WorldWideScience

Sample records for melting profile pcr

  1. PCR melting profile (PCR MP - a new tool for differentiation of Candida albicans strains

    Directory of Open Access Journals (Sweden)

    Nowak Magdalena

    2009-11-01

    Full Text Available Abstract Background We have previously reported the use of PCR Melting Profile (PCR MP technique based on using low denaturation temperatures during ligation mediated PCR (LM PCR for bacterial strain differentiation. The aim of the current study was to evaluate this method for intra-species differentiation of Candida albicans strains. Methods In total 123 Candida albicans strains (including 7 reference, 11 clinical unrelated, and 105 isolates from patients of two hospitals in Poland were examined using three genotyping methods: PCR MP, macrorestriction analysis of the chromosomal DNA by pulsed-field gel electrophoresis (REA-PFGE and RAPD techniques. Results The genotyping results of the PCR MP were compared with results from REA-PFGE and RAPD techniques giving 27, 26 and 25 unique types, respectively. The results showed that the PCR MP technique has at least the same discriminatory power as REA-PFGE and RAPD. Conclusion Data presented here show for the first time the evaluation of PCR MP technique for candidial strains differentiation and we propose that this can be used as a relatively simple and cheap technique for epidemiological studies in short period of time in hospital.

  2. High-resolution melt PCR analysis for genotyping of Ureaplasma parvum isolates directly from clinical samples.

    Science.gov (United States)

    Payne, Matthew S; Tabone, Tania; Kemp, Matthew W; Keelan, Jeffrey A; Spiller, O Brad; Newnham, John P

    2014-02-01

    Ureaplasma sp. infection in neonates and adults underlies a variety of disease pathologies. Of the two human Ureaplasma spp., Ureaplasma parvum is clinically the most common. We have developed a high-resolution melt (HRM) PCR assay for the differentiation of the four serovars of U. parvum in a single step. Currently U. parvum strains are separated into four serovars by sequencing the promoter and coding region of the multiple-banded antigen (MBA) gene. We designed primers to conserved sequences within this region for PCR amplification and HRM analysis to generate reproducible and distinct melt profiles that distinguish clonal representatives of serovars 1, 3, 6, and 14. Furthermore, our HRM PCR assay could classify DNA extracted from 74 known (MBA-sequenced) test strains with 100% accuracy. Importantly, HRM PCR was also able to identify U. parvum serovars directly from 16 clinical swabs. HRM PCR performed with DNA consisting of mixtures of combined known serovars yielded profiles that were easily distinguished from those for single-serovar controls. These profiles mirrored clinical samples that contained mixed serovars. Unfortunately, melt curve analysis software is not yet robust enough to identify the composition of mixed serovar samples, only that more than one serovar is present. HRM PCR provides a single-step, rapid, cost-effective means to differentiate the four serovars of U. parvum that did not amplify any of the known 10 serovars of Ureaplasma urealyticum tested in parallel. Choice of reaction reagents was found to be crucial to allow sufficient sensitivity to differentiate U. parvum serovars directly from clinical swabs rather than requiring cell enrichment using microbial culture techniques.

  3. Real-time PCR gene expression profiling

    Czech Academy of Sciences Publication Activity Database

    Kubista, Mikael; Sjögreen, B.; Forootan, A.; Šindelka, Radek; Jonák, Jiří; Andrade, J.M.

    2007-01-01

    Roč. 1, - (2007), s. 56-60 ISSN 1360-8606 R&D Projects: GA AV ČR KJB500520601 Institutional research plan: CEZ:AV0Z50520514 Keywords : real - time PCR, * expression profiling * statistical analysis Subject RIV: EB - Genetics ; Molecular Biology

  4. Evaluation of PCR and high-resolution melt curve analysis for differentiation of Salmonella isolates.

    Science.gov (United States)

    Saeidabadi, Mohammad Sadegh; Nili, Hassan; Dadras, Habibollah; Sharifiyazdi, Hassan; Connolly, Joanne; Valcanis, Mary; Raidal, Shane; Ghorashi, Seyed Ali

    2017-06-01

    Consumption of poultry products contaminated with Salmonella is one of the major causes of foodborne diseases worldwide and therefore detection and differentiation of Salmonella spp. in poultry is important. In this study, oligonucleotide primers were designed from hemD gene and a PCR followed by high-resolution melt (HRM) curve analysis was developed for rapid differentiation of Salmonella isolates. Amplicons of 228 bp were generated from 16 different Salmonella reference strains and from 65 clinical field isolates mainly from poultry farms. HRM curve analysis of the amplicons differentiated Salmonella isolates and analysis of the nucleotide sequence of the amplicons from selected isolates revealed that each melting curve profile was related to a unique DNA sequence. The relationship between reference strains and tested specimens was also evaluated using a mathematical model without visual interpretation of HRM curves. In addition, the potential of the PCR-HRM curve analysis was evaluated for genotyping of additional Salmonella isolates from different avian species. The findings indicate that PCR followed by HRM curve analysis provides a rapid and robust technique for genotyping of Salmonella isolates to determine the serovar/serotype.

  5. Optimization of PCR Condition: The First Study of High Resolution Melting Technique for Screening of APOA1 Variance.

    Science.gov (United States)

    Wahyuningsih, Hesty; K Cayami, Ferdy; Bahrudin, Udin; A Sobirin, Mochamad; Ep Mundhofir, Farmaditya; Mh Faradz, Sultana; Hisatome, Ichiro

    2017-03-01

    High resolution melting (HRM) is a post-PCR technique for variant screening and genotyping based on the different melting points of DNA fragments. The advantages of this technique are that it is fast, simple, and efficient and has a high output, particularly for screening of a large number of samples. APOA1 encodes apolipoprotein A1 (apoA1) which is a major component of high density lipoprotein cholesterol (HDL-C). This study aimed to obtain an optimal quantitative polymerase chain reaction (qPCR)-HRM condition for screening of APOA1 variance. Genomic DNA was isolated from a peripheral blood sample using the salting out method. APOA1 was amplified using the RotorGeneQ 5Plex HRM. The PCR product was visualized with the HRM amplification curve and confirmed using gel electrophoresis. The melting profile was confirmed by looking at the melting curve. Five sets of primers covering the translated region of APOA1 exons were designed with expected PCR product size of 100-400 bps. The amplified segments of DNA were amplicons 2, 3, 4A, 4B, and 4C. Amplicons 2, 3 and 4B were optimized at an annealing temperature of 60 °C at 40 PCR cycles. Amplicon 4A was optimized at an annealing temperature of 62 °C at 45 PCR cycles. Amplicon 4C was optimized at an annealing temperature of 63 °C at 50 PCR cycles. In addition to the suitable procedures of DNA isolation and quantification, primer design and an estimated PCR product size, the data of this study showed that appropriate annealing temperature and PCR cycles were important factors in optimization of HRM technique for variant screening in APOA1 .

  6. MeltMan: Optimization, Evaluation, and Universal Application of a qPCR System Integrating the TaqMan qPCR and Melting Analysis into a Single Assay

    Science.gov (United States)

    Nagy, Alexander; Černíková, Lenka; Vitásková, Eliška; Křivda, Vlastimil; Dán, Ádám; Dirbáková, Zuzana; Jiřincová, Helena; Procházka, Bohumír; Sedlák, Kamil; Havlíčková, Martina

    2016-01-01

    In the present work, we optimised and evaluated a qPCR system integrating 6-FAM (6-carboxyfluorescein)-labelled TaqMan probes and melting analysis using the SYTO 82 (S82) DNA binding dye in a single reaction. We investigated the influence of the S82 on various TaqMan and melting analysis parameters and defined its optimal concentration. In the next step, the method was evaluated in 36 different TaqMan assays with a total of 729 paired reactions using various DNA and RNA templates, including field specimens. In addition, the melting profiles of interest were correlated with the electrophoretic patterns. We proved that the S82 is fully compatible with the FAM-TaqMan system. Further, the advantages of this approach in routine diagnostic TaqMan qPCR were illustrated with practical examples. These included solving problems with flat or other atypical amplification curves or even false negativity as a result of probe binding failure. Our data clearly show that the integration of the TaqMan qPCR and melting analysis into a single assay provides an additional control option as well as the opportunity to perform more complex analyses, get more data from the reactions, and obtain analysis results with higher confidence. PMID:27031831

  7. Differentiation of five enterohepatic Helicobacter species by nested PCR with high-resolution melting curve analysis.

    Science.gov (United States)

    Wu, Miaoli; Rao, Dan; Zhu, Yujun; Wang, Jing; Yuan, Wen; Zhang, Yu; Huang, Ren; Guo, Pengju

    2017-04-01

    Enterohepatic Helicobacter species (EHS) are widespread in rodent species around the world. Several studies have demonstrated that infection with EHS can interfere with the outcomes of animal experiments in cancer research and significantly influence the study results. Therefore, it is essential to establish a rapid detection and identification of EHS for biomedical research using laboratory rodents. Our study aimed to develop a rapid and sensitive method to detect and distinguish five enterohepatic Helicobacter species. Nested PCR followed by high-resolution melting curve analysis (HRM) was developed for identification of H. bilis, H. rodentium, H. muridarum, H. typhlonius, as well as H. hepaticus. To validate the accuracy of nested PCR-HRM analysis, quantitative real-time PCR methods for five different enterohepatic Helicobacter species were developed. A total of 50 cecal samples were tested using both nested PCR-HRM analysis and qPCR method. The nested PCR-HRM method could distinguish five enterohepatic Helicobacter species by different melting temperatures. The melting curve were characterized by peaks of 78.7 ± 0.12°C for H. rodentium, 80.51 ± 0.09°C for H. bilis, 81.6 ± 0.1°C for H. typhlonius, 82.11 ± 0.18°C for H. muridarum, and 82.95 ± 0.09°C for H. hepaticus. The nested PCR-HRM assay is a simple, rapid, and cost-effective assay. This assay could be a useful tool for molecular epidemiology study of enterohepatic Helicobacter infection and an attractive alternative for genotyping of enterohepatic Helicobacter species. © 2016 John Wiley & Sons Ltd.

  8. Isotopic fractionation and profile evolution of a melting snowcover

    Institute of Scientific and Technical Information of China (English)

    周石硚; 中尾正义; 桥本重将; 坂井亚规子; 成田英器; 石川信敬

    2001-01-01

    Successive snow pits were dug intensively in a melting snowcover. Water was successfully separated from snow grains in the field for the first time. By measuring δ18O values of water and snow grain samples as well as comparing isotopic profiles, it is found that meltwater percolating down in snow develops quick and clear isotopic fractionation with snow grains, but exerts no clear impact on the δ18O profile of the snowcover through which the meltwater percolates.

  9. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling

    Science.gov (United States)

    Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I.

    2017-02-01

    In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics.

  10. Typing DNA profiles from previously enhanced fingerprints using direct PCR.

    Science.gov (United States)

    Templeton, Jennifer E L; Taylor, Duncan; Handt, Oliva; Linacre, Adrian

    2017-07-01

    Fingermarks are a source of human identification both through the ridge patterns and DNA profiling. Typing nuclear STR DNA markers from previously enhanced fingermarks provides an alternative method of utilising the limited fingermark deposit that can be left behind during a criminal act. Dusting with fingerprint powders is a standard method used in classical fingermark enhancement and can affect DNA data. The ability to generate informative DNA profiles from powdered fingerprints using direct PCR swabs was investigated. Direct PCR was used as the opportunity to generate usable DNA profiles after performing any of the standard DNA extraction processes is minimal. Omitting the extraction step will, for many samples, be the key to success if there is limited sample DNA. DNA profiles were generated by direct PCR from 160 fingermarks after treatment with one of the following dactyloscopic fingerprint powders: white hadonite; silver aluminium; HiFi Volcano silk black; or black magnetic fingerprint powder. This was achieved by a combination of an optimised double-swabbing technique and swab media, omission of the extraction step to minimise loss of critical low-template DNA, and additional AmpliTaq Gold ® DNA polymerase to boost the PCR. Ninety eight out of 160 samples (61%) were considered 'up-loadable' to the Australian National Criminal Investigation DNA Database (NCIDD). The method described required a minimum of working steps, equipment and reagents, and was completed within 4h. Direct PCR allows the generation of DNA profiles from enhanced prints without the need to increase PCR cycle numbers beyond manufacturer's recommendations. Particular emphasis was placed on preventing contamination by applying strict protocols and avoiding the use of previously used fingerprint brushes. Based on this extensive survey, the data provided indicate minimal effects of any of these four powders on the chance of obtaining DNA profiles from enhanced fingermarks. Copyright © 2017

  11. Detection of plant oil DNA using high resolution melting (HRM) post PCR analysis: a tool for disclosure of olive oil adulteration.

    Science.gov (United States)

    Vietina, Michelangelo; Agrimonti, Caterina; Marmiroli, Nelson

    2013-12-15

    Extra virgin olive oil is frequently subjected to adulterations with addition of oils obtained from plants other than olive. DNA analysis is a fast and economic tool to identify plant components in oils. Extraction and amplification of DNA by PCR was tested in olives, in milled seeds and in oils, to investigate its use in olive oil traceability. DNA was extracted from different oils made of hazelnut, maize, sunflower, peanut, sesame, soybean, rice and pumpkin. Comparing the DNA melting profiles in reference plant materials and in the oils, it was possible to identify any plant components in oils and mixtures of oils. Real-Time PCR (RT-PCR) platform has been added of the new methodology of high resolution melting (HRM), both were used to analyse olive oils mixed with different percentage of other oils. Results showed HRM a cost effective method for efficient detection of adulterations in olive oils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Probe-based real-time PCR method for multilocus melt typing of Xylella fastidiosa strains.

    Science.gov (United States)

    Brady, Jeff A; Faske, Jennifer B; Ator, Rebecca A; Castañeda-Gill, Jessica M; Mitchell, Forrest L

    2012-04-01

    Epidemiological studies of Pierce's disease (PD) can be confounded by a lack of taxonomic detail on the bacterial causative agent, Xylella fastidiosa (Xf). PD in grape is caused by strains of Xylella fastidiosa subsp. fastidiosa, but is not caused by other subspecies of Xf that typically colonize plants other than grape. Detection assays using ELISA and qPCR are effective at detecting and quantifying Xf presence or absence, but offer no information on Xf subspecies or strain identity. Surveying insects or host plants for Xf by current ELISA or qPCR methods provides only presence/absence and quantity information for any and all Xf subspecies, potentially leading to false assessments of disease threat. This study uses a series of adjacent-hybridizing DNA melt analysis probes that are capable of efficiently discriminating Xf subspecies and strain relationships in rapid real-time PCR reactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Real-time RT-PCR high-resolution melting curve analysis and multiplex RT-PCR to detect and differentiate grapevine leafroll-associated associated virus 3 variant groups I, II, III and VI

    Directory of Open Access Journals (Sweden)

    Bester Rachelle

    2012-09-01

    Full Text Available Abstract Background Grapevine leafroll-associated virus 3 (GLRaV-3 is the main contributing agent of leafroll disease worldwide. Four of the six GLRaV-3 variant groups known have been found in South Africa, but their individual contribution to leafroll disease is unknown. In order to study the pathogenesis of leafroll disease, a sensitive and accurate diagnostic assay is required that can detect different variant groups of GLRaV-3. Methods In this study, a one-step real-time RT-PCR, followed by high-resolution melting (HRM curve analysis for the simultaneous detection and identification of GLRaV-3 variants of groups I, II, III and VI, was developed. A melting point confidence interval for each variant group was calculated to include at least 90% of all melting points observed. A multiplex RT-PCR protocol was developed to these four variant groups in order to assess the efficacy of the real-time RT-PCR HRM assay. Results A universal primer set for GLRaV-3 targeting the heat shock protein 70 homologue (Hsp70h gene of GLRaV-3 was designed that is able to detect GLRaV-3 variant groups I, II, III and VI and differentiate between them with high-resolution melting curve analysis. The real-time RT-PCR HRM and the multiplex RT-PCR were optimized using 121 GLRaV-3 positive samples. Due to a considerable variation in melting profile observed within each GLRaV-3 group, a confidence interval of above 90% was calculated for each variant group, based on the range and distribution of melting points. The intervals of groups I and II could not be distinguished and a 95% joint confidence interval was calculated for simultaneous detection of group I and II variants. An additional primer pair targeting GLRaV-3 ORF1a was developed that can be used in a subsequent real-time RT-PCR HRM to differentiate between variants of groups I and II. Additionally, the multiplex RT-PCR successfully validated 94.64% of the infections detected with the real-time RT-PCR HRM

  14. Decoding DNA labels by melting curve analysis using real-time PCR.

    Science.gov (United States)

    Balog, József A; Fehér, Liliána Z; Puskás, László G

    2017-12-01

    Synthetic DNA has been used as an authentication code for a diverse number of applications. However, existing decoding approaches are based on either DNA sequencing or the determination of DNA length variations. Here, we present a simple alternative protocol for labeling different objects using a small number of short DNA sequences that differ in their melting points. Code amplification and decoding can be done in two steps using quantitative PCR (qPCR). To obtain a DNA barcode with high complexity, we defined 8 template groups, each having 4 different DNA templates, yielding 158 (>2.5 billion) combinations of different individual melting temperature (Tm) values and corresponding ID codes. The reproducibility and specificity of the decoding was confirmed by using the most complex template mixture, which had 32 different products in 8 groups with different Tm values. The industrial applicability of our protocol was also demonstrated by labeling a drone with an oil-based paint containing a predefined DNA code, which was then successfully decoded. The method presented here consists of a simple code system based on a small number of synthetic DNA sequences and a cost-effective, rapid decoding protocol using a few qPCR reactions, enabling a wide range of authentication applications.

  15. A comparison of PCR assays for beak and feather disease virus and high resolution melt (HRM) curve analysis of replicase associated protein and capsid genes.

    Science.gov (United States)

    Das, Shubhagata; Sarker, Subir; Ghorashi, Seyed Ali; Forwood, Jade K; Raidal, Shane R

    2016-11-01

    Beak and feather disease virus (BFDV) threatens a wide range of endangered psittacine birds worldwide. In this study, we assessed a novel PCR assay and genetic screening method using high-resolution melt (HRM) curve analysis for BFDV targeting the capsid (Cap) gene (HRM-Cap) alongside conventional PCR detection as well as a PCR method that targets a much smaller fragment of the virus genome in the replicase initiator protein (Rep) gene (HRM-Rep). Limits of detection, sensitivity, specificity and discriminatory power for differentiating BFDV sequences were compared. HRM-Cap had a high positive predictive value and could readily differentiate between a reference genotype and 17 other diverse BFDV genomes with more discriminatory power (genotype confidence percentage) than HRM-Rep. Melt curve profiles generated by HRM-Cap correlated with unique DNA sequence profiles for each individual test genome. The limit of detection of HRM-Cap was lower (2×10 -5 ng/reaction or 48 viral copies) than that for both HRM-Rep and conventional BFDV PCR which had similar sensitivity (2×10 -6 ng or 13 viral copies/reaction). However, when used in a diagnostic setting with 348 clinical samples there was strong agreement between HRM-Cap and conventional PCR (kappa=0.87, PHRM-Cap demonstrated higher specificity (99.9%) than HRM-Rep (80.3%). Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Direct-to-PCR tissue preservation for DNA profiling.

    Science.gov (United States)

    Sorensen, Amy; Berry, Clare; Bruce, David; Gahan, Michelle Elizabeth; Hughes-Stamm, Sheree; McNevin, Dennis

    2016-05-01

    Disaster victim identification (DVI) often occurs in remote locations with extremes of temperatures and humidities. Access to mortuary facilities and refrigeration are not always available. An effective and robust DNA sampling and preservation procedure would increase the probability of successful DNA profiling and allow faster repatriation of bodies and body parts. If the act of tissue preservation also released DNA into solution, ready for polymerase chain reaction (PCR), the DVI process could be further streamlined. In this study, we explored the possibility of obtaining DNA profiles without DNA extraction, by adding aliquots of preservative solutions surrounding fresh human muscle and decomposing human muscle and skin tissue samples directly to PCR. The preservatives consisted of two custom preparations and two proprietary solutions. The custom preparations were a salt-saturated solution of dimethyl sulfoxide (DMSO) with ethylenediaminetetraacetic (EDTA) and TENT buffer (Tris, EDTA, NaCl, Tween 20). The proprietary preservatives were DNAgard (Biomatrica(®)) and Tissue Stabilising Kit (DNA Genotek). We obtained full PowerPlex(®) 21 (Promega) and GlobalFiler(®) (Life Technologies) DNA profiles from fresh and decomposed tissue preserved at 35 °C for up to 28 days for all four preservatives. The preservative aliquots removed from the fresh muscle tissue samples had been stored at -80 °C for 4 years, indicating that long-term archival does not diminish the probability of successful DNA typing. Rather, storage at -80 °C seems to reduce PCR inhibition.

  17. Competitive PCR-High Resolution Melting Analysis (C-PCR-HRMA) for large genomic rearrangements (LGRs) detection: A new approach to assess quantitative status of BRCA1 gene in a reference laboratory.

    Science.gov (United States)

    Minucci, Angelo; De Paolis, Elisa; Concolino, Paola; De Bonis, Maria; Rizza, Roberta; Canu, Giulia; Scaglione, Giovanni Luca; Mignone, Flavio; Scambia, Giovanni; Zuppi, Cecilia; Capoluongo, Ettore

    2017-07-01

    Evaluation of copy number variation (CNV) in BRCA1/2 genes, due to large genomic rearrangements (LGRs), is a mandatory analysis in hereditary breast and ovarian cancers families, if no pathogenic variants are found by sequencing. LGRs cannot be detected by conventional methods and several alternative methods have been developed. Since these approaches are expensive and time consuming, identification of alternative screening methods for LGRs detection is needed in order to reduce and optimize the diagnostic procedure. The aim of this study was to investigate a Competitive PCR-High Resolution Melting Analysis (C-PCR-HRMA) as molecular tool to detect recurrent BRCA1 LGRs. C-PCR-HRMA was performed on exons 3, 14, 18, 19, 20 and 21 of the BRCA1 gene; exons 4, 6 and 7 of the ALB gene were used as reference fragments. This study showed that it is possible to identify recurrent BRCA1 LGRs, by melting peak height ratio between target (BRCA1) and reference (ALB) fragments. Furthermore, we underline that a peculiar amplicon-melting profile is associated to a specific BRCA1 LGR. All C-PCR-HRMA results were confirmed by Multiplex ligation-dependent probe amplification. C-PCR-HRMA has proved to be an innovative, efficient and fast method for BRCA1 LGRs detection. Given the sensitivity, specificity and ease of use, c-PCR-HRMA can be considered an attractive and powerful alternative to other methods for BRCA1 CNVs screening, improving molecular strategies for BRCA testing in the context of Massive Parallel Sequencing. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A Real-Time PCR with Melting Curve Analysis for Molecular Typing of Vibrio parahaemolyticus.

    Science.gov (United States)

    He, Peiyan; Wang, Henghui; Luo, Jianyong; Yan, Yong; Chen, Zhongwen

    2018-05-23

    Foodborne disease caused by Vibrio parahaemolyticus is a serious public health problem in many countries. Molecular typing has a great scientific significance and application value for epidemiological research of V. parahaemolyticus. In this study, a real-time PCR with melting curve analysis was established for molecular typing of V. parahaemolyticus. Eighteen large variably presented gene clusters (LVPCs) of V. parahaemolyticus which have different distributions in the genome of different strains were selected as targets. Primer pairs of 18 LVPCs were distributed into three tubes. To validate this newly developed assay, we tested 53 Vibrio parahaemolyticus strains, which were classified in 13 different types. Furthermore, cluster analysis using NTSYS PC 2.02 software could divide 53 V. parahaemolyticus strains into six clusters at a relative similarity coefficient of 0.85. This method is fast, simple, and conveniently for molecular typing of V. parahaemolyticus.

  19. Rapid detection and differentiation of Clonorchis sinensis and Opisthorchis viverrini using real-time PCR and high resolution melting analysis.

    Science.gov (United States)

    Cai, Xian-Quan; Yu, Hai-Qiong; Li, Rong; Yue, Qiao-Yun; Liu, Guo-Hua; Bai, Jian-Shan; Deng, Yan; Qiu, De-Yi; Zhu, Xing-Quan

    2014-01-01

    Clonorchis sinensis and Opisthorchis viverrini are both important fish-borne pathogens, causing serious public health problem in Asia. The present study developed an assay integrating real-time PCR and high resolution melting (HRM) analysis for the specific detection and rapid identification of C. sinensis and O. viverrini. Primers targeting COX1 gene were highly specific for these liver flukes, as evidenced by the negative amplification of closely related trematodes. Assays using genomic DNA extracted from the two flukes yielded specific amplification and their identity was confirmed by sequencing, having the accuracy of 100% in reference to conventional methods. The assay was proved to be highly sensitive with a detection limit below 1 pg of purified genomic DNA, 5 EPG, or 1 metacercaria of C. sinensis. Moreover, C. sinensis and O. viverrini were able to be differentiated by their HRM profiles. The method can reduce labor of microscopic examination and the contamination of agarose electrophoresis. Moreover, it can differentiate these two flukes which are difficult to be distinguished using other methods. The established method provides an alternative tool for rapid, simple, and duplex detection of C. sinensis and O. viverrini.

  20. Rapid Detection and Differentiation of Clonorchis sinensis and Opisthorchis viverrini Using Real-Time PCR and High Resolution Melting Analysis

    Directory of Open Access Journals (Sweden)

    Xian-Quan Cai

    2014-01-01

    Full Text Available Clonorchis sinensis and Opisthorchis viverrini are both important fish-borne pathogens, causing serious public health problem in Asia. The present study developed an assay integrating real-time PCR and high resolution melting (HRM analysis for the specific detection and rapid identification of C. sinensis and O. viverrini. Primers targeting COX1 gene were highly specific for these liver flukes, as evidenced by the negative amplification of closely related trematodes. Assays using genomic DNA extracted from the two flukes yielded specific amplification and their identity was confirmed by sequencing, having the accuracy of 100% in reference to conventional methods. The assay was proved to be highly sensitive with a detection limit below 1 pg of purified genomic DNA, 5 EPG, or 1 metacercaria of C. sinensis. Moreover, C. sinensis and O. viverrini were able to be differentiated by their HRM profiles. The method can reduce labor of microscopic examination and the contamination of agarose electrophoresis. Moreover, it can differentiate these two flukes which are difficult to be distinguished using other methods. The established method provides an alternative tool for rapid, simple, and duplex detection of C. sinensis and O. viverrini.

  1. qPCR-High resolution melt analysis for drug susceptibility testing of Mycobacterium leprae directly from clinical specimens of leprosy patients.

    Science.gov (United States)

    Araujo, Sergio; Goulart, Luiz Ricardo; Truman, Richard W; Goulart, Isabela Maria B; Vissa, Varalakshmi; Li, Wei; Matsuoka, Masanori; Suffys, Philip; Fontes, Amanda B; Rosa, Patricia S; Scollard, David M; Williams, Diana L

    2017-06-01

    Real-Time PCR-High Resolution Melting (qPCR-HRM) analysis has been recently described for rapid drug susceptibility testing (DST) of Mycobacterium leprae. The purpose of the current study was to further evaluate the validity, reliability, and accuracy of this assay for M. leprae DST in clinical specimens. The specificity and sensitivity for determining the presence and susceptibility of M. leprae to dapsone based on the folP1 drug resistance determining region (DRDR), rifampin (rpoB DRDR) and ofloxacin (gyrA DRDR) was evaluated using 211 clinical specimens from leprosy patients, including 156 multibacillary (MB) and 55 paucibacillary (PB) cases. When comparing the results of qPCR-HRM DST and PCR/direct DNA sequencing, 100% concordance was obtained. The effects of in-house phenol/chloroform extraction versus column-based DNA purification protocols, and that of storage and fixation protocols of specimens for qPCR-HRM DST, were also evaluated. qPCR-HRM results for all DRDR gene assays (folP1, rpoB, and gyrA) were obtained from both MB (154/156; 98.7%) and PB (35/55; 63.3%) patients. All PCR negative specimens were from patients with low numbers of bacilli enumerated by an M. leprae-specific qPCR. We observed that frozen and formalin-fixed paraffin embedded (FFPE) tissues or archival Fite's stained slides were suitable for HRM analysis. Among 20 mycobacterial and other skin bacterial species tested, only M. lepromatosis, highly related to M. leprae, generated amplicons in the qPCR-HRM DST assay for folP1 and rpoB DRDR targets. Both DNA purification protocols tested were efficient in recovering DNA suitable for HRM analysis. However, 3% of clinical specimens purified using the phenol/chloroform DNA purification protocol gave false drug resistant data. DNA obtained from freshly frozen (n = 172), formalin-fixed paraffin embedded (FFPE) tissues (n = 36) or archival Fite's stained slides (n = 3) were suitable for qPCR-HRM DST analysis. The HRM-based assay was also able to

  2. Rapid Detection and Differentiation of Clonorchis sinensis and Opisthorchis viverrini Using Real-Time PCR and High Resolution Melting Analysis

    OpenAIRE

    Cai, Xian-Quan; Yu, Hai-Qiong; Li, Rong; Yue, Qiao-Yun; Liu, Guo-Hua; Bai, Jian-Shan; Deng, Yan; Qiu, De-Yi; Zhu, Xing-Quan

    2014-01-01

    Clonorchis sinensis and Opisthorchis viverrini are both important fish-borne pathogens, causing serious public health problem in Asia. The present study developed an assay integrating real-time PCR and high resolution melting (HRM) analysis for the specific detection and rapid identification of C. sinensis and O. viverrini. Primers targeting COX1 gene were highly specific for these liver flukes, as evidenced by the negative amplification of closely related trematodes. Assays using genomic DNA...

  3. A novel method of multiple nucleic acid detection: Real-time RT-PCR coupled with probe-melting curve analysis.

    Science.gov (United States)

    Han, Yang; Hou, Shao-Yang; Ji, Shang-Zhi; Cheng, Juan; Zhang, Meng-Yue; He, Li-Juan; Ye, Xiang-Zhong; Li, Yi-Min; Zhang, Yi-Xuan

    2017-11-15

    A novel method, real-time reverse transcription PCR (real-time RT-PCR) coupled with probe-melting curve analysis, has been established to detect two kinds of samples within one fluorescence channel. Besides a conventional TaqMan probe, this method employs another specially designed melting-probe with a 5' terminus modification which meets the same label with the same fluorescent group. By using an asymmetric PCR method, the melting-probe is able to detect an extra sample in the melting stage effectively while it almost has little influence on the amplification detection. Thus, this method allows the availability of united employment of both amplification stage and melting stage for detecting samples in one reaction. The further demonstration by simultaneous detection of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in one channel as a model system is presented in this essay. The sensitivity of detection by real-time RT-PCR coupled with probe-melting analysis was proved to be equal to that detected by conventional real-time RT-PCR. Because real-time RT-PCR coupled with probe-melting analysis can double the detection throughputs within one fluorescence channel, it is expected to be a good solution for the problem of low-throughput in current real-time PCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Simultaneous detection of Fusarium culmorum and F. graminearum in plant material by duplex PCR with melting curve analysis.

    Science.gov (United States)

    Brandfass, Christoph; Karlovsky, Petr

    2006-01-23

    Fusarium head blight (FHB) is a disease of cereal crops, which has a severe impact on wheat and barley production worldwide. Apart from reducing the yield and impairing grain quality, FHB leads to contamination of grain with toxic secondary metabolites (mycotoxins), which pose a health risk to humans and livestock. The Fusarium species primarily involved in FHB are F. graminearum and F. culmorum. A key prerequisite for a reduction in the incidence of FHB is an understanding of its epidemiology. We describe a duplex-PCR-based method for the simultaneous detection of F. culmorum and F. graminearum in plant material. Species-specific PCR products are identified by melting curve analysis performed in a real-time thermocycler in the presence of the fluorescent dye SYBR Green I. In contrast to multiplex real-time PCR assays, the method does not use doubly labeled hybridization probes. PCR with product differentiation by melting curve analysis offers a cost-effective means of qualitative analysis for the presence of F. culmorum and F. graminearum in plant material. This method is particularly suitable for epidemiological studies involving a large number of samples.

  5. Simultaneous detection of Fusarium culmorum and F. graminearum in plant material by duplex PCR with melting curve analysis

    Directory of Open Access Journals (Sweden)

    Karlovsky Petr

    2006-01-01

    Full Text Available Abstract Background Fusarium head blight (FHB is a disease of cereal crops, which has a severe impact on wheat and barley production worldwide. Apart from reducing the yield and impairing grain quality, FHB leads to contamination of grain with toxic secondary metabolites (mycotoxins, which pose a health risk to humans and livestock. The Fusarium species primarily involved in FHB are F. graminearum and F. culmorum. A key prerequisite for a reduction in the incidence of FHB is an understanding of its epidemiology. Results We describe a duplex-PCR-based method for the simultaneous detection of F. culmorum and F. graminearum in plant material. Species-specific PCR products are identified by melting curve analysis performed in a real-time thermocycler in the presence of the fluorescent dye SYBR Green I. In contrast to multiplex real-time PCR assays, the method does not use doubly labeled hybridization probes. Conclusion PCR with product differentiation by melting curve analysis offers a cost-effective means of qualitative analysis for the presence of F. culmorum and F. graminearum in plant material. This method is particularly suitable for epidemiological studies involving a large number of samples.

  6. Miltenberger blood group typing by real-time polymerase chain reaction (qPCR) melting curve analysis in Thai population.

    Science.gov (United States)

    Vongsakulyanon, A; Kitpoka, P; Kunakorn, M; Srikhirin, T

    2015-12-01

    To develop reliable and convenient methods for Miltenberger (Mi(a) ) blood group typing. To apply real-time polymerase chain reaction (qPCR) melting curve analysis to Mi(a) blood group typing. The Mi(a) blood group is the collective set of glycophorin hybrids in the MNS blood group system. Mi(a+) blood is common among East Asians and is also found in the Thai population. Incompatible Mi(a) blood transfusions pose the risk of life-threatening haemolysis; therefore, Mi(a) blood group typing is necessary in ethnicities where the Mi(a) blood group is prevalent. One hundred and forty-three blood samples from Thai blood donors were used in the study. The samples included 50 Mi(a+) samples and 93 Mi(a-) samples, which were defined by serology. The samples were typed by Mi(a) typing qPCR, and 50 Mi(a+) samples were sequenced to identify the Mi(a) subtypes. Mi(a) subtyping qPCR was performed to define GP.Mur. Both Mi(a) typing and Mi(a) subtyping were tested on a conventional PCR platform. The results of Mi(a) typing qPCR were all concordant with serology. Sequencing of the 50 Mi(a+) samples revealed 47 GP.Mur samples and 3 GP.Hop or Bun samples. Mi(a) subtyping qPCR was the supplementary test used to further define GP.Mur from other Mi(a) subtypes. Both Mi(a) typing and Mi(a) subtyping performed well using a conventional PCR platform. Mi(a) typing qPCR correctly identified Mi(a) blood groups in a Thai population with the feasibility of Mi(a) subtype discrimination, and Mi(a) subtyping qPCR was able to further define GP.Mur from other Mi(a) subtypes. © 2015 British Blood Transfusion Society.

