WorldWideScience

Sample records for membrane affinity chromatography

  1. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method.

    Science.gov (United States)

    Ma, Weina; Yang, Liu; Lv, Yanni; Fu, Jia; Zhang, Yanmin; He, Langchong

    2017-06-23

    The equilibrium dissociation constant (K D ) of drug-membrane receptor affinity is the basic parameter that reflects the strength of interaction. The cell membrane chromatography (CMC) method is an effective technique to study the characteristics of drug-membrane receptor affinity. In this study, the K D value of CMC relative standard method for the determination of drug-membrane receptor affinity was established to analyze the relative K D values of drugs binding to the membrane receptors (Epidermal growth factor receptor and angiotensin II receptor). The K D values obtained by the CMC relative standard method had a strong correlation with those obtained by the frontal analysis method. Additionally, the K D values obtained by CMC relative standard method correlated with pharmacological activity of the drug being evaluated. The CMC relative standard method is a convenient and effective method to evaluate drug-membrane receptor affinity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Report: Affinity Chromatography.

    Science.gov (United States)

    Walters, Rodney R.

    1985-01-01

    Supports, affinity ligands, immobilization, elution methods, and a number of applications are among the topics considered in this discussion of affinity chromatography. An outline of the basic principles of affinity chromatography is included. (JN)

  3. Large-scale analysis of in Vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry

    DEFF Research Database (Denmark)

    Nühse, Thomas S; Stensballe, Allan; Jensen, Ole N

    2003-01-01

    Global analyses of protein phosphorylation require specific enrichment methods because of the typically low abundance of phosphoproteins. To date, immobilized metal ion affinity chromatography (IMAC) for phosphopeptides has shown great promise for large-scale studies, but has a reputation for poor...... specificity. We investigated the potential of IMAC in combination with capillary liquid chromatography coupled to tandem mass spectrometry for the identification of plasma membrane phosphoproteins of Arabidopsis. Without chemical modification of peptides, over 75% pure phosphopeptides were isolated from...... plasma membrane digests and detected and sequenced by mass spectrometry. We present a scheme for two-dimensional peptide separation using strong anion exchange chromatography prior to IMAC that both decreases the complexity of IMAC-purified phosphopeptides and yields a far greater coverage...

  4. The Purification of a Blood Group A Glycoprotein: An Affinity Chromatography Experiment.

    Science.gov (United States)

    Estelrich, J.; Pouplana, R.

    1988-01-01

    Describes a purification process through affinity chromatography necessary to obtain specific blood group glycoproteins from erythrocytic membranes. Discusses the preparation of erythrocytic membranes, extraction of glycoprotein from membranes, affinity chromatography purification, determination of glycoproteins, and results. (CW)

  5. Identification by affinity chromatography of boar sperm membrane-associated proteins bound to immobilized porcine zona pellucida. Mapping of the phosphorylethanolamine-binding region of spermadhesin AWN.

    Science.gov (United States)

    Ensslin, M; Calvete, J J; Thole, H H; Sierralta, W D; Adermann, K; Sanz, L; Töpfer-Petersen, E

    1995-12-01

    We have identified boar sperm membrane components recovered by affinity chromatography on a porcine zona pellucida affinity column. The major zona pellucida-bound proteins were spermadhesins AWN and AQN-3, the heparin-binding protein pAIF, and a homolog of the mouse milk fat globule membrane protein. All these proteins are phospholipid-binding proteins peripherally associated with the plasma membrane. Our data suggest that coating proteins tightly bound to the external lipid bilayer may act as major zona pellucida-binding molecules. Using a synthetic peptide approach we show that the regions of spermadhesin AWN comprising residues 6-12 and 104-108 possess affinity for phosphorylethanolamine. These two amino acid sequences are in close proximity in the predicted structural model for AWN, and in opposite location to its carbohydrate-recognition domain. Taken together, our data provide further evidence for the possible involvement of members of the porcine spermadhesin protein family in gamete interaction and suggest a model for the ultrastructural disposition of functional domains of spermadhesin AWN bound to the sperm surface.

  6. Activities of lectins and their immobilized derivatives in detergent solutions. Implications on the use of lectin affinity chromatography for the purification of membrane glycoproteins.

    Science.gov (United States)

    Lotan, R; Beattie, G; Hubbell, W; Nicolson, G L

    1977-05-03

    The effects of several commonly used detergents on the saccharide-binding activities of lectins were investigated using lectin-mediated agglutination of formalin-fixed erythrocytes and affinity chromatography of glycoproteins on columns of lectins immobilized on polyacrylic hydrazide-Sepharose. In the hemagglutination assays, Ricinus communis I (RCA1) and II (RCAII), concanavalin A (Con A), and the agglutinins from peanut (PNA), soybean (SBA), wheat germ (WGA), and Limulus polyphemus (LPA) were tested with several concentrations of switterionic, cationic, anionic, and nonionic detergents. It was found that increasing detergent concentrations eventually affected hemagglutination titers in both test and control samples, and the highest detergent concentrations not affecting lectin hemagglutinating activities were determined. The effects of detergents on specific binding of [3H]fetuin and asialo[3H]fetuin to and elution from columns of immobilized lectins were less severe when compared with lectins in solution, suggesting that the lectins are stabilized by covalent attachment to agarose beads. Nonionic detergents did not affect the binding efficiency of the immobilized lectins tested at concentrations used for membrane solubilization while cationic and zwitterionic detergents caused significant inhibition of Con A- and SBA-Sepharose activities. In sodium deoxycholate (greater than 1%) only RCAI-Sepharose retained its activity, whereas the activities of the other lectins were reduced dramatically. Low concentrations of sodium dodecyl sulfate (0.05%) inhibited only the activity of immobilized SBA, but at higher concentration (0.1%) and prolonged periods of incubation (16 h, 23 degrees C) most of the lectins were inactivated. These data are compared with previous reports on the use of detergents in lectin affinity chromatography, and the conditions for the optimal use of detergents are detailed.

  7. Phosphopeptide enrichment by immobilized metal affinity chromatography

    DEFF Research Database (Denmark)

    Thingholm, Tine E.; Larsen, Martin R.

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively...

  8. Monolithic media for applications in affinity chromatography.

    Science.gov (United States)

    Sproß, Jens; Sinz, Andrea

    2011-08-01

    Affinity chromatography presents a highly versatile analytical tool, which relies on exploiting highly specific interactions between molecules and their ligands. This review covers the most recent literature on the application of monoliths as stationary phases for various affinity-based chromatographic applications. Different affinity approaches as well as separations using molecularly imprinted monoliths are discussed. Hybrid stationary phases created by embedding of particles or nanoparticles into a monolithic stationary phase are also considered in this review article. The ease of preparation of monoliths and the multitude of functionalization techniques, which have matured during the past years, make monoliths interesting for an increasing number of biochemical and medical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma.

    Science.gov (United States)

    Stranska, Ruzena; Gysbrechts, Laurens; Wouters, Jens; Vermeersch, Pieter; Bloch, Katarzyna; Dierickx, Daan; Andrei, Graciela; Snoeck, Robert

    2018-01-09

    Plasma extracellular vesicles (EVs), especially exosome-like vesicles (ELVs), are being increasingly explored as a source of potential noninvasive disease biomarkers. The discovery of blood-based biomarkers associated with ELVs requires methods that isolate high yields of these EVs without significant contamination with highly abundant plasma proteins and lipoproteins. The rising interest in blood-based EV-associated biomarkers has led to the rapid development of novel EV isolation methods. However, the field suffers from a lack of standardization and often, new techniques are used without critical evaluation. Size exclusion chromatography (SEC) has become the method of choice for rapid isolation of relatively pure EVs from plasma, yet it has technical limitations for certain downstream applications. The recently released exoEasy kit (Qiagen) is a new membrane affinity spin column method for the isolation of highly pure EVs from biofluids with the potential to overcome most of the limitations of SEC. By using multiple complementary techniques we assessed the performance of the exoEasy kit in isolating ELVs from 2 ml of human plasma and compared it with the SEC qEV column (Izon Science). Our data show that exoEasy kit isolates a heterogenous mixture of particles with a larger median diameter, broader size range and a higher yield than the SEC qEV column. The exclusive presence of small RNAs in the particles and the total RNA yield were comparable to the SEC qEV column. Despite being less prone to low density lipoprotein contamination than the SEC qEV column, the overall purity of exoEasy kit EV preparations was suboptimal. The low particle-protein ratio, significant amount of albumin, very low levels of exosome-associated proteins and propensity to triglyceride-rich lipoprotein contamination suggest isolation of mainly non-ELVs and co-isolation of plasma proteins and certain lipoproteins by the exoEasy kit. We demonstrate that performance of exoEasy kit for the

  10. Development and characterization of the α3β4α5 nicotinic receptor cellular membrane affinity chromatography column and its application for on line screening of plant extracts

    OpenAIRE

    Ciesla, L.; Okine, M.; Rosenberg, A.; Dossou, K.S.S.; Toll, L.; Wainer, I.W.; Moaddel, R.

    2015-01-01

    The α3β4α5 nAChR has been recently shown to be a useful target for smoking cessation pharmacotherapies. Herein, we report on the development and characterization of the α3β4α5 nicotinic receptor column by frontal displacement chromatography. The binding affinity of the nicotine and minor alkaloids found in tobacco smoke condensates were determined for both the α3β4 and α3β4α5 nicotinic receptors. It was demonstrated that while no subtype selectivity was observed for nicot...

  11. Development and characterization of the α3β4α5 nicotinic receptor cellular membrane affinity chromatography column and its application for on line screening of plant extracts.

    Science.gov (United States)

    Ciesla, L; Okine, M; Rosenberg, A; Dossou, K S S; Toll, L; Wainer, I W; Moaddel, R

    2016-01-29

    The α3β4α5 nAChR has been recently shown to be a useful target for smoking cessation pharmacotherapies. Herein, we report on the development and characterization of the α3β4α5 nicotinic receptor column by frontal displacement chromatography. The binding affinity of the nicotine and minor alkaloids found in tobacco smoke condensates were determined for both the α3β4 and α3β4α5 nicotinic receptors. It was demonstrated that while no subtype selectivity was observed for nicotine and nornicotine, anabasine was selective for the α3β4α5 nicotinic receptor. The non-competitive inhibitor binding site was also studied and it was demonstrated while mecamylamine was not selective between subtypes, buproprion showed subtype selectivity for the α3β4 nicotinic receptor. The application of this methodology to complex mixtures was then carried out by screening aqueous-alcoholic solutions of targeted plant extracts, including Lycopodium clavatum L. (Lycopodiaceae) and Trigonella foenum graecum L. (Fabaceae) against both the α3β4 and α3β4α5 nAChRs. Published by Elsevier B.V.

  12. Pseudo-affinity chromatography of rumen microbial cellulase on ...

    African Journals Online (AJOL)

    Pseudo-affinity chromatography of rumen microbial cellulase on Sepharose- Cibacron Blue F3GA. ... African Journal of Biotechnology ... Pseudo affinity adsorption of bioproducts on Sepharose-cibacron blue F3-GA was subjected to rumen microbial enzyme evaluation through batch binding and column chromatography of ...

  13. Isolation of bovine serum albumin from whey using affinity chromatography

    NARCIS (Netherlands)

    Besselink, T.; Janssen, A.E.M.; Boom, R.M.

    2015-01-01

    The adsorption of bovine serum albumin (BSA) to a chromatography resin with immobilised llama antibody fragments as affinity ligands was investigated. The maximum adsorption capacity of the affinity resin was 21.6 mg mL-1 with a Langmuir equilibrium constant of 20.4 mg mg-1. Using packed bed

  14. Antibody Fragments and Their Purification by Protein L Affinity Chromatography

    Directory of Open Access Journals (Sweden)

    Gustav Rodrigo

    2015-09-01

    Full Text Available Antibodies and related proteins comprise one of the largest and fastest-growing classes of protein pharmaceuticals. A majority of such molecules are monoclonal antibodies; however, many new entities are antibody fragments. Due to their structural, physiological, and pharmacological properties, antibody fragments offer new biopharmaceutical opportunities. In the case of recombinant full-length antibodies with suitable Fc regions, two or three column purification processes centered around Protein A affinity chromatography have proven to be fast, efficient, robust, cost-effective, and scalable. Most antibody fragments lack Fc and suitable affinity for Protein A. Adapting proven antibody purification processes to antibody fragments demands different affinity chromatography. Such technology must offer the unit operation advantages noted above, and be suitable for most of the many different types of antibody fragments. Protein L affinity chromatography appears to fulfill these criteria—suggesting its consideration as a key unit operation in antibody fragment processing.

  15. Fatty acid and drug binding to a low-affinity component of human serum albumin, purified by affinity chromatography

    DEFF Research Database (Denmark)

    Vorum, H; Pedersen, A O; Honoré, B

    1992-01-01

    and drug binding abilities of the low-affinity component. The fatty acids decanoate, laurate, myristate and palmitate were bound with higher affinity to the mixture than to the low-affinity component. Diazepam was bound with nearly the same affinity to the low-affinity component as to the albumin mixture...... of two albumin components about 40% of the albumin having high affinity and about 60% having low affinity. By affinity chromatography we succeeded in purifying the low-affinity component from the mixture. The high-affinity component, however, could not be isolated. We further analyzed the fatty acid...

  16. Fabrication of Ceramic Membrane Chromatography for Biologics Purification

    Directory of Open Access Journals (Sweden)

    Maizirwan Mel

    2011-12-01

    pemfabrikatan membran. Dalam projek ini, serbuk HA dihasilkan menggunakan kanji sebagai agen penghasilan liang. Proses pencirian dilakukan terhadap membran seramik menggunakan radas yang sesuai. Tiga parameter proses pemfabrikatan (peratusan berat kanji, tekanan padatan dan suhu pensinteran dimanipulasikan untuk mendapatkan prestasi membran yang optima. Membran yang difabrikatkan diletakkan dalam sistem FPLC (Fast Protein Liquid Chromatography untuk diuji prestasinya sebagai membran serap. Proses IMAC (Immobilized Metal Affinity Chromatography dijalankan dengan memegunkan ion Ni2+ pada permukaan zarah membran. Nucleoprotein dari NDV (Newcastle disease virus digunakan untuk menguji kebolehan membran terikat dengan protein yang dilabelkan dengan Hisditina. Set parameter proses yang optima yang menghasilkan keliangan tertinggi dan kromatogram yang baik ditentukan pada berat kanji 5 %, tekanan padatan 3000 psi dan suhu pensinteran 1100°C.KEYWORDS: Membrane Chromatography, Porous Ceramic Membrane, IMAC, Hydroxyapatite, Chromatography.

  17. Microbiological Control for Affinity Capture Chromatography Processing: An Industry Perspective.

    Science.gov (United States)

    Murphy, Marie; Bell, Brian; Moshi, James; Grassi, Robert; Forng, Ren-Yo; Salaman, Angel; Wawra Jordi, Petra; Zaidi, Simin; Goodnight, Marcella; McFarland, Kim; Hardy, Diane; Knight, Michael; Paul, Mousumi; Keller, Andreas; Carpenter, Bill; McLaughlin, Donal; Hearty, Una; Marrero, Jose; Bain, David; Willison-Parry, Derek

    2018-02-14

    The purpose of this paper is to provide a summary of a BPOG-led industry survey of the microbiological control aspects of affinity chromatography processing in the biopharmaceutical industry. The document provides a summary of historical microbiological control concerns, coupled with industry-derived best practices for material, equipment, and storage controls required to mitigate the potential for microbial ingress and contamination of chromatography resin and equipment. These best practice guidelines, which are derived from the members of the BPOG Bioburden Working Group, are intended to assist biopharmaceutical manufacturers enhance microbial control and monitoring strategies for chromatography systems. Copyright © 2018, Parenteral Drug Association.

  18. Specific capture of uranyl protein targets by metal affinity chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Basset, C.; Dedieu, A.; Guerin, P.; Quemeneur, E.; Meyer, D.; Vidaud, C. [CEA Valrho, DSV, IBEB, Serv Biochim et Toxicol Nucl, F-30207 Bagnols Sur Ceze (France)

    2008-07-01

    To improve general understanding of biochemical mechanisms in the field of uranium toxicology, the identification of protein targets needs to be intensified. Immobilized metal affinity chromatography (IMAC) has been widely developed as a powerful tool for capturing metal binding proteins from biological extracts. However uranyl cations (UO{sub 2}{sup 2+}) have particular physico-chemical characteristics which prevent them from being immobilized on classical metal chelating supports. We report here on the first development of an immobilized uranyl affinity chromatography method, based on the cation-exchange properties of amino-phosphonate groups for uranyl binding. The cation distribution coefficient and loading capacity on the support were determined. Then the stability of the uranyl-bonded phase under our chromatographic conditions was optimized to promote affinity mechanisms. The successful enrichment of uranyl binding proteins from human serum was then proven using proteomic and mass spectral analysis. (authors)

  19. Affinity monolith chromatography: A review of general principles and applications.

    Science.gov (United States)

    Li, Zhao; Rodriguez, Elliott; Azaria, Shiden; Pekarek, Allegra; Hage, David S

    2017-11-01

    Affinity monolith chromatography, or AMC, is a liquid chromatographic method in which the support is a monolith and the stationary phase is a biological-binding agent or related mimic. AMC has become popular for the isolation of biochemicals, for the measurement of various analytes, and for studying biological interactions. This review will examine the principles and applications of AMC. The materials that have been used to prepare AMC columns will be discussed, which have included various organic polymers, silica, agarose, and cryogels. Immobilization schemes that have been used in AMC will also be considered. Various binding agents and applications that have been reported for AMC will then be described. These applications will include the use of AMC for bioaffinity chromatography, immunoaffinity chromatography, dye-ligand affinity chromatography, and immobilized metal-ion affinity chromatography. The use of AMC with chiral stationary phases and as a tool to characterize biological interactions will also be examined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

    Science.gov (United States)

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

    2015-08-01

    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Molecular modeling of protein A affinity chromatography.

    Science.gov (United States)

    Salvalaglio, Matteo; Zamolo, Laura; Busini, Valentina; Moscatelli, Davide; Cavallotti, Carlo

    2009-12-11

    The properties of the complex between fragment B of Protein A and the Fc domain of IgG were investigated adopting molecular dynamics with the intent of providing useful insight that might be exploited to design mimetic ligands with properties similar to those of Protein A. Simulations were performed both for the complex in solution and supported on an agarose surface, which was modeled as an entangled structure constituted by two agarose double chains. The energetic analysis was performed by means of the molecular mechanics Poisson Boltzmann surface area (MM/PBSA), molecular mechanics generalized Born surface area (MM/GBSA), and the linear interaction energy (LIE) approaches. An alanine scan was performed to determine the relative contribution of Protein A key amino acids to the complex interaction energy. It was found that three amino acids play a dominant role: Gln 129, Phe 132 and Lys 154, though also four other residues, Tyr 133, Leu 136, Glu 143 and Gln 151 contribute significantly to the overall binding energy. A successive molecular dynamics analysis of Protein A re-organization performed when it is not in complex with IgG has however shown that Phe 132 and Tyr 133 interact among themselves establishing a significant pi-pi interaction, which is disrupted upon formation of the complex with IgG and thus reduces consistently their contribution to the protein-antibody bond. The effect that adsorbing fragment B of Protein A on an agarose support has on the stability of the protein-antibody bond was investigated using a minimal molecular model and compared to a similar study performed for a synthetic ligand. It was found that the interaction with the surface does not hinder significantly the capability of Protein A to interact with IgG, while it is crucial for the synthetic ligand. These results indicate that ligand-surface interactions should be considered in the design of new synthetic affinity ligands in order to achieve results comparable to those of Protein A

  2. Fragments of protein A eluted during protein A affinity chromatography.

    Science.gov (United States)

    Carter-Franklin, Jayme N; Victa, Corazon; McDonald, Paul; Fahrner, Robert

    2007-09-07

    Protein A affinity chromatography is a common method for process scale purification of monoclonal antibodies. During protein A affinity chromatography, protein A ligand co-elutes with the antibody (commonly called leaching), which is a potential disadvantage since the leached protein A may need to be cleared for pharmaceutical antibodies. To determine the mechanism of protein A leaching and characterize the leached protein A, we fluorescently labeled the protein A ligand in situ on protein A affinity chromatography media. We found that intact protein A leaches when loading either purified antibody or unpurified antibody in harvested cell culture fluid (HCCF), and that additionally fragments of protein A leach when loading HCCF. The leaching of protein A fragments can be reduced by EDTA, suggesting that proteinases contribute to the generation of protein A fragments. We found that protein A fragments larger than about 6000 Da can be measured by enzyme linked immunosorbent assay, and that they can be more difficult to clear than whole protein A by cation-exchange chromatography.

  3. Development of immobilized membrane-based affinity columns for use in the online characterization of membrane bound proteins and for targeted affinity isolations

    International Nuclear Information System (INIS)

    Moaddel, Ruin; Wainer, Irving W.

    2006-01-01

    Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (K d values) and non-linear chromatography can be used to assess the association (k on ) and dissociation (k off ) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein

  4. Development of immobilized membrane-based affinity columns for use in the online characterization of membrane bound proteins and for targeted affinity isolations

    Energy Technology Data Exchange (ETDEWEB)

    Moaddel, Ruin [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States); Wainer, Irving W. [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States)]. E-mail: Wainerir@grc.nia.nih.gov

    2006-03-30

    Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (K {sub d} values) and non-linear chromatography can be used to assess the association (k {sub on}) and dissociation (k {sub off}) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein.

  5. Selection of ligands for affinity chromatography using quartz crystal biosensor.

    Science.gov (United States)

    Liu, Yang; Tang, Xiaoling; Liu, Feng; Li, Ke'an

    2005-07-01

    This paper described a new strategy for rapid selecting ligands for application in affinity chromatography using a quartz crystal microbalance (QCM) biosensor. An aminoglycoside antibiotic drug, kanamycin (KM), was immobilized on the gold electrodes of the QCM sensor chip. The binding interactions of the immobilized KM with various proteins in solution were monitored as the variations of the resonant frequency of the modified sensor. Such a rapid screen analysis of interactions indicated clearly that KM-immobilized sensor showed strong specific interaction only with lysozyme (LZM). The resultant sensorgrams were rapidly analyzed by using a kinetic analysis software based on a genetic algorithm to derive both the kinetic rate constants (k(ass) and k(diss)) and equilibrium dissociation constants (K(D)) for LZM-KM interactions. The immobilized KM showed higher affinity to LZM with a dissociation constant on the order of 10(-5) M, which is within the range of 10(-4)-10(-8) M and suitable for an affinity ligand. Therefore, KM was demonstrated for the first time as a novel affinity ligand for purification of LZM and immobilized onto the epoxy-activated silica in the presence of a high potassium phosphate concentration. The KM immobilized affinity column has proved useful for a very convenient purification of LZM from chicken egg white. The purity of LZM obtained was higher than 90%, as determined by densitometric scanning of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified fraction. These results confirmed that the selected KM ligand is indeed a valuable affinity ligand for purification of LZM. The new screening strategy based on a QCM biosensor is expected to be a promising way for rapid selecting specific ligands for purifying other valuable proteins.

  6. PHARMACEUTICAL AND BIOMEDICAL APPLICATIONS OF AFFINITY CHROMATOGRAPHY: RECENT TRENDS AND DEVELOPMENTS

    Science.gov (United States)

    Hage, David S.; Anguizola, Jeanethe A.; Bi, Cong; Li, Rong; Matsuda, Ryan; Papastavros, Efthimia; Pfaunmiller, Erika; Vargas, John; Zheng, Xiwei

    2012-01-01

    Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered. PMID:22305083

  7. Fatty acid and drug binding to a low-affinity component of human serum albumin, purified by affinity chromatography

    DEFF Research Database (Denmark)

    Vorum, H; Pedersen, A O; Honoré, B

    1992-01-01

    Binding equilibria for decanoate to a defatted, commercially available human serum albumin preparation were investigated by dialysis exchange rate determinations. The binding isotherm could not be fitted by the general binding equation. It was necessary to assume that the preparation was a mixture...... of two albumin components about 40% of the albumin having high affinity and about 60% having low affinity. By affinity chromatography we succeeded in purifying the low-affinity component from the mixture. The high-affinity component, however, could not be isolated. We further analyzed the fatty acid...... and drug binding abilities of the low-affinity component. The fatty acids decanoate, laurate, myristate and palmitate were bound with higher affinity to the mixture than to the low-affinity component. Diazepam was bound with nearly the same affinity to the low-affinity component as to the albumin mixture...

  8. Evaluation of galectin binding by frontal affinity chromatography (FAC).

    Science.gov (United States)

    Iwaki, Jun; Hirabayashi, Jun

    2015-01-01

    Frontal affinity chromatography (FAC) is a simple and versatile procedure enabling quantitative determination of diverse biological interactions in terms of dissociation constants (K d), even though these interactions are relatively weak. The method is best applied to glycans and their binding proteins, with the analytical system operating on the basis of highly reproducible isocratic elution by liquid chromatography. Its application to galectins has been successfully developed to characterize their binding specificities in detail. As a result, their minimal requirements for recognition of disaccharides, i.e., β-galactosides, as well as characteristic features of individual galectins, have been elucidated. In this chapter, we describe standard procedures to determine the K d's for interactions between a series of standard glycans and various galectins.

  9. Toward improving selectivity in affinity chromatography with PEGylated affinity ligands: the performance of PEGylated protein A.

    Science.gov (United States)

    González-Valdez, José; Yoshikawa, Alex; Weinberg, Justin; Benavides, Jorge; Rito-Palomares, Marco; Przybycien, Todd M

    2014-01-01

    Chemical modification of macromolecular affinity chromatography ligands with polyethylene glycol chains or "PEGylation" can potentially improve selectivity by sterically suppressing non-specific binding interactions without sacrificing binding capacity. For a commercial protein A affinity media and with yeast extract (YE) and fetal bovine serum (FBS) serving as mock contaminants, we found that the ligand accounted for more than 90% of the media-associated non-specific binding, demonstrating an opportunity for improvement. The IgG static binding affinity of protein A mono-PEGylated with 5.0 and 20.7 kDa poly(ethylene glycol) chains was found to be preserved using a biomolecular interaction screening platform. Similar in situ PEGylations of the commercial protein A media were conducted and the modified media was functionally characterized with IgG solutions spiked with YE and FBS. Ligand PEGylation reduced the mass of media-associated contaminants by a factor of two to three or more. Curiously, we also found an increase of up to 15% in the average recovery of IgG on elution after PEGylation. Combined, these effects produced an order of magnitude increase in the IgG selectivity on average when spiked with YE and a two- to three-fold increase when spiked with FBS relative to the commercial media. Dynamic binding capacity and mass-transfer resistance measurements revealed a reduction in dynamic capacity attributed to a decrease in IgG effective pore diffusivity and possibly slower IgG association kinetics for the PEGylated protein A ligands. Ligand PEGylation is a viable approach to improving selectivity in affinity chromatography with macromolecular ligands. © 2014 American Institute of Chemical Engineers.

  10. Rapid Buffer and Ligand Screening for Affinity Chromatography by Multiplexed Surface Plasmon Resonance Imaging

    NARCIS (Netherlands)

    Geuijen, K.P.M.; Wijk-Basten, van Danielle E.J.W.; Egging, Davis F.; Schasfoort, Richard B.M.; Eppink, M.H.M.

    2017-01-01

    Protein purifications are often based on the principle of affinity chromatography, where the protein of interest selectively binds to an immobilized ligand. The development of affinity purification requires selecting proper wash and elution conditions. In recent years, miniaturization of the

  11. Dye-Affinity Nanofibrous Membrane for Adsorption of Lysozyme: Preparation and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Steven Sheng-Shih Wang

    2018-01-01

    Full Text Available Polyacrylonitrile (PAN nanofibrous membrane was prepared by an electrospinning technique. After heat treatment and alkaline hydrolysis, the weak ion exchange membrane was grafted with chitosan molecule and then covalently immobilized with a Cibacron Blue F3GA (CB. Fibre diameter, porosity and pore size of the membrane and immobilized dye density were characterized. Furthermore, the membrane was applied to evaluate the binding performance of lysozyme under various operating parameters (pH, chitosan mass per volume ratio, dye concentration, ionic strength and temperature in batch mode. The experimental results were directly applied to purify lysozyme from chicken egg white by membrane chromatography. The results showed that the capture efficiency, recovery yield and purification factor were 90 and 87 %, and 47-fold, respectively, in a single step. The binding capacity remained consistent after five repeated cycles of adsorption-desorption operations. This work demonstrates that the dye-affinity nanofibrous membrane holds great potential for purification of lysozyme from real feedstock.

  12. Purification of sequence-specific DNA-binding proteins by affinity chromatography.

    Science.gov (United States)

    Kerrigan, L A; Kadonaga, J T

    2001-05-01

    Affinity chromatography is a very effective and straightforward means of purifying a protein based on its sequence-specific DNA-binding properties. The affinity chromatography procedure described in this unit uses DNA containing specific recognition sites for the desired protein that has been covalently linked to a solid support. The first basic protocol describes preparation of a DNA affinity resin, including cyanogen bromide (CNBr) activation of the agarose support. An provides a method to couple DNA to commercially available CNBr-activated Sepharose, and a support protocol describes how to purify crude synthetic oligonucleotides by gel electrophoresis prior to preparation of the affinity resin. The second basic protocol outlines the affinity chromatography procedure. A second support protocol describes determination of the appropriate type and quantity of nonspecific competitor DNA that should be used in the procedure and its preparation. Parameters essential to the success of an affinity chromatography experiment are discussed in detail in the Commentary.

  13. Membrane Affinity of Platensimycin and Its Dialkylamine Analogs

    Directory of Open Access Journals (Sweden)

    Ian Rowe

    2015-08-01

    Full Text Available Membrane permeability is a desired property in drug design, but there have been difficulties in quantifying the direct drug partitioning into native membranes. Platensimycin (PL is a new promising antibiotic whose biosynthetic production is costly. Six dialkylamine analogs of PL were synthesized with identical pharmacophores but different side chains; five of them were found inactive. To address the possibility that their activity is limited by the permeation step, we calculated polarity, measured surface activity and the ability to insert into the phospholipid monolayers. The partitioning of PL and the analogs into the cytoplasmic membrane of E. coli was assessed by activation curve shifts of a re-engineered mechanosensitive channel, MscS, in patch-clamp experiments. Despite predicted differences in polarity, the affinities to lipid monolayers and native membranes were comparable for most of the analogs. For PL and the di-myrtenyl analog QD-11, both carrying bulky sidechains, the affinity for the native membrane was lower than for monolayers (half-membranes, signifying that intercalation must overcome the lateral pressure of the bilayer. We conclude that the biological activity among the studied PL analogs is unlikely to be limited by their membrane permeability. We also discuss the capacity of endogenous tension-activated channels to detect asymmetric partitioning of exogenous substances into the native bacterial membrane and the different contributions to the thermodynamic force which drives permeation.

  14. Hydrophobic interaction membrane chromatography for bioseparation and responsive polymer ligands involved

    Science.gov (United States)

    Chen, Jingling; Peng, Rong; Chen, Xiaonong

    2017-09-01

    Hydrophobic interaction chromatography (HIC) is a rapid growing bioseparation technique, which separates biomolecules, such as therapeutic proteins and antibodys, based on the reversible hydrophobic interaction between immobilized hydrophobic ligands on chromatographic resin spheres and non-polar regions of solute molecule. In this review, the fundamental concepts of HIC and the factors that may affect purification efficiency of HIC is summarized, followed by the comparison of HIC with affinity chromatography and ion-exchange chromatography. Hydrophobic interaction membrane chromatography (HIMC) combines the advantages of HIC and membrane process and has showed great potential in bioseparation. For better understanding of HIMC, this review presents an overview of two main concerns about HIMC, i.e. membrane materials and hydrophobic ligands. Specifically, cellulose fiber-based membrane substrate and environment-responsive ligands are emphasized.

  15. The Binding of Biotin to Sepharose-Avidin Column: Demonstration of the Affinity Chromatography Technique

    Science.gov (United States)

    Landman, A. D.; Landman, N. N.

    1976-01-01

    Describes a biochemistry experiment that illustrates the methodology of affinity chromatography by attaching avidin, a glycoprotein in egg white, to a Sepharose matrix in order to bind biotin-containing proteins. (MLH)

  16. Purification of a Mycoplasma pneumoniae adhesin by monoclonal antibody affinity chromatography.

    OpenAIRE

    Leith, D K; Baseman, J B

    1984-01-01

    A 165,000-dalton surface protein of Mycoplasma pneumoniae, designated protein P1, appears to be the major attachment ligand of the pathogen. We employed monoclonal antibody affinity chromatography to obtain purified protein P1.

  17. Comparison of different transition metal ions for immobilized metal affinity chromatography of selenoprotein P from human plasma

    DEFF Research Database (Denmark)

    Sidenius, U; Farver, O; Jøns, O

    1999-01-01

    Cu2+, Ni2+, Zn2+, Co2+ and Cd2+ were evaluated in metal ion affinity chromatography for enrichment of selenoprotein P, and immobilized Co2+ affinity chromatography was found to be the most selective chromatographic method. The chromatography was performed by fast protein liquid chromatography...... and the fractionation was followed by analysis of the collected fractions for selenium by inductively coupled plasma mass spectrometry. By the combination of immobilized Co2+ affinity chromatography and heparin affinity chromatography a simple method was developed yielding a 14,800-fold enrichment of selenoprotein P...

  18. Affinity Labeling of Membrane Receptors Using Tissue-Penetrating Radiations

    Directory of Open Access Journals (Sweden)

    Franklin C. Wong

    2013-01-01

    Full Text Available Photoaffinity labeling, a useful in vivo biochemical tool, is limited when applied in vivo because of the poor tissue penetration by ultraviolet (UV photons. This study investigates affinity labeling using tissue-penetrating radiation to overcome the tissue attenuation and irreversibly label membrane receptor proteins. Using X-ray (115 kVp at low doses (<50 cGy or Rad, specific and irreversible binding was found on striatal dopamine transporters with 3 photoaffinity ligands for dopamine transporters, to different extents. Upon X-ray exposure (115 kVp, RTI-38 and RTI-78 ligands showed irreversible and specific binding to the dopamine transporter similar to those seen with UV exposure under other conditions. Similarly, gamma rays at higher energy (662 keV also affect irreversible binding of photoreactive ligands to peripheral benzodiazepine receptors (by PK14105 and to the dopamine (D2 membrane receptors (by azidoclebopride, respectively. This study reports that X-ray and gamma rays induced affinity labeling of membrane receptors in a manner similar to UV with photoreactive ligands of the dopamine transporter, D2 dopamine receptor (D2R, and peripheral benzodiazepine receptor (PBDZR. It may provide specific noninvasive irreversible block or stimulation of a receptor using tissue-penetrating radiation targeting selected anatomic sites.

  19. Frontal affinity chromatography: A unique research tool for biospecific interaction that promotes glycobiology

    Science.gov (United States)

    KASAI, Kenichi

    2014-01-01

    Combination of bioaffinity and chromatography gave birth to affinity chromatography. A further combination with frontal analysis resulted in creation of frontal affinity chromatography (FAC). This new versatile research tool enabled detailed analysis of weak interactions that play essential roles in living systems, especially those between complex saccharides and saccharide-binding proteins. FAC now becomes the best method for the investigation of saccharide-binding proteins (lectins) from viewpoints of sensitivity, accuracy, and efficiency, and is contributing greatly to the development of glycobiology. It opened a door leading to deeper understanding of the significance of saccharide recognition in life. The theory is also concisely described. PMID:25169774

  20. Purification of phage display-modified bacteriophage T4 by affinity chromatography

    Directory of Open Access Journals (Sweden)

    Figura Grzegorz

    2011-05-01

    Full Text Available Abstract Background Affinity chromatography is one of the most efficient protein purification strategies. This technique comprises a one-step procedure with a purification level in the order of several thousand-fold, adaptable for various proteins, differentiated in their size, shape, charge, and other properties. The aim of this work was to verify the possibility of applying affinity chromatography in bacteriophage purification, with the perspective of therapeutic purposes. T4 is a large, icosahedral phage that may serve as an efficient display platform for foreign peptides or proteins. Here we propose a new method of T4 phage purification by affinity chromatography after its modification with affinity tags (GST and Histag by in vivo phage display. As any permanent introduction of extraneous DNA into a phage genome is strongly unfavourable for medical purposes, integration of foreign motifs with the phage genome was not applied. The phage was propagated in bacteria expressing fusions of the phage protein Hoc with affinity tags from bacterial plasmids, independently from the phage expression system. Results Elution profiles of phages modified with the specific affinity motifs (compared to non-specific phages document their binding to the affinity resins and effective elution with standard competitive agents. Non-specific binding was also observed, but was 102-105 times weaker than the specific one. GST-modified bacteriophages were also effectively released from glutathione Sepharose by proteolytic cleavage. The possibility of proteolytic release was designed at the stage of expression vector construction. Decrease in LPS content in phage preparations was dependent on the washing intensity; intensive washing resulted in preparations of 11-40 EU/ml. Conclusions Affinity tags can be successfully incorporated into the T4 phage capsid by the in vivo phage display technique and they strongly elevate bacteriophage affinity to a specific resin. Affinity

  1. Cytotoxicity of seven bisphenol analogues compared to bisphenol A and relationships with membrane affinity data.

    Science.gov (United States)

    Russo, Giacomo; Capuozzo, Antonella; Barbato, Francesco; Irace, Carlo; Santamaria, Rita; Grumetto, Lucia

    2018-06-01

    Bisphenol A (BPA) is a chemical used in numerous industrial applications. Due to its well ascertained toxicity as endocrine disruptor, industries have started to replace it with other bisphenols whose alleged greater safety is scarcely supported by literature studies. In this study, the toxicity of seven BPA analogues was evaluated using both in silico and in vitro techniques, as compared to BPA toxicity. Furthermore, their affinity indexes for phospholipids (i.e. phospholipophilicity) were determined by immobilized artificial membrane liquid chromatography (IAM-LC) and possible relationships with in vitro toxic activity were also investigated. The results on four different cell cultures yielded similar ranking of toxicity for the bisphenols considered, with IC 50 values confirming their poor acute toxicity. As compared to BPA, bisphenol AF, bisphenol B, bisphenol M, and bisphenol A diglycidyl ether resulted more toxic, while bisphenol S, bisphenol F and bisphenol E were found as the less toxic congeners. These results are partly consistent with the scale of phospholipid affinity showing that toxicity increases at increasing membrane affinity. Therefore, phospholipophilicity determination can be assumed as a useful preliminary tool to select less toxic congeners to surrogate BPA in industrial applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. New matrices for the purification of pectinases by affinity chromatography.

    Science.gov (United States)

    Lobarzewski, J; Fiedurek, J; Ginalska, G; Wolski, T

    1985-09-16

    Polygalacturonic acid was used as a ligand in the affinity technique for pectinases purification from the filtrate of Aspergillus niger 71 culture. For this purpose four matrices were examined, namely, alkylamine controlled porous glass (CPG), alkylamine silica gel as well as keratin or polyamide coated silica gel. Good results of pectinase purification was obtained on silanized CPG or keratin coated silica gel supports.

  3. Profiling of drug binding proteins by monolithic affinity chromatography in combination with liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Zhang, Xuepei; Wang, Tongdan; Zhang, Hanzhi; Han, Bing; Wang, Lishun; Kang, Jingwu

    2014-09-12

    A new approach for proteome-wide profiling drug binding proteins by using monolithic capillary affinity chromatography in combination with HPLC-MS/MS is reported. Two immunosuppresive drugs, namely FK506 and cyclosporin A, were utilized as the experimental models for proof-of-concept. The monolithic capillary affinity columns were prepared through a single-step copolymerization of the drug derivatives with glycidyl methacrylate and ethylene dimethacrylate. The capillary chromatography with the affinity monolithic column facilitates the purification of the drug binding proteins from the cell lysate. By combining the capillary affinity column purification and the shot-gun proteomic analysis, totally 33 FK506- and 32 CsA-binding proteins including all the literature reported target proteins of these two drugs were identified. Among them, two proteins, namely voltage-dependent anion-selective channel protein 1 and serine/threonine-protein phosphatase PGAM5 were verified by using the recombinant proteins. The result supports that the monolithic capillary affinity chromatography is likely to become a valuable tool for profiling of binding proteins of small molecular drugs as well as bioactive compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Cereal n-glycoproteins enrichment by lectin affinity monolithic chromatography

    Czech Academy of Sciences Publication Activity Database

    Flodrová, Dana; Bobálová, Janette; Laštovičková, Markéta

    2016-01-01

    Roč. 44, č. 2 (2016), s. 286-297 ISSN 0133-3720 R&D Projects: GA ČR(CZ) GPP503/12/P395 Institutional support: RVO:68081715 Keywords : barley * wheat * glycoprotein * mass spectrometry * lectin chromatography Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.496, year: 2016

  5. Analysis of Biological Interactions by Affinity Chromatography: Clinical and Pharmaceutical Applications.

    Science.gov (United States)

    Hage, David S

    2017-06-01

    The interactions between biochemical and chemical agents in the body are important in many clinical processes. Affinity chromatography and high-performance affinity chromatography (HPAC), in which a column contains an immobilized biologically related binding agent, are 2 methods that can be used to study these interactions. This review presents various approaches that can be used in affinity chromatography and HPAC to characterize the strength or rate of a biological interaction, the number and types of sites that are involved in this process, and the interactions between multiple solutes for the same binding agent. A number of applications for these methods are examined, with an emphasis on recent developments and high-performance affinity methods. These applications include the use of these techniques for fundamental studies of biological interactions, high-throughput screening of drugs, work with modified proteins, tools for personalized medicine, and studies of drug-drug competition for a common binding agent. The wide range of formats and detection methods that can be used with affinity chromatography and HPAC for examining biological interactions makes these tools attractive for various clinical and pharmaceutical applications. Future directions in the development of small-scale columns and the coupling of these methods with other techniques, such as mass spectrometry or other separation methods, should continue to increase the flexibility and ease with which these approaches can be used in work involving clinical or pharmaceutical samples. © 2016 American Association for Clinical Chemistry.

  6. Twin-column CaptureSMB: a novel cyclic process for protein A affinity chromatography.

    Science.gov (United States)

    Angarita, Monica; Müller-Späth, Thomas; Baur, Daniel; Lievrouw, Roel; Lissens, Geert; Morbidelli, Massimo

    2015-04-10

    A twin-column counter-current chromatography processes, CaptureSMB, was used for the protein A affinity capture of a monoclonal antibody (mAb). By means of sequential loading, the process improves the utilization of the stationary phase by achieving loadings much closer to the static binding capacity of the resin in comparison to batch chromatography. Using a mAb capture case study with protein A affinity chromatography, the performance and product quality obtained from CaptureSMB and batch processes were compared. The effect of the flow rate, column length and titer concentration on the process performance and product quality were evaluated. CaptureSMB showed superior performance compared to batch chromatography with respect to productivity, capacity utilization, product concentration and buffer consumption. A simplified economic evaluation showed that CaptureSMB could decrease resin costs of 10-30% depending on the manufacturing scenario. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. APPLICATION OF IMMUNOGLOBULIN-BINDING PROTEINS A, G, L IN THE AFFINITY CHROMATOGRAPHY

    Directory of Open Access Journals (Sweden)

    О. V. Sviatenko

    2014-04-01

    Full Text Available Proteins A, G and L are native or recombinant proteins of microbial origin that bind to mammalian immunoglobulins. Preferably recombinant variants of proteins A, G, L are used in biotechnology for affinity sorbents production. Сomparative characteristics of proteins A, G, L and affinity sorbents on the basis of them, advantages and disadvantages of these proteins application as ligands in the affinity chromatography are done. Analysis of proteins A, G, L properties is presented. Binding specificities and affinities of these proteins differ between species and antibody subclass. Protein А has high affinity to human IgG1, IgG2, IgG4, mouse IgG2a, IgG2b, IgG3, goat and sheep IgG2, dog, cat, guinea pig, rabbit IgG. Protein G binds strongly to human, mouse, cow, goat, sheep and rabbit IgG. Protein L has ability of strong binding to immunoglobulin kappa-chains of human, mouse, rat and pig. Expediency of application of affinity chromatography with usage of sorbents on the basis of immobilized proteins A, G, L are shown for isolation and purification of antibodies different classes. Previously mentioned method is used as an alternative to conventional methods of protein purification, such as ion-exchange, hydrophobic interactions, metal affinity chromatography, ethanol precipitation due to simplicity in usage, possibility of one-step purification process, obtaining of proteins high level purity, multiuse at maintenance of proper storage and usage conditions. Affinity sorbents on the basis of immobilized proteins A, G, L are used not only for antibodies purification, but also for extraction of different antibodies fractions from blood serum.

  8. Dye-ligand affinity chromatography of RNA polymerase II.

    Science.gov (United States)

    Skripal, I G; Weeks, J R; Greenleaf, A L

    1986-01-01

    The binding of wheat germ RNA polymerase II to five different dye-ligand chromatography gels (Matrex gels, Amicon Corp.) was tested. A quantitative binding of the enzyme to four of the gels, namely Dyematrex gels Blue A, Blue B, Red A and Green A was observed. Only the Orange A gel column failed to bind the enzyme strongly. Nearly 100% of the activity could be recovered from the Green A column by elution with high salt concentration and high pH. Under these conditions only a part of the activity was eluted from the other three columns since the enzyme bound tightly. Enzyme activity could be removed from the columns by elution with nucleotide substrates, but the yield from the Blue A, Blue B and Red A columns was still low (7 to 42%). The Green A Matrex gel appeared to be useful for the purification and analysis of RNA polymerase.

  9. Selective isolation of β-glucan from corn pericarp hemicelluloses by affinity chromatography on cellulose column.

    OpenAIRE

    Yoshida, Tomoki; Honda, Yoichi; Tsujimoto, Takashi; Uyama, Hiroshi; Azuma, Jun-ichi

    2014-01-01

    A combination of anion-exchange chromatography and affinity chromatography on a cellulose column was found to be effective for the isolation of β-(1, 3;1, 4)-glucan (BG) from corn pericarp hemicelluloses (CPHs). CPHs containing 6.6% BG were extracted from corn pericarp with 6M urea-2 wt% NaOH solution and initially fractionated into neutral and acidic parts by anion exchange chromatography to remove acidic arabinoxylan consisting of arabinose (35.6%) and xylose (50.9%). The neutral fraction (...

  10. Comprehensive and Reproducible Phosphopeptide Enrichment Using Iron Immobilized Metal Ion Affinity Chromatography (Fe-IMAC) Columns

    NARCIS (Netherlands)

    Ruprecht, Benjamin; Koch, Heiner; Medard, Guillaume; Mundt, Max; Kuster, Bernhard; Lemeer, Simone

    Advances in phosphopeptide enrichment methods enable the identification of thousands of phosphopeptides from complex samples. Current offline enrichment approaches using TiO2, Ti, and Fe immobilized metal ion affinity chromatography (IMAC) material in batch or microtip format are widely used, but

  11. Selective retention of basic compounds by metal aquo-ion affinity chromatography.

    Science.gov (United States)

    Asakawa, Yoshiki; Yamamoto, Eiichi; Asakawa, Naoki

    2014-10-01

    A novel metal aquo-ion affinity chromatography has been developed for the analysis of basic compounds using heat-treated silica gel containing hydrated metal cations (metal aquo-ions) as the packing material. The packing materials of the metal aquo-ion affinity chromatography were prepared by the immobilization of a single metal component such as Fe(III), Al(III), Ag(I), and Ni(II) on silica gel followed by extensive heat treatment. The immobilized metals form aquo-ions to present cation-exchange ability for basic analytes and the cation-exchange ability for basic analytes depends on pKa of the immobilized metal species. In the present study, to evaluate the retention characteristics of metal aquo-ion affinity chromatography, the on-line solid-phase extraction of drugs was investigated. Obtained data clearly evidence the selective retention capability of metal aquo-ion affinity chromatography for basic analytes with sufficient capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Characterization of the human cerebrospinal fluid phosphoproteome by titanium dioxide affinity chromatography and mass spectrometry

    DEFF Research Database (Denmark)

    Bahl, Justyna Maria Czarna; Jensen, Søren Skov; Larsen, Martin R

    2008-01-01

    of phosphorylation aberrations in health and disease. Toward that goal we here describe a method for a comprehensive isolation and identification of phosphorylated tryptic peptides derived from CSF proteins using a simple sample preparation step and titanium dioxide-affinity chromatography followed by MALDI...

  13. Displacement affinity chromatography of protein phosphatase one (PP1 complexes

    Directory of Open Access Journals (Sweden)

    Gourlay Robert

    2008-11-01

    Full Text Available Abstract Background Protein phosphatase one (PP1 is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif. Results We demonstrate that a peptide based on the RVXF/W motif can effectively displace PP1 bound proteins from PP1 retained on the phosphatase affinity matrix microcystin-Sepharose. Subsequent co-immunoprecipitation experiments confirmed that each identified binding protein was either a direct PP1 interactor or was in a complex that contains PP1. Our results have linked PP1 to numerous new nuclear functions and proteins, including Ki-67, Rif-1, topoisomerase IIα, several nuclear helicases, NUP153 and the TRRAP complex. Conclusion This modification of the microcystin-Sepharose technique offers an effective means of purifying novel PP1 regulatory subunits and associated proteins and provides a simple method to uncover a link between PP1 and additional cellular processes.

  14. Comparison of different transition metal ions for immobilized metal affinity chromatography of selenoprotein P from human plasma

    DEFF Research Database (Denmark)

    Sidenius, U; Farver, O; Jøns, O

    1999-01-01

    Cu2+, Ni2+, Zn2+, Co2+ and Cd2+ were evaluated in metal ion affinity chromatography for enrichment of selenoprotein P, and immobilized Co2+ affinity chromatography was found to be the most selective chromatographic method. The chromatography was performed by fast protein liquid chromatography...... and the fractionation was followed by analysis of the collected fractions for selenium by inductively coupled plasma mass spectrometry. By the combination of immobilized Co2+ affinity chromatography and heparin affinity chromatography a simple method was developed yielding a 14,800-fold enrichment of selenoprotein P....... The purity of the protein was determined by SDS-PAGE and by sequencing from polyvinylidene difluoride blots of SDS-PAGE gels....

  15. Routes to improve binding capacities of affinity resins demonstrated for Protein A chromatography.

    Science.gov (United States)

    Müller, Egbert; Vajda, Judith

    2016-05-15

    Protein A chromatography is a well-established platform in downstream purification of monoclonal antibodies. Dynamic binding capacities are continuously increasing with almost every newly launched Protein A resin. Nevertheless, binding capacities of affinity chromatography resins cannot compete with binding capacities obtained with modern ion exchange media. Capacities of affinity resins are roughly 50% lower. High binding capacities of ion exchange media are supported by spacer technologies. In this article, we review existing spacer technologies of affinity chromatography resins. A yet known effective approach to increase the dynamic binding capacity of Protein A resins is oligomerization of the particular Protein A motifs. This resembles the tentacle technology used in ion exchange chromatography. Dynamic binding capacities of a hexameric ligand are roughly twice as high compared to capacities obtained with a tetrameric ligand. Further capacity increases up to 130mg/ml can be realized with the hexamer ligand, if the sodium phosphate buffer concentration is increased from 20 to 100mM. Equilibrium isotherms revealed a BET shape for the hexamer ligand at monoclonal antibody liquid phase concentrations higher than 9mg/ml. The apparent multilayer formation may be due to hydrophobic forces. Other quality attributes such as recovery, aggregate content, and overall purity of the captured monoclonal antibody are not affected. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Rational methods for predicting human monoclonal antibodies retention in protein A affinity chromatography and cation exchange chromatography. Structure-based chromatography design for monoclonal antibodies.

    Science.gov (United States)

    Ishihara, Takashi; Kadoya, Toshihiko; Yoshida, Hideaki; Tamada, Taro; Yamamoto, Shuichi

    2005-11-04

    Rational methods for predicting the chromatographic behavior of human monoclonal antibodies (hMabs) in protein A affinity chromatography and cation exchange chromatography from the amino acid sequences information were proposed. We investigated the relation between the structures of 28 hMabs and their chromatographic behavior in protein A affinity chromatography and cation exchange chromatography using linear gradient elution experiments. In protein A affinity chromatography, the elution pH of the hMabs was correlated with not only the structure of the Fc region (subclass), but also that of the variable region. The elution pH of hMabs that have LYLQMNSL sequences in between the CDR2 and CDR3 regions of the heavy chain became lower among the same subclass of hMabs. In cation exchange chromatography, the peak salt concentrations IR of hMabs that have the same sequences of variable regions (or that have a structural difference in their Fc region, which puts them into a subclass) were similar. The IR values of hMabs were well correlated with the equilibrium association constant Ke, and also with the surface positive charge distribution of the variable region of the heavy chain (corrected surface net positive charge (cN) of the VH region). Based on these findings, we developed rational methods for predicting the retention behavior, which were also tested with eight additional hMabs. By considering the information on the number of binding sites associated with protein adsorption as determined experimentally, and the surface positive charge distribution from the three-dimensional structure of Mab A, we hypothesized that hMabs is separated by cation exchange chromatography as the surface positive charge distribution of the VH region is recognized.

  17. Antibody purification using affinity chromatography: a case study with a monoclonal antibody to ractopamine.

    Science.gov (United States)

    Wang, Zhanhui; Liang, Qi; Wen, Kai; Zhang, Suxia; Shen, Jianzhong

    2014-11-15

    The application of antibodies to small molecules in the field of bioanalytics requires antibodies with stable biological activity and high purity; thus, there is a growing interest in developing rapid, inexpensive and effective procedures to obtain such antibodies. In this work, a ractopamine (RAC) derivative, N-4-aminobutyl ractopamine (ABR), was synthesized for preparing new specific affinity chromatography to purify a murine monoclonal antibody (mAb) against RAC from ascites. The performance of the new specific chromatography was compared with four other purification methods in terms of recovery, purity and biological activity of mAb. These four purification methods were prepared by using specific ligands (RAC and RAC-ovalbumin) and commercial ligands (protein G and protein A), respectively. The results showed that the highest recovery (88.1%) was achieved using the new chromatography; in comparison, the recoveries from the other methods were all below 70%. The purity of the mAbs from the new chromatography was 88.3%, while, the highest purity of 97.6% was from protein G chromatography and the lowest purity of 84.7% was from protein A chromatography. The biological activity of the purified mAb from all of the chromatography methods was comparable in enzyme-linked immunosorbent immunoassay (ELISA). Copyright © 2014 Elsevier B.V. All rights reserved.

  18. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display.

    Science.gov (United States)

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-11-14

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In 'competitive phage display' bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins.

  19. [Affinity chromatography for purification of phospholipase A2 from the venom of Central Asian cobra].

    Science.gov (United States)

    Salikhova, Z T; Akhmedzhanov, R A; Aripov, T F; Rakhimov, M M

    1989-01-01

    A method of affinity chromatography was developed for purification of phospholipase A2(PL-A2) from the Central Asian cobra venon. The enzyme was covalently coupled to a polyamide sorbent with phosphatidilethanolamine (PEA) and cytotoxin (CT). The effect of CA2+ concentration and the ion strength of the solution on the enzyme adsorption was studied. The most efficient coupling of the enzyme to the sorbent was observed at pH 8--9 in case of the Ca2+ absence and a low ion strength of the solution. For desorption of the enzyme Triton X-100 at a concentration of 0.5% should be introduced in the eluting solution. The affinity adsorption chromatography enabled the isolation of two forms of phospholipase A2 with different affinity for PEA and CT. The total yield of the enzyme was 91% at a purification degree of 5.5 and 3.5, respectively. The introduction of the second ligand (CT) in the composition of the sorbent with the phospholipid ligand allowed the authors to increase its capacity and affinity for the phospholipase A2 from the snake venom.

  20. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies

    Science.gov (United States)

    Schlothauer, Tilman; Rueger, Petra; Stracke, Jan Olaf; Hertenberger, Hubert; Fingas, Felix; Kling, Lothar; Emrich, Thomas; Drabner, Georg; Seeber, Stefan; Auer, Johannes; Koch, Stefan; Papadimitriou, Apollon

    2013-01-01

    The neonatal Fc receptor (FcRn) is important for the metabolic fate of IgG antibodies in vivo. Analysis of the interaction between FcRn and IgG in vitro might provide insight into the structural and functional integrity of therapeutic IgG that may affect pharmacokinetics (PK) in vivo. We developed a standardized pH gradient FcRn affinity liquid chromatography method with conditions closely resembling the physiological mechanism of interaction between IgG and FcRn. This method allows the separation of molecular IgG isoforms, degradation products and engineered molecules based on their affinity to FcRn. Human FcRn was immobilized on the column and a linear pH gradient from pH 5.5 to 8.8 was applied. FcRn chromatography was used in comparison to surface plasmon resonance to characterize different monoclonal IgG preparations, e.g., oxidized or aggregated species. Wild-type and engineered IgGs were compared in vitro by FcRn chromatography and in vivo by PK studies in huFcRn transgenic mice. Analytical FcRn chromatography allows differentiation of IgG samples and variants by peak pattern and retention time profile. The method can distinguish: 1) IgGs with different Fabs, 2) oxidized from native IgG, 3) aggregates from monomer and 4) antibodies with mutations in the Fc part from wild-type IgGs. Changes in the FcRn chromatographic behavior of mutant IgGs relative to the wild-type IgG correlate to changes in the PK profile in the FcRn transgenic mice. These results demonstrate that FcRn affinity chromatography is a useful new method for the assessment of IgG integrity. PMID:23765230

  1. Affinity chromatography purification of angiotensin II reactor using photoactivable biotinylated probes

    Energy Technology Data Exchange (ETDEWEB)

    Marie, J.; Seyer, R.; Lombard, C.; Desarnaud, F.; Aumelas, A.; Jard, A.; Bonnafous, J.C. (Centre CNRS-INSERM de Pharmacologie-Endocrinologie, Montpellier (France))

    1990-09-25

    The authors have developed biotinylated photoactivable probes that are suitable for covalent labeling of angiotensin II (AII) receptors and the subsequent purification of covalent complexes through immobilized avidin or streptavidin. One of these probes, biotin-NH(CH{sub 2}){sub 2}SS(CH{sub 2}){sub 2}CO-(Ala{sup 1}, Phe(4N{sub 3}){sup 8})AII, which contains a cleavage disulfide bridge in its spacer arm and which displays, in its radioiodinated form, very high affinity for AII receptors (K{sub d}{approximately}1 nM), proved to be suitable for indirect affinity chromatography of rate liver receptor with facilitated recovery from avidin gels by use of reducing agents. This constituted the central step of an efficient partial purification scheme involving hydroxylapatite chromatography, streptavidin chromatography, and thiopropyl-Sepharose chromatography. SDS-PAGE analysis and autoradiography established the identity of the purified entity (molecular weight 65K) as the AII receptor. Possible ways of completing purification to homogeneity and extrapolation of the protocols to a preparative scale are discussed, as well as the potential contribution of our new probes to the study of the structural properties of angiotensin receptors.

  2. Screening of protein-ligand interactions using dynamic protein-affinity chromatography solid-phase extraction-liquid chromatography-mass spectrometry

    NARCIS (Netherlands)

    Jonker, N.; Kool, J.; Krabbe, J.G.; Retra, K.; Lingeman, H.; Irth, H.

    2008-01-01

    A novel methodology is shown enabling the screening of mixtures of compounds for their affinity to a receptor protein. The system presented, dynamic protein-affinity chromatography solid-phase extraction (DPAC-SPE), overcomes the limitations of the existing methods by performing an incubation of the

  3. High-productivity membrane adsorbers: Polymer surface-modification studies for ion-exchange and affinity bioseparations

    Science.gov (United States)

    Chenette, Heather C. S.

    membrane adsorbers were found to have a static binding capacity for con A (6.0 mg/mL) that is nearly the same as the typical dextran-based separation media used in practice. Binding under dynamic conditions was tested using flow rates of 0.1-1.0 mL/min. No bound lectin was observed for the higher flow rate. The first Damkohler number was used to assess whether adsorption kinetics or mass transport contributed the limitation to conA binding. Analyses indicate that this system is not limited by the accessibility of the binding sites, but by the inherently low rate of adsorption of conA onto the glycopolymer. The research described in Chapter 4 focuses on reaction chemistry experiments to incorporate a phosphonate-based polymer in the membrane platform to develop a new class of affinity adsorbers that function based on their affinity for Arginine (Arg) amino acid residues. The hypothesis was that benzyl phosphonate-containing functional polymers would form strong complexes with Arg-rich proteins as a result of multivalent binding. Introducing a new class of affinity membranes for purification of Arg-rich and Arg-tagged proteins may have an impact similar to the introduction of immobilized metal ion affinity chromatography (IMAC), which would be a significant achievement. Using Arg-tags would overcome some of the associated drawbacks of using metal ions in IMAC. Additionally, some cell penetrating peptides are said to be Arg-rich, and this would be a convenient feature to exploit for their isolation and purification. Lysozyme was used as a model Arg-rich protein. The affinity membranes show a static binding capacity of 3 mg/mL. (Abstract shortened by UMI.)

  4. Aflatoxin metabolism in humans: detection of metabolites and nucleic acid adducts in urine by affinity chromatography

    International Nuclear Information System (INIS)

    Groopman, J.D.; Donahue, P.R.; Zhu, J.Q.; Chen, J.S.; Wogan, G.N.

    1985-01-01

    A high-affinity IgM monoclonal antibody specific for aflatoxins was covalently bound to Sepharose 4B and used as a preparative column to isolate aflatoxin derivatives from the urine of people and experimental animals who had been exposed to the carcinogen environmentally or under laboratory conditions. Aflatoxin levels were quantified by radioimmunoassay and high-performance liquid chromatography after elution from the affinity column. In studies on rats injected with [ 14 C]aflatoxin B1, the authors identified the major aflatoxin-DNA adduct, 2,3-dihydro-2-(N7-guanyl)-3-hydroxy-aflatoxin B1 (AFB1-N7-Gua), and the oxidative metabolites M1 and P1 as the major aflatoxin species present in the urine. When this methodology was applied to human urine samples obtained from people from the Guangxi Province of China exposed to aflatoxin B1 through dietary contamination, the aflatoxin metabolites detected were also AFB1-N7-Gua and aflatoxins M1 and P1. Therefore, affinity chromatography using a monoclonal antibody represents a useful and rapid technique with which to isolate this carcinogen and its metabolites in biochemical epidemiology and for subsequent quantitative measurements, providing exposure information that can be used for risk assessment

  5. Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin.

    Science.gov (United States)

    Wang, Wenwen; Zhang, Hao; Zhang, Zhifeng; Luo, Mengying; Wang, Yuedan; Liu, Qiongzhen; Chen, Yuanli; Li, Mufang; Wang, Dong

    2017-02-01

    In this study, poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membrane was activated by sodium hydroxide and cyanuric chloride, and then the activated membranes were functionalized by 1,3-propanediamine, hexamethylenediamine and diethylenetriamine to be affinity membranes for bilirubin removal, respectively. The chemical structures and morphologies of membranes were investigated by SEM, FTIR and XPS. And the adsorption ability of different amine-functionalized nanofibrous membranes for bilirubin was characterized. Furthermore, the effects of temperature, initial concentration of bilirubin, NaCl concentration and BSA concentration on the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane were studied. Results indicated that the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane could reach 85mg/g membrane when the initial bilirubin concentration was 200mg/L while the adsorption capacity could be increased to 110mg/g membrane if the initial bilirubin concentration was more than 400mg/L. The dynamic adsorption of diethylenetriamine-functionalized nanofibrous membrane showed that the ligands of amine groups on the membrane surface could be used as far as possible by recirculating the plasma with certain flow rates. Therefore, the diethylenetriamine-functionalized PVA-co-PE nanofibrous membrane possessed high adsorption capacity for bilirubin and it can be candidate as affinity membrane for bilirubin removal. Copyright © 2016. Published by Elsevier B.V.

  6. A new method for the screening of solid-phase combinatorial libraries for affinity chromatography.

    Science.gov (United States)

    Roque, A Cecília A; Taipa, M Angela; Lowe, Christopher R

    2004-01-01

    A new methodology for the rapid assessment of affinity ligands synthesized by combinatorial solid-phase chemistry is reported. This screening strategy utilizes the target protein conjugated to FITC, and represents an almost universal technique for the preliminary screening of solid-phase combinatorial libraries. The assessment of a triazine-scaffolded solid-phase combinatorial library of ligands, designed to bind to human IgG, was performed with FITC-human IgG, and the results compared with those obtained by conventional affinity chromatographic screening assays. The effect of different molar conjugation ratios of FITC-IgG (F/P) was evaluated. Independently of the F/P ratio, no false negative results were observed, although lower F/P ratios diminished non-specific interactions and the number of false positives. The nature of the substituents on the triazine scaffold was not related to the number of false positive IgG-binding ligands. The reproducibility of the FITC technique, using FITC-human IgG conjugates with low F/P ratio (F/P=2), was also evaluated. The FITC-based technique proved to be efficient and accurate in the identification of strongly binding ligands (binding >50% of loaded protein, by standard affinity chromatographic assays), and is envisaged as a versatile and cost-effective method to screen other systems, and evaluate several binding/elution conditions at small-scale, prior to scale-up to standard affinity chromatography. Copyright 2004 John Wiley & Sons, Ltd.

  7. Fractionation of Aspergillus niger cellulases by combined ion exchange affinity chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, R.F.; Allen, T.L.; Dykema, P.A.

