WorldWideScience

Sample records for melting temperature assay

  1. Sequence diversity within the HA-1 gene as detected by melting temperature assay without oligonucleotide probes

    Mattiuz Pier

    2005-10-01

    Full Text Available Abstract Background The minor histocompatibility antigens (mHags are self-peptides derived from common cellular proteins and presented by MHC class I and II molecules. Disparities in mHags are a potential risk for the development of graft-versus-host disease (GvHD in the recipients of bone marrow from HLA-identical donors. Two alleles have been identified in the mHag HA-1. The correlation between mismatches of the mHag HA-1 and GvHD has been suggested and methods to facilitate large-scale testing were afterwards developed. Methods We used sequence specific primer (SSP PCR and direct sequencing to detect HA-1 gene polymorphisms in a sample of 131 unrelated Italian subjects. We then set up a novel melting temperature (Tm assay that may help identification of HA-1 alleles without oligonucleotide probes. Results We report the frequencies of HA-1 alleles in the Italian population and the presence of an intronic 5 base-pair deletion associated with the immunogeneic allele HA-1H. We also detected novel variable sites with respect to the consensus sequence of HA-1 locus. Even though recombination/gene conversion events are documented, there is considerable linkage disequilibrium in the data. The gametic associations between HA-1R/H alleles and the intronic 5-bp ins/del polymorphism prompted us to try the Tm analysis with SYBR® Green I. We show that the addition of dimethylsulfoxide (DMSO during the assay yields distinct patterns when amplicons from HA-1H homozygotes, HA-1R homozygotes, and heterozygotes are analysed. Conclusion The possibility to use SYBR® Green I to detect Tm differences between allelic variants is attractive but requires great caution. We succeeded in allele discrimination of the HA-1 locus using a relatively short (101 bp amplicon, only in the presence of DMSO. We believe that, at least in certain assets, Tm assays may benefit by the addition of DMSO or other agents affecting DNA strand conformation and stability.

  2. Melting temperature of graphite

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  3. Methods for Melting Temperature Calculation

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  4. A cost-effective melting temperature assay for the detection of single-nucleotide polymorphism in the MBL2 gene of HIV-1-infected children

    Arraes L.C.

    2006-01-01

    Full Text Available We report a fast (less than 3 h and cost-effective melting temperature assay method for the detection of single-nucleotide polymorphisms in the MBL2 gene. The protocol, which is based on the Corbett Rotor Gene real time PCR platform and SYBR Green I chemistry, yielded, in the cohorts studied, sensitive (100% and specific (100% PCR amplification without the use of costly fluorophore-labeled probes or post-PCR manipulation. At the end of the PCR, the dissociation protocol included a slow heating from 60º to 95ºC in 0.2ºC steps, with an 8-s interval between steps. Melting curve profiles were obtained using the dissociation software of the Rotor Gene-3000 apparatus. Samples were analyzed in duplicate and in different PCR runs to test the reproducibility of this technique. No supplementary data handling is required to determine the MBL2 genotype. MBL2 genotyping performed on a cohort of 164 HIV-1-positive Brazilian children and 150 healthy controls, matched for age and sex and ethnic origin, yielded reproducible results confirmed by direct sequencing of the amplicon performed in blind. The three MBL2 variants (Arg52Cys, Gly54Asp, Gly57Glu were grouped together and called allele 0, while the combination of three wild-type alleles was called allele A. The frequency of the A/A homozygotes was significantly higher among healthy controls (0.68 than in HIV-infected children (0.55; P = 0.0234 and the frequency of MBL2 0/0 homozygotes was higher among HIV-1-infected children than healthy controls (P = 0.0296. The 0 allele was significantly more frequent among the 164 HIV-1-infected children (0.29 than among the 150 healthy controls (0.18; P = 0.0032. Our data confirm the association between the presence of the mutated MBL2 allele (allele 0 and HIV-1 infection in perinatally exposed children. Our results are in agreement with the literature data which indicate that the presence of the allele 0 confers a relative risk of 1.37 for HIV-1 infection through

  5. Melt processed high-temperature superconductors

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  6. Analysis of HIV using a high resolution melting (HRM) diversity assay: automation of HRM data analysis enhances the utility of the assay for analysis of HIV incidence.

    Cousins, Matthew M; Swan, David; Magaret, Craig A; Hoover, Donald R; Eshleman, Susan H

    2012-01-01

    HIV diversity may be a useful biomarker for discriminating between recent and non-recent HIV infection. The high resolution melting (HRM) diversity assay was developed to quantify HIV diversity in viral populations without sequencing. In this assay, HIV diversity is expressed as a single numeric HRM score that represents the width of a melting peak. HRM scores are highly associated with diversity measures obtained with next generation sequencing. In this report, a software package, the HRM Diversity Assay Analysis Tool (DivMelt), was developed to automate calculation of HRM scores from melting curve data. DivMelt uses computational algorithms to calculate HRM scores by identifying the start (T1) and end (T2) melting temperatures for a DNA sample and subtracting them (T2 - T1 =  HRM score). DivMelt contains many user-supplied analysis parameters to allow analyses to be tailored to different contexts. DivMelt analysis options were optimized to discriminate between recent and non-recent HIV infection and to maximize HRM score reproducibility. HRM scores calculated using DivMelt were compared to HRM scores obtained using a manual method that is based on visual inspection of DNA melting curves. HRM scores generated with DivMelt agreed with manually generated HRM scores obtained from the same DNA melting data. Optimal parameters for discriminating between recent and non-recent HIV infection were identified. DivMelt provided greater discrimination between recent and non-recent HIV infection than the manual method. DivMelt provides a rapid, accurate method of determining HRM scores from melting curve data, facilitating use of the HRM diversity assay for large-scale studies.

  7. Tin in granitic melts: The role of melting temperature and protolith composition

    Wolf, Mathias; Romer, Rolf L.; Franz, Leander; López-Moro, Francisco Javier

    2018-06-01

    Granite bound tin mineralization typically is seen as the result of extreme magmatic fractionation and late exsolution of magmatic fluids. Mineralization, however, also could be obtained at considerably less fractionation if initial melts already had enhanced Sn contents. We present chemical data and results from phase diagram modeling that illustrate the dominant roles of protolith composition, melting conditions, and melt extraction/evolution for the distribution of Sn between melt and restite and, thus, the Sn content of melts. We compare the element partitioning between leucosome and restite of low-temperature and high-temperature migmatites. During low-temperature melting, trace elements partition preferentially into the restite with the possible exception of Sr, Cd, Bi, and Pb, that may be enriched in the melt. In high-temperature melts, Ga, Y, Cd, Sn, REE, Pb, Bi, and U partition preferentially into the melt whereas Sc, V, Cr, Co, Ni, Mo, and Ba stay in the restite. This contrasting behavior is attributed to the stability of trace element sequestering minerals during melt generation. In particular muscovite, biotite, titanite, and rutile act as host phases for Sn and, therefore prevent Sn enrichment in the melt as long as they are stable phases in the restite. As protolith composition controls both the mineral assemblage and modal contents of the various minerals, protolith composition eventually also controls the fertility of a rock during anatexis, restite mineralogy, and partitioning behavior of trace metals. If a particular trace element is sequestered in a phase that is stable during partial melting, the resulting melt is depleted in this element whereas the restite becomes enriched. Melt generation at high temperature may release Sn when Sn-hosts become unstable. If melt has not been lost before the breakdown of Sn-hosts, Sn contents in the melt will increase but never will be high. In contrast, if melt has been lost before the decomposition of Sn

  8. Force-dependent melting of supercoiled DNA at thermophilic temperatures.

    Galburt, E A; Tomko, E J; Stump, W T; Ruiz Manzano, A

    2014-01-01

    Local DNA opening plays an important role in DNA metabolism as the double-helix must be melted before the information contained within may be accessed. Cells finely tune the torsional state of their genomes to strike a balance between stability and accessibility. For example, while mesophilic life forms maintain negatively superhelical genomes, thermophilic life forms use unique mechanisms to maintain relaxed or even positively supercoiled genomes. Here, we use a single-molecule magnetic tweezers approach to quantify the force-dependent equilibrium between DNA melting and supercoiling at high temperatures populated by Thermophiles. We show that negatively supercoiled DNA denatures at 0.5 pN lower tension at thermophilic vs. mesophilic temperatures. This work demonstrates the ability to monitor DNA supercoiling at high temperature and opens the possibility to perform magnetic tweezers assays on thermophilic systems. The data allow for an estimation of the relative energies of base-pairing and DNA bending as a function of temperature and support speculation as to different general mechanisms of DNA opening in different environments. Lastly, our results imply that average in vivo DNA tensions range between 0.3 and 1.1 pN. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Melt analysis of mismatch amplification mutation assays (Melt-MAMA: a functional study of a cost-effective SNP genotyping assay in bacterial models.

    Dawn N Birdsell

    Full Text Available Single nucleotide polymorphisms (SNPs are abundant in genomes of all species and biologically informative markers extensively used across broad scientific disciplines. Newly identified SNP markers are publicly available at an ever-increasing rate due to advancements in sequencing technologies. Efficient, cost-effective SNP genotyping methods to screen sample populations are in great demand in well-equipped laboratories, but also in developing world situations. Dual Probe TaqMan assays are robust but can be cost-prohibitive and require specialized equipment. The Mismatch Amplification Mutation Assay, coupled with melt analysis (Melt-MAMA, is flexible, efficient and cost-effective. However, Melt-MAMA traditionally suffers from high rates of assay design failures and knowledge gaps on assay robustness and sensitivity. In this study, we identified strategies that improved the success of Melt-MAMA. We examined the performance of 185 Melt-MAMAs across eight different pathogens using various optimization parameters. We evaluated the effects of genome size and %GC content on assay development. When used collectively, specific strategies markedly improved the rate of successful assays at the first design attempt from ~50% to ~80%. We observed that Melt-MAMA accurately genotypes across a broad DNA range (~100 ng to ~0.1 pg. Genomic size and %GC content influence the rate of successful assay design in an independent manner. Finally, we demonstrated the versatility of these assays by the creation of a duplex Melt-MAMA real-time PCR (two SNPs and conversion to a size-based genotyping system, which uses agarose gel electrophoresis. Melt-MAMA is comparable to Dual Probe TaqMan assays in terms of design success rate and accuracy. Although sensitivity is less robust than Dual Probe TaqMan assays, Melt-MAMA is superior in terms of cost-effectiveness, speed of development and versatility. We detail the parameters most important for the successful application of

  10. Melting temperature of uranium - plutonium mixed oxide fuel

    Ishii, Tetsuya; Hirosawa, Takashi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960`s and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960`s and that some of the 1960`s data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO{sub 2} - PuO{sub 2} - PuO{sub 1.61} ideal solution model, and then formulized. (J.P.N.)

  11. Melting temperature of uranium - plutonium mixed oxide fuel

    Ishii, Tetsuya; Hirosawa, Takashi

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960's and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960's and that some of the 1960's data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO 2 - PuO 2 - PuO 1.61 ideal solution model, and then formulized. (J.P.N.)

  12. Can Nano-Particle Melt below the Melting Temperature of Its Free Surface Partner?

    Sui Xiao-Hong; Qin Shao-Jing; Wang Zong-Guo; Kang Kai; Wang Chui-Lin

    2015-01-01

    The phonon thermal contribution to the melting temperature of nano-particles is inspected. The discrete summation of phonon states and its corresponding integration form as an approximation for a nano-particle or for a bulk system have been analyzed. The discrete phonon energy levels of pure size effect and the wave-vector shifts of boundary conditions are investigated in detail. Unlike in macroscopic thermodynamics, the integration volume of zero-mode of phonon for a nano-particle is not zero, and it plays an important role in pure size effect and boundary condition effect. We find that a nano-particle will have a rising melting temperature due to purely finite size effect; a lower melting temperature bound exists for a nano-particle in various environments, and the melting temperature of a nano-particle with free boundary condition reaches this lower bound. We suggest an easy procedure to estimation the melting temperature, in which the zero-mode contribution will be excluded, and only several bulk quantities will be used as input. We would like to emphasize that the quantum effect of discrete energy levels in nano-particles, which is not present in early thermodynamic studies on finite size corrections to melting temperature in small systems, should be included in future researches. (condensed matter: structural, mechanical, and thermal properties)

  13. Temperature dependence of nitrogen solubility in iron base multicomponent melts

    Sokolov, V.M.; Koval'chuk, L.A.

    1986-01-01

    Method for calculating temperature dependence of nitrogen solubility in iron base multicomponent melts is suggested. Application areas of existing methods were determined and advantages of the new method for calculating nitrogen solubility in multicomponent-doped iron melts (Fe-Ni-Cr-Mo, Fe-Ni-Cr-Mn, Fe-Mo-V) at 1773-2073 K are shown

  14. Noise temperature measurements for the determination of the thermodynamic temperature of the melting point of palladium

    Edler, F.; Kuhne, M.; Tegeler, E. [Bundesanstalt Physikalisch-Technische, Berlin (Germany)

    2004-02-01

    The thermodynamic temperature of the melting point of palladium in air was measured by noise thermometric methods. The temperature measurement was based on noise comparison using a two-channel arrangement to eliminate parasitic noises of electronic components by cross correlation. Three miniature fixed points filled with pure palladium (purity: {approx}99.99%, mass: {approx}90 g) were used to realize the melts of the fixed point metal. The measured melting temperature of palladium in air amounted to 1552.95 deg C {+-} 0.21 K (k = 2). This temperature is 0.45 K lower than the temperature of the melting point of palladium measured by radiation thermometry. (authors)

  15. Fuel Rod Melt Progression Simulation Using Low-Temperature Melting Metal Alloy

    Seung Dong Lee; Suh, Kune Y.; GoonCherl Park; Un Chul Lee

    2002-01-01

    The TMI-2 accident and various severe fuel damage experiments have shown that core damage is likely to proceed through various states before the core slumps into the lower head. Numerous experiments were conducted to address when and how the core can lose its original geometry, what geometries are formed, and in what processes the core materials are transported to the lower plenum of the reactor pressure vessel. Core degradation progresses along the line of clad ballooning, clad oxidation, material interaction, metallic blockage, molten pool formation, melt progression, and relocation to the lower head. Relocation into the lower plenum may occur from the lateral periphery or from the bottom of the core depending upon the thermal and physical states of the pool. Determining the quantities and rate of molten material transfer to the lower head is important since significant amounts of molten material relocated to the lower head can threaten the vessel integrity by steam explosion and thermal and mechanical attack of the melt. In this paper the focus is placed on the melt flow regime on a cylindrical fuel rod utilizing the LAMDA (Lumped Analysis of Melting in Degrading Assemblies) facility at the Seoul National University. The downward relocation of the molten material is a combination of the external film flow and the internal pipe flow. The heater rods are 0.8 m long and are coated by a low-temperature melting metal alloy. The electrical internal heating method is employed during the test. External heating is adopted to simulate the exothermic Zircaloy-steam reaction. Tests are conducted in several quasi-steady-state conditions. Given the variable boundary conditions including the heat flux and the water level, observation is made for the melting location, progression, and the mass of molten material. Finally, the core melt progression model is developed from the visual inspection and quantitative analysis of the experimental data. As the core material relocates

  16. Eutectic melting temperature of the lowermost Earth's mantle

    Andrault, D.; Lo Nigro, G.; Bolfan-Casanova, N.; Bouhifd, M.; Garbarino, G.; Mezouar, M.

    2009-12-01

    Partial melting of the Earth's deep mantle probably occurred at different stages of its formation as a consequence of meteoritic impacts and seismology suggests that it even continues today at the core-mantle boundary. Melts are important because they dominate the chemical evolution of the different Earth's reservoirs and more generally the dynamics of the whole planet. Unfortunately, the most critical parameter, that is the temperature profile inside the deep Earth, remains poorly constrained accross the planet history. Experimental investigations of the melting properties of materials representative of the deep Earth at relevant P-T conditions can provide anchor points to refine past and present temperature profiles and consequently determine the degree of melting at the different geological periods. Previous works report melting relations in the uppermost lower mantle region, using the multi-anvil press [1,2]. On the other hand, the pyrolite solidus was determined up to 65 GPa using optical observations in the laser-heated diamond anvil cell (LH-DAC) [3]. Finally, the melting temperature of (Mg,Fe)2SiO4 olivine is documented at core-mantle boundary (CMB) conditions by shock wave experiments [4]. Solely based on these reports, experimental data remain too sparse to draw a definite melting curve for the lower mantle in the relevant 25-135 GPa pressure range. We reinvestigated melting properties of lower mantle materials by means of in-situ angle dispersive X-ray diffraction measurements in the LH-DAC at the ESRF [5]. Experiments were performed in an extended P-T range for two starting materials: forsterite and a glass with chondrite composition. In both cases, the aim was to determine the onset of melting, and thus the eutectic melting temperatures as a function of pressure. Melting was evidenced from drastic changes of diffraction peak shape on the image plate, major changes in diffraction intensities in the integrated pattern, disappearance of diffraction rings

  17. Temperatures and enthalpies of melting of alkali-metal perrhenates

    Lukas, W.; Gaune-Escard, M.

    1982-01-01

    Melting temperatures and enthalpies of melting were determined for alkali-metal perrhenates by differential enthalpic analysis using a high-temperature Calvet microcalorimeter. The following values were obtained: for LiReO 4 : 692 K and 24.9 kJ.mol -1 ; for NaReO 4 : 693 K and 33 kJ.mol -1 ; for KReO 4 : 828 K and 36 kJ.mol -1 ; for RbReO 4 : 878 K and 34 kJ.mol -1 ; for CsReO 4 : 893 K and 34 kJ.mol -1 . (author)

  18. 3He melting pressure temperature scale

    Halperin, W.P.; Archie, C.N.; Richardson, R.C.

    1976-01-01

    temperatures. The A feature of the melting curve which suggests itself as a thermometric fixed point is found to be T//A equals 2. 75 plus or minus 0. 11 mK. The agreement between this value and independent measurements of T//A, based on nuclear or electronic paramagnetism, Johnson noise thermometry...

  19. Determination of the bulk melting temperature of nickel using Monte Carlo simulations: Inaccuracy of extrapolation from cluster melting temperatures

    Los, J. H.; Pellenq, R. J. M.

    2010-02-01

    We have determined the bulk melting temperature Tm of nickel according to a recent interatomic interaction model via Monte Carlo simulation by two methods: extrapolation from cluster melting temperatures based on the Pavlov model (a variant of the Gibbs-Thompson model) and by calculation of the liquid and solid Gibbs free energies via thermodynamic integration. The result of the latter, which is the most reliable method, gives Tm=2010±35K , to be compared to the experimental value of 1726 K. The cluster extrapolation method, however, gives a 325° higher value of Tm=2335K . This remarkable result is shown to be due to a barrier for melting, which is associated with a nonwetting behavior.

  20. Melting temperature, vapor density, and vapor pressure of molybdenum pentafluoride

    Krause, Jr, R F; Douglas, T B [National Bureau of Standards, Washington, D.C. (USA). Inst. for Materials Research

    1977-12-01

    A sample of MoF/sub 5/ was prepared by reaction of MoF/sub 6/(g) and Mo(c). Melting curves of temperature against time established the melting temperature at zero impurity to be 318.85 K, the enthalpy of fusion to be 6.1 kJ mol/sup -1/ (+ - 5 per cent), and the cryoscopic impurity of the sample to be 0.15 mole per cent. In the presence of MoF/sub 6/(g) which was added to suppress disproportionation, the vapor density of MoF/sub 5/ over the liquid was measured by the transpiration method at 343, 363, and 383 K, the total MoF/sub 5/ that evaporated being determined by permanganate titration. The total vapor pressure of MoF/sub 5/ oligomers over the liquid was measured by a simple static method at 373 and 392 K, while melting temperatures were taken alternately to monitor possible contamination of the sample. Although the vapor pressures were adjusted for disproportionation, solution of MoF/sub 6/ in MoF/sub 5/ (1), and wall adsorption of MoF/sub 6/ their percentage uncertainty is probably several times that of the vapor densities. A combination of the two properties indicates the average extent of association of the saturated vapor to be near 2, which is the value for the dimer species (MoF/sub 5/)/sub 2/.

  1. Assessment for Melting Temperature Measurement of Nucleic Acid by HRM.

    Wang, Jing; Pan, Xiaoming; Liang, Xingguo

    2016-01-01

    High resolution melting (HRM), with a high sensitivity to distinguish the nucleic acid species with small variations, has been widely applied in the mutation scanning, methylation analysis, and genotyping. For the aim of extending HRM for the evaluation of thermal stability of nucleic acid secondary structures on sequence dependence, we investigated effects of the dye of EvaGreen, metal ions, and impurities (such as dNTPs) on melting temperature ( T m ) measurement by HRM. The accuracy of HRM was assessed as compared with UV melting method, and little difference between the two methods was found when the DNA T m was higher than 40°C. Both insufficiency and excessiveness of EvaGreen were found to give rise to a little bit higher T m , showing that the proportion of dye should be considered for precise T m measurement of nucleic acids. Finally, HRM method was also successfully used to measure T m s of DNA triplex, hairpin, and RNA duplex. In conclusion, HRM can be applied in the evaluation of thermal stability of nucleic acid (DNA or RNA) or secondary structural elements (even when dNTPs are present).

  2. Identification of squid species by melting temperature shifts on fluorescence melting curve analysis (FMCA) using single dual-labeled probe

    Koh, Eunjung; Song, Ha Jeong; Kwon, Na Young; Kim, Gi Won; Lee, Kwang Ho; Jo, Soyeon; Park, Sujin; Park, Jihyun; Park, Eun Kyeong; Hwang, Seung Yong

    2017-06-01

    Real time PCR is a standard method for identification of species. One of limitations of the qPCR is that there would be false-positive result due to mismatched hybridization between target sequence and probe depending on the annealing temperature in the PCR condition. As an alternative, fluorescence melting curve analysis (FMCA) could be applied for species identification. FMCA is based on a dual-labeled probe. Even with subtle difference of target sequence, there are visible melting temperature (Tm) shift. One of FMCA applications is distinguishing organisms distributed and consumed globally as popular food ingredients. Their prices are set by species or country of origin. However, counterfeiting or distributing them without any verification procedure are becoming social problems and threatening food safety. Besides distinguishing them in naked eye is very difficult and almost impossible in any processed form. Therefore, it is necessary to identify species in molecular level. In this research three species of squids which have 1-2 base pair differences each are selected as samples since they have the same issue. We designed a probe which perfectly matches with one species and the others mismatches 2 and 1 base pair respectively and labeled with fluorophore and quencher. In an experiment with a single probe, we successfully distinguished them by Tm shift depending on the difference of base pair. By combining FMCA and qPCR chip, smaller-scale assay with higher sensitivity and resolution could be possible, andc furthermore, enabling results analysis with smart phone would realize point-of-care testing (POCT).

  3. Coaxial monitoring of temperature field in selective pulsed laser melting

    Liu, Che; Chen, Zhongyun; Cao, Hongzhong; Zhou, Jianhong

    2017-10-01

    Selective Laser Melting is a rapid manufacturing technology which produces complex parts layer by layer. The presence of thermal stress and thermal strain in the forming process often leads to defects in the formed parts. In order to detect fabricate errors and avoid failure which caused by thermal gradient in time. An infrared thermal imager and a high speed CCD camera were applied to build a coaxial optical system for real-time monitoring the temperature distribution and changing trend of laser affected zone in SLM forming process. Molten tracks were fabricated by SLM under different laser parameters such as frequency, pulse width. And the relationship between the laser parameters and the temperature distribution were all obtained and analyzed.

  4. Evaluation of methods for characterizing the melting curves of a high temperature cobalt-carbon fixed point to define and determine its melting temperature

    Lowe, David; Machin, Graham

    2012-06-01

    The future mise en pratique for the realization of the kelvin will be founded on the melting temperatures of particular metal-carbon eutectic alloys as thermodynamic temperature references. However, at the moment there is no consensus on what should be taken as the melting temperature. An ideal melting or freezing curve should be a completely flat plateau at a specific temperature. Any departure from the ideal is due to shortcomings in the realization and should be accommodated within the uncertainty budget. However, for the proposed alloy-based fixed points, melting takes place over typically some hundreds of millikelvins. Including the entire melting range within the uncertainties would lead to an unnecessarily pessimistic view of the utility of these as reference standards. Therefore, detailed analysis of the shape of the melting curve is needed to give a value associated with some identifiable aspect of the phase transition. A range of approaches are or could be used; some purely practical, determining the point of inflection (POI) of the melting curve, some attempting to extrapolate to the liquidus temperature just at the end of melting, and a method that claims to give the liquidus temperature and an impurity correction based on the analytical Scheil model of solidification that has not previously been applied to eutectic melting. The different methods have been applied to cobalt-carbon melting curves that were obtained under conditions for which the Scheil model might be valid. In the light of the findings of this study it is recommended that the POI continue to be used as a pragmatic measure of temperature but where required a specified limits approach should be used to define and determine the melting temperature.

  5. Reaction of soda-lime-silica glass melt with water vapour at melting temperatures

    Vernerová, Miroslava; Kloužek, Jaroslav; Němec, Lubomír

    2015-01-01

    Roč. 416, MAY 15 (2015), s. 21-30 ISSN 0022-3093 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melt * sulfate * water vapour * bubble nucleation * melt foaming * glass melting Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  6. Volume dependence of the melting temperature for alkali metals with Debye's model

    Soma, T.; Kagaya, H.M.; Nishigaki, M.

    1983-01-01

    Using the volume dependence of the Grueneisen constant at higher temperatures, the volume effect on the melting temperature of alkali metals is studied by Lindeman's melting law and Debye's model. The obtained melting curve increases as a function of the compressed volume and shows the maximum of the melting point at the characteristic volume. The resultant data are qualitatively in agreement with the observed tendency for alkali metals. (author)

  7. The effect of melting temperature and time on the TiC particles

    Jiang Kun [Key Laboratory of Materials Liquid Structure and Heredity, Ministry of Education, Shandong University, Ji' nan 250061 (China); Liu Xiangfa, E-mail: xfliu@sdu.edu.c [Key Laboratory of Materials Liquid Structure and Heredity, Ministry of Education, Shandong University, Ji' nan 250061 (China)

    2009-09-18

    In the present work, the microstructure formation process and particle size distribution of TiC in Al-Ti-C master alloys are investigated by particle size analysis, which is based on the morphology characterizing from scanning electron microscopy (SEM). The TiC particle size distributions at different melting temperatures and during different melting times are researched. It is demonstrated that the TiC particle sizes increase with melting temperature and melting time elapsed. The micro size particles appear when the melting temperature is high enough.

  8. The effect of melting temperature and time on the TiC particles

    Jiang Kun; Liu Xiangfa

    2009-01-01

    In the present work, the microstructure formation process and particle size distribution of TiC in Al-Ti-C master alloys are investigated by particle size analysis, which is based on the morphology characterizing from scanning electron microscopy (SEM). The TiC particle size distributions at different melting temperatures and during different melting times are researched. It is demonstrated that the TiC particle sizes increase with melting temperature and melting time elapsed. The micro size particles appear when the melting temperature is high enough.

  9. Temperature Effects on Aluminoborosilicate Glass and Melt Structure

    Wu, J.; Stebbins, J. F.

    2008-12-01

    Quantitative determination of the atomic-scale structure of multi-component oxide melts, and the effects of temperature on them, is a complex problem. Ca- and Na- aluminoborosilicates are especially interesting, not only because of their major role in widespread technical applications (flat-panel computer displays, fiber composites, etc.), but because the coordination environments of two of their main network cations (Al3+ and B3+) change markedly with composition and temperature is ways that may in part be analogous to processes in silicate melts at high pressures in the Earth. Here we examine a series of such glasses with different cooling rates, chosen to evaluate the role modifier cation field strength (Ca2+ vs. Na+) and of non-bridging oxygen (NBO) content. To explore the effects of fictive temperature, fast quenched and annealed samples were compared. We have used B-11 and Al-27 MAS NMR to measure the different B and Al coordinations and calculated the contents of non-bridging oxygens (NBO). Lower cooling rates increase the fraction of [4]B species in all compositions. The conversion of [3]B to [4]B is also expected to convert NBO to bridging oxygens, which should affect thermodynamic properties such as configurational entropy and configurational heat capacity. For four compositions with widely varying compositions and initial NBO contents, analysis of the speciation changes with the same, simple reaction [3]B = [4]B + NBO yields similar enthalpy values of 25±7 kJ/mol. B-11 triple quantum MAS NMR allows as well the proportions of [3]B boroxol ring and non-ring sites to be determined, and reveals more [3]B boroxol ring structures present in annealed (lower temperature) glasses. In situ, high-temperature MAS NMR spectra have been collected on one of the Na-aluminoborosilicate and on a sodium borate glass at 14.1 T. The exchange of boron between the 3- and 4-coordinated sites is clearly observed well above the glass transition temperatures, confirming the

  10. Changes in density of aluminium, lead and zinc melts dependent on temperature

    Kazachkov, S.P.; Kochegura, N.M.; Markovskij, E.A.

    1979-01-01

    Density of aluminium, lead and zinc in various aggregate states has been studied in a wide temperature range. The density of the above metals was found to manifest temperature hysteresis after melting and cyclic change at the temperature of melting and crystallization. These phenomena are in agreement with the Stuart model of liquid state

  11. Formal treatment of some low-temperature properties of melting solid helium-3

    Goldstein, L.

    1979-01-01

    Recent observations of the low-field-strength paramagnetic susceptibility of melting solid 3 He indicate its Curie--Weiss-type behavior at temperatures T> or approx. =5 mK. These require an identical temperature behavior of the magnetic melting-pressure shift over the same temperature range. Melting-pressure-shift measurements should thus independently confirm the observed temperature behavior of the susceptibility and yield, in addition, the curie constant of melting solid 3 He. Using the theoretical value of this constant in the low- or moderate-field-strength melting-pressure-shift formula, the calculated shifts appear to be currently accessible to measurements with acceptable accuracy at T> or approx. =5 mK. The inverse problem of determination of the paramagnetic moment or magnetization of melting solid 3 He from melting-pressure shifts may be solved on the basis of a differential magnetothermodynamic relation without significant limitations on the applied external magnetic field strength or on the temperature range. Helium-3 melting-pressure and temperature measurements in the presence of a constant and uniform magnetic field of known strength should enable, within the above formalism, the determination of the magnetic phase diagram of solid 3 He at melting down to the lowest experimentally accessible temperatures. This approach may supplement other independent methods of magnetic phase-boundary-line determinations of solid 3 He

  12. Accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes and pure theoretical calculation

    Zhu, Jinhua; Fu, Qingshan; Xue, Yongqiang, E-mail: xyqlw@126.com; Cui, Zixiang

    2017-05-01

    Based on the surface pre-melting model, accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes (tetrahedron, cube, octahedron, dodecahedron, icosahedron, nanowire) were derived. The theoretically calculated melting temperatures are in relative good agreements with experimental, molecular dynamic simulation and other theoretical results for nanometer Au, Ag, Al, In and Pb. It is found that the particle size and shape have notable effects on the melting temperature of nanocrystals, and the smaller the particle size, the greater the effect of shape. Furthermore, at the same equivalent radius, the more the shape deviates from sphere, the lower the melting temperature is. The value of melting temperature depression of cylindrical nanowire is just half of that of spherical nanoparticle with an identical radius. The theoretical relations enable one to quantitatively describe the influence regularities of size and shape on the melting temperature and to provide an effective way to predict and interpret the melting temperature of nanocrystals with different sizes and shapes. - Highlights: • Accurate relations of T{sub m} of nanocrystals with various shapes are derived. • Calculated T{sub m} agree with literature results for nano Au, Ag, Al, In and Pb. • ΔT{sub m} (nanowire) = 0.5ΔT{sub m} (spherical nanocrystal). • The relations apply to predict and interpret the melting behaviors of nanocrystals.

  13. Computation and measurement of air temperature distribution of an industrial melt blowing die

    Wu Li-Li

    2014-01-01

    Full Text Available The air flow field of the dual slot die on an HDF-6D melt blowing non-woven equipment is computed numerically. A temperature measurement system is built to measure air temperatures. The computation results tally with the measured results proving the correctness of the computation. The results have great valuable significance in the actual melt blowing production.

  14. Rapid discrimination of Isaria javanica and Isaria poprawskii from Isaria spp. using high resolution DNA melting assays

    The current study evaluates the potential of using high resolution DNA melting assays to discriminate species in the genus, Isaria. The study utilizes a previously identified 103 base pair PCR amplicon, which was reported to be selective for Isaria fumosorosea. Our study finds the amplicon selective...

  15. Temperature Switch PCR (TSP: Robust assay design for reliable amplification and genotyping of SNPs

    Mather Diane E

    2009-12-01

    Full Text Available Abstract Background Many research and diagnostic applications rely upon the assay of individual single nucleotide polymorphisms (SNPs. Thus, methods to improve the speed and efficiency for single-marker SNP genotyping are highly desirable. Here, we describe the method of temperature-switch PCR (TSP, a biphasic four-primer PCR system with a universal primer design that permits amplification of the target locus in the first phase of thermal cycling before switching to the detection of the alleles. TSP can simplify assay design for a range of commonly used single-marker SNP genotyping methods, and reduce the requirement for individual assay optimization and operator expertise in the deployment of SNP assays. Results We demonstrate the utility of TSP for the rapid construction of robust and convenient endpoint SNP genotyping assays based on allele-specific PCR and high resolution melt analysis by generating a total of 11,232 data points. The TSP assays were performed under standardised reaction conditions, requiring minimal optimization of individual assays. High genotyping accuracy was verified by 100% concordance of TSP genotypes in a blinded study with an independent genotyping method. Conclusion Theoretically, TSP can be directly incorporated into the design of assays for most current single-marker SNP genotyping methods. TSP provides several technological advances for single-marker SNP genotyping including simplified assay design and development, increased assay specificity and genotyping accuracy, and opportunities for assay automation. By reducing the requirement for operator expertise, TSP provides opportunities to deploy a wider range of single-marker SNP genotyping methods in the laboratory. TSP has broad applications and can be deployed in any animal and plant species.

  16. Two-dimensional model of laser alloying of binary alloy powder with interval of melting temperature

    Knyzeva, A. G.; Sharkeev, Yu. P.

    2017-10-01

    The paper contains two-dimensional model of laser beam melting of powders from binary alloy. The model takes into consideration the melting of alloy in some temperature interval between solidus and liquidus temperatures. The external source corresponds to laser beam with energy density distributed by Gauss law. The source moves along the treated surface according to given trajectory. The model allows investigating the temperature distribution and thickness of powder layer depending on technological parameters.

  17. Temperature fluctuations in a LiNbO 3 melt during crystal growth

    Suzuki, Tetsuro

    2004-10-01

    Variations in temperature induced by forced convection on the surface of a LiNbO3 melt during crystal growth have been studied. Temperature measurements on the melt surface of single crystals growing (∅ 50 mm) at rotation rates of 15-40 rpm on an RF-heated Czochralski puller has revealed that the melt surface continuously alternates between a steady and unsteady state of flow. This was attributed to the intermittently turbulent flow mode at intermediate rotation rates. The fluctuation period is thought to depend on the thickness of its boundary layer. The boundary layer varies in thickness due to the melt flow, which stops as the interface moves toward the crystal and resumes once the interface reverts to its former position. By contrast, at above 60 rpm, the melt surface temperature drops without fluctuation, indicating that turbulent flow is dominant at faster rotation rates.

  18. Characterization of ash melting behaviour at high temperatures under conditions simulating combustible solid waste gasification.

    Niu, Miaomiao; Dong, Qing; Huang, Yaji; Jin, Baosheng; Wang, Hongyan; Gu, Haiming

    2018-05-01

    To achieve high-temperature gasification-melting of combustible solid waste, ash melting behaviour under conditions simulating high-temperature gasification were studied. Raw ash (RA) and gasified ash (GA) were prepared respectively by waste ashing and fluidized bed gasification. Results of microstructure and composition of the two-ash indicated that GA showed a more porous structure and higher content of alkali and alkali earth metals among metallic elements. Higher temperature promoted GA melting and could reach a complete flowing state at about 1250°C. The order of melting rate of GA under different atmospheres was reducing condition > inert condition > oxidizing condition, which might be related to different existing forms of iron during melting and different flux content with atmosphere. Compared to RA, GA showed lower melting activity at the same condition due to the existence of an unconverted carbon and hollow structure. The melting temperature for sufficient melting and separation of GA should be at least 1250°C in this work.

  19. High-temperature oxidation of tungsten covered by layer of glass-enamel melt

    Vasnetsova, V.B.; Shardakov, N.T.; Kudyakov, V.Ya.; Deryabin, V.A.

    1997-01-01

    Corrosion losses of tungsten covered by the layer of glass-enamel melt were determined at 800, 850, 900, 950 deg C. It is shown that the rate of high-temperature oxidation of tungsten decreases after application of glass-enamel melt on its surface. This is probably conditioned by reduction of area of metal interaction with oxidizing atmosphere

  20. Resistance–temperature relation and atom cluster estimation of In–Bi system melts

    Geng, Haoran; Wang Zhiming; Zhou Yongzhi; Li Cancan

    2012-01-01

    Highlights: ► A testing device was adopted to measure the electrical resistivity of In–Bi system melts. ► A basically linear relation exists between the resistivity and temperature of In x Bi 100−x melts in measured temperature range. ► Based on Novakovic's assumption, the content of InBi atomic cluster in In x Bi 100−x melt is estimated with ρ ≈ ρ InBi x InBi + ρ m (1 − x InBi ) equation. - Abstract: A testing device for the resistivity of high-temperature melt was adopted to measure the l resistivity of In–Bi system melts at different temperatures. It can be concluded from the analysis and calculation of the experimental results that the resistivity of In x Bi 100−x (x = 0–100) melt is in linear relationship with temperature within the experiment temperature range. The resistivity of the melt decreases with the increasing content of In. The fair consistency of resistivity of In–Bi system melt is found in the heating and cooling processes. On the basis of Novakovic's assumption, we approximately estimated the content of InBi atom clusters in In x Bi 100−x melts with the resistivity data by equation ρ ≈ ρ InBi x InBi + ρ m (1 − x InBi ). In the whole components interval, the content corresponds well with the mole fraction of InBi clusters calculated by Novakovic in the thermodynamic approach. The mole fraction of InBi type atom clusters in the melts reaches the maximum at the point of stoichiometric composition In 50 Bi 50 .

  1. Investigation of melt structure and crystallization processes by high-temperature Raman spectroscopy method

    Voron'ko, Yu.K.; Kudryavtsev, A.B.; Osiko, V.V.; Sobol', A.A.

    1988-01-01

    A review of studies dealing with the melts of alkali, rare earth and other element phosphates, gallates, germanates, niobates and tungstates, which are carried out by the method of high-temperature Raman spectroscopy, is given. The effect of the melt structure on the mechanism of the substance cystallization is considered. It is shown that vitrification and supercooling of the melt, as well as its crystallization in the from of metastable structures, are related to the effect of nonconformity between the melt and crystal strucure. The effect of nonconformity between anion motives in the melt and crystal creates obstacles for equilibrium structure nucleation, which results in the formation mainly of metastable forms with lattice structure for from the structure of the melt, though cases of equilibrium phase crystallization are also possible. 37 refs.; 13 figs.; 2 tabs

  2. Actinide, lanthanide and fission product speciation and electrochemistry in high and low temperature ionic melts

    Bhatt, Anand I.; Kinoshita, Hajime; Koster, Anne L.; May, Iain; Sharrad, Clint A.; Volkovich, Vladimir A.; Fox, O. Danny; Jones, Chris J.; Lewin, Bob G.; Charnock, John M.; Hennig, Christoph

    2004-07-01

    There is currently a great deal of research interest in the development of molten salt technology, both classical high temperature melts and low temperature ionic liquids, for the electrochemical separation of the actinides from spent nuclear fuel. We are interested in gaining a better understanding of actinide and key fission product speciation and electrochemical properties in a range of melts. Our studies in high temperature alkali metal melts (including LiCl and LiCl-KCl and CsCl-NaCl eutectics) have focussed on in-situ species of U, Th, Tc and Ru using X-ray absorption spectroscopy (XAS, both EXAFS and XANES) and electronic absorption spectroscopy (EAS). We report unusual actinide speciation in high temperature melts and an evaluation of the likelihood of Ru or Tc volatilization during plant operation. Our studies in lower temperature melts (ionic liquids) have focussed on salts containing tertiary alkyl group 15 cations and the bis(tri-fluor-methyl)sulfonyl)imide anion, melts which we have shown to have exceptionally wide electrochemical windows. We report Ln, Th, U and Np speciation (XAS, EAS and vibrational spectroscopy) and electrochemistry in these melts and relate the solution studies to crystallographic characterised benchmark species. (authors)

  3. Actinide, lanthanide and fission product speciation and electrochemistry in high and low temperature ionic melts

    Bhatt, Anand I.; Kinoshita, Hajime; Koster, Anne L.; May, Iain; Sharrad, Clint A.; Volkovich, Vladimir A.; Fox, O. Danny; Jones, Chris J.; Lewin, Bob G.; Charnock, John M.; Hennig, Christoph

    2004-01-01

    There is currently a great deal of research interest in the development of molten salt technology, both classical high temperature melts and low temperature ionic liquids, for the electrochemical separation of the actinides from spent nuclear fuel. We are interested in gaining a better understanding of actinide and key fission product speciation and electrochemical properties in a range of melts. Our studies in high temperature alkali metal melts (including LiCl and LiCl-KCl and CsCl-NaCl eutectics) have focussed on in-situ species of U, Th, Tc and Ru using X-ray absorption spectroscopy (XAS, both EXAFS and XANES) and electronic absorption spectroscopy (EAS). We report unusual actinide speciation in high temperature melts and an evaluation of the likelihood of Ru or Tc volatilization during plant operation. Our studies in lower temperature melts (ionic liquids) have focussed on salts containing tertiary alkyl group 15 cations and the bis(tri-fluor-methyl)sulfonyl)imide anion, melts which we have shown to have exceptionally wide electrochemical windows. We report Ln, Th, U and Np speciation (XAS, EAS and vibrational spectroscopy) and electrochemistry in these melts and relate the solution studies to crystallographic characterised benchmark species. (authors)

  4. Liquid structure and temperature invariance of sound velocity in supercooled Bi melt

    Emuna, M.; Mayo, M.; Makov, G.; Greenberg, Y.; Caspi, E. N.; Yahel, E.; Beuneu, B.

    2014-01-01

    Structural rearrangement of liquid Bi in the vicinity of the melting point has been proposed due to the unique temperature invariant sound velocity observed above the melting temperature, the low symmetry of Bi in the solid phase and the necessity of overheating to achieve supercooling. The existence of this structural rearrangement is examined by measurements on supercooled Bi. The sound velocity of liquid Bi was measured into the supercooled region to high accuracy and it was found to be invariant over a temperature range of ∼60°, from 35° above the melting point to ∼25° into the supercooled region. The structural origin of this phenomenon was explored by neutron diffraction structural measurements in the supercooled temperature range. These measurements indicate a continuous modification of the short range order in the melt. The structure of the liquid is analyzed within a quasi-crystalline model and is found to evolve continuously, similar to other known liquid pnictide systems. The results are discussed in the context of two competing hypotheses proposed to explain properties of liquid Bi near the melting: (i) liquid bismuth undergoes a structural rearrangement slightly above melting and (ii) liquid Bi exhibits a broad maximum in the sound velocity located incidentally at the melting temperature

  5. Effect of cavity inclination on a temperature and concentration controlled double diffusive convection at ice plate melting

    Sugawara, M.; Ishikura, T. [Akita University, Department of Mechanical Engineering, Akita (Japan); Beer, H. [Technische Unversitat Darmstadt, Institut fur Technische Thermodynamik, Darmstadt (Germany)

    2005-03-01

    This paper is concerned with the double diffusive convection due to the melting of an ice plate into a calcium chloride aqueous solution inside a rectangular cavity. It is mainly considered the effect of the cavity inclination {theta} on the melting rate and the mean melting Nusselt- and Sherwood-numbers, experimentally as well as numerically. The ice plate melts spontaneously with decreasing temperature at the melting front even if initially there does not exist a temperature difference between the ice and the liquid. The concentration- and temperature-gradients near the melting front induce double diffusive convection in the liquid, which will affect the melting rate. Experiments reveal that the mean melting mass increases monotonically with increasing cavity inclination. The numerical analysis based on the laminar assumption predicts well the melting mass in the range of {theta}=0-90 , however, under-predicts the melting mass in the range of {theta}=90-180 as compared with the experimental results. (orig.)

  6. Thermophysical properties of liquid Ni around the melting temperature from molecular dynamics simulation

    Rozas, R. E. [Institut für Theoretische Physik II: Soft Matter, Heinrich Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf (Germany); Department of Physics, University of Bío-Bío, Av. Collao 1202, P.O. Box 5C, Concepción (Chile); Demiraǧ, A. D.; Horbach, J. [Institut für Theoretische Physik II: Soft Matter, Heinrich Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf (Germany); Toledo, P. G. [Chemical Engineering Department and Surface Analysis Laboratory (ASIF), University of Concepción, P.O. Box 160-C, Correo 3, Concepción (Chile)

    2016-08-14

    Thermophysical properties of liquid nickel (Ni) around the melting temperature are investigated by means of classical molecular dynamics (MD) simulation, using three different embedded atom method potentials to model the interactions between the Ni atoms. Melting temperature, enthalpy, static structure factor, self-diffusion coefficient, shear viscosity, and thermal diffusivity are compared to recent experimental results. Using ab initio MD simulation, we also determine the static structure factor and the mean-squared displacement at the experimental melting point. For most of the properties, excellent agreement is found between experiment and simulation, provided the comparison relative to the corresponding melting temperature. We discuss the validity of the Hansen-Verlet criterion for the static structure factor as well as the Stokes-Einstein relation between self-diffusion coefficient and shear viscosity. The thermal diffusivity is extracted from the autocorrelation function of a wavenumber-dependent temperature fluctuation variable.

  7. Microfludic device for creating ionic strength gradients over DNA microarrays for efficient DNA melting studies and assay development

    Petersen, Jesper; Poulsen, Lena; Birgens, Henrik

    2009-01-01

    microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More...... specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can...

  8. Temperature dependence of diffusion coefficients of trivalent uranium ions in chloride and chloride-fluoride melts

    Komarov, V.E.; Borodina, N.P.

    1981-01-01

    Diffusion coefficients of U 3+ ions are measured by chronopotentiometric method in chloride 3LiCl-2KCl and in mixed chloride fluoride 3LiCl(LiF)-2KCl melts in the temperature range 633-1235 K. It is shown It is shown that experimental values of diffusion-coefficients are approximated in a direct line in lg D-1/T coordinate in chloride melt in the whole temperature range and in chloride-fluoride melt in the range of 644-1040 K. Experimental values of diffusion coefficients diviate from Arrhenius equation in the direction of large values in chloride-fluoride melt at further increase of temperature up to 1235 K. Possible causes of such a diviation are considered [ru

  9. Applicability of low-melting-point microcrystalline wax to develop temperature-sensitive formulations.

    Matsumoto, Kohei; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2017-10-30

    Low-melting-point substances are widely used to develop temperature-sensitive formulations. In this study, we focused on microcrystalline wax (MCW) as a low-melting-point substance. We evaluated the drug release behavior of wax matrix (WM) particles using various MCW under various temperature conditions. WM particles containing acetaminophen were prepared using a spray congealing technique. In the dissolution test at 37°C, WM particles containing low-melting-point MCWs whose melting was starting at approx. 40°C (Hi-Mic-1045 or 1070) released the drug initially followed by the release of only a small amount. On the other hand, in the dissolution test at 20 and 25°C for WM particles containing Hi-Mic-1045 and at 20, 25, and 30°C for that containing Hi-Mic-1070, both WM particles showed faster drug release than at 37°C. The characteristic drug release suppression of WM particles containing low-melting-point MCWs at 37°C was thought attributable to MCW melting, as evidenced by differential scanning calorimetry analysis and powder X-ray diffraction analysis. Taken together, low-melting-point MCWs may be applicable to develop implantable temperature-sensitive formulations that drug release is accelerated by cooling at administered site. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Greenland Ice Sheet Surface Temperature, Melt, and Mass Loss: 2000-2006

    Hall, Dorothy K.; Williams, Richard S., Jr.; Luthcke, Scott B.; DiGirolamo, Nocolo

    2007-01-01

    Extensive melt on the Greenland Ice Sheet has been documented by a variety of ground and satellite measurements in recent years. If the well-documented warming continues in the Arctic, melting of the Greenland Ice Sheet will likely accelerate, contributing to sea-level rise. Modeling studies indicate that an annual or summer temperature rise of 1 C on the ice sheet will increase melt by 20-50% therefore, surface temperature is one of the most important ice-sheet parameters to study for analysis of changes in the mass balance of the ice-sheet. The Greenland Ice Sheet contains enough water to produce a rise in eustatic sea level of up to 7.0 m if the ice were to melt completely. However, even small changes (centimeters) in sea level would cause important economic and societal consequences in the world's major coastal cities thus it is extremely important to monitor changes in the ice-sheet surface temperature and to ultimately quantify these changes in terms of amount of sea-level rise. We have compiled a high-resolution, daily time series of surface temperature of the Greenland Ice Sheet, using the I-km resolution, clear-sky land-surface temperature (LST) standard product from the Moderate-Resolution Imaging Spectroradiometer (MODIS), from 2000 - 2006. We also use Gravity Recovery and Climate Experiment (GRACE) data, averaged over 10-day periods, to measure change in mass of the ice sheet as it melt and snow accumulates. Surface temperature can be used to determine frequency of surface melt, timing of the start and the end of the melt season, and duration of melt. In conjunction with GRACE data, it can also be used to analyze timing of ice-sheet mass loss and gain.

  11. Development of a real-time PCR melt curve assay for simultaneous detection of virulent and antibiotic resistant Salmonella.

    Singh, Prashant; Mustapha, Azlin

    2014-12-01

    Multiple drug resistance in Salmonella is an emerging problem in the area of food safety. Depending on the virulence and antibiotic resistance characteristics of the Salmonella strain, infections of varying severity could result. In this study, a multiplex melt curve real-time PCR assay for the detection of virulent and antibiotic resistance strains of Salmonella was developed with two primer sets. The first set targets the virulence gene, invasin (invA), and tetracycline (tetG), streptomycin (aadA2) and sulphonamide (sulI) antibiotic resistance genes, and the second set amplifies ampicillin (blaPSE,blaTEM) and chloramphenicol (floR) resistance genes. The multiplex assay was evaluated using 41 Salmonella strains and was further tested on eight different artificially inoculated food samples. The fluorescent DNA intercalating dye, SYTO9, generated high resolution melt curve peaks and, hence, was used for the development of the assay. This multiplex assay worked efficiently over a DNA concentration range of 20 ng-200 fg and showed a sensitivity of 290 CFU/mL with serially diluted broth cultures. The detection limit for un-enriched artificially inoculated food samples was 10(4) CFU/g, but an enrichment period of 6 h allowed for detection of 10 CFU/g of cells in the samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The impact of melt ponds on summertime microwave brightness temperatures and sea-ice concentrations

    Kern, Stefan; Rösel, Anja; Pedersen, Leif Toudal

    2016-01-01

    % sea-ice concentration. None of the algorithms investigated performs best based on our investigation of data from summer 2009. We suggest that those algorithms which are more sensitive to melt ponds could be optimized more easily because the influence of unknown snow and sea-ice surface property...... of eight sea-ice concentration retrieval algorithms to melt ponds by comparing sea-ice concentration with the melt-pond fraction. We derive gridded daily sea-ice concentrations from microwave brightness temperatures of summer 2009. We derive the daily fraction of melt ponds, open water between ice floes......, and the ice-surface fraction from contemporary Moderate Resolution Spectroradiometer (MODIS) reflectance data. We only use grid cells where the MODIS sea ice concentration, which is the melt-pond fraction plus the ice-surface fraction, exceeds 90 %. For one group of algorithms, e.g., Bristol and Comiso...

  13. A technique of melting temperature measurement and its application for irradiated high-burnup MOX fuels

    Namekawa, Takashi; Hirosawa, Takashi

    1999-01-01

    A melting temperature measurement technique for irradiated oxide fuels is described. In this technique, the melting temperature was determined from a thermal arrest on a heating curve of the specimen which was enclosed in a tungsten capsule to maintain constant chemical composition of the specimen during measurement. The measurement apparatus was installed in an alpha-tight steel box within a gamma-shielding cell and operated by remote handling. The temperature of the specimen was measured with a two-color pyrometer sighted on a black-body well at the bottom of the tungsten capsule. The diameter of the black-body well was optimized so that the uncertainties of measurement were reduced. To calibrate the measured temperature, two reference melting temperature materials, tantalum and molybdenum, were encapsulated and run before and after every oxide fuel test. The melting temperature data on fast reactor mixed oxide fuels irradiated up to 124 GWd/t were obtained. In addition, simulated high-burnup mixed oxide fuel up to 250 GWd/t by adding non-radioactive soluble fission products was examined. These data shows that the melting temperature decrease with increasing burnup and saturated at high burnup region. (author)

  14. The melting curve of iron to 250 gigapascals - A constraint on the temperature at earth's center

    Williams, Quentin; Jeanloz, Raymond; Bass, Jay; Svendsen, Bob; Ahrens, Thomas J.

    1987-01-01

    The melting curve of iron, the primary constituent of earth's core, has been measured to pressures of 250 gigapascals with a combination of static and dynamic techniques. The melting temperature of iron at the pressure of the core-mantle boundary (136 GPa) is 4800 + or - 200 K, whereas at the inner core-outer core boundary (330 GPa), it is 7600 + or - 500 K. A melting temperature for iron-rich alloy of 6600 K at the inner core-outer core boundary and a maximum temperature of 6900 K at earth's center are inferred. This latter value is the first experimental upper bound on the temperature at earth's center, and these results imply that the temperature of the lower mantle is significantly less than that of the outer core.

  15. Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method

    Etesami, S. Alireza; Asadi, Ebrahim

    2018-01-01

    Availability of a reliable interatomic potential is one of the major challenges in utilizing molecular dynamics (MD) for simulations of metals at near the melting temperatures and melting point (MP). Here, we propose a novel approach to address this challenge in the concept of modified-embedded-atom (MEAM) interatomic potential; also, we apply the approach on iron, nickel, copper, and aluminum as case studies. We propose adding experimentally available high temperature elastic constants and MP of the element to the list of typical low temperature properties used for the development of MD interatomic potential parameters. We show that the proposed approach results in a reasonable agreement between the MD calculations of melting properties such as latent heat, expansion in melting, liquid structure factor, and solid-liquid interface stiffness and their experimental/computational counterparts. Then, we present the physical properties of mentioned elements near melting temperatures using the new MEAM parameters. We observe that the behavior of elastic constants, heat capacity and thermal linear expansion coefficient at room temperature compared to MP follows an empirical linear relation (α±β × MP) for transition metals. Furthermore, a linear relation between the tetragonal shear modulus and the enthalpy change from room temperature to MP is observed for face-centered cubic materials.

  16. Melting Penetration Simulation of Fe-U System at High Temperature Using MPS-LER

    Mustari, A P A; Irwanto, Dwi; Yamaji, A

    2016-01-01

    Melting penetration information of Fe-U system is necessary for simulating the molten core behavior during severe accident in nuclear power plants. For Fe-U system, the information is mainly obtained from experiment, i.e. TREAT experiment. However, there is no reported data on SS304 at temperature above 1350°C. The MPS-LER has been developed and validated to simulate melting penetration on Fe-U system. The MPS-LER modelled the eutectic phenomenon by solving the diffusion process and by applying the binary phase diagram criteria. This study simulates the melting penetration of the system at higher temperature using MPS-LER. Simulations were conducted on SS304 at 1400, 1450 and 1500°C. The simulation results show rapid increase of melting penetration rate. (paper)

  17. 1D/2D analyses of the lower head vessel in contact with high temperature melt

    Chang, Jong Eun; Cho, Jae Seon; Suh, Kune Y.; Chung, Chang H.

    1998-01-01

    One- and two-dimensional analyses were performed for the ceramic/metal melt and the vessel to interpret the temperature history of the outer surface of the vessel wall measured from typical Al 2 O 3 /Fe thermite melt tests LAVA (Lower-plenum Arrested Vessel Attack) spanning heatup and cooldown periods. The LAVA tests were conducted at the Korea Atomic Energy Research Institute (KAERI) during the process of high temperature molten material relocation from the delivery duct down into the water in the test vessel pressurized to 2.0 MPa. Both analyses demonstrated reasonable predictions of the temperature history of the LHV (Lower Head Vessel). The comparison sheds light on the thermal hydraulic and material behavior of the high temperature melt within the hemispherical vessel

  18. Preparation of 147Pm metal and the determination of the melting point and phase transformation temperatures

    Angelini, P.; Adair, H.L.

    1976-07-01

    The promethium metal used in the determination of the melting point and phase transformation temperatures was prepared by reduction of promethium oxide with thorium metal at 1600 0 C and distilling the promethium metal into a quartz dome. The melting point and phase transformation temperatures of promethium metal were found to be 1042 +- 5 0 C and 890 +- 5 0 C, respectively. The ratio for the heat of the high-temperature transformation to the heat of fusion was determined to be 0.415

  19. A high-resolution melting (HRM) assay for the differentiation between Israeli field and Neethling vaccine lumpy skin disease viruses.

    Menasherow, Sophia; Erster, Oran; Rubinstein-Giuni, Marisol; Kovtunenko, Anita; Eyngor, Evgeny; Gelman, Boris; Khinich, Evgeny; Stram, Yehuda

    2016-06-01

    Lumpy skin disease (LSD) is a constant threat to the Middle East including the State of Israel. During vaccination programs it is essential for veterinary services and farmers to be able to distinguish between animals affected by the cattle-borne virulent viruses and vaccinated animals, subsequently affected by the vaccine strain. This study describes an improved high resolution-melting (HRM) test that exploits a 27 base pair (bp) fragment of the LSDV126 extracellular enveloped virion (EEV) gene that is present in field viruses but is absent from the Neethling vaccine strain. This difference leads to ∼0.5 °C melting point change in the HRM assay, when testing the quantitative PCR (qPCR) products generated from the virulent field viruses compared to the attenuated vaccine. By exploiting this difference, it could be shown using the newly developed HRM assay that virus isolated from vaccinated cattle that developed disease symptoms behave similarly to vaccine virus control, indicating that the vaccine virus can induce disease symptoms. This assay is not only in full agreement with the previously published PCR gradient and restriction fragment length polymorphism (RFLP) tests but it is faster with, fewer steps, cheaper and dependable. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. High-temperature abnormal behavior of resistivities for Bi-In melts

    Xi Yun; Zu Fangqiu; Li Xianfen; Yu Jin; Liu Lanjun; Li Qiang; Chen Zhihao

    2004-01-01

    The patterns of electrical resistivities versus temperature in large temperature range have been studied, using the D.C. four-probe method, for liquid Bi-In alloys (Bi-In(33 wt%), Bi-In(38 wt%), Bi-In(50.5 wt%), Bi-In(66 wt%)). The clear turning point of each resistivity-temperature curves of the liquid Bi-In alloys is observed at the temperature much above the melting point, in which temperature range the resistivity-temperature coefficient increases rapidly. Except for the turning temperature range, the resistivities of Bi-In alloys increase linearly with temperature. Because resistivity is sensitive to the structure, this experiment shows the structural transition in Bi-In melts at the temperature much higher than the liquidus. And it is suggested that there are different Bi-In short-range orderings in different Bi-In melts, so the resistivity-temperature curves have the turns at different temperatures and the resistivity-temperature coefficients are also different

  1. Determination of the liquidus temperature of tin using the heat pulse-based melting and comparison with traditional methods

    Joung, Wukchul; Park, Jihye; Pearce, Jonathan V.

    2018-06-01

    In this work, the liquidus temperature of tin was determined by melting the sample using the pressure-controlled loop heat pipe. Square wave-type pressure steps generated periodic 0.7 °C temperature steps in the isothermal region in the vicinity of the tin sample, and the tin was melted with controllable heat pulses from the generated temperature changes. The melting temperatures at specific melted fractions were measured, and they were extrapolated to the melted fraction of unity to determine the liquidus temperature of tin. To investigate the influence of the impurity distribution on the melting behavior, a molten tin sample was solidified by an outward slow freezing or by quenching to segregate the impurities inside the sample with concentrations increasing outwards or to spread the impurities uniformly, respectively. The measured melting temperatures followed the local solidus temperature variations well in the case of the segregated sample and stayed near the solidus temperature in the quenched sample due to the microscopic melting behavior. The extrapolated melting temperatures of the segregated and quenched samples were 0.95 mK and 0.49 mK higher than the outside-nucleated freezing temperature of tin (with uncertainties of 0.15 mK and 0.16 mK, at approximately 95% level of confidence), respectively. The extrapolated melting temperature of the segregated sample was supposed to be a closer approximation to the liquidus temperature of tin, whereas the quenched sample yielded the possibility of a misleading extrapolation to the solidus temperature. Therefore, the determination of the liquidus temperature could result in different extrapolated melting temperatures depending on the way the impurities were distributed within the sample, which has implications for the contemporary methodology for realizing temperature fixed points of the International Temperature Scale of 1990 (ITS-90).

  2. Shear melting and high temperature embrittlement: theory and application to machining titanium.

    Healy, Con; Koch, Sascha; Siemers, Carsten; Mukherji, Debashis; Ackland, Graeme J

    2015-04-24

    We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding are supplanted by amorphization in a highly localized nanoscale band, which allows for massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are lack of dislocation slip systems, low thermal conduction, and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting-point elements: specifically, we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.

  3. Periodicity in melting temperature changes of mixed-ligand rare earth β-diketonates

    Karasev, V.E.; Stebelevskaya, N.I.; Shchelokov, R.N.

    1982-01-01

    By means of heating the crystalline samples in a capillary the melting temperatures of the compounds of the composition [M(DBM) 2 CH 3 COO]x2H 2 O and [M(DBM) 2 (TPPO) 2 xNO 3 ], where M-rare earth ion, DBM-dibenzoyl methane, TPPO-triphen hosphineylpxide, are measured. Dependences of the melting temperatures of the compounds on quantum number L and S as well as on the value of energy decrease of the ground state as to the centre of gravity of multiplet therm of lanthanide ion are studied. The presence of ''tetrad effect'' in the change of melting temperatures depending on the nuclear charge for the chelates studied is shown [ru

  4. Utilizing Rice Husk Briquettes in Firing Crucible Furnace for Low Temperature Melting Metals in Nigeria

    N. A. Musa

    2012-08-01

    Full Text Available The search for alternative fuels for firing crucible furnace for low temperature melting metals has become mandatory, as a result of the pollution problem associated with the use of fossil fuels, the expense of electricity and also deforestation as a result of the use of charcoal. An agricultural waste, rice husk, in briquette form was used as an alternative fuel to fire crucible furnace to melt lead, zinc and aluminium. Results showed that lead and zinc melted and reached their pouring temperatures of 3840C and 5300C in 70 minutes and 75 minutes respectively. Aluminium was raised to a maximum temperature of 5200C in 75 and 100 minutes.The average concentration of the pollutants (CO, SO2and NOX were found to be below the tolerance limit and that of TSP (Total Suspended Particulates was found to be within the tolerance limit stipulated by Federal Environmental Protection Agency (FEPA in Nigeria.

  5. Standard Guide for Use of Melt Wire Temperature Monitors for Reactor Vessel Surveillance, E 706 (IIIE)

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This guide describes the application of melt wire temperature monitors and their use for reactor vessel surveillance of light-water power reactors as called for in Practice E 185. 1.2 The purpose of this guide is to recommend the selection and use of the common melt wire technique where the correspondence between melting temperature and composition of different alloys is used as a passive temperature monitor. Guidelines are provided for the selection and calibration of monitor materials; design, fabrication, and assembly of monitor and container; post-irradiation examinations; interpretation of the results; and estimation of uncertainties. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (See Note 1.)

  6. Influence of gas generation on high-temperature melt/concrete interactions

    Powers, D.A.

    1979-01-01

    Accidents involving fuel melting and eventual contact between the high temperature melt and structural concrete may be hypothesized for both light water thermal reactors and liquid metal cooled breeder reactors. Though these hypothesized accidents have a quite low probability of occurring, it is necessary to investigate the probable natures of the accidents if an adequate assessment of the risks associated with the use of nuclear reactors is to be made. A brief description is given of a program addressing the nature of melt/concrete interactions which has been underway for three years at Sandia Laboratories. Emphasis in this program has been toward the behavior of prototypic melts of molten core materials with concrete representative of that found in existing or proposed reactors. The goals of the experimentation have been to identify phenomena particularly pertinent to questions of reactor safety, and phenomena particularly pertinent to questions of reactor safety, and provide quantitative data suitable for the purposes of risk assessment

  7. Patterns in new dimensionless quantities containing melting temperature, and their dependence on pressure

    U. WALZER

    1980-06-01

    Full Text Available The relationships existing between melting temperature and other
    macroscopic physical quantities are investigated. A new dimensionless
    quantity Q(1 not containing the Grtineisen parameter proves to be suited for serving in future studies as a tool for the determination of the melting temperature in the outer core of the Earth. The pressure dependence of more general dimensionless quantities Q„ is determined analytically and, for the chemical elements, numerically, too. The patterns of various interesting dimensionless quantities are shown in the Periodic Table and compared.

