new method for single-cell profiling of CD19 CAR-T pre-infusion products prepared from 4 healthy donors. CAR-T single cells exhibited a marked heterogeneity of cytokine secretions and polyfunctional (2+ cytokine) subsets specific to anti-CAR bead stimulation. The breadth of responses includes anti-tumor effector (Granzyme B, IFN-γ, MIP-1α, TNF-α), stimulatory (GM-CSF, IL-2, IL-8), regulatory (IL-4, IL-13, IL-22), and inflammatory (IL-6, IL-17A) functions. Furthermore, we developed two new bioinformatics tools for more effective polyfunctional subset visualization and comparison between donors. Single-cell, multiplexed, proteomic profiling of CD19 CAR-T product reveals a diverse landscape of immune effector response of CD19 CAR-T cells to antigen-specific challenge, providing a new platform for capturing CAR-T product data for correlative analysis. Additionally, such high

  15. Ultra-deep sequencing reveals high prevalence and broad structural diversity of hepatitis B surface antigen mutations in a global population.

    Science.gov (United States)

    Gencay, Mikael; Hübner, Kirsten; Gohl, Peter; Seffner, Anja; Weizenegger, Michael; Neofytos, Dionysios; Batrla, Richard; Woeste, Andreas; Kim, Hyon-Suk; Westergaard, Gaston; Reinsch, Christine; Brill, Eva; Thu Thuy, Pham Thi; Hoang, Bui Huu; Sonderup, Mark; Spearman, C Wendy; Pabinger, Stephan; Gautier, Jérémie; Brancaccio, Giuseppina; Fasano, Massimo; Santantonio, Teresa; Gaeta, Giovanni B; Nauck, Markus; Kaminski, Wolfgang E

    2017-01-01

    The diversity of the hepatitis B surface antigen (HBsAg) has a significant impact on the performance of diagnostic screening tests and the clinical outcome of hepatitis B infection. Neutralizing or diagnostic antibodies against the HBsAg are directed towards its highly conserved major hydrophilic region (MHR), in particular towards its "a" determinant subdomain. Here, we explored, on a global scale, the genetic diversity of the HBsAg MHR in a large, multi-ethnic cohort of randomly selected subjects with HBV infection from four continents. A total of 1553 HBsAg positive blood samples of subjects originating from 20 different countries across Africa, America, Asia and central Europe were characterized for amino acid variation in the MHR. Using highly sensitive ultra-deep sequencing, we found 72.8% of the successfully sequenced subjects (n = 1391) demonstrated amino acid sequence variation in the HBsAg MHR. This indicates that the global variation frequency in the HBsAg MHR is threefold higher than previously reported. The majority of the amino acid mutations were found in the HBV genotypes B (28.9%) and C (25.4%). Collectively, we identified 345 distinct amino acid mutations in the MHR. Among these, we report 62 previously unknown mutations, which extends the worldwide pool of currently known HBsAg MHR mutations by 22%. Importantly, topological analysis identified the "a" determinant upstream flanking region as the structurally most diverse subdomain of the HBsAg MHR. The highest prevalence of "a" determinant region mutations was observed in subjects from Asia, followed by the African, American and European cohorts, respectively. Finally, we found that more than half (59.3%) of all HBV subjects investigated carried multiple MHR mutations. Together, this worldwide ultra-deep sequencing based genotyping study reveals that the global prevalence and structural complexity of variation in the hepatitis B surface antigen have, to date, been significantly underappreciated.

  16. Use of radioimmune assay in investigating reagents to be used in the immunocytochemical localization of hepatitis B surface antigen in immune complexes in the kidney of patients with membranous nephropathy and Australia antigenaemia

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe-Coote, S [South African Medical Research Council, Tygerberg (South Africa). Inst. for Electron Microscopy

    1983-09-01

    Radioimmune assay (RIA) was used to investigate the effect of fixatives on antigenicity of the hepatitis B surface antigen (HBsAg) and the effect of pronase on the elution of antibody (Ab) from the HBsAg-Ab complex. The effect of pronase on Ab elution was also tested on sections of kidney from a patient with the immune complex disease systemic lupus erythematosus (SLE). Immunoglobulin G (IgG) was located in pronase treated and untreated sections using the indirect immunoperoxidase technique. Glutareldehyde was shown to be the fixative of choice for studies involving HBsAg. All fixatives were shown to have less effect on antigenicity at 4/sup 0/C than at room temperature. Osmium tetroxide reduced antigenicity to one-third, even at 4/sup 0/C. RIA and SLE kidney section studies showed that Ab was eluted from immune complexes by pronase. Pre-fixation of the antigen (Ag) by glutaraldehyde appears to have no effect on the final elution, although fixation after pronase treatment seemed to enhance the elution effects. The availability of an RIA kit with HBsAg- and Ab-coated beads was of great assistance in evaluating reagents to be used in immunoperoxidase studies of HBsAg in immune complexes of patients with membranous nephropathy and Australia antigenaemia.

  17. Integrative Analysis of Subcellular Quantitative Proteomics Studies Reveals Functional Cytoskeleton Membrane-Lipid Raft Interactions in Cancer.

    Science.gov (United States)

    Shah, Anup D; Inder, Kerry L; Shah, Alok K; Cristino, Alexandre S; McKie, Arthur B; Gabra, Hani; Davis, Melissa J; Hill, Michelle M

    2016-10-07

    Lipid rafts are dynamic membrane microdomains that orchestrate molecular interactions and are implicated in cancer development. To understand the functions of lipid rafts in cancer, we performed an integrated analysis of quantitative lipid raft proteomics data sets modeling progression in breast cancer, melanoma, and renal cell carcinoma. This analysis revealed that cancer development is associated with increased membrane raft-cytoskeleton interactions, with ∼40% of elevated lipid raft proteins being cytoskeletal components. Previous studies suggest a potential functional role for the raft-cytoskeleton in the action of the putative tumor suppressors PTRF/Cavin-1 and Merlin. To extend the observation, we examined lipid raft proteome modulation by an unrelated tumor suppressor opioid binding protein cell-adhesion molecule (OPCML) in ovarian cancer SKOV3 cells. In agreement with the other model systems, quantitative proteomics revealed that 39% of OPCML-depleted lipid raft proteins are cytoskeletal components, with microfilaments and intermediate filaments specifically down-regulated. Furthermore, protein-protein interaction network and simulation analysis showed significantly higher interactions among cancer raft proteins compared with general human raft proteins. Collectively, these results suggest increased cytoskeleton-mediated stabilization of lipid raft domains with greater molecular interactions as a common, functional, and reversible feature of cancer cells.

  18. Prostate-specific membrane antigen targeted imaging and therapy of prostate cancer using a PSMA inhibitor as a homing ligand.

    Science.gov (United States)

    Kularatne, Sumith A; Wang, Kevin; Santhapuram, Hari-Krishna R; Low, Philip S

    2009-01-01

    Prostate cancer (PCa) is a major cause of mortality and morbidity in Western society today. Current methods for detecting PCa are limited, leaving most early malignancies undiagnosed and sites of metastasis in advanced disease undetected. Major deficiencies also exist in the treatment of PCa, especially metastatic disease. In an effort to improve both detection and therapy of PCa, we have developed a PSMA-targeted ligand that delivers attached imaging and therapeutic agents selectively to PCa cells without targeting normal cells. The PSMA-targeted radioimaging agent (DUPA-(99m)Tc) was found to bind PSMA-positive human PCa cells (LNCaP cell line) with nanomolar affinity (K(D) = 14 nM). Imaging and biodistribution studies revealed that DUPA-(99m)Tc localizes primarily to LNCaP cell tumor xenografts in nu/nu mice (% injected dose/gram = 11.3 at 4 h postinjection; tumor-to-muscle ratio = 75:1). Two PSMA-targeted optical imaging agents (DUPA-FITC and DUPA-rhodamine B) were also shown to efficiently label PCa cells and to internalize and traffic to intracellular endosomes. A PSMA-targeted chemotherapeutic agent (DUPA-TubH) was demonstrated to kill PSMA-positive LNCaP cells in culture (IC(50) = 3 nM) and to eliminate established tumor xenografts in nu/nu mice with no detectable weight loss. Blockade of tumor targeting upon administration of excess PSMA inhibitor (PMPA) and the absence of targeting to PSMA-negative tumors confirmed the specificity of each of the above targeted reagents for PSMA. Tandem use of the imaging and therapeutic agents targeted to the same receptor could allow detection, staging, monitoring, and treatment of PCa with improved accuracy and efficacy.

  19. Single-particle fusion of influenza viruses reveals complex interactions with target membranes

    Science.gov (United States)

    van der Borg, Guus; Braddock, Scarlett; Blijleven, Jelle S.; van Oijen, Antoine M.; Roos, Wouter H.

    2018-05-01

    The first step in infection of influenza A virus is contact with the host cell membrane, with which it later fuses. The composition of the target bilayer exerts a complex influence on both fusion efficiency and time. Here, an in vitro, single-particle approach is used to study this effect. Using total internal reflection fluorescence (TIRF) microscopy and a microfluidic flow cell, the hemifusion of single virions is visualized. Hemifusion efficiency and kinetics are studied while altering target bilayer cholesterol content and sialic-acid donor. Cholesterol ratios tested were 0%, 10%, 20%, and 40%. Sialic-acid donors GD1a and GYPA were used. Both cholesterol ratio and sialic-acid donors proved to have a significant effect on hemifusion efficiency. Furthermore, comparison between GD1a and GYPA conditions shows that the cholesterol dependence of the hemifusion time is severely affected by the sialic-acid donor. Only GD1a shows a clear increasing trend in hemifusion efficiency and time with increasing cholesterol concentration of the target bilayer with maximum rates for GD1A and 40% cholesterol. Overall our results show that sialic acid donor and target bilayer composition should be carefully chosen, depending on the desired hemifusion time and efficiency in the experiment.

  20. SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY REVEALS INTERNAL LIMITING MEMBRANE PEELING ALTERS DEEP RETINAL VASCULATURE.

    Science.gov (United States)

    Michalewska, Zofia; Nawrocki, Jerzy

    2018-04-30

    To describe morphology of retinal and choroidal vessels in swept-source optical coherence tomography angiography before and after vitrectomy with the temporal inverted internal limiting membrane (ILM) flap technique for full-thickness macular holes. Prospective, observational study of 36 eyes of 33 patients with full-thickness macular holes swept-source optical coherence tomography angiography was performed in patients before and 1 month after vitrectomy. Vitrectomy with the temporal inverted ILM flap technique was performed. In this method, ILM is peeled only at one side of the fovea. An ILM flap is created to cover the macular hole. Comparison of retina vasculature in the areas of ILM peeling vs. no ILM peeling at 1 and 3 months after successful vitrectomy was performed. The study demonstrated lower density of vessels in the deep retinal plexus in the area where ILM was peeled as compared to the rest of the fovea. Visual acuity and central retinal thickness 1 month after surgery correlates with fovea avascular zone diameter in deep retinal layers at the same time point (P = 0.001). This study confirmed that ILM peeling might alter blood flow in deep retinal vessels below the peeling area in the early postoperative period. The area of the fovea avascular zone corresponds to functional results at the same time point.

  1. Development of (99m)Tc-labeled asymmetric urea derivatives that target prostate-specific membrane antigen for single-photon emission computed tomography imaging.

    Science.gov (United States)

    Kimura, Hiroyuki; Sampei, Sotaro; Matsuoka, Daiko; Harada, Naoya; Watanabe, Hiroyuki; Arimitsu, Kenji; Ono, Masahiro; Saji, Hideo

    2016-05-15

    Prostate-specific membrane antigen (PSMA) is expressed strongly in prostate cancers and is, therefore, an attractive diagnostic and radioimmunotherapeutic target. In contrast to previous reports of PMSA-targeting (99m)Tc-tricarbonyl complexes that are cationic or lack a charge, no anionic (99m)Tc-tricarbonyl complexes have been reported. Notably, the hydrophilicity conferred by both cationic and anionic charges leads to rapid hepatobiliary clearance, whereas an anionic charge might better enhance renal clearance relative to a cationic charge. Therefore, an improvement in rapid clearance would be expected with either cationic or anionic charges, particularly anionic charges. In this study, we designed and synthesized a novel anionic (99m)Tc-tricarbonyl complex ([(99m)Tc]TMCE) and evaluated its use as a single-photon emission computed tomography (SPECT) imaging probe for PSMA detection. Direct synthesis of [(99m)Tc]TMCE from dimethyl iminodiacetate, which contains both the asymmetric urea and succinimidyl moiety important for PSMA binding, was performed using our microwave-assisted one-pot procedure. The chelate formation was successfully achieved even though the precursor included a complicated bioactive moiety. The radiochemical yield of [(99m)Tc]TMCE was 12-17%, with a radiochemical purity greater than 98% after HPLC purification. [(99m)Tc]TMCE showed high affinity in vitro, with high accumulation in LNCaP tumors and low hepatic retention in biodistribution and SPECT/CT studies. These findings warrant further evaluation of [(99m)Tc]TMCE as an imaging agent and support the benefit of this strategy for the design of other PSMA imaging probes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. 99mTc-labeling and evaluation of a HYNIC modified small-molecular inhibitor of prostate-specific membrane antigen

    International Nuclear Information System (INIS)

    Xu, Xiaoping; Zhang, Jianping; Hu, Silong; He, Simin; Bao, Xiao; Ma, Guang; Luo, Jianmin; Cheng, Jingyi; Zhang, Yingjian

    2017-01-01

    Introduction: Prostate-specific membrane antigen (PSMA) is a well-established target in the development of radiopharmaceuticals for the diagnosis and therapy of prostate cancer (PCa). In this study, we evaluated a novel 99m Tc-labeled small molecular inhibitor of PSMA. Methods: This new small-molecular inhibitor of PSMA, 6-hydrazinonicotinate-Aminocaproic acid-Lysine-Urea-Glutamate (HYNIC-ALUG) was radiolabeled by 99m Tc and was evaluated both in vitro and in vivo using PCa models (PC-3 and LNCaP). Radiation dosimetry was assessed in mice. Results: 99m Tc-HYNIC-ALUG showed excellent stability in different media. A cell assay preliminarily displayed its specificity for PSMA. The inhibitor showed good pharmacokinetics making it suitable for in vivo imaging. PC-3-derived tumors showed no obvious radioactive uptake; however, the LNCaP-derived tumors showed very high radioactive uptake which was significantly decreased by the selective PSMA inhibitor 2-PMPA. Biodistribution in LNCaP xenografts showed an optimum tumor-to-blood ratio of 24.23 ± 3.54 at 2 h. Tumor uptake was also decreased in the inhibition experiment with 2-PMPA (19.45 ± 2.14%ID/g versus 1.42 ± 0.15%ID/g at 2 h). The effective dose of the 99m Tc-HYNIC-ALUG was 8.4E-04 mSv/MBq. Conclusions: A new 99m Tc-labeled PSMA inhibitor with specific accumulation in PSMA-positive tumors and low background in other organs was synthesized. The radiopharmaceutical also showed very low radiation dosimetry. This agent may significantly improve the diagnosis, staging, and subsequent monitoring of therapeutic effects in PCa patients.

  3. A novel recombinant bivalent outer membrane protein of Vibrio vulnificus and Aeromonas hydrophila as a vaccine antigen of American eel (Anguilla rostrata).

    Science.gov (United States)

    SongLin, Guo; PanPan, Lu; JianJun, Feng; JinPing, Zhao; Peng, Lin; LiHua, Duan

    2015-04-01

    The immogenicity of a novel vaccine antigen was evaluated after immunized American eels (Anguilla rostrata) with a recombinant bivalent expressed outer membrane protein (OMP) of Vibrio vulnificus and Aeromonas hydrophila. Three groups of eels were intraperitoneal (i.p) injected with phosphate-buffered saline (PBS group), formaline-killed-whole-cell (FKC) of A. hydrophila and V. vulnificus (FKC group) or the bivalent OMP (OMP group). On 14, 21, 28 and 42 days post-vaccination respectively, proliferation of the whole blood cells, titers of specific antibody and lysozyme activities of experimental eels were detected. On 28 day post-vaccination, eels from three groups were challenged by i.p injection of live A. hydrophila or V. vulnificus. The results showed that, compared with the PBS group, proliferation of whole blood cells in OMP group was significant enhanced on 28 days, and the serum titers of anti-A.hydrophila and anti-V. vulnificus antibody in eels of FKC and OMP group were significant increased on 14, 21 and 28d. Lysozyme Activities in serum, skin mucus, liver and kidney were significant changed between the three groups. Relative Percent Survival (RPS) after challenged A. hydrophila in KFC vs. PBS group and OMP vs. PBS group were 62.5% and 50% respectively, and the RPS challenged V. vulnificus in FKC and OMP vs. PBS group were 37.5% and 50% respectively. These results suggest that American eels immunized with the bivalent OMP would positively affect specific as well as non-specific immune parameters and protect against infection by the two pathogens in fresh water farming. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Radiolabeling of anti-human prostatic specific membrane antigen antibody with 99Tcm and its biodistribution in nude mice bearing human prostate cancer

    International Nuclear Information System (INIS)

    Tu Shaohua; Shen Jiangfan; Tao Rong; Ji Xiaowen; Wang Yancheng

    2012-01-01

    Objective: To study the binding affinity of 99 Tc m labeled anti-human prostatic specific membrane antigen (PSMA) monoclonal antibody (McAb) J591 to prostate cancer cells and the biodistribution of 99 Tc m -J591 in nude mice bearing human prostate cancer. Methods: The McAb J591 was labeled with vTcm by improved Schwarz method and the labeled McAb was purified by Sephadex G-50. The binding affinity of J591 with prostate cancer cells was measured by Flow Cytometry. The nude mice bearing PSMA-positive C4-2 prostate carcinoma xenografts were served as experiment groups, mice with PSMA-negative pc3 tumors served as controls. The biodistribution of 99 Tc m -J591 were carried out in both model nude mice. Results: The radiolabeling efficiency of 99 Tc m -J591 was 78.9±6.2%, and radiochemical purity was more than 90% after purification. The 99 Tc m -J591 showed a good combination with PSMA-positive C4-2 cells and no combination with PSMA-negative PC3 cells in vitro. The biodistribution results showed that 99 Tcm-J591 was accumulated in tumor tissue during the 2-24 hours after injection in experiment groups, and no significant uptake in control group. The uptake of 99 Tcm-J591 in tumor tissue reached a maximum 15.91±5.16 % ID/g in experimental group at 12h post-injection. There was a significant difference compared with controls (P 0.05). Conclusion: The monoclonal antibody J591 exhibits an excellent immuno-reactivity and tumor targeting property, and it may be used in diagnosis and target therapy of prostate cancer. (authors)

  5. Humanised IgG1 antibody variants targeting membrane-bound carcinoembryonic antigen by antibody-dependent cellular cytotoxicity and phagocytosis.

    Science.gov (United States)

    Ashraf, S Q; Umana, P; Mössner, E; Ntouroupi, T; Brünker, P; Schmidt, C; Wilding, J L; Mortensen, N J; Bodmer, W F

    2009-11-17

    The effect of glycoengineering a membrane specific anti-carcinoembryonic antigen (CEA) (this paper uses the original term CEA for the formally designated CEACAM5) antibody (PR1A3) on its ability to enhance killing of colorectal cancer (CRC) cell lines by human immune effector cells was assessed. In vivo efficacy of the antibody was also tested. The antibody was modified using EBNA cells cotransfected with beta-1,4-N-acetylglucosaminyltransferase III and the humanised hPR1A3 antibody genes. The resulting alteration of the Fc segment glycosylation pattern enhances the antibody's binding affinity to the FcgammaRIIIa receptor on human immune effector cells but does not alter the antibody's binding capacity. Antibody-dependent cellular cytotoxicity (ADCC) is inhibited in the presence of anti-FcgammaRIII blocking antibodies. This glycovariant of hPR1A3 enhances ADCC 10-fold relative to the parent unmodified antibody using either unfractionated peripheral blood mononuclear or natural killer (NK) cells and CEA-positive CRC cells as targets. NK cells are far more potent in eliciting ADCC than either freshly isolated monocytes or granulocytes. Flow cytometry and automated fluorescent microscopy have been used to show that both versions of hPR1A3 can induce antibody-dependent cellular phagocytosis (ADCP) by monocyte-derived macrophages. However, the glycovariant antibody did not mediate enhanced ADCP. This may be explained by the relatively low expression of FcgammaRIIIa on cultured macrophages. In vivo studies show the efficacy of glycoengineered humanised IgG1 PR1A3 in significantly improving survival in a CRC metastatic murine model. The greatly enhanced in vitro ADCC activity of the glycoengineered version of hPR1A3 is likely to be clinically beneficial.

  6. 'Boomerang'-like insertion of a fusogenic peptide in a lipid membrane revealed by solid-state 19F NMR.

    Science.gov (United States)

    Afonin, Sergii; Dürr, Ulrich H N; Glaser, Ralf W; Ulrich, Anne S

    2004-02-01

    Solid state (19)F NMR revealed the conformation and alignment of the fusogenic peptide sequence B18 from the sea urchin fertilization protein bindin embedded in flat phospholipid bilayers. Single (19)F labels were introduced into nine distinct positions along the wild-type sequence by substituting each hydrophobic amino acid, one by one, with L-4-fluorophenylglycine. Their anisotropic chemical shifts were measured in uniaxially oriented membrane samples and used as orientational constraints to model the peptide structure in the membrane-bound state. Previous (1)H NMR studies of B18 in 30% TFE and in detergent micelles had shown that the peptide structure consists of two alpha-helical segments that are connected by a flexible hinge. This helix-break-helix motif was confirmed here by the solid-state (19)F NMR data, while no other secondary structure (beta-sheet, 3(10)-helix) was compatible with the set of orientational constraints. For both alpha-helical segments we found that the helical conformation extends all the way to the respective N- and C-termini of the peptide. Analysis of the corresponding tilt and azimuthal rotation angles showed that the N-terminal helix of B18 is immersed obliquely into the bilayer (at a tilt angle tau approximately 54 degrees), whereas the C-terminus is peripherally aligned (tau approximately 91 degrees). The azimuthal orientation of the two segments is consistent with the amphiphilic distribution of side-chains. The observed 'boomerang'-like mode of insertion into the membrane may thus explain how peptide binding leads to lipid dehydration and acyl chain perturbation as a prerequisite for bilayer fusion to occur. Copyright 2004 John Wiley & Sons, Ltd.

  7. Revealing the Raft Domain Organization in the Plasma Membrane by Single-Molecule Imaging of Fluorescent Ganglioside Analogs.

    Science.gov (United States)

    Suzuki, Kenichi G N; Ando, Hiromune; Komura, Naoko; Konishi, Miku; Imamura, Akihiro; Ishida, Hideharu; Kiso, Makoto; Fujiwara, Takahiro K; Kusumi, Akihiro

    2018-01-01

    Gangliosides have been implicated in a variety of physiological processes, particularly in the formation and function of raft domains in the plasma membrane. However, the scarcity of suitable fluorescent ganglioside analogs had long prevented us from determining exactly how gangliosides perform their functions in the live-cell plasma membrane. With the development of new fluorescent ganglioside analogs, as described by Komura et al. (2017), this barrier has been broken. We can now address the dynamic behaviors of gangliosides in the live-cell plasma membrane, using fluorescence microscopy, particularly by single-fluorescent molecule imaging and tracking. Single-molecule tracking of fluorescent GM1 and GM3 revealed that these molecules are transiently and dynamically recruited to monomers (monomer-associated rafts) and homodimer rafts of the raftophilic GPI-anchored protein CD59 in quiescent cells, with exponential residency times of 12 and 40ms, respectively, in a manner dependent on raft-lipid interactions. Upon CD59 stimulation, which induces CD59-cluster signaling rafts, the fluorescent GM1 and GM3 analogs were recruited to the signaling rafts, with a lifetime of 48ms. These results represent the first direct evidence that GPI-anchored receptors and gangliosides interact in a cholesterol-dependent manner. Furthermore, they show that gangliosides continually move in and out of rafts that contain CD59 in an extremely dynamic manner, with much higher frequency than expected previously. Such studies would not have been possible without fluorescent ganglioside probes, which exhibit native-like behavior and single-molecule tracking. In this chapter, we review the methods for single-molecule tracking of fluorescent ganglioside analogs and the results obtained by applying these methods. © 2018 Elsevier Inc. All rights reserved.

  8. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    Science.gov (United States)

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  9. Phase 1/2a study of the malaria vaccine candidate apical membrane antigen-1 (AMA-1 administered in adjuvant system AS01B or AS02A.

    Directory of Open Access Journals (Sweden)

    Michele D Spring

    Full Text Available This Phase 1/2a study evaluated the safety, immunogenicity, and efficacy of an experimental malaria vaccine comprised of the recombinant Plasmodium falciparum protein apical membrane antigen-1 (AMA-1 representing the 3D7 allele formulated with either the AS01B or AS02A Adjuvant Systems.After a preliminary safety evaluation of low dose AMA-1/AS01B (10 microg/0.5 mL in 5 adults, 30 malaria-naïve adults were randomly allocated to receive full dose (50 microg/0.5 mL of AMA-1/AS01B (n = 15 or AMA-1/AS02A (n = 15, followed by a malaria challenge. All vaccinations were administered intramuscularly on a 0-, 1-, 2-month schedule. All volunteers experienced transient injection site erythema, swelling and pain. Two weeks post-third vaccination, anti-AMA-1 Geometric Mean Antibody Concentrations (GMCs with 95% Confidence Intervals (CIs were high: low dose AMA-1/AS01B 196 microg/mL (103-371 microg/mL, full dose AMA-1/AS01B 279 microg/mL (210-369 microg/mL and full dose AMA-1/AS02A 216 microg/mL (169-276 microg/mL with no significant difference among the 3 groups. The three vaccine formulations elicited equivalent functional antibody responses, as measured by growth inhibition assay (GIA, against homologous but not against heterologous (FVO parasites as well as demonstrable interferon-gamma (IFN-gamma responses. To assess efficacy, volunteers were challenged with P. falciparum-infected mosquitoes, and all became parasitemic, with no significant difference in the prepatent period by either light microscopy or quantitative polymerase chain reaction (qPCR. However, a small but significant reduction of parasitemia in the AMA-1/AS02A group was seen with a statistical model employing qPCR measurements.All three vaccine formulations were found to be safe and highly immunogenic. These immune responses did not translate into significant vaccine efficacy in malaria-naïve adults employing a primary sporozoite challenge model, but encouragingly, estimation of parasite

  10. Lu-177-PSMA-617 Prostate-Specific Membrane Antigen Inhibitor Therapy in Patients with Castration-Resistant Prostate Cancer: Stability, Bio-distribution and Dosimetry

    Directory of Open Access Journals (Sweden)

    Levent Kabasakal

    2017-06-01

    Full Text Available Objective: The aim of the study was to estimate the radiation-absorbed doses and to study the in vivo and in vitro stability as well as pharmacokinetic characteristics of lutetium-177 (Lu-177 prostate-specific membrane antigen (PSMA-617. Methods: For this purpose, 7 patients who underwent Lu-177-PSMA therapy were included into the study. The injected Lu-177-PSMA-617 activity ranged from 3.6 to 7.4 GBq with a mean of 5.2±1.8 GBq. The stability of radiotracer in saline was calculated up to 48 h. The stability was also calculated in blood and urine samples. Post-therapeutic dosimetry was performed based on whole body and single photon emission computed tomography/computed tomography (SPECT/CT scans on dual-headed SPECT/CT system. Results: The radiochemical yield of Lu-177-PSMA-617 was >99%. It remained stable in saline up to 48 h. Analyses of the blood and urine samples showed a single radioactivity peak even at 24 hours after injection. Half-life of the distribution and elimination phases were calculated to be 0.16±0.09 and 10.8±2.5 hours, respectively. The mean excretion rate was 56.5±8.8% ranging from 41.5% to 65.4% at 24 h. Highest radiation estimated doses were calculated for parotid glands and kidneys (1.90±1.19 and 0.82±0.25 Gy/GBq respectively. Radiation dose given to the bone marrow was significantly lower than those of kidney and parotid glands (p<0.05 (0.030±0.008 Gy/GBq. Conclusion: Lu-177-PSMA-617 is a highly stable compound both in vitro and in vivo. Lu-177-PSMA-617 therapy seems to be a safe method for the treatment of castration-resistant prostate cancer patients. The fractionation regime that enables the longest duration of tumor control and/or survival will have to be developed in further studies.

  11. Preclinical evaluation of BAY 1075553, a novel 18F-labelled inhibitor of prostate-specific membrane antigen for PET imaging of prostate cancer

    International Nuclear Information System (INIS)

    Lesche, Ralf; Kettschau, Georg; Gromov, Alexey V.; Boehnke, Niels; Borkowski, Sandra; Moenning, Ursula; Doehr, Olaf; Graham, Keith; Hegele-Hartung, Christa; Dinkelborg, Ludger M.

    2014-01-01

    Prostate-specific membrane antigen (PSMA) is a transmembrane protein overexpressed in prostate cancer and is therefore being explored as a biomarker for diagnosing and staging of the disease. Here we report preclinical data on BAY 1075553 (a 9:1 mixture of (2S,4S)- and (2R,4S)-2-[ 18 F]fluoro-4-phosphonomethyl-pentanedioic acid), a novel 18 F-labelled small molecule inhibitor of PSMA enzymatic activity, which can be efficiently synthesized from a direct radiolabelling precursor. The 18 F-radiolabelled stereoisomers of 2-[ 18 F]fluoro-4-(phosphonomethyl)-pentanedioic acid were synthesized from their respective isomerically pure precursors dimethyl 2-{[bis(benzyloxy)phosphoryl ]methyl}-4-(tosyloxy)pentanedioate. In vivo positron emission tomography (PET) imaging and biodistribution studies were conducted in mice bearing LNCaP, 22Rv1 and PC-3 tumours. Pharmacokinetic parameters and dosimetry estimates were calculated based on biodistribution studies in rodents. For non-clinical safety assessment (safety pharmacology, toxicology) to support a single-dose human microdose study, off-target effects in vitro, effects on vital organ functions (cardiovascular in dogs, nervous system in rats), mutagenicity screens and an extended single-dose study in rats were conducted with the non-radioactive racemic analogue of BAY 1075553. BAY 1075553 showed high tumour accumulation specific to PSMA-positive tumour-bearing mice and was superior to other stereoisomers tested. Fast clearance of BAY 1075553 resulted overall in low background signals in other organs except for high uptake into kidney and bladder which was mainly caused by renal elimination of BAY 1075553. A modest uptake into bone was observed which decreased over time indicating organ-specific uptake as opposed to defluorination of BAY 1075553 in vivo. Biodistribution studies found highest organ doses for kidneys and the urinary bladder wall resulting in a projected effective dose (ED) in humans of 0.0219 mSv/MBq. Non

  12. Preclinical evaluation of BAY 1075553, a novel {sup 18}F-labelled inhibitor of prostate-specific membrane antigen for PET imaging of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lesche, Ralf; Kettschau, Georg; Gromov, Alexey V.; Boehnke, Niels; Borkowski, Sandra; Moenning, Ursula; Doehr, Olaf; Graham, Keith [Global Drug Discovery, Bayer Healthcare, Berlin, Germany, Berlin (Germany); Hegele-Hartung, Christa [Global Drug Discovery, Bayer Healthcare, Wuppertal, Germany, Wuppertal (Germany); Dinkelborg, Ludger M. [Global Drug Discovery, Bayer Healthcare, Berlin, Germany, Berlin (Germany); Piramal Imaging GmbH, Berlin (Germany)

    2014-01-15

    Prostate-specific membrane antigen (PSMA) is a transmembrane protein overexpressed in prostate cancer and is therefore being explored as a biomarker for diagnosing and staging of the disease. Here we report preclinical data on BAY 1075553 (a 9:1 mixture of (2S,4S)- and (2R,4S)-2-[{sup 18}F]fluoro-4-phosphonomethyl-pentanedioic acid), a novel {sup 18}F-labelled small molecule inhibitor of PSMA enzymatic activity, which can be efficiently synthesized from a direct radiolabelling precursor. The {sup 18}F-radiolabelled stereoisomers of 2-[{sup 18}F]fluoro-4-(phosphonomethyl)-pentanedioic acid were synthesized from their respective isomerically pure precursors dimethyl 2-{[bis(benzyloxy)phosphoryl ]methyl}-4-(tosyloxy)pentanedioate. In vivo positron emission tomography (PET) imaging and biodistribution studies were conducted in mice bearing LNCaP, 22Rv1 and PC-3 tumours. Pharmacokinetic parameters and dosimetry estimates were calculated based on biodistribution studies in rodents. For non-clinical safety assessment (safety pharmacology, toxicology) to support a single-dose human microdose study, off-target effects in vitro, effects on vital organ functions (cardiovascular in dogs, nervous system in rats), mutagenicity screens and an extended single-dose study in rats were conducted with the non-radioactive racemic analogue of BAY 1075553. BAY 1075553 showed high tumour accumulation specific to PSMA-positive tumour-bearing mice and was superior to other stereoisomers tested. Fast clearance of BAY 1075553 resulted overall in low background signals in other organs except for high uptake into kidney and bladder which was mainly caused by renal elimination of BAY 1075553. A modest uptake into bone was observed which decreased over time indicating organ-specific uptake as opposed to defluorination of BAY 1075553 in vivo. Biodistribution studies found highest organ doses for kidneys and the urinary bladder wall resulting in a projected effective dose (ED) in humans of 0.0219 m

  13. (Na+ + K+)-ATPase and plasma membrane polarity of intestinal epithelial cells: Presence of a brush border antigen in the distal large intestine that is immunologically related to beta subunit

    Energy Technology Data Exchange (ETDEWEB)

    Marxer, A.; Stieger, B.; Quaroni, A.; Kashgarian, M.; Hauri, H.P. (Univ. of Basel (Switzerland))

    1989-09-01

    The previously produced monoclonal antibody IEC 1/48 against cultured rat intestinal crypt cells was extensively characterized and found to be directed against the beta subunit of (Na+ + K+)-ATPase as assessed by immunological and enzymatic criteria. Under nondenaturing conditions the antibody precipitated the alpha-beta enzyme complex (98,000 and 48,000 Mr). This probe, together with the monoclonal antibody C 62.4 against the alpha subunit was used to localize (Na+ + K+)-ATPase in epithelial cells along the rat intestinal tract by immunofluorescence and immunoelectron microscopy. Both antibodies exclusively labeled the basolateral membrane of small intestine and proximal colon epithelial cells. However, in the distal colon, IEC 1/48, but not C 62.4, also labeled the brush border membrane. The cross-reacting beta-subunit-like antigen on the apical cell pole was tightly associated with isolated brush borders but was apparently devoid of (Na+ + K+)-ATPase activity. Subcellular fractionation of colonocytes in conjunction with limited proteolysis and surface radioiodination of intestinal segments suggested that the cross-reacting antigen in the brush border may be very similar to the beta subunit. The results support the notion that in the small intestine and proximal colon the enzyme subunits are exclusively targeted to the basolateral membrane while in the distal colon nonassembled beta subunit or a beta-subunit-like protein is also transported to the apical cell pole.

  14. Cell membrane antigen-antibody complex dissociation by the widely used glycine-HCL method: an unreliable procedure for studying antibody internalization.

    Science.gov (United States)

    Tsaltas, G; Ford, C H

    1993-02-01

    Methods following the process of binding and internalization of antibodies to cell surface antigens have often employed low pH isoosmolar buffers in order to dissociate surface antigen-antibody complexes. One of the most widely used buffers is a 0.05 M glycine-HCL buffer pH 2.8. Since the efficacy of action of this buffer was critical to a series of internalization experiments employing monoclonal antibodies (Mabs) to carcinoembryonic antigen (CEA) expressing cancer cell lines in this laboratory, we tested its performance in a number of different assays. Our results indicate that this buffer only partially dissociates antigen-antibody bonds and therefore can introduce major inaccuracies in internalization experiments.

  15. Structural Masquerade of Plesiomonas shigelloides Strain CNCTC 78/89 O-Antigen-High-Resolution Magic Angle Spinning NMR Reveals the Modified d-galactan I of Klebsiella pneumoniae.

    Science.gov (United States)

    Ucieklak, Karolina; Koj, Sabina; Pawelczyk, Damian; Niedziela, Tomasz

    2017-11-29

    The high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR) analysis of Plesiomonas shigelloides 78/89 lipopolysaccharide directly on bacteria revealed the characteristic structural features of the O -acetylated polysaccharide in the NMR spectra. The O -antigen profiles were unique, yet the pattern of signals in the, spectra along with their ¹H, 13 C chemical shift values, resembled these of d-galactan I of Klebsiella pneumoniae . The isolated O- specific polysaccharide (O-PS) of P. shigelloides strain CNCTC 78/89 was investigated by ¹H and 13 C NMR spectroscopy, mass spectrometry and chemical methods. The analyses demonstrated that the P. shigelloides 78/89 O- PS is composed of →3)-α-d-Gal p -(1→3)-β-d-Gal f 2OAc-(1→ disaccharide repeating units. The O- acetylation was incomplete and resulted in a microheterogeneity of the O- antigen. This O- acetylation generates additional antigenic determinants within the O- antigen, forms a new chemotype, and contributes to the epitopes recognized by the O- serotype specific antibodies. The serological cross-reactivities further confirmed the inter-specific structural similarity of these O- antigens.

  16. Novel Treponema pallidum Recombinant Antigens for Syphilis Diagnostics: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Aleksey Kubanov

    2017-01-01

    Full Text Available The recombinant protein technology considerably promoted the development of rapid and accurate treponema-specific laboratory diagnostics of syphilis infection. For the last ten years, the immunodominant recombinant inner membrane lipoproteins are proved to be sensitive and specific antigens for syphilis screening. However, the development of an enlarged T. pallidum antigen panel for diagnostics of early and late syphilis and differentiation of syphilis stages or cured syphilis remains as actual goal of multidisciplinary expertise. Current review revealed novel recombinant antigens: surface-exposed proteins, adhesins, and periplasmic and flagellar proteins, which are promising candidates for the improved syphilis serological diagnostics. The opportunities and limitations of diagnostic usage of these antigens are discussed and the criteria for selection of optimal antigens panel summarized.

  17. Novel Treponema pallidum Recombinant Antigens for Syphilis Diagnostics: Current Status and Future Prospects.

    Science.gov (United States)

    Kubanov, Aleksey; Runina, Anastassia; Deryabin, Dmitry

    2017-01-01

    The recombinant protein technology considerably promoted the development of rapid and accurate treponema-specific laboratory diagnostics of syphilis infection. For the last ten years, the immunodominant recombinant inner membrane lipoproteins are proved to be sensitive and specific antigens for syphilis screening. However, the development of an enlarged T. pallidum antigen panel for diagnostics of early and late syphilis and differentiation of syphilis stages or cured syphilis remains as actual goal of multidisciplinary expertise. Current review revealed novel recombinant antigens: surface-exposed proteins, adhesins, and periplasmic and flagellar proteins, which are promising candidates for the improved syphilis serological diagnostics. The opportunities and limitations of diagnostic usage of these antigens are discussed and the criteria for selection of optimal antigens panel summarized.