    1987-02-05

    Eight chemically modified cellulose supports were tested for their ability to adsorb components of the Aspergillus niger cellulase system. At least two of the most effective adsorbents, aminoethyl cellulose and carboxymethyl cellulose, were shown to be useful for the fractionation of cellulases. These supports apparently owe their resolving capacity to both ion exchange and biospecific binding effects; however, the relative importance of each effect is unknown. These observations form the basis for a new cellulase fractionation technique, combined ion exchange-affinity chromatography. 22 references.

  8. Ni2+-based immobilized metal ion affinity chromatography of lactose operon repressor protein from Escherichia coli.

    Science.gov (United States)

    Velkov, Tony; Jones, Alun; Lim, Maria L R

    2008-01-01

    A two-step chromatographic sequence is described for the purification of native lactose operon repressor protein from Escherichia coli cells. The first step involves Ni(2+)-based immobilized metal ion affinity chromatography of the soluble cytoplasmic extract. This method provides superior speed, resolution and yield than the established phosphocellulose cation-exchange chromatographic procedure. Anion-exchange chromatography is used for further purification to >95% purity. The identity and purity of the lactose repressor protein were demonstrated using sodium dodecylsulphate polyacrylamide electrophoresis, crystallization, tryptic finger-printing mass spectrometry, and inducer binding assays. The purified lac repressor exhibited inducer sensitivity for operator DNA binding and undergoes a conformational change upon inducer binding. By all these extensive biochemical criteria, the purified protein behaves exactly as that described for the Escherichia coli lactose operon repressor.

  9. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    Science.gov (United States)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  10. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    Science.gov (United States)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-07-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.

  11. Adsorption of endotoxins on Ca2+ -iminodiacetic acid by metal ion affinity chromatography.

    Science.gov (United States)

    Lopes, André Moreni; Romeu, Jorge Sánchez; Meireles, Rolando Páez; Perera, Gabriel Marquez; Morales, Rolando Perdomo; Pessoa, Adalberto; Cárdenas, Lourdes Zumalacárregui

    2012-11-01

    Endotoxins (also known as lipopolysaccharides (LPS)) are undesirable by-products of recombinant proteins, purified from Escherichia coli. LPS can be considered stable under a wide range of temperature and pH, making their removal one of the most difficult tasks in downstream processes during protein purification. The inherent toxicity of LPS makes their removal an important step for the application of these proteins in several biological assays and for a safe parenteral administration. Immobilized metal affinity chromatography (IMAC) enables the affinity interactions between the metal ions (immobilized on the support through the chelating compound) and the target molecules, thus enabling high-efficiency separation of the target molecules from other components present in a mixture. Affinity chromatography is applied with Ca2+ -iminodiacetic acid (IDA) to remove most of the LPS contaminants from the end product (more than 90%). In this study, the adsorption of LPS on an IDA-Ca2+ was investigated. The adsorption Freundlich isotherm of LPS-IDA-Ca2+ provides a theoretical basis for LPS removal. It was found that LPS is bound mainly by interactions between the phosphate group in LPS and Ca2+ ligands on the beads. The factors such as pH (4.0 or 5.5) and ionic strength (1.0 mol/L) are essential to obtain effective removal of LPS for contaminant levels between endotoxin' concentration values less than 100 EU/mL and 100 000 EU/mL. This new protocol represents a substantial advantage in time, effort, and production costs.

  12. The Affinity of Elongated Membrane-Tethered Ligands Determines Potency of T Cell Receptor Triggering

    Directory of Open Access Journals (Sweden)

    Bing-Mae Chen

    2017-07-01

    Full Text Available T lymphocytes are important mediators of adoptive immunity but the mechanism of T cell receptor (TCR triggering remains uncertain. The interspatial distance between engaged T cells and antigen-presenting cells (APCs is believed to be important for topological rearrangement of membrane tyrosine phosphatases and initiation of TCR signaling. We investigated the relationship between ligand topology and affinity by generating a series of artificial APCs that express membrane-tethered anti-CD3 scFv with different affinities (OKT3, BC3, and 2C11 in addition to recombinant class I and II pMHC molecules. The dimensions of membrane-tethered anti-CD3 and pMHC molecules were progressively increased by insertion of different extracellular domains. In agreement with previous studies, elongation of pMHC molecules or low-affinity anti-CD3 scFv caused progressive loss of T cell activation. However, elongation of high-affinity ligands (BC3 and OKT3 scFv did not abolish TCR phosphorylation and T cell activation. Mutation of key amino acids in OKT3 to reduce binding affinity to CD3 resulted in restoration of topological dependence on T cell activation. Our results show that high-affinity TCR ligands can effectively induce TCR triggering even at large interspatial distances between T cells and APCs.

  13. Selective isolation of β-glucan from corn pericarp hemicelluloses by affinity chromatography on cellulose column.

    Science.gov (United States)

    Yoshida, Tomoki; Honda, Yoichi; Tsujimoto, Takashi; Uyama, Hiroshi; Azuma, Jun-ichi

    2014-10-13

    A combination of anion-exchange chromatography and affinity chromatography on a cellulose column was found to be effective for the isolation of β-(1,3;1,4)-glucan (BG) from corn pericarp hemicelluloses (CPHs). CPHs containing 6.6% BG were extracted from corn pericarp with 6M urea-2 wt% NaOH solution and initially fractionated into neutral and acidic parts by anion exchange chromatography to remove acidic arabinoxylan consisting of arabinose (35.6%) and xylose (50.9%). The neutral fraction (yield; 10.1% on the basis of CPHs) consisting of 1.0% arabinose, 10.1% xylose and 80.3% glucose containing 28.4% BG was then applied to a cellulose column of Whatman CF-11. BG could be recovered from the adsorbed fraction on the cellulose column by elution with 2% NaOH in a yield of 2.6% on the basis of CPHs with a purity of 84.7%. The chemical structure of the isolated corn pericarp BG was confirmed by (13)C NMR spectroscopic, methylation and lichenase treatment analyses. The results indicate that the ratios of (1,4)/(1,3) linkage and cellotriosyl/cellotetraosyl segments of the BG were 2.60 and 2.5, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Enrichment and characterization of phosphopeptides by immobilized metal affinity chromatography (IMAC) and mass spectrometry

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Jensen, Ole N

    2009-01-01

    The combination of immobilized metal affinity chromatography (IMAC) and mass spectrometry is a widely used technique for enrichment and sequencing of phosphopeptides. In the IMAC method, negatively charged phosphate groups interact with positively charged metal ions (Fe3+, Ga3+, and Al3......+) and this interaction makes it possible to enrich phosphorylated peptides from rather complex peptide samples. Phosphopeptide enrichment by IMAC is sensitive and specific for peptide mixtures derived from pure proteins or simple protein mixtures. The selectivity of the IMAC method is, however, limited when working...... with peptide mixtures derived from highly complex samples, e.g., whole-cell extracts, where sample prefractionation is advisable. Furthermore, lowering the pH value of the sample loading buffer reduces nonspecific binding to the IMAC resin significantly, thereby improving the selectivity of IMAC...

  15. Immobilised Metal Affinity Chromatography (IMAC) Beads for Lysozyme Separation: Synthesis and Characterization Study

    International Nuclear Information System (INIS)

    Fatin Mohd Nasir; Sofiah Hamzah; Amirah Hamzah; Nora'aini Ali; Marinah Mohd Ariffin

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been established as a highly specific chromatographic technique for the production of enzymes and proteins including lysozyme. This study aimed to prepare and characterize the IMAC beads for lysozyme separation. Silica gel served as chromatographic matrix which has been coated with chitosan layer and crosslinked with glutaraldehyde (GTA-CTS-SiO 2 ) since it is very convenient to promote fixation. Various IMAC ligands were immobilized by chelating 1500 mg/ l Cu 2+ , Zn 2+ , Fe 2+ , Fe 3+ and Al 3+ ions, respectively on GTA-CTS-SiO 2 . IMAC which was immobilized with 1200mg/ l Cu 2+ exhibited the maximal immobilization capacity (27.08mg/ g) of within 30 minutes incubation time. This fundamental study can be a momentous pathway to develop an efficient chromatographic system for lysozyme separation in the future. (author)

  16. Immobilized metal-affinity chromatography protein-recovery screening is predictive of crystallographic structure success

    International Nuclear Information System (INIS)

    Choi, Ryan; Kelley, Angela; Leibly, David; Nakazawa Hewitt, Stephen; Napuli, Alberto; Van Voorhis, Wesley

    2011-01-01

    An overview of the methods used for high-throughput cloning and protein-expression screening of SSGCID hexahistidine recombinant proteins is provided. It is demonstrated that screening for recombinant proteins that are highly recoverable from immobilized metal-affinity chromatography improves the likelihood that a protein will produce a structure. The recombinant expression of soluble proteins in Escherichia coli continues to be a major bottleneck in structural genomics. The establishment of reliable protocols for the performance of small-scale expression and solubility testing is an essential component of structural genomic pipelines. The SSGCID Protein Production Group at the University of Washington (UW-PPG) has developed a high-throughput screening (HTS) protocol for the measurement of protein recovery from immobilized metal-affinity chromatography (IMAC) which predicts successful purification of hexahistidine-tagged proteins. The protocol is based on manual transfer of samples using multichannel pipettors and 96-well plates and does not depend on the use of robotic platforms. This protocol has been applied to evaluate the expression and solubility of more than 4000 proteins expressed in E. coli. The UW-PPG also screens large-scale preparations for recovery from IMAC prior to purification. Analysis of these results show that our low-cost non-automated approach is a reliable method for the HTS demands typical of large structural genomic projects. This paper provides a detailed description of these protocols and statistical analysis of the SSGCID screening results. The results demonstrate that screening for proteins that yield high recovery after IMAC, both after small-scale and large-scale expression, improves the selection of proteins that can be successfully purified and will yield a crystal structure

  17. Removal of PCR error products and unincorporated primers by metal-chelate affinity chromatography.

    Directory of Open Access Journals (Sweden)

    Indhu Kanakaraj

    Full Text Available Immobilized Metal Affinity Chromatography (IMAC has been used for decades to purify proteins on the basis of amino acid content, especially surface-exposed histidines and "histidine tags" genetically added to recombinant proteins. We and others have extended the use of IMAC to purification of nucleic acids via interactions with the nucleotide bases, especially purines, of single-stranded RNA and DNA. We also have demonstrated the purification of plasmid DNA from contaminating genomic DNA by IMAC capture of selectively-denatured genomic DNA. Here we describe an efficient method of purifying PCR products by specifically removing error products, excess primers, and unincorporated dNTPs from PCR product mixtures using flow-through metal-chelate affinity adsorption. By flowing a PCR product mixture through a Cu(2+-iminodiacetic acid (IDA agarose spin column, 94-99% of the dNTPs and nearly all the primers can be removed. Many of the error products commonly formed by Taq polymerase also are removed. Sequencing of the IMAC-processed PCR product gave base-calling accuracy comparable to that obtained with a commercial PCR product purification method. The results show that IMAC matrices (specifically Cu(2+-IDA agarose can be used for the purification of PCR products. Due to the generality of the base-specific mechanism of adsorption, IMAC matrices may also be used in the purification of oligonucleotides, cDNA, mRNA and micro RNAs.

  18. Purification of CD47-streptavidin fusion protein from bacterial lysate using biotin-agarose affinity chromatography.

    Science.gov (United States)

    Salehi, Nasrin; Peng, Ching-An

    2016-07-08

    CD47 is a widely expressed transmembrane glycoprotein that modulates the activity of a plethora of immune cells via its extracellular domain. Therefore, CD47 plays important roles in the regulation of immune responses and may serve as targets for the development of immunotherapeutic agents. To make sure CD47 functionality is intact under the process of protein conjugation, CD47-streptavidin fusion protein was expressed and purified because it can easily bind to biotin-tagged materials via the unique biotin-streptavidin affinity. In this study, gene sequences of CD47 extracellular domain (CD47ECD) and core streptavidin (coreSA) with a total 834 bp were inserted into pET20b plasmid to construct recombinant plasmid encoding CD47-SA fusion gene. After bacteria transformation, the CD47-SA fusion protein was expressed by isopropyl-β-d-thiogalactopyranoside (IPTG) induction. The collected bacteria lysate was loaded on biotinylated agarose to proceed the purification of CD47-SA fusion protein. Due to the unexpected high affinity between biotin and coreSA, standard washing and elution approaches (e.g., varying pH, using biotin, and applying guanidine hydrochloride) reported for biotin-streptavidin affinity chromatography were not able to separate the target fusion protein. Instead, using low concentration of the non-ionic detergent Triton X-100 followed with alkaline buffer could efficiently weaken the binding between biotin and coreSA, thereby eluting out CD47-SA fusion protein from the biotin agarose column. The purified CD47-SA fusion protein was further characterized by molecular biology methods and its antiphagocytic functionality was confirmed by the phagocytosis assay. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:949-958, 2016. © 2016 American Institute of Chemical Engineers.

  19. RECOVERY OF CYCLODEXTRIN GLUCANOTRANSFERASE (CGTase USING IMMOBILIZED METAL CHELATING AFFINITY CHROMATOGRAPHY

    Directory of Open Access Journals (Sweden)

    M. Sivapragasam

    2015-03-01

    Full Text Available Abstract Immobilized metal affinity chromatography (IMAC was chosen as a method of purification for the recovery of CGTase from E. coli homogenate. E. coli harbouring the Bacillus sp. G1 gene expressed extracellularly secreted CGTase into ampicillin supplied LB broth. Culture was pre-purified using SnakeSkin dialysis tubing (3.5 MWCO with an enzyme activity of 147.80 U/mL. Three strategies (A, B and C were employed for the purification of CGTase using column adsorption chromatography with Ni2+-Sepharose resin. Strategy A employed an elution buffer of 50 mM EDTA, pH 7, Strategy B used 0.1 M imidazole, pH 7 and Strategy C employed 45 mM imidazole pH 7 as the elution buffer. Strategy C was found to be most suitable yielding a total CGTase recovery of 87.04% from an initial activity of 147.80 U/mL.

  20. Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane.

    Science.gov (United States)

    Konovalova, Viktoriia; Guzikevich, Kateryna; Burban, Anatoliy; Kujawski, Wojciech; Jarzynka, Karolina; Kujawa, Joanna

    2016-11-05

    In order to prepare ultrafiltration membranes possessing biocatalytic properties, α-amylase has been immobilized on cellulose membranes. Enzyme immobilization was based on a covalent bonding between chitosan and a surface of cellulose membrane, followed by an attachment of Cibacron Blue F3G-A dye as affinity ligand. Various factors affecting the immobilization process, such as enzyme concentration, pH of modifying solution, zeta-potential of membrane surface, and stability of immobilized enzyme were studied. The applicability of immobilized α-amylase has been investigated in ultrafiltration processes. The immobilization of α-amylase on membrane surface allows to increase the value of mass transfer coefficient and to decrease the concentration polarization effect during ultrafiltration of starch solutions. The enzyme layer on the membrane surface prevents a rapid increase of starch concentration due to the amylase hydrolysis of starch in the boundary layer. The presented affinity immobilization technique allows also for the regeneration of membranes from inactivated enzyme. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Recombinant Staphylococcal protein A with cysteine residue for preparation of affinity chromatography stationary phase and immunosensor applications

    Directory of Open Access Journals (Sweden)

    Gorbatiuk O. B.

    2015-04-01

    Full Text Available Aim. Engineering of recombinant Staphylococcal protein A with cysteine residue (SPA-Cys for preparation of affinity chromatography stationary phase and formation of bioselective element of immunosensor. Methods. DNA sequences encoding IgG-binding region of SPA, His-tag and cysteine were genetically fused and expressed in E. coli. SPA-Cys was immobilized on maleimide-functionalized silica beads for affinity chromatography stationary phase preparation and on a gold sensor surface as a bioselective element of immunosensor. Results. SPA-Cys was expressed at a high-level in a soluble form. The target protein was purified and showed a high IgG-binding activity. The capacity of the obtained SPA-Cys-based affinity chromatography stationary phase was 10–12 mg of IgG /ml. The purity of eluted IgG was more than 95 % in one-step purification procedure. The developed SPA-Cys-based bioselective element of immunosensor selectively interacted with human IgG and did not interact with the control proteins. Conclusions. The recombinant Staphylococcal protein A with cysteine residue was successfully used for the preparation of affinity chromatography stationary phase and formation of the bioselective element of immunosensor.

  2. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    Science.gov (United States)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  3. Phosphonic and arsonic acids as inhibitors of human red cell acid phosphatase and their use in affinity chromatography.

    Science.gov (United States)

    Dissing, J; Dahl, O; Svensmark, O

    1979-08-15

    1. In order to obtain an effective ligand for affinity chromatography of the low molecular weight acid phosphatase (orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2) from human red cells nine phosphonic and two arsonic acid substrate analogues were investigated as potential inhibitors. The two forms of acid phosphatase type B (b1 and b2) were isolated and partially purified using conventional methods and the inhibitory action of the substrate analogs investigated. 2. Four of the phosphonic acids were relatively effective competitive inhibitors. It appears that certain structural and electronic requirements have to be fulfilled by the phosphonic acids in order to exhibit significant affinity for the enzyme. A high affinity appears to require the presence of a bulky, hydrophobic moiety which has to be separated from the phosphorus atom by the distance of one atom. 3. p-Aminobenzylphosphonic acid exerted the highest affinity for acid phosphatase with a pH optimum at 6.5. Ki values of 4 . 10(-4) and 6 . 10(-4) M were found for the b1 and b2 forms, respectively. 4. Coupling of p-aminobenzylphosphonic acid to Agarose yielded an effective and specific affinity medium. By means of affinity chromatography using this medium, acid phosphatase was purified 500-fold in a single step.

  4. Reconstitution of high-affinity opioid agonist binding in brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Remmers, A.E.; Medzihradsky, F. (Univ. of Michigan Medical School, Ann Arbor (United States))

    1991-03-15

    In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.

  5. Affinities and in-plane stress forces between glycopeptide antibiotics and biomimetic bacterial membranes

    Directory of Open Access Journals (Sweden)

    Sisi Bi

    2015-03-01

    Full Text Available Understanding the molecular basis of interactions between antibiotics affecting bacterial cell wall biosynthesis and cellular membranes is important in rational drug design of new drugs to overcome resistance. However, a precise understanding of how bacteriostatic antibiotics effect action often neglects the effect of biophysical forces involved following antibiotic-receptor binding events. We have employed a combination of a label-free binding biosensor (surface plasmon resonance, SPR and a force biosensor (in-plane stress cantilever, together with model membrane systems to study the complex interplay between glycopeptide antibiotics, their cognate ligands and different model membranes. Bacterial cell wall precursor analogue N-α-Docosanoyl-ε-acetyl-Lys-d-Alanine-d-Alanine (doc-KAA was inserted into lipid layers comprised of zwitterionic or anionic lipids then exposed to either vancomycin or the membrane-anchored glycopeptide antibiotic teicoplanin. Binding affinities and kinetics of the antibiotics to these model membranes were influenced by electrostatic interactions with the different lipid backgrounds, in addition to ligand affinities. In addition, cantilever sensors coated with model membranes showed that planar surface stress changes were induced by glycopeptide antibiotics adsorption and caused compressive surface stress generation in a ligand-dependent manner.

  6. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography.

    Science.gov (United States)

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases.

  7. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography.

    Directory of Open Access Journals (Sweden)

    Hua-zhen Wang

    Full Text Available Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP could greatly increase the soluble expression level of Glucokinase (GlcK, α-Amylase (Amy and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases.

  8. Thermodynamically stable amyloid-β monomers have much lower membrane affinity than the small oligomers

    Directory of Open Access Journals (Sweden)

    Bidyut eSarkar

    2013-04-01

    Full Text Available Amyloid beta (Aβ is an extracellular 39-43 residue long peptide present in the mammalian cerebrospinal fluid, whose aggregation is associated with Alzheimer’s disease. Small oligomers of Aβ are currently thought to be the key to toxicity. However, it is not clear why the monomers of Aβ are non-toxic, and at what stage of aggregation toxicity emerges. Interactions of Aβ with cell membranes is thought to be the initiator of toxicity, but membrane-binding studies with different preparations of monomers and oligomers have not settled this issue. We have earlier found that thermodynamically stable Aβ monomers emerge spontaneously from oligomeric mixtures upon long term incubation in physiological solutions (Nag et al, JBC, 2011. Here we show that the membrane-affinity of these stable Aβ monomers is much lower than that of a mixture of small oligomers (containing dimers to decamers, providing a clue to the emergence of toxicity. Fluorescently labeled Aβ40 monomers show negligible binding to cell membranes of a neuronal cell line (RN46A at physiological concentrations (250 nM, while oligomers at the same concentrations show strong binding within 30 minutes of incubation. The increased affinity most likely does not require any specific neuronal receptor, since this difference in membrane-affinity was also observed in a somatic cell-line (HEK 293T. Similar results are also obtained for Aβ42 monomers and oligomers. Minimal amount of cell death is observed at these concentrations even after 36 hours of incubation. It is likely that membrane binding precedes subsequent slower toxic events induced by Aβ. Our results a provide an explanation for the non-toxic nature of Aβ monomers, b suggest that Aβ toxicity emerges at the initial oligomeric phase, and c provide a quick assay for monitoring the benign-to-toxic transformation of Aβ.

  9. Dynamic affinity chromatography in the separation of sulfated lignins binding to thrombin

    Science.gov (United States)

    Liang, Aiye; Thakkar, Jay N.; Hindle, Michael; Desai, Umesh R.

    2013-01-01

    Sulfated low molecular weight lignins (LMWLs), a mixture of chemo-enzymatically prepared oligomers, have been found to be potent antagonists of coagulation. However, structures that induce anticoagulation remain unidentified. The highly polar sulfate groups on these molecules and the thousands of different structures present in these mixtures make traditional chromatographic resolution of sulfated LMWLs difficult. We performed dynamic thrombin affinity chromatography monitored using chromogenic substrate hydrolysis assay to isolate sulfated LMWL fractions that differed significantly in their biophysical and biochemical properties. Three fractions, I35, I55 and Peak II, were isolated from the starting complex mixture. Independent plasma clotting assays suggested that I35 possessed good anticoagulation potential (APTT = 4.2 μM; PT = 6.8 μM), while I55 and Peak II were approximately 10- and 100-fold less potent. The ESI-MS spectrum of this oligomeric fraction showed multiple peaks at 684.8, 610.6, 557.4, 541.4, 536.5, and 519.4 m/z, which most probably arise from variably functionalized (β-O4—β-β-linked trimers and/or a β-O4—β-O4-linked dimers. The first direct observation of these structures in sulfated LMWLs will greatly assist in the discovery of more potent sulfated LMWL-based anticoagulants. PMID:23122400

  10. Immobilized metal-affinity chromatography protein-recovery screening is predictive of crystallographic structure success.

    Science.gov (United States)

    Choi, Ryan; Kelley, Angela; Leibly, David; Hewitt, Stephen Nakazawa; Napuli, Alberto; Van Voorhis, Wesley

    2011-09-01

    The recombinant expression of soluble proteins in Escherichia coli continues to be a major bottleneck in structural genomics. The establishment of reliable protocols for the performance of small-scale expression and solubility testing is an essential component of structural genomic pipelines. The SSGCID Protein Production Group at the University of Washington (UW-PPG) has developed a high-throughput screening (HTS) protocol for the measurement of protein recovery from immobilized metal-affinity chromatography (IMAC) which predicts successful purification of hexahistidine-tagged proteins. The protocol is based on manual transfer of samples using multichannel pipettors and 96-well plates and does not depend on the use of robotic platforms. This protocol has been applied to evaluate the expression and solubility of more than 4000 proteins expressed in E. coli. The UW-PPG also screens large-scale preparations for recovery from IMAC prior to purification. Analysis of these results show that our low-cost non-automated approach is a reliable method for the HTS demands typical of large structural genomic projects. This paper provides a detailed description of these protocols and statistical analysis of the SSGCID screening results. The results demonstrate that screening for proteins that yield high recovery after IMAC, both after small-scale and large-scale expression, improves the selection of proteins that can be successfully purified and will yield a crystal structure.

  11. Effect of oscillatory flow on the performance of a novel cross-flow affinity membrane device.

    Science.gov (United States)

    Najarian, S; Bellhouse, B J

    1997-01-01

    This paper presents the results of an investigation into the effect of oscillatory flow in a membrane-based affinity contactor. This device was designed to accommodate a tubular affinity membrane, and the flow direction of working fluid was tangential to the surface of the membrane. Cibacron Blue F3G-A was utilized as the capturing ligand and bovine serum albumin as the target molecule. The dye molecules were immobilized covalently via spacer molecules (polyethylenimine) onto the pores of a microfiltration membrane with a pore size rating of 0.45 micron. Bovine serum albumin was pumped through the annular space between the concentric screw-threaded insert and the tubular membrane in oscillatory flow with a mean flow component. The effects of pulsation frequency and stroke length were investigated. It was found that, as a result of the pulsatile flow, the protein recovery was increased by a factor of 2. To make the interpretation of the results easier, various dimensionless groups were defined specifically for this system and the experimental data were reported in terms of these groups.

  12. Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity.

    Science.gov (United States)

    Dickey, Seth W; Baker, Rosanna P; Cho, Sangwoo; Urban, Siniša

    2013-12-05

    Enzymatic cleavage of transmembrane anchors to release proteins from the membrane controls diverse signaling pathways and is implicated in more than a dozen diseases. How catalysis works within the viscous, water-excluding, two-dimensional membrane is unknown. We developed an inducible reconstitution system to interrogate rhomboid proteolysis quantitatively within the membrane in real time. Remarkably, rhomboid proteases displayed no physiological affinity for substrates (K(d) ~190 μM/0.1 mol%). Instead, ~10,000-fold differences in proteolytic efficiency with substrate mutants and diverse rhomboid proteases were reflected in k(cat) values alone. Analysis of gate-open mutant and solvent isotope effects revealed that substrate gating, not hydrolysis, is rate limiting. Ultimately, a single proteolytic event within the membrane normally takes minutes. Rhomboid intramembrane proteolysis is thus a slow, kinetically controlled reaction not driven by transmembrane protein-protein affinity. These properties are unlike those of other studied proteases or membrane proteins but are strikingly reminiscent of one subset of DNA-repair enzymes, raising important mechanistic and drug-design implications. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. A novel matrix derivatized from hydrophilic gigaporous polystyrene-based microspheres for high-speed immobilized-metal affinity chromatography.

    Science.gov (United States)

    Qu, Jian-Bo; Huang, Yong-Dong; Jing, Guang-Lun; Liu, Jian-Guo; Zhou, Wei-Qing; Zhu, Hu; Lu, Jian-Ren

    2011-05-01

    Agarose coated gigaporous polystyrene microspheres were evaluated as a novel matrix for immobilized-metal affinity chromatography (IMAC). With four steps, nickel ions were successfully immobilized on the microspheres. The gigaporous structure and chromatographic properties of IMAC medium were characterized. A column packed with the matrix showed low column backpressure and high column efficiency at high flow velocity. Furthermore, this matrix was used for purifying superoxide dismutase (SOD), which was expressed in Escherichia coli (E. coli) in submerged fermentation, on an Äkta purifier 100 system under different flow velocities. The purity of the SOD from this one-step purification was 79% and the recovery yield was about 89.6% under the superficial flow velocity of 3251 cm/h. In conclusion, all the results suggested that the gigaporous matrix has considerable advantages for high-speed immobilized-metal affinity chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Purification of a thermostable alkaline laccase from papaya (Carica papaya) using affinity chromatography.

    Science.gov (United States)

    Jaiswal, Nivedita; Pandey, Veda P; Dwivedi, Upendra N

    2015-01-01

    A laccase from papaya leaves was purified to homogeneity by a two step procedure namely, heat treatment (at 70 °C) and Con-A affinity chromatography. The procedure resulted in 1386.7-fold purification of laccase with a specific activity of 41.3 units mg(-1) and an overall yield of 61.5%. The native purified laccase was found to be a hexameric protein of ∼ 260 kDa. The purified enzyme exhibited acidic and alkaline pH optima of 6.0 and 8.0 with the non-phenolic substrate (ABTS) and phenolic substrate (catechol), respectively. The purified laccase was found to be thermostable up to 70 °C such that it retained ∼ 80% activity upon 30 min incubation at 70 °C. The Arrhenius energy of activation for purified laccase was found to be 7.7 kJ mol(-1). The enzyme oxidized various phenolic and non-phenolic substrates having catalytic efficiency (K(cat)/K(m)) in the order of 7.25>0.67>0.27 mM(-1) min(-1) for ABTS, catechol and hydroquinone, respectively. The purified laccase was found to be activated by Mn(2+), Cd(2+), Ca(2+), Na(+), Fe(2+), Co(2+) and Cu(2+) while weakly inhibited by Hg(2+). The properties such as thermostability, alkaline pH optima and metal tolerance exhibited by the papaya laccase make it a promising candidate enzyme for industrial exploitation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Binding of TEM-1 beta-lactamase to beta-lactam antibiotics by frontal affinity chromatography.

    Science.gov (United States)

    Chen, Xiu; Li, Yuhua; Zhang, Yan; Yang, Jianting; Bian, Liujiao

    2017-04-15

    TEM-1 beta-lactamases can accurately catalyze the hydrolysis of the beta-lactam rings in beta-lactam antibiotics, which make beta-lactam antibiotics lose its activity, and the prerequisite for the hydrolysis procedure in the binding interaction of TEM-1 beta-lactamases with beta-lactam antibiotics is the beta-lactam rings in beta-lactam antibiotics. Therefore, the binding of TEM-1 beta-lactamase to three beta-lactam antibiotics including penicillin G, cefalexin as well as cefoxitin was explored here by frontal affinity chromatography in combination with fluorescence spectra, adsorption and thermodynamic data in the temperature range of 278-288K under simulated physiological conditions. The results showed that all the binding of TEM-1 beta-lactamase to the three antibiotics were spontaneously exothermic processes with the binding constants of 8.718×10 3 , 6.624×10 3 and 2.244×10 3 (mol/L), respectively at 288K. All the TEM-1 beta-lactamases were immobilized on the surface of the stationary phase in the mode of monolayer and there existed only one type of binding sites on them. Each TEM-1 beta-lactamase bound with only one beta-lactam antibiotic and hydrogen bond interaction and Van der Waals force were the main forces between them. This work provided an insight into the binding interactions between TEM-1 beta-lactamases and beta-lactam antibiotics, which may be beneficial for the designing and developing of new substrates resistant to TEM-1 beta-lactamases. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Advance chromatin extraction improves capture performance of protein A affinity chromatography.

    Science.gov (United States)

    Nian, Rui; Zhang, Wei; Tan, Lihan; Lee, Jeremy; Bi, Xeuzhi; Yang, Yuansheng; Gan, Hui Theng; Gagnon, Pete

    2016-01-29

    Practical effects of advance chromatin removal on performance of protein A affinity chromatography were evaluated using a caprylic acid-allantoin-based extraction method. Lacking this treatment, the practice of increasing loading residence time to increase capacity was shown to increase host protein contamination of the eluted IgG. Advance chromatin extraction suspended that compromise. Protein A ligand leakage from columns loaded with chromatin-extracted harvest was half the level observed on protein A columns loaded with non-extracted harvest. Columns loaded with chromatin-extracted harvest were cleaned more effectively by 50-100mM NaOH than columns loaded with non-extracted harvest that were cleaned with 250-500mM NaOH. Two protein A media with IgG capacities in excess of 50g/L were loaded with chromatin-extracted harvest, washed with 2.0M NaCl before elution, and the eluted IgG fraction titrated to pH 5.5 before microfiltration. Host protein contamination in the filtrate was reduced to protein A leakage to 0.5ppm, and aggregates to 1.0%. Caprylic acid and allantoin were both reduced below 5ppm. Step recovery of IgG was 99.4%. Addition of a single polishing step reduced residual protein A beneath the level of detection and aggregates to <0.1%. Overall process recovery including chromatin extraction was 90%. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Reaction of Native and Denatured Brucella abortus (S19 Proteins with Antibody Using Affinity Chromatography and Immunoblotting

    Directory of Open Access Journals (Sweden)

    R. Karimi

    2005-01-01

    Full Text Available Western blotting or immunoblotting commonly use for study of reaction between antigens and antibodies. Denaturation of many proteins in immunoblotting can affect greatly the reactivity of antibodies and outcome of the procedure.In this study proteins of Brucella abortus (S19 was extracted by a mild method and reaction of the extracted proteins with serum of infected human and goat and immunized rabbit compared by affinity chromatography and immunoblotting. Gamma globulin (mostly IgG fraction of the sera was precipitated by half saturation of ammonium sulfate and linked to activated sepharose 4B. The extracted proteins were loaded on the affinity column. Attached proteins was eluted by low pH and analyzed by SDS-PAGE. Reaction of the total extract and eluted fractions with IgG fraction of sera was evaluated by Western blotting.Upon the results of affinity chromatography and immunoblotting, Brucella proteins can be classified in four groups: 1- The proteins that adsorbed to the affinity column and react with IgG in westernblotting. 2- Proteins that react with IgG in native state but no in denatured state. 3- Proteins that do not react with IgG in native state but react in denatured state. 4- Proteins that do not react with IgG in native and denatured state.

  18. Directing membrane chromatography to manufacture α1-antitrypsin from human plasma fraction IV.

    Science.gov (United States)

    Fan, Jinxin; Luo, Jianquan; Song, Weijie; Chen, Xiangrong; Wan, Yinhua

    2015-12-04

    The surging demand for plasma proteins, mainly driven by the growing market and the development of new therapeutic indications, is promoting manufacturers to improve the throughput of plasma proteins. Due to the inherent convective mass transfer, membrane chromatography has been proved to be an efficient approach for extracting a small amount of target proteins from large-volume feed. In this study, α1-antitrypsin (AAT) was extracted from human plasma fraction IV by a two-step membrane chromatography. An anion-exchange membrane chromatography (AEMC) was used to capture the plasma proteins in bind/elute mode, and the obtained effluent was further polished by a hydrophobic interaction membrane chromatography (HIMC) in flow-through mode. Under optimal conditions, the recovery and purity of AAT achieved 87.0% and 0.58 AAT/protein (g/g) by AEMC, respectively. After the precise polishing by HIMC, the purity of AAT was 1.22 AAT/protein (g/g). The comparison results showed that membrane chromatography outperformed column chromatography in both steps because of its high throughput. This two-step membrane chromatography could obtain an AAT recovery of 83.3% and an activity recovery of 91.4%. The outcome of this work not only offers an alternative process for protein purification from plasma, but also provides guidelines for manufacturing product from a large-volume feed with multi-components by membrane chromatography. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Enhanced membrane pore formation through high-affinity targeted antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Christopher J Arnusch

    Full Text Available Many cationic antimicrobial peptides (AMPs target the unique lipid composition of the prokaryotic cell membrane. However, the micromolar activities common for these peptides are considered weak in comparison to nisin, which follows a targeted, pore-forming mode of action. Here we show that AMPs can be modified with a high-affinity targeting module, which enables membrane permeabilization at low concentration. Magainin 2 and a truncated peptide analog were conjugated to vancomycin using click chemistry, and could be directed towards specific membrane embedded receptors both in model membrane systems and whole cells. Compared with untargeted vesicles, a gain in permeabilization efficacy of two orders of magnitude was reached with large unilamellar vesicles that included lipid II, the target of vancomycin. The truncated vancomycin-peptide conjugate showed an increased activity against vancomycin resistant Enterococci, whereas the full-length conjugate was more active against a targeted eukaryotic cell model: lipid II containing erythrocytes. This study highlights that AMPs can be made more selective and more potent against biological membranes that contain structures that can be targeted.

  20. Affinity selection-based two-dimensional chromatography coupled with high-performance liquid chromatography-mass spectrometry for discovering xanthine oxidase inhibitors from Radix Salviae Miltiorrhizae.

    Science.gov (United States)

    Fu, Yu; Mo, Hua-Yan; Gao, Wen; Hong, Jia-Ying; Lu, Jun; Li, Ping; Chen, Jun

    2014-08-01

    Xanthine oxidase (XOD) is a key oxidative enzyme to the pathogenesis of hyperuricemia and certain diseases induced by excessive reactive oxygen species. XOD inhibitors could provide an important therapeutic approach to treat such diseases. A new method using affinity selection-based two-dimensional chromatography coupled with liquid chromatography-mass spectrometry was developed for the online screening of potential XOD inhibitors from Radix Salviae Miltiorrhizae. Based on our previous study, the two-dimensional, turbulent-flow chromatography (TFC) was changed to a mixed-mode anion-exchange/reversed-phase column and one reversed-phase column. The developed method was validated to be selective and sensitive for screening XOD-binding compounds, especially weak acidic ones, in the extracts. Three salvianolic acids were screened from the Radix Salviae Miltiorrhizae extract via the developed method. The XOD inhibitory activities of salvianolic acid C and salvianolic acid A were confirmed, and their inhibitory modes were measured. Salvianolic acid C exhibited potent XOD inhibitory activity with an IC(50) of 9.07 μM. This work demonstrated that the developed online, two-dimensional TFC/LC-MS method was effective in discovering the binding affinity of new compounds from natural extracts for target proteins, even at low concentrations.

  1. Purification of antibodies to O antigen of Salmonella Typhimurium from human serum by affinity chromatography.

    Science.gov (United States)

    O'Shaughnessy, Colette M; Micoli, Francesca; Gavini, Massimiliano; Goodall, Margaret; Cobbold, Mark; Saul, Allan; Maclennan, Calman A

    2013-01-31

    Nontyphoidal Salmonellae (NTS) are a common cause of bacteraemia in children and HIV-infected adults in Sub-Saharan Africa. We have previously shown that antibodies play a key role in both bactericidal and cellular mechanisms of immunity to NTS, but found that high concentrations of antibody to Salmonella Typhimurium O antigen (OAg) in the serum of some HIV-infected African adults is associated with impaired killing of NTS. To further investigate the function of antibodies to the OAg of NTS, we developed a method to purify these antibodies from human serum by affinity chromatography. Purified Salmonella Typhimurium OAg was activated with adipic acid dihydrazide (ADH) via two different chemistries before linking to N-hydroxysuccinamide-Sepharose resin: one ADH molecule was introduced per OAg chain on its terminal 3-deoxy-D-manno-octulosonic acid sugar (OAg-ADH), or multiple ADH molecules were attached along the OAg chain after oxidation with sodium periodate (OAgoxADH). Both resulting columns worked well when tested with commercial polyclonal anti-O:4,5 antibodies from rabbit serum. Over 90% of the applied antibodies bound to the resin and 89% of these antibodies were then eluted as detected by ELISA. OAg-ADH was preferred as the method for OAg derivatisation as it does not modify the saccharide chain and can be applied to OAg from different bacteria. Both columns were able to bind OAg-specific antibodies in human serum, but antibody recovery was initially low. Different elution buffers were tested and different amounts of OAg-ADH were linked to the resin to improve the yield. Optimal recovery (51%) was obtained by loading 1mg of activated OAg per ml of resin and eluting with 0.1M glycine, 0.1M NaCl pH2.4. The column matrix could be regenerated following elution with no detectable loss in performance for over ten uses. This method offers the potential to purify antibodies to Salmonella OAg from polyclonal serum following vaccination or natural exposure to Salmonella

  2. Evaluation by ELISA of Anisakis simplex Larval Antigen Purified by Affinity Chromatography

    Directory of Open Access Journals (Sweden)

    Rodero M

    2002-01-01

    Full Text Available In order to improve the specificity and sensitivity of the techniques for the human anisakidosis diagnosis, a method of affinity chromatography for the purification of species-specific antigens from Anisakis simplex third-stage larvae (L3 has been developed. New Zealand rabbits were immunized with A. simplex or Ascaris suum antigens or inoculated with Toxocara canis embryonated eggs. The IgG specific antibodies were isolated by means of protein A-Sepharose CL-4B beads columns. IgG anti-A. simplex and -A. suum were coupled to CNBr-activated Sepharose 4B. For the purification of the larval A. simplex antigens, these were loaded into the anti-A. simplex column and bound antigens eluted. For the elimination of the epitopes responsible for the cross-reactions, the A. simplex specific proteins were loaded into the anti-A. suum column. To prove the specificity of the isolated proteins, immunochemical analyses by polyacrylamide gel electrophoresis were carried out. Further, we studied the different responses by ELISA to the different antigenic preparations of A. simplex used, observing their capability of discriminating among the different antisera raised in rabbits (anti-A. simplex, anti-A. suum, anti-T. canis. The discriminatory capability with the anti-T. canis antisera was good using the larval A. simplex crude extract (CE antigen. When larval A. simplex CE antigen was loaded into a CNBr-activated Sepharose 4B coupled to IgG from rabbits immunized with A. simplex CE antigen, its capability for discriminate between A. simplex and A. suum was improved, increasing in the case of T. canis. The best results were obtained using larval A. simplex CE antigen loaded into a CNBr-activated Sepharose 4B coupled to IgG from rabbits immunized with adult A. suum CE antigen. When we compared the different serum dilution and antigenic concentration, we selected the working serum dilution of 1/400 and 1 mg/ml of antigenic concentration.

  3. Immobilized metal ion affinity hollow-fibre membranes obtained by the direct grafting technique

    Science.gov (United States)

    Grasselli, Mariano; Navarro del Cañizo, Agustín. A.; Camperi, Silvia A.; Wolman, Federico J.; Smolko, Eduardo E.; Cascone, Osvaldo

    1999-06-01

    An immobilized metal ion affinity hollow fibre was prepared by radiation-induced direct grafting of glycidylmethacrylate (GMA) on hydrophilized polyethylene membranes. The epoxy group was converted into an iminodiacetate by iminodiacetic acid treatment. The effect of the radiation dose, salt inhibitors, methanol and GMA concentration, on the grafting degree was studied. The degree of grafting was closely related to the GMA concentration. Salt inhibitors failed in the production of a differential effect on the grafting and homopolymerization processes. Between 30 and 35% of methanol, there is a maximum yield, and no grafting was obtained with a methanol concentration above 50%. Water flux dropped exponentially with the increase in the grafting degree. Scanning-electron microscopy showed that the graft branches are formed on the pores. The pectinesterase adsorption capacity of the membranes was of the same order as of the commercial chelating soft gels.

  4. Affinity chromatography with pseudobiospecific ligands on high-performance supports for purification of proteins of biotechnological interest

    Directory of Open Access Journals (Sweden)

    N.B. Iannucci

    2003-03-01

    Full Text Available High-performance affinity matrices were obtained by attaching pseudobiospecific ligands to hollow-fibre membranes. The neutral protease contained in FlavourzymeTM was purified to homogeneity with Yellow 4R-HE affinity hollow-fibre membranes. Immobilisation of Red HE-3B allowed purification of a milk-clotting enzyme obtained by solid-state culture of Mucor bacilliformis. Copper immobilisation through iminodiacetic acid allowed fractionation of Biocon Bioconcentrated PlusTM to separate the pectinesterase-containing fraction. The productivity of the developed processes - 1900, 94 and 750 U/ml.min, respectively - was 10- to 15-fold higher than that achieved with the same ligands immobilised on agarose-based soft gels, mainly due to the shortening of the purification processes.

  5. The theoretical advantage of affinity membrane-based immunoadsorption therapy of hypercholesterolemia

    International Nuclear Information System (INIS)

    Green, P.; Odell, R.; Schindhelm, K.

    1996-01-01

    Full text: Therapy of hypercholesterolemia using immunoadsorption of Low Density Lipoprotein (LDL) to a gel substrate is a current clinical technique (Bosch T., Biomat., Art. Cells and Immob. Biotech, 20: 1165- 1169, 1992). Recently, Affinity Membranes have been proposed as an alternate substrate for immunoadsorption (Brandt S and others, Bio Technology, 6:779-782, 1988). Potentially, the overall rate of adsorption to a membrane may be faster than to a gel because of the different geometry (ibid). This implies that for the same conditions, a membrane-based device will have a higher Number of Transfer Units, more efficient adsorption and a smaller device size than a gel. To test this hypothesis, we calculated two key theoretical design parameters: Separation Factor, R, and the Number of Transfer Units, N, for a functioning clinical-scale affinity membrane device: R=K d /K d +C 0 . Kd: Equilibrium Dissociation Constant (M) and Co: Feed Concentration (M) N=k a Q max V m /F. ka: Intrinsic reaction rate constant (M -1 min -1 ), Qmax: Substrate capacity (M), Vm: Membrane volume (m1) and F: Flow Rate (m1 min -1 ). We assumed 1 hr treatment time during which 1 plasma volume (3L) is treated, hence F=50 (m1 min -1 ). If we assume 2/3 of LDL is removed from an initial level of 3 g/L, we can calculate an average feed concentration Co = 2 g / L. There is some data available in the literature for typical values of Kd (10 -8 M) and ka ( 10 3 M -1 s -1 to 3 x 10 5 M -1 s -1 ) (Olsen WC and others, Molec. Immun: 26: 129-136, 1989). Since the intrinsic reaction kinetics may vary from very slow (10 3 M) to very fast (3 x 10 5 M), the Number of Transfer Units, N may vary from small (2) to large (650). Hence for a membrane device, we must select the antibody with the fastest reaction, ka, and highest capacity (Qmax) otherwise, there may be no advantage in a membrane-based device over a gel-based device

  6. Towards understanding of Nipah virus attachment protein assembly and the role of protein affinity and crowding for membrane curvature events.

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, Jeanne C.; Hayden, Carl C.; Negrete, Oscar.; Davis, Ryan Wesley; Sasaki, Darryl Y

    2013-10-01

    Pathogenic viruses are a primary threat to our national security and to the health and economy of our world. Effective defense strategies to combat viral infection and spread require the development of understanding of the mechanisms that these pathogens use to invade the host cell. We present in this report results of our research into viral particle recognition and fusion to cell membranes and the role that protein affinity and confinement in lipid domains plays in membrane curvature in cellular fusion and fission events. Herein, we describe 1) the assembly of the G attachment protein of Nipah virus using point mutation studies to define its role in viral particle fusion to the cell membrane, 2) how lateral pressure of membrane bound proteins induce curvature in model membrane systems, and 3) the role of membrane curvature in the selective partitioning of molecular receptors and specific affinity of associated proteins.

  7. Screening of Potential Xanthine Oxidase Inhibitors in Gnaphalium hypoleucum DC. by Immobilized Metal Affinity Chromatography and Ultrafiltration-Ultra Performance Liquid Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Hong-Jian Zhang

    2016-09-01

    Full Text Available In this study, a new method based on immobilized metal affinity chromatography (IMAC combined with ultrafiltration-ultra performance liquid chromatography-mass spectrometry (UF-UPLC-MS was developed for discovering ligands for xanthine oxidase (XO in Gnaphalium hypoleucum DC., a folk medicine used in China for the treatment of gout. By IMAC, the high flavonoid content of G. hypoleucum could be determined rapidly and efficiently. UF-UPLC-MS was used to select the bound xanthine oxidase ligands in the mixture and identify them. Finally, two flavonoids, luteolin-4′-O-glucoside and luteolin, were successfully screened and identified as the candidate XO inhibitors of G. hypoleucum. They were evaluated in vitro for XO inhibitory activity and their interaction mechanism was studied coupled with molecular simulations. The results were in favor of the hypothesis that the flavonoids of G. hypoleucum might be the active content for gout treatment by inhibiting XO.

  8. Screening of Potential Xanthine Oxidase Inhibitors in Gnaphalium hypoleucum DC. by Immobilized Metal Affinity Chromatography and Ultrafiltration-Ultra Performance Liquid Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Zhang, Hong-Jian; Hu, Yi-Juan; Xu, Pan; Liang, Wei-Qing; Zhou, Jie; Liu, Pei-Gang; Cheng, Lin; Pu, Jin-Bao

    2016-09-17

    In this study, a new method based on immobilized metal affinity chromatography (IMAC) combined with ultrafiltration-ultra performance liquid chromatography-mass spectrometry (UF-UPLC-MS) was developed for discovering ligands for xanthine oxidase (XO) in Gnaphalium hypoleucum DC., a folk medicine used in China for the treatment of gout. By IMAC, the high flavonoid content of G. hypoleucum could be determined rapidly and efficiently. UF-UPLC-MS was used to select the bound xanthine oxidase ligands in the mixture and identify them. Finally, two flavonoids, luteolin-4'-O-glucoside and luteolin, were successfully screened and identified as the candidate XO inhibitors of G. hypoleucum. They were evaluated in vitro for XO inhibitory activity and their interaction mechanism was studied coupled with molecular simulations. The results were in favor of the hypothesis that the flavonoids of G. hypoleucum might be the active content for gout treatment by inhibiting XO.

  9. Preparation of monolithic affinity media for nano-liquid chromatography applications.

    Science.gov (United States)

    Sproß, Jens; Sinz, Andrea

    2014-01-01

    In this protocol, a strategy is described for preparing affinity media with monolithic materials as stationary phase, which is exemplified for the biotin-avidin interaction pair. The capillary columns prepared in this manner are compatible with nano-liquid chromatographic conditions. Our protocol is easily adapted to the preparation of specific affinity media with different functionalities and as such provides a platform for a multitude of applications.

  10. A high affinity Ca2(+)-ATPase on the surface membrane of Leishmania donovani promastigote

    International Nuclear Information System (INIS)

    Ghosh, J.; Ray, M.; Sarkar, S.; Bhaduri, A.

    1990-01-01

    A Ca2(+)-dependent ATP-hydrolytic activity was detected in the crude membrane ghost of the promastigote or vector form of the protozoal parasite Leishmania donovani, the pathogen responsible for kala azar. The Ca2(+)-ATPase was purified to apparent homogeneity after solubilization with deoxycholate. The enzyme consists of two subunits of Mr = 51,000 and 57,000 and has an apparent molecular weight of 215,000 +/- 12,000. The enzyme activity is exclusively dependent on Ca2+, and the pure enzyme can hydrolyze 1.6 mumol of ATP/min/mg of protein. The apparent Km for Ca2+ is 35 nM, which is further reduced to 12 nM in the presence of heterologous calmodulin. The enzyme is sensitive to vanadate, but is insensitive to oligomycin and ouabain. The enzyme is strongly associated with the plasma membrane and has its catalytic site oriented toward the cytoplasmic face. The enzyme spans across the plasma membrane as surface labeling with radioiodine shows considerable radioactivity in the completely purified enzyme. The localization and orientation of this high affinity, calmodulin-sensitive Ca2(+)-ATPase suggest some role of this enzyme in Ca2+ movement in the life cycle of this protozoal parasite

  11. A high affinity Ca2(+)-ATPase on the surface membrane of Leishmania donovani promastigote

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, J.; Ray, M.; Sarkar, S.; Bhaduri, A. (Indian Institute of Chemical Biology, Calcutta (India))

    1990-07-05

    A Ca2(+)-dependent ATP-hydrolytic activity was detected in the crude membrane ghost of the promastigote or vector form of the protozoal parasite Leishmania donovani, the pathogen responsible for kala azar. The Ca2(+)-ATPase was purified to apparent homogeneity after solubilization with deoxycholate. The enzyme consists of two subunits of Mr = 51,000 and 57,000 and has an apparent molecular weight of 215,000 +/- 12,000. The enzyme activity is exclusively dependent on Ca2+, and the pure enzyme can hydrolyze 1.6 mumol of ATP/min/mg of protein. The apparent Km for Ca2+ is 35 nM, which is further reduced to 12 nM in the presence of heterologous calmodulin. The enzyme is sensitive to vanadate, but is insensitive to oligomycin and ouabain. The enzyme is strongly associated with the plasma membrane and has its catalytic site oriented toward the cytoplasmic face. The enzyme spans across the plasma membrane as surface labeling with radioiodine shows considerable radioactivity in the completely purified enzyme. The localization and orientation of this high affinity, calmodulin-sensitive Ca2(+)-ATPase suggest some role of this enzyme in Ca2+ movement in the life cycle of this protozoal parasite.

  12. Comparison of Immobilized Metal Affinity Chromatography Ni-NTA and Co-TALON for the Purification of Recombinant Human Erythropoietin

    Directory of Open Access Journals (Sweden)

    Yana Rubiyana

    2015-12-01

    Full Text Available The purification of recombinant proteins is an important stage in biopharmaceutical research. A commonly used technique is immobilized metal affinity chromatography (IMAC. One of the main advantages of this type of chromatography is that the column can easily be regenerated for subsequent purification work. The mechanism of IMAC is based on bonding between metal ions immobilized on a matrix with a specific amino acid. Because of the strong interactions of the electron donor group on the imidazole ring, histidine is often used in the IMAC purification system. Two types of commercial IMAC resin use a nitrilotriacetic acid (NTA matrix: a nickel-based (Ni-NTA and cobalt-based (Co-NTA, better known as TALON. This study was aim to investigate the effect of the metal ions Ni2+ and Co2+ to purify recombinant human erythropoietin (rhEPO expressed in yeast system Pichia pastoris. The results indicated that both Ni-NTA and Co-TALON gave almost the same level of protein purity; however, Ni-NTA has a higher binding affinity than Co-TALON might be due to the higher stability complex of Ni+. The average amount of protein bound by Ni-NTA and Co-TALON was 183.5 and 38.7 µg/mL, respectively.

  13. Preparation of a novel Zr(4+)-immobilized metal affinity membrane for selective adsorption of phosphoprotein.

    Science.gov (United States)

    He, Maofang; Wang, Chaozhan; Wei, Yinmao

    2016-09-01

    In this study, a novel phosphate-Zr(4+) immobilized metal affinity membrane (IMAM) was prepared based on the surface initiated-atom transfer radical polymerization technique for the selective adsorption of phosphoprotein. The adsorption capacity and selectivity of the phosphate-Zr(4+) IMAM were evaluated by using the mixture of standard phosphoproteins (β-casein, ovalbumin) and nonphosphoproteins (bovine serum albumin and lysozyme) as model samples. The adsorption isotherms and competitive adsorption results demonstrated that the phosphate-Zr(4+) IMAM had higher binding capacity and selectivity for phosphoproteins over nonphosphoproteins. Moreover, the phosphate-Zr(4+) IMAM exhibited good re-usability and re-productivity. Finally, the phosphate-Zr(4+) IMAM was applied to separate phosphoprotein from real samples with high purity. Therefore, the as-prepared phosphate-Zr(4+) IMAM could be a promising affinity material for the efficient enrichment of phosphoprotein from complex bio-samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Preparation of a monolitich capillary column with immobilized a-mannose for affinity chromatography of lectins

    NARCIS (Netherlands)

    Tetala, K.K.R.; Chen, B.; Visser, G.M.; Maruska, A.; Kornysova, O.; Beek, van T.A.; Sudhölter, E.J.R.

    2007-01-01

    A simple method for the preparation of an affinity monolithic (also called continuous bed) capillary column for ¿-mannose-specific lectins is described. 2-Hydroxyethyl methacrylate in combination with (+)-N,N´-diallyltartardiamide (DATD) and piperazine diacrylamide (PDA, 1,4-bisacryloyl-piperazine)

  15. Monolithic columns with immobilized monomeric avidin: preparation and application for affinity chromatography.

    Science.gov (United States)

    Spross, Jens; Sinz, Andrea

    2012-03-01

    A poly(glycidyl methacrylate-co-acrylamide-co-ethylene dimethacrylate) monolith and a poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith were prepared in fused silica capillaries (100 μm ID) and modified with monomeric avidin using the glutaraldehyde technique. The biotin binding capacity of monolithic affinity columns with immobilized monomeric avidin (MACMAs) was determined by fluorescence spectroscopy using biotin (5-fluorescein) conjugate, as well as biotin- and fluorescein-labeled bovine serum albumin (BSA). The affinity columns were able to bind 16.4 and 3.7 μmol biotin/mL, respectively. Columns prepared using the poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith retained 7.1 mg BSA/mL, almost six times more than commercially available monomeric avidin beads. Protocols based on MALDI-TOF mass spectrometry monitoring were optimized for the enrichment of biotinylated proteins and peptides. A comparison of enrichment efficiencies between MACMAs and commercially available monomeric avidin beads yielded superior results for our novel monolithic affinity columns. However, the affinity medium presented in this work suffers from a significant degree of nonspecific binding, which might hamper the analysis of more complex mixtures. Further modifications of the monolith's surface are envisaged for the future development of monoliths with improved enrichment characteristics.

  16. Affinity chromatography on monolithic supports for simultaneous and high-throughput isolation of immunoglobulins from human serum.

    Science.gov (United States)

    Martinović, Tamara; Andjelković, Uroš; Klobučar, Marko; Černigoj, Urh; Vidič, Jana; Lučić, Marina; Pavelić, Krešimir; Josić, Djuro

    2017-11-01

    Posttranslational modifications of immunoglobulins have been a topic of great interest and have been repeatedly reported as a major factor in disease pathology. Cost-effective, reproducible, and high-throughput (HTP) isolation of immunoglobulins from human serum is vital for studying the changes in protein structure and the following understanding of disease development. Although there are many methods for the isolation of specific immunoglobulin classes, only a few of them are applicable for isolation of all subtypes and variants. Here, we present the development of a scheme for fast and simultaneous affinity purification of α (A), γ (G), and μ (M) immunoglobulins from human serum through affinity monolith chromatography. Affinity-based monolithic columns with immobilized protein A, G, or L were used for antibody isolation. Monolithic stationary phases have a high surface accessibility of binding sites, large flow-through channels, and can be operated at high flow rates, making them the ideal supports for HTP isolation of biopolymers. The presented method can be used for HTP screening of human serum in order to simultaneously isolate all three above-mentioned immunoglobulins and determine their concentration and changes in their glycosylation pattern as potential prognostic and diagnostic disease biomarkers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Poly(hydroxyethyl methacrylate) based affinity membranes for in vitro removal of anti-dsDNA antibodies from SLE plasma.

    Science.gov (United States)

    Uzun, Lokman; Yavuz, Handan; Osman, Bilgen; Celik, Hamdi; Denizli, Adil

    2010-07-01

    The preparation of polymeric membrane using affinity technology for application in blood filtration devices is described here. DNA attached poly(hydroxyethyl methacrylate) (PHEMA) based microporous affinity membrane was prepared for selective removal of anti-dsDNA antibodies from systemic lupus erythematosus (SLE) patient plasma in in vitro. In order to further increase blood-compatibility of affinity membrane, aminoacid based comonomer N-methacryloyl-L-alanine (MAAL) was included in the polymerization recipe. PHEMAAL membrane was produced by a photopolymerization technique and then characterized by swelling tests and scanning electron microscope (SEM) studies. Blood-compatibility tests were also performed. The water swelling ratio of PHEMAAL membrane increased significantly (133.2%) compared with PHEMA (58%). PHEMAAL membrane has large pores around in the range of 5-10 microm. All the clotting times increased when compared with PHEMA membrane. Loss of platelets and leukocytes was very low. DNA loading was 7.8 mg/g. There was a very low anti-dsDNA-antibody adsorption onto the plain PHEMAAL membrane, about 78 IU/g. The PHEMAAL-DNA membrane adsorbed anti-dsDNA-antibody in the range of 10-68 x 10(3)IU/g from SLE plasma. Anti-dsDNA-antibody concentration decreased significantly from 875 to 144 IU/ml with the time. Anti-dsDNA-antibodies could be repeatedly adsorbed and eluted without noticeable loss in the anti-dsDNA-antibody adsorption amount. (c) 2010 Elsevier B.V. All rights reserved.

  18. Fractionation of phenolase from green table olives (Ascolana tenera var. by immobilized copper affinity chromatography

    Directory of Open Access Journals (Sweden)

    Sciancalepore, V.

    1995-10-01

    Full Text Available Phenolase from green table olives (Ascolana tenera var. was fractionated by immobilized copper affinity chromatography. Four chromatographic fractions with high specific activities were obtained. The highest activity was found for the fraction eluted with L-histidine buffer. The four active fractions were characterized by. their response to both specificity and concentration of the substrate.

    Fenolasa de aceitunas verdes de mesa de la variedad Ascolana tenera ha sido fraccionada mediante cromatografía de afinidad sobre cobre inmovilizado. Se han obtenido cuatro fracciones cromatográficas con elevada actividad específica. La fracción obtenida con tampon L-histidina fue la que presentó mayor actividad. Las cuatro fracciones activas se caracterizaron por sus respuestas a la especificidad y concentración del sustrato.

  19. Separation of Binding Protein of Celangulin V from the Midgut of Mythimna separata Walker by Affinity Chromatography

    Directory of Open Access Journals (Sweden)

    Lina Lu

    2015-05-01

    Full Text Available Celangulin V, an insecticidal compound isolated from the root bark of Chinese bittersweet, can affect the digestive system of insects. However, the mechanism of how Celangulin V induces a series of symptoms is still unknown. In this study, affinity chromatography was conducted through coupling of Celangulin V-6-aminoacetic acid ester to the CNBr-activated Sepharose 4B. SDS-PAGE was used to analyze the collected fraction eluted by Celangulin V. Eight binding proteins (Zinc finger protein, Thioredoxin peroxidase (TPx, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH, SUMO E3 ligase RanBP2, Transmembrane protein 1, Actin, APN and V-ATPase were obtained and identified by LC/Q-TOF-MS from the midgut of Mythimna separata larvae. The potential of these proteins to serve as target proteins involved in the insecticidal activity of Celangulin V is discussed.

  20. Evaluation of immobilized metal affinity chromatography kits for the purification of histidine-tagged recombinant CagA protein.

    Science.gov (United States)

    Karakus, Cebrail; Uslu, Merve; Yazici, Duygu; Salih, Barik A

    2016-05-15

    Immobilized metal affinity chromatography (IMAC) technique is used for fast and reliable purification of histidine(His)-tagged recombinant proteins. The technique provides purification under native and denaturing conditions. The aim of this study is to evaluate three commercially available IMAC kits (Thermo Scientific, GE Healthcare and Qiagen) for the purification of a 6xHis-tagged recombinant CagA (cytotoxin-associated gene A) protein from IPTG-induced Escherichia coli BL21(DE3) culture. The kits were tested according to the manufacturer instructions and the protein was purified with only GE Healthcare and Qiagen kits under denaturing conditions. 1% (w/v) SDS was used as denaturing agent in PBS instead of extraction reagent of Thermo Scientific kit to lyse bacterial cells from 100ml culture. The 6xHis-tagged recombinant protein was purified by the three kits equally. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Affinity-based screening of combinatorial libraries using automated, serial-column chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Evans, D.M.; Williams, K.P.; McGuinness, B. [PerSeptive Biosystems, Framingham, MA (United States)] [and others

    1996-04-01

    The authors have developed an automated serial chromatographic technique for screening a library of compounds based upon their relative affinity for a target molecule. A {open_quotes}target{close_quotes} column containing the immobilized target molecule is set in tandem with a reversed-phase column. A combinatorial peptide library is injected onto the target column. The target-bound peptides are eluted from the first column and transferred automatically to the reversed-phase column. The target-specific peptide peaks from the reversed-phase column are identified and sequenced. Using a monoclonal antibody (3E-7) against {beta}-endorphin as a target, we selected a single peptide with sequence YGGFL from approximately 5800 peptides present in a combinatorial library. We demonstrated the applicability of the technology towards selection of peptides with predetermined affinity for bacterial lipopolysaccharide (LPS, endotoxin). We expect that this technology will have broad applications for high throughput screening of chemical libraries or natural product extracts. 21 refs., 4 figs.

  2. Purification of xanthine oxidase from bovine milk by affinity chromatography with a novel gel.

    Science.gov (United States)

    Beyaztaş, Serap; Arslan, Oktay

    2015-06-01

    A new affinity gel was synthesized for the purification of xanthine oxidase (XO, EC 1.2.3.22) from bovine milk. The gel was prepared on a Sepharose 4B matrix on which a spacer arm based on l-tyrosine was covalently attached via CNBr activation, followed by reaction with the XO inhibitor p-aminobenzamidine. The elution conditions of affinity gel were determined at different pH values and ionic strengths. Maximum elution of XO was achieved at pH 9.0 and ionic strength around 0.4. The overall purification for XO was 1645-fold with 20.49% yield. SDS-PAGE of the enzyme indicates a single band with an apparent MW of 150 kDa. The gel provides a simple, rapid and effective useful for the purification of XO. Heat stability was determined on purified XO activity. Xanthine oxidase was preserved up to 70% with activity exposure of 60 °C and incubated for 60 min. These results indicated that the enzyme was heat stable.

  3. Advances in immobilized artificial membrane (IAM) chromatography for novel drug discovery.

    Science.gov (United States)

    Tsopelas, Fotios; Vallianatou, Theodosia; Tsantili-Kakoulidou, Anna

    2016-01-01

    The development of immobilized artificial membrane (IAM) chromatography has unfolded new perspectives for the use of chromatographic techniques in drug discovery, combining simulation of the environment of cell membranes with rapid measurements. The present review describes the characteristics of phosphatidylcholine-based stationary phases and analyses the molecular factors governing IAM retention in comparison to n-octanol-water and liposomes partitioning systems as well as to reversed phase chromatography. Other biomimetic stationary phases are also briefly discussed. The potential of IAM chromatography to model permeability through the main physiological barriers and drug membrane interactions is outlined. Further applications to calculate complex pharmacokinetic properties, related to tissue binding, and to screen drug candidates for phospholipidosis, as well as to estimate cell accumulation/retention are surveyed. The ambivalent nature of IAM chromatography, as a border case between passive diffusion and binding, defines its multiple potential applications. However, despite its successful performance in many permeability and drug-membrane interactions studies, IAM chromatography is still used as a supportive and not a stand-alone technique. Further studies looking at IAM chromatography in different biological processes are still required if this technique is to have a more focused and consistent application in drug discovery.

  4. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine.

    Science.gov (United States)

    Kikot, Pamela; Polat, Aise; Achilli, Estefania; Fernandez Lahore, Marcelo; Grasselli, Mariano

    2014-11-01

    Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Affinity chromatography of tetanus toxin, tetanus toxoid, and botulinum A toxin on synaptosomes, and differentiation of their acceptors

    International Nuclear Information System (INIS)

    Habermann, E.