  8. High DNA melting temperature predicts transcription start site location in human and mouse.

    Dineen, David G

    2009-12-01

    The accurate computational prediction of transcription start sites (TSS) in vertebrate genomes is a difficult problem. The physicochemical properties of DNA can be computed in various ways and a many combinations of DNA features have been tested in the past for use as predictors of transcription. We looked in detail at melting temperature, which measures the temperature, at which two strands of DNA separate, considering the cooperative nature of this process. We find that peaks in melting temperature correspond closely to experimentally determined transcription start sites in human and mouse chromosomes. Using melting temperature alone, and with simple thresholding, we can predict TSS with accuracy that is competitive with the most accurate state-of-the-art TSS prediction methods. Accuracy is measured using both experimentally and manually determined TSS. The method works especially well with CpG island containing promoters, but also works when CpG islands are absent. This result is clear evidence of the important role of the physical properties of DNA in the process of transcription. It also points to the importance for TSS prediction methods to include melting temperature as prior information.

  9. Melting temperature evolution of non-reorganized crystals. Poly(3-hydroxybutyrate)

    Righetti, Maria Cristina; Di Lorenzo, Maria Laura

    2011-01-01

    In the present study the correlation between the melting behaviour of poly(3-hydroxybutyrate) (PHB) original, non-reorganized crystals and the crystallinity increase during isothermal crystallization is presented and discussed. Since the reorganization processes modify the melting curve of original crystals, it is necessary to prevent and hinder all the processes that influence and increase the lamellar thickness. PHB exhibits melting/recrystallization on heating, the occurring of lamellar thickening in the solid state being excluded. The first step of the study was the identification of the scanning rate which inhibits PHB recrystallization at sufficiently high T c . For the extrapolated onset and peak temperatures of the main melting endotherm, which is connected to fusion of dominant lamellae, a double dependence on the crystallization time was found. The crystallization time at which T onset and T peak change their trends was found to correspond to the spherulite impingement time, so that the two different dependencies were put in relation with primary and secondary crystallizations respectively. The increase of both T onset and T peak at high crystallization times after spherulite impingement was considered an effect due to crystal superheating and an indication of a stabilization process of the crystalline phase. Such stabilization, which produces an increase of the melting temperature, is probably connected with the volume filling that occurs after spherulite impingement.

  10. Melting temperatures of MgO under high pressure determined by micro-texture observation

    Kimura, T.; Ohfuji, H.; Nishi, M.; Irifune, T.

    2016-12-01

    Periclase (MgO) is the second abundant mineral after bridgmanite in the Earth's lower mantle, and its melting temperature (Tm) under pressure is important to constrain the chemical composition of ultra-deep magma formed near the mantle-core boundary. However, the melting behavior is highly controversial among previous studies: a laser-heated diamond anvil cell (LHDAC) study reported a melting curve with a dTm/dP of 30 K/GPa at zero pressure [1], while several theoretical computations gave substantially higher dTm/dP of 90 100 K/GPa [2,3]. We performed a series of LHDAC experiments for measurements of Tm of MgO under high pressure, using single crystal MgO as the starting material. The melting was detected by using micro-texture observations of the quenched samples. We found that the laser-heated area of the sample quenched from the Tm in previous LHDAC experiments [1] showed randomly aggregated granular crystals, which was not caused by melting, but by plastic deformation of the sample. This suggests that the Tms of their study were substantially underestimated. On the other hand, the sample recovered from the temperature higher by 1500-1700 K than the Tms in previous LHDAC experiments showed a characteristic internal texture comparable to the solidification texture typically shown in metal casting. We determined the Tms based on the observation of this texture up to 32 GPa. Fitting our Tms to the Simon equation yields dTm/dP of 82 K/GPa at zero pressure, which is consistent with those of the theoretical predictions (90 100 K/GPa) [2,3]. Extrapolation of the present melting curve of MgO to the pressure of the CMB (135 GPa) gives a melting temperature of 8900 K. The present steep melting slope offers the eutectic composition close to peridotite (in terms of Mg/Si ratio) throughout the lower mantle conditions. According to the model for sink/float relationship between the solid mantle and the magma [4], a considerable amount of iron (Fe/(Mg+Fe) > 0.24) is expected

  11. Linear thermal expansion, thermal diffusivity and melting temperature of Am-MOX and Np-MOX

    Prieur, D.; Belin, R.C.; Manara, D.; Staicu, D.; Richaud, J.-C.; Vigier, J.-F.; Scheinost, A.C.; Somers, J.; Martin, P.

    2015-01-01

    Highlights: • The thermal properties of Np- and Am-MOX solid solutions were investigated. • Np- and Am-MOX solid solutions exhibit the same linear thermal expansion. • The thermal conductivity of Am-MOX is about 10% higher than that of Np-MOX. • The melting temperatures of Np-MOX and Am-MOX are 3020 ± 30 K and 3005 ± 30 K, respectively. - Abstract: The thermal properties of Np- and Am-MOX solid solution materials were investigated. Their linear thermal expansion, determined using high temperature X-ray diffraction from room temperature to 1973 K showed no significant difference between the Np and the Am doped MOX. The thermal conductivity of the Am-MOX is about 10% higher than that of Np-MOX. The melting temperatures of Np-MOX and Am-MOX, measured using a laser heating self crucible arrangement were 3020 ± 30 K and 3005 ± 30 K, respectively

  12. Melting temperature of H2, D2, N2 and СH4 under high pressure

    the analysis indicates the presence of the melting maximum in these solids. ... values of the melting temperature in case of hydrogen up to a pressure of 4800 ... temperature, Tm, will rise with the increase in pressure, reach to a maximum and.

  13. Proton NMR study of extra Virgin Olive Oil with temperature: Freezing and melting kinetics

    Mallamace, Domenico; Longo, Sveva; Corsaro, Carmelo

    2018-06-01

    The thermal properties of an extra Virgin Olive Oil (eVOO) depend on its composition and indeed characterize its quality. Many studies have shown that the freezing and melting behaviors of eVOOs can serve for geographical or chemical discrimination. We use Nuclear Magnetic Resonance spectroscopy to study the evolution of the fatty acids bands as a function of temperature during freezing and melting processes. In such a way we can follow separately the variations in the thermal properties of the different molecular groups during these thermodynamic phase transitions. The data indicate that the methyl group which is at the end of every fatty chain displays the major changes during both freezing and melting processes.

  14. High-temperature apparatus for chaotic mixing of natural silicate melts

    Morgavi, D.; Petrelli, M.; Vetere, F. P.; González-García, D.; Perugini, D., E-mail: diego.perugini@unipg.it [Department of Physics and Geology, Petro-Volcanology Research Group (PVRG), University of Perugia, Piazza Università, Perugia 06100 (Italy)

    2015-10-15

    A unique high-temperature apparatus was developed to trigger chaotic mixing at high-temperature (up to 1800 °C). This new apparatus, which we term Chaotic Magma Mixing Apparatus (COMMA), is designed to carry out experiments with high-temperature and high-viscosity (up to 10{sup 6} Pa s) natural silicate melts. This instrument allows us to follow in time and space the evolution of the mixing process and the associated modulation of chemical composition. This is essential to understand the dynamics of magma mixing and related chemical exchanges. The COMMA device is tested by mixing natural melts from Aeolian Islands (Italy). The experiment was performed at 1180 °C using shoshonite and rhyolite melts, resulting in a viscosity ratio of more than three orders of magnitude. This viscosity ratio is close to the maximum possible ratio of viscosity between high-temperature natural silicate melts. Results indicate that the generated mixing structures are topologically identical to those observed in natural volcanic rocks highlighting the enormous potential of the COMMA to replicate, as a first approximation, the same mixing patterns observed in the natural environment. COMMA can be used to investigate in detail the space and time development of magma mixing providing information about this fundamental petrological and volcanological process that would be impossible to investigate by direct observations. Among the potentials of this new experimental device is the construction of empirical relationships relating the mixing time, obtained through experimental time series, and chemical exchanges between the melts to constrain the mixing-to-eruption time of volcanic systems, a fundamental topic in volcanic hazard assessment.

  15. High-temperature apparatus for chaotic mixing of natural silicate melts

    Morgavi, D.; Petrelli, M.; Vetere, F. P.; González-García, D.; Perugini, D.

    2015-01-01

    A unique high-temperature apparatus was developed to trigger chaotic mixing at high-temperature (up to 1800 °C). This new apparatus, which we term Chaotic Magma Mixing Apparatus (COMMA), is designed to carry out experiments with high-temperature and high-viscosity (up to 10 6 Pa s) natural silicate melts. This instrument allows us to follow in time and space the evolution of the mixing process and the associated modulation of chemical composition. This is essential to understand the dynamics of magma mixing and related chemical exchanges. The COMMA device is tested by mixing natural melts from Aeolian Islands (Italy). The experiment was performed at 1180 °C using shoshonite and rhyolite melts, resulting in a viscosity ratio of more than three orders of magnitude. This viscosity ratio is close to the maximum possible ratio of viscosity between high-temperature natural silicate melts. Results indicate that the generated mixing structures are topologically identical to those observed in natural volcanic rocks highlighting the enormous potential of the COMMA to replicate, as a first approximation, the same mixing patterns observed in the natural environment. COMMA can be used to investigate in detail the space and time development of magma mixing providing information about this fundamental petrological and volcanological process that would be impossible to investigate by direct observations. Among the potentials of this new experimental device is the construction of empirical relationships relating the mixing time, obtained through experimental time series, and chemical exchanges between the melts to constrain the mixing-to-eruption time of volcanic systems, a fundamental topic in volcanic hazard assessment

  16. Size and temperature consideration in the liquid layer growth from nanovoids and the melting model construction

    Li, H.; Liang, X.H.; Li, M.

    2014-01-01

    A new model for the solid melting point T m (D) from nanovoids is proposed through considering the liquid layer growth behavior. This model, which does not have any adjustable parameter, introduces the classical thermodynamic treatment, i.e., the liquid nucleation and growth theory, for nanoparticle melting. With increased void diameter D, T m (D) approaches to T m0 . Moreover, T m (D) > T m0 for a small void (T m0 is the bulk melting point). In other words, the solid can be significantly superheated especially when D decreases, even if the difference of interface energy is larger than zero. This finding can be expected from the negatively curved surface of the void. The model predictions are consistent with the molecular dynamic (MD) simulation results for argon solids. Moreover, the growth of liquid layer from void surface relies on both size and temperature, which directly determine liquid layer thickness, and only when liquid layer thickness reaches to a critical value, can void become instable. - Highlights: • A united model for the crystal melting point from nanovoids is established. • Melting point increases with decreased void size. • The result is expected from the negatively curved surface of the void. • The prediction is agreed well with the MD simulation results

  17. Analytical model based on cohesive energy to indicate the edge and corner effects on melting temperature of metallic nanoparticles

    Shidpour, Reza; Hamid, Delavari H.; Vossoughi, M.

    2010-01-01

    Graphical abstract: The effect of edge and corner atoms of nanoparticle (solid line) cause melting temperature drops more compared to considering them as same as only surface atoms (dash line). This reduction is significant especially when the size of nanoparticle is below 10 nm. - Abstract: An analytical model based on cohesive energy has been conducted to study the effects of edge, corner, and inward surface relaxation as varying parameters on melting temperature of nanoparticles. It is shown that taking into account the edge and corner (EC) atoms of nanoparticle, causes to drop melting temperature more, when compared to consider them the same as only surface atoms. This reduction is significant especially when the size of nanoparticle is below 10 nm. The results are supported by available experimental results of tin, lead and gold melting temperature (T m ). Finally, it is shown that inward relaxation increases melting temperature slightly.

  18. Solid-solid phase transformation via internal stress-induced virtual melting, significantly below the melting temperature. Application to HMX energetic crystal.

    Levitas, Valery I; Henson, Bryan F; Smilowitz, Laura B; Asay, Blaine W

    2006-05-25

    We theoretically predict a new phenomenon, namely, that a solid-solid phase transformation (PT) with a large transformation strain can occur via internal stress-induced virtual melting along the interface at temperatures significantly (more than 100 K) below the melting temperature. We show that the energy of elastic stresses, induced by transformation strain, increases the driving force for melting and reduces the melting temperature. Immediately after melting, stresses relax and the unstable melt solidifies. Fast solidification in a thin layer leads to nanoscale cracking which does not affect the thermodynamics or kinetics of the solid-solid transformation. Thus, virtual melting represents a new mechanism of solid-solid PT, stress relaxation, and loss of coherence at a moving solid-solid interface. It also removes the athermal interface friction and deletes the thermomechanical memory of preceding cycles of the direct-reverse transformation. It is also found that nonhydrostatic compressive internal stresses promote melting in contrast to hydrostatic pressure. Sixteen theoretical predictions are in qualitative and quantitative agreement with experiments conducted on the PTs in the energetic crystal HMX. In particular, (a) the energy of internal stresses is sufficient to reduce the melting temperature from 551 to 430 K for the delta phase during the beta --> delta PT and from 520 to 400 K for the beta phase during the delta --> beta PT; (b) predicted activation energies for direct and reverse PTs coincide with corresponding melting energies of the beta and delta phases and with the experimental values; (c) the temperature dependence of the rate constant is determined by the heat of fusion, for both direct and reverse PTs; results b and c are obtained both for overall kinetics and for interface propagation; (d) considerable nanocracking, homogeneously distributed in the transformed material, accompanies the PT, as predicted by theory; (e) the nanocracking does not

  19. Study on the optimum PCM melting temperature for energy savings in residential buildings worldwide

    Saffari, M.; de Gracia, A.; Fernández, C.; Zsembinszki, G.; Cabeza, L. F.

    2017-10-01

    To maintain comfort conditions in residential buildings along a full year period, the use of active systems is generally required to either supply heating or cooling. The heating and cooling demands strongly depend on the climatic conditions, type of building and occupants’ behaviour. The overall annual energy consumption of the building can be reduced by the use of renewable energy sources and/or passive systems. The use of phase change materials (PCM) as passive systems in buildings enhances the thermal mass of the envelope, and reduces the indoor temperature fluctuations. As a consequence, the overall energy consumption of the building is generally lower as compared to the case when no PCM systems are used. The selection of the PCM melting temperature is a key issue to reduce the energy consumption of the buildings. The main focus of this study is to determine the optimum PCM melting temperature for passive heating and cooling according to different weather conditions. To achieve that, numerical simulations were carried out using EnergyPlus v8.4 coupled with GenOpt® v3.1.1 (a generic optimization software). A multi-family residential apartment was selected from ASHRAE Standard 90.1- 2013 prototype building model, and different climate conditions were considered to determine the optimum melting temperature (in the range from 20ºC to 26ºC) of the PCM contained in gypsum panels. The results confirm that the optimum melting temperature of the PCM strongly depends on the climatic conditions. In general, in cooling dominant climates the optimum PCM temperature is around 26ºC, while in heating dominant climates it is around 20ºC. Furthermore, the results show that an adequate selection of the PCM as passive system in building envelope can provide important energy savings for both heating dominant and cooling dominant regions.

  20. Consequences of Part Temperature Variability in Electron Beam Melting of Ti-6Al-4V

    Fisher, Brian A.; Mireles, Jorge; Ridwan, Shakerur; Wicker, Ryan B.; Beuth, Jack

    2017-12-01

    To facilitate adoption of Ti-6Al-4V (Ti64) parts produced via additive manufacturing (AM), the ability to ensure part quality is critical. Measuring temperatures is an important component of part quality monitoring in all direct metal AM processes. In this work, surface temperatures were monitored using a custom infrared camera system attached to an Arcam electron beam melting (EBM®) machine. These temperatures were analyzed to understand their possible effect on solidification microstructure based on solidification cooling rates extracted from finite element simulations. Complicated thermal histories were seen during part builds, and temperature changes occurring during typical Ti64 builds may be large enough to affect solidification microstructure. There is, however, enough time between fusion of individual layers for spatial temperature variations (i.e., hot spots) to dissipate. This means that an effective thermal control strategy for EBM® can be based on average measured surface temperatures, ignoring temperature variability.

  1. A study on structural analysis of highly corrosive melts at high temperature

    Ohtori, N

    2002-01-01

    When sodium is burned at high temperature in the atmosphere, it reacts simultaneously with H sub 2 O in the atmosphere so that it can produce high temperature melt of sodium hydroxide as a solvent. If this melt includes peroxide ion (O sub 2 sup 2 sup -), it will be a considerably active and corrosive for iron so that several sodium iron double oxides will be produced as corrosion products after the reaction with steel structures. The present study was carried out in order to investigate the ability of presence of peroxide ion in sodium hydroxide solvent at high temperature and that of identification of the several corrosion products using laser Raman spectroscopy. The measurement system with ultraviolet laser was developed simultaneously in the present work to improve the ability of the measurement at high temperature. As results from the measurements, the possibility of the presence of peroxide ion was shown up to 823K in sodium peroxide and 823K in the melt of sodium hydroxide mixed with sodium peroxide. A...

  2. A volatile-rich Earth's core inferred from melting temperature of core materials

    Morard, G.; Andrault, D.; Antonangeli, D.; Nakajima, Y.; Auzende, A. L.; Boulard, E.; Clark, A. N.; Lord, O. T.; Cervera, S.; Siebert, J.; Garbarino, G.; Svitlyk, V.; Mezouar, M.

    2016-12-01

    Planetary cores are mainly constituted of iron and nickel, alloyed with lighter elements (Si, O, C, S or H). Understanding how these elements affect the physical and chemical properties of solid and liquid iron provides stringent constraints on the composition of the Earth's core. In particular, melting curves of iron alloys are key parameter to establish the temperature profile in the Earth's core, and to asses the potential occurrence of partial melting at the Core-Mantle Boundary. Core formation models based on metal-silicate equilibration suggest that Si and O are the major light element components1-4, while the abundance of other elements such as S, C and H is constrained by arguments based on their volatility during planetary accretion5,6. Each compositional model implies a specific thermal state for the core, due to the different effect that light elements have on the melting behaviour of Fe. We recently measured melting temperatures in Fe-C and Fe-O systems at high pressures, which complete the data sets available both for pure Fe7 and other binary alloys8. Compositional models with an O- and Si-rich outer core are suggested to be compatible with seismological constraints on density and sound velocity9. However, their crystallization temperatures of 3650-4050 K at the CMB pressure of 136 GPa are very close to, if not higher than the melting temperature of the silicate mantle and yet mantle melting above the CMB is not a ubiquitous feature. This observation requires significant amounts of volatile elements (S, C or H) in the outer core to further reduce the crystallisation temperature of the core alloy below that of the lower mantle. References 1. Wood, B. J., et al Nature 441, 825-833 (2006). 2. Siebert, J., et al Science 339, 1194-7 (2013). 3. Corgne, A., et al Earth Planet. Sc. Lett. 288, 108-114 (2009). 4. Fischer, R. a. et al. Geochim. Cosmochim. Acta 167, 177-194 (2015). 5. Dreibus, G. & Palme, H. Geochim. Cosmochim. Acta 60, 1125-1130 (1995). 6. Mc

  3. Identification of six New World Leishmania species through the implementation of a High-Resolution Melting (HRM) genotyping assay.

    Hernández, Carolina; Alvarez, Catalina; González, Camila; Ayala, Martha Stella; León, Cielo Maritza; Ramírez, Juan David

    2014-11-14

    Leishmaniases are tropical zoonotic diseases, caused by parasites from the genus Leishmania. New World (NW) species are related to sylvatic cycles although urbanization processes have been reported in some South American Countries such as Colombia. This eco-epidemiological complexity imposes a challenge to the detection of circulating parasite species, not only related to human cases but also infecting vectors and reservoirs. Currently, no harmonized methods have been deployed to discriminate the NW Leishmania species. Herein, we conducted a systematic and mechanistic High-Resolution Melting (HRM) assay targeted to HSP70 and ITS1. Specific primers were designed that coupled with a HRM analyses permitted to discriminate six NW Leishmania species. In order to validate the herein described algorithm, we included 35 natural isolates obtained from human cases, insect vectors and mammals. Our genotyping assay allowed the correct assignment of the six NW Leishmania species (L. mexicana, L. infantum (chagasi), L. amazonensis, L. panamensis, L. guyanensis and L. braziliensis) based on reference strains. When the algorithm was applied to a set of well-characterized strains by means of PCR-RFLP, MLEE and monoclonal antibodies (MA) we observed a tailored concordance between the HRM and PCR-RFLP/MLEE/MA (KI = 1.0). Additionally, we tested the limit of detection for the HRM method showing that this is able to detect at least 10 equivalent-parasites per mL. This is a rapid and reliable method to conduct molecular epidemiology and host-parasite association studies in endemic areas.

  4. Phase relations study on the melting and crystallization regions of the Bi-2223 high temperature superconductor

    Alexander Polasek

    2004-09-01

    Full Text Available The melting and solidification behavior of Bi2Sr2Ca2Cu3 O10 (Bi-2223 precursors has been studied. Nominal compositions corresponding to excess of liquid, Ca2CuO3 and CuO have been investigated. Each sample was made by packing a precursor powder into a silver crucible, in order to approximately simulate the situation found in 2223 silver-sheathed tapes. The samples were partially melted and then slow-cooled, being quenched from different temperatures and analyzed through X-ray diffraction (XRD and scanning electron microscopy (SEM/EDS. The precursors decomposed peritectically during melting, forming liquid and solid phases. Very long plates with compositions falling in the vicinity of the 2223 primary phase field formed upon slow-cooling. The 2223 phase may have been formed and the results suggest that long grains of this phase might be obtained by melting and crystallization if the exact peritectic region and the optimum processing conditions are found.

  5. Property-Composition-Temperature Modeling of Waste Glass Melt Data Subject to a Randomization Restriction

    Piepel, Gregory F.; Heredia-Langner, Alejandro; Cooley, Scott K.

    2008-01-01

    Properties such as viscosity and electrical conductivity of glass melts are functions of melt temperature as well as glass composition. When measuring such a property for several glasses, the property is typically measured at several temperatures for one glass, then at several temperatures for the next glass, and so on. This data-collection process involves a restriction on randomization, which is referred to as split-plot experiment. The split-plot data structure must be accounted for in developing property-composition-temperature models and the corresponding uncertainty equations for model predictions. Instead of ordinary least squares (OLS) regression methods, generalized least squares (GLS) regression methods using restricted maximum likelihood (REML) estimation must be used. This article describes the methodology for developing property-composition-temperature models and corresponding prediction uncertainty equations using the GLS/REML regression approach. Viscosity data collected on 197 simulated nuclear waste glasses are used to illustrate the GLS/REML methods for developing a viscosity-composition-temperature model and corresponding equations for model prediction uncertainties. The correct results using GLS/REML regression are compared to the incorrect results obtained using OLS regression

  6. The system analysis of temperature and melting enthalpy of intermetallic compounds of antimony-lanthanoids system of Sb Ln, Sb2Ln composition

    Badalova, M.A.; Chamanova, M.; Dodkhoev, E.S.; Badalov, A.; Abdusalyamova, M.N.

    2015-01-01

    Present article is devoted to system analysis of temperature and melting enthalpy of intermetallic compounds of antimony-lanthanoids system of Sb Ln, Sb 2 Ln composition. The melting enthalpy was estimated. The temperature value was determined.

  7. Effect of Injection Molding Melt Temperatures on PLGA Craniofacial Plate Properties during In Vitro Degradation

    Liliane Pimenta de Melo

    2017-01-01

    Full Text Available The purpose of this article is to present mechanical and physicochemical properties during in vitro degradation of PLGA material as craniofacial plates based on different values of injection molded temperatures. Injection molded plates were submitted to in vitro degradation in a thermostat bath at 37 ± 1°C by 16 weeks. The material was removed after 15, 30, 60, and 120 days; then bending stiffness, crystallinity, molecular weights, and viscoelasticity were studied. A significant decrease of molecular weight and mechanical properties over time and a difference in FT-IR after 60 days showed faster degradation of the material in the geometry studied. DSC analysis confirmed that the crystallization occurred, especially in higher melt temperature condition. DMA analysis suggests a greater contribution of the viscous component of higher temperature than lower temperature in thermomechanical behavior. The results suggest that physical-mechanical properties of PLGA plates among degradation differ per injection molding temperatures.

  8. The temperature of primary melts and mantle sources of komatiites, OIBs, MORBs and LIPs

    Sobolev, Alexander

    2015-04-01

    There is general agreement that the convecting mantle, although mostly peridotitic in composition, is compositionally and thermally heterogeneous on different spatial scales. The amount, sizes, temperatures and compositions of these heterogeneities significantly affect mantle dynamics because they may diverge greatly from dominant peridotites in their density and fusibility. Differences in potential temperature and composition of mantle domains affect magma production and cannot be easily distinguished from each other. This has led to radically different interpretations of the melting anomalies that produce ocean-island basalts, large igneous provinces and komatiites: most scientists believe that they originate as hot, deep-sourced mantle plumes; but a small though influential group (e.g. Anderson 2005, Foulger, 2010) propose that they derive from high proportions of easily fusible recycled or delaminated crust, or in the case of komatiites contain large amount of H2O (e.g. Grove & Parman, 2004). The way to resolve this ambiguity is an independent estimation of temperature and composition of mantle sources of various types of magma. In this paper I report application of newly developed olivine-spinel-melt geothermometers based on partition of Al, Cr, Sc and Y for different primitive lavas from mid-ocean ridges, ocean-island basalts, large igneous provinces and komatiites. The results suggest significant variations of crystallization temperature for the same Fo of high magnesium olivines of different types of mantle-derived magmas: from the lowest (down to 1220 degree C) for MORB to the highest (up to over 1500 degree C) for komatiites and Siberian meimechites. These results match predictions from Fe-Mg olivine-melt equilibrium and confirm the relatively low temperature of the mantle source of MORB and higher temperatures in the mantle plumes that produce the OIB of Iceland, Hawaii, Gorgona, Archean komatiites and several LIPs (e.g Siberian and NAMP). The

  9. Melting-pressure and density equations of 3He at temperatures from 0.001 to 30 K

    Huang Yonghua; Chen Guobang

    2005-01-01

    Nonsegmented equations for melting pressure and density at temperatures from 0.001 K to 30 K have been developed to fit the reference data. The maximum and average deviations between the melting pressure equation and the totaling 298 reference data are 2.17% and 0.218%, respectively. For the density equations, the average deviations are 0.236% for the liquid side and 0.218% for the solid side. Both the melting pressure curve and melting density curves predicted by the submitted equations approach their minimums at about 0.315 K

  10. Melting temperature and structural transformation of some rare-earth metals

    Vu Van Hung; Hoang Van Tich; Dang Thanh Hai

    2009-01-01

    the pressure dependence of the melting temperatures of rare-earth metals is studied using the equation of states derived from the statistical moment (SMM). SMM studies were carried out order to calculate the Helmholtz free energy of hcp, bcc Dy and fcc, bcc Ce metals at a wide range of temperatures. the stable phase of Dy and Ce metals can be determined by examining the Helmholtz free energy at a given temperature, i, e. the phase that gives the lowest free energy will be stable. For example, we found that at T lower than 1750 K the hcp Dy metal is stable. At T higher than 1750 K the bcc Dy metal is also stable. Thus 1750 K marks the phase transition temperature of Dy metal. These findings are in agreement with previous experiments. (author)

  11. Multiplex real-time PCR assay for the detection of extended-spectrum β-lactamase and carbapenemase genes using melting curve analysis.

    Singh, Prashant; Pfeifer, Yvonne; Mustapha, Azlin

    2016-05-01

    Real-time PCR melt curve assays for the detection of β-lactamase, extended-spectrum β-lactamase and carbapenemase genes in Gram-negative bacteria were developed. Two multiplex real-time PCR melt curve assays were developed for the detection of ten common β-lactamase genes: blaKPC-like, blaOXA-48-like, blaNDM-like, blaVIM-like, blaIMP-like, blaCTX-M-1+2-group, blaCMY-like, blaACC-like, blaSHV-like and blaTEM-like. The assays were evaluated using 25 bacterial strains and 31 DNA samples (total n=56) comprising different Enterobacteriaceae genera and Pseudomonas spp. These strains were previously characterized at five research institutes. Each resistance gene targeted in this study generated a non-overlapping and distinct melt curve peak. The assay worked effectively and detected the presence of additional resistance genes in 23 samples. The assays developed in this study offer a simple, low cost method for the detection of prevalent β-lactamase, ESBL and carbapenemase genes among Gram-negative pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A numerical study of the influence of feeding polycrystalline silicon granules on melt temperature in the continuous Czochralski process

    Ono, Naoki; Kida, Michio; Arai, Yoshiaki; Sahira, Kensho

    1993-09-01

    Temperature change was simulated using a solid body rotating melt model when solid polycrystalline silicon granules were supplied to a melt in a double-crucible method. Only heat conduction was considered in the analysis. The influence of the crucible rotation rates and of the initial temperature of the supplied silicon was investigated systematically and quantitatively. The influence of the crucible rotation rate was stronger than expected, which suggests that the crucible rotation rate cannot be lowered too much because of the possibility of the melt solidifying between the inner and outer crucibles.

  13. Analysis of soft wall AdS/QCD potentials to obtain the melting temperature of scalar hadrons

    Vega, Alfredo; Ibanez, Adolfo [Universidad de Valparaiso, Instituto de Fisica y Astronomia, Valparaiso (Chile)

    2017-11-15

    We consider an analysis of potentials related to Schroedinger-type equations for scalar fields in a 5D AdS black hole background with dilaton in order to obtain melting temperatures for different hadrons in a thermal bath. The approach does not consider calculations of spectral functions, and it is easy to yield results for hadrons with an arbitrary number of constituents. We present results for scalar mesons, glueballs, hybrid mesons and tetraquarks, and we show that mesons are more resistant to being melted in a thermal bath than other scalar hadrons, and in general the melting temperature increases when hadrons contain heavy quarks. (orig.)

  14. Melt-Pool Temperature and Size Measurement During Direct Laser Sintering

    List, III, Frederick Alyious [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dinwiddie, Ralph Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carver, Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gockel, Joy E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Additive manufacturing has demonstrated the ability to fabricate complex geometries and components not possible with conventional casting and machining. In many cases, industry has demonstrated the ability to fabricate complex geometries with improved efficiency and performance. However, qualification and certification of processes is challenging, leaving companies to focus on certification of material though design allowable based approaches. This significantly reduces the business case for additive manufacturing. Therefore, real time monitoring of the melt pool can be used to detect the development of flaws, such as porosity or un-sintered powder and aid in the certification process. Characteristics of the melt pool in the Direct Laser Sintering (DLS) process is also of great interest to modelers who are developing simulation models needed to improve and perfect the DLS process. Such models could provide a means to rapidly develop the optimum processing parameters for new alloy powders and optimize processing parameters for specific part geometries. Stratonics’ ThermaViz system will be integrated with the Renishaw DLS system in order to demonstrate its ability to measure melt pool size, shape and temperature. These results will be compared with data from an existing IR camera to determine the best approach for the determination of these critical parameters.

  15. MeltMan: Optimization, Evaluation, and Universal Application of a qPCR System Integrating the TaqMan qPCR and Melting Analysis into a Single Assay

    Nagy, Alexander; Černíková, Lenka; Vitásková, Eliška; Křivda, Vlastimil; Dán, Ádám; Dirbáková, Zuzana; Jiřincová, Helena; Procházka, Bohumír; Sedlák, Kamil; Havlíčková, Martina

    2016-01-01

    In the present work, we optimised and evaluated a qPCR system integrating 6-FAM (6-carboxyfluorescein)-labelled TaqMan probes and melting analysis using the SYTO 82 (S82) DNA binding dye in a single reaction. We investigated the influence of the S82 on various TaqMan and melting analysis parameters and defined its optimal concentration. In the next step, the method was evaluated in 36 different TaqMan assays with a total of 729 paired reactions using various DNA and RNA templates, including field specimens. In addition, the melting profiles of interest were correlated with the electrophoretic patterns. We proved that the S82 is fully compatible with the FAM-TaqMan system. Further, the advantages of this approach in routine diagnostic TaqMan qPCR were illustrated with practical examples. These included solving problems with flat or other atypical amplification curves or even false negativity as a result of probe binding failure. Our data clearly show that the integration of the TaqMan qPCR and melting analysis into a single assay provides an additional control option as well as the opportunity to perform more complex analyses, get more data from the reactions, and obtain analysis results with higher confidence. PMID:27031831

  16. Attenuation and Velocity Structure in Spain and Morocco: Distinguishing Between Water, Temperature, and Partial Melt

    Bezada, M. J.; Humphreys, E.

    2014-12-01

    Temperature, melt fraction, and water content affect seismic velocity and attenuation differently. Both are sensitive to temperature, but velocity is more sensitive to melt fraction and attenuation is thought to be more sensitive to water content. For these reasons, combining attenuation measurements with tomographic imaging of velocity structure can help untangle these fields and better resolve lithospheric structure and physical state. We map variations in attenuation beneath Spain and northern Morocco using teleseismic data generated by more than a dozen teleseismic deep-focus earthquakes recorded on a dense array of stations. For each event, we first estimate the source from the best quality recordings. We then apply an attenuation operator to the source estimate, using a range of t* values, to match the record at each station. We invert for a smooth map of t* from the ensemble of measurements. The spatial patterns in t* correlate very well with the tectonic domains in Spain and Morocco. In particular, areas in Spain that resisted deformation during the Variscan and Alpine orogenies produce very little attenuation. Comparing the attenuation map with seismic velocity structure we find that, in Morocco, some areas with strong low-velocity anomalies and recent volcanism do not cause high attenuation. These observations suggest that water content is a more likely cause for seismic attenuation in the study area than temperature, and that the non-attenuative low-velocity anomalies in Morocco are produced by partial mel.

  17. Device for measuring high temperature heat conductivity of solids and melts

    Magomedov, Ya.B.; Gadzhiev, G.G.

    1990-01-01

    A modification of a device for measuring heat conductivity by a compensation method when a thermocouple with gadolinium sulfide being used is suggested. Such a device has less error of measurement (8%), wider interval of working temperatures (300-1600K) and it permits to investigate the material in the wide range of heat conductivity values (0.5-30 W/(mxK)). The stainless steel 12Kh18N10T, lanthanum sulfide and melted quartz were used for the device calibration. The results obtained and the literature data on these materials agree well between each other

  18. How deep, how hot: comparing pressure and temperature estimates from amphibole and rhyolite-MELTS thermobarometry

    Pamukcu, A. S.; Gualda, G. A.

    2013-12-01

    Accurately constraining the pressure and temperature of magma residence is problematic, but it is key to understanding the structure and evolution of magmatic systems. Various thermometers exist (Fe-Ti oxides, Ti-in-zircon, Zr-in-sphene, etc.), but there are fewer barometers that can be applied to volcanic rocks. Most barometers capitalize on amphibole, a relatively common mineral whose composition is sensitive to pressure and temperature changes. Glass composition is a function of pressure for magmas saturated in quartz and feldspar, and a new thermobarometer based on rhyolite-MELTS simulations using glass (matrix glass and crystal-hosted glass inclusions) compositions has been recently proposed. We compare results from amphibole and matrix glass thermobarometry. We focus on outflow high-silica rhyolite pumice from the Peach Spring Tuff (CA-NV-AZ, USA), which are characterized by sanidine+plagioclase×quartz+amphibole+sphene in a high-silica rhyolite glass matrix. Compositional variations in amphibole are slight and described by edenite and Ti-Tschermak substitution, with little Al-Tschermak substitution, suggesting small changes in temperature but not in pressure. Plagioclase compositions are also nearly homogeneous. Thus, we expect thermobarometry results to cluster around a single pressure and temperature, making these samples excellent candidates for comparing thermobarometers. Amphibole×plagioclase thermobarometry reveals: - Amphibole-plagioclase: results vary widely depending on the calibration (e.g. 150-420 MPa, 520-730 °C); combined Anderson & Smith (1995) barometer with Holland & Blundy (1990) thermometer is most consistent, suggesting crystallization at 230 MPa, 680 °C. - Amphibole-only: calibrations give significantly different results (75-115 MPa, 770-960 °C [Ridolfi et al. 2010]; 400-950 MPa, 800-950°C [Ridolfi & Renzulli 2012]). Results suggest the recent re-calibration is particularly unreliable for these rocks, and the earlier calibration is

  19. Temperature calibration procedure for thin film substrates for thermo-ellipsometric analysis using melting point standards

    Kappert, Emiel J.; Raaijmakers, Michiel J.T.; Ogieglo, Wojciech; Nijmeijer, Arian; Huiskes, Cindy; Benes, Nieck E.

    2015-01-01

    Highlights: • Facile temperature calibration method for thermo-ellipsometric analysis. • The melting point of thin films of indium, lead, zinc, and water can be detected by ellipsometry. • In-situ calibration of ellipsometry hot stage, without using any external equipment. • High-accuracy temperature calibration (±1.3 °C). - Abstract: Precise and accurate temperature control is pertinent to studying thermally activated processes in thin films. Here, we present a calibration method for the substrate–film interface temperature using spectroscopic ellipsometry. The method is adapted from temperature calibration methods that are well developed for thermogravimetric analysis and differential scanning calorimetry instruments, and is based on probing a transition temperature. Indium, lead, and zinc could be spread on a substrate, and the phase transition of these metals could be detected by a change in the Ψ signal of the ellipsometer. For water, the phase transition could be detected by a loss of signal intensity as a result of light scattering by the ice crystals. The combined approach allowed for construction of a linear calibration curve with an accuracy of 1.3 °C or lower over the full temperature range

  20. Analysis of Apoptosis in Ultraviolet-Induced Sea Cucumber (Stichopus japonicus) Melting Using Terminal Deoxynucleotidyl-Transferase-Mediated dUTP Nick End-Labeling Assay and Cleaved Caspase-3 Immunohistochemistry.

    Yang, Jing-Feng; Gao, Rong-Chun; Wu, Hai-Tao; Li, Peng-Fei; Hu, Xian-Shu; Zhou, Da-Yong; Zhu, Bei-Wei; Su, Yi-Cheng

    2015-11-04

    The sea cucumber body wall melting phenomenon occurs under certain circumstances, and the mechanism of this phenomenon remains unclear. This study investigated the apoptosis in the ultraviolet (UV)-induced sea cucumber melting phenomenon. Fresh sea cucumbers (Stichopus japonicus) were exposed to UV radiation for half an hour at an intensity of 0.056 mW/cm(2) and then held at room temperature for melting development. The samples were histologically processed into formalin-fixed paraffin-embedded tissues. The apoptosis of samples was analyzed with the terminal deoxynucleotidyl-transferase-mediated dUTP nick end-labeling (TUNEL) assay and cleaved caspase-3 immunohistochemistry. The emergence of TUNEL-positive cells speeds up between 0.5 and 2 h after UV irradiation. Cleaved caspase-3 positive cells were obviously detected in sample tissues immediately after the UV irradiation. These results demonstrated that sea cucumber melting induced by UV irradiation was triggered by the activation of caspase-3 followed by DNA fragmentation in sea cucumber tissue, which was attributed to apoptosis but was not a consequence of autolysis activity.

  1. Fluid–fluid–solid triple point on melting curves at high temperatures

    Norman, G E; Saitov, I M

    2016-01-01

    An analysis is presented of experimental data where fluid-fluid phase transitions are observed for different substances at high temperatures with triple points on melting curves. Viscosity drops point to the structural character of the transition, whereas conductivity jumps remind of both semiconductor-to-metal and plasma nature. The slope of the phase equilibrium dependencies of pressure on temperature and the consequent change of the specific volume, which follows from the Clapeyron-Clausius equation, are discussed. P(V, T) surfaces are presented and discussed for the phase transitions considered in the vicinity of the triple points. The cases of abnormal P(T) dependencies on curves of phase equilibrium are in the focus of discussion. In particular, a P(V, T) surface is presented when both fluid-fluid and melting P(T) curves are abnormal. Particular attention is paid to warm dense hydrogen and deuterium, where remarkable contradictions exist between data of different authors. The possible connection of the P(V, T) surface peculiarities with the experimental data uncertainties is outlined. (paper)

  2. Genotyping of a tri-allelic polymorphism by a novel melting curve assay in MTHFD1L: an association study of nonsyndromic Cleft in Ireland

    Minguzzi, Stefano

    2012-04-20

    AbstractBackgroundPolymorphisms within the MTHFD1L gene were previously associated with risk of neural tube defects in Ireland. We sought to test the most significant MTHFD1L polymorphisms for an association with risk of cleft in an Irish cohort. This required the development of a new melting curve assay to genotype the technically challenging MTHFD1L triallelic deletion\\/insertion polymorphism (rs3832406).MethodsMelting curve analysis was used to genotype the MTHFD1L triallelic deletion\\/insertion polymorphism (rs3832406) and a Single Nucleotide Polymorphism rs17080476 in an Irish cohort consisting of 981 Irish case-parent trios and 1,008 controls. Tests for association with nonsyndromic cleft lip with or without cleft palate and cleft palate included case\\/control analysis, mother\\/control analysis and Transmission Disequilibrium Tests of case-parent trios.ResultsA successful melting curve genotyping assay was developed for the deletion\\/insertion polymorphism (rs3832406). The TDT analysis initially showed that the rs3832406 polymorphism was associated with isolated cleft lip with or without cleft palate. However, corrected p-values indicated that this association was not significant.ConclusionsMelting Curve Analysis can be employed to successfully genotype challenging polymorphisms such as the MTHFD1L triallelic deletion\\/insertion polymorphism (DIP) reported here (rs3832406) and is a viable alternative to capillary electrophoresis. Corrected p-values indicate no association between MTHFD1L and risk of cleft in an Irish cohort.

  3. Forsterite Shock Temperatures and Entropy: New Scaling Laws for Impact Melting and Vaporization

    Davies, E.; Root, S.; Kraus, R. G.; Townsend, J. P.; Spaulding, D.; Stewart, S. T.; Jacobsen, S. B.; Fratanduono, D.; Millot, M. A.; Mattsson, T. R.; Hanshaw, H. L.

    2017-12-01

    The observed masses, radii and temperatures of thousands of extra-solar planets have challenged our theoretical understanding of planet formation and planetary structures. Planetary materials are subject to extreme pressures and temperatures during formation and within the present-day interiors of large bodies. Here, we focus on improving understanding of the physical properties of rocky planets for calculations of internal structure and the outcomes of giant impacts. We performed flyer plate impact experiments on forsterite [Mg2SiO4] on the Z-Machine at Sandia National Laboratory and decaying shock temperature measurements at the Omega EP laser at U. Rochester. At Z, planar, supported shock waves are generated in single crystal samples, permitting observation of both compressed and released states. Using available static and dynamic thermodynamic data, we calculate absolute entropy and heat capacity along the forsterite shock Hugoniot. Entropy and heat capacity on the Hugoniot are larger than previous estimates. Our data constrain the thermodynamic properties of forsterite liquid at high pressures and temperatures and the amount of melt and vapor produced during impact events. For an ambient pressure of 1 bar, shock-vaporization begins upon reaching the liquid region on the forsterite Hugoniot (about 200 GPa). Using hydrocode simulations of giant impacts between rocky planets with forsterite mantles and iron cores and the new experimentally-constrained forsterite shock entropy, we present a new scaling law for the fraction of mantle that is melted or vaporized by the initial shock wave. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. Prepared by LLNL under Contract DE-AC52-07NA27344. Prepared by the Center

  4. High temperature (salt melt) corrosion tests with ceramic-coated steel

    Schütz, Adelheid [University Bayreuth, Metals and Alloys, Ludwig-Thoma-Str. 36b, D-95447 Bayreuth (Germany); Günthner, Martin; Motz, Günter [University Bayreuth, Ceramic Materials Engineering, L.-Thoma-Str. 36b, D-95447 Bayreuth (Germany); Greißl, Oliver [EnBW Kraftwerke AG, Schelmenwasenstraße 13-15, D-70567 Stuttgart (Germany); Glatzel, Uwe, E-mail: uwe.glatzel@uni-bayreuth.de [University Bayreuth, Metals and Alloys, Ludwig-Thoma-Str. 36b, D-95447 Bayreuth (Germany)

    2015-06-01

    Thermal recycling of refuse in waste-to-energy plants reduces the problems connected to waste disposal, and is an alternative source of electric energy. However, the combustion process in waste incinerators results in a fast degradation of the steam-carrying superheater steel tubes by corrosive attack and abrasive wear. Higher firing temperatures are used to increase their efficiency but lead to higher corrosion rates. It is more economical to apply protective coatings on the superheater steel tubes than to replace the base material. In-situ tests were conducted in a waste-to-energy plant first in order to identify and quantify all involved corrosive elements. Laboratory scale experiments with salt melts were developed accordingly. The unprotected low-alloyed steel displayed substantial local corrosion. Corrosion was predominant along the grain boundaries of α-ferrite. The corrosion rate was further increased by FeCl{sub 3} and a mixture of HCL and FeCl{sub 3}. Coatings based on pre-ceramic polymers with specific filler particles were engineered to protect superheater tubes. Tests proved their suitability to protect low-alloYed steel tubes from corrosive attack under conditions typical for superheaterS in waste incinerators, rendering higher firing temperatures in waste-to-energy plants possible. - Highlights: • Corrosion wall thickness losses of 400 μm/2 weeks occurred in a waste incinerator. • Abrasion is a major problem on superheater tubes in waste incinerators. • Laboratory salt melt tests can simulate metal corrosion in waste incinerators. • Corrosion protection coatings for steel (temperature: max. 530 °C) were developed. • Higher steam temperatures are possible in WIs with the developed coatings.

  5. Low temperature study of micrometric powder of melted Fe50Mn10Al40 alloy

    Zamora, Ligia E.; Pérez Alcazar, G.A.; Tabares, J.A.; Romero, J.J.; Martinez, A.; Gonzalez, J.M.; Palomares, F.J.; Marco, J.F.

    2012-01-01

    Melted Fe 50 Mn 10 Al 40 alloy powder with particle size less than 40 μm was characterized at room temperature by XRD, SEM and XPS; and at low temperatures by Mössbauer spectrometry, ac susceptibility, and magnetization analysis. The results show that the sample is BCC ferromagnetic but with a big contribution of paramagnetic sites, and presents super-paramagnetic and re-entrant spin-glass phases with critical temperatures of 265 and 35 K, respectively. The presence of the different phases detected is due to the disordered character of the sample and the competitive magnetic interactions. The obtained values of the saturation magnetization and the coercive field as a function of temperature present a behavior which indicates a ferromagnetic phase. However, the behavior of the FC curve and that of the coercive field as a function of temperature suggest that the dipolar magnetic interaction between particles contributes to the internal magnetic field in the same way as was reported for nanoparticulate powders.

  6. Correlation between the band gap expansion and melting temperature depression of nanostructured semiconductors

    Li, Jianwei, E-mail: jwl189@163.com; Zhao, Xinsheng [Laboratory for Quantum Design of Functional Material, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116 (China); Liu, Xinjuan [Center for Coordination Bond and Electronic Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Zheng, Xuejun [School of Mechanical Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China); Yang, Xuexian [Department of Physics, Jishou University, Jishou 416000, Hunan (China); Zhu, Zhe [School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2015-09-28

    The band gap and melting temperature of a semiconductor are tunable with the size and shape of the specimen at the nanometer scale, and related mechanisms remain as yet unclear. In order to understand the common origin of the size and shape effect on these two seemingly irrelevant properties, we clarify, correlate, formulate, and quantify these two properties of GaAs, GaN, InP, and InN nanocrystals from the perspectives of bond order-length-strength correlation using the core-shell configuration. The consistency in the theoretical predictions, experimental observations, and numerical calculations verify that the broken-bond-induced local bond contraction and strength gain dictates the band gap expansion, while the atomic cohesive energy loss due to bond number reduction depresses the melting point. The fraction of the under-coordinated atoms in the skin shell quantitatively determines the shape and size dependency. The atomic under-coordination in the skin down to a depth of two atomic layers inducing a change in the local chemical bond is the common physical origin.

  7. Synergistically improved thermal conductivity of polyamide-6 with low melting temperature metal and graphite

    Y. C. Jia

    2016-08-01

    Full Text Available Low melting temperature metal (LMTM-tin (Sn was introduced into polyamide-6 (PA6 and PA6/graphite composites respectively to improve the thermal conductivity of PA6 by melt processing (extruding and injection molding. After introducing Sn, the thermal conductivity of PA6/Sn was nearly constant because of the serious agglomeration of Sn. However, when 20 wt% (5.4 vol% of Sn was added into PA6 containing 50 wt% (33.3 vol% of graphite, the thermal conductivity of the composite was dramatically increased to 5.364 versus 1.852 W·(m·K–1 for the PA6/graphite composite, which suggests that the incorporation of graphite and Sn have a significant synergistic effect on the thermal conductivity improvement of PA6. What is more, the electrical conductivity of the composite increased nearly 8 orders of magnitudes after introducing both graphite and Sn. Characterization of microstructure and energy dispersive spectrum analysis (EDS indicates that the dispersion of Sn in PA6/graphite/Sn was much more uniform than that of PA6/Sn composite. According to Differential Scanning Calorimetry measurement and EDS, the uniform dispersion of Sn in PA6/graphite/Sn and the high thermal conductivity of PA6/graphite/Sn are speculated to be related with the electron transfer between graphite and Sn, which makes Sn distribute evenly around the graphite layers.

  8. A high resolution melting (HRM) technology-based assay for cost-efficient clinical detection and genotyping of herpes simplex virus (HSV)-1 and HSV-2.

    Lieveld, M; Carregosa, A; Benoy, I; Redzic, N; Berth, M; Vanden Broeck, D

    2017-10-01

    Genital herpes can be caused by two very similar viruses, herpes simplex virus (HSV)-1 or HSV-2. These two HSV types cannot be distinguished clinically, but genotyping is recommended in the first-episodes of genital herpes to guide counselling and management. Quantitative polymerase chain reaction (qPCR) is the preferred diagnostic method for HSV typing. However, commercial qPCR methods use expensive fluorescent labeled probes for detection. Furthermore, most low-cost methods are not able to differentiate between HSV-1 and -2. The aim of this study was to develop a high resolution melting (HRM) technology-based assay for sensitive HSV-1 and HSV-2 detection and genotyping. Using a panel of 46 clinical specimens, the performance of the HRM assay was compared to two commercial HSV tests: the HRM assay detected HSV in all 23 positive samples, with no false positive results (100% concordance with HSV I/II Real-TM assay). Additionally, the HRM assay correctly genotyped both HSV types in a subset of these clinical samples, as determined by the Realstar HSV PCR Kit. The HSV HRM assay provides a cost-effective alternative method to conventional more expensive assays and can be used in routine clinical specimens, in cases where it is particularly necessary to detect and distinguish HSV-1 from -2. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Recent progress in the melt-process technique of high-temperature superconductors

    Ikuta, H; Mizutani, U

    1999-01-01

    Recently, the performance of high-temperature super conductors prepared by the melt-process technique has been greatly improved. This progress was accomplished by the addition of Ag into the starting materials of the Sm-Ba-CuO $9 system, which prevents the formation of severe macro-sized cracks in the finished samples. The magnetic flux density trapped by this material has now reached 9 T at 25 K, which is comparable to the magnetic flux density produced by $9 ordinary superconducting magnets. The amount of magnetic flux density that can be trapped by the sample is limited by the mechanical strength rather than superconducting properties of the material. The increase in the mechanical $9 strength of the material is important both for further improvement of the material properties and for ensuring reliability of the material in practical applications. (20 refs).

  10. Kinetics of iron redox reaction in silicate melts: A high temperature Xanes study on an alkali basalt

    Cochain, B; Neuville, D R; Roux, J; Strukelj, E; Richet, P [Physique des Mineraux et Magmas, Geochimie-Cosmochimie, CNRS-IPGP, 4 place Jussieu, 75005 Paris (France); Ligny, D de [Universite Claude Bernard Lyon 1, LPCML, F-69622 Villeurbanne (France); Baudelet, F, E-mail: cochain@ipgp.jussieu.f [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin (France)

    2009-11-15

    In Earth and Materials sciences, iron is the most important transition element. Glass and melt properties are strongly affected by iron content and redox state with the consequence that some properties (i.e. viscosity, heat capacity, crystallization...) depend not only on the amounts of Fe{sup 2+} and Fe{sup 3+}, but also on the coordination state of these ions. In this work we investigate iron redox reactions through XANES experiments at the K-edge of iron. Using a high-temperature heating device, pre-edge of XANES spectra exhibits definite advantages to make in-situ measurements and to determine the evolution of redox state with time, temperature and composition of synthetic silicate melts. In this study, new kinetics measurements are presented for a basalt melt from the 31,000-BC eruption of the Puy de Lemptegy Volcano in France. These measurements have been made between 773 K and at superliquidus temperatures up to 1923 K.

  11. Kinetics of iron redox reaction in silicate melts: A high temperature Xanes study on an alkali basalt

    Cochain, B; Neuville, D R; Roux, J; Strukelj, E; Richet, P; Ligny, D de; Baudelet, F

    2009-01-01

    In Earth and Materials sciences, iron is the most important transition element. Glass and melt properties are strongly affected by iron content and redox state with the consequence that some properties (i.e. viscosity, heat capacity, crystallization...) depend not only on the amounts of Fe 2+ and Fe 3+ , but also on the coordination state of these ions. In this work we investigate iron redox reactions through XANES experiments at the K-edge of iron. Using a high-temperature heating device, pre-edge of XANES spectra exhibits definite advantages to make in-situ measurements and to determine the evolution of redox state with time, temperature and composition of synthetic silicate melts. In this study, new kinetics measurements are presented for a basalt melt from the 31,000-BC eruption of the Puy de Lemptegy Volcano in France. These measurements have been made between 773 K and at superliquidus temperatures up to 1923 K.

  12. High pressure and temperature structure of liquid and solid Cd: implications for the melting curve of Cd

    Raju, S V; Williams, Q; Geballe, Z M; Godwal, B K; Jeanloz, R; Kalkan, B

    2014-01-01

    The structure of cadmium was characterized in both the solid and liquid forms at pressures to 10 GPa using in situ x-ray diffraction measurements in a resistively heated diamond anvil cell. The distorted hexagonal structure of solid cadmium persists at high pressures and temperatures, with anomalously large c/a ratio of Cd becoming larger as the melting curve is approached. The measured structure factor S(Q) for the melt reveals that the cadmium atoms are spaced about 0.6 Angstroms apart. The melt structure remains notably constant with increasing pressure, with the first peak in the structure factor remaining mildly asymmetric, in accord with the persistence of an anisotropic bonding environment within the liquid. Evolution of powder diffraction patterns up to the temperature of melting revealed the stability of the ambient-pressure hcp structure up to a pressure of 10 GPa. The melting curve has a positive Clausius–Clapeyron slope, and its slope is in good agreement with data from other techniques. We find deviations in the melting curve from Lindemann law type behavior for pressures above 1 GPa. (paper)

  13. Structural Investigation of Fe-Ni-S and Fe-Ni-Si Melts by High-temperature Fluorescence XAFS Measurements

    Manghnani, Murli H.; Balogh, John; Hong Xinguo; Newville, Matthew; Amulele, G.

    2007-01-01

    Iron-nickel (Fe-Ni) alloy is regarded as the most abundant constituent of Earth's core, with an amount of 5.5 wt% Ni in the core based on geochemical and cosmochemical models. The structural role of nickel in liquid Fe-Ni alloys with light elements such as S or Si is poorly understood, largely because of the experimental difficulties of high-temperature melts. Recently, we have succeeded in acquiring Ni K-edge fluorescence x-ray absorption fine structure (XAFS) spectra of Fe-Ni-S and Fe-Ni-Si melts and alloys. Different structural environment of Ni atoms in Fe-Ni-S and Fe-Ni-Si melts is observed, supporting the effect of light elements in Fe-Ni melts

  14. Characterisation of Ceramic-Coated 316LN Stainless Steel Exposed to High-Temperature Thermite Melt and Molten Sodium

    Ravi Shankar, A.; Vetrivendan, E.; Shukla, Prabhat Kumar; Das, Sanjay Kumar; Hemanth Rao, E.; Murthy, S. S.; Lydia, G.; Nashine, B. K.; Mallika, C.; Selvaraj, P.; Kamachi Mudali, U.

    2017-11-01

    Currently, stainless steel grade 316LN is the material of construction widely used for core catcher of sodium-cooled fast reactors. Design philosophy for core catcher demands its capability to withstand corium loading from whole core melt accidents. Towards this, two ceramic coatings were investigated for its application as a layer of sacrificial material on the top of core catcher to enhance its capability. Plasma-sprayed thermal barrier layer of alumina and partially stabilised zirconia (PSZ) with an intermediate bond coat of NiCrAlY are selected as candidate material and deposited over 316LN SS substrates and were tested for their suitability as thermal barrier layer for core catcher. Coated specimens were exposed to high-temperature thermite melt to simulate impingement of molten corium. Sodium compatibility of alumina and PSZ coatings were also investigated by exposing samples to molten sodium at 400 °C for 500 h. The surface morphology of high-temperature thermite melt-exposed samples and sodium-exposed samples was examined using scanning electron microscope. Phase identification of the exposed samples was carried out by x-ray diffraction technique. Observation from sodium exposure tests indicated that alumina coating offers better protection compared to PSZ coating. However, PSZ coating provided better protection against high-temperature melt exposure, as confirmed during thermite melt exposure test.

  15. Thermodynamic properties, melting temperature and viscosity of the mantles of Super Earths

    Stamenkovic, V.; Spohn, T.; Breuer, D.

    2010-12-01

    The recent dicscovery of extrasolar planets with radii of about twice the Earth radius and masses of several Earth masses such as e.g., Corot-7b (approx 5Mearth and 1.6Rearth, Queloz et al. 2009) has increased the interest in the properties of rock at extremely high pressures. While the pressure at the Earth’s core-mantle boundary is about 135GPa, pressures at the base of the mantles of extraterrestrial rocky planets - if these are at all differentiated into mantles and cores - may reach Tera Pascals. Although the properties and the mineralogy of rock at extremely high pressure is little known there have been speculations about mantle convection, plate tectonics and dynamo action in these “Super-Earths”. We assume that the mantles of these planets can be thought of as consisting of perovskite but we discuss the effects of the post-perovskite transition and of MgO. We use the Keane equation of state and the Slater relation (see e.g., Stacey and Davies 2004) to derive an infinite pressure value for the Grüneisen parameter of 1.035. To derive this value we adopted the infinite pressure limit for K’ (pressure derivative of the bulk modulus) of 2.41 as derived by Stacey and Davies (2004) by fitting PREM. We further use the Lindeman law to calculate the melting curve. We gauge the melting curve using the available experimental data for pressures up to 120GPa. The melting temperature profile reaches 6000K at 135GPa and increases to temperatures between 12,000K and 24,000K at 1.1TPa with a preferred value of 21,000K. We find the adiabatic temperature increase to reach 2,500K at 135GPa and 5,400K at 1.1TPa. To calculate the pressure dependence of the viscosity we assume that the rheology is diffusion controlled and calculate the partial derivative with respect to pressure of the activation enthalpy. We cast the partial derivative in terms of an activation volume and use the semi-empirical homologous temperature scaling (e.g., Karato 2008). We find that the

  16. Studies of Behavior Melting Temperature Characteristics for Multi Thermocouple In-Core Instrument Assembly

    Shin, Donghyup; Chae, Myoungeun; Kim, Sungjin; Lee, Kyulim

    2015-01-01

    Bottom-up type in-core instruments (ICIs) are used for the pressurized water reactors of OPR-1000, APR- 1400 in order to measure neutron flux and temperature in the reactor. It is a well-known technique and a proven design using years in the nuclear field. ICI consists of one pair of K-type thermocouple, five self-powered neutron detectors (SPNDs) and one back ground detector. K-type thermocouple's purpose is to measure the core exit temperature (CET) in the reactor. The CET is a very important factor for operating nuclear power plants and it is 327 .deg. C when generally operating the reactor in the nuclear power plant(NPP) in case of OPR- 1000. If the CET will exceed 650 .deg. C, Operators in the main control room should be considered to be an accident situation in accordance with a severe accident management guidance(SAMG). The Multi Thermocouple ICI is a new designed ICI assuming severe accident conditions. It consists of four more thermocouples than the existing design, so it has five Ktype thermocouples besides the thermocouple measuring CET is located in the same elevation as the ICI. Each thermocouple is able to be located in the desired location as required. The Multi Thermocouple ICI helps to measure the temperature distribution of the entire reactor. In addition, it will measure certain point of melted core because of the in-vessel debris of nuclear fuel when an accident occurs more seriously. In this paper, to simulate a circumstance such as a nuclear reactor severe accident was examined. In this study, the K-type thermocouples of Multi Thermocouple ICI was confirmed experimentally to be able to measure up to 1370 .deg. C before the thermocouples have been melted. And after the thermocouples were melted by debris, it was able to be monitored that the signal of EMF directed the infinite value of voltage. Therefore through the results of the test, it can be assumed that if any EMF data among the Multi Thermocouple ICI will direct the infinite value

  17. Studies of Behavior Melting Temperature Characteristics for Multi Thermocouple In-Core Instrument Assembly

    Shin, Donghyup; Chae, Myoungeun; Kim, Sungjin; Lee, Kyulim [Woojin inc, Hwasung (Korea, Republic of)

    2015-05-15

    Bottom-up type in-core instruments (ICIs) are used for the pressurized water reactors of OPR-1000, APR- 1400 in order to measure neutron flux and temperature in the reactor. It is a well-known technique and a proven design using years in the nuclear field. ICI consists of one pair of K-type thermocouple, five self-powered neutron detectors (SPNDs) and one back ground detector. K-type thermocouple's purpose is to measure the core exit temperature (CET) in the reactor. The CET is a very important factor for operating nuclear power plants and it is 327 .deg. C when generally operating the reactor in the nuclear power plant(NPP) in case of OPR- 1000. If the CET will exceed 650 .deg. C, Operators in the main control room should be considered to be an accident situation in accordance with a severe accident management guidance(SAMG). The Multi Thermocouple ICI is a new designed ICI assuming severe accident conditions. It consists of four more thermocouples than the existing design, so it has five Ktype thermocouples besides the thermocouple measuring CET is located in the same elevation as the ICI. Each thermocouple is able to be located in the desired location as required. The Multi Thermocouple ICI helps to measure the temperature distribution of the entire reactor. In addition, it will measure certain point of melted core because of the in-vessel debris of nuclear fuel when an accident occurs more seriously. In this paper, to simulate a circumstance such as a nuclear reactor severe accident was examined. In this study, the K-type thermocouples of Multi Thermocouple ICI was confirmed experimentally to be able to measure up to 1370 .deg. C before the thermocouples have been melted. And after the thermocouples were melted by debris, it was able to be monitored that the signal of EMF directed the infinite value of voltage. Therefore through the results of the test, it can be assumed that if any EMF data among the Multi Thermocouple ICI will direct the infinite value

  18. Genetics of Marbling in Wagyu Revealed by the Melting Temperature of Intramuscular and Subcutaneous Lipids

    Sally S. Lloyd

    2017-01-01

    Full Text Available Extreme marbling or intramuscular deposition of lipid is associated with Wagyu breeds and is therefore assumed to be largely inherited. However, even within 100% full blood Wagyu prepared under standard conditions, there is unpredictable scatter of the degree of marbling. Here, we evaluate melting temperature (Tm of intramuscular fat as an alternative to visual scores of marbling. We show that “long fed” Wagyu generally has Tm below body temperature but with a considerable range under standardized conditions. Individual sires have a major impact indicating that the variation is genetic rather than environmental or random error. In order to measure differences of lower marbling breeds and at shorter feeding periods, we have compared Tm in subcutaneous fat samples from over the striploin. Supplementary feeding for 100 to 150 days leads to a rapid decrease in Tm of 50% Red Wagyu (Akaushi : 50% European crosses, when compared to 100% European. This improvement indicates that the genetic effect of Wagyu is useful, predictable, and highly penetrant. Contemporaneous DNA extraction does not affect the measurement of Tm. Thus, provenance can be traced and substitution can be eliminated in a simple and cost-effective manner.

  19. Genetics of Marbling in Wagyu Revealed by the Melting Temperature of Intramuscular and Subcutaneous Lipids

    Valenzuela, Jose L.; Steele, Edward J.