  18. Genomic Characterization of Variable Surface Antigens Reveals a Telomere Position Effect as a Prerequisite for RNA Interference-Mediated Silencing in Paramecium tetraurelia

    Science.gov (United States)

    Baranasic, Damir; Oppermann, Timo; Cheaib, Miriam; Cullum, John; Schmidt, Helmut

    2014-01-01

    ABSTRACT Antigenic or phenotypic variation is a widespread phenomenon of expression of variable surface protein coats on eukaryotic microbes. To clarify the mechanism behind mutually exclusive gene expression, we characterized the genetic properties of the surface antigen multigene family in the ciliate Paramecium tetraurelia and the epigenetic factors controlling expression and silencing. Genome analysis indicated that the multigene family consists of intrachromosomal and subtelomeric genes; both classes apparently derive from different gene duplication events: whole-genome and intrachromosomal duplication. Expression analysis provides evidence for telomere position effects, because only subtelomeric genes follow mutually exclusive transcription. Microarray analysis of cultures deficient in Rdr3, an RNA-dependent RNA polymerase, in comparison to serotype-pure wild-type cultures, shows cotranscription of a subset of subtelomeric genes, indicating that the telomere position effect is due to a selective occurrence of Rdr3-mediated silencing in subtelomeric regions. We present a model of surface antigen evolution by intrachromosomal gene duplication involving the maintenance of positive selection of structurally relevant regions. Further analysis of chromosome heterogeneity shows that alternative telomere addition regions clearly affect transcription of closely related genes. Consequently, chromosome fragmentation appears to be of crucial importance for surface antigen expression and evolution. Our data suggest that RNAi-mediated control of this genetic network by trans-acting RNAs allows rapid epigenetic adaptation by phenotypic variation in combination with long-term genetic adaptation by Darwinian evolution of antigen genes. PMID:25389173

  19. Analyses in zebrafish embryos reveal that nanotoxicity profiles are dependent on surface-functionalization controlled penetrance of biological membranes.

    Science.gov (United States)

    Paatero, Ilkka; Casals, Eudald; Niemi, Rasmus; Özliseli, Ezgi; Rosenholm, Jessica M; Sahlgren, Cecilia

    2017-08-21

    Mesoporous silica nanoparticles (MSNs) are extensively explored as drug delivery systems, but in depth understanding of design-toxicity relationships is still scarce. We used zebrafish (Danio rerio) embryos to study toxicity profiles of differently surface functionalized MSNs. Embryos with the chorion membrane intact, or dechoroniated embryos, were incubated or microinjected with amino (NH 2 -MSNs), polyethyleneimine (PEI-MSNs), succinic acid (SUCC-MSNs) or polyethyleneglycol (PEG-MSNs) functionalized MSNs. Toxicity was assessed by viability and cardiovascular function. NH 2 -MSNs, SUCC-MSNs and PEG-MSNs were well tolerated, 50 µg/ml PEI-MSNs induced 100% lethality 48 hours post fertilization (hpf). Dechoroniated embryos were more sensitive and 10 µg/ml PEI-MSNs reduced viability to 5% at 96hpf. Sensitivity to PEG- and SUCC-, but not NH 2 -MSNs, was also enhanced. Typically cardiovascular toxicity was evident prior to lethality. Confocal microscopy revealed that PEI-MSNs penetrated into the embryos whereas PEG-, NH2- and SUCC-MSNs remained aggregated on the skin surface. Direct exposure of inner organs by microinjecting NH 2 -MSNs and PEI-MSNs demonstrated that the particles displayed similar toxicity indicating that functionalization affects the toxicity profile by influencing penetrance through biological barriers. The data emphasize the need for careful analyses of toxicity mechanisms in relevant models and constitute an important knowledge step towards the development of safer and sustainable nanotherapies.

  20. The 2.5 Å Structure of CD1c in Complex with a Mycobacterial Lipid Reveals an Open Groove Ideally Suited for Diverse Antigen Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Scharf, Louise; Li, Nan-Sheng; Hawk, Andrew J.; Garzón, Diana; Zhang, Tejia; Fox, Lisa M.; Kazen, Allison R.; Shah, Sneha; Haddadian, Esmael J.; Gumperz, Jenny E.; Saghatelian, Alan; Faraldo-Gómez, José D.; Meredith, Stephen C.; Piccirilli, Joseph A.; Adams, Erin J. (Harvard); (UC); (MXPL-G); (UW-MED)

    2011-08-24

    CD1 molecules function to present lipid-based antigens to T cells. Here we present the crystal structure of CD1c at 2.5 {angstrom} resolution, in complex with the pathogenic Mycobacterium tuberculosis antigen mannosyl-{beta}1-phosphomycoketide (MPM). CD1c accommodated MPM's methylated alkyl chain exclusively in the A pocket, aided by a unique exit portal underneath the {alpha}1 helix. Most striking was an open F pocket architecture lacking the closed cavity structure of other CD1 molecules, reminiscent of peptide binding grooves of classical major histocompatibility complex molecules. This feature, combined with tryptophan-fluorescence quenching during loading of a dodecameric lipopeptide antigen, provides a compelling model by which both the lipid and peptide moieties of the lipopeptide are involved in CD1c presentation of lipopeptides.

  1. A Novel ¹¹¹In-Labeled Anti-Prostate-Specific Membrane Antigen Nanobody for Targeted SPECT/CT Imaging of Prostate Cancer.

    Science.gov (United States)

    Chatalic, Kristell L S; Veldhoven-Zweistra, Joke; Bolkestein, Michiel; Hoeben, Sander; Koning, Gerben A; Boerman, Otto C; de Jong, Marion; van Weerden, Wytske M

    2015-07-01

    Prostate-specific membrane antigen (PSMA) is overexpressed in prostate cancer (PCa) and a promising target for molecular imaging and therapy. Nanobodies (single-domain antibodies, VHH) are the smallest antibody-based fragments possessing ideal molecular imaging properties, such as high target specificity and rapid background clearance. We developed a novel anti-PSMA Nanobody (JVZ-007) for targeted imaging and therapy of PCa. Here, we report on the application of the (111)In-radiolabeled Nanobody for SPECT/CT imaging of PCa. A Nanobody library was generated by immunization of a llama with 4 human PCa cell lines. Anti-PSMA Nanobodies were captured by biopanning on PSMA-overexpressing cells. JVZ-007 was selected for evaluation as an imaging probe. JVZ-007 was initially produced with a c-myc-hexahistidine (his) tag allowing purification and detection. The c-myc-his tag was subsequently replaced by a single cysteine at the C terminus, allowing site-specific conjugation of chelates for radiolabeling. JVZ-007-c-myc-his was conjugated to 2-(4-isothiocyanatobenzyl)-diethylenetriaminepentaacetic acid (p-SCN-DTPA) via the lysines, whereas JVZ-007-cys was conjugated to maleimide-DTPA via the C-terminal cysteine. PSMA targeting was analyzed in vitro by cell-binding experiments using flow cytometry, autoradiography, and internalization assays with various PCa cell lines and patient-derived xenografts (PDXs). The targeting properties of radiolabeled Nanobodies were evaluated in vivo in biodistribution and SPECT/CT imaging experiments, using nude mice bearing PSMA-positive PC-310 and PSMA-negative PC-3 tumors. JVZ-007 was successfully conjugated to DTPA for radiolabeling with (111)In at room temperature. (111)In-JVZ007-c-myc-his and (111)In-JVZ007-cys internalized in LNCaP cells and bound to PSMA-expressing PDXs and, importantly, not to PSMA-negative PDXs and human kidneys. Good tumor targeting and fast blood clearance were observed for (111)In-JVZ-007-c-myc-his and (111)In

  2. Longitudinal multiparameter single-cell analysis of macaques immunized with pneumococcal protein-conjugated or unconjugated polysaccharide vaccines reveals distinct antigen specific memory B cell repertoires.

    Directory of Open Access Journals (Sweden)

    Bin Jia

    Full Text Available The efficacy of protein-conjugated pneumococcal polysaccharide vaccines has been well characterized for children. The level of protection conferred by unconjugated polysaccharide vaccines remains less clear, particularly for elderly individuals who have had prior antigenic experience through immunization with unconjugated polysaccharide vaccines or natural exposure to Streptococcus pneumoniae.We compared the magnitude, diversity and genetic biases of antigen-specific memory B cells in two groups of adult cynomolgus macaques that were immunized with a 7-valent conjugated vaccine and boosted after five years with either a 13-valent pneumococcal polysaccharide conjugate vaccine (13vPnC or a 23-valent unconjugated pneumococcal polysaccharide vaccine (23vPS using microengraving (a single-cell analysis method and single-cell RT-PCR.Seven days after boosting, the mean frequency of antigen-specific memory B cells was significantly increased in macaques vaccinated with 13vPnC compared to those receiving 23vPS. The 13vPnC-vaccinated macaques also exhibited a more even distribution of antibody specificities to four polysaccharides in the vaccine (PS4, 6B, 14, 23F that were examined. However, single-cell analysis of the antibody variable region sequences from antigen-specific B cells elicited by unconjugated and conjugated vaccines indicated that both the germline gene segments forming the heavy chains and the average lengths of the Complementary Determining Region 3 (CDR3 were similar.Our results confirm that distinctive differences can manifest between antigen-specific memory B cell repertoires in nonhuman primates immunized with conjugated and unconjugated pneumococcal polysaccharide vaccines. The study also supports the notion that the conjugated vaccines have a favorable profile in terms of both the frequency and breadth of the anamnestic response among antigen-specific memory B cells.

  3. Glycomic Analysis of Life Stages of the Human Parasite Schistosoma mansoni Reveals Developmental Expression Profiles of Functional and Antigenic Glycan Motifs.

    Science.gov (United States)

    Smit, Cornelis H; van Diepen, Angela; Nguyen, D Linh; Wuhrer, Manfred; Hoffmann, Karl F; Deelder, André M; Hokke, Cornelis H

    2015-07-01

    Glycans present on glycoproteins and glycolipids of the major human parasite Schistosoma mansoni induce innate as well as adaptive immune responses in the host. To be able to study the molecular characteristics of schistosome infections it is therefore required to determine the expression profiles of glycans and antigenic glycan-motifs during a range of critical stages of the complex schistosome lifecycle. We performed a longitudinal profiling study covering schistosome glycosylation throughout worm- and egg-development using a mass spectrometry-based glycomics approach. Our study revealed that during worm development N-glycans with Galβ1-4(Fucα1-3)GlcNAc (LeX) and core-xylose motifs were rapidly lost after cercariae to schistosomula transformation, whereas GalNAcβ1-4GlcNAc (LDN)-motifs gradually became abundant and predominated in adult worms. LeX-motifs were present on glycolipids up to 2 weeks of schistosomula development, whereas glycolipids with mono- and multifucosylated LDN-motifs remained present up to the adult worm stage. In contrast, expression of complex O-glycans diminished to undetectable levels within days after transformation. During egg development, a rich diversity of N-glycans with fucosylated motifs was expressed, but with α3-core fucose and a high degree of multifucosylated antennae only in mature eggs and miracidia. N-glycan antennae were exclusively LDN-based in miracidia. O-glycans in the mature eggs were also diverse and contained LeX- and multifucosylated LDN, but none of these were associated with miracidia in which we detected only the Galβ1-3(Galβ1-6)GalNAc core glycan. Immature eggs also exhibited short O-glycan core structures only, suggesting that complex fucosylated O-glycans of schistosome eggs are derived primarily from glycoproteins produced by the subshell envelope in the developed egg. Lipid glycans with multifucosylated GlcNAc repeats were present throughout egg development, but with the longer highly fucosylated

  4. B-cell responses to pregnancy-restricted and -unrestricted Plasmodium falciparum erythrocyte membrane protein 1 antigens in Ghanaian women naturally exposed to malaria parasites

    DEFF Research Database (Denmark)

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F

    2014-01-01

    -linked immunosorbent assay (ELISA) and memory B-cell frequencies by enzyme-linked immunosorbent spot (ELISPOT) assay in a cohort of P. falciparum-exposed nonpregnant Ghanaian women. The antigens used were a VAR2CSA-type PfEMP1 (IT4VAR04) with expression restricted to parasites infecting the placenta, as well as two...... commonly recognized PfEMP1 proteins (HB3VAR06 and IT4VAR60) implicated in rosetting and not pregnancy restricted. This enabled, for the first time, a direct comparison in the same individuals of immune responses specific for a clinically important parasite antigen expressed only during well-defined periods...

  5. Potassium accumulation by the glial membrane pump as revealed by membrane potential recording from isolated rabbit retinal Müller cells.

    Science.gov (United States)

    Reichenbach, A; Nilius, B; Eberhardt, W

    1986-01-30

    Müller (glial) cells were isolated from rabbit retinae by papaine and mechanical dissociation. In a special perfusion chamber, the cells were penetrated with a recording electrode. When high-K+ solutions were applied into the environment of the cells by means of a second micropipette, the cell membrane depolarized strongly. During prolonged application of high-K+ solutions, however, there occurred a marked repolarization, and after cessation of high-K+ application, a strong hyperpolarization was observed. Both effects disappeared under the influence of ouabain, suggesting the accumulation of intracellular K+ by an active membrane pump. The data were used for calculation of the membrane's Na+:K+ permeability ratio, the intracellular K+ concentration, the pump rate and the mean pump site density. The calculated values are in good agreement with published data from mammalian astrocytes and are compared with those from amphibian Müller cells.

  6. FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization

    NARCIS (Netherlands)

    Zelazny, E.; Borst, J.W.; Muylaert, M.; Batoko, H.; Hemminga, M.A.; Chaumont, F.

    2007-01-01

    Zea mays plasma membrane intrinsic proteins (ZmPIPs) fall into two groups, ZmPIP1s and ZmPIP2s, that exhibit different water channel activities when expressed in Xenopus oocytes. ZmPIP1s are inactive, whereas ZmPIP2s induce a marked increase in the membrane osmotic water permeability coefficient,

  7. The expression and functional activity of membrane-bound human leukocyte antigen-G1 are influenced by the 3'-untranslated region

    DEFF Research Database (Denmark)

    Svendsen, Signe Goul; Hantash, Basil M; Zhao, Longmei

    2013-01-01

    Human Leukocyte Antigen (HLA)-G is an immunosuppressive molecule acting on both the innate and adaptive immune system. A 14 bp insertion/deletion polymorphism (rs66554220) in the 3'-untranslated region (3'UTR) of the HLA-G gene has been associated with a number of diseases, pregnancy complication...

  8. Proteomics of plasma membranes from poplar trees reveals tissue distribution of transporters, receptors, and proteins in cell wall formation.

    Science.gov (United States)

    Nilsson, Robert; Bernfur, Katja; Gustavsson, Niklas; Bygdell, Joakim; Wingsle, Gunnar; Larsson, Christer

    2010-02-01

    By exploiting the abundant tissues available from Populus trees, 3-4 m high, we have been able to isolate plasma membranes of high purity from leaves, xylem, and cambium/phloem at a time (4 weeks after bud break) when photosynthesis in the leaves and wood formation in the xylem should have reached a steady state. More than 40% of the 956 proteins identified were found in the plasma membranes of all three tissues and may be classified as "housekeeping" proteins, a typical example being P-type H(+)-ATPases. Among the 213 proteins predicted to be integral membrane proteins, transporters constitute the largest class (41%) followed by receptors (14%) and proteins involved in cell wall and carbohydrate metabolism (8%) and membrane trafficking (8%). ATP-binding cassette transporters (all members of subfamilies B, C, and G) and receptor-like kinases (four subfamilies) were two of the largest protein families found, and the members of these two families showed pronounced tissue distribution. Leaf plasma membranes were characterized by a very high proportion of transporters, constituting almost half of the integral proteins. Proteins involved in cell wall synthesis (such as cellulose and sucrose synthases) and membrane trafficking were most abundant in xylem plasma membranes in agreement with the role of the xylem in wood formation. Twenty-five integral proteins and 83 soluble proteins were exclusively found in xylem plasma membranes, which identifies new candidates associated with cell wall synthesis and wood formation. Among the proteins uniquely found in xylem plasma membranes were most of the enzymes involved in lignin biosynthesis, which suggests that they may exist as a complex linked to the plasma membrane.

  9. Structure and Orientation of Bovine Lactoferrampin in the Mimetic Bacterial Membrane as Revealed by Solid-State NMR and Molecular Dynamics Simulation

    Science.gov (United States)

    Tsutsumi, Atsushi; Javkhlantugs, Namsrai; Kira, Atsushi; Umeyama, Masako; Kawamura, Izuru; Nishimura, Katsuyuki; Ueda, Kazuyoshi; Naito, Akira

    2012-01-01

    Bovine lactoferrampin (LFampinB) is a newly discovered antimicrobial peptide found in the N1-domain of bovine lactoferrin (268–284), and consists of 17 amino-acid residues. It is important to determine the orientation and structure of LFampinB in bacterial membranes to reveal the antimicrobial mechanism. We therefore performed 13C and 31P NMR, 13C-31P rotational echo double resonance (REDOR), potassium ion-selective electrode, and quartz-crystal microbalance measurements for LFampinB with mimetic bacterial membrane and molecular-dynamics simulation in acidic membrane. 31P NMR results indicated that LFampinB caused a defect in mimetic bacterial membranes. Ion-selective electrode measurements showed that ion leakage occurred for the mimetic bacterial membrane containing cardiolipin. Quartz-crystal microbalance measurements revealed that LFampinB had greater affinity to acidic phospholipids than that to neutral phospholipids. 13C DD-MAS and static NMR spectra showed that LFampinB formed an α-helix in the N-terminus region and tilted 45° to the bilayer normal. REDOR dephasing patterns between carbonyl carbon nucleus in LFampinB and phosphorus nuclei in lipid phosphate groups were measured by 13C-31P REDOR and the results revealed that LFampinB is located in the interfacial region of the membrane. Molecular-dynamics simulation showed the tilt angle to be 42° and the rotation angle to be 92.5° for Leu3, which are in excellent agreement with the experimental values. PMID:23083717

  10. Properties of the Membrane Binding Component of Catechol-O-methyltransferase Revealed by Atomistic Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Orlowski, A.; St-Pierre, J. F.; Magarkar, A.

    2011-01-01

    We used atomistic simulations to study the membrane-bound form of catechol-O-methyltransferase (MB-COMT). In particular we investigated the 26-residue transmembrane a-helical segment of MB-COMT together with the 24-residue fragment that links the transmembrane component to the main protein unit...... that was not included in our model. In numerous independent simulations we observed the formation of a salt bridge between ARC 27 and GLU40. The salt bridge closed the flexible loop that formed in the linker and kept it in the vicinity of the membrane-water interface. All simulations supported this conclusion...... that the linker has a clear affinity for the interface and preferentially arranges its residues to reside next to the membrane, without a tendency to relocate into the water phase. Furthermore, an extensive analysis of databases for sequences of membrane proteins that have a single transmembrane helical segment...

  11. In silico and cell-based analyses reveal strong divergence between prediction and observation of T-cell-recognized tumor antigen T-cell epitopes.

    Science.gov (United States)

    Schmidt, Julien; Guillaume, Philippe; Dojcinovic, Danijel; Karbach, Julia; Coukos, George; Luescher, Immanuel

    2017-07-14

    Tumor exomes provide comprehensive information on mutated, overexpressed genes and aberrant splicing, which can be exploited for personalized cancer immunotherapy. Of particular interest are mutated tumor antigen T-cell epitopes, because neoepitope-specific T cells often are tumoricidal. However, identifying tumor-specific T-cell epitopes is a major challenge. A widely used strategy relies on initial prediction of human leukocyte antigen-binding peptides by in silico algorithms, but the predictive power of this approach is unclear. Here, we used the human tumor antigen NY-ESO-1 (ESO) and the human leukocyte antigen variant HLA-A*0201 (A2) as a model and predicted in silico the 41 highest-affinity, A2-binding 8-11-mer peptides and assessed their binding, kinetic complex stability, and immunogenicity in A2-transgenic mice and on peripheral blood mononuclear cells from ESO-vaccinated melanoma patients. We found that 19 of the peptides strongly bound to A2, 10 of which formed stable A2-peptide complexes and induced CD8 + T cells in A2-transgenic mice. However, only 5 of the peptides induced cognate T cells in humans; these peptides exhibited strong binding and complex stability and contained multiple large hydrophobic and aromatic amino acids. These results were not predicted by in silico algorithms and provide new clues to improving T-cell epitope identification. In conclusion, our findings indicate that only a small fraction of in silico -predicted A2-binding ESO peptides are immunogenic in humans, namely those that have high peptide-binding strength and complex stability. This observation highlights the need for improving in silico predictions of peptide immunogenicity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Organization of Subunits in the Membrane Domain of the Bovine F-ATPase Revealed by Covalent Cross-linking.

    Science.gov (United States)

    Lee, Jennifer; Ding, ShuJing; Walpole, Thomas B; Holding, Andrew N; Montgomery, Martin G; Fearnley, Ian M; Walker, John E

    2015-05-22

    The F-ATPase in bovine mitochondria is a membrane-bound complex of about 30 subunits of 18 different kinds. Currently, ∼85% of its structure is known. The enzyme has a membrane extrinsic catalytic domain, and a membrane intrinsic domain where the turning of the enzyme's rotor is generated from the transmembrane proton-motive force. The domains are linked by central and peripheral stalks. The central stalk and a hydrophobic ring of c-subunits in the membrane domain constitute the enzyme's rotor. The external surface of the catalytic domain and membrane subunit a are linked by the peripheral stalk, holding them static relative to the rotor. The membrane domain contains six additional subunits named ATP8, e, f, g, DAPIT (diabetes-associated protein in insulin-sensitive tissues), and 6.8PL (6.8-kDa proteolipid), each with a single predicted transmembrane α-helix, but their orientation and topography are unknown. Mutations in ATP8 uncouple the enzyme and interfere with its assembly, but its roles and the roles of the other five subunits are largely unknown. We have reacted accessible amino groups in the enzyme with bifunctional cross-linking agents and identified the linked residues. Cross-links involving the supernumerary subunits, where the structures are not known, show that the C terminus of ATP8 extends ∼70 Å from the membrane into the peripheral stalk and that the N termini of the other supernumerary subunits are on the same side of the membrane, probably in the mitochondrial matrix. These experiments contribute significantly toward building up a complete structural picture of the F-ATPase. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Organization of Subunits in the Membrane Domain of the Bovine F-ATPase Revealed by Covalent Cross-linking*

    Science.gov (United States)

    Lee, Jennifer; Ding, ShuJing; Walpole, Thomas B.; Holding, Andrew N.; Montgomery, Martin G.; Fearnley, Ian M.; Walker, John E.

    2015-01-01

    The F-ATPase in bovine mitochondria is a membrane-bound complex of about 30 subunits of 18 different kinds. Currently, ∼85% of its structure is known. The enzyme has a membrane extrinsic catalytic domain, and a membrane intrinsic domain where the turning of the enzyme's rotor is generated from the transmembrane proton-motive force. The domains are linked by central and peripheral stalks. The central stalk and a hydrophobic ring of c-subunits in the membrane domain constitute the enzyme's rotor. The external surface of the catalytic domain and membrane subunit a are linked by the peripheral stalk, holding them static relative to the rotor. The membrane domain contains six additional subunits named ATP8, e, f, g, DAPIT (diabetes-associated protein in insulin-sensitive tissues), and 6.8PL (6.8-kDa proteolipid), each with a single predicted transmembrane α-helix, but their orientation and topography are unknown. Mutations in ATP8 uncouple the enzyme and interfere with its assembly, but its roles and the roles of the other five subunits are largely unknown. We have reacted accessible amino groups in the enzyme with bifunctional cross-linking agents and identified the linked residues. Cross-links involving the supernumerary subunits, where the structures are not known, show that the C terminus of ATP8 extends ∼70 Å from the membrane into the peripheral stalk and that the N termini of the other supernumerary subunits are on the same side of the membrane, probably in the mitochondrial matrix. These experiments contribute significantly toward building up a complete structural picture of the F-ATPase. PMID:25851905

  14. Two conformational states of the membrane-associated Bacillus thuringiensis Cry4Ba δ-endotoxin complex revealed by electron crystallography: Implications for toxin-pore formation

    International Nuclear Information System (INIS)

    Ounjai, Puey; Unger, Vinzenz M.; Sigworth, Fred J.; Angsuthanasombat, Chanan

    2007-01-01

    The insecticidal nature of Cry δ-endotoxins produced by Bacillus thuringiensis is generally believed to be caused by their ability to form lytic pores in the midgut cell membrane of susceptible insect larvae. Here we have analyzed membrane-associated structures of the 65-kDa dipteran-active Cry4Ba toxin by electron crystallography. The membrane-associated toxin complex was crystallized in the presence of DMPC via detergent dialysis. Depending upon the charge of the adsorbed surface, 2D crystals of the oligomeric toxin complex have been captured in two distinct conformations. The projection maps of those crystals have been generated at 17 A resolution. Both complexes appeared to be trimeric; as in one crystal form, its projection structure revealed a symmetrical pinwheel-like shape with virtually no depression in the middle of the complex. The other form revealed a propeller-like conformation displaying an obvious hole in the center region, presumably representing the toxin-induced pore. These crystallographic data thus demonstrate for the first time that the 65-kDa activated Cry4Ba toxin in association with lipid membranes could exist in at least two different trimeric conformations, conceivably implying the closed and open states of the pore

  15. Physiologically-Relevant Modes of Membrane Interactions by the Human Antimicrobial Peptide, LL-37, Revealed by SFG Experiments

    Science.gov (United States)

    Ding, Bei; Soblosky, Lauren; Nguyen, Khoi; Geng, Junqing; Yu, Xinglong; Ramamoorthy, Ayyalusamy; Chen, Zhan

    2013-05-01

    Antimicrobial peptides (AMPs) could become the next generation antibiotic compounds which can overcome bacterial resistance by disrupting cell membranes and it is essential to determine the factors underlying its mechanism of action. Although high-resolution NMR and other biological studies have provided valuable insights, it has been a major challenge to follow the AMP-membrane interactions at physiologically-relevant low peptide concentrations. In this study, we demonstrate a novel approach to overcome this major limitation by performing Sum Frequency Generation (SFG) vibrational spectroscopic experiments on lipid bilayers containing an AMP, LL-37. Our results demonstrate the power of SFG to study non-linear helical peptides and also infer that lipid-peptide interaction and the peptide orientation depend on the lipid membrane composition. The observed SFG signal changes capture the aggregating process of LL-37 on membrane. In addition, our SFG results on cholesterol-containing lipid bilayers indicate the inhibition effect of cholesterol on peptide-induced membrane permeation process.

  16. Signature of a Nonharmonic Potential as Revealed from a Consistent Shape and Fluctuation Analysis of an Adherent Membrane

    Directory of Open Access Journals (Sweden)

    Daniel Schmidt

    2014-05-01

    Full Text Available The interaction of fluid membranes with a scaffold, which can be a planar surface or a more complex structure, is intrinsic to a number of systems from artificial supported bilayers and vesicles to cellular membranes. In principle, these interactions can be either discrete and protein mediated, or continuous. In the latter case, they emerge from ubiquitous intrinsic surface interaction potentials as well as nature-designed steric contributions of the fluctuating membrane or from the polymers of the glycocalyx. Despite the fact that these nonspecific potentials are omnipresent, their description has been a major challenge from experimental and theoretical points of view. Here, we show that a full understanding of the implications of the continuous interactions can be achieved only by expanding the standard superposition models commonly used to treat these types of systems, beyond the usual harmonic level of description. Supported by this expanded theoretical framework, we present three independent, yet mutually consistent, experimental approaches to measure the interaction potential strength and the membrane tension. Upon explicitly taking into account the nature of shot noise as well as the nature of finite experimental resolution, excellent agreement with the augmented theory is obtained, which finally provides a coherent view of the behavior of the membrane in the vicinity of a scaffold.

  17. IgV(H) and bcl6 somatic mutation analysis reveals the heterogeneity of cutaneous B-cell lymphoma, and indicates the presence of undisclosed local antigens.

    Science.gov (United States)

    Franco, Renato; Camacho, Francisca I; Fernández-Vázquez, Amalia; Algara, Patrocinio; Rodríguez-Peralto, José L; De Rosa, Gaetano; Piris, Miguel A

    2004-06-01

    Our understanding of the ontology of B-cell lymphomas (BCL) has been improved by the study of mutational status of IgV(H) and bcl6 genes, but only a few cases of cutaneous BCL have been examined for this status. We analyzed IgV(H) and bcl6 somatic mutations in 10 cutaneous BCL, classified as follicular (three primary and one secondary), primary marginal zone (two cases), and diffuse large BCL (three primary and one secondary). We observed a lower rate (IgV(H) mutation in all marginal zone lymphomas, and a preferential usage of V(H)2-70 (one primary follicular and two primary diffuse large BCL). Fewer than expected replacement mutations in framework regions (FR) were observed in three primary follicular lymphomas (FLs) and in all diffuse large BCL, indicating a negative antigen selection pressure. Ongoing mutations were observed in eight of 10 cases. Only two primary FLs and two diffuse large BCL showed bcl6 somatic mutation. These data support the heterogeneous nature of the different cutaneous BCL, and specifically the distinction between cutaneous follicular and marginal zone lymphomas. The biased usage of V(H)2-70, the low rate of replacement mutation in the FR, and the presence of ongoing mutation imply that local antigens could modulate the growth of primary cutaneous BCL.

  18. Site-directed fluorescence labeling reveals a revised N-terminal membrane topology and functional periplasmic residues in the Escherichia coli cell division protein FtsK.

    Science.gov (United States)

    Berezuk, Alison M; Goodyear, Mara; Khursigara, Cezar M

    2014-08-22

    In Escherichia coli, FtsK is a large integral membrane protein that coordinates chromosome segregation and cell division. The N-terminal domain of FtsK (FtsKN) is essential for division, and the C terminus (FtsKC) is a well characterized DNA translocase. Although the function of FtsKN is unknown, it is suggested that FtsK acts as a checkpoint to ensure DNA is properly segregated before septation. This may occur through modulation of protein interactions between FtsKN and other division proteins in both the periplasm and cytoplasm; thus, a clear understanding of how FtsKN is positioned in the membrane is required to characterize these interactions. The membrane topology of FtsKN was initially determined using site-directed reporter fusions; however, questions regarding this topology persist. Here, we report a revised membrane topology generated by site-directed fluorescence labeling. The revised topology confirms the presence of four transmembrane segments and reveals a newly identified periplasmic loop between the third and fourth transmembrane domains. Within this loop, four residues were identified that, when mutated, resulted in the appearance of cellular voids. High resolution transmission electron microscopy of these voids showed asymmetric division of the cytoplasm in the absence of outer membrane invagination or visible cell wall ingrowth. This uncoupling reveals a novel role for FtsK in linking cell envelope septation events and yields further evidence for FtsK as a critical checkpoint of cell division. The revised topology of FtsKN also provides an important platform for future studies on essential interactions required for this process. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Studies on lactoferricin-derived Escherichia coli membrane-active peptides reveal differences in the mechanism of N-acylated versus nonacylated peptides.

    Science.gov (United States)

    Zweytick, Dagmar; Deutsch, Günter; Andrä, Jörg; Blondelle, Sylvie E; Vollmer, Ekkehard; Jerala, Roman; Lohner, Karl

    2011-06-17

    To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis.

  20. Studies on Lactoferricin-derived Escherichia coli Membrane-active Peptides Reveal Differences in the Mechanism of N-Acylated Versus Nonacylated Peptides*

    Science.gov (United States)

    Zweytick, Dagmar; Deutsch, Günter; Andrä, Jörg; Blondelle, Sylvie E.; Vollmer, Ekkehard; Jerala, Roman; Lohner, Karl

    2011-01-01

    To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of Gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis. PMID:21515687

  1. Revealing Transient Concentration of CO2 in a Mixed Matrix Membrane by IR Microimaging and Molecular Modeling

    KAUST Repository

    Hwang, Seungtaik

    2018-02-21

    Through IR microimaging the spatially and temporally resolved development of the CO2 concentration in a ZIF-8@6FDA-DAM mixed matrix membrane was visualized during transient adsorption. By recording the evolution of the CO2 concentration, it is observed that the CO2 molecules propagate from the ZIF-8 filler, which acts as a transport

  2. Bacteriocin AS-48 binding to model membranes and pore formation as revealed by coarse-grained simulations

    NARCIS (Netherlands)

    Cruz, Victor L.; Ramos, Javier; Martinez-Salazar, Javier; Melo, Manuel N.

    Bacteriocin AS-48 is a membrane-interacting peptide that acts as a broad-spectrum antimicrobial against Gram-positive and Gram-negative bacteria. Prior Nuclear Magnetic Resonance experiments and the high resolution crystal structure of AS-48 have suggested a mechanism for the molecular activity of

  3. Revealing Transient Concentration of CO2 in a Mixed Matrix Membrane by IR Microimaging and Molecular Modeling

    KAUST Repository

    Hwang, Seungtaik; Semino, Rocio; Seoane, Beatriz; Zahan, Marufa; Chmelik, Christian; Valiullin, Rustem; Bertmer, Marko; Haase, Jü rgen; Kapteijn, Freek; Gascon, Jorge; Maurin, Guillaume; Kä rger, Jö rg

    2018-01-01

    Through IR microimaging the spatially and temporally resolved development of the CO2 concentration in a ZIF-8@6FDA-DAM mixed matrix membrane was visualized during transient adsorption. By recording the evolution of the CO2 concentration, it is observed that the CO2 molecules propagate from the ZIF-8 filler, which acts as a transport

  4. The content of mucin MUC-2, -3 and -4 antigens in the bronchial mucosa membrane of chronic obstructive pulmonary disease patients during acute exacerbation - initial report.

    Science.gov (United States)

    Kovalenko, Svetlana; Dorofieiev, Andrey

    2017-01-01

    Changes in mucin production and dyscrinia are common features of inflammation in chronic obstructive pulmonary disease (COPD). Immunohistochemical assessment of MUC-2, MUC-3, MUC-4 expression in the integumentary epithelium, goblet cells, the epithelium of mucous glands and stroma fusiform cells of the bronchial mucosa of COPD patients during an infectious and noninfectious exacerbation was performed. 30 patients with stage III COPD were enrolled to the study. Patients were divided into 2 groups: group A - 14 patients with non-infectious acute exacerbation of COPD (AECOPD) and group B - 16 patients with infectious AECOPD. Fiberoptic bronchoscopy (FBS) and in vivo bronchial biopsy of bronchial mucosa were implemented to determine the extent and nature of bronchial inflammation. The optical density of specific color in bronchial structures was assessed using immunohistochemical staining to MUC-2, -3 and -4 antigens by means of primary monoclonal antibodies to these proteins, and visualization system Dako EnVision + System, Peroxidase (AEC). We detected that in different types of bronchial mucosa epithelial cells, during acute infectious exacerbation, a decrease of antigens MUC-2 and MUC-3 expression of a various degree may occur. This phenomenon in the stroma fusiform cells in AECOPD may be a sign of epithelial-mesenchymal transition, that may play a role in the development of an inflammatory process and progression of fibrosis in COPD.

  5. Isolation and characterization of antigen-Ia complexes involved in T cell recognition

    DEFF Research Database (Denmark)

    Buus, S; Sette, A; Colon, S M

    1986-01-01

    Using equilibrium dialysis, it has been previously demonstrated that immunogenic peptides bind specifically to the Ia molecules serving as restriction elements in the immune response to these antigens. Using gel filtration to study the formation of ovalbumin (OVA) peptide-I-Ad complexes, it is he......Using equilibrium dialysis, it has been previously demonstrated that immunogenic peptides bind specifically to the Ia molecules serving as restriction elements in the immune response to these antigens. Using gel filtration to study the formation of ovalbumin (OVA) peptide-I-Ad complexes...... with glutaraldehyde revealed that the ovalbumin peptide was cross-linked solely to the alpha chain of I-Ad. Planar membranes containing I-Ad-OVA complexes stimulated a T cell response with 2 X 10(4) less antigen than required when uncomplexed antigen was used, thus demonstrating the biologic importance...

  6. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus.

    Directory of Open Access Journals (Sweden)

    Anna Lundin

    2014-05-01

    Full Text Available Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs, a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6, a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV, and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections.

  7. Using the AD12-ICT rapid-format test to detect Wuchereria bancrofti circulating antigens in comparison to Og4C3-ELISA and nucleopore membrane filtration and microscopy techniques.

    Science.gov (United States)

    El-Moamly, Amal Abdul-Rasheed; El-Sweify, Mohamed Aly; Hafez, Mohamad Abdul

    2012-09-01

    Lymphatic filariasis (LF) continues to be a major source of permanent disability and an impediment to socio-economic development in 73 countries where more than 1 billion people are at risk and over 120 millions are infected. The global drive to eliminate LF necessitates an increasing demand for valid, reliable and rapid diagnostic tests. This study aimed to assess the performance of the AD12 rapid format immunochromatographic test (ICT) to detect Wuchereria bancrofti circulating antigens, against the combined gold standard: TropBio Og4C3-ELISA (enzyme-linked immunosorbent assay) which detects circulating filarial antigen (CFA) and the nucleopore membrane filtration and microscopic examination. This prospective case-control study involved 647 asymptomatic migrant workers from filariasis-endemic countries. Of these specimens, 32 were positive for microfilaremia using the membrane filtration and microscopy, 142 positive by ELISA (of which 32 had microfilaremia), and 128 positive by the ICT (of which 31 had microfilaremia). The performance of the ICT was calculated against 32 true-positive and 90 true-negative cases. For the detection of CFA, the ICT had a sensitivity of 97% (95% confidence interval [CI] 91-103), specificity 100% (95% CI 100-100), Positive Predictive Value (PPV) 100% (95% CI 100-100), Negative Predictive Value (NPV) 99% (95% CI 97-101); and the total accuracy of the test was 99% (95% CI 98-101). The agreement between ICT and ELISA in detecting W. bancrofti antigens was excellent (kappa = 0.934; p = 0.000). In conclusion, the AD12-ICT test for the detection of W. bancrofti-CFA was sensitive and specific and comparable to the performance of ELISA. The ICT would be a useful additional test to facilitate the proposed strategies for control and elimination of LF. Because it is rapid, simple to perform, and does not require the use of special equipment, the ICT may be most appropriate in screening programs and in monitoring the possible risk of introducing

  8. Presentation of lipid antigens to T cells.

    Science.gov (United States)

    Mori, Lucia; De Libero, Gennaro

    2008-04-15

    T cells specific for lipid antigens participate in regulation of the immune response during infections, tumor immunosurveillance, allergy and autoimmune diseases. T cells recognize lipid antigens as complexes formed with CD1 antigen-presenting molecules, thus resembling recognition of MHC-peptide complexes. The biophysical properties of lipids impose unique mechanisms for their delivery, internalization into antigen-presenting cells, membrane trafficking, processing, and loading of CD1 molecules. Each of these steps is controlled at molecular and celular levels and determines lipid immunogenicity. Lipid antigens may derive from microbes and from the cellular metabolism, thus allowing the immune system to survey a large repertoire of immunogenic molecules. Recognition of lipid antigens facilitates the detection of infectious agents and the initiation of responses involved in immunoregulation and autoimmunity. This review focuses on the presentation mechanisms and specific recognition of self and bacterial lipid antigens and discusses the important open issues.