    1976-01-01

    125 I-labelled tetanus toxin and 125 I-labelled botulinum A neurotoxin are known to be specifically bound to brain synaptosomes. In order to discriminate between active toxin and inactive admixtures present in the starting material or arising during iodination, synaptosome columns were prepared using bromacetylcellulose and/or kieselgur (Celite) as carriers. Both types of columns adsorb the toxins from low ionic strength medium and release them if the pH and ionic strength are raised. Botulinum toxin was eluted with lower ionic strength than tetanus toxin, and could be freed from nontoxic admixtures. Analysis by affinity chromatography disclosed partially toxoided tetanus toxin in both labelled and unlabelled toxin samples. High concentrations of formaldehyde (0.5%) destroyed both toxicity and affinity to the synaptosomes of tetanus toxin. Low concentrations of formaldehyde (0.05%) yielded a derivative of low toxicity which was still, however less firmly, bound to synaptosomes. Tetanus and botulinum toxin differ by their acceptors. Whereas unlabelled botulinum toxin is unable to compete with labelled tetanus toxin, unlabelled tetanus toxin slightly competes with botulinum toxin. Both labelled toxins display anomalous binding behaviour in that they cannot be displaced completely even with a large excess of unlabelled toxin. (orig.) [de

  6. High performance aptamer affinity chromatography for single-step selective extraction and screening of basic protein lysozyme.

    Science.gov (United States)

    Han, Bin; Zhao, Chao; Yin, Junfa; Wang, Hailin

    2012-08-15

    A DNA aptamer based high-performance affinity chromatography is developed for selective extraction and screening of a basic protein lysozyme. First, a poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolithic column was synthesized in situ by thermally initiated radical polymerization, and then an anti-lysozyme DNA aptamer was covalently immobilized on the surface of the monolith through a 16-atom spacer arm. The target protein lysozyme but non-target proteins can be trapped by the immobilized anti-lysozyme DNA aptamer. In contrast, lysozyme cannot be trapped by the immobilized oligodeoxynucleotide that does not contain the sequence of the anti-lysozyme DNA aptamer. The study clearly demonstrates the trapping of lysozyme by the immobilized anti-lysozyme DNA aptamer is mainly due to specific recognition rather than simple electrostatic interaction of positively charged protein and the negatively charged DNA. The inter-day precision was determined as 0.8% for migration time and 4.2% for peak area, respectively. By the use of aptamer affinity monolith, a screening strategy is developed to selectively extract lysozyme from chicken egg white, showing the advantages of high efficiency, low cost and ease-of-operation. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. An artificial protein L for the purification of immunoglobulins and fab fragments by affinity chromatography.

    Science.gov (United States)

    Roque, A Cecília A; Taipa, M Angela; Lowe, Christopher R

    2005-02-04

    The development and characterization of an artificial protein L (PpL) for the affinity purification of antibodies is described. Ligand 8/7, which emerged as the lead from a de novo designed combinatorial library of ligands, inhibits the interaction of PpL with IgG and Fab by competitive ELISA and shows negligible binding to Fc. The ligand 8/7 adsorbent (Ka approximately 10(4) M(-1)) compared well with PpL in binding to immunoglobulins from different classes and sources and, in addition, bound to IgG1 with K and lambda isotypes (92% and 100% of loaded protein) and polyclonal IgG from sheep, cow, goat and chicken. These properties were also reflected in the efficient isolation of immunoglobulins from crude samples.

  8. Identification of uranyl binding proteins from human kidney-2 cell extracts by immobilized uranyl affinity chromatography and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dedieu, A.; Berenguer, F.; Basset, Ch.; Prat, O.; Quemeneur, E.; Pible, O.; Vidaud, C. [CEA/IBEB/SBTN, F-30207 Bagnols sur Ceze (France)

    2009-07-01

    To improve our knowledge on protein targets of uranyl ion (UO{sub 2}{sup 2+}), we set up a proteomic strategy based on immobilized metal-affinity chromatography (IMAC). The successful enrichment of UO{sub 2}{sup 2+}-interacting proteins from human kidney-2 (HK-2) soluble cell extracts was obtained using an ion-exchange chromatography followed by a dedicated IMAC process previously described and designed for the uranyl ion. By mass spectrometry analysis we identified 64 proteins displaying varied functions. The use of a computational screening algorithm along with the particular ligand-based properties of the UO{sub 2}{sup 2+} ion allowed the analysis and categorization of the protein collection. This profitable approach demonstrated that most of these proteins fulfill criteria which could rationalize their binding to the UO{sub 2} {sup 2+}-loaded phase. The obtained results enable us to focus on some targets for more in-depth studies and open new insights on its toxicity mechanisms at molecular level. (authors)

  9. FMRFamide: low affinity inhibition of opioid binding to rabbit brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X.Z.; Raffa, R.B.

    1986-03-05

    FMRFamide (Phe-Met-Arg-Phe-NH/sub 2/) was first isolated from the ganglia of molluscs by Price and Greenberg in 1977. The peptide was subsequently shown to have diverse actions on various types of molluscan and mammalian tissues. The presence of immunoreactive FMRFamide-like material (irFMRF) in multiple areas of rat brain, spinal cord, and gastrointestinal tract suggests that irFMRF may have a physiological role in mammals. Tang, Yang and Costa recently demonstrated that FMRFamide attenuates morphine antinociception in rats and postulated, based on this and several other lines of evidence, that irFMRF might be an endogenous opioid antagonist. In the present study, they tested the ability of FMRFamide to inhibit the binding of opioid receptor ligands to rabbit membrane preparations. FMRFamide inhibited the specific binding of both /sup 3/(H)-dihydromorphine and /sup 3/(H)-ethylketocyclazocine (IC/sub 50/ = 14 ..mu..M and 320 ..mu..M, respectively) in a dose-related manner, suggesting that FMRFamide may affect binding to at least two types of opioid receptors (mu and kappa). These data are consistent with the concept that irFMRF might act as an endogenous opioid antagonist. However, the low affinity of FMRFamide leaves open the possibility of another mechanism of opioid antagonism, such as neuromodulation.

  10. Immobilised metal-ion affinity chromatography purification of histidine-tagged recombinant proteins : a wash step with a low concentration of EDTA

    NARCIS (Netherlands)

    Westra, DF; Welling, GW; Koedijk, DGAM; Scheffer, AJ; The, TH; Welling-Wester, S

    2001-01-01

    Immobilised metal-ion affinity chromatography (IMAC) is widely used for the purification of recombinant proteins in which a poly-histidine tag is introduced. However, other proteins may also bind to IMAC columns. We describe the use of a washing buffer with a low concentration of EDTA (0.5 mM) for

  11. Purification of the nicotinic acetylcholine receptor protein by affinity chromatography using a regioselectively modified and reversibly immobilized alpha-toxin from Naja nigricollis

    NARCIS (Netherlands)

    Ringler, P; Kessler, P; Menez, A; Brisson, A

    1997-01-01

    A new method of affinity chromatography purification of the detergent-solubilized nicotinic acetylcholine receptor protein (nAChR) is presented, based on the reversible coupling of a chemically monomodified alpha-toxin from Naja nigricollis to a resin. The alpha-toxin was monothiolated on the

  12. Chromatography.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities on chromatography. Directions for preparing leaf pigment extracts using alcohol are given, and paper chromatography and thin-layer chromatography are described as modifications of the basic principles of chromatography. (KHR)

  13. Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom

    Energy Technology Data Exchange (ETDEWEB)

    Lambeau, G.; Barhanin, J.; Schweitz, H.; Qar, J.; Lazdunski, M. (Centre de Biochimie, Nice (France))

    1989-07-05

    Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of {sup 125}I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity.

  14. Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom

    International Nuclear Information System (INIS)

    Lambeau, G.; Barhanin, J.; Schweitz, H.; Qar, J.; Lazdunski, M.

    1989-01-01

    Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of 125 I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity

  15. Choosing the right protein A affinity chromatography media can remove aggregates efficiently.

    Science.gov (United States)

    Yada, Tomokazu; Nonaka, Koichi; Yabuta, Masayuki; Yoshimoto, Noriko; Yamamoto, Shuichi

    2017-01-01

    Protein A chromatography (PAC) is commonly used as an efficient capture step in monoclonal antibody (mAb) separation processes. Usually dynamic binding capacity is used for choosing the right PAC. However, if aggregates can be efficiently removed during elution, it can make the following polishing steps easier. In this study a method for choosing the right PAC media in terms of mAb aggregate removal is proposed. Linear pH gradient elution experiments of two different mAbs on various PAC columns are carried out, where the elution behavior of aggregates as well as the monomer is measured. Aggregates of one mAb are more strongly retained compared with the mAb monomer. Another mAb showed different elution behavior, where the aggregates are eluted as both the weakly and strongly retained peaks. In order to remove the two types of aggregates by stepwise elution two protocols are tested. The first protocol A consisted of the sample loading, the wash with the equilibration buffer and the low pH elution. The wash stage of the second protocol B included the wash with 1.0 M arginine. No detectable peaks are observed during the wash stage of protocol A whereas significant peaks are monitored during the arginine wash of protocol B. One of the PAC columns showed a smaller peak during the arginine wash. In addition, both aggregate removal and monomer yield are higher with protocol B compared with the other PAC columns. This method is found to be useful for choosing the right PAC column. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The important functionality of 14-3-3 isoforms in rice roots revealed by affinity chromatography.

    Science.gov (United States)

    Zhang, Zhixing; Zhang, Yiping; Zhao, Hong; Huang, Fenglian; Zhang, Zefeng; Lin, Wenxiong

    2017-03-31

    Plant 14-3-3 proteins belong to a large family of proteins involved in numerous physiological processes, and function by binding to phosphorylated client proteins to regulate their function. However, little is known about their regulatory mechanisms in rice root growth. In this study, four 14-3-3 isoforms (GF14b, GF14c, GF14e, GF14f) exhibiting prominent expression profiles in rice roots, were selected for further investigation. Through a pull-down assay using four 14-3-3 isoforms in rice roots, 87 client proteins were identified that are involved in metabolism, protein synthesis and trafficking, energy metabolism, cell structure and growth, and other cellular processes. Importantly, we found that 14-3-3 proteins may play an important role in the root stress response through interactions with proteins functioning in oxidative stress, pathogenesis and secondary metabolism. By using real-time RT-PCR, it was found that 14-3-3 proteins exhibited diverse patterns of gene expression in response to salinity and drought stresses in rice root. The results revealed the isoform-specific functions of root 14-3-3 proteins. Our current study provides insight into understanding the functional roles of 14-3-3 proteins during rice root growth. Rice (Oryza sativa L.) is one of the most important food crops in the world, as it is consumed by more than 3 billion people. Regulation of root growth plays an important role in rice adaption to biotic and abiotic, stress such as rhizosphere microbes and nutrient stress, and this process is directly related to the final yield. 14-3-3 proteins form a multi-gene family regulating developmental processes in plants. However, the correlation between the 14-3-3 protein family and its role in rice root growth has very little study. We applied an affinity chromatographic approach, in combination with LC-MS/MS, to explore the client proteins of four 14-3-3 isoforms that exhibit much more prominent gene expression than other members of the 14

  17. Affinity chromatography revealed insights into unique functionality of two 14-3-3 protein species in developing maize kernels.

    Science.gov (United States)

    Dou, Yao; Liu, Xiangguo; Yin, Yuejia; Han, Siping; Lu, Yang; Liu, Yang; Hao, Dongyun

    2015-01-30

    The 14-3-3 proteins are a group of regulatory proteins of divergent functions in plants. However, little is known about their roles in maize kernel development. Using publically available gene expression profiling data, we found that two 14-3-3 species genes, zmgf14-4 and zmgf14-6, exhibited prominent expression profiles over other 14-3-3 protein genes during maize kernel development. More than 5000 transcripts of these two genes were identified accounting for about 1/10 of the total transcripts of genes correlating to maize kernel development. We constructed a proteomics pipeline based on the affinity chromatography, in combination with 2-DE and LC-MS/MS technologies to identify the specific client proteins of the two proteins for their functional characterization. Consequently, we identified 77 specific client proteins from the developing kernels of the inbred maize B73. More than 60% of the client proteins were commonly affinity-identified by the two 14-3-3 species and are predicted to be implicated in the fundamental functions of metabolism, protein destination and storage. In addition, we found ZmGF14-4 specifically bound to the disease- or defense-relating proteins, whilst ZmGF14-6 tended to interact with the proteins involving metabolism and cell structure. Our findings provide primary insights into the functional roles of 14-3-3 proteins in maize kernel development. Maize kernel development is a complicated physiological process for its importance in both genetics and cereal breeding. 14-3-3 proteins form a multi-gene family participating in regulations of developmental processes in plants. However, the correlation between this protein family and maize kernel development has hardly been studied. We have for the first time found 12 14-3-3 protein genes from maize genome and studied in silico the gene transcription profiling of these genes. Comparative studies revealed that maize kernel development aroused a great number of gene expression, among which 14

  18. Use of Aleuria alantia Lectin Affinity Chromatography to Enrich Candidate Biomarkers from the Urine of Patients with Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Sarah R. Ambrose

    2015-09-01

    Full Text Available Developing a urine test to detect bladder tumours with high sensitivity and specificity is a key goal in bladder cancer research. We hypothesised that bladder cancer-specific glycoproteins might fulfill this role. Lectin-ELISAs were used to study the binding of 25 lectins to 10 bladder cell lines and serum and urine from bladder cancer patients and non-cancer controls. Selected lectins were then used to enrich glycoproteins from the urine of bladder cancer patients and control subjects for analysis by shotgun proteomics. None of the lectins showed a strong preference for bladder cancer cell lines over normal urothlelial cell lines or for urinary glycans from bladder cancer patients over those from non-cancer controls. However, several lectins showed a strong preference for bladder cell line glycans over serum glycans and are potentially useful for enriching glycoproteins originating from the urothelium in urine. Aleuria alantia lectin affinity chromatography and shotgun proteomics identified mucin-1 and golgi apparatus protein 1 as proteins warranting further investigation as urinary biomarkers for low-grade bladder cancer. Glycosylation changes in bladder cancer are not reliably detected by measuring lectin binding to unfractionated proteomes, but it is possible that more specific reagents and/or a focus on individual proteins may produce clinically useful biomarkers.

  19. Glycopeptide Site Heterogeneity and Structural Diversity Determined by Combined Lectin Affinity Chromatography/IMS/CID/MS Techniques.

    Science.gov (United States)

    Zhu, Feifei; Trinidad, Jonathan C; Clemmer, David E

    2015-07-01

    Glycopeptides from a tryptic digest of chicken ovomucoid were enriched using a simplified lectin affinity chromatography (LAC) platform, and characterized by high-resolution mass spectrometry (MS) as well as ion mobility spectrometry (IMS)-MS. The LAC platform effectively enriched the glycoproteome, from which a total of 117 glycopeptides containing 27 glycan forms were identified for this protein. IMS-MS analysis revealed a high degree of glycopeptide site heterogeneity. Comparison of the IMS distributions of the glycopeptides from different charge states reveals that higher charge states allow more structures to be resolved. Presumably the repulsive interactions between charged sites lead to more open configurations, which are more readily separated compared with the more compact, lower charge state forms of the same groups of species. Combining IMS with collision induced dissociation (CID) made it possible to determine the presence of isomeric glycans and to reconstruct their IMS profiles. This study illustrates a workflow involving hybrid techniques for determining glycopeptide site heterogeneity and evaluating structural diversity of glycans and glycopeptides.

  20. Serodiagnosis of human neurocysticercosis using antigenic components of Taenia solium metacestodes derived from the unbound fraction from jacalin affinity chromatography

    Directory of Open Access Journals (Sweden)

    Gleyce Alves Machado

    2013-05-01

    Full Text Available The aim of the present study was to analyse Taenia solium metacestode antigens that were derived from the unbound fraction of jacalin affinity chromatography and subsequent tert-octylphenoxy poly (oxyethylene ethanol Triton X-114 (TX-114 partitioning in the diagnosis of human neurocysticercosis (NCC. Immunoassays were designed to detect T. solium-specific IgG antibodies by ELISA and immunoblot. Serum samples were collected from 132 individuals who were categorised as follows: 40 had NCC, 62 presented Taenia spp or other parasitic diseases and 30 were healthy individuals. The jacalin-unbound (J unbound fraction presented higher sensitivity and specificity rates than the jacalin-bound fraction and only this fraction was subjected to subsequent TX-114 partitioning, resulting in detergent (DJ unbound and aqueous (AJ unbound fractions. The ELISA sensitivity and specificity were 85% and 84.8% for J unbound , 92.5% and 93.5% for DJ unbound and 82.5% and 82.6% for AJ unbound . By immunoblot, the DJ unbound fraction showed 100% sensitivity and specificity and only serum samples from patients with NCC recognised the 50-70 kDa T. solium-specific components. We conclude that the DJ unbound fraction can serve as a useful tool for the differential immunodiagnosis of NCC by immunoblot.

  1. Glycopeptide Site Heterogeneity and Structural Diversity Determined by Combined Lectin Affinity Chromatography/IMS/CID/MS Techniques

    Science.gov (United States)

    Zhu, Feifei; Trinidad, Jonathan C.; Clemmer, David E.

    2015-07-01

    Glycopeptides from a tryptic digest of chicken ovomucoid were enriched using a simplified lectin affinity chromatography (LAC) platform, and characterized by high-resolution mass spectrometry (MS) as well as ion mobility spectrometry (IMS)-MS. The LAC platform effectively enriched the glycoproteome, from which a total of 117 glycopeptides containing 27 glycan forms were identified for this protein. IMS-MS analysis revealed a high degree of glycopeptide site heterogeneity. Comparison of the IMS distributions of the glycopeptides from different charge states reveals that higher charge states allow more structures to be resolved. Presumably the repulsive interactions between charged sites lead to more open configurations, which are more readily separated compared with the more compact, lower charge state forms of the same groups of species. Combining IMS with collision induced dissociation (CID) made it possible to determine the presence of isomeric glycans and to reconstruct their IMS profiles. This study illustrates a workflow involving hybrid techniques for determining glycopeptide site heterogeneity and evaluating structural diversity of glycans and glycopeptides.

  2. Imidazole-free purification of His3-tagged recombinant proteins using ssDNA aptamer-based affinity chromatography.

    Science.gov (United States)

    Bartnicki, Filip; Kowalska, Ewa; Pels, Katarzyna; Strzalka, Wojciech

    2015-10-30

    Immobilized metal ion affinity chromatography (IMAC) is widely used for the purification of many different His6-tagged recombinant proteins. On the one hand, it is a powerful technique but on the other hand it has its disadvantages. In this report, we present the development of a unique ssDNA aptamer for the purification of His3-tagged recombinant proteins. Our study shows that stability of the His3-tag/H3T aptamer complex can be controlled by the sodium ion concentration. Based on this feature, we demonstrate that H3T aptamer resin was successfully employed for the purification of three out of four tested His3-tagged recombinant proteins from an E. coli total protein extract using imidazole-free buffers. Finally, we show that the purity of His3-tagged proteins is superior when purified with the help of the H3T aptamer in comparison with Ni-NTA resin. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Arginine as an eluent overcomes the hindrance of monoclonal antibody quantification by dextran sulfate in protein A affinity chromatography.

    Science.gov (United States)

    Kim, Bong Gyun; Park, Hong Woo

    2015-01-01

    Analytical chromatography using protein A affinity columns was employed for the fast and simple quantitative analysis of monoclonal antibodies (mAb) from suspension cultures of recombinant Chinese hamster ovary (rCHO) cells. Reliable results could not be obtained from analysis of rCHO cell culture supernatants containing dextran sulfate using elution buffers such as phosphate, glycine, or MgCl2 . These problems increased as the number of analysis and the concentration of dextran sulfate in samples increased. Arginine was identified as an alternative eluent to overcome the hindrance by dextran sulfate. When the samples contain dextran sulfate up to 100 mg/L, the elution buffer containing 0.6-1.0 M arginine at pH 3.0-3.8 is useful for the effective analysis. Reproducible results in the mAb quantification could be obtained by this developed arginine elution buffer from rCHO cell culture supernatants containing dextran sulfate. © 2015 American Institute of Chemical Engineers.

  4. Overview of online two-dimensional liquid chromatography based on cell membrane chromatography for screening target components from traditional Chinese medicines.

    Science.gov (United States)

    Muhammad, Saqib; Han, Shengli; Xie, Xiaoyu; Wang, Sicen; Aziz, Muhammad Majid

    2017-01-01

    Cell membrane chromatography is a simple, specific, and time-saving technique for studying drug-receptor interactions, screening of active components from complex mixtures, and quality control of traditional Chinese medicines. However, the short column life, low sensitivity, low column efficiency (so cannot resolve satisfactorily mixture of compounds), low peak capacity, and inefficient in structure identification were bottleneck in its application. Combinations of cell membrane chromatography with multidimensional chromatography such as two-dimensional liquid chromatography and high sensitivity detectors like mass have significantly reduced many of the above-mentioned shortcomings. This paper provides an overview of the current advances in online two-dimensional-based cell membrane chromatography for screening target components from traditional Chinese medicines with particular emphasis on the instrumentation, preparation of cell membrane stationary phase, advantages, and disadvantages compared to alternative approaches. The last section of the review summarizes the applications of the online two-dimensional high-performance liquid chromatography based cell membrane chromatography reported since its emergence to date (2010-June 2016). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Affinity-purified tetanus neurotoxin interaction with synaptic membranes: properties of a protease-sensitive receptor component

    International Nuclear Information System (INIS)

    Lazarovici, P.; Yavin, E.

    1986-01-01

    The pharmacokinetic interaction of an affinity-purified 125 I-labeled tetanotoxin fraction with guinea pig brain synaptosomal preparations was investigated. Binding of tetanotoxin was time- and temperature-dependent, was proportional to protein concentration, and was saturable at about 8 x 10 -9 M as estimated by a solid-surface binding assay. Binding was optimal at pH 6.5 under low ionic strength buffer and was almost entirely blocked by gangliosides or antitoxin. In analogy to intact nerve cells, binding of toxin to membranes resulted in a tight association operationally defined as sequestration. Binding and sequestration were abolished after membrane pretreatment with sialidase. The enzyme could not dissociate the membrane-bound toxin formed at 4 or 37 0 C under low ionic strength conditions, which is in part compatible with internalization as defined in nerve cell cultures. In the latter system the toxin could be removed at 4 0 C but not at 37 0 C. Binding was significantly reduced upon pretreatment of guinea pig brain membranes by a variety of hydrolytic enzymes. It is proposed that, in addition to a ganglioside, interaction of tetanotoxin with synaptic membranes is facilitated by a protein and may also require an appropriate lipid environment. These latter membrane constituents may play a pivotal role in the sequestration of the toxin

  6. Purification of modified mycobacterial A60 antigen by affinity chromatography and its use for rapid diagnostic tuberculosis infection.

    Science.gov (United States)

    Yari, Sh; Hadizadeh Tasbiti, A; Fateh, A; Karimi, A; Yari, F; Sakhai, F; Ghazanfari, M; Bahrmand, A

    2011-11-01

    Tuberculosis has been declared a global emergency. The mainstay for its control is the rapid and accurate identification of infected individual. Antibodies to A60, one of the macromolecular antigen complexes of mycobacteria were commonly used in the rapid detection of Mycobacterium tuberculosis. The aim of this study was to prepare specific antibodies against A60 for detection of tuberculosis infection. Specific polyclonal antibodies against A60, (A60-Ab) were prepared in rabbits using 2 boosted injections of the antigen (A60). The antibodies were purified and treated with normal oral flora to remove any non-specific and cross-reactive antibodies. These antibodies were conjugated to CNBr-activated Sepharose 4B and used to isolate subunits of A60 with more specificity for M. tuberculosis. A new affinity column was designed to prepare modified (purified) A60 antigen. Purified A60 antigen (PA60-Ag) was used to develop antibody production by Immunoaffinity chromatography. 113 patients with a confirmed diagnosis of pulmonary TB at Pasteur Institute were selected for the study. The specificity of the results was analyzed with TB-rapid test by using PA60-antibodies. TB-rapid test revealed that normal oral flora-absorbed antibodies could lead to more specific results than that of the non-absorbed antibodies. The developed, modified A60 antibodies, (PA60-Ab)-rapid test showed higher sensitivity, specificity, Positive Predictive Value (PPV), Negative Predictive Value (NPV) and overall efficiency (93.0%, 86.0%, 90.0%, 91.0%, and 90.0% respectively) for the detection of the Mycobacterium antigen. Moreover, PA60-Ag showed only two protein bands of molecular weight 45 and 66kDa in SDS-PAGE while untreated A60 showed multiple bands. Thus, our study helped in the purification of a novel and well characterized A60 antigen and good diagnostic potential for detecting tuberculosis infection. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose

    Science.gov (United States)

    1994-01-01

    We identified four polypeptides of 47, 44, 40, and 35 kD that bind to profilin-Sepharose and elute with high salt. When purified by conventional chromatography using an antibody to the 47-kD polypeptide, these four polypeptides copurified as a stoichiometric complex together with three additional polypeptides of 19, 18, and 13 kD that varied in their proportions to the other polypeptides. Partial protein sequences showed that the 47-kD polypeptide is a homologue of S. pombe act2 and the 44-kD polypeptide is a homologue of S. cerevisiae ACT2, both unconventional actins. The 40-kD polypeptide contains a sequence similar to the WD40 motif of the G beta subunit of a trimeric G-protein from Dictyostelium discoideum. From partial sequences, the 35-, 19-, and 18-kD polypeptides appear to be novel proteins. On gel filtration the complex of purified polypeptides cochromatograph with a Stokes' radius of 4.8 nm, a value consistent with a globular particle of 220 kD containing one copy of each polypeptide. Cell extracts also contain components of the complex that do not bind the profilin column. Affinity purified antibodies localize 47- and 18/19-kD polypeptides in the cortex and filopodia of Acanthamoeba. Antibodies to the 47-kD unconventional actin cross-react on immunoblots with polypeptides of similar size in Dictyostelium, rabbit muscle, and conventional preparations of rabbit muscle actin but do not react with actin. PMID:7929556

  8. Immobilized metal affinity chromatography co-purifies TGF-β1 with histidine-tagged recombinant extracellular proteins.

    Directory of Open Access Journals (Sweden)

    Jasvir Kaur

    Full Text Available Extracellular recombinant proteins are commonly produced using HEK293 cells as histidine-tagged proteins facilitating purification by immobilized metal affinity chromatography (IMAC. Based on gel analyses, this one-step purification typically produces proteins of high purity. Here, we analyzed the presence of TGF-β1 in such IMAC purifications using recombinant extracellular fibrillin-1 fragments as examples. Analysis of various purified recombinant fibrillin-1 fragments by ELISA consistently revealed the presence of picomolar concentrations of active and latent TGF-β1, but not of BMP-2. These quantities of TGF-β1 were not detectable by Western blotting and mass spectrometry. However, the amounts of TGF-β1 were sufficient to consistently trigger Smad2 phosphorylation in fibroblasts. The purification mechanism was analyzed to determine whether the presence of TGF-β1 in these protein preparations represents a specific or non-specific co-purification of TGF-β1 with fibrillin-1 fragments. Control purifications using conditioned medium from non-transfected 293 cells yielded similar amounts of TGF-β1 after IMAC. IMAC of purified TGF-β1 and the latency associated peptide showed that these proteins bound to the immobilized nickel ions. These data clearly demonstrate that TGF-β1 was co-purified by specific interactions with nickel, and not by specific interactions with fibrillin-1 fragments. Among various chromatographic methods tested for their ability to eliminate TGF-β1 from fibrillin-1 preparations, gel filtration under high salt conditions was highly effective. As various recombinant extracellular proteins purified in this fashion are frequently used for experiments that can be influenced by the presence of TGF-β1, these findings have far-reaching implications for the required chromatographic schemes and quality controls.

  9. A novel two-zone protein uptake model for affinity chromatography and its application to the description of elution band profiles of proteins fused to a family 9 cellulose binding module affinity tag.

    Science.gov (United States)

    Kavoosi, Mojgan; Sanaie, Nooshafarin; Dismer, Florian; Hubbuch, Jürgen; Kilburn, Douglas G; Haynes, Charles A

    2007-08-10

    A novel two-zone model (TZM) is presented to describe the rate of solute uptake by the stationary phase of a sorption-type chromatography column. The TZM divides the porous stationary-phase particle into an inner protein-free core and an outer protein-containing zone where intraparticle transport is limited by pore diffusion and binding follows Langmuir theory. The TZM and the classic pore-diffusion model (PDM) of chromatography are applied to the prediction of stationary-phase uptake and elution bands within a cellulose-based affinity chromatography column designed to selectively purify proteins genetically labelled with a CBM9 (family 9 cellulose binding module) affinity tag. Under both linear and nonlinear loading conditions, the TZM closely matches rates of protein uptake within the stationary phase particles as measured by confocal laser scanning microscopy, while the PDM deviates from experiment in the linear-binding region. As a result, the TZM is shown to provide improved predictions of product breakthrough, including elution behavior from a bacterial lysate feed.

  10. Determination of membrane degradation products in the product water of polymer electrolyte membrane fuel cells using liquid chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zedda, Marco

    2011-05-12

    The predominant long term failure of polymer electrolyte membranes (PEM) is caused by hydroxyl radicals generated during fuel cell operation. These radicals attack the polymer, leading to chain scission, unzipping and consequently to membrane decomposition products. The present work has investigated decomposition products of novel sulfonated aromatic hydrocarbon membranes on the basis of a product water analysis. Degradation products from the investigated membrane type and the possibility to detect these compounds in the product water for diagnostic purposes have not been discovered yet. This thesis demonstrates the potential of solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) for the extraction, separation, characterization, identification and quantification of membrane degradation products in the product water of fuel cells. For this purpose, several polar aromatic hydrocarbons with different functional groups were selected as model compounds for the development of reliable extraction, separation and detection methods. The results of this thesis have shown that mixed mode sorbent materials with both weak anion exchange and reversed phase retention properties are well suited for reproducible extraction of both molecules and ions from the product water. The chromatographic separation of various polar aromatic hydrocarbons was achieved by means of phase optimized liquid chromatography using a solvent gradient and on a C18 stationary phase. Sensitive and selective detection of model compounds could be successfully demonstrated by the analysis of the product water using tandem mass spectrometry. The application of a hybrid mass spectrometer (Q Trap) for the characterization of unknown polar aromatic hydrocarbons has led to the identification and confirmation of 4-hydroxybenzoic acid in the product water. In addition, 4-HBA could be verified as a degradation product resulting from PEM decomposition by hydroxyl radicals using an

  11. Improved Interfacial Affinity and CO2 Separation Performance of Asymmetric Mixed Matrix Membranes by Incorporating Postmodified MIL-53(Al).

    Science.gov (United States)

    Zhu, Haitao; Wang, Lina; Jie, Xingming; Liu, Dandan; Cao, Yiming

    2016-08-31

    Asymmetric mixed matrix membranes(MMMs) with MOFs hold great application potential for energy-efficient gas separations. However, the particle aggregation and nonselective interfacial microvoids restrict the gas separation performance of asymmetric MMMs. Herein, nanoporous metal-organic framework (MOF) of MIL-53(Al) was modified with aminosilane after solvothermal synthesis. The postfunctionalization by grafting alkyl chains can form hydrogen bonds with polymer chains to enhance the affinity with polymer matrix and facilitate the preferential adsorption of CO2 by dipole-quadrupole interaction with the functional group. Then the postmodified MIL-53(Al) was incorporated as filler into poly(ether imide) Ultem1000 to fabricate high-quality asymmetric MMMs with well dispersed particles in polymer matrix and good adhesion at the MOFs-polymer interface. The Ultem/S-MIL-53(Al) asymmetric MMMs exhibited remarkable combinations of gas permeance and ideal selectivity for CO2/N2 separation at 10 wt % filler loading. The CO2 permeance achieved 24.1 GPU, an increase of 165% compared with pure Ultem membrane. Meanwhile, the ideal CO2/N2 selectivity also increased from 31.0 up to 41.1. The strategy of post covalent modification for MOFs provides an effective way to improve the interfacial affinity and gas separation performance.

  12. Histones have high affinity for the glomerular basement membrane. Relevance for immune complex formation in lupus nephritis

    International Nuclear Information System (INIS)

    Schmiedeke, T.M.; Stoeckl, F.W.W.; Weber, R.; Sugisaki, Y.; Batsford, S.R.; Vogt, A.

    1989-01-01

    An effort has been made to integrate insights on charge-based interactions in immune complex glomerulonephritis with nuclear antigen involvement in lupus nephritis. Attention was focussed on the histones, a group of highly cationic nuclear constituents, which could be expected to bind to fixed anionic sites present in the glomerular basement membrane (GBM). We demonstrated that all histone subfractions, prepared according to Johns, have a high affinity for GBM and the basement membrane of peritubular capillaries. Tissue uptake of 125 I-labeled histones was measured by injecting 200 micrograms of each fraction into the left kidney via the aorta and measuring organ uptake after 15 min. In glomeruli isolated from the left kidneys, the following quantities of histones were found: f1, 13 micrograms; f2a (f2al + f2a2), 17 micrograms; f2b, 17 micrograms; and f3, 32 micrograms. Kinetic studies of glomerular binding showed that f1 disappeared much more rapidly than f2a. The high affinity of histones (pI between 10.5 and 11.0; mol wt 10,000-22,000) for the GBM correlates well with their ability to form aggregates (mol wt greater than 100,000) for comparison lysozyme (pI 11, mol wt 14,000), which does not aggregate spontaneously bound poorly (0.4 micrograms in isolated glomeruli). The quantity of histones and lysozyme found in the isolated glomeruli paralleled their in vitro affinity for a Heparin-Sepharose column (gradient elution studies). This gel matrix contains the sulfated, highly anionic polysaccharide heparin, which is similar to the negatively charged heparan sulfate present in the GBM. Lysozyme eluted with 0.15 M NaCl, f1 with 1 M NaCl, and f2a, f2b, and f3 could not be fully desorbed even with 2 M NaCl; 6 M guanidine-HCl was necessary

  13. Histones have high affinity for the glomerular basement membrane. Relevance for immune complex formation in lupus nephritis

    Energy Technology Data Exchange (ETDEWEB)

    Schmiedeke, T.M.; Stoeckl, F.W.W.; Weber, R.; Sugisaki, Y.; Batsford, S.R.; Vogt, A.

    1989-06-01

    An effort has been made to integrate insights on charge-based interactions in immune complex glomerulonephritis with nuclear antigen involvement in lupus nephritis. Attention was focussed on the histones, a group of highly cationic nuclear constituents, which could be expected to bind to fixed anionic sites present in the glomerular basement membrane (GBM). We demonstrated that all histone subfractions, prepared according to Johns, have a high affinity for GBM and the basement membrane of peritubular capillaries. Tissue uptake of /sup 125/I-labeled histones was measured by injecting 200 micrograms of each fraction into the left kidney via the aorta and measuring organ uptake after 15 min. In glomeruli isolated from the left kidneys, the following quantities of histones were found: f1, 13 micrograms; f2a (f2al + f2a2), 17 micrograms; f2b, 17 micrograms; and f3, 32 micrograms. Kinetic studies of glomerular binding showed that f1 disappeared much more rapidly than f2a. The high affinity of histones (pI between 10.5 and 11.0; mol wt 10,000-22,000) for the GBM correlates well with their ability to form aggregates (mol wt greater than 100,000) for comparison lysozyme (pI 11, mol wt 14,000), which does not aggregate spontaneously bound poorly (0.4 micrograms in isolated glomeruli). The quantity of histones and lysozyme found in the isolated glomeruli paralleled their in vitro affinity for a Heparin-Sepharose column (gradient elution studies). This gel matrix contains the sulfated, highly anionic polysaccharide heparin, which is similar to the negatively charged heparan sulfate present in the GBM. Lysozyme eluted with 0.15 M NaCl, f1 with 1 M NaCl, and f2a, f2b, and f3 could not be fully desorbed even with 2 M NaCl; 6 M guanidine-HCl was necessary.

  14. A simple detection method for low-affinity membrane protein interactions by baculoviral display.

    Directory of Open Access Journals (Sweden)

    Toshiko Sakihama

    Full Text Available BACKGROUND: Membrane protein interactions play an important role in cell-to-cell recognition in various biological activities such as in the immune or neural system. Nevertheless, there has remained the major obstacle of expression of the membrane proteins in their active form. Recently, we and other investigators found that functional membrane proteins express on baculovirus particles (budded virus, BV. In this study, we applied this BV display system to detect interaction between membrane proteins important for cell-to-cell interaction in immune system. METHODOLOGY/PRINCIPAL FINDINGS: We infected Sf9 cells with recombinant baculovirus encoding the T cell membrane protein CD2 or its ligand CD58 and recovered the BV. We detected specific interaction between CD2-displaying BV and CD58-displaying BV by an enzyme-linked immunosorbent assay (ELISA. Using this system, we also detected specific interaction between two other membrane receptor-ligand pairs, CD40-CD40 ligand (CD40L, and glucocorticoid-induced TNFR family-related protein (GITR-GITR ligand (GITRL. Furthermore, we observed specific binding of BV displaying CD58, CD40L, or GITRL to cells naturally expressing their respective receptors by flowcytometric analysis using anti-baculoviral gp64 antibody. Finally we isolated CD2 cDNA from a cDNA expression library by magnetic separation using CD58-displaying BV and anti-gp64 antibody. CONCLUSIONS: We found the BV display system worked effectively in the detection of the interaction of membrane proteins. Since various membrane proteins and their oligomeric complexes can be displayed on BV in the native form, this BV display system should prove highly useful in the search for natural ligands or to develop screening systems for therapeutic antibodies and/or compounds.

  15. Membrane chromatography: protein purification from E. coli lysate using newly designed and commercial anion-exchange stationary phases.

    Science.gov (United States)

    Bhut, Bharat V; Christensen, Kenneth A; Husson, Scott M

    2010-07-23

    This contribution describes the purification of anthrax protective antigen (PA) protein from Escherichia coli lysate using bind-and-elute chromatography with newly designed weak anion-exchange membranes. Protein separation performance of the new AEX membrane adsorber was compared with the commercial Sartobind D membrane adsorber and HiTrap DEAE FF resin column under preparative scale conditions. Dynamic protein binding capacities of all three stationary phases were determined using breakthrough curve analysis. The AEX membrane showed higher binding capacities than the Sartobind D membrane at equivalent volumetric throughput and higher capacities than the HiTrap DEAE FF resin column at 15 times higher volumetric throughput. Anion-exchange chromatography was performed using all three stationary phases to purify PA protein. Quantitative SDS-PAGE analysis of effluent fractions showed that the purity of PA protein was higher for membrane adsorbers than the HiTrap DEAE FF resin column and was the same for the new AEX membrane and Sartobind D membrane adsorbers. The effects of E. coli lysate load volume and volumetric flow rate on PA protein separation resolution using the membrane adsorbers were minor, and the peak elution profile remained un-changed even under conditions where >75% of the total protein dynamic binding capacity of the membranes had been utilized. PA protein peak resolution was higher using pH-gradient elution than with ionic strength gradient elution. Overall, the results clearly demonstrate that membrane chromatography is a high-capacity, high-throughput, high-resolution separation technique, and that resolution in membrane chromatography can be higher than resin column chromatography under preparative conditions and at much higher volumetric throughput. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. Synthesis of conjugates of 6-aminophenanthridine and guanabenz, two structurally unrelated prion inhibitors, for the determination of their cellular targets by affinity chromatography.

    Science.gov (United States)

    Gug, Fabienne; Oumata, Nassima; Tribouillard-Tanvier, Déborah; Voisset, Cécile; Desban, Nathalie; Bach, Stéphane; Blondel, Marc; Galons, Hervé

    2010-02-17

    The synthesis of affinity matrices for 6-aminophenanthridine (6AP) and 2,6-dichlorobenzylidenaminoguanidine (Guanabenz, GA), two unrelated prion inhibitors, is described. In both cases, the same simple spacer, epsilon-aminocaproylaminopentanol, was introduced by a Mitsunobu reaction and the choice of the anchoring position of the linker was determined by the study of the residual antiprion activity of the corresponding 6AP or GA conjugates. Very recently, these two affinity matrices were used for chromatography assays leading to the identification of ribosome (via the rRNA) as a common target of these two antiprion drugs. Here, we show, using competition experiments with Quinacrine (QC) and Chlorpromazine (CPZ), two other antiprion drugs, that QC, but not CPZ, may also directly target the rRNA.

  17. Separation of cell-dependent antibody (CDA) and inhibitory antibody by protein-A affinity chromatography and the effect of fractions on antibody-dependent cellular cytotoxicity (ADCC).

    Science.gov (United States)

    Sato, N; Yabuki, Y; Toh, K; Ishii, Y; Kikuchi, K

    1979-01-01

    The nature of cell-dependent antibody (CDA) and the mechanism of inhibition of antibody-dependent cellular cytotoxicity (ADCC) were studied in the ADCC assay system in which culture cells of methylcholanthrene-induced rat fibrosarcoma (KMT-50) were used as target cells, xenogeneic antiserum (rabbit anti-KMT-50) as the CDA, and human peripheral blood leucocytes (PBL) as effector cells, respectively. By using protein-A Sepharose CL-4B affinity column chromatography of rabbit anti-KMT-50 serum, CDA was shown to bind protein A. Complement dependent-cytotoxicity (CDC), however, was demonstrated in both the adsorbed fraction (eluate) and the non-adsorbed fraction (effluent) to protein A from the same affinity column chromatography. These data confirmed that CDA was IgG with an intact Fc portion. Inhibition of ADCC occurred by pretreatment of effector cells with rabbit anti-effector (human PBL) serum even with extremely small amounts of antiserum. Such inhibition was demonstrated with the eluate but not with the effluent from protein-A Sepharose CL-4B affinity column chromatography of rabbit anti-effector serum. F(ab')2 fragments of the same eluate (IgG) did not inhibit the ADCC activity. These data showed that the inhibition of ADCC was induced by the blocking of Fc receptors of effector cells with the Fc portions of IgG in anti-effector serum. The data obtained indicate the usefulness of protein A in separation and analysis of CDA and in investigation of the inhibitory mechanisms of ADCC. Images Figure 2 PMID:437836

  18. PAN composite membrane with different solvent affinities controlled by surface modification methods

    Czech Academy of Sciences Publication Activity Database

    Dragan, E. S.; Mihai, M.; Schauer, Jan; Ghimici, L.

    2005-01-01

    Roč. 43, č. 18 (2005), s. 4161-4171 ISSN 0887-624X R&D Projects: GA ČR(CZ) GA203/05/0080 Institutional research plan: CEZ:AV0Z40500505 Keywords : composite membrane * functionalization of polymers * polyelectrolytes Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.027, year: 2005

  19. A Printed Equilibrium Dialysis Device with Integrated Membranes for Improved Binding Affinity Measurements.

    Science.gov (United States)

    Pinger, Cody W; Heller, Andrew A; Spence, Dana M

    2017-07-18

    Equilibrium dialysis is a simple and effective technique used for investigating the binding of small molecules and ions to proteins. A three-dimensional (3D) printer was used to create a device capable of measuring binding constants between a protein and a small ion based on equilibrium dialysis. Specifically, the technology described here enables the user to customize an equilibrium dialysis device to fit their own experiments by choosing membranes of various material and molecular-weight cutoff values. The device has dimensions similar to that of a standard 96-well plate, thus being amenable to automated sample handlers and multichannel pipettes. The device consists of a printed base that hosts multiple windows containing a porous regenerated-cellulose membrane with a molecular-weight cutoff of ∼3500 Da. A key step in the fabrication process is a print-pause-print approach for integrating membranes directly into the windows subsequently inserted into the base. The integrated membranes display no leaking upon placement into the base. After characterizing the system's requirements for reaching equilibrium, the device was used to successfully measure an equilibrium dissociation constant for Zn 2+ and human serum albumin (K d = (5.62 ± 0.93) × 10 -7 M) under physiological conditions that is statistically equal to the constants reported in the literature.

  20. High recovery of lead ions from aminated polyacrylonitrile nanofibrous affinity membranes with micro/nano structure.

    Science.gov (United States)

    Hong, Guishan; Li, Xiong; Shen, Lingdi; Wang, Min; Wang, Ce; Yu, Xufeng; Wang, Xuefen

    2015-09-15

    In this paper, highly porous polyacrylonitrile (PAN) nanofibrous membranes were successfully fabricated by wet-electrospinning technique from PAN and poly(vinyl pyrrolidone) (PVP) blended solution using hot water bath as extractor, and then aminated with diethylene triamine (DETA). The obtained aminated PAN (APAN) nanofibrous mats showed unique micro/nano structures and possessed extra high extraction capability for the removal of lead ions (Pb(2+)) from aqueous solution (maximum uptake capacity of Pb(2+) was up to 1520.0mg/g), and could maintain over 90% of its extraction capacity at the sixth cycle of extraction-dissociation. Interestingly, the hexagonal crystals of basic lead(II) carbonate (Pb3(CO3)2(OH)2) grown on micro/nano structured APAN nanofibers were observed when APAN membrane was immersed in Pb(II) ions aqueous solution. The results provided new insights for the removal of metal ions by metal crystal growth from wastewater with high recovery. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Adsorption of peptides and small proteins with control access polymer permeation to affinity binding sites. Part I: Polymer permeation-immobilized metal ion affinity chromatography separation adsorbents with polyethylene glycol and immobilized metal ions.

    Science.gov (United States)

    González-Ortega, Omar; Porath, Jerker; Guzmán, Roberto

    2012-03-02

    Despite the many efforts to develop efficient protein purification techniques, the isolation of peptides and small proteins on a larger than analytical scale remains a significant challenge. Recovery of small biomolecules from diluted complex biological mixtures, such as human serum, employing porous adsorbents is a difficult task mainly due to the presence of concentrated large biomolecules that can add undesired effects in the system such as blocking of adsorbent pores, impairing diffusion of small molecules, or competition for adsorption sites. Adsorption and size exclusion chromatography (AdSEC) controlled access media, using polyethylene glycol (PEG) as a semi-permeable barrier on a polysaccharide matrix, have been developed and explored in this work to overcome such effects and to preferentially adsorb small molecules while rejecting large ones. In the first part of this work, adsorption studies were performed with small peptides and proteins from synthetic mixtures using controlled access polymer permeation adsorption (CAPPA) media created by effectively grafting PEG on an immobilized metal affinity chromatography (IMAC) agarose resin, where chelating agents and immobilized metal ions were used as the primary affinity binding sites. Synthetic mixtures consisted of bovine serum albumin (BSA) with small proteins, peptides, amino acids (such as histidine or Val⁴-Angiotensin III), and small molecules-spiked human serum. The synthesized hybrid adsorbent consisted of agarose beads modified with iminodiacetic (IDA) groups, loaded with immobilized Cu(II) ions, and PEG. These CAPPA media with grafted PEG on the interior and exterior surfaces of the agarose matrix were effective in rejecting high molecular weight proteins. Different PEG grafting densities and PEG of different molecular weight were tested to determine their effect in rejecting and controlling adsorbent permeation properties. Low grafting density of high molecular weight PEG was found to be as

  2. Chromatography

    Science.gov (United States)

    ... that are bonded together. For example, water is a chemical bond of oxygen and hydrogen. Proteins are another type of chemical compound. There are different kinds of chromatography. These include gas, high pressure liquid, or ion ...

  3. Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity

    Science.gov (United States)

    Algimantas P. Valaitis; Jeremy L. Jenkins; Mi Kyong Lee; Donald H. Dean; Karen J. Garner

    2001-01-01

    BTR-270, a gypsy moth (Lymantria dispar) brush border membrane molecule that binds Bacillus thuringiensis (Bt) Cry1A toxins with high affinity, was purified by preparative gel electrophoresis. Rabbit antibodies specific for the Bt toxin-binding molecule were raised. Attempts to label BTR-270 by protein-directed techniques were...

  4. High-expression EGFR/cell membrane chromatography-online-high-performance liquid chromatography/mass spectrometry: rapid screening of EGFR antagonists from Semen Strychni.

    Science.gov (United States)

    Sun, Meng; Guo, Ying; Dai, Bingling; Wang, Chen; He, Langchong

    2012-09-15

    Traditional methods for screening active compounds from complex system such as traditional Chinese medicines are relatively cumbersome and time-consuming. In order to improve this situation, we established an online analytical method for screening, separation and identification EGFR antagonists from traditional Chinese medicines, which is described in this study. Cells with high EGFR expression levels were used to prepare the cell membrane stationary phase for the EGFR cell membrane chromatography model with the purpose of screening active compounds. Separation of the retention fractions was achieved by the high-performance liquid chromatography, and identification was conducted via electrospray ionization quadrupole mass spectrometry. The inhibitory effects of active compounds on EGFR cell growth were also demonstrated in vitro. The screening results showed that vauquline and strychnine from Semen Strychni could be active components acting on EGFR similarly to gefitinib as a control drug. Results from biological trials showed that vauquline and strychnine inhibited cell proliferation of HEK293/EGFR cells, and inhibited Erk phosphorylation, and can effectively reduce expression of downstream signaling molecules. This EGFR cell membrane chromatography-online-high-performance liquid chromatography/tandem mass spectrometry method can be applied for rapid screening, separation and identification of EGFR antagonists from traditional Chinese medicines and should be useful for drug discovery with natural medicinal herbs. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Analysis of multi-site drug-protein interactions by high-performance affinity chromatography: Binding by glimepiride to normal or glycated human serum albumin.

    Science.gov (United States)

    Matsuda, Ryan; Li, Zhao; Zheng, Xiwei; Hage, David S

    2015-08-21

    High-performance affinity chromatography (HPAC) was used in a variety of formats to examine multi-site interactions between glimepiride, a third-generation sulfonylurea drug, and normal or in vitro glycated forms of the transport protein human serum albumin (HSA). Frontal analysis revealed that glimepiride interacts with normal HSA and glycated HSA at a group of high affinity sites (association equilibrium constant, or Ka, 9.2-11.8×10(5)M(-1) at pH 7.4 and 37°C) and a group of lower affinity regions (Ka, 5.9-16×10(3)M(-1)). Zonal elution competition studies were designed and carried out in both normal- and reversed-role formats to investigate the binding by this drug at specific sites. These experiments indicated that glimepiride was interacting at both Sudlow sites I and II. Allosteric effects were also noted with R-warfarin at Sudlow site I and with tamoxifen at the tamoxifen site on HSA. The binding at Sudlow site I had a 2.1- to 2.3-fold increase in affinity in going from normal HSA to the glycated samples of HSA. There was no significant change in the affinity for glimepiride at Sudlow site II in going from normal HSA to a moderately glycated sample of HSA, but a slight decrease in affinity was seen in going to a more highly glycated HSA sample. These results demonstrated how various HPAC-based methods can be used to profile and characterize multi-site binding by a drug such as glimepiride to a protein and its modified forms. The information obtained from this study should be useful in providing a better understanding of how drug-protein binding may be affected by glycation and of how separation and analysis methods based on HPAC can be employed to study systems with complex interactions or that involve modified proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Osteoblast cell membrane chromatography coupled with liquid chromatography and time-of-flight mass spectrometry for screening specific active components from traditional Chinese medicines.

    Science.gov (United States)

    Wang, Nani; Zhang, Qiaoyan; Xin, Hailiang; Shou, Dan; Qin, Luping

    2017-11-01

    A method using osteoblast membrane chromatography coupled with liquid chromatography and time-of-flight mass spectrometry was developed to recognize and identify the specific active components from traditional Chinese medicines. Primary rat osteoblasts were used for the preparation of the stationary phase in the cell chromatography method. Retention components from the cell chromatography were collected and analyzed by liquid chromatography with time-of-flight mass spectrometry. This method was applied in screening active components from extracts of four traditional Chinese medicines. In total, 24 potentially active components with different structures were retained by osteoblast cell chromatography. There were five phenolic glucosides and one triterpenoid saponin from Curculigo orchioides Gaertn, two organic acids and ten flavonoids from Epimedium sagittatum Maxim, one phthalide compound and one organic acid from Angelica sinensis Diels, and two flavonoids and two saponins from Anemarrhena asphodeloides Bunge. Among those, four components (icariin, curculigoside, ferulaic acid, and timosaponin BII) were used for in vitro pharmacodynamics validation. They significantly increased the osteoblast proliferation, alkaline phosphatase activity, levels of bone gla protein and collagen type 1, and promoted mineralized nodule formation. The developed method was an effective screening method for finding active components from complex medicines that act on bone diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Novel bis(5-methyltetrazolium)amine ligand-bonded stationary phase with reduced leakage of metal ions in immobilized metal affinity chromatography of proteins.

    Science.gov (United States)

    Bo, Chunmiao; Wang, Chaozhan; Wei, Yinmao

    2016-11-01

    Immobilized metal affinity chromatography (IMAC) has been widely used for the specific separation of biopolymers. However, leakage of metal ions from IMAC adsorbents is of concern in IMAC. In this study, we designed a novel tridenate bis(5-methyltetrazolium)amine (BMTA) to reduce the leakage of metal ions by improving the affinity to immobilized metal ions. The ligand was bonded onto silica via three-step reaction to prepare a high-performance IMAC stationary phase. The chromatographic behaviors of ribonuclease A, cytochrome c, and lysozyme on the Cu(II)-, Ni(II)-, and Zn(II)-chelated stationary phase were investigated with respect to pH effect and elution with an imidazole gradient. The retention times of these three proteins increased by increasing the pH of the mobile phase but decreased by increasing the concentration of the competitive displacer. The retaining strength of the three proteins on the chelated stationary phase were in the order Cu(II) > Ni(II) > Zn(II). The behavior of these three proteins was consistent with the properties of a typical IMAC. The BMTA ligand exhibited a much stronger affinity for Cu(II) and Ni(II) than iminodiacetic acid (IDA), which is often regarded as a standard tridentate IMAC ligand. Quantum mechanical calculations at the B3LYP/6-31G level were used to image the coordination mode of the protein-metal ions-BMTA complex. In addition, a fused histidine-tagged cecropin b-human epidermal growth factor (CB-EGF) from Escherichia coli crude extract was purified by the Ni(II)-chelated stationary phase, and the purity of the CB-EGF was determined to be at least 90 %. These results suggest that the BMTA ligand may have potential applications in the preparation of therapeutics. Graphical Abstract A novel ligand of tridenate bis(5-methyltetrazolium)amine (BMTA) was designed to reduce the leakage of metal ions from the column in immobolized metal affinity chromatography (IMAC).

  8. The combination of lectin affinity chromatography, gel electrophoresis and mass spectrometry in the study of plant glycoproteome: Preliminary insights

    Czech Academy of Sciences Publication Activity Database

    Laštovičková, Markéta; Smětalová, D.; Bobálová, Janette

    2011-01-01

    Roč. 73, Suppl 1 (2011), S113–S122 ISSN 0009-5893 R&D Projects: GA MŠk 1M0570; GA AV ČR IAA600040701 Institutional research plan: CEZ:AV0Z40310501 Keywords : lectin chromatography * MALDI-TOF mass spectrometry * Glycoproteins Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.195, year: 2011

  9. Evaluation of Immobilized Metal-Ion Affinity Chromatography and Electrospray Ionization Tandem Mass Spectrometry for Recovery and Identification of Copper(II)-Binding Ligands in Seawater Using the Model Ligand 8-Hydroxyquinoline

    OpenAIRE

    Nixon, Richard L.; Ross, Andrew R. S.

    2016-01-01

    Complexation by organic ligands dominates the speciation of iron (Fe), copper (Cu), and other bioactive trace metals in seawater, controlling their bioavailability and distribution in the marine environment. Several classes of high-affinity Fe-binding ligands (siderophores) have been identified in seawater but the chemical structures of marine Cu-complexing ligands remain unknown. Immobilized metal-ion affinity chromatography (IMAC) allows Cu ligands to be isolated from bulk dissolved organic...

  10. Ion-Exchange Membrane Chromatography as an Alternative Method of Separation of Potato y Virus

    Directory of Open Access Journals (Sweden)

    Treder Krzysztof

    2015-12-01

    Full Text Available Procedures of separation of virus particles from a plant material are multistage. Furthermore often they are difficult in terms of methodology and require use of expensive, highly specialist equipment and yield of separation is often low. The antigen obtained is often degraded and contains admixtures of other proteins. Therefore, generation of high quality and specificity antibodies based on such antigen is very difficult and quality of the antibodies has impact on reliability, sensitivity and unambiguity of results of immunodiagnostic tests (e.g. ELISA that are currently conventionally used to detect vegetable viruses. In this study three conventionally-performed methods of separation of potato virus Y (PVY were compared and a method of separation based on membrane chromatography, as an alternative separation technique, has been presented. It has been demonstrated that in proper process conditions good quality virus preparation can be obtained.

  11. Online micro-solid-phase extraction based on boronate affinity monolithic column coupled with high-performance liquid chromatography for the determination of monoamine neurotransmitters in human urine.

    Science.gov (United States)

    Yang, Xiaoting; Hu, Yufei; Li, Gongke

    2014-05-16

    Quantification of monoamine neurotransmitters is very important in diagnosing and monitoring of patients with neurological disorders. We developed an online analytical method to selectively determine urinary monoamine neurotransmitters, which coupled the boronate affinity monolithic column micro-solid-phase extraction with high-performance liquid chromatography (HPLC). The boronate affinity monolithic column was prepared by in situ polymerization of vinylphenylboronic acid (VPBA) and N,N'-methylenebisacrylamide (MBAA) in a stainless capillary column. The prepared monolithic column showed good permeability, high extraction selectivity and capacity. The column-to-column reproducibility was satisfactory and the enrichment factors were 17-243 for four monoamine neurotransmitters. Parameters that influence the online extraction efficiency, including pH of sample solution, flow rate of extraction and desorption, extraction volume and desorption volume were investigated. Under the optimized conditions, the developed method exhibited low limit of detection (0.06-0.80μg/L), good linearity (with R(2) between 0.9979 and 0.9993). The recoveries in urine samples were 81.0-105.5% for four monoamine neurotransmitters with intra- and inter-day RSDs of 2.1-8.2% and 3.7-10.6%, respectively. The online analytical method was sensitive, accurate, selective, reliable and applicable to analysis of trace monoamine neurotransmitters in human urine sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Efficient on-column conversion of IgG1 trisulfide linkages to native disulfides in tandem with Protein A affinity chromatography.

    Science.gov (United States)

    Aono, Hiromasa; Wen, Dingy; Zang, Li; Houde, Damian; Pepinsky, R Blake; Evans, David R H

    2010-08-06

    Protein trisulfide linkages are generated by the post-translational insertion of a sulfur atom into a disulfide bond. Molecular heterogeneity was detected in a recombinant IgG(1) monoclonal antibody (mAb) and attributed to the presence of a protein trisulfide moiety. The predominant site of trisulfide modification was the bond between the heavy and light chains. The trisulfide was eliminated during purification of the IgG(1) mAb via a cysteine wash step incorporated into Protein A affinity column chromatography. Analysis of the cysteine-treated mAb by electrophoresis and peptide mapping indicated that the trisulfide linkages were efficiently converted to intact disulfide bonds (13% trisulfide decreased consistently to 1% or less) without disulfide scrambling or an increase in free sulfhydryls. The on-column trisulfide conversion caused no change in protein folding detectable by hydrogen/deuterium exchange or differential scanning calorimetry. Consistent with this, binding of the mAb to its antigen in vitro was insensitive to the presence of the trisulfide modification and to its removal by the on-column cysteine treatment. Similar, high efficiency trisulfide conversion was achieved for a second IgG(1) mAb using the column wash strategy (at least 7% trisulfide decreased to 1% or less). Therefore, trisulfide/disulfide heterogeneity can be eliminated from IgG(1) molecules via a convenient and inexpensive procedure compatible with routine Protein A affinity capture. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Molecular modification of Protein A to improve the elution pH and alkali resistance in affinity chromatography.

    Science.gov (United States)

    Xia, Hai-Feng; Liang, Zhen-Dong; Wang, Sha-Li; Wu, Pu-Qiang; Jin, Xiong-Hua

    2014-04-01

    Protein A of Staphylococcus aureus has been widely used as an affinity ligand for the purification of immunoglobulin. However, the low elution pH and the sensitivity to alkaline condition restricted the large-scale application of antibody purification. To overcome these disadvantages, the B domain was selected and mutated to Z domain and the recombinant Protein A was reconstructed by linking five Z domains. First, a section of six glycines was inserted into the second loop of Z domain, Z (6G). This increased the elution pH to 4.0-5.0. Then, the site-specific mutagenesis was conducted by replacing the 23rd asparagines to threonine and 30th phenylalanine to alanine, Z (N23T, F30A). These mutations made the recombinant Protein A shown a higher alkaline resistance than the nature Protein A. The work confirmed the modification of Protein A and exhibited the characteristics of recombinant Staphylococcal Protein A for antibody purification.

  14. Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis

    DEFF Research Database (Denmark)

    Stensballe, A; Andersen, Søren; Jensen, Ole Nørregaard

    2001-01-01

    Detailed characterization of phosphoproteins as well as other post-translationally modified proteins is required to fully understand protein function and regulatory events in cells and organisms. Here we present a mass spectrometry (MS) based experimental strategy for the identification and mapping...... chromatography (Fe(III)-IMAC) columns were employed for enrichment of phosphorylated peptides from crude peptide mixtures prior to off-line analysis by matrix-assisted laser desorption/ionization (MALDI) MS or nanoelectrospray tandem mass spectrometry (MS/MS). An optimized and sensitive procedure for alkaline...... of phosphorylation sites. The advantages and limitations of the experimental strategy was demonstrated by enrichment, identification and sequencing of phosphopeptides from the model proteins ovalbumin and bovine beta-casein isolated by gel electrophoresis. Furthermore, an autophosphorylation site at Ser-3...

  15. The Cutting Edge of Affinity Electrophoresis Technology

    Science.gov (United States)

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262

  16. The Cutting Edge of Affinity Electrophoresis Technology.

    Science.gov (United States)

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-03-18

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years.

  17. Development of a novel affinity chromatography resin for platform purification of bispecific antibodies with modified protein a binding avidity.

    Science.gov (United States)

    Tustian, Andrew D; Laurin, Linus; Ihre, Henrik; Tran, Travis; Stairs, Robert; Bak, Hanne

    2018-02-21

    There is strong interest in the production of bispecific monoclonal antibodies that can simultaneously bind two distinct targets or epitopes to achieve novel mechanisms of action and efficacy. Regeneron's bispecific technology, based upon a standard IgG, consists of a heterodimer of two different heavy chains, and a common light chain. Co-expression of two heavy chains leads to the formation of two parental IgG impurities, the removal of which is facilitated by a dipeptide substitution in the Fc portion of one of the heavy chains that ablates Fc Protein A binding. Therefore the affinity capture (Protein A) step of the purification process must perform both bulk capture and high resolution of these mAb impurities, a task current commercially available resins are not designed for. Resolution can be further impaired by the ability of Protein A to bind some antibodies in the variable region of the heavy chain (V H ). This paper details development of a novel Protein A resin. This resin combines an alkali stable ligand with a base matrix exhibiting excellent mass transfer properties to allow high capacity single step capture and resolution of bispecific antibodies with high yields. The developed resin, named MabSelect SuRe™ pcc, is implemented in GMP production processes for several bispecific antibodies. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  18. High-capacity protein A affinity chromatography for the fast quantification of antibodies: Two-wavelength detection expands linear range.

    Science.gov (United States)

    Satzer, Peter; Jungbauer, Alois

    2018-01-13

    The high-throughput analysis of antibodies from processes can be enhanced when the linear range is expanded and sample preparation is kept to a minimum. We developed a fast chromatography method based on a hexameric variant of staphylococcal protein A immobilized on Toyopearl matrix, TSK 5 PW using two wavelengths. A protocol with 5 min runtime and a single-wavelength detection at 280 nm yielded an upper limit of quantification of 2.10 mg/mL and a lower limit of quantification of 0.06 mg/mL. The optimized method with a runtime of 2 min and two-wavelength detection at 280 and 300 nm allowed us to span a valid concentration range of 0.01-5.20 mg/mL using two calibration curves. Sample selectivity was tested using mock supernatant mixed with antibody concentrations of 0.1-2.1 mg/mL, sample stability in the autosampler was shown for at least 24 h. We also tested the capabilities of the method to determine purity of an antibody sample by calculating the ratio of peak area of elution to peak area of flow-through, which correlated well with the expected purity. The method will be very useful for process development and in-process control, spanning concentrations from seed fermentation to harvest and purification. © 2018 The Authors. Journal of Separation Science Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Efficient refolding of a hydrophobic protein with multiple S-S bonds by on-resin immobilized metal affinity chromatography.

    Science.gov (United States)

    Sharapova, Olga A; Yurkova, Maria S; Laurinavichyute, Daniela K; Andronova, Svetlana M; Fedorov, Alexey N; Severin, Sergey E; Severin, Evgeny S

    2011-08-05

    The efficient refolding of recombinant proteins produced in the form of inclusion bodies (IBs) in Escherichia coli still is a complicated experimental problem especially for large hydrophobic highly disulfide-bonded proteins. The aim of this work was to develop highly efficient and simple refolding procedure for such a protein. The recombinant C-terminal fragment of human alpha-fetoprotein (rAFP-Cterm), which has molecular weight of 26 kDa and possesses 6 S-S bonds, was expressed in the form of IBs in E. coli. The C-terminal 7× His tag was introduced to facilitate protein purification and refolding. The refolding procedure of the immobilized protein by immobilized metal chelating chromatography (IMAC) was developed. Such hydrophobic highly disulfide-bonded proteins tend to irreversibly bind to traditionally used agarose-based matrices upon attempted refolding of the immobilized protein. Indeed, the yield of rAFP-Cterm upon its refolding by IMAC on agarose-based matrix was negligible with bulk of the protein irreversibly stacked to the resin. The key has occurred to be using IMAC based on silica matrix. This increased on-resin refolding yield of the target protein from almost 0 to 60% with purity 98%. Compared to dilution refolding of the same protein, the productivity of the developed procedure was two orders higher. There was no need for further purification or concentration of the renatured protein. The usage of silica-based matrix for the refolding of immobilized proteins by IMAC can improve and facilitate the experimental work for difficult-to-refold proteins. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Purification of camel liver catalase by zinc chelate affinity chromatography and pH gradient elution: An enzyme with interesting properties.