    2017-01-01

    Extreme marbling or intramuscular deposition of lipid is associated with Wagyu breeds and is therefore assumed to be largely inherited. However, even within 100% full blood Wagyu prepared under standard conditions, there is unpredictable scatter of the degree of marbling. Here, we evaluate melting temperature (Tm) of intramuscular fat as an alternative to visual scores of marbling. We show that “long fed” Wagyu generally has Tm below body temperature but with a considerable range under standardized conditions. Individual sires have a major impact indicating that the variation is genetic rather than environmental or random error. In order to measure differences of lower marbling breeds and at shorter feeding periods, we have compared Tm in subcutaneous fat samples from over the striploin. Supplementary feeding for 100 to 150 days leads to a rapid decrease in Tm of 50% Red Wagyu (Akaushi) : 50% European crosses, when compared to 100% European. This improvement indicates that the genetic effect of Wagyu is useful, predictable, and highly penetrant. Contemporaneous DNA extraction does not affect the measurement of Tm. Thus, provenance can be traced and substitution can be eliminated in a simple and cost-effective manner. PMID:29201894

  20. Corium spreading: hydrodynamics, rheology and solidification of a high-temperature oxide melt

    Journeau, Ch.

    2006-06-01

    In the hypothesis of a nuclear reactor severe accident, the core could melt and form a high- temperature (2000-3000 K) mixture called corium. In the hypothesis of vessel rupture, this corium would spread in the reactor pit and adjacent rooms as occurred in Chernobyl or in a dedicated core-catcher s in the new European Pressurized reactor, EPR. This thesis is dedicated to the experimental study of corium spreading, especially with the prototypic corium material experiments performed in the VULCANO facility at CEA Cadarache. The first step in analyzing these tests consists in interpreting the material analyses, with the help of thermodynamic modelling of corium solidification. Knowing for each temperature the phase repartition and composition, physical properties can be estimated. Spreading termination is controlled by corium rheological properties in the solidification range, which leads to studying them in detail. The hydrodynamical, rheological and solidification aspects of corium spreading are taken into account in models and computer codes which have been validated against these tests and enable the assessment of the EPR spreading core-catcher concept. (author)

  1. Effect of postdrawing temperature on structure, morphology and mechanical properties of melt-spun isotactic polypropylene tapes

    Loos, J.; Schimanski, T.

    2005-01-01

    Structure, morphology, and mechanical properties of melt-spun and postdrawn isotactic polypropylene (iPP) tapes are analyzed to study the effect of postdraw temperature applied. For affine drawing conditions, i.e., no effective relaxation of the molecules occurs during postdrawing, the Young's

  2. Rheology Guided Rational Selection of Processing Temperature To Prepare Copovidone-Nifedipine Amorphous Solid Dispersions via Hot Melt Extrusion (HME).

    Yang, Fengyuan; Su, Yongchao; Zhang, Jingtao; DiNunzio, James; Leone, Anthony; Huang, Chengbin; Brown, Chad D

    2016-10-03

    The production of amorphous solid dispersions via hot melt extrusion (HME) relies on elevated temperature and prolonged residence time, which can result in potential degradation and decomposition of thermally sensitive components. Herein, the rheological properties of a physical mixture of polymer and an active pharmaceutical ingredient (API) were utilized to guide the selection of appropriate HME processing temperature. In the currently studied copovidone-nifedipine system, a critical temperature, which is substantially lower (∼13 °C) than the melting point of crystalline API, was captured during a temperature ramp examination and regarded as the critical point at which the API could molecularly dissolve into the polymer. Based on the identification of this critical point, various solid dispersions were prepared by HME processing below, at, and above the critical temperature (both below and above the melting temperature (T m ) of crystalline API). In addition, the resultant extrudates along with two control solid dispersions prepared by physical mixing and cryogenic milling were assessed by X-ray diffraction, differential scanning calorimetry, hot stage microscopy, rheology, and solid-state NMR. Physicochemical properties of resultant solid dispersions indicated that the identified critical temperature is sufficient for the polymer-API system to reach a molecular-level mixing, manifested by the transparent and smooth appearance of extrudates, the absence of API crystalline diffraction and melting peaks, dramatically decreased rheological properties, and significantly improved polymer-API miscibility. Once the critical temperature has been achieved, further raising the processing temperature only results in limited improvement of API dispersion, reflected by slightly reduced storage modulus and complex viscosity and limited improvement in miscibility.

  3. Development and assessment of multiplex high resolution melting assay as a tool for rapid single-tube identification of five Brucella species.

    Gopaul, Krishna K; Sells, Jessica; Lee, Robin; Beckstrom-Sternberg, Stephen M; Foster, Jeffrey T; Whatmore, Adrian M

    2014-12-11

    The zoonosis brucellosis causes economically significant reproductive problems in livestock and potentially debilitating disease of humans. Although the causative agent, organisms from the genus Brucella, can be differentiated into a number of species based on phenotypic characteristics, there are also significant differences in genotype that are concordant with individual species. This paper describes the development of a five target multiplex assay to identify five terrestrial Brucella species using real-time polymerase chain reaction (PCR) and subsequent high resolution melt curve analysis. This technology offers a robust and cost effective alternative to previously described hydrolysis-probe Single Nucleotide Polymorphism (SNP)-based species defining assays. Through the use of Brucella whole genome sequencing five species defining SNPs were identified. Individual HRM assays were developed to these target these changes and, following optimisation of primer concentrations, it was possible to multiplex all five assays in a single tube. In a validation exercise using a panel of 135 Brucella strains of terrestrial and marine origin, it was possible to distinguish the five target species from the other species within this panel. The HRM multiplex offers a number of diagnostic advantages over previously described SNP-based typing approaches. Further, and uniquely for HRM, the successful multiplexing of five assays in a single tube allowing differentiation of five Brucella species in the diagnostic laboratory in a cost-effective and timely manner is described. However there are possible limitations to using this platform on DNA extractions direct from clinical material.

  4. Multiplex real-time PCR assays for detection of eight Shiga toxin-producing Escherichia coli in food samples by melting curve analysis.

    Singh, Prashant; Mustapha, Azlin

    2015-12-23

    Shiga toxin-producing Escherichia coli (STEC) are pathogenic strains of E. coli that can cause bloody diarrhea and kidney failure. Seven STEC serogroups, O157, O26, O45, O103, O111, O121 and O145 are responsible for more than 71% of the total infections caused by this group of pathogens. All seven serogroups are currently considered as adulterants in non-intact beef products in the U.S. In this study, two multiplex melt curve real-time PCR assays with internal amplification controls (IACs) were standardized for the detection of eight STEC serogroups. The first multiplex assay targeted E. coli serogroups O145, O121, O104, and O157; while the second set detected E. coli serogroups O26, O45, O103 and O111. The applicability of the assays was tested using 11 different meat and produce samples. For food samples spiked with a cocktail of four STEC serogroups with a combined count of 10 CFU/25 g food, all targets of the multiplex assays were detected after an enrichment period of 6h. The assays also worked efficiently when 325 g of food samples were spiked with 10 CFU of STECs. The assays are not dependent on fluorescent-labeled probes or immunomagnetic beads, and can be used for the detection of eight STEC serogroups in less than 11h. Routine preliminary screening of STECs in food samples is performed by testing for the presence of STEC virulence genes. The assays developed in this study can be useful as a first- or second-tier test for the identification of the eight O serogroup-specific genes in suspected food samples. Copyright © 2015. Published by Elsevier B.V.

  5. Using of mass spectrum for prognosis of melting temperature of monatomic aliphatic spirits

    Vazhev, V. V.

    2004-01-01

    In present article researching possibility of prediction of melting temperature (MT) of monatomic aliphatic spirits with using mass-spectra as descriptors structure of molecules. Mass-spectra of 84 aliphatic spirits were used. Mass-spectra were preliminarily transformed on special formula before calculations for receiving work dates of descriptors. Calculations fulfilled with help of the computer program PROGROC. Quality of prediction characterized by coefficient of R-correlation between predicted and experimental dates MT and standard s-deviation. Coefficient of R-correlation between experimental and calculated dates account for 0.9785, standard s-deviation = 11.25 deg. C. Singly R and S for training and control excerpt equally 0.9789 and 11.31 deg. C, 0,9789 and 8.87 deg. C accordingly. Advantage of workable by us method lie in that, what on comparable with literature data of accuracy for prediction property is enough to have only mass-spectrum of substance

  6. Aluminosilicate melts and glasses at 1 to 3 GPa: Temperature and pressure effects on recovered structural and density changes

    Bista, S; Stebbins, Jonathan; Hankins, William B.; Sisson, Thomas W.

    2015-01-01

    In the pressure range in the Earth’s mantle where many basaltic magmas are generated (1 to 3 GPa) (Stolper et al. 1981), increases in the coordination numbers of the network-forming cations in aluminosilicate melts have generally been considered to be minor, although effects on silicon and particularly on aluminum coordination in non-bridging oxygen-rich glasses from the higher, 5 to 12 GPa range, are now well known. Most high-precision measurements of network cation coordination in such samples have been made by spectroscopy (notably 27Al and 29Si NMR) on glasses quenched from high-temperature, high-pressure melts synthesized in solid-media apparatuses and decompressed to room temperature and 1 bar pressure. There are several effects that could lead to the underestimation of the extent of actual structural (and density) changes in high-pressure/temperature melts from such data. For non-bridging oxygen-rich sodium and calcium aluminosilicate compositions in the 1 to 3 GPa range, we show here that glasses annealed near to their glass transition temperatures systematically record higher recovered increases in aluminum coordination and in density than samples quenched from high-temperature melts. In the piston-cylinder apparatus used, rates of cooling through the glass transition are measured as very similar for both higher and lower initial temperatures, indicating that fictive temperature effects are not the likely explanation of these differences. Instead, transient decreases in melt pressure during thermal quenching, which may be especially large for high initial run temperatures, of as much as 0.5 to 1 GPa, may be responsible. As a result, the equilibrium proportion of high-coordinated Al in this pressure range may be 50 to 90% greater than previously estimated, reaching mean coordination numbers (e.g., 4.5) that are probably high enough to significantly affect melt properties. New data on jadeite (NaAlSi2O6) glass confirm that aluminum coordination increase

  7. Testing Snow Melt Algorithms in High Relief Topography Using Calibrated Enhanced-Resolution Brightness Temperatures, Hunza River Basin, Pakistan

    Ramage, J. M.; Brodzik, M. J.; Hardman, M.; Troy, T. J.

    2017-12-01

    Snow is a vital part of the terrestrial hydrological cycle, a crucial resource for people and ecosystems. In mountainous regions snow is extensive, variable, and challenging to document. Snow melt timing and duration are important factors affecting the transfer of snow mass to soil moisture and runoff. Passive microwave brightness temperature (Tb) changes at 36 and 18 GHz are a sensitive way to detect snow melt onset due to their sensitivity to the abrupt change in emissivity. They are widely used on large icefields and high latitude watersheds. The coarse resolution ( 25 km) of historically available data has precluded effective use in high relief, heterogeneous regions, and gaps between swaths also create temporal data gaps at lower latitudes. New enhanced resolution data products generated from a scatterometer image reconstruction for radiometer (rSIR) technique are available at the original frequencies. We use these Calibrated Enhanced-resolution Brightness (CETB) Temperatures Earth System Data Records (ESDR) to evaluate existing snow melt detection algorithms that have been used in other environments, including the cross polarized gradient ratio (XPGR) and the diurnal amplitude variations (DAV) approaches. We use the 36/37 GHz (3.125 km resolution) and 18/19 GHz (6.25 km resolution) vertically and horizontally polarized datasets from the Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Radiometer for EOS (AMSR-E) and evaluate them for use in this high relief environment. The new data are used to assess glacier and snow melt records in the Hunza River Basin [area 13,000 sq. km, located at 36N, 74E], a tributary to the Upper Indus Basin, Pakistan. We compare the melt timing results visually and quantitatively to the corresponding EASE-Grid 2.0 25-km dataset, SRTM topography, and surface temperatures from station and reanalysis data. The new dataset is coarser than the topography, but is able to differentiate signals of melt/refreeze timing for

  8. Melting under shock compression

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  9. MgO melting curve constraints from shock temperature and rarefaction overtake measurements in samples preheated to 2300 K

    Fat'yanov, O. V.; Asimow, P. D.

    2014-05-01

    Continuing our effort to obtain experimental constraints on the melting curve of MgO at 100-200 GPa, we extended our target preheating capability to 2300 K. Our new Mo capsule design holds a long MgO crystal in a controlled thermal gradient until impact by a Ta flyer launched at up to 7.5 km/s on the Caltech two-stage light-gas gun. Radiative shock temperatures and rarefaction overtake times were measured simultaneously by a 6-channel VIS/NIR pyrometer with 3 ns time resolution. The majority of our experiments showed smooth monotonic increases in MgO sound speed and shock temperature with pressure from 197 to 243 GPa. The measured temperatures as well as the slopes of the pressure dependences for both temperature and sound speed were in good agreement with those calculated numerically for the solid phase at our peak shock compression conditions. Most observed sound speeds, however, were ~800 m/s higher than those predicted by the model. A single unconfirmed data point at 239 GPa showed anomalously low temperature and sound speed, which could both be explained by partial melting in this experiment and could suggest that the Hugoniot of MgO preheated to 2300 K crosses its melting line just slightly above 240 GPa.

  10. MgO melting curve constraints from shock temperature and rarefaction overtake measurements in samples preheated to 2300 K

    Fat'yanov, O V; Asimow, P D

    2014-01-01

    Continuing our effort to obtain experimental constraints on the melting curve of MgO at 100-200 GPa, we extended our target preheating capability to 2300 K. Our new Mo capsule design holds a long MgO crystal in a controlled thermal gradient until impact by a Ta flyer launched at up to 7.5 km/s on the Caltech two-stage light-gas gun. Radiative shock temperatures and rarefaction overtake times were measured simultaneously by a 6-channel VIS/NIR pyrometer with 3 ns time resolution. The majority of our experiments showed smooth monotonic increases in MgO sound speed and shock temperature with pressure from 197 to 243 GPa. The measured temperatures as well as the slopes of the pressure dependences for both temperature and sound speed were in good agreement with those calculated numerically for the solid phase at our peak shock compression conditions. Most observed sound speeds, however, were ∼800 m/s higher than those predicted by the model. A single unconfirmed data point at 239 GPa showed anomalously low temperature and sound speed, which could both be explained by partial melting in this experiment and could suggest that the Hugoniot of MgO preheated to 2300 K crosses its melting line just slightly above 240 GPa.

  11. Effect of Feed Melting, Temperature History and Minor Component Addition on Spinel Crystallization in High-Level Waste Glass

    Izak, Pavel; Hrma, Pavel R.; Arey, Bruce W.; Plaisted, Trevor J.

    2001-01-01

    This study was undertaken to help design mathematical models for high-level waste (HLW) glass melter that simulate spinel behavior in molten glass. Spinel, (Fe,Ni,Mn) (Fe,Cr)2O4, is the primary solid phase that precipitates from HLW glasses containing Fe and Ni in sufficient concentrations. Spinel crystallization affects the anticipated cost and risk of HLW vitrification. To study melting reactions, we used simulated HLW feed, prepared with co-precipitated Fe, Ni, Cr, and Mn hydroxides. Feed samples were heated up at a temperature-increase rate (4C/min) close to that which the feed experiences in the HLW glass melter. The decomposition, melting, and dissolution of feed components (such as nitrates, carbonates, and silica) and the formation of intermediate crystalline phases (spinel, sodalite (Na8(AlSiO4)6(NO2)2), and Zr-containing minerals) were characterized using evolved gas analysis, volume-expansion measurement, optical microscope, scanning electron microscope, thermogravimetric analysis, differential scanning calorimetry, and X-ray diffraction. Nitrates and quartz, the major feed components, converted to a glass-forming melt by 880C. A chromium-free spinel formed in the nitrate melt starting from 520C and Sodalite, a transient product of corundum dissolution, appeared above 600C and eventually dissolved in glass. To investigate the effects of temperature history and minor components (Ru,Ag, and Cu) on the dissolution and growth of spinel crystals, samples were heated up to temperatures above liquidus temperature (TL), then subjected to different temperature histories, and analyzed. The results show that spinel mass fraction, crystals composition, and crystal size depend on the chemical and physical makeup of the feed and temperature history

  12. Refining of high-temperature uranium melt by filtration through foam-ceramic filters

    Antsiferov, V.N.; Porozova, S.E.; Filippov, V.B.; Shtutsa, M.G.; Il'enko, E.V.; Kolotygina, N.S.

    2004-01-01

    An opportunity of applying foam-ceramic filters of corundum-mullite composition has been studied in refining natural uranium melts. Uranium melting conditions were chosen depending on technical characteristics of the foam ceramic filters. When their using, a portion of nonmetallic inclusions decreases by 20-30% (as little as 2.0-3.5% ingot weight), their size is reduced and their distribution in the ingot volume is equalized, contamination of uranium by the filter material being failed to be noticed. The parameters of foam-ceramic filters are optimized for provision of stable characteristics of uranium melt filtration process [ru

  13. A preliminary view on adsorption of organics on ice at temperatures close to melting point

    Kong, Xiangrui; Waldner, Astrid; Orlando, Fabrizio; Artiglia, Luca; Ammann, Markus; Bartels-Rausch, Thorsten

    2016-04-01

    -level spectroscopies to reveal the behaviour of adsorption and dissociation on ice. Additionally, pure ice and amine doped ice will be compared for their surface structure change at different temperatures, which will indicate the differences of surface disordering caused by different factors. For instance, we will have a chance to know better if impurities will cause local disordering, i.e. forming hydration shell, which challenges the traditional picture of a homogenous disordered doped ice surface. The findings of this study could not only improve our understanding of how acidic organics adsorb to ice, and of their chemical properties on ice, but also have potentials to know better the behaviour of pure ice at temperatures approaching to the melting point.

  14. The Silicon Environment in Silica Polymorphs, Aluminosilicate Crystals and Melts: An In Situ High Temperature XAS Study

    Cormier, L.; Neuville, D. R.; Roux, J.; Ligny, D. de; Henderson, G. S.; Flank, A.-M.; Lagarde, P.

    2007-01-01

    High temperature X-ray absorption spectroscopy at the Si K-edge has been used to obtain in situ information on SiO2 phase transitions upon heating. Important modifications are observed for the XANES spectra of the high temperature polymorphs, in relation to disordering of the SiO4 tetrahedra beyond the short-range correlations. This paper also presents the XANES spectra of anorthite (CaAl2Si2O8) from room temperature up to the melt (1900 K). This study shows the possibilities for determining the Si environment in crystals and glasses up to the liquid state using in situ XANES measurements

  15. Temperature simulation of thermal plasma melting furnace for disposal of radioactive waste and preliminary research of vitrification formula

    Lin Peng; Lu Yonghong; Xiang Wenyuan; Chen Mingzhou; Liu Xiajie; Qin Yuxin

    2013-01-01

    Radioactive waste treatment techniques currently used in nuclear power plant increase the volume greatly and bring much pressure on final disposal; Thermal plasma treatment as a crucial technique to reduce the waste volume is introduced. How to improve the efficiency of the plasma energy is the limiting factor of concern. In this paper, the temperature field of thermal plasma melting furnace is simulated, the maximal temperature of fixed bed melting furnace is calculated (about 1445 ℃). According to the optional fire-resistant materials, the feasibility of furnace fabrication is discussed. Vitrification formulas for three typical radioactive wastes are tested with their feasibilities being analyzed then. Finally, the prospect of thermal plasma techniques of radioactive waste is discussed, and issues for future study are raised. (authors)

  16. Two-temperature hydrodynamic expansion and coupling of strong elastic shock with supersonic melting front produced by ultrashort laser pulse

    Inogamov, Nail A; Khokhlov, Viktor A; Zhakhovsky, Vasily V; Khishchenko, Konstantin V; Demaske, Brian J; Oleynik, Ivan I

    2014-01-01

    Ultrafast processes, including nonmonotonic expansion of material into vacuum, supersonic melting and generation of super-elastic shock wave, in a surface layer of metal irradiated by an ultrashort laser pulse are discussed. In addition to the well-established two-temperature (2T) evolution of heated layer a new effect of electron pressure gradient on early stage of material expansion is studied. It is shown that the expanding material experiences an unexpected jump in flow velocity in a place where stress exceeds the effective tensile strength provided by used EoS of material. Another 2T effect is that supersonic propagation of homogeneous melting front results in distortion of spatial profile of ion temperature, which later imprints on ion pressure profile transforming in a super-elastic shock wave with time.

  17. Temperature Dependence of Electrical Resistance of Woven Melt-Infiltrated SiCf/SiC Ceramic Matrix Composites

    Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming

    2016-01-01

    Recent studies have successfully shown the use of electrical resistance (ER)measurements to monitor room temperature damage accumulation in SiC fiber reinforced SiC matrix composites (SiCf/SiC) Ceramic Matrix Composites (CMCs). In order to determine the feasibility of resistance monitoring at elevated temperatures, the present work investigates the temperature dependent electrical response of various MI (Melt Infiltrated)-CVI (Chemical Vapor Infiltrated) SiC/SiC composites containing Hi-Nicalon Type S, Tyranno ZMI and SA reinforcing fibers. Test were conducted using a commercially available isothermal testing apparatus as well as a novel, laser-based heating approach developed to more accurately simulate thermomechanical testing of CMCs. Secondly, a post-test inspection technique is demonstrated to show the effect of high-temperature exposure on electrical properties. Analysis was performed to determine the respective contribution of the fiber and matrix to the overall composite conductivity at elevated temperatures. It was concluded that because the silicon-rich matrix material dominates the electrical response at high temperature, ER monitoring would continue to be a feasible method for monitoring stress dependent matrix cracking of melt-infiltrated SiC/SiC composites under high temperature mechanical testing conditions. Finally, the effect of thermal gradients generated during localized heating of tensile coupons on overall electrical response of the composite is determined.

  18. High-temperature vacant lattice site formation in solids and free volumes in melts studied by positron lifetime measurements

    Schaefer, H.-E.

    1991-05-01

    In the present paper a concise review is given of the application of positron lifetime measurements to the study of high-temperature vacancies in intermetallic compounds (F 76.3Al 23.7), in metal oxides (NiO), in elemental semiconductors (Si, Ge), and of the oxygen loss or uptake in YBa 2Cu 3O 7-δ. Investigations of free volumes in elemental melts (Al, In, Ge) are included.

  19. High-temperature vacant lattice site formation in solids and free volumes in melts studied by positron lifetime measurements

    Schaefer, H.E.

    1991-01-01

    In the present paper a concise review is given of the application of positron lifetime measurements to the study of high-temperature vacancies in intermetallic compounds (F 76.3 Al 23.7 ), in metal oxides (NiO), in elemntal semiconductors (Si, Ge), and of the oxygen loss or uptake in YBa 2 Cu 3 O 7-δ . Investigations of free volumes in elemental melts (Al, In, Ge) are included. (orig.)

  20. Use of a high resolution melting (HRM assay to compare gag, pol, and env diversity in adults with different stages of HIV infection.

    Matthew M Cousins

    Full Text Available Cross-sectional assessment of HIV incidence relies on laboratory methods to discriminate between recent and non-recent HIV infection. Because HIV diversifies over time in infected individuals, HIV diversity may serve as a biomarker for assessing HIV incidence. We used a high resolution melting (HRM diversity assay to compare HIV diversity in adults with different stages of HIV infection. This assay provides a single numeric HRM score that reflects the level of genetic diversity of HIV in a sample from an infected individual.HIV diversity was measured in 203 adults: 20 with acute HIV infection (RNA positive, antibody negative, 116 with recent HIV infection (tested a median of 189 days after a previous negative HIV test, range 14-540 days, and 67 with non-recent HIV infection (HIV infected >2 years. HRM scores were generated for two regions in gag, one region in pol, and three regions in env.Median HRM scores were higher in non-recent infection than in recent infection for all six regions tested. In multivariate models, higher HRM scores in three of the six regions were independently associated with non-recent HIV infection.The HRM diversity assay provides a simple, scalable method for measuring HIV diversity. HRM scores, which reflect the genetic diversity in a viral population, may be useful biomarkers for evaluation of HIV incidence, particularly if multiple regions of the HIV genome are examined.

  1. Use of a high resolution melting (HRM) assay to compare gag, pol, and env diversity in adults with different stages of HIV infection.

    Cousins, Matthew M; Laeyendecker, Oliver; Beauchamp, Geetha; Brookmeyer, Ronald; Towler, William I; Hudelson, Sarah E; Khaki, Leila; Koblin, Beryl; Chesney, Margaret; Moore, Richard D; Kelen, Gabor D; Coates, Thomas; Celum, Connie; Buchbinder, Susan P; Seage, George R; Quinn, Thomas C; Donnell, Deborah; Eshleman, Susan H

    2011-01-01

    Cross-sectional assessment of HIV incidence relies on laboratory methods to discriminate between recent and non-recent HIV infection. Because HIV diversifies over time in infected individuals, HIV diversity may serve as a biomarker for assessing HIV incidence. We used a high resolution melting (HRM) diversity assay to compare HIV diversity in adults with different stages of HIV infection. This assay provides a single numeric HRM score that reflects the level of genetic diversity of HIV in a sample from an infected individual. HIV diversity was measured in 203 adults: 20 with acute HIV infection (RNA positive, antibody negative), 116 with recent HIV infection (tested a median of 189 days after a previous negative HIV test, range 14-540 days), and 67 with non-recent HIV infection (HIV infected >2 years). HRM scores were generated for two regions in gag, one region in pol, and three regions in env. Median HRM scores were higher in non-recent infection than in recent infection for all six regions tested. In multivariate models, higher HRM scores in three of the six regions were independently associated with non-recent HIV infection. The HRM diversity assay provides a simple, scalable method for measuring HIV diversity. HRM scores, which reflect the genetic diversity in a viral population, may be useful biomarkers for evaluation of HIV incidence, particularly if multiple regions of the HIV genome are examined.

  2. Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

    Taherkhani, Farid; Akbarzadeh, Hamed; Feyzi, Mostafa; Rafiee, Hamid Reza

    2015-01-01

    Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models

  3. Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

    Taherkhani, Farid, E-mail: faridtaherkhani@gmail.com, E-mail: f.taherkhani@razi.ac.ir [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of); Akbarzadeh, Hamed [Hakim Sabzevari University, Department of Chemistry (Iran, Islamic Republic of); Feyzi, Mostafa; Rafiee, Hamid Reza [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of)

    2015-01-15

    Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models.

  4. Kinetics and mechanisms of iron redox reactions in silicate melts: The effects of temperature and alkali cations

    Magnien, V.; Pinet, O. [CEA VALRHO, SCDV/LEBV, F-30207 Bagnols Sur Ceze, (France); Magnien, V.; Neuville, D. R.; Roux, J.; Richet, P. [IPGP, CNRS, Physique des Mineraux et Magmas, F-75252 Paris 05, (France); Cormier, L. [Univ Paris 06, IMPMC, F-75015 Paris, (France); Hazemann, J. L. [CNRS, Inst Neel, F-38043 Grenoble, (France); De Ligny, D. [Univ Lyon 1, LMLC, CNRS, UMR 5620, F-69622 Villeurbanne, (France); Pascarelli, S. [European Synchrotron Radiat Facil, F-38043 Grenoble, (France); Vickridge, I. [Univ Paris 06, INSP, F-75015 Paris, (France)

    2008-07-01

    The kinetics and the mechanisms of iron redox reactions in molten Fe-bearing pyroxene compositions have been investigated by Raman spectroscopy and X-ray absorption Near Edge Structure (XANES) experiments at the iron K-edge. The former experiments have been made only near the glass transition whereas the latter have also been performed from about 1300 to 2100 K. The same kinetics are observed with both techniques. They are described by characteristic times that depend primarily on temperature and not on the initial redox state. At high temperatures, where both kinds of reactions could be investigated, these times are similar for oxidation and reduction. From these characteristic times we have calculated as a function of temperature and composition a parameter termed effective redox diffusivity. For a given melt, the diffusivities follow two distinct Arrhenius laws, which indicate that the mechanisms of the redox reaction are not the same near the glass transition and at high temperatures. As is now well established, diffusion of divalent cations is the dominant mechanism at low temperatures but the enhanced kinetics observed for alkali-bearing melts indicate that Li{sup +} and Na{sup +} also participate in ionic transport. At super-liquidus temperatures, in contrast, diffusion of oxygen represents the dominant mechanism. (authors)

  5. A comparison of PCR assays for beak and feather disease virus and high resolution melt (HRM) curve analysis of replicase associated protein and capsid genes.

    Das, Shubhagata; Sarker, Subir; Ghorashi, Seyed Ali; Forwood, Jade K; Raidal, Shane R

    2016-11-01

    Beak and feather disease virus (BFDV) threatens a wide range of endangered psittacine birds worldwide. In this study, we assessed a novel PCR assay and genetic screening method using high-resolution melt (HRM) curve analysis for BFDV targeting the capsid (Cap) gene (HRM-Cap) alongside conventional PCR detection as well as a PCR method that targets a much smaller fragment of the virus genome in the replicase initiator protein (Rep) gene (HRM-Rep). Limits of detection, sensitivity, specificity and discriminatory power for differentiating BFDV sequences were compared. HRM-Cap had a high positive predictive value and could readily differentiate between a reference genotype and 17 other diverse BFDV genomes with more discriminatory power (genotype confidence percentage) than HRM-Rep. Melt curve profiles generated by HRM-Cap correlated with unique DNA sequence profiles for each individual test genome. The limit of detection of HRM-Cap was lower (2×10 -5 ng/reaction or 48 viral copies) than that for both HRM-Rep and conventional BFDV PCR which had similar sensitivity (2×10 -6 ng or 13 viral copies/reaction). However, when used in a diagnostic setting with 348 clinical samples there was strong agreement between HRM-Cap and conventional PCR (kappa=0.87, PHRM-Cap demonstrated higher specificity (99.9%) than HRM-Rep (80.3%). Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Glacier Melt Detection in Complex Terrain Using New AMSR-E Calibrated Enhanced Daily EASE-Grid 2.0 Brightness Temperature (CETB) Earth System Data Record

    Ramage, J. M.; Brodzik, M. J.; Hardman, M.

    2016-12-01

    Passive microwave (PM) 18 GHz and 36 GHz horizontally- and vertically-polarized brightness temperatures (Tb) channels from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) have been important sources of information about snow melt status in glacial environments, particularly at high latitudes. PM data are sensitive to the changes in near-surface liquid water that accompany melt onset, melt intensification, and refreezing. Overpasses are frequent enough that in most areas multiple (2-8) observations per day are possible, yielding the potential for determining the dynamic state of the snow pack during transition seasons. AMSR-E Tb data have been used effectively to determine melt onset and melt intensification using daily Tb and diurnal amplitude variation (DAV) thresholds. Due to mixed pixels in historically coarse spatial resolution Tb data, melt analysis has been impractical in ice-marginal zones where pixels may be only fractionally snow/ice covered, and in areas where the glacier is near large bodies of water: even small regions of open water in a pixel severely impact the microwave signal. We use the new enhanced-resolution Calibrated Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature (CETB) Earth System Data Record product's twice daily obserations to test and update existing snow melt algorithms by determining appropriate melt thresholds for both Tb and DAV for the CETB 18 and 36 GHz channels. We use the enhanced resolution data to evaluate melt characteristics along glacier margins and melt transition zones during the melt seasons in locations spanning a wide range of melt scenarios, including the Patagonian Andes, the Alaskan Coast Range, and the Russian High Arctic icecaps. We quantify how improvement of spatial resolution from the original 12.5 - 25 km-scale pixels to the enhanced resolution of 3.125 - 6.25 km improves the ability to evaluate melt timing across boundaries and transition zones in diverse glacial environments.

  7. Methodology for benzodiazepine receptor binding assays at physiological temperature. Rapid change in equilibrium with falling temperature

    Dawson, R.M.

    1986-01-01

    Benzodiazepine receptors of rat cerebellum were assayed with [ 3 H]-labeled flunitrazepam at 37 0 C, and assays were terminated by filtration in a cold room according to one of three protocols: keeping each sample at 37 degrees C until ready for filtration, taking the batch of samples (30) into the cold room and filtering sequentially in the order 1-30, and taking the batch of 30 samples into the cold room and filtering sequentially in the order 30-1. the results for each protocol were substantially different from each other, indicating that rapid disruption of equilibrium occurred as the samples cooled in the cold room while waiting to be filtered. Positive or negative cooperativity of binding was apparent, and misleading effects of gamma-aminobutyric acid on the affinity of diazepam were observed, unless each sample was kept at 37 0 C until just prior to filtration

  8. On the yield of cold and ultracold neutrons for liquid hydrogen at low temperatures near the melting point

    Morishima, N

    1999-01-01

    The neutron scattering cross sections for liquid hydrogen in the temperature range from the melting point to the boiling point are calculated. It is shown that lowering the temperature results in a significant increase in the yield of cold neutrons: for instance, a 44% increase for an incident neutron energy of 19.4 meV. The major cause of this increment is the para-to-ortho transition of a hydrogen molecule though accompanied by an appreciable increase in the density. The results of the cold- and ultracold-neutron yields are discussed in connection with the experimental results of Altarev et al. at the WWR-M reactor.

  9. Study on technology for manufacturing alloy (lead-tin-bismuth-cadmium) having low melting temperature (≤ 80 deg C) used to shield radioactive rays for treating cancer

    Ngo Xuan Hung; Pham Duc Thai; Nguyen The Khanh; Vu Quang Chat; Nguyen Huu Quyet

    2007-01-01

    Up to now, hospitals in Vietnam have mostly imported radioactive equipments from America, German, France, England to treat cancer. Accompany with those equipments, alloy, namely Cyroben having low melting temperature (≤ 80 o C) is used to cover patients good tissues in order to protect them against harmful rays and help radioactive rays get through the cast hole to kill cancer cells. This project is carried out for determining chemical compositions and melting temperatures of researched alloy to create alloy having low melting temperature (≤ 80 o C) to meet demand for treating cancer in Vietnam. (author)

  10. In situ study at high pressure and temperature of the environment of water in hydrous Na and Ca aluminosilicate melts and coexisting aqueous fluids

    Le Losq, Charles; Dalou, Célia; Mysen, Bjorn O.

    2017-07-01

    The bonding and speciation of water dissolved in Na silicate and Na and Ca aluminosilicate melts were inferred from in situ Raman spectroscopy of the samples, in hydrothermal diamond anvil cells, while at crustal temperature and pressure conditions. Raman data were also acquired on Na silicate and Na and Ca aluminosilicate glasses, quenched from hydrous melts equilibrated at high temperature and pressure in a piston cylinder apparatus. In the hydrous melts, temperature strongly influences O-H stretching ν(O-H) signals, reflecting its control on the bonding of protons between different molecular complexes. Pressure and melt composition effects are much smaller and difficult to discriminate with the present data. However, the chemical composition of the melt + fluid system influences the differences between the ν(O-H) signals from the melts and the fluids and, hence, between their hydrogen partition functions. Quenching modifies the O-H stretching signals: strong hydrogen bonds form in the glasses below the glass transition temperature Tg, and this phenomenon depends on glass composition. Therefore, glasses do not necessarily record the O-H stretching signal shape in melts near Tg. The melt hydrogen partition function thus cannot be assessed with certainty using O-H stretching vibration data from glasses. From the present results, the ratio of the hydrogen partition functions of hydrous silicate melts and aqueous fluids mostly depends on temperature and the bulk melt + fluid system chemical composition. This implies that the fractionation of hydrogen isotopes between magmas and aqueous fluids in water-saturated magmatic systems with differences in temperature and bulk chemical composition will be different.

  11. [Rapid detection of hot spot mutations of FGFR3 gene with PCR-high resolution melting assay].

    Li, Shan; Wang, Han; Su, Hua; Gao, Jinsong; Zhao, Xiuli

    2017-08-10

    To identify the causative mutations in five individuals affected with dyschondroplasia and develop an efficient procedure for detecting hot spot mutations of the FGFR3 gene. Genomic DNA was extracted from peripheral blood samples with a standard phenol/chloroform method. PCR-Sanger sequencing was used to analyze the causative mutations in the five probands. PCR-high resolution melting (HRM) was developed to detect the identified mutations. A c.1138G>A mutation in exon 8 was found in 4 probands, while a c.1620C>G mutation was found in exon 11 of proband 5 whom had a mild phenotype. All patients were successfully distinguished from healthy controls with the PCR-HRM method. The results of HRM analysis were highly consistent with that of Sanger sequencing. The Gly380Arg and Asn540Lys are hot spot mutations of the FGFR3 gene among patients with ACH/HCH. PCR-HRM analysis is more efficient for detecting hot spot mutations of the FGFR3 gene.

  12. Revisiting the melting temperature of NpO2 and the challenges associated with high temperature actinide compound measurements

    Böhler, R.; Welland, M.J.; De Bruycker, F.; Boboridis, K.; Janssen, A.; Eloirdi, R.; Konings, R.J.M.; Manara, D.

    2012-01-01

    This work revisits the melting behaviour of neptunium dioxide, an actinide compound which can be produced in the nuclear fuel during operation, and which has an important impact on the nuclear fuel and waste radioactivity especially on the very long term. The present experimental approach employs

  13. Influence of postdrawing temperature on mechanical properties of melt-spun isotactic polypropylene

    Schimanski, T.; Peijs, A.A.J.M.; Lemstra, P.J.; Loos, J.

    2004-01-01

    Mech. properties of melt-spun and postdrawn isotactic polypropylene (iPP) are studied to examine the dependence on the temp. in the postdrawing stage. In accordance with the literature, the Young's modulus is uniquely detd. by the applied draw ratio. However, we found that the overall mech. behavior

  14. Spray forming: A numerical investigation of the influence of the gas to melt ratio on the billet surface temperature

    Pryds, Nini; Hattel, Jesper

    2005-01-01

    atomisation taking thermal coupling into consideration and the deposition of material at the surface of the billet taking geometrical aspects such as shading into account. The coupling between these two models is accomplished by ensuring that the total droplet size distribution of the spray is the summation......The relationship between the Gas to Melt Ratio (GMR) and the surface temperature of an evolving billet surface in spray forming is investigated numerically. The basis for the analysis is an integrated approach for modelling the entire spray forming process. This model includes the droplet...... of "local" droplet size distributions along the r-axis of the spray cone. The criterion for a successful process has been a predefined process window characterised by a desired fraction solid range at a certain distance from the atomizer. Inside this process window, the gas and melt flows have been varied...

  15. Advanced temperature measurement system for the US glass industry melt tanks and delivery system. Phase 1 [final] report

    NONE

    1997-04-01

    Improved temperature measurement in the melting and delivery systems of the glass making process will aid in energy conservation. The ``Needs Analysis`` survey found the greatest problem was the inability to identify in situ decalibration (drift). Phase I objectives are: a more rugged reliable sensor; high quality inner protective sheath; improved data transmission hardened to the melt tank environs; a system that reduces or eliminates drift; and an improved outer protection sheath. Results show that 4 of the 5 problem areas have been resolved; with the help of the Univ. of Missouri-Rolla`s materials group, the fifth may be solvable. The major identified problem, the inability to identify in-situ drift has been solved.

  16. Melting of Dense Sodium

    Gregoryanz, Eugene; Degtyareva, Olga; Hemley, Russell J.; Mao, Ho-kwang; Somayazulu, Maddury

    2005-01-01

    High-pressure high-temperature synchrotron diffraction measurements reveal a maximum on the melting curve of Na in the bcc phase at ∼31 GPa and 1000 K and a steep decrease in melting temperature in its fcc phase. The results extend the melting curve by an order of magnitude up to 130 GPa. Above 103 GPa, Na crystallizes in a sequence of phases with complex structures with unusually low melting temperatures, reaching 300 K at 118 GPa, and an increased melting temperature is observed with further increases in pressure

  17. High-resolution melting (HRM) assay for the detection of recurrent BRCA1/BRCA2 germline mutations in Tunisian breast/ovarian cancer families.

    Riahi, Aouatef; Kharrat, Maher; Lariani, Imen; Chaabouni-Bouhamed, Habiba

    2014-12-01

    Germline deleterious mutations in the BRCA1/BRCA2 genes are associated with an increased risk for the development of breast and ovarian cancer. Given the large size of these genes the detection of such mutations represents a considerable technical challenge. Therefore, the development of cost-effective and rapid methods to identify these mutations became a necessity. High resolution melting analysis (HRM) is a rapid and efficient technique extensively employed as high-throughput mutation scanning method. The purpose of our study was to assess the specificity and sensitivity of HRM for BRCA1 and BRCA2 genes scanning. As a first step we estimate the ability of HRM for detection mutations in a set of 21 heterozygous samples harboring 8 different known BRCA1/BRCA2 variations, all samples had been preliminarily investigated by direct sequencing, and then we performed a blinded analysis by HRM in a set of 68 further sporadic samples of unknown genotype. All tested heterozygous BRCA1/BRCA2 variants were easily identified. However the HRM assay revealed further alteration that we initially had not searched (one unclassified variant). Furthermore, sequencing confirmed all the HRM detected mutations in the set of unknown samples, including homozygous changes, indicating that in this cohort, with the optimized assays, the mutations detections sensitivity and specificity were 100 %. HRM is a simple, rapid and efficient scanning method for known and unknown BRCA1/BRCA2 germline mutations. Consequently the method will allow for the economical screening of recurrent mutations in Tunisian population.

  18. The calcium fluoride effect on properties of cryolite melts feasible for low-temperature production of aluminum and its alloys

    Tkacheva, O.; Dedyukhin, A.; Redkin, A.; Zaikov, Yu.

    2017-07-01

    The CaF2 effect on the liquidus temperature, electrical conductivity and alumina solubility in the potassium-sodium and potassium-lithium cryolite melts with cryolite ratio (CR = (nKF+nMF)/nAlF3, M = Li, Na) 1.3 was studied. The liquidus temperature in the quisi-binary system [KF-LiF-AlF3]-CaF2 changes with the same manner as in the [KF-NaF-AlF3]-CaF2. The electrical conductivity in the KF-NaF-AlF3-CaF2 melt decreases with increasing the CaF2 content, but it slightly raises with the first small addition of CaF2 into the KF-LiF-AlF3-CaF2 melts, enriched with KF, which was explained by the increased K+ ions mobility due to their relatively low ionic potential. The contribution of the Li+ cations in conductivity of the KF-LiF-AlF3-CaF2 electrolyte is not noteworthy. The Al2O3 solubility in the KF-NaF-AlF3 electrolyte rises with the increasing KF content, but the opposite tendency is observed in the cryolite mixtures containing CaF2. The insoluble compounds - KCaAl2F9 or KCaF3 - formed in the molten mixtures containing potassium and calcium ions endorse the increase of the liquidus temperature. The calcium fluoride effect on the side ledge formation in the electrolytic cell during low-temperature aluminum electrolysis is discussed.

  19. A New Method of Constructing a Drug-Polymer Temperature-Composition Phase Diagram Using Hot-Melt Extrusion.

    Tian, Yiwei; Jones, David S; Donnelly, Conor; Brannigan, Timothy; Li, Shu; Andrews, Gavin P

    2018-04-02

    Current experimental methodologies used to determine the thermodynamic solubility of an API within a polymer typically involves establishing the dissolution/melting end point of the crystalline API within a physical mixture or through the use of the glass transition temperature measurement of a demixed amorphous solid dispersion. The measurable "equilibrium" points for solubility are normally well above the glass transition temperature of the system, meaning extrapolation is required to predict the drug solubility at pharmaceutically relevant temperatures. In this manuscript, we argue that the presence of highly viscous polymers in these systems results in experimental data that exhibits an under or overestimated value relative to the true thermodynamic solubility. In previous work, we demonstrated the effects of experimental conditions and their impact on measured and predicted thermodynamic solubility points. In light of current understanding, we have developed a new method to limit error associated with viscosity effects for application in small-scale hot-melt extrusion (HME). In this study, HME was used to generate an intermediate (multiphase) system containing crystalline drug, amorphous drug/polymer-rich regions as well as drug that was molecularly dispersed in polymer. An extended annealing method was used together with high-speed differential scanning calorimetry to accurately determine the upper and lower boundaries of the thermodynamic solubility of a model drug-polymer system (felodipine and Soluplus). Compared to our previously published data, the current results confirmed our hypothesis that the prediction of the liquid-solid curve using dynamic determination of dissolution/melting end point of the crystalline API physical mixture presents an underestimation relative to the thermodynamic solubility point. With this proposed method, we were able to experimentally measure the upper and lower boundaries of the liquid-solid curve for the model system. The

  20. Shock compression behavior of bi-material powder composites with disparate melting temperatures

    Sullivan, Kyle T.; Swift, Damian; Barham, Matthew; Stölken, James; Kuntz, Joshua; Kumar, Mukul

    2014-01-01

    Laser driven experiments were used to investigate the shock compression behavior of powder processed Bismuth/Tungsten (Bi/W) composite samples. The constituents provide different functionality to the composite behavior as Bi could be shock melted at the pressures attained in this work, while the W could not. Samples were prepared by uniaxial pressing, and the relative density was measured as a function of particle size, applied pressure, and composition for both hot and cold pressing conditions. This resulted in sample densities between 73% and 99% of the theoretical maximum density, and also noticeable differences in microstructure in the hot and cold pressed samples. The compression waves were generated with a 1.3 × 1.3 mm square spot directly onto the surface of the sample, using irradiances between 10 12 and 10 13  W/cm 2 , which resulted in calculated peak pressures between 50 and 150 GPa within a few micrometers. Sample recovery and post-mortem analysis revealed the formation of a crater on the laser drive surface, and the depth of this crater corresponded to the depth to which the Bi had been melted. The melt depth was found to be primarily a function of residual porosity and composition, and ranged from 167 to 528 μm. In general, a higher porosity led to a larger melt depth. Direct numerical simulations were performed, and indicated that the observed increase in melt depth for low-porosity samples could be largely attributed to increased heating associated with work done for pore collapse. However, the relative scaling was sensitive to composition, with low volume fraction Bi samples exhibiting a much stronger dependence on porosity than high Bi content samples. Select samples were repeated using an Al foil ablator, but there were no noticeable differences ensuring that the observed melting was indeed pressure-driven and was not a result of direct laser heating. The resultant microstructures and damage near the spall surface were also investigated

  1. Non-linear effects of initial melt temperatures on microstructures and mechanical properties during quenching process of liquid Cu{sub 46}Zr{sub 54} alloy

    Mo, Yun-Fei [School of Physics and Microelectronics Science, Hunan University, Changsha, 410082 (China); Liu, Rang-Su, E-mail: liurangsu@sina.com [School of Physics and Microelectronics Science, Hunan University, Changsha, 410082 (China); Tian, Ze-An; Liang, Yong-Chao [School of Physics and Microelectronics Science, Hunan University, Changsha, 410082 (China); Zhang, Hai-Tao [School of Physics and Microelectronics Science, Hunan University, Changsha, 410082 (China); Department of Electronic and Communication Engineering, Changsha University, Changsha 410003 (China); Hou, Zhao-Yang [Department of Applied Physics, Chang’an University, Xi’an 710064 (China); Liu, Hai-Rong [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Zhang, Ai-long [College of Physics and Electronics, Hunan University of Arts and Science, Changde 415000 (China); Zhou, Li-Li [Department of Information Engineering, Gannan Medical University, Ganzhou 341000 (China); Peng, Ping [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Xie, Zhong [School of Physics and Microelectronics Science, Hunan University, Changsha, 410082 (China)

    2015-05-15

    A MD simulation of liquid Cu{sub 46}Zr{sub 54} alloys has been performed for understanding the effects of initial melt temperatures on the microstructural evolution and mechanical properties during quenching process. By using several microstructural analyzing methods, it is found that the icosahedral and defective icosahedral clusters play a key role in the microstructure transition. All the final solidification structures obtained at different initial melt temperatures are of amorphous structures, and their structural and mechanical properties are non-linearly related to the initial melt temperatures, and fluctuated in a certain range. Especially, there exists a best initial melt temperature, from which the glass configuration possesses the highest packing density, the optimal elastic constants, and the smaller extent of structural softening under deforming.

  2. High-resolution melting PCR assay, applicable for diagnostics and screening studies, allowing detection and differentiation of several Babesia spp. infecting humans and animals.

    Rozej-Bielicka, Wioletta; Masny, Aleksander; Golab, Elzbieta

    2017-10-01

    The goal of the study was to design a single tube PCR test for detection and differentiation of Babesia species in DNA samples obtained from diverse biological materials. A multiplex, single tube PCR test was designed for amplification of approximately 400 bp region of the Babesia 18S rRNA gene. Universal primers were designed to match DNA of multiple Babesia spp. and to have low levels of similarity to DNA sequences of other intracellular protozoa and Babesia hosts. The PCR products amplified from Babesia DNA isolated from human, dog, rodent, deer, and tick samples were subjected to high-resolution melting analysis for Babesia species identification. The designed test allowed detection and differentiation of four Babesia species, three zoonotic (B. microti, B. divergens, B. venatorum) and one that is generally not considered zoonotic-Babesia canis. Both detection and identification of all four species were possible based on the HRM curves of the PCR products in samples obtained from the following: humans, dogs, rodents, and ticks. No cross-reactivity with DNA of Babesia hosts or Plasmodium falciparum and Toxoplasma gondii was observed. The lack of cross-reactivity with P. falciparum DNA might allow using the assay in endemic malaria areas. The designed assay is the first PCR-based test for detection and differentiation of several Babesia spp. of medical and veterinary importance, in a single tube reaction. The results of the study show that the designed assay for Babesia detection and identification could be a practical and inexpensive tool for diagnostics and screening studies of diverse biological materials.

  3. High-temperature corrosion of metals in the salt and metallic melts containing rare earths

    Karpov, V. V.; Abramov, A. V.; Zhilyakov, A. Yu.; Belikov, S. V.; Volkovich, V. A.; Polovov, I. B.; Rebrin, O. I.

    2016-09-01

    A complex of independent methods was employed to study the corrosion resistance of molybdenum, zirconium, tantalum and tungsten in chloride, chloride-fluoride and fluoride-oxide melts based on LiCl, CaCl2, NaCl- KCl, LiF, and containing rare earths. Tests were conducted for 30 h at 750-1050 °C. The metals showed excellent corrosion resistance in fused chlorides (the corrosion rates were below 0.0005 g/(m2 h). Despite the presence of chemically active fluoride ions in the chloride-fluoride melts, the metals studied also showed very low corrosion rates, except molybdenum, for which the rate of corrosion was 0,8 g/(m2 h). The corrosion resistance of tantalum was considerably reduced in the fluoride-oxide melts; the corrosion rate was over 1 g/(m2 h) corresponding to the 8-th grade of stability and placing tantalum to the group of "low stability" materials.

  4. MgO melting curve constraints from shock temperature and rarefaction overtake measurements in samples preheated to 2300 K

    Fat'yanov, Oleg V.; Asimow, P. D.

    2014-01-01

    Continuing our effort to obtain experimental constraints on the melting curve of MgO at 100-200 GPa, we extended our target preheating capability to 2300 K. Our new Mo capsule design holds a long MgO crystal in a controlled thermal gradient until impact by a Ta flyer launched at up to 7.5 km/s on the Caltech two-stage light-gas gun. Radiative shock temperatures and rarefaction overtake times were measured simultaneously by a 6-channel VIS/NIR pyrometer with 3 ns time resolution. The majority ...

  5. Corrosion of inconel in high-temperature borosilicate glass melts containing simulant nuclear waste

    Mao, Xianhe; Yuan, Xiaoning; Brigden, Clive T.; Tao, Jun; Hyatt, Neil C.; Miekina, Michal

    2017-10-01

    The corrosion behaviors of Inconel 601 in the borosilicate glass (MW glass) containing 25 wt.% of simulant Magnox waste, and in ZnO, Mn2O3 and Fe2O3 modified Mg/Ca borosilicate glasses (MZMF and CZMF glasses) containing 15 wt.% of simulant POCO waste, were evaluated by dimensional changes, the formation of internal defects and changes in alloy composition near corrosion surfaces. In all three kinds of glass melts, Cr at the inconel surface forms a protective Cr2O3 scale between the metal surface and the glass, and alumina precipitates penetrate from the metal surface or formed in-situ. The corrosion depths of inconel 601 in MW waste glass melt are greater than those in the other two glass melts. In MW glass, the Cr2O3 layer between inconel and glass is fragmented because of the reaction between MgO and Cr2O3, which forms the crystal phase MgCr2O4. In MZMF and CZMF waste glasses the layers are continuous and a thin (Zn, Fe, Ni, B)-containing layer forms on the surface of the chromium oxide layer and prevents Cr2O3 from reacting with MgO or other constituents. MgCr2O4 was observed in the XRD analysis of the bulk MW waste glass after the corrosion test, and ZrSiO4 in the MZMF waste glass, and ZrSiO4 and CaMoO4 in the CZMF waste glass.

  6. Evaluation of Foaming Behavior of Glass Melts by High-Temperature Microscopy

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    2016-01-01

    Optical monitoring techniques can record in situ the size of glass samples during a dynamic heating process. This allowed us to study sintering and expansion rate of panel glass from cathode ray tube using MnO2 as foaming agent. We show the maximum expansion rate of glass melt foaming (in situ va...... such as type and concentration of foaming agent, glass composition and particle size to obtain foam glass with high porosity and closed pores. Using this approach we show that the foaming of bottle glass is preferentially conducted at a SiC concentration of 1‒4 wt%....

  7. Decoding a protracted zircon geochronological record in ultrahigh temperature granulite, and persistence of partial melting in the crust, Rogaland, Norway

    Laurent, Antonin T.; Bingen, Bernard; Duchene, Stephanie; Whitehouse, Martin J.; Seydoux-Guillaume, Anne-magali; Bosse, Valerie

    2018-04-01

    This contribution evaluates the relation between protracted zircon geochronological signal and protracted crustal melting in the course of polyphase high to ultrahigh temperature (UHT; T > 900 °C) granulite facies metamorphism. New U-Pb, oxygen isotope, trace element, ion imaging and cathodoluminescence (CL) imaging data in zircon are reported from five samples from Rogaland, South Norway. The data reveal that the spread of apparent age captured by zircon, between 1040 and 930 Ma, results both from open-system growth and closed-system post-crystallization disturbance. Post-crystallization disturbance is evidenced by inverse age zoning induced by solid-state recrystallization of metamict cores that received an alpha dose above 35 × 1017 α g-1. Zircon neocrystallization is documented by CL-dark domains displaying O isotope open-system behaviour. In UHT samples, O isotopic ratios are homogenous (δ18O = 8.91 ± 0.08‰), pointing to high-temperature diffusion. Scanning ion imaging of these CL-dark domains did not reveal unsupported radiogenic Pb. The continuous geochronological signal retrieved from the CL-dark zircon in UHT samples is similar to that of monazite for the two recognized metamorphic phases (M1: 1040-990 Ma; M2: 940-930 Ma). A specific zircon-forming event is identified in the orthopyroxene and UHT zone with a probability peak at ca. 975 Ma, lasting until ca. 955 Ma. Coupling U-Pb geochronology and Ti-in-zircon thermometry provides firm evidence of protracted melting lasting up to 110 My (1040-930 Ma) in the UHT zone, 85 My (ca. 1040-955 Ma) in the orthopyroxene zone and some 40 My (ca. 1040-1000 Ma) in the regional basement. These results demonstrate the persistence of melt over long timescales in the crust, punctuated by two UHT incursions.

  8. The partitioning of barium and lead between silicate melts and aqueous fluids at high pressures and temperatures

    Bureau, Helene; Menez, Benedicte; Khodja, Hicham; Daudin, Laurent; Gallien, Jean-Paul; Massare, Dominique; Shaw, Cliff; Metrich, Nicole

    2003-01-01

    The origin of subduction-related magmas is still a matter of debate in the Earth Sciences. These magmas are characterised by their distinctive trace element compositions compared to magmas from other tectonic settings, e.g. mid-ocean ridges or rifts. The distinct trace element composition of these magmas is generally attributed to alteration of the source region by a contaminating agent: either a silicate melt or a hydrous fluid, possibly chlorine-enriched. In this study, we have used μPIXE (proton induced X-ray emission) to analyse synthetic samples obtained from a micro-experimental petrology study that aims to determine the partitioning behaviour of two key elements, Ba and Pb, between silicate melt and both pure water and saline fluids. Our experiments were performed at high-pressure (>0.34-1.53 GPa) and high-temperature (697-1082 deg. C) in a hydrothermal diamond anvil cell, that was used as a transparent rapid quench autoclave. We observed that at high pressure and temperature, in the presence of pure water, Ba and Pb are not strongly fractionated into one phase or the other. The partition coefficient of Pb is ranging from 0.46 to 1.28. Results from one experiment performed at 0.83 GPa and 847 deg. C, in the presence of a saline fluid indicate that the presence of Cl induces strong fractionation of Pb and moderate fractionation of Ba both into the silicate melt. In addition, our data indicate that Cl is strongly partitioned into the fluid phase

  9. Temperature calibration procedure for thin film substrates for thermo-ellipsometric analysis using melting point standards

    Kappert, Emiel; Raaijmakers, Michiel; Ogieglo, Wojciech; Nijmeijer, Arian; Huiskes, Cindy; Huiskes, C.; Benes, Nieck Edwin

    2015-01-01

    Precise and accurate temperature control is pertinent to studying thermally activated processes in thin films. Here, we present a calibration method for the substrate–film interface temperature using spectroscopic ellipsometry. The method is adapted from temperature calibration methods that are well

  10. In-situ, high pressure and temperature experimental determination of hydrogen isotope fractionation between coexisting hydrous melt and silicate-saturated aqueous fluid

    Mysen, B. O.

    2012-12-01

    Hydrogen isotope fractionation between water-saturated silicate melt and silicate-saturated aqueous fluid has been determined experimentally, in-situ with the samples in the 450-800C and 101-1567 MPa temperature and pressure range, respectively. The temperatures are, therefore higher than those where hydrogen bonding in fluids and melts is important [1]. The experiments were conducted with a hydrothermal diamond anvil cell (HDAC) as the high-temperature/-pressure tool and vibrational spectroscopy to determine D/H fractionation. Compositions were along the haploandesite join, Na2Si4O9 - Na2(NaAl)4O9 [Al/(Al+Si)=0-0.1], and a 50:50 (by volume) H2O:D2O fluid mixture as starting material. Platinum metal was used to enhance equilibration rate. Isotopic equilibrium was ascertained by using variable experimental duration at given temperature and pressure. In the Al-free Na-silicate system, the enthalpy change of the (D/H) equilibrium of fluid is 3.1±0.7 kJ/mol, whereas for coexisting melt, ΔH=0 kJ/mol within error. With Al/(Al+Si)=0.1, ΔH=5.2±0.9 kJ/mol for fluid and near 0 within error for coexisting melt melt. For the exchange equilibrium between melt and fluid, H2O(melt)+D2O(fluid)=H2O(fluid)+D2O(melt), the ΔH=4.6±0.7 and 6.5±0.7 kJ/mol for the two Al-free and Al-bearing compositions, respectively, respectively. The D/H equilibration within fluids and melts and, therefore, D/H partitioning between coexisting fluid and melt reflect the influence of dissolved H2O(D2O) in melts and dissolved silicate components in H2O(D2O) fluid on their structure. The positive temperature- and pressure-dependence of silicate solubility and on silicate structure in silicate-saturated aqueous fluid governs the D/H fractionation in the fluid because increasing silicate solute concentration in fluid results in silicate polymerization [2]. These structural effects may be analogous to observed solute-dependent oxygen isotope fractionation between brine and CO2 [3]. In the temperature

  11. Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution

    Yadroitsev, I., E-mail: ihar.yadroitsau@enise.fr [Université de Lyon, Ecole Nationale d’Ingénieurs de Saint-Etienne, 58 rue Jean Parot, 42023 Saint-Etienne (France); Krakhmalev, P. [Karlstad University, Department of Mechanical and Materials Engineering, SE-651 88 Karlstad (Sweden); Yadroitsava, I. [Université de Lyon, Ecole Nationale d’Ingénieurs de Saint-Etienne, 58 rue Jean Parot, 42023 Saint-Etienne (France)

    2014-01-15

    Highlights: • Temperature measurements of molten pool were done using CCD camera. • Temperature of molten pool versus scanning speed and laser power was determined. • Microstructures and microhardness of SLM samples were analyzed. • Influence of heat treatment on microstructure were discussed and presented. -- Abstract: Selective laser melting (SLM) is a kind of additive manufacturing where parts are made directly from 3D CAD data layer-by-layer from powder material. SLM products are used in various industries including aerospace, automotive, electronic, chemical, biomedical and other high-tech areas. The properties of the parts produced by SLM depend strongly on the material nature, characteristics of each single track and each single layer, as well as the strength of the connections between them. Studying the temperature distribution during SLM is important because temperature gradient and heat transfer determine the microstructure and finally mechanical properties of the SLM part. In this study a CCD camera was applied for determination of the surface temperature distribution and the molten pool size of Ti6Al4V alloy. The investigation of the microstructure evolution after different heat treatments was carried out to determine the microstructure in terms of applicability for the biomedical industry.

  12. Mixing-to-eruption timescales: an integrated model combining numerical simulations and high-temperature experiments with natural melts

    Montagna, Chiara; Perugini, Diego; De Campos, Christina; Longo, Antonella; Dingwell, Donald Bruce; Papale, Paolo

    2015-04-01

    Arrival of magma from depth into shallow reservoirs and associated mixing processes have been documented as possible triggers of explosive eruptions. Quantifying the timing from beginning of mixing to eruption is of fundamental importance in volcanology in order to put constraints about the possible onset of a new eruption. Here we integrate numerical simulations and high-temperature experiment performed with natural melts with the aim to attempt identifying the mixing-to-eruption timescales. We performed two-dimensional numerical simulations of the arrival of gas-rich magmas into shallow reservoirs. We solve the fluid dynamics for the two interacting magmas evaluating the space-time evolution of the physical properties of the mixture. Convection and mingling develop quickly into the chamber and feeding conduit/dyke. Over time scales of hours, the magmas in the reservoir appear to have mingled throughout, and convective patterns become harder to identify. High-temperature magma mixing experiments have been performed using a centrifuge and using basaltic and phonolitic melts from Campi Flegrei (Italy) as initial end-members. Concentration Variance Decay (CVD), an inevitable consequence of magma mixing, is exponential with time. The rate of CVD is a powerful new geochronometer for the time from mixing to eruption/quenching. The mingling-to-eruption time of three explosive volcanic eruptions from Campi Flegrei (Italy) yield durations on the order of tens of minutes. These results are in perfect agreement with the numerical simulations that suggest a maximum mixing time of a few hours to obtain a hybrid mixture. We show that integration of numerical simulation and high-temperature experiments can provide unprecedented results about mixing processes in volcanic systems. The combined application of numerical simulations and CVD geochronometer to the eruptive products of active volcanoes could be decisive for the preparation of hazard mitigation during volcanic unrest.

  13. A novel assay of DGAT activity based on high temperature GC/MS of triacylglycerol.

    Greer, Michael S; Zhou, Ting; Weselake, Randall J

    2014-08-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the final step in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG), a high-energy compound composed of three fatty acids esterified to a glycerol backbone. In vitro DGAT assays, which are usually conducted with radiolabeled substrate using microsomal fractions, have been useful in identifying compounds and genetic modifications that affect DGAT activity. Here, we describe a high-temperature gas chromatography (GC)/mass spectrometry (MS)-based method for monitoring molecular species of TAG produced by the catalytic action of microsomal DGAT. This method circumvents the need for radiolabeled or modified substrates, and only requires a simple lipid extraction prior to GC. The utility of the method is demonstrated using a recombinant type-1 Brassica napus DGAT produced in a strain of Saccharomyces cerevisae that is deficient in TAG synthesis. The GC/MS-based assay of DGAT activity was strongly correlated with the typical in vitro assay of the enzyme using [1-(14)C] acyl-CoA as an acyl donor. In addition to determining DGAT activity, the method is also useful for determining substrate specificity and selectivity properties of the enzyme.

  14. Investigation on the hot melting temperature field simulation of HDPE water supply pipeline in gymnasium pool

    Cai, Zhiqiang; Dai, Hongbin; Fu, Xibin

    2018-06-01

    In view of the special needs of the water supply and drainage system of swimming pool in gymnasium, the correlation of high density polyethylene (HDPE) pipe and the temperature field distribution during welding was investigated. It showed that the temperature field distribution has significant influence on the quality of welding. Moreover, the mechanical properties of the welded joint were analyzed by the bending test of the weld joint, and the micro-structure of the welded joint was evaluated by scanning electron microscope (SEM). The one-dimensional unsteady heat transfer model of polyethylene pipe welding joints was established by MARC. The temperature field distribution during welding process was simulated, and the temperature field changes during welding were also detected and compared by the thermo-couple temperature automatic acquisition system. Results indicated that the temperature of the end surface of the pipe does not reach the maximum value, when it is at the end of welding heating. Instead, it reaches the maximum value at 300 sand latent heat occurs during the welding process. It concludes that the weld quality is the highest when the welding pressure is 0.2 MPa, and the heating temperature of HDPE heat fusion welding is in the range of 210 °C-230 °C.

  15. Limitations on the Estimation of Parental Magma Temperature Using Olivine-melt Equilibria: Hotspots Not So Hot

    Natland, J. H.