  7. PCR

    African Journals Online (AJOL)

    Elham

    2013-07-03

    Jul 3, 2013 ... was constructed with competitive strategy by PCR-cloning technique and the limitation range was determined. The PCR products of MTB and IAC were 245 and 660 bp, respectively on .... products' differentiation was easy.

  8. High-resolution melting-curve analysis of ligation-mediated real-time PCR for rapid evaluation of an epidemiological outbreak of extended-spectrum-beta-lactamase-producing Escherichia coli.

    Science.gov (United States)

    Woksepp, Hanna; Jernberg, Cecilia; Tärnberg, Maria; Ryberg, Anna; Brolund, Alma; Nordvall, Michaela; Olsson-Liljequist, Barbro; Wisell, Karin Tegmark; Monstein, Hans-Jürg; Nilsson, Lennart E; Schön, Thomas

    2011-12-01

    Methods for the confirmation of nosocomial outbreaks of bacterial pathogens are complex, expensive, and time-consuming. Recently, a method based on ligation-mediated PCR (LM/PCR) using a low denaturation temperature which produces specific melting-profile patterns of DNA products has been described. Our objective was to further develop this method for real-time PCR and high-resolution melting analysis (HRM) in a single-tube system optimized in order to achieve results within 1 day. Following the optimization of LM/PCR for real-time PCR and HRM (LM/HRM), the method was applied for a nosocomial outbreak of extended-spectrum-beta-lactamase (ESBL)-producing and ST131-associated Escherichia coli isolates (n = 15) and control isolates (n = 29), including four previous clusters. The results from LM/HRM were compared to results from pulsed-field gel electrophoresis (PFGE), which served as the gold standard. All isolates from the nosocomial outbreak clustered by LM/HRM, which was confirmed by gel electrophoresis of the LM/PCR products and PFGE. Control isolates that clustered by LM/PCR (n = 4) but not by PFGE were resolved by confirmatory gel electrophoresis. We conclude that LM/HRM is a rapid method for the detection of nosocomial outbreaks of bacterial infections caused by ESBL-producing E. coli strains. It allows the analysis of isolates in a single-tube system within a day, and the discriminatory power is comparable to that of PFGE.

  9. High-Resolution Melting-Curve Analysis of Ligation-Mediated Real-Time PCR for Rapid Evaluation of an Epidemiological Outbreak of Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli ▿

    Science.gov (United States)

    Woksepp, Hanna; Jernberg, Cecilia; Tärnberg, Maria; Ryberg, Anna; Brolund, Alma; Nordvall, Michaela; Olsson-Liljequist, Barbro; Wisell, Karin Tegmark; Monstein, Hans-Jürg; Nilsson, Lennart E.; Schön, Thomas

    2011-01-01

    Methods for the confirmation of nosocomial outbreaks of bacterial pathogens are complex, expensive, and time-consuming. Recently, a method based on ligation-mediated PCR (LM/PCR) using a low denaturation temperature which produces specific melting-profile patterns of DNA products has been described. Our objective was to further develop this method for real-time PCR and high-resolution melting analysis (HRM) in a single-tube system optimized in order to achieve results within 1 day. Following the optimization of LM/PCR for real-time PCR and HRM (LM/HRM), the method was applied for a nosocomial outbreak of extended-spectrum-beta-lactamase (ESBL)-producing and ST131-associated Escherichia coli isolates (n = 15) and control isolates (n = 29), including four previous clusters. The results from LM/HRM were compared to results from pulsed-field gel electrophoresis (PFGE), which served as the gold standard. All isolates from the nosocomial outbreak clustered by LM/HRM, which was confirmed by gel electrophoresis of the LM/PCR products and PFGE. Control isolates that clustered by LM/PCR (n = 4) but not by PFGE were resolved by confirmatory gel electrophoresis. We conclude that LM/HRM is a rapid method for the detection of nosocomial outbreaks of bacterial infections caused by ESBL-producing E. coli strains. It allows the analysis of isolates in a single-tube system within a day, and the discriminatory power is comparable to that of PFGE. PMID:21956981

  10. Rapid and inexpensive body fluid identification by RNA profiling-based multiplex High Resolution Melt (HRM) analysis.

    Science.gov (United States)

    Hanson, Erin K; Ballantyne, Jack

    2013-01-01

    Positive identification of the nature of biological material present on evidentiary items can be crucial for understanding the circumstances surrounding a crime. However, traditional protein-based methods do not permit the identification of all body fluids and tissues, and thus molecular based strategies for the conclusive identification of all forensically relevant biological fluids and tissues need to be developed. Messenger RNA (mRNA) profiling is an example of such a molecular-based approach. Current mRNA body fluid identification assays involve capillary electrophoresis (CE) or quantitative RT-PCR (qRT-PCR) platforms, each with its own limitations. Both platforms require the use of expensive fluorescently labeled primers or probes. CE-based assays require separate amplification and detection steps thus increasing the analysis time. For qRT-PCR assays, only 3-4 markers can be included in a single reaction since each requires a different fluorescent dye. To simplify mRNA profiling assays, and reduce the time and cost of analysis, we have developed single- and multiplex body fluid High Resolution Melt (HRM) assays for the identification of common forensically relevant biological fluids and tissues. The incorporated biomarkers include IL19 (vaginal secretions), IL1F7 (skin), ALAS2 (blood), MMP10 (menstrual blood), HTN3 (saliva) and TGM4 (semen).  The HRM assays require only unlabeled PCR primers and a single saturating intercalating fluorescent dye (Eva Green). Each body-fluid-specific marker can easily be identified by the presence of a distinct melt peak. Usually, HRM assays are used to detect variants or isoforms for a single gene target. However, we have uniquely developed duplex and triplex HRM assays to permit the simultaneous detection of multiple targets per reaction. Here we describe the development and initial performance evaluation of the developed HRM assays. The results demonstrate the potential use of HRM assays for rapid, and relatively inexpensive

  11. Detection of Schistosoma mansoni and Schistosoma haematobium by Real-Time PCR with High Resolution Melting Analysis

    Directory of Open Access Journals (Sweden)

    Hany Sady

    2015-07-01

    Full Text Available The present study describes a real-time PCR approach with high resolution melting-curve (HRM assay developed for the detection and differentiation of Schistosoma mansoni and S. haematobium in fecal and urine samples collected from rural Yemen. The samples were screened by microscopy and PCR for the Schistosoma species infection. A pair of degenerate primers were designed targeting partial regions in the cytochrome oxidase subunit I (cox1 gene of S. mansoni and S. haematobium using real-time PCR-HRM assay. The overall prevalence of schistosomiasis was 31.8%; 23.8% of the participants were infected with S. haematobium and 9.3% were infected with S. mansoni. With regards to the intensity of infections, 22.1% and 77.9% of S. haematobium infections were of heavy and light intensities, respectively. Likewise, 8.1%, 40.5% and 51.4% of S. mansoni infections were of heavy, moderate and light intensities, respectively. The melting points were distinctive for S. mansoni and S. haematobium, categorized by peaks of 76.49 ± 0.25 °C and 75.43 ± 0.26 °C, respectively. HRM analysis showed high detection capability through the amplification of Schistosoma DNA with as low as 0.0001 ng/µL. Significant negative correlations were reported between the real-time PCR-HRM cycle threshold (Ct values and microscopic egg counts for both S. mansoni in stool and S. haematobium in urine (p < 0.01. In conclusion, this closed-tube HRM protocol provides a potentially powerful screening molecular tool for the detection of S. mansoni and S. haematobium. It is a simple, rapid, accurate, and cost-effective method. Hence, this method is a good alternative approach to probe-based PCR assays.

  12. Detection of diarrheagenic Escherichia coli by use of melting-curve analysis and real-time multiplex PCR.

    Science.gov (United States)

    Guion, Chase E; Ochoa, Theresa J; Walker, Christopher M; Barletta, Francesca; Cleary, Thomas G

    2008-05-01

    Diarrheagenic Escherichia coli strains are important causes of diarrhea in children from the developing world and are now being recognized as emerging enteropathogens in the developed world. Current methods of detection are too expensive and labor-intensive for routine detection of these organisms to be practical. We developed a real-time fluorescence-based multiplex PCR for the detection of all six of the currently recognized classes of diarrheagenic E. coli. The primers were designed to specifically amplify eight different virulence genes in the same reaction: aggR for enteroaggregative E. coli, stIa/stIb and lt for enterotoxigenic E. coli, eaeA for enteropathogenic E. coli and Shiga toxin-producing E. coli (STEC), stx(1) and stx(2) for STEC, ipaH for enteroinvasive E. coli, and daaD for diffusely adherent E. coli (DAEC). Eighty-nine of ninety diarrheagenic E. coli and 36/36 nonpathogenic E. coli strains were correctly identified using this approach (specificity, 1.00; sensitivity, 0.99). The single false negative was a DAEC strain. The total time between preparation of DNA from E. coli colonies on agar plates and completion of PCR and melting-curve analysis was less than 90 min. The cost of materials was low. Melting-point analysis of real-time multiplex PCR is a rapid, sensitive, specific, and inexpensive method for detection of diarrheagenic E. coli.

  13. [Rapid detection of hot spot mutations of FGFR3 gene with PCR-high resolution melting assay].

    Science.gov (United States)

    Li, Shan; Wang, Han; Su, Hua; Gao, Jinsong; Zhao, Xiuli

    2017-08-10

    To identify the causative mutations in five individuals affected with dyschondroplasia and develop an efficient procedure for detecting hot spot mutations of the FGFR3 gene. Genomic DNA was extracted from peripheral blood samples with a standard phenol/chloroform method. PCR-Sanger sequencing was used to analyze the causative mutations in the five probands. PCR-high resolution melting (HRM) was developed to detect the identified mutations. A c.1138G>A mutation in exon 8 was found in 4 probands, while a c.1620C>G mutation was found in exon 11 of proband 5 whom had a mild phenotype. All patients were successfully distinguished from healthy controls with the PCR-HRM method. The results of HRM analysis were highly consistent with that of Sanger sequencing. The Gly380Arg and Asn540Lys are hot spot mutations of the FGFR3 gene among patients with ACH/HCH. PCR-HRM analysis is more efficient for detecting hot spot mutations of the FGFR3 gene.

  14. Molecular differentiation of Opisthorchis viverrini and Clonorchis sinensis eggs by multiplex real-time PCR with high resolution melting analysis.

    Science.gov (United States)

    Kaewkong, Worasak; Intapan, Pewpan M; Sanpool, Oranuch; Janwan, Penchom; Thanchomnang, Tongjit; Laummaunwai, Porntip; Lulitanond, Viraphong; Doanh, Pham Ngoc; Maleewong, Wanchai

    2013-12-01

    Opisthorchis viverrini and Clonorchis sinensis are parasites known to be carcinogenic and causative agents of cholangiocarcinoma in Asia. The standard method for diagnosis for those parasite infections is stool examination to detect parasite eggs. However, the method has low sensitivity, and eggs of O. viverrini and C. sinensis are difficult to distinguish from each other and from those of some other trematodes. Here, we report a multiplex real-time PCR coupled with high resolution melting (HRM) analysis for the differentiation of O. viverrini and C. sinensis eggs in fecal samples. Using 2 pairs of species-specific primers, DNA sequences from a portion of the mitochondrial NADH dehydrogenase subunit 2 (nad 2) gene, were amplified to generate 209 and 165 bp products for O. viverrini and C. sinensis, respectively. The distinct characteristics of HRM patterns were analyzed, and the melting temperatures peaked at 82.4±0.09℃ and 85.9±0.08℃ for O. viverrini and C. sinensis, respectively. This technique was able to detect as few as 1 egg of O. viverrini and 2 eggs of C. sinensis in a 150 mg fecal sample, which is equivalent to 7 and 14 eggs per gram of feces, respectively. The method is species-specific, rapid, simple, and does not require fluorescent probes or post-PCR processing for discrimination of eggs of the 2 species. It offers a new tool for differentiation and detection of Asian liver fluke infections in stool specimens.

  15. Shock Induced Melting in Aluminum: Wave Profile Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Chhabildas, Lalit C.; Furnish, Michael D.; Reinhart, William D.

    1999-06-23

    We have developed launch capabilities that can propel macroscopic plates to hypervelocities (8 to 16 km/s). This capability has been used to determine the first time-resolved wave profile measurements using velocity interferometry techniques at impact velocities of 10 km/s. These measurements show that alu- minum continues to exhibit normal release behavior to 161 GPa with complete loss of strength in the shocked state. Results of these experiments are discussed and compared with the results of lower pressure experi- ments conducted at lower impact velocities.

  16. Development of a real-time PCR melt curve assay for simultaneous detection of virulent and antibiotic resistant Salmonella.

    Science.gov (United States)

    Singh, Prashant; Mustapha, Azlin

    2014-12-01

    Multiple drug resistance in Salmonella is an emerging problem in the area of food safety. Depending on the virulence and antibiotic resistance characteristics of the Salmonella strain, infections of varying severity could result. In this study, a multiplex melt curve real-time PCR assay for the detection of virulent and antibiotic resistance strains of Salmonella was developed with two primer sets. The first set targets the virulence gene, invasin (invA), and tetracycline (tetG), streptomycin (aadA2) and sulphonamide (sulI) antibiotic resistance genes, and the second set amplifies ampicillin (blaPSE,blaTEM) and chloramphenicol (floR) resistance genes. The multiplex assay was evaluated using 41 Salmonella strains and was further tested on eight different artificially inoculated food samples. The fluorescent DNA intercalating dye, SYTO9, generated high resolution melt curve peaks and, hence, was used for the development of the assay. This multiplex assay worked efficiently over a DNA concentration range of 20 ng-200 fg and showed a sensitivity of 290 CFU/mL with serially diluted broth cultures. The detection limit for un-enriched artificially inoculated food samples was 10(4) CFU/g, but an enrichment period of 6 h allowed for detection of 10 CFU/g of cells in the samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Characterization of some Brucella species from Zimbabwe by biochemical profiling and AMOS-PCR

    Directory of Open Access Journals (Sweden)

    Skjerve Eystein

    2009-12-01

    Full Text Available Abstract Background Bovine brucellosis caused by Brucella abortus is endemic in most large commercial and smallholder cattle farms of Zimbabwe, while brucellosis in other domestic animals is rare. The diagnosis of brucellosis is mainly accomplished using serological tests. However, some Brucella spp. have been isolated from clinical cases in the field and kept in culture collection but their biochemical profiles were not documented. We report biochemical profiling and AMOS-PCR characterization of some of these field isolates of Brucella originating from both commercial and smallholder cattle farming sectors of Zimbabwe. Findings Fourteen isolates of Brucella from culture collection were typed using biochemical profiles, agglutination by monospecific antisera, susceptibility to Brucella-specific bacteriophages and by AMOS-PCR that amplifies species- specific IS711. The results of the biochemical profiles for B. abortus biovar 1 (11 isolates and biovar 2 (2 isolates were consistent with those of reference strains. A single isolate from a goat originating from a smallholder mixed animal farm was identified as B. melitensis biovar 1. The AMOS-PCR produced DNA products of sizes 498 bp and 731 bp for B. abortus (biovar 1 and 2 and B. melitensis biovar 1, respectively. Conclusion We concluded that the biochemical profiles and AMOS-PCR characterization were consistent with their respective species and biovars. B. abortus biovar 1 is likely to be the predominant cause of brucellosis in both commercial and smallholder cattle farms in Zimbabwe.

  18. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature

    DEFF Research Database (Denmark)

    Guðnason, Haukur; Dufva, Hans Martin; Bang, Dang Duong

    2007-01-01

    investigate 15 different intercalating DNA dyes for their inhibitory effects on PCR, effects on DNA melting temperature and possible preferential binding to GC-rich sequences. Our results demonstrated that in contrast to the results of SYBR Green I, two intercalating dyes SYTO-13 and SYTO-82 do not inhibit......The importance of real-time polymerase chain reaction (PCR) has increased steadily in clinical applications over the last decade. Many applications utilize SYBR Green I dye to follow the accumulation of amplicons in real time. SYBR Green I has, however, a number of limitations that include...... the inhibition of PCR, preferential binding to GC-rich sequences and effects on melting curve analysis. Although a few alternative dyes without some of these limitations have been recently proposed, no large-scale investigation into the properties of intercalating dyes has been performed. In this study, we...

  19. DNA profiling of spermatozoa by laser capture microdissection and low volume-PCR.

    Directory of Open Access Journals (Sweden)

    Cai-xia Li

    Full Text Available Genetic profiling of sperm from complex biological mixtures such as sexual assault casework samples requires isolation of a pure sperm population and the ability to analyze low abundant samples. Current standard procedure for sperm isolation includes preferential lysis of epithelial contaminants followed by collection of intact sperm by centrifugation. While effective for samples where sperm are abundant, this method is less effective when samples contain few spermatozoa. Laser capture microdissection (LCM is a proven method for the isolation of cells biological mixtures, even when found in low abundance. Here, we demonstrate the efficacy of LCM coupled with on-chip low volume PCR (LV-PCR for the isolation and genotyping of low abundance sperm samples. Our results indicate that this method can obtain complete profiles (13-16 loci from as few as 15 sperm cells with 80% reproducibility, whereas at least 40 sperm cells are required to profile 13-16 loci by standard 'in-tube' PCR. Further, LCM and LV-PCR of a sexual assault casework sample generated a DNA genotype that was consistent with that of the suspect. This method was unable, however, to analyze a casework sample from a gang rape case in which two or more sperm contributors were in a mixed population. The results indicate that LCM and LV-PCR is sensitive and effective for genotyping sperm from sperm/epithelial cell mixtures when epithelial lysis may be insufficient due to low abundance of sperm; LCM and LV-PCR, however, failed in a casework sample when spermatozoa from multiple donors was present, indicating that further study is necessitated.

  20. Quantitative PCR high-resolution melting (qPCR-HRM) curve analysis, a new approach to simultaneously screen point mutations and large rearrangements: application to MLH1 germline mutations in Lynch syndrome.

    Science.gov (United States)

    Rouleau, Etienne; Lefol, Cédrick; Bourdon, Violaine; Coulet, Florence; Noguchi, Tetsuro; Soubrier, Florent; Bièche, Ivan; Olschwang, Sylviane; Sobol, Hagay; Lidereau, Rosette

    2009-06-01

    Several techniques have been developed to screen mismatch repair (MMR) genes for deleterious mutations. Until now, two different techniques were required to screen for both point mutations and large rearrangements. For the first time, we propose a new approach, called "quantitative PCR (qPCR) high-resolution melting (HRM) curve analysis (qPCR-HRM)," which combines qPCR and HRM to obtain a rapid and cost-effective method suitable for testing a large series of samples. We designed PCR amplicons to scan the MLH1 gene using qPCR HRM. Seventy-six patients were fully scanned in replicate, including 14 wild-type patients and 62 patients with known mutations (57 point mutations and five rearrangements). To validate the detected mutations, we used sequencing and/or hybridization on a dedicated MLH1 array-comparative genomic hybridization (array-CGH). All point mutations and rearrangements detected by denaturing high-performance liquid chromatography (dHPLC)+multiplex ligation-dependent probe amplification (MLPA) were successfully detected by qPCR HRM. Three large rearrangements were characterized with the dedicated MLH1 array-CGH. One variant was detected with qPCR HRM in a wild-type patient and was located within the reverse primer. One variant was not detected with qPCR HRM or with dHPLC due to its proximity to a T-stretch. With qPCR HRM, prescreening for point mutations and large rearrangements are performed in one tube and in one step with a single machine, without the need for any automated sequencer in the prescreening process. In replicate, its reagent cost, sensitivity, and specificity are comparable to those of dHPLC+MLPA techniques. However, qPCR HRM outperformed the other techniques in terms of its rapidity and amount of data provided.

  1. Identification of circulating miRNA biomarkers based on global quantitative real-time PCR profiling

    Directory of Open Access Journals (Sweden)

    Kang Kang

    2012-02-01

    Full Text Available Abstract MicroRNAs (miRNAs are small noncoding RNAs (18-25 nucleotides that regulate gene expression at the post-transcriptional level. Recent studies have demonstrated the presence of miRNAs in the blood circulation. Deregulation of miRNAs in serum or plasma has been associated with many diseases including cancers and cardiovascular diseases, suggesting the possible use of miRNAs as diagnostic biomarkers. However, the detection of the small amount of miRNAs found in serum or plasma requires a method with high sensitivity and accuracy. Therefore, the current study describes polymerase chain reaction (PCR-based methods for measuring circulating miRNAs. Briefly, the procedure involves four major steps: (1 sample collection and preparation; (2 global miRNAs profiling using quantitative real-time PCR (qRT-PCR; (3 data normalization and analysis; and (4 selection and validation of miRNA biomarkers. In conclusion, qRT-PCR is a promising method for profiling of circulating miRNAs as biomarkers.

  2. High-resolution melt PCR analysis for rapid identification of Chlamydia abortus live vaccine strain 1B among C. abortus strains and field isolates.

    Science.gov (United States)

    Vorimore, Fabien; Cavanna, Noémie; Vicari, Nadia; Magnino, Simone; Willems, Hermann; Rodolakis, Annie; Siarkou, Victoria I; Laroucau, Karine

    2012-09-01

    We describe a novel high-resolution melt assay that clearly differentiates Chlamydia abortus live vaccine strain 1B from field C. abortus strains and field wild-type isolates based on previously described single nucleotide polymorphisms. This modern genotyping technique is inexpensive, easy to use, and less time-consuming than PCR-RFLP. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. The workflow of single-cell expression profiling using quantitative real-time PCR

    Czech Academy of Sciences Publication Activity Database

    Stahlberg, A.; Kubista, Mikael

    2014-01-01

    Roč. 14, č. 3 (2014), s. 323-331 ISSN 1473-7159 R&D Projects: GA ČR GA13-02154S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : single-cell workflow * gene expression profiling * RT-qPCR Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.516, year: 2014

  4. Detection and characterization of Leishmania (Leishmania and Leishmania (Viannia by SYBR green-based real-time PCR and high resolution melt analysis targeting kinetoplast minicircle DNA.

    Directory of Open Access Journals (Sweden)

    Marcello Ceccarelli

    Full Text Available Leishmaniasis is a neglected disease with a broad clinical spectrum which includes asymptomatic infection. A thorough diagnosis, able to distinguish and quantify Leishmania parasites in a clinical sample, constitutes a key step in choosing an appropriate therapy, making an accurate prognosis and performing epidemiological studies. Several molecular techniques have been shown to be effective in the diagnosis of leishmaniasis. In particular, a number of PCR methods have been developed on various target DNA sequences including kinetoplast minicircle constant regions. The first aim of this study was to develop a SYBR green-based qPCR assay for Leishmania (Leishmania infantum detection and quantification, using kinetoplast minicircle constant region as target. To this end, two assays were compared: the first used previously published primer pairs (qPCR1, whereas the second used a nested primer pairs generating a shorter PCR product (qPCR2. The second aim of this study was to evaluate the possibility to discriminate among subgenera Leishmania (Leishmania and Leishmania (Viannia using the qPCR2 assay followed by melting or High Resolution Melt (HRM analysis. Both assays used in this study showed good sensitivity and specificity, and a good correlation with standard IFAT methods in 62 canine clinical samples. However, the qPCR2 assay allowed to discriminate between Leishmania (Leishmania and Leishmania (Viannia subgenera through melting or HRM analysis. In addition to developing assays, we investigated the number and genetic variability of kinetoplast minicircles in the Leishmania (L. infantum WHO international reference strain (MHOM/TN/80/IPT1, highlighting the presence of minicircle subclasses and sequence heterogeneity. Specifically, the kinetoplast minicircle number per cell was estimated to be 26,566±1,192, while the subclass of minicircles amplifiable by qPCR2 was estimated to be 1,263±115. This heterogeneity, also observed in canine clinical

  5. Rapid detection of pathological mutations and deletions of the haemoglobin beta gene (HBB) by High Resolution Melting (HRM) analysis and Gene Ratio Analysis Copy Enumeration PCR (GRACE-PCR).

    Science.gov (United States)

    Turner, Andrew; Sasse, Jurgen; Varadi, Aniko

    2016-10-19

    Inherited disorders of haemoglobin are the world's most common genetic diseases, resulting in significant morbidity and mortality. The large number of mutations associated with the haemoglobin beta gene (HBB) makes gene scanning by High Resolution Melting (HRM) PCR an attractive diagnostic approach. However, existing HRM-PCR assays are not able to detect all common point mutations and have only a very limited ability to detect larger gene rearrangements. The aim of the current study was to develop a HBB assay, which can be used as a screening test in highly heterogeneous populations, for detection of both point mutations and larger gene rearrangements. The assay is based on a combination of conventional HRM-PCR and a novel Gene Ratio Analysis Copy Enumeration (GRACE) PCR method. HRM-PCR was extensively optimised, which included the use of an unlabelled probe and incorporation of universal bases into primers to prevent interference from common non-pathological polymorphisms. GRACE-PCR was employed to determine HBB gene copy numbers relative to a reference gene using melt curve analysis to detect rearrangements in the HBB gene. The performance of the assay was evaluated by analysing 410 samples. A total of 44 distinct pathological genotypes were detected. In comparison with reference methods, the assay has a sensitivity of 100 % and a specificity of 98 %. We have developed an assay that detects both point mutations and larger rearrangements of the HBB gene. This assay is quick, sensitive, specific and cost effective making it suitable as an initial screening test that can be used for highly heterogeneous cohorts.

  6. Multiplex real-time PCR assay for the detection of extended-spectrum β-lactamase and carbapenemase genes using melting curve analysis.

    Science.gov (United States)

    Singh, Prashant; Pfeifer, Yvonne; Mustapha, Azlin

    2016-05-01

    Real-time PCR melt curve assays for the detection of β-lactamase, extended-spectrum β-lactamase and carbapenemase genes in Gram-negative bacteria were developed. Two multiplex real-time PCR melt curve assays were developed for the detection of ten common β-lactamase genes: blaKPC-like, blaOXA-48-like, blaNDM-like, blaVIM-like, blaIMP-like, blaCTX-M-1+2-group, blaCMY-like, blaACC-like, blaSHV-like and blaTEM-like. The assays were evaluated using 25 bacterial strains and 31 DNA samples (total n=56) comprising different Enterobacteriaceae genera and Pseudomonas spp. These strains were previously characterized at five research institutes. Each resistance gene targeted in this study generated a non-overlapping and distinct melt curve peak. The assay worked effectively and detected the presence of additional resistance genes in 23 samples. The assays developed in this study offer a simple, low cost method for the detection of prevalent β-lactamase, ESBL and carbapenemase genes among Gram-negative pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Comparison of Direct Sequencing, Real-Time PCR-High Resolution Melt (PCR-HRM) and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) Analysis for Genotyping of Common Thiopurine Intolerant Variant Alleles NUDT15 c.415C>T and TPMT c.719A>G (TPMT*3C).

    Science.gov (United States)

    Fong, Wai-Ying; Ho, Chi-Chun; Poon, Wing-Tat

    2017-05-12

    Thiopurine intolerance and treatment-related toxicity, such as fatal myelosuppression, is related to non-function genetic variants encoding thiopurine S-methyltransferase (TPMT) and Nudix hydrolase 15 (NUDT15). Genetic testing of the common variants NUDT15:NM_018283.2:c.415C>T (Arg139Cys, dbSNP rs116855232 T allele) and TPMT: NM_000367.4:c.719A>G (TPMT*3C, dbSNP rs1142345 G allele) in East Asians including Chinese can potentially prevent treatment-related complications. Two complementary genotyping approaches, real-time PCR-high resolution melt (PCR-HRM) and PCR-restriction fragment length morphism (PCR-RFLP) analysis were evaluated using conventional PCR and Sanger sequencing genotyping as the gold standard. Sixty patient samples were tested, revealing seven patients (11.7%) heterozygous for NUDT15 c.415C>T, one patient homozygous for the variant and one patient heterozygous for the TPMT*3C non-function allele. No patient was found to harbor both variants. In total, nine out of 60 (15%) patients tested had genotypic evidence of thiopurine intolerance, which may require dosage adjustment or alternative medication should they be started on azathioprine, mercaptopurine or thioguanine. The two newly developed assays were more efficient and showed complete concordance (60/60, 100%) compared to the Sanger sequencing results. Accurate and cost-effective genotyping assays by real-time PCR-HRM and PCR-RFLP for NUDT15 c.415C>T and TPMT*3C were successfully developed. Further studies may establish their roles in genotype-informed clinical decision-making in the prevention of morbidity and mortality due to thiopurine intolerance.

  8. Rapid detection of Opisthorchis viverrini and Strongyloides stercoralis in human fecal samples using a duplex real-time PCR and melting curve analysis.

    Science.gov (United States)

    Janwan, Penchom; Intapan, Pewpan M; Thanchomnang, Tongjit; Lulitanond, Viraphong; Anamnart, Witthaya; Maleewong, Wanchai

    2011-12-01

    Human opisthorchiasis caused by the liver fluke Opisthorchis viverrini is an endemic disease in Southeast Asian countries including the Lao People's Democratic Republic, Cambodia, Vietnam, and Thailand. Infection with the soil-transmitted roundworm Strongyloides stercoralis is an important problem worldwide. In some areas, both parasitic infections are reported as co-infections. A duplex real-time fluorescence resonance energy transfer (FRET) PCR merged with melting curve analysis was developed for the rapid detection of O. viverrini and S. stercoralis in human fecal samples. Duplex real-time FRET PCR is based on fluorescence melting curve analysis of a hybrid of amplicons generated from two genera of DNA elements: the 162 bp pOV-A6 DNA sequence specific to O. viverrini and the 244 bp 18S rRNA sequence specific to S. stercoralis, and two pairs of specific fluorophore-labeled probes. Both O. viverrini and S. stercoralis can be differentially detected in infected human fecal samples by this process through their different fluorescence channels and melting temperatures. Detection limit of the method was as little as two O. viverrini eggs and four S. stercoralis larvae in 100 mg of fecal sample. The assay could distinguish the DNA of both parasites from the DNA of negative fecal samples and fecal samples with other parasite materials, as well as from the DNA of human leukocytes and other control parasites. The technique showed 100% sensitivity and specificity. The introduced duplex real-time FRET PCR can reduce labor time and reagent costs and is not prone to carry over contamination. The method is important for simultaneous detection especially in areas where both parasites overlap incidence and is useful as the screening tool in the returning travelers and immigrants to industrialized countries where number of samples in the diagnostic units will become increasing.

  9. Evaluation of the Capacity of PCR and High-Resolution Melt Curve Analysis for Identification of Mixed Infection with Mycoplasma gallisepticum Strains.

    Directory of Open Access Journals (Sweden)

    Seyed A Ghorashi

    Full Text Available Pathogenicity and presentation of Mycoplasma gallisepticum (MG infection may differ from one strain to another and this may have implications on control measures. Infection of individual birds with more than one MG strain has been reported. A PCR followed by high resolution melt (HRM curve analysis has been developed in our laboratory and routinely used for detection and differentiation of MG strains. However the potential of this test for identification of MG strains in a mixed specimen has not been evaluated. In the present study, the capability of PCR-HRM curve analysis technique, targeting vlhA and pvpA genes was assessed for identification of individual MG strains in a mixed population. Different DNA ratios of two MG strains from 1 to 10(-4 ng were tested with some generated conventional and normalized curves distinct from those of individual strains alone. Using genotype confidence percentages (GCP generated from HRM curve analysis, it was found that vlhA PCR-HRM was more consistent than pvpA PCR-HRM for the detection of MG ts-11 vaccine strain mixed with any of the MG strains 6/85, F, S6 or a field isolate. The potential of vlhA PCR-HRM to detect mixed MG strains in a specimen was found to be primarily dependent on quantity and proportion of the target DNAs in the mixture. This is the first study examining the capacity of PCR-HRM technique for identification of individual MG strains in a mixed strain population.

  10. High-resolution melting PCR assay, applicable for diagnostics and screening studies, allowing detection and differentiation of several Babesia spp. infecting humans and animals.

    Science.gov (United States)

    Rozej-Bielicka, Wioletta; Masny, Aleksander; Golab, Elzbieta

    2017-10-01

    The goal of the study was to design a single tube PCR test for detection and differentiation of Babesia species in DNA samples obtained from diverse biological materials. A multiplex, single tube PCR test was designed for amplification of approximately 400 bp region of the Babesia 18S rRNA gene. Universal primers were designed to match DNA of multiple Babesia spp. and to have low levels of similarity to DNA sequences of other intracellular protozoa and Babesia hosts. The PCR products amplified from Babesia DNA isolated from human, dog, rodent, deer, and tick samples were subjected to high-resolution melting analysis for Babesia species identification. The designed test allowed detection and differentiation of four Babesia species, three zoonotic (B. microti, B. divergens, B. venatorum) and one that is generally not considered zoonotic-Babesia canis. Both detection and identification of all four species were possible based on the HRM curves of the PCR products in samples obtained from the following: humans, dogs, rodents, and ticks. No cross-reactivity with DNA of Babesia hosts or Plasmodium falciparum and Toxoplasma gondii was observed. The lack of cross-reactivity with P. falciparum DNA might allow using the assay in endemic malaria areas. The designed assay is the first PCR-based test for detection and differentiation of several Babesia spp. of medical and veterinary importance, in a single tube reaction. The results of the study show that the designed assay for Babesia detection and identification could be a practical and inexpensive tool for diagnostics and screening studies of diverse biological materials.