  9. Correlative STED and Atomic Force Microscopy on Live Astrocytes Reveals Plasticity of Cytoskeletal Structure and Membrane Physical Properties during Polarized Migration

    Directory of Open Access Journals (Sweden)

    Nathalie Rouach

    2017-04-01

    Full Text Available The plasticity of the cytoskeleton architecture and membrane properties is important for the establishment of cell polarity, adhesion and migration. Here, we present a method which combines stimulated emission depletion (STED super-resolution imaging and atomic force microscopy (AFM to correlate cytoskeletal structural information with membrane physical properties in live astrocytes. Using STED compatible dyes for live cell imaging of the cytoskeleton, and simultaneously mapping the cell surface topology with AFM, we obtain unprecedented detail of highly organized networks of actin and microtubules in astrocytes. Combining mechanical data from AFM with optical imaging of actin and tubulin further reveals links between cytoskeleton organization and membrane properties. Using this methodology we illustrate that scratch-induced migration induces cytoskeleton remodeling. The latter is caused by a polarization of actin and microtubule elements within astroglial cell processes, which correlates strongly with changes in cell stiffness. The method opens new avenues for the dynamic probing of the membrane structural and functional plasticity of living brain cells. It is a powerful tool for providing new insights into mechanisms of cell structural remodeling during physiological or pathological processes, such as brain development or tumorigenesis.

  10. In Situ and Real-Time SFG Measurements Revealing Organization and Transport of Cholesterol Analogue 6-Ketocholestanol in a Cell Membrane.

    Science.gov (United States)

    Ma, Sulan; Li, Hongchun; Tian, Kangzhen; Ye, Shuji; Luo, Yi

    2014-02-06

    Cholesterol organization and transport within a cell membrane are essential for human health and many cellular functions yet remain elusive so far. Using cholesterol analogue 6-ketocholestanol (6-KC) as a model, we have successfully exploited sum frequency generation vibrational spectroscopy (SFG-VS) to track the organization and transport of cholesterol in a membrane by combining achiral-sensitive ssp (ppp) and chiral-sensitive psp polarization measurements. It is found that 6-KC molecules are aligned at the outer leaflet of the DMPC lipid bilayer with a tilt angle of about 10°. 6-KC organizes itself by forming an α-β structure at low 6-KC concentration and most likely a β-β structure at high 6-KC concentration. Among all proposed models, our results favor the so-called umbrella model with formation of a 6-KC cluster. Moreover, we have found that the long anticipated flip-flop motion of 6-KC in the membrane takes time to occur, at least much longer than previously thought. All of these interesting findings indicate that it is critical to explore in situ, real-time, and label-free methodologies to obtain a precise molecular description of cholesterol's behavior in membranes. This study represents the first application of SFG to reveal the cholesterol-lipid interaction mechanism at the molecular level.

  11. Structural Studies on Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) Malaria Antigens Using Small Angle X-Ray Scattering (SAXS)

    DEFF Research Database (Denmark)

    Christoffersen, Stig

    Chemistry (App I) [1]. VAR2CSA binds specifically to CSA in the placental tissue of pregnant women hereby causing severe malaria symptoms endangering both mother and child. The minimal VAR2CSA region required to effectively bind CSA was determined to be the N-terminal DBL domain, DBL2X which we locate......Infection with the pathogenic Plasmodium falciparum parasite causes the potentially deadly Malaria disease which leads to over 1 million fatalities each year according to the WHO (World Health Organization). Individuals subjected to multiple infections gradually become immune to the disease...... symptoms and vaccine research is focused on trying to mimic or advance this immune acquisition. Immunity is primarily caused by acquisition of antibodies directed against a family of Plasmodium protein antigens called PfEMP1s located on the surface of infected erythrocytes. The PfEMP1 proteins are adhesive...

  12. Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture.

    Science.gov (United States)

    de Vasconcelos, Nathalia M; Van Opdenbosch, Nina; Van Gorp, Hanne; Parthoens, Eef; Lamkanfi, Mohamed

    2018-04-17

    Pyroptosis is rapidly emerging as a mechanism of anti-microbial host defense, and of extracellular release of the inflammasome-dependent cytokines interleukin (IL)-1β and IL-18, which contributes to autoinflammatory pathology. Caspases 1, 4, 5 and 11 trigger this regulated form of necrosis by cleaving the pyroptosis effector gasdermin D (GSDMD), causing its pore-forming amino-terminal domain to oligomerize and perforate the plasma membrane. However, the subcellular events that precede pyroptotic cell lysis are ill defined. In this study, we triggered primary macrophages to undergo pyroptosis from three inflammasome types and recorded their dynamics and morphology using high-resolution live-cell spinning disk confocal laser microscopy. Based on quantitative analysis of single-cell subcellular events, we propose a model of pyroptotic cell disintegration that is initiated by opening of GSDMD-dependent ion channels or pores that are more restrictive than recently proposed GSDMD pores, followed by osmotic cell swelling, commitment of mitochondria and other membrane-bound organelles prior to sudden rupture of the plasma membrane and full permeability to intracellular proteins. This study provides a dynamic framework for understanding cellular changes that occur during pyroptosis, and charts a chronological sequence of GSDMD-mediated subcellular events that define pyroptotic cell death at the single-cell level.

  13. KSHV cell attachment sites revealed by ultra sensitive tyramide signal amplification (TSA) localize to membrane microdomains that are up-regulated on mitotic cells.

    Science.gov (United States)

    Garrigues, H Jacques; Rubinchikova, Yelena E; Rose, Timothy M

    2014-03-01

    Cell surface structures initiating attachment of Kaposi's sarcoma-associated herpesvirus (KSHV) were characterized using purified hapten-labeled virions visualized by confocal microscopy with a sensitive fluorescent enhancement using tyramide signal amplification (TSA). KSHV attachment sites were present in specific cellular domains, including actin-based filopodia, lamellipodia, ruffled membranes, microvilli and intercellular junctions. Isolated microdomains were identified on the dorsal surface, which were heterogeneous in size with a variable distribution that depended on cellular confluence and cell cycle stage. KSHV binding domains ranged from scarce on interphase cells to dense and continuous on mitotic cells, and quantitation of bound virus revealed a significant increase on mitotic compared to interphase cells. KSHV also bound to a supranuclear domain that was distinct from microdomains in confluent and interphase cells. These results suggest that rearrangement of the cellular membrane during mitosis induces changes in cell surface receptors implicated in the initial attachment stage of KSHV entry. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Molecular Dynamics Simulations Reveal the Conformational Flexibility of Lipid II and Its Loose Association with the Defensin Plectasin in the Staphylococcus aureus Membrane

    DEFF Research Database (Denmark)

    Witzke, Sarah; Petersen, Michael; Carpenter, Timothy S.

    2016-01-01

    dynamics simulation study of the conformational dynamics of Lipid II within a detailed model of the Staphylococcus aureus cell membrane. We show that Lipid II is able to adopt a range of conformations, even within the packed lipidic environment of the membrane. Our simulations also reveal dimerization...... the biosynthesis of the cell wall. Given the urgent need for development of novel antibiotics to counter the growing threat of bacterial infection resistance, it is imperative that a thorough molecular-level characterization of the molecules targeted by antibiotics be achieved. To this end, we present a molecular...... of Lipid II mediated by cations. In the presence of the defensin peptide plectasin, the conformational lability of Lipid II allows it to form loose complexes with the protein, via a number of different binding modes....

  15. Brain transcriptome-wide screen for HIV-1 Nef protein interaction partners reveals various membrane-associated proteins.

    Directory of Open Access Journals (Sweden)

    Ellen C Kammula

    Full Text Available HIV-1 Nef protein contributes essentially to the pathology of AIDS by a variety of protein-protein-interactions within the host cell. The versatile functionality of Nef is partially attributed to different conformational states and posttranslational modifications, such as myristoylation. Up to now, many interaction partners of Nef have been identified using classical yeast two-hybrid screens. Such screens rely on transcriptional activation of reporter genes in the nucleus to detect interactions. Thus, the identification of Nef interaction partners that are integral membrane proteins, membrane-associated proteins or other proteins that do not translocate into the nucleus is hampered. In the present study, a split-ubiquitin based yeast two-hybrid screen was used to identify novel membrane-localized interaction partners of Nef. More than 80% of the hereby identified interaction partners of Nef are transmembrane proteins. The identified hits are GPM6B, GPM6A, BAP31, TSPAN7, CYB5B, CD320/TCblR, VSIG4, PMEPA1, OCIAD1, ITGB1, CHN1, PH4, CLDN10, HSPA9, APR-3, PEBP1 and B3GNT, which are involved in diverse cellular processes like signaling, apoptosis, neurogenesis, cell adhesion and protein trafficking or quality control. For a subfraction of the hereby identified proteins we present data supporting their direct interaction with HIV-1 Nef. We discuss the results with respect to many phenotypes observed in HIV infected cells and patients. The identified Nef interaction partners may help to further elucidate the molecular basis of HIV-related diseases.

  16. Red blood cell populations and membrane levels of peroxiredoxin 2 as candidate biomarkers to reveal blood doping.

    Science.gov (United States)

    Marrocco, Cristina; Pallotta, Valeria; D'alessandro, Angelo; Alves, Gilda; Zolla, Lello

    2012-05-01

    Blood doping represents one main trend in doping strategies. Blood doping refers to the practice of boosting the number of red blood cells (RBCs) in the bloodstream in order to enhance athletic performance, by means of blood transfusions, administration of erythropoiesis-stimulating substances, blood substitutes, natural or artificial altitude facilities, and innovative gene therapies. While detection of recombinant EPO and homologous transfusion is already feasible through electrophoretic, mass spectrometry or flow cytometry-based approaches, no method is currently available to tackle doping strategies relying on autologous transfusions. We exploited an in vitro model of autologous transfusion through a 1:10 dilution of concentrated RBCs after 30 days of storage upon appropriate dilution in freshly withdrawn RBCs from the same donor. Western blot towards membrane Prdx2 and Percoll density gradients were exploited to assess their suitability as biomarkers of transfusion. Membrane Prdx2 was visible in day 30 samples albeit not in day 0, while it was still visible in the 1:10 dilution of day 30 in day 0 RBCs. Cell gradients also highlighted changes in the profile of the RBC subpopulations upon dilution of stored RBCs in the fresh ones. From this preliminary in vitro investigation it emerges that Prdx2 and RBC populations might be further tested as candidate biomarkers of blood doping through autologous transfusion, though it is yet to be assessed whether the kinetics in vivo of Prdx2 exposure in the membrane of transfused RBCs will endow a sufficient time-window to allow reliable anti-doping testing.

  17. Plasma membrane proteomic analysis of human Gastric Cancer tissues: revealing flotillin 1 as a marker for Gastric Cancer

    International Nuclear Information System (INIS)

    Gao, Wen; Xu, Jing; Wang, Fuqiang; Zhang, Long; Peng, Rui; Shu, Yongqian; Wu, Jindao; Tang, Qiyun; Zhu, Yunxia

    2015-01-01

    Gastric cancer remains the second leading cause of cancer-related deaths in the world. Successful early gastric cancer detection is hampered by lack of highly sensitive and specific biomarkers. Plasma membrane proteins participate and/or have a central role in the metastatic process of cancer cells and are potentially useful for cancer therapy due to easy accessibility of the targets. In the present research, TMT method followed by mass spectrometry analysis was used to compare the relative expression levels of plasma membrane proteins between noncancer and gastric cancer tissues. Of a total data set that included 501 identified proteins, about 35% of the identified proteins were found to be plasma membrane and associated proteins. Among them, 82 proteins were at least 1.5-fold up- or down-regulated in gastric cancer compared with the adherent normal tissues. A number of markers (e.g. annexin A6, caveolin 1, epidermal growth factor receptor, integrin beta 4) were previously reported as biomarkers of GC. Additionally, several potential biomarkers participated in endocytosis pathway and integrin signaling pathways were firstly identified as differentially expressed proteins in GC samples. Our findings also supported the notion that flotillin 1 is a potential biomarker that could be exploited for molecular imaging-based detection of gastric cancer. Together, the results show that subcellular proteomics of tumor tissue is a feasible and promising avenue for exploring oncogenesis. The online version of this article (doi:10.1186/s12885-015-1343-5) contains supplementary material, which is available to authorized users

  18. Microvillar membrane microdomains exist at physiological temperature. Role of galectin-4 as lipid raft stabilizer revealed by "superrafts"

    DEFF Research Database (Denmark)

    Braccia, Anita; Villani, Maristella; Immerdal, Lissi

    2003-01-01

    rafts prepared by the two protocols were morphologically different but had essentially similar profiles of protein- and lipid components, showing that raft microdomains do exist at 37 degrees C and are not "low temperature artifacts." We also employed a novel method of sequential detergent extraction...... and the transmembrane aminopeptidase N, whereas the peripheral lipid raft protein annexin 2 was essentially absent. In conclusion, in the microvillar membrane, galectin-4, functions as a core raft stabilizer/organizer for other, more loosely raft-associated proteins. The superraft analysis might be applicable to other...

  19. Identification of the Mycobacterium marinum Apa antigen O-mannosylation sites reveals important glycosylation variability with the M. tuberculosis Apa homologue.

    Science.gov (United States)

    Coddeville, Bernadette; Wu, Sz-Wei; Fabre, Emeline; Brassart, Colette; Rombouts, Yoann; Burguière, Adeline; Kremer, Laurent; Khoo, Kay-Hooi; Elass-Rochard, Elisabeth; Guérardel, Yann

    2012-10-22

    The 45/47 kDa Apa, an immuno-dominant antigen secreted by Mycobacterium tuberculosis is O-mannosylated at multiple sites. Glycosylation of Apa plays a key role in colonization and invasion of the host cells by M. tuberculosis through interactions of Apa with the host immune system C-type lectins. Mycobacterium marinum (M.ma) a fish pathogen, phylogenetically close to M. tuberculosis, induces a granulomatous response with features similar to those described for M. tuberculosis in human. Although M.ma possesses an Apa homologue, its glycosylation status is unknown, and whether this represents a crucial element in the pathophysiology induced by M.ma remains to be addressed. To this aim, we have identified two concanavalin A-reactive 45/47 kDa proteins from M.ma, which have been further purified by a two-step anion exchange chromatography process. Advanced liquid chromatography-nanoESI mass spectrometry-based proteomic analyses of peptides, derived from either tryptic digestion alone or in combination with the Asp-N endoproteinase, established that M.ma Apa possesses up to seven distinct O-mannosylated sites with mainly single mannose substitutions, which can be further extended at the Ser/Thr/Pro rich region near the N-terminus. This opens the way to further studies focussing on the involvement and biological functions of Apa O-mannosylation using the M.ma/zebrafish model. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Whole blood transcriptional profiling reveals significant down-regulation of human leukocyte antigen class I and II genes in essential thrombocythemia, polycythemia vera and myelofibrosis

    DEFF Research Database (Denmark)

    Skov, Vibe; Riley, Caroline Hasselbalch; Thomassen, Mads

    2013-01-01

    Gene expression profiling studies in the Philadelphia-negative chronic myeloproliferative neoplasms have revealed significant deregulation of several immune and inflammation genes that might be of importance for clonal evolution due to defective tumor immune surveillance. Other mechanisms might b...

  1. A novel ELISA using a recombinant outer membrane protein, rTp0663, as the antigen for serological diagnosis of syphilis.

    Science.gov (United States)

    Xu, Man; Xie, Yafeng; Jiang, Chuanhao; Xiao, Yongjian; Kuang, Xingxing; Zhao, Feijun; Zeng, Tiebing; Liu, Shuangquan; Liang, Mingxing; Li, Li; Wang, Chuan; Wu, Yimou

    2016-02-01

    The lack of Treponema pallidum-specific antigens with highly accurate diagnosis makes the diagnosis of syphilis challenging. A soluble recombinant version of a new diagnostic protein Tp0663 has been produced. The serodiagnostic potential of this protein was assessed by screening 3326 serum samples simultaneously evaluated by rapid plasma reagin and T. pallidum particle agglutination tests. Kappa (κ) coefficients were used to compare the concordance between clinical diagnosis and the Tp0663-based ELISA or the ARCHITECT Syphilis TP chemiluminescent immunoassay (Abbott GmbH and Co. KG). Using the results of clinical diagnosis as the gold standard, the sensitivity and specificity of Tp0663 were found to be 98.83% (95% confidence interval (CI) 96.61-99.60%) and 100% (95% CI 99.88-100%), respectively. In comparison, the ARCHITECT Syphilis TP assay was found to have a lower sensitivity (97.27%, 95% CI 94.46-98.67%) and specificity (99.61%, 95% CI 99.32-99.78%). In particular, the ARCHITECT Syphilis TP exhibited a false-positive rate of 0.39%. Moreover, the ELISA was in perfect agreement with the gold standard, with a κ value of 0.99, comparable to that of ARCHITECT Syphilis TP (0.96). These results identified Tp0663 as a novel serodiagnostic candidate with great potential for developing novel tests for the diagnosis of syphilis. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Polarized light microscopy reveals physiological and drug-induced changes in surfactant membrane assembly in alveolar type II pneumocytes.

    Science.gov (United States)

    Haller, Thomas; Cerrada, Alejandro; Pfaller, Kristian; Braubach, Peter; Felder, Edward

    2018-05-01

    In alveolar type II (AT II) cells, pulmonary surfactant (PS) is synthetized, stored and exocytosed from lamellar bodies (LBs), specialized large secretory organelles. By applying polarization microscopy (PM), we confirm a specific optical anisotropy of LBs, which indicates a liquid-crystalline mesophase of the stored surfactant phospholipids (PL) and an unusual case of a radiation-symmetric, spherocrystalline organelle. Evidence is shown that the degree of anisotropy is dependent on the amount of lipid layers and their degree of hydration, but unaffected by acutely modulating vital cell parameters like intravesicular pH or cellular energy supply. In contrast, physiological factors that perturb this structure include osmotic cell volume changes and LB exocytosis. In addition, we found two pharmaceuticals, Amiodarone and Ambroxol, both of which severely affect the liquid-crystalline order. Our study shows that PM is an easy, very sensitive, but foremost non-invasive and label-free method able to collect important structural information of PS assembly in live AT II cells which otherwise would be accessible by destructive or labor intense techniques only. This may open new approaches to dynamically investigate LB biosynthesis - the incorporation, folding and packing of lipid membranes - or the initiation of pathological states that manifest in altered LB structures. Due to the observed drug effects, we further suggest that PM provides an appropriate way to study unspecific drug interactions with alveolar cells and even drug-membrane interactions in general. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Cell-Based Phenotyping Reveals QTL for Membrane Potential Maintenance Associated with Hypoxia and Salinity Stress Tolerance in Barley

    Directory of Open Access Journals (Sweden)

    Muhammad B. Gill

    2017-11-01

    Full Text Available Waterlogging and salinity are two major abiotic stresses that hamper crop production world-wide resulting in multibillion losses. Plant abiotic stress tolerance is conferred by many interrelated mechanisms. Amongst these, the cell’s ability to maintain membrane potential (MP is considered to be amongst the most crucial traits, a positive relationship between the ability of plants to maintain highly negative MP and its tolerance to both salinity and waterlogging stress. However, no attempts have been made to identify quantitative trait loci (QTL conferring this trait. In this study, the microelectrode MIFE technique was used to measure the plasma membrane potential of epidermal root cells of 150 double haploid (DH lines of barley (Hordeum vulgare L. from a cross between a Chinese landrace TX9425 and Japanese malting cultivar Naso Nijo under hypoxic conditions. A major QTL for the MP in the epidermal root cells in hypoxia-exposed plants was identified. This QTL was located on 2H, at a similar position to the QTL for waterlogging and salinity tolerance reported in previous studies. Further analysis confirmed that MP showed a significant contribution to both waterlogging and salinity tolerance. The fact that the QTL for MP was controlled by a single major QTL illustrates the power of the single-cell phenotyping approach and opens prospects for fine mapping this QTL and thus being more effective in marker assisted selection.

  4. Biochemical Characterization of Echinococcus multilocularis Antigen B3 Reveals Insight into Adaptation and Maintenance of Parasitic Homeostasis at the Host-Parasite Interface.

    Science.gov (United States)

    Ahn, Chun-Seob; Kim, Jeong-Geun; Han, Xiumin; Bae, Young-An; Park, Woo-Jae; Kang, Insug; Wang, Hu; Kong, Yoon

    2017-02-03

    Alveolar echinococcosis (AE) caused by Echinococcus multilocularis metacestode is frequently associated with deleterious zoonotic helminthiasis. The growth patterns and morphological features of AE, such as invasion of the liver parenchyme and multiplication into multivesiculated masses, are similar to those of malignant tumors. AE has been increasingly detected in several regions of Europe, North America, Central Asia, and northwestern China. An isoform of E. multilocularis antigen B3 (EmAgB3) shows a specific immunoreactivity against patient sera of active-stage AE, suggesting that EmAgB3 might play important roles during adaptation of the parasite to hosts. However, expression patterns and biochemical properties of EmAgB3 remained elusive. The protein profile and nature of component proteins of E. multilocularis hydatid fluid (EmHF) have never been addressed. In this study, we conducted proteome analysis of EmHF of AE cysts harvested from immunocompetent mice. We observed the molecular and biochemical properties of EmAgB3, including differential transcription patterns of paralogous genes, macromolecular protein status by self-assembly, distinct oligomeric states according to individual anatomical compartments of the worm, and hydrophobic ligand-binding protein activity. We also demonstrated tissue expression patterns of EmAgB3 transcript and protein. EmAgB3 might participate in immune response and recruitment of essential host lipids at the host-parasite interface. Our results might contribute to an in depth understanding of the biophysical and biological features of EmAgB3, thus providing insights into the design of novel targets to control AE.

  5. Overcoming antigen masking of anti-amyloidbeta antibodies reveals breaking of B cell tolerance by virus-like particles in amyloidbeta immunized amyloid precursor protein transgenic mice

    Directory of Open Access Journals (Sweden)

    Ugen Kenneth E

    2004-06-01

    Full Text Available Abstract Background In prior work we detected reduced anti-Aβ antibody titers in Aβ-vaccinated transgenic mice expressing the human amyloid precursor protein (APP compared to nontransgenic littermates. We investigated this observation further by vaccinating APP and nontransgenic mice with either the wild-type human Aβ peptide, an Aβ peptide containing the "Dutch Mutation", E22Q, or a wild-type Aβ peptide conjugated to papillomavirus virus-like particles (VLPs. Results Anti-Aβ antibody titers were lower in vaccinated APP than nontransgenic mice even when vaccinated with the highly immunogenic Aβ E22Q. One concern was that human Aβ derived from the APP transgene might mask anti-Aβ antibodies in APP mice. To test this possibility, we dissociated antigen-antibody complexes by incubation at low pH. The low pH incubation increased the anti-Aβ antibody titers 20–40 fold in APP mice but had no effect in sera from nontransgenic mice. However, even after dissociation, the anti-Aβ titers were still lower in transgenic mice vaccinated with wild-type Aβ or E22Q Aβ relative to non-transgenic mice. Importantly, the dissociated anti-Aβ titers were equivalent in nontransgenic and APP mice after VLP-based vaccination. Control experiments demonstrated that after acid-dissociation, the increased antibody titer did not cross react with bovine serum albumin nor alpha-synuclein, and addition of Aβ back to the dissociated serum blocked the increase in antibody titers. Conclusions Circulating human Aβ can interfere with ELISA assay measurements of anti-Aβ titers. The E22Q Aβ peptide vaccine is more immunogenic than the wild-type peptide. Unlike peptide vaccines, VLP-based vaccines against Aβ abrogate the effects of Aβ self-tolerance.

  6. Rare Case of Intratracheal Metastasis Detected on 68Ga-Prostate-Specific Membrane Antigen PET/CT Scan in a Case of Thyroglobulin Elevated Negative Iodine Scan Syndrome.

    Science.gov (United States)

    Sasikumar, Arun; Joy, Ajith; Pillai, M R A; Oommen, Karuna Elza; Jayakumar, R

    2018-04-01

    A 64-year-old woman underwent completion thyroidectomy with upper tracheal ring resection and right-sided neck dissection for papillary carcinoma of the thyroid infiltrating the trachea and was given I radioiodine treatment. Three years later, she presented with hemoptysis. On evaluation, she had increased serum thyroglobulin and negative iodine scan (TENIS). F-FDG PET/CT scan did not identify any site of disease. One year later, Ga-PSMA scan done revealed a moderate focal tracer-avid intratracheal soft tissue; biopsy revealed it to be metastatic papillary carcinoma of the thyroid. This case kindles the possibility of using Ga-PSMA PET/CT to reveal occult disease in cases of TENIS.

  7. Inducible Inhibition of Gβγ Reveals Localization-dependent Functions at the Plasma Membrane and Golgi*

    Science.gov (United States)

    Klayman, Lauren M.; Wedegaertner, Philip B.

    2017-01-01

    Heterotrimeric G proteins signal at a variety of endomembrane locations, in addition to their canonical function at the cytoplasmic surface of the plasma membrane (PM), where they are activated by cell surface G protein-coupled receptors. Here we focus on βγ signaling at the Golgi, where βγ activates a signaling cascade, ultimately resulting in vesicle fission from the trans-Golgi network (TGN). To develop a novel molecular tool for inhibiting endogenous βγ in a spatial-temporal manner, we take advantage of a lipid association mutant of the widely used βγ inhibitor GRK2ct (GRK2ct-KERE) and the FRB/FKBP heterodimerization system. We show that GRK2ct-KERE cannot inhibit βγ function when expressed in cells, but recruitment to a specific membrane location recovers the ability of GRK2ct-KERE to inhibit βγ signaling. PM-recruited GRK2ct-KERE inhibits lysophosphatidic acid-induced phosphorylation of Akt, whereas Golgi-recruited GRK2ct-KERE inhibits cargo transport from the TGN to the PM. Moreover, we show that Golgi-recruited GRK2ct-KERE inhibits model basolaterally targeted but not apically targeted cargo delivery, for both PM-destined and secretory cargo, providing the first evidence of selectivity in terms of cargo transport regulated by βγ. Last, we show that Golgi fragmentation induced by ilimaquinone and nocodazole is blocked by βγ inhibition, demonstrating that βγ is a key regulator of multiple pathways that impact Golgi morphology. Thus, we have developed a new molecular tool, recruitable GRK2ct-KERE, to modulate βγ signaling at specific subcellular locations, and we demonstrate novel cargo selectivity for βγ regulation of TGN to PM transport and a novel role for βγ in mediating Golgi fragmentation. PMID:27994056

  8. Formulation of an inhibitor radiopharmaceutical of prostatic antigen of {sup 177}Lu-Glu-Nh-CO-Nh-Lys membrane; Formulacion de un radiofarmaco inhibidor del antigeno prostatico de membrana {sup 177}Lu-Glu-NH-CO-NH-Lys

    Energy Technology Data Exchange (ETDEWEB)

    Ortega S, D.

    2015-07-01

    The prostate specific membrane antigen (PSMA) is a zinc metalloenzyme that is expressed on the cell membrane and highly expressed in prostate cancer. Recently, it has been demonstrated that the peptide sequence Glu-Nh-CO-Nh-Lys inhibit PSMA activity through an electrostatic interaction with the Zn. Several theragnostic radiopharmaceuticals with base in {sup 177}Lu have been developed for radiotherapy of specific molecular targets because gamma and beta emissions of the radionuclide (β = 0.498 MeV and γ= 0.133 MeV). However, there is currently no label a formulation for preparing a radiopharmaceutical of {sup 177}Lu-Glu-Nh-CO-Nh-Lys useful treatment of prostate cancer. The aim of this research was to optimize and document the process of production of the radiopharmaceutical {sup 177}Lu-Glu-Nh-CO-Nh-Lys for sanitary registration application before the Comision Federal para la Proteccion contra Riesgos Sanitarios (COFEPRIS). The optimization of the production process was assessed a factorial design of three variables with mixed levels (3 x 3 x 2) where the dependent variable is the radiochemical purity, the analytical method was validated by UV-Vis spectrophotometry. Next, process validation was carried out by labeling 3 lots of the optimized formulation of the radiopharmaceutical (5.55 GBq (2.16 μg) of {sup 177}LuCl{sub 3}, 90 mg peptide PSMA, 50 mg ascorbic acid and 150 μL of acetate buffer 1 M ph 5), long-term stability was performed by high resolution liquid chromatography) to determine its useful shelf life. 3 validation batches were prepared under protocols of Good Manufacturing Practice (GMP) in the Production Plant of Radiopharmaceuticals of the Instituto Nacional de Investigaciones Nucleares (ININ), meet specifications preset by obtaining a sterile and free development of bacterial endotoxin yields of labeled 100% and which retains its quality characteristics radiochemical purity greater than 90% for at least 15 days. (Author)

  9. A Shotgun Proteomic Approach Reveals That Fe Deficiency Causes Marked Changes in the Protein Profiles of Plasma Membrane and Detergent-Resistant Microdomain Preparations from Beta vulgaris Roots.

    Science.gov (United States)

    Gutierrez-Carbonell, Elain; Takahashi, Daisuke; Lüthje, Sabine; González-Reyes, José Antonio; Mongrand, Sébastien; Contreras-Moreira, Bruno; Abadía, Anunciación; Uemura, Matsuo; Abadía, Javier; López-Millán, Ana Flor

    2016-08-05

    In the present study we have used label-free shotgun proteomic analysis to examine the effects of Fe deficiency on the protein profiles of highly pure sugar beet root plasma membrane (PM) preparations and detergent-resistant membranes (DRMs), the latter as an approach to study microdomains. Altogether, 545 proteins were detected, with 52 and 68 of them changing significantly with Fe deficiency in PM and DRM, respectively. Functional categorization of these proteins showed that signaling and general and vesicle-related transport accounted for approximately 50% of the differences in both PM and DRM, indicating that from a qualitative point of view changes induced by Fe deficiency are similar in both preparations. Results indicate that Fe deficiency has an impact in phosphorylation processes at the PM level and highlight the involvement of signaling proteins, especially those from the 14-3-3 family. Lipid profiling revealed Fe-deficiency-induced decreases in phosphatidic acid derivatives, which may impair vesicle formation, in agreement with the decreases measured in proteins related to intracellular trafficking and secretion. The modifications induced by Fe deficiency in the relative enrichment of proteins in DRMs revealed the existence of a group of cytoplasmic proteins that appears to be more attached to the PM in conditions of Fe deficiency.

  10. Immunity to tumour antigens.

    Science.gov (United States)

    Li, Geng; Ali, Selman A; McArdle, Stephanie E B; Mian, Shahid; Ahmad, Murrium; Miles, Amanda; Rees, Robert C

    2005-01-01

    During the last decade, a large number of human tumour antigens have been identified. These antigens are classified as tumour-specific shared antigens, tissue-specific differentiation antigens, overexpressed antigens, tumour antigens resulting from mutations, viral antigens and fusion proteins. Antigens recognised by effectors of immune system are potential targets for antigen-specific cancer immunotherapy. However, most tumour antigens are self-proteins and are generally of low immunogenicity and the immune response elicited towards these tumour antigens is not always effective. Strategies to induce and enhance the tumour antigen-specific response are needed. This review will summarise the approaches to discovery of tumour antigens, the current status of tumour antigens, and their potential application to cancer treatment.

  11. Inducible Inhibition of Gβγ Reveals Localization-dependent Functions at the Plasma Membrane and Golgi.

    Science.gov (United States)

    Klayman, Lauren M; Wedegaertner, Philip B

    2017-02-03

    Heterotrimeric G proteins signal at a variety of endomembrane locations, in addition to their canonical function at the cytoplasmic surface of the plasma membrane (PM), where they are activated by cell surface G protein-coupled receptors. Here we focus on βγ signaling at the Golgi, where βγ activates a signaling cascade, ultimately resulting in vesicle fission from the trans-Golgi network (TGN). To develop a novel molecular tool for inhibiting endogenous βγ in a spatial-temporal manner, we take advantage of a lipid association mutant of the widely used βγ inhibitor GRK2ct (GRK2ct-KERE) and the FRB/FKBP heterodimerization system. We show that GRK2ct-KERE cannot inhibit βγ function when expressed in cells, but recruitment to a specific membrane location recovers the ability of GRK2ct-KERE to inhibit βγ signaling. PM-recruited GRK2ct-KERE inhibits lysophosphatidic acid-induced phosphorylation of Akt, whereas Golgi-recruited GRK2ct-KERE inhibits cargo transport from the TGN to the PM. Moreover, we show that Golgi-recruited GRK2ct-KERE inhibits model basolaterally targeted but not apically targeted cargo delivery, for both PM-destined and secretory cargo, providing the first evidence of selectivity in terms of cargo transport regulated by βγ. Last, we show that Golgi fragmentation induced by ilimaquinone and nocodazole is blocked by βγ inhibition, demonstrating that βγ is a key regulator of multiple pathways that impact Golgi morphology. Thus, we have developed a new molecular tool, recruitable GRK2ct-KERE, to modulate βγ signaling at specific subcellular locations, and we demonstrate novel cargo selectivity for βγ regulation of TGN to PM transport and a novel role for βγ in mediating Golgi fragmentation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference.

    Directory of Open Access Journals (Sweden)

    Jie Chen

    Full Text Available BACKGROUND: Trehalase, an enzyme that hydrolyzes trehalose to yield two glucose molecules, plays a pivotal role in various physiological processes. In recent years, trehalase proteins have been purified from several insect species and are divided into soluble (Tre-1 and membrane-bound (Tre-2 trehalases. However, no functions of the two trehalases in chitin biosynthesis in insects have yet been reported. PRINCIPAL FINDINGS: The membrane-bound trehalase of Spodoptera exigua (SeTre-2 was characterized in our laboratory previously. In this study, we cloned the soluble trehalase gene (SeTre-1 and investigated the tissue distribution and developmental expression pattern of the two trehalase genes. SeTre-1 was expressed highly in cuticle and Malpighian tubules, while SeTre-2 was expressed in tracheae and fat body. In the midgut, the two trehalase genes were expressed in different locations. Additionally, the expression profiles of both trehalase mRNAs and their enzyme activities suggest that they may play different roles in chitin biosynthesis. The RNA interference (RNAi of either SeTre-1 or SeTre-2 was gene-specific and effective, with efficiency rates up to 83% at 72 h post injection. After RNAi of SeTre-1 and SeTre-2, significant higher mortality rates were observed during the larva-pupa stage and pupa-adult stage, and the lethal phenotypes were classified and analyzed. Additionally, the change trends of concentration of trehalose and glucose appeared reciprocally in RNAi-mutants. Moreover, knockdown of SeTre-1 gene largely inhibited the expression of chitin synthase gene A (CHSA and reduced the chitin content in the cuticle to two-thirds relative to the control insects. The chitin synthase gene B (CHSB expression, however, was inhibited more by the injection of dsRNA for SeTre-2, and the chitin content in the midgut decreased by about 25%. CONCLUSIONS: SeTre-1 plays a major role in CHSA expression and chitin synthesis in the cuticle, and SeTre-2

  13. Myosins 1 and 6, myosin light chain kinase, actin and microtubules cooperate during antibody-mediated internalisation and trafficking of membrane-expressed viral antigens in feline infectious peritonitis virus infected monocytes.

    Science.gov (United States)

    Dewerchin, Hannah L; Desmarets, Lowiese M; Noppe, Ytse; Nauwynck, Hans J

    2014-02-12

    Monocytes infected with feline infectious peritonitis virus, a coronavirus, express viral proteins in their plasma membranes. Upon binding of antibodies, these proteins are quickly internalised through a new clathrin- and caveolae-independent internalisation pathway. By doing so, the infected monocytes can escape antibody-dependent cell lysis. In the present study, we investigated which kinases and cytoskeletal proteins are of importance during internalisation and subsequent intracellular transport. The experiments showed that myosin light chain kinase (MLCK) and myosin 1 are crucial for the initiation of the internalisation. With co-localisation stainings, it was found that MLCK and myosin 1 co-localise with antigens even before internalisation started. Myosin 6 co-localised with the internalising complexes during passage through the cortical actin, were it might play a role in moving or disintegrating actin filaments, to overcome the actin barrier. One minute after internalisation started, vesicles had passed the cortical actin, co-localised with microtubules and association with myosin 6 was lost. The vesicles were further transported over the microtubules and accumulated at the microtubule organising centre after 10 to 30 min. Intracellular trafficking over microtubules was mediated by MLCK, myosin 1 and a small actin tail. Since inhibiting MLCK with ML-7 was so efficient in blocking the internalisation pathway, this target can be used for the development of a new treatment for FIPV.

  14. Analysis of the outer membrane proteome and secretome of Bacteroides fragilis reveals a multiplicity of secretion mechanisms.

    Directory of Open Access Journals (Sweden)

    Marlena M Wilson

    Full Text Available Bacteroides fragilis is a widely distributed member of the human gut microbiome and an opportunistic pathogen. Cell surface molecules produced by this organism likely play important roles in colonization, communication with other microbes, and pathogenicity, but the protein composition of the outer membrane (OM and the mechanisms used to transport polypeptides into the extracellular space are poorly characterized. Here we used LC-MS/MS to analyze the OM proteome and secretome of B. fragilis NCTC 9343 grown under laboratory conditions. Of the 229 OM proteins that we identified, 108 are predicted to be lipoproteins, and 61 are predicted to be TonB-dependent transporters. Based on their proximity to genes encoding TonB-dependent transporters, many of the lipoprotein genes likely encode proteins involved in nutrient or small molecule uptake. Interestingly, protease accessibility and biotinylation experiments indicated that an unusually large fraction of the lipoproteins are cell-surface exposed. We also identified three proteins that are members of a novel family of autotransporters, multiple potential type I protein secretion systems, and proteins that appear to be components of a type VI secretion apparatus. The secretome consisted of lipoproteins and other proteins that might be substrates of the putative type I or type VI secretion systems. Our proteomic studies show that B. fragilis differs considerably from well-studied Gram-negative bacteria such as Escherichia coli in both the spectrum of OM proteins that it produces and the range of secretion strategies that it utilizes.