    Science.gov (United States)

    Chafik, Abdelbasset; Essamadi, Abdelkhalid; Çelik, Safinur Yildirim; Mavi, Ahmet

    2017-12-01

    Climate change and increasing temperatures are global concerns. Camel (Camelus dromedarius) lives most of its life under high environmental stress in the desert and represent ideal model for studying desert adaptation among mammals. Catalase plays a key role in protecting cells against oxidative stress. For the first time, catalase from camel liver was purified to homogeneity by zinc chelate affinity chromatography using pH gradient elution, a better separation was obtained. A purification fold of 201.81 with 1.17% yield and a high specific activity of 1132539.37U/mg were obtained. The native enzyme had a molecular weight of 268kDa and was composed of four subunits of equal size (65kDa). The enzyme showed optimal activity at a temperature of 45°C and pH 7.2. Thiol reagents, β-Mercaptoethanol and D,L-Dithiothreitol, inhibited the enzyme activity. The enzyme was inhibited by Al 3+ , Cd 2+ and Mg 2+ , whereas Ca 2+ , Co 2+ and Ni 2+ stimulated the catalase activity. Reduced glutathione has no effect on catalase activity. The K m and V max of the enzyme for hydrogen peroxide were 37.31mM and 6185157U/mg, respectively. Sodium azide inhibited the enzyme noncompetitively with K i value of 14.43μM, the IC 50 was found to be 16.71μM. The properties of camel catalase were different comparing to those of mammalian species. Relatively higher molecular weight, higher optimum temperature, protection of reduced glutathione from hydrogen peroxide oxidation and higher affinity for hydrogen peroxide and sodium azide, these could be explained by the fact that camel is able to live in the intense environmental stress in the desert. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Quantitative structure-retention relationships of flavonoids unraveled by immobilized artificial membrane chromatography.

    Science.gov (United States)

    Santoro, Adriana Leandra; Carrilho, Emanuel; Lanças, Fernando Mauro; Montanari, Carlos Alberto

    2016-06-10

    The pharmacokinetic properties of flavonoids with differing degrees of lipophilicity were investigated using immobilized artificial membranes (IAMs) as the stationary phase in high performance liquid chromatography (HPLC). For each flavonoid compound, we investigated whether the type of column used affected the correlation between the retention factors and the calculated octanol/water partition (log Poct). Three-dimensional (3D) molecular descriptors were calculated from the molecular structure of each compound using i) VolSurf software, ii) the GRID method (computational procedure for determining energetically favorable binding sites in molecules of known structure using a probe for calculating the 3D molecular interaction fields, between the probe and the molecule), and iii) the relationship between partition and molecular structure, analyzed in terms of physicochemical descriptors. The VolSurf built-in Caco-2 model was used to estimate compound permeability. The extent to which the datasets obtained from different columns differ both from each other and from both the calculated log Poct and the predicted permeability in Caco-2 cells was examined by principal component analysis (PCA). The immobilized membrane partition coefficients (kIAM) were analyzed using molecular descriptors in partial least square regression (PLS) and a quantitative structure-retention relationship was generated for the chromatographic retention in the cholesterol column. The cholesterol column provided the best correlation with the permeability predicted by the Caco-2 cell model and a good fit model with great prediction power was obtained for its retention data (R(2)=0.96 and Q(2)=0.85 with four latent variables). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Simple method for Shiga toxin 2e purification by affinity chromatography via binding to the divinyl sulfone group.

    Directory of Open Access Journals (Sweden)

    Hideyuki Arimitsu

    Full Text Available Here we describe a simple affinity purification method for Shiga toxin 2e (Stx2e, a major causative factor of edema disease in swine. Escherichia coli strain MV1184 transformed with the expression plasmid pBSK-Stx2e produced Stx2e when cultivated in CAYE broth containing lincomycin. Stx2e bound to commercial D-galactose gel, containing α-D-galactose immobilized on agarose resin via a divinyl sulfone linker, and was eluted with phosphate-buffered saline containing 4.5 M MgCl2. A small amount of Stx2e bound to another commercial α-galactose-immobilized agarose resin, but not to β-galactose-immobilized resin. In addition, Stx2e bound to thiophilic adsorbent resin containing β-mercaptoethanol immobilized on agarose resin via a divinyl sulfone, and was purified in the same manner as from D-galactose gel, but the Stx2e sample contained some contamination. These results indicate that Stx2e bound to D-galactose gel mainly through the divinyl sulfone group on the resin and to a lesser extent through α-D-galactose. With these methods, the yields of Stx2e and attenuated mutant Stx2e (mStx2e from 1 L of culture were approximately 36 mg and 27.7 mg, respectively, and the binding capacity of the D-galactose gel and thiophilic adsorbent resin for Stx2e was at least 20 mg per 1 ml of resin. In addition, using chimeric toxins with prototype Stx2 which did not bind to thiophilic adsorbent resin and some types of mutant Stx2e and Stx2 which contained inserted mutations in the B subunits, we found that, at the least, asparagine (amino acid 17 of the B subunits was associated with Stx2e binding to the divinyl sulfone group. The mStx2e that was isolated exhibited vaccine effects in ICR mice, indicating that these methods are beneficial for large-scale preparation of Stx2e toxoid, which protects swine from edema disease.

  3. Retention behavior of flavonoids on immobilized artificial membrane chromatography and correlation with cell-based permeability.

    Science.gov (United States)

    Tsopelas, Fotios; Tsagkrasouli, Maria; Poursanidis, Pavlos; Pitsaki, Maria; Vasios, George; Danias, Panagiotis; Panderi, Irene; Tsantili-Kakoulidou, Anna; Giaginis, Constantinos

    2018-03-01

    The aim of the study was to investigate the immobilized artificial membrane (IAM) retention mechanism for a set of flavonoids and to evaluate the potential of IAM chromatography to model Caco-2 permeability. For this purpose, the retention behavior of 41 flavonoid analogs on two IAM stationary phases, IAM.PC.MG and IAM.PC.DD2, was investigated. Correlations between retention factors, logk w(IAM) and octanol-water partitioning (logP) were established and the role of hydroxyl groups of flavonoids to the underlying retention mechanism was explored. IAM retention and logP values were used to establish sound linear models with Caco-2 permeability (logP app ) taken from the literature. Both stepwise regression and multivariate analysis confirmed the contribution of hydrogen bond descriptors, as additional parameters in the either logk w(IAM) or logP models. Retention factors on both IAM stationary phases showed comparable performance with n-octanol-water partitioning towards Caco-2 permeability. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Fluorescent detection of apoptotic cells using a family of zinc coordination complexes with selective affinity for membrane surfaces that are enriched with phosphatidylserine.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Bradley D. (University of Notre Dame, Notre Dame, Indiana); Lambert, Timothy N.; Lakshmi, C. (University of Notre Dame, Notre Dame, Indiana); Hanshaw, Roger, G. (University of Notre Dame, Notre Dame, Indiana)

    2005-03-01

    The appearance of phosphatidylserine on the membrane surface of apoptotic cells (Jurkat, CHO, HeLa) is monitored by using a family of bis(Zn{sup 2+}-2,2{prime}-dipicolylamine) coordination compounds with appended fluorescein or biotin groups as reporter elements. The phosphatidylserine affinity group is also conjugated directly to a CdSe/CdS quantum dot to produce a probe suitable for prolonged observation without photobleaching. Apoptosis can be detected under a wide variety of conditions, including variations in temperature, incubation time, and binding media. Binding of each probe appears to be restricted to the cell membrane exterior, because no staining of organelles or internal membranes is observed.

  5. Affinity chromatography and binding studies on immobilized 5'-monophosphate and adenosine 2',5'-bisphosphate of nicotinamide nucleotide transhydrogenase from Pseudomonas aeruginosa.

    Science.gov (United States)

    Höjeberg, B; Brodelius, P; Rydström, J; Mosbach, K

    1976-07-15

    1. Nicotinamide nucleotide transhydrogenase from Pseudomonas aeruginosa was purified to apparent homogeneity with an improved method employing affinity chromatography on N6-(6aminohexyl)-adenosine 2', 5'-bisphosphate-Sepharose 4B. 2. Polyacrylamide gel electrophoresis of the purified transhydrogenase carried out in the presence of sodium dodecyl sulphate, indicated a minimal molecular weight of 55000 +/- 2000. 3. The kinetic and regulatory properties of the purified transhydrogenase resembled those of the crude enzyme, i.e., NADPH, adenosine 2'-monophosphate and Ca2+ were activators whereas NADP+ was inhibitory. 4. Nicotinamide nucleotide-specific release of binding of the transhydrogenase to N6-(6-aminohexyl)-adenosine-2',5'-bisphosphate-Sepharose and N6-(-aminohexyl)-adenosine-5'-monophosphate-Sepharose suggests the presence of at least two separate binding sites for nicotinamide nucleotides, one that is specific for NADP(H) and one that binds both NAD(H) and NADP(H). 5. Binding of transhydrogenase to N6-)6-aminohexyl)-adenosine-2',5'-bisphosphate-Sepharose and activation of the enzyme by adenosine-2',5'-bisphophate showed a marked pH dependence. In contrast, inhibition of the Ca2+-activated enzyme by adenosine 2',5'-bisphosphate was virtually constant at various pH values. This descrepancy was interpreted to indicate the existence of separate nucleotide-binding effector and active sites.

  6. Quantitative Phosphoproteome Analysis of Lysophosphatidic Acid Induced Chemotaxis applying Dual-step ¹⁸O Labeling Coupled with Immobilized Metal-ion Affinity Chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shi-Jian; Wang, Yingchun; Jacobs, Jon M.; Qian, Weijun; Yang, Feng; Tolmachev, Aleksey V.; Du, Xiuxia; Wang, Wei; Moore, Ronald J.; Monroe, Matthew E.; Purvine, Samuel O.; Waters, Katrina M.; Heibeck, Tyler H.; Adkins, Joshua N.; Camp, David G.; Klemke, Richard L.; Smith, Richard D.

    2008-10-01

    Reversible protein phosphorylation is a central cellular regulatory mechanism in modulating protein activity and propagating signals within cellular pathways and networks. Development of more effective methods for the simultaneous identification of phosphorylation sites and quantification of temporal changes in protein phosphorylation could provide important insights into molecular signaling mechanisms in a variety of different cellular processes. Here we present an integrated quantitative phosphoproteomics approach and its applications for comparative analysis of Cos-7 cells in response to lysophosphatidic acid (LPA) gradient stimulation. The approach combines trypsin-catalyzed 16O/18O labeling plus 16O/18O-methanol esterification labeling for quantitation, a macro- Immobilized Metal-ion Affinity Chromatography trap for phosphopeptide enrichment, and a monolithic capillary column with integrated electrospray emitter. LC separation and MS/MS is followed by neutral loss-dependent MS/MS/MS for phosphopeptide identification using a linear ion trap (LTQ)-FT mass spectrometer and complementary searching algorithms for interpreting MS/MS spectra. Protein phosphorylation involved in various signaling pathways of cell migration were identified and quantified, such as mitogen-activated protein kinase 1, dual-specificity mitogen-activated protein kinase kinase 2, and dual-specificity tyrosine-phosphorylation regulated kinase 1b, and a number of Rho GTPase-activating proteins. These results demonstrate the efficiency of this quantitative phosphoproteomics approach and its application for rapid discovery of phosphorylation events associated with gradient sensing and cell chemotaxis.

  7. Analysis of the sugar-binding specificity of mannose-binding-type Jacalin-related lectins by frontal affinity chromatography--an approach to functional classification.

    Science.gov (United States)

    Nakamura-Tsuruta, Sachiko; Uchiyama, Noboru; Peumans, Willy J; Van Damme, Els J M; Totani, Kiichiro; Ito, Yukishige; Hirabayashi, Jun

    2008-03-01

    The Jacalin-related lectin (JRL) family comprises galactose-binding-type (gJRLs) and mannose-binding-type (mJRLs) lectins. Although the documented occurrence of gJRLs is confined to the family Moraceae, mJRLs are widespread in the plant kingdom. A detailed comparison of sugar-binding specificity was made by frontal affinity chromatography to corroborate the structure-function relationships of the extended mJRL subfamily. Eight mJRLs covering a broad taxonomic range were used: Artocarpin from Artocarpus integrifolia (jackfruit, Moraceae), BanLec from Musa acuminata (banana, Musaceae), Calsepa from Calystegia sepium (hedge bindweed, Convolvulaceae), CCA from Castanea crenata (Japanese chestnut, Fagaceae), Conarva from Convolvulus arvensis (bindweed, Convolvulaceae), CRLL from Cycas revoluta (King Sago palm tree, Cycadaceae), Heltuba from Helianthus tuberosus (Jerusalem artichoke, Asteraceae) and MornigaM from Morus nigra (black mulberry, Moraceae). The result using 103 pyridylaminated glycans clearly divided the mJRLs into two major groups, each of which was further divided into two subgroups based on the preference for high-mannose-type N-glycans. This criterion also applied to the binding preference for complex-type N-glycans. Notably, the result of cluster analysis of the amino acid sequences clearly corresponded to the above specificity classification. Thus, marked correlation between the sugar-binding specificity of mJRLs and their phylogeny should shed light on the functional significance of JRLs.

  8. Penetrable silica microspheres for immobilization of bovine serum albumin and their application to the study of the interaction between imatinib mesylate and protein by frontal affinity chromatography.

    Science.gov (United States)

    Ma, Liyun; Li, Jing; Zhao, Juan; Liao, Han; Xu, Li; Shi, Zhi-guo

    2016-01-01

    In the current study, novel featured silica, named penetrable silica, simultaneously containing macropores and mesopores, was immobilized with bovine serum albumin (BSA) via Schiff base method. The obtained BSA-SiO2 was employed as the high-performance liquid chromatographic (HPLC) stationary phase. Firstly, D- and L-tryptophan were used as probes to investigate the chiral separation ability of the BSA-SiO2 stationary phase. An excellent enantioseparation factor was obtained up to 4.3 with acceptable stability within at least 1 month. Next, the BSA-SiO2 stationary phase was applied to study the interaction between imatinib mesylate (IM) and BSA by frontal affinity chromatography. A single type of binding site was found for IM with the immobilized BSA, and the hydrogen-bonding and van der Waals interactions were expected to be contributing interactions based on the thermodynamic studies, and this was a spontaneous process. Compared to the traditional silica for HPLC stationary phase, the proposed penetrable silica microsphere possessed a larger capacity to bond more BSA, minimizing column overloading effects and enhancing enantioseparation ability. In addition, the lower running column back pressure and fast mass transfer were meaningful for the column stability and lifetime. It was a good substrate to immobilize biomolecules for fast chiral resolution and screening drug-protein interactions.

  9. Systematic cyanobacterial membrane proteome analysis by combining acid hydrolysis and digestive enzymes with nano-liquid chromatography-Fourier transform mass spectrometry.

    Science.gov (United States)

    Kwon, Joseph; Oh, Jeehyun; Park, Chiyoul; Cho, Kun; Kim, Seung Il; Kim, Soohyun; Lee, Sunghoon; Bhak, Jong; Norling, Birgitta; Choi, Jong-Soon

    2010-01-15

    The identification of membrane proteins is currently under-represented since the trans-membrane domains of membrane proteins have a hydrophobic property. Membrane proteins have mainly been analyzed by cleaving and identifying exposed hydrophilic domains. We developed the membrane proteomics method for targeting integral membrane proteins by the following sequential process: in-solution acid hydrolysis, reverse phase chromatographic separation, trypsin or chymotrypsin digestion and nano-liquid chromatography-Fourier transform mass spectrometry. When we employed total membrane proteins of Synechocystis sp. PCC 6803, 155 integral membrane proteins out of a predictable 706 were identified in a single application, corresponding to 22% of a genome. The combined methods of acid hydrolysis-trypsin (AT) and acid hydrolysis-chymotrypsin (AC) identified both hydrophilic and hydrophobic domains of integral membrane proteins, respectively. The systematic approach revealed a more concrete data in mapping the repertoire of cyanobacterial membrane and membrane-linked proteome. 2009 Elsevier B.V. All rights reserved.

  10. A new A431/cell membrane chromatography and online high performance liquid chromatography/mass spectrometry method for screening epidermal growth factor receptor antagonists from Radix sophorae flavescentis.

    Science.gov (United States)

    Wang, Sicen; Sun, Meng; Zhang, Yanmin; Du, Hui; He, Langchong

    2010-08-06

    The intracellular kinase domains of epidermal growth factor receptor (EGFR) in some tumor cells such as human epidermal squamous cells (A(431) cells) are an important target for drug discovery. We have developed a new A(431)/cell membrane chromatography (A(431)/CMC)-online-high performance liquid chromatography/mass spectrometry (HPLC/MS) method for screening EGFR antagonists from medicinal herbs such as traditional Chinese medicines (TCMs). In this study, A(431) cells with high EGFR expression levels were used to prepare cell membrane stationary phase (CMSP) in an A(431)/CMC model. The retention fractions eluted from the CMSP column were enriched onto an ODS pre-column and then switched into an HPLC/MS system by combining a 10 port columns switching valve. The screening results found that oxymatrine and matrine from Radix sophorae flavescentis (RSF) were the targeted components which could act on EGFR in similar manner of gefitinib as a control drug. There was a good relationship of their inhibiting effects on EGFR secretion and A(431) cell growth in vitro. This new A(431)/CMC-online-HPLC/MS method can be applied for screening EGFR antagonists from TCMs such as RSF. It will be a useful method for drug discovery with natural medicinal herbs as a leading compound resource. Copyright 2010 Elsevier B.V. All rights reserved.

  11. [PHEMA/PEI]–Cu(II) based immobilized metal affinity chromatography cryogels: Application on the separation of IgG from human plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bakhshpour, Monireh; Derazshamshir, Ali; Bereli, Nilay [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey); Elkak, Assem [Laboratory of “Valorisation des Ressources Naturelles et Produits de Santé (VRNPS)”, Doctoral School of Sciences and Technology, Lebanese University, Rafic Hariri University Campus, Hadath (Lebanon); Denizli, Adil, E-mail: denizli@hacettepe.edu [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey)

    2016-04-01

    The immobilized metal-affinity chromatography (IMAC) has gained significant interest as a widespread separation and purification tool for therapeutic proteins, nucleic acids and other biological molecules. The enormous potential of IMAC for proteins with natural surface exposed-histidine residues and for recombinant proteins with histidine clusters. Cryogels as monolithic materials have recently been proposed as promising chromatographic adsorbents for the separation of biomolecules in downstream processing. In the present study, IMAC cryogels have been synthesized and utilized for the adsorption and separation of immunoglobulin G (IgG) from IgG solution and whole human plasma. For this purpose, Cu(II)-ions were coupled to poly(hydroxyethyl methacrylate) PHEMA using poly(ethylene imine) (PEI) as the chelating ligand. In this study the cryogels formation optimized by the varied proportion of PEI from 1% to 15% along with different amounts of Cu (II) as chelating metal. The prepared cryogels were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The [PHEMA/PEI]–Cu(II) cryogels were assayed for their capability to bind the human IgG from aqueous solutions. The IMAC cryogels were found to have high affinity toward human IgG. The adsorption of human IgG was investigated onto the PHEMA/PEI cryogels with (10% PEI) and the concentration of Cu (II) varied as 10, 50, 100 and 150 mg/L. The separation of human IgG was achieved in one purification step at pH 7.4. The maximum adsorption capacity was observed at the [PHEMA/PEI]–Cu(II) (10% PEI) with 72.28 mg/g of human IgG. The purification efficiency and human IgG purity were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). - Highlights: • Cu(II)-ions were coupled to PHEMA using PEI as the chelating ligand. • Cu(II) chelated [PHEMA/PEI] cryogels for IgG separation were produced. • Maximum IgG adsorption capacity

  12. Fluorophore Absorption Size Exclusion Chromatography (FA-SEC): An Alternative Method for High-Throughput Detergent Screening of Membrane Proteins.

    Science.gov (United States)

    Lin, Sung-Yao; Sun, Xing-Han; Hsiao, Yu-Hsuan; Chang, Shao-En; Li, Guan-Syun; Hu, Nien-Jen

    2016-01-01

    Membrane proteins play key roles in many fundamental functions in cells including ATP synthesis, ion and molecule transporter, cell signalling and enzymatic reactions, accounting for ~30% genes of whole genomes. However, the hydrophobic nature of membrane proteins frequently hampers the progress of structure determination. Detergent screening is the critical step in obtaining stable detergent-solubilized membrane proteins and well-diffracting protein crystals. Fluorescence Detection Size Exclusion Chromatography (FSEC) has been developed to monitor the extraction efficiency and monodispersity of membrane proteins in detergent micelles. By tracing the FSEC profiles of GFP-fused membrane proteins, this method significantly enhances the throughput of detergent screening. However, current methods to acquire FSEC profiles require either an in-line fluorescence detector with the SEC equipment or an off-line spectrofluorometer microplate reader. Here, we introduce an alternative method detecting the absorption of GFP (FA-SEC) at 485 nm, thus making this methodology possible on conventional SEC equipment through the in-line absorbance spectrometer. The results demonstrate that absorption is in great correlation with fluorescence of GFP. The comparably weaker absorption signal can be improved by using a longer path-length flow cell. The FA-SEC profiles were congruent with the ones plotted by FSEC, suggesting FA-SEC could be a comparable and economical setup for detergent screening of membrane proteins.

  13. Fluorophore Absorption Size Exclusion Chromatography (FA-SEC: An Alternative Method for High-Throughput Detergent Screening of Membrane Proteins.

    Directory of Open Access Journals (Sweden)

    Sung-Yao Lin

    Full Text Available Membrane proteins play key roles in many fundamental functions in cells including ATP synthesis, ion and molecule transporter, cell signalling and enzymatic reactions, accounting for ~30% genes of whole genomes. However, the hydrophobic nature of membrane proteins frequently hampers the progress of structure determination. Detergent screening is the critical step in obtaining stable detergent-solubilized membrane proteins and well-diffracting protein crystals. Fluorescence Detection Size Exclusion Chromatography (FSEC has been developed to monitor the extraction efficiency and monodispersity of membrane proteins in detergent micelles. By tracing the FSEC profiles of GFP-fused membrane proteins, this method significantly enhances the throughput of detergent screening. However, current methods to acquire FSEC profiles require either an in-line fluorescence detector with the SEC equipment or an off-line spectrofluorometer microplate reader. Here, we introduce an alternative method detecting the absorption of GFP (FA-SEC at 485 nm, thus making this methodology possible on conventional SEC equipment through the in-line absorbance spectrometer. The results demonstrate that absorption is in great correlation with fluorescence of GFP. The comparably weaker absorption signal can be improved by using a longer path-length flow cell. The FA-SEC profiles were congruent with the ones plotted by FSEC, suggesting FA-SEC could be a comparable and economical setup for detergent screening of membrane proteins.

  14. Binding and degradation of 125I-insulin by isolated rat renal brush border membranes: evidence for low affinity, high capacity insulin recognition sites

    International Nuclear Information System (INIS)

    Meezan, E.; Pillion, D.J.; Elgavish, A.

    1988-01-01

    The kidney plays a major role in the handling of circulating insulin in the blood, primarily via reuptake of filtered insulin at the luminal brush border membrane. 125I-insulin associated with rat renal brush border membrane vesicles (BBV) in a time- and temperature-dependent manner accompanied by degradation of the hormone to trichloroacetic acid (TCA)-soluble fragments. Both association and degradation of 125I-insulin were linearly proportional to membrane protein concentration with virtually all of the degradative activity being membrane associated. Insulin, proinsulin and desoctapeptide insulin all inhibited the association and degradation of 125I-insulin by BBV, but these processes were not appreciably affected by the insulin-like growth factors IGF-I and IGF-II or by cytochrome c and lysozyme, low molecular weight, filterable, proteins, which are known to be reabsorbed in the renal tubules by luminal endocytosis. When the interaction of 125I-insulin with BBV was studied at various medium osmolarities (300-1100 mosM) to alter intravesicular space, association of the ligand with the vesicles was unaffected, but degradation of the ligand by the vesicles decreased progressively with increasing medium osmolarity. Therefore, association of 125I-insulin to BBV represented binding of the ligand to the membrane surface and not uptake of the hormone or its degradation products into the vesicles. Attempts to crosslink 125I-insulin to a high-affinity insulin receptor using the bifunctional reagent disuccinimidyl suberate revealed only trace amounts of an 125I-insulin-receptor complex in brush border membrane vesicles in contrast to intact renal tubules where this complex was readily observed. Both binding and degradation of 125I-insulin by brush border membranes did not reach saturation even at concentrations of insulin approaching 10(-5) M

  15. Purification of a 76-kDa iron-binding protein from human seminal plasma by affinity chromatography specific for ribonuclease: structural and functional identity with milk lactoferrin.

    Science.gov (United States)

    Sorrentino, S; D'Alessandro, A M; Maras, B; Di Ciccio, L; D'Andrea, G; De Prisco, R; Bossa, F; Libonati, M; Oratore, A

    1999-02-10

    A pink-colored iron-binding protein has been found in large amount in human seminal plasma and identified as a lactoferrin isoform. Its purification, by a modification of a three-step chromatography procedure developed in an attempt to purify a ribonuclease from the same fluid, provided about 15-18 mg of pure protein from 100 ml of seminal plasma. Despite its ability to bind a ribonuclease ligand during the affinity step, the iron-binding protein did not display any detectable RNase activity in a standard assay with yeast RNA as substrate. It showed an apparent molecular weight of 76 kDa and resulted to be quite similar, if not identical, to human milk lactoferrin in many respects. Its N-terminal sequence (31 amino acid residues) starting with Arg-3 was identical to that of one of the N-terminally truncated lactoferrin variants isolated from human milk. Moreover, the amino acid sequence of a number of peptides, which represented about 23% of the entire sequence, has been also shown to be identical to that of the corresponding peptides of human milk lactoferrin. Double diffusion analysis revealed full recognition by antibodies anti-human milk lactoferrin of the human seminal plasma protein. Using immunoblotting analysis, both human milk lactoferrin and human seminal protein were recognized by antibodies anti-milk lactoferrin. When tested for its iron binding capacity, with Fe-NTA as iron donor, the protein purified was able to bind iron up to 100% saturation, as judged by absorbance at 465 nm.

  16. Characterization of aquatic humic substances and their metal complexes by immobilized metal-chelate affinity chromatography on iron(III)-loaded ion exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Burba, P.; Jakubowski, B.; Kuckuk, R. [Institut fuer Spektrochemie und Angewandte Spektroskopie e.V., Dortmund (Germany); Kuellmer, K.; Heumann, K.G. [Mainz Univ. (Germany). Inst. fuer Anorganische Chemie und Analytische Chemie

    2000-12-01

    The analytical fractionation of aquatic humic substances (HS) by means of immobilized metal-chelate affinity chromatography (IMAC) on metal-loaded chelating ion exchangers is described. The cellulose HYPHAN, loaded with different trivalent ions, and the chelate exchanger Chelex 100, loaded to 90% of its capacity with Fe(III), were used. The cellulose HYPHAN, loaded with 2% Fe(III), resulted in HS distribution coefficients K{sub d}of up to 10 {sup 3.7} mL/g at pH 4.0 continuously decreasing down to 10 {sup 1.5} at pH 12, which were appropriate for HS fractionation by a pH-depending chromatographic procedure. Similar distribution coefficients K {sub d} were obtained for HS sorption onto Fe(III)-loaded Chelex 100. On the basis of Fe-loaded HYPHAN both, a low-pressure and high-pressure IMAC technique, were developed for the fractionation of dissolved HS applying a buffer-based pH gradient for their gradual elution between pH 4.0 and 12.0. By coupling the Chelex 100 column under high-pressure conditions with an inductively coupled plasma mass spectrometer an on-line characterization of HS metal species could be achieved. Using these fractionation procedures a number of reference HS were characterized. Accordingly, the HA (humic acids) and FA (fulvic acids) studied could be discriminated into up to 6 fractions by applying cellulose HYPHAN, significantly differing in their Cu(II) complexation capacity but hardly in their substructures assessed by conventional FTIR. In the case of using Chelex 100 exchanger resin two major UV active HS fractions were obtained, which significantly differ in their complexation properties for Cu(II) and Pb(II), respectively. (orig.)

  17. Protein isolation using affinity chromatography

    NARCIS (Netherlands)

    Besselink, T.

    2012-01-01

    Many product or even waste streams in the food industry contain components that may have potential for e.g. functional foods. These streams are typically large in volume and the components of interest are only present at low concentrations. A robust and highly selective separation process should

  18. Protein isolation using affinity chromatography

    NARCIS (Netherlands)

    Besselink, T.

    2012-01-01

    Many product or even waste streams in the food industry contain components that may have potential for e.g. functional foods. These streams are typically large in volume and the components of interest are only present at low concentrations. A robust and highly selective separation process should be

  19. Purification of high value proteins from particle containing potato fruit juice via direct capture membrane adsorption chromatography.

    Science.gov (United States)

    Schoenbeck, I; Graf, A M; Leuthold, M; Pastor, A; Beutel, S; Scheper, T

    2013-12-01

    Potato fruit juice (PFJ) is a by-product from industrial starch production. It still contains several valuable components such as amino acids, minerals and proteins. An economic technology for the isolation and purification of different native potato proteins is the ion exchange chromatography, which can be performed either by classical bed chromatography or by membrane adsorption chromatography (MA-IEX). An already published MA-IEX process for the downstreaming of PFJ is based on the following steps: prefiltration/microfiltration, fractionation with MA-IEX, ultra-/diafiltration and finally drying. In order to further minimize process complexity and costs, new MA-IEX-modules were designed and tested in this research project to facilitate the processing of crude, particle-containing solutions using a tangential flow through the membranes. Modules with fleece polymer spacers and extruded polymer spacers, as well as different spacer channel sizes were tested for their binding capacities and their long-term stability. An optimized setup was found for the technical scale. Modules with extruded polymer spacers channel size 250 μm show the highest binding capacities (anion exchanger approx. 0.34 mg/cm(2), cation exchanger approx. 0.16 mg/cm(2)), while the modules with extruded polymer spacers channel size 480 μm show the best long-term stability with 23 passes without intermediary cleaning. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Activity ranking of synthetic analogs targeting vascular endothelial growth factor receptor 2 by an integrated cell membrane chromatography system.

    Science.gov (United States)

    Wang, Dongyao; Lv, Diya; Chen, Xiaofei; Liu, Yue; Ding, Xuan; Jia, Dan; Chen, Langdong; Zhu, Zhenyu; Cao, Yan; Chai, Yifeng

    2015-12-01

    Evaluating the biological activities of small molecules represents an important part of the drug discovery process. Cell membrane chromatography (CMC) is a well-developed biological chromatographic technique. In this study, we have developed combined SMMC-7721/CMC and HepG2/CMC with high-performance liquid chromatography and time-of-flight mass spectrometry to establish an integrated screening platform. These systems was subsequently validated and used for evaluating the activity of quinazoline compounds, which were designed and synthesized to target vascular endothelial growth factor receptor 2. The inhibitory activities of these compounds towards this receptor were also tested using a classical caliper mobility shift assay. The results revealed a significant correlation between these two methods (R(2) = 0.9565 or 0.9420) for evaluating the activities of these compounds. Compared with traditional methods of evaluating the activities analogous compounds, this integrated cell membrane chromatography screening system took less time and was more cost effective, indicating that it could be used as a practical method in drug discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Specificity of Bacillus thuringiensis endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts

    International Nuclear Information System (INIS)

    Hofmann, C.; Vanderbruggen, H.; Hoefte, H.; Van Rie, J.; Jansens, S.; Van Mellaert, H.

    1988-01-01

    Binding studies were performed with two 125 I-labeled Bacillus thuringiensis δ-endotoxins on brush border membrane vesicles prepared from the larval midgut of the tobacco hornworm Manduca sexta or the cabbage butterfly Pieris brassicae. One δ-endotoxin, Bt2-protoxin, is a 130-kDa recombinant crystalline protein from B. thuringiensis subsp. berliner. It kills larvae of both insect species. The active Bt2-toxin is a 60-kDa proteolytic fragment of the Bt2-protoxin. It binds saturably and with high affinity to brush border membrane vesicles from the midgut of both species. The other δ-endotoxin, Bt4412-protoxin, is a 136-kDa crystalline protein from B. thuringiensis subsp. thuringiensis, which is highly toxic for P. brassicae, but not for M. sexta larvae. Bt4412-toxin, obtained after proteolytic activation of Bt4412-protoxin, shows high-affinity saturable binding to P. brassicae vesicles but not to M. sexta vesicles. The correlation between toxicity and specific binding is further strengthened by competition studies. Other B. thuringiensis δ-endotoxins active against M. sexta compete for binding of 125 I-labeled Bt2-toxin to M. sexta vesicles, whereas toxins active against dipteran or coleopteran larvae do not compete. Bt2-toxin and Bt4412-toxin bind to different sites on P. brassicae vesicles

  2. Simultaneous high-throughput determination of interaction kinetics for drugs and cyclodextrins by high performance affinity chromatography with mass spectrometry detection.

    Science.gov (United States)

    Wang, Caifen; Wang, Xiaobo; Xu, Xiaonan; Liu, Botao; Xu, Xu; Sun, Lixin; Li, Haiyan; Zhang, Jiwen

    2016-02-25

    The individual determination of the apparent dissociation rate constant (kd,app) using high performance affinity chromatography (HPAC) is a tedious process requiring numerous separate tests and massive data fitting, unable to provide the apparent association rate constant (ka) and equilibrium binding constant (Ka). In this study, a HPAC with mass spectrometry detection (HPAC-MS/MS) was employed to determine the drug-cyclodextrin (CD) interaction kinetics with low sample loading quantity (drugs determined in one injection. The kd,app measured by HPAC-MS/MS approach were 0.89 ± 0.07, 4.34 ± 0.01, 1.48 ± 0.01 and 7.77 ± 0.04 s(-1) for ketoprofen, trimethoprim, indapamide and acetaminophen, with kd,app for acetaminophen consistent with that from the HPAC method with UV detector in our previous studies. For twenty drugs with diverse structures and chemical properties, good correlationship was found between kd,app measured by single compound analysis method and high-throughput HPAC-MS/MS approach, with the correlation coefficient of 0.987 and the significance F less than 0.001. Comprehensive quantification of ka,app, kd,app and Ka values was further performed based on the measurement of kd,app by peak profiling method and Ka by the peak fitting method. And the investigation of the drug-CD interaction kinetics under different conditions indicated that the column temperature and mobile phase composition significantly affected the determination of ka,app, kd,app and Ka while also dependent on the acidity and basicity of drugs. In summary, the high-throughput HPAC-MS/MS approach has been demonstrated high efficiency in determination of the drug-CD primary interaction kinetic parameter, especially, kd,app, being proven as a novel tool in screening the right CD for the solubilization of the right drug. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Identification of a point mutation in type IIB von Willebrand disease illustrating the regulation of von Willebrand factor affinity for the platelet membrane glycoprotein Ib-IX receptor

    International Nuclear Information System (INIS)

    Ware, J.; Dent, J.A.; Azuma, Hiroyuki; Sugimoto, Mitsuhiko; Kyrle, P.A.; Yoshioka, Akira; Ruggeri, Z.M.

    1991-01-01

    von Willebrand factor (vWF) supports platelet adhesion on thrombogenic surfaces by binding to platelet membrane glycoprotein (GP) Ib in the GP Ib-IX receptor complex. This interaction is physiologically regulated so that it does not occur between circulating vWF and platelets but, rather, only at a site of vascular injury. The abnormal vWF found in type IIB von Willebrand disease, however, has a characteristically increased affinity for GP Ib and binds to circulating platelets. The authors have analyzed the molecular basis of this abnormality by sequence analysis of a type IIB vWF cDNA and have identified a single amino acid change, Trp 550 to Cys 550 , located in the GP IB-binding domain of the molecule comprising residues 449-728. Bacterial expression of recombinant fragments corresponding to this vWF domain yielded molecules that, whether containing a normal Trp 550 or a mutant Cys 550 residue, bound directly to GP Ib in the absence of modulators and with similar affinity. These results identify a region of vWF that, although not thought to be directly involved in binding to GP Ib, may modulate the interaction through conformational changes

  4. Identification of novel autophagic Radix Polygalae fraction by cell membrane chromatography and UHPLC-(Q)TOF-MS for degradation of neurodegenerative disease proteins

    OpenAIRE

    An-Guo Wu; Vincent Kam-Wai Wong; Wu Zeng; Liang Liu; Betty Yuen-Kwan Law

    2015-01-01

    With its traditional use in relieving insomnia and anxiety, our previous study has identified onjisaponin B from Radix Polygalae (RP), as a novel autophagic enhancer with potential neuroprotective effects. In current study, we have further identified a novel active fraction from RP, contains 17 major triterpenoid saponins including the onjisaponin B, by the combinational use of cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled to (quadrupole) time-of-fligh...

  5. Detection of trace fluoride in serum and urine by online membrane-based distillation coupled with ion chromatography.

    Science.gov (United States)

    Lou, Chaoyan; Guo, Dandan; Wang, Nani; Wu, Shuchao; Zhang, Peimin; Zhu, Yan

    2017-06-02

    An online membrane-based distillation (MBD) coupled with ion chromatography (IC) method was proposed for automatic detection of trace fluoride (F - ) in serum and urine samples. The system consisted of a sample vessel, a lab-made membrane module and an ion chromatograph. Hydrophobic polytetrafluoroethylene (PTFE) hollow fiber membrane was used in MBD which was directly performed in serum and urine samples to eliminate the matrix interferences and enrich fluoride, while enabling automation. The determination of fluoride in biological samples was carried out by IC with suppressed conductometric detection. The proposed method feasibly determined trace fluoride in serum and urine matrices with the optimized parameters, such as acid concentration, distillation temperature, and distillation time, etc. Fluoride exhibited satisfactory linearity in the range of 0.01-5.0mg/L with a correlation coefficient of 0.9992. The limit of detection (LOD, S/N=3) and limit of quantification (LOQ, S/N=10) were 0.78μg/L and 2.61μg/L, respectively. The relative standard deviations of peak area and peak height were all less than 5.15%. The developed method was validated for the determination of fluoride in serum and urine with good spiked recoveries ranging between 97.1-101.9%. This method also can be proposed as a suitable alternative for the analysis of fluoride in other complex biological samples. Copyright © 2017. Published by Elsevier B.V.

  6. Galactose oxidase labeling of membrane proteins from human brain white matter

    International Nuclear Information System (INIS)

    Hukkanen, V.; Frey, H.; Salmi, A.

    1981-01-01

    Membrane proteins of human autopsy brain white matter were subjected to a galactose oxidase/NaB 3 H 4 labeling procedure and the membranes labeled by this method or by [ 3 H]acetic anhydride techniques were studied by lectin affinity chromatography using Lens culinaris phytohemagglutinin (lentil lectin) attached to Sepharose 4B beads. (Auth.)

  7. One-step isolation of plasma membrane proteins using magnetic beads with immobilized concanavalin A

    DEFF Research Database (Denmark)

    Lee, Yu-Chen; Block, Gregory; Chen, Huiwen

    2008-01-01

    We have developed a simple method for isolating and purifying plasma membrane proteins from various cell types. This one-step affinity-chromatography method uses the property of the lectin concanavalin A (ConA) and the technique of magnetic bead separation to obtain highly purified plasma membran...

  8. Enrichment and identification of integral membrane proteins from barley aleurone layers by reversed-phase chromatography, SDS-PAGE and LC-MS/MS

    DEFF Research Database (Denmark)

    Hynek, Radovan; Svensson, Birte; Nørregaard Jensen, Ole

    2006-01-01

    was developed, comprising batch reversed-phase chromatography with stepwise elution of hydrophobic proteins by 2-propanol. Proteins in the most hydrophobic fraction were separated by SDS-PAGE and identified by LC-MS/MS and barley EST sequence database search. The method was efficient for enrichment of integral......The plasma membrane of the cereal aleurone layer is the site of perception of germination signals and release of enzymes to the starchy endosperm. Analysis of membrane proteins is challenging due to their hydrophobicity and low abundance, thus little is known about the membrane proteins involved...... in seed germination. A membrane fraction highly enriched for the plasma membrane H+-ATPase was prepared from barley aleurone layers by aqueous two-phase partitioning. Since detergent and salt washes did not efficiently remove soluble proteins from the membrane preparations, an alternative procedure...

  9. Characterization of biases in phosphopeptide enrichment by Ti(4+)-immobilized metal affinity chromatography and TiO2 using a massive synthetic library and human cell digests

    NARCIS (Netherlands)

    Matheron, Lucrece; van den Toorn, Henk; Heck, Albert J R; Mohammed, Shabaz

    2014-01-01

    Outcomes of comparative evaluations of enrichment methods for phosphopeptides depend highly on the experimental protocols used, the operator, the source of the affinity matrix, and the samples analyzed. Here, we attempt such a comparative study exploring a very large synthetic library containing

  10. Development of double chain phosphatidylcholine functionalized polymeric monoliths for immobilized artificial membrane chromatography.

    Science.gov (United States)

    Wang, Qiqin; Peng, Kun; Chen, Weijia; Cao, Zhen; Zhu, Peijie; Zhao, Yumei; Wang, Yuqiang; Zhou, Haibo; Jiang, Zhengjin

    2017-01-06

    This study described a simple synthetic methodology for preparing biomembrane mimicking monolithic column. The suggested approach not only simplifies the preparation procedure but also improves the stability of double chain phosphatidylcholine (PC) functionalized monolithic column. The physicochemical properties of the optimized monolithic column were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, and nano-LC. Satisfactory column permeability, efficiency, stability and reproducibility were obtained on this double chain PC functionalized monolithic column. It is worth noting that the resulting polymeric monolith exhibits great potential as a useful alternative of commercial immobilized artificial membrane (IAM) columns for in vitro predication of drug-membrane interactions. Furthermore, the comparative study of both double chain and single chain PC functionalized monoliths indicates that the presence or absence of glycerol backbone and the number of acyl chains are not decisive for the predictive ability of IAM monoliths on drug-membrane interactions. This novel PC functionalized monolithic column also exhibited good selectivity for a protein mixture and a set of pharmaceutical compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Evaluation of sphingomyelin, cholester, and phosphatidylcholine-based immobilized artificial membrane liquid chromatography to predict drug penetration across the blood-brain barrier.

    Science.gov (United States)

    De Vrieze, Mike; Verzele, Dieter; Szucs, Roman; Sandra, Pat; Lynen, Frédéric

    2014-10-01

    Over the past decades, several in vitro methods have been tested for their ability to predict drug penetration across the blood-brain barrier. So far, in high-performance liquid chromatography, most attention has been paid to micellar liquid chromatography and immobilized artificial membrane (IAM) LC. IAMLC has been described as a viable approach, since the stationary phase emulates the lipid environment of a cell membrane. However, research in IAMLC has almost exclusively been limited to phosphatidylcholine (PC)-based stationary phases, even though PC is only one of the lipids present in cell membranes. In this article, sphingomyelin and cholester stationary phases have been tested for the first time towards their ability to predict drug penetration across the blood-brain barrier. Upon comparison with the PC stationary phase, the sphingomyelin- and cholester-based columns depict similar predictive performance. Combining data from the different stationary phases did not lead to improvements of the models.

  12. MacA, a periplasmic membrane fusion protein of the macrolide transporter MacAB-TolC, binds lipopolysaccharide core specifically and with high affinity.

    Science.gov (United States)

    Lu, Shuo; Zgurskaya, Helen I

    2013-11-01

    The Escherichia coli MacAB-TolC transporter has been implicated in efflux of macrolide antibiotics and secretion of enterotoxin STII. In this study, we found that purified MacA, a periplasmic membrane fusion protein, contains one tightly bound rough core lipopolysaccharide (R-LPS) molecule per MacA molecule. R-LPS was bound specifically to MacA protein with affinity exceeding that of polymyxin B. Sequence analyses showed that MacA contains two high-density clusters of positively charged amino acid residues located in the cytoplasmic N-terminal domain and the periplasmic C-terminal domain. Substitutions in the C-terminal cluster reducing the positive-charge density completely abolished binding of R-LPS. At the same time, these substitutions significantly reduced the functionality of MacA in the protection of E. coli against macrolides in vivo and in the in vitro MacB ATPase stimulation assays. Taken together, our results suggest that R-LPS or a similar glycolipid is a physiological substrate of MacAB-TolC.

  13. Affinity labeling of a human platelet membrane protein with 5'-p-fluorosulfonylbenzoyl adenosine. Concomitant inhibition of ADP-induced platelet aggregation and fibrinogen receptor exposure.

    Science.gov (United States)

    Figures, W R; Niewiarowski, S; Morinelli, T A; Colman, R F; Colman, R W

    1981-08-10

    Incubation of washed human blood platelets with 5'-p-fluorosulfonylbenzoyl [3H]adenosine (FSBA) covalently labels a single polypeptide of Mr = 100,000. Protection by ADP has suggested that an ADP receptor on the platelet surface membrane was modified. The modified cells, unlike native platelets, failed to aggregate in response to ADP (100 microM) and fibrinogen (1 mg/ml). The extent of binding of 125I-fibrinogen and aggregation was inhibited to a degree related to the incorporation of 5'-p-sulfonylbenzoyl adenosine (SBA) into platelets, indicating FSBA could inhibit the exposure of fibrinogen receptors by ADP necessary for aggregation. Incubation of SBA platelets with alpha-chymotrypsin cleaved the covalently labeled polypeptide and concomitantly reversed the inhibition of aggregation and fibrinogen binding. Platelets proteolytically digested by chymotrypsin prior to exposure to FSBA did not require ADP for aggregation and fibrinogen binding. Moreover, subsequent exposure to FSBA did not inhibit aggregation or fibrinogen binding. The affinity reagent FSBA can displace fibrinogen bound to platelets in the presence of ADP, as well as promote the rapid disaggregation of the platelets. The apparent initial pseudo-first order rate constant of dissociation of fibrinogen was linearly proportional to FSBA concentrations. These studies suggest that a single polypeptide can be altered either by ADP-induced conformational changes or proteolysis by chymotrypsin to reveal latent fibrinogen receptors and promote aggregation of platelets after fibrinogen binding.

  14. Enzymatic production and purification of prebiotic oligosaccharides by chromatography and membrane systems

    DEFF Research Database (Denmark)

    Michalak, Malwina

    Enzymatic treatment of biomass is an environmentally friendly method to obtain a range of products, such as biofuels, animal feed or food ingredients. The objective of this PhD study was to produce functional food ingredients – oligosaccharides and polysaccharides by means of enzymatic catalysis...... from biomass: casein glycomacropeptide (cGMP) and potato pulp. These saccharides should possess prebiotic properties, i.e., they should be non-digestable, selectively fermented and allow specific changes, both in the composition and/or activity of the gastrointestinal microbiota that confers benefits...... and its crystal structure was determined. The products of enzymatic hydrolysis were fractionated according to their molecular weight using membrane filtration. The results of this work pave the way for development of new functional food ingredients from industrial side-streams and generate value...

  15. Simplified production and concentration of HIV-1-based lentiviral vectors using HYPERFlask vessels and anion exchange membrane chromatography

    Directory of Open Access Journals (Sweden)

    Marino Michael P

    2009-02-01

    Full Text Available Abstract Background During the past twelve years, lentiviral (LV vectors have emerged as valuable tools for transgene delivery because of their ability to transduce nondividing cells and their capacity to sustain long-term transgene expression in target cells in vitro and in vivo. However, despite significant progress, the production and concentration of high-titer, high-quality LV vector stocks is still cumbersome and costly. Methods Here we present a simplified protocol for LV vector production on a laboratory scale using HYPERFlask vessels. HYPERFlask vessels are high-yield, high-performance flasks that utilize a multilayered gas permeable growth surface for efficient gas exchange, allowing convenient production of high-titer LV vectors. For subsequent concentration of LV vector stocks produced in this way, we describe a facile protocol involving Mustang Q anion exchange membrane chromatography. Results Our results show that unconcentrated LV vector stocks with titers in excess of 108 transduction units (TU per ml were obtained using HYPERFlasks and that these titers were higher than those produced in parallel using regular 150-cm2 tissue culture dishes. We also show that up to 500 ml of an unconcentrated LV vector stock prepared using a HYPERFlask vessel could be concentrated using a single Mustang Q Acrodisc with a membrane volume of 0.18 ml. Up to 5.3 × 1010 TU were recovered from a single HYPERFlask vessel. Conclusion The protocol described here is easy to implement and should facilitate high-titer LV vector production for preclinical studies in animal models without the need for multiple tissue culture dishes and ultracentrifugation-based concentration protocols.

  16. Simplified production and concentration of HIV-1-based lentiviral vectors using HYPERFlask vessels and anion exchange membrane chromatography

    Science.gov (United States)

    Kutner, Robert H; Puthli, Sharon; Marino, Michael P; Reiser, Jakob

    2009-01-01

    Background During the past twelve years, lentiviral (LV) vectors have emerged as valuable tools for transgene delivery because of their ability to transduce nondividing cells and their capacity to sustain long-term transgene expression in target cells in vitro and in vivo. However, despite significant progress, the production and concentration of high-titer, high-quality LV vector stocks is still cumbersome and costly. Methods Here we present a simplified protocol for LV vector production on a laboratory scale using HYPERFlask vessels. HYPERFlask vessels are high-yield, high-performance flasks that utilize a multilayered gas permeable growth surface for efficient gas exchange, allowing convenient production of high-titer LV vectors. For subsequent concentration of LV vector stocks produced in this way, we describe a facile protocol involving Mustang Q anion exchange membrane chromatography. Results Our results show that unconcentrated LV vector stocks with titers in excess of 108 transduction units (TU) per ml were obtained using HYPERFlasks and that these titers were higher than those produced in parallel using regular 150-cm2 tissue culture dishes. We also show that up to 500 ml of an unconcentrated LV vector stock prepared using a HYPERFlask vessel could be concentrated using a single Mustang Q Acrodisc with a membrane volume of 0.18 ml. Up to 5.3 × 1010 TU were recovered from a single HYPERFlask vessel. Conclusion The protocol described here is easy to implement and should facilitate high-titer LV vector production for preclinical studies in animal models without the need for multiple tissue culture dishes and ultracentrifugation-based concentration protocols. PMID:19220915

  17. Determination of immunoglobulin G in bovine colostrum and milk powders, and in dietary supplements of bovine origin by protein G affinity liquid chromatography: collaborative study.

    Science.gov (United States)

    Abernethy, Grant; Otter, Don; Arnold, K; Austad, J; Christiansen, S; Ferreira, I; Irvine, F; Marsh, C; Massom, L R; Otter, D; Pearce, K; Stevens, J; Szpylka, J; Vyas, P; Woollard, D; Wu, C

    2010-01-01

    An AOAC collaborative study was conducted to evaluate an affinity LC procedure for measuring immunoglobulin G (IgG) in selected dairy powders. The powders were extracted with 0.15 M sodium chloride solution and the pH was adjusted to 4.6 to precipitate caseins, which would otherwise lead to an overestimation of IgG. The analyte was then bound to a commercially available Protein G affinity cartridge and selectively eluted with a glycine buffer at pH 2.5. Detection was at 280 nm and quantification was made against a calibration curve prepared from bovine serum IgG. The samples analyzed included the likely matrixes for which this assay will find commercial use, namely, high- and low-protein-content colostrum powders, tablets containing colostrum powder, and some IgG-containing dairy powders; milk protein isolate, whey protein concentrate, and skim milk powder. Eleven laboratories provided data for the study and assayed blind duplicates of six materials. The repeatability RSD values ranged from 2.1 to 4.2% and the reproducibility RSD values ranged from 6.4 to 18.5%. The Protein G method with casein removal has adequate reproducibility for measuring IgG in colostrum-derived powders that are traded on the basis of IgG content as a colostral marker.

  18. Ultra-fast liquid chromatography with tandem mass spectrometry determination of ochratoxin A in traditional Chinese medicines based on vortex-assisted solid-liquid microextraction and aptamer-affinity column clean-up.

    Science.gov (United States)

    Yang, Xihui; Hu, Yichen; Kong, Weijun; Chu, Xianfeng; Yang, Meihua; Zhao, Ming; Ouyang, Zhen

    2014-11-01

    A rapid, selective, and sensitive ultra-fast liquid chromatography with tandem mass spectrometry method was developed for the determination of ochratoxin A in traditional Chinese medicines based on vortex-assisted solid-liquid microextraction and aptamer-affinity column clean-up. Through optimizing the sample pretreatment procedures and chromatographic conditions, good linearity (r(2) ≥ 0.9993), low limit of detection (0.5-0.8 μg/kg), and satisfactory recovery (83.54-94.44%) expressed the good reliability and applicability of the established method in various traditional Chinese medicines. Moreover, the aptamer-affinity column, prepared in-house, showed an excellent feasibility owing to its specific identification of ochratoxin A in various kinds of selected traditional Chinese medicines. The maximum adsorption amount and applicability value were 188.96 ± 10.56 ng and 72.3%, respectively. The matrix effects were effectively eliminated, especially for m/z 404.2→358.0 of ochratoxin A. The application of the developed method for screening the natural contamination levels of ochratoxin A in 25 random traditional Chinese medicines on the market in China indicated that only eight samples were contaminated with low levels below the legal limit (5.0 μg/kg) set by the European Union. This study provided a preferred choice for the rapid and accurate monitoring of ochratoxin A in complex matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A highly selective dispersive liquid-liquid microextraction approach based on the unique fluorous affinity for the extraction and detection of per- and polyfluoroalkyl substances coupled with high performance liquid chromatography tandem-mass spectrometry.

    Science.gov (United States)

    Wang, Juan; Shi, Yali; Cai, Yaqi

    2018-04-06

    In the present study, a highly selective fluorous affinity-based dispersive liquid-liquid microextraction (DLLME) technique was developed for the extraction and analysis of per- and polyfluoroalkyl substances (PFASs) followed by high performance liquid chromatography tandem-mass spectrometry. Perfluoro-tert-butanol with multiple C-F bonds was chosen as the extraction solvent, which was injected into the aqueous samples with a dispersive solvent (acetonitrile) in a 120:800 (μL, v/v) mixture for PFASs enrichment. The fluorous affinity-based extraction mechanism was confirmed by the significantly higher extraction recoveries for PFASs containing multiple fluorine atoms than those for compounds with fewer or no fluorine atoms. The extraction recoveries of medium and long-chain PFASs (CF 2  > 5) exceeded 70%, except perfluoroheptanoic acid, while those of short-chain PFASs were lower than 50%, implying that the proposed DLLME may not be suitable for their extraction due to weak fluorous affinity. This highly fluoroselective DLLME technique can greatly decrease the matrix effect that occurs in mass spectrometry detection when applied to the analysis of urine samples. Under the optimum conditions, the relative recoveries of PFASs with CF 2  > 5 ranged from 80.6-121.4% for tap water, river water and urine samples spiked with concentrations of 10, 50 and 100 ng/L. The method limits of quantification for PFASs in water and urine samples were in the range of 0.6-8.7 ng/L. Furthermore, comparable concentrations of PFASs were obtained via DLLME and solid-phase extraction, confirming that the developed DLLME technique is a promising method for the extraction of PFASs in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Membrane extraction with sorbent interface-gas chromatography as an effective and fast means for continuous monitoring of thermal degradation products of polyacrylonitrile.

    Science.gov (United States)

    Kaykhaii, Massoud; Sarafraz-Yazdi, Ali; Chamsaz, Mahmood; Pawliszyn, Janusz

    2002-07-01

    A novel sample preparation technique, membrane extraction with a sorbent interface (MESI) has been optimized and used for continuous monitoring thermal degradation products in polyacrylonitrile (PAN) polymer headspace at different temperatures, followed by gas chromatography-mass spectrometry (GC-MS). MESI with a flat sheet poly(dimethyl siloxane)-polycarbonate (PDMS-PC) membrane and Tenax trap was used. The system is very simple, fast and reliable and allowed us to extract, enrich and continuously monitor major volatile compounds released from the polymer at different temperatures. The volatile and semi-volatile gaseous degradation products were identified. Sensitivity of the method depends on the length of time for trapping.

  1. Enrichment and identification of integral membrane proteins from barley aleurone layers by reversed-phase chromatography, SDS-PAGE and LC-MS/MS

    DEFF Research Database (Denmark)

    Hynek, Radovan; Svensson, Birte; Nørregaard Jensen, Ole

    2006-01-01

    was developed, comprising batch reversed-phase chromatography with stepwise elution of hydrophobic proteins by 2-propanol. Proteins in the most hydrophobic fraction were separated by SDS-PAGE and identified by LC-MS/MS and barley EST sequence database search. The method was efficient for enrichment of integral......+-ATPase, two proteins possibly involved in ion-channel regulation and two proteins of unknown function. This represents the first analysis of membrane proteins involved in seed germination, using a proteomics approach....

  2. Modeling and analysis of the affinity filtration process, including broth feeding, washing, and elution steps.

    Science.gov (United States)

    He, L Z; Dong, X Y; Sun, Y

    1998-01-01

    Affinity filtration is a developing protein purification technique that combines the high selectivity of affinity chromatography and the high processing speed of membrane filtration. In this work a lumped kinetic model was developed to describe the whole affinity filtration process, including broth feeding, contaminant washing, and elution steps. Affinity filtration experiments were conducted to evaluate the model using bovine serum albumin as a model protein and a highly substituted Blue Sepharose as an affinity adsorbent. The model with nonadjustable parameters agreed fairly to the experimental results. Thus, the performance of the affinity filtration in processing a crude broth containing contaminant proteins was analyzed by computer simulations using the lumped model. The simulation results show that there is an optimal protein loading for obtaining the maximum recovery yield of the desired protein with a constant purity at each operating condition. The concentration of a crude broth is beneficial in increasing the recovery yield of the desired protein. Using a constant amount of the affinity adsorbent, the recovery yield can be enhanced by decreasing the solution volume in the stirred tank due to the increase of the adsorbent weight fraction. It was found that the lumped kinetic model was simple and useful in analyzing the whole affinity filtration process.

  3. Studies with an immobilized metal affinity chromatography cassette system involving binuclear triazacyclononane-derived ligands: automation of batch adsorption measurements with tagged recombinant proteins.

    Science.gov (United States)

    Petzold, Martin; Coghlan, Campbell J; Hearn, Milton T W

    2014-07-18

    This study describes the determination of the adsorption isotherms and binding kinetics of tagged recombinant proteins using a recently developed IMAC cassette system and employing automated robotic liquid handling procedures for IMAC resin screening. These results confirm that these new IMAC resins, generated from a variety of different metal-charged binuclear 1,4,7-triaza-cyclononane (tacn) ligands, interact with recombinant proteins containing a novel N-terminal metal binding tag, NT1A, with static binding capacities similar to those obtained with conventional hexa-His tagged proteins, but with significantly increased association constants. In addition, higher kinetic binding rates were observed with these new IMAC systems, an attribute that can be positively exploited to increase process productivity. The results from this investigation demonstrate that enhancements in binding capacities and affinities were achieved with these new IMAC resins and chosen NT1A tagged protein. Further, differences in the binding performances of the bis(tacn) xylenyl-bridged ligands were consistent with the distance between the metal binding centres of the two tacn moieties, the flexibility of the ligand and the potential contribution from the aromatic ring of the xylenyl group to undergo π/π stacking interactions with the tagged proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Multiple inert gas elimination technique by micropore membrane inlet mass spectrometry--a comparison with reference gas chromatography.

    Science.gov (United States)

    Kretzschmar, Moritz; Schilling, Thomas; Vogt, Andreas; Rothen, Hans Ulrich; Borges, João Batista; Hachenberg, Thomas; Larsson, Anders; Baumgardner, James E; Hedenstierna, Göran

    2013-10-15

    The mismatching of alveolar ventilation and perfusion (VA/Q) is the major determinant of impaired gas exchange. The gold standard for measuring VA/Q distributions is based on measurements of the elimination and retention of infused inert gases. Conventional multiple inert gas elimination technique (MIGET) uses gas chromatography (GC) to measure the inert gas partial pressures, which requires tonometry of blood samples with a gas that can then be injected into the chromatograph. The method is laborious and requires meticulous care. A new technique based on micropore membrane inlet mass spectrometry (MMIMS) facilitates the handling of blood and gas samples and provides nearly real-time analysis. In this study we compared MIGET by GC and MMIMS in 10 piglets: 1) 3 with healthy lungs; 2) 4 with oleic acid injury; and 3) 3 with isolated left lower lobe ventilation. The different protocols ensured a large range of normal and abnormal VA/Q distributions. Eight inert gases (SF6, krypton, ethane, cyclopropane, desflurane, enflurane, diethyl ether, and acetone) were infused; six of these gases were measured with MMIMS, and six were measured with GC. We found close agreement of retention and excretion of the gases and the constructed VA/Q distributions between GC and MMIMS, and predicted PaO2 from both methods compared well with measured PaO2. VA/Q by GC produced more widely dispersed modes than MMIMS, explained in part by differences in the algorithms used to calculate VA/Q distributions. In conclusion, MMIMS enables faster measurement of VA/Q, is less demanding than GC, and produces comparable results.

  5. Membrane assisted solvent extraction coupled with liquid chromatography tandem mass spectrometry applied to the analysis of alkylphenols in water samples.

    Science.gov (United States)

    Salgueiro-González, N; Turnes-Carou, I; Muniategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D

    2013-03-15

    This work describes the development and validation of a novel, simple, sensitive and environmental friendly analytical method for the determination of alkylphenols in different types of water samples. The methodology was based on a membrane assisted solvent extraction of only 15 mL of water sample with 500 μL of hexane in combination with liquid chromatography-electrospray ionization tandem mass spectrometry in negative mode (LC-ESI-MS/MS). Acquisition was performed in the multiple reaction monitoring (MRM) mode recording two transitions for the identification of the target compounds. Quantitation is based on the use of deuterated labelled standards as surrogate standards. The figures of merit were satisfactory in all cases: absolute recoveries were close to 50% for most investigated compounds and relative recoveries varied between 81 and 108%. Repeatability and intermediate precision were MQL) were lower than 0.04 μg L(-1) in all cases, which allow the achievement of the limits established by the Directive 2008/105/EC for surface and seawater samples and by the new proposal COM (2011) 876 final. The feasibility of the proposed method was demonstrated analyzing seawater, surface water and drinking water samples from different areas of A Coruña (Northwest of Spain). The analyses evidenced the presence of nonylphenol in seawater (MQL-0.13 μg L(-1)) and surface water samples (0.12-0.19 μg L(-1)). The highest concentration was observed in drinking water (0.25 μg L(-1)). Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Alternative Affinity Ligands for Immunoglobulins.

    Science.gov (United States)

    Kruljec, Nika; Bratkovič, Tomaž

    2017-08-16

    The demand for recombinant therapeutic antibodies and Fc-fusion proteins is expected to increase in the years to come. Hence, extensive efforts are concentrated on improving the downstream processing. In particular, the development of better-affinity chromatography matrices, supporting robust time- and cost-effective antibody purification, is warranted. With the advances in molecular design and high-throughput screening approaches from chemical and biological combinatorial libraries, novel affinity ligands representing alternatives to bacterial immunoglobulin (Ig)-binding proteins have entered the scene. Here, we review the design, development, and properties of diverse classes of alternative antibody-binding ligands, ranging from engineered versions of Ig-binding proteins, to artificial binding proteins, peptides, aptamers, and synthetic small-molecular-weight compounds. We also provide examples of applications for the novel affinity matrices in chromatography and beyond.

  7. A tandem laboratory scale protein purification process using Protein A affinity and anion exchange chromatography operated in a weak partitioning mode.

    Science.gov (United States)

    Shamashkin, Michael; Godavarti, Ranga; Iskra, Timothy; Coffman, Jon

    2013-10-01

    A significant consequence of scaling up production of high titer monoclonal antibody (mAb) processes in existing facilities is the generation of in-process pools that exceed the capacity of storage vessels. A semi-continuous downstream process where columns and filters are linked and operated in tandem would eliminate the need for intermediate holding tanks. This study is a bench-scale demonstration of the feasibility of a tandem process for the purification of mAbs employing an affinity Protein A capture step, followed by a flow-through anion-exchange (AEX) step with the possibility of adding an in-line virus filtration step (VF). All three steps were linked sequentially and operated as one continuous process using an ÄKTA FPLC equipped with two pumps and a system of valves and bypasses that allowed the components to be engaged at different stages of the process. The AEX column was operated in a weak partitioning (WP) mode enabled by a precise in-line titration of Protein A effluent. In order to avoid complex control schemes and facilitate validation, quality and robustness were built into the system through selection of buffers based on thermodynamic and empirical models. The tandem system utilized the simplest possible combination of valves, pumps, controls, and automation, so that it could easily be implemented in a clinical or commercial production facility. Linking the purification steps in a tandem process is expected to generate savings in time and production costs and also reduce the size of quality systems due to reduced documentation requirements, microbial sampling, and elimination of hold time validation. Copyright © 2013 Wiley Periodicals, Inc.