    2004-12-01

    Estimates of temperatures of magmas parental to picritic tholeiites using olivine-melt equilibria and FeO-MgO relationships depend strongly on the assumption that a liquid composition, usually a glass, is related to the most magnesian olivine in the rock, or to an olivine composition in equilibrium with mantle peridotite, along an olivine-controlled liquid line of descent. The liquid Fe2+/Fe3+ also has to be known; where data exist, average values from wet chemical determinations are used. Crystallization histories of tholeiitic picrites from islands, spreading ridges, and large igneous provinces, however, usually reveal them to be hybrid rocks that are assembled by two types of magma mixing: 1) between a) differentiated magmas that are on olivine-plagioclase or olivine-plagioclase-clinopyroxene cotectics and b) crystal sludges with abundant olivine that may have accumulated from liquids crystallizing olivine alone; and 2) between primitive magma strains in which olivine crystallized either alone or with other silicate minerals at elevated pressure on separate liquid lines of descent. Many picrites give evidence that both types of mixing have occurred. If either type has occurred, the assumption of olivine-control linking a glass and an olivine composition can only circumstantially be correct. Oxidation state can also be underestimated and therefore FeO contents overestimated if basalts have degassed S, as at Hawaii. In Case 1, hybrid host glass compositions often have higher FeO at given MgO content than liquids which produced many olivine crystals in the rock. In Case 2, the separate parental melt strains are revealed by diversity of compositions of both melt inclusions and Cr-spinel and are most often interpreted to mean local heterogeneity of the mantle source. The inclusions do not always affirm an olivine-controlled liquid line of descent. Instead, inclusions with Gorgona, but not in MORB. Where fresh glass is lacking (e.g., Gorgona), bulk-rock compositions

  16. Interaction processes between vacancies and dislocations in molybdenum in the temperature range around 0.3 of the melting temperature

    Zelada-Lambri, G.I.; Lambri, O.A.; Bozzano, P.B.; Garcia, J.A.; Celauro, C.A.

    2008-01-01

    Mechanical spectroscopy, electrical resistivity and transmission electron microscopy studies have been performed on pre-strained neutron irradiated single crystalline molybdenum in order to check the interaction processes between vacancies and dislocations in the temperature range between room temperature and 1273 K. The anelastic relaxation in molybdenum which appears between 800 K and 1273 K has been separated in two different physical mechanisms depending on the temperature of appearance of the relaxation peak. The physical mechanism which controls the damping peak appearing at around 800 K was related with the dragging of jogs by the dislocation under movement assisted by vacancy diffusion. The damping peak which appears at higher temperatures of about 1000 K was more consistent with the formation and diffusion of vacancies assisted by the dislocation movement

  17. Interaction processes between vacancies and dislocations in molybdenum in the temperature range around 0.3 of the melting temperature

    Zelada-Lambri, G.I. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avenida Pellegrini 250, 2000 Rosario (Argentina); Lambri, O.A. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avenida Pellegrini 250, 2000 Rosario (Argentina); Instituto de Fisica Rosario, Member of the CONICET' s Research Staff (Argentina)], E-mail: olambri@fceia.unr.edu.ar; Bozzano, P.B. [Laboratorio de Microscopia Electronica, Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avenida General Paz 1499, 1650 San Martin (Argentina); Garcia, J.A. [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao, Pais Vasco (Spain); Celauro, C.A. [Reactor Nuclear RA-4, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Riobamba y Berruti, 2000 Rosario (Argentina)

    2008-10-15

    Mechanical spectroscopy, electrical resistivity and transmission electron microscopy studies have been performed on pre-strained neutron irradiated single crystalline molybdenum in order to check the interaction processes between vacancies and dislocations in the temperature range between room temperature and 1273 K. The anelastic relaxation in molybdenum which appears between 800 K and 1273 K has been separated in two different physical mechanisms depending on the temperature of appearance of the relaxation peak. The physical mechanism which controls the damping peak appearing at around 800 K was related with the dragging of jogs by the dislocation under movement assisted by vacancy diffusion. The damping peak which appears at higher temperatures of about 1000 K was more consistent with the formation and diffusion of vacancies assisted by the dislocation movement.

  18. Climatology of increased temperatures and melt at Swiss Camp, western slope of Greenland ice sheet, 1991-2012

    Steffen, K.; McGrath, D.

    2013-12-01

    Climate observations (1991-2012) will be discussed from the Swiss Camp (69deg 33‧53″N, 49deg 19‧51″W, 1176 m), located at the western slope of the Greenland ice sheet, 60 km inland from Ilulissat. The mean annual temperature of -12 C increased 3.6 C between 1991 and 2012 (1.7 C per decade) with large interannual variability in all seasons. The mean spring temperature increased from -16.0 C to -13.8 C, and the fall temperature increased from -12.4 C to -11.3 C in the same time. The winter temperature showed the largest increase of 6.5 C, whereas summer temperatures increased 3.0 C during the 21 years (1991 - 2012). Radiation has been monitored continuously at Swiss Camp since 1993. Net radiation of 50 W/ m2 was recorded in 2012, the warmest summer month on record. The entire annual snow cover melted at Swiss Camp, reducing the monthly albedo value to 0.4 with bare ice exposed. Interannual variability of snow accumulation ranged between 0.07 and 0.70 m water equivalent, whereas annual snow and ice ablation varied between +0.35 (net gain) and -1.8 m (net loss) for the time period 1991-2012. The equilibrium line altitude (ELA) is no longer located at Swiss Camp (1176 m elevation) with a net surface lowering of 9.5 m since 1991. Increasing summer air temperatures have resulted in an upward migration of both the percolation facies and ablation area of the Greenland ice sheet. The 0°C isothermal migrated upward at a rate of 35 m/a over the 1995-2012 period in West Greenland. There is a 50% probability of the mean annual dry snow line migrating above Summit by 2025, at which time Summit will experience routine melt on an annual basis. The surface mass balance observations similarly indicate that the ELA has migrated upwards at a rate of 44 m/a over the 1997-2011 period in West Greenland, resulting in a more than doubling of the ablation zone width during this period. Inter-annual variability of monthly mean albedo at the Swiss Camp (1993 - 2012). Albedo at 0.5 is

  19. Measurement of solid-liquid interfacial energy in the In-Bi eutectic alloy at low melting temperature

    Marasli, N; Akbulut, S; Ocak, Y; Keslioglu, K; Boeyuek, U; Kaya, H; Cadirli, E

    2007-01-01

    The Gibbs-Thomson coefficient and solid-liquid interfacial energy of the solid In solution in equilibrium with In Bi eutectic liquid have been determined to be (1.46 ± 0.07) x 10 -7 K m and (40.4 ± 4.0) x 10 -3 J m -2 by observing the equilibrated grain boundary groove shapes. The grain boundary energy of the solid In solution phase has been calculated to be (79.0 ± 8.7) x 10 -3 J m -2 by considering force balance at the grain boundary grooves. The thermal conductivities of the In-12.4 at.% Bi eutectic liquid phase and the solid In solution phase and their ratio at the eutectic melting temperature (72 deg. C) have also been measured with radial heat flow apparatus and Bridgman-type growth apparatus

  20. Melting temperature and enthalpy variations of phase change materials (PCMs): a differential scanning calorimetry (DSC) analysis

    Sun, Xiaoqin; Lee, Kyoung Ok; Medina, Mario A.; Chu, Youhong; Li, Chuanchang

    2018-06-01

    Differential scanning calorimetry (DSC) analysis is a standard thermal analysis technique used to determine the phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy of phase change materials (PCMs). To determine the appropriate heating rate and sample mass, various DSC measurements were carried out using two kinds of PCMs, namely N-octadecane paraffin and calcium chloride hexahydrate. The variations in phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy were observed within applicable heating rates and sample masses. It was found that the phase transition temperature range increased with increasing heating rate and sample mass; while the heat of fusion varied without any established pattern. The specific heat decreased with the increase of heating rate and sample mass. For accuracy purpose, it is recommended that for PCMs with high thermal conductivity (e.g. hydrated salt) the focus will be on heating rate rather than sample mass.

  1. Thermodynamics of Oligonucleotide Duplex Melting

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  2. Use of IR pyrometry to measure free-surface temperatures of partially melted tin as a function of shock pressure

    Seifter, A.; Furlanetto, M. R.; Holtkamp, D. B.; Obst, A. W.; Payton, J. R.; Stone, J. B.; Tabaka, L. J.; Grover, M.; Macrum, G. S.; Stevens, G. D.; Turley, W. D.; Swift, D. C.; Veeser, L. R.

    2009-01-01

    Equilibrium equation of state theory predicts that the free-surface release temperature of shock-loaded tin will show a plateau at 505 K in the stress range from 19.5 to 33.0 GPa, corresponding to the solid-liquid, mixed-phase region of tin. In this paper we report free-surface temperature measurements on shock-loaded tin from 15 to 31 GPa using multiwavelength optical pyrometry. The shock waves were generated by direct contact of detonating high explosive with a tin sample, and the stress in the sample was determined by free-surface velocity measurements using photon Doppler velocimetry. We measured the emitted thermal radiance in the near IR region at four wavelengths from 1.5 to 5.0 μm. Above 25 GPa the measured free-surface temperatures were higher than the predicted 505 K, and they increased with increasing stress. This deviation may be explained by hot spots and/or variations in surface emissivity, and it may indicate a weakness in the use of a simple analysis of multiwavelength pyrometry data for conditions, such as above the melt threshold, where hot spots or emissivity variations may be significant. We are continuing to study the discrepancy to determine its cause.

  3. Excess Molar Volumes of (Propiophenone + Toluene) and Estimated Density of Liquid Propiophenone below Its Melting Temperature

    Morávková, Lenka; Linek, Jan

    2006-01-01

    Roč. 38, č. 10 (2006), s. 1240-1244 ISSN 0021-9614 R&D Projects: GA ČR(CZ) GA203/02/1098 Institutional research plan: CEZ:AV0Z40720504 Keywords : density * excess volume * temperature dependence Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.842, year: 2006

  4. Does Ice Dissolve or Does Halite Melt? A Low-Temperature Liquidus Experiment for Petrology Classes.

    Brady, John B.

    1992-01-01

    Measurement of the compositions and temperatures of H2O-NaCl brines in equilibrium with ice can be used as an easy in-class experimental determination of a liquidus. This experiment emphasizes the symmetry of the behavior of brines with regard to the minerals ice and halite and helps to free students from the conceptual tethers of one-component…

  5. Surface tension estimation of high temperature melts of the binary alloys Ag-Au

    Dogan, Ali; Arslan, Hüseyin

    2017-11-01

    Surface tension calculation of the binary alloys Ag-Au at the temperature of 1381 K, where Ag and Au have similar electronic structures and their atomic radii are comparable, are carried out in this study using several equations over entire composition range of Au. Apparently, the deviations from ideality of the bulk solutions, such as activities of Ag and Au are small and the maximum excess Gibbs free energy of mixing of the liquid phase is for instance -4500 J/mol at XAu = 0.5. Besides, the results obtained in Ag-Au alloys that at a constant temperature the surface tension increases with increasing composition while the surface tension decreases as the temperature increases for entire composition range of Au. Although data about surface tension of the Ag-Au alloy are limited, it was possible to make a comparison for the calculated results for the surface tension in this study with the available experimental data. Taken together, the average standard error analysis that especially the improved Guggenheim model in the other models gives the best agreement along with the experimental results at temperature 1383 K although almost all models are mutually in agreement with the other one.

  6. Satellite-derived, melt-season surface temperature of the Greenland Ice Sheet (2000-2005) and its relationship to mass balance

    Hall, D.K.; Williams, R.S.; Casey, K.A.; DiGirolamo, N.E.; Wan, Z.

    2006-01-01

    Mean, clear-sky surface temperature of the Greenland Ice Sheet was measured for each melt season from 2000 to 2005 using Moderate-Resolution Imaging Spectroradiometer (MODIS)–derived land-surface temperature (LST) data-product maps. During the period of most-active melt, the mean, clear-sky surface temperature of the ice sheet was highest in 2002 (−8.29 ± 5.29°C) and 2005 (−8.29 ± 5.43°C), compared to a 6-year mean of −9.04 ± 5.59°C, in agreement with recent work by other investigators showing unusually extensive melt in 2002 and 2005. Surface-temperature variability shows a correspondence with the dry-snow facies of the ice sheet; a reduction in area of the dry-snow facies would indicate a more-negative mass balance. Surface-temperature variability generally increased during the study period and is most pronounced in the 2005 melt season; this is consistent with surface instability caused by air-temperature fluctuations.

  7. Development of melting temperature-based SYBR Green I polymerase chain reaction methods for multiplex genetically modified organism detection.

    Hernández, Marta; Rodríguez-Lázaro, David; Esteve, Teresa; Prat, Salomé; Pla, Maria

    2003-12-15

    Commercialization of several genetically modified crops has been approved worldwide to date. Uniplex polymerase chain reaction (PCR)-based methods to identify these different insertion events have been developed, but their use in the analysis of all commercially available genetically modified organisms (GMOs) is becoming progressively insufficient. These methods require a large number of assays to detect all possible GMOs present in the sample and thereby the development of multiplex PCR systems using combined probes and primers targeted to sequences specific to various GMOs is needed for detection of this increasing number of GMOs. Here we report on the development of a multiplex real-time PCR suitable for multiple GMO identification, based on the intercalating dye SYBR Green I and the analysis of the melting curves of the amplified products. Using this method, different amplification products specific for Maximizer 176, Bt11, MON810, and GA21 maize and for GTS 40-3-2 soybean were obtained and identified by their specific Tm. We have combined amplification of these products in a number of multiplex reactions and show the suitability of the methods for identification of GMOs with a sensitivity of 0.1% in duplex reactions. The described methods offer an economic and simple alternative to real-time PCR systems based on sequence-specific probes (i.e., TaqMan chemistry). These methods can be used as selection tests and further optimized for uniplex GMO quantification.

  8. Predicting critical temperatures of ionic and non-ionic fluids from thermophysical data obtained near the melting point

    Weiss, Volker C.

    2015-10-01

    In the correlation and prediction of thermophysical data of fluids based on a corresponding-states approach, the critical temperature Tc plays a central role. For some fluids, in particular ionic ones, however, the critical region is difficult or even impossible to access experimentally. For molten salts, Tc is on the order of 3000 K, which makes accurate measurements a challenging task. Room temperature ionic liquids (RTILs) decompose thermally between 400 K and 600 K due to their organic constituents; this range of temperatures is hundreds of degrees below recent estimates of their Tc. In both cases, reliable methods to deduce Tc based on extrapolations of experimental data recorded at much lower temperatures near the triple or melting points are needed and useful because the critical point influences the fluid's behavior in the entire liquid region. Here, we propose to employ the scaling approach leading to universal fluid behavior [Román et al., J. Chem. Phys. 123, 124512 (2005)] to derive a very simple expression that allows one to estimate Tc from the density of the liquid, the surface tension, or the enthalpy of vaporization measured in a very narrow range of low temperatures. We demonstrate the validity of the approach for simple and polar neutral fluids, for which Tc is known, and then use the methodology to obtain estimates of Tc for ionic fluids. When comparing these estimates to those reported in the literature, good agreement is found for RTILs, whereas the ones for the molten salts NaCl and KCl are lower than previous estimates by 10%. The coexistence curve for ionic fluids is found to be more adequately described by an effective exponent of βeff = 0.5 than by βeff = 0.33.

  9. Temperature and pressure determination of the tin melt boundary from a combination of pyrometry, spectral reflectance, and velocity measurements along release paths

    La Lone, Brandon; Asimow, Paul; Fatyanov, Oleg; Hixson, Robert; Stevens, Gerald

    2017-06-01

    Plate impact experiments were conducted on tin samples backed by LiF windows to determine the tin melt curve. Thin copper flyers were used so that a release wave followed the 30-40 GPa shock wave in the tin. The release wave at the tin-LiF interface was about 300 ns long. Two sets of experiments were conducted. In one set, spectral emissivity was measured at six wavelengths using a flashlamp illuminated integrating sphere. In the other set, thermal radiance was measured at two wavelengths. The emissivity and thermal radiance measurements were combined to obtain temperature histories of the tin-LiF interface during the release. PDV was used to obtain stress histories. All measurements were combined to obtain temperature vs. stress release paths. A kink or steepening in the release paths indicate where the releases merge onto the melt boundary, and release paths originating from different shock stresses overlap on the melt boundary. Our temperature-stress release path measurements provide a continuous segment of the tin melt boundary that is in good agreement with some of the published melt curves. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy, and supported by the Site-Directed Research and Development Program. DOE/NV/259463133.

  10. High Temperature Corrosion of Nickel in NaVO3-V2O5 Melts

    J. Porcayo-Calderon

    2017-01-01

    Full Text Available Many alloys used at high temperature in industrial processes are Ni-based and many others contain it in appreciable quantities, so it is of interest to evaluate the performance of pure nickel in order to determine the behavior of its alloys once the elements responsible for their protection have been depleted due to accelerated corrosion processes in the presence of vanadium-rich molten salts. Due to this, this work presents the study of Ni behavior in NaVO3-V2O5 mixtures at different temperatures. The behavior of pure nickel was determined by both electrochemical and mass loss measurements. The results show that the aggressiveness of the vanadium salts is increased by increasing both the V2O5 content and temperature. V2O5 addition considerably increases the current densities of the anodic and cathodic reactions. The corrosion process of Ni is modified due to the presence of its corrosion products, and its presence increases the activation energy by at least one order of magnitude. Although nickel shows a high reactivity in vanadium-rich salts, its reaction products are highly stable and protect it from the corrosive medium because the corrosion reactions trap the vanadium and block the migration of nickel ions.

  11. Temperatures and Melt Water Contents at the Onset of Phenocryst Growth in Quaternary Nepheline-Normative Basalts Erupted along the Tepic-Zacoalco Rift in Western Mexico

    Mesa, J.; Lange, R. A.; Pu, X.

    2017-12-01

    Nepheline-normative, high-Mg basalts erupted from the western Mexican arc, along the Tepic-Zacoalco rift (TZR), have a trace-element signature consistent with an asthenosphere source, whereas calc-alkaline basalts erupted from the central Mexican arc in the Michoacan-Guanajuato volcanic field (MGVF) have a trace-element signature consistent with a mantle source strongly affected by subduction fluids. In this study, olivine-melt thermometry and plagioclase-liquid hygrometry are used to constrain the temperature and melt water content of the alkaline TZR basalts. The presence of diffusion-limited growth textures in olivine and plagioclase phenocrysts provide preliminary evidence of rapid growth during ascent. For each basalt sample, a histogram of all analyzed olivines in each sample allows the most Fo-rich composition to be identified, which matches the calculated composition at the liquidus via MELTS (Ghiorso & Sack, 1995; Asimow & Ghiorso, 1998) at fO2 values of QFM +2. Therefore a newly developed olivine-melt thermometer, based on DNiol/liq (Pu et al., 2017) was used to calculate temperature at the onset of olivine crystallization during ascent. Temperatures range from 1076-1247°C, whereas those calculated using an olivine-melt thermometer based on DMgol/liq range from 1141-1236 °C. Olivine-melt thermometers based on DMgol/liq are sensitive to melt H2O content, therefore ΔT = TMg - TNi (≤ 82 degrees) may be used as a qualitative indicator of melt H2O (≤ 2.6 wt% H2O; Pu et al., 2017). When temperatures from the Ni-thermometer are applied to the most calcic plagioclase in each sample (Waters & Lange, 2015), calculated melt H2O contents range from 1.3-1.9 (± 0.4) wt%. These values are significantly lower than those obtained from high-Mg calc-alkaline basalts from the MGVF using similar methods (1.9-5.0 wt%; Pu et al., 2017), consistent with a reduced involvement of slab-derived fluids in the origin of the alkaline TZR basalts from western Mexico.

  12. Sorption activity investigation of ultrafine powders of high temperature melting point compounds in atmospheric pressure conditions

    Rudneva, V.V.

    2006-01-01

    A study is made in saturation with gas in the air for ultradispersed chromium carbonitride and boride powders synthesized in a nitrogen plasma jet according to three variants: from elements, from oxides, from chromium trichloride. It is established that in the air on temperature increasing the powders adsorb considerable amounts of oxygen and water vapor. This results in surface oxidation of powder particles and a loss in specific combination of properties. Preliminary vacuum heat treatment is shown to decrease sharply the rate of atmospheric gas adsorption. The quantity of adsorbed gases is dependent on a carbon monoxide concentration in a particle surface layer and the availability of adsorption centers. The number of such centers in the layer can be controlled by vacuum heat treatment conditions. The interaction of the powders with atmospheric gases is concluded to be of adsorption-diffusion nature [ru

  13. Study of critical free-area ratio during the snow-melting process on pavement using low-temperature heating fluids

    Wang, Huajun [School of Energy and Environment Engineering, Hebei University of Technology, Tianjin 300401 (China); Chen, Zhihao [Faculty of Engineering, Yokohama National University, Hodogaya, Yokohama 240-8501 (Japan)

    2009-01-15

    Critical free-area ratio (CFR) is an interesting phenomenon during the snow-melting process on pavement using low-temperature heating fluids such as geothermal tail water and industrial waste water. This paper is performed to further investigate the mechanism of CFR and its influencing factors. A simplified theoretical model is presented to describe the heat and mass transfer process on pavement. Especially the variation of thermal properties and the capillary effect of snow layer are considered. Numerical computation shows that the above theoretical model is effective for the prediction of CFR during the snow-melting process. Furthermore, the mechanism of CFR is clarified in detail. CFR is independent of the layout of hydronic pipes, the fluid temperature, the idling time, and weather conditions. It is both the non-uniform temperature distribution and complicated porous structure of snow layer that lead to the occurrence of CFR. Besides, the influences of operation parameters including the fluid temperature, the idling time, the pipe spacing and buried depths on snow melting are analyzed, which are helpful for the next optimal design of snow-melting system. (author)

  14. Study of critical free-area ratio during the snow-melting process on pavement using low-temperature heating fluids

    Wang Huajun [School of Energy and Environment Engineering, Hebei University of Technology, Tianjin 300401 (China)], E-mail: huajunwang@126.com; Chen Zhihao [Faculty of Engineering, Yokohama National University, Hodogaya, Yokohama 240-8501 (Japan)

    2009-01-15

    Critical free-area ratio (CFR) is an interesting phenomenon during the snow-melting process on pavement using low-temperature heating fluids such as geothermal tail water and industrial waste water. This paper is performed to further investigate the mechanism of CFR and its influencing factors. A simplified theoretical model is presented to describe the heat and mass transfer process on pavement. Especially the variation of thermal properties and the capillary effect of snow layer are considered. Numerical computation shows that the above theoretical model is effective for the prediction of CFR during the snow-melting process. Furthermore, the mechanism of CFR is clarified in detail. CFR is independent of the layout of hydronic pipes, the fluid temperature, the idling time, and weather conditions. It is both the non-uniform temperature distribution and complicated porous structure of snow layer that lead to the occurrence of CFR. Besides, the influences of operation parameters including the fluid temperature, the idling time, the pipe spacing and buried depths on snow melting are analyzed, which are helpful for the next optimal design of snow-melting system.

  15. The Effects of Annealing Temperatures on Composition and Strain in Si x Ge1-x Obtained by Melting Growth of Electrodeposited Ge on Si (100).

    Abidin, Mastura Shafinaz Zainal; Morshed, Tahsin; Chikita, Hironori; Kinoshita, Yuki; Muta, Shunpei; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Matsumura, Ryo; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2014-02-24

    The effects of annealing temperatures on composition and strain in Si x Ge 1- x , obtained by rapid melting growth of electrodeposited Ge on Si (100) substrate were investigated. Here, a rapid melting process was performed at temperatures of 1000, 1050 and 1100 °C for 1 s. All annealed samples show single crystalline structure in (100) orientation. A significant appearance of Si-Ge vibration mode peak at ~400 cm -1 confirms the existence of Si-Ge intermixing due to out-diffusion of Si into Ge region. On a rapid melting process, Ge melts and reaches the thermal equilibrium in short time. Si at Ge/Si interface begins to dissolve once in contact with the molten Ge to produce Si-Ge intermixing. The Si fraction in Si-Ge intermixing was calculated by taking into account the intensity ratio of Ge-Ge and Si-Ge vibration mode peaks and was found to increase with the annealing temperatures. It is found that the strain turns from tensile to compressive as the annealing temperature increases. The Si fraction dependent thermal expansion coefficient of Si x Ge 1- x is a possible cause to generate such strain behavior. The understanding of compositional and strain characteristics is important in Ge/Si heterostructure as these properties seem to give significant effects in device performance.

  16. The Effects of Annealing Temperatures on Composition and Strain in SixGe1−x Obtained by Melting Growth of Electrodeposited Ge on Si (100)

    Abidin, Mastura Shafinaz Zainal; Morshed, Tahsin; Chikita, Hironori; Kinoshita, Yuki; Muta, Shunpei; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Matsumura, Ryo; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2014-01-01

    The effects of annealing temperatures on composition and strain in SixGe1−x, obtained by rapid melting growth of electrodeposited Ge on Si (100) substrate were investigated. Here, a rapid melting process was performed at temperatures of 1000, 1050 and 1100°C for 1 s. All annealed samples show single crystalline structure in (100) orientation. A significant appearance of Si-Ge vibration mode peak at ~00 cm−1 confirms the existence of Si-Ge intermixing due to out-diffusion of Si into Ge region. On a rapid melting process, Ge melts and reaches the thermal equilibrium in short time. Si at Ge/Si interface begins to dissolve once in contact with the molten Ge to produce Si-Ge intermixing. The Si fraction in Si-Ge intermixing was calculated by taking into account the intensity ratio of Ge-Ge and Si-Ge vibration mode peaks and was found to increase with the annealing temperatures. It is found that the strain turns from tensile to compressive as the annealing temperature increases. The Si fraction dependent thermal expansion coefficient of SixGe1−x is a possible cause to generate such strain behavior. The understanding of compositional and strain characteristics is important in Ge/Si heterostructure as these properties seem to give significant effects in device performance. PMID:28788521

  17. The Effects of Annealing Temperatures on Composition and Strain in SixGe1−x Obtained by Melting Growth of Electrodeposited Ge on Si (100

    Mastura Shafinaz Zainal Abidin

    2014-02-01

    Full Text Available The effects of annealing temperatures on composition and strain in SixGe1−x, obtained by rapid melting growth of electrodeposited Ge on Si (100 substrate were investigated. Here, a rapid melting process was performed at temperatures of 1000, 1050 and 1100 °C for 1 s. All annealed samples show single crystalline structure in (100 orientation. A significant appearance of Si-Ge vibration mode peak at ~400 cm−1 confirms the existence of Si-Ge intermixing due to out-diffusion of Si into Ge region. On a rapid melting process, Ge melts and reaches the thermal equilibrium in short time. Si at Ge/Si interface begins to dissolve once in contact with the molten Ge to produce Si-Ge intermixing. The Si fraction in Si-Ge intermixing was calculated by taking into account the intensity ratio of Ge-Ge and Si-Ge vibration mode peaks and was found to increase with the annealing temperatures. It is found that the strain turns from tensile to compressive as the annealing temperature increases. The Si fraction dependent thermal expansion coefficient of SixGe1−x is a possible cause to generate such strain behavior. The understanding of compositional and strain characteristics is important in Ge/Si heterostructure as these properties seem to give significant effects in device performance.

  18. Predicting the co-melting temperatures of municipal solid waste incinerator fly ash and sewage sludge ash using grey model and neural network.

    Pai, Tzu-Yi; Lin, Kae-Long; Shie, Je-Lung; Chang, Tien-Chin; Chen, Bor-Yann

    2011-03-01

    A grey model (GM) and an artificial neural network (ANN) were employed to predict co-melting temperature of municipal solid waste incinerator (MSWI) fly ash and sewage sludge ash (SSA) during formation of modified slag. The results indicated that in the aspect of model prediction, the mean absolute percentage error (MAPEs) were between 1.69 and 13.20% when adopting seven different GM (1, N) models. The MAPE were 1.59 and 1.31% when GM (1, 1) and rolling grey model (RGM (1, 1)) were adopted. The MAPEs fell within the range of 0.04 and 0.50% using different types of ANN. In GMs, the MAPE of 1.31% was found to be the lowest when using RGM (1, 1) to predict co-melting temperature. This value was higher than those of ANN2-1 to ANN8-1 by 1.27, 1.25, 1.24, 1.18, 1.16, 1.14 and 0.81%, respectively. GM only required a small amount of data (at least four data). Therefore, GM could be applied successfully in predicting the co-melting temperature of MSWI fly ash and SSA when no sufficient information is available. It also indicates that both the composition of MSWI fly ash and SSA could be applied on the prediction of co-melting temperature.

  19. Study of critical free-area ratio during the snow-melting process on pavement using low-temperature heating fluids

    Wang Huajun; Chen Zhihao

    2009-01-01

    Critical free-area ratio (CFR) is an interesting phenomenon during the snow-melting process on pavement using low-temperature heating fluids such as geothermal tail water and industrial waste water. This paper is performed to further investigate the mechanism of CFR and its influencing factors. A simplified theoretical model is presented to describe the heat and mass transfer process on pavement. Especially the variation of thermal properties and the capillary effect of snow layer are considered. Numerical computation shows that the above theoretical model is effective for the prediction of CFR during the snow-melting process. Furthermore, the mechanism of CFR is clarified in detail. CFR is independent of the layout of hydronic pipes, the fluid temperature, the idling time, and weather conditions. It is both the non-uniform temperature distribution and complicated porous structure of snow layer that lead to the occurrence of CFR. Besides, the influences of operation parameters including the fluid temperature, the idling time, the pipe spacing and buried depths on snow melting are analyzed, which are helpful for the next optimal design of snow-melting system

  20. In-situ temperature field measurements and direct observation of crystal/melt at vertical Bridgman growth of lead chloride under stationary and dynamic arrangement

    Král, Robert; Nitsch, Karel

    2015-01-01

    Roč. 427, Oct (2015), 7-15 ISSN 0022-0248 R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : single crystal growth * temperature field measurements * crystal/melt interface * lead chloride * vertical Bridgman method Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.462, year: 2015

  1. On the influence of debris in glacier melt modelling: a new temperature-index model accounting for the debris thickness feedback

    Carenzo, Marco; Mabillard, Johan; Pellicciotti, Francesca; Reid, Tim; Brock, Ben; Burlando, Paolo

    2013-04-01

    The increase of rockfalls from the surrounding slopes and of englacial melt-out material has led to an increase of the debris cover extent on Alpine glaciers. In recent years, distributed debris energy-balance models have been developed to account for the melt rate enhancing/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya. Some of the input data such as wind or temperature are also of difficult extrapolation from station measurements. Due to their lower data requirement, empirical models have been used in glacier melt modelling. However, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of debris thickness on melt. In this paper, we present a new temperature-index model accounting for the debris thickness feedback in the computation of melt rates at the debris-ice interface. The empirical parameters (temperature factor, shortwave radiation factor, and lag factor accounting for the energy transfer through the debris layer) are optimized at the point scale for several debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter has been validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. The new model is developed on Miage Glacier, Italy, a debris cover glacier in which the ablation area is mantled in near-continuous layer of rock. Subsequently, its transferability is tested on Haut Glacier d'Arolla, Switzerland, where debris is thinner and its extension has been seen to expand in the last decades. The results show that the performance of the new debris temperature-index model (DETI) in simulating the glacier melt rate at the point scale

  2. DNA comet assay to identify different freezing temperatures of irradiated liver chicken

    Duarte, Renato C.; Mozeika, Michel A.; Fanaro, Gustavo B.; Villavicencio, Anna L.C.H.; Marchioni, Eric

    2009-01-01

    The cold chain is a succession of steps which maintain the food at low temperature. The thawed food never be frozen again and the best solution being to consume it quickly to avoid the microorganism growth which causes decay and nutrients damage. One of most important point is that freezing process, unlike irradiation, do not destroy microorganisms, only inactive them as long as they remain in a frozen state. The Comet Assay is an original test used to detect irradiated foods that's recognize the DNA damage and can then be used to control the overall degradation of the food and in a certain extend to evaluate the damage caused by irradiation, different forms of freeze and storage time on liver chicken cells. Different freezing temperatures were used, deep freeze -196 deg C and slow freeze -10 deg C. Samples were irradiated in a 60 Co irradiator with 1.5, 3.0 and 4.5 kGy radiation doses. Fast freezing technique induces a low percent of DNA degradation comparing to slow freezing technique. This procedure could be a good choose to chicken freezing processing. (author)

  3. DNA comet assay to identify different freezing temperatures of irradiated liver chicken

    Duarte, Renato C.; Mozeika, Michel A.; Fanaro, Gustavo B.; Villavicencio, Anna L.C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: renatocduarte@yahoo.com.br; Marchioni, Eric [Universite de Strasbourg, Illkirch (France). Faculte de Pharmacie. Lab. de Chimie Analytique et Sciences de l' Aliment

    2009-07-01

    The cold chain is a succession of steps which maintain the food at low temperature. The thawed food never be frozen again and the best solution being to consume it quickly to avoid the microorganism growth which causes decay and nutrients damage. One of most important point is that freezing process, unlike irradiation, do not destroy microorganisms, only inactive them as long as they remain in a frozen state. The Comet Assay is an original test used to detect irradiated foods that's recognize the DNA damage and can then be used to control the overall degradation of the food and in a certain extend to evaluate the damage caused by irradiation, different forms of freeze and storage time on liver chicken cells. Different freezing temperatures were used, deep freeze -196 deg C and slow freeze -10 deg C. Samples were irradiated in a {sup 60}Co irradiator with 1.5, 3.0 and 4.5 kGy radiation doses. Fast freezing technique induces a low percent of DNA degradation comparing to slow freezing technique. This procedure could be a good choose to chicken freezing processing. (author)

  4. Specific heat measurements on metals up to their melting point; Mesure de la chaleur specifique des metaux jusqu'a leur temperature de fusion

    Affortit, Ch [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-15

    We have built an apparatus to measure the specific heat of metal up to the melting point. The method is the pulse-heating method, where the specimen is heated very rapidly (1/10 s) from room temperature to the melting point by a very intense d.c. current (1000 A). The simultaneous measurements of intensity, voltage and temperature in the specimen allows a calculation of the specific heat. We have obtained good results for niobium, tungsten, tantalum and uranium. The accuracy is around 3 to 5 per cent and allows a measurement of the heat of formation of vacancies near the melting temperature. (author) [French] Nous avons construit un appareil permettant la mesure de la chaleur specifique des metaux jusqu'a leur temperature de fusion. La methode utilisee est la methode dite de chauffage instantane, L'echantillon est echauffe tres rapidement (1/10 s) de la temperature ambiante a la temperature de fusion par le passage d'un courant tres intense ({approx} 1000 A). L'enregistrement simultane de l'intensite du courant, de la difference de potentiel aux bornes de l'echantillon et de la temperature, permet de calculer la chaleur specifique. Nous avons obtenu de bons resultats pour le niobium, le tungstene tantale et l'uranium. La precision de la methode est de l'ordre de 3 a 5 pour cent et permet une mesure de la chaleur de formation des lacunes au voisinage de la fusion. (auteur)

  5. Development of high temperature metallic melting processes related to detritiation of exhausted control rods

    Dworschak, H.; Mannone, F.; Modica, G.

    1994-01-01

    A rather critical problem to be faced in developing a safe strategy for the management of tritiated solid wastes is dealing with the outgassing property of tritium. Releases of tritium under elemental or oxide form may occur from waste items at different temperatures and rates depending upon the nature of tritium bonds into the waste matrix as well as on its 'contamination history'. Apart from the commercial value of tritium, its release from waste packages anyhow represents a risk of tritium exposure that cannot be accepted by skippers, by store and disposal site operators as well as by the general public. Consequently it is mandatory to carry out the detritiation of such wastes before their packaging and storage or disposal. In the boron carbide control rods from the Lingen BWR after about three years of operation, tritium generated by neutron reaction was essentially retained in the B 4 C matrix. The objectives of the study are to demonstrate the feasibility of two processes aimed at reducing to the maximum practicable extent the level of tritium contamination in such waste management are facilitated

  6. Detection of Babesia canis vogeli and Hepatozoon canis in canine blood by a single-tube real-time fluorescence resonance energy transfer polymerase chain reaction assay and melting curve analysis.

    Kongklieng, Amornmas; Intapan, Pewpan M; Boonmars, Thidarut; Thanchomnang, Tongjit; Janwan, Penchom; Sanpool, Oranuch; Lulitanond, Viraphong; Taweethavonsawat, Piyanan; Chungpivat, Sudchit; Maleewong, Wanchai

    2015-03-01

    A real-time fluorescence resonance energy transfer polymerase chain reaction (qFRET PCR) coupled with melting curve analysis was developed for detection of Babesia canis vogeli and Hepatozoon canis infections in canine blood samples in a single tube assay. The target of the assay was a region within the 18S ribosomal RNA gene amplified in either species by a single pair of primers. Following amplification from the DNA of infected dog blood, a fluorescence melting curve analysis was done. The 2 species, B. canis vogeli and H. canis, could be detected and differentiated in infected dog blood samples (n = 37) with high sensitivity (100%). The detection limit for B. canis vogeli was 15 copies of a positive control plasmid, and for H. canis, it was 150 copies of a positive control plasmid. The assay could simultaneously distinguish the DNA of both parasites from the DNA of controls. Blood samples from 5 noninfected dogs were negative, indicating high specificity. Several samples can be run at the same time. The assay can reduce misdiagnosis and the time associated with microscopic examination, and is not prone to the carryover contamination associated with the agarose gel electrophoresis step of conventional PCR. In addition, this qFRET PCR method would be useful to accurately determine the range of endemic areas or to discover those areas where the 2 parasites co-circulate. © 2015 The Author(s).

  7. A coupled melt-freeze temperature index approach in a one-layer model to predict bulk volumetric liquid water content dynamics in snow

    Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo

    2016-04-01

    Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.

  8. Diffusion-controlled melting in granitic systems at 800-900degC and 100-200 MPa. Temperature and pressure dependence of the minimum diffusivity in granitic melts

    Yuguchi, Takashi; Yamaguchi, Takashi; Iwamoto, Manji-rou; Eguchi, Hibiki; Isobe, Hiroshi; Nishiyama, Tadao

    2012-01-01

    This paper presents the temperature and pressure dependence of the minimum binary diffusivity in granitic melts. The minimum diffusivities are determined by monitoring the temporal development of the diffusion-controlled melt layer(DCM) in granitic systems (albite (Ab)-quartz (Qtz)-H 2 O and orthoclase (Or)-Qtz-H 2 O) gathered during 31 melting experiments under conditions of 800-900degC and 100-200 MPa for durations of 19-72 h. The DCM is formed between single crystals (Ab or Or crystals) and powdered quartz in all runs and is characterized by a distinct concentration gradient. The maximum thickness of the DCM increases systematically with temperature, pressure, and run duration. Temporal development of the DCM obeys the parabolic growth rate law, using which the diffusivity can be estimated. Plots of concentrations along the diffusion paths in ternary diagrams (Na 2 O-Al 2 O 3 -SiO 2 diagram for the Ab-Qtz-H 2 O system and K 2 O-Al 2 O 3 -SiO 2 diagram for the Or-Qtz-H 2 O system) show linear trends rather than S-shaped trends, indicating that binary nature of diffusion occurs in these systems. Therefore, the diffusive component can be interpreted as an albite component or orthoclase and quartz components (SiO 2 ) rather than an oxide or a cation. (author)

  9. Galvanic high temperature cell with solid negative electrode and an electrolyte melt. Galvanische Hochtemperaturzelle mit fester negativer Elektrode und einem Schmelzelektrolyten

    Kappus, W; Borger, W

    1987-01-08

    The purpose of the invention is to make an electrolyte melt available for high temperature cells (e.g. LiFeS cells), which guarantees ion transport and also acts as a separator. The invention starts from the fact that binary melts of the LiCl/KCl type are only liquid (i.e. without solid components) at a certain temperature at certain concentrations. With suitable mixing conditions, which apart from a eutectic composition, are mainly on the side of one of the two components, one can ensure that this component is present in the solid phase. In this way, a solid framework of LiCl, for example, is formed between the electrode plates in situ as a separator, in the pores of which the excess melt (e.g. LiCl/KCl) can carry out ion conduction. The volumetric ratio of the electrolyte melt in which liquid and solid phases are present at the working temperature of the cell should preferably be in the range of 2:1 to 1:2.

  10. Vacancy formation energies in close-packed crystals correlated with melting temperature via thermodynamics and liquid structure

    Rashid, R.I.M.A.; March, N.H.

    1988-08-01

    In earlier work, the vacancy formation energy E v in close-packed crystals, in units of the thermal energy k B T m at the melting temperature T m , has been connected with compressibility and specific heats, plus terms dependent on the liquid structure at T m . Here, this connection has been examined quantitatively for (a) the insulating condensed rare gases Ne, Ar and Kr, and (b) a variety of close-packed metals. For case (a), E v /k B T m can be calculated directly from thermodynamic data to obtain agreement with experiment for Ar and Kr, though not for Ne. A 'residual' contribution is estimated for Ar and Kr from diffraction and computer experiments on the density dependence of the liquid pair correlation function and is shown to be very small. Agreement is less impressive for case (b) for the eight close-packed metals for which all data required is known, the thermodynamic formula giving an average value E v /k B T m =7.8+-1.1 whereas experiment yields 9.4+-1.8. However, for the body-centred cubic alkalis the thermodynamic average value of 4.5+-0.5 is much lower than the experimental value 11.5+-2.0 consistent with the known role of ionic relaxation round the vacancy in such open structures. (author). 16 refs, 2 tabs

  11. Variation and Grey GM(1, 1) Prediction of Melting Peak Temperature of Polypropylene During Ultraviolet Radiation Aging

    Chen, K.; Y Zhang, T.; Zhang, F.; Zhang, Z. R.

    2017-12-01

    Grey system theory regards uncertain system in which information is known partly and unknown partly as research object, extracts useful information from part known, and thereby revealing the potential variation rule of the system. In order to research the applicability of data-driven modelling method in melting peak temperature (T m) fitting and prediction of polypropylene (PP) during ultraviolet radiation aging, the T m of homo-polypropylene after different ultraviolet radiation exposure time investigated by differential scanning calorimeter was fitted and predicted by grey GM(1, 1) model based on grey system theory. The results show that the T m of PP declines with the prolong of aging time, and fitting and prediction equation obtained by grey GM(1, 1) model is T m = 166.567472exp(-0.00012t). Fitting effect of the above equation is excellent and the maximum relative error between prediction value and actual value of T m is 0.32%. Grey system theory needs less original data, has high prediction accuracy, and can be used to predict aging behaviour of PP.

  12. An equation of state for high pressure-temperature liquids (RTpress) with application to MgSiO3 melt

    Wolf, Aaron S.; Bower, Dan J.

    2018-05-01

    The thermophysical properties of molten silicates at extreme conditions are crucial for understanding the early evolution of Earth and other massive rocky planets, which is marked by giant impacts capable of producing deep magma oceans. Cooling and crystallization of molten mantles are sensitive to the densities and adiabatic profiles of high-pressure molten silicates, demanding accurate Equation of State (EOS) models to predict the early evolution of planetary interiors. Unfortunately, EOS modeling for liquids at high P-T conditions is difficult due to constantly evolving liquid structure. The Rosenfeld-Tarazona (RT) model provides a physically sensible and accurate description of liquids but is limited to constant volume heating paths (Rosenfeld and Tarazona, 1998). We develop a high P-T EOS for liquids, called RTpress, which uses a generalized Rosenfeld-Tarazona model as a thermal perturbation to isothermal and adiabatic reference compression curves. This approach provides a thermodynamically consistent EOS which remains accurate over a large P-T range and depends on a limited number of physically meaningful parameters that can be determined empirically from either simulated or experimental datasets. As a first application, we model MgSiO3 melt representing a simplified rocky mantle chemistry. The model parameters are fitted to the MD simulations of both Spera et al. (2011) and de Koker and Stixrude (2009), recovering pressures, volumes, and internal energies to within 0.6 GPa, 0.1 Å3 , and 6 meV per atom on average (for the higher resolution data set), as well as accurately predicting liquid densities and temperatures from shock-wave experiments on MgSiO3 glass. The fitted EOS is used to determine adiabatic thermal profiles, revealing the approximate thermal structure of a fully molten magma ocean like that of the early Earth. These adiabats, which are in strong agreement for both fitted models, are shown to be sufficiently steep to produce either a center

  13. Rapid identification of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus using high resolution melting and TaqMan SNP Genotyping assays as allelic discrimination techniques.

    Valentina di Rienzo

    Full Text Available In tomato, resistance to Tomato spotted wilt virus (TSWV is conferred by the dominant gene, designated Sw-5. Virulent Sw-5 resistance breaking (SRB mutants of TSWV have been reported on Sw-5 tomato cultivars. Two different PCR-based allelic discrimination techniques, namely Custom TaqMan™ SNP Genotyping and high-resolution melting (HRM assays, were developed and compared for their ability to distinguish between avirulent (Sw-5 non-infecting, SNI and SRB biotypes. TaqMan assays proved to be more sensitive (threshold of detection in a range of 50-70 TSWV RNA copies and more reliable than HRM, assigning 25 TSWV isolates to their correct genotype with an accuracy of 100%. Moreover, the TaqMan SNP assays were further improved developing a rapid and simple protocol that included crude leaf extraction for RNA template preparations. On the other hand, HRM assays showed higher levels of sensitivity than TaqMan when used to co-detect both biotypes in different artificial mixtures. These diagnostic assays contributed to gain preliminary information on the epidemiology of TSWV isolates in open field conditions. In fact, the presented data suggest that SRB isolates are present as stable populations established year round, persisting on both winter (globe artichoke and summer (tomato crops, in the same cultivated areas of Southern Italy.

  14. Use of gum tragacanth overlay, applied at room temperature, in the plaque assay of fish and other animal viruses.

    Dobos, P

    1976-01-01

    Fish cells derived from rainbow trout gonad or Atlantic salmon are sometimes damaged by the relatively high temperature of agar overlay widely used for plaquing animal viruses. This heat-induced cell damage can be avoided by the use of gum tragacanth, which may be applied at room temperature. When the medium was buffered with tris(hydroxymethyl)aminomethane-hydrochloride and NaHCO3, the plaque assay could be performed without the use of a CO2 incubator. Using this method, a number of animal viruses were plaqued on a variety of cell monolayers at different temperatures under atmospheric ocnditions. Images PMID:818114

  15. Numerical Research on Magnetic Field, Temperature Field and Flow Field During Melting and Directionally Solidifying TiAl Alloys by Electromagnetic Cold Crucible

    Chen, Ruirun; Yang, Yaohua; Gong, Xue; Guo, Jingjie; Su, Yanqing; Ding, Hongsheng; Fu, Hengzhi

    2017-12-01

    The electromagnetic cold crucible (EMCC) technique is an effective method to melt and directionally solidify reactive and high-temperature materials without contamination. The temperature field and fluid flow induced by the electromagnetic field are very important for melting and controlling the microstructure. In this article, a 3D EMCC model for calculating the magnetic field in the charges (TiAl alloys) using the T-Ω finite element method was established and verified. Magnetic fields in the charge under different electrical parameters, positions and dimensions of the charge were calculated and analyzed. The calculated results show that the magnetic field concentrates in the skin layer, and the magnetic flux density ( B) increases with increasing of the frequency, charge diameter and current. The maximum B in the charge is affected by the position of the charge in EMCC ( h 1) and the charge height ( h 2), which emerges at the middle of coils ( h c) when the relationship of h c < h 1 + h 2 < h c + δ is satisfied. Lower frequency and smaller charge diameter can improve the uniformity of the magnetic field in the charge. Consequently, the induced uniform electromagnetic stirring weakens the turbulence and improves temperature uniformity in the vicinity of the solid/liquid (S/L) interface, which is beneficial to forming a planar S/L interface during directional solidification. Based on the above conclusions, the TiAlNb alloy was successfully melted with lower power consumption and directionally solidified by the square EMCC.

  16. Phase transformations in Zr-29.56 at.% Cu-19.85 at.% Ni melt-spun high-temperature shape memory alloy

    Firstov, G.S.; Koval, Yu.N.; Van Humbeeck, J.; Portier, R.; Vermaut, P.; Ochin, P.

    2006-01-01

    The present paper focuses on the phase transformations during crystallization of the melt-spun Zr-29.56 at.% Cu-19.85 at.% Ni high-temperature shape memory alloy (HTSMA). This alloy exhibits a martensitic transformation in the bulk polycrystalline state at temperatures above crystallization of the metallic glass with the same composition. The crystallization kinetics were investigated by differential scanning calorimetry. The intermediate and final products of crystallization for this HTSMA were studied by means of transmission electron microscopy. The chain of the transformations starting from crystallization and ending at martensitic transformation will be described. Perspectives of the thin film production of Zr-based HTSMA will be discussed

  17. Phase transformations in Zr-29.56 at.% Cu-19.85 at.% Ni melt-spun high-temperature shape memory alloy

    Firstov, G.S. [Institute for Metal Physics, National Academy of Sciences, 36 Vernadsky blvd., UA-03680, Kiev-142 (Ukraine)]. E-mail: gfirst@imp.kiev.ua; Koval, Yu.N. [Institute for Metal Physics, National Academy of Sciences, 36 Vernadsky blvd., UA-03680, Kiev-142 (Ukraine); Van Humbeeck, J. [Department MTM, Catholic University of Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Leuven) (Belgium); Portier, R. [Laboratoire de Metallurgie Structurale ENSCP, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Vermaut, P. [Laboratoire de Metallurgie Structurale ENSCP, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Ochin, P. [Centre d' Etudes de Chimie Metallurgique-CNRS UPR2801, 15 rue Georges Urbain, 94407 Vitry-sur-Seine (France)

    2006-11-25

    The present paper focuses on the phase transformations during crystallization of the melt-spun Zr-29.56 at.% Cu-19.85 at.% Ni high-temperature shape memory alloy (HTSMA). This alloy exhibits a martensitic transformation in the bulk polycrystalline state at temperatures above crystallization of the metallic glass with the same composition. The crystallization kinetics were investigated by differential scanning calorimetry. The intermediate and final products of crystallization for this HTSMA were studied by means of transmission electron microscopy. The chain of the transformations starting from crystallization and ending at martensitic transformation will be described. Perspectives of the thin film production of Zr-based HTSMA will be discussed.

  18. Effect of Feed Melting, Temperature History, and Minor Component Addition on Spinel Crystallization in High-Level Waste Glass

    Izák, Pavel; Hrma, P.; Arey, B. W.; Plaisted, T. J.

    2001-01-01

    Roč. 289, 1-3 (2001), s. 17-29 ISSN 0022-3093 Grant - others:DOE(US) DE/06/76RL01830 Keywords : feed melting * crystalization * high-level waste glass Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.363, year: 2001

  19. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature

    Guðnason, Haukur; Dufva, Hans Martin; Bang, Dang Duong

    2007-01-01

    investigate 15 different intercalating DNA dyes for their inhibitory effects on PCR, effects on DNA melting temperature and possible preferential binding to GC-rich sequences. Our results demonstrated that in contrast to the results of SYBR Green I, two intercalating dyes SYTO-13 and SYTO-82 do not inhibit......The importance of real-time polymerase chain reaction (PCR) has increased steadily in clinical applications over the last decade. Many applications utilize SYBR Green I dye to follow the accumulation of amplicons in real time. SYBR Green I has, however, a number of limitations that include...... the inhibition of PCR, preferential binding to GC-rich sequences and effects on melting curve analysis. Although a few alternative dyes without some of these limitations have been recently proposed, no large-scale investigation into the properties of intercalating dyes has been performed. In this study, we...

  20. Evolution of the microstructure and hardness of a rapidly solidified/melt-spun AZ91 alloy upon aging at different temperatures

    Wang Baishu; Liu Yongbing; An Jian; Li Rongguang; Su Zhenguo; Su Guihua; Lu You; Cao Zhanyi

    2009-01-01

    The effect of aging at different temperatures on a rapidly solidified/melt-spun AZ91 alloy has been investigated in depth. The microstructures of as-spun and aged ribbons with a thickness of approximately 60 μm were characterized using X-ray diffraction, transmission electron microscopy and laser optical microscopy; microhardness measurements were also conducted. It was found that the commercial AZ91 alloy undergoes a cellular/dendritic transition during melt-spinning at a speed of 34 m/s. A strengthening effect due to aging was observed: a maximum hardness of 110 HV/0.05 and an age-hardenability of 50% were obtained when the ribbon was aged at 200 deg. C for 20 min. The β-Mg 17 Al 12 phase exhibits net and dispersion types of distribution during precipitation. The dispersion of precipitates in dendritic grains or cells is the main source of strengthening

  1. A Fast, Sensitive and Accurate High Resolution Melting (HRM Technology-Based Assay to Screen for Common K-ras Mutations

    D. Kramer

    2009-01-01

    Full Text Available Background: Increasing evidence points to a negative correlation between K-ras mutations and patient’s response to, or survival benefit after, treatment with EGFR-inhibitors. Therefore, rapid and reliable assays for mutational analysis of the K-ras gene are strongly needed.

  2. A Panel of High Resolution Melting (HRM Technology-Based Assays with Direct Sequencing Possibility for Effective Mutation Screening of EGFR and K-ras Genes

    D. A. M. Heideman

    2009-01-01

    Full Text Available Background: Increasing data from clinical trials support EGFR and K-ras mutation status as predictive markers of tumour response to EGFR-targeted therapies. Consequently, rapid and reliable mutation screening assays are demanded to guide rational use of EGFR-targeted therapies.

  3. Estimation of the Temperature-Dependent Nitrogen Solubility in Stainless Fe-Cr-Mn-Ni-Si-C Steel Melts During Processing

    Wendler, Marco; Hauser, Michael; Sandig, Eckhard Frank; Volkova, Olena

    2018-04-01

    The influence of chemical composition, temperature, and pressure on the nitrogen solubility of various high alloy stainless steel grades, namely Fe-14Cr-(0.17-7.77)Mn-6Ni-0.5Si-0.03C [wt pct], Fe-15Cr-3Mn-4Ni-0.5Si-0.1C [wt pct], and Fe-19Cr-3Mn-4Ni-0.5Si-0.15C [wt pct], was studied in the melt. The temperature-dependent N-solubility was determined using an empirical approach proposed by Wada and Pehlke. The thus calculated N-concentrations overestimate the actual N-solubility of all the studied Fe-Cr-Mn-Ni-Si-C steel melts at a given temperature and pressure. Consequently, the calculation model has to be modified by Si and C because both elements are not recognized in the original equation. The addition of the 1st and 2nd order interaction parameters for Si and C to the model by Wada and Pehlke allows a precise estimation of the temperature-dependent nitrogen solubility in the liquid steel bath, and fits very well with the measured nitrogen concentrations during processing of the steels. Moreover, the N-solubility enhancing effect of Cr- and Mn-additions has been demonstrated.

  4. Melting point of yttria

    Skaggs, S.R.

    1977-06-01

    Fourteen samples of 99.999 percent Y 2 O 3 were melted near the focus of a 250-W CO 2 laser. The average value of the observed melting point along the solid-liquid interface was 2462 +- 19 0 C. Several of these same samples were then melted in ultrahigh-purity oxygen, nitrogen, helium, or argon and in water vapor. No change in the observed temperature was detected, with the exception of a 20 0 C increase in temperature from air to helium gas. Post test examination of the sample characteristics, clarity, sphericity, and density is presented, along with composition. It is suggested that yttria is superior to alumina as a secondary melting-point standard

  5. Critical temperatures and a critical chain length in saturated diacylphosphatidylcholines: calorimetric, ultrasonic and Monte Carlo simulation study of chain-melting/ordering in aqueous lipid dispersions.

    Kharakoz, Dmitry P; Panchelyuga, Maria S; Tiktopulo, Elizaveta I; Shlyapnikova, Elena A

    2007-12-01

    Chain-ordering/melting transition in a series of saturated diacylphosphatidylcholines (PCs) in aqueous dispersions have been studied experimentally (calorimetric and ultrasonic techniques) and theoretically (an Ising-like lattice model). The shape of the calorimetric curves was compared with the theoretical data and interpreted in terms of the lateral interactions and critical temperatures determined for each lipid studied. A critical chain length has been found (between 16 and 17 C-atoms per chain) which subdivides PCs into two classes with different phase behavior. In shorter lipids, the transition takes place above their critical temperatures meaning that this is an intrinsically continuous transition. In longer lipids, the transition occurs below the critical temperatures of the lipids, meaning that the transition is intrinsically discontinuous (first-order). This conclusion was supported independently by the ultrasonic relaxation sensitive to density fluctuations. Interestingly, it is this length that is the most abundant among the saturated chains in biological membranes.

  6. Assessment of Mass Fraction and Melting Temperature for the Application of Limestone Concrete and Siliceous Concrete to Nuclear Reactor Basemat Considering Molten Core–Concrete Interaction

    Hojae Lee

    2016-04-01

    Full Text Available Severe accident scenarios in nuclear reactors, such as nuclear meltdown, reveal that an extremely hot molten core may fall into the nuclear reactor cavity and seriously affect the safety of the nuclear containment vessel due to the chain reaction caused by the reaction between the molten core and concrete. This paper reports on research focused on the type and amount of vapor produced during the reaction between a high-temperature molten core and concrete, as well as on the erosion rate of concrete and the heat transfer characteristics at its vicinity. This study identifies the mass fraction and melting temperature as the most influential properties of concrete necessary for a safety analysis conducted in relation to the thermal interaction between the molten core and the basemat concrete. The types of concrete that are actually used in nuclear reactor cavities were investigated. The H2O content in concrete required for the computation of the relative amount of gases generated by the chemical reaction of the vapor, the quantity of CO2 necessary for computing the cooling speed of the molten core, and the melting temperature of concrete are evaluated experimentally for the molten core–concrete interaction analysis.

  7. Assessment of mass fraction and melting temperature for the application of limestone concrete and siliceous concrete to nuclear reactor basemat considering molten core-concrete interaction

    Lee, Ho Jae; Kim, Do Gyeum [Korea Institute of Civil Engineering and Building Technology, Goyang (Korea, Republic of); Cho, Jae Leon [Korea Hydro and Nuclear Power Co., Ulsan (Korea, Republic of); Yoon, Eui Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Cho, Myung Suk [Korea Hydro and Nuclear Power Co., Central Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    Severe accident scenarios in nuclear reactors, such as nuclear meltdown, reveal that an extremely hot molten core may fall into the nuclear reactor cavity and seriously affect the safety of the nuclear containment vessel due to the chain reaction caused by the reaction between the molten core and concrete. This paper reports on research focused on the type and amount of vapor produced during the reaction between a high-temperature molten core and concrete, as well as on the erosion rate of concrete and the heat transfer characteristics at its vicinity. This study identifies the mass fraction and melting temperature as the most influential properties of concrete necessary for a safety analysis conducted in relation to the thermal interaction between the molten core and the basemat concrete. The types of concrete that are actually used in nuclear reactor cavities were investigated. The H2O content in concrete required for the computation of the relative amount of gases generated by the chemical reaction of the vapor, the quantity of CO2 necessary for computing the cooling speed of the molten core, and the melting temperature of concrete are evaluated experimentally for the molten core-concrete interaction analysis.

  8. Photometric analysis of the structure evolution on the Pb-19.4%Sn melt surface in the S-L temperature range

    Lyakhovitskii M.M.

    2011-05-01

    Full Text Available The structure evolution of alloys in solidification range is considered as the first-order phase transformation from the solid state to the liquid one, which occurs by the mechanism of nucleation and growth of more symmetrical phase to less symmetrical crystalline phase. The kinetic regularities of this transformation are studied by the method of the photometric analysis of structure images (PHASI, which makes it possible to establish the temperature dependence of the relationship between the solid and liquid phases and their distribution on the melt surface. The PHASI method is based on the combined analysis of the brightness spectra of the visible light reflections from the sample surface and of the distribution of its scattering centers in different intensity intervals. The data on the structure evolution of the Sn+19.4%Pb alloy upon melting and solidification were considered in parallel with the measured spectra of sound signals. It was revealed that a distinct maximum is observed in the temperature dependence of radiation energy in the temperature range of phase transformation from the liquid into the solid state and hot crack formation occurs near the transition zone in the region of the contact of the ingot with the crucible.

  9. Late Noachian Icy Highlands climate model: Exploring the possibility of transient melting and fluvial/lacustrine activity through peak annual and seasonal temperatures

    Palumbo, Ashley M.; Head, James W.; Wordsworth, Robin D.

    2018-01-01

    The nature of the Late Noachian climate of Mars remains one of the outstanding questions in the study of the evolution of martian geology and climate. Despite abundant evidence for flowing water (valley networks and open/closed basin lakes), climate models have had difficulties reproducing mean annual surface temperatures (MAT) > 273 K in order to generate the ;warm and wet; climate conditions presumed to be necessary to explain the observed fluvial and lacustrine features. Here, we consider a ;cold and icy; climate scenario, characterized by MAT ∼225 K and snow and ice distributed in the southern highlands, and ask: Does the formation of the fluvial and lacustrine features require continuous ;warm and wet; conditions, or could seasonal temperature variation in a ;cold and icy; climate produce sufficient summertime ice melting and surface runoff to account for the observed features? To address this question, we employ the 3D Laboratoire de Météorologie Dynamique global climate model (LMD GCM) for early Mars and (1) analyze peak annual temperature (PAT) maps to determine where on Mars temperatures exceed freezing in the summer season, (2) produce temperature time series at three valley network systems and compare the duration of the time during which temperatures exceed freezing with seasonal temperature variations in the Antarctic McMurdo Dry Valleys (MDV) where similar fluvial and lacustrine features are observed, and (3) perform a positive-degree-day analysis to determine the annual volume of meltwater produced through this mechanism, estimate the necessary duration that this process must repeat to produce sufficient meltwater for valley network formation, and estimate whether runoff rates predicted by this mechanism are comparable to those required to form the observed geomorphology of the valley networks. When considering an ambient CO2 atmosphere, characterized by MAT ∼225 K, we find that: (1) PAT can exceed the melting point of water (>273 K) in

  10. Temperature dependence of the mechanical properties of melt-processed Dy-Ba-Cu-O bulk superconductors evaluated by three point bending tests

    Katagiri, K; Nyilas, A; Sato, T; Hatakeyama, Y; Hokari, T; Teshima, H; Iwamoto, A; Mito, T

    2006-01-01

    Dy-Ba-Cu-O bulk superconductor has an excellent capability of trapping magnetic flux and lower heat conductivity at cryogenic temperatures as compared with Y-Ba-Cu-O bulk superconductor. The Young's modulus and the bending strength in the range from room temperature to 7 K were measured by the three-point bending tests using specimens cut from a melt-processed Dy-Ba-Cu-O bulk superconductor. They were tested in a helium gas flow type cryostat at Forschungszentrum Karlsruhe and in a liquid nitrogen bath at Iwate University. The Young's modulus was calculated by either the slope of stress-strain curve or that of the load-deflection curve of the specimen. Although the bending strength measured in the two institutes coincided well, there was a significant discrepancy in the Young's modulus. The Young's modulus and bending strength increased with decrease of temperature down to 7 K. The amount of increase in the Young's modulus and the bending strength were about 32% and 36% of those at room temperature, respectively. The scatter of data for each run was significant and did not depend on temperature. The temperature dependence of the Young's modulus coincided with that in Y-Ba-Cu-O obtained by ultrasonic velocity. The temperature dependence of the Young's modulus and the bending strength was discussed from the view point of interatomic distance of the bulk crystal

  11. Effect of pool rotation on three-dimensional flow in a shallow annular pool of silicon melt with bidirectional temperature gradients

    Zhang, Quan-Zhuang; Peng, Lan; Liu, Jia [Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, College of Power Engineering, Chongqing University, Chongqing, 400044 (China); Wang, Fei, E-mail: penglan@cqu.edu.cn [Chongqing Special Equipment Inspection and Research Institute, Chongqing, 401121 (China)

    2016-08-15

    In order to understand the effect of pool rotation on silicon melt flow with the bidirectional temperature gradients, we conducted a series of unsteady three-dimensional (3D) numerical simulations in a shallow annular pool. The bidirectional temperature gradients are produced by the temperature difference between outer and inner walls as well as a constant heat flux at the bottom. Results show that when Marangoni number is small, a 3D steady flow is common without pool rotation. But it bifurcates to a 3D oscillatory flow at a low rotation Reynolds number. Subsequently, the flow becomes steady and axisymmetric at a high rotation Reynolds number. When the Marangoni number is large, pool rotation can effectively suppress the temperature fluctuation on the free surface, meanwhile, it improves the flow stability. The critical heat flux density diagrams are mapped, and the effects of radial and vertical temperature gradients on the flow are discussed. Additionally, the transition process from the flow dominated by the radial temperature gradient to the one dominated by the vertical temperature gradient is presented. (paper)

  12. Effects of melt-temperature on limiting current density in Al electrodeposition and morphology of Al electrodeposits obtained from ambient temperature type molten salt; Joongata yoyuen kara no denki aluminium mekki no genkai denryu mitsudo oyobi denseki keitai ni oyobosu mekki ekion no eikyo

    Shimizu, T.; Tatano, M.; Uchida, Y. [Nisshin Steel Co. Ltd., Tokyo (Japan)

    1996-03-31

    Some of more important electrolytic solutions for Al electrodeposition are organic solvents, high-temperature type molten salts and low-temperature type molten salts having a melting point of 30{degree}C or lower, such as ethylmethylimidazolium chloride (EMIC). This study uses a molten salt of AlCl3-EMIC as the low-temperature type solution for high-speed electrodeposition. Discussed herein are the effects of melt temperature on limiting current density in Al electrodeposition and Al electrodeposit morphology. Limiting current density increases as melt temperature increases at any AlCl3 concentration used in this study. The AlCl3 concentration that gives the maximum limiting current density shifts from 64 to 67mol% at a melt temperature of 120{degree}C. A dense, smooth Al electrodeposited film results at a melt temperature of 100{degree}C or lower, but the electrodeposited grains become coarser as melt temperature increases. Melt temperature can be increased to 140{degree}C to secure a smooth electrodeposited film, showing possibility of 2 times faster electrodeposition than the conventional one. 21 refs., 12 figs., 1 tab.