  15. Transcriptome and membrane fatty acid analyses reveal different strategies for responding to permeating and non-permeating solutes in the bacterium Sphingomonas wittichii

    Directory of Open Access Journals (Sweden)

    Johnson David R

    2011-11-01

    opposite effect and decreased after perturbation with PEG8000. Conclusions A combination of growth assays, transcriptome profiling, and membrane fatty acid analyses revealed that permeating and non-permeating solutes trigger different adaptive responses in strain RW1, suggesting these solutes affect cells in fundamentally different ways. Future work is now needed that connects these responses with the responses observed in more realistic scenarios of soil desiccation.

  16. Comparative proteomic analysis reveals a dynamic pollen plasma membrane protein map and the membrane landscape of receptor-like kinases and transporters important for pollen tube growth and interaction with pistils in rice.

    Science.gov (United States)

    Yang, Ning; Wang, Tai

    2017-01-05

    The coordination of pollen tube (PT) growth, guidance and timely growth arrest and rupture mediated by PT-pistil interaction is crucial for the PT to transport sperm cells into ovules for double fertilization. The plasma membrane (PM) represents an important interface for cell-cell interaction, and PM proteins of PTs are pioneers for mediating PT integrity and interaction with pistils. Thus, understanding the mechanisms underlying these events is important for proteomics. Using the efficient aqueous polymer two-phase system and alkali buffer treatment, we prepared high-purity PM from mature and germinated pollen of rice. We used iTRAQ quantitative proteomic methods and identified 1,121 PM-related proteins (PMrPs) (matched to 899 loci); 192 showed differential expression in the two pollen cell types, 119 increased and 73 decreased in abundance during germination. The PMrP and differentially expressed PMrP sets all showed a functional skew toward signal transduction, transporters, wall remodeling/metabolism and membrane trafficking. Their genomic loci had strong chromosome bias. We found 37 receptor-like kinases (RLKs) from 8 kinase subfamilies and 209 transporters involved in flux of diversified ions and metabolites. In combination with the rice pollen transcriptome data, we revealed that in general, the protein expression of these PMrPs disagreed with their mRNA expression, with inconsistent mRNA expression for 74% of differentially expressed PMrPs. This study identified genome-wide pollen PMrPs, and provided insights into the membrane profile of receptor-like kinases and transporters important for pollen tube growth and interaction with pistils. These pollen PMrPs and their mRNAs showed discordant expression. This work provides resource and knowledge to further dissect mechanisms by which pollen or the PT controls PMrP abundance and monitors interactions and ion and metabolite exchanges with female cells in rice.

  17. Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Leon, Ileana R; Bak, Steffen

    2011-01-01

    . In skeletal muscle, mitochondrial dysfunction is linked to insulin resistance in humans with obesity and type 2 diabetes. We performed a phosphoproteomic study of functional mitochondria isolated from human muscle biopsies with the aim to obtain a comprehensive overview of mitochondrial phosphoproteins...... in insulin resistance. We also assigned phosphorylation sites in mitochondrial proteins involved in amino acid degradation, importers and transporters, calcium homeostasis, and apoptosis. Bioinformatics analysis of kinase motifs revealed that many of these mitochondrial phosphoproteins are substrates....... Future comparative phosphoproteome analysis of mitochondria from healthy and diseased individuals will provide insights into the role of abnormal phosphorylation in pathologies, such as type 2 diabetes....

  18. Expression analysis of two gene subfamilies encoding the plasma membrane H+-ATPase in Nicotiana plumbaginifolia reveals the major transport functions of this enzyme.

    Science.gov (United States)

    Moriau, L; Michelet, B; Bogaerts, P; Lambert, L; Michel, A; Oufattole, M; Boutry, M

    1999-07-01

    The plasma membrane H+-ATPase couples ATP hydrolysis to proton transport, thereby establishing the driving force for solute transport across the plasma membrane. In Nicotiana plumbaginifolia, this enzyme is encoded by at least nine pma (plasma membrane H+-ATPase) genes. Four of these are classified into two gene subfamilies, pma1-2-3 and pma4, which are the most highly expressed in plant species. We have isolated genomic clones for pma2 and pma4. Mapping of their transcript 5' end revealed the presence of a long leader that contained small open reading frames, regulatory features typical of other pma genes. The gusA reporter gene was then used to determine the expression of pma2, pma3 and pma4 in N. tabacum. These data, together with those obtained previously for pma1, led to the following conclusions. (i) The four pma-gusA genes were all expressed in root, stem, leaf and flower organs, but each in a cell-type specific manner. Expression in these organs was confirmed at the protein level, using subfamily-specific antibodies. (ii) pma4-gusA was expressed in many cell types and notably in root hair and epidermis, in companion cells, and in guard cells, indicating that in N. plumbaginifolia the same H+-ATPase isoform might be involved in mineral nutrition, phloem loading and control of stomata aperture. (iii) The second gene subfamily is composed, in N. plumbaginifolia, of a single gene (pma4) with a wide expression pattern and, in Arabidopsis thaliana, of three genes (aha1, aha2, aha3), at least two of them having a more restrictive expression pattern. (iv) Some cell types expressed pma2 and pma4 at the same time, which encode H+-ATPases with different enzymatic properties.

  19. Revealing mechanisms of selective, concentration-dependent potentials of 4-hydroxy-2-nonenal to induce apoptosis in cancer cells through inactivation of membrane-associated catalase.

    Science.gov (United States)

    Bauer, Georg; Zarkovic, Neven

    2015-04-01

    Tumor cells generate extracellular superoxide anions and are protected against superoxide anion-mediated intercellular apoptosis-inducing signaling by the expression of membrane-associated catalase. 4-Hydroxy-2-nonenal (4-HNE), a versatile second messenger generated during lipid peroxidation, has been shown to induce apoptosis selectively in malignant cells. The findings described in this paper reveal the strong, concentration-dependent potential of 4-HNE to specifically inactivate extracellular catalase of tumor cells both indirectly and directly and to consequently trigger apoptosis in malignant cells through superoxide anion-mediated intercellular apoptosis-inducing signaling. Namely, 4-HNE caused apoptosis selectively in NOX1-expressing tumor cells through inactivation of their membrane-associated catalase, thus reactivating subsequent intercellular signaling through the NO/peroxynitrite and HOCl pathways, followed by the mitochondrial pathway of apoptosis. Concentrations of 4-HNE of 1.2 µM and higher directly inactivated membrane-associated catalase of tumor cells, whereas at lower concentrations, 4-HNE triggered a complex amplificatory pathway based on initial singlet oxygen formation through H2O2 and peroxynitrite interaction. Singlet-oxygen-dependent activation of the FAS receptor and caspase-8 increased superoxide anion generation by NOX1 and amplification of singlet oxygen generation, which allowed singlet-oxygen-dependent inactivation of catalase. 4-HNE and singlet oxygen cooperate in complex autoamplificatory loops during this process. The finding of these novel anticancer pathways may be useful for understanding the role of 4-HNE in the control of malignant cells and for the optimization of ROS-dependent therapeutic approaches including antioxidant treatments. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A Phase 2a Randomized Study to Evaluate the Safety and Immunogenicity of the 1790GAHB Generalized Modules for Membrane Antigen Vaccine against Shigella sonnei Administered Intramuscularly to Adults from a Shigellosis-Endemic Country

    Directory of Open Access Journals (Sweden)

    Christina W. Obiero

    2017-12-01

    Full Text Available Shigellosis is a mild-to-severe diarrheal infection, caused by the genus Shigella, and is responsible for significant morbidity and mortality worldwide. We evaluated the safety and immunogenicity of an investigational Shigella sonnei vaccine (1790GAHB based on generalized modules for membrane antigens (GMMA in Kenya, a Shigella-endemic country. This phase 2a, observer-blind, controlled randomized study (NCT02676895 enrolled 74 healthy adults aged 18–45 years, of whom 72 were vaccinated. Participants received, in a 1:1:1 ratio, two vaccinations with the 1790GAHB vaccine at doses of either 1.5/25 μg of O antigen (OAg/protein (group 1.5/25 μg or 5.9/100 μg (group 5.9/100 μg at day (D 1 and D29, or vaccination with a quadrivalent meningococcal vaccine at D1 and tetanus, diphtheria, and acellular pertussis vaccine at D29 (control group. Solicited and unsolicited adverse events (AEs, serious AEs (SAEs, and AEs of special interest (neutropenia and reactive arthritis were collected. Anti-S. sonnei lipopolysaccharide (LPS serum immunoglobulin G (IgG geometric mean concentrations (GMC were evaluated at D1, D29, and D57 and compared to anti-S. sonnei LPS antibody levels in convalescent patients naturally exposed to S. sonnei. The percentages of participants with seroresponse were also calculated. The most frequently reported solicited local and systemic AEs across all groups were pain and headache, respectively. Only one case of severe systemic reaction was reported (severe headache after first vaccination in group 5.9/100 μg. Seven and three episodes of neutropenia, assessed as probably or possibly related to vaccination respectively, were reported in the investigational and control groups, respectively. No other SAEs were reported. Despite very high baseline anti-S. sonnei LPS serum IgG levels, the 1790GAHB vaccine induced robust antibody responses. At D29, GMC increased 2.10- and 4.43-fold from baseline in groups 1.5/25 and 5.9/100

  1. Variation in the immune responses against Plasmodium falciparum merozoite surface protein-1 and apical membrane antigen-1 in children residing in the different epidemiological strata of malaria in Cameroon.

    Science.gov (United States)

    Kwenti, Tebit Emmanuel; Moye, Adzemye Linus; Wiylanyuy, Adzemye Basil; Njunda, Longdoh Anna; Nkuo-Akenji, Theresa

    2017-11-09

    Studies to assess the immune responses against malaria in Cameroonian children are limited. The purpose of this study was to assess the immune responses against Plasmodium falciparum merozoite surface protein-1 (MSP-1 19 ) and apical membrane antigen-1 (AMA-1) in children residing in the different epidemiological strata of malaria in Cameroon. In a cross-sectional survey performed between April and July 2015, 602 children between 2 and 15 years (mean ± SD = 5.7 ± 3.7), comprising 319 (53%) males were enrolled from five epidemiological strata of malaria in Cameroon including: the sudano-sahelian (SS) strata, the high inland plateau (HIP) strata, the south Cameroonian equatorial forest (SCEF) strata, the high western plateau (HWP) strata, and the coastal (C) strata. The children were screened for clinical malaria (defined by malaria parasitaemia ≥ 5000 parasites/µl plus axillary temperature ≥ 37.5 °C). Their antibody responses were measured against P. falciparum MSP-1 19 and AMA-1 vaccine candidate antigens using standard ELISA technique. A majority of the participants were IgG responders 72.1% (95% CI 68.3-75.6). The proportion of responders was higher in females (p = 0.002) and in children aged 10 years and above (p = 0.005). The proportion of responders was highest in Limbe (C strata) and lowest in Ngaoundere (HIP strata) (p malaria (p malaria parasites. The immune responses varied considerably across the different strata: the highest levels observed in the C strata and the lowest in the HIP strata. Furthermore, malaria transmission in Cameroon could be categorized into two major groups based on the serological reaction of the children: the southern (comprising C and SCEF strata) and northern (comprising HWP, HIP and SS strata) groups. These findings may have significant implications in the design of future trials for evaluating malaria vaccine candidates in Cameroon.

  2. Intramolecular dynamics within the N-Cap-SH3-SH2 regulatory unit of the c-Abl tyrosine kinase reveal targeting to the cellular membrane.

    Science.gov (United States)

    de Oliveira, Guilherme A P; Pereira, Elen G; Ferretti, Giulia D S; Valente, Ana Paula; Cordeiro, Yraima; Silva, Jerson L

    2013-09-27

    c-Abl is a key regulator of cell signaling and is under strict control via intramolecular interactions. In this study, we address changes in the intramolecular dynamics coupling within the c-Abl regulatory unit by presenting its N-terminal segment (N-Cap) with an alternative function in the cell as c-Abl becomes activated. Using small angle x-ray scattering, nuclear magnetic resonance, and confocal microscopy, we demonstrate that the N-Cap and the Src homology (SH) 3 domain acquire μs-ms motions upon N-Cap association with the SH2-L domain, revealing a stabilizing synergy between these segments. The N-Cap-myristoyl tether likely triggers the protein to anchor to the membrane because of these flip-flop dynamics, which occur in the μs-ms time range. This segment not only presents the myristate during c-Abl inhibition but may also trigger protein localization inside the cell in a functional and stability-dependent mechanism that is lost in Bcr-Abl(+) cells, which underlie chronic myeloid leukemia. This loss of intramolecular dynamics and binding to the cellular membrane is a potential therapeutic target.

  3. Carcinoma-associated antigens

    International Nuclear Information System (INIS)

    Bartorelli, A.; Accinni, R.

    1981-01-01

    This invention relates to novel antigens associated with breast carcinoma, anti-sera specific to said antigens, 125 I-labeled forms of said antigens and methods of detecting said antigens in serum or plasma. The invention also relates to a diagnostic kit containing standardised antigens or antisera or marked forms thereof for the detection of said antigens in human blood, serum or plasma. (author)

  4. Deteksi Antigen pada Kriptokokosis

    Directory of Open Access Journals (Sweden)

    Robiatul Adawiyah

    2014-12-01

    Full Text Available AbstrakKriptokokosis merupakan infeksi sistemik yang disebabkan Cryptococcus sp. Predileksi jamur tersebut adalah susunan saraf pusat dan selaput otak. Terdapat 5 spesies Cryptococcus sp. yang menyebabkan penyakit pada manusia; yang paling banyak adalah Cr. neoformans dan Cr. gattii. Diagnosis kriptokokosis ditegakkan berdasarkan gejala klinis, pemeriksaan laboratoris serta radiologis. Pemeriksaan laboratoris dilakukan dengan identifikasi morfologi, serologi danPCR. Pemeriksaan secara morfologi dengan tinta India positif  bila jumlah sel jamur 10  sel/ml spesimen. Kultur dilakukan di media sabouraud dextrose agar (SDA dan niger sheed agar (NSA, jamur tumbuh setelah 5-7 hari. Deteksi antigen dan antibodi dilakukan pada cairan tubuh dan tidak membutuhkan waktu lama. Deteksi antibodi Cr.neoformans memiliki kelemahan yaitu tidak menunjukkan hasil positif pada infeksi akut, IgA masih positif setelah 1-2 tahun fase penyembuhan, IgG dapat persisten, pada individu imunokompromis menunjukkan hasil yang sangat kompleks dan dalam menentukan diagnosis sering tidak konsisten. Polisakarida adalah komponen paling berperan dalam virulensi Cr. neoformans. Komponen polisakarida terutama glucuronoxylomannan merupakan petanda penting dalam diagnosis kriptokokosis secara serologis. Deteksi antigen Cr. neoformans memiliki kelebihan yaitu menunjukkan hasil positif pada infeksi akut/kronis, sensitivitas dan spesifisitas tinggi, dapat mendeteksi polisakarida hingga 10 ng/ml sehingga dengan kadarantigen yang minimal tetap dapat mendiagnosis kriptokokosis.Kata kunci: Cr. neoformans, glucuronoxylomannan, antigenAbstractCryptococcosis is systemic infection that caused by Cryptococcus sp. Predilection of this fungi is the central nervous system and brain membrane. There are 5 species of Cryptococcus sp. that cause cryptococcosis in human; but the majority are caused by Cr. neoformans and Cr. gattii. The diagnosis of cryptococcosis is made based on clinical symptoms

  5. Immunization with the Malaria Diversity-Covering Blood-Stage Vaccine Candidate Plasmodium falciparum Apical Membrane Antigen 1 DiCo in Complex with Its Natural Ligand PfRon2 Does Not Improve the In Vitro Efficacy

    Directory of Open Access Journals (Sweden)

    Holger Spiegel

    2017-06-01

    Full Text Available The blood-stage malaria vaccine candidate Plasmodium falciparum apical membrane antigen 1 (PfAMA1 can induce strong parasite growth-inhibitory antibody responses in animals but has not achieved the anticipated efficacy in clinical trials. Possible explanations in humans are the insufficient potency of the elicited antibody responses, as well as the high degree of sequence polymorphisms found in the field. Several strategies have been developed to improve the cross-strain coverage of PfAMA1-based vaccines, whereas innovative concepts to increase the potency of PfAMA1-specific IgG responses have received little attention even though this may be an essential requirement for protective efficacy. A previous study has demonstrated that immunization with a complex of PyAMA1 and PyRON2, a ligand with an essential functional role in erythrocyte invasion, leads to protection from lethal Plasmodium yoelli challenge in an animal model and suggested to extend this strategy toward improved strain coverage by using multiple PfAMA1 alleles in combination with PfRon2L. As an alternative approach along this line, we decided to use PfRon2L in combination with three PfAMA1 diversity covering variants (DiCo to investigate the potential of this complex to induce more potent parasite growth inhibitory immune response in combination with better cross-strain-specific efficacy. Within the limits of the study design, the ability of the PfAMA1 DiCo-Mix to induce cross-strain-specific antibodies was not affected in all immunization groups, but the DiCo–PfRon2L complexes did not improve the potency of PfAMA1-specific IgG responses.

  6. Diagnostic Accuracy of 64Copper Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography for Primary Lymph Node Staging of Intermediate- to High-risk Prostate Cancer: Our Preliminary Experience.

    Science.gov (United States)

    Cantiello, Francesco; Gangemi, Vincenzo; Cascini, Giuseppe Lucio; Calabria, Ferdinando; Moschini, Marco; Ferro, Matteo; Musi, Gennaro; Butticè, Salvatore; Salonia, Andrea; Briganti, Alberto; Damiano, Rocco

    2017-08-01

    To assess the diagnostic accuracy of 64 Copper prostate-specific membrane antigen ( 64 Cu-PSMA) positron emission tomography/computed tomography (PET/CT) in the primary lymph node (LN) staging of a selected cohort of intermediate- to high-risk prostate cancer (PCa) patients. An observational prospective study was performed in 23 patients with intermediate- to high-risk PCa, who underwent 64 Cu-PSMA PET/CT for local and lymph nodal staging before laparoscopic radical prostatectomy with an extended pelvic LN dissection. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for LN status of 64 Cu-PSMA PET/CT were calculated using the final pathological findings as reference. Furthermore, we evaluated the correlation of intraprostatic tumor extent and grading with 64 Cu-PSMA intraprostatic distribution. Pathological analysis of LN involvement in 413 LNs harvested from our study cohort identified a total of 22 LN metastases in 8 (5%) of the 23 (35%) PCa patients. Imaging-based LN staging in a per-patient analysis showed that 64 Cu-PSMA PET/CT was positive in 7 of 8 LN-positive patients (22%) with a sensitivity of 87.5%, specificity of 100%, PPV of 100%, and NPV of 93.7%, considering the maximum standardized uptake value (SUV max ) at 4 hours as our reference. Receiver operating characteristic curve was characterized by an area under the curve of 0.938. A significant positive association was observed between SUV max at 4 hours with Gleason score, index, and cumulative tumor volume. In our intermediate- to high-risk PCa patients study cohort, we showed the high diagnostic accuracy of 64 Cu-PSMA PET/CT for primary LN staging before radical prostatectomy. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Winograd, E.; Greenan, J.R.T.; Sherman, I.W.

    1987-01-01

    Erythrocytes infected with a knobby variant of Plasmodium falciparum selectively bind IgG autoantibodies in normal human serum. Quantification of membrane-bound IgG, by use of 125 I-labeled protein A, revealed that erythrocytes infected with the knobby variant bound 30 times more protein A than did noninfected erythrocytes; infection with a knobless variant resulted in less than a 2-fold difference compared with noninfected erythrocytes. IgG binding to knobby erythrocytes appeared to be related to parasite development, since binding of 125 I-labeled protein A to cells bearing young trophozoites (less than 20 hr after parasite invasion) was similar to binding to uninfected erythrocytes. By immunoelectron microscopy, the membrane-bound IgG on erythrocytes infected with the knobby variant was found to be preferentially associated with the protuberances (knobs) of the plasma membrane. The removal of aged or senescent erythrocytes from the peripheral circulation is reported to involve the binding of specific antibodies to an antigen (senescent antigen) related to the major erythrocyte membrane protein band 3. Since affinity-purified autoantibodies against band 3 specifically bound to the plasma membrane of erythrocytes infected with the knobby variant of P. falciparum, it is clear that the malaria parasite induces expression of senescent antigen

  8. Conservation of myeloid surface antigens on primate granulocytes.

    Science.gov (United States)

    Letvin, N L; Todd, R F; Palley, L S; Schlossman, S F; Griffin, J D

    1983-02-01

    Monoclonal antibodies reactive with myeloid cell surface antigens were used to study evolutionary changes in granulocyte surface antigens from primate species. Certain of these granulocyte membrane antigens are conserved in phylogenetically distant species, indicating the potential functional importance of these structures. The degree of conservation of these antigens reflects the phylogenetic relationship between primate species. Furthermore, species of the same genus show similar patterns of binding to this panel of anti-human myeloid antibodies. This finding of conserved granulocyte surface antigens suggests that non-human primates may provide a model system for exploring uses of monoclonal antibodies in the treatment of human myeloid disorders.

  9. Helium ion microscopy and ultra-high-resolution scanning electron microscopy analysis of membrane-extracted cells reveals novel characteristics of the cytoskeleton of Giardia intestinalis.

    Science.gov (United States)

    Gadelha, Ana Paula Rocha; Benchimol, Marlene; de Souza, Wanderley

    2015-06-01

    Giardia intestinalis presents a complex microtubular cytoskeleton formed by specialized structures, such as the adhesive disk, four pairs of flagella, the funis and the median body. The ultrastructural organization of the Giardia cytoskeleton has been analyzed using different microscopic techniques, including high-resolution scanning electron microscopy. Recent advances in scanning microscopy technology have opened a new venue for the characterization of cellular structures and include scanning probe microscopy techniques such as ultra-high-resolution scanning electron microscopy (UHRSEM) and helium ion microscopy (HIM). Here, we studied the organization of the cytoskeleton of G. intestinalis trophozoites using UHRSEM and HIM in membrane-extracted cells. The results revealed a number of new cytoskeletal elements associated with the lateral crest and the dorsal surface of the parasite. The fine structure of the banded collar was also observed. The marginal plates were seen linked to a network of filaments, which were continuous with filaments parallel to the main cell axis. Cytoplasmic filaments that supported the internal structures were seen by the first time. Using anti-actin antibody, we observed a labeling in these filamentous structures. Taken together, these data revealed new surface characteristics of the cytoskeleton of G. intestinalis and may contribute to an improved understanding of the structural organization of trophozoites. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Radioimmunoassay for a human prostate specific antigen

    International Nuclear Information System (INIS)

    Machida, T.; Miki, M.; Ohishi, Y.; Kido, A.; Morikawa, J.; Ogawa, Y.

    1983-01-01

    As a marker for prostatic cancer, a prostate-specific antigen was purified from human prostatic tissues. Double antibody radioimmunoassay utilizing immune reaction was developed on the basis of the purified prostatic antigen (PA). Measurement results have revealed that PA radioimmunoassay is much better than prostatic acid phosphatase (PAP) radioimmunoassay in the diagnosis of prostatic cancer

  11. Small interference RNA profiling reveals the essential role of human membrane trafficking genes in mediating the infectious entry of dengue virus

    Directory of Open Access Journals (Sweden)

    Chu Justin

    2010-02-01

    Full Text Available Abstract Background Dengue virus (DENV is the causative agent of Dengue fever and the life-threatening Dengue Haemorrhagic fever or Dengue shock syndrome. In the absence of anti-viral agents or vaccine, there is an urgent need to develop an effective anti-viral strategy against this medically important viral pathogen. The initial interplay between DENV and the host cells may represent one of the potential anti-viral targeting sites. Currently the involvements of human membrane trafficking host genes or factors that mediate the infectious cellular entry of dengue virus are not well defined. Results In this study, we have used a targeted small interfering RNA (siRNA library to identify and profile key cellular genes involved in processes of endocytosis, cytoskeletal dynamics and endosome trafficking that are important and essential for DENV infection. The infectious entry of DENV into Huh7 cells was shown to be potently inhibited by siRNAs targeting genes associated with clathrin-mediated endocytosis. The important role of clathrin-mediated endocytosis was confirmed by the expression of well-characterized dominant-negative mutants of genes in this pathway and by using the clathrin endocytosis inhibitor chlorpromazine. Furthermore, DENV infection was shown to be sensitive to the disruption of human genes in regulating the early to late endosomal trafficking as well as the endosomal acidic pH. The importance and involvement of both actin and microtubule dynamics in mediating the infectious entry of DENV was also revealed in this study. Conclusions Together, the findings from this study have provided a detail profiling of the human membrane trafficking cellular genes and the mechanistic insight into the interplay of these host genes with DENV to initiate an infection, hence broadening our understanding on the entry pathway of this medically important viral pathogen. These data may also provide a new potential avenue for development of anti

  12. Revisiting interaction specificity reveals neuronal and adipocyte Munc18 membrane fusion regulatory proteins differ in their binding interactions with partner SNARE Syntaxins.

    Directory of Open Access Journals (Sweden)

    Michelle P Christie

    Full Text Available The efficient delivery of cellular cargo relies on the fusion of cargo-carrying vesicles with the correct membrane at the correct time. These spatiotemporal fusion events occur when SNARE proteins on the vesicle interact with cognate SNARE proteins on the target membrane. Regulatory Munc18 proteins are thought to contribute to SNARE interaction specificity through interaction with the SNARE protein Syntaxin. Neuronal Munc18a interacts with Syntaxin1 but not Syntaxin4, and adipocyte Munc18c interacts with Syntaxin4 but not Syntaxin1. Here we show that this accepted view of specificity needs revision. We find that Munc18c interacts with both Syntaxin4 and Syntaxin1, and appears to bind "non-cognate" Syntaxin1 a little more tightly than Syntaxin4. Munc18a binds Syntaxin1 and Syntaxin4, though it interacts with its cognate Syntaxin1 much more tightly. We also observed that when bound to non-cognate Munc18c, Syntaxin1 captures its neuronal SNARE partners SNAP25 and VAMP2, and Munc18c can bind to pre-formed neuronal SNARE ternary complex. These findings reveal that Munc18a and Munc18c bind Syntaxins differently. Munc18c relies principally on the Syntaxin N-peptide interaction for binding Syntaxin4 or Syntaxin1, whereas Munc18a can bind Syntaxin1 tightly whether or not the Syntaxin1 N-peptide is present. We conclude that Munc18a and Munc18c differ in their binding interactions with Syntaxins: Munc18a has two tight binding modes/sites for Syntaxins as defined previously but Munc18c has just one that requires the N-peptide. These results indicate that the interactions between Munc18 and Syntaxin proteins, and the consequences for in vivo function, are more complex than can be accounted for by binding specificity alone.

  13. Increased membrane cholesterol in lymphocytes diverts T-cells toward an inflammatory response.

    Directory of Open Access Journals (Sweden)

    Jacqueline Surls

    Full Text Available Cell signaling for T-cell growth, differentiation, and apoptosis is initiated in the cholesterol-rich microdomains of the plasma membrane known as lipid rafts. Herein, we investigated whether enrichment of membrane cholesterol in lipid rafts affects antigen-specific CD4 T-helper cell functions. Enrichment of membrane cholesterol by 40-50% following squalene administration in mice was paralleled by an increased number of resting CD4 T helper cells in periphery. We also observed sensitization of the Th1 differentiation machinery through co-localization of IL-2Rα, IL-4Rα, and IL-12Rβ2 subunits with GM1 positive lipid rafts, and increased STAT-4 and STAT-5 phosphorylation following membrane cholesterol enrichment. Antigen stimulation or CD3/CD28 polyclonal stimulation of membrane cholesterol-enriched, resting CD4 T-cells followed a path of Th1 differentiation, which was more vigorous in the presence of increased IL-12 secretion by APCs enriched in membrane cholesterol. Enrichment of membrane cholesterol in antigen-specific, autoimmune Th1 cells fostered their organ-specific reactivity, as confirmed in an autoimmune mouse model for diabetes. However, membrane cholesterol enrichment in CD4(+Foxp3(+ T-reg cells did not alter their suppressogenic function. These findings revealed a differential regulatory effect of membrane cholesterol on the function of CD4 T-cell subsets. This first suggests that membrane cholesterol could be a new therapeutic target to modulate the immune functions, and second that increased membrane cholesterol in various physiopathological conditions may bias the immune system toward an inflammatory Th1 type response.

  14. Revealing the glycation sites in synthetic neoglycoconjugates formed by conjugation of the antigenic monosaccharide hapten of Vibrio cholerae O1, serotype Ogawa with the BSA protein carrier using LC-ESI-QqTOF-MS/MS

    Science.gov (United States)

    Jahouh, Farid; Saksena, Rina; Kováč, Pavol; Banoub, Joseph

    2012-01-01

    In this manuscript, we present the determination of glycation sites in synthetic neoglycoconjugates formed by conjugation of the antigenic monosaccharide hapten of Vibrio cholerae O1 serotype Ogawa to BSA using nano- liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectroscopy (LC-ESI-QqTOF-MS/MS). The matrix-assisted laser desorption/ionization-TOF/TOF-MS/MS analyses of the tryptic digests of the glycoconjugates having a hapten:BSA ratio of 4.3:1, 6.6:1 and 13.2:1 revealed only three glycation sites, on the following lysine residues: Lys 235, Lys 437 and Lys 455. Digestion of the neoglycoconjugates with the proteases trypsin and GluC V8 gave complementary structural information and was shown to maximize the number of recognized glycation sites. Here, we report identification of 20, 27 and 33 glycation sites using LC-ESI-QqTOF-MS/MS analysis of a series of synthetic neoglycoconjugates with a hapten:BSA ratio of, respectively, 4.3:1, 6.6:1 and 13.2:1. We also tentatively propose that all the glycated lysine residues are located mainly near the outer surface of the protein. PMID:22791257

  15. Polyclonal antibodies for the detection of Trypanosoma cruzi circulating antigens.

    Directory of Open Access Journals (Sweden)

    Edith S Málaga-Machaca

    2017-11-01

    Full Text Available Detection of Trypanosoma cruzi antigens in clinical samples is considered an important diagnostic tool for Chagas disease. The production and use of polyclonal antibodies may contribute to an increase in the sensitivity of immunodiagnosis of Chagas disease.Polyclonal antibodies were raised in alpacas, rabbits, and hens immunized with trypomastigote excreted-secreted antigen, membrane proteins, trypomastigote lysate antigen and recombinant 1F8 to produce polyclonal antibodies. Western blot analysis was performed to determine specificity of the developed antibodies. An antigen capture ELISA of circulating antigens in serum, plasma and urine samples was developed using IgY polyclonal antibodies against T. cruzi membrane antigens (capture antibody and IgG from alpaca raised against TESA. A total of 33 serum, 23 plasma and 9 urine samples were analyzed using the developed test. Among serum samples, compared to serology, the antigen capture ELISA tested positive in 55% of samples. All plasma samples from serology positive subjects were positive in the antigen capture ELISA. All urine positive samples had corresponding plasma samples that were also positive when tested by the antigen capture ELISA.Polyclonal antibodies are useful for detection of circulating antigens in both the plasma and urine of infected individuals. Detection of antigens is direct evidence of the presence of the parasite, and could be a better surrogate of current infection status.

  16. Antigenicity analysis of Vibrio harveyi TS-628 strain

    Institute of Scientific and Technical Information of China (English)

    QIN Yingxue; WANG Jun; WANG Shifeng; YAN Qingpi

    2007-01-01

    Vibrio harveyi,the major causative agent of vibriosis,affects a diverse range of marine cultured organisms over a wide geographical area.However,reports about screening the effective antigen and research on vaccines of V.harveyi are scarce.Flagellin,lipopolysaccharide (LPS) and outer membrane proteins (OMP) are major immunogenic antigens in many Gram-negative bacteria.In this study,the flagellin,OMP and LPS of the V.harveyi TS-628 strain isolated from infected groupers were extracted and Western blot analysis was used to detect the antigenicity of these extractions.Results of the Western blot assay reveal that there are four positive flagellin bands:35 kDa,38 kDa,43 kDa,and 52 kDa,of which the 43 kDa and 52 kDa bands displayed the strongest positive reaction.There are five positive OMP bands about 35 kDa,38 kDa,43 kDa,47 kDa,and 52 kDa,of which the 43 kDa appeared to have the strongest positive reaction although the other four proteins also displayed strong reactions.However,LPS is Western blot-negative.These results indicate that the 43 kDa and 52 kDa flagellin and OMP of size 43 kDa,52 kDa can be candidates for developing vaccines against V.harveyi.

  17. Terbutaline causes immobilization of single β2-adrenergic receptor-ligand complexes in the plasma membrane of living A549 cells as revealed by single-molecule microscopy

    Science.gov (United States)

    Sieben, Anne; Kaminski, Tim; Kubitscheck, Ulrich; Häberlein, Hanns

    2011-02-01

    G-protein-coupled receptors are important targets for various drugs. After signal transduction, regulatory processes, such as receptor desensitization and internalization, change the lateral receptor mobility. In order to study the lateral diffusion of β2-adrenergic receptors (β2AR) complexed with fluorescently labeled noradrenaline (Alexa-NA) in plasma membranes of A549 cells, trajectories of single receptor-ligand complexes were monitored using single-particle tracking. We found that a fraction of 18% of all β2ARs are constitutively immobile. About 2/3 of the β2ARs moved with a diffusion constant of D2 = 0.03+/-0.001 μm2/s and about 17% were diffusing five-fold faster (D3 = 0.15+/-0.02 μm2/s). The mobile receptors moved within restricted domains and also showed a discontinuous diffusion behavior. Analysis of the trajectory lengths revealed two different binding durations with τ1 = 77+/-1 ms and τ2 = 388+/-11 ms. Agonistic stimulation of the β2AR-Alexa-NA complexes with 1 μM terbutaline caused immobilization of almost 50% of the receptors within 35 min. Simultaneously, the mean area covered by the mobile receptors decreased significantly. Thus, we demonstrated that agonistic stimulation followed by cell regulatory processes results in a change in β2AR mobility suggesting that different receptor dynamics characterize different receptor states.

  18. Krypton Derivatization of an O2 -Tolerant Membrane-Bound [NiFe] Hydrogenase Reveals a Hydrophobic Tunnel Network for Gas Transport.

    Science.gov (United States)

    Kalms, Jacqueline; Schmidt, Andrea; Frielingsdorf, Stefan; van der Linden, Peter; von Stetten, David; Lenz, Oliver; Carpentier, Philippe; Scheerer, Patrick

    2016-04-25

    [NiFe] hydrogenases are metalloenzymes catalyzing the reversible heterolytic cleavage of hydrogen into protons and electrons. Gas tunnels make the deeply buried active site accessible to substrates and inhibitors. Understanding the architecture and function of the tunnels is pivotal to modulating the feature of O2 tolerance in a subgroup of these [NiFe] hydrogenases, as they are interesting for developments in renewable energy technologies. Here we describe the crystal structure of the O2 -tolerant membrane-bound [NiFe] hydrogenase of Ralstonia eutropha (ReMBH), using krypton-pressurized crystals. The positions of the krypton atoms allow a comprehensive description of the tunnel network within the enzyme. A detailed overview of tunnel sizes, lengths, and routes is presented from tunnel calculations. A comparison of the ReMBH tunnel characteristics with crystal structures of other O2 -tolerant and O2 -sensitive [NiFe] hydrogenases revealed considerable differences in tunnel size and quantity between the two groups, which might be related to the striking feature of O2 tolerance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Pre-therapeutic dosimetry of normal organs and tissues of {sup 177}Lu-PSMA-617 prostate-specific membrane antigen (PSMA) inhibitor in patients with castration-resistant prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kabasakal, Levent; AbuQbeitah, Mohammad; Ayguen, Aslan; Yeyin, Nami [Istanbul University, Department of Nuclear Medicine, Cerrahpasa Medical Faculty, Istanbul (Turkey); Ocak, Meltem [Istanbul University, Department of Pharmaceutical Technology, Pharmacy Faculty, Istanbul (Turkey); Demirci, Emre [Sisli Etfal Training and Research Hospital, Department of Nuclear Medicine, Istanbul (Turkey); Toklu, Turkay [Yeditepe University Medical Faculty, Department of Nuclear Medicine, Istanbul (Turkey)

    2015-12-15

    {sup 177}Lu-617-prostate-specific membrane antigen (PSMA) ligand seems to be a promising tracer for radionuclide therapy of progressive prostate cancer. However, there are no published data regarding the radiation dose given to the normal tissues. The aim of the present study was to estimate the pretreatment radiation doses in patients who will undergo radiometabolic therapy using a tracer amount of {sup 177}Lu-labeled PSMA ligand. The study included seven patients with progressive prostate cancer with a mean age of 63.9 ± 3.9 years. All patients had prior PSMA positron emission tomography (PET) imaging and had intense tracer uptake at the lesions. The injected {sup 177}Lu-PSMA-617 activity ranged from 185 to 210 MBq with a mean of 192.6 ± 11.0 MBq. To evaluate bone marrow absorbed dose 2-cc blood samples were withdrawn in short variable times (3, 15, 30, 60, and 180 min and 24, 48, and 120 h) after injection. Whole-body images were obtained at 4, 24, 48, and 120 h post-injection (p.i.). The geometric mean of anterior and posterior counts was determined through region of interest (ROI) analysis. Attenuation correction was applied using PSMA PET/CT images. The OLINDA/EXM dosimetry program was used for curve fitting, residence time calculation, and absorbed dose calculations. The calculated radiation-absorbed doses for each organ showed substantial variation. The highest radiation estimated doses were calculated for parotid glands and kidneys. Calculated radiation-absorbed doses per megabecquerel were 1.17 ± 0.31 mGy for parotid glands and 0.88 ± 0.40 mGy for kidneys. The radiation dose given to the bone marrow was significantly lower than those of kidney and parotid glands (p < 0.05). The calculated radiation dose to bone marrow was 0.03 ± 0.01 mGy/MBq. Our first results suggested that {sup 177}Lu-PSMA-617 therapy seems to be a safe method. The dose-limiting organ seems to be the parotid glands rather than kidneys and bone marrow. The lesion radiation doses are

  20. Evaluation of Antigen-Conjugated Fluorescent Beads to Identify Antigen-Specific B Cells.

    Science.gov (United States)

    Correa, Isabel; Ilieva, Kristina M; Crescioli, Silvia; Lombardi, Sara; Figini, Mariangela; Cheung, Anthony; Spicer, James F; Tutt, Andrew N J; Nestle, Frank O; Karagiannis, Panagiotis; Lacy, Katie E; Karagiannis, Sophia N

    2018-01-01

    Selection of single antigen-specific B cells to identify their expressed antibodies is of considerable interest for evaluating human immune responses. Here, we present a method to identify single antibody-expressing cells using antigen-conjugated fluorescent beads. To establish this, we selected Folate Receptor alpha (FRα) as a model antigen and a mouse B cell line, expressing both the soluble and the membrane-bound forms of a human/mouse chimeric antibody (MOv18 IgG1) specific for FRα, as test antibody-expressing cells. Beads were conjugated to FRα using streptavidin/avidin-biotin bridges and used to select single cells expressing the membrane-bound form of anti-FRα. Bead-bound cells were single cell-sorted and processed for single cell RNA retrotranscription and PCR to isolate antibody heavy and light chain variable regions. Variable regions were then cloned and expressed as human IgG1/k antibodies. Like the original clone, engineered antibodies from single cells recognized native FRα. To evaluate whether antigen-coated beads could identify specific antibody-expressing cells in mixed immune cell populations, human peripheral blood mononuclear cells (PBMCs) were spiked with test antibody-expressing cells. Antigen-specific cells could comprise up to 75% of cells selected with antigen-conjugated beads when the frequency of the antigen-positive cells was 1:100 or higher. In PBMC pools, beads conjugated to recombinant antigens FRα and HER2 bound antigen-specific anti-FRα MOv18 and anti-HER2 Trastuzumab antibody-expressing cells, respectively. From melanoma patient-derived B cells selected with melanoma cell line-derived protein-coated fluorescent beads, we generated a monoclonal antibody that recognized melanoma antigen-coated beads. This approach may be further developed to facilitate analysis of B cells and their antibody profiles at the single cell level and to help unravel humoral immune repertoires.