  11. Mutation Scanning in a Single and a Stacked Genetically Modified (GM) Event by Real-Time PCR and High Resolution Melting (HRM) Analysis

    Science.gov (United States)

    Ben Ali, Sina-Elisabeth; Madi, Zita Erika; Hochegger, Rupert; Quist, David; Prewein, Bernhard; Haslberger, Alexander G.; Brandes, Christian

    2014-01-01

    Genetic mutations must be avoided during the production and use of seeds. In the European Union (EU), Directive 2001/18/EC requires any DNA construct introduced via transformation to be stable. Establishing genetic stability is critical for the approval of genetically modified organisms (GMOs). In this study, genetic stability of two GMOs was examined using high resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) employing Scorpion primers for amplification. The genetic variability of the transgenic insert and that of the flanking regions in a single oilseed rape variety (GT73) and a stacked maize (MON88017 × MON810) was studied. The GT73 and the 5' region of MON810 showed no instabilities in the examined regions. However; two out of 100 analyzed samples carried a heterozygous point mutation in the 3' region of MON810 in the stacked variety. These results were verified by direct sequencing of the amplified PCR products as well as by sequencing of cloned PCR fragments. The occurrence of the mutation suggests that the 5' region is more suitable than the 3' region for the quantification of MON810. The identification of the single nucleotide polymorphism (SNP) in a stacked event is in contrast to the results of earlier studies of the same MON810 region in a single event where no DNA polymorphism was found. PMID:25365178

  12. Molecular characterization of Salmonella enterica serotype Enteritidis isolates from food and human samples by serotyping, antimicrobial resistance, plasmid profiling, (GTG5-PCR and ERIC-PCR

    Directory of Open Access Journals (Sweden)

    F. Fardsanei

    2016-11-01

    Full Text Available In recent years, Salmonella enterica serovar Enteritidis has been a primary cause of human salmonellosis in many countries. The major objective of this study was to investigate genetic diversity among Salmonella Enteritidis strains from different origins (food and human by Enterobacterial Repetitive Intergenic Consensus (ERIC -PCR, as well as to assess their plasmid profiling and antimicrobial resistance. A total of 30 Salmonella Enteritidis isolates, 15 from food samples (chicken, lamb, beef and duck meats and 15 from clinical samples were collected in Tehran. Identification of isolates as Salmonella was confirmed by using conventional standard biochemical and serological tests. Multiplex-PCR was used for serotyping of isolates to identify Salmonella Enteritidis. Antimicrobial susceptibility testing to 16 agents founds drug resistance patterns among Salmonella Enteritidis isolates. No resistance was observed to cephalexin, ceftriaxone, ceftazidime and cefotaxime, ciprofloxacin, imipenem or meropenem, chloramphenicol and gentamicin. The highest resistance (96.7% was observed to nitrofurantoin. Seven plasmid profiles (P1–P7 were detected, and a 68-kb plasmid was found in all isolates. Two different primers; ERIC and (GTG5 were used for genotyping, which each produced four profiles. The majority of clinical and food isolates fell into two separate common types (CTs with a similar percentage of 95% by ERIC-PCR. Using primer (GTG5, 29 isolates incorporated in three CTs with 70% of isolates showing a single banding pattern. Limited genetic diversity among human and food isolates of Salmonella Enteritidis may indicate that contaminated foods were possibly the source of human salmonellosis. These results confirmed that ERIC-PCR genotyping has limited discriminatory power for Salmonella Enteritidis of different origin.

  13. Effect of polymer melt wall slip on the flow balance of profile extrusion dies

    Science.gov (United States)

    Carneiro, Olga S.; Ferrás, Luís L.; Pinho, Fernando T.; Nóbrega, João M.

    2013-04-01

    This work describes the implementation of the wall slip boundary condition in an in-house developed 3D numerical code based on the Finite Volume Method. For this purpose, several phenomenological models relating the velocity and the shear stress at the wall were implemented. This new feature is verified using a simple case study, by comparing the numerical results with those obtained through the corresponding analytical solution. Then, the potentialities of the new code are illustrated performing flow simulations of a polymer melt in a complex flow channel. The results obtained show that the slip at the wall influences the flow distribution at the die flow channel outlet. Therefore, and to assess the relevance of slippage in the optimal die geometry, the automatic optimization of a die flow channel, required for the production of a specific thermoplastic profile, is performed using both the no-slip and slip boundary conditions, together with two alternative optimization strategies. It is shown that slip favors the flow balance of the dies and also other issues of its performance.

  14. Combined mutation and rearrangement screening by quantitative PCR high-resolution melting: is it relevant for hereditary recurrent Fever genes?

    Directory of Open Access Journals (Sweden)

    Nathalie Pallares-Ruiz

    2010-11-01

    Full Text Available The recent identification of genes implicated in hereditary recurrent fevers has allowed their specific diagnosis. So far however, only punctual mutations have been identified and a significant number of patients remain with no genetic confirmation of their disease after routine molecular approaches such as sequencing. The possible involvement of sequence rearrangements in these patients has only been examined in familial Mediterranean fever and was found to be unlikely. To assess the existence of larger genetic alterations in 3 other concerned genes, MVK (Mevalonate kinase, NLRP3 (Nod like receptor family, pyrin domain containing 3 and TNFRSF1A (TNF receptor superfamily 1A, we adapted the qPCR-HRM method to study possible intragenic deletions and duplications. This single-tube approach, combining both qualitative (mutations and quantitative (rearrangement screening, has proven effective in Lynch syndrome diagnosis. Using this approach, we studied 113 unselected (prospective group and 88 selected (retrospective group patients and identified no intragenic rearrangements in the 3 genes. Only qualitative alterations were found with a sensitivity similar to that obtained using classical molecular techniques for screening punctual mutations. Our results support that deleterious copy number alterations in MVK, NLRP3 and TNFRSF1A are rare or absent from the mutational spectrum of hereditary recurrent fevers, and demonstrate that a routine combined method such as qPCR-HRM provides no further help in genetic diagnosis. However, quantitative approaches such as qPCR or SQF-PCR did prove to be quick and effective and could still be useful after non contributory punctual mutation screening in the presence of clinically evocative signs.

  15. Detection and characterization of Newcastle disease virus in clinical samples using real time RT-PCR and melting curve analysis based on matrix and fusion genes amplification

    Directory of Open Access Journals (Sweden)

    Saad Sharawi

    2013-10-01

    Full Text Available Aim: Newcastle disease is still one of the major threats for poultry industry allover the world. Therefore, attempt was made in this study to use the SYBR Green I real-time PCR with melting curves analysis as for detection and differentiation of NDV strains in suspected infected birds. Materials and Methods: Two sets of primers were used to amplify matrix and fusion genes in samples collected from suspectly infected birds (chickens and pigeons. Melting curve analysis in conjunction with real time PCR was conducted for identifying different pathotypes of the isolated NDVs. Clinical samples were propagated on specific pathogen free ECE and tested for MDT and ICIP. Results: The velogenic NDVs isolated from chickens and pigeons were distinguished with mean T 85.03±0.341 and m 83.78±0.237 respectively for M-gene amplification and for F-gene amplification the mean T were 84.04±0.037 and m 84.53±0.223. On the other hand the lentogenic NDV isolates including the vaccinal strains (HB1 and LaSota have a higher mean T (86.99±0.021 for M-gene amplification and 86.50±0.063 for F-gene amplification. The test showed no reaction with m unrelated RNA samples. In addition, the results were in good agreement with both virus isolation and biological pathotyping (MDT and ICIP. The assay offers an attractive alternative method for the diagnosis of NDV that can be easily applied in laboratory diagnosis as a screening test for the detection and differentiation of NDV infections. Conclusion: As was shown by the successful rapid detection and pathotyping of 15 NDV strains in clinical samples representing velogenic and lentogenic NDV strains, and the agreement with the results of virus isolation , biological pathotyping and pathogenicity indices. The results of this report suggests that the described SybrGreen I real-time RT-PCR assay in conjunction with Melting curve analysis used as a rapid, specific and simple diagnostic tools for detection and pathotyping of

  16. Rapid detection of most frequent Slovenian germ-line mutations in BRCA1 gene using real-time PCR and melting curve analysis

    International Nuclear Information System (INIS)

    Novakovic, S.; Stegel, V.

    2005-01-01

    Background. Detection of inherited mutations in cancer susceptibility genes is of great importance in some types of cancers including the colorectal cancer (mutations of APC gene in familial adenomatous polyposis - FAP, mutations in mismatch repair genes in hereditary nonpolyposis colorectal cancer - HNPCC), malignant melanoma (mutations in CDKN2A and CDK4 genes) and breast cancer (mutations in BRCA1 and BRCA2 genes). Methods. This article presents the technical data for the detection of five mutations in BRCA1 gene in breast cancer patients and their relatives. The mutations - 1806C>T, 300T>G, 300T>A, 310G>A, 5382insC - were determined by the real-time PCR and the melting curve analysis. Results and conclusion. In comparison to direct sequencing, this method proved to be sensitive and rapid enough for the routine daily determination of mutations in DNA isolated from the peripheral blood. (author)

  17. The reproducibility of RAPD profiles: Effects of PCR components on RAPD analysis of four centaurium species

    Directory of Open Access Journals (Sweden)

    Skorić Marijana

    2012-01-01

    Full Text Available Random amplified polymorphic DNA (RAPD analysis is a simple and reliable method used to detect DNA polymorphism. Several factors can affect the amplification profiles, thereby causing false bands and non-reproducibility of the assay. In this study, we analyzed the effects of different concentrations of primer, magnesium chloride, template DNA and Taq DNA polymerase to develop and standardize a RAPD protocol for Centaurium species. The optimized PCR reaction mixture included: 50 ng of DNA extracted using a CTbased protocol, 2.5 mM MgCl2, 7.5 pmol primer and 2 U of Taq polymerase in a final volume of 25 μl. Each of the five primers used in experiments (OPB11, OPB15, OPB18, OPF05 and OPH02 generated reproducible and distinguishable fingerprinting patterns of four Centaurium species. The obtained optimized RAPD protocol and the selected primers are useful for our further work in the genetic diversity studies of Centaurium species.

  18. Simultaneous Profiling of DNA Mutation and Methylation by Melting Analysis Using Magnetoresistive Biosensor Array

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Lee, Jung-Rok; Dahl, Christina

    2017-01-01

    specificity. Genomic (mutation) or bisulphite-treated (methylation) DNA is amplified using nondiscriminatory primers, and the amplicons are then hybridized to a giant magnetoresistive (GMR) biosensor array followed by melting curve measurements. The GMR biosensor platform offers scalable multiplexed detection...

  19. Difference in melting profiles of gamma irradiated DNA from chicken erythrocytes and from Escherichia coli B/r

    International Nuclear Information System (INIS)

    Kopff, J.; Miller, G.; Leyko, W.

    1977-01-01

    Effects of gamma irradiation on melting curves of DNA from chicken erythrocytes and Escherichia coli B/r were compared. Considerable changes, following gamma irradiation in the case of chicken erythrocytes DNA and no changes in the case of DNA from Escherichia coli B/r were observed. To explain the lack of changes in gamma irradiated samples of DNA from Escherichia coli B/r it was assumed that the original effects of irradiation were obscured by the process of renaturation of DNA. To exclude the above mentioned effect, examination of gamma irradiated DNA from Escherichia coli B/r was carried out with the addition of formaldehyde immediately after irradiation of the sample. Using this procedure changes of melting profiles of DNA from Escherichia coli B/r were demonstrated. (author)

  20. A new method for simultaneous detection and discrimination of Bovine herpesvirus types 1 (BoHV-1) and 5 (BoHV-5) using real time PCR with high resolution melting (HRM) analysis.

    Science.gov (United States)

    Marin, M S; Quintana, S; Leunda, M R; Recavarren, M; Pagnuco, I; Späth, E; Pérez, S; Odeón, A

    2016-01-01

    Bovine herpesvirus types 1 (BoHV-1) and 5 (BoHV-5) are antigenically and genetically similar. The aim of this study was to develop a simple and reliable one-step real time PCR assay with high resolution melting (HRM) analysis for the simultaneous detection and differentiation of BoHV-1 and BoHV-5. Optimization of assay conditions was performed with DNA from reference strains. Then, DNA from field isolates, clinical samples and tissue samples of experimentally infected animals were studied by real time PCR-HRM. An efficient amplification of real time PCR products was obtained, and a clear melting curve and appropriate melting peaks for both viruses were achieved in the HRM curve analysis for BoHV type identification. BoHV was identified in all of the isolates and clinical samples, and BoHV types were properly differentiated. Furthermore, viral DNA was detected in 12/18 and 7/18 samples from BoHV-1- and BoHV-5-infected calves, respectively. Real time PCR-HRM achieved a higher sensitivity compared with virus isolation or conventional PCR. In this study, HRM was used as a novel procedure. This method provides rapid, sensitive, specific and simultaneous detection of bovine alpha-herpesviruses DNA. Thus, this technique is an excellent tool for diagnosis, research and epidemiological studies of these viruses in cattle. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Towards a pathogenic Escherichia coli detection platform using multiplex SYBR®Green Real-time PCR methods and high resolution melting analysis.

    Directory of Open Access Journals (Sweden)

    Dafni-Maria Kagkli

    Full Text Available Escherichia coli is a group of bacteria which has raised a lot of safety concerns in recent years. Five major intestinal pathogenic groups have been recognized amongst which the verocytotoxin or shiga-toxin (stx1 and/or stx2 producing E. coli (VTEC or STEC respectively have received a lot of attention recently. Indeed, due to the high number of outbreaks related to VTEC strains, the European Food Safety Authority (EFSA has requested the monitoring of the "top-five" serogroups (O26, O103, O111, O145 and O157 most often encountered in food borne diseases and addressed the need for validated VTEC detection methods. Here we report the development of a set of intercalating dye Real-time PCR methods capable of rapidly detecting the presence of the toxin genes together with intimin (eae in the case of VTEC, or aggregative protein (aggR, in the case of the O104:H4 strain responsible for the outbreak in Germany in 2011. All reactions were optimized to perform at the same annealing temperature permitting the multiplex application in order to minimize the need of material and to allow for high-throughput analysis. In addition, High Resolution Melting (HRM analysis allowing the discrimination among strains possessing similar virulence traits was established. The development, application to food samples and the flexibility in use of the methods are thoroughly discussed. Together, these Real-time PCR methods facilitate the detection of VTEC in a new highly efficient way and could represent the basis for developing a simple pathogenic E. coli platform.

  2. Pathway-focused PCR array profiling of enriched populations of laser capture microdissected hippocampal cells after traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Deborah R Boone

    Full Text Available Cognitive deficits in survivors of traumatic brain injury (TBI are associated with irreversible neurodegeneration in brain regions such as the hippocampus. Comparative gene expression analysis of dying and surviving neurons could provide insight into potential therapeutic targets. We used two pathway-specific PCR arrays (RT2 Profiler Apoptosis and Neurotrophins & Receptors PCR arrays to identify and validate TBI-induced gene expression in dying (Fluoro-Jade-positive or surviving (Fluoro-Jade-negative pyramidal neurons obtained by laser capture microdissection (LCM. In the Apoptosis PCR array, dying neurons showed significant increases in expression of genes associated with cell death, inflammation, and endoplasmic reticulum (ER stress compared with adjacent, surviving neurons. Pro-survival genes with pleiotropic functions were also significantly increased in dying neurons compared to surviving neurons, suggesting that even irreversibly injured neurons are able to mount a protective response. In the Neurotrophins & Receptors PCR array, which consists of genes that are normally expected to be expressed in both groups of hippocampal neurons, only a few genes were expressed at significantly different levels between dying and surviving neurons. Immunohistochemical analysis of selected, differentially expressed proteins supported the gene expression data. This is the first demonstration of pathway-focused PCR array profiling of identified populations of dying and surviving neurons in the brain after TBI. Combining precise laser microdissection of identifiable cells with pathway-focused PCR array analysis is a practical, low-cost alternative to microarrays that provided insight into neuroprotective signals that could be therapeutically targeted to ameliorate TBI-induced neurodegeneration.

  3. Rapid and inexpensive body fluid identification by RNA profiling-based multiplex High Resolution Melt (HRM analysis [v1; ref status: indexed, http://f1000r.es/2hj

    Directory of Open Access Journals (Sweden)

    Erin K. Hanson

    2013-12-01

    Full Text Available Positive identification of the nature of biological material present on evidentiary items can be crucial for understanding the circumstances surrounding a crime. However, traditional protein-based methods do not permit the identification of all body fluids and tissues, and thus molecular based strategies for the conclusive identification of all forensically relevant biological fluids and tissues need to be developed. Messenger RNA (mRNA profiling is an example of such a molecular-based approach. Current mRNA body fluid identification assays involve capillary electrophoresis (CE or quantitative RT-PCR (qRT-PCR platforms, each with its own limitations. Both platforms require the use of expensive fluorescently labeled primers or probes. CE-based assays require separate amplification and detection steps thus increasing the analysis time. For qRT-PCR assays, only 3-4 markers can be included in a single reaction since each requires a different fluorescent dye. To simplify mRNA profiling assays, and reduce the time and cost of analysis, we have developed single- and multiplex body fluid High Resolution Melt (HRM assays for the identification of common forensically relevant biological fluids and tissues. The incorporated biomarkers include IL19 (vaginal secretions, IL1F7 (skin, ALAS2 (blood, MMP10 (menstrual blood, HTN3 (saliva and TGM4 (semen.  The HRM assays require only unlabeled PCR primers and a single saturating intercalating fluorescent dye (Eva Green. Each body-fluid-specific marker can easily be identified by the presence of a distinct melt peak. Usually, HRM assays are used to detect variants or isoforms for a single gene target. However, we have uniquely developed duplex and triplex HRM assays to permit the simultaneous detection of multiple targets per reaction. Here we describe the development and initial performance evaluation of the developed HRM assays. The results demonstrate the potential use of HRM assays for rapid, and relatively

  4. Quantitative PCR Profiling of Escherichia coli in Livestock Feces Reveals Increased Population Resilience Relative to Culturable Counts under Temperature Extremes.

    Science.gov (United States)

    Oliver, David M; Bird, Clare; Burd, Emmy; Wyman, Michael

    2016-09-06

    The relationship between culturable counts (CFU) and quantitative PCR (qPCR) cell equivalent counts of Escherichia coli in dairy feces exposed to different environmental conditions and temperature extremes was investigated. Fecal samples were collected in summer and winter from dairy cowpats held under two treatments: field-exposed versus polytunnel-protected. A significant correlation in quantified E. coli was recorded between the qPCR and culture-based methods (r = 0.82). Evaluation of the persistence profiles of E. coli over time revealed no significant difference in the E. coli numbers determined as either CFU or gene copies during the summer for the field-exposed cowpats, whereas significantly higher counts were observed by qPCR for the polytunnel-protected cowpats, which were exposed to higher ambient temperatures. In winter, the qPCR returned significantly higher counts of E. coli for the field-exposed cowpats, thus representing a reversal of the findings from the summer sampling campaign. Results from this study suggest that with increasing time post-defecation and with the onset of challenging environmental conditions, such as extremes in temperature, culture-based counts begin to underestimate the true resilience of viable E. coli populations in livestock feces. This is important not only in the long term as the Earth changes in response to climate-change drivers but also in the short term during spells of extremely cold or hot weather.

  5. Multiplex real-time PCR assays for detection of eight Shiga toxin-producing Escherichia coli in food samples by melting curve analysis.

    Science.gov (United States)

    Singh, Prashant; Mustapha, Azlin

    2015-12-23

    Shiga toxin-producing Escherichia coli (STEC) are pathogenic strains of E. coli that can cause bloody diarrhea and kidney failure. Seven STEC serogroups, O157, O26, O45, O103, O111, O121 and O145 are responsible for more than 71% of the total infections caused by this group of pathogens. All seven serogroups are currently considered as adulterants in non-intact beef products in the U.S. In this study, two multiplex melt curve real-time PCR assays with internal amplification controls (IACs) were standardized for the detection of eight STEC serogroups. The first multiplex assay targeted E. coli serogroups O145, O121, O104, and O157; while the second set detected E. coli serogroups O26, O45, O103 and O111. The applicability of the assays was tested using 11 different meat and produce samples. For food samples spiked with a cocktail of four STEC serogroups with a combined count of 10 CFU/25 g food, all targets of the multiplex assays were detected after an enrichment period of 6h. The assays also worked efficiently when 325 g of food samples were spiked with 10 CFU of STECs. The assays are not dependent on fluorescent-labeled probes or immunomagnetic beads, and can be used for the detection of eight STEC serogroups in less than 11h. Routine preliminary screening of STECs in food samples is performed by testing for the presence of STEC virulence genes. The assays developed in this study can be useful as a first- or second-tier test for the identification of the eight O serogroup-specific genes in suspected food samples. Copyright © 2015. Published by Elsevier B.V.

  6. Molecular serotyping, virulence gene profiling and pathogenicity of Streptococcus agalactiae isolated from tilapia farms in Thailand by multiplex PCR.

    Science.gov (United States)

    Kannika, K; Pisuttharachai, D; Srisapoome, P; Wongtavatchai, J; Kondo, H; Hirono, I; Unajak, S; Areechon, N

    2017-06-01

    This study aimed to biotype Streptococcus agalactiae isolated from tilapia farms in Thailand based on molecular biotyping methods and to determine the correlation between the serotype and virulence of bacteria. In addition to a biotyping (serotyping) technique based on multiplex PCR of cps genes, in this study, we developed multiplex PCR typing of Group B streptococcus (GBS) virulence genes to examine three clusters of virulence genes and their correlation with the pathogenicity of S. agalactiae. The epidemiology of S. agalactiae in Thailand was analysed to provide bacterial genetic information towards a future rational vaccine strategy for tilapia culture systems. Streptococcus agalactiae were isolated from diseased tilapia from different areas of Thailand. A total of 124 S. agalactiae isolates were identified by phenotypic analysis and confirmed by 16S rRNA PCR. Bacterial genotyping was conducted based on (i) molecular serotyping of the capsular polysaccharide (cps) gene cluster and (ii) virulence gene profiling using multiplex PCR analysis of 14 virulence genes (lmb, scpB, pavA, cspA, spb1, cyl, bca, rib, fbsA, fbsB, cfb, hylB, bac and pbp1A/ponA). Only serotypes Ia and III were found in this study; serotype Ia lacks the lmb, scpB and spb1 genes, whereas serotype III lacks only the bac gene. Virulence tests in juvenile Nile tilapia demonstrated a correlation between the pathogenicity of the bacteria and their virulence gene profile, with serotype III showing higher virulence than serotype Ia. Epidemiological analysis showed an almost equal distribution in all regions of Thailand, except serotype III was found predominantly in the southern areas. Only two serotypes of S. agalactiae were isolated from diseased tilapia in Thailand. Serotype Ia showed fewer virulence genes and lower virulence than serotype III. Both serotypes showed a similar distribution throughout Thailand. We identified two major serotypes of S. agalactiae isolates associated with the outbreak in

  7. Comparison of lung cancer cell lines representing four histopathological subtypes with gene expression profiling using quantitative real-time PCR

    Directory of Open Access Journals (Sweden)

    Kawaguchi Makoto

    2010-01-01

    Full Text Available Abstract Background Lung cancers are the most common type of human malignancy and are intractable. Lung cancers are generally classified into four histopathological subtypes: adenocarcinoma (AD, squamous cell carcinoma (SQ, large cell carcinoma (LC, and small cell carcinoma (SC. Molecular biological characterization of these subtypes has been performed mainly using DNA microarrays. In this study, we compared the gene expression profiles of these four subtypes using twelve human lung cancer cell lines and the more reliable quantitative real-time PCR (qPCR. Results We selected 100 genes from public DNA microarray data and examined them by DNA microarray analysis in eight test cell lines (A549, ABC-1, EBC-1, LK-2, LU65, LU99, STC 1, RERF-LC-MA and a normal control lung cell line (MRC-9. From this, we extracted 19 candidate genes. We quantified the expression of the 19 genes and a housekeeping gene, GAPDH, with qPCR, using the same eight cell lines plus four additional validation lung cancer cell lines (RERF-LC-MS, LC-1/sq, 86-2, and MS-1-L. Finally, we characterized the four subtypes of lung cancer cell lines using principal component analysis (PCA of gene expression profiling for 12 of the 19 genes (AMY2A, CDH1, FOXG1, IGSF3, ISL1, MALL, PLAU, RAB25, S100P, SLCO4A1, STMN1, and TGM2. The combined PCA and gene pathway analyses suggested that these genes were related to cell adhesion, growth, and invasion. S100P in AD cells and CDH1 in AD and SQ cells were identified as candidate markers of these lung cancer subtypes based on their upregulation and the results of PCA analysis. Immunohistochemistry for S100P and RAB25 was closely correlated to gene expression. Conclusions These results show that the four subtypes, represented by 12 lung cancer cell lines, were well characterized using qPCR and PCA for the 12 genes examined. Certain genes, in particular S100P and CDH1, may be especially important for distinguishing the different subtypes. Our results

  8. A performance study on three qPCR quantification kits and their compatibilities with the 6-dye DNA profiling systems.

    Science.gov (United States)

    Lin, Sze-Wah; Li, Christina; Ip, Stephen C Y

    2018-03-01

    DNA quantification plays an integral role in forensic DNA profiling. Not only does it estimate the total amount of amplifiable human autosomal and male DNA to ensure optimal amplification of target DNA for subsequent analysis, but also assesses the extraction efficiency and purity of the DNA extract. Latest DNA quantification systems even offer an estimate for the degree of DNA degradation in a sample. Here, we report the performance of three new generation qPCR kits, namely Investigator ® Quantiplex HYres Kit from QIAGEN, Quantifiler ® Trio DNA Quantification Kit from Applied Biosystems™, and PowerQuant ® System from Promega, and their compatibilities with three 6-dye DNA profiling systems. Our results have demonstrated that all three kits generate standard curves with satisfactory consistency and reproducibility, and are capable of screening out traces of male DNA in the presence of 30-fold excess of female DNA. They also exhibit a higher tolerance to PCR inhibition than Quantifiler ® Human DNA Quantification Kit from Applied Biosystems™ in autosomal DNA quantification. PowerQuant ® , as compared to Quantiplex HYres and Quantifiler ® Trio, shows a better precision for both autosomal and male DNA quantifications. Quantifiler ® Trio and PowerQuant ® in contrast to Quantiplex HYres offer better correlations with lower discrepancies between autosomal and male DNA quantification, and their additional degradation index features provide a detection platform for inhibited and/or degraded DNA template. Regarding the compatibility between these quantification and profiling systems: (1) both Quantifiler ® Trio and PowerQuant ® work well with GlobalFiler and Fusion 6C, allowing a fairly accurate prediction of their DNA typing results based on the quantification values; (2) Quantiplex HYres offers a fairly reliable IPC system for detecting any potential inhibitions on Investigator 24plex, whereas Quantifiler ® Trio and PowerQuant ® suit better for Global

  9. Genomic GC-content affects the accuracy of 16S rRNA gene sequencing bsed microbial profiling due to PCR bias

    DEFF Research Database (Denmark)

    Laursen, Martin F.; Dalgaard, Marlene Danner; Bahl, Martin Iain

    2017-01-01

    Profiling of microbial community composition is frequently performed by partial 16S rRNA gene sequencing on benchtop platforms following PCR amplification of specific hypervariable regions within this gene. Accuracy and reproducibility of this strategy are two key parameters to consider, which may...... be influenced during all processes from sample collection and storage, through DNA extraction and PCR based library preparation to the final sequencing. In order to evaluate both the reproducibility and accuracy of 16S rRNA gene based microbial profiling using the Ion Torrent PGM platform, we prepared libraries...... be explained partly by premature read truncation, but to larger degree their genomic GC-content, which correlated negatively with the observed relative abundances, suggesting a PCR bias against GC-rich species during library preparation. Increasing the initial denaturation time during the PCR amplification...

  10. A new general model for predicting melting thermodynamics of complementary and mismatched B-form duplexes containing locked nucleic acids: application to probe design for digital PCR detection of somatic mutations.

    Science.gov (United States)

    Hughesman, Curtis; Fakhfakh, Kareem; Bidshahri, Roza; Lund, H Louise; Haynes, Charles

    2015-02-17

    Advances in real-time polymerase chain reaction (PCR), as well as the emergence of digital PCR (dPCR) and useful modified nucleotide chemistries, including locked nucleic acids (LNAs), have created the potential to improve and expand clinical applications of PCR through their ability to better quantify and differentiate amplification products, but fully realizing this potential will require robust methods for designing dual-labeled hydrolysis probes and predicting their hybridization thermodynamics as a function of their sequence, chemistry, and template complementarity. We present here a nearest-neighbor thermodynamic model that accurately predicts the melting thermodynamics of a short oligonucleotide duplexed either to its perfect complement or to a template containing mismatched base pairs. The model may be applied to pure-DNA duplexes or to duplexes for which one strand contains any number and pattern of LNA substitutions. Perturbations to duplex stability arising from mismatched DNA:DNA or LNA:DNA base pairs are treated at the Gibbs energy level to maintain statistical significance in the regressed model parameters. This approach, when combined with the model's accounting of the temperature dependencies of the melting enthalpy and entropy, permits accurate prediction of T(m) values for pure-DNA homoduplexes or LNA-substituted heteroduplexes containing one or two independent mismatched base pairs. Terms accounting for changes in solution conditions and terminal addition of fluorescent dyes and quenchers are then introduced so that the model may be used to accurately predict and thereby tailor the T(m) of a pure-DNA or LNA-substituted hydrolysis probe when duplexed either to its perfect-match template or to a template harboring a noncomplementary base. The model, which builds on classic nearest-neighbor thermodynamics, should therefore be of use to clinicians and biologists who require probes that distinguish and quantify two closely related alleles in either a

  11. Thermodynamics of Oligonucleotide Duplex Melting

    Science.gov (United States)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  12. Multiway real-time PCR gene expression profiling in yeast. Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Czech Academy of Sciences Publication Activity Database

    Stahlberg, A.; Elbing, K.; Andrade-Garda, J.M.; Sjögreen, B.; Forootan, A.; Kubista, Mikael

    2008-01-01

    Roč. 9, č. 170 (2008), s. 1-41 ISSN 1471-2164 Institutional research plan: CEZ:AV0Z50520701 Keywords : Expression Profiling * Real-time PCR * Yeast Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.926, year: 2008

  13. Rapid detection of the H275Y oseltamivir resistance mutation in influenza A/H1N1 2009 by single base pair RT-PCR and high-resolution melting.

    Directory of Open Access Journals (Sweden)

    Steven Y C Tong

    Full Text Available We aimed to design a real-time reverse-transcriptase-PCR (rRT-PCR, high-resolution melting (HRM assay to detect the H275Y mutation that confers oseltamivir resistance in influenza A/H1N1 2009 viruses.A novel strategy of amplifying a single base pair, the relevant SNP at position 823 of the neuraminidase gene, was chosen to maintain specificity of the assay. Wildtype and mutant virus were differentiated when using known reference samples of cell-cultured virus. However, when dilutions of these reference samples were assayed, amplification of non-specific primer-dimer was evident and affected the overall melting temperature (T(m of the amplified products. Due to primer-dimer appearance at >30 cycles we found that if the cycle threshold (C(T for a dilution was >30, the HRM assay did not consistently discriminate mutant from wildtype. Where the C(T was 32.98 would have an H275Y assay C(T>30. Analysis of the TaqMan C(T values for 609 consecutive clinical samples predicted that 207 (34% of the samples would result in an HRM assay C(T>30 and therefore not be amenable to the HRM assay.The use of single base pair PCR and HRM can be useful for specifically interrogating SNPs. When applied to H1N1 09, the constraints this placed on primer design resulted in amplification of primer-dimer products. The impact primer-dimer had on HRM curves was adjusted for by plotting T(m against C(T. Although less sensitive than TaqMan assays, the HRM assay can rapidly, and at low cost, screen samples with moderate viral concentrations.

  14. ‘‘Blind'' mapping of genic DNA sequence polymorphisms in Lolium perenne L. by high resolution melting curve analysis

    DEFF Research Database (Denmark)

    Studer, Bruno; Jensen, Louise Bach; Fiil, Alice

    2009-01-01

    High resolution melting curve analysis (HRM) measures dissociation of double stranded DNA of a PCR product amplified in the presence of a saturating fluorescence dye. Recently, HRM proved successful to genotype DNA sequence polymorphisms such as SSRs and SNPs based on the shape of the melting...... curves. In this study, HRM was used for simultaneous screening and genotyping of genic DNA sequence polymorphisms identified in the Lolium perenne F2 mapping population VrnA. Melting profiles of PCR products amplified from previously published gene loci and from a novel gene putatively involved...

  15. A singleplex real-time fluorescence resonance energy transfer PCR with melting curve analysis for the differential detection of Paragonimus heterotremus, Echinostoma malayanum and Fasciola gigantica eggs in faeces.

    Science.gov (United States)

    Tantrawatpan, Chairat; Saijuntha, Weerachai; Manochantr, Sirikul; Kheolamai, Pakpoom; Thanchomnang, Tongjit; Sadaow, Lakkhana; Intapan, Pewpan M; Maleewong, Wanchai

    2016-01-01

    Because the eggs of Paragonimus, Echinostoma and Fasciola are very similar in size and shape, it is difficult to distinguish and accurately identify species by the morphology of their eggs, which is a standard diagnostic method. In this study, a novel assay combining a real-time fluorescence resonance energy transfer PCR and melting curve analysis using one set of primers and fluorophore-labelled hybridization probes specific for the 28S rDNA region was developed for the molecular detection of Paragonimus heterotremus, Echinostoma malayanum and Fasciola gigantica eggs. This assay could detect and distinguish P. heterotremus, E. malayanum and F. gigantica DNA with the distinct melting temperature (Tm) values of 57.99±0.08, 62.12±0.15 and 74.10±0.18, respectively. The assay can also be used to detect and distinguish DNA from P. bangkokensis, P. harinasutai, P. machorchis, E. revolutum, Hypodereum conoideum and F. hepatica, which have different Tm values. The sensitivity of this assay enabled the detection of one egg of P. heterotremus, E. malayanum or F. gigantica per 100 mg of faeces. In addition, the specificity testing showed no fluorescence signal for other parasites. Due to the sensitivity and specificity of our assay in detecting P. heterotremus, E. malayanum and F. gigantica, our method could be used to accurately diagnose these three medically important parasitic groups and has potential implications for molecular epidemiological investigations of human and/or animal infections. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Monitoring Metabolite Profiles of Cannabis sativa L. Trichomes during Flowering Period Using 1H NMR-Based Metabolomics and Real-Time PCR.