  13. Laser surface melting of 10 wt% Mo alloyed hardfacing Stellite 12 plasma transferred arc deposits: Structural evolution and high temperature wear performance

    Dilawary, Shaikh Asad Ali; Motallebzadeh, Amir; Afzal, Muhammad; Atar, Erdem; Cimenoglu, Huseyin

    2018-05-01

    Laser surface melting (LSM) process has been applied on the plasma transferred arc (PTA) deposited Stellite 12 and 10 wt% Mo alloyed Stellite 12 in this study. Following the LSM process, structural and mechanical property comparison of the LSM'ed surfaces has been made. Hardness of the LSM'ed surfaces was measured as 549 HV and 623 HV for the Stellite 12 and Stellite 12 + 10 wt% Mo deposits, respectively. Despite their different hardness and structural features, the LSM'ed surfaces exhibited similar tribological performance at room temperature (RT), where fatigue wear mechanism operates. However, the wear at 500 °C promotes tribo-oxide layer formation whose composition depended on the alloying with Mo. Thus, addition of 10 wt% Mo into Stellite 12 PTA deposit has remarkably enhanced the high temperature wear performance of the LSM'ed surface as a result of participation of complex oxide (CoMoO4) in tribo-oxide layer.

  14. Influence of Low-Temperature Plasma Treatment on The Liquid Filtration Efficiency of Melt-Blown PP Nonwovens in The Conditions of Simulated Use of Respiratory Protective Equipment

    Majchrzycka Katarzyna

    2017-06-01

    Full Text Available Filtering nonwovens produced with melt-blown technology are one of the most basic materials used in the construction of respiratory protective equipment (RPE against harmful aerosols, including bio- and nanoaerosols. The improvement of their filtering properties can be achieved by the development of quasi-permanent electric charge on the fibres. Usually corona discharge method is utilized for this purpose. In the presented study, it was assumed that the low-temperature plasma treatment could be applied as an alternative method for the manufacturing of conventional electret nonwovens for the RPE construction. Low temperature plasma treatment of polypropylene nonwovens was carried out with various process gases (argon, nitrogen, oxygen or air in a wide range of process parameters (gas flow velocity, time of treatment and power supplied to the reactor electrodes. After the modification, nonwovens were evaluated in terms of filtration efficiency of paraffin oil mist. The stability of the modification results was tested after 12 months of storage and after conditioning at elevated temperature and relative humidity conditions. Moreover, scanning electron microscopy and ATR-IR spectroscopy were used to assess changes in surface topography and chemical composition of the fibres. The modification of melt-blown nonwovens with nitrogen, oxygen and air plasma did not result in a satisfactory improvement of the filtration efficiency. In case of argon plasma treatment, up to 82% increase of filtration efficiency of paraffin oil mist was observed in relation to untreated samples. This effect was stable after 12 months of storage in normal conditions and after thermal conditioning in (70 ± 3°C for 24 h. The use of low-temperature plasma treatment was proven to be a promising improvement direction of filtering properties of nonwovens used for the protection of respiratory tract against harmful aerosols.

  15. Rapid, dynamic segregation of core forming melts: Results from in-situ High Pressure- High Temperature X-ray Tomography

    Watson, H. C.; Yu, T.; Wang, Y.

    2011-12-01

    The timing and mechanisms of core formation in the Earth, as well as in Earth-forming planetesimals is a problem of significant importance in our understanding of the early evolution of terrestrial planets . W-Hf isotopic signatures in meteorites indicate that core formation in small pre-differentiated planetesimals was relatively rapid, and occurred over the span of a few million years. This time scale is difficult to achieve by percolative flow of the metallic phase through a silicate matrix in textural equilibrium. It has been suggested that during this active time in the early solar system, dynamic processes such as impacts may have caused significant deformation in the differentiating planetesimals, which could lead to much higher permeability of the core forming melts. Here, we have measured the change in permeability of core forming melts in a silicate matrix due to deformation. Mixtures of San Carlos olivine and FeS close to the equilibrium percolation threshold (~5 vol%FeS) were pre-synthesized to achieve an equilibrium microstructure, and then loaded into the rotational Drickamer apparatus at GSE-CARS, sector 13-BMD, at the Advanced Photon Source (Argonne National Laboratory). The samples were subsequently pressed to ~2GPa, and heated to 1100°C. Alternating cycles of rotation to collect X-ray tomography images, and twisting to deform the sample were conducted until the sample had been twisted by 1080°. Qualitative and quantitative analyses were performed on the resulting 3-dimensional x-ray tomographic images to evaluate the effect of shear deformation on permeability and migration velocity. Lattice-Boltzmann simulations were conducted, and show a marked increase in the permeability with increasing deformation, which would allow for much more rapid core formation in planetesimals.

  16. Low temperature study of micrometric powder of melted Fe{sub 50}Mn{sub 10}Al{sub 40} alloy

    Zamora, Ligia E. [Departamento de Fisica, Universidad del Valle, A. A. 25360 Cali (Colombia); Perez Alcazar, G.A., E-mail: gpgeperez@gmail.com [Departamento de Fisica, Universidad del Valle, A. A. 25360 Cali (Colombia); Tabares, J.A. [Departamento de Fisica, Universidad del Valle, A. A. 25360 Cali (Colombia); Romero, J.J. [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, 28049 Madrid (Spain); Martinez, A. [Instituto de Magnetismo Aplicado, P.O. Box 155, Las Rozas, 28230 Madrid (Spain); Gonzalez, J.M. [Unidad Asociada ICMM-IMA, c/Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Palomares, F.J. [Instituto de Ciencia de Materiales de Madrid, CSIC, C/Sor Juana Ines de la Cruz, 28049 Cantoblanco, Madrid (Spain); Marco, J.F. [Instituto de Quimica-Fisica Rocasolano, CSIC, c/Serrano 119, 28006 Madrid (Spain)

    2012-06-15

    Melted Fe{sub 50}Mn{sub 10}Al{sub 40} alloy powder with particle size less than 40 {mu}m was characterized at room temperature by XRD, SEM and XPS; and at low temperatures by Moessbauer spectrometry, ac susceptibility, and magnetization analysis. The results show that the sample is BCC ferromagnetic but with a big contribution of paramagnetic sites, and presents super-paramagnetic and re-entrant spin-glass phases with critical temperatures of 265 and 35 K, respectively. The presence of the different phases detected is due to the disordered character of the sample and the competitive magnetic interactions. The obtained values of the saturation magnetization and the coercive field as a function of temperature present a behavior which indicates a ferromagnetic phase. However, the behavior of the FC curve and that of the coercive field as a function of temperature suggest that the dipolar magnetic interaction between particles contributes to the internal magnetic field in the same way as was reported for nanoparticulate powders.

  17. Force induced DNA melting

    Santosh, Mogurampelly; Maiti, Prabal K

    2009-01-01

    When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f m , at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

  18. Build direction dependence of microstructure and high-temperature tensile property of Co–Cr–Mo alloy fabricated by electron beam melting

    Sun, Shi-Hai; Koizumi, Yuichiro; Kurosu, Shingo; Li, Yun-Ping; Matsumoto, Hiroaki; Chiba, Akihiko

    2014-01-01

    The microstructures and high-temperature tensile properties of a Co–28Cr–6Mo–0.23C–0.17N alloy fabricated by electron beam melting (EBM) with cylindrical axes deviating from the build direction by 0°, 45°, 55° and 90° were investigated. The preferred crystal orientations of the γ phase in the as-EBM-built samples with angles of 0°, 45°, 55° and 90° were near [0 0 1], [1 1 0], [1 1 1] and [1 0 0], respectively. M 23 C 6 precipitates (M = Cr, Mo or Si) were observed to align along the build direction with intervals of around 3 μm. The phase was completely transformed into a single ε-hexagonal close-packed (hcp) phase after aging treatment at 800 °C for 24 h, when lamellar colonies of M 2 N precipitates and the ε-hcp phase appeared in the matrix. Among the samples, the one built with 55° deviation had the highest ultimate tensile strength of 806 MPa at 700 °C. The relationship between the microstructure and the build direction dependence of mechanical properties suggested that the conditions of heat treatment to homogenize the microstructure throughout the height of the EBM-built object should be determined by taking into account the thermal history during the post-melt period of the EBM process, especially when the solid–solid transformation is sluggish

  19. The effect of the melting spinning cooling rate on transformation temperatures in ribbons Ti-Ni-Cu shape memory

    Ramos, A.P.; Castro, W.B.; Anselmo, G.C. dos S.

    2014-01-01

    Ti-Ni-Cu alloys have been attracting attention by their high performance of shape memory effect and decrease of thermal and stress hysteresis in comparison with Ti-Ni binary alloys. One important challenge of microsystems design is the implementation of miniaturized actuation principles efficient at the micro-scale. Shape memory alloys (SMAs) have early on been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be processed at the micro-scale. Shape memory characteristics of Ti-37,8Cu-18,7Ni alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray diffraction. In these experiments particular attention has been paid to change of the velocity of cooling wheel from 21 to 63 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on austenitic and martensitic transformations behaviors is discussed. (author)

  20. Rhenium corrosion in chloride melts

    Stepanov, A.D.; Shkol'nikov, S.N.; Vetyukov, M.M.

    1989-01-01

    The results investigating rhenium corrosion in chloride melts containing sodium, potassium and chromium ions by a gravimetry potentials in argon atmosphere in a sealing quarth cell are described. Rhenium corrosion is shown to be rather considerable in melts containing CrCl 2 . The value of corrosion rate depending on temperature is determined

  1. Investigations on Temperature Fields during Laser Beam Melting by Means of Process Monitoring and Multiscale Process Modelling

    J. Schilp

    2014-07-01

    Full Text Available Process monitoring and modelling can contribute to fostering the industrial relevance of additive manufacturing. Process related temperature gradients and thermal inhomogeneities cause residual stresses, and distortions and influence the microstructure. Variations in wall thickness can cause heat accumulations. These occur predominantly in filigree part areas and can be detected by utilizing off-axis thermographic monitoring during the manufacturing process. In addition, numerical simulation models on the scale of whole parts can enable an analysis of temperature fields upstream to the build process. In a microscale domain, modelling of several exposed single hatches allows temperature investigations at a high spatial and temporal resolution. Within this paper, FEM-based micro- and macroscale modelling approaches as well as an experimental setup for thermographic monitoring are introduced. By discussing and comparing experimental data with simulation results in terms of temperature distributions both the potential of numerical approaches and the complexity of determining suitable computation time efficient process models are demonstrated. This paper contributes to the vision of adjusting the transient temperature field during manufacturing in order to improve the resulting part's quality by simulation based process design upstream to the build process and the inline process monitoring.

  2. Experimental Partitioning of Chalcophile Elements between Mantle Silicate Minerals and Basaltic Melt at High Pressures and Temperatures - Implications for Sulfur Geochemistry of Mantle and Crust

    Dasgupta, R.; Jego, S.; Ding, S.; Li, Y.; Lee, C. T.

    2015-12-01

    The behavior of chalcophile elements during mantle melting, melt extraction, and basalt differentiation is critical for formation of ore deposits and geochemical model and evolution of crust-mantle system. While chalcophile elements are strongly partitioned into sulfides, their behavior with different extent of melting, in particular, in the absence of sulfides, can only be modeled with complete knowledge of the partitioning behavior of these elements between dominant mantle minerals and basaltic melt with or without dissolved sulfide (S2-). However, experimental data on mineral-melt partitioning are lacking for many chalcophile elements. Crystallization experiments were conducted at 3 GPa and 1450-1600 °C using a piston cylinder and synthetic silicate melt compositions similar to low-degree partial melt of peridotite. Starting silicate mixes doped with 100-300 ppm of each of various chalcophile elements were loaded into Pt/graphite double capsules. To test the effect of dissolved sulfur in silicate melt on mineral-melt partitioning of chalcophile elements, experiments were conducted on both sulfur-free and sulfur-bearing (1100-1400 ppm S in melt) systems. Experimental phases were analyzed by EPMA (for major elements and S) and LA-ICP-MS (for trace elements). All experiments produced an assemblage of cpx + melt ± garnet ± olivine ± spinel and yielded new partition coefficients (D) for Sn, Zn, Mo, Sb, Bi, Pb, and Se for cpx/melt, olivine/melt, and garnet/melt pairs. Derived Ds (mineral/basalt) reveal little effect of S2- in the melt on mineral-melt partition coefficients of the measured chalcophile elements, with Ds for Zn, Mo, Bi, Pb decreasing by less than a factor of 2 from S-free to S-bearing melt systems or remaining similar, within error, between S-free and S-bearing melt systems. By combining our data with existing partitioning data between sulfide phases and silicate melt we model the fractionation of these elements during mantle melting and basalt

  3. Melting method for miscellaneous radioactive solid waste and melting furnace

    Osaki, Toru; Furukawa, Hirofumi; Uda, Nobuyoshi; Katsurai, Kiyomichi

    1998-01-01

    A vessel containing miscellaneous solid wastes is inserted in a crucible having a releasable material on the inner surface, they are induction-heated from the outside of the crucible by way of low temperature heating coils to melt low melting point materials in the miscellaneous wastes within a temperature range at which the vessel does not melt. Then, they are induction-heated by way of high temperature heating coils to melt the vessel and not yet melted materials, those molten materials are cooled, solidified molten material and the releasable material are taken out, and then the crucible is used again. Then, the crucible can be used again, so that it can be applied to a large scaled melting furnace which treats wastes by a unit of drum. In addition, since the cleaning of the used crucible and the application of the releasable material can be conducted without interrupting the operation of the melting furnace, the operation cycle of the melting furnace can be shortened. (N.H.)

  4. Method of melting solid waste

    Ootsuka, Katsuyuki; Mizuno, Ryokichi; Kuwana, Katsumi; Sawada, Yoshihisa; Komatsu, Fumiaki.

    1982-01-01

    Purpose: To enable the volume reduction treatment of a HEPA filter containing various solid wastes, particularly acid digestion residue, or an asbestos separator at a relatively low temperature range. Method: Solid waste to be heated and molten is high melting point material treated by ''acid digestion treatment'' for treating solid waste, e.g. a HEPA filter or polyvinyl chloride, etc. of an atomic power facility treated with nitric acid or the like. When this material is heated and molten by an electric furnace, microwave melting furnace, etc., boron oxide, sodium boride, sodium carbonate, etc. is added as a melting point lowering agent. When it is molten in this state, its melting point is lowered, and it becomes remarkably fluid, and the melting treatment is facilitated. Solidified material thus obtained through the melting step has excellent denseness and further large volume reduction rate of the solidified material. (Yoshihara, H.)

  5. Melting of gold microclusters

    Garzon, I.L.; Jellinek, J.

    1991-01-01

    The transition from solid-like to liquid-like behavior in Au n , n=6, 7, 13, clusters is studied using molecular dynamics simulations. A Gupta-type potential with all-neighbour interactions is employed to incorporate n-body effects. The melting-like transition is described in terms of short-time averages of the kinetic energy per particle, root-mean-square bond length fluctuations and mean square displacements. A comparison between melting temperatures of Au n and Ni n clusters is presented. (orig.)

  6. Calibration of micro-thermal analysis for the detection of glass transition temperatures and melting points: repeatability and reproducibility

    Fischer, H.R.

    2008-01-01

    Micro-thermal analysis (μTATM) is a technique in which thermal analysis is performed on surfaces of test specimens on a small (ca. 2×2 μm) scale. Like any thermal analysis technique, interpretation of results benefits from accurate temperature information and knowledge of the precision of the

  7. High Resolution Melting (HRM) applied to wine authenticity.

    Pereira, Leonor; Gomes, Sónia; Castro, Cláudia; Eiras-Dias, José Eduardo; Brazão, João; Graça, António; Fernandes, José R; Martins-Lopes, Paula

    2017-02-01

    Wine authenticity methods are in increasing demand mainly in Denomination of Origin designations. The DNA-based methodologies are a reliable means of tracking food/wine varietal composition. The main aim of this work was the study of High Resolution Melting (HRM) application as a screening method for must and wine authenticity. Three sample types (leaf, must and wine) were used to validate the three developed HRM assays (Vv1-705bp; Vv2-375bp; and Vv3-119bp). The Vv1 HRM assay was only successful when applied to leaf and must samples. The Vv2 HRM assay successfully amplified all sample types, allowing genotype discrimination based on melting temperature values. The smallest amplicon, Vv3, produced a coincident melting curve shape in all sample types (leaf and wine) with corresponding genotypes. This study presents sensitive, rapid and efficient HRM assays applied for the first time to wine samples suitable for wine authenticity purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Melting curves of gammairradiated DNA

    Hofer, H.; Altmann, H.; Kehrer, M.

    1978-08-01

    Melting curves of gammairradiated DNA and data derived of them, are reported. The diminished stability is explained by basedestruction. DNA denatures completely at room temperature, if at least every fifth basepair is broken or weakened by irradiation. (author)

  9. High temperature breakdown of the Stokes-Einstein relation in a computer simulated Cu-Zr melt

    Han, X. J., E-mail: xjhan@sjtu.edu.cn; Li, J. G., E-mail: lijg@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Rd. 800, 200240 Shanghai (China); Schober, H. R., E-mail: h.schober@fz-juelich.de [Peter Grünberg Institut, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-03-28

    Transport properties and the Stokes-Einstein (SE) relation in liquid Cu{sub 8}Zr{sub 3} are studied by molecular dynamics simulation with a modified embedded atom potential. The critical temperature T{sub c} of mode coupling theory (MCT) is derived as 930 K from the self-diffusion coefficient D and viscosity η. The SE relation breaks down around T{sub SE} = 1900 K, which is far above T{sub c}. At temperatures below T{sub SE}, the product of D and η fluctuates around a constant value, similar to the prediction of MCT near T{sub c}. The influence of the microscopic atomic motion on macroscopic properties is investigated by analyzing the time dependent liquid structure and the self-hole filling process. The self-holes for the two components are preferentially filled by atoms of the same component. The self-hole filling dynamics explains the different breakdown behaviors of the SE relation in Zr-rich liquid CuZr{sub 2} compared to Cu-rich Cu{sub 8}Zr{sub 3}. At T{sub SE}, a kink is found in the temperature dependence of both partial and total coordination numbers for the three atomic pair combinations and of the typical time of self-hole filling. This indicates a strong correlation between liquid structure, atomic dynamics, and the breakdown of SE relation. The previously suggested usefulness of the parameter d(D{sub 1}/D{sub 2})/dT to predict T{sub SE} is confirmed. Additionally we propose a viscosity criterion to predict T{sub SE} in the absence of diffusion data.

  10. Petrological Geodynamics of Mantle Melting II. AlphaMELTS + Multiphase Flow: Dynamic Fractional Melting

    Tirone, Massimiliano

    2018-03-01

    In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.

  11. Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading

    Kanagarajah, P., E-mail: p.kanagarajah@uni-paderborn.de [Lehrstuhl für Werkstoffkunde (Materials Science), University of Paderborn, Pohlweg 47-49, 33098 Paderborn (Germany); Brenne, F. [Lehrstuhl für Werkstoffkunde (Materials Science), University of Paderborn, Pohlweg 47-49, 33098 Paderborn (Germany); Direct Manufacturing Research Center (DMRC), Mersinweg 3, 33098 Paderborn (Germany); Niendorf, T. [Lehrstuhl für Werkstoffkunde (Materials Science), University of Paderborn, Pohlweg 47-49, 33098 Paderborn (Germany); Maier, H.J. [Direct Manufacturing Research Center (DMRC), Mersinweg 3, 33098 Paderborn (Germany); Institut für Werkstoffkunde, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen (Germany)

    2013-12-20

    Nickel-based superalloys, such as Inconel 939, are a long-established construction material for high-temperature applications and profound knowledge of the mechanical properties for this alloy produced by conventional techniques exists. However, many applications demand for highly complex geometries, e.g. in order to optimize the cooling capability of thermally loaded parts. Thus, additive manufacturing (AM) techniques have recently attracted substantial interest as they provide for an increased freedom of design. However, the microstructural features after AM processing are different from those after conventional processing. Thus, further research is vital for understanding the microstructure-processing relationship and its impact on the resulting mechanical properties. The aim of the present study was to investigate Inconel 939 processed by selective laser melting (SLM) and to reveal the differences to the conventional cast alloy. Thorough examinations were conducted using electron backscatter diffraction, transmission electron microscopy, optical microscopy and mechanical testing. It is demonstrated that the microstructure of the SLM-material is highly influenced by the heat flux during layer-wise manufacturing and consequently anisotropic microstructural features prevail. An epitaxial grain growth accounts for strong bonding between the single layers resulting in good mechanical properties already in the as-built condition. A heat treatment following SLM leads to microstructural features different to those obtained after the same heat treatment of the cast alloy. Still, the mechanical performance of the latter is met underlining the potential of this technique for producing complex parts for high temperature applications.

  12. Melting hadrons, boiling quarks from Hagedorn temperature to ultra-relativistic heavy-ion collisions at CERN : with a tribute to Rolf Hagedorn

    2015-01-01

    This book shows how the study of multi-hadron production phenomena in the years after the founding of CERN culminated in Hagedorn's pioneering idea of limiting temperature, leading on to the discovery of the quark-gluon plasma - announced, in February 2000 at CERN. Following the foreword by Herwig Schopper -- the Director General (1981-1988) of CERN at the key historical juncture -- the first part is a tribute to Rolf Hagedorn (1919-2003) and includes contributions by contemporary friends and colleagues, and those who were most touched by Hagedorn: Tamás Biró, Igor Dremin, Torleif Ericson, Marek Gázdzicki, Mark Gorenstein, Hans Gutbrod, Maurice Jacob, István Montvay, Berndt Müller, Grazyna Odyniec, Emanuele Quercigh, Krzysztof Redlich, Helmut Satz, Luigi Sertorio, Ludwik Turko, and Gabriele Veneziano. The second and third parts retrace 20 years of developments that after discovery of the Hagedorn temperature in 1964 led to its recognition as the melting point of hadrons into boiling quarks, and t...

  13. Prediction of the optimum hybridization conditions of dot-blot-SNP analysis using estimated melting temperature of oligonucleotide probes.

    Shiokai, Sachiko; Kitashiba, Hiroyasu; Nishio, Takeshi

    2010-08-01

    Although the dot-blot-SNP technique is a simple cost-saving technique suitable for genotyping of many plant individuals, optimization of hybridization and washing conditions for each SNP marker requires much time and labor. For prediction of the optimum hybridization conditions for each probe, we compared T (m) values estimated from nucleotide sequences using the DINAMelt web server, measured T (m) values, and hybridization conditions yielding allele-specific signals. The estimated T (m) values were comparable to the measured T (m) values with small differences of less than 3 degrees C for most of the probes. There were differences of approximately 14 degrees C between the specific signal detection conditions and estimated T (m) values. Change of one level of SSC concentrations of 0.1, 0.2, 0.5, and 1.0x SSC corresponded to a difference of approximately 5 degrees C in optimum signal detection temperature. Increasing the sensitivity of signal detection by shortening the exposure time to X-ray film changed the optimum hybridization condition for specific signal detection. Addition of competitive oligonucleotides to the hybridization mixture increased the suitable hybridization conditions by 1.8. Based on these results, optimum hybridization conditions for newly produced dot-blot-SNP markers will become predictable.

  14. Proliferation assay of mouse embryonic stem (ES) cells exposed to atmospheric-pressure plasmas at room temperature

    Miura, Taichi; Hirano, Kazumi; Ogura, Chika; Ikeguchi, Masamichi; Seki, Atsushi; Nishihara, Shoko; Ando, Ayumi; Kanazawa, Tatsuya; Hamaguchi, Satoshi

    2014-01-01

    Proliferation assays of mouse embryonic stem (ES) cells have been performed with cell culture media exposed to atmospheric-pressure plasmas (APPs), which generate reactive species in the media at room temperature. It is found that serum in cell culture media functions as a scavenger of highly reactive species and tends to protect cells in the media against cellular damage. On the other hand, if serum is not present in a cell culture medium when it is exposed to APP, the medium becomes cytotoxic and cannot be detoxified by serum added afterwards. Plasma-induced cytotoxic media hinder proliferation of mouse ES cells and may even cause cell death. It is also shown by nuclear magnetic resonance spectroscopy that organic compounds in cell culture media are in general not significantly modified by plasma exposure. These results indicate that if there is no serum in media when they are exposed to APPs, highly reactive species (such as OH radicals) generated in the media by the APP exposure are immediately converted to less reactive species (such as H 2 O 2 ), which can no longer readily react with serum that is added to the medium after plasma exposure. This study has clearly shown that it is these less reactive species, rather than highly reactive species, that make the medium cytotoxic to mouse ES cells. (paper)

  15. High resolution melt curve analysis based on methylation status for human semen identification.

    Fachet, Caitlyn; Quarino, Lawrence; Karnas, K Joy

    2017-03-01

    A high resolution melt curve assay to differentiate semen from blood, saliva, urine, and vaginal fluid based on methylation status at the Dapper Isoform 1 (DACT1) gene was developed. Stains made from blood, saliva, urine, semen, and vaginal fluid were obtained from volunteers and DNA was isolated using either organic extraction (saliva, urine, and vaginal fluid) or Chelex ® 100 extraction (blood and semen). Extracts were then subjected to bisulfite modification in order to convert unmethylated cytosines to uracil, consequently creating sequences whose amplicons have melt curves that vary depending on their initial methylation status. When primers designed to amplify the promoter region of the DACT1 gene were used, DNA from semen samples was distinguishable from other fluids by a having a statistically significant lower melting temperature. The assay was found to be sperm-significant since semen from a vasectomized man produced a melting temperature similar to the non-semen body fluids. Blood and semen stains stored up to 5 months and tested at various intervals showed little variation in melt temperature indicating the methylation status was stable during the course of the study. The assay is a more viable method for forensic science practice than most molecular-based methods for body fluid stain identification since it is time efficient and utilizes instrumentation common to forensic biology laboratories. In addition, the assay is advantageous over traditional presumptive chemical methods for body fluid identification since results are confirmatory and the assay offers the possibility of multiplexing which may test for multiple body fluids simultaneously.

  16. Effect of Mantle Wedge Hybridization by Sediment Melt on Geochemistry of Arc Magma and Arc Mantle Source - Insights from Laboratory Experiments at High Pressures and Temperatures

    Mallik, A.; Dasgupta, R.; Tsuno, K.; Nelson, J. M.

    2015-12-01

    Generation of arc magmas involves metasomatism of the mantle wedge by slab-derived H2O-rich fluids and/or melts and subsequent melting of the modified source. The chemistry of arc magmas and the residual mantle wedge are not only regulated by the chemistry of the slab input, but also by the phase relations of metasomatism or hybridization process in the wedge. The sediment-derived silica-rich fluids and hydrous partial melts create orthopyroxene-rich zones in the mantle wedge, due to reaction of mantle olivine with silica in the fluid/melt [1,2]. Geochemical evidence for such a reaction comes from pyroxenitic lithologies coexisting with peridotite in supra-subduction zones. In this study, we have simulated the partial melting of a parcel of mantle wedge modified by bulk addition of sediment-derived melt with variable H2O contents to investigate the major and trace element chemistry of the magmas and the residues formed by this process. Experiments at 2-3 GPa and 1150-1300 °C were conducted on mixtures of 25% sediment-derived melt and 75% lherzolite, with bulk H2O contents varying from 2 to 6 wt.%. Partial reactive crystallization of the rhyolitic slab-derived melt and partial melting of the mixed source produced a range of melt compositions from ultra-K basanites to basaltic andesites, in equilibrium with an orthopyroxene ± phlogopite ± clinopyroxene ± garnet bearing residue, depending on P and bulk H2O content. Model calculations using partition coefficients (from literature) of trace elements between experimental minerals and silicate melt suggest that the geochemical signatures of the slab-derived melt, such as low Ce/Pb and depletion in Nb and Ta (characteristic slab signatures) are not erased from the resulting melt owing to reactive crystallization. The residual mineral assemblage is also found to be similar to the supra-subduction zone lithologies, such as those found in Dabie Shan (China) and Sanbagawa Belt (Japan). In this presentation, we will also

  17. Coercivity of the Nd–Fe–B hot-deformed magnets diffusion-processed with low melting temperature glass forming alloys

    Seelam, U.M.R. [Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Liu, Lihua [Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Akiya, T.; Sepehri-Amin, H.; Ohkubo, T. [Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Sakuma, N.; Yano, M.; Kato, A. [Advanced Material Engineering Division, Toyota Motor Corporation, Susono 410-1193 (Japan); Hono, K., E-mail: kazuhiro.hono@nims.go.jp [Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan)

    2016-08-15

    Nd- and Pr-based alloys with bulk glass forming ability and low melting temperatures, Nd{sub 60}Al{sub 10}Ni{sub 10}Cu{sub 20} and Pr{sub 60}Al{sub 10}Ni{sub 10}Cu{sub 20}, were used for grain boundary diffusion process to enhance the coercivity of hot-deformed magnets. The coercivity increment was proportional to the weight gain after the diffusion process. For the sample with 64% weight gain, the coercivity increased up to 2.8 T, which is the highest value for bulk Nd–Fe–B magnets that do not contain heavy rare-earth elements, Dy or Tb. Approximately half of the intergranular regions were amorphous and the remaining regions were crystalline. Magnetic isolation of the Nd{sub 2}Fe{sub 14}B grains by the Nd-rich amorphous/crystalline intergranular phases is attributed to the large coercivity enhancement. The coercivity does not change after the crystallization of the intergranular phase, indicating that the coercivity is not influenced by the strain at the interface with the crystalline intergranular phase. - Highlights: • Bulk-glass forming alloys were infiltrated into hot-deformed Nd–Fe–B magnets. • Very high coercivity of 2.8 T was attained without heavy rare-earth elements. • Approximately half of the inter-granular regions were amorphous. • Crystallization of amorphous intergranular phase does not change coercivity.

  18. Melting in super-earths.

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  19. Investigation into the dissolution and direct assay of high-fired plutonium dioxide

    Patterson, J.K.

    1976-01-01

    A fusion-melt and dissolution assay method has been developed and tested for the quantitative analysis of high-fired plutonium dioxide. The method employs fusion of the plutonium dioxide at temperatures greater than the melting point of an eutectic mixture of potassium pyrosulfate plus sodium peroxide. The resultant melt is then titrated directly by either controlled potential coulometry or a gravimetric titration, using standardized ceric sulfate as the titrant. It has been concluded from these investigations that by using the techniques described, high-fired plutonium dioxide (stochiometric) can be quantitatively dissolved and assayed to a degree heretofore beyond the state-of-the-art, while showing direct traceability to the Federal standards. After fusion, the dissolution and direct assay is applicable to existing routine analytical procedures. The method was designed so as to minimize physical handling, simplify the chemical operations, and maximize the personal safety of the analyst at an appreciable cost savings per analysis

  20. Niobium interaction with chloride-carbonate melts

    Kuznetsov, S.A.; Kuznetsova, S.V.

    1996-01-01

    Niobium interaction with chloride-carbonate melt NaCl-KCl-K 2 CO 3 (5 mass %) in the temperature range of 973-1123 K has been studied. The products and niobium corrosion rate have been ascertained, depending on the temperature of melt and time of allowance. Potentials of niobium corrosion have been measured. Refs. 11, figs. 3, tabs. 2

  1. Comparative Study on Two Melting Simulation Methods: Melting Curve of Gold

    Liu Zhong-Li; Li Rui; Sun Jun-Sheng; Zhang Xiu-Lu; Cai Ling-Cang

    2016-01-01

    Melting simulation methods are of crucial importance to determining melting temperature of materials efficiently. A high-efficiency melting simulation method saves much simulation time and computational resources. To compare the efficiency of our newly developed shock melting (SM) method with that of the well-established two-phase (TP) method, we calculate the high-pressure melting curve of Au using the two methods based on the optimally selected interatomic potentials. Although we only use 640 atoms to determine the melting temperature of Au in the SM method, the resulting melting curve accords very well with the results from the TP method using much more atoms. Thus, this shows that a much smaller system size in SM method can still achieve a fully converged melting curve compared with the TP method, implying the robustness and efficiency of the SM method. (paper)

  2. Pavement Snow Melting

    Lund, John W.

    2005-01-01

    The design of pavement snow melting systems is presented based on criteria established by ASHRAE. The heating requirements depends on rate of snow fall, air temperature, relative humidity and wind velocity. Piping materials are either metal or plastic, however, due to corrosion problems, cross-linked polyethylene pipe is now generally used instead of iron. Geothermal energy is supplied to systems through the use of heat pipes, directly from circulating pipes, through a heat exchanger or by allowing water to flow directly over the pavement, by using solar thermal storage. Examples of systems in New Jersey, Wyoming, Virginia, Japan, Argentina, Switzerland and Oregon are presented. Key words: pavement snow melting, geothermal heating, heat pipes, solar storage, Wyoming, Virginia, Japan, Argentina, Klamath Falls.

  3. The effects of radiative heat transfer during the melting process of a high temperature phase change material confined in a spherical shell

    Archibold, Antonio Ramos; Rahman, Muhammad M.; Yogi Goswami, D.; Stefanakos, Elias K.

    2015-01-01

    Highlights: • Analyzed effects of radiation heat transfer during melting in spherical shell. • Performed analyses to ascertain the effects of optical thickness and the Planck, Grashof and Stefan numbers. • Present correlations for melt fraction and modified Nusselt number. - Abstract: The influence of radiation heat transfer during the phase change process of a storage material has been numerically analyzed in this study. Emphasis has been placed on the thermal characterization of a single constituent storage module rather than an entire storage system, in order to precisely capture the energy exchange contributions of all the fundamental heat transfer mechanisms during the melting of a phase change material (PCM) with tailored optical properties. The equations describing the conservation of mass, momentum and energy have been solved by using the control volume discretization approach, while the radiative transfer equation (RTE) was solved by the discrete ordinate method (DOM). The enthalpy–porosity method was used to track the PCM liquid/solid interface during the process. A parametric analysis has been performed in order to ascertain the effects of the optical thickness and the Planck, Grashof and Stefan numbers on the melting rate, as well as the total and radiative heat transfer rates at the inner surface of the shell. The results show that the presence of thermal radiation enhances the melting process. Correlations for the melt fraction and modified Nusselt number are developed for application in the design process of packed bed heat exchangers for latent heat thermal energy storage

  4. Construction of a high-temperature viscosimeter and measurement of the viscosity of melts of the system aluminium-nickel; Aufbau eines Hochtemperaturviskosimeters und Messung der Viskositaet von Schmelzen des Systems Aluminium-Nickel

    Kehr, Mirko

    2009-10-29

    The system aluminium-nickel is of importance as a model-system in materials science as well as a basic system for superalloys in technical applications. The knowledge of the thermophysical properties of the system aluminium-nickel has been limited to the areas close to the pure elements mainly related to the high melting temperatures of up to 1638 C. The viscosity, which is one of these thermophysical properties, depends on alloy composition as well as on temperature. The viscosity is of importance as an input parameter in computer simulations and for improving casting processes of metallic alloys. The viscosity of aluminium-nickel melts has been measured only once so far. However, not the whole concentration range of the aluminium-nickel system was covered by these data. In particular the viscosity values of the high melting alloys, which are of technological interest, were unknown. The measurement of the missing values was not possible due to the high melting temperatures using existing viscometers. A new oscillating cup viscometer has been constructed within this work. The viscometer has been tested measuring the viscosity values of pure metals, which are well known in literature. The test measurements have been done at temperatures up to 1800 C. A temperature of 2300 C is achievable with slight modifications. A new software for controlling the device and evaluation of the measured data has been developed. Several working equations for calculating the viscosity have been implemented. Furthermore a new approach has been used for detecting the damping of the oscillation of the pendulum containing the liquid sample. The viscosity of aluminium-nickel melts have been measured successfully. The measured values are in good agreement with the little number of known values. A good agreement with values calculated from diffusion experiments and computer simulations was observed as well. Several models for calculating the viscosity of liquid alloys have been tested and

  5. Vertical melting of a stack of membranes

    Borelli, M. E. S.; Kleinert, H.; Schakel, A. M. J.

    2001-02-01

    A stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is studied. At low temperatures, the system forms a lamellar phase. At a critical temperature, the stack disorders vertically in a melting-like transition.

  6. Corium spreading: hydrodynamics, rheology and solidification of a high-temperature oxide melt; L'etalement du corium: hydrodynamique, rheologie et solidification d'unbain d'oxydes a haute temperature

    Journeau, Ch

    2006-06-15

    In the hypothesis of a nuclear reactor severe accident, the core could melt and form a high- temperature (2000-3000 K) mixture called corium. In the hypothesis of vessel rupture, this corium would spread in the reactor pit and adjacent rooms as occurred in Chernobyl or in a dedicated core-catcher s in the new European Pressurized reactor, EPR. This thesis is dedicated to the experimental study of corium spreading, especially with the prototypic corium material experiments performed in the VULCANO facility at CEA Cadarache. The first step in analyzing these tests consists in interpreting the material analyses, with the help of thermodynamic modelling of corium solidification. Knowing for each temperature the phase repartition and composition, physical properties can be estimated. Spreading termination is controlled by corium rheological properties in the solidification range, which leads to studying them in detail. The hydrodynamical, rheological and solidification aspects of corium spreading are taken into account in models and computer codes which have been validated against these tests and enable the assessment of the EPR spreading core-catcher concept. (author)

  7. DEPENDENCY OF SULFATE SOLUBILITY ON MELT COMPOSITION AND MELT POLYMERIZATION

    JANTZEN, CAROL M.

    2004-01-01

    Sulfate and sulfate salts are not very soluble in borosilicate waste glass. When sulfate is present in excess it can form water soluble secondary phases and/or a molten salt layer (gall) on the melt pool surface which is purported to cause steam explosions in slurry fed melters. Therefore, sulfate can impact glass durability while formation of a molten salt layer on the melt pool can impact processing. Sulfate solubility has been shown to be compositionally dependent in various studies, (e.g. , B2O3, Li2O, CaO, MgO, Na2O, and Fe2O3 were shown to increase sulfate solubility while Al2O3 and SiO2 decreased sulfate solubility). This compositional dependency is shown to be related to the calculated melt viscosity at various temperatures and hence the melt polymerization

  8. Shock Compression and Melting of an Fe-Ni-Si Alloy: Implications for the Temperature Profile of the Earth's Core and the Heat Flux Across the Core-Mantle Boundary

    Zhang, Youjun; Sekine, Toshimori; Lin, Jung-Fu; He, Hongliang; Liu, Fusheng; Zhang, Mingjian; Sato, Tomoko; Zhu, Wenjun; Yu, Yin

    2018-02-01

    Understanding the melting behavior and the thermal equation of state of Fe-Ni alloyed with candidate light elements at conditions of the Earth's core is critical for our knowledge of the region's thermal structure and chemical composition and the heat flow across the liquid outer core into the lowermost mantle. Here we studied the shock equation of state and melting curve of an Fe-8 wt% Ni-10 wt% Si alloy up to 250 GPa by hypervelocity impacts with direct velocity and reliable temperature measurements. Our results show that the addition of 10 wt% Si to Fe-8 wt% Ni alloy slightly depresses the melting temperature of iron by 200-300 (±200) K at the core-mantle boundary ( 136 GPa) and by 600-800 (±500) K at the inner core-outer core boundary ( 330 GPa), respectively. Our results indicate that Si has a relatively mild effect on the melting temperature of iron compared with S and O. Our thermodynamic modeling shows that Fe-5 wt% Ni alloyed with 6 wt% Si and 2 wt% S (which has a density-velocity profile that matches the outer core's seismic profile well) exhibits an adiabatic profile with temperatures of 3900 K and 5300 K at the top and bottom of the outer core, respectively. If Si is a major light element in the core, a geotherm modeled for the outer core indicates a thermal gradient of 5.8-6.8 (±1.6) K/km in the D″ region and a high heat flow of 13-19 TW across the core-mantle boundary.

  9. Pressure melting and ice skating

    Colbeck, S. C.

    1995-10-01

    Pressure melting cannot be responsible for the low friction of ice. The pressure needed to reach the melting temperature is above the compressive failure stress and, if it did occur, high squeeze losses would result in very thin films. Pure liquid water cannot coexist with ice much below -20 °C at any pressure and friction does not increase suddenly in that range. If frictional heating and pressure melting contribute equally, the length of the wetted contact could not exceed 15 μm at a speed of 5 m/s, which seems much too short. If pressure melting is the dominant process, the water films are less than 0.08 μm thick because of the high pressures.

  10. Melting of major Glaciers in the western Himalayas: evidence of climatic changes from long term MSU derived tropospheric temperature trend (1979–2008

    A. K. Prasad

    2009-12-01

    Full Text Available Global warming or the increase of the surface and atmospheric temperatures of the Earth, is increasingly discernible in the polar, sub-polar and major land glacial areas. The Himalayan and Tibetan Plateau Glaciers, which are the largest glaciers outside of the Polar Regions, are showing a large-scale decrease of snow cover and an extensive glacial retreat. These glaciers such as Siachen and Gangotri are a major water resource for Asia as they feed major rivers such as the Indus, Ganga and Brahmaputra. Due to scarcity of ground measuring stations, the long-term observations of atmospheric temperatures acquired from the Microwave Sounding Unit (MSU since 1979–2008 is highly useful. The lower and middle tropospheric temperature trend based on 30 years of MSU data shows warming of the Northern Hemisphere's mid-latitude regions. The mean month-to-month warming (up to 0.048±0.026°K/year or 1.44°K over 30 years of the mid troposphere (near surface over the high altitude Himalayas and Tibetan Plateau is prominent and statistically significant at a 95% confidence interval. Though the mean annual warming trend over the Himalayas (0.016±0.005°K/year, and Tibetan Plateau (0.008±0.006°K/year is positive, the month to month warming trend is higher (by 2–3 times, positive and significant only over a period of six months (December to May. The factors responsible for the reversal of this trend from June to November are discussed here. The inequality in the magnitude of the warming trends of the troposphere between the western and eastern Himalayas and the IG (Indo-Gangetic plains is attributed to the differences in increased aerosol loading (due to dust storms over these regions. The monthly mean lower-tropospheric MSU-derived temperature trend over the IG plains (dust sink region; up to 0.032±0.027°K/year and dust source regions (Sahara desert, Middle East, Arabian region, Afghanistan-Iran-Pakistan and Thar Desert regions; up to 0.068±0.033

  11. Petrological Geodynamics of Mantle Melting I. AlphaMELTS + Multiphase Flow: Dynamic Equilibrium Melting, Method and Results

    Massimiliano Tirone

    2017-10-01

    Full Text Available The complex process of melting in the Earth's interior is studied by combining a multiphase numerical flow model with the program AlphaMELTS which provides a petrological description based on thermodynamic principles. The objective is to address the fundamental question of the effect of the mantle and melt dynamics on the composition and abundance of the melt and the residual solid. The conceptual idea is based on a 1-D description of the melting process that develops along an ideal vertical column where local chemical equilibrium is assumed to apply at some level in space and time. By coupling together the transport model and the chemical thermodynamic model, the evolution of the melting process can be described in terms of melt distribution, temperature, pressure and solid and melt velocities but also variation of melt and residual solid composition and mineralogical abundance at any depth over time. In this first installment of a series of three contributions, a two-phase flow model (melt and solid assemblage is developed under the assumption of complete local equilibrium between melt and a peridotitic mantle (dynamic equilibrium melting, DEM. The solid mantle is also assumed to be completely dry. The present study addresses some but not all the potential factors affecting the melting process. The influence of permeability and viscosity of the solid matrix are considered in some detail. The essential features of the dynamic model and how it is interfaced with AlphaMELTS are clearly outlined. A detailed and explicit description of the numerical procedure should make this type of numerical models less obscure. The general observation that can be made from the outcome of several simulations carried out for this work is that the melt composition varies with depth, however the melt abundance not necessarily always increases moving upwards. When a quasi-steady state condition is achieved, that is when melt abundance does not varies significantly

  12. Improved capacitive melting curve measurements

    Sebedash, Alexander; Tuoriniemi, Juha; Pentti, Elias; Salmela, Anssi

    2009-01-01

    Sensitivity of the capacitive method for determining the melting pressure of helium can be enhanced by loading the empty side of the capacitor with helium at a pressure nearly equal to that desired to be measured and by using a relatively thin and flexible membrane in between. This way one can achieve a nanobar resolution at the level of 30 bar, which is two orders of magnitude better than that of the best gauges with vacuum reference. This extends the applicability of melting curve thermometry to lower temperatures and would allow detecting tiny anomalies in the melting pressure, which must be associated with any phenomena contributing to the entropy of the liquid or solid phases. We demonstrated this principle in measurements of the crystallization pressure of isotopic helium mixtures at millikelvin temperatures by using partly solid pure 4 He as the reference substance providing the best possible universal reference pressure. The achieved sensitivity was good enough for melting curve thermometry on mixtures down to 100 μK. Similar system can be used on pure isotopes by virtue of a blocked capillary giving a stable reference condition with liquid slightly below the melting pressure in the reference volume. This was tested with pure 4 He at temperatures 0.08-0.3 K. To avoid spurious heating effects, one must carefully choose and arrange any dielectric materials close to the active capacitor. We observed some 100 pW loading at moderate excitation voltages.

  13. Features of Crystallization of Rapidly Quenched Ni45Ti32Hf18Cu5 and Ni25Ti32Hf18Cu25 Alloys from Melt with High-Temperature Shape Memory Effect

    Pushin, A. V.; Pushin, V. G.; Kuntsevich, T. E.; Kuranova, N. N.; Makarov, V. V.; Uksusnikov, A. N.; Kourov, N. I.

    2017-12-01

    A comparative study of the structure and the chemical and phase composition of Ni45Ti32Hf18Cu5 and Ni25Ti32Hf18Cu25 amorphous alloys obtained by fast-quenching of melt stream by spinning has been carried out by transmission and scanning electron microscopy and X-ray diffraction. The critical temperatures of their devitrification were determined by the data of temperatures measurements of electrical resistance. The features of the formation of ultrafine structure and the phase transformation at the vitrification depending on the regimes of heat treatment and chemical composition of alloy have been established.

  14. Electron beam melting of sponge titanium

    Kanayama, Hiroshi; Kusamichi, Tatsuhiko; Muraoka, Tetsuhiro; Onouye, Toshio; Nishimura, Takashi

    1991-01-01

    Fundamental investigations were done on electron beam (EB) melting of sponge titanium by using 80 kW EB melting furnace. Results obtained are as follows: (1) To increase the melting yield of titanium in EB melting of sponge titanium, it is important to recover splashed metal by installation of water-cooled copper wall around the hearth and to decrease evaporation loss of titanium by keeping the surface temperature of molten metal just above the melting temperature of titanium without local heating. (2) Specific power consumption of drip melting of pressed sponge titanium bar and hearth melting of sponge titanium are approximately 0.9 kWh/kg-Ti and 0.5-0.7 kWh/kg-Ti, respectively. (3) Ratios of the heat conducted to water-cooled mould in the drip melting and to water-cooled hearth in the hearth melting to the electron beam input power are 50-65% and 60-65%, respectively. (4) Surface defects of EB-melted ingots include rap which occurs when the EB output is excessively great, and transverse cracks when the EB output is excessively small. To prevent surface defects, the up-down withdrawal method is effective. (author)

  15. Methylation-Sensitive High Resolution Melting (MS-HRM).

    Hussmann, Dianna; Hansen, Lise Lotte

    2018-01-01

    Methylation-Sensitive High Resolution Melting (MS-HRM) is an in-tube, PCR-based method to detect methylation levels at specific loci of interest. A unique primer design facilitates a high sensitivity of the assays enabling detection of down to 0.1-1% methylated alleles in an unmethylated background.Primers for MS-HRM assays are designed to be complementary to the methylated allele, and a specific annealing temperature enables these primers to anneal both to the methylated and the unmethylated alleles thereby increasing the sensitivity of the assays. Bisulfite treatment of the DNA prior to performing MS-HRM ensures a different base composition between methylated and unmethylated DNA, which is used to separate the resulting amplicons by high resolution melting.The high sensitivity of MS-HRM has proven useful for detecting cancer biomarkers in a noninvasive manner in urine from bladder cancer patients, in stool from colorectal cancer patients, and in buccal mucosa from breast cancer patients. MS-HRM is a fast method to diagnose imprinted diseases and to clinically validate results from whole-epigenome studies. The ability to detect few copies of methylated DNA makes MS-HRM a key player in the quest for establishing links between environmental exposure, epigenetic changes, and disease.

  16. Thermodynamics of freezing and melting

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas

    2016-01-01

    phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...

  17. Disordering and Melting of Aluminum Surfaces

    Stoltze, Per; Nørskov, Jens Kehlet; Landman, U.

    1988-01-01

    We report on a molecular-dynamics simulation of an Al(110) surface using the effective-medium theory to describe the interatomic interactions. The surface region is found to start melting ≅200 K below the bulk melting temperature with a gradual increase in the thickness of the disordered layer as...

  18. An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support

    Fei, Yiyan; Landry, James P.; Zhu, X. D., E-mail: xdzhu@physics.ucdavis.edu [Department of Physics, University of California, One Shields Avenue, Davis, California 95616 (United States); Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A.; Chen, Xi [Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616 (United States)

    2013-11-15

    A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400–10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.

  19. High-temperature mass spectrometric study of the vaporization processes and thermodynamic properties of melts in the PbO-B2O3-SiO2 system.

    Stolyarova, V L; Lopatin, S I; Shilov, A L; Shugurov, S M

    2013-07-15

    The unique properties of the PbO-B2O3-SiO2 system, especially its extensive range of glass-forming compositions, make it valuable for various practical applications. The thermodynamic properties and vaporization of PbO-B2O3-SiO2 melts are not well established so far and the data obtained on these will be useful for optimization of technology and thermodynamic modeling of glasses. High-temperature Knudsen effusion mass spectrometry was used to study vaporization processes and to determine the partial pressures of components of the PbO-B2O3-SiO2 melts. Measurements were performed with a MS-1301 mass spectrometer. Vaporization was carried out using two quartz effusion cells containing the sample under study and pure PbO (reference substance). Ions were produced by electron ionization at an energy of 25 eV. To facilitate interpretation of the mass spectra, the appearance energies of ions were also measured. Pb, PbO and O2 were found to be the main vapor species over the samples studied at 1100 K. The PbO activities as a function of the composition of the system were derived from the measured PbO partial pressures. The B2O3 and SiO2 activities, the Gibbs energy of formation, the excess Gibbs energy of formation and mass losses in the samples studied were calculated. Partial pressures of the vapor species over PbO-B2O3-SiO2 melts were measured at 1100 K in the wide range of compositions using the Knudsen mass spectrometric method. The data enabled the PbO, B2O3, and SiO2 activities in these melts to be derived and provided evidence of their negative deviations from ideal behavior. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Magnetic susceptibility of semiconductor melts

    Kutvitskij, V.A.; Shurygin, P.M.

    1975-01-01

    The temperature dependences chi of various alloys confirm the existence of cluster formations in molten semiconductors, the stability of these formations in melts being considerably affected by the anion nature. The concentrational dependences of the magnetic susceptibility for all the investigated systems exhibit the diamagnetism maxima corresponding to the compound compositions. Heating the melt causes ''smearing'' the maxima, which is related with the cluster structure dissociation. The existence of the maxima concentrational dependence chi corresponding to BiTe and BiSe is found in the isotherms. The non-linear dependence of chi on the composition shows the absence of a single-valued relation between the phase diagram and the chi-diagram for melts

  1. Volatile diffusion in silicate melts and its effects on melt inclusions

    P. Scarlato

    2005-06-01

    Full Text Available A compendium of diffusion measurements and their Arrhenius equations for water, carbon dioxide, sulfur, fluorine, and chlorine in silicate melts similar in composition to natural igneous rocks is presented. Water diffusion in silicic melts is well studied and understood, however little data exists for melts of intermediate to basic compositions. The data demonstrate that both the water concentration and the anhydrous melt composition affect the diffusion coefficient of water. Carbon dioxide diffusion appears only weakly dependent, at most, on the volatilefree melt composition and no effect of carbon dioxide concentration has been observed, although few experiments have been performed. Based upon one study, the addition of water to rhyolitic melts increases carbon dioxide diffusion by orders of magnitude to values similar to that of 6 wt% water. Sulfur diffusion in intermediate to silicic melts depends upon the anhydrous melt composition and the water concentration. In water-bearing silicic melts sulfur diffuses 2 to 3 orders of magnitude slower than water. Chlorine diffusion is affected by both water concentration and anhydrous melt composition; its values are typically between those of water and sulfur. Information on fluorine diffusion is rare, but the volatile-free melt composition exerts a strong control on its diffusion. At the present time the diffusion of water, carbon dioxide, sulfur and chlorine can be estimated in silicic melts at magmatic temperatures. The diffusion of water and carbon dioxide in basic to intermediate melts is only known at a limited set of temperatures and compositions. The diffusion data for rhyolitic melts at 800°C together with a standard model for the enrichment of incompatible elements in front of growing crystals demonstrate that rapid crystal growth, greater than 10-10 ms-1, can significantly increase the volatile concentrations at the crystal-melt interface and that any of that melt trapped

  2. Permeability and 3-D melt geometry in shear-induced high melt fraction conduits

    Zhu, W.; Cordonnier, B.; Qi, C.; Kohlstedt, D. L.

    2017-12-01

    Observations of dunite channels in ophiolites and uranium-series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. Formation of high melt fraction conduits could result from mechanical shear, pyroxene dissolution, and lithological partitioning. Deformation experiments (e.g. Holtzman et al., 2003) demonstrate that shear stress causes initially homogeneously distributed melt to segregate into an array of melt-rich bands, flanked by melt-depleted regions. At the same average melt fraction, the permeability of high melt fraction conduits could be orders of magnitude higher than that of their homogenous counterparts. However, it is difficult to determine the permeability of melt-rich bands. Using X-ray synchrotron microtomography, we obtained high-resolution images of 3-dimensional (3-D) melt distribution in a partially molten rock containing shear-induced high melt fraction conduits. Sample CQ0705, an olivine-alkali basalt aggregate with a nominal melt fraction of 4%, was deformed in torsion at a temperature of 1473 K and a confining pressure of 300 MPa to a shear strain of 13.3. A sub-volume of CQ0705 encompassing 3-4 melt-rich bands was imaged. Microtomography data were reduced to binary form so that solid olivine is distinguishable from basalt glass. At a spatial resolution of 160 nm, the 3-D images reveal the shape and connectedness of melt pockets in the melt-rich bands. Thin melt channels formed at grain edges are connected at large melt nodes at grain corners. Initial data analysis shows a clear preferred orientation of melt pockets alignment subparallel to the melt-rich band. We use the experimentally determined geometrical parameters of melt topology to create a digital rock with identical 3-D microstructures. Stokes flow simulations are conducted on the digital rock to obtain the permeability tensor. Using this digital rock physics approach, we determine how deformation

  3. Bubble Formation in Basalt-like Melts

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    and their diameter. The variation in melting temperature has little influence on the overall bubble volume. However, the size distribution of the bubbles varies with the melting temperature. When the melt is slowly cooled, the bubble volume increases, implying decreased solubility of the gaseous species. Mass...... spectroscopy analysis of gases liberated during heating of the glass reveals that small bubbles contain predominantly CH4, CO and CO2, whereas large bubbles bear N2, SO2 and H2S. The methodology utilised in this work can, besides mapping the bubbles in a glass, be applied to shed light on the sources of bubble...

  4. Waste glass melting stages

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Three simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentru Karlsruhe (KfK) in Germany were used. The samples were thin sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. The behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied. 2 refs., 8 tabs

  5. Waste glass melting stages

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied

  6. Modeling of evaporation processes in glass melting furnaces

    Limpt, van J.A.C.

    2007-01-01

    The majority of glass furnaces worldwide, apply fossil fuel combustion to transfer heat directly by radiation from the combustion processes to the melting batch and glass melt. During these high temperature melting processes, some glass components, such as: sodium, potassium, boron and lead species

  7. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    Heo, Hyo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ, Seoul (Korea, Republic of)

    2015-10-15

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  8. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    Heo, Hyo; Bang, In Cheol; Jerng, Dong Wook

    2015-01-01

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  9. Rapid Simultaneous Amplification and Detection of the MBR/JH Chromosomal Translocation by Fluorescence Melting Curve Analysis

    Bohling, Sandra D.; King, Thomas C.; Wittwer, Carl T.; Elenitoba-Johnson, Kojo S. J.

    1999-01-01

    Polymerase chain reaction (PCR) amplification and product analysis for the detection of chromosomal translocations, such as the t(14;18), has traditionally been a two-step process. PCR product detection has generally entailed gel electrophoresis and/or hybridization or sequencing for confirmation of assay specificity. Using a microvolume fluorimeter integrated with a thermal cycler and a PCR-compatible double-stranded DNA (dsDNA) binding fluorescent dye (SYBR Green I), we investigated the feasibility of simultaneous thermal amplification and detection of MBR/JH translocation products by fluorescence melting curve analysis. We analyzed DNA from 30 cases of lymphoproliferative disorders comprising 19 cases of previously documented MBR/JH-positive follicle center lymphoma and 11 reactive lymphadenopathies. The samples were coded and analyzed blindly for the presence of MBR/JH translocations by fluorescence melting curve analysis. We also performed dilutional assays using the MBR/JH-positive cell line SUDHL-6. Multiplex PCR for MBR/JH and β-globin was used to simultaneously assess sample adequacy. All (100%) of the 19 cases previously determined to be MBR/JH positive by conventional PCR analysis showed a characteristic sharp decrease in fluorescence at ∼90°C by melting curve analysis after amplification. Fluorescence melting peaks obtained by plotting the negative derivative of fluorescence over temperature (−dF/dT) versus temperature (T) showed melting temperatures (Tm) at 88.85 ± 1.15°C. In addition, multiplex assays using both MBR/JH and β-globin primers yielded easily distinguishable fluorescence melting peaks at ∼90°C and 81.2°C, respectively. Dilutional assays revealed that fluorescence melting curve analysis was more sensitive than conventional PCR and agarose gel electrophoresis with ultraviolet transillumination by as much as 100-fold. Simultaneous amplification and fluorescence melting curve analysis is a simple, reliable, and sensitive method

  10. Fission Product Release from Molten Pool: ceramic melt tests

    Petrov, Yu.B.; Lopukh, D.B.; Petchenkov, A.Yu. [AO ' NP Sintez' , St. Petersburg (RU)] [and others

    1999-07-01

    Experimental results are presented on the volatilisation of UO{sub 2{+-}}{sub x}, SrO, BaO, CeO{sub 2} from corium melts. Corium melts were generated by high frequency induction melting in a cold crucible. The surface temperature of the melts was in the range from 1753 to 3023 K. Some results of the tests are discussed and a comparison with published data is made. (author)

  11. Microbead agglutination based assays

    Kodzius, Rimantas

    2013-01-21

    We report a simple and rapid room temperature assay for point-of-care (POC) testing that is based on specific agglutination. Agglutination tests are based on aggregation of microbeads in the presence of a specific analyte thus enabling the macroscopic observation. Such tests are most often used to explore antibody-antigen reactions. Agglutination has been used for protein assays using a biotin/streptavidin system as well as a hybridization based assay. The agglutination systems are prone to selftermination of the linking analyte, prone to active site saturation and loss of agglomeration at high analyte concentrations. We investigated the molecular target/ligand interaction, explaining the common agglutination problems related to analyte self-termination, linkage of the analyte to the same bead instead of different microbeads. We classified the agglutination process into three kinds of assays: a two- component assay, a three-component assay and a stepped three- component assay. Although we compared these three kinds of assays for recognizing DNA and protein molecules, the assay can be used for virtually any molecule, including ions and metabolites. In total, the optimized assay permits detecting analytes with high sensitivity in a short time, 5 min, at room temperature. Such a system is appropriate for POC testing.

  12. Microbead agglutination based assays

    Kodzius, Rimantas; Castro, David; Foulds, Ian G.; Parameswaran, Ash M.; Sumanpreet, K. Chhina

    2013-01-01

    We report a simple and rapid room temperature assay for point-of-care (POC) testing that is based on specific agglutination. Agglutination tests are based on aggregation of microbeads in the presence of a specific analyte thus enabling

  13. Cloud screening and melt water detection over melting sea ice using AATSR/SLSTR

    Istomina, Larysa; Heygster, Georg

    2014-05-01

    With the onset of melt in the Arctic Ocean, the fraction of melt water on sea ice, the melt pond fraction, increases. The consequences are: the reduced albedo of sea ice, increased transmittance of sea ice and affected heat balance of the system with more heat passing through the ice into the ocean, which facilitates further melting. The onset of melt, duration of melt season and melt pond fraction are good indicators of the climate state of the Arctic and its change. In the absence of reliable sea ice thickness retrievals in summer, melt pond fraction retrieval from satellite is in demand as input for GCM as an indicator of melt state of the sea ice. The retrieval of melt pond fraction with a moderate resolution radiometer as AATSR is, however, a non-trivial task due to a variety of subpixel surface types with very different optical properties, which give non-unique combinations if mixed. In this work this has been solved by employing additional information on the surface and air temperature of the pixel. In the current work, a concept of melt pond detection on sea ice is presented. The basis of the retrieval is the sensitivity of AATSR reflectance channels 550nm and 860nm to the amount of melt water on sea ice. The retrieval features extensive usage of a database of in situ surface albedo spectra. A tree of decisions is employed to select the feasible family of in situ spectra for the retrieval, depending on the melt stage of the surface. Reanalysis air temperature at the surface and brightness temperature measured by the satellite sensor are analyzed in order to evaluate the melting status of the surface. Case studies for FYI and MYI show plausible retrieved melt pond fractions, characteristic for both of the ice types. The developed retrieval can be used to process the historical AATSR (2002-2012) dataset, as well as for the SLSTR sensor onboard the future Sentinel-3 mission (scheduled for launch in 2015), to keep the continuity and obtain longer time sequence

  14. Nanotexturing of surfaces to reduce melting point.

    Garcia, Ernest J.; Zubia, David (University of Texas at El Paso El Paso, TX); Mireles, Jose (Universidad Aut%C3%94onoma de Ciudad Ju%C3%94arez Ciudad Ju%C3%94arez, Mexico); Marquez, Noel (University of Texas at El Paso El Paso, TX); Quinones, Stella (University of Texas at El Paso El Paso, TX)

    2011-11-01

    This investigation examined the use of nano-patterned structures on Silicon-on-Insulator (SOI) material to reduce the bulk material melting point (1414 C). It has been found that sharp-tipped and other similar structures have a propensity to move to the lower energy states of spherical structures and as a result exhibit lower melting points than the bulk material. Such a reduction of the melting point would offer a number of interesting opportunities for bonding in microsystems packaging applications. Nano patterning process capabilities were developed to create the required structures for the investigation. One of the technical challenges of the project was understanding and creating the specialized conditions required to observe the melting and reshaping phenomena. Through systematic experimentation and review of the literature these conditions were determined and used to conduct phase change experiments. Melting temperatures as low as 1030 C were observed.

  15. Recent Changes in the Arctic Melt Season

    Stroeve, Julienne; Markus, Thorsten; Meier, Walter N.; Miller, Jeff

    2007-01-01

    Melt-season duration, melt-onset and freeze-up dates are derived from satellite passive microwave data and analyzed from 1979 to 2005 over Arctic sea ice. Results indicate a shift towards a longer melt season, particularly north of Alaska and Siberia, corresponding to large retreats of sea ice observed in these regions. Although there is large interannual and regional variability in the length of the melt season, the Arctic is experiencing an overall lengthening of the melt season at a rate of about 2 weeks decade(sup -1). In fact, all regions in the Arctic (except for the central Arctic) have statistically significant (at the 99% level or higher) longer melt seasons by greater than 1 week decade(sup -1). The central Arctic shows a statistically significant trend (at the 98% level) of 5.4 days decade(sup -1). In 2005 the Arctic experienced its longest melt season, corresponding with the least amount of sea ice since 1979 and the warmest temperatures since the 1880s. Overall, the length of the melt season is inversely correlated with the lack of sea ice seen in September north of Alaska and Siberia, with a mean correlation of -0.8.