  1. Evaluation of Antigen-Conjugated Fluorescent Beads to Identify Antigen-Specific B Cells

    Directory of Open Access Journals (Sweden)

    Isabel Correa

    2018-03-01

    Full Text Available Selection of single antigen-specific B cells to identify their expressed antibodies is of considerable interest for evaluating human immune responses. Here, we present a method to identify single antibody-expressing cells using antigen-conjugated fluorescent beads. To establish this, we selected Folate Receptor alpha (FRα as a model antigen and a mouse B cell line, expressing both the soluble and the membrane-bound forms of a human/mouse chimeric antibody (MOv18 IgG1 specific for FRα, as test antibody-expressing cells. Beads were conjugated to FRα using streptavidin/avidin-biotin bridges and used to select single cells expressing the membrane-bound form of anti-FRα. Bead-bound cells were single cell-sorted and processed for single cell RNA retrotranscription and PCR to isolate antibody heavy and light chain variable regions. Variable regions were then cloned and expressed as human IgG1/k antibodies. Like the original clone, engineered antibodies from single cells recognized native FRα. To evaluate whether antigen-coated beads could identify specific antibody-expressing cells in mixed immune cell populations, human peripheral blood mononuclear cells (PBMCs were spiked with test antibody-expressing cells. Antigen-specific cells could comprise up to 75% of cells selected with antigen-conjugated beads when the frequency of the antigen-positive cells was 1:100 or higher. In PBMC pools, beads conjugated to recombinant antigens FRα and HER2 bound antigen-specific anti-FRα MOv18 and anti-HER2 Trastuzumab antibody-expressing cells, respectively. From melanoma patient-derived B cells selected with melanoma cell line-derived protein-coated fluorescent beads, we generated a monoclonal antibody that recognized melanoma antigen-coated beads. This approach may be further developed to facilitate analysis of B cells and their antibody profiles at the single cell level and to help unravel humoral immune repertoires.

  2. Evaluation of Antigen-Conjugated Fluorescent Beads to Identify Antigen-Specific B Cells

    Science.gov (United States)

    Correa, Isabel; Ilieva, Kristina M.; Crescioli, Silvia; Lombardi, Sara; Figini, Mariangela; Cheung, Anthony; Spicer, James F.; Tutt, Andrew N. J.; Nestle, Frank O.; Karagiannis, Panagiotis; Lacy, Katie E.; Karagiannis, Sophia N.

    2018-01-01

    Selection of single antigen-specific B cells to identify their expressed antibodies is of considerable interest for evaluating human immune responses. Here, we present a method to identify single antibody-expressing cells using antigen-conjugated fluorescent beads. To establish this, we selected Folate Receptor alpha (FRα) as a model antigen and a mouse B cell line, expressing both the soluble and the membrane-bound forms of a human/mouse chimeric antibody (MOv18 IgG1) specific for FRα, as test antibody-expressing cells. Beads were conjugated to FRα using streptavidin/avidin-biotin bridges and used to select single cells expressing the membrane-bound form of anti-FRα. Bead-bound cells were single cell-sorted and processed for single cell RNA retrotranscription and PCR to isolate antibody heavy and light chain variable regions. Variable regions were then cloned and expressed as human IgG1/k antibodies. Like the original clone, engineered antibodies from single cells recognized native FRα. To evaluate whether antigen-coated beads could identify specific antibody-expressing cells in mixed immune cell populations, human peripheral blood mononuclear cells (PBMCs) were spiked with test antibody-expressing cells. Antigen-specific cells could comprise up to 75% of cells selected with antigen-conjugated beads when the frequency of the antigen-positive cells was 1:100 or higher. In PBMC pools, beads conjugated to recombinant antigens FRα and HER2 bound antigen-specific anti-FRα MOv18 and anti-HER2 Trastuzumab antibody-expressing cells, respectively. From melanoma patient-derived B cells selected with melanoma cell line-derived protein-coated fluorescent beads, we generated a monoclonal antibody that recognized melanoma antigen-coated beads. This approach may be further developed to facilitate analysis of B cells and their antibody profiles at the single cell level and to help unravel humoral immune repertoires. PMID:29628923

  3. Detailed molecular analyses of the hexon loop-1 and fibers of fowl aviadenoviruses reveal new insights into the antigenic relationship and confirm that specific genotypes are involved in field outbreaks of inclusion body hepatitis.

    Science.gov (United States)

    Schachner, Anna; Marek, Ana; Grafl, Beatrice; Hess, Michael

    2016-04-15

    Forty-eight fowl aviadenoviruses (FAdVs) isolated from recent IBH outbreaks across Europe were investigated, by utilizing for the first time the two major adenoviral antigenic domains, hexon loop-1 and fiber, for compound molecular characterization of IBH-associated FAdVs. Successful target gene amplification, following virus isolation in cell culture or from FTA-card samples, demonstrated presence of FAdVs in all cases indicative for IBH. Based on hexon loop-1 analysis, 31 European field isolates exhibited highest nucleotide identity (>97.2%) to reference strains FAdV-2 or -11 representing FAdV-D, while 16 and one European isolates shared >96.0% nucleotide identity with FAdV-8a and -8b, or FAdV-7, the prototype strains representing FAdV-E. These results extend recognition of specific FAdV-D and FAdV-E affiliate genotypes as causative agents of IBH to the European continent. In all isolates, species specificity determined by fiber gene analysis correlated with hexon-based typing. A threshold of 72.0% intraspecies nucleotide identity between fibers from investigated prototype and field strains corresponded with demarcation criteria proposed for hexon, suggesting fiber-based analysis as a complementary tool for molecular FAdV typing. A limited number of strains exhibited inconsistencies between hexon and fiber subclustering, indicating potential constraints for single-gene based typing of those FAdVs. Within FAdV-D, field isolate fibers shared a high degree of nucleotide (>96.7%) and aa (>95.8%) identity, while FAdV-E field isolate fibers displayed greater nucleotide divergence of up to 22.6%, resulting in lower aa identities of >81.7%. Furthermore, comparison with FAdVs from IBH outbreaks outside Europe revealed close genetic relationship in the fiber, independent of the strains' geographic origin. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Transcriptional regulation of the outer membrane porin gene ompW reveals its physiological role during the transition from the aerobic to the anaerobic lifestyle of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Minfeng eXiao

    2016-05-01

    Full Text Available Understanding bacterial physiology relies on elucidating the regulatory mechanisms and cellular functions of those differentially expressed genes in response to environmental changes. A widespread Gram-negative bacterial outer membrane protein OmpW has been implicated in the adaptation to stresses in various species. It is recently found to be present in the regulon of the global anaerobic transcription factor FNR and ArcA in E. coli. However, little is known about the physiological implications of this regulatory disposition. In this study, we demonstrate that transcription of ompW is indeed mediated by a series of global regulators involved in the anaerobiosis of E. coli. We show that FNR can both activate and repress the expression of ompW through its direct binding to two distinctive sites, -81.5 and -126.5 bp respectively, on ompW promoter. ArcA also participates in repression of ompW under anaerobic condition, but in an FNR dependent manner. Additionally, ompW is also subject to the regulation by CRP and NarL which senses the availability and types of carbon sources and respiration electron acceptors in the environment respectively, implying a role of OmpW in the carbon and energy metabolism of E. coli during its anaerobic adaptation. Molecular docking reveals that OmpW can bind fumarate, an alternative electron acceptor in anaerobic respiration, with sufficient affinity. Moreover, supplement of fumarate or succinate which belongs to the C4-dicarboxylates family of metabolite, to E. coli culture rescues OmpW-mediated colicin S4 killing. Taken together, we propose that OmpW is involved in anaerobic carbon and energy metabolism to mediate the transition from aerobic to anaerobic lifestyle in E. coli.

  5. Identification of candidate vaccine antigens of bovine hemoparasites Theileria parva and Babesia bovis by use of helper T cell clones.

    Science.gov (United States)

    Brown, W C; Zhao, S; Logan, K S; Grab, D J; Rice-Ficht, A C

    1995-03-01

    Current vaccines for bovine hemoparasites utilize live attenuated organisms or virulent organisms administered concurrently with antiparasitic drugs. Although such vaccines can be effective, for most hemoparasites the mechanisms of acquired resistance to challenge infection with heterologous parasite isolates have not been clearly defined. Selection of potentially protective antigens has traditionally made use of antibodies to identify immunodominant proteins. However, numerous studies have indicated that induction of high antibody titers neither predicts the ability of an antigen to confer protective immunity nor correlates with protection. Because successful parasites have evolved antibody evasion tactics, alternative strategies to identify protective immunogens should be used. Through the elaboration of cytokines, T helper 1-(Th1)-like T cells and macrophages mediate protective immunity against many intracellular parasites, and therefore most likely play an important role in protective immunity against bovine hemoparasites. CD4+ T cell clones specific for soluble or membrane antigens of either Theileria parva schizonts or Babesia bovis merozoites were therefore employed to identify parasite antigens that elicit strong Th cell responses in vitro. Soluble cytosolic parasite antigen was fractionated by gel filtration, anion exchange chromatography or hydroxylapatite chromatography, or a combination thereof, and fractions were tested for the ability to induce proliferation of Th cell clones. This procedure enabled the identification of stimulatory fractions containing T. parva proteins of approximately 10 and 24 kDa. Antisera raised against the purified 24 kDa band reacted with a native schizont protein of approximately 30 kDa. Babesia bovis-specific Th cell clones tested against fractionated soluble Babesia bovis merozoite antigen revealed the presence of at least five distinct antigenic epitopes. Proteins separated by gel filtration revealed four patterns of

  6. Cationic Au Nanoparticle Binding with Plasma Membrane-like Lipid Bilayers: Potential Mechanism for Spontaneous Permeation to Cells Revealed by Atomistic Simulations

    DEFF Research Database (Denmark)

    Heikkila, E.; Martinez-Seara, H.; Gurtovenko, A. A.

    2014-01-01

    Despite being chemically inert as a bulk material, nanoscale gold can pose harmful side effects to living organisms. In particular, cationic Au nanoparticles (AuNP+) of 2 nm diameter or less permeate readily through plasma membranes and induce cell death. We report atomistic simulations of cationic...... to be governed by cooperative effects where AuNP+, counterions, water, and the two membrane leaflets all contribute. On the extracellular side, we find that the nanoparticle has to cross a free energy barrier of about 5 k(B)T prior forming a stable contact with the membrane. This results in a rearrangement...

  7. Neisseria meningitidis antigen NMB0088: sequence variability, protein topology and vaccine potential.

    Science.gov (United States)

    Sardiñas, Gretel; Yero, Daniel; Climent, Yanet; Caballero, Evelin; Cobas, Karem; Niebla, Olivia

    2009-02-01

    The significance of Neisseria meningitidis serogroup B membrane proteins as vaccine candidates is continually growing. Here, we studied different aspects of antigen NMB0088, a protein that is abundant in outer-membrane vesicle preparations and is thought to be a surface protein. The gene encoding protein NMB0088 was sequenced in a panel of 34 different meningococcal strains with clinical and epidemiological relevance. After this analysis, four variants of NMB0088 were identified; the variability was confined to three specific segments, designated VR1, VR2 and VR3. Secondary structure predictions, refined with alignment analysis and homology modelling using FadL of Escherichia coli, revealed that almost all the variable regions were located in extracellular loop domains. In addition, the NMB0088 antigen was expressed in E. coli and a procedure for obtaining purified recombinant NMB0088 is described. The humoral immune response elicited in BALB/c mice was measured by ELISA and Western blotting, while the functional activity of these antibodies was determined in a serum bactericidal assay and an animal protection model. After immunization in mice, the recombinant protein was capable of inducing a protective response when it was administered inserted into liposomes. According to our results, the recombinant NMB0088 protein may represent a novel antigen for a vaccine against meningococcal disease. However, results from the variability study should be considered for designing a cross-protective formulation in future studies.

  8. Exposure of outer membrane proteins on the surface of Pseudomonas aeruginosa PA01 revealed by labelling with [125I]lactoperoxidase

    International Nuclear Information System (INIS)

    Lambert, P.A.; Booth, B.R.

    1982-01-01

    The authors have investigated the exposure of the major outer membrane proteins on the cell surface by treating whole cells of P. aeruginosa with [ 125 I]lactoperoxidase. This reagent catalyses the iodination of tyrosine and histidine residues of proteins in the presence of hydrogen peroxide. It is too large to penetrate the outer membrane (Msub(r) 77500), therefore it is assumed to label only those proteins which have such residues exposed on the cell surface and has been applied to a number of Gram-negative organisms. It is found that F was the major labelled protein, D1 and/or D2 were less heavily labelled, and G was very faintly labelled. In addition, two proteins (Msub(r) 72500 and 38000) which did not appear to be major outer membrane proteins were labelled. (Auth.)

  9. Reconstitution of proapoptotic BAK function in liposomes reveals a dual role for mitochondrial lipids in the BAK-driven membrane permeabilization process.

    Science.gov (United States)

    Landeta, Olatz; Landajuela, Ane; Gil, David; Taneva, Stefka; Di Primo, Carmelo; Sot, Begoña; Valle, Mikel; Frolov, Vadim A; Basañez, Gorka

    2011-03-11

    BAK is a key effector of mitochondrial outer membrane permeabilization (MOMP) whose molecular mechanism of action remains to be fully dissected in intact cells, mainly due to the inherent complexity of the intracellular apoptotic machinery. Here we show that the core features of the BAK-driven MOMP pathway can be reproduced in a highly simplified in vitro system consisting of recombinant human BAK lacking the carboxyl-terminal 21 residues (BAKΔC) and tBID in combination with liposomes bearing an appropriate lipid environment. Using this minimalist reconstituted system we established that tBID suffices to trigger BAKΔC membrane insertion, oligomerization, and pore formation. Furthermore, we demonstrate that tBID-activated BAKΔC permeabilizes the membrane by forming structurally dynamic pores rather than a large proteinaceous channel of fixed size. We also identified two distinct roles played by mitochondrial lipids along the molecular pathway of BAKΔC-induced membrane permeabilization. First, using several independent approaches, we showed that cardiolipin directly interacts with BAKΔC, leading to a localized structural rearrangement in the protein that "primes" BAKΔC for interaction with tBID. Second, we provide evidence that selected curvature-inducing lipids present in mitochondrial membranes specifically modulate the energetic expenditure required to create the BAKΔC pore. Collectively, our results support the notion that BAK functions as a direct effector of MOMP akin to BAX and also adds significantly to the growing evidence indicating that mitochondrial membrane lipids are actively implicated in BCL-2 protein family function.

  10. Cloning and characterization of the immunodominant membrane ...

    African Journals Online (AJOL)

    ajl4

    2012-09-27

    Sep 27, 2012 ... A; Amp, antigenic membranes protein; AY, aster yellows; CPh, clover phyllody; JHP ... host-phytoplasma interactions and the IDPs are classified into three distinct types: type I was ..... Range of phytoplasma concentrations in ...

  11. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation.

    Science.gov (United States)

    Compeer, Ewoud Bernardus; Flinsenberg, Thijs Willem Hendrik; van der Grein, Susanna Geertje; Boes, Marianne

    2012-01-01

    Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8(+) T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.

  12. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation.

    Directory of Open Access Journals (Sweden)

    Ewoud Bernardus Compeer

    2012-03-01

    Full Text Available The cross-presentation of endocytosed antigen as peptide/class I MHC complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells (APC capable of antigen cross-presentation, description of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC, there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlight DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, recycling and maturation including the sorting of membrane proteins, dynamic remodeling of endosomal structures and cell-surface directed endosomal trafficking. We will conclude with description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.

  13. Two-dimensional gel electrophoresis and FTIR spectroscopy reveal both forms of yeast plasma membrane H(+)-ATPase in activated and basal-level enzyme preparations

    Czech Academy of Sciences Publication Activity Database

    Lapathitis, Georgios; Tanfani, F.; Kotyk, Arnošt; Bertoli, E.

    2001-01-01

    Roč. 505, č. 1 (2001), s. 155-158 ISSN 0014-5793 R&D Projects: GA ČR GA204/98/0474 Keywords : H+-ATPase * plasma membrane * two-dimensional gel electrophoresis Subject RIV: CE - Biochemistry Impact factor: 3.644, year: 2001

  14. Selective elution of HLA antigens and beta 2-microglobulin from human platelets by chloroquine diphosphate

    International Nuclear Information System (INIS)

    Kao, K.J.

    1988-01-01

    To determine whether chloroquine can specifically elute HLA antigens and beta 2-microglobulin (beta 2-M) from the platelet surface, quantitative immunofluorescence flow cytometry and monoclonal antibodies were used to show that HLA antigens and beta 2-M were proportionally eluted from the platelet surface without affecting the membrane glycoproteins IIb and IIIa. Second, an autoradiogram of electrophoresed I-125-labeled platelets showed that only beta 2-M but not other I-125-labeled membrane proteins could be eluted. Although HLA antigens were poorly labeled by I-125 and could not be detected on the autoradiogram, the eluted HLA antigens could be detected by anti-HLA monoclonal antibody and immunoblotting techniques. No loss of plasma membrane integrity was observed by transmission electron microscopy after chloroquine treatment of platelets. The results indicate that chloroquine selectively elutes HLA antigens and their noncovalently associated beta 2-M without affecting other integral platelet membrane proteins

  15. Receptor-Targeted Nipah Virus Glycoproteins Improve Cell-Type Selective Gene Delivery and Reveal a Preference for Membrane-Proximal Cell Attachment.

    Directory of Open Access Journals (Sweden)

    Ruben R Bender

    2016-06-01

    Full Text Available Receptor-targeted lentiviral vectors (LVs can be an effective tool for selective transfer of genes into distinct cell types of choice. Moreover, they can be used to determine the molecular properties that cell surface proteins must fulfill to act as receptors for viral glycoproteins. Here we show that LVs pseudotyped with receptor-targeted Nipah virus (NiV glycoproteins effectively enter into cells when they use cell surface proteins as receptors that bring them closely enough to the cell membrane (less than 100 Å distance. Then, they were flexible in receptor usage as demonstrated by successful targeting of EpCAM, CD20, and CD8, and as selective as LVs pseudotyped with receptor-targeted measles virus (MV glycoproteins, the current standard for cell-type specific gene delivery. Remarkably, NiV-LVs could be produced at up to two orders of magnitude higher titers compared to their MV-based counterparts and were at least 10,000-fold less effectively neutralized than MV glycoprotein pseudotyped LVs by pooled human intravenous immunoglobulin. An important finding for NiV-LVs targeted to Her2/neu was an about 100-fold higher gene transfer activity when particles were targeted to membrane-proximal regions as compared to particles binding to a more membrane-distal epitope. Likewise, the low gene transfer activity mediated by NiV-LV particles bound to the membrane distal domains of CD117 or the glutamate receptor subunit 4 (GluA4 was substantially enhanced by reducing receptor size to below 100 Å. Overall, the data suggest that the NiV glycoproteins are optimally suited for cell-type specific gene delivery with LVs and, in addition, for the first time define which parts of a cell surface protein should be targeted to achieve optimal gene transfer rates with receptor-targeted LVs.

  16. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  17. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    OpenAIRE

    Bolton, Michael J; Garry, Robert F

    2011-01-01

    Abstract Background The surface glycoprotein (SU, gp120) of the human immunodeficiency virus (HIV) must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP) to bind the Duffy Antigen Receptor for Chemokines (DARC) and invade reticulocytes. Results Variable loop 3 (V3) of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, ...

  18. Immunochemical and autoantigenic properties of the globular domain of basement membrane collagen (type IV).

    Science.gov (United States)

    von der Mark, H; Oberbäumer, I; Timpl, R; Kemler, R; Wick, G

    1985-02-01

    Polyclonal rabbit antibodies raised against the globular domain NC1 of collagen IV from human placenta and a mouse tumor react with conformational antigenic determinants present on the NC1 hexamers and also with the three major subunits obtained after dissociation. The antibodies recognized unique structures within basement membranes and showed a broad tissue reactivity but only limited species cross-reactivity. Using these antibodies, it was possible to detect small amounts of collagen IV antigens from cell cultures and in serum. Monoclonal rat antibodies against mouse NC1 revealed a similar reaction potential. Autoantibodies could be produced in mice against mouse NC1 which react with kidney and lung basement membranes in a pathological manner, mimicking Goodpasture syndrome.

  19. Comparative proteomics of chloroplasts envelopes from bundle sheath and mesophyll chloroplasts reveals novel membrane proteins with a possible role in C4-related metabolite fluxes and development.

    Directory of Open Access Journals (Sweden)

    Kalpana eManandhar-Shrestha

    2013-03-01

    Full Text Available As the world population grows, our need for food increases drastically. Limited amounts of arable land lead to a competition between food and fuel crops, while changes in the global climate may impact future crop yields. Thus, a second green revolution will need a better understanding of the processes essential for plant growth and development. One approach toward the solution of this problem is to better understand regulatory and transport processes in C4 plants. C4 plants display an up to 10-fold higher apparent CO2 assimilation and higher yields while maintaining high water use efficiency. This requires differential regulation of mesophyll (M and bundle sheath (BS chloroplast development as well as higher metabolic fluxes of photosynthetic intermediates between cells and across chloroplast envelopes. While previous analyses of overall chloroplast membranes have yielded significant insight, our comparative proteomics approach using enriched BS and M chloroplast envelopes of Zea mays allowed us to identify 37 proteins of unknown function that have not been seen in these earlier studies. We identified 280 proteins, 84% of which are known/predicted to be present in chloroplasts (cp. 74% have a known or predicted membrane association. 21 membrane proteins were 2-15 times more abundant in BS cells, while 36 proteins were more abundant in M cp envelopes. These proteins could represent additional candidates of proteins essential for development or metabolite transport processes in C4 plants. RT-PCR confirmed differential expression of thirteen candidate genes. Cp association was confirmed using GFP labeling. Genes for a PIC-like protein and an ER-AP-like protein show an early transient increase in gene expression during the transition to light. In addition, PIC gene expression is increased in the immature part of the leaf and was lower in the fully developed parts of the leaf, suggesting a need for/incorporation of the protein during chloroplast

  20. Carcinoembryonic antigen (CEA)

    International Nuclear Information System (INIS)

    Ephraim, K.H.; Cox, P.H.; Hamer, C.J.A. v.d.; Berends, W.; Delhez, H.

    1977-01-01

    The carcinoembryonic antigen (CEA) is a complex of antigen determinants and also the carrier of these determinants. Chemically it is a glycoprotein. Its occurrence in blood serum or urine is correlated with malignant disease. Several radioimmunoassays (RIA) have been developed, one by Hoffmann-Laroche and one by the Rotterdam Radiotherapeutic Institute. Both methods and the Hoffmann assay kit are tested. Specifications are given for isolation of the antigen, preparation of the antiserum, and the execution of the RIA. Biochemical and clinical aspects are discussed

  1. Manipulating the Lewis antigen specificity of the cholesterol-dependent cytolysin lectinolysin

    Directory of Open Access Journals (Sweden)

    Sara eLawrence

    2012-11-01

    Full Text Available The cholesterol-dependent cytolysins (CDCs attack cells by punching large holes in their membranes. Lectinolysin from Streptococcus mitis is unique among CDCs due to the presence of an N-terminal lectin domain that enhances the pore-forming activity of the toxin. We recently determined the crystal structures of the lectin domain in complex with various glycans. These structures revealed the molecular basis for the Lewis antigen specificity of the toxin. Based on this information we have used in silico molecular modelling to design a mutant toxin, which we predicted would increase its specificity for Lewis y, an antigen found on the surface of cancer cells. Surprisingly, we found by surface plasmon resonance binding experiments that the resultant mutant lectin domain exhibited higher specificity for Lewis b antigens instead. We then undertook comparative crystallographic and molecular dynamics simulation studies of the wild-type and mutant lectin domains to understand the molecular basis for the disparity between the theoretical and experimental results. The crystallographic results revealed that the net number of interactions between Lewis y and wild-type versus mutant was unchanged whereas there was a loss of a hydrogen bond between mutant and Lewis b compared to wild-type. In contrast, the molecular dynamics studies revealed that the Lewis b antigen spent more time in the binding pocket of the mutant compared to wild-type and the reverse was true for Lewis y. The results of these simulation studies are consistent with the conclusions drawn from the surface plasmon resonance studies. This work is part of a program to engineer lectinolysin so that it will target and kill specific cells in human diseases.

  2. Antigenic determinants of prostate-specific antigen (PSA) and development of assays specific for different forms of PSA.

    OpenAIRE

    Nilsson, O.; Peter, A.; Andersson, I.; Nilsson, K.; Grundstr?m, B.; Karlsson, B.

    1997-01-01

    Monoclonal antibodies were raised against prostate-specific antigen (PSA) by immunization with purified free PSA, i.e. not in complex with any protease inhibitor (F-PSA) and PSA in complex with alpha1-anti-chymotrypsin (PSA-ACT). Epitope mapping of PSA using the established monoclonal antibody revealed a complex pattern of independent and partly overlapping antigenic domains in the PSA molecule. Four independent antigenic domains and at least three partly overlapping domains were exposed both...

  3. Proteomic plasma membrane profiling reveals an essential role for gp96 in the cell surface expression of LDLR family members, including the LDL receptor and LRP6.

    Science.gov (United States)

    Weekes, Michael P; Antrobus, Robin; Talbot, Suzanne; Hör, Simon; Simecek, Nikol; Smith, Duncan L; Bloor, Stuart; Randow, Felix; Lehner, Paul J

    2012-03-02

    The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96.

  4. First study on gene expression of cement proteins and potential adhesion-related genes of a membranous-based barnacle as revealed from Next-Generation Sequencing technology

    KAUST Repository

    Lin, Hsiu Chin; Wong, Yue Him; Tsang, Ling Ming; Chu, Ka Hou; Qian, Pei Yuan; Chan, Benny K K

    2013-01-01

    This is the first study applying Next-Generation Sequencing (NGS) technology to survey the kinds, expression location, and pattern of adhesion-related genes in a membranous-based barnacle. A total of 77,528,326 and 59,244,468 raw sequence reads of total RNA were generated from the prosoma and the basis of Tetraclita japonica formosana, respectively. In addition, 55,441 and 67,774 genes were further assembled and analyzed. The combined sequence data from both body parts generates a total of 79,833 genes of which 47.7% were shared. Homologues of barnacle cement proteins - CP-19K, -52K, and -100K - were found and all were dominantly expressed at the basis where the cement gland complex is located. This is the main area where transcripts of cement proteins and other potential adhesion-related genes were detected. The absence of another common barnacle cement protein, CP-20K, in the adult transcriptome suggested a possible life-stage restricted gene function and/or a different mechanism in adhesion between membranous-based and calcareous-based barnacles. © 2013 © 2013 Taylor & Francis.

  5. Anti-diabetic and antihypertensive activities of two flaxseed protein hydrolysate fractions revealed following their simultaneous separation by electrodialysis with ultrafiltration membranes.

    Science.gov (United States)

    Doyen, Alain; Udenigwe, Chibuike C; Mitchell, Patricia L; Marette, André; Aluko, Rotimi E; Bazinet, Laurent

    2014-02-15

    Flaxseed protein hydrolysate has been fractionated by electrodialysis with two ultrafiltration membranes (20 and 50 kDa) stacked in the system for the recovery of two specific cationic peptide fractions (KCl-F1 and KCl-F2). After 360 min of treatment, peptide migration increased as a function of time in KCl compartments. Moreover, the use of two different ultrafiltration membrane allowed concentration of the 300-400 and 400-500 Da molecular weight range peptides in the KCl-F1 and KCl-F2 fractions, respectively, compared to the initial hydrolysate. After mass spectrometry analysis, higher amounts of low molecular weight peptides were recovered in the KCl-F2 compartment while relatively higher molecular weight peptides were more detected in the KCl-F1 compartment. Amino acid analysis showed that His, Lys and Arg were especially concentrated in the KCl compartments. Finally, glucose-transport assay demonstrated that the KCl-F2 fraction increased glucose uptake while oral administration of KCl-F1 and final FPH decreased systolic blood pressure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. First study on gene expression of cement proteins and potential adhesion-related genes of a membranous-based barnacle as revealed from Next-Generation Sequencing technology

    KAUST Repository

    Lin, Hsiu Chin

    2013-12-12

    This is the first study applying Next-Generation Sequencing (NGS) technology to survey the kinds, expression location, and pattern of adhesion-related genes in a membranous-based barnacle. A total of 77,528,326 and 59,244,468 raw sequence reads of total RNA were generated from the prosoma and the basis of Tetraclita japonica formosana, respectively. In addition, 55,441 and 67,774 genes were further assembled and analyzed. The combined sequence data from both body parts generates a total of 79,833 genes of which 47.7% were shared. Homologues of barnacle cement proteins - CP-19K, -52K, and -100K - were found and all were dominantly expressed at the basis where the cement gland complex is located. This is the main area where transcripts of cement proteins and other potential adhesion-related genes were detected. The absence of another common barnacle cement protein, CP-20K, in the adult transcriptome suggested a possible life-stage restricted gene function and/or a different mechanism in adhesion between membranous-based and calcareous-based barnacles. © 2013 © 2013 Taylor & Francis.

  7. Structure of thrombospondin type 3 repeats in bacterial outer membrane protein A reveals its intra-repeat disulfide bond-dependent calcium-binding capability

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shuyan; Sun, Cancan; Tan, Kemin; Ye, Sheng; Zhang, Rongguang

    2017-09-01

    Eukaryotic thrombospondin type 3 repeat (TT3R) is an efficient calcium ion (Ca2+) binding motif only found in mammalian thrombospondin family. TT3R has also been found in prokaryotic cellulase Cel5G, which was thought to forfeit the Ca2+-binding capability due to the formation of intra-repeat disulfide bonds, instead of the inter-repeat ones possessed by eukaryotic TT3Rs. In this study, we have identified an enormous number of prokaryotic TT3R-containing proteins belonging to several different protein families, including outer membrane protein A (OmpA), an important structural protein connecting the outer membrane and the periplasmic peptidoglycan layer in gram-negative bacteria. Here, we report the crystal structure of the periplasmic region of OmpA from Capnocytophaga gingivalis, which contains a linker region comprising five consecutive TT3Rs. The structure of OmpA-TT3R exhibits a well-ordered architecture organized around two tightly-coordinated Ca2+ and confirms the presence of abnormal intra-repeat disulfide bonds. Further mutagenesis studies showed that the Ca2+-binding capability of OmpA-TT3R is indeed dependent on the proper formation of intra-repeat disulfide bonds, which help to fix a conserved glycine residue at its proper position for Ca2+ coordination. Additionally, despite lacking inter repeat disulfide bonds, the interfaces between adjacent OmpA-TT3Rs are enhanced by both hydrophobic and conserved aromatic-proline interactions.

  8. Antigen injection (image)

    Science.gov (United States)

    Leprosy is caused by the organism Mycobacterium leprae . The leprosy test involves injection of an antigen just under ... if your body has a current or recent leprosy infection. The injection site is labeled and examined ...

  9. Recognition of viral and self-antigens by TH1 and TH1/TH17 central memory cells in patients with multiple sclerosis reveals distinct roles in immune surveillance and relapses.

    Science.gov (United States)

    Paroni, Moira; Maltese, Virginia; De Simone, Marco; Ranzani, Valeria; Larghi, Paola; Fenoglio, Chiara; Pietroboni, Anna M; De Riz, Milena A; Crosti, Maria C; Maglie, Stefano; Moro, Monica; Caprioli, Flavio; Rossi, Riccardo; Rossetti, Grazisa; Galimberti, Daniela; Pagani, Massimiliano; Scarpini, Elio; Abrignani, Sergio; Geginat, Jens

    2017-09-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) that is caused by autoreactive T cells and associated with viral infections. However, the phenotype of pathogenic T cells in peripheral blood remains to be defined, and how viruses promote MS is debated. We aimed to identify and characterize potentially pathogenic autoreactive T cells, as well as protective antiviral T cells, in patients with MS. We analyzed CD4 + helper T-cell subsets from peripheral blood or cerebrospinal fluid for cytokine production, gene expression, plasticity, homing potentials, and their reactivity to self-antigens and viral antigens in healthy subjects and patients with MS. Moreover, we monitored their frequencies in untreated and fingolimod- or natalizumab-treated patients with MS. T H 1/T H 17 central memory (T H 1/T H 17 CM ) cells were selectively increased in peripheral blood of patients with relapsing-remitting MS with a high disease score. T H 1/T H 17 CM cells were closely related to conventional T H 17 cells but had more pathogenic features. In particular, they could shuttle between lymph nodes and the CNS and produced encephalitogenic cytokines. The cerebrospinal fluid of patients with active MS was enriched for CXCL10 and contained mainly CXCR3-expressing T H 1 and T H 1/T H 17 subsets. However, while T H 1 cells responded consistently to viruses, T H 1/T H 17 CM cells reacted strongly with John Cunningham virus in healthy subjects but responded instead to myelin-derived self-antigens in patients with MS. Fingolimod and natalizumab therapies efficiently targeted autoreactive T H 1/T H 17 CM cells but also blocked virus-specific T H 1 cells. We propose that autoreactive T H 1/T H 17 CM cells expand in patients with MS and promote relapses after bystander recruitment to the CNS, whereas T H 1 cells perform immune surveillance. Thus the selective targeting of T H 1/T H 17 cells could inhibit relapses without causing John

  10. Molecular cloning of complementary DNAs encoding the heavy chain of the human 4F2 cell-surface antigen: a type II membrane glycoprotein involved in normal and neoplastic cell growth

    International Nuclear Information System (INIS)

    Quackenbush, E.; Clabby, M.; Gottesdiener, K.M.; Barbosa, J.; Jones, N.H.; Strominger, J.L.; Speck, S.; Leiden, J.M.

    1987-01-01

    Complementary DNA (cDNA) clones encoding the heavy chain of the heterodimeric human membrane glycoprotein 4F2 have been isolated by immunoscreening of a λgt11 expression library. The identity of these clones has been confirmed by hybridization to RNA and DNA prepared from mouse L-cell transfectants, which were produced by whole cell gene transfer and selected for cell-surface expression of the human 4F2 heavy chain. DNA sequence analysis suggest that the 4F2 heavy-chain cDNAs encode an approximately 526-amino acid type II membrane glycoprotein, which is composed of a large C-terminal extracellular domain, a single potential transmembrane region, and a 50-81 amino acid N-terminal intracytoplasmic domain. Southern blotting experiments have shown that the 4F2 heavy-chain cDNAs are derived from a single-copy gene that has been highly conserved during mammalian evolution

  11. Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    Patricia Hingston

    Full Text Available The human pathogen Listeria monocytogenes continues to pose a challenge in the food industry, where it is known to contaminate ready-to-eat foods and grow during refrigerated storage. Increased knowledge of the cold-stress response of this pathogen will enhance the ability to control it in the food-supply-chain. This study utilized strand-specific RNA sequencing and whole cell fatty acid (FA profiling to characterize the bacterium's cold stress response. RNA and FAs were extracted from a cold-tolerant strain at five time points between early lag phase and late stationary-phase, both at 4°C and 20°C. Overall, more genes (1.3× were suppressed than induced at 4°C. Late stationary-phase cells exhibited the greatest number (n = 1,431 and magnitude (>1,000-fold of differentially expressed genes (>2-fold, p<0.05 in response to cold. A core set of 22 genes was upregulated at all growth phases, including nine genes required for branched-chain fatty acid (BCFA synthesis, the osmolyte transporter genes opuCBCD, and the internalin A and D genes. Genes suppressed at 4°C were largely associated with cobalamin (B12 biosynthesis or the production/export of cell wall components. Antisense transcription accounted for up to 1.6% of total mapped reads with higher levels (2.5× observed at 4°C than 20°C. The greatest number of upregulated antisense transcripts at 4°C occurred in early lag phase, however, at both temperatures, antisense expression levels were highest in late stationary-phase cells. Cold-induced FA membrane changes included a 15% increase in the proportion of BCFAs and a 15% transient increase in unsaturated FAs between lag and exponential phase. These increases probably reduced the membrane phase transition temperature until optimal levels of BCFAs could be produced. Collectively, this research provides new information regarding cold-induced membrane composition changes in L. monocytogenes, the growth-phase dependency of its cold

  12. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo

    2013-02-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission scanning electron microscopy and pore size distribution analysis revealed the big pore size structure of electrospun membranes to be greater than 2 μm and the pore size distribution is found to be narrow. Flat sheet Matrimid membranes were fabricated via casting followed by phase inversion. The morphology, pore size distribution, and water contact angle were measured and compared with the electrospun membranes. Both membranes fabricated by electrospinning and phase inversion techniques were tested in a direct contact membrane distillation process. Electrospun membranes showed high water vapor flux of 56 kg/m2-h, which is very high compared to the casted membrane as well as most of the fabricated and commercially available highly hydrophobic membranes. ©2013 Desalination Publications.