    Science.gov (United States)

    Happyana, Nizar; Kayser, Oliver

    2016-08-01

    Cannabis sativa trichomes are glandular structures predominantly responsible for the biosynthesis of cannabinoids, the biologically active compounds unique to this plant. To the best of our knowledge, most metabolomic works on C. sativa that have been reported previously focused their investigations on the flowers and leaves of this plant. In this study, (1)H NMR-based metabolomics and real-time PCR analysis were applied for monitoring the metabolite profiles of C. sativa trichomes, variety Bediol, during the last 4 weeks of the flowering period. Partial least squares discriminant analysis models successfully classified metabolites of the trichomes based on the harvest time. Δ (9)-Tetrahydrocannabinolic acid (1) and cannabidiolic acid (2) constituted the vital differential components of the organic preparations, while asparagine, glutamine, fructose, and glucose proved to be their water-extracted counterparts. According to RT-PCR analysis, gene expression levels of olivetol synthase and olivetolic acid cyclase influenced the accumulation of cannabinoids in the Cannabis trichomes during the monitoring time. Moreover, quantitative (1)H NMR and RT-PCR analysis of the Cannabis trichomes suggested that the gene regulation of cannabinoid biosynthesis in the C. sativa variety Bediol is unique when compared with other C. sativa varieties. Georg Thieme Verlag KG Stuttgart · New York.

  17. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli.

    Science.gov (United States)

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-04-16

    The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  18. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Directory of Open Access Journals (Sweden)

    Andrade-Garda José

    2008-04-01

    Full Text Available Abstract Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  19. Changes in Growth, Genomic DNA, Protein Profiles in Wheat Plant Using Physiological and RAPD-PCR Techniques

    International Nuclear Information System (INIS)

    El-Tarras, A.

    2002-01-01

    Wheat is the major winter cereal crop in the world. The total cultivated area of this crop in Egypt is about two million feddans. Soil salinity represent a serious problem to agriculture in arid and semi-arid in the world. Mexico wheat (Triticum vulgar var. Ycora rojo) was imported in 1999 for cultivation. Mexico wheat was exposed to gamma rays (cobalt 60) from 10 to 80 Krad The unirradiated and irradiated wheat were cultivated in the presence of 0, 5000,10000 and 20000 mg/L of salt solution and 16 hour light /25 degree C. The previous treatment was repeated in combination with 5, 10 mg/l ABA and 10, 20 mg/l GA3 separately. Different accessed parameters were used for evaluation, these parameters were: germination percentage, length of shoots and roots, pigment contents (chl. a,b and a/b carotenoids and total pigments), total protein patterns and RAPD, PCR techniques. The results showed that both of radiation and salinity reduced the percentage of germination. Soaking grains in GA3 considerably increased the shoot and root lengths. Highest value of carotenoids obtained act as a defense mechanism against harmful salinity action. Also, the seedling exposed to 80 Krad and treated with ABA (5 or 10 mg/l) can survive during the experimental period, while plants treated with 10 and 20 mg/l GA3 and exposed to 80 Krad can not survive. At low radiation doses (10 and 20 Krad) there was no difference in the number and density of bands of the total protein patterns, while in the RAPD, PCR technique in presence and/or absence of DNA band in unirradiated and irradiated wheat seeds were observed

  20. Molecular analysis of the genera eremopyrum (ledeb). jaub. and spach and agropyron gaertner (poaceae) by pcr methods

    International Nuclear Information System (INIS)

    Yilmaz, R.; Cabi, E.; Dogan, M.

    2014-01-01

    RAPD-PCR (Random Amplified Polymorphic DNA Polymerase Chain Reaction) and Post PCR (Polymerase Chain Reaction) Melting Curve Analysis (MCA) have been used to investigate the pattern of genetic variation among some species in the genera Eremopyrum (Ledeb.) Jaub. and Spach and Agropyron Gaertner (Poaceae). Thirteen primers have been used in the study based on the RAPD-PCR and MCA analyses. Each species produced a distinct pattern of DNA fragments which have been used as a measure of the degree of relationship between species by means of using the RAPD-PCR results with three primers selected for identifying the genetic similarities. Polymorphic melting profiles have been obtained with Post PCR MCA method using three primers. Genetic similarities are calculated for all the species studied with RAPD-PCR and MCA methods, the dendrograms are obtained with the MVSP (Multi Variate Statistical Package) software using UPGMA (Unweighted Pair Group Method with Arithmetic Averages) and Jaccard's Coefficient. Polymorphism between 18 populations of Eremopyrum and 6 Agropyron populations and within the species are determined by using RAPD-PCR and Post PCR melting curve analysis (MCA) respectively. (author)

  1. Analysis of RET promoter CpG island methylation using methylation-specific PCR (MSP), pyrosequencing, and methylation-sensitive high-resolution melting (MS-HRM): impact on stage II colon cancer patient outcome.

    Science.gov (United States)

    Draht, Muriel X G; Smits, Kim M; Jooste, Valérie; Tournier, Benjamin; Vervoort, Martijn; Ramaekers, Chantal; Chapusot, Caroline; Weijenberg, Matty P; van Engeland, Manon; Melotte, Veerle

    2016-01-01

    Already since the 1990s, promoter CpG island methylation markers have been considered promising diagnostic, prognostic, and predictive cancer biomarkers. However, so far, only a limited number of DNA methylation markers have been introduced into clinical practice. One reason why the vast majority of methylation markers do not translate into clinical applications is lack of independent validation of methylation markers, often caused by differences in methylation analysis techniques. We recently described RET promoter CpG island methylation as a potential prognostic marker in stage II colorectal cancer (CRC) patients of two independent series. In the current study, we analyzed the RET promoter CpG island methylation of 241 stage II colon cancer patients by direct methylation-specific PCR (MSP), nested-MSP, pyrosequencing, and methylation-sensitive high-resolution melting (MS-HRM). All primers were designed as close as possible to the same genomic region. In order to investigate the effect of different DNA methylation assays on patient outcome, we assessed the clinical sensitivity and specificity as well as the association of RET methylation with overall survival for three and five years of follow-up. Using direct-MSP and nested-MSP, 12.0 % (25/209) and 29.6 % (71/240) of the patients showed RET promoter CpG island methylation. Methylation frequencies detected by pyrosequencing were related to the threshold for positivity that defined RET methylation. Methylation frequencies obtained by pyrosequencing (threshold for positivity at 20 %) and MS-HRM were 13.3 % (32/240) and 13.8 % (33/239), respectively. The pyrosequencing threshold for positivity of 20 % showed the best correlation with MS-HRM and direct-MSP results. Nested-MSP detected RET promoter CpG island methylation in deceased patients with a higher sensitivity (33.1 %) compared to direct-MSP (10.7 %), pyrosequencing (14.4 %), and MS-HRM (15.4 %). While RET methylation frequencies detected by nested

  2. Investigation of the combined effect of MgO and PEG on the release profile of mefenamic acid prepared via hot-melt extrusion techniques.

    Science.gov (United States)

    Alshehri, Sultan M; Tiwari, Roshan V; Alsulays, Bader B; Ashour, Eman A; Alshetaili, Abdullah S; Almutairy, Bjad; Park, Jun-Bom; Morott, Joseph; Sandhu, Bhupinder; Majumdar, Soumyajit; Repka, Michael A

    2017-09-01

    This study aimed to investigate the combined effect of magnesium oxide (MgO) as an alkalizer and polyethylene glycol (PEG) as a plasticizer and wetting agent in the presence of Kollidon® 12 PF and 17 PF polymer carriers on the release profile of mefenamic acid (MA), which was prepared via hot-melt extrusion technique. Various drug loads of MA and various ratios of the polymers, PEG 3350 and MgO were blended using a V-shell blender and extruded using a twin-screw extruder (16-mm Prism EuroLab, ThermoFisher Scientific, Carlsbad, CA) at different screw speeds and temperatures to prepare a solid dispersion system. Differential scanning calorimetry and X-ray diffraction data of the extruded material confirmed that the drug existed in the amorphous form, as evidenced by the absence of corresponding peaks. MgO and PEG altered the micro-environmental pH to be more alkaline (pH 9) and increased the hydrophilicity and dispersibility of the extrudates to enhance MA solubility and release, respectively. The in vitro release study demonstrated an immediate release for 2 h with more than 80% drug release within 45 min in matrices containing MgO and PEG in combination with polyvinylpyrrolidone when compared to the binary mixture, physical mixture and pure drug.

  3. High Throughput qPCR Expression Profiling of Circulating MicroRNAs Reveals Minimal Sex- and Sample Timing-Related Variation in Plasma of Healthy Volunteers.

    Directory of Open Access Journals (Sweden)

    Catherine Mooney

    Full Text Available MicroRNAs are a class of small non-coding RNA that regulate gene expression at a post-transcriptional level. MicroRNAs have been identified in various body fluids under normal conditions and their stability as well as their dysregulation in disease opens up a new field for biomarker study. However, diurnal and day-to-day variation in plasma microRNA levels, and differential regulation between males and females, may affect biomarker stability. A QuantStudio 12K Flex Real-Time PCR System was used to profile plasma microRNA levels using OpenArray in male and female healthy volunteers, in the morning and afternoon, and at four time points over a one month period. Using this system we were able to run four OpenArray plates in a single run, the equivalent of 32 traditional 384-well qPCR plates or 12,000 data points. Up to 754 microRNAs can be identified in a single plasma sample in under two hours. 108 individual microRNAs were identified in at least 80% of all our samples which compares favourably with other reports of microRNA profiles in serum or plasma in healthy adults. Many of these microRNAs, including miR-16-5p, miR-17-5p, miR-19a-3p, miR-24-3p, miR-30c-5p, miR-191-5p, miR-223-3p and miR-451a are highly expressed and consistent with previous studies using other platforms. Overall, microRNA levels were very consistent between individuals, males and females, and time points and we did not detect significant differences in levels of microRNAs. These results suggest the suitability of this platform for microRNA profiling and biomarker discovery and suggest minimal confounding influence of sex or sample timing. However, the platform has not been subjected to rigorous validation which must be demonstrated in future biomarker studies where large differences may exist between disease and control samples.

  4. High-resolution melt-curve analysis of random-amplified-polymorphic-DNA markers, for the characterisation of pathogenic Leptospira

    DEFF Research Database (Denmark)

    Tulsiani, Suhella; Craig, S B; Graham, G C

    2010-01-01

    A new test for pathogenic Leptospira isolates, based on RAPD-PCR and high-resolution melt (HRM) analysis (which measures the melting temperature of amplicons in real time, using a fluorescent DNA-binding dye), has recently been developed. A characteristic profile of the amplicons can be used...... typed against 13 previously published RAPD primers, using a real-time cycler (the Corbett Life Science RotorGene 6000) and the optimised reagents from a commercial kit (Quantace SensiMix). RAPD-HRM at specific temperatures generated defining amplicon melt profiles for each of the tested serovars....... These profiles were evaluated as difference-curve graphs generated using the RotorGene software package, with a cut-off of at least 8 'U' (plus or minus). The results demonstrated that RAPD-HRM can be used to measure serovar diversity and establish identity, with a high degree of stability. The characterisation...

  5. Gene expression profiling of acute myeloid leukemia samples from adult patients with AML-M1 and -M2 through boutique microarrays, real-time PCR and droplet digital PCR.

    Science.gov (United States)

    Handschuh, Luiza; Kaźmierczak, Maciej; Milewski, Marek C; Góralski, Michał; Łuczak, Magdalena; Wojtaszewska, Marzena; Uszczyńska-Ratajczak, Barbara; Lewandowski, Krzysztof; Komarnicki, Mieczysław; Figlerowicz, Marek

    2018-03-01

    Acute myeloid leukemia (AML) is the most common and severe form of acute leukemia diagnosed in adults. Owing to its heterogeneity, AML is divided into classes associated with different treatment outcomes and specific gene expression profiles. Based on previous studies on AML, in this study, we designed and generated an AML-array containing 900 oligonucleotide probes complementary to human genes implicated in hematopoietic cell differentiation and maturation, proliferation, apoptosis and leukemic transformation. The AML-array was used to hybridize 118 samples from 33 patients with AML of the M1 and M2 subtypes of the French-American‑British (FAB) classification and 15 healthy volunteers (HV). Rigorous analysis of the microarray data revealed that 83 genes were differentially expressed between the patients with AML and the HV, including genes not yet discussed in the context of AML pathogenesis. The most overexpressed genes in AML were STMN1, KITLG, CDK6, MCM5, KRAS, CEBPA, MYC, ANGPT1, SRGN, RPLP0, ENO1 and SET, whereas the most underexpressed genes were IFITM1, LTB, FCN1, BIRC3, LYZ, ADD3, S100A9, FCER1G, PTRPE, CD74 and TMSB4X. The overexpression of the CPA3 gene was specific for AML with mutated NPM1 and FLT3. Although the microarray-based method was insufficient to differentiate between any other AML subgroups, quantitative PCR approaches enabled us to identify 3 genes (ANXA3, S100A9 and WT1) whose expression can be used to discriminate between the 2 studied AML FAB subtypes. The expression levels of the ANXA3 and S100A9 genes were increased, whereas those of WT1 were decreased in the AML-M2 compared to the AML-M1 group. We also examined the association between the STMN1, CAT and ABL1 genes, and the FLT3 and NPM1 mutation status. FLT3+/NPM1- AML was associated with the highest expression of STMN1, and ABL1 was upregulated in FLT3+ AML and CAT in FLT3- AML, irrespectively of the NPM1 mutation status. Moreover, our results indicated that CAT and WT1

  6. Quantitative Real Time PCR approach to study gene expression profile during prenatal growth of skeletal muscle in pig of Duroc and Pietrain breeds

    Directory of Open Access Journals (Sweden)

    M. Cagnazzo

    2010-01-01

    Full Text Available The quantitative real time-PCR (QRT-PCR is a very sensitive method used to quantify mRNA level in gene expression analysis. Combining amplification, detection and quantification in a single step, allows a more accurate measurement compared to the traditional PCR end point analysis (Pfaffl, 2001; Bustin, 2002.

  7. Shock Compression and Melting of an Fe-Ni-Si Alloy: Implications for the Temperature Profile of the Earth's Core and the Heat Flux Across the Core-Mantle Boundary

    Science.gov (United States)

    Zhang, Youjun; Sekine, Toshimori; Lin, Jung-Fu; He, Hongliang; Liu, Fusheng; Zhang, Mingjian; Sato, Tomoko; Zhu, Wenjun; Yu, Yin

    2018-02-01

    Understanding the melting behavior and the thermal equation of state of Fe-Ni alloyed with candidate light elements at conditions of the Earth's core is critical for our knowledge of the region's thermal structure and chemical composition and the heat flow across the liquid outer core into the lowermost mantle. Here we studied the shock equation of state and melting curve of an Fe-8 wt% Ni-10 wt% Si alloy up to 250 GPa by hypervelocity impacts with direct velocity and reliable temperature measurements. Our results show that the addition of 10 wt% Si to Fe-8 wt% Ni alloy slightly depresses the melting temperature of iron by 200-300 (±200) K at the core-mantle boundary ( 136 GPa) and by 600-800 (±500) K at the inner core-outer core boundary ( 330 GPa), respectively. Our results indicate that Si has a relatively mild effect on the melting temperature of iron compared with S and O. Our thermodynamic modeling shows that Fe-5 wt% Ni alloyed with 6 wt% Si and 2 wt% S (which has a density-velocity profile that matches the outer core's seismic profile well) exhibits an adiabatic profile with temperatures of 3900 K and 5300 K at the top and bottom of the outer core, respectively. If Si is a major light element in the core, a geotherm modeled for the outer core indicates a thermal gradient of 5.8-6.8 (±1.6) K/km in the D″ region and a high heat flow of 13-19 TW across the core-mantle boundary.

  8. High resolution melting (HRM) analysis of DNA--its role and potential in food analysis.

    Science.gov (United States)

    Druml, Barbara; Cichna-Markl, Margit

    2014-09-01

    DNA based methods play an increasing role in food safety control and food adulteration detection. Recent papers show that high resolution melting (HRM) analysis is an interesting approach. It involves amplification of the target of interest in the presence of a saturation dye by the polymerase chain reaction (PCR) and subsequent melting of the amplicons by gradually increasing the temperature. Since the melting profile depends on the GC content, length, sequence and strand complementarity of the product, HRM analysis is highly suitable for the detection of single-base variants and small insertions or deletions. The review gives an introduction into HRM analysis, covers important aspects in the development of an HRM analysis method and describes how HRM data are analysed and interpreted. Then we discuss the potential of HRM analysis based methods in food analysis, i.e. for the identification of closely related species and cultivars and the identification of pathogenic microorganisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The use of real-time polymerase chain reaction with high resolution melting (real-time PCR-HRM) analysis for the detection and discrimination of nematodes Bursaphelenchus xylophilus and Bursaphelenchus mucronatus.

    Science.gov (United States)

    Filipiak, Anna; Hasiów-Jaroszewska, Beata

    2016-04-01

    The real-time PCR-HRM analysis was developed for the detection and discrimination of the quarantine nematode Bursaphelenchus xylophilus and Bursaphelenchus mucronatus. A set of primers was designed to target the ITS region of rDNA. The results have demonstrated that this analysis is a valuable tool for differentiation of these both species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Detection and discrimination of two Brucella species by multiplex real-time PCR and high-resolution melt analysis curve from human blood and comparison of results using RFLP

    Directory of Open Access Journals (Sweden)

    Vahhab Piranfar

    2015-09-01

    Conclusion: The present study showed that this technique, which scans gene segments and creates an analysis pattern for detection of clinical samples, is useful and more dominant compared with PCR-RFLP. Thus, this method can be used for brucellosis detection, and clinical and epidemiological research.

  11. Real-Time PCR (qPCR) Primer Design Using Free Online Software

    Science.gov (United States)

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…

  12. The Effect of Pressure on Iron Speciation in Silicate Melts at a Fixed Oxygen Fugacity: The Possibility of a Redox Profile Through a Terrestrial Magma Ocean

    Science.gov (United States)

    Armstrong, K.; Frost, D. J.; McCammon, C. A.; Rubie, D. C.; Boffa Ballaran, T.

    2017-12-01

    As terrestrial planets accreted, mantle silicates equilibrated with core-forming metallic iron, which would have imposed a mantle oxygen fugacity below the iron-wüstite oxygen buffer. Throughout Earth's history, however, the oxygen fugacity of at least the accessible portions of the upper mantle has been 4-5 orders of magnitude higher. The process that caused the rapid increase in the redox state of the mantle soon after core formation is unclear. Here we test the possibility that pressure stabilises ferric iron in silicate melts, as has been observed in silicate minerals. A deep magma ocean, which would have likely existed towards the end of accretion, could then develop a gradient in oxygen fugacity for a fixed ferric-ferrous ratio as a result of pressure. We have equilibrated an andesitic melt with a Ru-RuO2 buffer in a multianvil press between 5 and 24 GPa. Further experiments were performed on the same melt in equilibrium with iron metal. The recovered melts were then analysed using Mössbauer spectroscopy to determine the ferric/ferrous ratio. The results show that for the Ru-RuO2 buffer at lower pressures, the ferric iron content decreases with pressure, due to a positive volume change of the reaction FeO + 1/4O2 = FeO1.5. Ferric iron content also appears to be sensitive to water content at lower pressures. However, above 15 GPa this trend apparently reverses and the ferric iron content increases with pressure. This reversal in pressure dependence would drive the oxygen fugacity of a deep magma ocean with a fixed ferric/ferrous ratio down with increasing depth. This would create a redox gradient, where the magma ocean could potentially be in equilibrium with metallic iron at its base but more oxidised in its shallower regions. Crystallisation of this magma ocean could render an upper mantle oxygen fugacity similar to that in the Earth's accessible mantle today.

  13. Profiles

    International Nuclear Information System (INIS)

    2004-01-01

    Profiles is a synthetic overview of more than 100 national energy markets in the world, providing insightful facts and key energy statistics. A Profile is structured around 6 main items and completed by key statistics: Ministries, public agencies, energy policy are concerned; main companies in the oil, gas, electricity and coal sectors, status, shareholders; reserve, production, imports and exports, electricity and refining capacities; deregulation of prices, subsidies, taxes; consumption trends by sector, energy market shares; main energy projects, production and consumption prospects. Statistical Profiles are present in about 3 pages the main data and indicators on oil, gas, coal and electricity. (A.L.B.)

  14. High Resolution Melting Analysis for fast and cheap polymorphism screening of marine populations

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Anne-Leila Meistertzheim, Isabelle Calves, Sébastien Artigaud, Carolyn S. Friedman, Christine Paillard, Jean Laroche & Claude Ferec ### Abstract This protocol permits the mutation scanning of PCR products by high-resolution DNA melting analysis requiring the inclusion of a saturating intercalating dye in the PCR mix without labelled probe. During a scanning process, fluorescent melting curves of PCR amplicons are analyzed. Mutations modifying melting curve shapes, are allowed...

  15. Using bathymetry and reflective seismic profiles to tests a suspected link between melt flux and cumulative fault heave at mid-ocean ridges

    Science.gov (United States)

    Haughton, G.; Murton, B. J.; Le Bas, T.; Henstock, T.

    2017-12-01

    The interplay between magma supply and spreading rate is believed to play a major role in determining large scale seafloor morphology. Here we use bathymetry to test this relationship in areas with similar spreading rates and differing magma supplies. By using open source bathymetry data we have developed a repeatable, automated method for categorising seafloor cumulative fault heave and then attempt to identify the controlling variables. We measure the total apparent fault heave along axis and off-axis at 29°N and 60°N on the Mid-Atlantic Ridge then compare this to proxies for deformation and magma supply. Two approaches are adopted for identifying faults: one using bathymetry and the other spreading-parallel seismic reflection data. The first re-examines the orthogonally spreading Broken Spur segment (26°N) spreading at 23 mm yr-1 (full rate). The other examines the Reykjanes Ridge (60°N) spreading obliquely at 21 mm yr-1 (full rate), which may be influenced by the Icelandic hotspot. Each have contrasting residual depth and structure, with the former being typical of slow spreading ridges, with marked axial valleys, whereas the latter is more typical of fast spreading ridge morphology, with smooth axial rise. We find that high total heave (indicating high tectonic spreading) on the Broken Spur segment does not correlate with high mantle Bouguer anomalies (indicating thin crust and low melt flux). From this we hypothesise that total heave on the large scale at the Broken Spur segment is not controlled by crustal thickness or melt supply. At the Raykjanes Ridge, V-shaped ridges have thicker crust (measured seismically) which converge south of Iceland. These are thought to reflect transient (every 4-6 Myrs) pulses of hot mantle radiating away from the Iceland plume. We find ridge-symmetrical variation in fault heave but with a lower frequency (6-8 Myrs) and longer wavelength (3-7 Myrs) than the V-shaped ridges. Our analysis shows that plume pulses do not

  16. Melting in super-earths.

    Science.gov (United States)

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  17. Product differentiation during continuous-flow thermal gradient PCR.

    Science.gov (United States)

    Crews, Niel; Wittwer, Carl; Palais, Robert; Gale, Bruce

    2008-06-01

    A continuous-flow PCR microfluidic device was developed in which the target DNA product can be detected and identified during its amplification. This in situ characterization potentially eliminates the requirement for further post-PCR analysis. Multiple small targets have been amplified from human genomic DNA, having sizes of 108, 122, and 134 bp. With a DNA dye in the PCR mixture, the amplification and unique melting behavior of each sample is observed from a single fluorescent image. The melting behavior of the amplifying DNA, which depends on its molecular composition, occurs spatially in the thermal gradient PCR device, and can be observed with an optical resolution of 0.1 degrees C pixel(-1). Since many PCR cycles are within the field of view of the CCD camera, melting analysis can be performed at any cycle that contains a significant quantity of amplicon, thereby eliminating the cycle-selection challenges typically associated with continuous-flow PCR microfluidics.

  18. High similarity of Trypanosoma cruzi kDNA genetic profiles detected by LSSP-PCR within family groups in an endemic area of Chagas disease in Brazil

    Directory of Open Access Journals (Sweden)

    Sandra Maria Alkmim-Oliveira

    2014-10-01

    Full Text Available Introduction Determining the genetic similarities among Trypanosoma cruzi populations isolated from different hosts and vectors is very important to clarify the epidemiology of Chagas disease. Methods An epidemiological study was conducted in a Brazilian endemic area for Chagas disease, including 76 chronic chagasic individuals (96.1% with an indeterminate form; 46.1% with positive hemoculture. Results T. cruzi I (TcI was isolated from one child and TcII was found in the remaining (97.1% subjects. Low-stringency single-specific-primer-polymerase chain reaction (LSSP-PCR showed high heterogeneity among TcII populations (46% of shared bands; however, high similarities (80-100% among pairs of mothers/children, siblings, or cousins were detected. Conclusions LSSP-PCR showed potential for identifying similar parasite populations among individuals with close kinship in epidemiological studies of Chagas disease.

  19. Effect of the distribution of saturated fatty acids in the melting and crystallization profiles of high-oleic high-stearic oils

    International Nuclear Information System (INIS)

    Bootello, M.A.; Garces, R.; Martinez-Force, E.; Salas, J.J.

    2016-01-01

    The composition and distribution of fatty acids in triacylglycerol (TAG) molecules are commonly considered as factors that determine the physical properties of a given oil or fat. The distribution of any fatty acid in fats and oils can be described through the α coefficient of asymmetry, which can be calculated from the TAG composition and fatty acid composition of the Sn-2 position of the TAGs determined through lipase hydrolysis. High-oleic high-stearic oils and fats are considered stable and healthy, and they are good substitutes for hydrogenated vegetable oils and palm fractions in many food products, such as spreads and confectionery. Here, different high-oleic high-stearic acid oils were formulated which contained different distributions of saturated fatty acids in their TAGs, while maintaining a similar fatty acid composition. The aim of this work was to discuss the possibility of using the α coefficient to predict the physical properties of fats in function of their chemical composition and their melting and crystallization behavior as examined by differential scanning calorimetry.

  20. Epidemiological, clinical and laboratory profile of scrub typhus cases detected by serology and RT-PCR in Kumaon, Uttarakhand: a hospital-based study.

    Science.gov (United States)

    Rawat, Vinita; Singh, Rajesh Kumar; Kumar, Ashok; Saxena, Sandip R; Varshney, Umesh; Kumar, Mukesh

    2018-04-01

    We analysed the epidemiology, clinical and laboratory data of the 168 scrub typhus cases confirmed by a combination of any one of the following: real time polymerase chain reaction (RT-PCR) and/or immunofluorescence assay (IFA) (IgM and/or IgG). The peak season for scrub typhus was from July to October. By multivariate binary logistic regression analysis, the risk of scrub typhus was about four times in those working in occupation related to forest work. Major clinical manifestations were fever (100%), myalgia (65%), cough (51%) and vomiting (46%); major complications were meningitis/meningoencephatilitis (12.5%) and multi-organ failure (MOF) and pneumonia (5.3% each). Laboratory investigations revealed raised aminotranferase levels and thrombocytopenia in most confirmed cases. We conclude that scrub typhus is an important cause of febrile illness in the Kumaon hills of Uttarakhand where this disease had not previously been considered to exist.

  1. A probe-based qRT-PCR method to profile immunological gene expression in blood of captive beluga whales (Delphinapterus leucas

    Directory of Open Access Journals (Sweden)

    Ming-An Tsai

    2017-09-01

    Full Text Available Cytokines are fundamental for a functioning immune system, and thus potentially serve as important indicators of animal health. Quantitation of mRNA using quantitative reverse transcription polymerase chain reaction (qRT-PCR is an established immunological technique. It is particularly suitable for detecting the expression of proteins against which monoclonal antibodies are not available. In this study, we developed a probe-based quantitative gene expression assay for immunological assessment of captive beluga whales (Delphinapterus leucas that is one of the most common cetacean species on display in aquariums worldwide. Six immunologically relevant genes (IL-2Rα, -4, -10, -12, TNFα, and IFNγ were selected for analysis, and two validated housekeeping genes (PGK1 and RPL4 with stable expression were used as reference genes. Sixteen blood samples were obtained from four animals with different health conditions and stored in RNAlater™ solution. These samples were used for RNA extraction followed by qRT-PCR analysis. Analysis of gene transcripts was performed by relative quantitation using the comparative Cq method with the integration of amplification efficiency and two reference genes. The expression levels of each gene in the samples from clinically healthy animals were normally distributed. Transcript outliers for IL-2Rα, IL-4, IL-12, TNFα, and IFNγ were noticed in four samples collected from two clinically unhealthy animals. This assay has the potential to identify immune system deviation from normal state, which is caused by health problems. Furthermore, knowing the immune status of captive cetaceans could help both trainers and veterinarians in implementing preventive approaches prior to disease onset.

  2. High-resolution melting-curve (HRM) analysis for C. meleagridis identification in stool samples.

    Science.gov (United States)

    Chelbi, Hanen; Essid, Rym; Jelassi, Refka; Bouzekri, Nesrine; Zidi, Ines; Ben Salah, Hamza; Mrad, Ilhem; Ben Sghaier, Ines; Abdelmalek, Rym; Aissa, Sameh; Bouratbine, Aida; Aoun, Karim

    2018-02-01

    Cryptosporidiosis represents a major public health problem. This infection, caused by a protozoan parasite of the genus Cryptosporidium, has been reported worldwide as a frequent cause of diarrhoea. In the immunocompetent host, the typical watery diarrhea can be self-limiting. However, it is severe and chronic, in the immunocompromised host and may cause death. Cryptosporidium spp. are coccidians, which complete their life cycle in both humans and animals. The two species C. hominis and C. parvum are the major cause of human infection. Compared to studies on C. hominis and C. parvum, only a few studies have developed methods to identify C. meleagridis. To develop a new real time PCR-coupled High resolution melting assay allowing the detection for C. meleagridis, in addition of the other dominant species (C. hominis and C. parvum). The polymorphic sequence on the dihydrofolate reductase gene (DHFR) of three species was sequenced to design primers pair and establish a sensitive real-time PCR coupled to a high-resolution melting-curve (HRM) analysis method, allowing the detection of Cryptosporidium sp. and discrimination between three prevalent species in Tunisia. We analyzed a collection of 42 archived human isolates of the three studied species. Real-time PCR coupled to HRM assay allowed detection of Cryptosporidium, using the new designed primers, and basing on melting profile, we can distinguish C. meleagridis species in addition to C. parvum and C. hominis. We developed a qPCR-HRM assay that allows Cryptosporidium genotyping. This method is sensitive and able to distinguish three Cryptosporidium species. Copyright © 2017. Published by Elsevier Ltd.

  3. Effect of the distribution of saturated fatty acids in the melting and crystallization profiles of high-oleic high-stearic oils

    Directory of Open Access Journals (Sweden)

    Bootello, M. A.

    2016-09-01

    Full Text Available The composition and distribution of fatty acids in triacylglycerol (TAG molecules are commonly considered as factors that determine the physical properties of a given oil or fat. The distribution of any fatty acid in fats and oils can be described through the α coefficient of asymmetry, which can be calculated from the TAG composition and fatty acid composition of the sn-2 position of the TAGs determined through lipase hydrolysis. High-oleic high-stearic oils and fats are considered stable and healthy, and they are good substitutes for hydrogenated vegetable oils and palm fractions in many food products, such as spreads and confectionery. Here, different high-oleic high-stearic acid oils were formulated which contained different distributions of saturated fatty acids in their TAGs, while maintaining a similar fatty acid composition. The aim of this work was to discuss the possibility of using the α coefficient to predict the physical properties of fats in function of their chemical composition and their melting and crystallization behavior as examined by differential scanning calorimetry.La composición y distribución de los ácidos grasos en las moléculas de triglicéridos se consideran factores determinantes en las propiedades físicas de los aceites y grasas. La distribución de ácidos grasos en un determinado aceite o grasa puede caracterizarse mediante un coeficiente de asimetría α, calculado a partir de las composiciones de triglicéridos y de ácidos grasos en la posición sn-2 de la molécula de triglicérido mediante hidrólisis con lipasa. El aceite de girasol alto oleico-alto esteárico es una grasa estable y saludable, adecuada para reemplazar a los aceites vegetales hidrogenados y fracciones de palma en muchos productos alimentarios, como grasas plásticas y grasas de confitería. En el presente trabajo, se formularon diferentes aceites alto oleico-alto esteárico con diferente distribución de los ácidos grasos saturados en

  4. Determination of haemolytic and non haemolytic genes profiles of Bacillus cereus strains isolated from food samples by polymerase chain reaction (pcr) technique

    Science.gov (United States)

    Jawad, Nisreen; Ahemd, Asmat; Abdullah, Aminah

    2018-04-01

    The aim of this study was to investigate the presence of Bacillus cereus and detection of enterotoxigenic genes in food samples by utilizing a Polymerase Chain Reaction technique (PCR). In this study the providence of B. cereus was carried out to food samples. The B. cereus isolates were investigated for enterotoxigenic gene. The cooked seafood, and raw milk samples were purchased from several restaurants and market in the area of (Bangi, Kajang, Serdang and UKM) Selangor, Malaysia. A total of 60 samples have been analyzed. B. cereus contamination has been formed between 1.4×105 - 3×105 cfu/mL of cooked seafood and raw milk samples. Five colonies have been detected as B. cereus using biochemical test. All B. cereus isolates named BC1 to BC27, were characterized for haemolytic enterotoxin (HBL) complex encoding genes (hblA), non-haemolytic enterotoxin encoding gene (NheA). 10 isolates have been reported to be positive towards hblA and 12 isolates were positive towards NheA. The presence of B. cereus and their enterotoxigenic genes in cooked seafood and raw milk from to food samples obtained may pose a potential risk for public health.

  5. Expression Profile of IL-35 mRNA in Gingiva of Chronic Periodontitis and Aggressive Periodontitis Patients: A Semiquantitative RT-PCR Study

    Directory of Open Access Journals (Sweden)

    Nagaraj B. Kalburgi

    2013-01-01

    Full Text Available Background. Proinflammatory and anti-inflammatory cytokines play a key role in the pathogenesis of periodontal diseases. Secretion of bioactive IL-35 has been described by T regulatory cells ( and is required for their maximal suppressive activity. are involved in the modulation of local immune response in chronic periodontitis patients. Objective. Hence, the present study was aimed to investigate the expression of IL-35 mRNA in chronic periodontitis and aggressive periodontitis patients. Materials and Methods. The present study was carried out in 60 subjects, which included 20 chronic periodontitis patients, 20 aggressive periodontitis patients, and 20 periodontally healthy controls. IL-35 mRNA expression in gingival tissue samples of all subjects was semiquantitatively analyzed using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR. Results. The present study demonstrated the expression of IL-35 mRNA in gingival tissues of all the three groups. IL-35 mRNA expression was highest in chronic periodontitis subjects ( as compared to the aggressive periodontitis group ( and least seen in healthy patients (. Conclusion. The increased expression of IL-35 in chronic and aggressive periodontitis suggests its possible role in pathogenesis of periodontitis. Future studies done on large samples with intervention will strengthen our result.