  8. Hepatitis C virus NS5A is a direct substrate of casein kinase I-alpha, a cellular kinase identified by inhibitor affinity chromatography using specific NS5A hyperphosphorylation inhibitors.

    Science.gov (United States)

    Quintavalle, Manuela; Sambucini, Sonia; Summa, Vincenzo; Orsatti, Laura; Talamo, Fabio; De Francesco, Raffaele; Neddermann, Petra

    2007-02-23

    The hepatitis C virus encodes a single polyprotein that is processed by host and viral proteases to yield at least 10 mature viral proteins. The nonstructural (NS) protein 5A is a phosphoprotein, and experimental data indicate that the phosphorylation state of NS5A is important for the outcome of viral RNA replication. We were able to identify kinase inhibitors that specifically inhibit the formation of the hyperphosphorylated form of NS5A (p58) in cells. These kinase inhibitors were used for inhibitor affinity chromatography in order to identify the cellular targets of these compounds. The kinases casein kinase I (CKI), p38 MAPK, CIT (Citron Rho-interacting kinase), GAK, JNK2, PKA, RSK1/2, and RIPK2 were identified in the high affinity binding fractions of two NS5A hyperphosphorylation inhibitors (NS5A-p58-i). Even though these kinases are targets of the NS5A-p58-i, the only kinase showing an effect on NS5A hyperphosphorylation was confirmed to be CKI-alpha. Although this finding does not exclude the possibility that other kinase(s) might be involved in basal or regulatory phosphorylation of NS5A, we show here that NS5A is a direct substrate of CKI-alpha. Moreover, in vitro phosphorylation of NS5A by CKI-alpha resulted for the first time in the production of basal and hyperphosphorylated forms resembling those produced in cells. In vitro kinase reactions performed with NS5A peptides show that Ser-2204 is a preferred substrate residue for CKI-alpha after pre-phosphorylation of Ser-2201.

  9. Evaluation of immobilized metal-ion affinity chromatography and electrospray ionization tandem mass spectrometry for recovery and identification of copper(II-binding ligands in seawater using the model ligand 8-hydroxyquinoline

    Directory of Open Access Journals (Sweden)

    Richard L Nixon

    2016-11-01

    Full Text Available Complexation by organic ligands dominates the speciation of iron (Fe, copper (Cu, and other bioactive trace metals in seawater, controlling their bioavailability and distribution in the marine environment. Several classes of high-affinity Fe-binding ligands (siderophores have been identified in seawater but the chemical structures of marine Cu-complexing ligands remain unknown. Immobilized metal-ion affinity chromatography (IMAC allows Cu ligands to be isolated from bulk dissolved organic matter (DOM in seawater and separated into fractions which can be characterized independently using electrochemical and spectroscopic techniques. Attempts have been made to combine IMAC with electrospray ionization mass spectrometry (ESI-MS to characterize marine Cu ligands, but results have proven inconclusive due to the lack of tandem mass spectrometry (MS/MS data to confirm ligand recovery. We used 8-hydroxyquinoline (8-HQ, a well-characterized model ligand that forms strong 1:2 metal:ligand complexes with Cu2+ at pH 8 (log β2 = 18.3, to evaluate Cu(II-IMAC and ESI-MS/MS for recovery and identification of copper(II-complexing ligands in seawater. One-litre samples of 0.45µm-filtered surface seawater were spiked with 8-HQ at low concentrations (up to 100 nM and fractionated by IMAC. Fractions eluted with acidified artificial seawater were desalted and re-suspended in methanol via solid-phase extraction (SPE to obtain extracts suitable for ESI-MS analysis. Recovery of 8-HQ by Cu(II-IMAC was confirmed unambiguously by MS/MS and found to average 81% based upon accurate quantitation via multiple reaction monitoring (MRM. Cu(II-IMAC fractionation of unspiked seawater using multiple UV detection wavelengths suggests an optimal fraction size of 2 mL for isolating and analyzing Cu ligands with similar properties.

  10. Detection of glycoproteins in the Acanthamoeba plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Paatero, G.I.L. (Abo Akademi (Finland)); Gahmberg, C.G. (Univ. of Helsinki (Finland))

    1988-11-01

    In the present study the authors have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by {sup 125}I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB{sup 3}H{sub 4} and galactose oxidase/NaB{sup 3}H{sub 4} labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with M{sub r} of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presence of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with ({sup 35}S)methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis.

  11. Detection of glycoproteins in the Acanthamoeba plasma membrane

    International Nuclear Information System (INIS)

    Paatero, G.I.L.; Gahmberg, C.G.

    1988-01-01

    In the present study the authors have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by 125 I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB 3 H 4 and galactose oxidase/NaB 3 H 4 labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with M r of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presence of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with [ 35 S]methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis

  12. Determination of in Vitro and in Silico Indexes for the Modeling of Blood-Brain Barrier Partitioning of Drugs via Micellar and Immobilized Artificial Membrane Liquid Chromatography.

    Science.gov (United States)

    Russo, Giacomo; Grumetto, Lucia; Szucs, Roman; Barbato, Francesco; Lynen, Frederic

    2017-05-11

    In the present work, 79 structurally unrelated analytes were taken into account and their chromatographic retention coefficients, measured by immobilized artificial membrane liquid chromatography (IAM-LC) and by micellar liquid chromatography (MLC) employing sodium dodecyl sulfate (SDS) as surfactant, were determined. Such indexes, along with topological and physicochemical parameters calculated in silico, were subsequently used for the development of blood-brain barrier passage-predictive statistical models using partial least-squares (PLS) regression. Highly significant relationships were observed either using IAM (r 2 (n - 1) = 0.78) or MLC (r 2 (n - 1) = 0.83) derived indexes along with in silico descriptors. This hybrid approach proved fast and effective in the development of highly predictive BBB passage oriented models, and therefore, it can be of interest for pharmaceutical industries as a high-throughput BBB penetration oriented screening method. Finally, it shed new light into the molecular mechanism involved in the BBB uptake of therapeutics.

  13. Proteins of the kidney microvillar membrane. Aspartate aminopeptidase: purification by immunoadsorbent chromatography and properties of the detergent- and proteinase-solubilized forms

    DEFF Research Database (Denmark)

    Danielsen, Erik Michael; Norén, O; Sjöström, H

    1980-01-01

    Aminopeptidase A (aspartate aminopeptidase, EC 3.4.11.7) was purified 2000-fold from pig kidney cortex. The essential step in the purification was chromatography on an immunoadsorbent column prepared from a rabbit antiserum raised against pig intestinal aminopeptidase A. Glutamyl and aspartyl...... revealed 1 g-atom of Ca/143000 g of protein. Two forms of the enzyme were purified: an amphipathic form solubilized from the membrane by Triton X-100 (detergent form) and a hydrophilic form released by incubation with trypsin (proteinase form). The detergent form exhibited charge-shift in crossed...... protein....

  14. Sperm-egg recognition in the mouse: characterization of sp56, a sperm protein having specific affinity for ZP3.

    Science.gov (United States)

    Cheng, A; Le, T; Palacios, M; Bookbinder, L H; Wassarman, P M; Suzuki, F; Bleil, J D

    1994-05-01

    Recognition between mammalian gametes occurs when the plasma membrane of the sperm head binds to the zona pellucida (ZP), an extracellular coat surrounding eggs. ZP3, one of three glycoproteins in the ZP, is the egg protein recognized by sperm. A mouse sperm surface protein, sp56 (M(r) = 56,000), has been identified on the basis of its specific affinity for ZP3 (Bleil, J. D., and P. M. Wassarman. 1990. Proc. Natl. Acad. Sci. USA. 87:5563-5567). Studies presented here were designed to characterize mouse sperm sp56 and to further test whether or not this protein specifically recognizes ZP3. sp56 was purified by both ZP3 affinity chromatography and by ion exchange chromatography followed by size-exclusion chromatography. The purified native protein eluted from size-exclusion columns as a homomultimer (M(r) approximately 110,000). Each monomer of the protein contains intramolecular disulfide bonds, consistent with its extracellular location. Immunohistochemical and immunoblotting studies, using monoclonal antibodies, demonstrated that sp56 is a peripheral membrane protein located on the outer surface of the sperm head plasma membrane, precisely where sperm bind ZP3. Results of crosslinking experiments demonstrated that the ZP3 oligosaccharide recognized by sperm has specific affinity for sp56. Collectively, these results suggest that sp56 may be the sperm protein responsible for sperm-egg recognition in the mouse.

  15. Identification of ftalates used as additives in the geo membrane of a la Florida reservoir through gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Blanco, M.; Rico, G.; Pargada, L.; Aguiar, E.; Castillo, F.

    2009-01-01

    This article studies the behaviour of the plastified poly (vinyl chloride) (PVC-P) applied as synthetic geo membrane for the waterproofing of the La Florida reservoir. We show the results of the initial examen of its properties and its most significant characteristics eighteen years after being applied. Furthermore we isolate and identify the quantitative and qualitative aspects of the plasticizers used in its formula through infrared spectroscopy, gas chromatography and mass spectrometry technic. We have identified as the said plasticizers di-n-octyl phthalate, di-n-decyl phthalate and n-decyl n-octyl phthalate, and we calculate the joint average molecular weight using Wilsons equation. The results found that the geo membranes we have studied has shown an excellent behaviour along through time. (Author) 53 refs

  16. Peptide mapping of 125I-labelled membrane protein of influenza viruses by reverse-phase high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Darveau, A.; Lecomte, J.; Seidah, N.G.; Chretien, M.

    1982-01-01

    The resolution potential of reverse-phase high-performance liquid chromatography (HPLC) for peptide analysis of hydrophobic viral membranes has been investigated, using as a model the membrane (M) protein of influenza virus. Proteolytic digests of 125 I-labelled M protein CNBr fragments, extracted from radioiodinated whole virus, have been separated on a uBondapak C 18 column with an isopropanol or acetonitrile solvent system. Peptide mapping of trypsin digests of M protein from A/PR/8/34 (H1N1) and A/chicken/Germany/N/49 (H10N7) viruses was identical, whereas Staphylococcus aureus V8 protease digests showed minor differences in at least two peptides. The results also show that HPLC is a powerful tool for the separation of proteolytic digests of viral proteins, since the peptide maps are highly reproducible and recovery was always greater than 85%. (Auth.)

  17. Computational fluid dynamic simulation of axial and radial flow membrane chromatography: mechanisms of non-ideality and validation of the zonal rate model.

    Science.gov (United States)

    Ghosh, Pranay; Vahedipour, Kaveh; Lin, Min; Vogel, Jens H; Haynes, Charles; von Lieres, Eric

    2013-08-30

    Membrane chromatography (MC) is increasingly being used as a purification platform for large biomolecules due to higher operational flow rates. The zonal rate model (ZRM) has previously been applied to accurately characterize the hydrodynamic behavior in commercial MC capsules at different configurations and scales. Explorations of capsule size, geometry and operating conditions using the model and experiment were used to identify possible causes of inhomogeneous flow and their contributions to band broadening. In the present study, the hydrodynamics within membrane chromatography capsules are more rigorously investigated by computational fluid dynamics (CFD). The CFD models are defined according to precisely measured capsule geometries in order to avoid the estimation of geometry related model parameters. In addition to validating the assumptions and hypotheses regarding non-ideal flow mechanisms encoded in the ZRM, we show that CFD simulations can be used to mechanistically understand and predict non-binding breakthrough curves without need for estimation of any parameters. When applied to a small-scale axial flow MC capsules, CFD simulations identify non-ideal flows in the distribution (hold-up) volumes upstream and downstream of the membrane stack as the major source of band broadening. For the large-scale radial flow capsule, the CFD model quantitatively predicts breakthrough data using binding parameters independently determined using the small-scale axial flow capsule, identifying structural irregularities within the membrane pleats as an important source of band broadening. The modeling and parameter determination scheme described here therefore facilitates a holistic mechanistic-based method for model based scale-up, obviating the need of performing expensive large-scale experiments under binding conditions. As the CFD model described provides a rich mechanistic analysis of membrane chromatography systems and the ability to explore operational space, but

  18. Enhanced SDC-assisted digestion coupled with lipid chromatography-tandem mass spectrometry for shotgun analysis of membrane proteome.

    Science.gov (United States)

    Lin, Yong; Wang, Kunbo; Liu, Zhonghua; Lin, Haiyan; Yu, Lijun

    2015-10-01

    Despite the biological importance of membrane proteins, their analysis has lagged behind that of soluble proteins and still presents a great challenge mainly because of their highly hydrophobic nature and low abundance. Sodium deoxycholate (SDC)-assisted digestion strategy has been introduced in our previous papers, which cleverly circumvents many of the challenges in shotgun membrane proteomics. However, it is associated with significant sample loss due to the slightly weaker extraction/solubilization ability of 1% SDC. In this study, an enhanced SDC-assisted digestion method (ESDC method) was developed that incorporates the almost strongest ability of SDC with a high concentration (5%) to lyse membrane and extract/solubilize hydrophobic membrane proteins, and then dilution to 1% for more efficient digestion. The comparative study using rat liver membrane-enriched sample showed that, compared with previous SDC-assisted method and the "universal" filter-aided sample preparation (FASP) method, the ESDC method not only increased the identified number of total proteins, membrane proteins, hydrophobic proteins, integral membrane proteins (IMPs) and IMPs with more than 5 transmembrane domains (TMDs) by an average of 10.8%, 13.2%, 17.8%, 17.9% and 52.9%, respectively, but also enhanced the identified number of total peptides and hydrophobic peptides by averagely 12.5% and 14.2%. These results demonstrated that the ESDC method provides a substantial improvement in the recovery and identification of membrane proteins, especially those with high hydrophobicity and multiple TMDs, and thereby displaying more potential for shotgun membrane proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A method for screening active components from Chinese herbs by cell membrane chromatography-offline-high performance liquid chromatography/mass spectrometry and an online statistical tool for data processing.

    Science.gov (United States)

    Cao, Yan; Wang, Shaozhan; Li, Yinghua; Chen, Xiaofei; Chen, Langdong; Wang, Dongyao; Zhu, Zhenyu; Yuan, Yongfang; Lv, Diya

    2018-03-09

    Cell membrane chromatography (CMC) has been successfully applied to screen bioactive compounds from Chinese herbs for many years, and some offline and online two-dimensional (2D) CMC-high performance liquid chromatography (HPLC) hyphenated systems have been established to perform screening assays. However, the requirement of sample preparation steps for the second-dimensional analysis in offline systems and the need for an interface device and technical expertise in the online system limit their extensive use. In the present study, an offline 2D CMC-HPLC analysis combined with the XCMS (various forms of chromatography coupled to mass spectrometry) Online statistical tool for data processing was established. First, our previously reported online 2D screening system was used to analyze three Chinese herbs that were reported to have potential anti-inflammatory effects, and two binding components were identified. By contrast, the proposed offline 2D screening method with XCMS Online analysis was applied, and three more ingredients were discovered in addition to the two compounds revealed by the online system. Then, cross-validation of the three compounds was performed, and they were confirmed to be included in the online data as well, but were not identified there because of their low concentrations and lack of credible statistical approaches. Last, pharmacological experiments showed that these five ingredients could inhibit IL-6 release and IL-6 gene expression on LPS-induced RAW cells in a dose-dependent manner. Compared with previous 2D CMC screening systems, this newly developed offline 2D method needs no sample preparation steps for the second-dimensional analysis, and it is sensitive, efficient, and convenient. It will be applicable in identifying active components from Chinese herbs and practical in discovery of lead compounds derived from herbs. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Development of an analytical method coupling cell membrane chromatography with gas chromatography-mass spectrometry via microextraction by packed sorbent and its application in the screening of volatile active compounds in natural products.

    Science.gov (United States)

    Li, Miao; Wang, Sicen; He, Langchong

    2015-01-01

    Natural products (NPs) are important sources of lead compounds in modern drug discovery. To facilitate the screening of volatile active compounds in NPs, we have developed a new biochromatography method that uses rat vascular smooth muscle cells (VSMC), which are rich in L-type calcium channels (LCC), to prepare the stationary phase. This integrated method, which couples cell membrane chromatography (CMC) with gas chromatography-mass spectrometry (GC-MS) via microextraction by packed sorbent (MEPS) technology, has been termed VSMC/CMC-MEPS-GC-MS. Methodological validation confirmed its specificity, reliability and convenience. Screening results for Radix Angelicae Dahuricae and Fructus Cnidii obtained using VSMC/CMC-MEPS-GC-MS were consistent with those obtained using VSMC/CMC-offline-GC-MS. MEPS connection plays as simplified solid-phase extraction and replaces the uncontrollable evaporation operation in reported offline connections, so our new method is supposed to be more efficient and reliable than the offline ones, especially for compounds that are volatile, thermally unstable or difficult to purify. In application, senkyunolide A and ligustilide were preliminary identified as the volatile active components in Rhizoma Chuanxiong. We have thus confirmed the suitability of VSMC/CMC-MEPS-GC-MS for volatile active compounds screening in NP. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Separation and preconcentration of 2,3,7,8-tetrachlorodibenzo-p-dioxin in blood samples by inclusion emulsion membranes and its determination by gas chromatography.

    Science.gov (United States)

    Mokhtari, Bahram; Pourabdollah, Kobra

    2012-10-15

    The nano-mediated preconcentration of 2,3,7,8-tetrachlorodibenzo-p-dioxin from blood samples was reported by inclusion-facilitated emulsion liquid membrane process. The novelty of this study was application of nano-baskets of calixarene and emulsion liquid membranes in selective and efficient preconcentration of 2,3,7,8-tetrachlorodibenzo-p-dioxin. For this aim, four derivatives of p-tert-calix[4]arene bearing different sulfonamide moieties were synthesized and their inclusion-extraction parameters were optimized including calixarenes' scaffold and concentration (3, 4 wt%), diluent type in membrane, phase and treat ratios (0.8 and 0.3), mixing speed (300 rpm), and initial solute concentrations (0.1-10 pg g(-1)). The extraction efficiency was determined by dioxin's concentration using gas chromatography equipped with electron capture detector and the results revealed that in optimized operating conditions, the preconcentration of 2,3,7,8-tetrachlorodibenzo-p-dioxin was improved and the limit of detection decreased. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. High-affinity Near-infrared Fluorescent Small-molecule Contrast Agents for In Vivo Imaging of Prostate-specific Membrane Antigen

    Directory of Open Access Journals (Sweden)

    Valerie Humblet

    2005-10-01

    Full Text Available Surgical resection remains a definitive treatment for prostate cancer. Yet, prostate cancer surgery is performed without image guidance for tumor margin, extension beyond the capsule and lymph node positivity, and without verification of other occult metastases in the surgical field. Recently, several imaging systems have been described that exploit near-infrared (NIR fluorescent light for sensitive, real-time detection of disease pathology intraoperatively. In this study, we describe a high-affinity (9 nM, single nucleophile-containing, small molecule specific for the active site of the enzyme PSMA. We demonstrate production of a tetra-sulfonated heptamethine indocyanine NIR fluorescent derivative of this molecule using a high-yield LC/MS purification strategy. Interestingly, NIR fluorophore conjugation improves affinity over 20-fold, and we provide mechanistic insight into this observation. We describe the preparative production of enzymatically active PSMA using a baculovirus expression system and an adenovirus that co-expresses PSMA and GFP. We demonstrate sensitive and specific in vitro imaging of endogenous and ectopically expressed PSMA in human cells and in vivo imaging of xenograft tumors. We also discuss chemical strategies for improving performance even further. Taken together, this study describes nearly complete preclinical development of an optically based small-molecule contrast agent for image-guided surgery.

  3. Determination of bromoxynil and ioxynil in the presence of carbamates by supported liquid membrane-liquid chromatography in river waters

    Directory of Open Access Journals (Sweden)

    Titus Motswadi Maswabi

    2003-12-01

    Full Text Available Sample pre-treatment and enrichment using the supported liquid membrane (SLM technique for the determination of phenolic nitrile herbicides in presence of carbamates in river water samples was investigated. The uncharged herbicide molecules from the flowing aqueous solution diffuse through an immobilized water-immiscible organic solvent, supported by a porous polytetrafluoroethylene (PTFE membrane, and trapped in a stagnant acidic acceptor phase in an ionic form. Using n-undecane as a membrane solvent, the SLM extraction methodology was successfully used for the enrichment and separation of phenolic nitrile herbicides in environmental waters with extraction efficiencies of 60% or better. A RDS (% of 2.1 and 1.8 was obtained for the extraction of ioxynil and bromoxynil from river water, respectively.

  4. Ligand-lipid and ligand-core affinity control the interaction of gold nanoparticles with artificial lipid bilayers and cell membranes.

    Science.gov (United States)

    Broda, Janine; Setzler, Julia; Leifert, Annika; Steitz, Julia; Benz, Roland; Simon, Ulrich; Wenzel, Wolfgang

    2016-07-01

    Interactions between nanoparticles (NPs) and biomembranes depend on the physicochemical properties of the NPs, such as size and surface charge. Here we report on the size-dependent interaction of gold nanoparticles (AuNPs), stabilized with ligands differing in charge, i.e. sodium 3-(diphenylphosphino)benzene sulfonate (TPPMS) and sodium 3,3',3″-triphenylphosphine sulfonate (TPPTS), respectively, with artificial membranes (black lipid membranes; BLMs) and HeLa cells. The TPPTS-stabilized AuNPs affect BLMs at lower size than TPPMS-stabilized ones. On HeLa cells we found decreasing cytotoxicity with increasing particle size, however, with an overall lower cytotoxicity for TPPTS-stabilized AuNPs. We attribute size-dependent BLM properties as well as reduced cytotoxicity of TPPTS-stabilized AuNPs to weaker shielding of the AuNP core when stabilized with TPPTS. We hypothesize that the partially unshielded hydrophobic gold core can embed into the hydrophobic membrane interior. Thereby we demonstrate that ligand-dependent cytotoxicity of NP can occur even when the NPs are not translocated through the membrane. The use of nanoparticles (NPs) in the clinical setting means that there will be interactions between NPs and cell membranes. The authors investigated the underlying processes concerning cellular uptake and potential toxicity of gold nanoparticles (AuNPs) using particles with ligands different sizes and charges. The findings should further enhance existing knowledge on future design of safer NPs in the clinic. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Identification of novel autophagic Radix Polygalae fraction by cell membrane chromatography and UHPLC-(Q)TOF-MS for degradation of neurodegenerative disease proteins.

    Science.gov (United States)

    Wu, An-Guo; Wong, Vincent Kam-Wai; Zeng, Wu; Liu, Liang; Law, Betty Yuen-Kwan

    2015-11-24

    With its traditional use in relieving insomnia and anxiety, our previous study has identified onjisaponin B from Radix Polygalae (RP), as a novel autophagic enhancer with potential neuroprotective effects. In current study, we have further identified a novel active fraction from RP, contains 17 major triterpenoid saponins including the onjisaponin B, by the combinational use of cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled to (quadrupole) time-of-flight mass spectrometry {UHPLC-(Q)TOF-MS}. By exhibiting more potent autophagic effect in cells, the active fraction enhances the clearance of mutant huntingtin, and reduces protein level and aggregation of α-synuclein in a higher extent when compared with onjisaponin B. Here, we have reported for the first time the new application of cell-based CMC and UHPLC-(Q)TOF-MS analysis in identifying new autophagy inducers with neuroprotective effects from Chinese medicinal herb. This result has provided novel insights into the possible pharmacological actions of the active components present in the newly identified active fraction of RP, which may help to improve the efficacy of the traditional way of prescribing RP, and also provide new standard for the quality control of decoction of RP or its medicinal products in the future.

  6. EFFECT OF DIFFERENT AMOUNTS OF THE NONIONIC DETERGENTS C-10E(5) AND C-12E(5) PRESENT IN ELUENTS FOR ION-EXCHANGE HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY OF INTEGRAL MEMBRANE-PROTEINS OF SENDAI VIRUS

    NARCIS (Netherlands)

    WELLINGWESTER, S; FEIJLBRIEF, M; KOEDIJK, DGAM; BRAAKSMA, MA; DOUMA, BRK; WELLING, GW

    1993-01-01

    Non-ionic detergents (0.03-0.5%) are used as additives to the eluents when integral membrane proteins are subjected to ion-exchange high-performance liquid chromatography (HPIEC). It is not known whether this concentration should bear some relation to the critical micelle concentration (CMC) of a

  7. High-performance liquid chromatography separation and intact mass analysis of detergent-solubilized integral membrane proteins

    Science.gov (United States)

    Berridge, Georgina; Chalk, Rod; D’Avanzo, Nazzareno; Dong, Liang; Doyle, Declan; Kim, Jung-In; Xia, Xiaobing; Burgess-Brown, Nicola; deRiso, Antonio; Carpenter, Elisabeth Paula; Gileadi, Opher

    2011-01-01

    We have developed a method for intact mass analysis of detergent-solubilized and purified integral membrane proteins using liquid chromatography–mass spectrometry (LC–MS) with methanol as the organic mobile phase. Membrane proteins and detergents are separated chromatographically during the isocratic stage of the gradient profile from a 150-mm C3 reversed-phase column. The mass accuracy is comparable to standard methods employed for soluble proteins; the sensitivity is 10-fold lower, requiring 0.2–5 μg of protein. The method is also compatible with our standard LC–MS method used for intact mass analysis of soluble proteins and may therefore be applied on a multiuser instrument or in a high-throughput environment. PMID:21093405

  8. Analysis and quantification of parabens in cosmetic products by utilizing hollow fibre-supported liquid membrane and high performance liquid chromatography with ultraviolet detection.

    Science.gov (United States)

    Msagati, T A M; Barri, T; Larsson, N; Jönsson, J A

    2008-08-01

    A simple and direct method based on hollow fibre-supported liquid membrane (HFSLM) extraction and liquid chromatography equipped with a UV detector was developed for analysis and quantification of parabens in cosmetic products. The parabens analysed included methyl, ethyl, propyl, isobutyl and butyl paraben. The HFSLM extraction was carried out by employing di-n-hexyl ether as organic liquid that was immobilized in the hollow fibre membrane. The HFSLM extraction is simple, cheap, minimizes the use of solvents and uses disposable material. In an investigation of 11 paraben-containing cosmetic products, the levels of parabens (sum of all parabens in a product) ranged from 0.43% to 0.79% (w/w) for skin care products, 0.07-0.44% for hair fixing gels and 0.30-0.52% for soap solutions. The levels of individual parabens in individual cosmetic products ranged between 0.03% and 0.42% w/w for skin care products, 0.07% and 0.26% w/w for hair fixing gels and between 0.11% and 0.34% w/w for soap solutions. Parabens were found in the highest concentrations in skin care products followed by soap solutions and the least amounts were found in hair fixing gels. Of the paraben-containing products tested, all of them contained methyl paraben and about 90% contained propyl paraben in addition to methyl paraben. One product contained all the parabens analysed.

  9. A novel method for determination and quantification of 4-methyloctanoic and 4-methylnonanoic acids in mutton by hollow fiber supported liquid membrane extraction coupled with gas chromatography.

    Science.gov (United States)

    Chen, Haigui; Wang, Yunfan; Jiang, Houyang; Zhao, Guohua

    2012-12-01

    4-Methyloctanoic acid (MOA) and 4-methylnonanoic acid (MNA) are the main compounds responsible for "sweaty" odor of mutton. A novel method for their determination has been developed and validated. Hollow fiber supported liquid membrane (HF-SLM) was applied to selectively extract MOA and MNA prior to gas chromatography (GC) analysis. For HF-SLM, the donor outside the fiber was the acidified supernatant (pH 4) from aqueous mutton slurry. Liquid membrane was 5% tri-n-octylphoshphine oxide in di-n-hexyl ether and 0.3M NaOH aqueous solution filled in the lumen of the fiber was used as the acceptor. The extraction last for 4h. After acidification with HCl, the acceptor was directly analyzed by GC. Importantly, HF-SLM provided high enrichment factors for MOA (133) and MNA (116). The method developed had low detection limits of 0.0007-0.0015 mg/kg, good linearity (R²>0.9956), reasonable recovery (88.54-122.13%), satisfactory intra-assay (7.83-9.73%) and inter-assay (15.68-16.14%) precision. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Determination of polybrominated diphenyl ethers at trace levels in environmental waters using hollow-fiber microporous membrane liquid-liquid extraction and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Fontanals, Núria; Barri, Thaer; Bergström, Staffan; Jönsson, Jan-Ake

    2006-11-10

    In this study, we present a simple and easy-to-use extraction method that is based on a hollow-fiber microporous membrane liquid-liquid extraction (HF-MMLLE), as an extraction technique, followed by gas chromatography-mass spectrometry (GC-MS) to determine a group of brominated flame retardants (BFRs), polybrominated diphenyl ethers (PBDEs), at trace levels in aqueous samples. The hollow-fiber membrane (HF) filled with organic solvent was immersed into the aqueous sample, spiked with the analytes at ng l(-1) level, and stirred for 60 min. The proposed method could attain enrichment factors (E(e)) up to 5200 times, after optimising parameters, such as organic solvent, stirring speed and extraction time, that affect the extraction. The HF-MMLLE-GC-MS method was successfully applied to the extraction of PBDEs from tap, river and leachate water samples with spike recoveries ranging from 85% to 110%. The method validation with reagent and leachate water samples provided good linearity, detection limits of 1.1 ng l(-1) or lower, both in reagent and leachate water, as well as satisfactory precision in terms of repeatability and reproducibility with values of % relative standard deviation (%RSD) lower than 8.6 and 16.9, respectively.

  11. Preparative fractionation of protein, RNA, and plasmid DNA using centrifugal precipitation chromatography with tubular dialysis membrane inside a convoluted tubing as separation channel.

    Science.gov (United States)

    Tomanee, Panarat; Hsu, James T; Ito, Yoichiro

    2006-01-01

    Fractionation of clarified E. coli lysate components in bench-scale and preparative-scale centrifugal precipitation chromatography (CPC), using a solution of cationic surfactant cetyltrimethylammonium bromide (CTAB) containing 0.5 M NaCl as precipitant, are compared here. Step gradient of CTAB from 0.50% to 0.16% (w/v) gave a successful fractionation in bench-scale CPC; however, a linear gradient of lower CTAB concentration, 0.20-0% (w/v), was used in the preparative scale and resulted in similar fractionation. The preparative-scale CPC has a superior sample loading capacity by the use of tubular dialysis membrane inside convoluted tubing as the separation channel. In this study, the quantity of the sample loaded into the preparative CPC was about 15 times more than that in the bench scale, and in a single run the preparative CPC could prepare approximately 3 mg of plasmid DNA with about 96% of RNA removed. The higher surface area per length of the separation channel in the preparative CPC was believed to benefit mass transfer of CTAB across the membrane, leading to less CTAB being required in the process.

  12. Simultaneous screening of four epidermal growth factor receptor antagonists from Curcuma longa via cell membrane chromatography online coupled with HPLC-MS.

    Science.gov (United States)

    Sun, Meng; Ma, Wei-na; Guo, Ying; Hu, Zhi-gang; He, Lang-chong

    2013-07-01

    The epidermal growth factor receptors (EGFRs) are significant targets for screening active compounds. In this work, an analytical method was established for rapid screening, separation, and identification of EGFRs antagonists from Curcuma longa. Human embryonic kidney 293 cells with a steadily high expression of EGFRs were used to prepare the cell membrane stationary phase in a cell membrane chromatography model for screening active compounds. Separation and identification of the retention chromatographic peaks was achieved by HPLC-MS. The active sites, docking extents and inhibitory effects of the active compounds were also demonstrated. The screening result found that ar-turmerone, curcumin, demethoxycurcumin, and bisdemethoxycurcumin from Curcuma longa could be active components in a similar manner to gefitinib. Biological trials showed that all of four compounds can inhibit EGFRs protein secretion and cell growth in a dose-dependent manner, and downregulate the phosphorylation of EGFRs. This analytical method demonstrated fast and effective characteristics for screening, separation and identification of the active compounds from a complex system and should be useful for drug discovery with natural medicinal herbs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Molecular dissection of the intrinsic factor-vitamin B12 receptor, cubilin, discloses regions important for membrane association and ligand binding

    DEFF Research Database (Denmark)

    Kristiansen, M; Kozyraki, R; Jacobsen, Christian

    1999-01-01

    of conditioned media and cell extracts of transfected cells revealed that the N-terminal cubilin region conveys membrane association. Helical plotting of this region demonstrated a conserved amphipathic helix pattern (Lys74-Glu109) as a candidate site for hydrophobic interactions. Ligand affinity chromatography...

  14. Novel neonicotinoid-agarose affinity column for Drosophila and Musca nicotinic acetylcholine receptors.

    Science.gov (United States)

    Tomizawa, M; Latli, B; Casida, J E

    1996-10-01

    Neonicotinoids such as the insecticide imidacloprid (IMI) act as agonists at the insect nicotinic acetylcholine receptor (nAChR). Head membranes of Drosophila melanogaster and Musca domestica have a single high-affinity binding site for [3H]IMI with KD values of 1-2 nM and Bmax values of 560-850 fmol/mg of protein. Locusta and Periplaneta nAChRs isolated with an alpha-bungarotoxin (alpha-BGT)-agarose affinity column are known to be alpha-subunit homooligomers. This study uses 1-[N-(6-chloro-3-pyridylmethyl)-N-ethyl]amino-1-amino-2-nitroethene++ + (which inhibits [3H]IMI binding to Drosophila and Musca head membranes at 2-3 nM) to develop a neonicotinoid-agarose affinity column. The procedure-introduction of Triton-solubilized Drosophila or Musca head membranes into this neonicotinoid-based column, elution with IMI, and analysis by lithium dodecyl sulfate-polyacrylamicle gel electrophoresis-gives only three proteins (69, 66, and 61 kDa) tentatively assigned as putative subunits of the nAChR; the same three proteins are obtained with Musca using the alpha-BGT-agarose affinity column. Photoaffinity labeling of the Drosophila and Musca putative subunits from the neonicotinoid column with 125I-alpha-BGT-4-azidosalicylic acid gives a labeled derivative of 66-69 kDa. The yield is 2-5 micrograms of receptor protein from 1 g of Drosophila or Musca heads. Neonicotinoid affinity chromatography to isolate native Drosophila and Musca receptors will facilitate studies on the structure and function of insect nAChRs.

  15. Characterisation of the membrane affinity of an isoniazide peptide conjugate by tensiometry, atomic force microscopy and sum-frequency vibrational spectroscopy, using a phospholipid Langmuir monolayer model.

    Science.gov (United States)

    Hill, Katalin; Pénzes, Csanád Botond; Schnöller, Donát; Horváti, Kata; Bosze, Szilvia; Hudecz, Ferenc; Keszthelyi, Tamás; Kiss, Eva

    2010-10-07

    Tensiometry, sum-frequency vibrational spectroscopy, and atomic force microscopy were employed to assess the cell penetration ability of a peptide conjugate of the antituberculotic agent isoniazide. Isoniazide was conjugated to peptide (91)SEFAYGSFVRTVSLPV(106), a functional T-cell epitope of the immunodominant 16 kDa protein of Mycobacterium tuberculosis. As a simple but versatile model of the cell membrane a phospholipid Langmuir monolayer at the liquid/air interface was used. Changes induced in the structure of the phospholipid monolayer by injection of the peptide conjugate into the subphase were followed by tensiometry and sum-frequency vibrational spectroscopy. The drug penetrated lipid films were transferred to a solid support by the Langmuir-Blodgett technique, and their structures were characterized by atomic force microscopy. Peptide conjugation was found to strongly enhance the cell penetration ability of isoniazide.

  16. Identification of biotransformation products of macrolide and fluoroquinolone antimicrobials in membrane bioreactor treatment by ultrahigh-performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Terzic, Senka; Senta, Ivan; Matosic, Marin; Ahel, Marijan

    2011-07-01

    Ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was applied for the identification of transformation products (TPs) of fluoroquinolone (norfloxacin and ciprofloxacin) and macrolide (azithromycin, erythromycin, and roxitromycin) antimicrobials in wastewater effluents from a Zenon hollow-fiber membrane bioreactor (MBR). The detected TPs were thoroughly characterized using the accurate mass feature for the determination of the tentative molecular formulae and MS-MS experiments for the structural elucidation of unknowns. Several novel TPs, which have not been previously reported in the literature, were identified. The TPs of azithromycin and roxithromycin, identified in MBR effluent, were conjugate compounds, which were formed by phosphorylation of desosamine moiety. Transformation of fluoroquinolones yielded two types of products: conjugates, formed by succinylation of the piperazine ring, and smaller metabolites, formed by an oxidative break-up of piperazine moiety to form the 7-[(2-carboxymethyl)amino] group. A semi-quantitative assessment of these TPs suggested that they might have contributed significantly to the overall balance of antimicrobial residues in MBR effluents and thus to the overall removal efficiency. Determination of TPs during a period of 2 months indicated a conspicuous dynamics, which warrants further research to identify microorganisms involved and treatment conditions leading to their formation.

  17. Fractionation of Plant Bioactives from Black Carrots (Daucus carota subspecies sativus varietas atrorubens Alef.) by Adsorptive Membrane Chromatography and Analysis of Their Potential Anti-Diabetic Activity.

    Science.gov (United States)

    Esatbeyoglu, Tuba; Rodríguez-Werner, Miriam; Schlösser, Anke; Liehr, Martin; Ipharraguerre, Ignacio; Winterhalter, Peter; Rimbach, Gerald

    2016-07-27

    Black and purple carrots have attracted interest as colored extracts for coloring food due to their high content of anthocyanins. This study aimed to investigate the polyphenol composition of black carrots. Particularly, the identification and quantification of phenolic compounds of the variety Deep Purple carrot (DPC), which presents a very dark color, was performed by HPLC-PDA and HPLC-ESI-MS(n) analyses. The separation of polyphenols from a DPC XAD-7 extract into an anthocyanin fraction (AF) and co-pigment fraction (CF; primarily phenolic acids) was carried out by membrane chromatography. Furthermore, possible anti-diabetic effects of the DPC XAD-7 extract and its AF and CF were determined. DPC samples (XAD-7, CF, and AF) inhibited α-amylase and α-glucosidase in a dose-dependent manner. Moreover, DPC XAD-7 and chlorogenic acid, but not DPC CF and DPC AF, caused a moderate inhibition of intestinal glucose uptake in Caco-2 cells. However, DPC samples did not affect glucagon-like peptide-1 (GLP-1) secretion and dipeptidyl peptidase IV (DPP-4) activity. Overall, DPC exhibits an inhibitory effect on α-amylase and α-glucosidase activity and on cellular glucose uptake indicating potential anti-diabetic properties.

  18. Graphene Quantum Dots/Eggshell Membrane Composite as a Nano-sorbent for Preconcentration and Determination of Organophosphorus Pesticides by High-Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Vahideh Abdollahi

    2017-10-01

    Full Text Available In this study graphene quantum dots/eggshell membrane nanocomposite (GQDS/ESM is prepared and used as an efficient solid-phase extraction (SPE sorbent for preconcentration of organophosphorus pesticides (OPPs from aqueous solutions. The retained analytes on the sorbent are stripped by acetonitrile and subsequently are determined by high-performance liquid chromatography. Various parameters affecting the extraction efficiency of OPPs on the GQDS/ESM, such as solution pH, amount of nano-sorbent, sample loading flow rate, elution conditions and sample volume are investigated. The results demonstrated that the proposed method has a wide dynamic linear range (0.05–100 ng mL-1, good linearity (R2>0.997 and low detection limits (0.006-0.32 ng mL-1. High enrichment factors are achieved ranging from 110 to 140. In the optimum experimental conditions, the established method is successfully applied for the determination of OPPs in spiked water samples (well, tap, shaft and canal and apple juice. Satisfactory recovery results show that the sample matrices under consideration do not significantly affect the extraction process.

  19. Quantitative structure-retention relationship studies using immobilized artificial membrane chromatography I: amended linear solvation energy relationships with the introduction of a molecular electronic factor.

    Science.gov (United States)

    Li, Jie; Sun, Jin; Cui, Shengmiao; He, Zhonggui

    2006-11-03

    Linear solvation energy relationships (LSERs) amended by the introduction of a molecular electronic factor were employed to establish quantitative structure-retention relationships using immobilized artificial membrane (IAM) chromatography, in particular ionizable solutes. The chromatographic indices, log k(IAM), were determined by HPLC on an IAM.PC.DD2 column for 53 structurally diverse compounds, including neutral, acidic and basic compounds. Unlike neutral compounds, the IAM chromatographic retention of ionizable compounds was affected by their molecular charge state. When the mean net charge per molecule (delta) was introduced into the amended LSER as the sixth variable, the LSER regression coefficient was significantly improved for the test set including ionizable solutes. The delta coefficients of acidic and basic compounds were quite different indicating that the molecular electronic factor had a markedly different impact on the retention of acidic and basic compounds on IAM column. Ionization of acidic compounds containing a carboxylic group tended to impair their retention on IAM, while the ionization of basic compounds did not have such a marked effect. In addition, the extra-interaction with the polar head of phospholipids might cause a certain change in the retention of basic compounds. A comparison of calculated and experimental retention indices suggested that the semi-empirical LSER amended by the addition of a molecular electronic factor was able to reproduce adequately the experimental retention factors of the structurally diverse solutes investigated.

  20. Polymalic Acid Tritryptophan Copolymer Interacts with Lipid Membrane Resulting in Membrane Solubilization

    Directory of Open Access Journals (Sweden)

    Hui Ding

    2017-01-01

    Full Text Available Anionic polymers with membrane permeation functionalities are highly desirable for secure cytoplasmic drug delivery. We have developed tritryptophan containing copolymer (P/WWW of polymalic acid (PMLA that permeates membranes by a mechanism different from previously described PMLA copolymers of trileucine (P/LLL and leucine ethyl ester (P/LOEt that use the “barrel stave” and “carpet” mechanism, respectively. The novel mechanism leads to solubilization of membranes by forming copolymer “belts” around planar membrane “packages.” The formation of such packages is supported by results obtained from studies including size-exclusion chromatography, confocal microscopy, and fluorescence energy transfer. According to this “belt” mechanism, it is hypothesized that P/WWW first attaches to the membrane surface. Subsequently the hydrophobic tryptophan side chains translocate into the periphery and insert into the lipid bilayer thereby cutting the membrane into packages. The reaction is driven by the high affinity between the tryptophan residues and lipid side chains resulting in a stable configuration. The formation of the membrane packages requires physical agitation suggesting that the success of the translocation depends on the fluidity of the membrane. It is emphasized that the “belt” mechanism could specifically function in the recognition of abnormal cells with high membrane fluidity and in response to hyperthermia.

  1. Reversed-phase liquid chromatography coupled on-line with capillary gas chromatography use of an anion-exchange membrane to remove an ion-pair reagent from the eluent.

    NARCIS (Netherlands)

    Brinkman, U.A.T.; Goosens, E.C.; de Jong, D.; de Jong, G.J.; Beerthuizen, I.M.

    1995-01-01

    In order to enable the coupling of reversed-phase liquid chromatography (RPLC) with capillary gas chromatography (GC), the performance of an anion-exchange micromembrane device has been studied to remove the ion-pair reagent methanesulphonic acid from an acetonitrile/water LC eluent. The regenerant

  2. Optimizing the rotor design for controlled-shear affinity filtration using computational fluid dynamics.

    Science.gov (United States)

    Francis, Patrick; Martinez, D Mark; Taghipour, Fariborz; Bowen, Bruce D; Haynes, Charles A

    2006-12-20

    Controlled shear affinity filtration (CSAF) is a novel integrated processing technology that positions a rotor directly above an affinity membrane chromatography column to permit protein capture and purification directly from cell culture. The conical rotor is intended to provide a uniform and tunable shear stress at the membrane surface that inhibits membrane fouling and cell cake formation by providing a hydrodynamic force away from and a drag force parallel to the membrane surface. Computational fluid dynamics (CFD) simulations are used to show that the rotor in the original CSAF device (Vogel et al., 2002) does not provide uniform shear stress at the membrane surface. This results in the need to operate the system at unnecessarily high rotor speeds to reach a required shear stress of at least 0.17 Pa at every radial position of the membrane surface, compromising the scale-up of the technology. Results from CFD simulations are compared with particle image velocimetry (PIV) experiments and a numerical solution for low Reynolds number conditions to confirm that our CFD model accurately describes the hydrodynamics in the rotor chamber of the CSAF device over a range of rotor velocities, filtrate fluxes, and (both laminar and turbulent) retentate flows. CFD simulations were then carried out in combination with a root-finding method to optimize the shape of the CSAF rotor. The optimized rotor geometry produces a nearly constant shear stress of 0.17 Pa at a rotational velocity of 250 rpm, 60% lower than the original CSAF design. This permits the optimized CSAF device to be scaled up to a maximum rotor diameter 2.5 times larger than is permissible in the original device, thereby providing more than a sixfold increase in volumetric throughput. Copyright 2006 Wiley Periodicals, Inc.

  3. Stability of the neurotensin receptor NTS1 free in detergent solution and immobilized to affinity resin.

    Directory of Open Access Journals (Sweden)

    Jim F White

    2010-09-01

    Full Text Available Purification of recombinant membrane receptors is commonly achieved by use of an affinity tag followed by an additional chromatography step if required. This second step may exploit specific receptor properties such as ligand binding. However, the effects of multiple purification steps on protein yield and integrity are often poorly documented. We have previously reported a robust two-step purification procedure for the recombinant rat neurotensin receptor NTS1 to give milligram quantities of functional receptor protein. First, histidine-tagged receptors are enriched by immobilized metal affinity chromatography using Ni-NTA resin. Second, remaining contaminants in the Ni-NTA column eluate are removed by use of a subsequent neurotensin column yielding pure NTS1. Whilst the neurotensin column eluate contained functional receptor protein, we observed in the neurotensin column flow-through misfolded NTS1.To investigate the origin of the misfolded receptors, we estimated the amount of functional and misfolded NTS1 at each purification step by radio-ligand binding, densitometry of Coomassie stained SDS-gels, and protein content determination. First, we observed that correctly folded NTS1 suffers damage by exposure to detergent and various buffer compositions as seen by the loss of [(3H]neurotensin binding over time. Second, exposure to the neurotensin affinity resin generated additional misfolded receptor protein.Our data point towards two ways by which misfolded NTS1 may be generated: Damage by exposure to buffer components and by close contact of the receptor to the neurotensin affinity resin. Because NTS1 in detergent solution is stabilized by neurotensin, we speculate that the occurrence of aggregated receptor after contact with the neurotensin resin is the consequence of perturbations in the detergent belt surrounding the NTS1 transmembrane core. Both effects reduce the yield of functional receptor protein.

  4. Exploration of overloaded cation exchange chromatography for monoclonal antibody purification.

    Science.gov (United States)

    Liu, Hui F; McCooey, Beth; Duarte, Tiago; Myers, Deanna E; Hudson, Terry; Amanullah, Ashraf; van Reis, Robert; Kelley, Brian D

    2011-09-28

    Cation exchange chromatography using conventional resins, having either diffusive or perfusive flow paths, operated in bind-elute mode has been commonly employed in monoclonal antibody (MAb) purification processes. In this study, the performance of diffusive and perfusive cation exchange resins (SP-Sepharose FF (SPSFF) and Poros 50HS) and a convective cation exchange membrane (Mustang S) and monolith (SO(3) Monolith) were compared. All matrices were utilized in an isocratic state under typical binding conditions with an antibody load of up to 1000 g/L of chromatographic matrix. The dynamic binding capacity of the cation exchange resins is typically below 100 g/L resin, so they were loaded beyond the point of anticipated MAb break through. All of the matrices performed similarly in that they effectively retained host cell protein and DNA during the loading and wash steps, while antibody flowed through each matrix after its dynamic binding capacity was reached. The matrices differed, though, in that conventional diffusive and perfusive chromatographic resins (SPSFF and Poros 50HS) demonstrated a higher binding capacity for high molecular weight species (HMW) than convective flow matrices (membrane and monolith); Poros 50HS displayed the highest HMW binding capacity. Further exploration of the conventional chromatographic resins in an isocratic overloaded mode demonstrated that the impurity binding capacity was well maintained on Poros 50HS, but not on SPSFF, when the operating flow rate was as high as 36 column volumes per hour. Host cell protein and HMW removal by Poros 50HS was affected by altering the loading conductivity. A higher percentage of host cell protein removal was achieved at a low conductivity of 3 mS/cm. HMW binding capacity was optimized at 5 mS/cm. Our data from runs on Poros 50HS resin also showed that leached protein A and cell culture additive such as gentamicin were able to be removed under the isocratic overloaded condition. Lastly, a MAb

  5. Affine Grassmann codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Beelen, Peter; Ghorpade, Sudhir Ramakant

    2010-01-01

    We consider a new class of linear codes, called affine Grassmann codes. These can be viewed as a variant of generalized Reed-Muller codes and are closely related to Grassmann codes.We determine the length, dimension, and the minimum distance of any affine Grassmann code. Moreover, we show that af...

  6. Continuous affine processes

    DEFF Research Database (Denmark)

    Buchardt, Kristian

    2016-01-01

    Affine processes possess the property that expectations of exponential affine transformations are given by a set of Riccati differential equations, which is the main feature of this popular class of processes. In this paper we generalise these results for expectations of more general transformati...

  7. Different endothelin receptor affinities in dog tissues

    International Nuclear Information System (INIS)

    Loeffler, B.M.L.; Loehrer, W.

    1991-01-01

    Endothelin (ET) is a long-lasting potent vasoconstrictor-peptide. Here the authors report different binding affinities of endothelin-1 (ET-1) to ET-receptors of various dog tissues. Crude microsomal fractions were prepared after homogenisation of dog tissues in 50 mM Tris/HCl, 20 mM MnCl2, 1 mM EDTA, pH 7.4 by differential centrifugation. Aliquots of microsomal fractions (70 micrograms of protein) were incubated at 25 degrees C for 180 min in the presence of 20 pM 125I-ET-1 and various concentrations of cold ET-1. Four different ET-1 receptor binding affinities were found: adrenals, cerebrum, liver, heart, skeletal muscle and stomach microsomal membranes contained high affinity binding sites (Kd 50 - 80 pM, Bmax 60 - 250 fmol/mg). In cerebellum and spleen medium affinity ET-1 receptors (Kd 350 pM, Bmax 880 and 1200 fmol/mg respectively) were present. In comparison lung and kidney microsomes contained a low affinity ET-1 receptor (Kd 800 and 880 pM, Bmax 1600 and 350 fmol/mg). Receptors of even lower affinity were present in heart, intestine and liver microsomes with Kd values of 3 - 6 nM

  8. Bioaffinity chromatography on monolithic supports

    NARCIS (Netherlands)

    Tetala, K.K.R.; Beek, van T.A.

    2010-01-01

    Affinity chromatography on monolithic supports is a powerful analytical chemical platform because it allows for fast analyses, small sample volumes, strong enrichment of trace biomarkers and applications in microchips. In this review, the recent research using monolithic materials in the field of

  9. Shotgun analysis of membrane proteomes by an improved SDS-assisted sample preparation method coupled with liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Lin, Yong; Jiang, Huajun; Yan, Yujun; Peng, Bin; Chen, Jinhua; Lin, Haiyan; Liu, Zhonghua

    2012-12-12

    Analysis of the membrane proteins, particularly the integral membrane proteins, is limited by the inherent membrane hydrophobicity. Sodium dodecyl sulfate (SDS) is one of the most efficient reagents used for the extraction of membrane proteins, but its presence in samples interferes with LC-MS-based proteomic analyses because it affects RP-LC separations and electrospray ionization. In this paper, we present an improved sample preparation strategy based on SDS-assisted digestion and peptide-level SDS-removal using an optimized potassium dodecyl sulfate (KDS) precipitation method (SSDP method) for shotgun analysis of the membrane proteome. This method utilizes a high concentration of SDS (1.0%) to lyse the membranes and to solubilize the hydrophobic membrane proteins, resulting in a more complete protein digestion in the diluted SDS buffer (0.1% SDS), and a high efficiency of SDS removal and peptide recovery by the optimized KDS precipitation for protein identification. The SSDP method provides evidence that proteins can be efficiently digested, and the SDS can be decreased to 95% peptide recovery. Compared to other sample preparation methods commonly used in shotgun membrane proteomics, the newly developed method not only increased the identified number of the total proteins, membrane proteins and integral membrane proteins by an average of 33.1%, 37.2% and 40.5%, respectively, but also leading to the identification of highest number of matching peptides. All the results showed that the method yielded better recovery and reliability in the identification of the proteins especially the highly hydrophobic integral membrane proteins, and thus providing a promising tool for the shotgun analysis of membrane proteome. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Robust Affine Invariant Descriptors

    Directory of Open Access Journals (Sweden)

    Jianwei Yang

    2011-01-01

    Full Text Available An approach is developed for the extraction of affine invariant descriptors by cutting object into slices. Gray values associated with every pixel in each slice are summed up to construct affine invariant descriptors. As a result, these descriptors are very robust to additive noise. In order to establish slices of correspondence between an object and its affine transformed version, general contour (GC of the object is constructed by performing projection along lines with different polar angles. Consequently, affine in-variant division curves are derived. A slice is formed by points fall in the region enclosed by two adjacent division curves. To test and evaluate the proposed method, several experiments have been conducted. Experimental results show that the proposed method is very robust to noise.

  11. Lectin affinity electrophoresis.

    Science.gov (United States)

    Kobayashi, Yuka

    2014-01-01

    An interaction or a binding event typically changes the electrophoretic properties of a molecule. Affinity electrophoresis methods detect changes in the electrophoretic pattern of molecules (mainly macromolecules) that occur as a result of biospecific interactions or complex formation. Lectin affinity electrophoresis is a very effective method for the detection and analysis of trace amounts of glycobiological substances. It is particularly useful for isolating and separating the glycoisomers of target molecules. Here, we describe a sensitive technique for the detection of glycoproteins separated by agarose gel-lectin affinity electrophoresis that uses antibody-affinity blotting. The technique is tested using α-fetoprotein with lectin (Lens culinaris agglutinin and Phaseolus vulgaris agglutinin)-agarose gels.

  12. Ferromagnetic Levan Composite: An Affinity Matrix to Purify Lectin

    Directory of Open Access Journals (Sweden)

    Renata Angeli

    2009-01-01

    Full Text Available A simple and inexpensive procedure used magnetite and levan to synthesize a composite recovered by a magnetic field. Lectins from Canavalia ensiformis (Con A and Cratylia mollis (Cramoll 1 and Cramoll 1,4 did bind specifically to composite. The magnetic property of derivative favored washing out contaminating proteins and recovery of pure lectins with glucose elution. Cramoll 1 was purified by this affinity binding procedure in two steps instead of a previous three-step protocol with ammonium sulfate fractionation, affinity chromatography on Sephadex G-75, and ion exchange chromatography through a CM-cellulose column.

  13. Dissociation and purification of the endogenous membrane-bound Vo complex from Pichia pastoris.

    Science.gov (United States)

    Li, Sumei; Hong, Tao; Wang, Kun; Lu, Yinghong; Zhou, Min

    2017-10-01

    Most proteins occur and function in complexes rather than as isolated entities in membranes. In most cases macromolecules with multiple subunits are purified from endogenous sources. In this study, an endogenous membrane-protein complex was obtained from Pichia pastoris, which can be grown at high densities to significantly improve the membrane protein yield. We successfully isolated the membrane-bound Vo complex of V-ATPase from P. pastoris using a fusion FLAG tag attached to the C-terminus of subunit a to generate the vph-tag strain, which was used for dissociation and purification. After FLAG affinity and size exclusion chromatography purification, the production quantity and purity of the membrane-bound Vo complex was 20 μg l -1 and >98%, respectively. The subunits of the endogenous membrane-bound Vo complex observed in P. pastoris were similar to those obtained from S. cerevisiae, as demonstrated by liquid chromatography-tandem mass spectrometry (LC-MS-MS). Therefore, successful dissociation and purification of the membrane-bound Vo complex at a high purity and sufficient quantity was achieved via a rapid and simple procedure that can be used to obtain the endogenous membrane-protein complexes from P. pastoris. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Monoclonal antibodies against the major allergen of Plantago lanceolata pollen, Pla l 1: affinity chromatography purification of the allergen and development of an ELISA method for Pla l 1 measurement.

    Science.gov (United States)

    Calabozo, B; Duffort, O; Carpizo, J A; Barber, D; Polo, F

    2001-05-01

    Plantago lanceolata (English plantain) pollen is a relevant cause of pollinosis in temperate regions. The major allergen of this pollen, Pla l 1, is recognized by the specific IgE from more than 80% of plantain-sensitive patients. It displays significant sequence homology with the major olive-pollen allergen Ole e 1. The objective was to develop a monoclonal antibody-based ELISA to quantify Pla l 1, and to assess the correlation of Pla l 1 content with the biologic activity of plantain pollen extracts. We also aimed to establish the specificity of the monoclonal antibodies against the potentially cross-reactive allergen Ole e 1, and to investigate the presence of Pla l 1-like proteins in psyllium and melon that have been reported to cross-react with P. lanceolata pollen. After fusion of myeloma cells with spleen cells from a BALB/c mouse, two Pla l 1-specific monoclonal antibodies secreting hybridomas were selected, and the antibodies characterized. One of them (2A10) was used as the capture antibody in an ELISA for Pla l 1 quantitation. An anti-P. lanceolata rabbit serum was used as the second antibody. Pla l 1 was purified by immunoaffinity chromatography and used as the standard in the assay. The ELISA developed was highly reproducible and sensitive, with a detection limit of 0.1 ng/ml, and a practical working range of 0.4-12 ng/ml. The specificity was demonstrated against a large battery of allergens, including Ole e 1. The concentration of Pla l 1 was measured in 19 extracts of P. lanceolata pollen, and a good correlation was observed between the Pla l 1 content and the allergenic activity of the extracts. Pla l 1 was not detected in psyllium or melon extracts. The results prove the usefulness of the Pla l 1-ELISA for the standardization of extracts of P. lanceolata pollen intended for clinical use.

  15. Enrichment and identification of integral membrane proteins from barley aleurone layers by reversed-phase chromatography, SDS-PAGE and LC-MS/MS

    DEFF Research Database (Denmark)

    Hynek, Radovan; Svensson, Birte; Nørregaard Jensen, Ole

    2006-01-01

    was developed, comprising batch reversed-phase chromatography with stepwise elution of hydrophobic proteins by 2-propanol. Proteins in the most hydrophobic fraction were separated by SDS-PAGE and identified by LC-MS/MS and barley EST sequence database search. The method was efficient for enrichment of integral...

  16. Induced affine inflation

    Science.gov (United States)

    Azri, Hemza; Demir, Durmuş

    2018-02-01

    Induced gravity, metrical gravity in which gravitational constant arises from vacuum expectation value of a heavy scalar, is known to suffer from Jordan frame vs Einstein frame ambiguity, especially in inflationary dynamics. Induced gravity in affine geometry, as we show here, leads to an emergent metric and gravity scale, with no Einstein-Jordan ambiguity. While gravity is induced by the vacuum expectation value of the scalar field, nonzero vacuum energy facilitates generation of the metric. Our analysis shows that induced gravity results in a relatively large tensor-to-scalar ratio in both metrical and affine gravity setups. However, the fact remains that the induced affine gravity provides an ambiguity-free framework.

  17. Combining blue native polyacrylamide gel electrophoresis with liquid chromatography tandem mass spectrometry as an effective strategy for analyzing potential membrane protein complexes of Mycobacterium bovis bacillus Calmette-Guérin

    Directory of Open Access Journals (Sweden)

    Li Weijun

    2011-01-01

    Full Text Available Abstract Background Tuberculosis is an infectious bacterial disease in humans caused primarily by Mycobacterium tuberculosis, and infects one-third of the world's total population. Mycobacterium bovis bacillus Calmette-Guérin (BCG vaccine has been widely used to prevent tuberculosis worldwide since 1921. Membrane proteins play important roles in various cellular processes, and the protein-protein interactions involved in these processes may provide further information about molecular organization and cellular pathways. However, membrane proteins are notoriously under-represented by traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE and little is known about mycobacterial membrane and membrane-associated protein complexes. Here we investigated M. bovis BCG by an alternative proteomic strategy coupling blue native PAGE to liquid chromatography tandem mass spectrometry (LC-MS/MS to characterize potential protein-protein interactions in membrane fractions. Results Using this approach, we analyzed native molecular composition of protein complexes in BCG membrane fractions. As a result, 40 proteins (including 12 integral membrane proteins, which were organized in 9 different gel bands, were unambiguous identified. The proteins identified have been experimentally confirmed using 2-D SDS PAGE. We identified MmpL8 and four neighboring proteins that were involved in lipid transport complexes, and all subunits of ATP synthase complex in their monomeric states. Two phenolpthiocerol synthases and three arabinosyltransferases belonging to individual operons were obtained in different gel bands. Furthermore, two giant multifunctional enzymes, Pks7 and Pks8, and four mycobacterial Hsp family members were determined. Additionally, seven ribosomal proteins involved in polyribosome complex and two subunits of the succinate dehydrogenase complex were also found. Notablely, some proteins with high hydrophobicity or multiple transmembrane

  18. Combining blue native polyacrylamide gel electrophoresis with liquid chromatography tandem mass spectrometry as an effective strategy for analyzing potential membrane protein complexes of Mycobacterium bovis bacillus Calmette-Guérin.

    Science.gov (United States)

    Zheng, Jianhua; Wei, Candong; Zhao, Lina; Liu, Liguo; Leng, Wenchuan; Li, Weijun; Jin, Qi

    2011-01-18

    Tuberculosis is an infectious bacterial disease in humans caused primarily by Mycobacterium tuberculosis, and infects one-third of the world's total population. Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine has been widely used to prevent tuberculosis worldwide since 1921. Membrane proteins play important roles in various cellular processes, and the protein-protein interactions involved in these processes may provide further information about molecular organization and cellular pathways. However, membrane proteins are notoriously under-represented by traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and little is known about mycobacterial membrane and membrane-associated protein complexes. Here we investigated M. bovis BCG by an alternative proteomic strategy coupling blue native PAGE to liquid chromatography tandem mass spectrometry (LC-MS/MS) to characterize potential protein-protein interactions in membrane fractions. Using this approach, we analyzed native molecular composition of protein complexes in BCG membrane fractions. As a result, 40 proteins (including 12 integral membrane proteins), which were organized in 9 different gel bands, were unambiguous identified. The proteins identified have been experimentally confirmed using 2-D SDS PAGE. We identified MmpL8 and four neighboring proteins that were involved in lipid transport complexes, and all subunits of ATP synthase complex in their monomeric states. Two phenolpthiocerol synthases and three arabinosyltransferases belonging to individual operons were obtained in different gel bands. Furthermore, two giant multifunctional enzymes, Pks7 and Pks8, and four mycobacterial Hsp family members were determined. Additionally, seven ribosomal proteins involved in polyribosome complex and two subunits of the succinate dehydrogenase complex were also found. Notablely, some proteins with high hydrophobicity or multiple transmembrane helixes were identified well in our work. In this

  19. Evaluation of in-situ fatty acid extraction protocols for the analysis of staphylococcal cell membrane associated fatty acids by gas chromatography.

    Science.gov (United States)

    Crompton, Marcus J; Dunstan, R Hugh

    2018-05-01

    The composition and integrity of the bacterial cytoplasmic membrane is critical to the survival of staphylococci in dynamic environments and it is important to investigate how the cell membrane responds to changes in the environmental conditions. The staphylococcal membrane differs from eukaryotic and many other bacterial cell membranes by having a high abundance of branch fatty acids and relatively few unsaturated fatty acids. The range of available methods for extraction and efficient analyses of staphylococcal fatty acids was initially appraised to identify the best potential procedures for appraisal. Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 29213) was grown under optimal conditions to generate a cell biomass to compare the efficiencies of three approaches to extract and prepare methyl esters of the membrane fatty acids: (1) acidic direct transesterification of lipids, (2) modified basic direct transesterification of membrane lipids with adjusted reaction times and temperatures, and (3) base catalysed hydrolysis followed by acid catalysed esterification in two separate chemical reactions (MIDI process). All methods were able to extract fatty acids from the cell mass effectively where these lipids represented approximately 5% of the cellular dry mass. The acidic transesterification method had the least number of steps, the lowest coefficient of variation at 6.7% and good resistance to tolerating water. Basic transesterification was the least accurate method showing the highest coefficient of variation (26%). The MIDI method showed good recoveries, but had twice the number of steps and a coefficient of variation of 16%. It was also found that there was no need to use an anti-oxidant such as BHT for the protection of polyunsaturated fatty acids when the GC-MS injection liner was clean. It was concluded that the acidic transesterification procedures formed the most efficient and reproducible method for the analyses of staphylococcal membrane fatty acids

  20. Affine stochastic mortality

    NARCIS (Netherlands)

    Schrager, D.F.

    2006-01-01

    We propose a new model for stochastic mortality. The model is based on the literature on affine term structure models. It satisfies three important requirements for application in practice: analytical tractibility, clear interpretation of the factors and compatibility with financial option pricing

  1. Experimental Affinities in Music

    OpenAIRE

    de Assis, Paulo

    2015-01-01

    Experimental Affinities in Music brings together diverse artistic, musicological, historical, and philosophical essays, enhancing a broad discourse on artistic experimentation, and exploring various experimental attitudes in music composed between the thirteenth and twentieth centuries. The golden thread running through the different chapters is the quest for inherently experimental musical practices, a quest pursued from interrogating, descriptive, or challenging perspectives, and always...

  2. Affine field theories

    International Nuclear Information System (INIS)

    Cadavid, A.C.