  16. Microstructures define melting of molybdenum at high pressures

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-03-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature.

  17. Non-Fourier conduction model with thermal source term of ultra short high power pulsed laser ablation and temperature evolvement before melting

    Zhang Duanming; Li, Li; Li Zhihua; Guan Li; Tan Xinyu

    2005-01-01

    A non-Fourier conduction model with heat source term is presented to study the target temperature evolvement when the target is radiated by high power (the laser intensity is above 10 9 w/cm 2 ) and ultra short (the pulse width is less than 150 ps) pulsed laser. By Laplace transform, the analytical expression of the space- and time-dependence of temperature is derived. Then as an example of aluminum target, the target temperature evolvement is simulated. Compared with the results of Fourier conduction model and non-Fourier model without heat source term, it is found that the effect of non-Fourier conduction is notable and the heat source plays an important role during non-Fourier conduction which makes surface temperature ascending quickly with time. Meanwhile, the corresponding physical mechanism is analyzed theoretically

  18. Technological properties and structure of titanate melts

    Morozov, A.A.

    2002-01-01

    Power substantiation of existence of tough stream of complex anion ([TiO 6 ] 8- ) as a prevalent unit in titanate melts is given on the base of up-to-date knowledge about structure of metallurgical slags and results of investigations of thermophysical properties of these melts. It is shown that high crystallization ability of titanate melts at technological temperatures is determined by heterogeneity of liquid state - by presence up to 30 % of dispersed particles of solid phase solutions in matrix liquid [ru

  19. Model of interfacial melting

    Mouritsen, Ole G.; Zuckermann, Martin J.

    1987-01-01

    A two-dimensional model is proposed to describe systems with phase transitions which take place in terms of crystalline as well as internal degrees of freedom. Computer simulation of the model shows that the interplay between the two sets of degrees of freedom permits observation of grain-boundar......-boundary formation and interfacial melting, a nonequilibrium process by which the system melts at the boundaries of a polycrystalline domain structure. Lipid membranes are candidates for systems with pronounced interfacial melting behavior....

  20. Vacancies in quantal Wigner crystals near melting

    Barraza, N.; Colletti, L.; Tosi, M.P.

    1999-04-01

    We estimate the formation energy of lattice vacancies in quantal Wigner crystals of charged particles near their melting point at zero temperature, in terms of the crystalline Lindemann parameter and of the static dielectric function of the fluid phase near freezing. For both 3D and 2D crystals of electrons our results suggest the presence of vacancies in the ground state at the melting density. (author)

  1. Magnetic hysterysis evolution of Ni-Al alloy with Fe and Mn substitution by vacuum arc melting to produce the room temperature magnetocaloric effect material

    Notonegoro, Hamdan Akbar [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa, Cilegon 42435 (Indonesia); Kurniawan, Budhy; Manaf, Azwar, E-mail: azwar@sci.ui.ac.id [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Setiawan, Jan [Center for Nuclear Fuel Tecnology-Badan Tenaga Atom Nasional, Tangerang Selatan 15310 (Indonesia)

    2016-06-17

    The development of magnetocaloric effect (MCE) material is done in order to reduce the damage of the ozone layer caused by the chlorofluorocarbons (CFCs) emitted into the air. The research dealing with synthesis of magnetocaloric materials based of Ni-Al Heusler Alloy structure and by varying substitution some atoms of Ni with Fe and Al with Mn on Ni-Al Heusler Alloy structure to become Ni{sub 44}Fe{sub 6}Mn{sub 32}Al{sub 18}. Vacuum Arc Melting (VAM) equipment is used to form the alloys on vacuum condition and by flowing argon gas atmosphere and then followed by annealing process for 72 hours. X-Ray Diffraction (XRD) reveals that crystallite structure of material is observed. We define that Ni{sub 44}Fe{sub 6} as X{sub 2}, Mn{sub 25} as Y, and Al{sub 18}Mn{sub 7} as Z. Based on the XRD result, we observed that the general formula X{sub 2}YZ is not changed. The PERMAGRAF measurement revealed that there exists of magnetic hysterysis. The hysterysis show that the magnetic structures of the system undego evolution from diamagnetic to soft ferromagnetic material which all of the compound have the same crystallite structure. This evolution indicated that the change in the composition has led to changes the magnetic composition. Mn is the major element that gives strong magnetic properties to the sample. When Mn partially replaced position of Al, the sample became dominant to be influenced to improve their magnetic properties. In addition, substitution a part of Ni by Fe in the composition reveals a pinning of the domain walls in the sample.

  2. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Elevated Temperature Aluminum Metal Matrix Composite (MMC) Alloy and Its Processing Technology

    Weiss, David C. [Eck Industreis, Inc.; Gegal, Gerald A.

    2014-04-15

    The objective of this project was to provide a production capable cast aluminum metal matrix composite (MMC) alloy with an operating temperature capability of 250-300°C. Important industrial sectors as well as the military now seek lightweight aluminum alloy castings that can operate in temperature ranges of 250-300°C. Current needs in this temperature range are being satisfied by the use of titanium alloy castings. These have the desired strength properties but the end components are heavier and significantly more costly. Also, the energy requirements for production of titanium alloy castings are significantly higher than those required for production of aluminum alloys and aluminum alloy castings.

  3. Melting Metal on a Playing Card

    Greenslade, Thomas B., Jr.

    2016-01-01

    Many of us are familiar with the demonstration of boiling water in a paper cup held over a candle or a Bunsen burner; the ignition temperature of paper is above the temperature of 100°C at which water boils under standard conditions. A more dramatic demonstration is melting tin held in a playing card. This illustration is from Tissandier's book on…

  4. Explaining the mechanisms through which regional atmospheric circulation variability drives summer temperatures and glacial melt in western High Mountain Asia (HMA)

    Forsythe, Nathan; Fowler, Hayley; Blenkinsop, Stephen; Li, Xiaofeng; Pritchard, David

    2017-04-01

    Comprehension of mechanisms by which atmospheric circulation influences sub-regional temperature and water resources variability in high-elevation mountainous catchments is of great scientific urgency due to the dependency of large downstream populations on the river flows these basins provide. In this work we quantify a regional atmospheric pattern, the Karakoram Zonal Shear (KZS), with a very pronounced annual cycle which we standardise into a dimensionless (seasonal) circulation metric the Karakoram Zonal Index (KZI). Going beyond previous regional circulation metrics such as the "middle-upper tropospheric temperature index" (MUTTI) or the Webster and Yang Monsoonal Index (WYMI) which have focused solely on the South Asian Summer Monsoon (June to September) season, the KZS/KZI provides an indicator which captures the influence and interactions of the westerly jet throughout the entire annual cycle. Use of the KZS and KZI have led us to identify a further regional atmospheric system, the Karakoram Vortex, which propagates "warm high" (anticyclonic postitive temperature anomaly) and "cold low" (cyclonic negative temperature anomaly) patterns across a very broad swath of Central and South Asia in winter but over a much more constrained area of western HMA in summer. The KV exerts this temperature influence through a combination of adiabatic effects and large-scale advection. Quantify KV influence, the KZI shows strong and statistically significantly near surface (2m) air temperatures both across western HMA both as observed through local meteorological stations and as estimated by an ensemble of global meteorological reanalyses. We show that this strong influence on temperature translates to important consequences for meltwater generation from highly glaciated Indus river tributaries which is logical given that previous studies have established the role of air temperature in modulating glacially-derived river flows in western HMA. By improving the understanding of

  5. The influence of drawing temperature on mechanical properties and organisation of melt spun polyethylene solid-state drawn in the pseudo-affine regime

    Hu, Xin; Alcock, B.; Loos, J.

    2006-01-01

    Mechanical properties of high density polyethylene (HDPE) solid-state drawn with fixed draw ratio at different temperatures in a fiber/tape spin line were investigated. All drawing experiments were performed in the pseudo-affine regime, i.e. no effective relaxation of the molecules occurs during

  6. Melt inclusions: Chapter 6

    ,; Lowenstern, J. B.

    2014-01-01

    Melt inclusions are small droplets of silicate melt that are trapped in minerals during their growth in a magma. Once formed, they commonly retain much of their initial composition (with some exceptions) unless they are re-opened at some later stage. Melt inclusions thus offer several key advantages over whole rock samples: (i) they record pristine concentrations of volatiles and metals that are usually lost during magma solidification and degassing, (ii) they are snapshots in time whereas whole rocks are the time-integrated end products, thus allowing a more detailed, time-resolved view into magmatic processes (iii) they are largely unaffected by subsolidus alteration. Due to these characteristics, melt inclusions are an ideal tool to study the evolution of mineralized magma systems. This chapter first discusses general aspects of melt inclusions formation and methods for their investigation, before reviewing studies performed on mineralized magma systems.

  7. Making Sense of Boiling Points and Melting Points

    GENERAL | ARTICLE. The boiling and melting points of a pure substance are char- ... bonds, which involves high energy and hence high temperatures. Among the .... with zero intermolecular force at all temperatures and pressures, which ...

  8. Study on superheat of TiAl melt during cold crucible levitation melting. TiAl no cold crucible levitation yokai ni okeru yoto kanetsudo no kenkyu

    Miwa, K.; Kobayashi, K.; Ninomiya, M. (Government Industrial Research Institute, Nagoya, Nagoya (Japan))

    1992-06-20

    Investigations were given on effects of test sample weights and sample positions in cold crucibles on superheat of melts when the intermetallic compound TiAl is melted using cold crucible levitation melting process, one of noncontaminated melting processes. The cold crucibles used in the experiment are a water-cooled copper crucible with an inner diameter of 42 mm and a length of 140 mm, into which a column-like ingot sample with an outer diameter of 32 mm (Al containing Ti at 33.5% by mass) was put and melted using the levitation melting. Comparisons and discussions were given on the relationship between sample weights and melt temperatures, the relationship between positions of the inserted samples and melt temperatures, and the state of contamination at melting of casts obtained from the melts resulted from the levitation melting and high-frequency melting poured into respective ceramic dies. Elevating the superheat temperature of the melts requires optimizing the sample weights and positions. Melt temperatures were measured using a radiation thermometer and a thermocouple, and the respective measured values were compared. 7 refs., 4 figs., 1 tab.

  9. Flux free growth of large FeSe1/2Te1/2 superconducting single crystals by an easy high temperature melt and slow cooling method

    P. K. Maheshwari

    2015-09-01

    Full Text Available We report successful growth of flux free large single crystals of superconducting FeSe1/2Te1/2 with typical dimensions of up to few cm. The AC and DC magnetic measurements revealed the superconducting transition temperature (Tc value of around 11.5K and the isothermal MH showed typical type-II superconducting behavior. The lower critical field (Hc1 being estimated by measuring the low field isothermal magnetization in superconducting regime is found to be above 200Oe at 0K. The temperature dependent electrical resistivity ρ(T  showed the Tc (onset to be 14K and the Tc(ρ = 0 at 11.5K. The electrical resistivity under various magnetic fields i.e., ρ(TH for H//ab and H//c demonstrated the difference in the width of Tc with applied field of 14Tesla to be nearly 2K, confirming the anisotropic nature of superconductivity. The upper critical and irreversibility fields at absolute zero temperature i.e., Hc2(0 and Hirr(0 being determined by the conventional one-band Werthamer–Helfand–Hohenberg (WHH equation for the criteria of normal state resistivity (ρn falling to 90% (onset, and 10% (offset is 76.9Tesla, and 37.45Tesla respectively, for H//c and 135.4Tesla, and 71.41Tesla respectively, for H//ab. The coherence length at the zero temperature is estimated to be above 20Å ´ by using the Ginsburg-Landau theory. The activation energy for the FeSe1/2Te1/2 in both directions H//c and H//ab is determined by using Thermally Activation Flux Flow (TAFF model.

  10. Greenland ice sheet melt from MODIS and associated atmospheric variability.

    Häkkinen, Sirpa; Hall, Dorothy K; Shuman, Christopher A; Worthen, Denise L; DiGirolamo, Nicolo E

    2014-03-16

    Daily June-July melt fraction variations over the Greenland ice sheet (GIS) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500 hPa height. Blocking activity with a range of time scales, from synoptic waves breaking poleward (days) to full-fledged blocks (≥5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the years with the greatest melt (2002 and 2012) during the MODIS era, the area-average temperature anomaly of 2 standard deviations above the 14 year June-July mean results in a melt fraction of 40% or more. Though the summer of 2007 had the most blocking days, atmospheric temperature anomalies were too small to instigate extreme melting. Short-term atmospheric blocking over Greenland contributes to melt episodesAssociated temperature anomalies are equally important for the meltDuration and strength of blocking events contribute to surface melt intensity.

  11. Depth and degree of melting of komatiites

    Herzberg, Claude

    1992-04-01

    High pressure melting experiments have permitted new constraints to be placed on the depth and degree of partial melting of komatiites. Komatiites from Gorgona Island were formed by relatively low degrees of pseudoinvariant melting involving L + Ol + Opx + Cpx + Gt on the solidus at 40 kbar, about 130 km depth. Munro-type komatiites were separated from a harzburgite residue (L + Ol + Opx) at pressures that were poorly constrained, but were probably around 50 kbar, about 165 km depth; the degree of partial melting was less than 40 percent. Secular variations in the geochemistry of komatiites could have formed in response to a reduction in the temperature and pressure of melting with time. The 3.5 Ga Barberton komatiites and the 2.7 Ga Munro-type komatiities could have formed in plumes that were hotter than the present-day mantle by 500 deg and 300 deg, respectively. When excess temperatures are this size, melting is deeper and volcanism changes from basaltic to momatiitic. The komatiities from Gorgona Island, which are Mesozoic in age, may be representative of komatiities that are predicted to occur in oceanic plateaus of Cretaceous age throughout the Pacific (Storey et al., 1991).

  12. The melting and solidification of nanowires

    Florio, B. J.; Myers, T. G.

    2016-01-01

    A mathematical model is developed to describe the melting of nanowires. The first section of the paper deals with a standard theoretical situation, where the wire melts due to a fixed boundary temperature. This analysis allows us to compare with existing results for the phase change of nanospheres. The equivalent solidification problem is also examined. This shows that solidification is a faster process than melting; this is because the energy transfer occurs primarily through the solid rather than the liquid which is a poorer conductor of heat. This effect competes with the energy required to create new solid surface which acts to slow down the process, but overall conduction dominates. In the second section, we consider a more physically realistic boundary condition, where the phase change occurs due to a heat flux from surrounding material. This removes the singularity in initial melt velocity predicted in previous models of nanoparticle melting. It is shown that even with the highest possible flux the melting time is significantly slower than with a fixed boundary temperature condition.

  13. The melting and solidification of nanowires

    Florio, B. J.; Myers, T. G.

    2016-06-01

    A mathematical model is developed to describe the melting of nanowires. The first section of the paper deals with a standard theoretical situation, where the wire melts due to a fixed boundary temperature. This analysis allows us to compare with existing results for the phase change of nanospheres. The equivalent solidification problem is also examined. This shows that solidification is a faster process than melting; this is because the energy transfer occurs primarily through the solid rather than the liquid which is a poorer conductor of heat. This effect competes with the energy required to create new solid surface which acts to slow down the process, but overall conduction dominates. In the second section, we consider a more physically realistic boundary condition, where the phase change occurs due to a heat flux from surrounding material. This removes the singularity in initial melt velocity predicted in previous models of nanoparticle melting. It is shown that even with the highest possible flux the melting time is significantly slower than with a fixed boundary temperature condition.

  14. The melting and solidification of nanowires

    Florio, B. J., E-mail: brendan.florio@ul.ie [University of Limerick, Mathematics Applications Consortium for Science and Industry (MACSI), Department of Mathematics and Statistics (Ireland); Myers, T. G., E-mail: tmyers@crm.cat [Centre de Recerca Matemàtica (Spain)

    2016-06-15

    A mathematical model is developed to describe the melting of nanowires. The first section of the paper deals with a standard theoretical situation, where the wire melts due to a fixed boundary temperature. This analysis allows us to compare with existing results for the phase change of nanospheres. The equivalent solidification problem is also examined. This shows that solidification is a faster process than melting; this is because the energy transfer occurs primarily through the solid rather than the liquid which is a poorer conductor of heat. This effect competes with the energy required to create new solid surface which acts to slow down the process, but overall conduction dominates. In the second section, we consider a more physically realistic boundary condition, where the phase change occurs due to a heat flux from surrounding material. This removes the singularity in initial melt velocity predicted in previous models of nanoparticle melting. It is shown that even with the highest possible flux the melting time is significantly slower than with a fixed boundary temperature condition.

  15. Who and How: Comprehensive RNA-Based BodyfluID Assay to Provide Context to a Recovered DNA Profile

    2015-08-25

    capillary electrophoresis (CE) and high resolution melt ( HRM ) assays 3 were developed and fully validated. The results of this study demonstrate...Multiplex High Resolution Melt ( HRM ) Assays ................................ 11  D. Developmental Validation of the CE and HRM Assays...Sequences (Top) and Primer Mix Composition (Bottom) for the Blood-Menstrual Blood HRM Assay

  16. Influence of Ultrasonic Melt Treatment and Cooling Rates on the Microstructural Development and Elevated Temperature Mechanical Properties of a Hypereutectic Al-18Si-4Cu-3Ni Piston Alloy

    Yoon, Jea-Hee; Cho, Young-Hee; Jung, Jae-Gil; Lee, Jung-Moo [Korea Institute of Materials Science (KIMS), Changwon (Korea, Republic of); Park, Ik Min [Pusan National University, Busan (Korea, Republic of)

    2017-06-15

    The influence of ultrasonic melt treatment (UST) combined with a change in cooling rates on the microstructure and elevated temperature mechanical properties of a hypereutectic Al-18Si-4Cu-3Ni piston alloy was investigated. Microstructural observation confirmed that UST effectively refined the sizes of primary Si and intermetallic compounds (e.g. ε-Al{sub 3}Ni) while promoting their homogeneous distribution. Besides the refinement of the constituent phases, the size of the dendrite arm spacing (DAS), which was hardly affected by UST, significantly deceased with increasing cooling rates. The refinement of the solidification structure in the alloy achieved through both UST and increased cooling rates resulted in an improvement in tensile properties, ultimate tensile strength and elongation in particular, after T5 heat treatment followed by overaging at 350 ℃. However, the elevated temperature yield strength of the alloy was not associated with the refinement, but was rather correlated with the 3-D interconnectivity, morphology and volume fraction of the primary Si.

  17. Core melt retention and cooling concept of the ERP

    Weisshaeupl, H [SIEMENS/KWU, Erlangen (Germany); Yvon, M [Nuclear Power International, Paris (France)

    1996-12-01

    For the French/German European Pressurized Water Reactor (EPR) mitigative measures to cope with the event of a severe accident with core melt down are considered already at the design stage. Following the course of a postulated severe accident with reactor pressure vessel melt through one of the most important features of a future design must be to stabilize and cool the melt within the containment by dedicated measures. This measures should - as far as possible - be passive. One very promising solution for core melt retention seems to be a large enough spreading of the melt on a high temperature resistant protection layer with water cooling from above. This is the favorite concept for the EPR. In dealing with the retention of a molten core outside of the RPV several ``steps`` from leaving the RPV to finally stabilize the melt have to gone through. These steps are: collection of the melt; transfer of the melt; distribution of the melt; confining; cooling and stabilization. The technical features for the EPR solution of a large spreading of the melt are: Dedicated spreading chamber outside the reactor pit (area about 150 m{sup 2}); high temperature resistant protection layers (e.g. Zirconia bricks) at the bottom and part of the lateral structures (thus avoiding melt concrete interaction); reactor pit and spreading compartment are connected via a discharge channel which has a slope to the spreading area and is closed by a steel plate, which will resist the core melt for a certain time in order to allow a collection of the melt; the spreading compartments is connected with the In-Containment Refuelling Water Storage Tank (IRWST) with pipes for water flooding after spreading. These pipes are closed and will only be opened by the hot melt itself. It is shown how the course of the different steps mentioned above is processed and how each of these steps is automatically and passively achieved. (Abstract Truncated)

  18. Applications of nonequilibrium melting concept to damage-accumulation processes

    Lam, N.Q.; Okamoto, P.R.

    1998-01-01

    The authors recent study of crystalline-to-amorphous transformation led to the successful development of a unified thermodynamic description of disorder-induced amorphization and heat-induced melting, based on a generalized version of the Lindemann melting criterion. The generalized criterion requires that the melting temperature of a defective crystal decreases with increasing static atomic disorder. Hence, any crystal can melt at temperatures below the melting point of its perfect crystalline state when driven far from equilibrium by introducing critical amounts of misfitting solute atoms and lattice imperfections, radiation damage, and/or tensile stresses. This conceptual approach to nonequilibrium melting provides new insight into long-standing materials problems such as brittle fracture, embrittlement, and environmentally-induced cracking, for example irradiation-assisted stress corrosion cracking

  19. Vacancies and a generalised melting curve of metals

    Gorecki, T.

    1979-01-01

    The vacancy mechanism of the melting process is used as a starting point for deriving an expression for the pressure dependence of the melting temperature of metals. The results obtained for the initial slope of the melting curve are compared with experimental data for 45 metals and in most cases the agreement is very good. The nonlinearity of the melting curve and the appearance of a maximum on the melting curve at a pressure approximately equal to the bulk modules is also predicted, with qualitative agreement with experimental data. A relation between bonding energy, atomic volume, and bulk modulus of metals is established. On the basis of this relation and the proposed vacancy mechanism, a generalised equation for the pressure dependence of the melting temperature of metals is derived. (author)

  20. Finite size melting of spherical solid-liquid aluminium interfaces

    Chang, J.; Johnson, Erik; Sakai, T.

    2009-01-01

    We have investigated the melting of nano-sized cone shaped aluminium needles coated with amorphous carbon using transmission electron microscopy. The interface between solid and liquid aluminium was found to have spherical topology. For needles with fixed apex angle, the depressed melting tempera...... to the conclusion that the depressed melting temperature is not controlled solely by the inverse radius 1/R. Instead, we found a direct relation between the depressed melting temperature and the ratio between the solid-liquid interface area and the molten volume.......We have investigated the melting of nano-sized cone shaped aluminium needles coated with amorphous carbon using transmission electron microscopy. The interface between solid and liquid aluminium was found to have spherical topology. For needles with fixed apex angle, the depressed melting...

  1. Rapid screening for targeted genetic variants via high-resolution melting curve analysis.

    Chambliss, Allison B; Resnick, Molly; Petrides, Athena K; Clarke, William A; Marzinke, Mark A

    2017-03-01

    Current methods for the detection of single nucleotide polymorphisms (SNPs) associated with aberrant drug-metabolizing enzyme function are hindered by long turnaround times and specialized techniques and instrumentation. In this study, we describe the development and validation of a high-resolution melting (HRM) curve assay for the rapid screening of variant genotypes for targeted genetic polymorphisms in the cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP3A5. Sequence-specific primers were custom-designed to flank nine SNPs within the genetic regions of aforementioned drug metabolizing enzymes. PCR amplification was performed followed by amplicon denaturation by precise temperature ramping in order to distinguish genotypes by melting temperature (Tm). A standardized software algorithm was used to assign amplicons as 'reference' or 'variant' as compared to duplicate reference sequence DNA controls for each SNP. Intra-assay (n=5) precision of Tms for all SNPs was ≤0.19%, while inter-assay (n=20) precision ranged from 0.04% to 0.21%. When compared to a reference method of Sanger sequencing, the HRM assay produced no false negative results, and overcall frequency ranged from 0% to 26%, depending on the SNP. Furthermore, HRM genotyping displayed accuracy over input DNA concentrations ranging from 10 to 200 ng/μL. The presented assay provides a rapid method for the screening for genetic variants in targeted CYP450 regions with a result of 'reference' or 'variant' available within 2 h from receipt of extracted DNA. The method can serve as a screening approach to rapidly identify individuals with variant sequences who should be further investigated by reflexed confirmatory testing for aberrant cytochrome P450 enzymatic activity. Rapid knowledge of variant status may aid in the avoidance of adverse clinical events by allowing for dosing of normal metabolizer patients immediately while identifying the need to wait for confirmatory testing in those patients who are

  2. Temperature and momentum transfer dependence of the dynamics of the α-relaxation in polymer melts. A quasielastic neutron scattering study

    Colmenero, J.; Alegría, A.; Arbe, A.; Frick, B.

    1992-12-01

    The dynamics of the α-relaxation in three glass-forming polymeric systems, poly(vinyl methyl ether) (PVME), poly(vinyl chloride) (PVC), and poly(bisphenol A, 2-hydroxypropylether) (PH) has been studied by means of quasielastic neutron scattering and compared with the results obtained from relaxation techniques. The results indicate that the dynamics of the α-relaxation in a wide timescale shows a clear non-Debye behaviour and can be well described by means of the same spectral shape, which is found to be independent of temperature and momentum transfer ( Q). Moreover, the Havriliak-Negami characteristic times deduced from the fitting of the experimental data can also be described using only one Vogel-Fulcher functional form. This implies a self-consistent description of the dynamics of the α-relaxation obtained by very different probes. Besides, we found that the Q-dependence of the characteristic times obtained by QENS is given by a power law, τ(Q) ∝ Q - n ( n > 2), n being dependent on the system, and that the Q-behaviour and the non-Debye behaviour are directly correlated. These results have main implications about the physical mechanisms behind the dynamics of the α-relaxation.

  3. Corium melt researches at VESTA test facility

    Hwan Yeol Kim

    2017-10-01

    Full Text Available VESTA (Verification of Ex-vessel corium STAbilization and VESTA-S (-small test facilities were constructed at the Korea Atomic Energy Research Institute in 2010 to perform various corium melt experiments. Since then, several tests have been performed for the verification of an ex-vessel core catcher design for the EU-APR1400. Ablation tests of an impinging ZrO2 melt jet on a sacrificial material were performed to investigate the ablation characteristics. ZrO2 melt in an amount of 65–70 kg was discharged onto a sacrificial material through a well-designed nozzle, after which the ablation depths were measured. Interaction tests between the metallic melt and sacrificial material were performed to investigate the interaction kinetics of the sacrificial material. Two types of melt were used: one is a metallic corium melt with Fe 46%, U 31%, Zr 16%, and Cr 7% (maximum possible content of U and Zr for C-40, and the other is a stainless steel (SUS304 melt. Metallic melt in an amount of 1.5–2.0 kg was delivered onto the sacrificial material, and the ablation depths were measured. Penetration tube failure tests were performed for an APR1400 equipped with 61 in-core instrumentation penetration nozzles and extended tubes at the reactor lower vessel. ZrO2 melt was generated in a melting crucible and delivered down into an interaction crucible where the test specimen is installed. To evaluate the tube ejection mechanism, temperature distributions of the reactor bottom head and in-core instrumentation penetration were measured by a series of thermocouples embedded along the specimen. In addition, lower vessel failure tests for the Fukushima Daiichi nuclear power plant are being performed. As a first step, the configuration of the molten core in the plant was investigated by a melting and solidification experiment. Approximately 5 kg of a mixture, whose composition in terms of weight is UO2 60%, Zr 10%, ZrO2 15%, SUS304 14%, and B4C 1%, was melted in a

  4. Melting of the Abrikosov flux lattice in anisotropic superconductors

    Beck, R. G.; Farrell, D. E.; Rice, J. P.; Ginsberg, D. M.; Kogan, V. G.

    1992-01-01

    It has been proposed that the Abrikosov flux lattice in high-Tc superconductors is melted over a significant fraction of the phase diagram. A thermodynamic argument is provided which establishes that the angular dependence of the melting temperature is controlled by the superconducting mass anisotropy. Using a low-frequency torsional-oscillator technique, this relationship has been tested in untwinned single-crystal YBa2Cu3O(7-delta). The results offer decisive support for the melting proposal.

  5. Retrograde Melting and Internal Liquid Gettering in Silicon

    Hudelson, Steve; Newman, Bonna K.; Bernardis, Sarah; Fenning, David P.; Bertoni, Mariana I.; Marcus, Matthew A.; Fakra, Sirine C.; Lai, Barry; Buonassisi, Tonio

    2011-07-01

    Retrograde melting (melting upon cooling) is observed in silicon doped with 3d transition metals, via synchrotron-based temperature-dependent X-ray microprobe measurements. Liquid metal-silicon droplets formed via retrograde melting act as efficient sinks for metal impurities dissolved within the silicon matrix. Cooling results in decomposition of the homogeneous liquid phase into solid multiple-metal alloy precipitates. These phenomena represent a novel pathway for engineering impurities in semiconductor-based systems.

  6. Melting and Pressure-Induced Amorphization of Quartz

    Badro, James; Gillet, Philippe; Barrat, Jean-Louis

    1997-01-01

    It has recently been shown that amorphization and melting of ice were intimately linked. In this letter, we infer from molecular dynamics simulations on the SiO2 system that the extension of the quartz melting line in the metastable pressure-temperature domain is the pressure-induced amorphization line. It seems therefore likely that melting is the physical phenomenon responsible for pressure induced amorphization. Moreover, we show that the structure of a "pressure glass" is similar to that ...

  7. Lessons learnt from FARO/TERMOS corium melt quenching experiments

    Magallon, D.; Huhtiniemi, I.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center

    1998-01-01

    The influence of melt quantity, melt composition, water depth and initial pressure on quenching is assessed on the basis of seven tests performed in various conditions in the TERMOS vessel of the FARO facility at JRC-Ispra. Tests involved UO{sub 2}-based melt quantities in the range 18-176 kg at a temperature of approximately 3000 K poured into saturated water. The results suggest that erosion of the melt jet column is an efficient contributor to the amount of break-up, and thus quenching, for large pours of corium melt. The presence of Zr metal in the melt induced a much more efficient quenching than in a similar test with no Zr metal, attributed to the oxidation of the Zr. Significant amounts of H{sub 2} were produced also in tests with pure oxidic melts (e.g. about 300 g for 157 kg melt). In the tests at 5.0 and 2.0 MPa good mixing with significant melt break-up and quenching was obtained during the penetration in the water. At 0.5 MPa, good penetration of the melt into the water could still be achieved, but a jump in the vessel pressurisation occurred when the melt contacted the bottom and part (5 kg) of the debris was re-ejected from the water. (author)

  8. Automated realization of the gallium melting and triple points

    Yan, X.; Duan, Y.; Zhang, J. T.; Wang, W.

    2013-09-01

    In order to improve the automation and convenience of the process involved in realizing the gallium fixed points, an automated apparatus, based on thermoelectric and heat pipe technologies, was designed and developed. This paper describes the apparatus design and procedures for freezing gallium mantles and realizing gallium melting and triple points. Also, investigations on the melting behavior of a gallium melting point cell and of gallium triple point cells were carried out while controlling the temperature outside the gallium point cells at 30 °C, 30.5 °C, 31 °C, and 31.5 °C. The obtained melting plateau curves show dentate temperature oscillations on the melting plateaus for the gallium point cells when thermal couplings occurred between the outer and inner liquid-solid interfaces. The maximum amplitude of the temperature fluctuations was about 1.5 mK. Therefore, the temperature oscillations can be used to indicate the ending of the equilibrium phase transitions. The duration and amplitude of such temperature oscillations depend on the temperature difference between the setting temperature and the gallium point temperature; the smaller the temperature difference, the longer the duration of both the melting plateaus and the temperature fluctuations.

  9. Influence of the incubation temperature and the batch components on the sensitivity of an enzyme-linked immunosorbent assay to detect Aujeszky's disease virus glycoprotein E (gE).

    Cay, A B; Van der Stede, Y

    2010-12-01

    Although licensed batches of an enzyme-linked immunosorbent assay (ELISA) for Aujeszky's disease virus (ADV) were used, and the assays were performed within an ISO/IEC 17025 accredited quality control system, certain routine runs of the ADV ELISA were not validated using the quality system criteria, even when all technical parameters were controlled. Incubation at different temperatures and batch composition were identified as parameters that could result in non-validated assays/runs. Therefore, the effect of incubation temperature and batch composition on the analytical sensitivity of the ELISA was investigated. The World Organisation for Animal Health (OIE) standard reference serum ADV1 was diluted 1:8 and tested in 94 different glycoprotein E ELISA runs performed with different batches and different incubation temperatures. The incubation temperature and batch components had a significant influence on the qualitative result for the OIE standard reference serum. An incubation temperature of at least 22 degrees C was recommended, based on the results of this analysis. Which of the batch components caused these differences in sensitivity was not investigated further.

  10. Melt-quenched glasses of metal-organic frameworks

    Bennett, T.D.; Yue, Yuanzheng; Li, P.

    2016-01-01

    Crystalline solids dominate the field of metal−organic frameworks (MOFs), with access to the liquid and glass states of matter usually prohibited by relatively low temperatures of thermal decomposition. In this work, we give due consideration to framework chemistry and topology to expand...... of other MOFs. The glasses formed upon vitrification are chemically and structurally distinct from the three other existing categories of melt-quenched glasses (inorganic nonmetallic, organic, and metallic), and retain the basic metal−ligand connectivity of crystalline MOFs, which connects their mechanical...... the phenomenon of the melting of 3D MOFs, linking crystal chemistry to framework melting temperature and kinetic fragility of the glass-forming liquids. Here we show that melting temperatures can be lowered by altering the chemistry of the crystalline MOF state, which provides a route to facilitate the melting...

  11. Synchrotron x-ray spectroscopy of EuHN O3 aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to ???900??C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. ?? 2007 American Institute of Physics.

  12. Radiation polymerized hot melt pressure sensitive adhesives

    Pastor, S.D.; Skoultchi, M.M.

    1977-01-01

    Hot melt pressure sensitive adhesive compositions formed by copolymerizing at least one 3-(chlorinated aryloxy)-2-hydroxypropyl ester of an alpha, beta unsaturated carboxylic acid with acrylate based copolymerizable monomers, are described. The resultant ethylenically saturated prepolymer is heated to a temperature sufficient to render it fluid and flowable. This composition is coated onto a substrate and exposed to ultraviolet radiation

  13. INVESTIGATION OF THE METAL MELTING PROCESS

    V. I. Timoshpolskij

    2006-01-01

    Full Text Available The nonlinear mathematical model of calculation of temperature fields in the process of metal melting is formulated and solved using the method of equivalent source taking into account nonlinearity of thermophysical properties of material and variable terms of heat exchange.

  14. Melting and Sintering of Ashes

    Hansen, Lone Aslaug

    1997-01-01

    -1300°C, and a trend of higher fusion temperatures with increasing contents of Al-silicates and quartz was found.c) Fly ashes, bottom ashes and deposits from coal/straw co-firing were all found to consist mainly of metal-alumina and alumina-silicates. These ashes all melt in the temperature range 1000......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction......, the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co-firing...

  15. Simulation of melt spreading in consideration of phase transitions

    Spengler, C. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Germany)

    2002-07-01

    The analysis of melt spreading and relocation phenomena in the containment of LWR power plants in case of hypothetical severe accidents leading to core melting is an important issue for reactor safety investigations. For the simulation of melt spreading the code LAVA has been developed on the basis of a method from the related subject of volcanology by adding more detailed models for heat transfer phenomena and flow rheology. The development is supported by basic analysis of the spreading of gravity currents as well as experimental investigations of the rheology of solidifying melts. These exhibit strong non-Newtonian effects in case of a high content of solids in the freezing melt. The basic model assumption in LAVA is the ideal Bingham plastic approach to the non-Newtonian, shear-thinning characteristic of solidifying melts. For the recalculation of melt spreading experiments, the temperature-dependent material properties for solidifying melt mixtures have been calculated using correlations from the literature. With the parameters and correlations for the rheological material properties approached by results from literature, it was possible to recalculate successfully recent spreading experiments with simulant materials and prototypic reactor core materials. An application to the behaviour of core melt in the reactor cavity assumed a borderline case for the issue of spreading. This limit is represented by melt conditions (large solid fraction, low volume flux), under which the melt is hardly spreadable. Due to the persistent volume flux the reactor cavity is completely, but inhomogeneously filled with melt. The degree of inhomogeneity is rather small, so it is concluded, that for the long-term coolability of a melt pool in narrow cavities the spreading of melt will probably have only negligible influence. (orig.)

  16. Dechlorination and Stabilization of Molten Salt Waste by Using xSiO2-yAl2O3- zP2O5 at Melting Temperature

    Park, Hwanseo; Kim, Intae; Kim, Hwanyoung; Kim, Joonhyung

    2007-01-01

    Molten salt waste, which is generated from the pyroprocess to separate uranium and trans-uranium elements from spent nuclear fuel, has been interested to researchers in the radioactive waste management. For its final disposal, direct immobilization into a suitable host matrix or indirect solidification by other chemical routes requires the control of chlorides and its volatility since molten salt wastes mainly consist of volatile metal chlorides. Glass-bonded sodalite (Na 6 M 2 Al 6 Si 6 O 24 Cl 2 , 1-5) suggested by Argonne National Laboratory (ANL), to the present, could be a practical solution to the immobilization of this waste, where waste form can be fabricated at about 915 .deg., lower than the melting temperature of many borosilicate glasses ( -1150 .deg.). A wet dechlorination to oxides or a thermal conversion into borate glass was suggested to remove Cl from salt waste (6-7) and it seemed that the preference of radionuclides for the intended chemical conversions or immobilizations described above could be hardly accomplished or failed, except the phosphate precipitation method suggested by Volkovich and his co-workers (8). Our research group suggested a novel method to treat molten salt waste, named GRSS (Gel-Route Stabilization/Solidification) using Si-P-Al system as a gel-forming system. This showed little vaporization during high temperature process and good leach resistance on Cs and Sr. As another method, this study suggested a method to stabilize molten salt wastes by using xSiO 2 -yAl 2 O 3 - zP 2 O 5 material. GRSS method is considered as a 'reaction system' to completely convert salt waste into stable product while the inorganic material used in this study is a stabilizer for salt wastes. Using this material, this study investigated the reactivity on different metal chlorides, thermal stability, leach-resistance and etc

  17. Development of metal-carbon eutectic cells for application as high temperature reference points in nuclear reactor severe accident tests: Results on the Fe-C, Co-C, Ti-C and Ru-C alloys' melting/freezing transformation temperature under electromagnetic induction heating

    Parga, Clemente J.; Journeau, Christophe; Parga, Clemente J.; Tokuhiro, Akira

    2012-01-01

    With the aim of reducing the high temperature measurement uncertainty of nuclear reactor severe accident experimental tests at the PLINIUS platform in Cadarache Research Centre, France, a variety of graphite cells containing a metal-carbon eutectic mix have been tested to assess the melting/freezing temperature reproducibility and their feasibility as calibration cells for thermometers. The eutectic cells have been thermally cycled in an induction furnace to assess the effect of heating/cooling rate, metal purity, graphite crucible design, and binary system constituents on the eutectic transformation temperature. A bi-chromatic pyrometer was used to perform temperature measurements in the graphite cell black cavity containing the metal-carbon eutectic mix. The eutectic points analyzed are all over 1100 C and cover an almost thousand degree span, i.e. from the Fe-Fe 3 C to the Ru-C eutectic. The induction heating permitted the attainment of heating and cooling rates of over 200 C/min under an inert atmosphere. The conducted tests allowed the determination of general trends and peculiarities of the solid. liquid transformation temperature under non-equilibrium and non-steady-state conditions of a variety of eutectic alloys (Fe-C, Co-C, Ti-C and Ru-C binary systems). (authors)

  18. Vacancies und melting curves of metals at high pressure

    Gorecki, T.

    1977-01-01

    The vacancy mechanism of the melting process is utilized as a starting point in derivation of the pressure dependence of melting temperature for metals. The results obtained for the initial slope of the melting curve are compared with experimental data for 45 metals (including U, Np, Pu, rare earths) and in most cases the agreement is very good. An on-linearity of the fusion curve and appearence of the maximum on the melting curve at a pressure approximately equal to the bulk modulus is also predicted with qualitative agreement with existing experimental data. (orig./GSC) [de

  19. Theoretical study of a melting curve for tin

    Feng, Xi; Ling-Cang, Cai

    2009-01-01

    The melting curve of Sn has been calculated using the dislocation-mediated melting model with the 'zone-linking method'. The results are in good agreement with the experimental data. According to our calculation, the melting temperature of γ-Sn at zero pressure is about 436 K obtained by the extrapolation of the method from the triple point of Sn. The results show that this calculation method is better than other theoretical methods for predicting the melting curve of polymorphic material Sn. (condensed matter: structure, thermal and mechanical properties)

  20. Induction melting for volume reduction of metallic TRU wastes

    Westsik, J.H. Jr.; Montgomery, D.R.; Katayama, Y.B.; Ross, W.A.

    1986-01-01

    Volume reduction of metallic transuranic wastes offers economic and safety incentives for treatment of wastes generated at a hypothetical commercial fuel reprocessing facility. Induction melting has been identified as the preferred process for volume reduction of spent fuel hulls, fuel assembly hardware, and failed equipment from a reprocessing plant. Bench-scale melting of Zircaloy and stainless steel mixtures has been successfully conducted in a graphite crucible inside a large vacuum chamber. A low-melting-temperature alloy forms that has demonstrated excellent leach resistance. The alloy can be used to encapsulate other metallic wastes that cannot be melted using the existing equipment design

  1. Induction melting for volume reduction of metallic TRU wastes

    Westsik, J.H. Jr.; Montgomery, D.R.; Katayama, Y.B.; Ross, W.A.

    1986-02-01

    Volume reduction of metallic transuranic wastes offers economic and safety incentives for treatment of wastes generated at a hypothetical commercial fuel reprocessing facility. Induction melting has been identified as the preferred process for volume reduction of spent fuel hulls, fuel assembly hardware, and failed equipment from a reprocessing plant. Bench-scale melting of Zircaloy and stainless steel mixtures has been successfully conducted in a graphite crucible inside a large vacuum chamber. A low-melting-temperature alloy forms that has demonstrated excellent leach resistance. The alloy can be used to encapsulate other metallic wastes that cannot be melted using the existing equipment design. 18 refs., 4 figs., 3 tabs

  2. The Microwave Properties of Simulated Melting Precipitation Particles: Sensitivity to Initial Melting

    Johnson, B. T.; Olson, W. S.; Skofronick-Jackson, G.

    2016-01-01

    A simplified approach is presented for assessing the microwave response to the initial melting of realistically shaped ice particles. This paper is divided into two parts: (1) a description of the Single Particle Melting Model (SPMM), a heuristic melting simulation for ice-phase precipitation particles of any shape or size (SPMM is applied to two simulated aggregate snow particles, simulating melting up to 0.15 melt fraction by mass), and (2) the computation of the single-particle microwave scattering and extinction properties of these hydrometeors, using the discrete dipole approximation (via DDSCAT), at the following selected frequencies: 13.4, 35.6, and 94.0GHz for radar applications and 89, 165.0, and 183.31GHz for radiometer applications. These selected frequencies are consistent with current microwave remote-sensing platforms, such as CloudSat and the Global Precipitation Measurement (GPM) mission. Comparisons with calculations using variable-density spheres indicate significant deviations in scattering and extinction properties throughout the initial range of melting (liquid volume fractions less than 0.15). Integration of the single-particle properties over an exponential particle size distribution provides additional insight into idealized radar reflectivity and passive microwave brightness temperature sensitivity to variations in size/mass, shape, melt fraction, and particle orientation.

  3. The thermo-elastic instability model of melting of alkali halides in the Debye approximation

    Owens, Frank J.

    2018-05-01

    The Debye model of lattice vibrations of alkali halides is used to show that there is a temperature below the melting temperature where the vibrational pressure exceeds the electrostatic pressure. The onset temperature of this thermo-elastic instability scales as the melting temperature of NaCl, KCl, and KBr, suggesting its role in the melting of the alkali halides in agreement with a previous more rigorous model.

  4. Hormone assay

    Eisentraut, A.M.

    1977-01-01

    An improved radioimmunoassay is described for measuring total triiodothyronine or total thyroxine levels in a sample of serum containing free endogenous thyroid hormone and endogenous thyroid hormone bound to thyroid hormone binding protein. The thyroid hormone is released from the protein by adding hydrochloric acid to the serum. The pH of the separated thyroid hormone and thyroid hormone binding protein is raised in the absence of a blocking agent without interference from the endogenous protein. 125 I-labelled thyroid hormone and thyroid hormone antibodies are added to the mixture, allowing the labelled and unlabelled thyroid hormone and the thyroid hormone antibody to bind competitively. This results in free thyroid hormone being separated from antibody bound thyroid hormone and thus the unknown quantity of thyroid hormone may be determined. A thyroid hormone test assay kit is described for this radioimmunoassay. It provides a 'single tube' assay which does not require blocking agents for endogenous protein interference nor an external solid phase sorption step for the separation of bound and free hormone after the competitive binding step; it also requires a minimum number of manipulative steps. Examples of the assay are given to illustrate the reproducibility, linearity and specificity of the assay. (UK)

  5. Assay system

    Patzke, J.B.; Rosenberg, B.J.

    1984-01-01

    The accuracy of assays for monitoring concentrations of basic drugs in biological fluids containing a 1 -acid glycoproteins, such as blood (serum or plasma), is improved by the addition of certain organic phosphate compounds to minimize the ''protein effect.'' Kits containing the elements of the invention are also disclosed

  6. Effect of N-acetylcysteine on the accuracy of the prothrombin time assay of plasma coagulation factor II plus VII plus X activity in subjects infused with the drug. Influence of time and temperature

    Thorsen, S.; Teisner, A.; Jensen, S.A.

    2009-01-01

    Objectives: The prothrombin time (PT) assay of factor II+VII+X activity is an important predictor of liver damage in paracetamol poisoned patients. It complicates interpretation of results that the antidote, acetylcysteine (NAC) depresses this activity. The aim was to investigate if NAC influences...... added to plasma in vitro decreased factor II+VII+X activity at 37 degrees C in a time-dependent manner. This effect was quenched at temperatures 24 degrees C. Activity lost at 37 degrees C could partly be recovered by subsequent incubation at 5 or 20 degrees C. Incubation at 37 degrees C prior to assay...... led to a significant additional depression of factor II+VII+X activity in plasma from subjects infused with NAC during the first 3h of infusion indicating that it contained reactive NAC. The risk that this NAC interfered with the accuracy of the PT assay was considered minimal with samples stored...

  7. Glacial melting in Himalaya

    Kavita Tariyal

    2013-07-01

    Full Text Available Mountains are amongst the most flimsy environments on Earth. They are prosperous repositories of biodiversity, water and providers of ecosystem goods and services on which downstream communities, both regional and global, rely. The transport of atmospheric pollutants and climate-altering substances can significantly impact high mountain areas, which are generally considered “clean” regions. The snow glaciers of the Himalayas, considered the “third pole”, one of the largest stores of water on the planet and accelerated melting could have far-reaching effects, such as flooding in the short-term and water shortages in the long-term as the glaciers shrink. The data available on temperature in Himalayas indicate that warming during last 3-4 decades has been more than the global average over the last century. Some of the values indicate that the Himalayas are warming 5-6 times more than the global average. Mountain systems are seen globally as the prime sufferers from climate change. There is a severe gap in the knowledge of the short and long-term implications of the impact of climate change on water and hazards in the Himalayas, and their downstream river basins. Most studies have excluded the Himalayan region because of its extreme and complex topography and the lack of adequate rain gauge data. There is an urgent need to close the knowledge gap by establishing monitoring schemes for snow, ice and water; downscaling climate models; applying hydrological models to predict water availability; and developing basin wide scenarios, which also take water demand and socioeconomic development into account. Climate change induced hazards such as floods, landslides and droughts will impose considerable stresses on the livelihoods of mountain people and downstream populations. Enhancing resilience and promoting adaptation in mountain areas have thus become among the most important priorities of this decade. It is important to strengthen local

  8. A Novel Multiplex HRM Assay to Detect Clopidogrel Resistance.

    Zhang, Lichen; Ma, Xiaowei; You, Guoling; Zhang, Xiaoqing; Fu, Qihua

    2017-11-22

    Clopidogrel is an antiplatelet medicine used to prevent blood clots in patients who have had a heart attack, stroke, or other symptoms. Variability in the clinical response to clopidogrel treatment has been attributed to genetic factors. In particular, five SNPs of rs4244285, rs4986893, rs12248560, rs662 and rs1045642 have been associated with resistance to clopidogrel therapy in Chinese population. This work involves the development of a multiplex high-resolution melting (HRM) assay to genotype all five of these loci in 2 tubes. Amplicons corresponding to distinct SNPs in a common tube were designed with the aid of uMelt prediction software to have different melting temperatures Tm by addition of a GC-rich tail to the 5' end of the certain primers. Two kinds of commercial methods, Digital Fluorescence Molecular Hybridization (DFMH) and Sanger sequencing, were used as a control. Three hundred sixteen DFMH pretested samples from consecutive acute coronary syndrome patients were used for a blinded study of multiplex HRM. The sensitivity of HRM was 100% and the specificity was 99.93% reflecting detection of variants other than the known resistance SNPs. Multiplex HRM is an effective closed-tube, highly accurate, fast, and inexpensive method for genotyping the 5 clopidogrel resistance associated SNPs.

  9. Plasma arc melting of titanium-tantalum alloys

    Dunn, P.; Patterson, R.A.; Haun, R.

    1994-01-01

    Los Alamos has several applications for high temperature, oxidation and liquid-metal corrosion resistant materials. Further, materials property constraints are dictated by a requirement to maintain low density; e.g., less than the density of stainless steel. Liquid metal compatibility and density requirements have driven the research toward the Ti-Ta system with an upper bound of 60 wt% Ta-40 wt% Ti. Initial melting of these materials was performed in a small button arc melter with several hundred grams of material; however, ingot quantities were soon needed. But, refractory metal alloys whose constituents possess very dissimilar densities, melting temperatures and vapor pressures pose significant difficulty and require specialized melting practices. The Ti-Ta alloys fall into this category with the density of tantalum 16.5 g/cc and that of titanium 4.5 g/cc. Melting is further complicated by the high melting point of Ta(3020 C) and the relatively low boiling point of Ti(3287 C). Previous electron beam melting experience with these materials resulted, in extensive vaporization of the titanium and poor chemical homogeneity. Vacuum arc remelting(VAR) was considered as a melting candidate and discarded due to density and vapor pressure issues associated with electron beam. Plasma arc melting offered the ability to supply a cover gas to deal with vapor pressure issues as well as solidification control to help with macrosegregation in the melt and has successfully produced high quality ingots of the Ti-Ta alloys

  10. Influence of gas-generation on melt/concrete interaction

    Powers, D.A.

    1979-01-01

    Gases formed during the interaction of a high-temperature melt with concrete are shown to stem from the thermal dehydration and decarboxylation of the concrete. The kinetics of these decomposition reactions are described. Gases within the melt cause an apparent swelling of the melt. The observed swelling is not easily correlated to the rate of gas evolution. Metallic melts cause CO 2 /CO and H 2 O liberated from the melt to be reduced to CO and hydrogen. When these gases escape from the melt they assist in aerosol formation. As the gases cool they react along a pathway whose oxygen fugacity is apparently buffered by the iron-Wuestite equilibrium. Methane is a product of the gas-phase reaction. (orig./HP) [de

  11. A slow atomic diffusion process in high-entropy glass-forming metallic melts

    Chen, Changjiu; Wong, Kaikin; Krishnan, Rithin P.; Embs, Jan P.; Chathoth, Suresh M.

    2018-04-01

    Quasi-elastic neutron scattering has been used to study atomic relaxation processes in high-entropy glass-forming metallic melts with different glass-forming ability (GFA). The momentum transfer dependence of mean relaxation time shows a highly collective atomic transport process in the alloy melts with the highest and lowest GFA. However, a jump diffusion process is the long-range atomic transport process in the intermediate GFA alloy melt. Nevertheless, atomic mobility close to the melting temperature of these alloy melts is quite similar, and the temperature dependence of the diffusion coefficient exhibits a non-Arrhenius behavior. The atomic mobility in these high-entropy melts is much slower than that of the best glass-forming melts at their respective melting temperatures.

  12. High Temperature Protonic Conductors by Melt Growth

    2006-11-21

    A.R. de Arellano-López, A. Sayir. “Microestructura y Comportamiento Plástico de Perovsquitas Conductoras Protónicas de Alta Temperatura ”. Bol. Soc...Conductores Protónicos de Alta Temperatura Crecidos por Fusión de Zona Flotante”. VII Reunión Nacional y VI Conferencia Iberoamericana (Electrocerámica

  13. GLASS MELTING PHENOMENA, THEIR ORDERING AND MELTING SPACE UTILISATION

    Němec L.

    2013-12-01

    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  14. Recent results in characterization of melt-grown and quench-melt- grown YBCO superconductors

    Balachandran, U.; Poeppel, R.B.; Gangopadhyay, A.K.

    1992-02-01

    From the standpoint of applications, melt-grown (MG) and quench-melt-grown (QMG) bulk YBCO superconductors are of considerable interest. In this paper, we studied the intragranular critical current density (J c ), the apparent pinning potential (U o ), and the irreversibility temperature (T irr ) of MG and QMG samples and compared the results to those for conventionally sintered YBCO. A systematic increase in U o and a slower drop in J c with temperature indicate a systematic improvement in flux-pinning properties in progressing from the sintered YBCO to QMG and MG samples. Weaker pinning is observed in the QMG YBCO than in the MG samples

  15. MELT-IIIB: an updated version of the melt code

    Tabb, K.K.; Lewis, C.H.; O'Dell, L.D.; Padilla, A. Jr.; Smith, D.E.; Wilburn, N.P.

    1979-04-01

    The MELT series is a reactor modeling code designed to investigate a wide variety of hypothetical accident conditions, particularly the transient overpower sequence. MELT-IIIB is the latest in the series

  16. Monitoring device for glass melting furnace

    Endo, Noboru; Asano, Naoki; Higuchi, Tatsuo; Koyama, Mayumi; Hanado, Shinji.

    1995-01-01

    The device of the present invention can monitor, from a remote place, a liquid surface in a glass melting furnace for use in a solidification treatment, for example, of high level radioactive wastes. Namely, a vertical sleeve is disposed penetrating a ceiling wall of a melting vessel. A reflection mirror is disposed above the vertical sleeve and flex an optical axis. A monitoring means is disposed on the optical axis of the reflecting mirror at a spaced position. The monitoring means may have an optical telescopic means, a monitoring camera by way of a half mirror and an illumination means. The reflection mirror may be made of a metal. The monitoring device thus constituted suffer from no effects of high temperature and high radiation dose rate, thereby enabling to easily monitor the liquid surface in the melting furnace. (I.S.)

  17. Differentiation of five enterohepatic Helicobacter species by nested PCR with high-resolution melting curve analysis.

    Wu, Miaoli; Rao, Dan; Zhu, Yujun; Wang, Jing; Yuan, Wen; Zhang, Yu; Huang, Ren; Guo, Pengju

    2017-04-01

    Enterohepatic Helicobacter species (EHS) are widespread in rodent species around the world. Several studies have demonstrated that infection with EHS can interfere with the outcomes of animal experiments in cancer research and significantly influence the study results. Therefore, it is essential to establish a rapid detection and identification of EHS for biomedical research using laboratory rodents. Our study aimed to develop a rapid and sensitive method to detect and distinguish five enterohepatic Helicobacter species. Nested PCR followed by high-resolution melting curve analysis (HRM) was developed for identification of H. bilis, H. rodentium, H. muridarum, H. typhlonius, as well as H. hepaticus. To validate the accuracy of nested PCR-HRM analysis, quantitative real-time PCR methods for five different enterohepatic Helicobacter species were developed. A total of 50 cecal samples were tested using both nested PCR-HRM analysis and qPCR method. The nested PCR-HRM method could distinguish five enterohepatic Helicobacter species by different melting temperatures. The melting curve were characterized by peaks of 78.7 ± 0.12°C for H. rodentium, 80.51 ± 0.09°C for H. bilis, 81.6 ± 0.1°C for H. typhlonius, 82.11 ± 0.18°C for H. muridarum, and 82.95 ± 0.09°C for H. hepaticus. The nested PCR-HRM assay is a simple, rapid, and cost-effective assay. This assay could be a useful tool for molecular epidemiology study of enterohepatic Helicobacter infection and an attractive alternative for genotyping of enterohepatic Helicobacter species. © 2016 John Wiley & Sons Ltd.

  18. VIBROCASTING CRUCIBLES OF DIFFERENT COMPOSITION FOR FRYING INDUCTION MELTING ALLOYS

    V. V. Primachenko

    2012-01-01

    Full Text Available It is shown that PSC «UKRNIIO them. A.S.Berezhnogo  has developed technologies for a wide range of induction melting temperature alloys and started commercial production of crucibles of different composition.

  19. VIBROCASTING CRUCIBLES OF DIFFERENT COMPOSITION FOR FRYING INDUCTION MELTING ALLOYS

    V. V. Primachenko; V. V. Martynenko; I. G. Szulik; S. V. Chaplyanko; L. V. Gritsyuk; L. P. Tkachenko

    2012-01-01

    It is shown that PSC «UKRNIIO them. A.S.Berezhnogo  has developed technologies for a wide range of induction melting temperature alloys and started commercial production of crucibles of different composition.

  20. Melt electrospinning of biodegradable polyurethane scaffolds

    Karchin, Ari; Simonovsky, Felix I.; Ratner, Buddy D.; Sanders, Joan E.

    2014-01-01

    Electrospinning from the melt, in contrast to from solution, is an attractive tissue engineering scaffold manufacturing process as it allows for the formation of small diameter fibers while eliminating potentially cytotoxic solvents. Despite this, there is a dearth of literature on scaffold formation via melt electrospinning. This is likely due to the technical challenges related to the need for a well-controlled high temperature setup and the difficulty in developing an appropriate polymer. In this paper, a biodegradable and thermally stable polyurethane (PU) is described specifically for use in melt electrospinning. Polymer formulations of aliphatic PUs based on (CH2)4-content diisocyanates, polycaprolactone (PCL), 1,4-butanediamine and 1,4-butanediol (BD) were evaluated for utility in the melt electrospinning process. The final polymer formulation, a catalyst-purified PU based on 1,4-butane diisocyanate, PCL and BD in a 4/1/3 molar ratio with a weight-average molecular weight of about 40 kDa, yielded a nontoxic polymer that could be readily electrospun from the melt. Scaffolds electrospun from this polymer contained point bonds between fibers and mechanical properties analogous to many in vivo soft tissues. PMID:21640853

  1. Viscosity characteristics of selected volcanic rock melts

    Hobiger, Manuel; Sonder, Ingo; Büttner, Ralf; Zimanowski, Bernd

    2011-02-01

    A basic experimental study of the behavior of magma rheology was carried out on remelted volcanic rocks using wide gap viscometry. The complex composition of magmatic melts leads to complicated rheologic behavior which cannot be described with one simple model. Therefore, measurement procedures which are able to quantify non-Newtonian behavior have to be employed. Furthermore, the experimental apparatus must be able to deal with inhomogeneities of magmatic melts. We measured the viscosity of a set of materials representing a broad range of volcanic processes. For the lower viscous melts (low-silica compositions), non-Newtonian behavior is observed, whereas the high-silica melts show Newtonian behavior in the measured temperature and shear rate range (T = 1423 K - 1623 K, γ˙ = 10 - 2 s - 1 - 20 s - 1 ). The non-Newtonian materials show power-law behavior. The measured viscosities η and power-law indexes m lie in the intervals 8 Pa s ≤ η ≤ 210 3 Pa s, 0.71 ≤ m ≤ 1.0 (Grímsvötn basalt), 0.9 Pa s ≤ η ≤ 350 Pa s, 0.61 ≤ m ≤ 0.93 (Hohenstoffeln olivine-melilitite), and 8 Pa s ≤ η ≤ 1.510 4 Pa s, 0.55 ≤ m ≤ 1.0 (Sommata basalt). Measured viscosities of the Newtonian high-silica melts lie in the range 10 4 Pa s ≤ η ≤ 310 5 Pa s.

  2. Low temperature sensitization behavior in the weld metal of austenitic stainless steel. Study on low temperature sensitization in weldments of austenitic stainless steels and its improvement by laser surface melting treatment. 1

    Mori, Hiroaki; Nishimoto, Kazutoshi; Nakao, Yoshikuni

    1996-01-01

    Low temperature sensitization (LTS) behavior in the weld metal of Type308 stainless steel was investigated in this study. Three kinds of Type308 stainless steels, of which carbon contents were 0.04%, 0.06% and 0.08%, were used for this study. TIG welding method was adopted to make the weld metals. Weld metals were subjected to the sensitizing heat treatment in the temperature range between 773 K and 1073 K. The degree of sensitization were examined by the EPR method and the Strauss test. Chromium carbide was absorbed to precipitate at δ/γ grain boundaries in the as-welded weld metals Corrosion test results have shown that the higher carbon content in the weld metal is, the earlier sensitization yields in it. Sensitization in weld metals is found to occur faster than in those solution heat-treated at 1273 K prior to sensitizing heat-treatment. This fact suggests that preexisted chromium carbides have an effect to accelerate sensitization. That is, it is apparent that LTS phenomenon occur even in the weld metal. Moreover, sensitization in the weld metal has occurred in much shorter time than in HAZ, which is attributed to the preferential precipitation of chromium carbide at δ/γ grain boundaries in the weld metals. (author)

  3. Cysteine residue is not essential for CPM protein thermal-stability assay.

    Wang, Zhaoshuai; Ye, Cui; Zhang, Xinyi; Wei, Yinan

    2015-05-01

    A popular thermal-stability assay developed especially for the study of membrane proteins uses a thiol-specific probe, 7-diethylamino-3-(4-maleimidophenyl)-4-methylcoumarin (CPM). The fluorescence emission of CPM surges when it forms a covalent bond with the side chain of a free Cys, which becomes more readily accessible upon protein thermal denaturation. Interestingly, the melting temperatures of membrane proteins determined using the CPM assay in literature are closely clustered in the temperature range 45-55 °C. A thorough understanding of the mechanism behind the observed signal change is critical for the accurate interpretation of the protein unfolding. Here we used two α-helical membrane proteins, AqpZ and AcrB, as model systems to investigate the nature of the fluorescence surge in the CPM assay. We found that the transition temperatures measured using circular-dichroism (CD) spectroscopy and the CPM assay were significantly different. To eliminate potential artifact that might arise from the presence of detergent, we monitored the unfolding of two soluble proteins. We found that, contrary to current understanding, the presence of a sulfhydryl group was not a prerequisite for the CPM thermal-stability assay. The observed fluorescence increase is probably caused by binding of the fluorophore to hydrophobic patches exposed upon protein unfolding.

  4. Thermophysical Properties of Selected II-VI Semiconducting Melts

    Li, C.; Su, Ching-Hua; Lehoczky, S. L.; Scripa, R. N.; Ban, H.; Lin, B.

    2004-01-01

    Thermophysical properties are essential for the accurate predication of the crystal growth process by computational modeling. Currently, the temperature dependent thermophysical property data for the II-VI semiconductor melts are scarce. This paper reports the results of the temperature dependence of melt density, viscosity and electrical conductivity of selected II-VI compounds, including HgTe, HgCdTe and HgZnTe. The melt density was measured using a pycnometric method, and the viscosity and electrical conductivity were measured by a transient torque method. The results were compared with and showed good agreement with the existing data in the literature.

  5. Water boiling on the corium melt surface under VVER severe accident conditions

    Bechta, S.V.; Vitol, S.A.; Krushinov, E.V.; Granovsky, V.S.; Sulatsky, A.A.; Khabensky, V.B.; Lopukh, D.B.; Petrov, Y.B.; Pechenkov, A.Y.

    2000-01-01

    Experimental results are presented on the interaction of corium melt with water supplied on its surface. The tests were conducted in the 'Rasplav-2' experimental facility. Corium melt was generated by induction melting in the cold crucible. The following data were obtained: heat transfer at boiling water-melt surface interaction, gas and aerosol release, post-interaction solidified corium structure. The corium melt charge had the following composition, mass%: 60% UO 2+x -16% ZrO 2 -15% Fe 2 O 3 -6% Cr 2 O 3 -3% Ni 2 O 3 . The melt surface temperature ranged within 1920-1970 K. (orig.)

  6. Water boiling on the corium melt surface under VVER severe accident conditions

    Bechta, S.V.; Vitol, S.A.; Krushinov, E.V.

    1999-01-01

    Experimental results are presented on the interaction between corium melt and water supplied onto its surface. The tests were conducted on the Rasplav-2' experimental facility. Induction melting in a cold crucible was used to produce the melt. The following data have been obtained: heat transfer at water boiling on the melt surface, aerosol release, structure of the post-interaction solidified corium. The corium melt had the following composition, mass %: 60%UO 2 - 16%ZrO 2 - 15%Fe 2 O 3 - 6%Cr 2 O 3 -3%Ni 2 O 3 . The melt surface temperature was 1650-1700degC. (author)

  7. Multicomponent Diffusion in Experimentally Cooled Melt Inclusions

    Saper, L.; Stolper, E.