  13. Quantitative Proteome Analysis Reveals Increased Content of Basement Membrane Proteins in Arteries from Patients with Type 2 Diabetes and Lower Levels among Metformin Users

    DEFF Research Database (Denmark)

    Rørdam Preil, Simone; Kristensen, Lars P; Beck, Hans C

    2015-01-01

    hypothesized that metformin intake influences the protein composition. METHODS AND RESULTS: -We analyzed non-atherosclerotic repair arteries gathered at coronary by-pass operations from 30 patients with type 2 diabetes, as well as from 30 age- and gender-matched non-diabetic individuals. Quantitative proteome......BACKGROUND: -The increased risk of cardiovascular diseases (CVD) in type 2 diabetes has been extensively documented, but the origins of the association remain largely unknown. We sought to determine changes in protein expressions in arterial tissue from patients with type 2 diabetes and moreover...... analysis was done by iTRAQ-labelling and LC-MS/MS analysis on individual arterial samples. The amounts of the basement membrane (BM) components, alpha-1- and alpha-2- type IV collagen, gamma-1- and beta-2-laminin were significantly increased in patients with diabetes. Moreover, the expressions of basement...

  14. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Nawrocki, Arkadiusz; Jensen, Steffen Grann

    2014-01-01

    Cancer cells secrete soluble factors and various extracellular vesicles, including exosomes, into their tissue microenvironment. The secretion of exosomes is speculated to facilitate local invasion and metastatic spread. Here, we used an in vivo metastasis model of human bladder carcinoma cell line...... T24 without metastatic capacity and its two isogenic derivate cell lines SLT4 and FL3, which form metastases in the lungs and liver of mice, respectively. Cultivation in CLAD1000 bioreactors rather than conventional culture flasks resulted in a 13-16-fold increased exosome yield and facilitated...... quantitative proteomics of fractionated exosomes. Exosomes from T24, SLT4, and FL3 cells were partitioned into membrane and luminal fractions and changes in protein abundance related to the gain of metastatic capacity were identified by quantitative iTRAQ- proteomics. We identified several proteins linked...

  15. Alleviation of rapid, futile ammonium cycling at the plasma membrane by potassium reveals K+-sensitive and -insensitive components of NH4+ transport.

    Science.gov (United States)

    Szczerba, Mark W; Britto, Dev T; Balkos, Konstantine D; Kronzucker, Herbert J

    2008-01-01

    Futile plasma membrane cycling of ammonium (NH4+) is characteristic of low-affinity NH4+ transport, and has been proposed to be a critical factor in NH4+ toxicity. Using unidirectional flux analysis with the positron-emitting tracer 13N in intact seedlings of barley (Hordeum vulgare L.), it is shown that rapid, futile NH4+ cycling is alleviated by elevated K+ supply, and that low-affinity NH4+ transport is mediated by a K+-sensitive component, and by a second component that is independent of K+. At low external [K+] (0.1 mM), NH4+ influx (at an external [NH4+] of 10 mM) of 92 micromol g(-1) h(-1) was observed, with an efflux:influx ratio of 0.75, indicative of rapid, futile NH4+ cycling. Elevating K+ supply into the low-affinity K+ transport range (1.5-40 mM) reduced both influx and efflux of NH4+ by as much as 75%, and substantially reduced the efflux:influx ratio. The reduction of NH4+ fluxes was achieved rapidly upon exposure to elevated K+, within 1 min for influx and within 5 min for efflux. The channel inhibitor La3+ decreased high-capacity NH4+ influx only at low K+ concentrations, suggesting that the K+-sensitive component of NH4+ influx may be mediated by non-selective cation channels. Using respiratory measurements and current models of ion flux energetics, the energy cost of concomitant NH4+ and K+ transport at the root plasma membrane, and its consequences for plant growth are discussed. The study presents the first demonstration of the parallel operation of K+-sensitive and -insensitive NH4+ flux mechanisms in plants.

  16. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  17. The CD3-zeta chimeric antigen receptor overcomes TCR Hypo-responsiveness of human terminal late-stage T cells.

    Directory of Open Access Journals (Sweden)

    Gunter Rappl

    Full Text Available Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1(+ CD57(+ CD7(- phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8(+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter.

  18. A proteomic screen reveals the mitochondrial outer membrane protein Mdm34p as an essential target of the F-box protein Mdm30p.

    Science.gov (United States)

    Ota, Kazuhisa; Kito, Keiji; Okada, Satoshi; Ito, Takashi

    2008-10-01

    Ubiquitination plays various critical roles in eukaryotic cellular regulation and is mediated by a cascade of enzymes including ubiquitin protein ligase (E3). The Skp1-Cullin-F-box protein complex comprises the largest E3 family, in each member of which a unique F-box protein binds its targets to define substrate specificity. Although genome sequencing uncovers a growing number of F-box proteins, most of them have remained as "orphans" because of the difficulties in identification of their substrates. To address this issue, we tested a quantitative proteomic approach by combining the stable isotope labeling by amino acids in cell culture (SILAC), parallel affinity purification (PAP) that we had developed for efficient enrichment of ubiquitinated proteins, and mass spectrometry (MS). We applied this SILAC-PAP-MS approach to compare ubiquitinated proteins between yeast cells with and without over-expressed Mdm30p, an F-box protein implicated in mitochondrial morphology. Consequently, we identified the mitochondrial outer membrane protein Mdm34p as a target of Mdm30p. Furthermore, we found that mitochondrial defects induced by deletion of MDM30 are not only recapitulated by a mutant Mdm34p defective in interaction with Mdm30p but alleviated by ubiquitination-mimicking forms of Mdm34p. These results indicate that Mdm34p is a physiologically important target of Mdm30p.

  19. A difference gel electrophoresis study on thylakoids isolated from poplar leaves reveals a negative impact of ozone exposure on membrane proteins.

    Science.gov (United States)

    Bohler, Sacha; Sergeant, Kjell; Hoffmann, Lucien; Dizengremel, Pierre; Hausman, Jean-Francois; Renaut, Jenny; Jolivet, Yves

    2011-07-01

    Populus tremula L. x P. alba L. (Populus x canescens (Aiton) Smith), clone INRA 717-1-B4, saplings were subjected to 120 ppb ozone exposure for 28 days. Chloroplasts were isolated, and the membrane proteins, solubilized using the detergent 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC), were analyzed in a difference gel electrophoresis (DiGE) experiment comparing control versus ozone-exposed plants. Extrinsic photosystem (PS) proteins and adenosine triphosphatase (ATPase) subunits were detected to vary in abundance. The general trend was a decrease in abundance, except for ferredoxin-NADP(+) oxidoreductase (FNR), which increased after the first 7 days of exposure. The up-regulation of FNR would increase NAPDH production for reducing power and detoxification inside and outside of the chloroplast. Later on, FNR and a number of PS and ATPase subunits decrease in abundance. This could be the result of oxidative processes on chloroplast proteins but could also be a way to down-regulate photochemical reactions in response to an inhibition in Calvin cycle activity.

  20. A Bioinformatics Analysis Reveals a Group of MocR Bacterial Transcriptional Regulators Linked to a Family of Genes Coding for Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Teresa Milano

    2016-01-01

    Full Text Available The MocR bacterial transcriptional regulators are characterized by an N-terminal domain, 60 residues long on average, possessing the winged-helix-turn-helix (wHTH architecture responsible for DNA recognition and binding, linked to a large C-terminal domain (350 residues on average that is homologous to fold type-I pyridoxal 5′-phosphate (PLP dependent enzymes like aspartate aminotransferase (AAT. These regulators are involved in the expression of genes taking part in several metabolic pathways directly or indirectly connected to PLP chemistry, many of which are still uncharacterized. A bioinformatics analysis is here reported that studied the features of a distinct group of MocR regulators predicted to be functionally linked to a family of homologous genes coding for integral membrane proteins of unknown function. This group occurs mainly in the Actinobacteria and Gammaproteobacteria phyla. An analysis of the multiple sequence alignments of their wHTH and AAT domains suggested the presence of specificity-determining positions (SDPs. Mapping of SDPs onto a homology model of the AAT domain hinted at possible structural/functional roles in effector recognition. Likewise, SDPs in wHTH domain suggested the basis of specificity of Transcription Factor Binding Site recognition. The results reported represent a framework for rational design of experiments and for bioinformatics analysis of other MocR subgroups.

  1. The role of CD4 in antigen-independent activation of isolated single T lymphocytes

    DEFF Research Database (Denmark)

    Kelso, A; Owens, T

    1988-01-01

    The membrane molecule CD4 (L3T4) is thought to facilitate activation of Class II H-2-restricted T cells by binding to Ia determinants on antigen-presenting cells. Recent reports suggest that CD4 can also contribute to antigen-independent activation by anti-T cell receptor (TCR) antibodies. An ass...

  2. Antigenic Variation of TprK Facilitates Development of Secondary Syphilis

    OpenAIRE

    Reid, Tara B.; Molini, Barbara J.; Fernandez, Mark C.; Lukehart, Sheila A.

    2014-01-01

    Although primary syphilis lesions heal spontaneously, the infection is chronic, with subsequent clinical stages. Healing of the primary chancre occurs as antibodies against outer membrane antigens facilitate opsonophagocytosis of the bacteria by activated macrophages. TprK is an outer membrane protein that undergoes antigenic variation at 7 variable regions, and variants are selected by immune pressure. We hypothesized that individual TprK variants escape immune clearance and seed new dissemi...

  3. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2011-01-01

    Full Text Available Abstract Background The surface glycoprotein (SU, gp120 of the human immunodeficiency virus (HIV must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP to bind the Duffy Antigen Receptor for Chemokines (DARC and invade reticulocytes. Results Variable loop 3 (V3 of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, for DARC binding and contained a consensus heparin binding site essential for DARC binding. Both HIV-1 and P. vivax can be blocked from binding to their chemokine receptors by the chemokine, RANTES and its analog AOP-RANTES. Site directed mutagenesis of the heparin binding motif in members of the DBP family, the P. knowlesi alpha, beta and gamma proteins abrogated their binding to erythrocytes. Positively charged residues within domain 1 are required for binding of P. vivax and P. knowlesi erythrocyte binding proteins. Conclusion A heparin binding site motif in members of the DBP family may form part of a conserved erythrocyte receptor binding pocket.

  4. Identification of membrane-associated proteins with pathogenic potential expressed by Corynebacterium pseudotuberculosis grown in animal serum.

    Science.gov (United States)

    Raynal, José Tadeu; Bastos, Bruno Lopes; Vilas-Boas, Priscilla Carolinne Bagano; Sousa, Thiago de Jesus; Costa-Silva, Marcos; de Sá, Maria da Conceição Aquino; Portela, Ricardo Wagner; Moura-Costa, Lília Ferreira; Azevedo, Vasco; Meyer, Roberto

    2018-01-25

    Previous works defining antigens that might be used as vaccine targets against Corynebacterium pseudotuberculosis, which is the causative agent of sheep and goat caseous lymphadenitis, have focused on secreted proteins produced in a chemically defined culture media. Considering that such antigens might not reflect the repertoire of proteins expressed during infection conditions, this experiment aimed to investigate the membrane-associated proteins with pathogenic potential expressed by C. pseudotuberculosis grown directly in animal serum. Its membrane-associated proteins have been extracted using an organic solvent enrichment methodology, followed by LC-MS/MS and bioinformatics analysis for protein identification and classification. The results revealed 22 membrane-associated proteins characterized as potentially pathogenic. An interaction network analysis indicated that the four potentially pathogenic proteins ciuA, fagA, OppA4 and OppCD were biologically connected within two distinct network pathways, which were both associated with the ABC Transporters KEGG pathway. These results suggest that C. pseudotuberculosis pathogenesis might be associated with the transport and uptake of nutrients; other seven identified potentially pathogenic membrane proteins also suggest that pathogenesis might involve events of bacterial resistance and adhesion. The proteins herein reported potentially reflect part of the protein repertoire expressed during real infection conditions and might be tested as vaccine antigens.

  5. In Vitro Variant Surface Antigen Expression in Plasmodium falciparum Parasites from a Semi-Immune Individual Is Not Correlated with Var Gene Transcription

    Science.gov (United States)

    Tschan, Serena; Flötenmeyer, Matthias; Koch, Iris; Berger, Jürgen; Kremsner, Peter; Frank, Matthias

    2016-01-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is considered to be the main variant surface antigen (VSA) of Plasmodium falciparum and is mainly localized on electron-dense knobs in the membrane of the infected erythrocyte. Switches in PfEMP1 expression provide the basis for antigenic variation and are thought to be critical for parasite persistence during chronic infections. Recently, strain transcending anti-PfEMP1 immunity has been shown to develop early in life, challenging the role of PfEMP1 in antigenic variation during chronic infections. In this work we investigate how P. falciparum achieves persistence during a chronic asymptomatic infection. The infected individual (MOA) was parasitemic for 42 days and multilocus var gene genotyping showed persistence of the same parasite population throughout the infection. Parasites from the beginning of the infection were adapted to tissue culture and cloned by limiting dilution. Flow cytometry using convalescent serum detected a variable surface recognition signal on isogenic clonal parasites. Quantitative real-time PCR with a field isolate specific var gene primer set showed that the surface recognition signal was not correlated with transcription of individual var genes. Strain transcending anti-PfEMP1 immunity of the convalescent serum was demonstrated with CD36 selected and PfEMP1 knock-down NF54 clones. In contrast, knock-down of PfEMP1 did not have an effect on the antibody recognition signal in MOA clones. Trypsinisation of the membrane surface proteins abolished the surface recognition signal and immune electron microscopy revealed that antibodies from the convalescent serum bound to membrane areas without knobs and with knobs. Together the data indicate that PfEMP1 is not the main variable surface antigen during a chronic infection and suggest a role for trypsin sensitive non-PfEMP1 VSAs for parasite persistence in chronic infections. PMID:27907004

  6. Differential Permeabilization Effects of Ca2+ and Valinomycin on the Inner and Outer Mitochondrial Membranes as Revealed by Proteomics Analysis of Proteins Released from Mitochondria*S⃞

    Science.gov (United States)

    Yamada, Akiko; Yamamoto, Takenori; Yamazaki, Naoshi; Yamashita, Kikuji; Kataoka, Masatoshi; Nagata, Toshihiko; Terada, Hiroshi; Shinohara, Yasuo

    2009-01-01

    It is well established that cytochrome c is released from mitochondria when the permeability transition (PT) of this organelle is induced by Ca2+. Our previous study showed that valinomycin also caused the release of cytochrome c from mitochondria but without inducing this PT (Shinohara, Y., Almofti, M. R., Yamamoto, T., Ishida, T., Kita, F., Kanzaki, H., Ohnishi, M., Yamashita, K., Shimizu, S., and Terada, H. (2002) Permeability transition-independent release of mitochondrial cytochrome c induced by valinomycin. Eur. J. Biochem. 269, 5224–5230). These results indicate that cytochrome c may be released from mitochondria with or without the induction of PT. In the present study, we examined the protein species released from valinomycin- and Ca2+-treated mitochondria by LC-MS/MS analysis. As a result, the proteins located in the intermembrane space were found to be specifically released from valinomycin-treated mitochondria, whereas those in the intermembrane space and in the matrix were released from Ca2+-treated mitochondria. These results were confirmed by Western analysis. Furthermore to examine how the protein release occurred, we examined the correlation between the species of released proteins and those of the abundant proteins in mitochondria. Consequently most of the proteins released from mitochondria treated with either agent were highly expressed proteins in mitochondria, indicating that the release occurred not selectively but in a manner dependent on the concentration of the proteins. Based on these results, the permeabilization effects of Ca2+ and valinomycin on the inner and outer mitochondrial membranes are discussed. PMID:19218587

  7. Human Tumor Antigens Yesterday, Today, and Tomorrow.

    Science.gov (United States)

    Finn, Olivera J

    2017-05-01

    The question of whether human tumors express antigens that can be recognized by the immune system has been answered with a resounding YES. Most were identified through spontaneous antitumor humoral and cellular immune responses found in cancer patients and include peptides, glycopeptides, phosphopeptides, viral peptides, and peptides resulting from common mutations in oncogenes and tumor-suppressor genes, or common gene fusion events. Many have been extensively tested as candidates for anticancer vaccines. More recently, attention has been focused on the potentially large number of unique tumor antigens, mutated neoantigens, that are the predicted products of the numerous mutations revealed by exome sequencing of primary tumors. Only a few have been confirmed as targets of spontaneous immunity and immunosurveillance, and even fewer have been tested in preclinical and clinical settings. The field has been divided for a long time on the relative importance of shared versus mutated antigens in tumor surveillance and as candidates for vaccines. This question will eventually need to be answered in a head to head comparison in well-designed clinical trials. One advantage that shared antigens have over mutated antigens is their potential to be used in vaccines for primary cancer prevention. Cancer Immunol Res; 5(5); 347-54. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  9. Pattern of distribution of blood group antigens on human epidermal cells during maturation

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Buschard, Karsten; Hakomori, Sen-Itiroh

    1984-01-01

    The distribution in human epidermis of A, B, and H blood group antigens and of a precursor carbohydrate chain, N-acetyl-lactosamine, was examined using immunofluorescence staining techniques. The material included tissue from 10 blood group A, 4 blood group B, and 9 blood group O persons. Murine...... on the lower spinous cells whereas H antigen was seen predominantly on upper spinous cells or on the granular cells. Epithelia from blood group A or B persons demonstrated A or B antigens, respectively, but only if the tissue sections were trypsinized before staining. In such cases A or B antigens were found...... monoclonal antibodies were used to identify H antigen (type 2 chain) and N-acetyl-lactosamine. Human antisera were used to identify A and B antigens. In all groups N-acetyl-lactosamine and H antigen were found on the cell membranes of the spinous cell layer. N-acetyl-lactosamine was present mainly...

  10. Progesterone receptor membrane component-1 (PGRMC1) is the mediator of progesterone's antiapoptotic action in spontaneously immortalized granulosa cells as revealed by PGRMC1 small interfering ribonucleic acid treatment and functional analysis of PGRMC1 mutations.

    Science.gov (United States)

    Peluso, John J; Romak, Jonathan; Liu, Xiufang

    2008-02-01

    Progesterone (P4) receptor membrane component-1 (PGRMC1) and its binding partner, plasminogen activator inhibitor 1 RNA binding protein (PAIRBP1) are thought to form a complex that functions as membrane receptor for P4. The present investigations confirm PGRMC1's role in this membrane receptor complex by demonstrating that depleting PGMRC1 with PGRMC1 small interfering RNA results in a 60% decline in [(3)H]P4 binding and the loss of P4's antiapoptotic action. Studies conducted on partially purified GFP-PGRMC1 fusion protein indicate that [(3)H]P4 specifically binds to PGRMC1 at a single site with an apparent K(d) of about 35 nm. In addition, experiments using various deletion mutations reveal that the entire PGRMC1 molecule is required for maximal [(3)H]P4 binding and P4 responsiveness. Analysis of the binding data also suggests that the P4 binding site is within a segment of PGRMC1 that is composed of the transmembrane domain and the initial segment of the C terminus. Interestingly, PAIRBP1 appears to bind to the C terminus between amino acids 70-130, which is distal to the putative P4 binding site. Taken together, these data provide compelling evidence that PGRMC1 is the P4 binding protein that mediates P4's antiapoptotic action. Moreover, the deletion mutation studies indicate that each domain of PGRMC1 plays an essential role in modulating PGRMC1's capacity to both bind and respond to P4. Additional studies are required to more precisely delineate the role of each PGRMC1 domain in transducing P4's antiapoptotic action.

  11. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    Directory of Open Access Journals (Sweden)

    Bolton Michael J

    2011-11-01

    Full Text Available Abstract Background The HIV surface glycoprotein gp120 (SU, gp120 and the Plasmodium vivax Duffy binding protein (PvDBP bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM. Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infection of erythrocytes and DBP binding to the Duffy Antigen Receptor for Chemokines (DARC. A peptide including the HBM of PvDBP had similar affinity for heparin as RANTES and V3 loop peptides, and could be specifically inhibited from heparin binding by the same polyanions that inhibit DBP binding to DARC. However, some V3 peptides can competitively inhibit RANTES binding to heparin, but not the PvDBP HBM peptide. Three other members of the DBP family have an HBM sequence that is necessary for erythrocyte binding, however only the protein which binds to DARC, the P. knowlesi alpha protein, is inhibited by heparin from binding to erythrocytes. Heparitinase digestion does not affect the binding of DBP to erythrocytes. Conclusion The HBMs of DBPs that bind to DARC have similar heparin binding affinities as some V3 loop peptides and chemokines, are responsible for specific sulfated polysaccharide inhibition of parasite binding and invasion of red blood cells, and are more likely to bind to negative charges on the receptor than cell surface glycosaminoglycans.

  12. Antigen smuggling in tuberculosis.

    Science.gov (United States)

    Hudrisier, Denis; Neyrolles, Olivier

    2014-06-11

    The importance of CD4 T lymphocytes in immunity to M. tuberculosis is well established; however, how dendritic cells activate T cells in vivo remains obscure. In this issue of Cell Host & Microbe, Srivastava and Ernst (2014) report a mechanism of antigen transfer for efficient activation of antimycobacterial T cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Antigen detection systems

    Science.gov (United States)

    Infectious agents or their constituent parts (antigens or nucleic acids) can be detected in fresh, frozen, or fixed tissues or other specimens, using a variety of direct or indirect assays. The assays can be modified to yield the greatest sensitivity and specificity but in most cases a particular m...

  14. Isocyanate test antigens

    International Nuclear Information System (INIS)

    Karol, M.H.; Alarie, Y.C.

    1980-01-01

    A test antigen for detecting antibodies to a diisocyanate comprises the reaction product of a protein and a monoisocyanate derived from the same radical as the diisocyanate. The diisocyanates most usually encountered and therefore calling for antibody detection are those of toluene, hexamethylene, methylene, isophorone and naphthylene. The preferred protein is human serum albumin. (author)

  15. β-endorphin antigen

    International Nuclear Information System (INIS)

    1981-01-01

    This invention relates to the production of antigens comprising β-endorphin, βsub(h)-endorphin, or βsub(c)-endorphin, in covalent conjugation with human gammaglobulin as immunogenic carrier material, and an antibody having the property of specifically binding β-endorphin or fragments thereof, containing the (6-15) residue sequence. (U.K.)

  16. Antigen entrapped in the escheriosomes leads to the generation of CD4(+) helper and CD8(+) cytotoxic T cell response.

    Science.gov (United States)

    Syed, Faisal M; Khan, Masood A; Nasti, Tahseen H; Ahmad, Nadeem; Mohammad, Owais

    2003-06-02

    In previous study, we demonstrated the potential of Escherichia coli (E. coli) lipid liposomes (escheriosomes) to undergo membrane-membrane fusion with cytoplasmic membrane of the target cells including professional antigen presenting cells. Our present study demonstrates that antigen encapsulated in escheriosomes could be successfully delivered simultaneously to the cytosolic as well as endosomal processing pathways of antigen presenting cells, leading to the generation of both CD4(+) T-helper and CD8(+) cytotoxic T cell response. In contrast, encapsulation of same antigen in egg phosphatidyl-choline (egg PC) liposomes, just like antigen-incomplete Freund's adjuvant (IFA) complex, has inefficient access to the cytosolic pathway of MHC I-dependent antigen presentation and failed to generate antigen-specific CD8(+) cytotoxic T cell response. However, both egg PC liposomes as well as escheriosomes-encapsulated antigen elicited strong humoral immune response in immunized animals but antibody titre was significantly higher in the group of animals immunized with escheriosomes-encapsulated antigen. These results imply usage of liposome-based adjuvant as potential candidate vaccine capable of eliciting both cell-mediated as well as humoral immune responses. Furthermore, antigen entrapped in escheriosomes stimulates antigen-specific CD4(+) T cell proliferation and also enhances the level of IL-2, IFN-gamma and IL-4 in the immunized animals.

  17. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, Poornima

    2016-07-26

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane\\'s water flux and solute retention. © 2016 The Royal Society of Chemistry.

  18. Sarcocystis neurona merozoites express a family of immunogenic surface antigens that are orthologues of the Toxoplasma gondii surface antigens (SAGs) and SAG-related sequences.

    Science.gov (United States)

    Howe, Daniel K; Gaji, Rajshekhar Y; Mroz-Barrett, Meaghan; Gubbels, Marc-Jan; Striepen, Boris; Stamper, Shelby

    2005-02-01

    Sarcocystis neurona is a member of the Apicomplexa that causes myelitis and encephalitis in horses but normally cycles between the opossum and small mammals. Analysis of an S. neurona expressed sequence tag (EST) database revealed four paralogous proteins that exhibit clear homology to the family of surface antigens (SAGs) and SAG-related sequences of Toxoplasma gondii. The primary peptide sequences of the S. neurona proteins are consistent with the two-domain structure that has been described for the T. gondii SAGs, and each was predicted to have an amino-terminal signal peptide and a carboxyl-terminal glycolipid anchor addition site, suggesting surface localization. All four proteins were confirmed to be membrane associated and displayed on the surface of S. neurona merozoites. Due to their surface localization and homology to T. gondii surface antigens, these S. neurona proteins were designated SnSAG1, SnSAG2, SnSAG3, and SnSAG4. Consistent with their homology, the SnSAGs elicited a robust immune response in infected and immunized animals, and their conserved structure further suggests that the SnSAGs similarly serve as adhesins for attachment to host cells. Whether the S. neurona SAG family is as extensive as the T. gondii SAG family remains unresolved, but it is probable that additional SnSAGs will be revealed as more S. neurona ESTs are generated. The existence of an SnSAG family in S. neurona indicates that expression of multiple related surface antigens is not unique to the ubiquitous organism T. gondii. Instead, the SAG gene family is a common trait that presumably has an essential, conserved function(s).

  19. Sarcocystis neurona Merozoites Express a Family of Immunogenic Surface Antigens That Are Orthologues of the Toxoplasma gondii Surface Antigens (SAGs) and SAG-Related Sequences†

    Science.gov (United States)

    Howe, Daniel K.; Gaji, Rajshekhar Y.; Mroz-Barrett, Meaghan; Gubbels, Marc-Jan; Striepen, Boris; Stamper, Shelby

    2005-01-01

    Sarcocystis neurona is a member of the Apicomplexa that causes myelitis and encephalitis in horses but normally cycles between the opossum and small mammals. Analysis of an S. neurona expressed sequence tag (EST) database revealed four paralogous proteins that exhibit clear homology to the family of surface antigens (SAGs) and SAG-related sequences of Toxoplasma gondii. The primary peptide sequences of the S. neurona proteins are consistent with the two-domain structure that has been described for the T. gondii SAGs, and each was predicted to have an amino-terminal signal peptide and a carboxyl-terminal glycolipid anchor addition site, suggesting surface localization. All four proteins were confirmed to be membrane associated and displayed on the surface of S. neurona merozoites. Due to their surface localization and homology to T. gondii surface antigens, these S. neurona proteins were designated SnSAG1, SnSAG2, SnSAG3, and SnSAG4. Consistent with their homology, the SnSAGs elicited a robust immune response in infected and immunized animals, and their conserved structure further suggests that the SnSAGs similarly serve as adhesins for attachment to host cells. Whether the S. neurona SAG family is as extensive as the T. gondii SAG family remains unresolved, but it is probable that additional SnSAGs will be revealed as more S. neurona ESTs are generated. The existence of an SnSAG family in S. neurona indicates that expression of multiple related surface antigens is not unique to the ubiquitous organism T. gondii. Instead, the SAG gene family is a common trait that presumably has an essential, conserved function(s). PMID:15664946

  20. Oral delivery of the Sj23LHD-GST antigen by Salmonella typhimurium type III secretion system protects against Schistosoma japonicum infection in mice.

    Directory of Open Access Journals (Sweden)

    Guo Chen

    2011-09-01

    Full Text Available BACKGROUND: Schistosomiasis japonica is a zoonotic parasitic disease and oral vaccine delivery system would be benefit for prevention of this disease. Although attenuated salmonella has been used as an antigen expression vector for oral vaccine development, the membrane-bound vacuoles in which bacteria reside hinders the presentation of expressed heterologous antigens to the major histocompatibility complex (MHC molecules. The present work used an attenuated Salmonella typhimurium strain VNP20009 to secretory expression of Sj23LHDGST bivalent antigen from Schistosoma japonicum and tested the protective efficacy against S. japonicum infection in orally immunized mice. METHODOLOGY/PRINCIPAL FINDINGS: Promoters (nirB or pagC were used to express the antigen (Sj23LHDGST and the Salmonella type III or α-hemolysin secretion system was employed to secrete it. The immunoblotting analysis and fluorescent microscopy revealed that the antigen was effectively expressed and delivered to the cytosol of macrophages in vitro. Among recombinant vaccine strains, an engineered VNP20009 which expressed the antigen by nirB promoter and secreted it through type III secretion system (nirB-sopE(1-104-Sj23LHD-GST efficiently protected against S. japonicum infection in a mouse model. This strain elicited a predominantly IgG(2a antibody response and a markedly increase in the production of IL-12 and IFN-γ. The flow cytometric analysis demonstrated that this strain caused T cell activation as evidenced by significantly increased expression of CD44 and CD69. CONCLUSION/SIGNIFICANCE: Oral delivery of antigen by nirB-driven Salmonella typhimurium type III secretion system is a novel, safe, inexpensive, efficient and convenient approach for schistosome vaccine development.

  1. Cloning, sequence analysis, and expression of the large subunit of the human lymphocyte activation antigen 4F2

    International Nuclear Information System (INIS)

    Lumadue, J.A.; Glick, A.B.; Ruddle, F.H.

    1987-01-01

    Among the earliest expressed antigens on the surface of activated human lymphocytes is the surface antigen 4F2. The authors have used DNA-mediated gene transfer and fluorescence-activated cell sorting to obtain cell lines that contain the gene encoding the large subunit of the human 4F2 antigen in a mouse L-cell background. Human DNAs cloned from these cell lines were subsequently used as hybridization probes to isolate a full-length cDNA clone expressing 4F2. Sequence analysis of the coding region has revealed an amino acid sequence of 529 residues. Hydrophobicity plotting has predicted a probable structure for the protein that includes an external carboxyl terminus, an internal leader sequence, a single hydrophobic transmembrane domain, and two possible membrane-associated domains. The 4F2 cDNA detects a single 1.8-kilobase mRNA in T-cell and B-cell lines. RNA gel blot analysis of RNA derived from quiescent and serum-stimulated Swiss 3T3 fibroblasts reveals a cell-cycle modulation of 4F2 gene expression: the mRNA is present in quiescent fibroblasts but increases 8-fold 24-36 hr after stimulation, at the time of maximal DNA synthesis

  2. Cloning, sequence analysis, and expression of the large subunit of the human lymphocyte activation antigen 4F2

    Energy Technology Data Exchange (ETDEWEB)

    Lumadue, J.A.; Glick, A.B.; Ruddle, F.H.

    1987-12-01

    Among the earliest expressed antigens on the surface of activated human lymphocytes is the surface antigen 4F2. The authors have used DNA-mediated gene transfer and fluorescence-activated cell sorting to obtain cell lines that contain the gene encoding the large subunit of the human 4F2 antigen in a mouse L-cell background. Human DNAs cloned from these cell lines were subsequently used as hybridization probes to isolate a full-length cDNA clone expressing 4F2. Sequence analysis of the coding region has revealed an amino acid sequence of 529 residues. Hydrophobicity plotting has predicted a probable structure for the protein that includes an external carboxyl terminus, an internal leader sequence, a single hydrophobic transmembrane domain, and two possible membrane-associated domains. The 4F2 cDNA detects a single 1.8-kilobase mRNA in T-cell and B-cell lines. RNA gel blot analysis of RNA derived from quiescent and serum-stimulated Swiss 3T3 fibroblasts reveals a cell-cycle modulation of 4F2 gene expression: the mRNA is present in quiescent fibroblasts but increases 8-fold 24-36 hr after stimulation, at the time of maximal DNA synthesis.

  3. Structure and properties of cell membranes. Volume 3: Methodology and properties of membranes

    International Nuclear Information System (INIS)

    Benga, G.

    1985-01-01

    This book covers the topics: Quantum chemical approach to study the mechanisms of proton translocation across membranes through protein molecules; monomolecular films as biomembrane models; planar lipid bilayers in relation to biomembranes; relation of liposomes to cell membranes; reconstitution of membrane transport systems; structure-function relationships in cell membranes as revealed by X-ray techniques; structure-function relationships in cell membranes as revealed by spin labeling ESR; structure and dynamics of cell membranes as revealed by NMR techniques; the effect of dietary lipids on the composition and properties of biological membranes and index

  4. A method for visualizing surface-exposed and internal PfEMP1 adhesion antigens in Plasmodium falciparum infected erythrocytes

    DEFF Research Database (Denmark)

    Bengtsson, Dominique; Sowa, Kordai M; Salanti, Ali

    2008-01-01

    BACKGROUND: The insertion of parasite antigens into the host erythrocyte membrane and the structure and distribution of Plasmodium falciparum adhesion receptors on that membrane are poorly understood. Laser scanning confocal microscopy (LSCM) and a novel labelling and fixation method have been used...... fluorochromes has been developed for laser scanning confocal optical microscopy and the analysis of the developmental expression of malaria adhesion antigens....

  5. Light Responsive Polymer Membranes: A Review

    Directory of Open Access Journals (Sweden)

    Fiore Pasquale Nicoletta

    2012-03-01

    Full Text Available In recent years, stimuli responsive materials have gained significant attention in membrane separation processes due to their ability to change specific properties in response to small external stimuli, such as light, pH, temperature, ionic strength, pressure, magnetic field, antigen, chemical composition, and so on. In this review, we briefly report recent progresses in light-driven materials and membranes. Photo-switching mechanisms, valved-membrane fabrication and light-driven properties are examined. Advances and perspectives of light responsive polymer membranes in biotechnology, chemistry and biology areas are discussed.

  6. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, Poornima; Sutisna, Burhannudin; Sougrat, Rachid; Nunes, Suzana Pereira

    2016-01-01

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane's water flux and solute retention. © 2016 The Royal Society of Chemistry.

  7. Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression.

    LENUS (Irish Health Repository)

    Behan, A T

    2009-06-01

    The dorsolateral prefrontal cortex (dlpfc) is strongly implicated in the pathogenesis of schizophrenia (SCZ) and bipolar disorder (BPD) and, within this region, abnormalities in glutamatergic neurotransmission and synaptic function have been described. Proteins associated with these functions are enriched in membrane microdomains (MM). In the current study, we used two complementary proteomic methods, two-dimensional difference gel electrophoresis and one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis followed by reverse phase-liquid chromatography-tandem mass spectrometry (RP-LC-MS\\/MS) (gel separation liquid chromatography-tandem mass spectrometry (GeLC-MS\\/MS)) to assess protein expression in MM in pooled samples of dlpfc from SCZ, BPD and control cases (n=10 per group) from the Stanley Foundation Brain series. We identified 16 proteins altered in one\\/both disorders using proteomic methods. We selected three proteins with roles in synaptic function (syntaxin-binding protein 1 (STXBP1), brain abundant membrane-attached signal protein 1 (BASP1) and limbic system-associated membrane protein (LAMP)) for validation by western blotting. This revealed significantly increased expression of these proteins in SCZ (STXBP1 (24% difference; P<0.001), BASP1 (40% difference; P<0.05) and LAMP (22% difference; P<0.01)) and BPD (STXBP1 (31% difference; P<0.001), BASP1 (23% difference; P<0.01) and LAMP (20% difference; P<0.01)) in the Stanley brain series (n=20 per group). Further validation in dlpfc from the Harvard brain subseries (n=10 per group) confirmed increased protein expression in SCZ of STXBP1 (18% difference; P<0.0001), BASP1 (14% difference; P<0.0001) but not LAMP (20% difference; P=0.14). No significant differences in STXBP1, BASP1 or LAMP protein expression in BPD dlpfc were observed. This study, through proteomic assessments of MM in dlpfc and validation in two brain series, strongly implicates LAMP, STXBP1 and BASP1 in SCZ and supports

  8. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  9. Molecular cloning of cDNA for the human tumor-associated antigen CO-029 and identification of related transmembrane antigens

    International Nuclear Information System (INIS)

    Szala, S.; Kasai, Yasushi; Steplewski, Z.; Rodeck, U.; Koprowski, H.; Linnenbach, A.J.

    1990-01-01

    The human tumor-associated antigen CO-029 is a monoclonal antibody-defined cell surface glycoprotein of 27-34 kDa. By using the high-efficiency COS cell expression system, a full-length cDNA clone for CO-029 was isolated. When transiently expressed in COS cells, the cDNA clone directed the synthesis of an antigen reactive to monoclonal antibody CO-029 in mixed hemadsorption and immunoblot assays. Sequence analysis revealed that CO-029 belongs to a family of cell surface antigens that includes the melanoma-associated antigen ME491, the leukocyte cell surface antigen CD37, and the Sm23 antigen of the parasitic helminth Schistosoma mansoni. CO-029 and ME491 antigen expression and the effect of their corresponding monoclonal antibodies on cell growth were compared in human tumor cell lines of various histologic origins

  10. Alternative energy efficient membrane bioreactor using reciprocating submerged membrane.

    Science.gov (United States)

    Ho, J; Smith, S; Roh, H K

    2014-01-01

    A novel membrane bioreactor (MBR) pilot system, using membrane reciprocation instead of air scouring, was operated at constant high flux and daily fluctuating flux to demonstrate its application under peak and diurnal flow conditions. Low and stable transmembrane pressure was achieved at 40 l/m(2)/h (LMH) by use of repetitive membrane reciprocation. The results reveal that the inertial forces acting on the membrane fibers effectively propel foulants from the membrane surface. Reciprocation of the hollow fiber membrane is beneficial for the constant removal of solids that may build up on the membrane surface and inside the membrane bundle. The membrane reciprocation in the reciprocating MBR pilot consumed less energy than coarse air scouring used in conventional MBR systems. Specific energy consumption for the membrane reciprocation was 0.072 kWh/m(3) permeate produced at 40 LMH flux, which is 75% less than for a conventional air scouring system as reported in literature without consideration of energy consumption for biological aeration (0.29 kWh/m(3)). The daily fluctuating flux test confirmed that the membrane reciprocation is effective to handle fluctuating flux up to 50 LMH. The pilot-scale reciprocating MBR system successfully demonstrated that fouling can be controlled via 0.43 Hz membrane reciprocation with 44 mm or higher amplitude.

  11. Carcino-Embryonic Antigen

    International Nuclear Information System (INIS)

    Akute, O.