    1989-01-01

    The author constructs a non-Abelian field theory by gauging a Kac-Moody algebra, obtaining an infinite tower of interacting vector fields and associated ghosts, that obey slightly modified Feynman rules. She discusses the spontaneous symmetry breaking of such theory via the Higgs mechanism. If the Higgs particle lies in the Cartan subalgebra of the Kac-Moody algebra, the previously massless vectors acquire a mass spectrum that is linear in the Kac-Moody index and has additional fine structure depending on the associated Lie algebra. She proceeds to show that there is no obstacle in implementing the affine extension of supersymmetric Yang-Mills theories. The result is valid in four, six and ten space-time dimensions. Then the affine extension of supergravity is investigated. She discusses only the loop algebra since the affine extension of the super-Poincare algebra appears inconsistent. The construction of the affine supergravity theory is carried out by the group manifold method and leads to an action describing infinite towers of spin 2 and spin 3/2 fields that interact subject to the symmetries of the loop algebra. The equations of motion satisfy the usual consistency check. Finally, she postulates a theory in which both the vector and scalar fields lie in the loop algebra of SO(3). This theory has an expanded soliton sector, and corresponding to the original 't Hooft-Polyakov solitonic solutions she now finds an infinite family of exact, special solutions of the new equations. She also proposes a perturbation method for obtaining an arbitrary solution of those equations for each level of the affine index

  3. Plasma chromatography

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    This book examines the fundamental theory and various applications of ion mobility spectroscopy. Plasma chromatography developed from research on the diffusion and mobility of ions. Topics considered include instrument design and description (e.g., performance, spectral interpretation, sample handling, mass spectrometry), the role of ion mobility in plasma chromatography (e.g., kinetic theory of ion transport), atmospheric pressure ionization (e.g., rate equations), the characterization of isomers by plasma chromatography (e.g., molecular ion characteristics, polynuclear aromatics), plasma chromatography as a gas chromatographic detection method (e.g., qualitative analysis, continuous mobility monitoring, quantitative analysis), the analysis of toxic vapors by plasma chromatography (e.g., plasma chromatograph calibration, instrument control and data processing), the analysis of semiconductor devices and microelectronic packages by plasma chromatography/mass spectroscopy (e.g., analysis of organic surface contaminants, analysis of water in sealed electronic packages), and instrument design and automation (hardware, software)

  4. A liquid-phase microextraction method, combining a dual gauge microsyringe with a hollow fiber membrane, for the determination of organochlorine pesticides in aqueous solution by gas chromatography/ion trap mass spectrometry.

    Science.gov (United States)

    Yan, Chih-Hao; Wu, Hui-Fen

    2004-01-01

    A liquid-phase microextraction (LPME) method has been demonstrated for the extraction and determination of organochlorine pesticides (OCPs) in aqueous solution. The method combines a dual gauge microsyringe with a hollow fiber membrane (LPME/DGM-HF) followed by detection by gas chromatography/ion trap mass spectrometry (GC/ITMS). The advantages include speed, low solvent and sample consumption, simplicity and ease of use. The extraction time, solvent selection, salt concentration and sample stirring rate have been investigated in order to optimize extraction efficiency. The viability is evaluated by measuring the linearity and detection limit of the five OCPs in aqueous solution. Detection linearity for the OCPs has been achieved over a range of concentrations between 1 and 500 microg/L (r2 > 0.930), with a detection limit of 0.1 microg/L for each OCP. Copyright 2004 John Wiley & Sons, Ltd.

  5. Analysis of polycyclic aromatic hydrocarbons in soil and sediment with on-line coupled pressurised hot water extraction, hollow fibre microporous membrane liquid-liquid extraction and gas chromatography.

    Science.gov (United States)

    Kuosmanen, Kati; Hyötyläinen, Tuulia; Hartonen, Kari; Riekkola, Marja-Liisa

    2003-05-01

    Pressurised hot water extraction (PHWE) was coupled on-line via hollow fibre microporous membrane liquid-liquid extraction (HF-MMLLE) to gas chromatography (GC) and applied in the analysis of polycyclic aromatic hydrocarbons (PAHs) in soil and sediment. In this combination, the MMLLE unit serves as a trapping device for the extracted compounds. Simultaneously it cleans and concentrates the extract, which is then transferred on-line to the GC. No extra clean-up steps are required between the trapping and the transfer to GC. The on-line system gives excellent sensitivity while allowing small sample size. The method was linear, with limits of detection in the range 50-890 pg and limits of quantification 0.11-1.22 microg g(-1). The concentration enrichment factors obtained with the method ranged from 9 to 55. Comparison of the results with those obtained by other techniques confirmed the good performance.

  6. COMPARISON OF DETERGENTS FOR EXTRACTION AND ION-EXCHANGE HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY OF SENDAI VIRUS MEMBRANE-PROTEINS

    NARCIS (Netherlands)

    WELLING, GW; FEIJLBRIEF, M; ORVELL, C; VANEDE, J; WELLINGWESTER, S

    1992-01-01

    The integral membrane proteins of Sendai virus, haemagglutinin-neuraminidase (HN) and fusion protein (F) were extracted from purified virions with a non-ionic and two zwitterionic detergents, i.e.. pentaethylene glycol monolauryl ether (C-12E5), lauryldimethylamine oxide (LDAO) and

  7. Surfactant-free Colloidal Particles with Specific Binding Affinity.

    Science.gov (United States)

    van der Wel, Casper; Bossert, Nelli; Mank, Quinten J; Winter, Marcel G T; Heinrich, Doris; Kraft, Daniela J

    2017-09-26

    Colloidal particles with specific binding affinity are essential for in vivo and in vitro biosensing, targeted drug delivery, and micrometer-scale self-assembly. Key to these techniques are surface functionalizations that provide high affinities to specific target molecules. For stabilization in physiological environments, current particle coating methods rely on adsorbed surfactants. However, spontaneous desorption of these surfactants typically has an undesirable influence on lipid membranes. To address this issue and create particles for targeting molecules in lipid membranes, we present here a surfactant-free coating method that combines high binding affinity with stability at physiological conditions. After activating charge-stabilized polystyrene microparticles with EDC/Sulfo-NHS, we first coat the particles with a specific protein and subsequently covalently attach a dense layer of poly(ethyelene) glycol. This polymer layer provides colloidal stability at physiological conditions as well as antiadhesive properties, while the protein coating provides the specific affinity to the targeted molecule. We show that NeutrAvidin-functionalized particles bind specifically to biotinylated membranes and that Concanavalin A-functionalized particles bind specifically to the glycocortex of Dictyostelium discoideum cells. The affinity of the particles changes with protein density, which can be tuned during the coating procedure. The generic and surfactant-free coating method reported here transfers the high affinity and specificity of a protein onto colloidal polystyrene microparticles.

  8. Affinity driven social networks

    Science.gov (United States)

    Ruyú, B.; Kuperman, M. N.

    2007-04-01

    In this work we present a model for evolving networks, where the driven force is related to the social affinity between individuals of a population. In the model, a set of individuals initially arranged on a regular ordered network and thus linked with their closest neighbors are allowed to rearrange their connections according to a dynamics closely related to that of the stable marriage problem. We show that the behavior of some topological properties of the resulting networks follows a non trivial pattern.

  9. Scale-up of controlled-shear affinity filtration using computational fluid dynamics.

    Science.gov (United States)

    Francis, Patrick; Haynes, Charles A

    2009-05-01

    Controlled shear affinity filtration (CSAF) is an integrated bioprocess that positions a contoured rotor above a membrane affinity chromatography column to permit the capture and purification of a secreted protein product directly from cell culture. Here, computational fluid dynamics (CFD) simulations previously used on a laboratory-scale unit (Francis et al., Biotechnol. Bioeng. 2005, 95, 1207-1217) are extended to study the fluid hydrodynamics and expected filter performance of the CSAF device for rotor sizes up to 140 cm in radius. We show that the fluid hydrodynamics within the rotor chamber of larger-scale CSAF units are complex and include turbulent boundary layers; thus, CFD likely provides the only reliable route to CSAF scale-up. We then model design improvements that will be required for CSAF scale-up to permit processing of industrial feedstock. The result is the in silico design of a preparative CSAF device with an optimized rotor 140 cm in radius. The scaled up device has an effective filtration area of 5.93 m(2), which should allow for complete processing in ca. 2 h of 1000 L of culture harvested from either a perfusion, fed-batch or batch bioreactor. Finally, a novel method for the parallelization of CSAF units is presented for use in bioprocessing operations larger than 1000 L.

  10. Pseudo-affinity chromatography of rumen microbial cellulase on ...

    African Journals Online (AJOL)

    Administrator

    2011-06-06

    Jun 6, 2011 ... The precipitate was redissolved in 10 mL of 0.1 M citrate phosphate buffer, pH 6.5. Trichloroacetic acid (TCA) precipitation. An equal volume of 20% TCA was added to the enzyme solution. The mixture was incubated overnight on ice and centrifuged at. 10,000 × g, 4°C for 15 min. The supernatant was ...

  11. Gas Chromatography.

    Science.gov (United States)

    Cram, Stuart P.; And Others

    1980-01-01

    Selects fundamental developments in theory, methodology, and instrumentation in gas chromatography (GC). A special section reviews GC in the People's Republic of China. Over 1,000 references are cited. (CS)

  12. Proteins of the kidney microvillar membrane. Aspartate aminopeptidase: purification by immunoadsorbent chromatography and properties of the detergent- and proteinase-solubilized forms

    DEFF Research Database (Denmark)

    Danielsen, Erik Michael; Norén, O; Sjöström, H

    1980-01-01

    revealed 1 g-atom of Ca/143000 g of protein. Two forms of the enzyme were purified: an amphipathic form solubilized from the membrane by Triton X-100 (detergent form) and a hydrophilic form released by incubation with trypsin (proteinase form). The detergent form exhibited charge-shift in crossed...... immunoelectrophoresis when anionic or cationic detergents were present. On gel filtration, mol.wts. of 350000--400000 and 270000 were calculated for the detergent and proteinase forms. Electron microscopy after negative staining of the proteinase form revealed a dimeric structure. Electrophoresis of either form...

  13. Improved in-tube electro-membrane extraction followed by high-performance liquid chromatography for simple and selective determination of ionic compounds: Optimization by central composite design.

    Science.gov (United States)

    Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Asghari, Alireza

    2017-07-01

    In this work, an efficient sample clean-up method, named in-tube electro-membrane extraction, is modified to resolve the formation of bubbles in the extraction process. This modified method is applied for the extraction of two model analytes including tartrazine and sunset yellow from food samples. The method is based on the electro-kinetic migration of ionized compounds by the application of an electrical potential difference, and on this basis the analytes under investigation, as anionic compounds, simply migrate from the donor phase and concentrate in the acceptor phase. A thin polypropylene sheet placed in the tube acts as a support for the membrane solvent, and it separates 30 μL of the aqueous acceptor from 1.2 mL of the aqueous donor. This setup can be used to solve the problem of extracting highly hydrophilic analytes. Response surface methodology is used for optimization of the experimental parameters so that under the optimized conditions, the method provides a good linearity in the range of 50-1000 ng/mL, low limits of detection (15-25 ng/mL), good extraction repeatabilities (relative standard deviations below 8.1%, n = 5), and high extraction recoveries (54-76%). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Monitoring the native phosphorylation state of plasma membrane proteins from a single mouse cerebellum

    DEFF Research Database (Denmark)

    Schindler, J.; Ye, J. Y.; Jensen, Ole Nørregaard

    2013-01-01

    proteins are major targets of the signalling cascades, we developed a protocol to monitor their phosphorylation state starting from a single mouse cerebellum. An aqueous polymer two-phase system was used to enrich for plasma membrane proteins. Subsequently, calcium phosphate precipitation, immobilized...... metal affinity chromatography, and TiO2 were combined to a sequential extraction procedure prior to mass spectrometric analyses. This strategy resulted in the identification of 1501 different native phosphorylation sites in 507 different proteins. 765 (51%) of these phosphorylation sites were localized...

  15. High- and low-affinity sites for sodium in delta-OR-G(i)1 alpha (Cys(351)-Ile(351)) fusion protein stably expressed in HEK293 cells; functional significance and correlation with biophysical state of plasma membrane

    Czech Academy of Sciences Publication Activity Database

    Vošahlíková, Miroslava; Jurkiewicz, Piotr; Roubalová, Lenka; Hof, Martin; Svoboda, Petr

    2014-01-01

    Roč. 387, č. 5 (2014), s. 487-502 ISSN 0028-1298 R&D Projects: GA ČR(CZ) GAP207/12/0919; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 ; RVO:61388955 Keywords : delta - opioid receptor * monovalent ions * agonist and antagonist binding * [35S]GTPγS binding * membrane biophysics * Laurdan fluorescence Subject RIV: CE - Biochemistry Impact factor: 2.471, year: 2014

  16. Combination of liquid-phase hollow fiber membrane microextraction with gas chromatography-negative chemical ionization mass spectrometry for the determination of dichlorophenol isomers in water and urine.

    Science.gov (United States)

    Lai, Bin-Wei; Liu, Bo-Min; Malik, Pradip K; Wu, Hui-Fen

    2006-08-18

    A method for the determination of trace amount of dichlorophenol isomers in urine samples using the combination of liquid-phase hollow fiber microextraction (LPME-HF) with gas chromatography-negative chemical ionization mass spectrometry (GC-NCI-MS) has been demonstrated. The method has been optimized with respect to several parameters including the effects of negative chemical ionization (NCI) reagent pressure, the hollow fiber length, extraction time, stirring rate, sample pH and salt concentration for the determination of dichlorophenol isomers in water. The correlation coefficient (r2) of the calibration curves for 2,5-dichlorophenol, 2,3-dichlorophenol, 2,6-dichlorophenol, 3,5-dichlorophenol and 3,4-dichlorophenol were 0.988, 0.981, 0.985, 0.971 and 0.994, respectively. The average recovery rates for 2,5-dichlorophenol, 2,3-dichlorophenol, 2,6-dichlorophenol, 3,5-dichlorophenol and 3,4-dichlorophenol were 0.97, 0.93, 0.96, 0.95 and 0.95, respectively (n=3 for each dichlorophenol) indicate that the methodology is feasible for the determination of trace amounts of dichlorophenol isomers in water and urine samples. Limits of detection (LOD) have been found to be in the range of 5-20 ng/ml. In addition, differentiation of the five dichlorophenol isomers is an easy task using the current approach of combining LPME-HF with NCI-GC-MS technique since they exhibit different NCI spectra.

  17. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    Energy Technology Data Exchange (ETDEWEB)

    Nye, J.S.

    1988-01-01

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.

  18. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    International Nuclear Information System (INIS)

    Nye, J.S.

    1988-01-01

    The mechanism by which delta 9 tetrahydrocannabinol (delta 9 THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5'-Trimethylammonium-delta 8 THC (TMA) is a positively charged analog of delta- 8 THC modified on the 5' carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of [ 3 H]-5'-trimethylammonium-delta- 8 THC ([ 3 H]TMA) to rat neuronal membranes. [ 3 H]TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of [ 3 H]TMA binding activity of approximately 60,000 daltons apparent molecular weight

  19. Adjoint affine fusion and tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Urichuk, Andrew, E-mail: andrew.urichuk@uleth.ca [Physics and Astronomy Department, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada); Walton, Mark A., E-mail: walton@uleth.ca [Physics and Astronomy Department, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada); International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste (Italy)

    2016-06-15

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  20. D120 and K152 within the PH Domain of T Cell Adapter SKAP55 Regulate Plasma Membrane Targeting of SKAP55 and LFA-1 Affinity Modulation in Human T Lymphocytes.

    Science.gov (United States)

    Witte, Amelie; Meineke, Bernhard; Sticht, Jana; Philipsen, Lars; Kuropka, Benno; Müller, Andreas J; Freund, Christian; Schraven, Burkhart; Kliche, Stefanie

    2017-04-01

    The β2-integrin lymphocyte function-associated antigen 1 (LFA-1) is needed for the T cell receptor (TCR)-induced activation of LFA-1 to promote T cell adhesion and interaction with antigen-presenting cells (APCs). LFA-1-mediated cell-cell interactions are critical for proper T cell differentiation and proliferation. The Src kinase-associated phosphoprotein of 55 kDa (SKAP55) is a key regulator of TCR-mediated LFA-1 signaling (inside-out/outside-in signaling). To gain an understanding of how SKAP55 controls TCR-mediated LFA-1 activation, we assessed the functional role of its pleckstrin homology (PH) domain. We identified two critical amino acid residues within the PH domain of SKAP55, aspartic acid 120 (D120) and lysine 152 (K152). D120 facilitates the retention of SKAP55 in the cytoplasm of nonstimulated T cells, while K152 promotes SKAP55 membrane recruitment via actin binding upon TCR triggering. Importantly, the K152-dependent interaction of the PH domain with actin promotes the binding of talin to LFA-1, thus facilitating LFA-1 activation. These data suggest that K152 and D120 within the PH domain of SKAP55 regulate plasma membrane targeting and TCR-mediated activation of LFA-1. Copyright © 2017 American Society for Microbiology.

  1. Nepem-211 ion exchange conductive membrane immobilized tris(2,2´-bipyridyl) ruthenium(II) electrogenerated chemiluminescence flow sensor for high-performance liquid chromatography and its application.

    Science.gov (United States)

    Li, Yongbo; Zhang, Zhujun

    2013-01-01

    We developed a sensitive and robust electrogenerated chemiluminescence (ECL) flow sensor based on Ru(bpy)3(2+) immobilized with a Nepem-211 perfluorinated ion exchange conductance membrane, which has robustness and stability under a wide range of chemical and physical conditions, good electrical conductivity, isotropy and a high exchange capacity for immobilization of Ru(bpy)3(2+). The flow sensor has been used as a post-column detector in high-performance liquid chromatography for determination of erythromycin and clarithromycin in honey and pork, and tricyclic antidepressant drugs in human urine. Under optimal conditions, the linear ranges were 0.03-26 ng/μL and 0.01-1 ng/μL for macrolides and tricyclic antidepressant drugs, respectively. The detection limits were 0.02, 0.01, 0.01, 0.06 and 0.003 ng/μL for erythromycin, clarithromycin, doxepin, amitriptyline and clomipramine, respectively. There is no post-column reagent addition. In addition to the conservation expensive reagents, the experimental setup was simplified. The flow sensor was used for 2 years with high sensitivity and stability. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Purification and characterization of an NADH-hexacyanoferrate(III) reductase from spinach leaf plasma membrane.

    Science.gov (United States)

    Bérczi, A; Fredlund, K M; Møller, I M

    1995-06-20

    Plasma membranes were purified from spinach (Spinacea oleracea L.) leaves by aqueous two-phase partitioning. The NADH-hexacyanoferrate(III) reductase was released from the membrane by Chaps solubilization and purified 360-fold by ion-exchange chromatography followed by affinity chromatography and size-exclusion chromatography on FPLC. A major band of 45 kDa and a minor contaminant of 66 kDa were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The band at 45 kDa cross-reacted with antibodies raised against an NADH-hexacyanoferrate(III) reductase from potato tuber microsomes. The native size of the enzyme was 160 kDa as determined by size-exclusion chromatography indicating that it is a tetramer. Two-dimensional gel electrophoresis, isoelectric focusing, followed by SDS-PAGE revealed three main bands of identical molecular weight with pI of 5.3-5.6. The enzyme contained about one flavin adenine dinucleotide (FAD) per 45-kDa subunit as determined by fluorescence spectroscopy, was specific for the beta-hydrogen of NADH, preferred NADH over NADPH as electron donor, and preferred hexacyanoferrate(III) as electron acceptor, e.g., it reduced Fe3+-EDTA, cytochrome c, oxygen, and duroquinone at 70% whereas FAD, flavin mononucleotide, duroquinone, and ubiquinone0 did not affect the activity.

  3. in affine space A^6

    Directory of Open Access Journals (Sweden)

    Ofelya Arabyan

    2017-10-01

    Full Text Available A three-dimensional submanifold M in affine space A^6 is studied by the method of exterior forms. It is proven that the structure of total space generates a special type of affine connection on this submanifold; the structure equations of M are found.

  4. Hemoglobin affinity in Andean rodents

    Directory of Open Access Journals (Sweden)

    HRVOJ OSTOJIC

    2002-01-01

    Full Text Available Blood hemoglobin oxygen affinity (P50 was measured in three Andean species and in the laboratory rat (control, all raised near sea level. Chinchilla lanigera (Molina, 1792 has an altitudinal habitat range from low Andean slopes up to 3000 m., while Chinchilla brevicaudata (Waterhouse, 1848 has an altitudinal range from 3000 to 5000 m. The laboratory type guinea pig, wild type guinea pig (Cavia porcellus, (Waterhouse, 1748, and laboratory rat (Rattus norvegicus were also raised at sea level. The Andean species had high hemoglobin oxygen affinities (low P50 compared with the rat. Chinchilla brevicaudata had a higher affinity than Chinchilla lanigera. The wild type guinea pig had a higher affinity than the laboratory type. As has been shown in other species, this is another example of an inverse correlation between the altitude level and the P50 values. This is the first hemoglobin oxygen affinity study in Chinchilla brevicaudata.

  5. Mapping Affinities in Academic Organizations

    Directory of Open Access Journals (Sweden)

    Dario Rodighiero

    2018-02-01

    Full Text Available Scholarly affinities are one of the most fundamental hidden dynamics that drive scientific development. Some affinities are actual, and consequently can be measured through classical academic metrics such as co-authoring. Other affinities are potential, and therefore do not leave visible traces in information systems; for instance, some peers may share interests without actually knowing it. This article illustrates the development of a map of affinities for academic collectives, designed to be relevant to three audiences: the management, the scholars themselves, and the external public. Our case study involves the School of Architecture, Civil and Environmental Engineering of EPFL, hereinafter ENAC. The school consists of around 1,000 scholars, 70 laboratories, and 3 institutes. The actual affinities are modeled using the data available from the information systems reporting publications, teaching, and advising scholars, whereas the potential affinities are addressed through text mining of the publications. The major challenge for designing such a map is to represent the multi-dimensionality and multi-scale nature of the information. The affinities are not limited to the computation of heterogeneous sources of information; they also apply at different scales. The map, thus, shows local affinities inside a given laboratory, as well as global affinities among laboratories. This article presents a graphical grammar to represent affinities. Its effectiveness is illustrated by two actualizations of the design proposal: an interactive online system in which the map can be parameterized, and a large-scale carpet of 250 square meters. In both cases, we discuss how the materiality influences the representation of data, in particular the way key questions could be appropriately addressed considering the three target audiences: the insights gained by the management and their consequences in terms of governance, the understanding of the scholars’ own

  6. Identification of chemical warfare agents from vapor samples using a field-portable capillary gas chromatography/membrane-interfaced electron ionization quadrupole mass spectrometry instrument with Tri-Bed concentrator.

    Science.gov (United States)

    Nagashima, Hisayuki; Kondo, Tomohide; Nagoya, Tomoki; Ikeda, Toru; Kurimata, Naoko; Unoke, Shohei; Seto, Yasuo

    2015-08-07

    A field-portable gas chromatograph-mass spectrometer (Hapsite ER system) was evaluated for the detection of chemical warfare agents (CWAs) in the vapor phase. The system consisted of Tri-Bed concentrator gas sampler (trapping time: 3s(-1)min), a nonpolar low thermal-mass capillary gas chromatography column capable of raising temperatures up to 200°C, a hydrophobic membrane-interfaced electron ionization quadrupole mass spectrometer evacuated by a non-evaporative getter pump for data acquisition, and a personal computer for data analysis. Sample vapors containing as little as 22μg sarin (GB), 100μg soman (GD), 210μg tabun (GA), 55μg cyclohexylsarin (GF), 4.8μg sulfur mustard, 390μg nitrogen mustard 1, 140μg of nitrogen mustard 2, 130μg nitrogen mustard 3, 120μg of 2-chloroacetophenone and 990μg of chloropicrin per cubic meter could be confirmed after Tri-Bed micro-concentration (for 1min) and automated AMDIS search within 12min. Using manual deconvolution by background subtraction of neighboring regions on the extracted ion chromatograms, the above-mentioned CWAs could be confirmed at lower concentration levels. The memory effects were also examined and we found that blister agents showed significantly more carry-over than nerve agents. Gasoline vapor was found to interfere with the detection of GB and GD, raising the concentration limits for confirmation in the presence of gasoline by both AMDIS search and manual deconvolution; however, GA and GF were not subject to interference by gasoline. Lewisite 1, and o-chlorobenzylidene malononitrile could also be confirmed by gas chromatography, but it was hard to quantify them. Vapors of phosgene, chlorine, and cyanogen chloride could be confirmed by direct mass spectrometric detection at concentration levels higher than 2, 140, and 10mg/m(3) respectively, by bypassing the micro-concentration trap and gas chromatographic separation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. 2017 Guralp Affinity Digitizer Evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion J.

    2018-03-01

    Sandia National Laboratories has tested and evaluated two Guralp Affinity digitizers. The Affinity digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self- noise, dynamic range, system noise, response, passband, and timing. The Affinity digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).

  8. The utility of affine variables and affine coherent states

    International Nuclear Information System (INIS)

    Klauder, John R

    2012-01-01

    Affine coherent states are generated by affine kinematical variables much like canonical coherent states are generated by canonical kinematical variables. Although all classical and quantum formalisms normally entail canonical variables, it is shown that affine variables can serve equally well for many classical and quantum studies. This general purpose analysis provides tools to discuss two major applications: (1) the completely successful quantization of a nonrenormalizable scalar quantum field theory by affine techniques, in complete contrast to canonical techniques which only offer triviality; and (2) a formulation of the kinematical portion of quantum gravity that favors affine kinematical variables over canonical kinematical variables, and which generates a framework in which a favorable analysis of the constrained dynamical issues can take place. All this is possible because of the close connection between the affine and the canonical stories, while the few distinctions can be used to advantage when appropriate. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (review)

  9. Nanostructured Membranes Functionalized with Gold Nanoparticles for Separation and Recovery of Monoclonal Antibodies

    KAUST Repository

    Soldan, Giada

    2017-11-01

    The need of purified biomolecules, such as proteins or antibodies, has required the biopharmaceutical industries to look for new recovering solutions to reduce time and costs of bioseparations. In the last decade, the emergent field of membrane chromatography has gained attention as possible substituent of the common used protein A affinity chromatography for bioseparations. In this scenario, gold nanoparticles can be used as means for offering affinity, mainly because of their biocompatible and reversible binding behavior, together with their high surface area-to-volume ratio, which offers a large number of binding sites. This work introduces a new procedure for purification of monoclonal antibodies based on polymeric membranes functionalized with gold nanoparticles. This novel approach shortens the process of purification by promoting selective binding of antibodies, while separating a mixture of biomolecules during a filtration process. The effects of gold nanoparticles and the surrounding ligand on the proteins adsorption and filtration are investigated. The results confirm that the functionalization helps in inducing a selective binding, preventing the non-selective one, and it also improves the selectivity of the separation process.

  10. Representations of affine Hecke algebras

    CERN Document Server

    Xi, Nanhua

    1994-01-01

    Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest

  11. Organic Microporous Nanofillers with Unique Alcohol Affinity for Superior Ethanol Recovery toward Sustainable Biofuels.

    Science.gov (United States)

    Cheng, Xi Quan; Konstas, Kristina; Doherty, Cara M; Wood, Colin D; Mulet, Xavier; Xie, Zongli; Ng, Derrick; Hill, Matthew R; Lau, Cher Hon; Shao, Lu

    2017-05-09

    To minimize energy consumption and carbon footprints, pervaporation membranes are fast becoming the preferred technology for alcohol recovery. However, this approach is confined to small-scale operations, as the flux of standard rubbery polymer membranes remain insufficient to process large solvent volumes, whereas membrane separations that use glassy polymer membranes are prone to physical aging. This study concerns how the alcohol affinity and intrinsic porosity of networked, organic, microporous polymers can simultaneously reduce physical aging and drastically enhance both flux and selectivity of a super glassy polymer, poly-[1-(trimethylsilyl)propyne] (PTMSP). Slight loss in alcohol transportation channels in PTMSP is compensated by the alcohol affinity of the microporous polymers. Even after continuous exposure to aqueous solutions of alcohols, PTMSP pervaporation membranes loaded with the microporous polymers outperform the state-of-the-art and commercial pervaporation membranes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Affinity purification of the voltage-sensitive sodium channel from electroplax with resins selective for sialic acid

    Energy Technology Data Exchange (ETDEWEB)

    James, W.M.; Emerick, M.C.; Agnew, W.S. (Yale Univ. School of medicine, New Haven, CT (USA))

    1989-07-11

    The voltage-sensitive sodium channel present in the eel (Electrophorus electricus) has an unusually high content of sialic acid, including {alpha}-(2{yields}8)-linked polysialic acid, not found in other electroplax membrane glycopeptides. Lectins from Limax flavus (LFA) and wheat germ (WGA) proved the most effective of 11 lectin resins tried. The most selective resin was prepared from IgM antibodies against Neisseria meningitidis {alpha}-(2{yields}8)-polysialic acid which were affinity purified and coupled to Sepharose 4B. The sodium channel was found to bind to WGA, LFA, and IgM resins and was readily eluted with the appropriate soluble carbohydrates. Experiments with LFA and IgM resins demonstrated binding and unbinding rates and displacement kinetics, which suggest highly specific binding at multiple sites on the sodium channel protein. In preparative-scale purification of protein previously fractionated by anion-exchange chromatography, without stabilizing TTX, high yields were reproducibly obtained. Further, when detergent extracts were prepared from electroplax membranes fractionated by low-speed sedimentation, a single step over the IgM resin provided a 70-fold purification, yielding specific activities of 3,200 pmol of ({sup 3}H)TTX-binding sites/mg of protein and a single polypeptide of {approximately}285,000 Da on SDS-acrylamide gels. No small peptides were observed after this 5-h isolation. The authors describe a cation-dependent stabilization with millimolar levels of monovalent and micromolar levels of divalent species.

  13. Electrochemical affinity biosensors for detection of mycotoxins: A review.

    Science.gov (United States)

    Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R

    2013-11-15

    This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Convulsant bicuculline modifies CNS muscarinic receptor affinity

    Directory of Open Access Journals (Sweden)

    Rodríguez de Lores Arnaiz Georgina

    2006-04-01

    Full Text Available Abstract Background Previous work from this laboratory has shown that the administration of the convulsant drug 3-mercaptopropionic acid (MP, a GAD inhibitor, modifies not only GABA synthesis but also binding of the antagonist [3H]-quinuclidinyl benzilate ([3H]-QNB to central muscarinic receptors, an effect due to an increase in affinity without modifications in binding site number. The cholinergic system has been implicated in several experimental epilepsy models and the ability of acetylcholine to regulate neuronal excitability in the neocortex is well known. To study the potential relationship between GABAergic and cholinergic systems with seizure activity, we analyzed the muscarinic receptor after inducing seizure by bicuculline (BIC, known to antagonize the GABA-A postsynaptic receptor subtype. Results We analyzed binding of muscarinic antagonist [3H]-QNB to rat CNS membranes after i.p. administration of BIC at subconvulsant (1.0 mg/kg and convulsant (7.5 mg/kg doses. Subconvulsant BIC dose failed to develop seizures but produced binding alteration in the cerebellum and hippocampus with roughly 40% increase and 10% decrease, respectively. After convulsant BIC dose, which invariably led to generalized tonic-clonic seizures, binding increased 36% and 15% to cerebellar and striatal membranes respectively, but decreased 12% to hippocampal membranes. Kd value was accordingly modified: with the subconvulsant dose it decreased 27% in cerebellum whereas it increased 61% in hippocampus; with the convulsant dose, Kd value decreased 33% in cerebellum but increased 85% in hippocampus. No change in receptor number site was found, and Hill number was invariably close to unity. Conclusion Results indicate dissimilar central nervous system area susceptibility of muscarinic receptor to BIC. Ligand binding was modified not only by a convulsant BIC dose but also by a subconvulsant dose, indicating that changes are not attributable to the seizure process

  15. Affinity biosensors: techniques and protocols

    National Research Council Canada - National Science Library

    Rogers, Kim R; Mulchandani, Ashok

    1998-01-01

    ..., and government to begin or expand their biosensors research. This volume, Methods in Biotechnology vol. 7: Affinity Biosensors: Techniques and Protocols, describes a variety of classical and emerging transduction technologies that have been interfaced to bioaffinity elements (e.g., antibodies and receptors). Some of the reas...

  16. Characterization of a membrane-associated serine protease in Escherichia coli

    International Nuclear Information System (INIS)

    Palmer, S.M.; St John, A.C.

    1987-01-01

    Three membrane-associated proteolytic activities in Escherichia coli were resolved by DEAE-cellulose chromatography from detergent extracts of the total envelope fraction. On the basis of substrate specificity for the hydrolysis of chromogenic amino acid ester substrates, the first two eluting activities were determined previously to be protease V and protease IV, respectively. The third proteolytic activity eluting from the DEAE-cellulose column was further purified by affinity chromatography on benzamidine-Sepharose 6B. They termed this enzyme protease VI. Protease VI did not hydrolyze any of the chromogenic substrates used in the detection of protease IV and protease V. However, all three enzymes generated acid-soluble fragments from a mixture of E. coli membrane proteins which were biosynthetically labeled with radioactive amino acids. The activity of protease VI was sensitive to serine protease inhibitors. Using [ 3 H]diisopropylfluorophosphate as an active-site labeling reagent, they determined that protease VI has an apparent molecular weight of 43,000 in polyacrylamide gels. All three membrane-associated serine proteases were insensitive to inhibition by Ecotin, an endogenous, periplasmic inhibitor of trypsin

  17. Studies on the membrane-associated proteolytic activities of Escherichia coli

    International Nuclear Information System (INIS)

    Palmer, S.M.

    1986-01-01

    The membrane fraction contains three proteolytic activities which can be resolved from whole membrane detergent extracts by DEAE-cellulose chromatography. The first two eluting activities have been previously reported as protease V and protease IV. These two enzymes were further purified by gel permeation HPLC. Protease V has a M. W. of 31,000 in SDS-PAGE gels. Protease IV has a M. W. of 62,000 and exists in two distinct isoforms of pl ≅ 6.7 and 6.9. The third enzyme eluting from the DEAE-cellulose column was further purified by affinity chromatography on Benzamidine-Sepharose 6B. This enzyme, referred to herein as protease VI, is a 43 kdal protein which has not been previously characterized. Protease VI was sensitive to inhibition by the serine protease inhibitors phenylmethylsulfony fluoride (PMSF), diisopropylfluorophosphate (DFP) and p-amino-benzamidine (PAB). Additionally, this enzyme exhibited maximal activity at pH ≅ 8.0. Incubation of whole membrane preparations with [ 3 H] DFP resulted in 11 specific proteins acquiring the radioactive label, included in this group of proteins were proteases IV, V, and VI. Several of the DFP-reactive proteins were also shown to bind [ 125 I] ampicillin

  18. Affinity of four polar neurotransmitters for lipid bilayer membranes

    DEFF Research Database (Denmark)

    Wang, Chunhua; Ye, Fengbin; Valardez, Gustavo F.

    2011-01-01

    (dimyristoyl phosphatidylglycerol, DMPG, or dimyristoyl phosphatidylserine, DMPS), or 1:1 mixtures of dipalmitoyl phosphatidylcholine (DPPC) and dilauroyl phosphatidylcholine (DLPC). The results showed a remarkable variability among the investigated systems. For example, the chloride salt of acetylcholine......-mediated modulation of nerve transmission seems to be fulfilled. However, the strong variability in interaction strengths also shows that this attraction is not an inherent property of all neurotransmitters. © 2010 American Chemical Society....

  19. Identification of ftalates used as additives in the geo membrane of a la Florida reservoir through gas chromatography-mass spectrometry; Determinacion de las ftalatos utilizados como aditivos en la geomembrana de la bolsa de la florida mediante cromtografia de gases-espectrometria de masas

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, M.; Rico, G.; Pargada, L.; Aguiar, E.; Castillo, F.

    2009-07-01

    This article studies the behaviour of the plastified poly (vinyl chloride) (PVC-P) applied as synthetic geo membrane for the waterproofing of the La Florida reservoir. We show the results of the initial examen of its properties and its most significant characteristics eighteen years after being applied. Furthermore we isolate and identify the quantitative and qualitative aspects of the plasticizers used in its formula through infrared spectroscopy, gas chromatography and mass spectrometry technic. We have identified as the said plasticizers di-n-octyl phthalate, di-n-decyl phthalate and n-decyl n-octyl phthalate, and we calculate the joint average molecular weight using Wilsons equation. The results found that the geo membranes we have studied has shown an excellent behaviour along through time. (Author) 53 refs.

  20. Na+,K+-ATPase Na+ affinity in rat skeletal muscle fiber types

    DEFF Research Database (Denmark)

    Kristensen, Michael; Juel, Carsten

    2010-01-01

    Previous studies in expression systems have found different ion activation of the Na(+)/K(+)-ATPase isozymes, which suggest that different muscles have different ion affinities. The rate of ATP hydrolysis was used to quantify Na(+),K(+)-ATPase activity, and the Na(+) affinity of Na(+),K(+)-ATPase......Previous studies in expression systems have found different ion activation of the Na(+)/K(+)-ATPase isozymes, which suggest that different muscles have different ion affinities. The rate of ATP hydrolysis was used to quantify Na(+),K(+)-ATPase activity, and the Na(+) affinity of Na......(+),K(+)-ATPase was studied in total membranes from rat muscle and purified membranes from muscle with different fiber types. The Na(+) affinity was higher (K(m) lower) in oxidative muscle compared with glycolytic muscle and in purified membranes from oxidative muscle compared with glycolytic muscle. Na......(+),K(+)-ATPase isoform analysis implied that heterodimers containing the beta(1) isoform have a higher Na(+) affinity than heterodimers containing the beta(2) isoform. Immunoprecipitation experiments demonstrated that dimers with alpha(1) are responsible for approximately 36% of the total Na,K-ATPase activity. Selective...

  1. The affine quantum gravity programme

    CERN Document Server

    Klauder, J R

    2002-01-01

    The central principle of affine quantum gravity is securing and maintaining the strict positivity of the matrix left brace g-hat sub a sub b (x)right brace composed of the spatial components of the local metric operator. On spectral grounds, canonical commutation relations are incompatible with this principle, and they must be replaced by noncanonical, affine commutation relations. Due to the partial second-class nature of the quantum gravitational constraints, it is advantageous to use the recently developed projection operator method, which treats all quantum constraints on an equal footing. Using this method, enforcement of regularized versions of the gravitational operator constraints is formulated quite naturally by means of a novel and relatively well-defined functional integral involving only the same set of variables that appears in the usual classical formulation. It is anticipated that skills and insight to study this formulation can be developed by studying special, reduced-variable models that sti...

  2. Scaling Analysis of Affinity Propagation

    OpenAIRE

    Furtlehner , Cyril; Sebag , Michèle; Xiangliang , Zhang

    2010-01-01

    14 pages, 11 figures; International audience; We analyze and exploit some scaling properties of the {\\em Affinity Propagation} (AP) clustering algorithm proposed by Frey and Dueck (2007). Following a divide and conquer strategy we setup an exact renormalization-based approach to address the question of clustering consistency, in particular, how many cluster are present in a given data set. We first observe that the divide and conquer strategy, used on a large data set hierarchically reduces t...

  3. Electron affinity of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Gaiduk, Alex P.; Pham, Tuan Anh; Govoni, Marco; Paesani, Francesco; Galli, Giulia

    2018-01-16

    Understanding redox and photochemical reactions in aqueous environments requires a precise knowledge of the ionization potential and electron affinity of liquid water. The former has been measured, but not the latter. We predict the electron affinity of liquid water and of its surface from first principles, coupling path-integral molecular dynamics with ab initio potentials, and many-body perturbation theory. Our results for the surface (0.8 eV) agree well with recent pump-probe spectroscopy measurements on amorphous ice. Those for the bulk (0.1–0.3 eV) differ from several estimates adopted in the literature, which we critically revisit. We show that the ionization potential of the bulk and surface are almost identical; instead their electron affinities differ substantially, with the conduction band edge of the surface much deeper in energy than that of the bulk. We also discuss the significant impact of nuclear quantum effects on the fundamental gap and band edges of the liquid.

  4. Spectral affinity in protein networks.

    Science.gov (United States)

    Voevodski, Konstantin; Teng, Shang-Hua; Xia, Yu

    2009-11-29

    Protein-protein interaction (PPI) networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to quickly find nodes closest to a queried vertex in any protein

  5. Spectral affinity in protein networks

    Directory of Open Access Journals (Sweden)

    Teng Shang-Hua

    2009-11-01

    Full Text Available Abstract Background Protein-protein interaction (PPI networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. Results We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. Conclusion We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to

  6. Binding of Neurotransmitters to Lipid Membranes

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Werge, Mikkel; Elf-Lind, Maria Northved

    2014-01-01

    / acetylated g-aminobutyrate (GABAneu) with a dipalmitoylphosphatidylcholine (DPPC) bilayer. This study was motivated by recent research results that suggested that neural transmission may also be affected by nonspecific interactions of NTs with the lipid matrix of the synaptic membrane. Our results revealed...... that dependent on the nature of NTs, some of the NTs penetrate into the bilayer. We found that membrane affinity can be ranked with increasing affinity as follows: ACH ~ GLU ... backbone of the phospholipids. It is surprising that hydrophilic solutes can deeply penetrate into the membrane pointing to the fact that membrane affinity is governed by specific interactions. Our MD simulations identified the salt-bridge between the primary amine of NTs and the lipid phosphate group...

  7. Manifolds with integrable affine shape operator

    Directory of Open Access Journals (Sweden)

    Daniel A. Joaquín

    2005-05-01

    Full Text Available This work establishes the conditions for the existence of vector fields with the property that theirs covariant derivative, with respect to the affine normal connection, be the affine shape operatorS in hypersurfaces. Some results are obtained from this property and, in particular, for some kind of affine decomposable hypersurfaces we explicitely get the actual vector fields.

  8. Cromatografia de afinidade por íons metálicos imobilizados (IMAC de biomoléculas: aspectos fundamentais e aplicações tecnológicas Immobilized metal-ion affinity chromatography (IMAC of biomolecules: fundamental aspects and technological applications

    Directory of Open Access Journals (Sweden)

    Igor Tadeu Lazzarotto Bresolin

    2009-01-01

    Full Text Available Immobilized Metal Ion Affinity Cromatography - IMAC - is a group-specific based adsorption applied to the purification and structure-function studies of proteins and nucleic acids. The adsorption is based on coordination between a metal ion chelated on the surface of a solid matrix and electron donor groups at the surface of the biomolecule. IMAC is a highly selective, low cost, and easily scaled-up technique being used in research and commercial operations. A separation process can be designed for a specific molecule by just selecting an appropriate metal ion, chelating agent, and operational conditions such as pH, ionic strength, and buffer type.

  9. Daily rhythmicity of high affinity copper transport.

    Science.gov (United States)

    Perea-García, Ana; Sanz, Amparo; Moreno, Joaquín; Andrés-Bordería, Amparo; de Andrés, Sonia Mayo; Davis, Amanda M; Huijser, Peter; Davis, Seth J; Peñarrubia, Lola

    2016-01-01

    A differential demand for copper (Cu) of essential cupro-proteins that act within the mitochondrial and chloroplastal electronic transport chains occurs along the daily light/dark cycles. This requires a fine-tuned spatiotemporal regulation of Cu delivery, becoming especially relevant under non-optimal growth conditions. When scarce, Cu is imported through plasma membrane-bound high affinity Cu transporters (COPTs) whose coding genes are transcriptionally induced by the SPL7 transcription factor. Temporal homeostatic mechanisms are evidenced by the presence of multiple light- and clock-responsive regulatory cis elements in the promoters of both SPL7 and its COPT targets. A model is presented here for such temporal regulation that is based on the synchrony between the basal oscillatory pattern of SPL7 and its targets, such as COPT2. Conversely, Cu feeds back to coordinate intracellular Cu availability on the SPL7-dependent regulation of further Cu acquisition. This occurs via regulation at COPT transporters. Moreover, exogenous Cu affects several circadian-clock components, such as the timing of GIGANTEA transcript abundance. Together we propose that there is a dynamic response to Cu that is integrated over diurnal time to maximize metabolic efficiency under challenging conditions.

  10. Zeolite Membranes : Ozone Detemplation, Modeling, and Performance Characterization

    NARCIS (Netherlands)

    Kuhn, J.

    2009-01-01

    Membrane technology plays an increasingly important role in developing a more sustainable process industry. Zeolites are a novel class of membrane materials with unique properties enabling molecular sieving and affinity based separations. This thesis proposes some new concepts in zeolite membrane

  11. Identification of an adeno-associated virus binding epitope for AVB sepharose affinity resin

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    Full Text Available Recent successes of adeno-associated virus (AAV–based gene therapy have created a demand for large-scale AAV vector manufacturing and purification techniques for use in clinical trials and beyond. During the development of purification protocols for rh.10, hu.37, AAV8, rh.64R1, AAV3B, and AAV9 vectors, based on a widely used affinity resin, AVB sepharose (GE, we found that, under the same conditions, different serotypes have different affinities to the resin, with AAV3B binding the best and AAV9 the poorest. Further analysis revealed a surface-exposed residue (amino acid number 665 in AAV8 VP1 numbering differs between the high-affinity AAV serotypes (serine in AAV3B, rh.10, and hu.37 and the low-affinity ones (asparagine in AAV8, rh.64R1, and AAV9. The residue locates within a surface-exposed, variable epitope flanked by highly conserved residues. The substitution of the epitope in AAV8, rh.64R1, and AAV9 with the corresponding epitope of AAV3B (SPAKFA resulted in greatly increased affinity to AVB sepharose with no reduction in the vectors’ in vitro potency. The presence of the newly identified AVB-binding epitope will be useful for affinity resin selection for the purification of novel AAV serotypes. It also suggests the possibility of vector engineering to yield a universal affinity chromatography purification method for multiple AAV serotypes.

  12. Topological conjugacy classes of affine maps

    OpenAIRE

    Tetiana, Budnytska

    2008-01-01

    A map $f: \\ff^n \\to \\ff^n$ over a field $\\ff$ is called affine if it is of the form $f(x)=Ax+b$, where the matrix $A \\in \\ff^{n\\times n}$ is called the linear part of affine map and $b \\in \\ff^n$. The affine maps over $\\ff=\\rr$ or $\\cc$ are investigated. We prove that affine maps having fixed points are topologically conjugate if and only if their linear parts are topologically conjugate. If affine maps have no fixed points and $n=1$ or 2, then they are topologically conjugate if and only if ...

  13. Reconstitution of high affinity α2 adrenergic agonist binding by fusion with a pertussis toxin substrate

    International Nuclear Information System (INIS)

    Kim, M.H.; Neubig, R.R.

    1986-01-01

    High affinity α 2 adrenergic agonist binding is thought to occur via a coupling of the α 2 receptor with N/sub i/, the inhibitory guanyl nucleotide binding protein. Human platelet membranes pretreated at pH 11.5 exhibit a selective inactivation of agonist binding and N/sub i/. To further study the mechanism of agonist binding, alkali treated membranes (ATM) were mixed with membranes pretreated with 10 μM phenoxybenzamine to block α 2 receptors (POB-M). The combined membrane pellet was incubated in 50% polyethylene glycol (PEG) to promote membrane-membrane fusion and assayed for binding to the α 2 agonist [ 3 H]UK 14,304 (UK) and the antagonist [ 3 H] yohimbine. PEG treatment resulted in a 2-4 fold enhancement of UK binding whereas yohimbine binding was unchanged. No enhancement of UK binding was observed in the absence of PEG treatment. The reconstitution was dependent on the addition of POB-M. They found that a 1:1 ratio of POB-M:ATM was optimal. Reconstituted binding was inhibited by GppNHp. Fusion of rat C6 glioma cell membranes, which do not contain α 2 receptors, also enhanced agonist binding to ATM. Fusion of C6 membranes from cells treated with pertussis toxin did not enhance [ 3 H] UK binding. These data show that a pertussis toxin sensitive membrane component, possibly N/sub i/, can reconstitute high affinity α 2 agonist binding

  14. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...

  15. The affine quantum gravity programme

    International Nuclear Information System (INIS)

    Klauder, John R

    2002-01-01

    The central principle of affine quantum gravity is securing and maintaining the strict positivity of the matrix { g-hat ab (x)} composed of the spatial components of the local metric operator. On spectral grounds, canonical commutation relations are incompatible with this principle, and they must be replaced by noncanonical, affine commutation relations. Due to the partial second-class nature of the quantum gravitational constraints, it is advantageous to use the recently developed projection operator method, which treats all quantum constraints on an equal footing. Using this method, enforcement of regularized versions of the gravitational operator constraints is formulated quite naturally by means of a novel and relatively well-defined functional integral involving only the same set of variables that appears in the usual classical formulation. It is anticipated that skills and insight to study this formulation can be developed by studying special, reduced-variable models that still retain some basic characteristics of gravity, specifically a partial second-class constraint operator structure. Although perturbatively nonrenormalizable, gravity may possibly be understood nonperturbatively from a hard-core perspective that has proved valuable for specialized models. Finally, developing a procedure to pass to the genuine physical Hilbert space involves several interconnected steps that require careful coordination

  16. Affine-projective field laws

    International Nuclear Information System (INIS)

    Murphy, G.L.

    1975-01-01

    The general topic of geometric unified field theories is discussed in the first section. Some reasons are given for pursuing such theories, and some criticisms are considered. The second section develops the fundamental equations of a purely affine theory which is invariant under projective transformations of the affine connection. This theory is a generalization of that of Schrodinger. Possible identifications for the space-time metric are considered in Sec. III. Sections IV and V deal with the limits of pure gravitation and electrodynamics. In the symmetric limit, Einstein's vacuum equations with cosmological term are recovered. The theory also contains a generalized electrodynamic set of equations which is very similar to the Born-Infeld set. In the weak-field approximation, a finite mass must be attributed to the photon. The problem of motion for charges is discussed here, and it is argued that criticisms of unified field theories because of a supposed inability to produce the Lorentz force law are probably not justified. Three more speculative sections deal with possible explanations of nuclear forces, the spin-torsion relation, and particle structure

  17. Purification of the synaptosomal plasma membrane (Ca(2+) + Mg(2+))-ATPase from pig brain.

    Science.gov (United States)

    Salvador, J M; Mata, A M

    1996-04-01

    The Ca(2+)-ATPase from the synaptosomal plasma membrane has been purified nearly to homogeneity from pig brain by a new procedure involving the calmodulin-affinity-chromatography technique. This is a convenient alternative to the standard methods for the purification of the plasma membrane Ca(2+)-ATPase from different sources that were unsuitable to purify the enzyme from pig brain. The main feature of this procedure is the use of 15% (v/v) glycerol as stabilizing agent, instead of acidic phospholipid. By using this protocol the enzyme was purified 36-fold with respect to the plasma membrane vesicle fraction, showing a specific activity of 2.3 i.u. in the presence of acidic phospholipid. In SDS/PAGE, it appears as a single protein band around Mr140 000 that can be phosphorylated by [gamma-(32)P]ATP in the presence of La(3+) and recognized by specific antibodies against the plasma membrane Ca(2+)-ATPase from pig antral smooth muscle. Calmodulin activates the enzyme 1.5-1.8-fold in the presence of phosphatidylcholine but not in the presence of phosphatidylserine.

  18. Binding of (/sup 3/H)imipramine to human platelet membranes with compensation for saturable binding to filters and its implication for binding studies with brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, O.M.; Wood, K.M.; Williams, D.C.

    1984-08-01

    Apparent specific binding of (/sup 3/H)imipramine to human platelet membranes at high concentrations of imipramine showed deviation from that expected of a single binding site, a result consistent with a low-affinity binding site. The deviation was due to displaceable, saturable binding to the glass fibre filters used in the assays. Imipramine, chloripramine, desipramine, and fluoxetine inhibited binding to filters whereas 5-hydroxytryptamine and ethanol were ineffective. Experimental conditions were developed that eliminated filter binding, allowing assay of high- and low-affinity binding to membranes. Failure to correct for filter binding may lead to overestimation of binding parameters, Bmax and KD for high-affinity binding to membranes, and may also be misinterpreted as indicating a low-affinity binding component in both platelet and brain membranes. Low-affinity binding (KD less than 2 microM) of imipramine to human platelet membranes was demonstrated and its significance discussed.

  19. Plesiomonas shigelloides exports a lethal cytotoxic-enterotoxin (LCE) by membrane vesicles.

    Science.gov (United States)

    Ludovico, Marilucia Santos; Martins, Luciano Moura; Bianco, Juares Ednaldo Romero; Andrade, Célia Guadalupe Tardelli de Jesus; Falcon, Rosabel; Joazeiro, Paulo Pinto; Gatti, Maria Silvia Viccari; Yano, Tomomasa

    Plesiomonas shigelloides isolated from water in Brazil was previously described as a hemorrhagic heat-labile cytotoxic-enterotoxin producer. We purified this toxin from culture supernatants using ion metallic affinity chromatography (IMAC) followed by molecular exclusion chromatography. The pure toxin presented molecular mass of 50kDa and isoelectric point (pI) around 6.9 by 2D electrophoresis. When injected intravenously, the purified cytotoxic-enterotoxin induced also severe spasms followed by sudden death of mice. Hence, we entitled it as lethal cytotoxic-enterotoxin (LCE). The presence of membrane vesicles (MVs) on cell surfaces of P. shigelloides was observed by scan electron microscopy (SEM). From these MVs the LCE toxin was extracted and confirmed by biological and serological assays. These data suggest that P. shigelloides also exports this cytotoxic-enterotoxin by membrane vesicles, a different mechanism of delivering extra cellular virulence factors, so far not described in this bacterium. Copyright © 2016 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. Phosphorylation of plant plasma membrane H+-ATPase by the heterologous host S.cerevisiae

    DEFF Research Database (Denmark)

    L. Rudashevskaya, Elena; Ye, Juanying; Jensen, Ole Nørregaard

    +-ATPases are app. 60 amino acid residues longer than their yeast homologous. Yeast is found to phosphorylate at least one residue within the plant C-terminus. At the same time a wide range of investigations on structure, function, regulation and interaction of H+-ATPase is carried out with implication...... functioning of the residues and suggests, that plant H+-ATPase could be regulated by phosphorylation at several sites being in yeast cells. Plant H+-ATPase purified from yeast cells by his-tag affinity chromatography was subjected to IMAC and TiO2 for enrichment of phosphopeptides. The phosphopeptides were...... It is known, that phosphorylation of both plant and yeast plasma membrane H+-ATPase results in enzyme activation or inhibition. Several sites at the regulatory C-terminus of the enzyme have been found to undergo phosphorylation in vivo in both plant and yeast. The C-termini of plant H...

  1. ISOLATION AND CHARACTERIZATION OF THE HIGH-AFFINITY K+-TRANSLOCATING ATPASE FROM RHODOBACTER-SPHAEROIDES

    NARCIS (Netherlands)

    ABEE, T; SIEBERS, A; ALTENDORF, K; KONINGS, WN

    1992-01-01

    Cells of the purple nonsulfur bacterium Rhodobacter sphaeroides express a high-affinity K+ uptake system when grown in media with low K+ concentrations. A vanadate-sensitive, K+-stimulated and Mg2+-stimulated ATPase was purified from membranes of these cells by solubilization with

  2. Antisymmetric tensor generalizations of affine vector fields.

    Science.gov (United States)

    Houri, Tsuyoshi; Morisawa, Yoshiyuki; Tomoda, Kentaro

    2016-02-01

    Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank- p antisymmetric affine tensor fields in n -dimensions is bounded by ( n + 1)!/ p !( n - p )!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes.

  3. The development of electro-membrane filtration for the isolation of bioactive peptides: the effect of membrane selection and operating parameters on the transport rate

    NARCIS (Netherlands)

    Bargeman, Gerrald; Koops, G.H.; Houwing, J.; Breebaart, I.; van der Horst, H.C.; Wessling, Matthias

    2002-01-01

    The ability to produce functional food ingredients from natural sources becomes increasingly attractive to the food industry. Antimicrobial (bioactive) ingredients, like peptides and proteins, can be isolated from hydrolysates with membrane filtration and/or chromatography. Electro-membrane

  4. A Novel Vertex Affinity for Community Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Andy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henson, Van [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-05

    We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

  5. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  6. Biobased Membrane

    NARCIS (Netherlands)

    Koenders, E.A.B.; Zlopasa, J.; Picken, S.J.

    2015-01-01

    The present invention is in the field of a composition for forming a bio-compatible membrane applicable to building material, such as concrete, cement, etc., to a meth od of applying said composition for forming a bio-compatible membrane, a biocompatible membrane, use of said membrane for various

  7. Improved Thermal Modulator for Gas Chromatography

    Science.gov (United States)

    Hasselbrink, Ernest Frederick, Jr.; Hunt, Patrick J.; Sacks, Richard D.

    2008-01-01

    An improved thermal modulator has been invented for use in a variant of gas chromatography (GC). The variant in question denoted as two-dimensional gas chromatography (2DGC) or GC-GC involves the use of three series-connected chromatographic columns, in the form of capillary tubes coated interiorly with suitable stationary phases (compounds for which different analytes exhibit different degrees of affinity). The two end columns are relatively long and are used as standard GC columns. The thermal modulator includes the middle column, which is relatively short and is not used as a standard GC column: instead, its temperature is modulated to affect timed adsorption and desorption of analyte gases between the two end columns in accordance with a 2DGC protocol.

  8. Zeolite Membranes: Ozone Detemplation, Modeling, and Performance Characterization

    OpenAIRE

    Kuhn, J.

    2009-01-01

    Membrane technology plays an increasingly important role in developing a more sustainable process industry. Zeolites are a novel class of membrane materials with unique properties enabling molecular sieving and affinity based separations. This thesis proposes some new concepts in zeolite membrane synthesis, application, and modeling. The influence of zeolite polarity is assessed and the use of a hydrophobic zeolite membrane for water separation is explored. Ozonication, a novel method for zeo...

  9. Affinity purification of native glycodelin from amniotic fluid for biological investigations and development of a glycodelin ELISA for clinical studies

    DEFF Research Database (Denmark)

    Sørensen, Steen; Myrhøj, Vibeke; Nguyen, Thanh Ha

    2017-01-01

    for functional studies because the carbohydrate part can be lacking or be insufficient in recombinant glycodelin from prokaryotic and eukaryotic cell systems. METHODS AND RESULTS: Native glycodelin was purified from amniotic fluid by a series of affinity chromatography steps and had many glycosylated forms...

  10. Electrophoresis and electro-affinity transfer with specific antibodies to alpha-fetoprotein for detection of circulating immune complexes of alpha-fetoprotein.

    OpenAIRE

    Taketa, Kazuhisa; Ichikawa, Eriko; Taga, Hiroko; Hirai, Hidematsu

    1984-01-01

    A combination of agarose gel electrophoresis and a newly developed technique of electro-affinity transfer was applied to the detection of circulating immune complexes of human alpha-fetoprotein (AFP) and anti-AFP. After electrophoretic transfer to nitrocellulose membrane, to which affinity-purified polyclonal horse antibodies to human AFP were bound, the membranes were treated with or without rabbit immunoglobulins to human AFP, followed by overlaying with horseradish peroxidase-labeled goat ...

  11. Scaling analysis of affinity propagation

    Science.gov (United States)

    Furtlehner, Cyril; Sebag, Michèle; Zhang, Xiangliang

    2010-06-01

    We analyze and exploit some scaling properties of the affinity propagation (AP) clustering algorithm proposed by Frey and Dueck [Science 315, 972 (2007)]. Following a divide and conquer strategy we setup an exact renormalization-based approach to address the question of clustering consistency, in particular, how many cluster are present in a given data set. We first observe that the divide and conquer strategy, used on a large data set hierarchically reduces the complexity O(N2) to O(N(h+2)/(h+1)) , for a data set of size N and a depth h of the hierarchical strategy. For a data set embedded in a d -dimensional space, we show that this is obtained without notably damaging the precision except in dimension d=2 . In fact, for d larger than 2 the relative loss in precision scales such as N(2-d)/(h+1)d . Finally, under some conditions we observe that there is a value s∗ of the penalty coefficient, a free parameter used to fix the number of clusters, which separates a fragmentation phase (for ss∗ ) of the underlying hidden cluster structure. At this precise point holds a self-similarity property which can be exploited by the hierarchical strategy to actually locate its position, as a result of an exact decimation procedure. From this observation, a strategy based on AP can be defined to find out how many clusters are present in a given data set.

  12. Chromatography resin support

    Science.gov (United States)

    Dobos, James G.

    2002-01-01

    An apparatus and method of using an improved chromatography resin support is disclosed. The chromatography support platform is provided by a stainless steel hollow cylinder adapted for being inserted into a chromatography column. An exterior wall of the stainless steel cylinder defines a groove for carrying therein an "O"-ring. The upper surface of the stainless steel column is covered by a fine stainless steel mesh welded to the edges of the stainless steel cylinder. When placed upon a receiving ledge defined within a chromatography column, the "O"-ring provides a fluid tight seal with the inner edge wall of the chromatography cylinder. The stainless steel mesh supports the chromatography matrix and provides a back flushable support which is economical and simple to construct.

  13. On affine non-negative matrix factorization

    DEFF Research Database (Denmark)

    Laurberg, Hans; Hansen, Lars Kai

    2007-01-01

    We generalize the non-negative matrix factorization (NMF) generative model to incorporate an explicit offset. Multiplicative estimation algorithms are provided for the resulting sparse affine NMF model. We show that the affine model has improved uniqueness properties and leads to more accurate...

  14. Using Affinity Diagrams to Evaluate Interactive Prototypes

    DEFF Research Database (Denmark)

    Lucero, Andrés

    2015-01-01

    Affinity diagramming is a technique used to externalize, make sense of, and organize large amounts of unstructured, far-ranging, and seemingly dissimilar qualitative data. HCI and interaction design practitioners have adopted and used affinity diagrams for different purposes. This paper discusses...

  15. Global affine differential geometry of hypersurfaces

    CERN Document Server

    Li, An-Min; Zhao, Guosong; Hu, Zejun

    2015-01-01

    This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry- as differential geometry in general- has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.

  16. Effect of matrices on affinity purification of protein C.

    Science.gov (United States)

    Kang, K; Ryu, D; Drohan, W N; Orthner, C L

    1992-05-01

    One of the critical problems in scale-up of affinity chromatography is the mechanical strength of the support matrix against pressure. Because the costs of both the gel matrix and the ligand for the affinity chromatography are very high, the reusability of gel matrices is directly related to the total production cost. In certain cases, where the source material is viscous (e.g., blood plasma), irreversible deformation of gel matrices can readily occur, necessitating severe constraints in the flow rate. Consequently, productivity is low.We have characterized the system parameters and investigated the performance of various matrices that are commercially available. The experimental system used for this study was the immunoaffinity purification of protein C (an anticoagulant protein) from human blood plasma. The support matrices studied were cross-linked agarose, polymethyl acrylic, cellulose, and polyvinyl alcohol polymers. The major system parameters studied were pressure tolerance, coupling efficiency, adsorption efficiency, and batch adsorption/desorption kinetics of protein C to/from the monoclonal antibody (MAb)-Matrix complex. In addition, the apparent equilibrium constant and bandwidth of the product concentration profile in the eluate were characterized by performing pulse tests.A methodology was developed for evaluating the immunoaffinity column performance for the separation of protein C. By utilizing the experimentally measured parameters, the flow rate limitation for each purification step was computed. Then, the purification performance of the matrices were evaluated in terms of productivity per unit time. Among the matrices tested, cellulose was superior in overall performance for the immunoaffinity purification of protein C using a 10 cm x 10 cm column.

  17. Improving image segmentation by learning region affinities

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  18. Chromatography of phosphorus oxoacids

    International Nuclear Information System (INIS)

    The present state of studies on the chromatographic separation of phosphorus oxoacids is surveyed. In this paper, chromatographic techniques are divided into four groups, i.e. paper and thin-layer chromatography, paper electrophoresis, ion-exchange chromatography, and gel chromatography. The separation mechanisms and characteristics for these chromatographic methods are discussed and some examples for the separation of phosphorus oxoacids are described. As examples of the application of ion-exchange and gel chromatography, studies on the hot atom chemistry of 32 P in solid inorganic phosphates and those on the substitution reactions between diphosphonate (diphosphite) and polyphosphates are reported. (author)

  19. Separation techniques: Chromatography

    Science.gov (United States)

    Coskun, Ozlem

    2016-01-01

    Chromatography is an important biophysical technique that enables the separation, identification, and purification of the components of a mixture for qualitative and quantitative analysis. Proteins can be purified based on characteristics such as size and shape, total charge, hydrophobic groups present on the surface, and binding capacity with the stationary phase. Four separation techniques based on molecular characteristics and interaction type use mechanisms of ion exchange, surface adsorption, partition, and size exclusion. Other chromatography techniques are based on the stationary bed, including column, thin layer, and paper chromatography. Column chromatography is one of the most common methods of protein purification. PMID:28058406

  20. Chemical characterization by gas chromatography-mass spectrometry and inductively coupled plasma-optical emission spectroscopy of membrane permeates from an industrial dairy ingredient production used as process water.