  6. Gene expression profile and immunological evaluation of unique hypothetical unknown proteins of Mycobacterium leprae by using quantitative real-time PCR.

    Science.gov (United States)

    Kim, Hee Jin; Prithiviraj, Kalyani; Groathouse, Nathan; Brennan, Patrick J; Spencer, John S

    2013-02-01

    The cell-mediated immunity (CMI)-based in vitro gamma interferon release assay (IGRA) of Mycobacterium leprae-specific antigens has potential as a promising diagnostic means to detect those individuals in the early stages of M. leprae infection. Diagnosis of leprosy is a major obstacle toward ultimate disease control and has been compromised in the past by the lack of specific markers. Comparative bioinformatic analysis among mycobacterial genomes identified potential M. leprae-specific proteins called "hypothetical unknowns." Due to massive gene decay and the prevalence of pseudogenes, it is unclear whether any of these proteins are expressed or are immunologically relevant. In this study, we performed cDNA-based quantitative real-time PCR to investigate the expression status of 131 putative open reading frames (ORFs) encoding hypothetical unknowns. Twenty-six of the M. leprae-specific antigen candidates showed significant levels of gene expression compared to that of ESAT-6 (ML0049), which is an important T cell antigen of low abundance in M. leprae. Fifteen of 26 selected antigen candidates were expressed and purified in Escherichia coli. The seroreactivity to these proteins of pooled sera from lepromatous leprosy patients and cavitary tuberculosis patients revealed that 9 of 15 recombinant hypothetical unknowns elicited M. leprae-specific immune responses. These nine proteins may be good diagnostic reagents to improve both the sensitivity and specificity of detection of individuals with asymptomatic leprosy.

  7. Shock induced melting of lead (experimental study)

    International Nuclear Information System (INIS)

    Mabire, Catherine; Hereil, Pierre L.

    2002-01-01

    To investigate melting on release of lead, two shock compression measurements have been carried out at 51 GPa. In the first one, a pyrometric measurement has been performed at the Pb/LiF interface. In the second one, the Pb/LiF interface velocity has been recorded using VISAR measurement technique. VISAR and radiance profile are in good agreement and seem to show melting on release of lead

  8. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  9. Clinical profile of uveitis in Hansen’s disease after completion of treatment – A study of 50 cases using Polymerase Chain Reaction (PCR on aqueous humour

    Directory of Open Access Journals (Sweden)

    Radha Annamalai

    2016-05-01

    Full Text Available Chronic low grade anterior uveitis is the commonest cause of blindness in leprosy. It is usually asymptomatic until the late stages and patients seek help only after irreversible visual loss. We analysed patients who had a recurrence of uveitis after completion of treatment with anti-leprosy drugs and had been proven as histopathologically negative. The presence of chronic uveitis, complications and the extent of ocular damage it may cause, can continue even after treatment, emphasising the importance of follow-up, early detection and treatment. This is a prospective cohort study. Ophthalmic evaluation was performed using slit lamp examination, biomicroscopy, indirect ophthalmoscopy, applanation tonometry, corneal sensation and Schirmer’s test. Split skin microscopy was done to confirm the activity of leprosy. In patients with recalcitrant iridocyclitis, anterior chamber paracentesis was performed. The sample was analysed both by smear and polymerase chain reaction. The sequences that were targeted using PCR included genes encoding the DNA of 36-kDa antigen, 18-kDa antigen, 65-kDa antigen and the repetitive sequences among other M. leprae genes. Aqueous aspirate showed copies of mycobacterium leprae DNA in five out of twelve patients with recalcitrant anterior uveitis. Direct smear and staining with Ziehl- Neelson staining for mycobacteria was positive showing both live and dead bacilli. Live bacilli can persist in the aqueous humour even after completion of treatment. In our study this was more frequently observed in tuberculoid leprosy. This is possibly due to an immune mediated response combined with inadequate treatment dose in these patients.

  10. Melting of Dense Sodium

    International Nuclear Information System (INIS)

    Gregoryanz, Eugene; Degtyareva, Olga; Hemley, Russell J.; Mao, Ho-kwang; Somayazulu, Maddury

    2005-01-01

    High-pressure high-temperature synchrotron diffraction measurements reveal a maximum on the melting curve of Na in the bcc phase at ∼31 GPa and 1000 K and a steep decrease in melting temperature in its fcc phase. The results extend the melting curve by an order of magnitude up to 130 GPa. Above 103 GPa, Na crystallizes in a sequence of phases with complex structures with unusually low melting temperatures, reaching 300 K at 118 GPa, and an increased melting temperature is observed with further increases in pressure

  11. Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression

    Directory of Open Access Journals (Sweden)

    Řičicová Markéta

    2010-04-01

    Full Text Available Abstract Background Candida albicans infections are often associated with biofilm formation. Previous work demonstrated that the expression of HWP1 (hyphal wall protein and of genes belonging to the ALS (agglutinin-like sequence, SAP (secreted aspartyl protease, PLB (phospholipase B and LIP (lipase gene families is associated with biofilm growth on mucosal surfaces. We investigated using real-time PCR whether genes encoding potential virulence factors are also highly expressed in biofilms associated with abiotic surfaces. For this, C. albicans biofilms were grown on silicone in microtiter plates (MTP or in the Centres for Disease Control (CDC reactor, on polyurethane in an in vivo subcutaneous catheter rat (SCR model, and on mucosal surfaces in the reconstituted human epithelium (RHE model. Results HWP1 and genes belonging to the ALS, SAP, PLB and LIP gene families were constitutively expressed in C. albicans biofilms. ALS1-5 were upregulated in all model systems, while ALS9 was mostly downregulated. ALS6 and HWP1 were overexpressed in all models except in the RHE and MTP, respectively. The expression levels of SAP1 were more pronounced in both in vitro models, while those of SAP2, SAP4 and SAP6 were higher in the in vivo model. Furthermore, SAP5 was highly upregulated in the in vivo and RHE models. For SAP9 and SAP10 similar gene expression levels were observed in all model systems. PLB genes were not considerably upregulated in biofilms, while LIP1-3, LIP5-7 and LIP9-10 were highly overexpressed in both in vitro models. Furthermore, an elevated lipase activity was detected in supernatans of biofilms grown in the MTP and RHE model. Conclusions Our findings show that HWP1 and most of the genes belonging to the ALS, SAP and LIP gene families are upregulated in C. albicans biofilms. Comparison of the fold expression between the various model systems revealed similar expression levels for some genes, while for others model-dependent expression

  12. High resolution melting for mutation scanning of TP53 exons 5–8

    International Nuclear Information System (INIS)

    Krypuy, Michael; Dobrovic, Alexander; Ahmed, Ahmed Ashour; Etemadmoghadam, Dariush; Hyland, Sarah J; Australian Ovarian Cancer Study Group; Fazio, Anna de; Fox, Stephen B; Brenton, James D; Bowtell, David D

    2007-01-01

    p53 is commonly inactivated by mutations in the DNA-binding domain in a wide range of cancers. As mutant p53 often influences response to therapy, effective and rapid methods to scan for mutations in TP53 are likely to be of clinical value. We therefore evaluated the use of high resolution melting (HRM) as a rapid mutation scanning tool for TP53 in tumour samples. We designed PCR amplicons for HRM mutation scanning of TP53 exons 5 to 8 and tested them with DNA from cell lines hemizygous or homozygous for known mutations. We assessed the sensitivity of each PCR amplicon using dilutions of cell line DNA in normal wild-type DNA. We then performed a blinded assessment on ovarian tumour DNA samples that had been previously sequenced for mutations in TP53 to assess the sensitivity and positive predictive value of the HRM technique. We also performed HRM analysis on breast tumour DNA samples with unknown TP53 mutation status. One cell line mutation was not readily observed when exon 5 was amplified. As exon 5 contained multiple melting domains, we divided the exon into two amplicons for further screening. Sequence changes were also introduced into some of the primers to improve the melting characteristics of the amplicon. Aberrant HRM curves indicative of TP53 mutations were observed for each of the samples in the ovarian tumour DNA panel. Comparison of the HRM results with the sequencing results revealed that each mutation was detected by HRM in the correct exon. For the breast tumour panel, we detected seven aberrant melt profiles by HRM and subsequent sequencing confirmed the presence of these and no other mutations in the predicted exons. HRM is an effective technique for simple and rapid scanning of TP53 mutations that can markedly reduce the amount of sequencing required in mutational studies of TP53

  13. Role of Melt Curve Analysis in Interpretation of Nutrigenomics' MicroRNA Expression Data.

    Science.gov (United States)

    Ahmed, Farid E; Gouda, Mostafa M; Hussein, Laila A; Ahmed, Nancy C; Vos, Paul W; Mohammad, Mahmoud A

    2017-01-01

    This article illustrates the importance of melt curve analysis (MCA) in interpretation of mild nutrogenomic micro(mi)RNA expression data, by measuring the magnitude of the expression of key miRNA molecules in stool of healthy human adults as molecular markers, following the intake of Pomegranate juice (PGJ), functional fermented sobya (FS), rich in potential probiotic lactobacilli, or their combination. Total small RNA was isolated from stool of 25 volunteers before and following a three-week dietary intervention trial. Expression of 88 miRNA genes was evaluated using Qiagen's 96 well plate RT 2 miRNA qPCR arrays. Employing parallel coordinates plots, there was no observed significant separation for the gene expression (Cq) values, using Roche 480® PCR LightCycler instrument used in this study, and none of the miRNAs showed significant statistical expression after controlling for the false discovery rate. On the other hand, melting temperature profiles produced during PCR amplification run, found seven significant genes (miR-184, miR-203, miR-373, miR-124, miR-96, miR-373 and miR-301a), which separated candidate miRNAs that could function as novel molecular markers of relevance to oxidative stress and immunoglobulin function, for the intake of polyphenol (PP)-rich, functional fermented foods rich in lactobacilli (FS), or their combination. We elaborate on these data, and present a detailed review on use of melt curves for analyzing nutigenomic miRNA expression data, which initially appear to show no significant expressions, but are actually more subtle than this simplistic view, necessitating the understanding of the role of MCA for a comprehensive understanding of what the collective expression and MCA data collectively imply. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. Model of interfacial melting

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Zuckermann, Martin J.

    1987-01-01

    A two-dimensional model is proposed to describe systems with phase transitions which take place in terms of crystalline as well as internal degrees of freedom. Computer simulation of the model shows that the interplay between the two sets of degrees of freedom permits observation of grain-boundar......-boundary formation and interfacial melting, a nonequilibrium process by which the system melts at the boundaries of a polycrystalline domain structure. Lipid membranes are candidates for systems with pronounced interfacial melting behavior....

  15. Incorporation of Certain Hydrophobic Excipients in the Core of Melt ...

    African Journals Online (AJOL)

    Patrick Erah

    incorporation of hydrophobic materials (talc or magnesium stearate) in the core of such granules may further retard .... (500mg) was filled into a capsule shell and ... of the drug particles. The effect of melt granulation on the release profiles of paracetamol is shown in Fig 1. The melt granulations displayed a retarded release.

  16. Melt inclusions: Chapter 6

    Science.gov (United States)

    ,; Lowenstern, J. B.

    2014-01-01

    Melt inclusions are small droplets of silicate melt that are trapped in minerals during their growth in a magma. Once formed, they commonly retain much of their initial composition (with some exceptions) unless they are re-opened at some later stage. Melt inclusions thus offer several key advantages over whole rock samples: (i) they record pristine concentrations of volatiles and metals that are usually lost during magma solidification and degassing, (ii) they are snapshots in time whereas whole rocks are the time-integrated end products, thus allowing a more detailed, time-resolved view into magmatic processes (iii) they are largely unaffected by subsolidus alteration. Due to these characteristics, melt inclusions are an ideal tool to study the evolution of mineralized magma systems. This chapter first discusses general aspects of melt inclusions formation and methods for their investigation, before reviewing studies performed on mineralized magma systems.

  17. Melting point of yttria

    International Nuclear Information System (INIS)

    Skaggs, S.R.

    1977-06-01

    Fourteen samples of 99.999 percent Y 2 O 3 were melted near the focus of a 250-W CO 2 laser. The average value of the observed melting point along the solid-liquid interface was 2462 +- 19 0 C. Several of these same samples were then melted in ultrahigh-purity oxygen, nitrogen, helium, or argon and in water vapor. No change in the observed temperature was detected, with the exception of a 20 0 C increase in temperature from air to helium gas. Post test examination of the sample characteristics, clarity, sphericity, and density is presented, along with composition. It is suggested that yttria is superior to alumina as a secondary melting-point standard

  18. Multicomponent Diffusion in Experimentally Cooled Melt Inclusions

    Science.gov (United States)

    Saper, L.; Stolper, E.

    2017-12-01

    Glassy olivine-hosted melt inclusions are compositionally zoned, characterized by a boundary layer depleted in olivine-compatible components that extends into the melt inclusion from its wall. The boundary layer forms in response to crystallization of olivine and relaxes with time due to diffusive exchange with the interior of the inclusion. At magmatic temperatures, the time scale for homogenization of inclusions is minutes to hours. Preservation of compositional gradients in natural inclusions results from rapid cooling upon eruption. A model of MgO concentration profiles that couples crystal growth and diffusive relaxation of a boundary layer can be used to solve for eruptive cooling rates [1]. Controlled cooling-rate experiments were conducted to test the accuracy of the model. Mauna Loa olivine containing >80 µm melt inclusions were equilibrated at 1225°C in a 1-atm furnace for 24 hours, followed by linear cooling at rates of 102 - 105 °C/hr. High-resolution concentration profiles of 40 inclusions were obtained using an electron microprobe. The model of [1] fits the experimental data with low residuals and the best-fit cooling rates are within 30% of experimental values. The initial temperature of 1225 °C is underestimated by 65°C. The model was modified using (i) MELTS to calculate the interface melt composition as a function of temperature, and (ii) a concentration-dependent MgO diffusion coefficient using the functional form of [2]. With this calibration the best-fit starting temperatures are within 5°C of the experimental values and the best-fit cooling rates are within 20% of experimental rates. The evolution of the CaO profile during cooling is evidence for strong diffusive coupling between melt components. Because CaO is incompatible in olivine, CaO concentrations are expected to be elevated in the boundary layer adjacent to the growing olivine. Although this is observed at short time scales, as the profile evolves the CaO concentration near the

  19. Force induced DNA melting

    International Nuclear Information System (INIS)

    Santosh, Mogurampelly; Maiti, Prabal K

    2009-01-01

    When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f m , at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

  20. Eliminating PCR contamination

    International Nuclear Information System (INIS)

    Fox, J.C.; Ait-Khaled, Mounir; Webster, Alison; Emery, V.C.

    1991-01-01

    The sensitivity of polymerase chain reaction (PCR) can mean that even very low levels of contamination with the target DNA will result in a positive signal. At present this aspect is a major limitation in the use of PCR as a routine diagnostic method. By exposing PCR reagents to UV light, contaminating DNA can be inactivated, thus providing an opportunity to eradicate false positive reactions. UV irradiation was applied to PCR systems used for detection of human cytomegalovirus CMV and human immunodeficiency virus (HIV) and shown to be effective in eradicating both laboratory encountered contamination and plasmid DNA (below 100 pg) added to PCR systems prior to UV exposure. Sensitivity of a PCR system to amplify the long terminal repeat (LTR) sequence of HIV-1 was not affected by the irradiation procedure; however, ultimate sensitivity of a PCR system for the amplification of an early gene pro-motor sequence of the CMV genome was reduced 1000-fold. UV irradiation did not affect the size of the PCR product as determined by strand separating polyacrylamide gel electrophoresis of a 32 P-labelled amplimer. Thus, a simple pre-exposure to UV light would seem a worth-wile step to incorporate into PCR protocols provided that the effects on sensitivity have been determined empirically for each PCR system. (author). 11 refs.; 3 figs

  1. External PCR, ASN's decision

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    The French law imposes in some situations the presence of a person skilled in radiation protection (PCR). This article describes the cases when this person must belong to the staff of the enterprise or when this person may be sub-contracted. For instance in most nuclear facilities the PCR must be on the payroll, for enterprises dedicated to nuclear transport the PCR's job can be sub-contracted. A decision given by the ASN (French Nuclear Safety Authority) sets the minimal requests (in terms of training, job contract, activities) of the sub-contracted PCR. (A.C.)

  2. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  3. Inverse fusion PCR cloning.

    Directory of Open Access Journals (Sweden)

    Markus Spiliotis

    Full Text Available Inverse fusion PCR cloning (IFPC is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 5'-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.

  4. Melting of gold microclusters

    International Nuclear Information System (INIS)

    Garzon, I.L.; Jellinek, J.

    1991-01-01

    The transition from solid-like to liquid-like behavior in Au n , n=6, 7, 13, clusters is studied using molecular dynamics simulations. A Gupta-type potential with all-neighbour interactions is employed to incorporate n-body effects. The melting-like transition is described in terms of short-time averages of the kinetic energy per particle, root-mean-square bond length fluctuations and mean square displacements. A comparison between melting temperatures of Au n and Ni n clusters is presented. (orig.)

  5. Rapid detection of Echinococcus species by a high-resolution melting (HRM) approach.

    Science.gov (United States)

    Santos, Guilherme Brzoskowski; Espínola, Sergio Martín; Ferreira, Henrique Bunselmeyer; Margis, Rogerio; Zaha, Arnaldo

    2013-11-14

    High-resolution melting (HRM) provides a low-cost, fast and sensitive scanning method that allows the detection of DNA sequence variations in a single step, which makes it appropriate for application in parasite identification and genotyping. The aim of this work was to implement an HRM-PCR assay targeting part of the mitochondrial cox1 gene to achieve an accurate and fast method for Echinococcus spp. differentiation. For melting analysis, a total of 107 samples from seven species were used in this study. The species analyzed included Echinococcus granulosus (n = 41) and Echinococcus ortleppi (n = 50) from bovine, Echinococcus vogeli (n = 2) from paca, Echinococcus oligarthra (n = 3) from agouti, Echinococcus multilocularis (n = 6) from monkey and Echinococcus canadensis (n = 2) and Taenia hydatigena (n = 3) from pig. DNA extraction was performed, and a 444-bp fragment of the cox1 gene was amplified. Two approaches were used, one based on HRM analysis, and a second using SYBR Green Tm-based. In the HRM analysis, a specific profile for each species was observed. Although some species exhibited almost the same melting temperature (Tm) value, the HRM profiles could be clearly discriminated. The SYBR Green Tm-based analysis showed differences between E. granulosus and E. ortleppi and between E. vogeli and E. oligarthra. In this work, we report the implementation of HRM analysis to differentiate species of the genus Echinococcus using part of the mitochondrial gene cox1. This method may be also potentially applied to identify other species belonging to the Taeniidae family.

  6. GLASS MELTING PHENOMENA, THEIR ORDERING AND MELTING SPACE UTILISATION

    Directory of Open Access Journals (Sweden)

    Němec L.

    2013-12-01

    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  7. MELT-IIIB: an updated version of the melt code

    International Nuclear Information System (INIS)

    Tabb, K.K.; Lewis, C.H.; O'Dell, L.D.; Padilla, A. Jr.; Smith, D.E.; Wilburn, N.P.

    1979-04-01

    The MELT series is a reactor modeling code designed to investigate a wide variety of hypothetical accident conditions, particularly the transient overpower sequence. MELT-IIIB is the latest in the series

  8. Molecular diagnostic PCR handbook

    International Nuclear Information System (INIS)

    Viljoen, G.J.; Crowther, J.R.; Nel, L.H.

    2005-01-01

    The uses of nucleic acid-directed methods have increased significantly in the past five years and have made important contributions to disease control country programmes for improving national and international trade. These developments include the more routine use of PCR as a diagnostic tool in veterinary diagnostic laboratories. However, there are many problems associated with the transfer and particularly, the application of this technology. These include lack of consideration of: the establishment of quality-assured procedures, the required set-up of the laboratory and the proper training of staff. This can lead to a situation where results are not assured. This book gives a comprehensive account of the practical aspects of PCR and strong consideration is given to ensure its optimal use in a laboratory environment. This includes the setting-up of a PCR laboratory; Good Laboratory Practice and standardised PCR protocols to detect animal disease pathogens. Examples of Standard Operating Procedures as used in individual specialist laboratories and an outline of training materials necessary for PCR technology transfer are presented. The difficulties, advantages and disadvantages in PCR applications are explained and placed in context with other test systems. Emphasis is placed on the use of PCR for detection of pathogens, with a particular focus on diagnosticians and scientists from the developing world. It is hoped that this book will enable readers from various disciplines and levels of expertise to better judge the merits of PCR and to increase their skills and knowledge in order to assist in a more logical, efficient and assured use of this technology

  9. Detection of Salmonella in Shellfish Using SYBR Green™ I-Based Real-Time Multiplexed PCR Assay Targeting invA and spvB

    KAUST Repository

    Gangwar, Maulshree; Waters, Alicia M.; Bej, Gautam A.; Bej, Asim K.; Mojib, Nazia

    2012-01-01

    A SYBR Green™ I-based real-time multiplexed PCR assay was developed targeting invA and spvB for the detection of Salmonella strains in shellfish after both hns and invA genes were identified in all Salmonella strains. Simultaneously, the 16S rRNA gene was used as a PCR internal amplification control (IAC). All 89 Salmonella strains tested in this study exhibited amplification of invA, whereas only 21 (23. 6 %) were PCR positive for spvB. The sensitivity of detection of all three targeted genes was 1 ng, which is equivalent to approximately 105 colony-forming unit (CFU) of Salmonella enterica. The analysis showed specific PCR products that were identified by reproducible melt temperature profiles (invA, 84. 27 ± 1. 7 °C; spvB, 88. 76 ± 1. 0 °C; and 16S rRNA gene, 87. 16 ± 0. 8 °C). The sensitivity of detection was 10 pg purified DNA (invA) or 105 CFU in 1 mL pure culture of S. enterica ATCC 14028. The above molecular detection method for Salmonella strains was successfully applied to the oyster homogenates (food matrix). An initial inoculum of 106 and 102 CFU Salmonella in 1 ml seeded oyster tissue homogenate was detected by multiplexed PCR for all three genes after 5 and 24 h of enrichment, respectively. Natural oysters isolated from Gulf of Mexico during the winter months exhibited negative PCR amplification results suggesting the absence of Salmonella. In contrast to conventional PCR, real-time multiplex PCR assay developed in this study is rapid and sensitive and will help Interstate Shellfish Sanitation Conference undertake appropriate measures to monitor Salmonella in oysters, thereby preventing disease outbreaks and consequently protecting consumer health. © 2012 Springer Science+Business Media, LLC.

  10. Detection of Salmonella in Shellfish Using SYBR Green™ I-Based Real-Time Multiplexed PCR Assay Targeting invA and spvB

    KAUST Repository

    Gangwar, Maulshree

    2012-09-23

    A SYBR Green™ I-based real-time multiplexed PCR assay was developed targeting invA and spvB for the detection of Salmonella strains in shellfish after both hns and invA genes were identified in all Salmonella strains. Simultaneously, the 16S rRNA gene was used as a PCR internal amplification control (IAC). All 89 Salmonella strains tested in this study exhibited amplification of invA, whereas only 21 (23. 6 %) were PCR positive for spvB. The sensitivity of detection of all three targeted genes was 1 ng, which is equivalent to approximately 105 colony-forming unit (CFU) of Salmonella enterica. The analysis showed specific PCR products that were identified by reproducible melt temperature profiles (invA, 84. 27 ± 1. 7 °C; spvB, 88. 76 ± 1. 0 °C; and 16S rRNA gene, 87. 16 ± 0. 8 °C). The sensitivity of detection was 10 pg purified DNA (invA) or 105 CFU in 1 mL pure culture of S. enterica ATCC 14028. The above molecular detection method for Salmonella strains was successfully applied to the oyster homogenates (food matrix). An initial inoculum of 106 and 102 CFU Salmonella in 1 ml seeded oyster tissue homogenate was detected by multiplexed PCR for all three genes after 5 and 24 h of enrichment, respectively. Natural oysters isolated from Gulf of Mexico during the winter months exhibited negative PCR amplification results suggesting the absence of Salmonella. In contrast to conventional PCR, real-time multiplex PCR assay developed in this study is rapid and sensitive and will help Interstate Shellfish Sanitation Conference undertake appropriate measures to monitor Salmonella in oysters, thereby preventing disease outbreaks and consequently protecting consumer health. © 2012 Springer Science+Business Media, LLC.

  11. Practical utilization of recombinant AAV vector reference standards: focus on vector genomes titration by free ITR qPCR

    Directory of Open Access Journals (Sweden)

    Susan D'Costa

    2016-01-01

    Full Text Available Clinical trials using recombinant adeno-associated virus (rAAV vectors have demonstrated efficacy and a good safety profile. Although the field is advancing quickly, vector analytics and harmonization of dosage units are still a limitation for commercialization. AAV reference standard materials (RSMs can help ensure product safety by controlling the consistency of assays used to characterize rAAV stocks. The most widely utilized unit of vector dosing is based on the encapsidated vector genome. Quantitative polymerase chain reaction (qPCR is now the most common method to titer vector genomes (vg; however, significant inter- and intralaboratory variations have been documented using this technique. Here, RSMs and rAAV stocks were titered on the basis of an inverted terminal repeats (ITRs sequence-specific qPCR and we found an artificial increase in vg titers using a widely utilized approach. The PCR error was introduced by using single-cut linearized plasmid as the standard curve. This bias was eliminated using plasmid standards linearized just outside the ITR region on each end to facilitate the melting of the palindromic ITR sequences during PCR. This new “Free-ITR” qPCR delivers vg titers that are consistent with titers obtained with transgene-specific qPCR and could be used to normalize in-house product-specific AAV vector standards and controls to the rAAV RSMs. The free-ITR method, including well-characterized controls, will help to calibrate doses to compare preclinical and clinical data in the field.

  12. Practical utilization of recombinant AAV vector reference standards: focus on vector genomes titration by free ITR qPCR.

    Science.gov (United States)

    D'Costa, Susan; Blouin, Veronique; Broucque, Frederic; Penaud-Budloo, Magalie; François, Achille; Perez, Irene C; Le Bec, Christine; Moullier, Philippe; Snyder, Richard O; Ayuso, Eduard

    2016-01-01

    Clinical trials using recombinant adeno-associated virus (rAAV) vectors have demonstrated efficacy and a good safety profile. Although the field is advancing quickly, vector analytics and harmonization of dosage units are still a limitation for commercialization. AAV reference standard materials (RSMs) can help ensure product safety by controlling the consistency of assays used to characterize rAAV stocks. The most widely utilized unit of vector dosing is based on the encapsidated vector genome. Quantitative polymerase chain reaction (qPCR) is now the most common method to titer vector genomes (vg); however, significant inter- and intralaboratory variations have been documented using this technique. Here, RSMs and rAAV stocks were titered on the basis of an inverted terminal repeats (ITRs) sequence-specific qPCR and we found an artificial increase in vg titers using a widely utilized approach. The PCR error was introduced by using single-cut linearized plasmid as the standard curve. This bias was eliminated using plasmid standards linearized just outside the ITR region on each end to facilitate the melting of the palindromic ITR sequences during PCR. This new "Free-ITR" qPCR delivers vg titers that are consistent with titers obtained with transgene-specific qPCR and could be used to normalize in-house product-specific AAV vector standards and controls to the rAAV RSMs. The free-ITR method, including well-characterized controls, will help to calibrate doses to compare preclinical and clinical data in the field.

  13. Development of Candida-Specific Real-Time PCR Assays for the Detection and Identification of Eight Medically Important Candida Species.

    Science.gov (United States)

    Zhang, Jing; Hung, Guo-Chiuan; Nagamine, Kenjiro; Li, Bingjie; Tsai, Shien; Lo, Shyh-Ching

    2016-01-01

    Culture-based identification methods have been the gold standard for the diagnosis of fungal infection. Currently, molecular technologies such as real-time PCR assays with short turnaround time can provide desirable alternatives for the rapid detection of Candida microbes. However, most of the published PCR primer sets are not Candida specific and likely to amplify DNA from common environmental contaminants, such as Aspergillus microbes. In this study, we designed pan-Candida primer sets based on the ribosomal DNA-coding regions conserved within Candida but distinct from those of Aspergillus and Penicillium. We demonstrate that the final two selected pan-Candida primer sets would not amplify Aspergillus DNA and could be used to differentiate eight medically important Candida pathogens in real-time PCR assays based on their melting profiles, with a sensitivity of detection as low as 10 fg of Candida genomic DNA. Moreover, we further evaluated and selected species-specific primer sets covering Candida albicans, Candida glabrata, Candida tropicalis, and Candida dubliniensis and show that they had high sensitivity and specificity. These real-time PCR primer sets could potentially be assembled into a single PCR array for the rapid detection of Candida species in various clinical settings, such as corneal transplantation.

  14. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find

  15. Pavement Snow Melting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.

    2005-01-01

    The design of pavement snow melting systems is presented based on criteria established by ASHRAE. The heating requirements depends on rate of snow fall, air temperature, relative humidity and wind velocity. Piping materials are either metal or plastic, however, due to corrosion problems, cross-linked polyethylene pipe is now generally used instead of iron. Geothermal energy is supplied to systems through the use of heat pipes, directly from circulating pipes, through a heat exchanger or by allowing water to flow directly over the pavement, by using solar thermal storage. Examples of systems in New Jersey, Wyoming, Virginia, Japan, Argentina, Switzerland and Oregon are presented. Key words: pavement snow melting, geothermal heating, heat pipes, solar storage, Wyoming, Virginia, Japan, Argentina, Klamath Falls.

  16. Transient fuel melting

    International Nuclear Information System (INIS)

    Roche, L.; Schmitz, F.

    1982-10-01

    The observation of micrographic documents from fuel after a CABRI test leads to postulate a specific mode of transient fuel melting during a rapid nuclear power excursion. When reaching the melt threshold, the bands which are characteristic for the solid state are broken statistically over a macroscopic region. The time of maintaining the fuel at the critical enthalpy level between solid and liquid is too short to lead to a phase separation. A significant life-time (approximately 1 second) of this intermediate ''unsolide'' state would have consequences on the variation of physical properties linked to the phase transition solid/liquid: viscosity, specific volume and (for the irradiated fuel) fission gas release [fr

  17. Unraveling Host-Vector-Arbovirus Interactions by Two-Gene High Resolution Melting Mosquito Bloodmeal Analysis in a Kenyan Wildlife-Livestock Interface.

    Directory of Open Access Journals (Sweden)

    David Omondi

    Full Text Available The blood-feeding patterns of mosquitoes are directly linked to the spread of pathogens that they transmit. Efficient identification of arthropod vector bloodmeal hosts can identify the diversity of vertebrate species potentially involved in disease transmission cycles. While molecular bloodmeal analyses rely on sequencing of cytochrome b (cyt b or cytochrome oxidase 1 gene PCR products, recently developed bloodmeal host identification based on high resolution melting (HRM analyses of cyt b PCR products is more cost-effective. To resolve the diverse vertebrate hosts that mosquitoes may potentially feed on in sub-Saharan Africa, we utilized HRM profiles of both cyt b and 16S ribosomal RNA genes. Among 445 blood-fed Aedeomyia, Aedes, Anopheles, Culex, Mansonia, and Mimomyia mosquitoes from Kenya's Lake Victoria and Lake Baringo regions where many mosquito-transmitted pathogens are endemic, we identified 33 bloodmeal hosts including humans, eight domestic animal species, six peridomestic animal species and 18 wildlife species. This resolution of vertebrate host species was only possible by comparing profiles of both cyt b and 16S markers, as melting profiles of some pairs of species were similar for either marker but not both. We identified mixed bloodmeals in a Culex pipiens from Mbita that had fed on a goat and a human and in two Mansonia africana mosquitoes from Baringo that each had fed on a rodent (Arvicanthis niloticus in addition to a human or baboon. We further detected Sindbis and Bunyamwera viruses in blood-fed mosquito homogenates by Vero cell culture and RT-PCR in Culex, Aedeomyia, Anopheles and Mansonia mosquitoes from Baringo that had fed on humans and livestock. The observed mosquito feeding on both arbovirus amplifying hosts (including sheep and goats and possible arbovirus reservoirs (birds, porcupine, baboons, rodents informs arbovirus disease epidemiology and vector control strategies.

  18. Transgene detection by digital droplet PCR.

    Directory of Open Access Journals (Sweden)

    Dirk A Moser

    Full Text Available Somatic gene therapy is a promising tool for the treatment of severe diseases. Because of its abuse potential for performance enhancement in sports, the World Anti-Doping Agency (WADA included the term 'gene doping' in the official list of banned substances and methods in 2004. Several nested PCR or qPCR-based strategies have been proposed that aim at detecting long-term presence of transgene in blood, but these strategies are hampered by technical limitations. We developed a digital droplet PCR (ddPCR protocol for Insulin-Like Growth Factor 1 (IGF1 detection and demonstrated its applicability monitoring 6 mice injected into skeletal muscle with AAV9-IGF1 elements and 2 controls over a 33-day period. A duplex ddPCR protocol for simultaneous detection of Insulin-Like Growth Factor 1 (IGF1 and Erythropoietin (EPO transgenic elements was created. A new DNA extraction procedure with target-orientated usage of restriction enzymes including on-column DNA-digestion was established. In vivo data revealed that IGF1 transgenic elements could be reliably detected for a 33-day period in DNA extracted from whole blood. In vitro data indicated feasibility of IGF1 and EPO detection by duplex ddPCR with high reliability and sensitivity. On-column DNA-digestion allowed for significantly improved target detection in downstream PCR-based approaches. As ddPCR provides absolute quantification, it ensures excellent day-to-day reproducibility. Therefore, we expect this technique to be used in diagnosing and monitoring of viral and bacterial infection, in detecting mutated DNA sequences as well as profiling for the presence of foreign genetic material in elite athletes in the future.