    2017-12-01

    Glassy olivine-hosted melt inclusions are compositionally zoned, characterized by a boundary layer depleted in olivine-compatible components that extends into the melt inclusion from its wall. The boundary layer forms in response to crystallization of olivine and relaxes with time due to diffusive exchange with the interior of the inclusion. At magmatic temperatures, the time scale for homogenization of inclusions is minutes to hours. Preservation of compositional gradients in natural inclusions results from rapid cooling upon eruption. A model of MgO concentration profiles that couples crystal growth and diffusive relaxation of a boundary layer can be used to solve for eruptive cooling rates [1]. Controlled cooling-rate experiments were conducted to test the accuracy of the model. Mauna Loa olivine containing >80 µm melt inclusions were equilibrated at 1225°C in a 1-atm furnace for 24 hours, followed by linear cooling at rates of 102 - 105 °C/hr. High-resolution concentration profiles of 40 inclusions were obtained using an electron microprobe. The model of [1] fits the experimental data with low residuals and the best-fit cooling rates are within 30% of experimental values. The initial temperature of 1225 °C is underestimated by 65°C. The model was modified using (i) MELTS to calculate the interface melt composition as a function of temperature, and (ii) a concentration-dependent MgO diffusion coefficient using the functional form of [2]. With this calibration the best-fit starting temperatures are within 5°C of the experimental values and the best-fit cooling rates are within 20% of experimental rates. The evolution of the CaO profile during cooling is evidence for strong diffusive coupling between melt components. Because CaO is incompatible in olivine, CaO concentrations are expected to be elevated in the boundary layer adjacent to the growing olivine. Although this is observed at short time scales, as the profile evolves the CaO concentration near the

  8. Melting of polydisperse hard disks

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find

  9. Transient refractory material dissolution by a volumetrically-heated melt

    Seiler, Jean Marie, E-mail: jean-marie.seiler@cea.fr [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Ratel, Gilles [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Combeau, Hervé [Institut Jean Lamour, UMR 7198, Lorraine University, Ecole des Mines de Nancy, Parc de Saurupt, 54042 Nancy Cedex (France); Gaus-Liu, Xiaoyang; Kretzschmar, Frank; Miassoedov, Alexei [Karlsruhe Institut of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Highlights: • We describe a test investigating ceramic dissolution by a molten non-eutectic melt. • The evolution of the interface temperature between melt and refractory is measured. • A theoretical model describing dissolution kinetics is proposed. • When dissolution stops, interface temperature is the liquidus temperature of the melt. - Abstract: The present work addresses the question of corium–ceramic interaction in a core catcher during a core-melt accident in a nuclear power plant. It provides an original insight into transient aspects concerning dissolution of refractory material by a volumetrically heated pool. An experiment with simulant material (LIVECERAM) is presented. Test results clearly show that dissolution of solid refractory material can occur in a non-eutectic melt at a temperature which is lower than the melting temperature of the refractory material. During the dissolution transient, the interface temperature rises above the liquidus temperature, corresponding to the instantaneous average composition of the melt pool. With constant power dissipation in the melt and external cooling of the core-catcher, a final steady-state situation is reached. Dissolution stops when the heat flux (delivered by the melt to the refractory) can be removed by conduction through the residual thickness of the ceramic, with T{sub interface} = T{sub liquidus} (calculated for the average composition of the final liquid pool). The final steady state corresponds to a uniform pool composition and uniform interface temperature distribution. Convection in the pool is governed by natural thermal convection and the heat flux distribution is therefore similar to what would be obtained for a single component pool. An interpretation of the experiment with two model-based approaches (0D and 1D) is presented. The mass transfer kinetics between the interface and the bulk is controlled by a diffusion sublayer within the boundary layer. During the dissolution transient

  10. Transient fuel melting

    Roche, L.; Schmitz, F.

    1982-10-01

    The observation of micrographic documents from fuel after a CABRI test leads to postulate a specific mode of transient fuel melting during a rapid nuclear power excursion. When reaching the melt threshold, the bands which are characteristic for the solid state are broken statistically over a macroscopic region. The time of maintaining the fuel at the critical enthalpy level between solid and liquid is too short to lead to a phase separation. A significant life-time (approximately 1 second) of this intermediate ''unsolide'' state would have consequences on the variation of physical properties linked to the phase transition solid/liquid: viscosity, specific volume and (for the irradiated fuel) fission gas release [fr

  11. Microcanonical Monte Carlo approach for computing melting curves by atomistic simulations

    Davis, Sergio; Gutiérrez, Gonzalo

    2017-01-01

    We report microcanonical Monte Carlo simulations of melting and superheating of a generic, Lennard-Jones system starting from the crystalline phase. The isochoric curve, the melting temperature $T_m$ and the critical superheating temperature $T_{LS}$ obtained are in close agreement (well within the microcanonical temperature fluctuations) with standard molecular dynamics one-phase and two-phase methods. These results validate the use of microcanonical Monte Carlo to compute melting points, a ...

  12. Simulation of steam explosion in stratified melt-coolant configuration

    Leskovar, Matjaž; Centrih, Vasilij; Uršič, Mitja

    2016-01-01

    Highlights: • Strong steam explosions may develop spontaneously in stratified configurations. • Considerable melt-coolant premixed layer formed in subcooled water with hot melts. • Analysis with MC3D code provided insight into stratified steam explosion phenomenon. • Up to 25% of poured melt was mixed with water and available for steam explosion. • Better instrumented experiments needed to determine dominant mixing process. - Abstract: A steam explosion is an energetic fuel coolant interaction process, which may occur during a severe reactor accident when the molten core comes into contact with the coolant water. In nuclear reactor safety analyses steam explosions are primarily considered in melt jet-coolant pool configurations where sufficiently deep coolant pool conditions provide complete jet breakup and efficient premixture formation. Stratified melt-coolant configurations, i.e. a molten melt layer below a coolant layer, were up to now believed as being unable to generate strong explosive interactions. Based on the hypothesis that there are no interfacial instabilities in a stratified configuration it was assumed that the amount of melt in the premixture is insufficient to produce strong explosions. However, the recently performed experiments in the PULiMS and SES (KTH, Sweden) facilities with oxidic corium simulants revealed that strong steam explosions may develop spontaneously also in stratified melt-coolant configurations, where with high temperature melts and subcooled water conditions a considerable melt-coolant premixed layer is formed. In the article, the performed study of steam explosions in a stratified melt-coolant configuration in PULiMS like conditions is presented. The goal of this analytical work is to supplement the experimental activities within the PULiMS research program by addressing the key questions, especially regarding the explosivity of the formed premixed layer and the mechanisms responsible for the melt-water mixing. To

  13. Olivine/melt transition metal partitioning, melt composition, and melt structure—Melt polymerization and Qn-speciation in alkaline earth silicate systems

    Mysen, Bjorn O.

    2008-10-01

    The two most abundant network-modifying cations in magmatic liquids are Ca 2+ and Mg 2+. To evaluate the influence of melt structure on exchange of Ca 2+ and Mg 2+ with other geochemically important divalent cations ( m-cations) between coexisting minerals and melts, high-temperature (1470-1650 °C), ambient-pressure (0.1 MPa) forsterite/melt partitioning experiments were carried out in the system Mg 2SiO 4-CaMgSi 2O 6-SiO 2 with ⩽1 wt% m-cations (Mn 2+, Co 2+, and Ni 2+) substituting for Ca 2+ and Mg 2+. The bulk melt NBO/Si-range ( NBO/Si: nonbridging oxygen per silicon) of melt in equilibrium with forsterite was between 1.89 and 2.74. In this NBO/Si-range, the NBO/Si(Ca) (fraction of nonbridging oxygens, NBO, that form bonds with Ca 2+, Ca 2+- NBO) is linearly related to NBO/Si, whereas fraction of Mg 2+- NBO bonds is essentially independent of NBO/Si. For individual m-cations, rate of change of KD( m-Mg) with NBO/Si(Ca) for the exchange equilibrium, mmelt + Mg olivine ⇌ molivine + Mg melt, is linear. KD( m-Mg) decreases as an exponential function of increasing ionic potential, Z/ r2 ( Z: formal electrical charge, r: ionic radius—here calculated with oxygen in sixfold coordination around the divalent cations) of the m-cation. The enthalpy change of the exchange equilibrium, Δ H, decreases linearly with increasing Z/ r2 [Δ H = 261(9)-81(3)· Z/ r2 (Å -2)]. From existing information on (Ca,Mg)O-SiO 2 melt structure at ambient pressure, these relationships are understood by considering the exchange of divalent cations that form bonds with nonbridging oxygen in individual Qn-species in the melts. The negative ∂ KD( m-Mg) /∂( Z/ r2) and ∂(Δ H)/∂( Z/ r2) is because increasing Z/ r2 is because the cations forming bonds with nonbridging oxygen in increasingly depolymerized Qn-species where steric hindrance is decreasingly important. In other words, principles of ionic size/site mismatch commonly observed for trace and minor elements in crystals, also

  14. Do cracks melt their way through solids?

    Okamoto, P. R.

    1998-01-01

    Real-time, in situ fracture studies in the high-voltage electron microscope (HVEM) show that microscopically thin regions of amorphous NiTi form ahead of moving crack tips in the B2-NiTi intermetallic compound during tensile straining at temperatures equal to or below 600K. The upper cutoff temperature of 600K for this stress-induced melting (or amorphization) is identical to the upper cutoff temperatures reported in the literature for both heavy-ion-induced amorphization of the intermetallic NiTi and ion-beam-mixing-induced amorphization of Ni and Ti multilayer. These results, together with the fact that the higher crystallization temperatures (∼800K)of unrelaxed amorphous NiTi alloys obtained by rapid quenching can also be reduced to, but not lower than 600K, by heavy-ion irradiation, strongly suggest that structural relaxation processes enhanced or induced by dynamic atomic disordering allow the formation of a unique, fully-relaxed glassy state which is characterized by a unique isothermal crystallization temperature. We believe that this unique temperature is the Kauzmann glass-transition temperature, corresponding to the ideal glass having the same entropy as the crystalline state. As the glassy state with the lowest global free energy, the preferential formation of this ideal glass by disorder-induced amorphization processes can be understood as the most energetically-favored, kinetically-constrained melting response of crystalline materials driven far from equilibrium at low temperatures

  15. Differential melt scaling for oblique impacts on terrestrial planets

    Abramov, Oleg; Wong, Stephanie M. Wong; Kring, David A. Kring

    2012-01-01

    Analytical estimates of melt volumes produced by a given projectile and contained in a given impact crater are derived as a function of impact velocity, impact angle, planetary gravity, target and projectile densities, and specific internal energy of melting. Applications to impact events and impact craters on the Earth, Moon, and Mars are demonstrated and discussed. The most probable oblique impact (45°) produces ∼1.6 times less melt volume than a vertical impact, and ∼1.6 and 3.7 times more melt volume than impacts with 30° and 15° trajectories, respectively. The melt volume for a particular crater diameter increases with planetary gravity, so a crater on Earth should have more melt than similar-size craters on Mars and the Moon. The melt volume for a particular projectile diameter does not depend on gravity, but has a strong dependence on impact velocity, so the melt generated by a given projectile on the Moon is significantly larger than on Mars. Higher surface temperatures and geothermal gradients increase melt production, as do lower energies of melting. Collectively, the results imply thinner central melt sheets and a smaller proportion of melt particles in impact breccias on the Moon and Mars than on Earth. These effects are illustrated in a comparison of the Chicxulub crater on Earth, linked to the Cretaceous–Tertiary mass extinction, Gusev crater on Mars, where the Mars Exploration Rover Spirit landed, and Tsiolkovsky crater on the Moon. The results are comparable to those obtained from field and spacecraft observations, other analytical expressions, and hydrocode simulations.

  16. Pressure-induced melting of micellar crystal

    Mortensen, K.; Schwahn, D.; Janssen, S.

    1993-01-01

    that pressure improves the solvent quality of water, thus resulting in decomposition of the micelles and consequent melting of the micellar crystal. The combined pressure and temperature dependence reveals that in spite of the apparent increase of order on the 100 angstrom length scale upon increasing......Aqueous solutions of triblock copolymers of poly(ethylene oxide) and poly(propylene oxide) aggregate at elevated temperatures into micelles which for polymer concentrations greater-than-or-equal-to 20% make a hard sphere crystallization to a cubic micellar crystal. Structural studies show...... temperature (decreasing pressure) the overall entropy increases through the inverted micellar crystallization characteristic....

  17. Holographic picture of heavy vector meson melting

    Braga, Nelson R.F.; Diles, Saulo [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil); Martin Contreras, Miguel Angel [Universidad de los Andes, High Energy Group, Department of Physics, Bogota (Colombia)

    2016-11-15

    The fraction of heavy vector mesons produced in a heavy ion collision, as compared to a proton-proton collision, serves as an important indication of the formation of a thermal medium, the quark-gluon plasma. This sort of analysis strongly depends on understanding the thermal effects of a medium like the plasma on the states of heavy mesons. In particular, it is crucial to know the temperature ranges where they undergo a thermal dissociation, or melting. AdS/QCD models are know to provide an important tool for the calculation of hadronic masses, but in general are not consistent with the observation that decay constants of heavy vector mesons decrease with excitation level. It has recently been shown that this problem can be overcome using a soft wall background and introducing an extra energy parameter, through the calculation of correlation functions at a finite position of anti-de Sitter space. This approach leads to the evaluation of masses and decay constants of S wave quarkonium states with just one flavor dependent and one flavor independent parameter. Here we extend this more realistic model to finite temperatures and analyze the thermal behavior of the states 1S, 2S and 3S of bottomonium and charmonium. The corresponding spectral function exhibits a consistent picture for the melting of the states where, for each flavor, the higher excitations melt at lower temperatures. We estimate for these six states the energy ranges in which the heavy vector mesons undergo a transition from a well-defined peak in the spectral function to complete melting in the thermal medium. A very clear distinction between the heavy flavors emerges, with the bottomonium state Υ(1S) surviving a deconfinement transition at temperatures much larger than the critical deconfinement temperature of the medium. (orig.)

  18. How ice shelf morphology controls basal melting

    Little, Christopher M.; Gnanadesikan, Anand; Oppenheimer, Michael

    2009-12-01

    The response of ice shelf basal melting to climate is a function of ocean temperature, circulation, and mixing in the open ocean and the coupling of this external forcing to the sub-ice shelf circulation. Because slope strongly influences the properties of buoyancy-driven flow near the ice shelf base, ice shelf morphology plays a critical role in linking external, subsurface heat sources to the ice. In this paper, the slope-driven dynamic control of local and area-integrated melting rates is examined under a wide range of ocean temperatures and ice shelf shapes, with an emphasis on smaller, steeper ice shelves. A 3-D numerical ocean model is used to simulate the circulation underneath five idealized ice shelves, forced with subsurface ocean temperatures ranging from -2.0°C to 1.5°C. In the sub-ice shelf mixed layer, three spatially distinct dynamic regimes are present. Entrainment of heat occurs predominately under deeper sections of the ice shelf; local and area-integrated melting rates are most sensitive to changes in slope in this "initiation" region. Some entrained heat is advected upslope and used to melt ice in the "maintenance" region; however, flow convergence in the "outflow" region limits heat loss in flatter portions of the ice shelf. Heat flux to the ice exhibits (1) a spatially nonuniform, superlinear dependence on slope and (2) a shape- and temperature-dependent, internally controlled efficiency. Because the efficiency of heat flux through the mixed layer decreases with increasing ocean temperature, numerical simulations diverge from a simple quadratic scaling law.

  19. Structure, morphology and melting hysteresis of ion-implanted nanocrystals

    Andersen, H.H.; Johnson, E.

    1995-01-01

    Investigations of nanosized metal and semimetal inclusions produced by ion implantation in aluminium are reviewed. The inclusions are from 1 nm to 15 nm in size and contain from 80 to 100,000 atoms. Embedded crystallites, which are topotactically aligned with the surrounding matrix, may not be produced in this size range by any other method. The inclusions offer unique possibilities for study of the influence of interfaces on the crystal structure of the inclusions as well as on their melting and solidification behaviour. Studies are made with transmission electron microscopy (TEM), electron- and x-ray diffraction and in situ RBS- channeling measurements. Bi, Cd, In, Pb and Tl inclusions all show a substantial melting/solidification temperature hysteresis, which, in all cases except for Bi, is placed around the bulk melting temperature, while bismuth melts below that temperature. (au) 46 refs

  20. Method of studying polymorphic transformations in melts of metals

    Magomedov, A.M.

    1986-01-01

    This paper presents a method used to study the dynamics of the change in the electrical properties of specimens during melting and crystallization and to quite accurately determine the phase transformation temperatures in melts. A block diagram of the unit for measuring the magnetoresistive effect in melts of metals is shown. The authors found that the strength of the magnetic field affects the magnitude of the jumps associated with the anomalies rather than the temperature range of the polymorphic transformations. The method described accurately determines the transformation temperatures for first- and second-order phase transformations; it does not require the use of complicated and expensive equipment. The measurement time is much shorter and the amount of material needed for studies is much smaller than with the use of any other method. The proposed method can be used to study melts of metals and construct phase deagrams of alloys

  1. Effect of N-acetylcysteine on the accuracy of the prothrombin time assay of plasma coagulation factor II+VII+X activity in subjects infused with the drug. Influence of time and temperature.

    Thorsen, Sixtus; Teisner, Ane; Jensen, Søren Astrup; Philips, Malou; Dalhoff, Kim; Bendtsen, Flemming

    2009-01-01

    The prothrombin time (PT) assay of factor II+VII+X activity is an important predictor of liver damage in paracetamol poisoned patients. It complicates interpretation of results that the antidote, acetylcysteine (NAC) depresses this activity. The aim was to investigate if NAC influences the accuracy of the plasma PT assay. The accuracy of Nycotest PT was studied using plasma added NAC in vitro and plasma from subjects infused with NAC. The latter results were compared with those obtained by analysis of PT by CoaguChek S. Therapeutic NAC concentrations added to plasma in vitro decreased factor II+VII+X activity at 37 degrees C in a time-dependent manner. This effect was quenched at temperatures depression of factor II+VII+X activity in plasma from subjects infused with NAC during the first 3h of infusion indicating that it contained reactive NAC. The risk that this NAC interfered with the accuracy of the PT assay was considered minimal with samples stored below 24 degrees C. This was supported by similarity of results obtained by analysis of appropriately stored plasma and simultaneously drawn blood by CoaguChek S. Residual reactive NAC does not interfere with the accuracy of the PT assay of plasma stored below 24 degrees C, but NAC-induced loss in activity at 37 degrees C may be partly recovered during subsequent storage below 24 degrees C.

  2. Image analysis as an improved melting criterion in laser-heated diamond anvil cell

    Salem, Ran; Matityahu, Shlomi; Melchior, Aviva; Nikolaevsky, Mark; Noked, Ori; Sterer, Eran

    2015-01-01

    The precision of melting curve measurements using laser-heated diamond anvil cell (LHDAC) is largely limited by the correct and reliable determination of the onset of melting. We present a novel image analysis of speckle interference patterns in the LHDAC as a way to define quantitative measures which enable an objective determination of the melting transition. Combined with our low-temperature customized IR pyrometer, designed for measurements down to 500K, our setup allows studying the melt...

  3. Molecular dynamics simulations of the melting curve of NiAl alloy under pressure

    Wenjin Zhang; Yufeng Peng; Zhongli Liu

    2014-01-01

    The melting curve of B2-NiAl alloy under pressure has been investigated using molecular dynamics technique and the embedded atom method (EAM) potential. The melting temperatures were determined with two approaches, the one-phase and the two-phase methods. The first one simulates a homogeneous melting, while the second one involves a heterogeneous melting of materials. Both approaches reduce the superheating effectively and their results are close to each other at the applied pressures. By fit...

  4. The interaction of a core melt with concrete

    Reimann, M.; Holleck, H.; Skokan, A.; Perinic, D.

    1977-01-01

    In its fourth phase, a hypothetic core melt interacts with the concrete of the reactor foundation. This phase may last several days. Experimental laboratory investigations and theoretical models on the basis of model experiments aim at determining the time curve of the temperature of the core melt in order to quantify the processes up to the solidification of the melt and the end of concrete destroyal. Material interactions: 1) The two phases of the core melt, oxidic and metallic, remain separate for a long period of time. In dependence of the degree of oxidation of the system, the elemental distribution and, in particular, the fission products in the melt may be assessed. 2) The changes in the material values of the core melt in dependence of the temperature curve may be qualitatively assessed. 3) The solidification temperature of the oxidic phase of the core melt may be given in dependence of (UO 2 + ZrO 2 ) content. Thermal interactions: 1) The ratio vertical/radial erosion, which determines the cavity shape, is described in the correct order of magnitude by the extended film model. 2) The correct order of magnitude of the erosion rates is described by the concrete destruction model coupled with the film model. 3) The effects of the different concrete destruction enthalpies and concrete compositions (amount of gaseous decomposition products) may be estimated by the model calculations. (orig./HP) [de

  5. Emerging melt quality control solution technologies for aluminium melt

    Arturo Pascual, Jr

    2009-11-01

    Full Text Available The newly developed “MTS 1500” Melt Treatment System is performing the specifi cally required melt treatment operations like degassing, cleaning, modification and/or grain refinement by an automated process in one step and at the same location. This linked process is saving time, energy and metal losses allowing - by automated dosage of the melt treatment agents - the production of a consistent melt quality batch after batch. By linking the MTS Metal Treatment System with sensors operating on-line in the melt, i.e., with a hydrogen sensor “Alspek H”, a fully automated control of parts of the process chain like degassing is possible. This technology does guarantee a pre-specifi ed and documented melt quality in each melt treatment batch. Furthermore, to ensure that castings are consistent and predictable there is a growing realization that critical parameters such as metal cleanliness must be measured prior to casting. There exists accepted methods for measuring the cleanliness of an aluminum melt but these can be both slow and costly. A simple, rapid and meaningful method of measuring and bench marking the cleanliness of an aluminum melt has been developed to offer the foundry a practical method of measuring melt cleanliness. This paper shows the structure and performance of the integrated MTS melt treatment process and documents achieved melt quality standards after degassing, cleaning, modifi cation and grain refi nement operations under real foundry conditions. It also provides an insight on a melt cleanliness measuring device “Alspek MQ” to provide foundry men better tools in meeting the increasing quality and tighter specifi cation demand from the industry.

  6. Effect of N-acetylcysteine on the accuracy of the prothrombin time assay of plasma coagulation factor II+VII+X activity in subjects infused with the drug. Influence of time and temperature

    Thorsen, Sixtus; Teisner, Ane; Jensen, Søren Astrup

    2009-01-01

    OBJECTIVES: The prothrombin time (PT) assay of factor II+VII+X activity is an important predictor of liver damage in paracetamol poisoned patients. It complicates interpretation of results that the antidote, acetylcysteine (NAC) depresses this activity. The aim was to investigate if NAC influences...... to plasma in vitro decreased factor II+VII+X activity at 37 degrees C in a time-dependent manner. This effect was quenched at temperatures ... to a significant additional depression of factor II+VII+X activity in plasma from subjects infused with NAC during the first 3h of infusion indicating that it contained reactive NAC. The risk that this NAC interfered with the accuracy of the PT assay was considered minimal with samples stored below 24 degrees C...

  7. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-03-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8-133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared.

  8. Correlations between entropy and volume of melting in halide salts

    Akdeniz, Z.; Tosi, M.P.

    1991-09-01

    Melting parameters and transport coefficients in the melt are collated for halides of monovalent, divalent and trivalent metals. A number of systems show a deficit of entropy of melting relative to the linear relationships between entropy change and relative volume change on melting that are found to be approximately obeyed by a majority of halides. These behaviours are discussed on the basis of structural and transport data. The deviating systems are classified into three main classes, namely (i) fast-ion conductors in the high-temperature crystal phase such as AgI, (ii) strongly structured network-like systems such as ZnCl 2 , and (iii) molecular systems melting into associated molecular liquids such as SbCl 3 . (author). 35 refs, 1 fig., 3 tabs

  9. Behavior of nuclides at plasma melting of TRU wastes

    Amakawa, Tadashi; Adachi, Kazuo

    2001-01-01

    Arc plasma heating technique can easily be formed at super high temperature, and can carry out stable heating without any effect of physical and chemical properties of the wastes. By focussing to these characteristics, this technique was experimentally investigated on behavior of TRU nuclides when applying TRU wastes forming from reprocessing process of used fuels to melting treatment by using a mimic non-radioactive nuclide. At first, according to mechanism determining the behavior of TRU nuclides, an element (mimic nuclide) to estimate the behavior was selected. And then, to zircaloy with high melting point or steel can simulated to metal and noncombustible wastes and fly ash, the mimic nuclide was added, prior to melting by using the arc plasma heating technique. As a result, on a case of either melting sample, it was elucidated that the nuclides hardly moved into their dusts. Then, the technique seems to be applicable for melting treatment of the TRU wastes. (G.K.)

  10. Mechanical properties of melt-derived erbium oxide

    Neuman, A.D.; Blacic, M.J.; Platero, M.; Romero, R.S.; McClellan, K.J.; Petrovic, J.J.

    1998-01-01

    Erbium oxide (Er 2 O 3 ) is a rare earth oxide that is chemically and thermally stable and has a melting point of 2,430 C. There is relatively little information available regarding single crystal growth of erbia or the properties of erbia. In this study, erbia single crystals have been grown in a Xenon Optical Floating Zone Unit (XeOFZ) capable of melting materials at temperatures up to 3,000 C. Erbia was melt synthesized in the XeOFZ unit in a container less fashion, proving for little chance of contamination. Crystals were grown in compressed air and in reducing atmospheres. A recurring problem with melt synthesis of erbia is the appearance of flakes at the edges of the melt zone during growth; these flakes disrupt the growth process. The processing details and an initial survey of the physical properties of erbia single crystals is discussed

  11. Synthesis of carbides of refractory metals in salt melts

    Ilyushchenko, N.G.; Anfinogenov, A.I.; Chebykin, V.V.; Chernov, Ya.B.; Shurov, N.I.; Ryaposov, Yu.A.; Dobrynin, A.I.; Gorshkov, A.V.; Chub, A.V.

    2003-01-01

    The ion-electron melts, obtained through dissolving the alkali and alkali-earth metals in the molten chlorides above the chloride melting temperature, were used for manufacturing the high-melting metal carbides as the transport melt. The lithium, calcium and magnesium chlorides and the mixture of the lithium chloride with the potassium or calcium chloride were used from the alkali or alkali-earth metals. The metallic lithium, calcium, magnesium or the calcium-magnesium mixtures were used as the alkali or alkali-earth metals. The carbon black or sugar was used as carbon. It is shown, that lithium, magnesium or calcium in the molten salts transfer the carbon on the niobium, tantalum, titanium, forming the carbides of the above metals. The high-melting metal carbides are obtained both from the metal pure powders and from the oxides and chlorides [ru

  12. Crust behavior and erosion rate prediction of EPR sacrificial material impinged by core melt jet

    Li, Gen; Liu, Ming, E-mail: ming.liu@mail.xjtu.edu.cn; Wang, Jinshi; Chong, Daotong; Yan, Junjie

    2017-04-01

    Highlights: • A numerical code was developed to analyze melt jet-concrete interaction in the frame of MPS method. • Crust and ablated concrete layer at UO{sub 2}-ZrO{sub 2} melt and concrete interface periodically developed and collapsed. • Concrete surface temperature fluctuated around a low temperature and ablation temperature. • Concrete erosion by Fe-Zr melt jet was significantly faster than that by UO{sub 2}-ZrO{sub 2} melt jet. - Abstract: Sacrificial material is a special ferro-siliceous concrete, designed in the ex-vessel core melt stabilization system of European Pressurized water Reactor (EPR). Given a localized break of RPV lower head, the melt directly impinges onto the dry concrete in form of compact jet. The concrete erosion behavior influences the failure of melt plug, and further affects melt spreading. In this study, a numerical code was developed in the frame of Moving Particle Semi-implicit (MPS) method, to analyze the crust behavior and erosion rate of sacrificial concrete, impinged by prototypic melt jet. In validation of numerical modeling, the time-dependent erosion depth and erosion configuration matched well with the experimental data. Sensitivity study of sacrificial concrete erosion indicates that the crust and ablated concrete layer presented at UO{sub 2}-ZrO{sub 2} melt and concrete interface, whereas no crust could be found in the interaction of Fe-Zr melt with concrete. The crust went through stabilization-fracture-reformation periodic process, accompanied with accumulating and collapsing of molten concrete layer. The concrete surface temperature fluctuated around a low temperature and ablation temperature. It increased as the concrete surface layer was heated to melting, and dropped down when the cold concrete was revealed. The erosion progression was fast in the conditions of small jet diameter and large concrete inclination angle, and it was significantly faster in the erosion by metallic melt jet than by oxidic melt jet.

  13. Low-melting point heat transfer fluid

    Cordaro, Joseph Gabriel; Bradshaw, Robert W.

    2010-11-09

    A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.

  14. "Chemical contraction" in rubidium-bismuth melts

    Khairulin, R. A.; Abdullaev, R. N.; Stankus, S. V.

    2017-10-01

    The density and thermal expansion of liquid rubidium and rubidium-bismuth alloy containing 25.0 at % Bi were measured by the gamma-ray attenuation technique at temperatures from liquidus to 1000 K. The results of this study were compared with the data obtained by other authors. The molar volume of the Rb75Bi25 melt strongly deviates from the additivity rule for ideal solutions.

  15. Lattice stability and high-pressure melting mechanism of dense hydrogen up to 1.5 TPa

    Geng, Hua Y.; Hoffmann, R.; Wu, Q.

    2015-01-01

    to estimate the well depth and the potential barriers that must be overcome when the crystal melts. Inclusion of nuclear quantum effects (NQE) using path integral molecular dynamics (PIMD) predicts that both superheating limit and melting temperature

  16. Study on severe fuel damage and in-vessel melt progression

    Kim, Hee Dong; Kim, Sang Baik; Lee, Gyu Jung

    1992-06-01

    In-vessel core melt progression describes the progression of the state of a reactor core from core uncovery up to reactor vessel melt through in uncovered accidents or through temperature stabilization in accidents recovered by core reflooding. Melt progression can be thought as two parts; early melt progression and late melt progression. Early phase of core melt progression includes the progression of core material melting and relocation, which mostly consist of metallic materials. On the other hand, the late phase of core melt progression involves ceramic material melt and relocation to the lower plenum and heat-up the reactor vessel lower head. A large number of information are available for the early melt progression through experiments such as SFD, DF, FLHT test and utilized in the severe accident analysis codes. However, understanding of the late phase melt progression phenomenology is based primary on TMI-2 core examinations and not much experimental information is available. Especilally, the great uncertainties exist in vessel failure mode, melt composition, mass, and temperature. Further research is planned to perform to reduce the uncertainties in understanding of core melt down accidents as parts of long term melt progression research program. A study on the core melt progression at KAERI has been being performed through the Severe Accident Research Program with USNRC. KAERI staff had participated in the PBF SFD experiments at INEL and analyses of experiments were performed using SCDAP code. Experiments of core melt program have not been carried out at KAERI yet. It is planned that further research on core melt down accidents will be performed, which is related to design of future generations of nuclear reactors as parts of long-term project for improvement of nuclear reactor safety. (Author)

  17. Petrological Constraints on Melt Generation Beneath the Asal Rift (Djibouti)

    Pinzuti, P.; Humler, E.; Manighetti, I.; Gaudemer, Y.; Bézos, A.

    2010-12-01

    The temporal evolution of the mantle melting processes in the Asal Rift is evaluated from the chemical composition of 95 lava flows sampled along 10 km of the rift axis and 8 km off-axis (that is for the last 650 ky). The major element composition and the trace element ratios of aphyric basalts across the Asal Rift show a symmetric pattern relative to the rift axis and preserved a clear signal of mantle melting depth variations. FeO, Fe8.0, Sm/YbN and Zr/Y increase, whereas SiO2 and Lu/HfN decrease from the rift axis to the rift shoulders. These variations are qualitatively consistent with a shallower melting beneath the rift axis than off-axis and the data show that the melting regime is inconsistent with a passive upwelling model. In order to quantify the depth range and extent of melting, we invert Na8.0 and Fe8.0 contents of basalts based on a pure active upwelling model. Beneath the rift axis, melting paths are shallow, from 60 to 30 km. These melting paths are consistent with adiabatic melting in normal-temperature asthenosphere, beneath an extensively thinned mantle lithosphere. In contrast, melting on the rift shoulders occurred beneath a thick mantle lithosphere and required mantle solidus temperature 180°C hotter than normal (melting paths from 110 to 75 km). The calculated rate of lithospheric thinning is high (6.0 cm yr-1) and could explain the survival of a metastable garnet within the mantle at depth shallower than 90 km beneath the modern Asal Rift.

  18. Erythritol: crystal growth from the melt.

    Lopes Jesus, A J; Nunes, Sandra C C; Ramos Silva, M; Matos Beja, A; Redinha, J S

    2010-03-30

    The structural changes occurring on erythritol as it is cooled from the melt to low temperature, and then heated up to the melting point have been investigated by differential scanning calorimetry (DSC), polarized light thermal microscopy (PLTM), X-ray powder diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR). By DSC, it was possible to set up the conditions to obtain an amorphous solid, a crystalline solid, or a mixture of both materials in different proportions. Two crystalline forms have been identified: a stable and a metastable one with melting points of 117 and 104 degrees C, respectively. The fusion curve decomposition of the stable form revealed the existence of three conformational structures. The main paths of the crystallization from the melt were followed by PLTM. The texture and colour changes allowed the characterization of the different phases and transitions in which they are involved on cooling as well as on heating processes. The type of crystallization front and its velocity were also followed by microscopic observation. These observations, together with the data provided by PXRD, allowed elucidating the transition of the metastable form into the stable one. The structural changes occurring upon the cooling and subsequent heating processes, namely those arising from intermolecular hydrogen bonds, were also accompanied by infrared spectroscopy. Particular attention was given to the spectral changes occurring in the OH stretching region. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  19. Realization of Copper Melting Point for Thermocouple Calibrations

    Y. A. ABDELAZIZ

    2011-08-01

    Full Text Available Although the temperature stability and uncertainty of the freezing plateau is better than that of the melting plateau in most of the thermometry fixed points, but realization of melting plateaus are easier than that of freezing plateaus for metal fixed points. It will be convenient if the melting points can be used instead of the freezing points in calibration of standard noble metal thermocouples because of easier realization and longer plateau duration of melting plateaus. In this work a comparison between the melting and freezing points of copper (Cu was carried out using standard noble metal thermocouples. Platinum - platinum 10 % rhodium (type S, platinum – 30 % rhodium / platinum 6 % rhodium (type B and platinum - palladium (Pt/Pd thermocouples are used in this study. Uncertainty budget analysis of the melting points and freezing points is presented. The experimental results show that it is possible to replace the freezing point with the melting point of copper cell in the calibration of standard noble metal thermocouples in secondary-level laboratories if the optimal methods of realization of melting points are used.

  20. Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite

    Grove, Timothy L.; Holbig, Eva S.; Barr, Jay A.; Till, Christy B.; Krawczynski, Michael J.

    2013-01-01

    Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.

  1. Logistics Reduction: Heat Melt Compactor

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Logistics Reduction (LR) project Heat Melt Compactor (HMC) technology is a waste management technology. Currently, there are...

  2. Melting in trivalent metal chlorides

    Saboungi, M.L.; Price, D.L.; Scamehorn, C.; Tosi, M.P.

    1990-11-01

    We report a neutron diffraction study of the liquid structure of YCl 3 and combine the structural data with macroscopic melting and transport data to contrast the behaviour of this molten salt with those of SrCl 2 , ZnCl 2 and AlCl 3 as prototypes of different melting mechanisms for ionic materials. A novel melting mechanism for trivalent metal chlorides, leading to a loose disordered network of edge-sharing octahedral units in the liquid phase, is thereby established. The various melting behaviours are related to bonding character with the help of Pettifor's phenomenological chemical scale. (author). 25 refs, 4 figs, 3 tabs

  3. Melting of contaminated metallic waste

    Lee, Y.-S.; Cheng, S.-Y.; Kung, H.-T.; Lin, L.-F.

    2004-01-01

    Approximately 100 tons of contaminated metallic wastes were produced each year due to maintenance for each TPC's nuclear power reactor and it was roughly estimated that there will be 10,000 tons of metallic scraps resulted from decommissioning of each reactor in the future. One means of handling the contaminated metal is to melt it. Melting process owns not only volume reduction which saves the high cost of final disposal but also resource conservation and recycling benefits. Melting contaminated copper and aluminum scraps in the laboratory scale have been conducted at INER. A total of 546 kg copper condenser tubes with a specific activity of about 2.7 Bq/g was melted in a vacuum induction melting facility. Three types of products, ingot, slag and dust were derived from the melting process, with average activities of 0.10 Bq/g, 2.33 Bq/g and 84.3 Bq/g respectively. After the laboratory melting stage, a pilot plant with a 500 kg induction furnace is being designed to melt the increasingly produced contaminated metallic scraps from nuclear facilities and to investigate the behavior of different radionuclides during melting. (author)

  4. The fluid flow of Czochralski melt under the electromagnetic field

    加藤, 拓哉; 二條久保, 裕; 岩本, 光生; 齋藤, 晋一; 赤松, 正人; 尾添, 紘之; Takuya, Katoh; Yuu, Nijoukubo; Mitsuo, Iwamoto; Shinichi, Saitoh; Masato, Akamatsu; Hiroyuki, Ozoe; 大分大院; 大分大工; 大分大工

    2009-01-01

    The silicon single crystal is use for the semiconductor device and it is mainly manufactured by the Czochralski crystal growing method. Under the Cz method, the forced convection and natural convection caused by the crystal rotation and the temperature difference between the crystal and crucible. In traditional system, the melt convection is controlled by the heater power, the crystal and crucible rotation. We apply Lorentz force to control the melt convection in this study, the Lorentz force...

  5. Reactive Melt Infiltration Of Silicon Into Porous Carbon

    Behrendt, Donald R.; Singh, Mrityunjay

    1994-01-01

    Report describes study of synthesis of silicon carbide and related ceramics by reactive melt infiltration of silicon and silicon/molybdenum alloys into porous carbon preforms. Reactive melt infiltration has potential for making components in nearly net shape, performed in less time and at lower temperature. Object of study to determine effect of initial pore volume fraction, pore size, and infiltration material on quality of resultant product.

  6. Evaluation of errors in determination of DNA melting curve registered with differential scanning calorimetry

    Lando, D.Y.; Fridman, A.S.; Galyuk, E.N.; Dalyan, Y.B.; Grigoryan, I.E.; Haroutiunian, S.G.

    2013-01-01

    The differential scanning calorimetry (DSC) is more sensitive than UV absorption spectrophotometry as a tool for the measurement of DNA melting curves. The advantage of DSC is a direct determination of differential melting curves (DMC) obtained without numerical differentiation. However, the difference between the helix-coil transition enthalpies of AT and GC base pairs can cause distortions in the shape of melting curve. Up to date, the errors caused by those distortions were not evaluated. In this study, a simple procedure of recalculation of a calorimetric DMC into a real DMC is developed. It demonstrates that the 'real' melting curve and differential melting curve deviate very slightly from the same two curves calculated from DSC data. The melting temperature and the temperature melting range are usually the same even if the difference in the enthalpies is several times higher than a real one

  7. Grain-boundary melting: A Monte Carlo study

    Besold, Gerhard; Mouritsen, Ole G.

    1994-01-01

    Grain-boundary melting in a lattice-gas model of a bicrystal is studied by Monte Carlo simulation using the grand canonical ensemble. Well below the bulk melting temperature T(m), a disordered liquidlike layer gradually emerges at the grain boundary. Complete interfacial wetting can be observed...... when the temperature approaches T(m) from below. Monte Carlo data over an extended temperature range indicate a logarithmic divergence w(T) approximately - ln(T(m)-T) of the width of the disordered layer w, in agreement with mean-field theory....

  8. Proton NMR relaxation in hydrous melts

    Braunstein, J.; Bacarella, A.L.; Benjamin, B.M.; Brown, L.L.; Girard, C.

    1976-01-01

    Pulse and continuous wave NMR measurements are reported for protons in hydrous melts of calcium nitrate at temperatures between -4 and 120 0 C. Although measured in different temperature ranges, spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times appear to be nearly equal to each other and proportional to the self-diffusion coefficients of solute metal cations such as Cd 2+ . At temperatures near 50 0 C, mean Arrhenius coefficients Δ H/sub T 1 / (kcal/mol) are 7.9, 7.3, and 4.8, respectively, for melts containing 2.8, 4.0, and 8.0 moles of water per mole of calcium nitrate, compared to 4.6 kcal/mol for pure water. Temperature dependence of T 1 and T 2 in Ca(NO 3 ) 2 -2.8 H 2 O between -4 and 120 0 C are non-Arrhenius and can be represented by a Fulcher-type equation with a ''zero mobility temperature'' (T 0 ) of 225 0 K, close to the value of T 0 for solute diffusion, electrical conductance and viscosity. Resolution of the relaxation rates into correlation times for intramolecular (rotational) and intermolecular (translational) diffusional motion is discussed in terms of the Bloembergen-Purcell-Pound and more recent models for dipolar relaxation

  9. Melt processing of Yb-123 tapes

    Athur, S. P.; Balachandran, U.; Salama, K.

    2000-01-01

    The innovation of a simple, scalable process for manufacturing long-length conductors of HTS is essential to potential commercial applications such as power cables, magnets, and transformers. In this paper the authors demonstrate that melt processing of Yb-123 tapes made by the PIT route is an alternative to the coated conductor and Bi-2223 PIT tape fabrication techniques. Ag-clad Yb-123 tapes were fabricated by groove rolling and subsequently, melt processed in different oxygen partial pressures in a zone-melting furnace with a gradient of 140 C/cm. The transition temperatures measured were found to be around 81 K undermost processing conditions. EPMA of the tapes processed under different conditions show the 123 phase to be Ba deficient and Cu and Yb rich. Critical current was measured at various temperatures from 77 K to 4.2 K. The J c increased with decrease in pO 2 . The highest I c obtained was 52 A at 4.2 K

  10. The kinetic fragility of natural silicate melts

    Giordano, Daniele; Dingwell, Donald B

    2003-01-01

    Newtonian viscosities of 19 multicomponent natural and synthetic silicate liquids, with variable contents of SiO 2 (41-79 wt%), Al 2 O 3 (10-19 wt%), TiO 2 (0-3 wt%), FeO tot (0-11 wt%); alkali oxides (5-17 wt%), alkaline-earth oxides (0-35 wt%), and minor oxides, obtained at ambient pressure using the high-temperature concentric cylinder, the low-temperature micropenetration, and the parallel plates techniques, have been analysed. For each silicate liquid, regression of the experimentally determined viscosities using the well known Vogel-Fulcher-Tammann (VFT) equation allowed the viscosity of all these silicates to be accurately described. The results of these fits, which provide the basis for the subsequent analysis here, permit qualitative and quantitative correlations to be made between the VFT adjustable parameters (A VFT , B VFT , and T 0 ). The values of B VFT and T 0 , calibrated via the VFT equation, are highly correlated. Kinetic fragility appears to be correlated with the number of non-bridging oxygens per tetrahedrally coordinated cation (NBO/T). This is taken to infer that melt polymerization controls melt fragility in liquid silicates. Thus NBO/T might form an useful ingredient of a structure-based model of non-Arrhenian viscosity in multicomponent silicate melts

  11. Controllable irregular melting induced by atomic segregation in bimetallic clusters with fabricating different initial configurations

    Li Guojian; Liu Tie; Wang Qiang; Lue Xiao; Wang Kai; He Jicheng

    2010-01-01

    The melting process of Co, Co-Cu and Co-Ni clusters with different initial configurations is studied in molecular dynamics by a general embedded atom method. An irregular melting, at which energy decreases as the temperature increase near the melting point, is found in the onion-like Co-Cu-Co clusters, but not in the mixed Co-Cu and onion-like Co-Ni-Co clusters. From the analysis of atomic distributions and energy variation, the results indicate the irregular melting is induced by Cu atomic segregation. Furthermore, this melting can be controlled by doping hetero atoms with different surface energies and controlling their distributions.

  12. Kinetic approach in numerical modeling of melting and crystallization at laser cladding with powder injection

    Mirzade, F. Kh., E-mail: fmirzade@rambler.ru [Institute on Laser and Information Technology, Russian Academy of Sciences, 1 Svyatoozerskaya Street, Shatura, Moscow Region 140700 (Russian Federation); Niziev, V.G.; Panchenko, V. Ya.; Khomenko, M.D.; Grishaev, R.V. [Institute on Laser and Information Technology, Russian Academy of Sciences, 1 Svyatoozerskaya Street, Shatura, Moscow Region 140700 (Russian Federation); Pityana, S.; Rooyen, Corney van [CSIR-National Laser Centre, Building 46A, Meiring Nauder Road, Brummeria, Pretoria (South Africa)

    2013-08-15

    The numerical model of laser cladding with coaxial powder injection includes the equations for heat transfer, melting and crystallization kinetics. It has been shown that the main parameters influencing the melt pool dynamics and medium maximum temperature are mass feed rate, laser power and scanning velocity. It has been observed that, due to the phase change occurring with superheating/undercooling, the melt zone has the boundary distinguished from melting isotherm. The calculated melt pool dimensions and dilution are in a good agreement with the experimental results for cladding of 431 martensitic stainless steel onto carbon steel substrate.

  13. Contaminated metallic melt volume reduction testing

    Deichman, J.L.

    1981-01-01

    Laboratory scale metallic melts (stainless steel) were accomplished in support of Decontamination and Decommissioning's (D and D) contaminated equipment volume reduction and Low-Level Lead Site Waste programs. Six laboratory scale melts made with contaminated stainless steel provided data that radionuclide distribution can be predicted when proper temperature rates and ranges are employed, and that major decontamination occurs with the use of designed slagging materials. Stainless steel bars were contaminated with plutonium, cobalt, cesium and europium. This study was limited to stainless steel, however, further study is desirable to establish data for other metals and alloys. This study represents a positive beginning in defining the feasibility of economical volume reduction or conversion from TRU waste forms to LLW forms for a large portion of approximately 50 thousand tons of contaminated metal waste now being stored at Hanford underground or in deactivated facilities

  14. UNCONSTRAINED MELTING AND SOLIDIFICATION INSIDE ...

    2015-09-01

    Sep 1, 2015 ... There is a large number of experimental and numerical works on melting and solidification of PCM[6-10], and also its usage as thermal management in building [11-14], electronic devices [15-16] and solar energy. [17-20].Most investigated geometries in melting and freezing process are sphere (spherical.

  15. Applications of disorder-induced melting concept to critical-solute-accumulation processes

    Lam, N.Q.; Okamoto, P.R.; Heuer, J.K.

    2001-01-01

    A generalized version of the Lindemann melting criterion has recently been used to develop a unified thermodynamic description of disorder-induced amorphization and heat-induced melting. This concept of amorphization as a melting process is based on the fact that the melting temperature of a defective crystal driven far from equilibrium will decrease relative to that of its defect-free equilibrium state. The broader view of melting provides a new perspective of damage-accumulation processes such as radiation damage, ion implantation, ion beam mixing, plastic deformation, and fracture. For example, within this conceptual framework, disorder-induced amorphization is simply polymorphous melting of a critically disordered crystal at temperatures below the glass transition temperature. In the present communication, we discuss the application of the concept to two specific cases: amorphous phase formation during ion implantation and solute segregation-induced intergranular fracture

  16. A study on the particle melting by plasma spraying

    Jung, In Ha; Ji, C. G.; Bae, S. O.; Yoon, J. H.; Kwon, H. I.

    2001-12-01

    As a preliminary study for fabricating a thick and dense free standing type deposit, powder melting studies were carried out. Various morphologies and sizes of powder having the same chemical compositions were applied in particle melting experiments with varying systematic parameters. Through the study of powder melting by inductively coupled plasma, we can conclude as followings: Argon-hydrogen plasma gas with a higher plasma power gave good quality of splats and shown a higher density with a higher build-up rate. Reproducibility of the experiments appeared in the range of 99%. Degree of particle melting and its density just before impinging played a predominant role in the density of a deposit. Chamber pressure has an effect on degree of deformation of the splats, i.e. on the particle momentum. Completely melted particle showed a high deformation appearance. Build-up rate had a relation with a fraction of the fully melted particle, and this also closely associates with productivity and economical efficiency. For increasing the fraction of the fully melted particle, either increasing the power or limiting the particle size was recommended. Mean pore size and its distribution of a deposit seemed to have a relation with a viscosity of the melted powder, i.e. particle temperature, and also with a chamber pressure and spraying distances. Particle temperature may be governed by a plasma power, plasma gas property, probe position, and spraying distance in the present experimental range. Some results might be appeared with mutual interactions of the effects, for example, particle residence time and momentum with chamber pressure, particle temperature with chamber pressure, spraying distance and its size

  17. A study on the particle melting by plasma spraying

    Jung, In Ha; Ji, C. G.; Bae, S. O.; Yoon, J. H.; Kwon, H. I

    2001-12-01

    As a preliminary study for fabricating a thick and dense free standing type deposit, powder melting studies were carried out. Various morphologies and sizes of powder having the same chemical compositions were applied in particle melting experiments with varying systematic parameters. Through the study of powder melting by inductively coupled plasma, we can conclude as followings: Argon-hydrogen plasma gas with a higher plasma power gave good quality of splats and shown a higher density with a higher build-up rate. Reproducibility of the experiments appeared in the range of 99%. Degree of particle melting and its density just before impinging played a predominant role in the density of a deposit. Chamber pressure has an effect on degree of deformation of the splats, i.e. on the particle momentum. Completely melted particle showed a high deformation appearance. Build-up rate had a relation with a fraction of the fully melted particle, and this also closely associates with productivity and economical efficiency. For increasing the fraction of the fully melted particle, either increasing the power or limiting the particle size was recommended. Mean pore size and its distribution of a deposit seemed to have a relation with a viscosity of the melted powder, i.e. particle temperature, and also with a chamber pressure and spraying distances. Particle temperature may be governed by a plasma power, plasma gas property, probe position, and spraying distance in the present experimental range. Some results might be appeared with mutual interactions of the effects, for example, particle residence time and momentum with chamber pressure, particle temperature with chamber pressure, spraying distance and its size.

  18. Experiments on melt droplets falling into a water pool

    Okkonen, T.; Sehgal, B.R. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety

    1998-01-01

    This paper presents experimental data and analysis related to melt droplets falling into a water pool. A binary CaO-B{sub 2}O{sub 3} melt mixture is used to study the influence of melt superheat and water subcooling on droplet deformation and fragmentation. For the conditions studied (We {<=} 1000), the surface tension of the melt droplet and the film boiling stability greatly affect the fragmentation behaviour. If the melt temperature is between the liquidus and solidus point (mushy zone) or if the film boiling is stable due to a relatively low subcooling, the droplet deformation and fragmentation are mitigated. This behaviour can be related to the effective Weber number (We) of the melt droplet upon entry into the water pool. Similar phenomena can be expected also for interactions of corium (UO{sub 2}-ZrO{sub 2}) and water, which are characterized by a potentially fast transformation of melt into the mushy zone and by particularly stable film boiling. (author)

  19. Diffusion of hydrous species in model basaltic melt

    Zhang, Li; Guo, Xuan; Wang, Qinxia; Ding, Jiale; Ni, Huaiwei

    2017-10-01

    Water diffusion in Fe-free model basaltic melt with up to 2 wt% H2O was investigated at 1658-1846 K and 1 GPa in piston-cylinder apparatus using both hydration and diffusion couple techniques. Diffusion profiles measured by FTIR are consistent with a model in which both molecular H2O (H2Om) and hydroxyl (OH) contribute to water diffusion. OH diffusivity is roughly 13% of H2Om diffusivity, showing little dependence on temperature or water concentration. Water diffusion is dominated by the motion of OH until total H2O (H2Ot) concentration reaches 1 wt%. The dependence of apparent H2Ot diffusivity on H2Ot concentration appears to be overestimated by a previous study on MORB melt, but H2Ot diffusivity at 1 wt% H2Ot in basaltic melt is still greater than those in rhyolitic to andesitic melts. The appreciable contribution of OH to water diffusion in basaltic melt can be explained by enhanced mobility of OH, probably associated with the development of free hydroxyl bonded with network-modifying cations, as well as higher OH concentration. Calculation based on the Nernst-Einstein equation demonstrates that OH may serve as an effective charge carrier in hydrous basaltic melt, which could partly account for the previously observed strong influence of water on electrical conductivity of basaltic melt.

  20. Numerical simulation of fragmentation of hot metal and oxide melts with the computer code IVA3

    Mussa, S.; Tromm, W.

    1994-01-01

    The phenomena of fragmentation of melts caused by water-inlet from the bottom with the computer code IVA3/11,12,13/ are investigated. With the computer code IVA3 three-component-multiphase flows can be numerically simulated. Two geometrical models are used. Both consist of a cylindrical vessel for water lying beneath a cylindrical vessel for melt. The vessels are connected to each other through a hole. Steel and UO 2 melts are. The following parameters were varied: the type of the melt (steel,UO 2 ), the water supply pressure and the geometry of the hole in the bottom plate through which the water and melt vessels are connected. As results of the numerical simulations temperature and pressure versus time curves are plotted. Additionally the volume flow rates and the volume fractions of the various phases in the vessels and the increase in surface and enthalpy of the melt during the time of simulation are depicted. With steel melts the rate of fragmentation increases with increasing water pressure and melt temperature, whereby stable channels are formed in the melt layer showing a very low flow resistance for steam. With UO 2 the formations of channels are also observed. However, these channels are not so stable that they eventually break apart and lead to the fragmentation of the UO 2 melt in drops. The fragmentation of the steel melt in water vessel is less than that of UO 2 . No essential solidification of the melt is observed in the respective duration of the simulations. However, a small drop in the melt temperature is observed. With a slight or no water pressure the melt flows from the upper vessel into the water vessel via the connecting hole. The processes take place in a very slow manner and with such a low steam production so that despite the occuring pressure peaks no sign of steam explosions could be observed. (orig./HP) [de

  1. Melting of Pb clusters encapsulated in large fullerenes

    Delogu, Francesco

    2011-01-01

    Graphical abstract: Encapsulation significantly increases the melting point of nanometer-sized Pb particles with respect to the corresponding unsupported ones. Highlights: → Nanometer-sized Pb particles are encapsulated in fullerene cages. → Their thermal behavior is studied by molecular dynamics simulations. → Encapsulated particles undergo a pressure rise as temperature increases. → Encapsulated particles melt at temperatures higher than unsupported ones. - Abstract: Molecular dynamics simulations have been employed to explore the melting behavior of nanometer-sized Pb particles encapsulated in spherical and polyhedral fullerene cages of suitable size. The encapsulated particles, as well as the corresponding unsupported ones for comparison, were submitted to a gradual temperature rise. Encapsulation is shown to severely affect the thermodynamic behavior of Pb particles due to the different thermal expansion coefficients of particles and cages. This determines a volume constraint that induces a rise of pressure inside the fullerene cages, which operate for particles as rigid confinement systems. The result is that surface pre-melting and melting processes occur in encapsulated particles at temperatures higher than in unsupported ones.

  2. Electrical conductivity and viscosity of borosilicate glasses and melts

    Ehrt, Doris; Keding, Ralf

    2009-01-01

    , 0 to 62·5 mol% B2O3, and 25 to 85 mol% SiO2. The glass samples were characterised by different methods. Refractive indices, density and thermal expansion were measured. Phase separation effects were investigated by electron microscopy. The electrical conductivity of glasses and melts were determined......Simple sodium borosilicate and silicate glasses were melted on a very large scale (35 l Pt crucible) to prepare model glasses of optical quality in order to investigate various properties depending on their structure. The composition of the glass samples varied in a wide range: 3 to 33·3 mol% Na2O...... by impedance measurements in a wide temperature range (250 to 1450°C). The activation energies were calculated by Arrhenius plots in various temperature regions: below the glass transition temperature, Tg, above the melting point, Tl, and between Tg and Tl. Viscosity measurements were carried out...

  3. Molecular dynamics simulations of the melting curve of NiAl alloy under pressure

    Zhang, Wenjin; Peng, Yufeng; Liu, Zhongli

    2014-01-01

    The melting curve of B2-NiAl alloy under pressure has been investigated using molecular dynamics technique and the embedded atom method (EAM) potential. The melting temperatures were determined with two approaches, the one-phase and the two-phase methods. The first one simulates a homogeneous melting, while the second one involves a heterogeneous melting of materials. Both approaches reduce the superheating effectively and their results are close to each other at the applied pressures. By fitting the well-known Simon equation to our melting data, we yielded the melting curves for NiAl: 1783(1 + P/9.801) 0.298 (one-phase approach), 1850(1 + P/12.806) 0.357 (two-phase approach). The good agreement of the resulting equation of states and the zero-pressure melting point (calc., 1850 ± 25 K, exp., 1911 K) with experiment proved the correctness of these results. These melting data complemented the absence of experimental high-pressure melting of NiAl. To check the transferability of this EAM potential, we have also predicted the melting curves of pure nickel and pure aluminum. Results show the calculated melting point of Nickel agrees well with experiment at zero pressure, while the melting point of aluminum is slightly higher than experiment

  4. Fragmentation of low-melting metals by collapsing steam bubbles

    Benz, R.

    1979-08-01

    When a hot melt meets a vaporable liquid of lower temperature, explosive vaporisation of the cooler liquid may be the result. This is called a steam explosion if a substantial amount of thermal energy is converted into mechanical energy. One important step in understanding about steam explosions is to explain the surface increase of the hot melt. There are several competing fragmentation hypotheses, but so far there has been no model to describe fragmentation criteria as well as the time curve of surface increase on the basis of physical processes. An overall model is now given for one of the possible fragmentation mechanisms, i.e. the division of the melt by collapsing steam bubbles. The model estimates the surface increase of the melt on the basis of heavy supercooled boiling, the heat transfer connected with it, the transfer of mechanical energy during steam bubble collapse, and the solidification of the melt. The results of the calculations have shown that basic experimental observations, e.g. time and extent of fragmentation, are well presented in the model with regard to their order of magnitude. The model presents a qualitatively correct description of the effects of important influencing factors, e.g. supercooling of the coolant or initial temperature of the melt. (orig.) [de

  5. Method of melt-decontaminating alumium contaminated with radioactivity

    Uda, Tatsuhiko; Iba, Hajime; Miura, Noboru; Kawasaki, Katsuo.

    1986-01-01

    Purpose: To enable optimum deontamination for radioactive-contaminated aluminum by further improving the decontaminating effect of the slag agent added to radioactive contaminated materials. Method: The slag agent is mainly composed of chloride type slags having a high reactivity for mainly incorporating uranium compounds and easily reacting near the melting point of aluminum and incorporated with fluorides for weakening the deliquescent characteristic to the chloride materials. Further, those slag agents are selected which can be treated at a low temperature in order to prevent the uranium compounds once incorporated into the slags from re-melting into the molten aluminum. Typically, a slag agent comprising 14 LiF, 76 KCl - 10 BaCl 2 is preferred. The basicity of the slag agent ranges from 0.5 to 2 and the melting point is 700 deg C. The melting decontaminating efficiency for the radioactive-contaminated aluminum can thus be improved. (Horiuchi, T.)

  6. The melting curve of tetrahydrofuran hydrate in D2O

    Hanley, H.J.M.; Meyers, G.J.; White, J.W.; Sloan, E.D.

    1989-01-01

    Melting points for the tetrahydrofuran/D 2 O hydrate in equilibrium with the air-saturated liquid at atmospheric pressure are reported. The melting points were measured by monitoring the absorbance of the solution. Overall, the melting-point phase boundary curve is about 2.5 K greater than the corresponding curve for the H 2 O hydrate, with a congruent melting temperature of 281 ± 0.5 K at a D 2 O mole fraction of 0.936. The phase boundary is predicted to within 5% if the assumption is made that the THF occupancy in the D 2 O and H 2 O hydrates is the same. The authors measure an occupancy of 99.9%. The chemical potential of the empty lattice in D 2 O is estimated to be 5% greater than in H 2 O

  7. Fragility and structure of Al-Cu alloy melts

    Lv Xiaoqian; Bian Xiufang; Mao Tan; Li Zhenkuan; Guo Jing; Zhao Yan

    2007-01-01

    The dynamic viscosity measurements are performed for Al-Cu alloy melts with different compositions using an oscillating-cup viscometer. The results show that the viscosities of Al-Cu alloy melts increase with the copper content increasing, and also have a correlation with the correlation radius of clusters, which is measured by the high-temperature X-ray diffractometer. It has also been found that the fragilities of superheated melts (M) of hypereutectic Al-Cu alloys increase with the copper content increasing. There exists a relationship between the fragility and the structure in Al-Cu alloy melts. The value of the M reflects the variation of activation energy for viscous flow

  8. Numerical and experimental investigation of the melt casting of explosives

    Sun, Dawei; Garimella, Suresh V. [School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088 (United States); Singh, Sanjeev; Naik, Neelam [US Army Armaments Research, Development and Engineering Center, Picatinny Arsenal, NJ 07806 (United States)

    2005-10-01

    Melt casting of energetic materials is investigated, and a numerical model is formulated for the analysis of the coupled fluid flow, heat transfer, and stress fields involved in this phase-change process. The numerical model is based on a conservative multi block control volume method. The SIMPLE algorithm is employed along with an enthalpy method approach to model the solidification process. Results from the model are verified against analytical solutions, experimental results, and published numerical results for simplified cases. In the melt casting of RDX-binder mixtures, the very high viscosity of the melt limits the influence of melt convection. The impacts of different cooling conditions on the velocity, temperature and stress distributions, as well as on the solidification time, are discussed. The present model can be used to improve the quality of cast explosives, by optimizing and controlling the processing conditions. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  9. Plasma arc melting of zirconium

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

    1997-01-01

    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming

  10. Electric melting furnace for waste solidification

    Masaki, Toshio.

    1990-01-01

    To avoid electric troubles or reduction of waste processing performance even when platinum group elements are contained in wastes to be applied with glass solidification. For this purpose, a side electrode is disposed to the side wall of a melting vessel and a central electrode serving as a counter electrode is disposed about at the center inside the melting vessel. With such a constitution, if conductive materials are deposited at the bottom of the furnace or the bottom of the melting vessel, heating currents flow selectively between the side electrode and the central electrode. Accordingly, no electric currents flow through the conductive deposits thereby enabling to prevent abnormal heating in the bottom of the furnace. Further, heat generated by electric supply between the side electrode and the central electrode is supplied efficiently to raw material on the surface of the molten glass liquid to improve the processing performance. Further, disposition of the bottom electrode at the bottom of the furnace enables current supply between the central electrode and the bottom electrode to facilitate the temperature control for the molten glass in the furnace than in the conventional structure. (I.S.)

  11. Vortex lattice melting, pinning and kinetics

    Doniach, S.; Ryu, S.; Kapitulnik, A.

    1994-01-01

    The phenomenology of the high T c superconductors is discussed both at the level of the thermodynamics of melting of the Abrikosov flux lattice and in terms of the melting and kinetics of the flux lattice for a pinned system. The authors review results on 3D melting obtained by a Monte Carlo simulation approach in which the 2D open-quotes pancakeclose quotes vortices are treated as statistical variables. The authors discuss pinning in the context of the strong pinning regime in which the vortex density given in terms of the applied field B is small compared to that represented by an effective field B pin measuring the pinning center density. The authors introduce a new criterion for the unfreezing of a vortex glass on increase of magnetic field or temperature, in the strong pinning, small field unit. The authors model this limit in terms of a single flux line interacting with a columnar pin. This model is studied both analytically and by computer simulation. By applying a tilt potential, the authors study the kinetics of the vortex motion in an external current and show that the resulting current-voltage characteristic follows a basic vortex glass-like scaling relation in the vicinity of the depinning transition

  12. Rock melting technology and geothermal drilling

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  13. Predicting the enthalpies of melting and vaporization for pure components

    Esina, Z. N.; Korchuganova, M. R.

    2014-12-01

    A mathematical model of the melting and vaporization enthalpies of organic components based on the theory of thermodynamic similarity is proposed. In this empirical model, the phase transition enthalpy for the homological series of n-alkanes, carboxylic acids, n-alcohols, glycols, and glycol ethers is presented as a function of the molecular mass, the number of carbon atoms in a molecule, and the normal transition temperature. The model also uses a critical or triple point temperature. It is shown that the results from predicting the melting and vaporization enthalpies enable the calculation of binary phase diagrams.

  14. Stability study of 2-[18F]Fluoro-2-Deoxy-D-Glucose (18FDG) stored at room temperature by physicochemical and microbiological assays

    Ferreira, Soraya Z.; Silva, Juliana B. da; Waquil, Samira S.; Correia, Ricardo F.