    Science.gov (United States)

    Skou, Peter B; Khakimov, Bekzod; Hansen, Thomas H; Aunsbjerg, Stina D; Knøchel, Susanne; Thaysen, Dorrit; van den Berg, Frans

    2018-01-01

    Reusing reverse osmosis (RO) membrane permeate instead of potable water in the dairy industry is a very appealing tactic. However, to ensure safe use, the quality of reclaimed water must be guaranteed. To do this, qualitative and quantitative information about which compounds permeate the membranes must be established. In the present study, we provide a detailed characterization of ultrafiltration, RO, and RO polisher (ROP) permeate with regard to organic and inorganic compounds. Results indicate that smaller molecules and elements (such as phosphate, but mainly urea and boron) pass the membrane, and a small set of larger molecules (long-chain fatty acids, glycerol-phosphate, and glutamic acid) are found as well, though in minute concentrations (<0.2 µM). Growth experiments with 2 urease-positive microorganisms, isolated from RO permeate, showed that the nutrient content in the ROP permeate supports limited growth of 1 of the 2 isolates, indicating that the ROP permeate may not be guaranteed to be stable during protracted storage. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Characterization of extracellular vesicles isolated by size exclusion chromatography

    DEFF Research Database (Denmark)

    Kristensen, Anne Flou; Pedersen, Shona; Jørgensen, Malene

    2014-01-01

    Bovine milks content of phospholipid membranes have largely been explored in the cream fraction, and known as the milk fat globule membrane that surrounds fat droplets. In skim milk, the population of phospholipid membranes is reported to constitute membrane vesicles with a soluble content known...... is observed all over the gradient. The variety of the membrane vesicles is currently being investigated further by several means. Summary/conclusion: A new procedure for easy and gentle isolation of bovine milk membrane vesicles encompassing ultracentrifugation and size-exclusion chromatography has been...... established. The resulting vesicle isolate exhibits the general membrane vesicle characteristics and provides an appropriate start material from which the variety of milk vesicles can be investigated...

  2. Protein A affinity precipitation of human immunoglobulin G.

    Science.gov (United States)

    Janoschek, Lars; Freiherr von Roman, Matthias; Berensmeier, Sonja

    2014-08-15

    The potential of protein A affinity precipitation as an alternative method for traditional antibody purification techniques was investigated. Recombinant produced protein A from Staphylococcus aureus (SpA) was covalently linked to the pH-responsive copolymer Eudragit(®) S-100 and used for purification of human immunoglobulin G (hIgG). The Eudragit-SpA conjugate had a static binding capacity of 93.9 ± 2.8 mg hIgG per g conjugate and a dissociation constant of 787 ± 67 nM at 7 ± 1°C. The antibody was adsorbed rapidly onto Eudragit-SpA and reached equilibrium within 5 min. An excess of hIgG binding sites, provided by the conjugate, as well as adjusted elution conditions resulted in an appropriate hIgG purification performance. In summary, Eudragit-SpA was successfully applied to capture hIgG from a protein mixture with 65% antibody yield in the elution step. Nearly 96% purity and a purification factor of 12.4 were achieved. The Eudragit-SpA conjugate showed a stable ligand density over several cycles, which enabled reusability for repeated precipitation of hIgG. According to this, pH induced affinity precipitation can be seen as a potential alternative for protein A chromatography in antibody purification processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Titanium dioxide as chemo-affinity chromatographic sorbent of biomolecular compounds - Applications in acidic modification-specific proteomics

    DEFF Research Database (Denmark)

    Engholm-Keller, Kasper; Larsen, Martin R

    2011-01-01

    biomolecules due to its unique ion and ligand exchange properties and high stability towards pH and temperature. Recently, titanium dioxide chromatography was introduced in proteomics as a highly specific method for enriching phosphorylated peptides - a method, which has been widely adapted by the field...... matrices for further characterization is affinity chromatography, which relies on the specific interaction between an analyte in solution and a solid adsorbent. Titanium dioxide-based affinity chromatography has proven to be a versatile tool in enrichment of various compounds such as phosphorylated....... The development of TiO(2)-based chromatographic strategies for separation of various biomolecules from its introduction for small molecules more than 20years ago until recent proteomics applications today will be reviewed here....

  4. Reconstitution of membrane protein complexes involved in pneumococcal septal cell wall assembly.

    Directory of Open Access Journals (Sweden)

    Marjolaine Noirclerc-Savoye

    Full Text Available The synthesis of peptidoglycan, the major component of the bacterial cell wall, is essential to cell survival, yet its mechanism remains poorly understood. In the present work, we have isolated several membrane protein complexes consisting of the late division proteins of Streptococcus pneumoniae: DivIB, DivIC, FtsL, PBP2x and FtsW, or subsets thereof. We have co-expressed membrane proteins from S. pneumoniae in Escherichia coli. By combining two successive affinity chromatography steps, we obtained membrane protein complexes with a very good purity. These complexes are functional, as indicated by the retained activity of PBP2x to bind a fluorescent derivative of penicillin and to hydrolyze the substrate analogue S2d. Moreover, we have evidenced the stabilizing role of protein-protein interactions within each complex. This work paves the way for a complete reconstitution of peptidoglycan synthesis in vitro, which will be critical to the elucidation of its intricate regulation mechanisms.

  5. ACA12 Is a Deregulated Isoform of Plasma Membrane Ca2+-ATPase of Arabidopsis thaliana

    Science.gov (United States)

    Limonta, Margherita; Romanowsky, Shawn; Olivari, Claudio; Bonza, Maria Cristina; Luoni, Laura; Rosenberg, Alexa; Harper, Jeffrey F.; De Michelis, Maria Ida

    2014-01-01

    Plant auto-inhibited Ca2+-ATPases (ACA) are crucial in defining the shape of calcium transients and therefore in eliciting plant responses to various stimuli. Arabidopsis thaliana genome encodes ten ACA isoforms that can be divided into four clusters based on gene structure and sequence homology. While isoforms from clusters 1, 2 and 4 have been characterized, virtually nothing is known about members of cluster 3 (ACA12 and ACA13). Here we show that a GFP-tagged ACA12 localizes at the plasma membrane and that expression of ACA12 rescues the phenotype of partial male sterility of a null mutant of the plasma membrane isoform ACA9, thus providing genetic evidence that ACA12 is a functional plasma membrane-resident Ca2+-ATPase. By ACA12 expression in yeast and purification by CaM-affinity chromatography, we show that, unlike other ACAs, the activity of ACA12 is not stimulated by CaM. Moreover, full length ACA12 is able to rescue a yeast mutant deficient in calcium pumps. Analysis of single point ACA12 mutants suggests that ACA12 loss of auto-inhibition can be ascribed to the lack of two acidic residues - highly conserved in other ACA isoforms - localized at the cytoplasmic edge of the second and third transmembrane segments. Together, these results support a model in which the calcium pump activity of ACA12 is primarily regulated by increasing or decreasing mRNA expression and/or protein translation and degradation. PMID:24101142

  6. Membranous nephropathy

    Science.gov (United States)

    ... check for hepatitis B, hepatitis C, and syphilis Complement levels Cryoglobulin test Treatment The goal of treatment ... not as helpful for people with membranous nephropathy. Medicines used treat membranous nephropathy include: Angiotensin-converting enzyme ( ...

  7. Mobile Technology Affinity in Renal Transplant Recipients.

    Science.gov (United States)

    Reber, S; Scheel, J; Stoessel, L; Schieber, K; Jank, S; Lüker, C; Vitinius, F; Grundmann, F; Eckardt, K-U; Prokosch, H-U; Erim, Y

    Medication nonadherence is a common problem in renal transplant recipients (RTRs). Mobile health approaches to improve medication adherence are a current trend, and several medication adherence apps are available. However, it is unknown whether RTRs use these technologies and to what extent. In the present study, the mobile technology affinity of RTRs was analyzed. We hypothesized significant age differences in mobile technology affinity and that mobile technology affinity is associated with better cognitive functioning as well as higher educational level. A total of 109 RTRs (63% male) participated in the cross-sectional study, with an overall mean age of 51.8 ± 14.2 years. The study included the Technology Experience Questionnaire (TEQ) for the assessment of mobile technology affinity, a cognitive test battery, and sociodemographic data. Overall, 57.4% of the patients used a smartphone or tablet and almost 45% used apps. The TEQ sum score was 20.9 in a possible range from 6 (no affinity to technology) to 30 (very high affinity). Younger patients had significantly higher scores in mobile technology affinity. The only significant gender difference was found in having fun with using electronic devices: Men enjoyed technology more than women did. Mobile technology affinity was positively associated with cognitive functioning and educational level. Young adult patients might profit most from mobile health approaches. Furthermore, high educational level and normal cognitive functioning promote mobile technology affinity. This should be kept in mind when designing mobile technology health (mHealth) interventions for RTRs. For beneficial mHealth interventions, further research on potential barriers and desired technologic features is necessary to adapt apps to patients' needs. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Scaling laws in phytoplankton nutrient uptake affinity

    DEFF Research Database (Denmark)

    Lindemann, Christian; Fiksen, Øyvind; Andersen, Ken Haste

    2016-01-01

    Nutrient uptake affinity affects the competitive ability of microbial organisms at low nutrient concentrations. From the theory of diffusion limitation it follows that uptake affinity scales linearly with the cell radius. This is in conflict with some observations suggesting that uptake affinity...... scales to a quantity that is closer to the square of the radius, i.e. to cell surface area. We show that this apparent conflict can be resolved by nutrient uptake theory. Pure diffusion limitation assumes that the cell is a perfect sink which means that it is able to absorb all encountered nutrients...

  9. Affinity Strings: Enterprise Data for Resource Recommendations

    Directory of Open Access Journals (Sweden)

    Shane Nackerud

    2008-12-01

    Full Text Available The University of Minnesota Libraries have created a MyLibrary portal, with databases and e-journals targeted to users, based on their affiliations. The University's enterprise authentication system provides an "affinity string", now used to personalize the MyLibrary portal. This affinity string automates discovery of a user's relationship to the University--describing a user's academic department and degree program or position at the University. Affinity strings also provide the Libraries with an anonymized view of resource usage, allowing data collection that respects users' privacy and lays the groundwork for automated recommendation of relevant resources based on the practices and habits of their peers.

  10. Synthetic affinity ligands as a novel tool to improve protein stability.

    Science.gov (United States)

    Sousa, I T; Ruiu, L; Lowe, C R; Taipa, M A

    2009-01-01

    Cutinase from Fusarium solani pisi is the model-system for a new approach to assess and enhance protein stability based on the use of synthetic triazine-scaffolded affinity ligands as a novel protein-stabilizing tool. The active site of cutinase is excluded from the main surface regions postulated to be involved in early protein's thermal unfolding events. Hence, these regions are suitable targets for binding complementary affinity ligands with a potential stabilizing effect. A random solid-phase combinatorial library of triazine-bisubstituted molecules was screened for binding cutinase by a rapid fluorescence-based method and affinity chromatography. The best binding substituents were combined with those previously selected by screening a rationally designed library. A second-generation solid-phase biased library was designed and synthesized, following a semi-rational methodology. A dual screening of this library enabled the selection of ligands binding cutinase with higher affinity while retaining its functionality. These compounds were utilized for thermostability assessment with adsorbed cutinase at 60 degrees C and pH 8.0. When bound to different types of ligands, the enzyme showed markedly distinct activity retention profiles, with some synthetic affinity ligands displaying a stabilizing effect on cutinase and others a clearly destabilizing effect, when compared with the free enzyme. Copyright (c) 2008 John Wiley & Sons, Ltd.

  11. Myoglobin extraction from mammalian skeletal muscle and oxygen affinity determination under physiological conditions.

    Science.gov (United States)

    Wright, Traver J; Davis, Randall W

    2015-03-01

    An accurate determination of myoglobin (Mb) oxygen affinity (P50) can be difficult due to hemoglobin (Hb) contamination and autoxidation of Mb to metMb which is incapable of binding oxygen. To reduce Mb autoxidation, P50 is often measured at refrigerated temperatures. However, the temperature dependent shift in Mb oxygen affinity results in a greater oxygen affinity (lower P50) at colder temperatures than occurs at physiological temperature (ca. 37-39°C) for birds and mammals. Utilizing the temperature dependent pH shift of Tris buffer, we developed novel methods to extract Mb from vertebrate muscle samples and remove Hb contamination while minimizing globin autoxidation. Cow (Bos taurus) muscle tissue (n=5) was homogenized in buffer to form a Mb solution, and Hb contamination was removed using anion exchange chromatography. A TCS Hemox Blood Analyzer was then used to quickly generate an oxygen dissociation curve for the extracted Mb. The oxygen affinity of extracted bovine Mb was compared to commercially available horse heart Mb. The oxygen affinity of extracted cow Mb (P50=3.72±0.16 mmHg) was not statistically different from commercially prepared horse heart Mb (P50=3.71±0.10 mmHg). With high yield Mb extraction and fast generation of an oxygen dissociation curve, it was possible to consistently determine Mb P50 under physiologically relevant conditions for endothermic vertebrates. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  13. High performance liquid chromatography in studies of radiolabeled antibodies

    International Nuclear Information System (INIS)

    Hnatowich, D.J.

    1986-01-01

    High performance liquid chromatography (HPLC) as applied to the separation of antibodies displays the same advantages as in its other applications, namely good resolution accompanied by fast analysis. It is therefore not surprising that many HPLC columns designed for use with antibodies and other proteins are now available commercially. The properties of proteins which provide the separation are size, hydrophobicity, charge and affinity. The features of each are discussed. (author)

  14. Automorphisms in Birational and Affine Geometry

    CERN Document Server

    Ciliberto, Ciro; Flenner, Hubert; McKernan, James; Prokhorov, Yuri; Zaidenberg, Mikhail

    2014-01-01

    The main focus of this volume is on the problem of describing the automorphism groups of affine and projective varieties, a classical subject in algebraic geometry where, in both cases, the automorphism group is often infinite dimensional. The collection covers a wide range of topics and is intended for researchers in the fields of classical algebraic geometry and birational geometry (Cremona groups) as well as affine geometry with an emphasis on algebraic group actions and automorphism groups. It presents original research and surveys and provides a valuable overview of the current state of the art in these topics. Bringing together specialists from projective, birational algebraic geometry and affine and complex algebraic geometry, including Mori theory and algebraic group actions, this book is the result of ensuing talks and discussions from the conference “Groups of Automorphisms in Birational and Affine Geometry” held in October 2012, at the CIRM, Levico Terme, Italy. The talks at the conference high...

  15. Biodiversity, zoogeography and affinity of Orissa sponges

    Digital Repository Service at National Institute of Oceanography (India)

    Thomas, P.A.; Sree, A.; Bapuji, M.; Rao, K.M.; Murthy, K.S.R.

    from these reefs. The diversity, bio-zeo-distribution and affinity of these sponges are discussed. The analysis of data is mainly arrived at by quasi-quantitative sampling supported by observations and video documentation. Community structure...

  16. Quantum deformation of the affine transformation algebra

    International Nuclear Information System (INIS)

    Aizawa, N.; Sato, Haru-Tada

    1994-01-01

    We discuss a quantum deformation of the affine transformation algebra in one-dimensional space. It is shown that the quantum algebra has a non-cocommutative Hopf algebra structure, simple realizations and quantum tensor operators. (orig.)

  17. Affine Moment Invariants Generated by Graph Method

    Czech Academy of Sciences Publication Activity Database

    Suk, Tomáš; Flusser, Jan

    2011-01-01

    Roč. 44, č. 9 (2011), 2047 – 2056 ISSN 0031-3203 R&D Projects: GA ČR(CZ) GA102/08/1593 Institutional research plan: CEZ:AV0Z10750506 Keywords : Image moments * Object recognition * Affine transformation * Affine moment invariants * Pseudoinvariants * Graph representation * Irreducibility * Independence Subject RIV: IN - Informatics, Computer Science Impact factor: 2.292, year: 2011 http://library.utia.cas.cz/separaty/2011/ZOI/suk-0359752.pdf

  18. Interaction of Hematoporphyrin with Lipid Membranes

    DEFF Research Database (Denmark)

    Stepniewski, M.; Kepczynski, M.; Jamroz, D.

    2012-01-01

    . The dye molecules were found to reside in the phospholipid headgroup area close to the carbonyl groups of the POPC acyl chains. Their orientations were dependent on the protonation state of two propionic groups. Hp(2-) was found to have a lower affinity to enter the membrane than the neutral form...

  19. Naloxone-sensitive, haloperidol-sensitive, [3H](+)SKF-10047-binding protein partially purified from rat liver and rat brain membranes: an opioid/sigma receptor?

    Science.gov (United States)

    Tsao, L I; Su, T P

    1997-02-01

    A naloxone-sensitive, haloperidol-sensitive, [3H](+)SKF-10047-binding protein was partially purified from rat liver and rat brain membranes in an affinity chromatography originally designed to purify sigma receptors. Detergent-solubilized extracts from membranes were adsorbed to Sephadex G-25 resin containing an affinity ligand for sigma receptors: N-(2- 3,4-dichlorophenyl]ethyl)-N-(6-aminohexyl)-(2-[1-pyrrolidinyl]) ethylamine (DAPE). After eluting the resin with haloperidol, a protein that bound [3H](+)SKF-10047 was detected in the eluates. However, the protein was not the sigma receptor. [3H](+)SKF-10047 binding to the protein was inhibited by the following compounds in the order of decreasing potency: (+)pentazocine > (-) pentazocine > (+/-)cyclazocine > (-)morphine > (-)naloxone > haloperidol > (+)SKF-10047 > DADLE > (-)SKF-10047. Further, the prototypic sigma receptor ligands, such as 1,3-di-o-tolylguanidine (DTG), (+)3-PPP, and progesterone, bound poorly to the protein. Tryptic digestion and heat treatment of the affinity-purified protein abolished radioligand binding. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) of the partially-purified protein from the liver revealed a major diffuse band with a molecular mass of 31 kDa, a polypeptide of 65 kDa, and another polypeptide of > 97 kDa. This study demonstrates the existence of a novel protein in the rat liver and rat brain which binds opioids, benzomorphans, and haloperidol with namomolar affinity. The protein resembles the opioid/sigma receptor originally proposed by Martin et al. [(1976): J. Pharmacol. Exp. Ther., 197:517-532.]. A high degree of purification of this protein has been achieved in the present study.

  20. Determination of polycyclic aromatic hydrocarbons (PAHs) from organic aerosols using hollow fiber micro-porous membrane liquid-liquid extraction (HF-MMLLE) followed by gas chromatography-mass spectrometry analysis.

    Science.gov (United States)

    Hyder, Murtaza; Aguilar, Lidia Luque; Genberg, Johan; Sandahl, Margareta; Wesén, Clas; Jönsson, Jan Åke

    2011-08-15

    A method for determination of polycyclic aromatic hydrocarbons (PAHs) from aerosols was developed. Instead of conventionally used non-polar or slightly polar phenylmethylpolysiloxane column a highly polar, highly substituted, cyanopropyl column (VF-23 MS) was used for separation of PAHs. Based on hollow fiber micro-porous membrane liquid-liquid extraction (HF-MMLLE) a method was developed for sample clean up and pretreatment. An enrichment factor of 617-1022 was obtained with extraction efficiency 10.2-18.9% for different PAHs analyzed in this study. The optimized method was successfully applied to aerosol samples and limits of detection between 1.2 pg m(-3) and 180 pg m(-3) was obtained. Almost all PAHs were found in most of the aerosol samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. The metric-affine gravitational theory as the gauge theory of the affine group

    International Nuclear Information System (INIS)

    Lord, E.A.

    1978-01-01

    The metric-affine gravitational theory is shown to be the gauge theory of the affine group, or equivalently, the gauge theory of the group GL(4,R) of tetrad deformations in a space-time with a locally Minkowskian metric. The identities of the metric-affine theory, and the relationship between them and those of general relativity and Sciama-Kibble theory, are derived. (Auth.)

  2. Characterization of detergent-solubilized sarcoplasmic reticulum Ca2+-ATPase by high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Andersen, J.P.; Vilsen, B.; Nielsen, H.; Moller, J.V.

    1986-01-01

    Sarcoplasmic reticulum Ca 2+ -ATPase solubilized by the nonionic detergent octaethylene glycol monododecyl ether was studied by molecular sieve high-performance liquid chromatography (HPLC) and analytical ultracentrifugation. Significant irreversible aggregation of soluble Ca 2+ -ATPase occurred within a few hours in the presence of ≤ 50 μM Ca 2+ . The aggregates were inactive and were primarily held together by hydrophobic forces. In the absence of reducing agent, secondary formation of disulfide bonds occurred. The stability of the inactive dimer upon dilution permitted unambiguous assignment of its elution position and sedimentation coefficient. At high 45 Ca 2+ concentration (500 μM), monomeric Ca 2+ -ATPase was stable for several house. Reversible self-association induced by variation in protein, detergent, and lipid concentrations was studied by large-zone HPLC. The association constant for dimerization of active Ca 2+ -ATPase was found to be 10 5 -10 6 M -1 depending on the detergent concentration. More detergent was bound to monomeric than to dimeric Ca 2+ -ATPase, even above the critical micellar concentration of the detergent. Binding of Ca 2+ and 48 V vanadate as well as ATP-dependent phosphorylation was studied in monomeric and in reversibly associated dimeric preparations. In both forms, two high-affinity Ca 2+ binding sites per phosphorylation site existed. The delipidated monomer purified by HPLC was able to form ADP-insensitive phosphoenzyme and to bind ATP and vanadate simultaneously. The results suggest that formation of Ca 2+ -ATPase oligomers in the membrane is governed by nonspecific forces (low affinity) and that each polypeptide chain constitutes a functional unit

  3. Gas chromatography in space

    Science.gov (United States)

    Akapo, S. O.; Dimandja, J. M.; Kojiro, D. R.; Valentin, J. R.; Carle, G. C.

    1999-01-01

    Gas chromatography has proven to be a very useful analytical technique for in situ analysis of extraterrestrial environments as demonstrated by its successful operation on spacecraft missions to Mars and Venus. The technique is also one of the six scientific instruments aboard the Huygens probe to explore Titan's atmosphere and surface. A review of gas chromatography in previous space missions and some recent developments in the current environment of fiscal constraints and payload size limitations are presented.

  4. Selective induction of high-ouabain-affinity isoform of Na+-K+-ATPase by thyroid hormone

    International Nuclear Information System (INIS)

    Haber, R.S.; Loeb, J.N.

    1988-01-01

    The administration of thyroid hormone is known to result in an induction of the Na + -K + -adenosinetriphosphatase (Na + -K + -ATPase) in rat skeletal muscle and other thyroid hormone-responsive tissues. Since the Na + -K + -ATPase in a variety of mammalian tissues has recently been reported to exist in at least two forms distinguishable by differing affinities for the inhibitory cardiac glycoside ouabain. The authors have studied the effects of 3,3',5-triiodo-L-thyronine (T 3 ) treatment on these two forms of the enzyme in rat diaphragm. The inhibition of Na + -K + -ATPase activity in a crude membrane fraction by varying concentrations of ouabain conformed to a biphasic pattern consistent with the presence of two distinct isoforms with inhibition constants (K I s) for ouabain of ∼10 -7 and 10 -4 M, respectively. Measurement of the specific binding of [ 3 H]ouabain to these membranes confirmed the presence of a class of high-affinity ouabain binding sites with a dissociation constant (K d ) of slightly less than 10 -7 M, whose maximal binding capacity was increased by T 3 treatment by 185%. Binding studies in unfractionated homogenates of diaphragm similarly demonstrated the presence of high-affinity sites whose maximal binding capacity was increased by T 3 treatment. Quantitation of both the high- and low-ouabain-affinity forms of the Na + -K + -ATPase by ouabain-dependent phosphorylation from [ 32 P]orthophosphate confirmed that T 3 treatment markedly increased the number of high-affinity sites while having little effect on the number of low-affinity sites. These observations provide, to our knowledge, the first demonstration that these two forms of the Na + -K + -ATPase are subject to selective hormonal induction

  5. Plasma membrane isolation using immobilized concanavalin A magnetic beads.

    Science.gov (United States)

    Lee, Yu-Chen; Srajer Gajdosik, Martina; Josic, Djuro; Lin, Sue-Hwa

    2012-01-01

    Isolation of highly purified plasma membranes is the key step in constructing the plasma membrane proteome. Traditional plasma membrane isolation method takes advantage of the differential density of organelles. While differential centrifugation methods are sufficient to enrich for plasma membranes, the procedure is lengthy and results in low recovery of the membrane fraction. Importantly, there is significant contamination of the plasma membranes with other organelles. The traditional agarose affinity matrix is suitable for isolating proteins but has limitation in separating organelles due to the density of agarose. Immobilization of affinity ligands to magnetic beads allows separation of affinity matrix from organelles through magnets and could be developed for the isolation of organelles. We have developed a simple method for isolating plasma membranes using lectin concanavalin A (ConA) magnetic beads. ConA is immobilized onto magnetic beads by binding biotinylated ConA to streptavidin magnetic beads. The ConA magnetic beads are used to bind glycosylated proteins present in the membranes. The bound membranes are solubilized from the magnetic beads with a detergent containing the competing sugar alpha methyl mannoside. In this study, we describe the procedure of isolating rat liver plasma membranes using sucrose density gradient centrifugation as described by Neville. We then further purify the membrane fraction by using ConA magnetic beads. After this purification step, main liver plasma membrane proteins, especially the highly glycosylated ones and proteins containing transmembrane domains could be identified by LC-ESI-MS/MS. While not described here, the magnetic bead method can also be used to isolate plasma membranes from cell lysates. This membrane purification method should expedite the cataloging of plasma membrane proteome.

  6. Purification and identification of the fusicoccin binding protein from oat root plasma membrane

    Science.gov (United States)

    de Boer, A. H.; Watson, B. A.; Cleland, R. E.

    1989-01-01

    Fusicoccin (FC), a fungal phytotoxin, stimulates the H(+) -ATPase located in the plasma membrane (PM) of higher plants. The first event in the reaction chain leading to enhanced H(+) -efflux seems to be the binding of FC to a FC-binding protein (FCBP) in the PM. We solubilized 90% of the FCBP from oat (Avena sativa L. cv Victory) root PM in an active form with 1% octyl-glucoside. The FCBP was stabilized by the presence of protease inhibitors. The FCBP was purified by affinity chromatography using FC-linked adipic acid dihydrazide agarose (FC-AADA). Upon elution with 8 molar urea, two major protein bands on sodium dodecyl sulfate-polyaerylamide gel electrophoresis with molecular weights of 29,700 and 31,000 were obtained. Successive chromatography on BBAB Bio-Gel A, hexyl agarose, and FC-AADA resulted in the same two bands when the FC-AADA was eluted with sodium dodecyl sulfate. A direct correlation was made between 3H-FC-binding activity and the presence of the two protein bands. The stoichiometry of the 29,700 and 31,000 molecular weight bands was 1:2. This suggests that the FCBP occurs in the native form as a heterotrimer with an apparent molecular weight of approximately 92,000.

  7. A dual-channel gas chromatography method for the quantitation of low and high concentrations of NF3 and CF4 to study membrane separation of the two compounds.

    Science.gov (United States)

    Branken, D J; le Roux, J P; Krieg, H M; Lachmann, G

    2013-09-13

    A dual-channel gas chromatographic method is described in this paper that can be conveniently used for quantitation of NF3/CF4 mixtures with a thermal conductivity detector (TCD) on one channel for the quantitation of high-concentrations, and a pulsed discharge helium ionization detector (PDHID) on a second channel for the quantitation of low concentrations. It is shown that adequate separation is achieved on both channels with this dual single-column setup in which column switching as used for NF3/CF4 analysis in industrial chromatographic methods are not required, thus yielding an effective analysis method for laboratory-scale investigations. In addition, the use of packed columns with purified divinylbenzene-styrene co-polymers as the sole stationary phase yields satisfactory resolution between NF3 and CF4 at isothermal conditions of 30°C, with elution times of less than 8min on the TCD channel and less than 4min on the PDHID channel. Consequently, this method allows for reliable, straight-forward quantitation of NF3/CF4 mixtures, which is necessary when studying the commercially important problem of NF3 and CF4 separation by different methods. Therefore, the applicability of the method to studying membrane separation of NF3 and CF4 is briefly discussed and illustrated, for which the dual-channel setup is especially beneficial. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Fully automated multidimensional reversed-phase liquid chromatography with tandem anion/cation exchange columns for simultaneous global endogenous tyrosine nitration detection, integral membrane protein characterization, and quantitative proteomics mapping in cerebral infarcts.

    Science.gov (United States)

    Quan, Quan; Szeto, Samuel S W; Law, Henry C H; Zhang, Zaijun; Wang, Yuqiang; Chu, Ivan K

    2015-10-06

    Protein tyrosine nitration (PTN) is a signature hallmark of radical-induced nitrative stress in a wide range of pathophysiological conditions, with naturally occurring abundances at substoichiometric levels. In this present study, a fully automated four-dimensional platform, consisting of high-/low-pH reversed-phase dimensions with two additional complementary, strong anion (SAX) and cation exchange (SCX), chromatographic separation stages inserted in tandem, was implemented for the simultaneous mapping of endogenous nitrated tyrosine-containing peptides within the global proteomic context of a Macaca fascicularis cerebral ischemic stroke model. This integrated RP-SA(C)X-RP platform was initially benchmarked through proteomic analyses of Saccharomyces cerevisiae, revealing extended proteome and protein coverage. A total of 27 144 unique peptides from 3684 nonredundant proteins [1% global false discovery rate (FDR)] were identified from M. fascicularis cerebral cortex tissue. The inclusion of the S(A/C)X columns contributed to the increased detection of acidic, hydrophilic, and hydrophobic peptide populations; these separation features enabled the concomitant identification of 127 endogenous nitrated peptides and 137 transmembrane domain-containing peptides corresponding to integral membrane proteins, without the need for specific targeted enrichment strategies. The enhanced diversity of the peptide inventory obtained from the RP-SA(C)X-RP platform also improved analytical confidence in isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analyses.

  9. Screening therapeutics according to their uptake across the blood-brain barrier: A high throughput method based on immobilized artificial membrane liquid chromatography-diode-array-detection coupled to electrospray-time-of-flight mass spectrometry.

    Science.gov (United States)

    Russo, Giacomo; Grumetto, Lucia; Szucs, Roman; Barbato, Francesco; Lynen, Frederic

    2018-02-07

    The Blood-Brain Barrier (BBB) plays an essential role in protecting the brain tissues against possible injurious substances. In the present work, 79 neutral, basic, acidic and amphoteric structurally unrelated analytes were considered and their chromatographic retention coefficients on immobilized artificial membrane (IAM) stationary phase were determined employing a mass spectrometry (MS) -compatible buffer based on ammonium acetate. Their BBB passage predictive strength was evaluated and the statistical models based on IAM indexes and in silico physico-chemical descriptors showed solid statistics (r 2 (n-1) = 0.78). The predictive strength of the indexes achieved by the MS-compatible method was comparable to that achieved by employing the more "biomimetic" Dulbecco's phosphate buffered saline, even if some differences in the elution order were observed. The method was transferred to the MS, employing a diode-array-detection coupled to an electrospray ionization source and a time-of-flight analyzer. This setup allowed the simultaneous analysis of up to eight analytes, yielding a remarkable acceleration of the analysis time. Copyright © 2018. Published by Elsevier B.V.

  10. Mild hypothermic culture conditions affect residual host cell protein composition post-Protein A chromatography.

    Science.gov (United States)

    Goey, Cher Hui; Bell, David; Kontoravdi, Cleo

    2018-01-30

    Host cell proteins (HCPs) are endogenous impurities, and their proteolytic and binding properties can compromise the integrity, and, hence, the stability and efficacy of recombinant therapeutic proteins such as monoclonal antibodies (mAbs). Nonetheless, purification of mAbs currently presents a challenge because they often co-elute with certain HCP species during the capture step of protein A affinity chromatography. A Quality-by-Design (QbD) strategy to overcome this challenge involves identifying residual HCPs and tracing their source to the harvested cell culture fluid (HCCF) and the corresponding cell culture operating parameters. Then, problematic HCPs in HCCF may be reduced by cell engineering or culture process optimization. Here, we present experimental results linking cell culture temperature and post-protein A residual HCP profile. We had previously reported that Chinese hamster ovary cell cultures conducted at standard physiological temperature and with a shift to mild hypothermia on day 5 produced HCCF of comparable product titer and HCP concentration, but with considerably different HCP composition. In this study, we show that differences in HCP variety at harvest cascaded to downstream purification where different residual HCPs were present in the two sets of samples post-protein A purification. To detect low-abundant residual HCPs, we designed a looping liquid chromatography-mass spectrometry method with continuous expansion of a preferred, exclude, and targeted peptide list. Mild hypothermic cultures produced 20% more residual HCP species, especially cell membrane proteins, distinct from the control. Critically, we identified that half of the potentially immunogenic residual HCP species were different between the two sets of samples.

  11. Classification of neocortical interneurons using affinity propagation

    Science.gov (United States)

    Santana, Roberto; McGarry, Laura M.; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  12. High-throughput functional affinity purification of mannose binding proteins from Oryza sativa.

    Science.gov (United States)

    Andon, Nancy L; Eckert, Donna; Yates, John R; Haynes, Paul A

    2003-07-01

    We have used affinity chromatography in combination with mass spectrometry to isolate, identify, and assign a preliminary functional annotation to a large number of both known and novel proteins from rice. Rice (Oryza sativa) leaf, root, and seed tissue extracts were fractionated by column affinity chromatography using alpha-D-mannose as the ligand. Bound fractions were eluted and subjected to one-dimensional electrophoresis, followed by high-performance liquid chromatography-tandem mass spectrometric analysis of separated proteins. This multiplexed technology resulted in the isolation and identification of 136 distinct mannose binding proteins from rice. A comparative analysis demonstrates very little overlap of identified proteins between the respective tissues, and confirms the correctly compartmentalized presence of a significant number of proteins from largely tissue-specific biochemical pathways. Over 30% of the identified proteins with a previously annotated function are directly involved in sugar metabolism, including several highly expressed known rice lectins. Direct comparison of the peptide sequences identified in this study to those peptides identified in the most comprehensive survey of the rice proteome to date indicates that our current data represents a significant enrichment of proteins unique to this dataset. Nearly 15% of the identified proteins, identified on the basis of exact peptide matching to sequences in the rice genomic database, represent proteins without a previously known functional annotation, indicating the potential of this combined chromatographic approach to assign a preliminary function to novel proteins in a high-throughput fashion.

  13. High-Affinity Ligands Can Trigger T Cell Receptor Signaling Without CD45 Segregation

    Directory of Open Access Journals (Sweden)

    Mohammad Ameen Al-Aghbar

    2018-04-01

    Full Text Available How T cell receptors (TCRs are triggered to start signaling is still not fully understood. It has been proposed that segregation of the large membrane tyrosine phosphatase CD45 from engaged TCRs initiates signaling by favoring phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs in the cytoplasmic domains of CD3 molecules. However, whether CD45 segregation is important to initiate triggering is still uncertain. We examined CD45 segregation from TCRs engaged to anti-CD3 scFv with high or low affinity and with defined molecular lengths on glass-supported lipid bilayers using total internal reflection microscopy. Both short and elongated high-affinity anti-CD3 scFv effectively induced similar calcium mobilization, Zap70 phosphorylation, and cytokine secretion in Jurkat T cells but CD45 segregated from activated TCR microclusters significantly less for elongated versus short anti-CD3 ligands. In addition, at early times, triggering cells with both high and low affinity elongated anti-CD3 scFv resulted in similar degrees of CD3 co-localization with CD45, but only the high-affinity scFv induced T cell activation. The lack of correlation between CD45 segregation and early markers of T cell activation suggests that segregation of CD45 from engaged TCRs is not mandatory for initial triggering of TCR signaling by elongated high-affinity ligands.

  14. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes

    KAUST Repository

    Geise, Geoffrey M.

    2014-08-26

    © the Partner Organisations 2014. Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The

  15. Biomimetic affinity ligands for protein purification.

    Science.gov (United States)

    Sousa, Isabel T; Taipa, M Angela

    2014-01-01

    The development of sophisticated molecular modeling software and new bioinformatic tools, as well as the emergence of data banks containing detailed information about a huge number of proteins, enabled the de novo intelligent design of synthetic affinity ligands. Such synthetic compounds can be tailored to mimic natural biological recognition motifs or to interact with key surface-exposed residues on target proteins and are designated as "biomimetic ligands." A well-established methodology for generating biomimetic or synthetic affinity ligands integrates rational design with combinatorial solid-phase synthesis and screening, using the triazine scaffold and analogues of amino acids side chains to create molecular diversity.Triazine-based synthetic ligands are nontoxic, low-cost, highly stable compounds that can replace advantageously natural biological ligands in the purification of proteins by affinity-based methodologies.

  16. On Affine Fusion and the Phase Model

    Directory of Open Access Journals (Sweden)

    Mark A. Walton

    2012-11-01

    Full Text Available A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n Wess-Zumino-Novikov-Witten (WZNW conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connection to the modular S matrix and fusion of the su(n WZNW model. The noncommutative Schur polynomials play roles similar to those of the primary field operators in the corresponding WZNW model. In particular, their 3-point functions are the su(n fusion multiplicities. We show here how the new phase model realization of affine fusion makes obvious the existence of threshold levels, and how it accommodates higher-genus fusion.

  17. Affine coherent states and Toeplitz operators

    Science.gov (United States)

    Hutníková, Mária; Hutník, Ondrej

    2012-06-01

    We study a parameterized family of Toeplitz operators in the context of affine coherent states based on the Calderón reproducing formula (= resolution of unity on L_2( {R})) and the specific admissible wavelets (= affine coherent states in L_2( {R})) related to Laguerre functions. Symbols of such Calderón-Toeplitz operators as individual coordinates of the affine group (= upper half-plane with the hyperbolic geometry) are considered. In this case, a certain class of pseudo-differential operators, their properties and their operator algebras are investigated. As a result of this study, the Fredholm symbol algebras of the Calderón-Toeplitz operator algebras for these particular cases of symbols are described. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  18. The dynamics of metric-affine gravity

    International Nuclear Information System (INIS)

    Vitagliano, Vincenzo; Sotiriou, Thomas P.; Liberati, Stefano

    2011-01-01

    Highlights: → The role and the dynamics of the connection in metric-affine theories is explored. → The most general second order action does not lead to a dynamical connection. → Including higher order invariants excites new degrees of freedom in the connection. → f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy

  19. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  20. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  1. New unitary affine-Virasoro constructions

    International Nuclear Information System (INIS)

    Halpern, M.B.; Kiritsis, E.; Obers, N.A.; Poratti, M.; Yamron, J.P.

    1990-01-01

    This paper reports on a quasi-systematic investigation of the Virasoro master equation. The space of all affine-Virasoro constructions is organized by K-conjugation into affine-Virasoro nests, and an estimate of the dimension of the space shows that most solutions await discovery. With consistent ansatze for the master equation, large classes of new unitary nests are constructed, including quadratic deformation nests with continuous conformal weights, and unitary irrational central charge nests, which may dominate unitary rational central charge on compact g

  2. Control and estimation of piecewise affine systems

    CERN Document Server

    Xu, Jun

    2014-01-01

    As a powerful tool to study nonlinear systems and hybrid systems, piecewise affine (PWA) systems have been widely applied to mechanical systems. Control and Estimation of Piecewise Affine Systems presents several research findings relating to the control and estimation of PWA systems in one unified view. Chapters in this title discuss stability results of PWA systems, using piecewise quadratic Lyapunov functions and piecewise homogeneous polynomial Lyapunov functions. Explicit necessary and sufficient conditions for the controllability and reachability of a class of PWA systems are

  3. Affinity-based methodologies and ligands for antibody purification: advances and perspectives.

    Science.gov (United States)

    Roque, Ana C A; Silva, Cláudia S O; Taipa, M Angela

    2007-08-10

    Many successful, recent therapies for life-threatening diseases such as cancer and rheumatoid arthritis are based on the recognition between native or genetically engineered antibodies and cell-surface receptors. Although naturally produced by the immune system, the need for antibodies with unique specificities and designed for single application, has encouraged the search for novel antibody purification strategies. The availability of these products to the end-consumer is strictly related to manufacture costs, particularly those attributed to downstream processing. Over the last decades, academia and industry have developed different types of interactions and separation techniques for antibody purification, affinity-based strategies being the most common and efficient methodologies. The affinity ligands utilized range from biological to synthetic designed molecules with enhanced resistance and stability. Despite the successes achieved, the purification "paradigm" still moves interests and efforts in the continuous demand for improved separation performances. This review will focus on recent advances and perspectives in antibody purification by affinity interactions using different techniques, with particular emphasis on affinity chromatography.

  4. Crossing Chris: Some Markerian Affinities

    Directory of Open Access Journals (Sweden)

    Adrian Martin

    2010-01-01

    -pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Abstract (E: This essay creatively explores a group of artists, writers, and other special individuals whose work or life story can be described as having an intriguing affinity with the protean career of Chris Marker. Avoiding the ‘usual suspects’ (such as Godard or Sebald, it discusses gossip columnist Milt Machlin, record collector Harry Smith, painter Gianfranco Baruchello, writer-filmmaker Edgardo Cozarinsky, and several others. From this constellation, a particular view of Markerian poetics emerges, touching upon the meanings of anonymity, storytelling, history and archiving.

     

    Abstract (F: Cet essai brosse de manière créative le portrait d’un groupe d'artistes, d'écrivains et d'autres personnes particulières dont le travail ou la biographie peuvent être décrits comme montrant une étrange mais certaine connivence avec la carrière protéiforme de Chris Marker. Evitant les lieux communs (comme Godard ou Sebald, cet article trace des références moins attendues :

  5. Recombinant production of human Aquaporin-1 to an exceptional high membrane density in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Julie Bomholt

    Full Text Available In the present paper we explored the capacity of yeast Saccharomyces cerevisiae as host for heterologous expression of human Aquaporin-1. Aquaporin-1 cDNA was expressed from a galactose inducible promoter situated on a plasmid with an adjustable copy number. Human Aquaporin-1 was C-terminally tagged with yeast enhanced GFP for quantification of functional expression, determination of sub-cellular localization, estimation of in vivo folding efficiency and establishment of a purification protocol. Aquaporin-1 was found to constitute 8.5 percent of total membrane protein content after expression at 15°C in a yeast host over-producing the Gal4p transcriptional activator and growth in amino acid supplemented minimal medium. In-gel fluorescence combined with western blotting showed that low accumulation of correctly folded recombinant Aquaporin-1 at 30°C was due to in vivo mal-folding. Reduction of the expression temperature to 15°C almost completely prevented Aquaporin-1 mal-folding. Bioimaging of live yeast cells revealed that recombinant Aquaporin-1 accumulated in the yeast plasma membrane. A detergent screen for solubilization revealed that CYMAL-5 was superior in solubilizing recombinant Aquaporin-1 and generated a monodisperse protein preparation. A single Ni-affinity chromatography step was used to obtain almost pure Aquaporin-1. Recombinant Aquaporin-1 produced in S. cerevisiae was not N-glycosylated in contrast to the protein found in human erythrocytes.

  6. Extraction chromatography of actinides

    International Nuclear Information System (INIS)

    Muller, W.

    1978-01-01

    Extraction chromatography of actinides in the oxidation state from 2 to 6 is reviewed. Data on using neutral (tbp), basic (substituted ammonium salts) and acidic [di-(2-ethylhexyl)-phosphoric acid (D2EHPA)] extracting agents ketones, esters, alcohols and β-diketones in this method are given. Using the example of actinide separation using D2EHPA, discussed are factors influencing the efficiency of their chromatography separation (nature and particle size of the carrier materials, extracting agents amount on the carrier, temperature and elution rate)

  7. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  8. Supported Liquid Membrane Extraction of Anabolic Androgenic ...

    African Journals Online (AJOL)

    A sample work-up and enrichment technique involving the use of supported liquid membrane (SLM) and detection by high performance liquid chromatography coupled to a mass spectrometer operating under positive ion electrospray mode (LC-PI-ESI-MS) has been developed for the determination of six anabolic ...

  9. Supported Liquid Membrane Extraction of Anabolic Androgenic ...

    African Journals Online (AJOL)

    NJD

    A sample work-up and enrichment technique involving the use of supported liquid membrane (SLM) and detection by high performance liquid chromatography coupled to a mass spectrometer operating under positive ion electrospray mode. (LC-PI-ESI-MS) has been developed for the determination of six anabolic ...

  10. Fan Affinity Laws from a Collision Model

    Science.gov (United States)

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…

  11. General super Virasoro construction on affine G

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1990-10-01

    We consider a bosonic current algebra and a theory of free fermions and construct a general N = 1 super Virasoro current algebra. We obtain a master-set of equations which comprises the bosonic master equation for general Virasoro construction on affine G. As an illustration we study the case of the group SU(2). (author). 13 refs

  12. It's the peptide-MHC affinity, stupid.

    Science.gov (United States)

    Kammertoens, Thomas; Blankenstein, Thomas

    2013-04-15

    Adoptively transferred T cells can reject large established tumors, but recurrence due to escape variants frequently occurs. In this issue of Cancer Cell, Engels et al. demonstrate that the affinity of the target peptide to the MHC molecule determines whether large tumors will relapse following adoptive T cell therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Proton affinity measurements using ion mobility spectrometry

    International Nuclear Information System (INIS)

    Tabrizchi, Mahmoud.; Shooshtari, Saeed

    2003-01-01

    Relative proton affinities are usually measured by means of high pressure mass spectrometry. In this work ion mobility spectrometry was used to determine proton affinities. The standard molar enthalpy change ΔH 0 M for the reaction MH + +N[rlhar2]M+NH + was found to be: -(56.3±0.8) kJ·mol -1 , when M was ethyl acetate and N ethanol; -(27.8±0.5) kJ·mol -1 , when M was acetophenone and N ethyl acetate; -(10.6±0.2) kJ·mol -1 , when M was cycloheptanone and N ethyl acetate; -(66.1±1.2) kJ·mol -1 , when M was dimethyl methyl phosphonate and N ethyl acetate; and, -(56.7±0.9) kJ·mol -1 , when M was dimethyl methyl phosphonate and N cycloheptanone. These values are internally consistent and in good agreement with results obtained with high pressure mass spectrometry. On the basis of proton affinities of cycloheptanone and ethyl acetate, an absolute proton affinity of (902±1.2) kJ·mol -1 has been determined for dimethyl methyl phosphonate

  14. Classification of neocortical interneurons using affinity propagation

    Directory of Open Access Journals (Sweden)

    Roberto eSantana

    2013-12-01

    Full Text Available In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. Neuronal classification has been a difficult problem because it is unclear what a neuronal cell class actually is and what are the best characteristics are to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological or molecular characteristics, when applied to selected datasets, have provided quantitative and unbiased identification of distinct neuronal subtypes. However, better and more robust classification methods are needed for increasingly complex and larger datasets. We explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. In fact, using a combined anatomical/physiological dataset, our algorithm differentiated parvalbumin from somatostatin interneurons in 49 out of 50 cases. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits.

  15. Isolation, purification, and partial characterization of a membrane-bound Cl-/HCO3--activated ATPase complex from rat brain with sensitivity to GABAAergic ligands.

    Science.gov (United States)

    Menzikov, Sergey A

    2017-02-07

    This study describes the isolation and purification of a protein complex with [Formula: see text]-ATPase activity and sensitivity to GABA A ergic ligands from rat brain plasma membranes. The ATPase complex was enriched using size-exclusion, affinity, and ion-exchange chromatography. The fractions obtained at each purification step were subjected to SDS-polyacrylamide gel electrophoresis (SDS-PAGE), which revealed four subunits with molecular mass ∼48, 52, 56, and 59 kDa; these were retained at all stages of the purification process. Autoradiography revealed that the ∼52 and 56 kDa subunits could bind [ 3 H]muscimol. The [Formula: see text]-ATPase activity of this enriched protein complex was regulated by GABA A ergic ligands but was not sensitive to blockers of the NKCC or KCC cotransporters.

  16. Affinity purification of recombinant human plasminogen activator ...

    African Journals Online (AJOL)

    prokaryotic or eukaryotic cell expression system. (e.g., CHO) [1-3]. Some modifications on molecular structure .... membrane in transfer buffer at 1 mA/cm2 for 3.5 h, Furthermore, the membrane was placed in blocking buffer .... good performance on RNA polymerase and RNA polymerase II [9-11,15]. However, these have not.

  17. Congophilicity (Congo red affinity) of different beta2-microglobulin conformations characterized by dye affinity capillary electrophoresis

    DEFF Research Database (Denmark)

    Heegaard, N H; Sen, J W; Nissen, Mogens Holst

    2000-01-01

    The amyloidogenic protein beta-microglobulin was characterized by affinity capillary electrophoresis (CE). CE could separate conformational variants of beta2-microglobulin and with the amyloid-specific dye Congo red as a buffer additive it was possible to measure different Congo red-affinities of......The amyloidogenic protein beta-microglobulin was characterized by affinity capillary electrophoresis (CE). CE could separate conformational variants of beta2-microglobulin and with the amyloid-specific dye Congo red as a buffer additive it was possible to measure different Congo red...

  18. Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kuziemko, G.M.; Stroh, M.; Stevens, R.C. [Univ. of California, Berkeley, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States)

    1996-05-21

    The present study determines the affinity of cholera toxin for the ganglioside series GM1, GM2, GM3, GD1A, GD1B, GT1B, asialo GM1, globotriosyl ceramide, and lactosyl ceramide using real time biospecific interaction analysis (surface plasmon resonance, SPR). SPR shows that cholera toxin preferably binds to gangliosides in the following sequence: GM1 > GM2 > GD1A > GM3 > GT1B > GD1B > asialo-GM1. The measured binding affinity of cholera toxin for the ganglioside sequence ranges from 4.61 {times} 10{sup {minus}12} M for GM1 to 1.88 {times} 10{sup {minus}10} M for asialo GM1. The picomolar values obtained by surface plasmon resonance are similar to K{sub d} values determined with whole-cell binding assays. Both whole-cell assays ans SPR measurements on synthetic membranes are higher than free solution measurements by several orders of magnitude. This difference may be caused by the effects of avidity and charged lipid head-groups, which may play a major role in the binding between cholera toxin, the receptor, and the membrane surface. The primary difference between free solution binding studies and surface plasmon resonance studies is that the latter technique is performed on surfaces resembling the cell membrane. Surface plasmon resonance has the further advantage of measuring apparent kinetic association and dissociation rates in real time, providing direct information about binding events at the membrane surface. 34 refs., 8 figs., 2 tabs.

  19. Experimental Immunization Based on Plasmodium Antigens Isolated by Antibody Affinity

    Directory of Open Access Journals (Sweden)

    Ali N. Kamali

    2015-01-01

    Full Text Available Vaccines blocking malaria parasites in the blood-stage diminish mortality and morbidity caused by the disease. Here, we isolated antigens from total parasite proteins by antibody affinity chromatography to test an immunization against lethal malaria infection in a murine model. We used the sera of malaria self-resistant ICR mice to lethal Plasmodium yoelii yoelii 17XL for purification of their IgGs which were subsequently employed to isolate blood-stage parasite antigens that were inoculated to immunize BALB/c mice. The presence of specific antibodies in vaccinated mice serum was studied by immunoblot analysis at different days after vaccination and showed an intensive immune response to a wide range of antigens with molecular weight ranging between 22 and 250 kDa. The humoral response allowed delay of the infection after the inoculation to high lethal doses of P. yoelii yoelii 17XL resulting in a partial protection against malaria disease, although final survival was managed in a low proportion of challenged mice. This approach shows the potential to prevent malaria disease with a set of antigens isolated from blood-stage parasites.

  20. Automated Immobilized Metal Affinity Chromatography System for Enrichment of Escherichia coli Phosphoproteome

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Yi; Wu, Si; Zhao, Rui; Zink, Erika M.; Orton, Daniel J.; Moore, Ronald J.; Meng, Da; Clauss, Therese RW; Aldrich, Joshua T.; Lipton, Mary S.; Pasa-Tolic, Ljiljana

    2013-06-05

    Enrichment of bacterial phosphopeptides is an essential step prior to bottom-up mass spectrometry-based analysis of the phosphoproteome, which is fundamental to understanding the role of phosphoproteins in cell signaling and regulation of protein activity. We developed an automated IMAC system to enrich strong cation exchange-fractionated phosphopeptides from the soluble proteome of Escherichia coli MG1655 grown on minimal medium. Initial demonstration of the system resulted in identification of 75 phosphopeptides covering 52 phosphoproteins. Consistent with previous studies, many of these phosphoproteins are involved in the carbohydrate portion of central metabolism. The automated system utilizes a large capacity IMAC column that can effectively enrich phosphopeptides from a bacterial sample by increasing peptide loading and reducing the wash time. An additional benefit of the automated IMAC system is reduced labor and associated costs.

  1. Robust phosphoproteome enrichment using monodisperse microsphere-based immobilized titanium (IV) ion affinity chromatography

    NARCIS (Netherlands)

    Zhou, H.; Ye, M.; Dong, J.; Corradini, E.; Cristobal, A.; Heck, A.J.R.; zou, H.; Mohammed, S.

    2013-01-01

    Mass spectrometry (MS)-based proteomics has become the preferred tool for the analysis of protein phosphorylation. To be successful at such an endeavor, there is a requirement for an efficient enrichment of phosphopeptides. This is necessary because of the substoichiometric nature of phosphorylation

  2. Transient conformational modification of immunoglobulin G during purification by protein A affinity chromatography.

    Science.gov (United States)

    Gagnon, Pete; Nian, Rui; Leong, Denise; Hoi, Aina

    2015-05-22

    Exposure of three native IgG1 monoclonal antibodies to 100mM acetate, pH 3.5 had no significant effect on their hydrodynamic size (11.5±0.5nm), while elution from protein A with the same buffer created a conformation of 5.5±1.0nm. Formation of the reduced-size conformation was preceded by the known destabilization of the second constant domain of the heavy chain (Cγ2) by contact with protein A, then compounded by exposure to low pH, creating extended flexibility in the hinge-Cγ2 region and allowing the Fab region to fold over the Fc region. The reduced-size conformation was necessary for complete elution. It persisted unchanged for at least 7 days under elution conditions. Physiological conditions restored native size, and it was maintained on re-exposure to 100mM acetate, pH 3.5. Protein A-mediated destabilization and subsequent restoration of native size did not create aggregates, but the reduced-size conformation was more susceptible to aggregation by secondary stress than native antibody. Protein A-mediated formation of the reduced-size conformation is probably universal during purification of human IgG1 antibodies, and may occur with other subclasses and IgG from other species, as well as Fc-fusion proteins. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Conformational plasticity of IgG during protein A affinity chromatography.

    Science.gov (United States)

    Gagnon, Pete; Nian, Rui

    2016-02-12

    Single step elution of a protein A column with 100mM acetate pH 3.5 produced a curvilinear gradient with pH dropping steeply at first then more gradually as it approached endpoint. IgG with a native hydrodynamic diameter of 11.5 nm began to elute at pH 6.0 with a size of 9.4 nm. IgG size continued to decrease across the peak, reaching a minimum of 2.2 nm at pH 3.9. Secondary structure of early eluting IgG was only mildly affected but later eluting fractions became increasingly non-native with the 2.2 nm population exhibiting the highest proportion of β-sheet and lowest random coil of all conformations. Size reduction and structural change of IgG through this portion of the elution peak were attributed dominantly to a pre-existing tendency of highly concentrated IgG to adopt reduced size conformations at low pH and conductivity, facilitated by the known conformational relaxation of IgG by its interaction with protein A. IgG size increased to 10.4 nm as elution pH approached 3.5 across the tailing fractions. Major loss of β-sheet and increase of α-helix and random coil were observed in parallel. Late elution of this population was attributed to it being eluted from interactions with 2 distinct protein A domains, one bound to each side of the Fc region, creating a higher dissociation constant than single-site Fc-protein A interactions, and requiring more severely disruptive conditions for elution. The high degree of conformational disruption was attributed to simultaneous interaction of both heavy chains with protein A. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Identification of novel DNA binding proteins using DNA affinity chromatography-pulldown

    OpenAIRE

    Jutras, Brandon L; Verma, Ashutosh; Stevenson, Brian

    2012-01-01

    Methods are presented through which one may isolate and identify novel bacterial DNA-binding proteins. Briefly, the DNA sequence of interest is affixed to beads, then incubated with bacterial cytoplasmic extract. Washes with buffers containing non-specific DNA and low salt concentrations will remove non-adhering and low-specificity DNA-binding proteins, while subsequent washes with higher salt concentrations will elute more specific DNA-binding proteins. Eluted proteins may then be identified...

  5. Isolation of antibodies specific to sickle hemoglobin by affinity chromatography using a synthetic peptide

    International Nuclear Information System (INIS)

    Young, N.S.; Curd, J.G.; Eastlake, A.; Furie, B.; Schechter, A.N.

    1975-01-01

    Antibodies to hemoglobin have been studied with a radioimmunoassay which employs [ 14 C]carbamylated (= carbamoylated) hemoglobin S. An antiserum raised against hemoglobin S, which initially discriminated poorly between hemoglobins S and A, was fractionated by absorption to a column of Sepharose to which a synthetic peptide corresponding to the first 13 amino-acid residues of the β chain of sickle hemoglobin had been covalently bound. A subpopulation of the antiserum was eluted from this column with 4 M guanidine . HCl. These antibodies showed binding to hemoglobin S but not to hemoglobin A and this interaction could be inhibited by the synthetic peptide. These antibodies, of demonstrated fine structural specificity, may be useful in the detection of sickle hemoglobin and in the study of its structure in solution

  6. performance liquid chromatography

    African Journals Online (AJOL)

    user

    2010-11-22

    Nov 22, 2010 ... ISSN 1684–5315 © 2010 Academic Journals. Full Length Research Paper. Determination ... Key words: Processed food, high-performance liquid chromatography, acrylamide, health hazard. INTRODUCTION. In the year 2002, the ... potatoes, breakfast cereals etc. It was thus confirmed that acrylamide has ...

  7. Congophilicity (Congo red affinity) of different beta2-microglobulin conformations characterized by dye affinity capillary electrophoresis

    DEFF Research Database (Denmark)

    Heegaard, N H; Sen, J W; Nissen, Mogens Holst

    2000-01-01

    The amyloidogenic protein beta-microglobulin was characterized by affinity capillary electrophoresis (CE). CE could separate conformational variants of beta2-microglobulin and with the amyloid-specific dye Congo red as a buffer additive it was possible to measure different Congo red......-affinities of native and abnormally folded beta2-microglobulin. We find that native beta2-microglobulin has an intermediate affinity for Congo red at pH 7.3 and that binding involves electrostatic interactions. The conformational variant of beta2-microglobulin that appears in acetonitrile solutions binds Congo red...... more strongly. Affinity CE using Congo red as a buffer additive is a new, simple, fast, and quantitative micromethod for the characterization of soluble conformational intermediates of amyloidogenic proteins....

  8. Two high-affinity ligand binding states of uterine estrogen receptor distinguished by modulation of hydrophobic environment

    International Nuclear Information System (INIS)

    Hutchens, T.W.; Li, C.M.; Zamah, N.M.; Besch, P.K.

    1987-01-01

    The steroid binding function of soluble (cytosolic) estrogen receptors from calf uteri was evaluated under conditions known to modify the extent of hydrophobic interaction with receptor-associated proteins. Receptor preparations were equilibrated into 6 M urea buffers and control buffers by chromatography through small columns of Sephadex G-25 or by dialysis at 0.6 0 C. Equilibrium dissociation constants (K/sub d/) and binding capacities (n) of experimental and control receptor preparations were determined by 13-point Scatchard analyses using concentrations of 17β-[ 3 H]estradiol from 0.05 to 10 nM. Nonspecific binding was determined at each concentration by parallel incubations with a 200-fold molar excess of the receptor-specific competitor diethylstilbestrol. The control receptor population was consistently found to be a single class of binding sites with a high affinity for estradiol which was unaffected by G-25 chromatography, by dialysis, by dilution, or by the presence of 0.4 M KCl. However, equilibration into 6 M urea induced a discrete (10-fold) reduction in receptor affinity to reveal a second, thermodynamically stable, high-affinity binding state. The presence of 0.4 M KCl did not significantly influence the discrete change in receptor affinity induced by urea. The effects of urea on both receptor affinity and binding capacity were reversible, suggesting a lack of covalent modification. These results demonstrate nonenzymatic means by which not only the binding capacity but also the affinity of receptor for estradiol can be reversibly controlled, suggesting that high concentrations of urea might be more effectively utilized during the physicochemical characterization and purification of steroid receptor proteins

  9. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    Science.gov (United States)

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a

  10. Affine Non-Local Means Image Denoising.

    Science.gov (United States)

    Fedorov, Vadim; Ballester, Coloma

    2017-05-01

    This paper presents an extension of the Non-Local Means denoising method, that effectively exploits the affine invariant self-similarities present in the images of real scenes. Our method provides a better image denoising result by grounding on the fact that in many occasions similar patches exist in the image but have undergone a transformation. The proposal uses an affine invariant patch similarity measure that performs an appropriate patch comparison by automatically and intrinsically adapting the size and shape of the patches. As a result, more similar patches are found and appropriately used. We show that this image denoising method achieves top-tier performance in terms of PSNR, outperforming consistently the results of the regular Non-Local Means, and that it provides state-of-the-art qualitative results.

  11. Affinity purification of recombinant human plasminogen activator ...

    African Journals Online (AJOL)

    Purpose: To develop processes for effective isolation and purification of recombinant human plasminogen activator (rhPA) from transgenic rabbit milk. Methods: Immunoaffinity chromatography was selected and improved by a special polyol-responsive monoclonal antibody (PR-mAb). Alteplase was used as immunogen ...

  12. Staircase Models from Affine Toda Field Theory

    CERN Document Server

    Dorey, P; Dorey, Patrick; Ravanini, Francesco

    1993-01-01

    We propose a class of purely elastic scattering theories generalising the staircase model of Al. B. Zamolodchikov, based on the affine Toda field theories for simply-laced Lie algebras g=A,D,E at suitable complex values of their coupling constants. Considering their Thermodynamic Bethe Ansatz equations, we give analytic arguments in support of a conjectured renormalisation group flow visiting the neighbourhood of each W_g minimal model in turn.

  13. On the Lp affine isoperimetric inequalities

    Indian Academy of Sciences (India)

    Projection bodies have a long and complicated history which goes back to Minkowski. [3]. The classical Petty projection ... (1.1) where. ∗. K is the polar body of projection body K and equality holds if and only if K is an ellipsoid. ..... circumscribed to Bn. Then there is an affine image of ˜K of K satisfying. Sp( ˜K) ≤ Sp(△n) and.

  14. Levels of Distribution and the Affine Sieve

    OpenAIRE

    Kontorovich, Alex

    2014-01-01

    This article is an expanded version of the author's lecture in the Basic Notions Seminar at Harvard, September 2013. Our goal is a brief and introductory exposition of aspects of two topics in sieve theory which have received attention recently: (1) the spectacular work of Yitang Zhang, under the title "Level of Distribution," and (2) the so-called "Affine Sieve," introduced by Bourgain-Gamburd-Sarnak.

  15. Tannakian duality for affine homogeneous spaces

    OpenAIRE

    Banica, Teodor

    2017-01-01

    Associated to any closed quantum subgroup $G\\subset U_N^+$ and any index set $I\\subset\\{1,\\ldots,N\\}$ is a certain homogeneous space $X_{G,I}\\subset S^{N-1}_{\\mathbb C,+}$, called affine homogeneous space. We discuss here the abstract axiomatization of the algebraic manifolds $X\\subset S^{N-1}_{\\mathbb C,+}$ which can appear in this way, by using Tannakian duality methods.

  16. Automata and cells in affine Weyl groups

    OpenAIRE

    Gunnells, Paul E.

    2008-01-01

    Let W~ be an affine Weyl group, and let C be a left, right, or two-sided Kazhdan--Lusztig cell in W~. Let Reduced (C) be the set of all reduced expressions of elements of C, regarded as a formal language in the sense of the theory of computation. We show that Reduced (C) is a regular language. Hence the reduced expressions of the elements in any Kazhdan--Lusztig cell can be enumerated by a finite state automaton.

  17. The position of the Gly-xxx-Gly motif in transmembrane segments modulates dimer affinity.

    Science.gov (United States)

    Johnson, Rachel M; Rath, Arianna; Deber, Charles M

    2006-12-01

    Although the intrinsic low solubility of membrane proteins presents challenges to their high-resolution structure determination, insight into the amino acid sequence features and forces that stabilize their folds has been provided through study of sequence-dependent helix-helix interactions between single transmembrane (TM) helices. While the stability of helix-helix partnerships mediated by the Gly-xxx-Gly (GG4) motif is known to be generally modulated by distal interfacial residues, it has not been established whether the position of this motif, with respect to the ends of a given TM segment, affects dimer affinity. Here we examine the relationship between motif position and affinity in the homodimers of 2 single-spanning membrane protein TM sequences: glycophorin A (GpA) and bacteriophage M13 coat protein (MCP). Using the TOXCAT assay for dimer affinity on a series of GpA and MCP TM segments that have been modified with either 4 Leu residues at each end or with 8 Leu residues at the N-terminal end, we show that in each protein, centrally located GG4 motifs are capable of stronger helix-helix interactions than those proximal to TM helix ends, even when surrounding interfacial residues are maintained. The relative importance of GG4 motifs in stabilizing helix-helix interactions therefore must be considered not only in its specific residue context but also in terms of the location of the interactive surface relative to the N and C termini of alpha-helical TM segments.

  18. Fluorescence and computational studies of thymidine phosphorylase affinity toward lipidated 5-FU derivatives

    Science.gov (United States)

    Lettieri, R.; D'Abramo, M.; Stella, L.; La Bella, A.; Leonelli, F.; Giansanti, L.; Venanzi, M.; Gatto, E.