  19. Emerging melt quality control solution technologies for aluminium melt

    Directory of Open Access Journals (Sweden)

    Arturo Pascual, Jr

    2009-11-01

    Full Text Available The newly developed “MTS 1500” Melt Treatment System is performing the specifi cally required melt treatment operations like degassing, cleaning, modification and/or grain refinement by an automated process in one step and at the same location. This linked process is saving time, energy and metal losses allowing - by automated dosage of the melt treatment agents - the production of a consistent melt quality batch after batch. By linking the MTS Metal Treatment System with sensors operating on-line in the melt, i.e., with a hydrogen sensor “Alspek H”, a fully automated control of parts of the process chain like degassing is possible. This technology does guarantee a pre-specifi ed and documented melt quality in each melt treatment batch. Furthermore, to ensure that castings are consistent and predictable there is a growing realization that critical parameters such as metal cleanliness must be measured prior to casting. There exists accepted methods for measuring the cleanliness of an aluminum melt but these can be both slow and costly. A simple, rapid and meaningful method of measuring and bench marking the cleanliness of an aluminum melt has been developed to offer the foundry a practical method of measuring melt cleanliness. This paper shows the structure and performance of the integrated MTS melt treatment process and documents achieved melt quality standards after degassing, cleaning, modifi cation and grain refi nement operations under real foundry conditions. It also provides an insight on a melt cleanliness measuring device “Alspek MQ” to provide foundry men better tools in meeting the increasing quality and tighter specifi cation demand from the industry.

  20. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    Science.gov (United States)

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for

  1. The investigation of the truncated mbtA gene within the mycobactin cluster of Mycobacterium avium subspecies paratuberculosis as a novel diagnostic marker for real-time PCR.

    Science.gov (United States)

    de Kruijf, Marcel; Coffey, Aidan; O'Mahony, Jim

    2017-05-01

    The inability of Mycobacterium avium subspecies paratuberculosis (MAP) to produce endogenous mycobactin in-vitro is most likely due to the presence of a truncated mbtA gene within the mycobactin cluster of MAP. The main goal of this study was to investigate this unique mbtA truncation as a potential novel PCR diagnostic marker for MAP. Novel primers were designed that were located within the truncated region and the contiguous MAP2179 gene. Primers were evaluated against non-MAP isolates and no amplicons were generated. The detection limit of this mbtA-MAP2179 target was evaluated using a range of MAP DNA concentrations, MAP inoculated faecal material and 20 MAP isolates. The performance of mbtA-MAP2179 was compared to the established f57 target. The detection limits recorded for MAP K-10 DNA and from MAP K-10 inoculated faecal samples were 0.34pg and 10 4 CFU/g respectively for both f57 and mbtA-MAP2179. A detection limit of 10 3 CFU/g was recorded for both targets, but not achieved consistently. The detection limit of MAP from inoculated faecal material was successful at 10 3 CFU/g for mbtA-MAP2179 when FAM probe real-time PCR was used. A MAP cell concentration of 10 2 CFU/g was detected successfully, but again not consistently achieved. All 20 mycobacterial isolates were successfully identified as MAP by f57 and mbtA-MAP2179. Interestingly, the mbtA-MAP2179 real-time PCR assay resulted in the formation of a unique melting curve profile that contained two melting curve peaks rather than one single peak. This melting curve phenomenon was attributed towards the asymmetrical GC% distribution within the mbtA-MAP2179 amplicon. This study investigated the implementation of the mbtA-MAP2179 target as a novel diagnostic marker and the detection limits obtained with mbtA-MAP2179 were comparable to the established f57 target, making the mbtA-MAP2179 an adequate confirmatory target. Moreover, the mbtA-MAP2179 target could be implemented in multiplex real-time PCR assays and

  2. Real-time PCR (qPCR) primer design using free online software.

    Science.gov (United States)

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most commonly used fluorescent chemistries are SYBR® Green dyes and TaqMan®, Molecular Beacon or Scorpion probes. SYBR® Green is very simple to use and cost efficient. As SYBR® Green dye binds to any double-stranded DNA product, its success depends greatly on proper primer design. Many types of online primer design software are available, which can be used free of charge to design desirable SYBR® Green-based qPCR primers. This laboratory exercise is intended for those who have a fundamental background in PCR. It addresses the basic fluorescent chemistries of real-time PCR, the basic rules and pitfalls of primer design, and provides a step-by-step protocol for designing SYBR® Green-based primers with free, online software. Copyright © 2010 Wiley Periodicals, Inc.

  3. Method of melting solid waste

    International Nuclear Information System (INIS)

    Ootsuka, Katsuyuki; Mizuno, Ryokichi; Kuwana, Katsumi; Sawada, Yoshihisa; Komatsu, Fumiaki.

    1982-01-01

    Purpose: To enable the volume reduction treatment of a HEPA filter containing various solid wastes, particularly acid digestion residue, or an asbestos separator at a relatively low temperature range. Method: Solid waste to be heated and molten is high melting point material treated by ''acid digestion treatment'' for treating solid waste, e.g. a HEPA filter or polyvinyl chloride, etc. of an atomic power facility treated with nitric acid or the like. When this material is heated and molten by an electric furnace, microwave melting furnace, etc., boron oxide, sodium boride, sodium carbonate, etc. is added as a melting point lowering agent. When it is molten in this state, its melting point is lowered, and it becomes remarkably fluid, and the melting treatment is facilitated. Solidified material thus obtained through the melting step has excellent denseness and further large volume reduction rate of the solidified material. (Yoshihara, H.)

  4. Diffusion of hydrous species in model basaltic melt

    Science.gov (United States)

    Zhang, Li; Guo, Xuan; Wang, Qinxia; Ding, Jiale; Ni, Huaiwei

    2017-10-01

    Water diffusion in Fe-free model basaltic melt with up to 2 wt% H2O was investigated at 1658-1846 K and 1 GPa in piston-cylinder apparatus using both hydration and diffusion couple techniques. Diffusion profiles measured by FTIR are consistent with a model in which both molecular H2O (H2Om) and hydroxyl (OH) contribute to water diffusion. OH diffusivity is roughly 13% of H2Om diffusivity, showing little dependence on temperature or water concentration. Water diffusion is dominated by the motion of OH until total H2O (H2Ot) concentration reaches 1 wt%. The dependence of apparent H2Ot diffusivity on H2Ot concentration appears to be overestimated by a previous study on MORB melt, but H2Ot diffusivity at 1 wt% H2Ot in basaltic melt is still greater than those in rhyolitic to andesitic melts. The appreciable contribution of OH to water diffusion in basaltic melt can be explained by enhanced mobility of OH, probably associated with the development of free hydroxyl bonded with network-modifying cations, as well as higher OH concentration. Calculation based on the Nernst-Einstein equation demonstrates that OH may serve as an effective charge carrier in hydrous basaltic melt, which could partly account for the previously observed strong influence of water on electrical conductivity of basaltic melt.

  5. Petrological Geodynamics of Mantle Melting II. AlphaMELTS + Multiphase Flow: Dynamic Fractional Melting

    Science.gov (United States)

    Tirone, Massimiliano

    2018-03-01

    In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.

  6. Logistics Reduction: Heat Melt Compactor

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Logistics Reduction (LR) project Heat Melt Compactor (HMC) technology is a waste management technology. Currently, there are...

  7. Melting in trivalent metal chlorides

    International Nuclear Information System (INIS)

    Saboungi, M.L.; Price, D.L.; Scamehorn, C.; Tosi, M.P.

    1990-11-01

    We report a neutron diffraction study of the liquid structure of YCl 3 and combine the structural data with macroscopic melting and transport data to contrast the behaviour of this molten salt with those of SrCl 2 , ZnCl 2 and AlCl 3 as prototypes of different melting mechanisms for ionic materials. A novel melting mechanism for trivalent metal chlorides, leading to a loose disordered network of edge-sharing octahedral units in the liquid phase, is thereby established. The various melting behaviours are related to bonding character with the help of Pettifor's phenomenological chemical scale. (author). 25 refs, 4 figs, 3 tabs

  8. Melting of contaminated metallic waste

    International Nuclear Information System (INIS)

    Lee, Y.-S.; Cheng, S.-Y.; Kung, H.-T.; Lin, L.-F.

    2004-01-01

    Approximately 100 tons of contaminated metallic wastes were produced each year due to maintenance for each TPC's nuclear power reactor and it was roughly estimated that there will be 10,000 tons of metallic scraps resulted from decommissioning of each reactor in the future. One means of handling the contaminated metal is to melt it. Melting process owns not only volume reduction which saves the high cost of final disposal but also resource conservation and recycling benefits. Melting contaminated copper and aluminum scraps in the laboratory scale have been conducted at INER. A total of 546 kg copper condenser tubes with a specific activity of about 2.7 Bq/g was melted in a vacuum induction melting facility. Three types of products, ingot, slag and dust were derived from the melting process, with average activities of 0.10 Bq/g, 2.33 Bq/g and 84.3 Bq/g respectively. After the laboratory melting stage, a pilot plant with a 500 kg induction furnace is being designed to melt the increasingly produced contaminated metallic scraps from nuclear facilities and to investigate the behavior of different radionuclides during melting. (author)

  9. Candidate DNA Barcode Tags Combined With High Resolution Melting (Bar-HRM Curve Analysis for Authentication of Senna alexandrina Mill. With Validation in Crude Drugs

    Directory of Open Access Journals (Sweden)

    Priyanka Mishra

    2018-03-01

    Full Text Available Senna alexandrina (Fabaceae is a globally recognized medicinal plant for its laxative properties as well as the only source of sennosides, and is highly exported bulk herb from India. Its major procurement is exclusively from limited cultivation, which leads to risks of deliberate or unintended adulteration. The market raw materials are in powdered or finished product form, which lead to difficulties in authentication. Here, DNA barcode tags based on chloroplast genes (rbcL and matK and intergenic spacers (psbA-trnH and ITS were developed for S. alexandrina along with the allied species. The ability and performance of the ITS1 region to discriminate among the Senna species resulted in the present proposal of the ITS1 tags as successful barcode. Further, these tags were coupled with high-resolution melting (HRM curve analysis in a real-time PCR genotyping method to derive Bar-HRM (Barcoding-HRM assays. Suitable HRM primer sets were designed through SNP detection and mutation scanning in genomic signatures of Senna species. The melting profiles of S. alexandrina and S. italica subsp. micrantha were almost identical and the remaining five species were clearly separated so that they can be differentiated by HRM method. The sensitivity of the method was utilized to authenticate market samples [Herbal Sample Assays (HSAs]. HSA01 (S. alexandrina crude drug sample from Bangalore and HSA06 (S. alexandrina crude drug sample from Tuticorin, Tamil Nadu, India were found to be highly contaminated with S. italica subsp. micrantha. Species admixture samples mixed in varying percentage was identified sensitively with detection of contamination as low as 1%. The melting profiles of PCR amplicons are clearly distinct, which enables the authentic differentiation of species by the HRM method. This study reveals that DNA barcoding coupled with HRM is an efficient molecular tool to authenticate Senna herbal products in the market for quality control in the drug

  10. Candidate DNA Barcode Tags Combined With High Resolution Melting (Bar-HRM) Curve Analysis for Authentication of Senna alexandrina Mill. With Validation in Crude Drugs.

    Science.gov (United States)

    Mishra, Priyanka; Shukla, Ashutosh K; Sundaresan, Velusamy

    2018-01-01

    Senna alexandrina (Fabaceae) is a globally recognized medicinal plant for its laxative properties as well as the only source of sennosides, and is highly exported bulk herb from India. Its major procurement is exclusively from limited cultivation, which leads to risks of deliberate or unintended adulteration. The market raw materials are in powdered or finished product form, which lead to difficulties in authentication. Here, DNA barcode tags based on chloroplast genes ( rbcL and matK ) and intergenic spacers ( psbA-trnH and ITS ) were developed for S. alexandrina along with the allied species. The ability and performance of the ITS1 region to discriminate among the Senna species resulted in the present proposal of the ITS1 tags as successful barcode. Further, these tags were coupled with high-resolution melting (HRM) curve analysis in a real-time PCR genotyping method to derive Bar-HRM (Barcoding-HRM) assays. Suitable HRM primer sets were designed through SNP detection and mutation scanning in genomic signatures of Senna species. The melting profiles of S. alexandrina and S . italica subsp. micrantha were almost identical and the remaining five species were clearly separated so that they can be differentiated by HRM method. The sensitivity of the method was utilized to authenticate market samples [Herbal Sample Assays (HSAs)]. HSA01 ( S. alexandrina crude drug sample from Bangalore) and HSA06 ( S. alexandrina crude drug sample from Tuticorin, Tamil Nadu, India) were found to be highly contaminated with S . italica subsp. micrantha . Species admixture samples mixed in varying percentage was identified sensitively with detection of contamination as low as 1%. The melting profiles of PCR amplicons are clearly distinct, which enables the authentic differentiation of species by the HRM method. This study reveals that DNA barcoding coupled with HRM is an efficient molecular tool to authenticate Senna herbal products in the market for quality control in the drug supply

  11. PCR in forensic genetics

    DEFF Research Database (Denmark)

    Morling, Niels

    2009-01-01

    Since the introduction in the mid-1980s of analyses of minisatellites for DNA analyses, a revolution has taken place in forensic genetics. The subsequent invention of the PCR made it possible to develop forensic genetics tools that allow both very informative routine investigations and still more...... and more advanced, special investigations in cases concerning crime, paternity, relationship, disaster victim identification etc. The present review gives an update on the use of DNA investigations in forensic genetics.......Since the introduction in the mid-1980s of analyses of minisatellites for DNA analyses, a revolution has taken place in forensic genetics. The subsequent invention of the PCR made it possible to develop forensic genetics tools that allow both very informative routine investigations and still more...

  12. Melting method for miscellaneous radioactive solid waste and melting furnace

    International Nuclear Information System (INIS)

    Osaki, Toru; Furukawa, Hirofumi; Uda, Nobuyoshi; Katsurai, Kiyomichi

    1998-01-01

    A vessel containing miscellaneous solid wastes is inserted in a crucible having a releasable material on the inner surface, they are induction-heated from the outside of the crucible by way of low temperature heating coils to melt low melting point materials in the miscellaneous wastes within a temperature range at which the vessel does not melt. Then, they are induction-heated by way of high temperature heating coils to melt the vessel and not yet melted materials, those molten materials are cooled, solidified molten material and the releasable material are taken out, and then the crucible is used again. Then, the crucible can be used again, so that it can be applied to a large scaled melting furnace which treats wastes by a unit of drum. In addition, since the cleaning of the used crucible and the application of the releasable material can be conducted without interrupting the operation of the melting furnace, the operation cycle of the melting furnace can be shortened. (N.H.)

  13. Evaluation of PCR and multiplex PCR in relation to nested PCR for diagnosing Theileria equi

    Directory of Open Access Journals (Sweden)

    Danielle C. Leal

    2011-07-01

    Full Text Available Conventional PCR (PCRTeq for diagnosing Theileria equi and multiplex PCR (M/PCRTeq-Bc for diagnosing T. equi and Babesia caballi were comparatively evaluated with nested PCR (N/PCR-Teq for diagnosing equine piroplasmosis. In DNA sensitivity determinations, in multiple dilutions of equine blood that had tested positive for T. equi, PCR-Teq and N/PCR-Teq detected hemoparasite DNA in the larger dilutions (1:128, but did not differ significantly from the M/PCRTeq-Bc (1:64. In analyses on equine serum tested by ELISA, there was high agreement between this serological test and PCR-Teq (k = 0.780 and moderate agreement with N/PCR-Teq (k = 0.562 and M/PCRTeq-Bc (k = 0.488. PCR-Teq found a higher frequency of T. equi both in extensively and intensively reared horses, but this was not significant in relation to N/PCR-Teq (P>0.05, and both PCRs indicated that there was an endemic situation regarding T. equi in the population of horses of this sample. PCR-Teq was only significantly different from M/PCR-Teq-Bc (P<0.05. PCR-Teq presented high sensitivity and specificity, comparable to N/PCR-Teq, but with the advantage of higher speed in obtaining results and lower costs and risks of laboratory contamination. This accredits PCR-Teq for epidemiological studies and for determinations on affected horses.

  14. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Three simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentru Karlsruhe (KfK) in Germany were used. The samples were thin sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. The behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied. 2 refs., 8 tabs

  15. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied

  16. Rhenium corrosion in chloride melts

    International Nuclear Information System (INIS)

    Stepanov, A.D.; Shkol'nikov, S.N.; Vetyukov, M.M.

    1989-01-01

    The results investigating rhenium corrosion in chloride melts containing sodium, potassium and chromium ions by a gravimetry potentials in argon atmosphere in a sealing quarth cell are described. Rhenium corrosion is shown to be rather considerable in melts containing CrCl 2 . The value of corrosion rate depending on temperature is determined

  17. UNCONSTRAINED MELTING AND SOLIDIFICATION INSIDE ...

    African Journals Online (AJOL)

    2015-09-01

    Sep 1, 2015 ... There is a large number of experimental and numerical works on melting and solidification of PCM[6-10], and also its usage as thermal management in building [11-14], electronic devices [15-16] and solar energy. [17-20].Most investigated geometries in melting and freezing process are sphere (spherical.

  18. PCR, exit stage left ...

    CERN Multimedia

    2004-01-01

    The Prevessin Control Room during LEP's start up in 1989. The Prévessin Control Room (PCR) was recently engulfed in a wave of nostalgia. The PCR, scene of some of the greatest moments in CERN's history, is being dismantled to prepare for a complete overhaul. In February 2006, a new combined control centre for all the accelerators will open its doors on the same site, together with a new building currently under construction (see Bulletin issue 27/2004 of 28 June 2004). This marks the end of an important chapter in CERN's history. The Prévessin Control Room saw its first momentous event 28 years ago when the 400 GeV beam for the SPS was commissioned in the presence of Project Leader John Adams. It was also here that the first proton-antiproton collisions were observed, in 1981. Eight years later, in 1989, operators and directors alike jumped for joy at the announcement of the first electron-positron collisions at the start up of LEP, the biggest accelerator in the world. Today the 80 terminals and PCs have b...

  19. Simplifying the detection of MUTYH mutations by high resolution melting analysis

    International Nuclear Information System (INIS)

    López-Villar, Isabel; Martínez-López, Joaquín; Ayala, Rosa; Wesselink, Jan; Morillas, Juan Diego; López, Elena; Marín, José Carlos; Díaz-Tasende, José; González, Sara; Robles, Luis

    2010-01-01

    MUTYH-associated polyposis (MAP) is a disorder caused by bi-allelic germline MUTYH mutation, characterized by multiple colorectal adenomas. In order to identify mutations in MUTYH gene we applied High Resolution Melting (HRM) genotyping. HRM analysis is extensively employed as a scanning method for the detection of heterozygous mutations. Therefore, we applied HRM to show effectiveness in detecting homozygous mutations for these clinically important and frequent patients. In this study, we analyzed phenotype and genotype data from 82 patients, with multiple (>= 10) synchronous (19/82) or metachronous (63/82) adenomas and negative APC study (except one case). Analysis was performed by HRM-PCR and direct sequencing, in order to identify mutations in MUTYH exons 7, 12 and 13, where the most prevalent mutations are located. In monoallelic mutation carriers, we evaluated entire MUTYH gene in search of another possible alteration. HRM-PCR was performed with strict conditions in several rounds: the first one to discriminate the heteroduplex patterns and homoduplex patterns and the next ones, in order to refine and confirm parameters. The genotypes obtained were correlated to phenotypic features (number of adenomas (synchronous or metachronous), colorectal cancer (CRC) and family history). MUTYH germline mutations were found in 15.8% (13/82) of patients. The hot spots, Y179C (exon 7) and G396D (exon 13), were readily identified and other mutations were also detected. Each mutation had a reproducible melting profile by HRM, both heterozygous mutations and homozygous mutations. In our study of 82 patients, biallelic mutation is associated with being a carrier of ≥10 synchronous polyps (p = 0.05) and there is no association between biallelic mutation and CRC (p = 0.39) nor family history (p = 0.63). G338H non-pathogenic polymorphism (exon 12) was found in 23.1% (19/82) of patients. In all cases there was concordance between HRM (first and subsequent rounds) and sequencing

  20. DEPENDENCY OF SULFATE SOLUBILITY ON MELT COMPOSITION AND MELT POLYMERIZATION

    International Nuclear Information System (INIS)

    JANTZEN, CAROL M.

    2004-01-01

    Sulfate and sulfate salts are not very soluble in borosilicate waste glass. When sulfate is present in excess it can form water soluble secondary phases and/or a molten salt layer (gall) on the melt pool surface which is purported to cause steam explosions in slurry fed melters. Therefore, sulfate can impact glass durability while formation of a molten salt layer on the melt pool can impact processing. Sulfate solubility has been shown to be compositionally dependent in various studies, (e.g. , B2O3, Li2O, CaO, MgO, Na2O, and Fe2O3 were shown to increase sulfate solubility while Al2O3 and SiO2 decreased sulfate solubility). This compositional dependency is shown to be related to the calculated melt viscosity at various temperatures and hence the melt polymerization

  1. Identification and Quantification of Celery Allergens Using Fiber Optic Surface Plasmon Resonance PCR.

    Science.gov (United States)

    Daems, Devin; Peeters, Bernd; Delport, Filip; Remans, Tony; Lammertyn, Jeroen; Spasic, Dragana

    2017-07-31

    Abstract : Accurate identification and quantification of allergens is key in healthcare, biotechnology and food quality and safety. Celery ( Apium graveolens ) is one of the most important elicitors of food allergic reactions in Europe. Currently, the golden standards to identify, quantify and discriminate celery in a biological sample are immunoassays and two-step molecular detection assays in which quantitative PCR (qPCR) is followed by a high-resolution melting analysis (HRM). In order to provide a DNA-based, rapid and simple detection method suitable for one-step quantification, a fiber optic PCR melting assay (FO-PCR-MA) was developed to determine different concentrations of celery DNA (1 pM-0.1 fM). The presented method is based on the hybridization and melting of DNA-coated gold nanoparticles to the FO sensor surface in the presence of the target gene (mannitol dehydrogenase, Mtd ). The concept was not only able to reveal the presence of celery DNA, but also allowed for the cycle-to-cycle quantification of the target sequence through melting analysis. Furthermore, the developed bioassay was benchmarked against qPCR followed by HRM, showing excellent agreement ( R ² = 0.96). In conclusion, this innovative and sensitive diagnostic test could further improve food quality control and thus have a large impact on allergen induced healthcare problems.

  2. Identification and Quantification of Celery Allergens Using Fiber Optic Surface Plasmon Resonance PCR

    Directory of Open Access Journals (Sweden)

    Devin Daems

    2017-07-01

    Full Text Available Abstract: Accurate identification and quantification of allergens is key in healthcare, biotechnology and food quality and safety. Celery (Apium graveolens is one of the most important elicitors of food allergic reactions in Europe. Currently, the golden standards to identify, quantify and discriminate celery in a biological sample are immunoassays and two-step molecular detection assays in which quantitative PCR (qPCR is followed by a high-resolution melting analysis (HRM. In order to provide a DNA-based, rapid and simple detection method suitable for one-step quantification, a fiber optic PCR melting assay (FO-PCR-MA was developed to determine different concentrations of celery DNA (1 pM–0.1 fM. The presented method is based on the hybridization and melting of DNA-coated gold nanoparticles to the FO sensor surface in the presence of the target gene (mannitol dehydrogenase, Mtd. The concept was not only able to reveal the presence of celery DNA, but also allowed for the cycle-to-cycle quantification of the target sequence through melting analysis. Furthermore, the developed bioassay was benchmarked against qPCR followed by HRM, showing excellent agreement (R2 = 0.96. In conclusion, this innovative and sensitive diagnostic test could further improve food quality control and thus have a large impact on allergen induced healthcare problems.

  3. Plasma arc melting of zirconium

    International Nuclear Information System (INIS)

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

    1997-01-01

    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming

  4. Nitrogen Control in VIM Melts

    Science.gov (United States)

    Jablonski, P. D.; Hawk, J. A.

    NETL has developed a design and control philosophy for the addition of nitrogen to austenitic and ferritic steels. The design approach uses CALPHAD as the centerpiece to predict the level to which nitrogen is soluble in both the melt and the solid. Applications of this technique have revealed regions of "exclusion" in which the alloy, while within specification limits of prescribed, cannot be made by conventional melt processing. Furthermore, other investigations have found that substantial retrograde solubility of nitrogen exists, which can become problematic during subsequent melt processing and/or other finishing operations such as welding. Additionally, the CALPHAD method has been used to adjust primary melt conditions. To that end, nitrogen additions have been made using chrome nitride, silicon nitride, high-nitrogen ferrochrome as well as nitrogen gas. The advantages and disadvantages of each approach will be discussed and NETL experience in this area will be summarized with respect to steel structure.

  5. Theoretical melting curve of caesium

    International Nuclear Information System (INIS)

    Simozar, S.; Girifalco, L.A.; Pennsylvania Univ., Philadelphia

    1983-01-01

    A statistical-mechanical model is developed to account for the complex melting curve of caesium. The model assumes the existence of three different species of caesium defined by three different electronic states. On the basis of this model, the free energy of melting and the melting curve are computed up to 60 kbar, using the solid-state data and the initial slope of the fusion curve as input parameters. The calculated phase diagram agrees with experiment to within the experimental error. Other thermodynamic properties including the entropy and volume of melting were also computed, and they agree with experiment. Since the theory requires only one adjustable constant, this is taken as strong evidence that the three-species model is satisfactory for caesium. (author)

  6. Melting curves of gammairradiated DNA

    International Nuclear Information System (INIS)

    Hofer, H.; Altmann, H.; Kehrer, M.

    1978-08-01

    Melting curves of gammairradiated DNA and data derived of them, are reported. The diminished stability is explained by basedestruction. DNA denatures completely at room temperature, if at least every fifth basepair is broken or weakened by irradiation. (author)

  7. Pressure melting and ice skating

    Science.gov (United States)

    Colbeck, S. C.

    1995-10-01

    Pressure melting cannot be responsible for the low friction of ice. The pressure needed to reach the melting temperature is above the compressive failure stress and, if it did occur, high squeeze losses would result in very thin films. Pure liquid water cannot coexist with ice much below -20 °C at any pressure and friction does not increase suddenly in that range. If frictional heating and pressure melting contribute equally, the length of the wetted contact could not exceed 15 μm at a speed of 5 m/s, which seems much too short. If pressure melting is the dominant process, the water films are less than 0.08 μm thick because of the high pressures.

  8. Melting the vacuum

    International Nuclear Information System (INIS)

    Rafelski, J.

    1998-01-01

    Results presented at the Quark Matter 97 conference, held in December in Tsukuba, Japan, have provided new insights into the confinement of quarks in matter. The current physics paradigm is that the inertial masses of protons and neutrons, and hence of practically all of the matter around us, originate in the zero-point energy caused by the confinement of quarks inside the small volume of the nucleon. Today, 25 years after Harald Fritzsch, Heinrich Leutwyler and Murray Gell-Mann proposed quantum chromodynamics (QCD) as a means for understanding strongly interacting particles such as nucleons and mesons, our understanding of strong interactions and quark confinement remains incomplete. Quarks and the gluons that bind them together have a ''colour'' charge that may be red, green or blue. But quarks are seen in particles that are white: baryons such as protons and neutrons consist of three quarks with different colour charges, while mesons consist of a quark and an antiquark, and again the colour charge cancels out. To prove that confinement arises from quark-gluon fluctuations in the vacuum that quantum theories dictate exists today, we need to find a way of freeing the colour charge of quarks. Experiments must therefore ''melt'' the vacuum to deconfine quarks and the colour charge. By colliding nuclei at high energies, we hope to produce regions of space filled with free quarks and gluons. This deconfined phase is known as the quark-gluon plasma. At the Tsukuba meeting, Scott Pratt of Michigan State University in the US discussed measurements that show that the hot dense state of matter created in these collisions exists for only 2x10 -23 s. So does the quark gluon plasma exist? No-one doubts that it did at one time, before the vacuum froze into its current state about 20 into the life of the universe, causing the nucleons to form as we know them today. The issue is whether we can recreate this early stage of the universe in laboratory experiments. And if we did

  9. Glacial melting in Himalaya

    Directory of Open Access Journals (Sweden)

    Kavita Tariyal

    2013-07-01

    Full Text Available Mountains are amongst the most flimsy environments on Earth. They are prosperous repositories of biodiversity, water and providers of ecosystem goods and services on which downstream communities, both regional and global, rely. The transport of atmospheric pollutants and climate-altering substances can significantly impact high mountain areas, which are generally considered “clean” regions. The snow glaciers of the Himalayas, considered the “third pole”, one of the largest stores of water on the planet and accelerated melting could have far-reaching effects, such as flooding in the short-term and water shortages in the long-term as the glaciers shrink. The data available on temperature in Himalayas indicate that warming during last 3-4 decades has been more than the global average over the last century. Some of the values indicate that the Himalayas are warming 5-6 times more than the global average. Mountain systems are seen globally as the prime sufferers from climate change. There is a severe gap in the knowledge of the short and long-term implications of the impact of climate change on water and hazards in the Himalayas, and their downstream river basins. Most studies have excluded the Himalayan region because of its extreme and complex topography and the lack of adequate rain gauge data. There is an urgent need to close the knowledge gap by establishing monitoring schemes for snow, ice and water; downscaling climate models; applying hydrological models to predict water availability; and developing basin wide scenarios, which also take water demand and socioeconomic development into account. Climate change induced hazards such as floods, landslides and droughts will impose considerable stresses on the livelihoods of mountain people and downstream populations. Enhancing resilience and promoting adaptation in mountain areas have thus become among the most important priorities of this decade. It is important to strengthen local

  10. Quantitative (real-time) PCR

    International Nuclear Information System (INIS)

    Denman, S.E.; McSweeney, C.S.

    2005-01-01

    Many nucleic acid-based probe and PCR assays have been developed for the detection tracking of specific microbes within the rumen ecosystem. Conventional PCR assays detect PCR products at the end stage of each PCR reaction, where exponential amplification is no longer being achieved. This approach can result in different end product (amplicon) quantities being generated. In contrast, using quantitative, or real-time PCR, quantification of the amplicon is performed not at the end of the reaction, but rather during exponential amplification, where theoretically each cycle will result in a doubling of product being created. For real-time PCR, the cycle at which fluorescence is deemed to be detectable above the background during the exponential phase is termed the cycle threshold (Ct). The Ct values obtained are then used for quantitation, which will be discussed later

  11. Numerical Model based Reliability Estimation of Selective Laser Melting Process

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Hattel, Jesper Henri

    2014-01-01

    Selective laser melting is developing into a standard manufacturing technology with applications in various sectors. However, the process is still far from being at par with conventional processes such as welding and casting, the primary reason of which is the unreliability of the process. While...... of the selective laser melting process. A validated 3D finite-volume alternating-direction-implicit numerical technique is used to model the selective laser melting process, and is calibrated against results from single track formation experiments. Correlation coefficients are determined for process input...... parameters such as laser power, speed, beam profile, etc. Subsequently, uncertainties in the processing parameters are utilized to predict a range for the various outputs, using a Monte Carlo method based uncertainty analysis methodology, and the reliability of the process is established....

  12. Methods for Melting Temperature Calculation

    Science.gov (United States)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  13. Expression profiles of the immune genes CD4, CD8β, IFNγ, IL-4, IL-6 and IL-10 in mitogen-stimulated koala lymphocytes (Phascolarctos cinereus by qRT-PCR

    Directory of Open Access Journals (Sweden)

    Iona E. Maher

    2014-03-01

    Full Text Available Investigation of the immune response of the koala (Phascolarctos cinereus is needed urgently, but has been limited by scarcity of species-specific reagents and methods for this unique and divergent marsupial. Infectious disease is an important threat to wild populations of koalas; the most widespread and important of these is Chlamydial disease, caused by Chlamydia pecorum and Chlamydia pneumoniae. In addition, koala retrovirus (KoRV, which is of 100% prevalence in northern Australia, has been proposed as an important agent of immune suppression that could explain the koala’s susceptibility to disease. The correct balance of T regulatory, T helper 1 (Th1 and Th2 lymphocyte responses are important to an individual’s susceptibility or resistance to chlamydial infection. The ability to study chlamydial or KoRV pathogenesis, effects of environmental stressors on immunity, and the response of koalas to vaccines under development, by examining the koala’s adaptive response to natural infection or in-vitro stimulation, has been limited to date by a paucity of species- specific reagents. In this study we have used cytokine sequences from four marsupial genomes to identify mRNA sequences for key T regulatory, Th1 and Th2 cytokines interleukin 4 (IL-4, interleukin 6 (IL-6, interleukin 10 (IL-10 and interferon gamma (IFNγ along with CD4 and CD8β. The koala sequences used for primer design showed >58% homology with grey short-tailed opossum, >71% with tammar wallaby and 78% with Tasmanian devil amino acid sequences. We report the development of real-time RT-PCR assays to measure the expression of these genes in unstimulated cells and after three common mitogen stimulation protocols (phorbol myristate acetate/ionomycin, phorbol myristate acetate/phytohemagglutinin and concanavalin A. Phorbol myristate acetate/ionomycin was found to be the most effective mitogen to up-regulate the production of IL-4, IL-10 and IFNγ. IL-6 production was not

  14. Expression profiles of the immune genes CD4, CD8β, IFNγ, IL-4, IL-6 and IL-10 in mitogen-stimulated koala lymphocytes (Phascolarctos cinereus) by qRT-PCR.