    1999-02-01

    Tumour marker analysis has increased our understanding of the presence of tumours in the body. Carcino-embryonic antigen, CEA, is one of the best studied tumour markers and has proved an ideal diagnostic adjuvant. It has helped in quantifying the amount of disease present in a patient and thence to make accurate prognosis on the various diagnosed ailments. At UCH, it is observed that there is an increase in cancer related ailments and therefore the need for early diagnosis is more compelling in our environment to mitigate future cost of managing advanced manifestation

  12. Characterization of Antigen-Specific B Cells Using Nominal Antigen-Coated Flow-Beads

    Science.gov (United States)

    Akl, Ahmed; Lepetit, Maud; Crochette, Romain; Giral, Magali; Lepourry, Julie; Pallier, Annaick; Castagnet, Stéphanie; Dugast, Emilie; Guillot-Gueguen, Cécile; Jacq-Foucher, Marylène; Saulquin, Xavier; Cesbron, Anne; Laplaud, David; Nicot, Arnaud; Brouard, Sophie; Soulillou, Jean-Paul

    2013-01-01

    In order to characterize the reactivity of B cells against nominal antigens, a method based on the coupling of antigens onto the surface of fluorescent core polystyrene beads was developed. We first demonstrate that murine B cells with a human MOG-specific BCR are able to interact with MOG-coated beads and do not recognize beads coated with human albumin or pp65. B cells purified from human healthy volunteer blood or immunized individuals were tested for their ability to interact with various nominal antigens, including viral, vaccine, self and alloantigens, chosen for their usefulness in studying a variety of pathological processes. A substantial amount of B cells binding self-antigen MOG-coated beads can be detected in normal blood. Furthermore, greater frequencies of B cell against anti-Tetanic Toxin or anti-EBNA1 were observed in primed individuals. This method can reveal increased frequencies of anti-HLA committed B cells in patients with circulating anti-HLA antibodies compared to unsensitized patients and normal individuals. Of interest, those specific CD19 cells were preferentially identified within CD27−IgD+ (i-e naïve) subset. These observations suggest that a broad range of medical situations could benefit from a tool that allows the detection, the quantification and the characterization of antigen-specific blood B cells. PMID:24386360

  13. Prevalence of Weak D Antigen In Western Indian Population

    Directory of Open Access Journals (Sweden)

    Tanvi Sadaria

    2015-12-01

    Full Text Available Introduction: Discovery of Rh antigens in 1939 by Landsteiner and Weiner was the revolutionary stage in blood banking. Of these antigens, D, which decides Rh positivity or negativity, is the most antigenic. A problem is encountered when an individual has a weakened expression of D (Du, i.e., fewer numbers of D antigens on red cell membrane. Aims and Objectives: To know the prevalence of weak D in Indian population because incidence varies in different population. To determine the risk of alloimmunization among Rh D negative patients who receives the blood of weak D positive donors. Material and Methods: Rh grouping of 38,962 donors who came to The Department of Immunohematology and Blood Transfusion of Civil Hospital, Ahmedabad from 1st January 2013 to 30th September 2014 was done using the DIAGAST (Automated Grouping. The samples that tested negative for D antigen were further analysed for weak D (Du by indirect antiglobulin test using blend of Ig G and Ig M Anti D. This was done using Column agglutination method in ID card (gel card. Results: The total number of donors studied was 38,962. Out of these 3360(8.6% were tested Rh D negative. All Rh D negative donors were tested for weak D (Du. 22 (0.056% of total donors and 0.65% of Rh negative donors turned out to be weak D (Du positive. Conclusion: The prevalence of weak D (Du in Western Indian population is 0.056 %, So the risk of alloimmunization in our setting due to weak D (Du antigen is marginal. But, testing of weak D antigen is necessary in blood bank because weak D antigen is immunogenic and can produce alloimmunization if transfused to Rh D negative subjects.

  14. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases

    DEFF Research Database (Denmark)

    Larsen, Jannik Bruun; Jensen, Martin Borch; Bhatia, Vikram Kjøller

    2015-01-01

    Trafficking and sorting of membrane-anchored Ras GTPases are regulated by partitioning between distinct membrane domains. Here, in vitro experiments and microscopic molecular theory reveal membrane curvature as a new modulator of N-Ras lipid anchor and palmitoyl chain partitioning. Membrane...

  15. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines

    Science.gov (United States)

    Lee Szeto, Gregory; van Egeren, Debra; Worku, Hermoon; Sharei, Armon; Alejandro, Brian; Park, Clara; Frew, Kirubel; Brefo, Mavis; Mao, Shirley; Heimann, Megan; Langer, Robert; Jensen, Klavs; Irvine, Darrell J.

    2015-05-01

    B-cells are promising candidate autologous antigen-presenting cells (APCs) to prime antigen-specific T-cells both in vitro and in vivo. However to date, a significant barrier to utilizing B-cells as APCs is their low capacity for non-specific antigen uptake compared to “professional” APCs such as dendritic cells. Here we utilize a microfluidic device that employs many parallel channels to pass single cells through narrow constrictions in high throughput. This microscale “cell squeezing” process creates transient pores in the plasma membrane, enabling intracellular delivery of whole proteins from the surrounding medium into B-cells via mechano-poration. We demonstrate that both resting and activated B-cells process and present antigens delivered via mechano-poration exclusively to antigen-specific CD8+T-cells, and not CD4+T-cells. Squeezed B-cells primed and expanded large numbers of effector CD8+T-cells in vitro that produced effector cytokines critical to cytolytic function, including granzyme B and interferon-γ. Finally, antigen-loaded B-cells were also able to prime antigen-specific CD8+T-cells in vivo when adoptively transferred into mice. Altogether, these data demonstrate crucial proof-of-concept for mechano-poration as an enabling technology for B-cell antigen loading, priming of antigen-specific CD8+T-cells, and decoupling of antigen uptake from B-cell activation.

  16. Structure, Receptor Binding, and Antigenicity of Influenza Virus Hemagglutinins from the 1957 H2N2 Pandemic

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Rui; McBride, Ryan; Paulson, James C.; Basler, Christopher F.; Wilson, Ian A. (Sinai); (Scripps)

    2010-03-04

    The hemagglutinin (HA) envelope protein of influenza viruses mediates essential viral functions, including receptor binding and membrane fusion, and is the major viral antigen for antibody neutralization. The 1957 H2N2 subtype (Asian flu) was one of the three great influenza pandemics of the last century and caused 1 million deaths globally from 1957 to 1968. Three crystal structures of 1957 H2 HAs have been determined at 1.60 to 1.75 {angstrom} resolutions to investigate the structural basis for their antigenicity and evolution from avian to human binding specificity that contributed to its introduction into the human population. These structures, which represent the highest resolutions yet recorded for a complete ectodomain of a glycosylated viral surface antigen, along with the results of glycan microarray binding analysis, suggest that a hydrophobicity switch at residue 226 and elongation of receptor-binding sites were both critical for avian H2 HA to acquire human receptor specificity. H2 influenza viruses continue to circulate in birds and pigs and, therefore, remain a substantial threat for transmission to humans. The H2 HA structure also reveals a highly conserved epitope that could be harnessed in the design of a broader and more universal influenza A virus vaccine.

  17. Stem Cell Antigen-1 in Skeletal Muscle Function

    OpenAIRE

    Bernstein, Harold S.; Samad, Tahmina; Cholsiripunlert, Sompob; Khalifian, Saami; Gong, Wenhui; Ritner, Carissa; Aurigui, Julian; Ling, Vivian; Wilschut, Karlijn J.; Bennett, Stephen; Hoffman, Julien; Oishi, Peter

    2013-01-01

    Stem cell antigen-1 (Sca-1) is a member of the Ly-6 multigene family encoding highly homologous, glycosyl-phosphatidylinositol-anchored membrane proteins. Sca-1 is expressed on muscle-derived stem cells and myogenic precursors recruited to sites of muscle injury. We previously reported that inhibition of Sca-1 expression stimulated myoblast proliferation in vitro and regulated the tempo of muscle repair in vivo. Despite its function in myoblast expansion during muscle repair, a role for Sca-1...

  18. Leishmania-specific surface antigens show sub-genus sequence variation and immune recognition.

    Directory of Open Access Journals (Sweden)

    Daniel P Depledge

    2010-09-01

    Full Text Available A family of hydrophilic acylated surface (HASP proteins, containing extensive and variant amino acid repeats, is expressed at the plasma membrane in infective extracellular (metacyclic and intracellular (amastigote stages of Old World Leishmania species. While HASPs are antigenic in the host and can induce protective immune responses, the biological functions of these Leishmania-specific proteins remain unresolved. Previous genome analysis has suggested that parasites of the sub-genus Leishmania (Viannia have lost HASP genes from their genomes.We have used molecular and cellular methods to analyse HASP expression in New World Leishmania mexicana complex species and show that, unlike in L. major, these proteins are expressed predominantly following differentiation into amastigotes within macrophages. Further genome analysis has revealed that the L. (Viannia species, L. (V. braziliensis, does express HASP-like proteins of low amino acid similarity but with similar biochemical characteristics, from genes present on a region of chromosome 23 that is syntenic with the HASP/SHERP locus in Old World Leishmania species and the L. (L. mexicana complex. A related gene is also present in Leptomonas seymouri and this may represent the ancestral copy of these Leishmania-genus specific sequences. The L. braziliensis HASP-like proteins (named the orthologous (o HASPs are predominantly expressed on the plasma membrane in amastigotes and are recognised by immune sera taken from 4 out of 6 leishmaniasis patients tested in an endemic region of Brazil. Analysis of the repetitive domains of the oHASPs has shown considerable genetic variation in parasite isolates taken from the same patients, suggesting that antigenic change may play a role in immune recognition of this protein family.These findings confirm that antigenic hydrophilic acylated proteins are expressed from genes in the same chromosomal region in species across the genus Leishmania. These proteins are

  19. Antigen antibody interactions

    CERN Document Server

    DeLisi, Charles

    1976-01-01

    1. 1 Organization of the Immune System One of the most important survival mechanisms of vertebrates is their ability to recognize and respond to the onslaught of pathogenic microbes to which they are conti- ously exposed. The collection of host cells and molecules involved in this recognition­ 12 response function constitutes its immune system. In man, it comprises about 10 cells 20 (lymphocytes) and 10 molecules (immunoglobulins). Its ontogenic development is c- strained by the requirement that it be capable of responding to an almost limitless variety of molecular configurations on foreign substances, while simultaneously remaining inert to those on self components. It has thus evolved to discriminate, with exquisite precision, between molecular patterns. The foreign substances which induce a response, called antigens, are typically large molecules such as proteins and polysaccharides. The portions of these with which immunoglobulins interact are called epitopes or determinants. A typical protein epitope m...

  20. Spontaneous release of soluble HL-A antigens from platelets during conservation.

    Science.gov (United States)

    Dautigny, A; Bernier, I; Colombani, J; Jollès, P

    1975-01-01

    Experiments with the aim of studying the solubilisation of HL-A antigens from blood platelets by methods which do not involve any biologically active processes (moderate, discontinuous agitation of a low concentration of platelets suspended in a saline medium, in the presence of an antiseptic; supernatants collected at frequent intervals) have shown that platelets release membrane proteins, including HL-A antigens, spontaneously. Optimal conditions for the treatment of membrane proteins have been perfected. The great stability of HL-A antigens under these conditions permits prolonged treatment. The products extracted are soluble and extremely complex. The molecular weight of the HL-A antigens is between 40,000 and 70,000.

  1. Radioimmunoassays of hidden viral antigens

    International Nuclear Information System (INIS)

    Neurath, A.R.; Strick, N.; Baker, L.; Krugman, S.

    1982-01-01

    Antigens corresponding to infectious agents may be present in biological specimens only in a cryptic form bound to antibodies and, thus, may elude detection. We describe a solid-phase technique for separation of antigens from antibodies. Immune complexes are precipitated from serum by polyethylene glycol, dissociated with NaSCN, and adsorbed onto nitrocellulose or polystyrene supports. Antigens remain topographically separated from antibodies after removal of NaSCN and can be detected with radiolabeled antibodies. Genomes from viruses immobilized on nitrocellulose can be identified by nucleic acid hybridization. Nanogram quantities of sequestered hepatitis B surface and core antigens and picogram amounts of hepatitis B virus DNA were detected. Antibody-bound adenovirus, herpesvirus, and measles virus antigens were discerned by the procedure

  2. The Antigen Presenting Cells Instruct Plasma Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Wei eXu

    2014-01-01

    Full Text Available The professional antigen presenting cells (APCs, including many subsets of dendritic cells and macrophages, not only mediate prompt but nonspecific response against microbes, but also bridge the antigen-specific adaptive immune response through antigen presentation. In the latter, typically activated B cells acquire cognate signals from T helper cells in the germinal center of lymphoid follicles to differentiate into plasma cells, which generate protective antibodies. Recent advances have revealed that many APC subsets provide not only signal 1 (the antigen, but also signal 2 to directly instruct the differentiation process of plasma cells in a T cell-independent manner. Herein, the different signals provided by these APC subsets to direct B cell proliferation, survival, class switching and terminal differentiation are discussed. We furthermore propose that the next generation of vaccines for boosting antibody response could be designed by targeting APCs.

  3. The antigen presenting cells instruct plasma cell differentiation.

    Science.gov (United States)

    Xu, Wei; Banchereau, Jacques

    2014-01-06

    The professional antigen presenting cells (APCs), including many subsets of dendritic cells and macrophages, not only mediate prompt but non-specific response against microbes, but also bridge the antigen-specific adaptive immune response through antigen presentation. In the latter, typically activated B cells acquire cognate signals from T helper cells in the germinal center of lymphoid follicles to differentiate into plasma cells (PCs), which generate protective antibodies. Recent advances have revealed that many APC subsets provide not only "signal 1" (the antigen), but also "signal 2" to directly instruct the differentiation process of PCs in a T-cell-independent manner. Herein, the different signals provided by these APC subsets to direct B cell proliferation, survival, class switching, and terminal differentiation are discussed. We furthermore propose that the next generation of vaccines for boosting antibody response could be designed by targeting APCs.

  4. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  5. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  6. Expression pattern of immunosurveillance-related antigen in adult T cell leukaemia/lymphoma.

    Science.gov (United States)

    Asano, Naoko; Miyoshi, Hiroaki; Kato, Takeharu; Shimono, Joji; Yoshida, Noriaki; Kurita, Daisuke; Sasaki, Yuya; Kawamoto, Keisuke; Ohshima, Koichi; Seto, Masao

    2018-05-01

    Adult T cell leukaemia/lymphoma (ATLL) is an aggressive malignancy with a poor prognosis. Human leucocyte antigen (HLA) and β2 microglobulin (β2M) serve as key molecules in tumour immunity, and their expression is reduced frequently in tumour cells. Programmed cell death (PD)-1/PD-ligand1 (PD-L1) interactions play a role in escape of tumour cells from T cell immunity. Therefore, this study aimed to determine the clinicopathological relevance of HLA and β2M expressions in ATLL cells and PD-L1 expression in lymphoma or stromal cells and predict the overall survival of patients with ATLL. We analysed a total of 123 biopsy samples from patients newly diagnosed with ATLL by using immunohistochemical analysis. Of the patients enrolled, 91 (74%) were positive for HLA (in cell membrane, 60 patients), 89 (72%) were positive for β2M (in cell membrane, 54 patients) and 48 (39%) were positive for both HLA and β2M in the cell membrane (HLA m+ β2M m+ ). No significant clinical differences other than prognosis were found between the HLA m+ β2M m+ group and the other groups. Immunophenotypical evaluation revealed significantly higher rates of CD30-positive lymphoma cells (P = 0.003) and PD-L1-positive stromal cells in microenvironments (miPD-L1 high ) (P = 0.011) of the HLA m+ β2M m+ group than in the other groups. The HLA m+ β2M m+ group had a significantly better prognosis that the other groups (P = 0.0096), and patients showing HLA m+ β2M m+ with miPD-L1 high had the most favourable prognosis among all groups. The membranous expression of HLA and β2M is likely to reflect the immune response and would be useful to predict prognosis before starting ATLL therapy. © 2018 John Wiley & Sons Ltd.

  7. Age related changes in erythrocyte A and B antigen strength

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, J W; Hamilton, H B; Ishii, Goro

    1961-11-01

    The strength of A and B antigens of the erythrocyte, as indicated by agglutinability with dilutions of specific antibody, has been investigated in a group of subjects in Hiroshima. Antigen strength was found to rise to maximal levels at age 25 to 29, and decline with advancing years. Degree of irradiation from the Hiroshima atomic bomb in 1945 did not appear in the limited sample to affect this age-dependent structural property of erythrocytes. Antigen strength of females was somewhat less than that of males for those individuals from 20 to 40 years of age. When compared with group A or B subjects, individuals of group AB demonstrated full strength of both A and B antigens. Since Rh antigenicity also has been reported to change with age, it seems probable that multiple changes in the erythrocyte membrane occur with age. Further investigation into the nature of these changes may be fruitful to an understanding of aging processes at the cellular level. 13 references, 1 figure, 6 tables.

  8. Laminin, a noncollagenous component of epithelial basement membranes synthesized by a rat yolk sac tumor

    DEFF Research Database (Denmark)

    Wewer, U; Albrechtsen, R; Ruoslahti, E

    1981-01-01

    Laminin, a glycoprotein antigenically similar or identical to a component of epithelial basement membranes, was identified as a major component of the abundant extracellular matrix synthesized by an experimentally induced rat yolk sac tumor. Immunocytochemical staining revealed laminin in cultured...... polypeptides with molecular weights of approximately 200,000 and 400,000. These comigrated with the polypeptides of mouse laminin isolated previously. The yolk sac tumor tissue grown in vivo contained laminin in the tumor cells and in the extracellular material as evidenced by immunofluorescence...... membranes in rat tissues in a manner indistinguishable from antilaminin. The presence of laminin in rat yolk sac cells, the presumed origin of our yolk sac tumor, was studied in some detail. Laminin was found to be present in normal cells of the visceral as well as the parietal yolk sac layer...

  9. Lipidomics and H218O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio embryos

    Directory of Open Access Journals (Sweden)

    Melissa Q. McDougall

    2016-08-01

    Full Text Available We hypothesized that vitamin E (α-tocopherol is required by the developing embryonic brain to prevent depletion of highly polyunsaturated fatty acids, especially docosahexaenoic acid (DHA, 22:6, the loss of which we predicted would underlie abnormal morphological and behavioral outcomes. Therefore, we fed adult 5D zebrafish (Danio rerio defined diets without (E− or with added α-tocopherol (E+, 500 mg RRR-α-tocopheryl acetate/kg diet for a minimum of 80 days, and then spawned them to obtain E− and E+ embryos. The E− compared with E+ embryos were 82% less responsive (p<0.01 to a light/dark stimulus at 96 h post-fertilization (hpf, demonstrating impaired locomotor behavior, even in the absence of gross morphological defects. Evaluation of phospholipid (PL and lysophospholipid (lyso-PL composition using untargeted lipidomics in E− compared with E+ embryos at 24, 48, 72, and 120 hpf showed that four PLs and three lyso-PLs containing docosahexaenoic acid (DHA, including lysophosphatidylcholine (LPC 22:6, required for transport of DHA into the brain, p<0.001, were at lower concentrations in E− at all time-points. Additionally, H218O labeling experiments revealed enhanced turnover of LPC 22:6 (p<0.001 and three other DHA-containing PLs in the E− compared with the E+ embryos, suggesting that increased membrane remodeling is a result of PL depletion. Together, these data indicate that α-tocopherol deficiency in the zebrafish embryo causes the specific depletion and increased turnover of DHA-containing PL and lyso-PLs, which may compromise DHA delivery to the brain and thereby contribute to the functional impairments observed in E− embryos.

  10. Surface co-expression of two different PfEMP1 antigens on single Plasmodium falciparum-infected erythrocytes facilitates binding to ICAM1 and PECAM1

    DEFF Research Database (Denmark)

    Joergensen, Louise; Bengtsson, Dominique C; Bengtsson, Anja

    2010-01-01

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens play a major role in cytoadhesion of infected erythrocytes (IE), antigenic variation, and immunity to malaria. The current consensus on control of variant surface antigen expression is that only one PfEMP1 encoded by one var...

  11. Mature IgM-expressing plasma cells sense antigen and develop competence for cytokine production upon antigenic challenge

    Science.gov (United States)

    Blanc, Pascal; Moro-Sibilot, Ludovic; Barthly, Lucas; Jagot, Ferdinand; This, Sébastien; de Bernard, Simon; Buffat, Laurent; Dussurgey, Sébastien; Colisson, Renaud; Hobeika, Elias; Fest, Thierry; Taillardet, Morgan; Thaunat, Olivier; Sicard, Antoine; Mondière, Paul; Genestier, Laurent; Nutt, Stephen L.; Defrance, Thierry

    2016-01-01

    Dogma holds that plasma cells, as opposed to B cells, cannot bind antigen because they have switched from expression of membrane-bound immunoglobulins (Ig) that constitute the B-cell receptor (BCR) to production of the secreted form of immunoglobulins. Here we compare the phenotypical and functional attributes of plasma cells generated by the T-cell-dependent and T-cell-independent forms of the hapten NP. We show that the nature of the secreted Ig isotype, rather than the chemical structure of the immunizing antigen, defines two functionally distinct populations of plasma cells. Fully mature IgM-expressing plasma cells resident in the bone marrow retain expression of a functional BCR, whereas their IgG+ counterparts do not. Antigen boost modifies the gene expression profile of IgM+ plasma cells and initiates a cytokine production program, characterized by upregulation of CCL5 and IL-10. Our results demonstrate that IgM-expressing plasma cells can sense antigen and acquire competence for cytokine production upon antigenic challenge. PMID:27924814

  12. COLONOSCOPY AND CARCINOEMBRYONIC ANTIGEN VARIATIONS

    Directory of Open Access Journals (Sweden)

    Rita G SOUSA

    2014-03-01

    Full Text Available Context Colonoscopy is essential for synchronous and metachronous cancer detection. Carcinoembryonic antigen is a colorectal cancer tumor marker, important as a follow-up tool in patients with previous colorectal cancer. False-positive carcinoembryonic antigen elevation results in multiples exams and in patient anxiety. In literature, there is reference to transient carcinoembryonic antigen increase with colonoscopy. Objective To evaluate the influence of bowel preparation and colonoscopy in carcinoembryonic antigen blood levels. Methods We prospectively studied subjects that underwent routine colonoscopy in our institution. Blood samples were collected (1 before bowel cleaning, (2 before colonoscopy and (3 immediately after colonoscopy. Blood carcinoembryonic antigen levels were determined by “Sandwich” immunoassay. The statistical methods used were the paired t-test and ANOVA. Results Thirty-seven patients (22M/15F were included; age range 28-84 (mean 56 years. Mean carcinoembryonic antigen values were 1.9, 2 and 1.8 for (1, (2 and (3, respectively. An increase in value (2 compared with (1 was observed in 20/37 patients (P = 0.018, mainly in younger patients and in patients requiring more endoluminal interventions. In 29/37 patients, the CEA value decreased from (2 to (3 (P = 1.3x10-7. Conclusions A trend for carcinoembryonic antigen increase after bowel cleaning was observed, especially in younger patients and in patients with more endoluminal interventions, but without clinical meaning.

  13. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  14. Monoclonal antibodies to antigens on human neutrophils, activated T lymphocytes, and acute leukemia blast cells

    International Nuclear Information System (INIS)

    Miterev, G.Yu.; Burova, G.F.; Puzhitskaya, M.S.; Danilevich, S.V.; Bulycheva, T.I.

    1987-01-01

    The authors describe the production of two mouse hybridomas secreting monoclonal antibodies to antigenic determinants of the surface membranes of human neutrophils, activated T lymphocytes, and acute leukemic blast cells. The degree of lymphocyte stimulation was estimated from incorporation of 3 H-thymidine with parallel microculture. Monoclonal antibodies of supernatants of hybridoma cultures shown here reacted in both immunofluorescence test and cytotoxicity test with surface membrane antigens on the majority of neutrophils and PHA-activated peripheral blood lymphocytes from healthy subjects, but did not give positive reactions with unactivated lymphocytes, adherent monocytes, erythrocytes, and alloantigen-stimulated lymphocytes

  15. Monoclonal antibodies to antigens on human neutrophils, activated T lymphocytes, and acute leukemia blast cells

    Energy Technology Data Exchange (ETDEWEB)

    Miterev, G.Yu.; Burova, G.F.; Puzhitskaya, M.S.; Danilevich, S.V.; Bulycheva, T.I.

    1987-11-01

    The authors describe the production of two mouse hybridomas secreting monoclonal antibodies to antigenic determinants of the surface membranes of human neutrophils, activated T lymphocytes, and acute leukemic blast cells. The degree of lymphocyte stimulation was estimated from incorporation of /sup 3/H-thymidine with parallel microculture. Monoclonal antibodies of supernatants of hybridoma cultures shown here reacted in both immunofluorescence test and cytotoxicity test with surface membrane antigens on the majority of neutrophils and PHA-activated peripheral blood lymphocytes from healthy subjects, but did not give positive reactions with unactivated lymphocytes, adherent monocytes, erythrocytes, and alloantigen-stimulated lymphocytes.

  16. Antibody-antigen-adjuvant conjugates enable co-delivery of antigen and adjuvant to dendritic cells in cis but only have partial targeting specificity.

    Directory of Open Access Journals (Sweden)

    Martin Kreutz

    Full Text Available Antibody-antigen conjugates, which promote antigen-presentation by dendritic cells (DC by means of targeted delivery of antigen to particular DC subsets, represent a powerful vaccination approach. To ensure immunity rather than tolerance induction the co-administration of a suitable adjuvant is paramount. However, co-administration of unlinked adjuvant cannot ensure that all cells targeted by the antibody conjugates are appropriately activated. Furthermore, antigen-presenting cells (APC that do not present the desired antigen are equally strongly activated and could prime undesired responses against self-antigens. We, therefore, were interested in exploring targeted co-delivery of antigen and adjuvant in cis in form of antibody-antigen-adjuvant conjugates for the induction of anti-tumour immunity. In this study, we report on the assembly and characterization of conjugates consisting of DEC205-specific antibody, the model antigen ovalbumin (OVA and CpG oligodeoxynucleotides (ODN. We show that such conjugates are more potent at inducing cytotoxic T lymphocyte (CTL responses than control conjugates mixed with soluble CpG. However, our study also reveals that the nucleic acid moiety of such antibody-antigen-adjuvant conjugates alters their binding and uptake and allows delivery of the antigen and the adjuvant to cells partially independently of DEC205. Nevertheless, antibody-antigen-adjuvant conjugates are superior to antibody-free antigen-adjuvant conjugates in priming CTL responses and efficiently induce anti-tumour immunity in the murine B16 pseudo-metastasis model. A better understanding of the role of the antibody moiety is required to inform future conjugate vaccination strategies for efficient induction of anti-tumour responses.

  17. Membranous nephropathy

    Science.gov (United States)

    ... skin-lightening creams Systemic lupus erythematosus , rheumatoid arthritis, Graves disease, and other autoimmune disorders The disorder occurs at ... diagnosis. The following tests can help determine the cause of membranous nephropathy: Antinuclear antibodies test Anti-double- ...

  18. Mixed Membrane Matrices Based on Nafion/UiO-66/SO3H-UiO-66 Nano-MOFs: Revealing the Effect of Crystal Size, Sulfonation, and Filler Loading on the Mechanical and Conductivity Properties.

    Science.gov (United States)

    Donnadio, Anna; Narducci, Riccardo; Casciola, Mario; Marmottini, Fabio; D'Amato, Roberto; Jazestani, Mehdi; Chiniforoshan, Hossein; Costantino, Ferdinando

    2017-12-06

    Mixed membrane matrices (MMMs) made up with Nafion and nanocrystals of zirconium metal-organic framework (MOF) UiO-66 or the analogous sulfonated SO 3 H-UiO-66 were prepared by varying the filler loading and the size of the crystals. The combined effects of size and loading, together with the presence of sulfonic groups covalently linked to the MOFs, were studied with regard to the conductivity and mechanical properties of the obtained composite matrices. A large screening of membranes was preliminarily made and, on the most promising samples, an accurate conductivity study at different relative humidities and temperatures was also carried out. The results showed that membranes containing large crystals (200 nm average size) in low amounts (around 2%) displayed the best results in terms of proton conductivity values, reaching values by 30% higher than those of pure Nafion, while leaving the mechanical properties substantially unchanged. On the contrary, MMMs containing MOFs of small size (20 nm average size) did not show any conductivity improvements if compared to pure Nafion membranes. The effect of MOF sulfonation was negligible at low filler loading whereas it became important at loading values around 10%. Finally, membranes with a high filler loading (up to 60 wt %) of sulfonated UiO-66 showed a slight reduction of conductivity in comparison with membranes loaded at 20% of nonsulfonated ones.

  19. Oncogenic cancer/testis antigens

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Andersen, Mads H; Ditzel, Henrik J

    2015-01-01

    Recent developments have set the stage for immunotherapy as a supplement to conventional cancer treatment. Consequently, a significant effort is required to further improve efficacy and specificity, particularly the identification of optimal therapeutic targets for clinical testing. Cancer....../testis antigens are immunogenic, highly cancer-specific, and frequently expressed in various types of cancer, which make them promising candidate targets for cancer immunotherapy, including cancer vaccination and adoptive T-cell transfer with chimeric T-cell receptors. Our current understanding of tumor...... immunology and immune escape suggests that targeting oncogenic antigens may be beneficial, meaning that identification of cancer/testis antigens with oncogenic properties is of high priority. Recent work from our lab and others provide evidence that many cancer/testis antigens, in fact, have oncogenic...

  20. Acute inhibition of selected membrane-proximal mouse T cell receptor signaling by mitochondrial antagonists.

    Directory of Open Access Journals (Sweden)

    Kwangmi Kim

    2009-11-01

    Full Text Available T cells absorb nanometric membrane vesicles, prepared from plasma membrane of antigen presenting cells, via dual receptor/ligand interactions of T cell receptor (TCR with cognate peptide/major histocompatibility complex (MHC plus lymphocyte function-associated antigen 1 (LFA-1 with intercellular adhesion molecule 1. TCR-mediated signaling for LFA-1 activation is also required for the vesicle absorption. Exploiting those findings, we had established a high throughput screening (HTS platform and screened a library for isolation of small molecules inhibiting the vesicle absorption. Follow-up studies confirmed that treatments (1 hour with various mitochondrial antagonists, including a class of anti-diabetic drugs (i.e., Metformin and Phenformin, resulted in ubiquitous inhibition of the vesicle absorption without compromising viability of T cells. Further studies revealed that the mitochondrial drug treatments caused impairment of specific membrane-proximal TCR signaling event(s. Thus, activation of Akt and PLC-gamma1 and entry of extracellular Ca(2+ following TCR stimulation were attenuated while polymerization of monomeric actins upon TCR triggering progressed normally after the treatments. Dynamic F-actin rearrangement concurring with the vesicle absorption was also found to be impaired by the drug treatments, implying that the inhibition by the drug treatments of downstream signaling events (and the vesicle absorption could result from lack of directional relocation of signaling and cell surface molecules. We also assessed the potential application of mitochondrial antagonists as immune modulators by probing effects of the long-term drug treatments (24 hours on viability of resting primary T cells and cell cycle progression of antigen-stimulated T cells. This study unveils a novel regulatory mechanism for T cell immunity in response to environmental factors having effects on mitochondrial function.

  1. Natural selection promotes antigenic evolvability.

    Science.gov (United States)

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  2. Natural selection promotes antigenic evolvability.

    Directory of Open Access Journals (Sweden)

    Christopher J Graves

    Full Text Available The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish

  3. Determination of Diagnostic Antigens in Cattle Amphistomiasis Using Western Blotting

    Directory of Open Access Journals (Sweden)

    A Halajian

    2009-05-01

    Full Text Available "nBackground: Mixed infection with amphistomes seems common in native cattle of Iran. The aim of this study was to determine diagnostic antigens in cattle mixed amphistomiasis."nMethods: Specific antigens of Cotylophoron cotylophorum, Gastrothylax crumenifer and Paramphisto­mum cervi (mixed infection, the most common species, were collected from cattle was deter­mined. Adult trematodes were collected from the rumen of naturally infected cattle at meat inspec­tion. After their homogenization and centrifugation, somatic antigens were prepared and ana­lyzed by SDS-PAGE. Specific antigens were determinated by western blot with homologous and heterolo­gous sera. SDS-PAGE of whole worms extract was performed at different concentrations and subse­quent gels staining. Immunoblotting analysis using sera from cattle naturally infected with am­phistomes, Dicrocoelium dendriticum, Fasciola spp. and hydatid cyst was performed."nResults: Electrophorese analysis of somatic antigens revealed the presence of 10 and 21 protein bands at 4 µgr/ml and 8 µgr/ml with molecular weights ranging from 25-120 and 25-150 kDa, respectively. The best result was taken at 8 mg/ml concentration. Although western blot of these proteins demon­strate 5 major antigenic polypeptides ranging from 50 to 100 kDa which were recognized by serum of cat­tle naturally infected with mixed amphistomes.

  4. 大黄鱼三种病原弧菌外膜蛋白交叉保护性抗原筛选%Selection of cross-protective antigens from outer membrane proteins of three pathogenic vibrios isolated from infected large yellow croaker (Pseudosciaena crocea)

    Institute of Scientific and Technical Information of China (English)

    张崇文; 毛芝娟; 于涟

    2012-01-01

    . parahaemolyticus and one V. alginolyticus by physiological, biochemical and molecular biological methods. Their outer membrane proteins (OMPs) were extracted and the SDS-PAGE and Western blotting results show that three immuno-blots with common molecular weight presented at approximate 45 kDa, 35 kDa and 22 kDa on their OMP electrophoretogram, indicating the existence of antigens with cross-protection in their OMPs. With the aids of combination of two-dimensional electrophoresis (2-D) and Western blotting and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), a deduced porin (GenBank Accession No. ZP01260407) from V. alginolyticus and a maltoporin precursor (GenBank Accession No. NP801154) from V. parahaemolyticus were able to react with polyclonal antibody to whole V. harveyi, suggesting these two proteins could act as the cross-protective antigens and the vaccines prepared with these porins would be probable to bring cross protection to three different vibrios.

  5. Breaking Tolerance to Thyroid Antigens: Changing Concepts in Thyroid Autoimmunity

    Science.gov (United States)

    Rapoport, Basil

    2014-01-01

    Thyroid autoimmunity involves loss of tolerance to thyroid proteins in genetically susceptible individuals in association with environmental factors. In central tolerance, intrathymic autoantigen presentation deletes immature T cells with high affinity for autoantigen-derived peptides. Regulatory T cells provide an alternative mechanism to silence autoimmune T cells in the periphery. The TSH receptor (TSHR), thyroid peroxidase (TPO), and thyroglobulin (Tg) have unusual properties (“immunogenicity”) that contribute to breaking tolerance, including size, abundance, membrane association, glycosylation, and polymorphisms. Insight into loss of tolerance to thyroid proteins comes from spontaneous and induced animal models: 1) intrathymic expression controls self-tolerance to the TSHR, not TPO or Tg; 2) regulatory T cells are not involved in TSHR self-tolerance and instead control the balance between Graves' disease and thyroiditis; 3) breaking TSHR tolerance involves contributions from major histocompatibility complex molecules (humans and induced mouse models), TSHR polymorphism(s) (humans), and alternative splicing (mice); 4) loss of tolerance to Tg before TPO indicates that greater Tg immunogenicity vs TPO dominates central tolerance expectations; 5) tolerance is induced by thyroid autoantigen administration before autoimmunity is established; 6) interferon-α therapy for hepatitis C infection enhances thyroid autoimmunity in patients with intact immunity; Graves' disease developing after T-cell depletion reflects reconstitution autoimmunity; and 7) most environmental factors (including excess iodine) “reveal,” but do not induce, thyroid autoimmunity. Micro-organisms likely exert their effects via bystander stimulation. Finally, no single mechanism explains the loss of tolerance to thyroid proteins. The goal of inducing self-tolerance to prevent autoimmune thyroid disease will require accurate prediction of at-risk individuals together with an antigen

  6. Anvendelse af prostataspecifikt antigen. En oversigt

    DEFF Research Database (Denmark)

    Brasso, K; Skaarup, P; Roosen, Jens Ulrik

    1998-01-01

    Since it was first introduced, measurement of prostate specific antigen has gained increasing interest, and prostate specific antigen is regarded as being the best tumour marker available. The antigen lacks cancer specificity, limiting the usefulness in early diagnosis, The use of prostate specific...... antigen in early diagnosis, staging, and in monitoring patients with prostate cancer is reviewed....

  7. Amniotic membrane for burn trauma

    International Nuclear Information System (INIS)

    Jamaluddin Zainol; Hasim Mohammad

    1999-01-01

    Amniotic membranes are derived from human placentae at birth. They have two layers mainly the amniotic and the chorionic surfaces which are separated by a thin layer of connective tissues. The two layers are separated during procurement, the placenta and the chorionic side are discarded and the amnion membranes are then further processed. Amnion membranes are normally procured from placentae which are normally free of infections, i.e; the mothers are antenatally screened for sexually transmitted diseases or AlDs related diseases. Intrapartum the mother should not be having chorioamnionitis or jaundice. Sometimes the amniotic membranes are acquired from fresh elective caeserian sections. After processing, the amniotic membranes are packed in two layers of polypropylene and radiated with cobalt 60 at a dose of about 25 kGy. The amniotic membranes are clinically used to cover burn surfaces especially effective for superficial or partial thickness burns. The thin membranes adhered well to the trauma areas and peeled off automatically by the second week. No change of dressing were necessary during these times because of the close adherence, there were less chance of external contamination or infections of these wounds. Due to their flexibility they are very useful to cover difference contours of the human body for example the face, body, elbows or knees. However our experience revealed that amniotic membranes are not useful for third degree bums because the membranes dissolves by the enzymes present in the wounds

  8. The distribution of blood group antigens in experimentally produced carcinomas of rat palate

    DEFF Research Database (Denmark)

    Reibel, J; Philipsen, H P; Fisker, A V

    1986-01-01

    palate induced by a chemical carcinogen (4NQO). The H antigen, normally expressed on spinous cells in rats, was absent in malignant epithelium, whereas staining for the B antigen, normally expressed on basal cells, was variable. These changes are equivalent to those seen in human squamous cell carcinomas....... The blood group antigen staining pattern in experimentally produced verrucous carcinomas showed an almost normal blood group antigen expression. This may have diagnostic significance. Localized areas of hyperplastic palatal epithelium with slight dysplasia revealed loss of H antigen and the presence of B...... antigen in suprabasal strata equivalent to the pattern seen in human premalignant epithelium. We conclude from these findings, that the rat model is well suited to study changes in cell surface carbohydrates during chemical carcinogenesis....

  9. Axionic membranes

    International Nuclear Information System (INIS)

    Aurilia, A.; Spallucci, E.

    1992-01-01

    A metal ring removed from a soap-water solution encloses a film of soap which can be mathematically described as a minimal surface having the ring as its only boundary. This is known to everybody. In this letter we suggest a relativistic extension of the above fluidodynamic system where the soap film is replaced by a Kalb-Ramand gauge potential B μν (x) and the ring by a closed string. The interaction between the B μν field and the string current excites a new configuration of the system consisting of a relativistic membrane bounded by the string. We call such a classical solution of the equation of motion an axionic membrane. As a dynamical system, the axionic membrane admits a Hamilton-Jacobi formulation which is an extension of the HJ theory of electromagnetic strings. (orig.)