    2018-04-01

    Thymidine phosphorylase (TP) is an enzyme that is up-regulated in a wide variety of solid tumors, including breast and colorectal cancers. It is involved in tumor growth and metastasis, for this reason it is one of the key enzyme to be inhibited, in an attempt to prevent tumor proliferation. However, it also plays an active role in cancer treatment, through its contribution in the conversion of the anti-cancer drug 5-fluorouracil (5-FU) to an irreversible inhibitor of thymidylate synthase (TS), responsible of the inhibition of the DNA synthesis. In this work, the intrinsic TP fluorescence has been investigated for the first time and exploited to study TP binding affinity for the unsubstituted 5-FU and for two 5-FU derivatives, designed to expose this molecule on liposomal membranes. These molecules were obtained by functionalizing the nitrogen atom with a chain consisting of six (1) or seven (2) units of glycol, linked to an alkyl moiety of 12 carbon atoms. Derivatives (1) and (2) exhibited an affinity for TP in the micromolar range, 10 times higher than the parent compound, irrespective of the length of the polyoxyethylenic spacer. This high affinity was maintained also when the compounds were anchored in liposomal membranes. Experimental results were supported by molecular dynamics simulations and docking calculations, supporting a feasible application of the designed supramolecular lipid structure in selective targeting of TP, to be potentially used as a drug delivery system or sensor device.

  19. Excited state electron affinity calculations for aluminum

    Science.gov (United States)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  20. Plasma-polymerized films providing selective affinity to the polarity of vaporized organic solvents

    International Nuclear Information System (INIS)

    Akimoto, Takuo; Ikeshita, Yusuke; Terashima, Ryo; Karube, Isao

    2009-01-01

    Plasma-polymerized films (PPFs) were fabricated as recognition membranes for a vapor-sensing device, and their affinity to vaporized organic solvents was evaluated with surface plasmon resonance. The affinity we intended to create is the selective sorption of the vaporized organic solvents depending on their polarity. For this purpose, acetonitrile, ethylenediamine (EDA), styrene, hexamethyldisiloxane (HMDSO), and hexamethyldisilazane were used to fabricate PPFs. Vaporized methanol, ethanol, and 1-propanol were used as high-polar solvents to be analyzed. Hexane, toluene, and p-xylene were used as low-polar solvents. As a result, the HMDSO-PPF with 97.3 o of contact angle was found to provide affinity to the low-polar solvents. In contrast, the EDA-PPF with 7.1 o of contact angle provided affinity to the high-polar solvents. Observations of the surface morphology of the HMDSO- and EDA-PPFs with a scanning electron microscope revealed that they are composed of nano-scale islands.

  1. Isolation and characterization of chimeric human Fc-expressing proteins using protein a membrane adsorbers and a streamlined workflow.

    Science.gov (United States)

    Burdick, Monica M; Reynolds, Nathan M; Martin, Eric W; Hawes, Jacquelyn V; Carlson, Grady E; Cuckler, Chaz M; Bates, Michael C; Barthel, Steven R; Dimitroff, Charles J

    2014-01-08

    Laboratory scale to industrial scale purification of biomolecules from cell culture supernatants and lysed cell solutions can be accomplished using affinity chromatography. While affinity chromatography using porous protein A agarose beads packed in columns is arguably the most common method of laboratory scale isolation of antibodies and recombinant proteins expressing Fc fragments of IgG, it can be a time consuming and expensive process. Time and financial constraints are especially daunting in small basic science labs that must recover hundreds of micrograms to milligram quantities of protein from dilute solutions, yet lack access to high pressure liquid delivery systems and/or personnel with expertise in bioseparations. Moreover, product quantification and characterization may also excessively lengthen processing time over several workdays and inflate expenses (consumables, wages, etc.). Therefore, a fast, inexpensive, yet effective protocol is needed for laboratory scale isolation and characterization of antibodies and other proteins possessing an Fc fragment. To this end, we have devised a protocol that can be completed by limited-experience technical staff in less than 9 hr (roughly one workday) and as quickly as 4 hr, as opposed to traditional methods that demand 20+ work hours. Most required equipment is readily available in standard biomedical science, biochemistry, and (bio)chemical engineering labs, and all reagents are commercially available. To demonstrate this protocol, representative results are presented in which chimeric murine galectin-1 fused to human Fc (Gal-1hFc) from cell culture supernatant was isolated using a protein A membrane adsorber. Purified Gal-1hFc was quantified using an expedited Western blotting analysis procedure and characterized using flow cytometry. The streamlined workflow can be modified for other Fc-expressing proteins, such as antibodies, and/or altered to incorporate alternative quantification and characterization

  2. Isolation and Characterization Of Chimeric Human Fc-expressing Proteins Using Protein A Membrane Adsorbers And A Streamlined Workflow

    Science.gov (United States)

    Burdick, Monica M.; Reynolds, Nathan M.; Martin, Eric W.; Hawes, Jacquelyn V.; Carlson, Grady E.; Cuckler, Chaz M.; Bates, Michael C.; Barthel, Steven R.; Dimitroff, Charles J.

    2014-01-01

    Laboratory scale to industrial scale purification of biomolecules from cell culture supernatants and lysed cell solutions can be accomplished using affinity chromatography. While affinity chromatography using porous protein A agarose beads packed in columns is arguably the most common method of laboratory scale isolation of antibodies and recombinant proteins expressing Fc fragments of IgG, it can be a time consuming and expensive process. Time and financial constraints are especially daunting in small basic science labs that must recover hundreds of micrograms to milligram quantities of protein from dilute solutions, yet lack access to high pressure liquid delivery systems and/or personnel with expertise in bioseparations. Moreover, product quantification and characterization may also excessively lengthen processing time over several workdays and inflate expenses (consumables, wages, etc.). Therefore, a fast, inexpensive, yet effective protocol is needed for laboratory scale isolation and characterization of antibodies and other proteins possessing an Fc fragment. To this end, we have devised a protocol that can be completed by limited-experience technical staff in less than 9 hr (roughly one workday) and as quickly as 4 hr, as opposed to traditional methods that demand 20+ work hours. Most required equipment is readily available in standard biomedical science, biochemistry, and (bio)chemical engineering labs, and all reagents are commercially available. To demonstrate this protocol, representative results are presented in which chimeric murine galectin-1 fused to human Fc (Gal-1hFc) from cell culture supernatant was isolated using a protein A membrane adsorber. Purified Gal-1hFc was quantified using an expedited Western blotting analysis procedure and characterized using flow cytometry. The streamlined workflow can be modified for other Fc-expressing proteins, such as antibodies, and/or altered to incorporate alternative quantification and characterization

  3. BAR domains, amphipathic helices and membrane-anchored proteins use the same mechanism to sense membrane curvature

    DEFF Research Database (Denmark)

    Madsen, Kenneth Lindegaard; Bhatia, V K; Gether, U

    2010-01-01

    The internal membranes of eukaryotic cells are all twists and bends characterized by high curvature. During recent years it has become clear that specific proteins sustain these curvatures while others simply recognize membrane shape and use it as "molecular information" to organize cellular proc...... on curved membranes instead of higher affinity as assumed so far. Finally, we integrate these new insights into the debate about which motifs are involved in sensing versus induction of membrane curvature and what role MCS proteins may play in biology....

  4. Improvement in performance of affinity gels containing Gly-D-Phe as a ligand to thermolysin due to increasing the spacer chain length.

    Science.gov (United States)

    Inouye, Kuniyo; Nakamura, Koji; Kusano, Masayuki; Yasukawa, Kiyoshi

    2007-08-01

    The aim of this study was to improve the performance of affinity gels containing glycyl-D-phenylalanine (Gly-D-Phe) as a ligand to thermolysin. Gly-D-Phe was immobilized to the resin through spacers of varying chain lengths. The resulting affinity gels had spacer chain lengths of 2 carbon atoms and 11 and 13 carbon-and-oxygen atoms (designated T2, T11, and T13), and were characterized for their binding abilities to thermolysin. Measurement of adsorption isotherms showed that the association constants to thermolysin were in the order T13 > T11 > T2. In affinity column chromatography, in which 5 mg thermolysin was applied onto 1-ml volumes of the gels, the adsorption ratios of thermolysin were also in the order T13 > T11 > T2. These results indicate that the performance of affinity gels is improved by increasing the spacer chain length to 13 carbon-and-oxygen atoms.

  5. Membrane Association of the PTEN Tumor Suppressor: Molecular Details of the Protein-Membrane Complex from SPR Binding Studies and Neutron Reflection

    Science.gov (United States)

    Shenoy, Siddharth; Shekhar, Prabhanshu; Heinrich, Frank; Daou, Marie-Claire; Gericke, Arne; Ross, Alonzo H.; Lösche, Mathias

    2012-01-01

    The structure and function of the PTEN phosphatase is investigated by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P2) act pronouncedly synergistic in pulling the enzyme to the membrane surface. The equilibrium dissociation constants for the binding of wild type (wt) PTEN to PS and PI(4,5)P2 were determined to be Kd∼12 µM and 0.4 µM, respectively, and Kd∼50 nM if both lipids are present. Membrane affinities depend critically on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P2. The PTEN mutations C124S and H93R show binding affinities that deviate strongly from those measured for the wt protein. Both mutants bind PS more strongly than wt PTEN. While C124S PTEN has at least the same affinity to PI(4,5)P2 and an increased apparent affinity to PI(3,4,5)P3, due to its lack of catalytic activity, H93R PTEN shows a decreased affinity to PI(4,5)P2 and no synergy in its binding with PS and PI(4,5)P2. Neutron reflection measurements show that the PTEN phosphatase “scoots" along the membrane surface (penetration protein, ∼60 Å away from the bilayer surface, in a rather compact structure. The combination of binding studies and neutron reflection allows us to distinguish between PTEN mutant proteins and ultimately may identify the structural features required for membrane binding and activation of PTEN. PMID:22505997

  6. The Use of MALDI-TOF-MS and In Silico Studies for Determination of Antimicrobial Peptides' Affinity to Bacterial Cells

    Science.gov (United States)

    Mandal, Santi M.; Migliolo, Ludovico; Franco, Octavio L.

    2012-11-01

    Several methods have been proposed for determining the binding affinity of antimicrobial peptides (AMPs) to bacterial cells. Here the utilization of MALDI-TOF-MS was proposed as a reliable and efficient method for high throughput AMP screening. The major advantage of the technique consists of finding AMPs that are selective and specific to a wide range of Gram-negative and -positive bacteria, providing a simple reliable screening tool to determine the potential candidates for broad spectrum antimicrobial drugs. As a prototype, amp-1 and -2 were used, showing highest activity toward Gram-negative and -positive membranes respectively. In addition, in silico molecular docking studies with both peptides were carried out for the membranes. In silico results indicated that both peptides presented affinity for DPPG and DPPE phospholipids, constructed in order to emulate an in vivo membrane bilayer. As a result, amp-1 showed a higher complementary surface for Gram-negative while amp-2 showed higher affinity to Gram-positive membranes, corroborating MS analyses. In summary, results here obtained suggested that in vitro methodology using MALDI-TOF-MS in addition to theoretical studies may be able to improve AMP screening quality.

  7. Affine fractal functions as bases of continuous funtions | Navascues ...

    African Journals Online (AJOL)

    The objective of the present paper is the study of affine transformations of the plane, which provide self-affine curves as attractors. The properties of these curves depend decisively of the coefficients of the system of affinities involved. The corresponding functions are continuous on a compact interval. If the scale factors are ...

  8. Comparative analysis of the affine scaling and Karmarkar's ...

    African Journals Online (AJOL)

    The affine scaling algorithm is a variant of the Karmarkar's algorithms. In this paper, we compare the affine scaling and the Karmarkar algorithms using the same test LP problem. Keywords: Polynomial-time, Complexity bound, Primal LP, Dual LP, Basic Solution, Degenerate Solution, Affine Space, Simplex and Polytope ...

  9. Duals of Affine Grassmann Codes and Their Relatives

    DEFF Research Database (Denmark)

    Beelen, P.; Ghorpade, S. R.; Hoholdt, T.

    2012-01-01

    Affine Grassmann codes are a variant of generalized Reed-Muller codes and are closely related to Grassmann codes. These codes were introduced in a recent work by Beelen Here, we consider, more generally, affine Grassmann codes of a given level. We explicitly determine the dual of an affine Grassm...

  10. Assembly of intermediates for rapid membrane fusion.

    Science.gov (United States)

    Harner, Max; Wickner, William

    2018-01-26

    Membrane fusion is essential for intracellular protein sorting, cell growth, hormone secretion, and neurotransmission. Rapid membrane fusion requires tethering and Sec1-Munc18 (SM) function to catalyze R-, Qa-, Qb-, and Qc-SNARE complex assembly in trans , as well as SNARE engagement by the SNARE-binding chaperone Sec17/αSNAP. The hexameric vacuolar HOPS ( ho motypic fusion and vacuole p rotein s orting) complex in the yeast Saccharomyces cerevisiae tethers membranes through its affinities for the membrane Rab GTPase Ypt7. HOPS also has specific affinities for the vacuolar SNAREs and catalyzes SNARE complex assembly, but the order of their assembly into a 4-SNARE complex is unclear. We now report defined assembly intermediates on the path to membrane fusion. We found that a prefusion intermediate will assemble with HOPS and the R, Qa, and Qc SNAREs, and that this assembly undergoes rapid fusion upon addition of Qb and Sec17. HOPS-tethered membranes and all four vacuolar SNAREs formed a complex that underwent an even more dramatic burst of fusion upon Sec17p addition. These findings provide initial insights into an ordered fusion pathway consisting of the following intermediates and events: 1) Rab- and HOPS-tethered membranes, 2) a HOPS:R:Qa:Qc trans -complex, 3) a HOPS:4-SNARE trans -complex, 4) an engagement with Sec17, and 5) the rapid lipid rearrangements during fusion. In conclusion, our results indicate that the R:Qa:Qc complex forms in the context of membrane, Ypt7, HOPS, and trans -SNARE assembly and serves as a functional intermediate for rapid fusion after addition of the Qb-SNARE and Sec17 proteins. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Screening and confirmation of myo-inositol trispyrophosphate (ITPP) in human urine by hydrophilic interaction liquid chromatography high resolution / high accuracy mass spectrometry for doping control purposes.

    Science.gov (United States)

    Görgens, Christian; Guddat, Sven; Schänzer, Wilhelm; Thevis, Mario

    2014-01-01

    Myo-inositol trispyrophosphate (ITPP) is a novel allosteric effector of haemoglobin with high permeation selectivity across the red blood cell plasma membrane. Due to its potential to reduce the oxygen affinity of haemoglobin, ITPP application results in an enhanced oxygen release in hypoxic tissues. Therefore, ITPP is being examined for the treatment of numerous illnesses that involve hypoxia, such as cardiovascular diseases, cancer or Alzheimer's disease. Similar to the prohibited substance Efaproxiral®, ITPP increases maximal exercise capacity in mice, providing high potential to be misused in sports. To keep up with cheating athletes, a fast and reliable liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for screening and confirmation of ITPP in human urine for doping control purposes was developed. According to the molecule's distinct hydrophilic properties, extraction from complex biological matrices is challenging and conventional reversed phase liquid chromatography (RPLC) separations are not suitable for its detection. Therefore an approach based on hydrophilic interaction liquid chromatography (HILIC) Orbitrap mass spectrometry was established. The methodology was fully validated for qualitative purposes. Screening and confirmation assay are characterized by satisfactory specificity and robustness, adequate intra-day (screening: 4.9-8.1%; confirmation: 2.0-6.7%) and inter-day precision (screening: 4.6-9.1%; confirmation: 1.8-6.6%), excellent linear correlations (>0.99) with sufficient LLOD in the sub ng/mL range (screening: 15 ng/mL; confirmation: 1 ng/mL). In addition it could be shown that ITPP is stable in human urine under the mandatory storage period and conditions for doping control laboratories. To our knowledge, this is the first validated 'dilute-and-inject' LC-MS/MS method for the reliable detection of ITPP in human urine. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Robotic membranes

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    , Vivisection and Strange Metabolisms, were developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts in Copenhagen as a means of engaging intangible digital data with tactile physical material. As robotic membranes, they are a dual examination...

  13. A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis

    Science.gov (United States)

    Simon, Mathilde Laetitia Audrey; Platre, Matthieu Pierre; Assil, Sonia; van Wijk, Ringo; Chen, William Yawei; Chory, Joanne; Dreux, Marlène; Munnik, Teun; Jaillais, Yvon

    2014-01-01

    Summary Phosphatidylinositolphosphates (PIPs) are phospholipids that contain a phosphorylated inositol head group. PIPs represent a minor fraction of the total phospholipids, yet they are involved in many regulatory processes such as cell signalling and intracellular trafficking. Membrane compartments are enriched or depleted in specific PIPs, which constitute a signature for these compartments and contribute to their identity. The precise subcellular localisation and dynamics of most PIP species is not fully understood in plants. Here, we designed genetically encoded biosensors with distinct relative affinities and expressed them stably in Arabidopsis thaliana. Analysis of this multi-affinity “PIPline” marker set revealed previously unrecognized localisation for various PIPs in root epidermis. Notably, we found that PI(4,5)P2 is able to drive PIP2-interacting protein domains to the plasma membrane in non-stressed root epidermal cells. Our analysis further revealed that there is a gradient of PI4P, with the highest concentration at the plasma membrane, intermediate concentration in post-Golgi/endosomal compartments and lowest concentration in the Golgi. Finally, we also uncovered that there is a similar gradient of PI3P from high in late endosomes to low in the tonoplast. All together our library extends the palette of available PIP biosensors and should promote rapid progress in our understanding of PIP dynamics in plants. PMID:24147788

  14. Solubilization and partial characterization of a microsomal high affinity GTPase

    International Nuclear Information System (INIS)

    Nicchitta, C.; Williamson, J.R.

    1987-01-01

    Isolated rat liver microsomes release sequestered Ca 2+ following addition of GTP. In contrast to permeabilized cells, GTP dependent microsomal Ca 2+ release requires low concentrations of polyethylene glycol (PEG). They have identified a microsomal, PEG-sensitive high affinity GTPase which shares a number of characteristics with the GTP-dependent Ca 2+ release system. To aid in further characterization of this activity they have initiated studies on the solubilization and purification of the microsomal GTPases. When microsomes are solubilized under the following conditions (150 mM NaCl, 5 mg protein/ml, 1% Triton X-114) PEG sensitive GTPase activity selectively partitions into the detergent rich phase of the Triton X-114 extract. As observed in intact microsomal membranes the Triton X-114 soluble GTPase is maximally stimulated by 3% PEG. Half maximal stimulation is observed at 1% PEG. PEG increases the Vmax of this activity; no effects on Km were observed. The Km for GTP of the detergent soluble GTPase is 5 μM. This GTPase is sensitive to inhibition by sulfhydryl reagents. PEG-sensitive GTPase activity was completely inhibited in the presence of 25 μM p-hydroxymercuribenzoate (PHMB); half maximal inhibition was observed at 5 μM. Labeling of the Triton X-114 extract with the photosensitive compound [ 32 P] 8-azido GTP indicated the presence of two prominent GTP binding proteins of approximate molecular weights 17 and 54 kD

  15. Regulation of membrane fusion and secretory events in the sea urchin embryo

    Energy Technology Data Exchange (ETDEWEB)

    Roe, J.L.

    1990-01-01

    Membrane fusion and secretory events play a key role in fertilization and early development in the sea urchin embryo. To investigate the mechanism of membrane fusion, the effect of inhibitors of metalloendoprotease activity was studied on two model systems of cell fusion; fertilization and spiculogenesis by primary mesenchyme cells in the embryo. Both the zinc chelator, 1,10-phenanthroline, and peptide metalloprotease substrates were found to inhibit both fertilization and gamete fusion, while peptides that are not substrates of metalloproteases did not affect either process. Primary mesenchyme cells form the larval skeleton in the embryo by deposition of mineral and an organic matrix into a syncytial cavity formed by fusion of filopodia of these cells. Metalloprotease inhibitors were found to inhibit spiculogenesis both in vivo and in cultures of isolated primary mesenchyme cells, and the activity of a metalloprotease of the appropriate specificity was found in the primary mesenchyme cells. These two studies implicate the activity of a metalloprotease in a necessary step in membrane fusion. Following fertilization, exocytosis of the cortical granules results in the formation of the fertilization envelope and the hyaline layer, that surround the developing embryo. The hatching enzyme is secreted by the blastula stage sea urchin embryo, which proteolyzes the fertilization envelope surrounding the embryo, allowing the embryo to hatch. Using an assay that measures {sup 125}I-fertilization envelope degradation, the hatching enzyme was identified as a 33 kDa metalloprotease, and was purified by ion-exchange and affinity chromatography from the hatching media of Strongylocentrotus purpuratus embryos. The hatching enzyme showed a substrate preference for only a minor subset of fertilization envelope proteins.

  16. Simple and Efficient Purification of Recombinant Proteins Using the Heparin-Binding Affinity Tag.

    Science.gov (United States)

    Jayanthi, Srinivas; Gundampati, Ravi Kumar; Kumar, Thallapuranam Krishnaswamy Suresh

    2017-11-01

    Heparin, a member of the glycosaminoglycan family, is known to interact with more than 400 different types of proteins. For the past few decades, significant progress has been made to understand the molecular details involved in heparin-protein interactions. Based on the structural knowledge available from the FGF1-heparin interaction studies, we have designed a novel heparin-binding peptide (HBP) affinity tag that can be used for the simple, efficient, and cost-effective purification of recombinant proteins of interest. HBP-tagged fusion proteins can be purified by heparin Sepharose affinity chromatography using a simple sodium chloride gradient to elute the bound fusion protein. In addition, owing to the high density of positive charges on the HBP tag, recombinant target proteins are preferably expressed in their soluble forms. The purification of HBP-fusion proteins can also be achieved in the presence of chemical denaturants, including urea. Additionally, polyclonal antibodies raised against the affinity tag can be used to detect HBP-fused target proteins with high sensitivity. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  17. A dual protease approach for expression and affinity purification of recombinant proteins.

    Science.gov (United States)

    Raran-Kurussi, Sreejith; Waugh, David S

    2016-07-01

    We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to "stick" to its fusion partners during affinity purification. Published by Elsevier Inc.

  18. Exponentiality for the construct of affine sets

    Directory of Open Access Journals (Sweden)

    Veerle Claes

    2008-04-01

    Full Text Available The topological construct SSET of affine sets over the two-point set S contains many interesting topological subconstructs such as TOP, the construct of topological spaces, and CL, the construct of closure spaces. For this category and its subconstructs cartesian closedness is studied. We first give a classification of the subconstructs of SSET according to their behaviour with respect to exponenttiality. We formulate sufficient conditions implying that a subconstruct behaves similar to CL. On the other hand, we characterize a conglomerate of subconstructs with behaviour similar to TOP. Finally, we construct the cartesian closed topological hull of SSET.

  19. Connection between the Affine and conformal Affine Toda models and their Hirota's solution

    International Nuclear Information System (INIS)

    Constantinidis, C.P.; Ferreira, L.A.; Gomes, J.F.; Zimerman, A.H.

    1992-01-01

    It is shown that the Affine Toda models (AT) constitute a gauge fixed version of the Conformal Affine Toda model (CAT). This result enables one to map every solution of the AT models into an infinite number of solutions of the corresponding CAT models, each one associated to a point of the orbit of the conformal group. The Hirota's τ-function are introduced and soliton solutions for the AT and CAT models associated to SL (r+1) and SP (r) are constructed. (author)

  20. A study of hypoxia sensitive and specific 99Tcm-MIBI binding protein of mitochondrial membrane in rat myocardium

    International Nuclear Information System (INIS)

    Zeng Jun; Xie Wenhui; Han Maoqiang

    2000-01-01

    Objective: To investigate the 99 Tc m -MIBI binding mechanism independent of the mitochondrial membrane potential. Methods: The cardiac mitochondrial fragments and heart slices were prepared. The techniques of the thin layer chromatography (TLC) and polyacrylamide gel electrophoresis (PAGE) were employed to characterize the specific binding sites of 99 Tc m -MIBI. Results: Two separate peaks of 99 Tc m -MIBI binding activity in mitochondrial fragments were identified in TLC. One of these binding activity peaks was characterized with a K d of (5.8±1.7) nmol/L and B max of (11.5±3.1) pmol/mg of protein. The bound 99 Tc m -MIBI could be displaced permanently with 20 μmol/L 99 Tc-MIBI and transiently with 50 μmol/L cyclosproin A. Three discrete 90 Tc m -MIBI labelled proteins of MW about 4.3 x 10 4 , 2.3 x 10 4 and 1.0 x 10 4 were revealed in PAGE. The clearance of 99 tc m -MIBI could be also induced by hypoxia. Conclusions: There is a specific 99 Tc m -MIBI binding protein which is sensitive to hypoxia metabolism in myocardial mitochondrial membrane with at least two protein subunits of different functions and affinities

  1. The major antigenic membrane protein of "Candidatus Phytoplasma asteris" selectively interacts with ATP synthase and actin of leafhopper vectors.

    Directory of Open Access Journals (Sweden)

    Luciana Galetto

    Full Text Available Phytoplasmas, uncultivable phloem-limited phytopathogenic wall-less bacteria, represent a major threat to agriculture worldwide. They are transmitted in a persistent, propagative manner by phloem-sucking Hemipteran insects. Phytoplasma membrane proteins are in direct contact with hosts and are presumably involved in determining vector specificity. Such a role has been proposed for phytoplasma transmembrane proteins encoded by circular extrachromosomal elements, at least one of which is a plasmid. Little is known about the interactions between major phytoplasma antigenic membrane protein (Amp and insect vector proteins. The aims of our work were to identify vector proteins interacting with Amp and to investigate their role in transmission specificity. In controlled transmission experiments, four Hemipteran species were identified as vectors of "Candidatus Phytoplasma asteris", the chrysanthemum yellows phytoplasmas (CYP strain, and three others as non-vectors. Interactions between a labelled (recombinant CYP Amp and insect proteins were analysed by far Western blots and affinity chromatography. Amp interacted specifically with a few proteins from vector species only. Among Amp-binding vector proteins, actin and both the α and β subunits of ATP synthase were identified by mass spectrometry and Western blots. Immunofluorescence confocal microscopy and Western blots of plasma membrane and mitochondrial fractions confirmed the localisation of ATP synthase, generally known as a mitochondrial protein, in plasma membranes of midgut and salivary gland cells in the vector Euscelidius variegatus. The vector-specific interaction between phytoplasma Amp and insect ATP synthase is demonstrated for the first time, and this work also supports the hypothesis that host actin is involved in the internalization and intracellular motility of phytoplasmas within their vectors. Phytoplasma Amp is hypothesized to play a crucial role in insect transmission specificity.

  2. Bacterial Cell Wall Precursor Phosphatase Assays Using Thin-layer Chromatography (TLC) and High Pressure Liquid Chromatography (HPLC).

    Science.gov (United States)

    Pazos, Manuel; Otten, Christian; Vollmer, Waldemar

    2018-03-20

    Peptidoglycan encases the bacterial cytoplasmic membrane to protect the cell from lysis due to the turgor. The final steps of peptidoglycan synthesis require a membrane-anchored substrate called lipid II, in which the peptidoglycan subunit is linked to the carrier lipid undecaprenol via a pyrophosphate moiety. Lipid II is the target of glycopeptide antibiotics and several antimicrobial peptides, and is degraded by 'attacking' enzymes involved in bacterial competition to induce lysis. Here we describe two protocols using thin-layer chromatography (TLC) and high pressure liquid chromatography (HPLC), respectively, to assay the digestion of lipid II by phosphatases such as Colicin M or the LXG toxin protein TelC from Streptococcus intermedius . The TLC method can also monitor the digestion of undecaprenyl (pyro)phosphate, whereas the HPLC method allows to separate the di-, mono- or unphosphorylated disaccharide pentapeptide products of lipid II.

  3. Two stage binding of glucagon to receptors in rat liver plasma membranes

    International Nuclear Information System (INIS)

    Wyborski, R.J.; Horwitz, E.M.; Gurd, R.S.

    1986-01-01

    A homogeneous class of noncooperative receptors in isolated rat hepatocytes undergoes a time- and temperature-dependent conformation change with glucagon binding. A comparable system exists in rat liver plasma membranes. Dissociation assays (30 0 C) quantify the number of receptors in each conformational state. Membranes incubated without GTP demonstrated two dissociation rates. The fraction of hormone bound to the high affinity state increases with incubation time to a limiting value. With isolated membranes and a concentration of 0.2 nM [( 125 I)Iodotyrosyl 10 ]glucagon, the fraction of the high affinity form is significantly greater than that found in isolated hepatocytes. Previous work without GTP indicated that a lack of cooperativity characterized the liver membrane system. Incubation of membranes with 0.1 mM GTP increases the K/sub D/ as determined by competition assays while the slope factor (.98 +/- 0.04) indicated noncooperativity. Furthermore, in the presence of GTP a significantly greater proportion of receptors is in the low affinity state while in the absence of GTP more are in the high affinity state. The data are consistent with a mechanism by which GTP diminishes the conversion of the low affinity state to the high affinity state

  4. From affine Hecke algebras to boundary symmetries

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2005-01-01

    Motivated by earlier works we employ appropriate realizations of the affine Hecke algebra and we recover previously known non-diagonal solutions of the reflection equation for the U q (gl n -bar ) case. The corresponding N site spin chain with open boundary conditions is then constructed and boundary non-local charges associated to the non-diagonal solutions of the reflection equation are derived, as coproduct realizations of the reflection algebra. With the help of linear intertwining relations involving the aforementioned solutions of the reflection equation, the symmetry of the open spin chain with the corresponding boundary conditions is exhibited, being essentially a remnant of the U q (gl n -bar ) algebra. More specifically, we show that representations of certain boundary non-local charges commute with the generators of the affine Hecke algebra and with the local Hamiltonian of the open spin chain for a particular choice of boundary conditions. Furthermore, we are able to show that the transfer matrix of the open spin chain commutes with a certain number of boundary non-local charges, depending on the choice of boundary conditions

  5. Heparin affinity purification of extracellular vesicles

    NARCIS (Netherlands)

    Balaj, Leonora; Atai, Nadia A.; Chen, Weilin; Mu, Dakai; Tannous, Bakhos A.; Breakefield, Xandra O.; Skog, Johan; Maguire, Casey A.

    2015-01-01

    Extracellular vesicles (EVs) are lipid membrane vesicles released by cells. They carry active biomolecules including DNA, RNA, and protein which can be transferred to recipient cells. Isolation and purification of EVs from culture cell media and biofluids is still a major challenge. The most widely

  6. Spiral Countercurrent Chromatography

    Science.gov (United States)

    Ito, Yoichiro; Knight, Martha; Finn, Thomas M.

    2013-01-01

    For many years, high-speed countercurrent chromatography conducted in open tubing coils has been widely used for the separation of natural and synthetic compounds. In this method, the retention of the stationary phase is solely provided by the Archimedean screw effect by rotating the coiled column in the centrifugal force field. However, the system fails to retain enough of the stationary phase for polar solvent systems such as the aqueous–aqueous polymer phase systems. To address this problem, the geometry of the coiled channel was modified to a spiral configuration so that the system could utilize the radially acting centrifugal force. This successfully improved the retention of the stationary phase. Two different types of spiral columns were fabricated: the spiral disk assembly, made by stacking multiple plastic disks with single or four interwoven spiral channels connected in series, and the spiral tube assembly, made by inserting the tetrafluoroethylene tubing into a spiral frame (spiral tube support). The capabilities of these column assemblies were successfully demonstrated by separations of peptides and proteins with polar two-phase solvent systems whose stationary phases had not been well retained in the earlier multilayer coil separation column for high-speed countercurrent chromatography. PMID:23833207

  7. Interaction Free Energies of Eight Sodium Salts and a Phosphatidylcholine Membrane

    DEFF Research Database (Denmark)

    Wang, C. H.; Ge, Y.; Mortensen, J.

    2011-01-01

    Many recent reports have discussed specific effects of anions on the properties of lipid membranes and possible roles of such effects within biochemistry. One key parameter in both theoretical and experimental treatments of membrane-salt interactions is the net affinity, that is, the free energy...

  8. Streptozotocin-induced diabetes reduces the density of [125I]-endothelin-binding sites in rat cardiac membranes.

    OpenAIRE

    Nayler, W. G.; Liu, J. J.; Panagiotopoulos, S.; Casley, D. J.

    1989-01-01

    The effect of acute, streptozotocin-induced diabetes on the affinity (KD), density (Bmax) and selectivity of specific, high affinity binding sites for [125I]-endothelin [( 125I]-ET) in rat cardiac membrane fragments was determined. Three days after a single i.v. bolus dose of streptozotocin (60 mg kg-1), the density of [125I]ET binding sites was reduced (P less than 0.01) without changes in affinity or selectivity.

  9. Affinity capillary electrophoresis for the assessment of binding affinity of carbohydrate-based cholera toxin inhibitors

    NARCIS (Netherlands)

    Aizpurua-Olaizola, Oier; Sastre Torano, Javier; Pukin, Aliaksei; Fu, Ou; Boons, Geert Jan; de Jong, Gerhardus J; Pieters, Roland J

    2018-01-01

    Developing tools for the study of protein carbohydrate interactions is an important goal in glycobiology. Cholera toxin inhibition is an interesting target in this context, as its inhibition may help to fight against cholera. For the study of novel ligands an affinity capillary electrophoresis (ACE)

  10. Affinity extraction of emerging contaminants from water based on bovine serum albumin as a binding agent.

    Science.gov (United States)

    Papastavros, Efthimia; Remmers, Rachael A; Snow, Daniel D; Cassada, David A; Hage, David S

    2018-03-01

    Affinity sorbents using bovine serum albumin as a binding agent were developed and tested for the extraction of environmental contaminants from water. Computer simulations based on a countercurrent distribution model were also used to study the behavior of these sorbents. Several model drugs, pesticides, and hormones of interest as emerging contaminants were considered in this work, with carbamazepine being used as a representative analyte when coupling the albumin column on-line with liquid chromatography and tandem mass spectrometry. The albumin column was found to be capable of extracting carbamazepine from aqueous solutions that contained trace levels of this analyte. Further studies of the bovine serum albumin sorbent indicated that it had higher retention under aqueous conditions than a traditional C 18 support for most of the tested emerging contaminants. Potential advantages of using these protein-based sorbents included the low cost of bovine serum albumin and its ability to bind to a relatively wide range of drugs and related compounds. It was also shown how simulations could be used to describe the elution behavior of the model compounds on the bovine serum albumin sorbents as an aid in optimizing the retention and selectivity of these supports for use with liquid chromatography or methods such as liquid chromatography with tandem mass spectrometry. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. MEMBRANE LEc EXPRESSION IN BREAST CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Ya. A. Udalova

    2009-01-01

    Full Text Available Affine chromatography was used to isolate Lec antibodies from the sera of a healthy female donor with the high titers of these anti- bodies, which were labeled with biotin. The study enrolled 51 patients with primary breast cancer (BC. Antigen expression was found by immunohistochemistry and flow cytometry. With these two techniques being used, the detection rate of Lec expression in BC cells was 65% (33/51; the antigen was most frequently found by flow cytometry as compared with immunohistochemistry: 72 and 58% of cases, respectively.

  12. Treatment of some radioactive wastes by using new chelating membranes

    International Nuclear Information System (INIS)

    Hegazy, S.A.; El-Adham, K.; Abdel Geleel, M.; Soliman, S.A.

    2000-01-01

    The preparation of chelating membranes containing nitrile and carboxylic acid as functional groups was investigated. The modification of such membranes by chemical treatments to produce significant changes in their properties was studied. This modification results in a higher rate of exchange and higher capacity. The applicability of such modified membranes in the removal of Co-60 and Cs-137 from their wastes were tested. The dependence of these radioactive nuclides uptake on the time and degree of grafting for H CI-, NH 2 OH-and KOH-treated membranes was investigated. It was found that the adsorption rate and capacity were higher for KOH-treated membrane than those for the NH 2 OH and H CI treated ones. The prepared grafted membranes have a good affinity towards the adsorption or chelation with Co-60 and Cs-137. This result may make such prepared materials acceptable for practicable use in some radioactive waste treatments and recovery

  13. Modulating uranium binding affinity in engineered Calmodulin EF-hand peptides: effect of phosphorylation

    International Nuclear Information System (INIS)

    Pardoux, Romain; Sauge-Merle, Sandrine; Lemaire, David; Guilloreau, Luc; Berthomieu, Catherine; Delangle, Pascale; Adriano, Jean-Marc

    2012-01-01

    To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T 9 TKE 12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K d =25±6 nM to K d =5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the sub-nanomolar range (K d = 0.25±0.06 nM). FTIR analyses showed that the phospho-threonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν as (P-O) and ν s (P-O) IR modes of phospho-threonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν as (UO 2 ) 2+ vibration (from 923 cm -1 to 908 cm -1 ) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH. (authors)

  14. Modulating uranium binding affinity in engineered calmodulin EF-hand peptides: effect of phosphorylation.

    Directory of Open Access Journals (Sweden)

    Romain Pardoux

    Full Text Available To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9TKE(12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d = 25±6 nM to K(d = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d = 0.25±0.06 nM. FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as(P-O and ν(s(P-O IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as(UO(2(2+ vibration (from 923 cm(-1 to 908 cm(-1 was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.

  15. Structure of a High-Affinity

    Energy Technology Data Exchange (ETDEWEB)

    Saphire, E.O.; Montero, M.; Menendez, A.; Houten, N.E.van; Irving, M.B.; Pantophlet, R.; Swick, M.B.; Parren, P.W.H.I.; Burton, D.R.; Scott, J.K.; Wilson, I.A.; /Scripps

    2007-07-13

    The human antibody b12 recognizes a discontinuous epitope on gp120 and is one of the rare monoclonal antibodies that neutralize a broad range of primary human immunodeficiency virus type 1 (HIV-1) isolates. We previously reported the isolation of B2.1, a dimeric peptide that binds with high specificity to b12 and competes with gp120 for b12 antibody binding. Here, we show that the affinity of B2.1 was improved 60-fold over its synthetic-peptide counterpart by fusing it to the N terminus of a soluble protein. This affinity, which is within an order of magnitude of that of gp120, probably more closely reflects the affinity of the phage-borne peptide. The crystal structure of a complex between Fab of b12 and B2.1 was determined at 1.8 Angstrom resolution. The structural data allowed the differentiation of residues that form critical contacts with b12 from those required for maintenance of the antigenic structure of the peptide, and revealed that three contiguous residues mediate B2.1's critical contacts with b12. This single region of critical contact between the B2.1 peptide and the b12 paratope is unlikely to mimic the discontinuous key binding residues involved in the full b12 epitope for gp120, as previously identified by alanine scanning substitutions on the gp120 surface. These structural observations are supported by experiments that demonstrate that B2.1 is an ineffective immunogenic mimic of the b12 epitope on gp120. Indeed, an extensive series of immunizations with B2.1 in various forms failed to produce gp120 cross-reactive sera. The functional and structural data presented here, however, suggest that the mechanism by which b12 recognizes the two antigens is very different. Here, we present the first crystal structure of peptide bound to an antibody that was originally raised against a discontinuous protein epitope. Our results highlight the challenge of producing immunogens that mimic discontinuous protein epitopes, and the necessity of combining

  16. Doping phosphoric acid in polybenzimidazole membranes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    He, Ronghuan; Li, Qingfeng; Jensen, Jens Oluf

    2007-01-01

    Polybenzimidazole (PBI) membranes were doped in phosphoric acid solutions of different concentrations at room temperature. The doping chemistry was studied using the Scatchard method. The energy distribution of the acid complexation in polymer membranes is heterogeneous, that is, there are two...... different types of sites in PBI for the acid doping. The protonation constants of PBI by phosphoric acid are found to be 12.7 L mol(-1) (K-1) for acid complexing sites with higher affinity, and 0.19 L mol(-1) (K-2) for the sites with lower affinity. The dissociation constants for the complexing acid onto...... these two types of PBI sites are found to be 5.4 X 10(-4) and 3.6 X 10(-2), respectively, that is, about 10 times smaller than that of aqueous phosphoric acid in the first case but 5 times higher in the second. The proton conducting mechanism is also discussed....

  17. Countercurrent tangential chromatography for large-scale protein purification.

    Science.gov (United States)

    Shinkazh, Oleg; Kanani, Dharmesh; Barth, Morgan; Long, Matthew; Hussain, Daniar; Zydney, Andrew L

    2011-03-01

    Recent advances in cell culture technology have created significant pressure on the downstream purification process, leading to a "downstream bottleneck" in the production of recombinant therapeutic proteins for the treatment of cancer, genetic disorders, and cardiovascular disease. Countercurrent tangential chromatography overcomes many of the limitations of conventional column chromatography by having the resin (in the form of a slurry) flow through a series of static mixers and hollow fiber membrane modules. The buffers used in the binding, washing, and elution steps flow countercurrent to the resin, enabling high-resolution separations while reducing the amount of buffer needed for protein purification. The results obtained in this study provide the first experimental demonstration of the feasibility of using countercurrent tangential chromatography for the separation of a model protein mixture containing bovine serum albumin and myoglobin using a commercially available anion exchange resin. Batch uptake/desorption experiments were used in combination with critical flux data for the hollow fiber filters to design the countercurrent tangential chromatography system. A two-stage batch separation yielded the purified target protein at >99% purity with 94% recovery. The results clearly demonstrate the potential of using countercurrent tangential chromatography for the large-scale purification of therapeutic proteins. Copyright © 2010 Wiley Periodicals, Inc.

  18. Carbon nanotubes-A resin for electrochemically modulated liquid chromatography.

    Science.gov (United States)

    Brammen, Markus; Fraga-García, Paula; Berensmeier, Sonja

    2017-03-01

    Electrochemically modulated liquid chromatography is a special form of ion exchange chromatography in which the separation process is controlled by applying an electric potential to the stationary phase. This form of chromatography has so far only been applied in research studies. The present study shows that multiwalled carbon nanotubes are an effective resin material for an electrochemically modulated chromatography process. The experiments are carried out in a newly designed column that enables the packing of nanomaterials. We investigate the influence of the applied potential on the retention and elution of maleic acid, determine the dynamic binding capacity, and calculate the utilization degree of the electrical charge in the adsorption process. Moreover, the stability of the resin and the membrane over more than 200 working hours are presented. In addition to the stability, their sturdiness and inexpensive price are important qualities that make multiwalled carbon nanotubes interesting for application as the stationary phase in an electrochemically driven process. The investigated chromatography technique represents a promising separation process for future applications as a preparative step in biotechnology as well as other life science fields. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Na+-K+-ATPase in rat skeletal muscle: muscle fiber-specific differences in exercise-induced changes in ion affinity and maximal activity

    DEFF Research Database (Denmark)

    Juel, Carsten

    2008-01-01

    It is unclear whether muscle activity reduces or increases Na(+)-K(+)-ATPase maximal in vitro activity in rat skeletal muscle, and it is not known whether muscle activity changes the Na(+)-K(+)-ATPase ion affinity. The present study uses quantification of ATP hydrolysis to characterize muscle fiber...... membranes of glycolytic muscle, which abolished the fiber-type difference in Na(+) affinity. K(m) for K(+) (in the presence of Na(+)) was not influenced by running. Running only increased the maximal in vitro activity (V(max)) in total membranes from soleus, whereas V(max) remained constant in the three...... other muscles tested. In conclusion, muscle activity induces fiber type-specific changes both in Na(+) affinity and maximal in vitro activity of the Na(+)-K(+)-ATPase. The underlying mechanisms may involve translocation of subunits and increased association between PLM units and the alphabeta complex...

  20. Data Stream Clustering With Affinity Propagation

    KAUST Repository

    Zhang, Xiangliang

    2014-07-09

    Data stream clustering provides insights into the underlying patterns of data flows. This paper focuses on selecting the best representatives from clusters of streaming data. There are two main challenges: how to cluster with the best representatives and how to handle the evolving patterns that are important characteristics of streaming data with dynamic distributions. We employ the Affinity Propagation (AP) algorithm presented in 2007 by Frey and Dueck for the first challenge, as it offers good guarantees of clustering optimality for selecting exemplars. The second challenging problem is solved by change detection. The presented StrAP algorithm combines AP with a statistical change point detection test; the clustering model is rebuilt whenever the test detects a change in the underlying data distribution. Besides the validation on two benchmark data sets, the presented algorithm is validated on a real-world application, monitoring the data flow of jobs submitted to the EGEE grid.

  1. Identification of the magnesium-binding domain of the high affinity ATP binding-site of the Bacillus subtilis and Escherichia coli seca protein

    NARCIS (Netherlands)

    van der Wolk, J.P.W.; Klose, M; de Wit, Janny; Blaauwen, T.den; Freudl, R; Driessen, A.J.M.

    1995-01-01

    The homodimeric SecA protein is the peripheral subunit of the translocase, and couples the hydrolysis of ATP to the translocation of precursor proteins across the bacterial cytoplasmic membrane. The high affinity ATP binding activity of SecA resides in the amino-terminal domain of SecA. This domain

  2. Dielectrokinetic chromatography devices

    Science.gov (United States)

    Chirica, Gabriela S; Fiechtner, Gregory J; Singh, Anup K

    2014-12-16

    Disclosed herein are methods and devices for dielectrokinetic chromatography. As disclosed, the devices comprise microchannels having at least one perturber which produces a non-uniformity in a field spanning the width of the microchannel. The interaction of the field non-uniformity with a perturber produces a secondary flow which competes with a primary flow. By decreasing the size of the perturber the secondary flow becomes significant for particles/analytes in the nanometer-size range. Depending on the nature of a particle/analyte present in the fluid and its interaction with the primary flow and the secondary flow, the analyte may be retained or redirected. The composition of the primary flow can be varied to affect the magnitude of primary and/or secondary flows on the particles/analytes and thereby separate and concentrate it from other particles/analytes.

  3. Multiplex gas chromatography

    Science.gov (United States)

    Valentin, Jose R.

    1990-01-01

    The principles of the multiplex gas chromatography (GC) technique, which is a possible candidate for chemical analysis of planetary atmospheres, are discussed. Particular attention is given to the chemical modulators developed by present investigators for multiplex GC, namely, the thermal-desorption, thermal-decomposition, and catalytic modulators, as well as to mechanical modulators. The basic technique of multiplex GC using chemical modulators and a mechanical modulator is demonstrated. It is shown that, with the chemical modulators, only one gas stream consisting of the carrier in combination with the components is being analyzed, resulting in a simplified instrument that requires relatively few consumables. The mechanical modulator demonstrated a direct application of multiplex GC for the analysis of gases in atmosphere of Titan at very low pressures.

  4. Stepping stones in modern chromatography

    Czech Academy of Sciences Publication Activity Database

    Janák, Jaroslav

    2010-01-01

    Roč. 71, 9-10 (2010), s. 747-750 ISSN 0009-5893 Institutional research plan: CEZ:AV0Z40310501 Keywords : liquid chromatography * gas chromatography * separation Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.075, year: 2010

  5. Distribution of a 69-kD laminin-binding protein in aortic and microvascular endothelial cells: modulation during cell attachment, spreading, and migration

    DEFF Research Database (Denmark)

    Yannariello-Brown, J; Wewer, U; Liotta, L

    1988-01-01

    Affinity chromatography and immunolocalization techniques were used to investigate the mechanism(s) by which endothelial cells interact with the basement membrane component laminin. Bovine aortic endothelial cells (BAEC) membranes were solubilized and incubated with a laminin-Sepharose affinity...

  6. Antibody-based affinity cryo-EM grid.

    Science.gov (United States)

    Yu, Guimei; Li, Kunpeng; Jiang, Wen

    2016-05-01

    The Affinity Grid technique combines sample purification and cryo-Electron Microscopy (cryo-EM) grid preparation into a single step. Several types of affinity surfaces, including functionalized lipids monolayers, streptavidin 2D crystals, and covalently functionalized carbon surfaces have been reported. More recently, we presented a new affinity cryo-EM approach, cryo-SPIEM, which applies the traditional Solid Phase Immune Electron Microscopy (SPIEM) technique to cryo-EM. This approach significantly simplifies the preparation of affinity grids and directly works with native macromolecular complexes without need of target modifications. With wide availability of high affinity and high specificity antibodies, the antibody-based affinity grid would enable cryo-EM studies of the native samples directly from cell cultures, targets of low abundance, and unstable or short-lived intermediate states. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Binding of Serotonin to Lipid Membranes

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Wang, Chunhua; Cruys-Bagger, Nicolaj

    2013-01-01

    with the lipid matrix of the synaptic membrane. However, membrane–5-HT interactions remain controversial and superficially investigated. Fundamental knowledge of this interaction appears vital in discussions of putative roles of 5-HT, and we have addressed this by thermodynamic measurements and molecular...... dynamics (MD) simulations. 5-HT was found to interact strongly with lipid bilayers (partitioning coefficient ∼1200 in mole fraction units), and this is highly unusual for a hydrophilic solute like 5-HT which has a bulk, oil–water partitioning coefficient well below unity. It follows that membrane affinity...... must rely on specific interactions, and the MD simulations identified the salt-bridge between the primary amine of 5-HT and the lipid phosphate group as the most important interaction. This interaction anchored cationic 5-HT in the membrane interface with the aromatic ring system pointing inward...

  8. Development of a nonlinear model for the prediction of response times of glucose affinity sensors using concanavalin A and dextran and the development of a differential osmotic glucose affinity sensor

    Science.gov (United States)

    Reis, Louis G.

    With the increasing prevalence of diabetes in the United States and worldwide, blood glucose monitoring must be accurate and reliable. Current enzymatic sensors have numerous disadvantages that make them unreliable and unfavorable among patients. Recent research in glucose affinity sensors correct some of the problems that enzymatic sensors experience. Dextran and concanavalin A are two of the more common components used in glucose affinity sensors. When these sensors were first explored, a model was derived to predict the response time of a glucose affinity sensor using concanavalin A and dextran. However, the model assumed the system was linear and fell short of calculating times representative of the response times determined through experimental tests with the sensors. In this work, a new model that uses the Stokes-Einstein Equation to demonstrate the nonlinear behavior of the glucose affinity assay was developed to predict the response times of similar glucose affinity sensors. In addition to the device tested by the original linear model, additional devices were identified and tested with the proposed model. The nonlinear model was designed to accommodate the many different variations between systems. The proposed model was able to accurately calculate response times for sensors using the concanavalin A-dextran affinity assay with respect to the experimentally reported times by the independent research groups. Parameter studies using the nonlinear model were able to identify possible setbacks that could compromise the response of thesystem. Specifically, the model showed that the improper use of asymmetrical membranes could increase the response time by as little as 20% or more as the device is miniaturized. The model also demonstrated that systems using the concanavalin Adextran assay would experience higher response times in the hypoglycemic range. This work attempted to replicate and improve an osmotic glucose affinity sensor. The system was designed to

  9. Calcium Binding by Ro 60 Multiple Antigenic Peptides on PVDF Membrane.

    Science.gov (United States)

    Kurien, Biji T; Bachmann, Michael P

    2015-01-01

    Antibodies directed against ribonucleoprotein (RNP) particles are observed in systemic lupus erythematosus. Ro RNP particle is one such target. It is composed of a 60 kDa protein (Ro 60 or SS-A) that is non-covalently associated with at least one of the four short uridine-rich RNAs (the hY RNAs). Previously, we showed that multiple antigenic peptides (MAPs) made from the sequence of the Ro 60 autoantigen could be used, using double-immunodiffusion studies, enzyme-linked immunosorbant assay, affinity chromatography, and surface plasmon resonance, to show intramolecular and intermolecular protein-protein interaction within the Ro 60 RNP particle. We also observed that calcium is important in mediating this interaction. We hypothesized, therefore, that 60 kDa Ro is a calcium-binding protein. To investigate this, we electrophoresed 60 kDa Ro MAPs, transferred them to PVDF membrane, and assayed calcium binding using the Quin-2 system. Several Ro 60 MAPs were found to bind calcium using this assay, as well as bovine serum albumin, another calcium-binding protein. However, a MAP constructed from the Sm autoantigen did not bind to calcium. These data, along with our observation regarding the involvement of calcium in protein-protein interaction occurring between Ro 60 antigen and Ro 60 MAPs, makes us propose that Ro 60 antigen is a calcium-binding protein.

  10. Choline Uptake in Agrobacterium tumefaciens by the High-Affinity ChoXWV Transporter▿

    Science.gov (United States)

    Aktas, Meriyem; Jost, Kathinka A.; Fritz, Christiane; Narberhaus, Franz

    2011-01-01

    Agrobacterium tumefaciens is a facultative phytopathogen that causes crown gall disease. For successful plant transformation A. tumefaciens requires the membrane lipid phosphatidylcholine (PC), which is produced via the methylation and the PC synthase (Pcs) pathways. The latter route is dependent on choline. Although choline uptake has been demonstrated in A. tumefaciens, the responsible transporter(s) remained elusive. In this study, we identified the first choline transport system in A. tumefaciens. The ABC-type choline transporter is encoded by the chromosomally located choXWV operon (ChoX, binding protein; ChoW, permease; and ChoV, ATPase). The Cho system is not critical for growth and PC synthesis. However, [14C]choline uptake is severely reduced in A. tumefaciens choX mutants. Recombinant ChoX is able to bind choline with high affinity (equilibrium dissociation constant [KD] of ≈2 μM). Since other quaternary amines are bound by ChoX with much lower affinities (acetylcholine, KD of ≈80 μM; betaine, KD of ≈470 μM), the ChoXWV system functions as a high-affinity transporter with a preference for choline. Two tryptophan residues (W40 and W87) located in the predicted ligand-binding pocket are essential for choline binding. The structural model of ChoX built on Sinorhizobium meliloti ChoX resembles the typical structure of substrate binding proteins with a so-called “Venus flytrap mechanism” of substrate binding. PMID:21803998

  11. Bovine serum albumin-GABA-His-Pro-NH2: an immunogen for production of higher affinity antisera for TRH

    International Nuclear Information System (INIS)

    Youngblood, W.W.; Moray, L.J.; Busby, W.H.; Kizer, J.S.

    1983-01-01

    Coupling the synthesize hapten, GABA-His-Pro-NH 2 to bovine serum albumin at a molar ratio of 18 : 1 by means of water-soluble carbodiimide produced an immunogen which stimulated the rapid production in New Zealand white rabbits of antisera with an affinity (2.42+-0.3x10 9 l/mol) for TRH, some 8-fold higher than that of antisera (0.33+-0.03x10 9 l/mol) raised by immunization with a conjugate produced by the currently accepted bis-diazotized-benzidine bridging technique. These higher affinity antibodies when used in a standard TRH radioimmunoassay permitted the detection of less than 1/pg of TRH per assay tube and showed an extremely low affinity for the two major metabolites of TRH, p-Glu-His-Pro-COOH and His-Pro diketopiperazine (4.84x10 4 and 4.0x10 4 l/mol, respectively). Application of this newer radioimmunoassay to the measurement of TRH in brain tissue yielded measurements of TRH content similar to those determined by current RIA methods. Chromatography of whole crude brain extracts revealed one major immunoreactive peak corresponding to authentic TRH. It is concluded that immunization of rabbits with this hapten rapidly produces antisera with a high affinity for TRH suitable for the development of a very sensitive TRH radioimmunoassay. (Auth.)

  12. Membrane-based techniques for the separation and purification of proteins: an overview.

    Science.gov (United States)

    Saxena, Arunima; Tripathi, Bijay P; Kumar, Mahendra; Shahi, Vinod K

    2009-01-30

    Membrane processes are increasingly reported for various applications in both upstream and downstream technology, such as microfiltration, ultrafiltration, emerging processes as membrane chromatography, high performance tangential flow filtration and electrophoretic membrane contactor. Membrane-based processes are playing critical role in the field of separation/purification of biotechnological products. Membranes became an integral part of biotechnology and improvements in membrane technology are now focused on high resolution of bioproduct. In bioseparation, applications of membrane technologies include protein production/purification, protein-virus separation. This manuscript provides an overview of recent developments and published literature in membrane technology, focusing on special characteristics of the membranes and membrane-based processes that are now used for the production and purification of proteins.

  13. Covalent labeling of a high-affinity, guanyl nucleotide sensitive parathyroid hormone receptor in canine renal cortex

    International Nuclear Information System (INIS)

    Nissenson, R.A.; Karpf, D.; Bambino, T.; Winer, J.; Canga, M.; Nyiredy, K.; Arnaud, C.D.

    1987-01-01

    Putative parathyroid hormone (PTH) receptors in canine renal membranes were affinity labeled with 125 I-bPTH(1-34) using the heterobifunctional cross-linking reagent N-hydroxysuccinimidyl 4-azido-benzoate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of a major 85,000 molecular weight (M/sub r/) PTH binding component, the labeling of which was inhibited by nanomolar concentrations of unlabeled PTH and by micromolar concentrations of 5'-guanylyl imidodiphosphate [Gpp-(NH)p]. Labeling was not influenced by the unrelated peptides insulin and arginine vasopressin. Minor PTH binding components of M/sub r/ 55,000 and 130,000 were also seen, and labeling of these was likewise sensitive to unlabeled PTH and to Gpp(NH)p. Omission of protease inhibitors during the isolation of plasma membranes resulted in the loss of the M/sub r/ 85,000 PTH binding species and the appearance of an M/sub r/ 70,000 form. Several minor PTH binding components also were observed. Equilibrium binding studies showed that such membranes had an affinity for PTH indistinguishable from that in membranes isolated with protease inhibitors and displaying a major M/sub r/ 85,000 PTH binding species. The authors conclude that the major form of the adenylate cyclase coupled PTH receptor in canine renal membranes is an M/sub r/ 85,000 protein. An endogenous enzyme, probably a lysosomal cathepsin, can cleave this form to produce an M/sub r/ 70,000 receptor that retains full functional activity with respect to high-affinity, guanyl nucleotide sensitive PTH binding. The ability to covalently label the PTH receptor in high yield represents a major step toward the structural characterization of this important detector molecule

  14. Separation of cannabinoid receptor affinity and efficacy in delta-8-tetrahydrocannabinol side-chain analogues

    Science.gov (United States)

    Griffin, Graeme; Williams, Stephanie; Aung, Mie Mie; Razdan, Raj K; Martin, Billy R; Abood, Mary E

    2001-01-01

    The activities of a number of side-chain analogues of delta-8-tetrahydrocannabinol (Δ8-THC) in rat cerebellar membrane preparations were tested.The affinities of each compound for the CB1 receptor were compared by their respective abilities to displace [3H]-SR141716A and their efficacies compared by stimulation of [35S]-GTPγS binding.It was found that the affinities varied from 0.19±0.03 nM for 3-norpentyl-3-[6′-cyano,1′,1′-dimethyl]hexyl-Δ8-THC to 395±66.3 nM for 5′-[N-(4-chlorophenyl)]-1′,1′-dimethyl-carboxamido-Δ8-THC.The efficacies of these compounds varied greatly, ranging from the very low efficacy exhibited to acetylenic compounds such as 1′-heptyn-Δ8-THC and 4′-octyn-Δ8-THC to higher efficacy compounds such as 5′-(4-cyanophenoxy)-1′,1′-dimethyl-Δ8-THC and 5′-[N-(4-aminosulphonylphenyl)]-1′,1′ dimethyl-carboxamido Δ8-THC. All agonist activities were antagonized by the CB1-selective antagonist SR141716A.It was found that a ligand's CB1 affinity and efficacy are differentially altered by modifications in the side-chain. Decreasing the flexibility of the side-chain reduced efficacy but largely did not alter affinity. Additionally, the positioning of electrostatic moieties, such as cyano groups, within the side-chain also has contrasting effects on these two properties.In summary, this report details the characterization of a number of novel Δ8-THC analogues in rat cerebellar membranes. It provides the first detailed pharmacological analysis of how the inclusion of electrostatic moieties in the side-chain and also how alteration of the side-chain's flexibility may differentially affect a CB1 cannabinoid receptor ligand's affinity and efficacy. PMID:11159703

  15. Vacuum Liquid Chromatography of Cystoseira usneoides for purification of antioxidant compounds.

    Directory of Open Access Journals (Sweden)

    Sylvie Santos

    2014-07-01

    The results suggest that the compounds we are trying to isolate have strong affinity with the stationary phase, and therefore, weren’t eluted with the solvents, even with the increasing polarity along the chromatography. Even though VLC, with a silica gel column, have already revealed to be efficient for separation of compounds extracted with dichloromethane, as regards to antioxidant compounds, these continue to be a great challenge.

  16. Ligand binding affinity and changes in the lateral diffusion of receptor for advanced glycation endproducts (RAGE).

    Science.gov (United States)

    Syed, Aleem; Zhu, Qiaochu; Smith, Emily A

    2016-12-01

    The effect of ligand on the lateral diffusion of receptor for advanced glycation endproducts (RAGE), a receptor involved in numerous pathological conditions, remains unknown. Single particle tracking experiments that use quantum dots specifically bound to hemagglutinin (HA)-tagged RAGE (HA-RAGE) are reported to elucidate the effect of ligand binding on HA-RAGE diffusion in GM07373 cell membranes. The ligand used in these studies is methylglyoxal modified-bovine serum albumin (MGO-BSA) containing advanced glycation end products modifications. The binding affinity between soluble RAGE and MGO-BSA increases by 1.8 to 9.7-fold as the percent primary amine modification increases from 24 to 74% and with increasing negative charge on the MGO-BSA. Ligand incubation affects the HA-RAGE diffusion coefficient, the radius of confinement, and duration of confinement. There is, however, no correlation between MGO-BSA ligand binding affinity with soluble RAGE and the extent of the changes in HA-RAGE lateral diffusion. The ligand induced changes to HA-RAGE lateral diffusion do not occur when cholesterol is depleted from the cell membrane, indicating the mechanism for ligand-induced changes to HA-RAGE diffusion is cholesterol dependent. The results presented here serve as a first step in unraveling how ligand influences RAGE lateral diffusion. Copyright © 2016. Published by Elsevier B.V.

  17. Characterization of a high affinity cocaine binding site in rat brain

    International Nuclear Information System (INIS)

    Calligaro, D.; Eldefrawi, M.

    1986-01-01

    Binding of [ 3 H]cocaine to synaptic membranes from whole rat brain was reversible and saturable. Nonlinear regression analysis of binding isotherms indicated two binding affinities: one with k/sub d/ = 16 nM, B/sub max/ = 0.65 pmoles/mg protein and the other with K/sub d/ = 660 nM, B/sub max/ = 5.1 pmoles/mg protein. The high-affinity binding of [ 3 H]cocaine was sensitive to the actions of trypsin and chymotrypsin but not carboxypeptidase, and was eliminated by exposure of the membranes to 95 0 C for 5 min. Specific binding at 2 nM was higher at pH 8.8 than at pH 7.0. Binding of [ 3 H]cocaine (15 nM) was inhibited by increasing concentrations of Na + ions. Several cocaine analogues, neurotransmitter uptake inhibitors and local anesthetics displaced specific [ 3 H]cocaine binding at 2 nM with various potencies. The cocaine analogue (-)-norcocaine was the most potent (IC 50 = 10 nM), while the local anesthetic tetracaine was the least potent in inhibiting [ 3 H]cocaine binding. Several biogenic amine uptake inhibitors, including tricyclic antidepressants and phencyclidine, had IC 50 values below μM concentrations

  18. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    Science.gov (United States)

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (H II ) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi 1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi 1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Ceramic membranes for gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Vincente-Mingarro, I.M. de; Pitarch, J.A. [Tecnologia y Gestion de la Innovacion, Madrid (Spain)

    1998-11-01

    The project is being carried out jointly by TGI, S.A., CIEMAT and CSIC-ICM to develop and evaluate new inorganic membranes of a ceramic type, with nanometric pore size for separation of contaminants and fuel enrichment, in gas mixtures from coal gasification. In order to achieve both the highest active and selective surface, a candle (150 mm length and 60 mm in diameter), with 30-40 % porosity and pore sizes of {lt}1 {mu}m was developed. The processing steps include the slip-casting of the first layer (porous support) in a way than after thermal treatment (1400-1600{degree}C) the desirable shape dimensions, strength, porosity and pore size were obtained. Then the support was dipped successively (colloidal filtration over the casting porous piece) in an appropriate suspension of alumina with lower grain size. The top layer was obtained by the sol-gel process so that through successive setting and heat treatment the pores were reduced to the nanometre size. CVD and CVI techniques were set up to develop membranes for gas separation with a high selectivity level. Experimental chemical infiltration `Membranes Development` on porous substrates has been achieved on disk and candle-shaped materials. Characterisation was by spectrophotometry (IRS). Kinetic studies of coating in order to find out reproducible conditions at low temperature were also carried out. Uniform recovery over the whole membrane surface is wanted. The CIEMAT`s Hot Gas Separation Plant (HGSP) works with gas mixtures at a maximum design temperature 773 K and pressures up to 50 bar. It comprises: a gas supply unit equipped with flow, temperature and pressure measuring and control systems; a heating system within the membrane which must be leak proof for high pressures; and an in-line gas chromatography system thus allowing the chemical composition of the gas entering, permeated and retained to be measured. 7 figs.

  20. Green fluorescent protein purification through Immobilized Metal Affinity Chromatografy (IMAC) and its relevance for Biomedical Science students during Biochemistry practical classes at La Trobe University – Australia

    OpenAIRE

    de Melo Silva, Alex Jose José; Alves, Lumar Lucena; Pakay, Julian

    2016-01-01

    This work was performed as an integrated practical of a Biomedical Science undergraduate course of Biochemistry subject, in order to demonstrate used techniques to purify of Green Fluorescent Protein (GFP). To perform the experiments the main methodology applied was the by immobilized metal affinity chromatography (IMAC).  The open reading frame for enhanced GFP was sub-cloned into the pQE30 expression vector. The subsequent production of protein tagged N-terminally with hexahistidine, facili...