    Science.gov (United States)

    Maher, Iona E; Griffith, Joanna E; Lau, Quintin; Reeves, Thomas; Higgins, Damien P

    2014-01-01

    Investigation of the immune response of the koala (Phascolarctos cinereus) is needed urgently, but has been limited by scarcity of species-specific reagents and methods for this unique and divergent marsupial. Infectious disease is an important threat to wild populations of koalas; the most widespread and important of these is Chlamydial disease, caused by Chlamydia pecorum and Chlamydia pneumoniae. In addition, koala retrovirus (KoRV), which is of 100% prevalence in northern Australia, has been proposed as an important agent of immune suppression that could explain the koala's susceptibility to disease. The correct balance of T regulatory, T helper 1 (Th1) and Th2 lymphocyte responses are important to an individual's susceptibility or resistance to chlamydial infection. The ability to study chlamydial or KoRV pathogenesis, effects of environmental stressors on immunity, and the response of koalas to vaccines under development, by examining the koala's adaptive response to natural infection or in-vitro stimulation, has been limited to date by a paucity of species- specific reagents. In this study we have used cytokine sequences from four marsupial genomes to identify mRNA sequences for key T regulatory, Th1 and Th2 cytokines interleukin 4 (IL-4), interleukin 6 (IL-6), interleukin 10 (IL-10) and interferon gamma (IFNγ) along with CD4 and CD8β. The koala sequences used for primer design showed >58% homology with grey short-tailed opossum, >71% with tammar wallaby and 78% with Tasmanian devil amino acid sequences. We report the development of real-time RT-PCR assays to measure the expression of these genes in unstimulated cells and after three common mitogen stimulation protocols (phorbol myristate acetate/ionomycin, phorbol myristate acetate/phytohemagglutinin and concanavalin A). Phorbol myristate acetate/ionomycin was found to be the most effective mitogen to up-regulate the production of IL-4, IL-10 and IFNγ. IL-6 production was not consistently up-regulated by

  15. One-stop polymerase chain reaction (PCR): An improved PCR ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... membrane filtration was carried out with a commercial PCR product purification kit (Generay, Shanghai), according to the manufacture's instruction. In brief, 50 µl PCR product was mixed thoroughly with binding buffer, and the resultant mixture was loaded directly onto a silica membrane Gelclean column.

  16. Molecular thermodynamics of polymer melts at interfaces

    International Nuclear Information System (INIS)

    Theodorou, D.N.

    1988-09-01

    A lattice model is developed for the prediction of structure and thermodynamic properties at free polymer melt surfaces and polymer melt/solid interfaces. Density variations in the interfacial region are taken into account by introducing voids in the lattice, in the spirit of the equation of state theory of Sanchez and Lacombe. Intramolecular energy (chain stiffness) effects are explicitly incorporated. The model is derived through a rigorous statistical mechanical and thermodynamic analysis, which is based on the concept of availability. Two cases are considered: ''full equilibrium,'' whereby the interfacial polymer is taken as free to exchange heat, work and mass with a bulk polymer phase at given temperature and pressure; and ''restricted equilibrium,'' whereby a thin polymer film is allowed to equilibrate locally in response to ambient temperature and pressure, but in which chains do not necessarily have the same chemical potential as in the unconstrained bulk. Techniques are developed for calculating surface tension, adhesion tension, density profiles, chain shape, bond orientation, as well as the distribution of segments of various orders in the interfacial region. 28 refs., 6 figs

  17. Melting of superheated molecular crystals

    Science.gov (United States)

    Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2017-07-01

    Melting dynamics of micrometer scale, polycrystalline samples of isobutane, dimethyl ether, methyl benzene, and 2-propanol were investigated by fast scanning calorimetry. When films are superheated with rates in excess of 105 K s-1, the melting process follows zero-order, Arrhenius-like kinetics until approximately half of the sample has transformed. Such kinetics strongly imply that melting progresses into the bulk via a rapidly moving solid-liquid interface that is likely to originate at the sample's surface. Remarkably, the apparent activation energies for the phase transformation are large; all exceed the enthalpy of vaporization of each compound and some exceed it by an order of magnitude. In fact, we find that the crystalline melting kinetics are comparable to the kinetics of dielectric α-relaxation in deeply supercooled liquids. Based on these observations, we conclude that the rate of non-isothermal melting for superheated, low-molecular-weight crystals is limited by constituent diffusion into an abnormally dense, glass-like, non-crystalline phase.

  18. Improved capacitive melting curve measurements

    International Nuclear Information System (INIS)

    Sebedash, Alexander; Tuoriniemi, Juha; Pentti, Elias; Salmela, Anssi

    2009-01-01

    Sensitivity of the capacitive method for determining the melting pressure of helium can be enhanced by loading the empty side of the capacitor with helium at a pressure nearly equal to that desired to be measured and by using a relatively thin and flexible membrane in between. This way one can achieve a nanobar resolution at the level of 30 bar, which is two orders of magnitude better than that of the best gauges with vacuum reference. This extends the applicability of melting curve thermometry to lower temperatures and would allow detecting tiny anomalies in the melting pressure, which must be associated with any phenomena contributing to the entropy of the liquid or solid phases. We demonstrated this principle in measurements of the crystallization pressure of isotopic helium mixtures at millikelvin temperatures by using partly solid pure 4 He as the reference substance providing the best possible universal reference pressure. The achieved sensitivity was good enough for melting curve thermometry on mixtures down to 100 μK. Similar system can be used on pure isotopes by virtue of a blocked capillary giving a stable reference condition with liquid slightly below the melting pressure in the reference volume. This was tested with pure 4 He at temperatures 0.08-0.3 K. To avoid spurious heating effects, one must carefully choose and arrange any dielectric materials close to the active capacitor. We observed some 100 pW loading at moderate excitation voltages.

  19. Automatic Control of Silicon Melt Level

    Science.gov (United States)

    Duncan, C. S.; Stickel, W. B.

    1982-01-01

    A new circuit, when combined with melt-replenishment system and melt level sensor, offers continuous closed-loop automatic control of melt-level during web growth. Installed on silicon-web furnace, circuit controls melt-level to within 0.1 mm for as long as 8 hours. Circuit affords greater area growth rate and higher web quality, automatic melt-level control also allows semiautomatic growth of web over long periods which can greatly reduce costs.

  20. Melting phenomenon and laser annealing in semiconductors

    International Nuclear Information System (INIS)

    Narayan, J.

    1981-03-01

    The work on annealing of displacement damage, dissolution of boron precipitates, and the broadening of dopant profiles in semiconductors after treating with ruby and dye laser pulses is reviewed in order to provide convincing evidence for the melting phenomenon and illustrate the mechanism associated with laser annealing. The nature of the solid-liquid interface and the interface instability during rapid solidification is considered in detail. It is shown that solute concentrations after pulsed laser annealing can far exceed retrograde maxima values. However, there is a critical solute concentration above which a planar solid-liquid interface becomes unstable and breaks into a cellular structure. The solute concentrations and cell sizes associated with this instability are calculated using a perturbation theory, and compared with experimental results

  1. Locked nucleic acid inhibits amplification of contaminating DNA in real-time PCR

    DEFF Research Database (Denmark)

    Hummelshoj, Lone; Ryder, Lars P; Madsen, Hans O

    2005-01-01

    and real-time PCR, the addition of LNA showed blocking of the amplification of genomic XBP1 but not cDNA XBP1. To test the effect of melting temperature (Tm) on the LNA, we investigated the number of LNA nucleotides that could be replaced with DNA nucleotides and still retain the blocking activity. More...

  2. Magnetic susceptibility of semiconductor melts

    International Nuclear Information System (INIS)

    Kutvitskij, V.A.; Shurygin, P.M.

    1975-01-01

    The temperature dependences chi of various alloys confirm the existence of cluster formations in molten semiconductors, the stability of these formations in melts being considerably affected by the anion nature. The concentrational dependences of the magnetic susceptibility for all the investigated systems exhibit the diamagnetism maxima corresponding to the compound compositions. Heating the melt causes ''smearing'' the maxima, which is related with the cluster structure dissociation. The existence of the maxima concentrational dependence chi corresponding to BiTe and BiSe is found in the isotherms. The non-linear dependence of chi on the composition shows the absence of a single-valued relation between the phase diagram and the chi-diagram for melts

  3. Eutectic melting temperature of the lowermost Earth's mantle

    Science.gov (United States)

    Andrault, D.; Lo Nigro, G.; Bolfan-Casanova, N.; Bouhifd, M.; Garbarino, G.; Mezouar, M.

    2009-12-01

    Partial melting of the Earth's deep mantle probably occurred at different stages of its formation as a consequence of meteoritic impacts and seismology suggests that it even continues today at the core-mantle boundary. Melts are important because they dominate the chemical evolution of the different Earth's reservoirs and more generally the dynamics of the whole planet. Unfortunately, the most critical parameter, that is the temperature profile inside the deep Earth, remains poorly constrained accross the planet history. Experimental investigations of the melting properties of materials representative of the deep Earth at relevant P-T conditions can provide anchor points to refine past and present temperature profiles and consequently determine the degree of melting at the different geological periods. Previous works report melting relations in the uppermost lower mantle region, using the multi-anvil press [1,2]. On the other hand, the pyrolite solidus was determined up to 65 GPa using optical observations in the laser-heated diamond anvil cell (LH-DAC) [3]. Finally, the melting temperature of (Mg,Fe)2SiO4 olivine is documented at core-mantle boundary (CMB) conditions by shock wave experiments [4]. Solely based on these reports, experimental data remain too sparse to draw a definite melting curve for the lower mantle in the relevant 25-135 GPa pressure range. We reinvestigated melting properties of lower mantle materials by means of in-situ angle dispersive X-ray diffraction measurements in the LH-DAC at the ESRF [5]. Experiments were performed in an extended P-T range for two starting materials: forsterite and a glass with chondrite composition. In both cases, the aim was to determine the onset of melting, and thus the eutectic melting temperatures as a function of pressure. Melting was evidenced from drastic changes of diffraction peak shape on the image plate, major changes in diffraction intensities in the integrated pattern, disappearance of diffraction rings

  4. On the rapid melt quenching

    International Nuclear Information System (INIS)

    Usatyuk, I.I.; Novokhatskij, I.A.; Kaverin, Yu.F.

    1994-01-01

    Specific features of instrumentation of traditionally employed method of melt spinning (rapid quenching), its disadvantages being discussed, were analyzed. The necessity of the method upgrading as applied to the problems of studying fine structure of molten metals and glasses was substantiated. The principle flowsheet of experimental facility for extremely rapid quenching of the melts of metals is described, specificity of its original functional units being considered. The sequence and character of all the principal stages of the method developed were discussed. 18 refs.; 3 figs

  5. High-Resolution Melting (HRM) of Hypervariable Mitochondrial DNA Regions for Forensic Science.

    Science.gov (United States)

    Dos Santos Rocha, Alípio; de Amorim, Isis Salviano Soares; Simão, Tatiana de Almeida; da Fonseca, Adenilson de Souza; Garrido, Rodrigo Grazinoli; Mencalha, Andre Luiz

    2018-03-01

    Forensic strategies commonly are proceeding by analysis of short tandem repeats (STRs); however, new additional strategies have been proposed for forensic science. Thus, this article standardized the high-resolution melting (HRM) of DNA for forensic analyzes. For HRM, mitochondrial DNA (mtDNA) from eight individuals were extracted from mucosa swabs by DNAzol reagent, samples were amplified by PCR and submitted to HRM analysis to identify differences in hypervariable (HV) regions I and II. To confirm HRM, all PCR products were DNA sequencing. The data suggest that is possible discriminate DNA from different samples by HRM curves. Also, uncommon dual-dissociation was identified in a single PCR product, increasing HRM analyzes by evaluation of melting peaks. Thus, HRM is accurate and useful to screening small differences in HVI and HVII regions from mtDNA and increase the efficiency of laboratory routines based on forensic genetics. © 2017 American Academy of Forensic Sciences.

  6. Shape based kinetic outlier detection in real-time PCR

    Directory of Open Access Journals (Sweden)

    D'Atri Mario

    2010-04-01

    Full Text Available Abstract Background Real-time PCR has recently become the technique of choice for absolute and relative nucleic acid quantification. The gold standard quantification method in real-time PCR assumes that the compared samples have similar PCR efficiency. However, many factors present in biological samples affect PCR kinetic, confounding quantification analysis. In this work we propose a new strategy to detect outlier samples, called SOD. Results Richards function was fitted on fluorescence readings to parameterize the amplification curves. There was not a significant correlation between calculated amplification parameters (plateau, slope and y-coordinate of the inflection point and the Log of input DNA demonstrating that this approach can be used to achieve a "fingerprint" for each amplification curve. To identify the outlier runs, the calculated parameters of each unknown sample were compared to those of the standard samples. When a significant underestimation of starting DNA molecules was found, due to the presence of biological inhibitors such as tannic acid, IgG or quercitin, SOD efficiently marked these amplification profiles as outliers. SOD was subsequently compared with KOD, the current approach based on PCR efficiency estimation. The data obtained showed that SOD was more sensitive than KOD, whereas SOD and KOD were equally specific. Conclusion Our results demonstrated, for the first time, that outlier detection can be based on amplification shape instead of PCR efficiency. SOD represents an improvement in real-time PCR analysis because it decreases the variance of data thus increasing the reliability of quantification.

  7. DNA microarray-based PCR ribotyping of Clostridium difficile.

    Science.gov (United States)

    Schneeberg, Alexander; Ehricht, Ralf; Slickers, Peter; Baier, Vico; Neubauer, Heinrich; Zimmermann, Stefan; Rabold, Denise; Lübke-Becker, Antina; Seyboldt, Christian

    2015-02-01

    This study presents a DNA microarray-based assay for fast and simple PCR ribotyping of Clostridium difficile strains. Hybridization probes were designed to query the modularly structured intergenic spacer region (ISR), which is also the template for conventional and PCR ribotyping with subsequent capillary gel electrophoresis (seq-PCR) ribotyping. The probes were derived from sequences available in GenBank as well as from theoretical ISR module combinations. A database of reference hybridization patterns was set up from a collection of 142 well-characterized C. difficile isolates representing 48 seq-PCR ribotypes. The reference hybridization patterns calculated by the arithmetic mean were compared using a similarity matrix analysis. The 48 investigated seq-PCR ribotypes revealed 27 array profiles that were clearly distinguishable. The most frequent human-pathogenic ribotypes 001, 014/020, 027, and 078/126 were discriminated by the microarray. C. difficile strains related to 078/126 (033, 045/FLI01, 078, 126, 126/FLI01, 413, 413/FLI01, 598, 620, 652, and 660) and 014/020 (014, 020, and 449) showed similar hybridization patterns, confirming their genetic relatedness, which was previously reported. A panel of 50 C. difficile field isolates was tested by seq-PCR ribotyping and the DNA microarray-based assay in parallel. Taking into account that the current version of the microarray does not discriminate some closely related seq-PCR ribotypes, all isolates were typed correctly. Moreover, seq-PCR ribotypes without reference profiles available in the database (ribotype 009 and 5 new types) were correctly recognized as new ribotypes, confirming the performance and expansion potential of the microarray. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Digital PCR: A brief history

    OpenAIRE

    Morley, Alexander A.

    2014-01-01

    Digital PCR for quantification of a target of interest has been independently developed several times, being described in 1990 and 1991 using the term “limiting dilution PCR” and in 1999 using the term “digital PCR”. It came into use in the decade following its first development but its use was cut short by the description of real-time PCR in 1996. However digital PCR has now had a renaissance due to the recent development of new instruments and chemistry which have made it a much simpler and...

  9. Acoustic detection of melt particles

    International Nuclear Information System (INIS)

    Costley, R.D. Jr.

    1988-01-01

    The Reactor Safety Research Department at Sandia National Laboratories is investigating a type of Loss of Coolant Accident (LOCA). In this particular type of accident, core meltdown occurs while the pressure within the reactor pressure vessel (RPV) is high. If one of the instrument tube penetrations in the lower head fails, melt particles stream through the cavity and into the containment vessel. This experiment, which simulates this type accident, was performed in the Surtsev Direct Heating Test Facility which is approximately a 1:10 linear scaling of a large dry containment volume. A 1:10 linear scale model of the reactor cavity was placed near the bottom of the Surtsey vessel so that the exit of the cavity was at the vertical centerline of the vessel. A pressure vessel used to create the simulated molten core debris was located at the scaled height of the RPV. In order to better understand how the melt leaves the cavity and streams into the containment an array of five acoustic sensors was placed directly in the path of the melt particles about 30 feet from the exit of the sealed cavity. Highly damped, broadband sensors were chosen to minimize ringing so that individual particle hits could be detected. The goal was to count the signals produced by the individual particle hits to get some idea of how the melt particles left the cavity. This document presents some of the results of the experiment. 9 figs

  10. Thermodynamics of freezing and melting

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas

    2016-01-01

    phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...

  11. High Resolution Melting Analysis Targeting hsp70 as a Fast and Efficient Method for the Discrimination of Leishmania Species.

    Science.gov (United States)

    Zampieri, Ricardo Andrade; Laranjeira-Silva, Maria Fernanda; Muxel, Sandra Marcia; Stocco de Lima, Ana Carolina; Shaw, Jeffrey Jon; Floeter-Winter, Lucile Maria

    2016-02-01

    Protozoan parasites of the genus Leishmania cause a large spectrum of clinical manifestations known as Leishmaniases. These diseases are increasingly important public health problems in many countries both within and outside endemic regions. Thus, an accurate differential diagnosis is extremely relevant for understanding epidemiological profiles and for the administration of the best therapeutic protocol. Exploring the High Resolution Melting (HRM) dissociation profiles of two amplicons using real time polymerase chain reaction (real-time PCR) targeting heat-shock protein 70 coding gene (hsp70) revealed differences that allowed the discrimination of genomic DNA samples of eight Leishmania species found in the Americas, including Leishmania (Leishmania) infantum chagasi, L. (L.) amazonensis, L. (L.) mexicana, L. (Viannia) lainsoni, L. (V.) braziliensis, L. (V.) guyanensis, L. (V.) naiffi and L. (V.) shawi, and three species found in Eurasia and Africa, including L. (L.) tropica, L. (L.) donovani and L. (L.) major. In addition, we tested DNA samples obtained from standard promastigote culture, naturally infected phlebotomines, experimentally infected mice and clinical human samples to validate the proposed protocol. HRM analysis of hsp70 amplicons is a fast and robust strategy that allowed for the detection and discrimination of all Leishmania species responsible for the Leishmaniases in Brazil and Eurasia/Africa with high sensitivity and accuracy. This method could detect less than one parasite per reaction, even in the presence of host DNA.

  12. High Resolution Melting Analysis Targeting hsp70 as a Fast and Efficient Method for the Discrimination of Leishmania Species.

    Directory of Open Access Journals (Sweden)

    Ricardo Andrade Zampieri

    2016-02-01

    Full Text Available Protozoan parasites of the genus Leishmania cause a large spectrum of clinical manifestations known as Leishmaniases. These diseases are increasingly important public health problems in many countries both within and outside endemic regions. Thus, an accurate differential diagnosis is extremely relevant for understanding epidemiological profiles and for the administration of the best therapeutic protocol.Exploring the High Resolution Melting (HRM dissociation profiles of two amplicons using real time polymerase chain reaction (real-time PCR targeting heat-shock protein 70 coding gene (hsp70 revealed differences that allowed the discrimination of genomic DNA samples of eight Leishmania species found in the Americas, including Leishmania (Leishmania infantum chagasi, L. (L. amazonensis, L. (L. mexicana, L. (Viannia lainsoni, L. (V. braziliensis, L. (V. guyanensis, L. (V. naiffi and L. (V. shawi, and three species found in Eurasia and Africa, including L. (L. tropica, L. (L. donovani and L. (L. major. In addition, we tested DNA samples obtained from standard promastigote culture, naturally infected phlebotomines, experimentally infected mice and clinical human samples to validate the proposed protocol.HRM analysis of hsp70 amplicons is a fast and robust strategy that allowed for the detection and discrimination of all Leishmania species responsible for the Leishmaniases in Brazil and Eurasia/Africa with high sensitivity and accuracy. This method could detect less than one parasite per reaction, even in the presence of host DNA.

  13. Identification of squid species by melting temperature shifts on fluorescence melting curve analysis (FMCA) using single dual-labeled probe

    Science.gov (United States)

    Koh, Eunjung; Song, Ha Jeong; Kwon, Na Young; Kim, Gi Won; Lee, Kwang Ho; Jo, Soyeon; Park, Sujin; Park, Jihyun; Park, Eun Kyeong; Hwang, Seung Yong

    2017-06-01

    Real time PCR is a standard method for identification of species. One of limitations of the qPCR is that there would be false-positive result due to mismatched hybridization between target sequence and probe depending on the annealing temperature in the PCR condition. As an alternative, fluorescence melting curve analysis (FMCA) could be applied for species identification. FMCA is based on a dual-labeled probe. Even with subtle difference of target sequence, there are visible melting temperature (Tm) shift. One of FMCA applications is distinguishing organisms distributed and consumed globally as popular food ingredients. Their prices are set by species or country of origin. However, counterfeiting or distributing them without any verification procedure are becoming social problems and threatening food safety. Besides distinguishing them in naked eye is very difficult and almost impossible in any processed form. Therefore, it is necessary to identify species in molecular level. In this research three species of squids which have 1-2 base pair differences each are selected as samples since they have the same issue. We designed a probe which perfectly matches with one species and the others mismatches 2 and 1 base pair respectively and labeled with fluorophore and quencher. In an experiment with a single probe, we successfully distinguished them by Tm shift depending on the difference of base pair. By combining FMCA and qPCR chip, smaller-scale assay with higher sensitivity and resolution could be possible, andc furthermore, enabling results analysis with smart phone would realize point-of-care testing (POCT).

  14. Microstructure and properties of high chrome steel roller after laser surface melting

    Energy Technology Data Exchange (ETDEWEB)

    Li Meiyan, E-mail: lmy_102411@163.com [College of Electromechanical Engineering, China University of Petroleum, 271 Bei' er Road, Dongying 257061 (China); Wang Yong; Han Bin; Zhao Weimin; Han Tao [College of Electromechanical Engineering, China University of Petroleum, 271 Bei' er Road, Dongying 257061 (China)

    2009-06-15

    Laser surface melting of high chrome steels was achieved by a 5 kW continuous wave CO{sub 2} laser. The microstructure of the laser surface-melted steels was investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffractometry, and the hardness profiles were determined by a Vickers hardness tester. The corrosion behavior in 3.5% NaCl solution was studied by electrochemical corrosion equipment. The large carbides of high chrome steels are completely dissolved and ultrafine dendrites of austenite with submicroscopic M{sub 23}C{sub 6} carbides precipitation are formed in the melted zone. The austenite in the melted zone has a high tempering stability. The corrosion resistance of the laser surface-melted steels is significantly improved due to the dissolution of carbides and the increase of the alloying elements in the solid solution as well as the large amount of austenite.

  15. Microstructure and properties of high chrome steel roller after laser surface melting

    International Nuclear Information System (INIS)

    Li Meiyan; Wang Yong; Han Bin; Zhao Weimin; Han Tao

    2009-01-01

    Laser surface melting of high chrome steels was achieved by a 5 kW continuous wave CO 2 laser. The microstructure of the laser surface-melted steels was investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffractometry, and the hardness profiles were determined by a Vickers hardness tester. The corrosion behavior in 3.5% NaCl solution was studied by electrochemical corrosion equipment. The large carbides of high chrome steels are completely dissolved and ultrafine dendrites of austenite with submicroscopic M 23 C 6 carbides precipitation are formed in the melted zone. The austenite in the melted zone has a high tempering stability. The corrosion resistance of the laser surface-melted steels is significantly improved due to the dissolution of carbides and the increase of the alloying elements in the solid solution as well as the large amount of austenite.

  16. Controlled localised melting in silicon by high dose germanium implantation and flash lamp annealing

    International Nuclear Information System (INIS)

    Voelskow, Matthias; Skorupa, Wolfgang; Pezoldt, Joerg; Kups, Thomas

    2009-01-01

    High intensity light pulse irradiation of monocrystalline silicon wafers is usually accompanied by inhomogeneous surface melting. The aim of the present work is to induce homogeneous buried melting in silicon by germanium implantation and subsequent flash lamp annealing. For this purpose high dose, high energy germanium implantation has been employed to lower the melting temperature of silicon in a predetermined depth region. Subsequent flash lamp irradiation at high energy densities leads to local melting of the germanium rich buried layer, whereby the thickness of the molten layer depends on the irradiation energy density. During the cooling down epitaxial crystallization takes place resulting in a largely defect-free layer. The combination of buried melting and dopant segregation has the potential to produce unusually buried doping profiles or to create strained silicon structures.

  17. A cost-effective melting temperature assay for the detection of single-nucleotide polymorphism in the MBL2 gene of HIV-1-infected children

    Directory of Open Access Journals (Sweden)

    Arraes L.C.

    2006-01-01

    Full Text Available We report a fast (less than 3 h and cost-effective melting temperature assay method for the detection of single-nucleotide polymorphisms in the MBL2 gene. The protocol, which is based on the Corbett Rotor Gene real time PCR platform and SYBR Green I chemistry, yielded, in the cohorts studied, sensitive (100% and specific (100% PCR amplification without the use of costly fluorophore-labeled probes or post-PCR manipulation. At the end of the PCR, the dissociation protocol included a slow heating from 60º to 95ºC in 0.2ºC steps, with an 8-s interval between steps. Melting curve profiles were obtained using the dissociation software of the Rotor Gene-3000 apparatus. Samples were analyzed in duplicate and in different PCR runs to test the reproducibility of this technique. No supplementary data handling is required to determine the MBL2 genotype. MBL2 genotyping performed on a cohort of 164 HIV-1-positive Brazilian children and 150 healthy controls, matched for age and sex and ethnic origin, yielded reproducible results confirmed by direct sequencing of the amplicon performed in blind. The three MBL2 variants (Arg52Cys, Gly54Asp, Gly57Glu were grouped together and called allele 0, while the combination of three wild-type alleles was called allele A. The frequency of the A/A homozygotes was significantly higher among healthy controls (0.68 than in HIV-infected children (0.55; P = 0.0234 and the frequency of MBL2 0/0 homozygotes was higher among HIV-1-infected children than healthy controls (P = 0.0296. The 0 allele was significantly more frequent among the 164 HIV-1-infected children (0.29 than among the 150 healthy controls (0.18; P = 0.0032. Our data confirm the association between the presence of the mutated MBL2 allele (allele 0 and HIV-1 infection in perinatally exposed children. Our results are in agreement with the literature data which indicate that the presence of the allele 0 confers a relative risk of 1.37 for HIV-1 infection through

  18. Viscosity and diffusivity in melts: from unary to multicomponent systems

    Science.gov (United States)

    Chen, Weimin; Zhang, Lijun; Du, Yong; Huang, Baiyun

    2014-05-01

    Viscosity and diffusivity, two important transport coefficients, are systematically investigated from unary melt to binary to multicomponent melts in the present work. By coupling with Kaptay's viscosity equation of pure liquid metals and effective radii of diffusion species, the Sutherland equation is modified by taking the size effect into account, and further derived into an Arrhenius formula for the convenient usage. Its reliability for predicting self-diffusivity and impurity diffusivity in unary liquids is then validated by comparing the calculated self-diffusivities and impurity diffusivities in liquid Al- and Fe-based alloys with the experimental and the assessed data. Moreover, the Kozlov model was chosen among various viscosity models as the most reliable one to reproduce the experimental viscosities in binary and multicomponent melts. Based on the reliable viscosities calculated from the Kozlov model, the modified Sutherland equation is utilized to predict the tracer diffusivities in binary and multicomponent melts, and validated in Al-Cu, Al-Ni and Al-Ce-Ni melts. Comprehensive comparisons between the calculated results and the literature data indicate that the experimental tracer diffusivities and the theoretical ones can be well reproduced by the present calculations. In addition, the vacancy-wind factor in binary liquid Al-Ni alloys with the increasing temperature is also discussed. What's more, the calculated inter-diffusivities in liquid Al-Cu, Al-Ni and Al-Ag-Cu alloys are also in excellent agreement with the measured and theoretical data. Comparisons between the simulated concentration profiles and the measured ones in Al-Cu, Al-Ce-Ni and Al-Ag-Cu melts are further used to validate the present calculation method.

  19. On high-pressure melting of tantalum

    Science.gov (United States)

    Luo, Sheng-Nian; Swift, Damian C.

    2007-01-01

    The issues related to high-pressure melting of Ta are discussed within the context of diamond-anvil cell (DAC) and shock wave experiments, theoretical calculations and common melting models. The discrepancies between the extrapolations of the DAC melting curve and the melting point inferred from shock wave experiments, cannot be reconciled either by superheating or solid-solid phase transition. The failure to reproduce low-pressure DAC melting curve by melting models such as dislocation-mediated melting and the Lindemann law, and molecular dynamics and quantum mechanics-based calculations, undermines their predictions at moderate and high pressures. Despite claims to the contrary, the melting curve of Ta (as well as Mo and W) remains inconclusive at high pressures.

  20. Triacylglycerol and melting profiles of milk fat from several species

    NARCIS (Netherlands)

    Smiddy, M.A.; Huppertz, T.; Ruth, van S.M.

    2012-01-01

    Gas chromatography and differential scanning calorimetry (DSC) were used to differentiate the fats of cow, goat, sheep, water buffalo, donkey, horse and camel milk (n = 20 for each species). Principal component analysis of triacylglycerol (TAG) composition allowed classification into groups

  1. On melting of boron phosphide under pressure

    OpenAIRE

    Solozhenko, Vladimir; Mukhanov, V. A.

    2015-01-01

    Melting of cubic boron phosphide, BP, has been studied at pressures to 9 GPa using synchrotron X-ray diffraction and electrical resistivity measurements. It has been found that above 2.6 GPa BP melts congruently, and the melting curve exhibits negative slope (–60 ± 7 K/GPa), which is indicative of a higher density of the melt as compared to the solid phase.

  2. Quantitative real-time RT-PCR and chromogenic in situ hybridization

    DEFF Research Database (Denmark)

    Rosa, Fabíola E; Silveira, Sara M; Silveira, Cássia G T

    2009-01-01

    . METHODS: To elucidate the molecular profile of HER-2 status, mRNA and protein expression in 75 invasive breast carcinomas were analyzed by real time quantitative RT-PCR (qRT-PCR) and IHC, respectively. Amplifications were evaluated in 43 of these cases by CISH and in 11 by FISH. RESULTS: The concordance...

  3. Selection and Validation of Reference Genes for qRT-PCR Expression Analysis of Candidate Genes Involved in Olfactory Communication in the Butterfly Bicyclus anynana

    OpenAIRE

    Arun, Alok; Bauml?, V?ronique; Amelot, Ga?l; Nieberding, Caroline M.

    2015-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera) have become important models in molecular evolutionary ecology, so far no study aimed at ident...

  4. Petrological Geodynamics of Mantle Melting I. AlphaMELTS + Multiphase Flow: Dynamic Equilibrium Melting, Method and Results

    Directory of Open Access Journals (Sweden)

    Massimiliano Tirone

    2017-10-01

    Full Text Available The complex process of melting in the Earth's interior is studied by combining a multiphase numerical flow model with the program AlphaMELTS which provides a petrological description based on thermodynamic principles. The objective is to address the fundamental question of the effect of the mantle and melt dynamics on the composition and abundance of the melt and the residual solid. The conceptual idea is based on a 1-D description of the melting process that develops along an ideal vertical column where local chemical equilibrium is assumed to apply at some level in space and time. By coupling together the transport model and the chemical thermodynamic model, the evolution of the melting process can be described in terms of melt distribution, temperature, pressure and solid and melt velocities but also variation of melt and residual solid composition and mineralogical abundance at any depth over time. In this first installment of a series of three contributions, a two-phase flow model (melt and solid assemblage is developed under the assumption of complete local equilibrium between melt and a peridotitic mantle (dynamic equilibrium melting, DEM. The solid mantle is also assumed to be completely dry. The present study addresses some but not all the potential factors affecting the melting process. The influence of permeability and viscosity of the solid matrix are considered in some detail. The essential features of the dynamic model and how it is interfaced with AlphaMELTS are clearly outlined. A detailed and explicit description of the numerical procedure should make this type of numerical models less obscure. The general observation that can be made from the outcome of several simulations carried out for this work is that the melt composition varies with depth, however the melt abundance not necessarily always increases moving upwards. When a quasi-steady state condition is achieved, that is when melt abundance does not varies significantly

  5. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  6. Supercoil Formation During DNA Melting

    Science.gov (United States)

    Sayar, Mehmet; Avsaroglu, Baris; Kabakcioglu, Alkan

    2009-03-01

    Supercoil formation plays a key role in determining the structure-function relationship in DNA. Biological and technological processes, such as protein synthesis, polymerase chain reaction, and microarrays relys on separation of the two strands in DNA, which is coupled to the unwinding of the supercoiled structure. This problem has been studied theoretically via Peyrard-Bishop and Poland-Scheraga type models, which include a simple representation of the DNA structural properties. In recent years, computational models, which provide a more realtistic representaion of DNA molecule, have been used to study the melting behavior of short DNA chains. Here, we will present a new coarse-grained model of DNA which is capable of simulating sufficiently long DNA chains for studying the supercoil formation during melting, without sacrificing the local structural properties. Our coarse-grained model successfully reproduces the local geometry of the DNA molecule, such as the 3'-5' directionality, major-minor groove structure, and the helical pitch. We will present our initial results on the dynamics of supercoiling during DNA melting.