  10. Identification of Schistosoma mansoni candidate antigens for diagnosis of schistosomiasis

    Directory of Open Access Journals (Sweden)

    Gardenia Braz Figueiredo Carvalho

    2011-11-01

    Full Text Available The development of a more sensitive diagnostic test for schistosomiasis is needed to overcome the limitations of the use of stool examination in low endemic areas. Using parasite antigens in enzyme linked immunosorbent assay is a promising strategy, however a more rational selection of parasite antigens is necessary. In this study we performed in silico analysis of the Schistosoma mansoni genome, using SchistoDB database and bioinformatic tools for screening immunogenic antigens. Based on evidence of expression in all parasite life stage within the definitive host, extracellular or plasmatic membrane localization, low similarity to human and other helminthic proteins and presence of predicted B cell epitopes, six candidates were selected: a glycosylphosphatidylinositol-anchored 200 kDa protein, two putative cytochrome oxidase subunits, two expressed proteins and one hypothetical protein. The recognition in unidimensional and bidimensional Western blot of protein with similar molecular weight and isoelectric point to the selected antigens by sera from S. mansoni infected mice indicate a good correlation between these two approaches in selecting immunogenic proteins.

  11. Metamaterial membranes

    International Nuclear Information System (INIS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2017-01-01

    We introduce a new class of metamaterial device to achieve separation of compounds by using coordinate transformations and metamaterial theory. By rationally designing the spatial anisotropy for mass diffusion, we simultaneously concentrate different compounds in different spatial locations, leading to separation of mixtures across a metamaterial membrane. The separation of mixtures into their constituent compounds is critically important in biophysics, biomedical, and chemical applications. We present a practical case where a mixture of oxygen and nitrogen diffusing through a polymeric planar matrix is separated. This work opens doors to new paradigms in membrane separations via coordinate transformations and metamaterials by introducing novel properties and unconventional mass diffusion phenomena. (paper)

  12. Chemoselective ligation and antigen vectorization.

    Science.gov (United States)

    Gras-Masse, H

    2001-01-01

    The interest in cocktail-lipopeptide vaccines has now been confirmed by phase I clinical trials: highly diversified B-, T-helper or cytotoxic T-cell epitopes can be combined with a lipophilic vector for the induction of B- and T-cell responses of predetermined specificity. With the goal of producing an improved vaccine that should ideally induce a multispecific response in non-selected populations, increasing the diversity of the immunizing mixture represents one of the most obvious strategies.The selective delivery of antigens to professional antigen-presenting cells represents another promising approach for the improvement of vaccine efficacy. In this context, the mannose-receptor represents an attractive entry point for the targeting to dendritic cells of antigens linked to clustered glycosides or glycomimetics. In all cases, highly complex but fully characterized molecules must be produced. To develop a modular and flexible strategy which could be generally applicable to a large set of peptide antigens, we elected to explore the potentialities of chemoselective ligation methods. The hydrazone bond was found particularly reliable and fully compatible with sulphide ligation. Hydrazone/thioether orthogonal ligation systems could be developed to account for the nature of the antigens and the solubility of the vector systems. Copyright 2001 The International Association for Biologicals.

  13. Localization of the terminal steps of O-antigen synthesis in Salmonella typhimurium

    International Nuclear Information System (INIS)

    McGrath, B.C.; Osborn, M.J.

    1991-01-01

    Previous immunoelectron microscopic studies have shown that both the final intermediate in O-antigen synthesis, undecaprenol-linked O polymer, and newly synthesized O-antigenic lipopolysaccharide are localized to the periplasmic face of the inner membrane. In vivo pulse-chase experiments now provide further evidence that attachment of O antigen to core lipopolysaccharide, as well as polymerization of O-specific polysaccharide chains, takes place at the periplasmic face of the membrane. Mutants doubly conditional in lipopolysaccharide synthesis [kdsA(Ts) pmi] were constructed in which synthesis of core lipopolysaccharide and O antigen are temperature sensitive and mannose dependent, respectively. Periplasmic orientation of O antigen:core lipopolysaccharide ligase was established by experiments showing rapid chase of undecaprenol-linked O polymer, previously accumulated at 42 degrees C in the absence of core synthesis, into lipopolysaccharide following resumption of core formation at 30 degrees C. In addition, chase of the monomeric O-specific tetrasaccharide unit into lipopolysaccharide was found in similar experiments in an O-polymerase-negative [rfc kdsA(Ts) pmi] mutant, suggesting that polymerization of O chains also occurs at the external face of the inner membrane

  14. Fetal- and uterine-specific antigens in human amniotic fluid.

    Science.gov (United States)

    Sutcliffe, R G; Brock, D J; Nicholson, L V; Dunn, E

    1978-09-01

    Removal of the major maternal serum proteins from second trimester amniotic fluid by antibody affinity chromatography revealed various soluble tissue antigens, of which two were fetal-specific skin proteins and another, of alpha2-mobility, was specific to the uterus, and was therefore designated alpha-uterine protein (AUP). These proteins could not be detected in maternal serum by antibody-antigen crossed electrophoresis. The concentration of AUP in amniotic fluid reached a maximum between 10 and 20 weeks of gestation, suggesting that there is an influx of uterine protein into the amniotic fluid at this stage of pregnancy.

  15. The tryptic cleavage product of the mature form of the bovine desmoglein 1 ectodomain is one of the antigen moieties immunoprecipitated by all sera from symptomatic patients affected by a new variant of endemic pemphigus.

    Science.gov (United States)

    Abréu-Vélez, Ana María; Javier Patiño, Pablo; Montoya, Fernando; Bollag, Wendy B

    2003-01-01

    Multiple antigens are recognized by sera from patients with pemphigus foliaceus (PF). Several have been identified including keratin 59, desmocollins, envoplakin, periplakin, and desmogleins 1 and 3 (Dsg1 and Dsg3). In addition, an 80 kDa antigen was identified as the N-terminal fragment of Dsg1 using as antigen source an insoluble epidermal cell envelope preparation. However, still unsolved was the identity of the most important antigenic moiety, a 45 kDa tryptic fragment which is recognized by all sera from patients with fogo selvagem, pemphigus foliaceus, by half of pemphigus vulgaris sera and by a new variant of endemic pemphigus in E1 Bagre, Colombia that resembles Senear-Usher syndrome. Here, we report the identification of the 45 kDa conformational epitope of a soluble tryptic cleavage product from viable bovine epidermis. To elucidate the nature of this peptide, viable bovine epidermis was trypsin-digested, and glycosylated peptides were partially purified on a concanavalin A (Con-A) affinity column. This column fraction was then used as an antigen source for further immunoaffinity purification. A PF patient's serum covalently coupled to a Staphylococcus aureus protein A column was incubated with the Con-A eluted products and the immuno-isolated antigen was separated by SDS-PAGE, transferred to a membrane, and visualized with Coomassie blue, silver and amido black stains. The 45 kD band was subjected to amino acid sequence analysis revealing the sequence, EXIKFAAAXREGED, which matched the mature form of the extracellular domain of bovine Dsg1. This study confirms the biological importance of the ectodomain of Dsg1 as well as the relevance of conformational epitopes in various types of pemphigus.

  16. The Many Faces of Human Leukocyte Antigen-G

    DEFF Research Database (Denmark)

    Dahl, Mette; Djurisic, Snezana; Hviid, Thomas Vauvert F

    2014-01-01

    Pregnancy is an immunological paradox, where fetal antigens encoded by polymorphic genes inherited from the father do not provoke a maternal immune response. The fetus is not rejected as it would be theorized according to principles of tissue transplantation. A major contribution to fetal tolerance...... is the human leukocyte antigen (HLA)-G, a nonclassical HLA protein displaying limited polymorphism, restricted tissue distribution, and a unique alternative splice pattern. HLA-G is primarily expressed in placenta and plays multifaceted roles during pregnancy, both as a soluble and a membrane-bound molecule......, differences in HLA-G isoform expression, and possible differences in functional activity. Furthermore, we highlight important observations regarding HLA-G genetics and expression in preeclampsia that future research should address....

  17. Doxorubicin-anti-carcinoembryonic antigen immunoconjugate activity in vitro.

    Science.gov (United States)

    Richardson, V J; Ford, C H; Tsaltas, G; Gallant, M E

    1989-04-01

    An in vitro model consisting of a series of 11 human cancer cell lines with varying density of expression of membrane carcinoembryonic antigen (CEA) has been used to evaluate conjugates of doxorubicin (Adriamycin) covalently linked by a carbodiimide method to goat polyclonal antibodies and mouse monoclonal antibodies to CEA. Conjugates were produced which retained both antigen binding and drug cytotoxicity. IC50 values were determined for free drug, free drug mixed with unconjugated antibodies and for the immunoconjugates. Cell lines that were very sensitive to free drug (IC50 less than 100 ng/ml) were also found to be highly sensitive to conjugated drug and similarly cell lines resistant to drug (IC50 greater than 1,000 ng/ml) were also resistant to conjugated drug. Although there was no correlation between CEA expression and conjugates efficacy, competitive inhibition studies using autologous antibody to block conjugate binding to cells indicated immunoconjugates specificity for the CEA target.

  18. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  19. Identification of antigens from nosocomial Acinetobacter baumannii clinical isolates in sera from ICU staff and infected patients using the antigenome technique.

    Science.gov (United States)

    Nafarieh, Tina; Bandehpour, Mojgan; Hashemi, Ali; Taheri, Sodabeh; Yardel, Vahid; Jamaati, Hamidreza; Moosavi, Seyed Mahdi; Mosaffa, Nariman

    2017-09-30

    Nosocomial infections with a bacterial origin are considered one of the most dangerous threats to global health. Among the causes of these infections, Acinetobacter baumannii is playing a significant role, and the present study aimed‏ to determine the immunogenic proteins of this bacteria. Clinical isolates of A. baumannii were obtained from positive sputum cultures of intensive care unit (ICU) patients confirmed by Polymerase chain reaction (PCR) of the OXA-51 gene, and sera was obtained from 20 colonized patients. In addition, 20 and 30 serum samples were collected from ICU nurses and healthy controls, respectively. All the samples were screened in the presence of antibodies against A. baumannii by enzyme-linked immunosorbent assay (ELISA). IgG purified from the serum samples by affinity chromatography was used to isolate the bacteria by the Magnetic-activated cell sorting (MACS) procedure. After the bacteria were cultured, the identified antigen proteins were studied by western blotting and Mass spectrometry (MS). The MS results were analyzed with MASCOT software and revealed a 35 KD protein, which corresponds to outer membrane protein A (OmpA) of A. baumannii, a 25 KD band, which is a carbapenem-associated resistance protein precursor, and a 60 KD protein band, identified as a stress-induced bacterial acidophilic repeat motif protein. According to the properties of immunogen antigens and bio informatics tools, the outer membrane proteins (OMPs) can be used as a vaccine candidate in animal models.

  20. Sensing voltage across lipid membranes

    Science.gov (United States)

    Swartz, Kenton J.

    2009-01-01

    The detection of electrical potentials across lipid bilayers by specialized membrane proteins is required for many fundamental cellular processes such as the generation and propagation of nerve impulses. These membrane proteins possess modular voltage-sensing domains, a notable example being the S1-S4 domains of voltage-activated ion channels. Ground-breaking structural studies on these domains explain how voltage sensors are designed and reveal important interactions with the surrounding lipid membrane. Although further structures are needed to fully understand the conformational changes that occur during voltage sensing, the available data help to frame several key concepts that are fundamental to the mechanism of voltage sensing. PMID:19092925

  1. Effect of radiation on the expression of carcinoembryonic antigen of human gastric adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Hareyama, M.; Imai, K.; Kubo, K.; Takahashi, H.; Koshiba, H.; Hinoda, Y.; Shidou, M.; Oouchi, A.; Yachi, A.; Morita, K. (Sapporo Medical College (Japan))

    1991-05-01

    The changes of antigenic expression of cultured human gastric adenocarcinoma MKN45 cells caused by irradiation were investigated to elucidate the immune responses to localized irradiation. The expression of carcinoembryonic antigen (CEA) showed remarkable increases in the culture supernatant and on the surface of the membrane of irradiated cells. The expression of major histocompatibility complex Class I antigen on the membrane also was enhanced by irradiation. In addition, the irradiated cell groups, when analyzed using a CEA-specific probe, showed remarkable increases in the CEA mRNA. These enhancements increased in the 10-Gy and 15-Gy irradiated populations compared with the 5-Gy irradiated population. These results suggest that the enhancement of expression of CEA by radiation takes place at the CEA gene expression (mRNA) level but not at the protein level.

  2. Comparative immunological evaluation of recombinant Salmonella Typhimurium strains expressing model antigens as live oral vaccines.

    Science.gov (United States)

    Zheng, Song-yue; Yu, Bin; Zhang, Ke; Chen, Min; Hua, Yan-Hong; Yuan, Shuofeng; Watt, Rory M; Zheng, Bo-Jian; Yuen, Kwok-Yung; Huang, Jian-Dong

    2012-09-26

    Despite the development of various systems to generate live recombinant Salmonella Typhimurium vaccine strains, little work has been performed to systematically evaluate and compare their relative immunogenicity. Such information would provide invaluable guidance for the future rational design of live recombinant Salmonella oral vaccines. To compare vaccine strains encoded with different antigen delivery and expression strategies, a series of recombinant Salmonella Typhimurium strains were constructed that expressed either the enhanced green fluorescent protein (EGFP) or a fragment of the hemagglutinin (HA) protein from the H5N1 influenza virus, as model antigens. The antigens were expressed from the chromosome, from high or low-copy plasmids, or encoded on a eukaryotic expression plasmid. Antigens were targeted for expression in either the cytoplasm or the outer membrane. Combinations of strategies were employed to evaluate the efficacy of combined delivery/expression approaches. After investigating in vitro and in vivo antigen expression, growth and infection abilities; the immunogenicity of the constructed recombinant Salmonella strains was evaluated in mice. Using the soluble model antigen EGFP, our results indicated that vaccine strains with high and stable antigen expression exhibited high B cell responses, whilst eukaryotic expression or colonization with good construct stability was critical for T cell responses. For the insoluble model antigen HA, an outer membrane expression strategy induced better B cell and T cell responses than a cytoplasmic strategy. Most notably, the combination of two different expression strategies did not increase the immune response elicited. Through systematically evaluating and comparing the immunogenicity of the constructed recombinant Salmonella strains in mice, we identified their respective advantages and deleterious or synergistic effects. Different construction strategies were optimally-required for soluble versus

  3. Effects of proteolytic enzymes and neuraminidase on the I and i erythrocyte antigen sites

    International Nuclear Information System (INIS)

    Doinel, C.; Ropars, C.; Salmon, C.

    1978-01-01

    Homogeneous cold agglutinins, purified and labelled with 125 I, have been used in a study of the effects of neuraminidase and proteolytic enzymes on the I and i reactivities of human adult erythrocytes. Measurements were made of antigen site numbers, equilibrium constants and thermodynamic parameters. There was enhanced reactivity after enzyme treatment as well as after the release of N-acetylneuraminic acid. Steric factors were shown to be of primary importance in the accessibility of the I and i antigenic determinant. After enzyme treatment, the antigenic structures became more homogeneous in their reaction with antibodies. The heterogeneity of binding constants observed with antigenic determinants of non-treated erythrocytes is probably due to the wide range of spatial distribution of these receptors within the membrane. (author)

  4. Human leukocyte antigen (HLA)-G during pregnancy part I

    DEFF Research Database (Denmark)

    Klitkou, Louise; Dahl, Mette; Hviid, Thomas Vauvert F

    2015-01-01

    Human leukocyte antigen (HLA)-G is a class Ib molecule with restricted tissue distribution expressed on trophoblast cells and has been proposed to have immunomodulatory functions during pregnancy. Soluble HLA-G1 (sHLA-G1) can be generated by the shedding of membrane-bound HLA-G molecules; however...... of importance for production of sHLA-G in the mother and child, or it may support the theory that sHLA-G in the pregnant woman and the fetus is partly derived from a "shared organ", the placenta....

  5. Membranous glomerulonephritis associated with enterococcal endocarditis.

    Science.gov (United States)

    Iida, H; Mizumura, Y; Uraoka, T; Takata, M; Sugimoto, T; Miwa, A; Yamagishi, T

    1985-01-01

    An autopsy case of membranous glomerulonephritis associated with enterococcal endocarditis was reported. Although enterococcal antigen was not identified in glomerular deposits, the eluate from the patient's renal tissue was shown to specifically recombine with cells of the enterococcus isolated from his own ante mortem blood. Hypocomplementemia, circulating immune complexes and antienterococcal antibodies were also observed. These findings suggest that enterococcus-related immune complexes played a role in the pathogenesis of glomerulonephritis associated with enterococcal endocarditis in this patient.

  6. Natural selection promotes antigenic evolvability

    NARCIS (Netherlands)

    Graves, C.J.; Ros, V.I.D.; Stevenson, B.; Sniegowski, P.D.; Brisson, D.

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide

  7. Characterization and standardization of Sabin based inactivated polio vaccine: proposal for a new antigen unit for inactivated polio vaccines.

    Science.gov (United States)

    Westdijk, Janny; Brugmans, Debbie; Martin, Javier; van't Oever, Aart; Bakker, Wilfried A M; Levels, Lonneke; Kersten, Gideon

    2011-04-18

    GMP-batches of Sabin-IPV were characterized for their antigenic and immunogenic properties. Antigenic fingerprints of Sabin-IPV reveal that the D-antigen unit is not a fixed amount of antigen but depends on antibody and assay type. Instead of the D-antigen unit we propose standardization of IPV based on a combination of protein amount for dose and D-antigenicity for quality of the vaccine. Although Sabin-IPV type 2 is less immunogenic than regular wild type IPV type 2, the immunogenicity (virus neutralizing titers) per microgram antigen for Sabin-IPV type 2 is in the same order as for wild type serotypes 1 and 3. The latter observations are in line with data from human trials. This suggests that a higher dose of Sabin-IPV type 2 to compensate for the lower rat immunogenicity may not be necessary. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Characterization of a 14,000 dalton antigen of Dirofilaria immitis infective third stage larvae

    International Nuclear Information System (INIS)

    Fuller, S.A.; Cachia, P.J.; Wong, M.M.; Hurrell, J.G.R.

    1986-01-01

    Immunogenic proteins of Dirofilaria immitis (canine heartworm) were identified by probing extracts of adult worms or their excretory-secretory proteins (ESP) blotted to nitrocellulose following SDS-PAGE with control or infected dog sera. A 14,000 dalton antigen (a prominent component of ESP by protein staining) was consistently recognized both in extracts and ESP by dog sera as early as three months post infection. This indicates a larval origin for the antigen since no adult worms are present until approximately five months post infection. Monoclonal antibodies (MAbs) prepared against the 14,000 dalton antigen confirmed by immunoblotting that this antigen is expressed by infective third stage larvae, adults and microfilariae and is present intact in the sera of infected dogs. Surface-labelling of whole adult D. immitis with Na 125 I produced radiolabelled antigens closely corresponding to those of ESP. An anti-14,000 dalton MAb was able to immunoprecipitate radiolabelled antigen which strongly suggest a surface or membrane location in the intact organism. Gel filtration data suggests that the protein is a native monomer. A MAb-affinity column has been used to purify the 14,000 dalton antigen to at least 98% homogeneity in one step from crude worm extracts. Further fractionation by HPLC yields a homogeneous preparation. Amino acid analysis and the N-terminal amino acid sequence data will be presented

  9. Associative link of clinical manifestations of the secondary syphilis of skin and mucosa with histocompatibility antigens Class I

    Directory of Open Access Journals (Sweden)

    S. V. Koshkin

    2017-01-01

    Full Text Available Sixty patients with different clinical symptoms of secondary syphilis (ulcer chancres, pustular syphilis, hypertrophic papules, widespread leukoderma and alopecia were examined in order to study the distribution pattern of histocompatibility antigens of the first class in patients with secondary syphilis of the skin and mucous membranes. As a result of the study, the presence of an associative relationship between the distribution pattern of histocompatibility antigens of the first class and various clinical manifestations in patients with secondary syphilis was established.

  10. Concepts and applications for influenza antigenic cartography

    Science.gov (United States)

    Cai, Zhipeng; Zhang, Tong; Wan, Xiu-Feng

    2011-01-01

    Influenza antigenic cartography projects influenza antigens into a two or three dimensional map based on immunological datasets, such as hemagglutination inhibition and microneutralization assays. A robust antigenic cartography can facilitate influenza vaccine strain selection since the antigenic map can simplify data interpretation through intuitive antigenic map. However, antigenic cartography construction is not trivial due to the challenging features embedded in the immunological data, such as data incompleteness, high noises, and low reactors. To overcome these challenges, we developed a computational method, temporal Matrix Completion-Multidimensional Scaling (MC-MDS), by adapting the low rank MC concept from the movie recommendation system in Netflix and the MDS method from geographic cartography construction. The application on H3N2 and 2009 pandemic H1N1 influenza A viruses demonstrates that temporal MC-MDS is effective and efficient in constructing influenza antigenic cartography. The web sever is available at http://sysbio.cvm.msstate.edu/AntigenMap. PMID:21761589

  11. Antigenic determinants and functional domains in core antigen and e antigen from hepatitis B virus

    International Nuclear Information System (INIS)

    Salfeld, J.; Pfaff, E.; Noah, M.; Schaller, H.

    1989-01-01

    The precore/core gene of hepatitis B virus directs the synthesis of two polypeptides, the 21-kilodalton subunit (p21c) forming the viral nucleocapsid (serologically defined as core antigen [HBcAg]) and a secreted processed protein (p17e, serologically defined as HBe antigen [HBeAg]). Although most of their primary amino acid sequences are identical, HBcAg and HBeAg display different antigenic properties that are widely used in hepatitis B virus diagnosis. To locate and to characterize the corresponding determinants, segments of the core gene were expressed in Escherichia coli and probed with a panel of polyclonal or monoclonal antibodies in radioimmunoassays or enzyme-linked immunosorbent assays, Western blots, and competition assays. Three distinct major determinants were characterized. It is postulated that HBcAg and HBeAg share common basic three-dimensional structure exposing the common linear determinant HBe1 but that they differ in the presentation of two conformational determinants that are either introduced (HBc) or masked (HBe2) in the assembled core. The simultaneous presentation of HBe1 and HBc, two distinctly different antigenic determinants with overlapping amino acid sequences, is interpreted to indicate the presence of slightly differently folded, stable conformational states of p21c in the hepatitis virus nucleocapsid

  12. Molecular characterization of Marek's disease herpesvirus B antigen

    International Nuclear Information System (INIS)

    Isfort, R.J.; Sithole, I.; Kung, H.J.; Velicer, L.F.

    1986-01-01

    The Marek's disease herpesvirus (MDHV) B antigen (MDHV-B) was identified and molecularly characterized as a set of three glycoproteins of 100,000, 60,000, and 49,000 apparent molecular weight (gp100, gp60, and gp49, respectively) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) after immunoprecipitation from [ 35 S]methionine-labeled infected cells by specific rabbit antiserum directed against MDHV-B (RαB), as previously determined by immunodiffusion. Further identification was accomplished by blocking this immunoprecipitation with highly purified MDHV-B. The same set of three polypeptides was also immunoprecipitated from [ 35 S] methionine- and 14 C-labeled infected cells into two other sera shown to have anti-B activity. These data serve to clarify the molecular identification of the polypeptides found in common between MDHV and HVT by linking them to MDHV-B. Collectively, the data presented here and by others support the conclusion that all three glycoproteins now identified as gp100, gp60, and gp49 have MDHV-B determinants. Finally, detection of the same three polypeptides with well-absorbed RαPM, which was directed against purified infected-cell plasma membranes, suggests that at least one component of the B-antigen complex has a plasma membrane location in the infected cell. These preliminary data point to the future membrane biochemistry and membrane immunology experiments needed to understand the MDHV system, and they may explain the high level of immunogenicity of MDHV-B in the infected chicken, as shown by its immunoprecipitation with immune chicken serum

  13. Rapid and specific biotin labelling of the erythrocyte surface antigens of both cultured and ex-vivo Plasmodium parasites

    Directory of Open Access Journals (Sweden)

    Thompson Joanne

    2007-05-01

    Full Text Available Abstract Background Sensitive detection of parasite surface antigens expressed on erythrocyte membranes is necessary to further analyse the molecular pathology of malaria. This study describes a modified biotin labelling/osmotic lysis method which rapidly produces membrane extracts enriched for labelled surface antigens and also improves the efficiency of antigen recovery compared with traditional detergent extraction and surface radio-iodination. The method can also be used with ex-vivo parasites. Methods After surface labelling with biotin in the presence of the inhibitor furosemide, detergent extraction and osmotic lysis methods of enriching for the membrane fractions were compared to determine the efficiency of purification and recovery. Biotin-labelled proteins were identified on silver-stained SDS-polyacrylamide gels. Results Detergent extraction and osmotic lysis were compared for their capacity to purify biotin-labelled Plasmodium falciparum and Plasmodium chabaudi erythrocyte surface antigens. The pellet fraction formed after osmotic lysis of P. falciparum-infected erythrocytes is notably enriched in suface antigens, including PfEMP1, when compared to detergent extraction. There is also reduced co-extraction of host proteins such as spectrin and Band 3. Conclusion Biotinylation and osmotic lysis provides an improved method to label and purify parasitised erythrocyte surface antigen extracts from both in vitro and ex vivo Plasmodium parasite preparations.

  14. Evidence for a Role for the Plasma Membrane in the Nanomechanical Properties of the Cell Wall as Revealed by an Atomic Force Microscopy Study of the Response of Saccharomyces cerevisiae to Ethanol Stress.

    Science.gov (United States)

    Schiavone, Marion; Formosa-Dague, Cécile; Elsztein, Carolina; Teste, Marie-Ange; Martin-Yken, Helene; De Morais, Marcos A; Dague, Etienne; François, Jean M

    2016-08-01

    A wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeast Saccharomyces cerevisiae However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus. Quite unexpectedly, a mutant deficient in the Msn2/Msn4 transcription factor, which is known to mediate the ethanol stress response, exhibited a low level of stiffness similar to that of ethanol-treated wild-type cells. Reciprocally, the stiffness of yeast cells overexpressing MSN2 was about 35% higher than that of the wild type but was nevertheless reduced 3- to 4-fold upon exposure to ethanol. Based on these and other data presented herein, we postulated that the effect of ethanol on cell stiffness may not be mediated through Msn2/Msn4, even though this transcription factor appears to be a determinant in the nanomechanical properties of the cell wall. On the other hand, we found that as with ethanol, the treatment of yeast with the antifungal amphotericin B caused a significant reduction of cell wall stiffness. Since both this drug and ethanol are known to alter, albeit by different means, the fluidity and structure of the plasma membrane, these data led to the proposition that the cell membrane contributes to the biophysical properties of yeast cells. Ethanol is the main product of yeast fermentation but is also a toxic compound for this process. Understanding the mechanism of this toxicity is of great importance for industrial applications. While most research has focused on genomic studies of ethanol tolerance, we investigated the effects of ethanol at the biophysical level and found that ethanol causes a strong reduction of the cell wall rigidity (or

  15. Evidence for a Role for the Plasma Membrane in the Nanomechanical Properties of the Cell Wall as Revealed by an Atomic Force Microscopy Study of the Response of Saccharomyces cerevisiae to Ethanol Stress

    Science.gov (United States)

    Schiavone, Marion; Formosa-Dague, Cécile; Elsztein, Carolina; Teste, Marie-Ange; Martin-Yken, Helene; De Morais, Marcos A.; Dague, Etienne

    2016-01-01

    ABSTRACT A wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeast Saccharomyces cerevisiae. However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus. Quite unexpectedly, a mutant deficient in the Msn2/Msn4 transcription factor, which is known to mediate the ethanol stress response, exhibited a low level of stiffness similar to that of ethanol-treated wild-type cells. Reciprocally, the stiffness of yeast cells overexpressing MSN2 was about 35% higher than that of the wild type but was nevertheless reduced 3- to 4-fold upon exposure to ethanol. Based on these and other data presented herein, we postulated that the effect of ethanol on cell stiffness may not be mediated through Msn2/Msn4, even though this transcription factor appears to be a determinant in the nanomechanical properties of the cell wall. On the other hand, we found that as with ethanol, the treatment of yeast with the antifungal amphotericin B caused a significant reduction of cell wall stiffness. Since both this drug and ethanol are known to alter, albeit by different means, the fluidity and structure of the plasma membrane, these data led to the proposition that the cell membrane contributes to the biophysical properties of yeast cells. IMPORTANCE Ethanol is the main product of yeast fermentation but is also a toxic compound for this process. Understanding the mechanism of this toxicity is of great importance for industrial applications. While most research has focused on genomic studies of ethanol tolerance, we investigated the effects of ethanol at the biophysical level and found that ethanol causes a strong reduction of the cell

  16. Traffic pathways of Plasmodium vivax antigens during intraerythrocytic parasite development.

    Science.gov (United States)

    Bracho, Carmen; Dunia, Irene; De, La Rosa Mercedes; Benedetti, Ennio-Lucio; Perez, Hilda A

    2002-03-01

    We investigated the secretory traffic of a Plasmodium vivax antigen (Pv-148) synthesised by the parasite during the blood cycle, exported into the host cell cytosol and then transported to the surface membrane of the infected erythrocyte. Studies of the ultrastructure of erythrocytes infected with P. vivax showed that intracellular schizogony is accompanied by the generation of parasite-induced membrane profiles in the erythrocyte cytoplasm. These structures are detectable soon after the parasite invades the erythrocyte and develop an elaborate organisation, leading to a tubovesicular membrane (TVM) network, in erythrocytes infected with mature trophozoites. Interestingly, the clefts formed stacked, flattened cisternae resembling a classical Golgi apparatus. The TVM network stained with the fluorescent Golgi marker Bodipy-ceramide. Specific immunolabelling showed that Pv-148 was transferred from the parasite to the erythrocyte surface membrane via the clefts and the TVM network. These findings suggest that the TVM network is part of the secretory pathways involved in parasite protein transport across the Plasmodium-infected erythrocyte and that Pv- 148 may represent a marker that links the parasite with the host cell cytoplasm and, in turn, with the extracellular milieu.

  17. Function and Dynamics of Tetraspanins during Antigen Recognition and Immunological Synapse Formation

    Directory of Open Access Journals (Sweden)

    Vera eRocha-Perugini

    2016-01-01

    Full Text Available Tetraspanin-enriched microdomains (TEMs are specialized membrane platforms driven by protein-protein interactions that integrate membrane receptors and adhesion molecules. Tetraspanins participate in antigen recognition and presentation by antigen presenting cells (APCs through the organization of pattern recognition receptors (PRRs and their downstream induced-signaling, as well as the regulation of MHC-II-peptide trafficking. T lymphocyte activation is triggered upon specific recognition of antigens present on the APC surface during immunological synapse (IS formation. This dynamic process is characterized by a defined spatial organization involving the compartmentalization of receptors and adhesion molecules in specialized membrane domains that are connected to the underlying cytoskeleton and signaling molecules. Tetraspanins contribute to the spatial organization and maturation of the IS by controlling receptor clustering and local accumulation of adhesion receptors and integrins, their downstream signaling and linkage to the actin cytoskeleton. This review offers a perspective on the important role of TEMs in the regulation of antigen recognition and presentation, and in the dynamics of IS architectural organization.

  18. Function and Dynamics of Tetraspanins during Antigen Recognition and Immunological Synapse Formation

    Science.gov (United States)

    Rocha-Perugini, Vera; Sánchez-Madrid, Francisco; Martínez del Hoyo, Gloria

    2016-01-01

    Tetraspanin-enriched microdomains (TEMs) are specialized membrane platforms driven by protein–protein interactions that integrate membrane receptors and adhesion molecules. Tetraspanins participate in antigen recognition and presentation by antigen-­presenting cells (APCs) through the organization of pattern-recognition receptors (PRRs) and their downstream-induced signaling, as well as the regulation of MHC-II–peptide trafficking. T lymphocyte activation is triggered upon specific recognition of antigens present on the APC surface during immunological synapse (IS) formation. This dynamic process is characterized by a defined spatial organization involving the compartmentalization of receptors and adhesion molecules in specialized membrane domains that are connected to the underlying cytoskeleton and signaling molecules. Tetraspanins contribute to the spatial organization and maturation of the IS by controlling receptor clustering and local accumulation of adhesion receptors and integrins, their downstream signaling, and linkage to the actin cytoskeleton. This review offers a perspective on the important role of TEMs in the regulation of antigen recognition and presentation and in the dynamics of IS architectural organization. PMID:26793193

  19. Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism.

    Science.gov (United States)

    Lu, Defen; Shang, Guijun; Zhang, Heqiao; Yu, Qian; Cong, Xiaoyan; Yuan, Jupeng; He, Fengjuan; Zhu, Chunyuan; Zhao, Yanyu; Yin, Kun; Chen, Yuanyuan; Hu, Junqiang; Zhang, Xiaodan; Yuan, Zenglin; Xu, Sujuan; Hu, Wei; Cang, Huaixing; Gu, Lichuan

    2014-06-01

    The opportunistic pathogen Pseudomonas aeruginosa uses the type VI secretion system (T6SS) to deliver the muramidase Tse3 into the periplasm of rival bacteria to degrade their peptidoglycan (PG). Concomitantly, P. aeruginosa uses the periplasm-localized immunity protein Tsi3 to prevent potential self-intoxication caused by Tse3, and thus gains an edge over rival bacteria in fierce niche competition. Here, we report the crystal structures of Tse3 and the Tse3-Tsi3 complex. Tse3 contains an annexin repeat-like fold at the N-terminus and a G-type lysozyme fold at the C-terminus. One loop in the N-terminal domain (Loop 12) and one helix (α9) from the C-terminal domain together anchor Tse3 and the Tse3-Tsi3 complex to membrane in a calcium-dependent manner in vitro, and this membrane-binding ability is essential for Tse3's activity. In the C-terminal domain, a Y-shaped groove present on the surface likely serves as the PG binding site. Two calcium-binding motifs are also observed in the groove and these are necessary for Tse3 activity. In the Tse3-Tsi3 structure, three loops of Tsi3 insert into the substrate-binding groove of Tse3, and three calcium ions present at the interface of the complex are indispensable for the formation of the Tse3-Tsi3 complex. © 2014 John Wiley & Sons Ltd.

  20. Radioprotective activity of shigella antigens

    International Nuclear Information System (INIS)

    Klemparskaya, N.N.; Gorbunova, E.S.; Dobronravova, N.N.

    1981-01-01

    The possibility of using experimental microbe antigenous preparation out of Flexner and Zonne shigellas as a protector and a remedy in the case of gamma irradiation, is investigated. The experiments are carried out on mice of both sexes immunized before or after irradiation by two methods: subcutaneously and enerally. It is found that in most cases investigated, the introduction of the experimental preparation 3, 5, 7 and 10 days before irradiation increases the survivability of animals [ru

  1. Membrane Compartmentalization Reducing the Mobility of Lipids and Proteins within a Model Plasma Membrane.

    Science.gov (United States)

    Koldsø, Heidi; Reddy, Tyler; Fowler, Philip W; Duncan, Anna L; Sansom, Mark S P

    2016-09-01

    The cytoskeleton underlying cell membranes may influence the dynamic organization of proteins and lipids within the bilayer by immobilizing certain transmembrane (TM) proteins and forming corrals within the membrane. Here, we present coarse-grained resolution simulations of a biologically realistic membrane model of asymmetrically organized lipids and TM proteins. We determine the effects of a model of cytoskeletal immobilization of selected membrane proteins using long time scale coarse-grained molecular dynamics simulations. By introducing compartments with varying degrees of restraints within the membrane models, we are able to reveal how compartmentalization caused by cytoskeletal immobilization leads to reduced and anomalous diffusional mobility of both proteins and lipids. This in turn results in a reduced rate of protein dimerization within the membrane and of hopping of membrane proteins between compartments. These simulations provide a molecular realization of hierarchical models often invoked to explain single-molecule imaging studies of membrane proteins.

  2. Rabies virus glycoprotein as a carrier for anthrax protective antigen

    International Nuclear Information System (INIS)

    Smith, Mary Ellen; Koser, Martin; Xiao Sa; Siler, Catherine; McGettigan, James P.; Calkins, Catherine; Pomerantz, Roger J.; Dietzschold, Bernhard; Schnell, Matthias J.

    2006-01-01

    Live viral vectors expressing foreign antigens have shown great promise as vaccines against viral diseases. However, safety concerns remain a major problem regarding the use of even highly attenuated viral vectors. Using the rabies virus (RV) envelope protein as a carrier molecule, we show here that inactivated RV particles can be utilized to present Bacillus anthracis protective antigen (PA) domain-4 in the viral membrane. In addition to the RV glycoprotein (G) transmembrane and cytoplasmic domains, a portion of the RV G ectodomain was required to express the chimeric RV G anthrax PA on the cell surface. The novel antigen was also efficiently incorporated into RV virions. Mice immunized with the inactivated recombinant RV virions exhibited seroconversion against both RV G and anthrax PA, and a second inoculation greatly increased these responses. These data demonstrate that a viral envelope protein can carry a bacterial protein and that a viral carrier can display whole polypeptides compared to the limited epitope presentation of previous viral systems

  3. Heparin-associated thrombocytopenia: antibody binding specificity to platelet antigens.

    Science.gov (United States)

    Lynch, D M; Howe, S E

    1985-11-01

    Sera from four patients with heparin-associated thrombocytopenia (HAT) were evaluated by a quantitative enzyme-linked immunosorbent assay (ELISA) to detect heparin-dependent serum platelet-bindable immunoglobulin (S-PBIg) and by Western blotting and immunoprecipitation to investigate the specificity of the antibody binding. All HAT sera showed mildly increased S-PBIg (mean, 7.8 fg per platelet; normal, less than 6.0 fg per platelet) to intact target platelets in the ELISA, which was markedly increased in the presence of heparin (mean, 20.9 fg per platelet). This increase was 20-fold greater than normal control sera, which showed a mean differential increase of only 0.5 fg per platelet. Immunoglobulin binding specificity to platelet antigens was investigated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis of platelet lysate with transfer of the platelet fractions onto nitrocellulose strips (Western blotting) and subsequent immunoassay using HAT and normal sera. In the presence of heparin, the four HAT patients demonstrated increased binding of immunoglobulin to platelet antigens of apparent molecular weights of 180, 124, and 82 kd. Radiolabeled heparin when incubated with HAT sera, normal sera, or albumin blanks bound to platelet proteins of the same apparent molecular weights. These observations are consistent with current hypotheses suggesting that HAT antibody is directed to heparin-platelet complexes or, alternatively, that heparin induces conformational change of antigenic sites on the platelet membrane.