    2009-01-01

    The most widely used radiopharmaceutical in the expanding medical imaging technology of Positron Emission Tomography (PET) is 2-[ 18 F]fluoro-2-deoxy-D-glucose ( 18 FDG). The increasing demand for 18 FDG requires reliable production in large amounts. The synthesis of 18 FDG is based on a nucleophilic substitution of the triflate-leaving group from the precursor, mannose triflate, in the presence of Crypt and 2.2.2, as a phase-transfer agent. After labeling, the removal of the acetyl protecting groups from resulting 2-[ 18 F]fluoro-1,3,4,6-tetra-Oacetyl- D-glucose is performed by alkaline hydrolysis, followed by purification and final filtration (0.22 μm). It was reported that 18 FDG decomposes in vitro, resulting in the degradation of the radiochemical purity with time. The aim of this study was to evaluate physicochemical and microbiological stability of 18 FDG, stored at room temperature (15-30 deg C), at different time intervals. It was investigated how the quality of this radiopharmaceutical varies with time under the influence of environmental factors. 18 FDG pH, radionuclidic identity and purity, radiochemical identity and purity, chemical purity, residual solvents, bacterial endotoxins and sterility were evaluated according to the United States Pharmacopeia 31 th edition analytical methods and acceptance criteria. The results suggest that 18 FDG has physicochemical and microbiological stability up to 10 hours after the end of synthesis, under experimental conditions. (author)

  15. Rapid detection of the H275Y oseltamivir resistance mutation in influenza A/H1N1 2009 by single base pair RT-PCR and high-resolution melting.

    Steven Y C Tong

    Full Text Available We aimed to design a real-time reverse-transcriptase-PCR (rRT-PCR, high-resolution melting (HRM assay to detect the H275Y mutation that confers oseltamivir resistance in influenza A/H1N1 2009 viruses.A novel strategy of amplifying a single base pair, the relevant SNP at position 823 of the neuraminidase gene, was chosen to maintain specificity of the assay. Wildtype and mutant virus were differentiated when using known reference samples of cell-cultured virus. However, when dilutions of these reference samples were assayed, amplification of non-specific primer-dimer was evident and affected the overall melting temperature (T(m of the amplified products. Due to primer-dimer appearance at >30 cycles we found that if the cycle threshold (C(T for a dilution was >30, the HRM assay did not consistently discriminate mutant from wildtype. Where the C(T was 32.98 would have an H275Y assay C(T>30. Analysis of the TaqMan C(T values for 609 consecutive clinical samples predicted that 207 (34% of the samples would result in an HRM assay C(T>30 and therefore not be amenable to the HRM assay.The use of single base pair PCR and HRM can be useful for specifically interrogating SNPs. When applied to H1N1 09, the constraints this placed on primer design resulted in amplification of primer-dimer products. The impact primer-dimer had on HRM curves was adjusted for by plotting T(m against C(T. Although less sensitive than TaqMan assays, the HRM assay can rapidly, and at low cost, screen samples with moderate viral concentrations.

  16. Ingot formation using uranium dendrites recovered by electrolysis in LiCl-KCl-PuCl3-UCl3 melt

    Mineo Fukushima; Akira Nakayoshi; Shinichi Kitawaki; Masaki Kurata; Noboru Yahagi

    2008-01-01

    Products on solid cathodes recovered by the metal pyrochemical processing were processed to obtain uranium ingot. Studies on process conditions of uranium formation, assay recovered uranium products and by-products and evaluation of mass balance were carried out. In these tests, it is confirmed that uranium ingots can be obtained with heating the products more than melting temperature of metal uranium under atmospheric pressure because adhered salt cover the uranium not to oxidize it during uranium cohering. Covered salt can be removed after ingot formation. Inside the ingot, there were a lump of uranium and dark brown colored dross was observed. Material balance of uranium is 77 ∼ 96%, that of plutonium is 71 ∼ 109%, and that of americium that is a volatile substance more than uranium and plutonium become 79 ∼ 119%. Volatilization of americium is very small under the condition of high temperature. (authors)

  17. FY 1999 report on the results of the intellectual basement creation/utilization technology R and D project. R and D of standard data on thermophysical property of fluids and high-temperature melts and measuring technology; 1999 nendo ryutai oyobi koon yutai no netsu bussei hyojun data to keisoku gijutsu no kenkyu kaihatsu seika hokokusho

    NONE

    2000-03-01

    For the purpose of realizing database of thermophysical value information, studies were made on the following and the FY 1999 results were summed up: preparation of the research environment and information environment for experiment and analysis, and acquisition/collection of standard data with high-reliability. As to thermophysical properties of natural environmental substances and the aqueous mixtures, the thermophysical data on the mixed fluid of ammonia and water were collected by experiment and from literature. About the polymer system, measurement was made of solubility/diffusion coefficients of CO2 in polymer. Concerning refrigerants, PVT quality measurement of CO2 was conducted. In relation to the vapor-liquid equilibrium of fluid, preparation by literature survey was made of standard data on vapor-liquid equilibrium relations of multi-component system composing of alcohol and glycols. As to the transportation quality of fluids, conducted were the measurement of viscosity of substituting freons and fabrication of a measuring device for thermoconductivity. Further, the following were carried out: development of optical measuring technology of thermophysical values of high-temperature melts, measurement of thermoconductivity of high-temperature melts by the short-hot-wire method, development of measuring technology of surface tension/density of molten semiconductor, and study on determination of standard values. (NEDO)

  18. The electrical conductivity of sodium polysulfide melts

    Wang, Meihui [Univ. of California, Berkeley, CA (United States)

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na2S4 and Na2S5 were measured as a function of temperature (range: 300 to 360°C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  19. The electrical conductivity of sodium polysulfide melts

    Meihui Wang.

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na{sub 2}S{sub 4} and Na{sub 2}S{sub 5} were measured as a function of temperature (range: 300 to 360{degree}C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  20. Reversed Extension Flow of Polymer melts

    Rasmussen, Henrik K.; Nielsen, Jens Kromann

    2007-01-01

    The measurement of the startup of uni axial elongational flow (potentially until steady state) followed by reversed bi axial flow, both with a constant elongational rate was made possible using a Filament Stretching Rheometer (FSR). The filament stretching rheometer rheometer is surrounded...... by a thermostated environment and allows measurements on polymeric melts and liquids from room temperatures until 200 °C. In the experiments the Hencky strain at which the stress becomes zero (the recovery strain) of the reversed flow can be identified....

  1. A 400-year ice core melt layer record of summertime warming in the Alaska Range

    Winski, D.; Osterberg, E. C.; Kreutz, K. J.; Wake, C. P.; Ferris, D. G.; Campbell, S. W.; Baum, M.; Raudzens Bailey, A.; Birkel, S. D.; Introne, D.; Handley, M.

    2017-12-01

    Warming in high-elevation regions has socially relevant impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While many terrestrial paleoclimate records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually-resolved temperature records from high elevations. We present a 400-year temperature record based on the melt-layer stratigraphy in two ice cores collected from Mt. Hunter in the Central Alaska Range. The ice core record shows a 60-fold increase in melt frequency and water equivalent melt thickness between the pre-industrial period (before 1850) and present day. We calibrate the melt record to summer temperatures based on local and regional weather station analyses, and find that the increase in melt production represents a summer warming of at least 2° C, exceeding rates of temperature increase at most low elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p<0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby-wave like pattern that induces high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century, and that conditions in the tropical oceans contribute to this warming.

  2. Nitrogen Control in VIM Melts

    Jablonski, P. D.; Hawk, J. A.

    NETL has developed a design and control philosophy for the addition of nitrogen to austenitic and ferritic steels. The design approach uses CALPHAD as the centerpiece to predict the level to which nitrogen is soluble in both the melt and the solid. Applications of this technique have revealed regions of "exclusion" in which the alloy, while within specification limits of prescribed, cannot be made by conventional melt processing. Furthermore, other investigations have found that substantial retrograde solubility of nitrogen exists, which can become problematic during subsequent melt processing and/or other finishing operations such as welding. Additionally, the CALPHAD method has been used to adjust primary melt conditions. To that end, nitrogen additions have been made using chrome nitride, silicon nitride, high-nitrogen ferrochrome as well as nitrogen gas. The advantages and disadvantages of each approach will be discussed and NETL experience in this area will be summarized with respect to steel structure.

  3. Theoretical melting curve of caesium

    Simozar, S.; Girifalco, L.A.; Pennsylvania Univ., Philadelphia

    1983-01-01

    A statistical-mechanical model is developed to account for the complex melting curve of caesium. The model assumes the existence of three different species of caesium defined by three different electronic states. On the basis of this model, the free energy of melting and the melting curve are computed up to 60 kbar, using the solid-state data and the initial slope of the fusion curve as input parameters. The calculated phase diagram agrees with experiment to within the experimental error. Other thermodynamic properties including the entropy and volume of melting were also computed, and they agree with experiment. Since the theory requires only one adjustable constant, this is taken as strong evidence that the three-species model is satisfactory for caesium. (author)

  4. Mathematical modeling of quartz particle melting process in plasma-chemical reactor

    Volokitin, Oleg, E-mail: volokitin-oleg@mail.ru; Volokitin, Gennady, E-mail: vgg-tomsk@mail.ru; Skripnikova, Nelli, E-mail: nks2003@mai.ru; Shekhovtsov, Valentin, E-mail: shehovcov2010@yandex.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Vlasov, Viktor, E-mail: rector@tsuab.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Ave., 634050, Tomsk (Russian Federation)

    2016-01-15

    Among silica-based materials vitreous silica has a special place. The paper presents the melting process of a quartz particle under conditions of low-temperature plasma. A mathematical model is designed for stages of melting in the experimental plasma-chemical reactor. As calculation data show, quartz particles having the radius of 0.21≤ r{sub p} ≤0.64 mm completely melt at W = 0.65 l/s particle feed rate depending on the Nusselt number, while 0.14≤ r{sub p} ≤0.44 mm particles melt at W = 1.4 l/s. Calculation data showed that 2 mm and 0.4 mm quartz particles completely melted during and 0.1 s respectively. Thus, phase transformations occurred in silicon dioxide play the important part in its heating up to the melting temperature.

  5. Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps

    Rubatto, Daniela; Hermann, Jörg; Berger, Alfons

    2009-01-01

    that repeated melting events occurred within a single Barrovian metamorphic cycle at roughly constant temperature; that in the country rocks zircon formation was limited to the initial stages of melting, whereas further melting concentrated in the segregated leucosomes; that melting occurred at different times......The timing and dynamics of fluid-induced melting in the typical Barrovian sequence of the Central Alps has been investigated using zircon chronology and trace element composition. Multiple zircon domains in leucosomes and country rocks yield U-Pb ages spanning from ~32 to 22 Ma. The zircon formed...... in samples a few meters apart because of the local rock composition and localized influx of the fluids; and that leucosomes were repeatedly melted when fluids became available. The geochronological data force a revision of the temperature-time path of the migmatite belt in the Central Alps. Protracted...

  6. Unsolved problems of crystallization and melting of flexible macromolecules

    Wunderlich, B.

    1992-01-01

    The thermodynamics, kinetics, and computer simulations of crystallization and melting is discussed. The thermodynamics is shown to be well understood, although for many specific crystals not enough details for full description are available. Experiments on the crystallization kinetics of poly(ethylene) and poly(oxyethylene) in the presence of crystal nuclei as a function of molecular mass revealed that with increasing mass, the crystallization behavior deviates increasingly from that of small, rigid molecules. Instead of showing a continuously changing, linear crystallization rate with temperature through the equilibrium melting temperature, T m 0 , these flexible macromolecules show a region of practically zero crystallization rate between T m 0 and about (T m 0 - 15) K, creating a temperature region of metastability in the melt that cannot be broken by nucleation with pregrown crystals. Molecular Nucleation was proposed as a cooperative process to be of overriding importance for the description of polymer crystallization, and to be at the center of segregation of molecules of lower molecular mass by growing crystal fronts. Initial efforts to model sufficiently large crystals using Monte Carlo and molecular dynamics methods are presented. Some of the short-time intermediates in the melting, crystallization, and annealing processes seem to have little similarity to commonly assumed models of crystallization and melting and are presented as discussion topics

  7. A melt refining method for uranium-contaminated aluminum

    Uda, T.; Iba, H.; Hanawa, K.

    1986-01-01

    Melt refining of uranium-contaminated aluminum which has been difficult to decontaminate because of the high reactivity of aluminum, was experimentally studied. Samples of contaminated aluminum and its alloys were melted after adding various halide fluxes at various melting temperatures and various melting times. Uranium concentration in the resulting ingots was determined. Effective flux compositions were mixtures of chlorides and fluorides, such as LiF, KCl, and BaCl 2 , at a fluoride/chloride mole ratio of 1 to 1.5. The removal of uranium from aluminum (the ''decontamination effect'') increased with decreasing melting temperature, but the time allowed for reaction had little influence. Pure aluminum was difficult to decontaminate from uranium; however, uranium could be removed from alloys containing magnesium. This was because the activity of the aluminum was decreased by formation of the intermetallic compound Al-Mg. With a flux of LiF-KCl-BaCl 2 and a temperature of 800 0 C, uranium added to give an initial concentration of 500 ppm was removed from a commercial alloy of aluminum, A5056, which contains 5% magnesium, to a final concentration of 0.6 ppm, which is near that in the initial aluminum alloy

  8. Multiplex fluorescence melting curve analysis for mutation detection with dual-labeled, self-quenched probes.

    Qiuying Huang

    2011-04-01

    Full Text Available Probe-based fluorescence melting curve analysis (FMCA is a powerful tool for mutation detection based on melting temperature generated by thermal denaturation of the probe-target hybrid. Nevertheless, the color multiplexing, probe design, and cross-platform compatibility remain to be limited by using existing probe chemistries. We hereby explored two dual-labeled, self-quenched probes, TaqMan and shared-stem molecular beacons, in their ability to conduct FMCA. Both probes could be directly used for FMCA and readily integrated with closed-tube amplicon hybridization under asymmetric PCR conditions. Improved flexibility of FMCA by using these probes was illustrated in three representative applications of FMCA: mutation scanning, mutation identification and mutation genotyping, all of which achieved improved color-multiplexing with easy probe design and versatile probe combination and all were validated with a large number of real clinical samples. The universal cross-platform compatibility of these probes-based FMCA was also demonstrated by a 4-color mutation genotyping assay performed on five different real-time PCR instruments. The dual-labeled, self-quenched probes offered unprecedented combined advantage of enhanced multiplexing, improved flexibility in probe design, and expanded cross-platform compatibility, which would substantially improve FMCA in mutation detection of various applications.

  9. Melting the vacuum

    Rafelski, J.

    1998-01-01

    Results presented at the Quark Matter 97 conference, held in December in Tsukuba, Japan, have provided new insights into the confinement of quarks in matter. The current physics paradigm is that the inertial masses of protons and neutrons, and hence of practically all of the matter around us, originate in the zero-point energy caused by the confinement of quarks inside the small volume of the nucleon. Today, 25 years after Harald Fritzsch, Heinrich Leutwyler and Murray Gell-Mann proposed quantum chromodynamics (QCD) as a means for understanding strongly interacting particles such as nucleons and mesons, our understanding of strong interactions and quark confinement remains incomplete. Quarks and the gluons that bind them together have a ''colour'' charge that may be red, green or blue. But quarks are seen in particles that are white: baryons such as protons and neutrons consist of three quarks with different colour charges, while mesons consist of a quark and an antiquark, and again the colour charge cancels out. To prove that confinement arises from quark-gluon fluctuations in the vacuum that quantum theories dictate exists today, we need to find a way of freeing the colour charge of quarks. Experiments must therefore ''melt'' the vacuum to deconfine quarks and the colour charge. By colliding nuclei at high energies, we hope to produce regions of space filled with free quarks and gluons. This deconfined phase is known as the quark-gluon plasma. At the Tsukuba meeting, Scott Pratt of Michigan State University in the US discussed measurements that show that the hot dense state of matter created in these collisions exists for only 2x10 -23 s. So does the quark gluon plasma exist? No-one doubts that it did at one time, before the vacuum froze into its current state about 20 into the life of the universe, causing the nucleons to form as we know them today. The issue is whether we can recreate this early stage of the universe in laboratory experiments. And if we did

  10. Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts

    Liu, Yanan; Samaha, Naji-Tom; Baker, Don R.

    2007-04-01

    The sulfur concentration in silicate melts at sulfide saturation (SCSS) was experimentally investigated in a temperature range from 1150 to 1450 °C and a pressure range from 500 MPa to 1 GPa in a piston-cylinder apparatus. The investigated melt compositions varied from rhyolitic to basaltic and water concentrations varied from 0 to ˜9 wt%. All experiments were saturated with FeS melt or pyrrhotite crystals. Temperature was confirmed to have a positive effect on the SCSS. Experimental oxygen fugacities were either near the carbon-carbon monoxide buffer or one log unit above the nickel-nickel oxide buffer, and found to positively affect the SCSS. Combining our results with data from the literature we constructed a model to predict the SCSS in melts ranging in composition from komatiitic to rhyolitic, with water concentrations from 0 to 9 wt%, at pressures from 1 bar to 9 GPa and oxygen fugacities between ˜2 log units below the fayalite-magnetite-quartz buffer to ˜2 log units above it. The coefficients were obtained by multiple linear regression of experimental data and the best model found for the prediction of the SCSS is: ln(Sinppm)=11.35251-{4454.6}/{T}-0.03190{P}/{T}+0.71006ln(MFM)-1.98063[(MFM)(XO)]+0.21867ln(XO)+0.36192lnX where P is in bar, T is in K, MFM is a compositional parameter describing the melt based upon cation mole fractions: MFM={Na+K+2(Ca+Mg+Fe)}/{Si×(Al+Fe)}, XO is the mole fraction of water in the melt, and X is the mole fraction of FeO in the melt. This model was independently tested against experiments performed on anhydrous and hydrous melts in the temperature range from 800 to 1800 °C and 1-9 GPa. The model typically predicts the measured values of the natural log of the SCSS (in ppm) for komatiitic to rhyolitic (˜42 to ˜74 wt% SiO 2) melts to within 5% relative, but is less accurate for high-silica (>76 wt% SiO 2) rhyolites, especially those with molar ratios of iron to sulfur below 2. We demonstrate how this model can be used with

  11. MELTS_Excel: A Microsoft Excel-based MELTS interface for research and teaching of magma properties and evolution

    Gualda, Guilherme A. R.; Ghiorso, Mark S.

    2015-01-01

    thermodynamic modeling software MELTS is a powerful tool for investigating crystallization and melting in natural magmatic systems. Rhyolite-MELTS is a recalibration of MELTS that better captures the evolution of silicic magmas in the upper crust. The current interface of rhyolite-MELTS, while flexible, can be somewhat cumbersome for the novice. We present a new interface that uses web services consumed by a VBA backend in Microsoft Excel©. The interface is contained within a macro-enabled workbook, where the user can insert the model input information and initiate computations that are executed on a central server at OFM Research. Results of simple calculations are shown immediately within the interface itself. It is also possible to combine a sequence of calculations into an evolutionary path; the user can input starting and ending temperatures and pressures, temperature and pressure steps, and the prevailing oxidation conditions. The program shows partial updates at every step of the computations; at the conclusion of the calculations, a series of data sheets and diagrams are created in a separate workbook, which can be saved independently of the interface. Additionally, the user can specify a grid of temperatures and pressures and calculate a phase diagram showing the conditions at which different phases are present. The interface can be used to apply the rhyolite-MELTS geobarometer. We demonstrate applications of the interface using an example early-erupted Bishop Tuff composition. The interface is simple to use and flexible, but it requires an internet connection. The interface is distributed for free from http://melts.ofm-research.org.

  12. Sorption of radionuclides from Pb-Bi melt. Report 1

    Konovalov, Eh.E.; Il'icheva, N.S.; Trifonova, O.E.

    2015-01-01

    Results of laboratory investigations of sorption and interfacial distribution of 54 Mn, 59 Fe, 60 Co, 106 Ru, 125 Sb, 137 Cs, 144 Ce, 154,155 Eu and 235,238 U radionuclides in the system Pb-Bi melt - steel surface are analyzed. It is shown that 106 Ru and 125 Sb are concentrated in Pb-Bi melt and other radionuclides with higher oxygen affinity are sorbed on oxide deposits on structural materials. Temperature dependences of sorption efficiency of radionuclides are studied. It is shown that there is sharp increase of this value for all radionuclides near the temperature range 350-400 deg C. Recommendations are given on the use of 106 Ru and 125 Sb as a reference for fuel element rupture detection system with radiometric monitoring of coolant melt samples and 137 Cs, 134 Cs, 134m Cs with radiometric monitoring of sorbing samples [ru

  13. Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water

    Wang Huajun; Zhao Jun; Chen Zhihao

    2008-01-01

    Road ice and snow melting based on low temperature geothermal tail water is of significance to realize energy cascading utilization. A small scale ice and snow melting system is built in this work. Experiments of dynamic melting processes of crushed ice, solid ice, artificial snow and natural snow are conducted on concrete pavement. The results show that the melting process of ice and snow includes three phases: a starting period, a linear period and an accelerated period. The critical value of the snow free area ratio between the linear period and the accelerated period is about 0.6. The physical properties of ice and snow, linked with ambient conditions, have an obvious effect on the melting process. The difference of melting velocity and melting time between ice and snow is compared. To reduce energy consumption, the formation of ice on roads should be avoided if possible. The idling process is an effective pathway to improve the performance of melting systems. It is feasible to utilize geothermal tail water of about 40 deg. C for melting ice and snow on winter roads, and it is unnecessary to keep too high fluid temperatures during the practical design and applications. Besides, with the exception of solid ice, the density and porosity of snow and ice tend to be decreasing and increasing, respectively, as the ambient temperature decreases

  14. Development of a multiplex real-time PCR assay for phylogenetic analysis of Uropathogenic Escherichia coli.

    Hasanpour, Mojtaba; Najafi, Akram

    2017-06-01

    Uropathogenic Escherichia coli (UPEC) is among major pathogens causing 80-90% of all episodes of urinary tract infections (UTIs). Recently, E. coli strains are divided into eight main phylogenetic groups including A, B1, B2, C, D, E, F, and clade I. This study was aimed to develop a rapid, sensitive, and specific multiplex real time PCR method capable of detecting phylogenetic groups of E. coli strains. This study was carried out on E. coli strains (isolated from the patient with UTI) in which the presence of all seven target genes had been confirmed in our previous phylogenetic study. An EvaGreen-based singleplex and multiplex real-time PCR with melting curve analysis was designed for simultaneous detection and differentiation of these genes. The primers were selected mainly based on the production of amplicons with melting temperatures (T m ) ranging from 82°C to 93°C and temperature difference of more than 1.5°C between each peak.The multiplex real-time PCR assays that have been developed in the present study were successful in detecting the eight main phylogenetic groups. Seven distinct melting peaks were discriminated, with Tm value of 93±0.8 for arpA, 89.2±0.1for chuA, 86.5±0.1 for yjaA, 82.3±0.2 for TspE4C2, 87.8±0.1for trpAgpC, 85.4±0.6 for arpAgpE genes, and 91±0.5 for the internal control. To our knowledge, this study is the first melting curve-based real-time PCR assay developed for simultaneous and discrete detection of these seven target genes. Our findings showed that this assay has the potential to be a rapid, reliable and cost-effective alternative for routine phylotyping of E. coli strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A metastable liquid melted from a crystalline solid under decompression

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin

    2017-01-01

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure-temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.

  16. Melting and casting of FeAl-based cast alloy

    Sikka, V.K. [Oak Ridge National Lab., TN (United States); Wilkening, D. [Columbia Falls Aluminum Co., Columbia Falls, MT (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., Anaconda, MT (United States)

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  17. Rapid identification of drug-type strains in Cannabis sativa using loop-mediated isothermal amplification assay.

    Kitamura, Masashi; Aragane, Masako; Nakamura, Kou; Watanabe, Kazuhito; Sasaki, Yohei

    2017-01-01

    In Cannabis sativa L., tetrahydrocannabinol (THC) is the primary psychoactive compound and exists as the carboxylated form, tetrahydrocannabinolic acid (THCA). C. sativa is divided into two strains based on THCA content-THCA-rich (drug-type) strains and THCA-poor (fiber-type) strains. Both strains are prohibited by law in many countries including Japan, whereas the drug-type strains are regulated in Canada and some European countries. As the two strains cannot be discriminated by morphological analysis, a simple method for identifying the drug-type strains is required for quality control in legal cultivation and forensic investigation. We have developed a novel loop-mediated isothermal amplification (LAMP) assay for identifying the drug-type strains of C. sativa. We designed two selective LAMP primer sets for on-site or laboratory use, which target the drug-type THCA synthase gene. The LAMP assay was accomplished within approximately 40 min. The assay showed high specificity for the drug-type strains and its sensitivity was the same as or higher than that of conventional polymerase chain reaction. We also showed the effectiveness of melting curve analysis that was conducted after the LAMP assay. The melting temperature values of the drug-type strains corresponded to those of the cloned drug-type THCA synthase gene, and were clearly different from those of the cloned fiber-type THCA synthase gene. Moreover, the LAMP assay with simple sample preparation could be accomplished within 1 h from sample treatment to identification without the need for special devices or techniques. Our rapid, sensitive, specific, and simple assay is expected to be applicable to laboratory and on-site detection.

  18. Rapid detection of Echinococcus species by a high-resolution melting (HRM) approach.

    Santos, Guilherme Brzoskowski; Espínola, Sergio Martín; Ferreira, Henrique Bunselmeyer; Margis, Rogerio; Zaha, Arnaldo

    2013-11-14

    High-resolution melting (HRM) provides a low-cost, fast and sensitive scanning method that allows the detection of DNA sequence variations in a single step, which makes it appropriate for application in parasite identification and genotyping. The aim of this work was to implement an HRM-PCR assay targeting part of the mitochondrial cox1 gene to achieve an accurate and fast method for Echinococcus spp. differentiation. For melting analysis, a total of 107 samples from seven species were used in this study. The species analyzed included Echinococcus granulosus (n = 41) and Echinococcus ortleppi (n = 50) from bovine, Echinococcus vogeli (n = 2) from paca, Echinococcus oligarthra (n = 3) from agouti, Echinococcus multilocularis (n = 6) from monkey and Echinococcus canadensis (n = 2) and Taenia hydatigena (n = 3) from pig. DNA extraction was performed, and a 444-bp fragment of the cox1 gene was amplified. Two approaches were used, one based on HRM analysis, and a second using SYBR Green Tm-based. In the HRM analysis, a specific profile for each species was observed. Although some species exhibited almost the same melting temperature (Tm) value, the HRM profiles could be clearly discriminated. The SYBR Green Tm-based analysis showed differences between E. granulosus and E. ortleppi and between E. vogeli and E. oligarthra. In this work, we report the implementation of HRM analysis to differentiate species of the genus Echinococcus using part of the mitochondrial gene cox1. This method may be also potentially applied to identify other species belonging to the Taeniidae family.

  19. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction.

    Ririe, K M; Rasmussen, R P; Wittwer, C T

    1997-02-15

    A microvolume fluorometer integrated with a thermal cycler was used to acquire DNA melting curves during polymerase chain reaction by fluorescence monitoring of the double-stranded DNA specific dye SYBR Green I. Plotting fluorescence as a function of temperature as the thermal cycler heats through the dissociation temperature of the product gives a DNA melting curve. The shape and position of this DNA melting curve are functions of the GC/AT ratio, length, and sequence and can be used to differentiate amplification products separated by less than 2 degrees C in melting temperature. Desired products can be distinguished from undesirable products, in many cases eliminating the need for gel electrophoresis. Analysis of melting curves can extend the dynamic range of initial template quantification when amplification is monitored with double-stranded DNA specific dyes. Complete amplification and analysis of products can be performed in less than 15 min.

  20. Molecular thermodynamics of polymer melts at interfaces

    Theodorou, D.N.

    1988-09-01

    A lattice model is developed for the prediction of structure and thermodynamic properties at free polymer melt surfaces and polymer melt/solid interfaces. Density variations in the interfacial region are taken into account by introducing voids in the lattice, in the spirit of the equation of state theory of Sanchez and Lacombe. Intramolecular energy (chain stiffness) effects are explicitly incorporated. The model is derived through a rigorous statistical mechanical and thermodynamic analysis, which is based on the concept of availability. Two cases are considered: ''full equilibrium,'' whereby the interfacial polymer is taken as free to exchange heat, work and mass with a bulk polymer phase at given temperature and pressure; and ''restricted equilibrium,'' whereby a thin polymer film is allowed to equilibrate locally in response to ambient temperature and pressure, but in which chains do not necessarily have the same chemical potential as in the unconstrained bulk. Techniques are developed for calculating surface tension, adhesion tension, density profiles, chain shape, bond orientation, as well as the distribution of segments of various orders in the interfacial region. 28 refs., 6 figs

  1. Dynamics and Melting of Finite Plasma Crystals

    Ludwig, Patrick; K"Ahlert, Hanno; Baumgartner, Henning; Thomsen, Hauke; Bonitz, Michael

    2009-11-01

    Interacting few-particle systems in external trapping potentials are of strong current interest since they allow to realize and control strong correlation and quantum effects [1]. Here, we present our recent results on the structural and thermodynamic properties of the crystal-like Wigner phase of complex plasma confined in a 3D harmonic potential. We discuss the linear response of the strongly correlated system to external excitations, which can be described in terms of normal modes [2]. By means of first-principle simulations the details of the melting phase transitions of these mesoscopic systems are systematically analysed with the melting temperatures being determined by a modified Lindemann parameter for the pair distance fluctuations [3]. The critical temperatures turn out to be utmost sensitive to finite size effects (i.e., the exact particle number), and form of the (screened) interaction potential.[4pt] [1] PhD Thesis, P. Ludwig, U Rostock (2008)[0pt] [2] C. Henning et al., J. Phys. A 42, 214023 (2009)[0pt] [3] B"oning et al., Phys. Rev. Lett. 100, 113401 (2008)

  2. Electrical conductivity of partially-molten olivine aggregate and melt interconnectivity in the oceanic upper mantle

    Laumonier, Mickael; Frost, Dan; Farla, Robert; Katsura, Tomoo; Marquardt, Katharina

    2016-04-01

    A consistent explanation for mantle geophysical anomalies such as the Lithosphere-Astenosphere Boundary (LAB) relies on the existence of little amount of melt trapped in the solid peridotite. Mathematical models have been used to assess the melt fraction possibly lying at mantle depths, but they have not been experimentally checked at low melt fraction (Lanzarote, Canary Islands, Spain) containing various amount of basaltic (MORB-like composition) melt (0 to 100%) at upper mantle conditions. We used the MAVO 6-ram press (BGI) combined with a Solartron gain phase analyser to acquire the electrical resistance of the sample at pressure of 1.5 GPa and temperature up to 1400°C. The results show the increase of the electrical conductivity with the temperature following an Arrhenius law, and with the melt fraction, but the effect of pressure between 1.5 and 3.0 GPa was found negligible at a melt fraction of 0.5 vol.%. The conductivity of a partially molten aggregate fits the modified Archie's law from 0.5 to 100 vol.%. At melt fractions of 0.25, 0.15 and 0.0 vol.%, the EC value deviates from the trend previously defined, suggesting that the melt is no longer fully interconnected through the sample, also supported by chemical mapping. Our results extend the previous results obtained on mixed system between 1 and 10% of melt. Since the melt appears fully interconnected down to very low melt fraction (0.5 vol.%), we conclude that (i) only 0.5 to 1 vol.% of melt is enough to explain the LAB EC anomaly, lower than previously determined; and (ii) deformation is not mandatory to enhance electrical conductivity of melt-bearing mantle rocks.

  3. Experiment on the melting pressure of spin polarized He3

    Chapellier, M.; Olsen, M.; Rasmussen, Finn Berg

    1981-01-01

    In liquid He in a Pomeranchuk cell, the melting curve has been observed to be suppressed, presumably in regions with a strong local spin polarization. In the temperature range 30-50 mK the observed suppression was 60-80 kPa. The corresponding local polarization is estimated, in a crude model...

  4. Ab initio molecular dynamics simulation of laser melting of silicon

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting

  5. Maleic anhydride grafting on EPDM rubber in the melt

    Oostenbrink, A.J.; Oostenbrink, A.J.; Gaymans, R.J.

    1992-01-01

    The grafting of maleic anhydride on a EPDM rubber was studied with a twin screw extruder. The effect of barrel temperatures, throughput, maleic anhydride concentration and peroxide concentration [bis(t-butyl peroxy isopropyl)benzene] on the degree of grafting and melt viscosity was studied. The

  6. Disorder effect on flux lattice melting near Hc2

    Fujita, Ayumi; Hikami, Shinobu; Larkin, A.I.

    1991-01-01

    The perturbation series of the three dimensional free energy of Ginzburg-Landau model in a random potential is investigated for a strong magnetic field. The shift of the melting temperature of vortex lattice caused by the white noise random potential is evaluated. The crossover between the ''vortex-glass'' phase and the ''gauge-glass'' phase is discussed for a strong disorder. (orig.)

  7. Melting of superheated molecular crystals

    Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2017-07-01

    Melting dynamics of micrometer scale, polycrystalline samples of isobutane, dimethyl ether, methyl benzene, and 2-propanol were investigated by fast scanning calorimetry. When films are superheated with rates in excess of 105 K s-1, the melting process follows zero-order, Arrhenius-like kinetics until approximately half of the sample has transformed. Such kinetics strongly imply that melting progresses into the bulk via a rapidly moving solid-liquid interface that is likely to originate at the sample's surface. Remarkably, the apparent activation energies for the phase transformation are large; all exceed the enthalpy of vaporization of each compound and some exceed it by an order of magnitude. In fact, we find that the crystalline melting kinetics are comparable to the kinetics of dielectric α-relaxation in deeply supercooled liquids. Based on these observations, we conclude that the rate of non-isothermal melting for superheated, low-molecular-weight crystals is limited by constituent diffusion into an abnormally dense, glass-like, non-crystalline phase.

  8. High resolution melting curve analysis as a new tool for rapid identification of canine parvovirus type 2 strains.

    Bingga, Gali; Liu, Zhicheng; Zhang, Jianfeng; Zhu, Yujun; Lin, Lifeng; Ding, Shuangyang; Guo, Pengju

    2014-01-01

    A high resolution melting (HRM) curve method was developed to identify canine parvovirus type 2 (CPV-2) strains by nested PCR. Two sets of primers, CPV-426F/426R and CPV-87R/87F, were designed that amplified a 52 bp and 53 bp product from the viral VP2 capsid gene. The region amplified by CPV-426F/426R included the A4062G and T4064A mutations in CPV-2a, CPV-2b and CPV-2c. The region amplified by CPV-87F/87R included the A3045T mutation in the vaccine strains of CPV-2 and CPV-2a, CPV-2b and CPV-2c. Faecal samples were obtained from 30 dogs that were CPV antigen-positive. The DNA was isolated from the faecal samples and PCR-amplified using the two sets of primers, and genotyped by HRM curve analysis. The PCR-HRM assay was able to distinguish single nucleotide polymorphisms between CPV-2a, CPV-2b and CPV-2c using CPV-426F/426R. CPV-2a was distinguished from CPV-2b and CPV-2c by differences in the melting temperature. CPV-2b and CPV-2c could be distinguished based on the shape of the melting curve after generating heteroduplexes using a CPV-2b reference sample. The vaccine strains of CPV-2 were identified using CPV-87F/87R. Conventional methods for genotyping CPV strains are labor intensive, expensive or time consuming; the present PCR-based HRM assay might be an attractive alternative. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Automatic Control of Silicon Melt Level

    Duncan, C. S.; Stickel, W. B.

    1982-01-01

    A new circuit, when combined with melt-replenishment system and melt level sensor, offers continuous closed-loop automatic control of melt-level during web growth. Installed on silicon-web furnace, circuit controls melt-level to within 0.1 mm for as long as 8 hours. Circuit affords greater area growth rate and higher web quality, automatic melt-level control also allows semiautomatic growth of web over long periods which can greatly reduce costs.

  10. Effect of tellurium on viscosity and liquid structure of GaSb melts

    Ji Leilei [School of Material Science and Engineering, Jinan University, Jinan 250022 (China); Geng Haoran [School of Material Science and Engineering, Jinan University, Jinan 250022 (China)], E-mail: mse_genghr@ujn.edu.cn; Sun Chunjing [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Teng Xinying; Liu Yamei [School of Material Science and Engineering, Jinan University, Jinan 250022 (China)

    2008-04-03

    The behavior of GaSb melt with tellurium addition was investigated using viscometer and differential scanning calorimetry (DSC). Normally, the viscosity of all melts measured decreased with the increasing temperature. However, anomalous transition points were observed in the temperature dependence of viscosity for Ga-Sb-Te system. Corresponded with the abnormal points on the viscosity-temperature curves, there were thermal effect peaks on the DSC curves. Furthermore, viscous activation energy and flow units of these melts and their structural features were discussed in this paper.

  11. Study of behaviour of lanthanum- and yttrium electrodes in chloride melts

    Shkol'nikov, S.I.; Tolypin, E.S.; Yur'ev, B.P.

    1984-01-01

    A study was made on the lanthanum- and yttrium behaviour in a mixture of molten potassium- and sodium chlorides at various temperatures. It is shown that the lanthanum- and yttrium behaviour in KCl-NaCl melt is similar to the behaviour of other metals. Their corrosion rate is much higher as compared to other metals and it grows rapidly with increasing melt temperature. The temperature growth by 200 deg C results in an increase in the corrosion rate almost by an order. The potentials of lanthanum- and yttrium electrodes at the instant they are immersed in the melt have more negative values than the potentials of alkali metals under similar conditions

  12. Extensional viscosity for polymer melts measured in the filament stretching rheometer

    Bach, Anders; Rasmussen, Henrik K.; Hassager, Ole

    2003-01-01

    A new filament stretching rheometer has been constructed to measure the elongational viscosity of polymer melts at high temperatures. Two polymer melts, a LDPE and a LLDPE, were investigated with this rheometer. A constant elongational rate has been obtained by an iterative application of the Orr...

  13. Modelling the evaporation of boron species. Part 1: Alkali-free borosilicate glass melts

    Limpt, J.A.C. van; Beerkens, R.G.C.; Cook, S.; O'Connor, R.; Simon, J.

    2011-01-01

    A laboratory test facility has been used to measure the boron evaporation rates from borosilicate glass melts. The impact of furnace atmosphere composition and glass melt composition on the temperature dependent boron evaporation rates has been investigated experimentally. In Part 1 of this paper

  14. Indication of liquid-liquid phase transition in CuZr-based melts

    Zhou, C.; Hu, L.N.; Sun, Q.J.

    2013-01-01

    We study the dynamic behavior of CuZr-based melts well above the liquidus temperature. The results show a discontinuous change in viscosity during cooling, which is attributed to an underlying liquid-liquid phase transition (LLPT) in these melts. The LLPT is further verified by thermodynamic...

  15. Comparison of SAS3A and MELT-III predictions for a transient overpower hypothetical accident

    Wilburn, N.P.

    1976-01-01

    A comparison is made of the predictions of the two major codes SAS3A and MELT-III for the hypothetical unprotected transient overpower accident in the FFTF. The predictions of temperatures, fuel restructuring, fuel melting, reactivity feedbacks, and core power are compared

  16. Effects of Nanoparticles on Melting Process with Phase-Change Using the Lattice Boltzmann Method

    Ibrahem, Ahmed M.; El-Amin, Mohamed; Sun, Shuyu

    2017-01-01

    -Gross-Krook (LBGK) is used to solve the problem of 1D melting by conduction. On the other hand, we use the model of multi-distribution functions (MDF) to calculate the density, the velocity and the temperature for the problem of 2D melting by free convection

  17. Mechanism of melting in submonolayer films of nitrogen molecules adsorbed on the basal planes of graphite

    Hansen, Flemming Yssing; Bruch, Ludwig Walter; Taub, H.

    1995-01-01

    The melting mechanism in submonolayer films of N-2 molecules adsorbed on the basal planes of graphite is studied using molecular-dynamics simulations. The melting is strongly correlated with the formation of vacancies in the films. As the temperature increases, the edges of the submonolayer patch...

  18. Experiments and analyses on melt-structure-water interactions during severe accidents

    Seghal, B.R.; Dinh, T.N.; Bui, V.A.; Green, J.A.; Nourgaliev, R.R.; Okkonen, T.O.; Dinh, A.T.

    1998-04-01

    This report is the final report for the research project Melt Structure Water Interactions (MSWI). It describes results of analytical and experimental studies concerning MSWI during the course of a hypothetical core meltdown accident in a LWR. Emphasis has been placed on phenomena which govern vessel failure mode and timing and the mechanisms and properties which govern the fragmentation and breakup of melt jets and droplets. It was found that: 2-D effects significantly diminished the focusing effect of an overlying metallic layer on top of an oxide melt pool. This result improves the feasibility of in-vessel retention of a melt pool through external cooling of the lower head; phenomena related to hole ablation and melt discharge, in the event of vessel failure, are affected significantly by crust formation; the jet fragmentation process is a function of many related phenomena. The fragmentation rate depends not only on the traditional parameters but also on the melt physical properties, which change as the melt cools down from liquid to solid temperature; film boiling was investigated by developing a two-phase flow model and inserting it in a multi-D fluid dynamics code. It was concluded that the thickness of the film on the surface of a melt jet would be small and that the effects of the film on the process should not be large. This conclusion is contrary to the modeling employed in some other codes. The computer codes were developed and validated against the data obtained in the MSWI Project. The melt vessel interaction thermal analysis code describes the process of melt pool formation and convection and the resulting vessel thermal loadings. In addition, several innovative models were developed to describe the melt-water interaction process. The code MELT-3D treats the melt jet as a collection of particles whose movement is described with a three-dimensional Eulerian formulation. The model (SIPHRA) tracks the melt jet with an additional equation, using the

  19. Numerical simulation of hot-melt extrusion processes for amorphous solid dispersions using model-based melt viscosity.

    Bochmann, Esther S; Steffens, Kristina E; Gryczke, Andreas; Wagner, Karl G

    2018-03-01

    Simulation of HME processes is a valuable tool for increased process understanding and ease of scale-up. However, the experimental determination of all required input parameters is tedious, namely the melt rheology of the amorphous solid dispersion (ASD) in question. Hence, a procedure to simplify the application of hot-melt extrusion (HME) simulation for forming amorphous solid dispersions (ASD) is presented. The commercial 1D simulation software Ludovic ® was used to conduct (i) simulations using a full experimental data set of all input variables including melt rheology and (ii) simulations using model-based melt viscosity data based on the ASDs glass transition and the physical properties of polymeric matrix only. Both types of HME computation were further compared to experimental HME results. Variation in physical properties (e.g. heat capacity, density) and several process characteristics of HME (residence time distribution, energy consumption) among the simulations and experiments were evaluated. The model-based melt viscosity was calculated by using the glass transition temperature (T g ) of the investigated blend and the melt viscosity of the polymeric matrix by means of a T g -viscosity correlation. The results of measured melt viscosity and model-based melt viscosity were similar with only few exceptions, leading to similar HME simulation outcomes. At the end, the experimental effort prior to HME simulation could be minimized and the procedure enables a good starting point for rational development of ASDs by means of HME. As model excipients, Vinylpyrrolidone-vinyl acetate copolymer (COP) in combination with various APIs (carbamazepine, dipyridamole, indomethacin, and ibuprofen) or polyethylene glycol (PEG 1500) as plasticizer were used to form the ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The Melting Point of Palladium Using Miniature Fixed Points of Different Ceramic Materials: Part II—Analysis of Melting Curves and Long-Term Investigation

    Edler, F.; Huang, K.

    2016-12-01

    Fifteen miniature fixed-point cells made of three different ceramic crucible materials (Al2O3, ZrO2, and Al2O3(86 %)+ZrO2(14 %)) were filled with pure palladium and used to calibrate type B thermocouples (Pt30 %Rh/Pt6 %Rh). A critical point by using miniature fixed points with small amounts of fixed-point material is the analysis of the melting curves, which are characterized by significant slopes during the melting process compared to flat melting plateaus obtainable using conventional fixed-point cells. The method of the extrapolated starting point temperature using straight line approximation of the melting plateau was applied to analyze the melting curves. This method allowed an unambiguous determination of an electromotive force (emf) assignable as melting temperature. The strict consideration of two constraints resulted in a unique, repeatable and objective method to determine the emf at the melting temperature within an uncertainty of about 0.1 μ V. The lifetime and long-term stability of the miniature fixed points was investigated by performing more than 100 melt/freeze cycles for each crucible of the different ceramic materials. No failure of the crucibles occurred indicating an excellent mechanical stability of the investigated miniature cells. The consequent limitation of heating rates to values below {± }3.5 K min^{-1} above 1100° C and the carefully and completely filled crucibles (the liquid palladium occupies the whole volume of the crucible) are the reasons for successfully preventing the crucibles from breaking. The thermal stability of the melting temperature of palladium was excellent when using the crucibles made of Al2O3(86 %)+ZrO2(14 %) and ZrO2. Emf drifts over the total duration of the long-term investigation were below a temperature equivalent of about 0.1 K-0.2 K.

  1. Experimental study of simulant melt stream-water thermal interaction in pool and narrow geometries

    Narayanan, K.S.; Jasmin Sudha, A.; Murthy, S.S.; Rao, E.H.V.M.; Lydia, G.; Das, S.K.; Harvey, J.; Kannan, S.E.

    2005-01-01

    Full text of publication follows: Small scale experiments were carried out to investigate the thermal interaction characteristics of a few kilograms of Sn Pb, Bi and Zn as hot melt, in the film boiling region of water in an attempt to simulate a coherent fuel coolant interaction during a postulated severe accident in a nuclear reactor. Melt stream solidification and detached debris generation were studied with different melt superheat up to 200 deg. C, at different coolant temperatures of 30 deg. C, 50 deg. C, 70 deg. C, 90 deg. C, in pool geometry and in long narrow coolant column. The material was heated in an Alumina crucible and poured through a hot stainless steel funnel with a nozzle diameter of 7.7 mm, into the coolant. A stainless steel plate was used to collect the solidified mass after the interaction. Temperature monitoring was done in the coolant column close to the melt stream. The melt stream movement inside the coolant was imaged using a video camera at 25 fps. Measured melt stream entry velocity was around 1.5 m/sec. For low melt superheat and low coolant temperature, solidified porous tree like structure extended from the collector plate up to the melt release point. For water temperature of 70 deg. C, the solidified bed height at the center was found to decrease with increase in the melt superheat up to 150 deg. C. Fragmentation was found to occur when the melt superheat exceeded 200 deg. C. Particle size distribution was obtained for the fragmented debris. In 1D geometry, with 50 deg. C superheat, columnar solidification was observed with no fine debris. The paper gives the details of the results obtained in the experiments and highlights the role of Rayleigh-Taylor, Kelvin-Helmholtz instabilities and the melt physical properties on the fragmentation kinetics. (authors)

  2. Mechanism of anodic oxidation of molybdenum and tungsten in nitrate-nitrite melts

    Yurkinskij, V.P.; Firsova, E.G.; Morachevskij, A.G.

    1987-01-01

    The mechanism of anode oxidation of tungsten and molybdenum in NaNO 3 -KNO 3 (50 mass %) nitrate-nitrite melts with NaNO 2 -KNO 2 (0.5-50 mass %) addition and in NaNO 2 -KNO 2 (35 mole %) nitrite melt in the 516-580 K temperature range is studied. It is supposed that the process of anode dissloving of the mentioned metals in nitrite melt and nitrate-nitrite mixtures is two-electron. Formation of oxide passivating film is possible under electrolysis on the anode surface, the film is then dissolved in nitrate-nitrite melt with formation of molybdates or tungstates

  3. FY 1997 report on the study on solidification process of high-temperature melt of heat resistant metals; 1997 nendo chosa hokokusho (tainetsu kinzoku koon yueki no gyoko katei no kenkyu)

    NONE

    1998-03-01

    Study was made on a solidification process of metal melt under micro-gravity condition in an underground non-gravity experiment center, considering that improvement of the heat resistance of turbine blades for jet engines and power generation gas turbines contributes to prevention of global warming through improvement of thermal engine efficiencies and consumption reduction of precious fossil fuel. Study was made on a simulation program and precise measurement of thermal properties for precision casting of heat-resistant alloy members. Study was also made on Al and Zn alloys and their welding for production and evaluation technologies of new metal textures by supercooling solidification. Some issues for strongly desired improvement of a simulation program for precision casting were clarified. In addition, since thermal property data of practical heat-resistant polyalloy members are poor, data and measurement method for precision casting were clarified. It was also suggested that basic elucidation of the solidification process under micro- gravity condition is possible. 34 refs., 41 figs., 5 tabs.

  4. On the rapid melt quenching

    Usatyuk, I.I.; Novokhatskij, I.A.; Kaverin, Yu.F.

    1994-01-01

    Specific features of instrumentation of traditionally employed method of melt spinning (rapid quenching), its disadvantages being discussed, were analyzed. The necessity of the method upgrading as applied to the problems of studying fine structure of molten metals and glasses was substantiated. The principle flowsheet of experimental facility for extremely rapid quenching of the melts of metals is described, specificity of its original functional units being considered. The sequence and character of all the principal stages of the method developed were discussed. 18 refs.; 3 figs

  5. Effect of glass-batch makeup on the melting process

    Hrma, Pavel R.; Schweiger, Michael J.; Humrickhouse, Carissa J.; Moody, J. Adam; Tate, Rachel M.; Rainsdon, Timothy T.; Tegrotenhuis, Nathan E.; Arrigoni, Benjamin M.; Marcial, Jose; Rodriguez, Carmen P.; Tincher, Benjamin

    2010-01-01

    The response of a glass batch to heating is determined by the batch makeup and in turn determines the rate of melting. Batches formulated for a high-alumina nuclear waste to be vitrified in an all-electric melter were heated at a constant temperature-increase rate to determine changes in melting behavior in response to the selection of batch chemicals and silica grain-size as well as the addition of heat-generating reactants. The type of batch materials and the size of silica grains determine how much, if any, primary foam occurs during melting. Small quartz grains, 5 (micro)m in size, caused extensive foaming because their major portion dissolved at temperatures 800 C when batch gases no longer evolved. The exothermal reaction of nitrates with sucrose was ignited at a temperature as low as 160 C and caused a temporary jump in temperature of several hundred degrees. Secondary foam, the source of which is oxygen from redox reactions, occurred in all batches of a limited composition variation involving five oxides, B 2 O 3 , CaO, Li 2 O, MgO, and Na 2 O. The foam volume at the maximum volume-increase rate was a weak function of temperature and melt basicity. Neither the batch makeup nor the change in glass composition had a significant impact on the dissolution of silica grains. The impacts of primary foam generation on glass homogeneity and the rate of melting in large-scale continuous furnaces have yet to be established via mathematical modeling and melter experiments.

  6. Effect Of Glass-Batch Makeup On The Melting Process

    Kruger, A.A.; Hrma, P.

    2010-01-01

    The response of a glass batch to heating is determined by the batch makeup and in turn determines the rate of melting. Batches formulated for a high-alumina nuclear waste to be vitrified in an all-electric melter were heated at a constant temperature-increase rate to determine changes in melting behavior in response to the selection of batch chemicals and silica grain-size as well as the addition of heat-generating reactants. The type of batch materials and the size of silica grains determine how much, if any, primary foam occurs during melting. Small quartz grains, 5 (micro)m in size, caused extensive foaming because their major portion dissolved at temperatures 800 C when batch gases no longer evolved. The exothermal reaction of nitrates with sucrose was ignited at a temperature as low as 160 C and caused a temporary jump in temperature of several hundred degrees. Secondary foam, the source of which is oxygen from redox reactions, occurred in all batches of a limited composition variation involving five oxides, B 2 O 3 , CaO, Li 2 O, MgO, and Na 2 O. The foam volume at the maximum volume-increase rate was a weak function of temperature and melt basicity. Neither the batch makeup nor the change in glass composition had a significant impact on the dissolution of silica grains. The impacts of primary foam generation on glass homogeneity and the rate of melting in large-scale continuous furnaces have yet to be established via mathematical modeling and melter experiments.

  7. Molecular dynamics simulation of UO2 nanocrystals melting under isolated and periodic boundary conditions

    Boyarchenkov, A.S.; Potashnikov, S.I.; Nekrasov, K.A.; Kupryazhkin, A.Ya.

    2012-01-01

    Highlights: ► We perform MD simulation of UO 2 nanocrystals melting (in range of 768–49 152 ions). ► T(P) melting curves intersect zero near −20 GPa and saturate near 25 GPa. ► Reciprocal size dependences of nanocrystal melting point decrease nonlinearly. ► Linear and parabolic extrapolations to macroscopic values are considered. ► Melting point and density jump are reproduced, but heat of fusion is underestimated. - Abstract: Melting of uranium dioxide (UO 2 ) nanocrystals has been studied by molecular dynamics (MD) simulation. Ten recent and widely used sets of pair potentials were assessed in the rigid ion approximation. Both isolated (in vacuum) and periodic boundary conditions (PBC) were explored. Using barostat under PBC the pressure dependences of melting point were obtained. These curves intersected zero near −20 GPa, saturated near 25 GPa and increased nonlinearly in between. Using simulation of surface under isolated boundary conditions (IBC) recommended melting temperature and density jump were successfully reproduced. However, the heat of fusion is still underestimated. These melting characteristics were calculated for nanocrystals of cubic shape in the range of 768–49 152 particles (volume range of 10–1000 nm 3 ). The obtained reciprocal size dependences decreased nonlinearly. Linear and parabolic extrapolations to macroscopic values are considered. The parabolic one is found to be better suited for analysis of the data on temperature and heat of melting.

  8. Thermophysical and Optical Properties of Semiconducting Ga2Te3 Melt

    Li, Chao; Su, Ching-Hua; Lehoczky, Sandor L.; Scripa, Rosalie N.; Ban, Heng

    2005-01-01

    The majority of bulk semiconductor single crystals are presently grown from their melts. The thermophysical and optical properties of the melts provide a fundamental understanding of the melt structure and can be used to optimize the growth conditions to obtain higher quality crystals. In this paper, we report several thermophysical and optical properties for Ga2Te3 melts, such as electrical conductivity, viscosity, and optical transmission for temperatures ranging from the melting point up to approximately 990 C. The conductivity and viscosity of the melts are determined using the transient torque technique. The optical transmission of the melts is measured between the wavelengths of 300 and 2000 nm by an dual beam reversed-optics spectrophotometer. The measured properties are in good agreement with the published data. The conductivities indicate that the Ga2Te3 melt is semiconductor-like. The anomalous behavior in the measured properties are used as an indication of a structural transformation in the Ga2Te3 melt and discussed in terms of Eyring's and Bachinskii's predicted behaviors for homogeneous melts.

  9. Water boiling on the corium melt surface under VVER severe accident conditions

    Bechta, S.V.; Vitol, S.A.; Krushinov, E.V.; Granovsky, V.S.; Sulatsky, A.A.; Khabensky, V.B. [Sci. Res. Technol. Inst., Leningrad (Russian Federation); Lopukh, D.B.; Petrov, Y.B.; Pechenkov, A.Y. [St. Petersburg Electrotechnical University (SPbEU), Prof. Popov st 5/3, St. Petersburg (Russian Federation)

    2000-01-01

    Experimental results are presented on the interaction of corium melt with water supplied on its surface. The tests were conducted in the 'Rasplav-2' experimental facility. Corium melt was generated by induction melting in the cold crucible. The following data were obtained: heat transfer at boiling water-melt surface interaction, gas and aerosol release, post-interaction solidified corium structure. The corium melt charge had the following composition, mass%: 60% UO{sub 2+x}-16% ZrO{sub 2}-15% Fe{sub 2}O{sub 3}-6% Cr{sub 2}O{sub 3}-3% Ni{sub 2}O{sub 3}. The melt surface temperature ranged within 1920-1970 K. (orig.)

  10. Water boiling on the corium melt surface under VVER severe accident conditions

    Bechta, S.V.; Vitol, S.A.; Krushinov, E.V. [Research Institute of Technology, Sosnovy Bor (NITI) (RU)] [and others

    1999-07-01

    Experimental results are presented on the interaction between corium melt and water supplied onto its surface. The tests were conducted on the Rasplav-2' experimental facility. Induction melting in a cold crucible was used to produce the melt. The following data have been obtained: heat transfer at water boiling on the melt surface, aerosol release, structure of the post-interaction solidified corium. The corium melt had the following composition, mass %: 60%UO{sub 2}- 16%ZrO{sub 2}- 15%Fe{sub 2}O{sub 3} - 6%Cr{sub 2}O{sub 3}-3%Ni{sub 2}O{sub 3}. The melt surface temperature was 1650-1700degC. (author)

  11. Transition from two-dimensional to three-dimensional melting in Langmuir-Blodgett films

    Mukhopadhyay, M.K.; Sanyal, M.K.; Datta, A.; Mukherjee, M.; Geue, Th.; Grenzer, J.; Pietsch, U.

    2004-01-01

    Results of energy-dispersive x-ray reflectivity and grazing incidence diffraction studies of Langmuir-Blodgett films exhibited evolution of conventional three-dimensional melting from continuous melting, characteristic of two-dimensional systems, as a function of deposited monolayers. Continuous expansion followed by a sharp phase transition of the in-plane lattice was observed before the melting point and found to be independent of number of deposited layers. Evolution of conventional melting with an increase in the number of monolayers could be quantified by measuring stiffness against tilting of the vertical stack of molecules, which are kept together by an internal field. The internal field as defined in this model reduces as the in-plane lattice expands and the sample temperature approaches melting point. The sharpness of the melting transition, which has been approximated by a Langevin function, increases with the number of deposited monolayers

  12. Reversible ultrafast melting in bulk CdSe

    Wu, Wenzhi; He, Feng; Wang, Yaguo

    2016-01-01

    In this work, transient reflectivity changes in bulk CdSe have been measured with two-color femtosecond pump-probe spectroscopy under a wide range of pump fluences. Three regions of reflectivity change with pump fluences have been consistently revealed for excited carrier density, coherent phonon amplitude, and lattice temperature. For laser fluences from 13 to 19.3 mJ/cm 2 , ultrafast melting happens in first several picoseconds. This melting process is purely thermal and reversible. A complete phase transformation in bulk CdSe may be reached when the absorbed laser energy is localized long enough, as observed in nanocrystalline CdSe

  13. Effect of Melting Techniques on Ductile Iron castings Properties

    Bockus, S.

    2006-01-01

    Full Text Available The study was designed to investigate the effects of the charge, melting conditions, nodularizing and inoculation on the ductile iron castings properties. Results showed that the temperature and holding time of the melt in an induction furnace and the intensity of spheroidizing effect on the carbon and residual magnesium contents in the ductile iron castings. The same grade of ductile iron may be obtained using different chemical compositions. The castings of ductile iron will be ferritic as-cast only when large amount of pig iron in the charge and in addition some-steps inoculating treatment are used.

  14. Melting line of Krypton in extreme thermodynamic regimes

    Giuffre', E

    2007-01-01

    Full Text Available We have performed extensive computer simulations of the thermodynamic and structural properties of the krypton rare gas modeled by the modified Buckingham exponential-6 interatomic potential. Using a new set of potential parameters, we have found a good agreement with the room temperature equation of state at very high pressure obtained by diamond anvil cell experiments. Moreover, the melting line of the model has been estimated through the Lindemann criterion; the agreement with the low-pressure experiments is excellent, whereas at higher pressure, the model poorly reproduces the typical softening of the experimental melting curve.

  15. On barium oxide solubility in barium-containing chloride melts

    Nikolaeva, Elena V.; Zakiryanova, Irina D.; Bovet, Andrey L.; Korzun, Iraida V.

    2016-01-01

    Oxide solubility in chloride melts depends on temperature and composition of molten solvent. The solubility of barium oxide in the solvents with barium chloride content is essentially higher than that in molten alkali chlorides. Spectral data demonstrate the existence of oxychloride ionic groupings in such melts. This work presents the results of the BaO solubility in two molten BaCl 2 -NaCl systems with different barium chloride content. The received data together with earlier published results revealed the main regularities of BaO solubility in molten BaO-BaCl 2 -MCl systems.

  16. Melted flux liquids in high-Tc superconductors

    Nelson, D.R.

    1989-01-01

    A theory of the entangles flux liquids which arise in the new high-T c superconductors is reviewed. New physics appears because of the weak interplanar couplings and high critical temperatures in these materials. Flux line wandering melts the conventional Abrikosov flux lattice over large portions of the phase diagram and leads to a novel entangled vortex state. The authors suggest that a heavily entangled flux liquid could exhibit glassy behavior on experimental time scales, in analogy with viscoelastic behavior in dense polymer melts

  17. Redox kinetics and mechanism in silicate melts

    Cochain, B.

    2009-12-01

    This work contributes to better understand iron redox reactions and mechanisms in silicate melts. It was conducted on compositions in both Na 2 O-B 2 O 3 -SiO 2 -FeO and Na 2 O-Al 2 O 3 -SiO 2 -FeO systems. The influence of boron-sodium and aluminum-sodium substitutions and iron content on properties and structure of glasses and on the iron redox kinetics has been studied by Raman, Moessbauer and XANES spectroscopies at the B and Fe K-edges. In borosilicate glasses, an increase in iron content or in the Fe 3+ /ΣFe redox state implies a structural rearrangement of the BO 4 species in the glass network whereas the BO 3 and BO 4 relative proportions remain nearly constant. In all studied glasses and melts, Fe 3+ is a network former in tetrahedral coordination, unless for aluminosilicates of ratio Al/Na≥1 where Fe 3+ is a network modifier in five-fold coordination. Near Tg, diffusion of network modifying cations controls the iron redox kinetics along with a flux of electron holes. At liquidus temperatures, oxygen diffusion is considered to be the mechanism that governs redox reactions. This study shows the role played by the silicate network polymerization on the redox kinetics. In borosilicate melts, iron redox kinetics depends on the boron speciation between BO 3 and BO 4 that depends itself on the sodium content. Furthermore, an increase in the network-former/network-modifier ratio implies a decrease in oxygen diffusion that results in a slowing down of the redox kinetics. The obtained results allow a description of the iron redox kinetics for more complex compositions as natural lavas or nuclear waste model glasses. (author)

  18. Chemical and electrochemical behaviour of halides in nitrate melts

    Tkalenko, D.A.; Kudrya, S.A.; Delimarskij, Yu.K.; Antropov, L.I.

    1978-01-01

    The possibility of improving the positive electrode characteristics of medium temperature lithium-nitrate element by means of adding alkali metal halogenides into nitrate melt is considered. The experiments have been made at the temperature of 150 deg C in (K, Na, Li) NO 3 melts of eutectic composition. It has been found that only at temperatures higher than 250 deg C in nitrate melts containing Li + and Na + cations, an interaction of nitrate ions with the added iodides is possible. The interaction does not take place in case of chloride, bromide, and fluoride additions. The waves of halogenide oxidation and reduction of the corresponding halogens have been identified. The analysis of the obtained experimental data shows that halogenide addition into nitrate melt does not result in speed increase of cathodic reduction of nitrate ions or in formation of a new cathode process at more positive potentials. A conclusion is made that halogenide addition into electrolyte of lithium-nitrate current source is inexpedient

  19. Melting and crystallization of Gesub(1-x)Tesub(x)

    Korzhuev, M.A.; Petrov, L.A.; Teplov, O.A.; Demenskij, G.K.

    1983-01-01

    The purpose of the paper is to investigate melting and crystallization processes of Gesub(1-x)Tesub(x) alloys of different composition. The alloys for investigation have been prepared from pure components using synthesis in quartz ampules during 3 hours at 1150 K with the subsequent homogenizing at 600 K during 3000 hours. Investigations have been conducted in the 750-1090 temperature range. Ranges of transformations, maximum temperature of sample heat release Tsub(max), thermal effect theta, entropy δS=theta/Tsub(max) are computed. The obtained theta and δS values agree with the data of works of other authors. Part of Ge-Te diagrams near the melting temperature, melting curves and curves of thermal degree of Atheta(T)/theta transformation during melting, crystallization and Ge separation from solid solution in alloys of different composition are presented. The results agree with phase diagram and prove mechanism of non-stoichiometric defect formation in GeTe

  20. Viscosity and volume properties of the Al-Cu melts

    Kurochkin A.

    2011-05-01

    Full Text Available Temperature dependences of the kinematic viscosity v and the density ρ of Al-Cu melts were investigated in the same regime taking into account that viscometric experiments with the melts enriched with cupper have not been repeated since 1960th and densimetric measurements did not perform before at all. The first measurements were fulfilled using the method of dumping oscillation of a crucible filled in by a melt investigated. Its precision was as high as 1.5%. Density was measured using the gamma-absorption method with the accuracy of 0.2 to 0.3%. Crucibles of BeO were used in both the cases. In the course of the measurements a distinct branching of the heating and cooling curves were fixed below some temperature characteristic of each composition for most of the investigated samples. The branching temperature systematically changes with growth of cupper content. The authors believe that the effect is caused by the irreversible transition of the melts from microheterogeneous state inherited from the initial rough materials into a true solution state.