  7. High resolution melting analysis (HRM) for the assessment of clonality in feline B-cell lymphomas.

    Science.gov (United States)

    Henrich, Manfred; Scheffold, Svenja; Hecht, Werner; Reinacher, Manfred

    2018-06-01

    Analysis of clonality is gaining importance in diagnosing lymphomas in veterinary medicine. Usually, PCR for the analysis of antigen receptor rearrangement (PARR) is followed by electrophoretic separation of the PCR products. Aim of this study was to test the feasibility of HRM for the assessment of clonality in B-cell lymphomas of cats. High resolution melting analysis differentiates PCR products by their different melting point using the decrease in fluorescence of an intercalating dye during melting of the PCR product. Additionally, the method is easy to use with no post-PCR manipulation of the samples. Forty-seven feline B-cell lymphomas and 31 reactive lymphatic proliferations of cats were investigated by PARR followed either by capillary electrophoresis or an HRM assay. To objectify the interpretation of the HRM results a recently published mathematical approach was applied to the melting curve. To overcome discrepancies between the visual interpretation and the mathematical approach, the latter was modified to include testing of reproducibility and recognition of pseudoclonality. In 11 of 47 lymphoma cases clonal populations were detectable by HRM assay compared to 14 of 47 lymphomas in which clonal populations were detected by capillary electrophoresis assay. Neither of the methods showed a clonal pattern in any of the reactive samples. However, the HRM assay showed a unique pattern in cases of follicular lymphatic hyperplasia that had no corresponding pattern in capillary electrophoresis. The capillary electrophoresis assay could identify 3 lymphomas that were not detected by the HRM assay and is therefore regarded superior to the HRM assay. The comparison however, was hampered by the overall bad performance of the PARR, that might be the consequence of insufficient primer binding due to somatic hypermutation of the binding sites during antigen stimulated proliferation of the B lymphocytes. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Development of a high-throughput real time PCR based on a hot-start alternative for Pfu mediated by quantum dots

    Science.gov (United States)

    Sang, Fuming; Yang, Yang; Yuan, Lin; Ren, Jicun; Zhang, Zhizhou

    2015-09-01

    Hot start (HS) PCR is an excellent alternative for high-throughput real time PCR due to its ability to prevent nonspecific amplification at low temperature. Development of a cost-effective and simple HS PCR technique to guarantee high-throughput PCR specificity and consistency still remains a great challenge. In this study, we systematically investigated the HS characteristics of QDs triggered in real time PCR with EvaGreen and SYBR Green I dyes by the analysis of amplification curves, standard curves and melting curves. Two different kinds of DNA polymerases, Pfu and Taq, were employed. Here we showed that high specificity and efficiency of real time PCR were obtained in a plasmid DNA and an error-prone two-round PCR assay using QD-based HS PCR, even after an hour preincubation at 50 °C before real time PCR. Moreover, the results obtained by QD-based HS PCR were comparable to a commercial Taq antibody DNA polymerase. However, no obvious HS effect of QDs was found in real time PCR using Taq DNA polymerase. The findings of this study demonstrated that a cost-effective high-throughput real time PCR based on QD triggered HS PCR could be established with high consistency, sensitivity and accuracy.Hot start (HS) PCR is an excellent alternative for high-throughput real time PCR due to its ability to prevent nonspecific amplification at low temperature. Development of a cost-effective and simple HS PCR technique to guarantee high-throughput PCR specificity and consistency still remains a great challenge. In this study, we systematically investigated the HS characteristics of QDs triggered in real time PCR with EvaGreen and SYBR Green I dyes by the analysis of amplification curves, standard curves and melting curves. Two different kinds of DNA polymerases, Pfu and Taq, were employed. Here we showed that high specificity and efficiency of real time PCR were obtained in a plasmid DNA and an error-prone two-round PCR assay using QD-based HS PCR, even after an hour

  9. Rapid Simultaneous Amplification and Detection of the MBR/JH Chromosomal Translocation by Fluorescence Melting Curve Analysis

    Science.gov (United States)

    Bohling, Sandra D.; King, Thomas C.; Wittwer, Carl T.; Elenitoba-Johnson, Kojo S. J.

    1999-01-01

    Polymerase chain reaction (PCR) amplification and product analysis for the detection of chromosomal translocations, such as the t(14;18), has traditionally been a two-step process. PCR product detection has generally entailed gel electrophoresis and/or hybridization or sequencing for confirmation of assay specificity. Using a microvolume fluorimeter integrated with a thermal cycler and a PCR-compatible double-stranded DNA (dsDNA) binding fluorescent dye (SYBR Green I), we investigated the feasibility of simultaneous thermal amplification and detection of MBR/JH translocation products by fluorescence melting curve analysis. We analyzed DNA from 30 cases of lymphoproliferative disorders comprising 19 cases of previously documented MBR/JH-positive follicle center lymphoma and 11 reactive lymphadenopathies. The samples were coded and analyzed blindly for the presence of MBR/JH translocations by fluorescence melting curve analysis. We also performed dilutional assays using the MBR/JH-positive cell line SUDHL-6. Multiplex PCR for MBR/JH and β-globin was used to simultaneously assess sample adequacy. All (100%) of the 19 cases previously determined to be MBR/JH positive by conventional PCR analysis showed a characteristic sharp decrease in fluorescence at ∼90°C by melting curve analysis after amplification. Fluorescence melting peaks obtained by plotting the negative derivative of fluorescence over temperature (−dF/dT) versus temperature (T) showed melting temperatures (Tm) at 88.85 ± 1.15°C. In addition, multiplex assays using both MBR/JH and β-globin primers yielded easily distinguishable fluorescence melting peaks at ∼90°C and 81.2°C, respectively. Dilutional assays revealed that fluorescence melting curve analysis was more sensitive than conventional PCR and agarose gel electrophoresis with ultraviolet transillumination by as much as 100-fold. Simultaneous amplification and fluorescence melting curve analysis is a simple, reliable, and sensitive method

  10. Species Identification of Fox-, Mink-, Dog-, and Rabbit-Derived Ingredients by Multiplex PCR and Real-Time PCR Assay.

    Science.gov (United States)

    Wu, Qingqing; Xiang, Shengnan; Wang, Wenjun; Zhao, Jinyan; Xia, Jinhua; Zhen, Yueran; Liu, Bang

    2018-05-01

    Various detection methods have been developed to date for identification of animal species. New techniques based on PCR approach have raised the hope of developing better identification methods, which can overcome the limitations of the existing methods. PCR-based methods used the mitochondrial DNA (mtDNA) as well as nuclear DNA sequences. In this study, by targeting nuclear DNA, multiplex PCR and real-time PCR methods were developed to assist with qualitative and quantitative analysis. The multiplex PCR was found to simultaneously and effectively distinguish four species (fox, dog, mink, and rabbit) ingredients by the different sizes of electrophoretic bands: 480, 317, 220, and 209 bp. Real-time fluorescent PCR's amplification profiles and standard curves showed good quantitative measurement responses and linearity, as indicated by good repeatability and coefficient of determination R 2  > 0.99. The quantitative results of quaternary DNA mixtures including mink, fox, dog, and rabbit DNA are in line with our expectations: R.D. (relative deviation) varied between 1.98 and 12.23% and R.S.D. (relative standard deviation) varied between 3.06 and 11.51%, both of which are well within the acceptance criterion of ≤ 25%. Combining the two methods is suitable for the rapid identification and accurate quantification of fox-, dog-, mink-, and rabbit-derived ingredients in the animal products.

  11. Industrial opportunities of controlled melt flow during glass melting, part 1: Melt flow evaluation

    Czech Academy of Sciences Publication Activity Database

    Dyrčíková, Petra; Hrbek, Lukáš; Němec, Lubomír

    2014-01-01

    Roč. 58, č. 2 (2014), s. 111-117 ISSN 0862-5468 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melting * controlled flow * space utilization Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.435, year: 2014 http://www.ceramics-silikaty.cz/2014/pdf/2014_02_111.pdf

  12. High-resolution melting genotyping of Enterococcus faecium based on multilocus sequence typing derived single nucleotide polymorphisms.

    Directory of Open Access Journals (Sweden)

    Steven Y C Tong

    Full Text Available We have developed a single nucleotide polymorphism (SNP nucleated high-resolution melting (HRM technique to genotype Enterococcus faecium. Eight SNPs were derived from the E. faecium multilocus sequence typing (MLST database and amplified fragments containing these SNPs were interrogated by HRM. We tested the HRM genotyping scheme on 85 E. faecium bloodstream isolates and compared the results with MLST, pulsed-field gel electrophoresis (PFGE and an allele specific real-time PCR (AS kinetic PCR SNP typing method. In silico analysis based on predicted HRM curves according to the G+C content of each fragment for all 567 sequence types (STs in the MLST database together with empiric data from the 85 isolates demonstrated that HRM analysis resolves E. faecium into 231 "melting types" (MelTs and provides a Simpson's Index of Diversity (D of 0.991 with respect to MLST. This is a significant improvement on the AS kinetic PCR SNP typing scheme that resolves 61 SNP types with D of 0.95. The MelTs were concordant with the known ST of the isolates. For the 85 isolates, there were 13 PFGE patterns, 17 STs, 14 MelTs and eight SNP types. There was excellent concordance between PFGE, MLST and MelTs with Adjusted Rand Indices of PFGE to MelT 0.936 and ST to MelT 0.973. In conclusion, this HRM based method appears rapid and reproducible. The results are concordant with MLST and the MLST based population structure.

  13. Methylation-Specific PCR Unraveled

    Directory of Open Access Journals (Sweden)

    Sarah Derks

    2004-01-01

    Full Text Available Methylation‐specific PCR (MSP is a simple, quick and cost‐effective method to analyze the DNA methylation status of virtually any group of CpG sites within a CpG island. The technique comprises two parts: (1 sodium bisulfite conversion of unmethylated cytosine's to uracil under conditions whereby methylated cytosines remains unchanged and (2 detection of the bisulfite induced sequence differences by PCR using specific primer sets for both unmethylated and methylated DNA. This review discusses the critical parameters of MSP and presents an overview of the available MSP variants and the (clinical applications.

  14. Detection of polyoma virus in brain tissue of patients with progressive multifocal leukoencephalopathy by real-time PCR and pyrosequencing.

    Science.gov (United States)

    Beck, Rose C; Kohn, Debra J; Tuohy, Marion J; Prayson, Richard A; Yen-Lieberman, Belinda; Procop, Gary W

    2004-03-01

    We evaluated 2 methods, a LightCycler PCR assay and pyrosequencing for the detection of the JC polyoma virus (JCV) in fixed brain tissue of 10 patients with and 3 control patients without progressive multifocal leukoencephalopathy (PML). Nucleic acid extraction was performed after deparaffinization and proteinase K digestion. The LightCycler assay differentiates the BK virus (BKV), JCV, and SV40 using melt curve analysis. Conventional PCR was used with the same primers to generate products for pyrosequencing. Two sequencing primers were used that differentiate the polyoma viruses. Seven of 11 biopsies (1 patient had 2 biopsies) with PML were positive for JCV by real-time PCR and/or PCR/pyrosequencing. Three of 4 remaining biopsies were positive by real-time PCR but had melting points between JCV and SV40. The 4 specimens that were negative or atypical by LightCycler PCR were positive by traditional PCR, but 1 had an amplicon of lower molecular weight by gel electrophoresis. These were shown to represent JCV by at least 1 of the 2 pyrosequencing primers. The biopsies from patients without PML were PCR negative. Both the LightCycler and pyrosequencing assays are useful for confirming JCV in brain biopsies from patients with PML, but variant JCVs may require supplementary methods to confirm JCV infection.

  15. pcr

    African Journals Online (AJOL)

    DR. AMINU

    Keywords: Polymerase chain reaction, Diagnosis, Bacteria, Infections. INTRODUCTION ... used to amplify a piece of DNA by in-vitro enzymatic replication (David and .... receiving antimicrobial treatment, or when the causative agents are small ...

  16. Electron beam melting of sponge titanium

    International Nuclear Information System (INIS)

    Kanayama, Hiroshi; Kusamichi, Tatsuhiko; Muraoka, Tetsuhiro; Onouye, Toshio; Nishimura, Takashi

    1991-01-01

    Fundamental investigations were done on electron beam (EB) melting of sponge titanium by using 80 kW EB melting furnace. Results obtained are as follows: (1) To increase the melting yield of titanium in EB melting of sponge titanium, it is important to recover splashed metal by installation of water-cooled copper wall around the hearth and to decrease evaporation loss of titanium by keeping the surface temperature of molten metal just above the melting temperature of titanium without local heating. (2) Specific power consumption of drip melting of pressed sponge titanium bar and hearth melting of sponge titanium are approximately 0.9 kWh/kg-Ti and 0.5-0.7 kWh/kg-Ti, respectively. (3) Ratios of the heat conducted to water-cooled mould in the drip melting and to water-cooled hearth in the hearth melting to the electron beam input power are 50-65% and 60-65%, respectively. (4) Surface defects of EB-melted ingots include rap which occurs when the EB output is excessively great, and transverse cracks when the EB output is excessively small. To prevent surface defects, the up-down withdrawal method is effective. (author)

  17. Rapid discrimination of Isaria javanica and Isaria poprawskii from Isaria spp. using high resolution DNA melting assays

    Science.gov (United States)

    The current study evaluates the potential of using high resolution DNA melting assays to discriminate species in the genus, Isaria. The study utilizes a previously identified 103 base pair PCR amplicon, which was reported to be selective for Isaria fumosorosea. Our study finds the amplicon selective...

  18. Rapid Determination of Lymphogranuloma Venereum Serovars of Chlamydia trachomatis by Quantitative High-Resolution Melt Analysis (HRMA)

    Science.gov (United States)

    Stevens, Matthew P.; Garland, Suzanne M.; Zaia, Angelo M.; Tabrizi, Sepehr N.

    2012-01-01

    A quantitative high-resolution melt analysis assay was developed to differentiate lymphogranuloma venereum-causing serovars of Chlamydia trachomatis (L1 to L3) from other C. trachomatis serovars (D to K). The detection limit of this assay is approximately 10 copies per reaction, comparable to the limits of other quantitative-PCR-based methods. PMID:22933594

  19. Variability of Basal Melt Beneath the Pine Island Glacier Ice Shelf, West Antarctica

    Science.gov (United States)

    Bindschadler, Robert; Vaughan, David G.; Vornberger, Patricia

    2011-01-01

    Observations from satellite and airborne platforms are combined with model calculations to infer the nature and efficiency of basal melting of the Pine Island Glacier ice shelf, West Antarctica, by ocean waters. Satellite imagery shows surface features that suggest ice-shelf-wide changes to the ocean s influence on the ice shelf as the grounding line retreated. Longitudinal profiles of ice surface and bottom elevations are analyzed to reveal a spatially dependent pattern of basal melt with an annual melt flux of 40.5 Gt/a. One profile captures a persistent set of surface waves that correlates with quasi-annual variations of atmospheric forcing of Amundsen Sea circulation patterns, establishing a direct connection between atmospheric variability and sub-ice-shelf melting. Ice surface troughs are hydrostatically compensated by ice-bottom voids up to 150m deep. Voids form dynamically at the grounding line, triggered by enhanced melting when warmer-than-average water arrives. Subsequent enlargement of the voids is thermally inefficient (4% or less) compared with an overall melting efficiency beneath the ice shelf of 22%. Residual warm water is believed to cause three persistent polynyas at the ice-shelf front seen in Landsat imagery. Landsat thermal imagery confirms the occurrence of warm water at the same locations.

  20. Molecular typing for blood group antigens within 40 minutes by direct PCR from plasma or serum

    Science.gov (United States)

    Wagner, Franz Friedrich; Flegel, Willy Albert; Bittner, Rita; Döscher, Andrea

    2016-01-01

    Determining blood group antigens by serological methods may be unreliable in certain situations, such as in patients after chronic or massive transfusion. Red cell genotyping offers a complementary approach, but current methods may take much longer than conventional serological typing, limiting their utility in urgent situations. To narrow this gap, we devised a rapid method using direct polymerase chain reaction (PCR) amplification while avoiding the DNA extraction step. DNA was amplified by PCR directly from plasma or serum of blood donors followed by a melting curve analysis in a capillary rapid-cycle PCR assay. We evaluated the single nucleotide polymorphisms underlying the clinically relevant Fya, Fyb, Jka and Jkb antigens, with our analysis being completed within 40 min of receiving a plasma or serum sample. The positive predictive value was 100% and the negative predictive value at least 84%. Direct PCR with melting point analysis allowed faster red cell genotyping to predict blood group antigens than any previous molecular method. Our assay may be used as a screening tool with subsequent confirmatory testing, within the limitations of the false-negative rate. With fast turnaround times, the rapid-cycle PCR assay may eventually be developed and applied to red cell genotyping in the hospital setting. PMID:27991657

  1. Double melting in polytetrafluoroethylene γ-irradiated above its melting point

    International Nuclear Information System (INIS)

    Serov, S.A.; Khatipov, S.A.; Sadovskaya, N.V.; Tereshenkov, A.V.; Chukov, N.A.

    2012-01-01

    Highlights: ► PTFE irradiation leads to formation of double melting peaks in DSC curves. ► This is connected to dual crystalline morphology typical for PTFE. ► Two crystalline types exist in the PTFE irradiated in the melt. - Abstract: PTFE irradiation above its melting point leads to formation of double melting and crystallization peaks in DSC curves. Splitting of melting peaks is connected to dual crystalline morphology typical for PTFE irradiated in the melt. According to electron microscopy, two crystalline types with different size and packing density exist in the irradiated PTFE.

  2. Tin in granitic melts: The role of melting temperature and protolith composition

    Science.gov (United States)

    Wolf, Mathias; Romer, Rolf L.; Franz, Leander; López-Moro, Francisco Javier

    2018-06-01

    Granite bound tin mineralization typically is seen as the result of extreme magmatic fractionation and late exsolution of magmatic fluids. Mineralization, however, also could be obtained at considerably less fractionation if initial melts already had enhanced Sn contents. We present chemical data and results from phase diagram modeling that illustrate the dominant roles of protolith composition, melting conditions, and melt extraction/evolution for the distribution of Sn between melt and restite and, thus, the Sn content of melts. We compare the element partitioning between leucosome and restite of low-temperature and high-temperature migmatites. During low-temperature melting, trace elements partition preferentially into the restite with the possible exception of Sr, Cd, Bi, and Pb, that may be enriched in the melt. In high-temperature melts, Ga, Y, Cd, Sn, REE, Pb, Bi, and U partition preferentially into the melt whereas Sc, V, Cr, Co, Ni, Mo, and Ba stay in the restite. This contrasting behavior is attributed to the stability of trace element sequestering minerals during melt generation. In particular muscovite, biotite, titanite, and rutile act as host phases for Sn and, therefore prevent Sn enrichment in the melt as long as they are stable phases in the restite. As protolith composition controls both the mineral assemblage and modal contents of the various minerals, protolith composition eventually also controls the fertility of a rock during anatexis, restite mineralogy, and partitioning behavior of trace metals. If a particular trace element is sequestered in a phase that is stable during partial melting, the resulting melt is depleted in this element whereas the restite becomes enriched. Melt generation at high temperature may release Sn when Sn-hosts become unstable. If melt has not been lost before the breakdown of Sn-hosts, Sn contents in the melt will increase but never will be high. In contrast, if melt has been lost before the decomposition of Sn

  3. Chemical decontamination and melt densification

    International Nuclear Information System (INIS)

    Dillon, R.L.; Griggs, B.; Kemper, R.S.; Nelson, R.G.

    1976-01-01

    Preliminary studies on the chemical decontamination and densification of Zircaloy, stainless steel, and Inconel undissolved residues remaining after dissolution of the UO 2 --PuO 2 spent fuel material from sheared fuel bundles are reported. The studies were made on cold or very small samples to demonstrate the feasibility of the processes developed before proceeding to hot cell demonstrations with kg level of the sources. A promising aqueous decontamination method for Zr alloy cladding was developed in which oxidized surfaces are conditioned with HF prior to leaching with ammonium oxalate, ammonium citrate, ammonium fluoride, and hydrogen peroxide. Feasibility of molten salt decontamination of oxidized Zircaloy was demonstrated. A low melting alloy of Zircaloy, stainless steel, and Inconel was obtained in induction heated graphite crucibles. Segregated Zircaloy cladding sections were directly melted by the inductoslag process to yield a metal ingot suitable for storage. Both Zircaloy and Zircaloy--stainless steel--Inconel alloys proved to be highly satisfactory getters and sinks for recovered tritium

  4. Monitoring of polymer melt processing

    International Nuclear Information System (INIS)

    Alig, Ingo; Steinhoff, Bernd; Lellinger, Dirk

    2010-01-01

    The paper reviews the state-of-the-art of in-line and on-line monitoring during polymer melt processing by compounding, extrusion and injection moulding. Different spectroscopic and scattering techniques as well as conductivity and viscosity measurements are reviewed and compared concerning their potential for different process applications. In addition to information on chemical composition and state of the process, the in situ detection of morphology, which is of specific interest for multiphase polymer systems such as polymer composites and polymer blends, is described in detail. For these systems, the product properties strongly depend on the phase or filler morphology created during processing. Examples for optical (UV/vis, NIR) and ultrasonic attenuation spectra recorded during extrusion are given, which were found to be sensitive to the chemical composition as well as to size and degree of dispersion of micro or nanofillers in the polymer matrix. By small-angle light scattering experiments, process-induced structures were detected in blends of incompatible polymers during compounding. Using conductivity measurements during extrusion, the influence of processing conditions on the electrical conductivity of polymer melts with conductive fillers (carbon black or carbon nanotubes) was monitored. (topical review)

  5. Design and optimization of reverse-transcription quantitative PCR experiments.

    Science.gov (United States)

    Tichopad, Ales; Kitchen, Rob; Riedmaier, Irmgard; Becker, Christiane; Ståhlberg, Anders; Kubista, Mikael

    2009-10-01

    Quantitative PCR (qPCR) is a valuable technique for accurately and reliably profiling and quantifying gene expression. Typically, samples obtained from the organism of study have to be processed via several preparative steps before qPCR. We estimated the errors of sample withdrawal and extraction, reverse transcription (RT), and qPCR that are introduced into measurements of mRNA concentrations. We performed hierarchically arranged experiments with 3 animals, 3 samples, 3 RT reactions, and 3 qPCRs and quantified the expression of several genes in solid tissue, blood, cell culture, and single cells. A nested ANOVA design was used to model the experiments, and relative and absolute errors were calculated with this model for each processing level in the hierarchical design. We found that intersubject differences became easily confounded by sample heterogeneity for single cells and solid tissue. In cell cultures and blood, the noise from the RT and qPCR steps contributed substantially to the overall error because the sampling noise was less pronounced. We recommend the use of sample replicates preferentially to any other replicates when working with solid tissue, cell cultures, and single cells, and we recommend the use of RT replicates when working with blood. We show how an optimal sampling plan can be calculated for a limited budget. .

  6. Melt analysis of mismatch amplification mutation assays (Melt-MAMA: a functional study of a cost-effective SNP genotyping assay in bacterial models.

    Directory of Open Access Journals (Sweden)

    Dawn N Birdsell

    Full Text Available Single nucleotide polymorphisms (SNPs are abundant in genomes of all species and biologically informative markers extensively used across broad scientific disciplines. Newly identified SNP markers are publicly available at an ever-increasing rate due to advancements in sequencing technologies. Efficient, cost-effective SNP genotyping methods to screen sample populations are in great demand in well-equipped laboratories, but also in developing world situations. Dual Probe TaqMan assays are robust but can be cost-prohibitive and require specialized equipment. The Mismatch Amplification Mutation Assay, coupled with melt analysis (Melt-MAMA, is flexible, efficient and cost-effective. However, Melt-MAMA traditionally suffers from high rates of assay design failures and knowledge gaps on assay robustness and sensitivity. In this study, we identified strategies that improved the success of Melt-MAMA. We examined the performance of 185 Melt-MAMAs across eight different pathogens using various optimization parameters. We evaluated the effects of genome size and %GC content on assay development. When used collectively, specific strategies markedly improved the rate of successful assays at the first design attempt from ~50% to ~80%. We observed that Melt-MAMA accurately genotypes across a broad DNA range (~100 ng to ~0.1 pg. Genomic size and %GC content influence the rate of successful assay design in an independent manner. Finally, we demonstrated the versatility of these assays by the creation of a duplex Melt-MAMA real-time PCR (two SNPs and conversion to a size-based genotyping system, which uses agarose gel electrophoresis. Melt-MAMA is comparable to Dual Probe TaqMan assays in terms of design success rate and accuracy. Although sensitivity is less robust than Dual Probe TaqMan assays, Melt-MAMA is superior in terms of cost-effectiveness, speed of development and versatility. We detail the parameters most important for the successful application of

  7. Three-dimensional model of heat transport during In Situ Vitrification with melting and cool down

    International Nuclear Information System (INIS)

    Hawkes, G.L.

    1993-01-01

    A potential technology for permanent remediation of buried wastes is the In Situ Vitrification (ISV) process. This process uses electrical resistance heating to melt waste and contaminated soil in place to produce a durable, glasslike material that encapsulates and immobilizes buried wastes. The magnitude of the resulting electrical resistance heating is sufficient to cause soil melting. As the molten region grows, surface heat losses cause the soil near the surface to re solidify. This paper presents numerical results obtained by considering heat transport and melting when solving the conservation of mass and energy equations using finite element methods. A local heat source is calculated by solving the electric field equation and calculating a Joule Heat source term. The model considered is a three-dimensional model of the electrodes and surrounding soil. Also included in the model is subsidence; where the surface of the melted soil subsides due to the change in density when the soil melts. A power vs. time profile is implemented for typical ISV experiments. The model agrees well with experimental data for melt volume and melt shape

  8. Features of melting of indium monohalides

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, V S; Smirniv, V A [AN SSSR, Chernogolovka. Inst. Fiziki Tverdogo Tela

    1980-12-01

    The character of InCl, InBr and InI melting is investigated by the methods of DTA, calorimetry, conductometry and chemical analysis. Partial decomposition of monohalogenides during melting according to the reactions of disproportionation is shown. The presence of disproportionation products (In/sup 0/ and In/sup 3 +/) is manifested in the properties of solid monohalogenides, prepared by the crystallization from melt, in their photosensitivity and electroconductivity.

  9. Multiscale Models of Melting Arctic Sea Ice

    Science.gov (United States)

    2014-09-30

    Sea ice reflectance or albedo , a key parameter in climate modeling, is primarily determined by melt pond and ice floe configurations. Ice - albedo ...determine their albedo - a key parameter in climate modeling. Here we explore the possibility of a conceptual sea ice climate model passing through a...bifurcation points. Ising model for melt ponds on Arctic sea ice Y. Ma, I. Sudakov, and K. M. Golden Abstract: The albedo of melting

  10. Use of PCR-Based Methods for Rapid Differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis

    Science.gov (United States)

    Torriani, Sandra; Zapparoli, Giacomo; Dellaglio, Franco

    1999-01-01

    Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412T, which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains. PMID:10508059

  11. Use of PCR-based methods for rapid differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis.

    Science.gov (United States)

    Torriani, S; Zapparoli, G; Dellaglio, F

    1999-10-01

    Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412(T), which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains.

  12. Calculation of melting points of oxides

    International Nuclear Information System (INIS)

    Bobkova, O.S.; Voskobojnikov, V.G.; Kozin, A.I.

    1975-01-01

    The correlation between the melting point and thermodynamic parameters characterizing the strength of oxides and compounds is given. Such thermodynamic paramters include the energy and antropy of atomization

  13. Comparative Study on Two Melting Simulation Methods: Melting Curve of Gold

    International Nuclear Information System (INIS)

    Liu Zhong-Li; Li Rui; Sun Jun-Sheng; Zhang Xiu-Lu; Cai Ling-Cang

    2016-01-01

    Melting simulation methods are of crucial importance to determining melting temperature of materials efficiently. A high-efficiency melting simulation method saves much simulation time and computational resources. To compare the efficiency of our newly developed shock melting (SM) method with that of the well-established two-phase (TP) method, we calculate the high-pressure melting curve of Au using the two methods based on the optimally selected interatomic potentials. Although we only use 640 atoms to determine the melting temperature of Au in the SM method, the resulting melting curve accords very well with the results from the TP method using much more atoms. Thus, this shows that a much smaller system size in SM method can still achieve a fully converged melting curve compared with the TP method, implying the robustness and efficiency of the SM method. (paper)

  14. Modelling of the controlled melt flow in a glass melting space – Its melting performance and heat losses

    Czech Academy of Sciences Publication Activity Database

    Jebavá, Marcela; Dyrčíková, Petra; Němec, Lubomír

    2015-01-01

    Roč. 430, DEC 15 (2015), s. 52-63 ISSN 0022-3093 Institutional support: RVO:67985891 Keywords : glass melt flow * mathematical modelling * energy distribution * space utilizatios * melting performance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  15. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    -1300°C, and a trend of higher fusion temperatures with increasing contents of Al-silicates and quartz was found.c) Fly ashes, bottom ashes and deposits from coal/straw co-firing were all found to consist mainly of metal-alumina and alumina-silicates. These ashes all melt in the temperature range 1000......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction......, the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co-firing...

  16. Outbreak of hepatitis E virus infection in Darfur, Sudan: effectiveness of real-time reverse transcription-PCR analysis of dried blood spots.

    Science.gov (United States)

    Mérens, Audrey; Guérin, Philippe Jean; Guthmann, Jean-Paul; Nicand, Elisabeth

    2009-06-01

    Biological samples collected in refugee camps during an outbreak of hepatitis E were used to compare the accuracy of hepatitis E virus RNA amplification by real-time reverse transcription-PCR (RT-PCR) for sera and dried blood spots (concordance of 90.6%). Biological profiles (RT-PCR and serology) of asymptomatic individuals were also analyzed.

  17. Optical properties of melting first-year Arctic sea ice

    Science.gov (United States)

    Light, Bonnie; Perovich, Donald K.; Webster, Melinda A.; Polashenski, Christopher; Dadic, Ruzica

    2015-11-01

    The albedo and transmittance of melting, first-year Arctic sea ice were measured during two cruises of the Impacts of Climate on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) project during the summers of 2010 and 2011. Spectral measurements were made for both bare and ponded ice types at a total of 19 ice stations in the Chukchi and Beaufort Seas. These data, along with irradiance profiles taken within boreholes, laboratory measurements of the optical properties of core samples, ice physical property observations, and radiative transfer model simulations are employed to describe representative optical properties for melting first-year Arctic sea ice. Ponded ice was found to transmit roughly 4.4 times more total energy into the ocean, relative to nearby bare ice. The ubiquitous surface-scattering layer and drained layer present on bare, melting sea ice are responsible for its relatively high albedo and relatively low transmittance. Light transmittance through ponded ice depends on the physical thickness of the ice and the magnitude of the scattering coefficient in the ice interior. Bare ice reflects nearly three-quarters of the incident sunlight, enhancing its resiliency to absorption by solar insolation. In contrast, ponded ice absorbs or transmits to the ocean more than three-quarters of the incident sunlight. Characterization of the heat balance of a summertime ice cover is largely dictated by its pond coverage, and light transmittance through ponded ice shows strong contrast between first-year and multiyear Arctic ice covers.

  18. High-throughput STR analysis for DNA database using direct PCR.

    Science.gov (United States)

    Sim, Jeong Eun; Park, Su Jeong; Lee, Han Chul; Kim, Se-Yong; Kim, Jong Yeol; Lee, Seung Hwan

    2013-07-01

    Since the Korean criminal DNA database was launched in 2010, we have focused on establishing an automated DNA database profiling system that analyzes short tandem repeat loci in a high-throughput and cost-effective manner. We established a DNA database profiling system without DNA purification using a direct PCR buffer system. The quality of direct PCR procedures was compared with that of conventional PCR system under their respective optimized conditions. The results revealed not only perfect concordance but also an excellent PCR success rate, good electropherogram quality, and an optimal intra/inter-loci peak height ratio. In particular, the proportion of DNA extraction required due to direct PCR failure could be minimized to <3%. In conclusion, the newly developed direct PCR system can be adopted for automated DNA database profiling systems to replace or supplement conventional PCR system in a time- and cost-saving manner. © 2013 American Academy of Forensic Sciences Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.

  19. Reaction of soda-lime-silica glass melt with water vapour at melting temperatures

    Czech Academy of Sciences Publication Activity Database

    Vernerová, Miroslava; Kloužek, Jaroslav; Němec, Lubomír

    2015-01-01

    Roč. 416, MAY 15 (2015), s. 21-30 ISSN 0022-3093 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melt * sulfate * water vapour * bubble nucleation * melt foaming * glass melting Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  20. High-pressure melting curve of KCl: Evidence against lattice-instability theories of melting

    International Nuclear Information System (INIS)

    Ross, M.; Wolf, G.

    1986-01-01

    We show that the large curvature in the T-P melting curve of KCl is the result of a reordering of the liquid to a more densely packed arrangement. As a result theories of melting, such as the instability model, which do not take into account the structure of the liquid fail to predict the correct pressure dependence of the melting curve

  1. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole.

    Science.gov (United States)

    Hengsawas Surasarang, Soraya; Keen, Justin M; Huang, Siyuan; Zhang, Feng; McGinity, James W; Williams, Robert O

    2017-05-01

    The purpose of this study was to enhance the dissolution properties of albendazole (ABZ) by the use of amorphous solid dispersions. Phase diagrams of ABZ-polymer binary mixtures generated from Flory-Huggins theory were used to assess miscibility and processability. Forced degradation studies showed that ABZ degraded upon exposure to hydrogen peroxide and 1 N NaOH at 80 °C for 5 min, and the degradants were albendazole sulfoxide (ABZSX), and ABZ impurity A, respectively. ABZ was chemically stable following exposure to 1 N HCl at 80 °C for one hour. Thermal degradation profiles show that ABZ, with and without Kollidon ® VA 64, degraded at 180 °C and 140 °C, respectively, which indicated that ABZ could likely be processed by thermal processing. Following hot melt extrusion, ABZ degraded up to 97.4%, while the amorphous ABZ solid dispersion was successfully prepared by spray drying. Spray-dried ABZ formulations using various types of acids (methanesulfonic acid, sulfuric acid and hydrochloric acid) and polymers (Kollidon ® VA 64, Soluplus ® and Eudragit ® E PO) were studied. The spray-dried ABZ with methanesulfonic acid and Kollidon ® VA 64 substantially improved non-sink dissolution in acidic media as compared to bulk ABZ (8-fold), physical mixture of ABZ:Kollidon ® VA 64 (5.6-fold) and ABZ mesylate salt (1.6-fold). No degradation was observed in the spray-dried product for up to six months and less than 5% after one-year storage. In conclusion, amorphous ABZ solid dispersions in combination with an acid and polymer can be prepared by spray drying to enhance dissolution and shelf-stability, whereas those made by melt extrusion are degraded.

  2. STICK AND SLIP BEHAVIOR OF CONFINED OLIGOMER MELTS UNDER SHEAR - A MOLECULAR-DYNAMICS STUDY

    NARCIS (Netherlands)

    MANIAS, E; HADZIIOANNOU, G; BITSANIS, [No Value; TENBRINKE, G

    1993-01-01

    The flow behaviour of melts of short chains, confined in molecularly thin Couette flow geometries, is studied with molecular-dynamics simulations. The effect of wall attraction and confinement on the density and velocity profiles is analysed. In these highly inhomogeneous films, a strong correlation

  3. Water jet intrusion into hot melt concomitant with direct-contact boiling of water

    Energy Technology Data Exchange (ETDEWEB)

    Sibamoto, Yasuteru [Japan Atomic Energy Research Inst., Tokai Research Establishment, Tokai, Ibaraki (Japan)

    2005-08-01

    Boiling of water poured on surface of high-temperature melt (molten metal or metal oxide) provides an efficient means for heat exchange or cooling of melt. The heat transfer surface area can be extended by forcing water into melt. Objectives of the present study are to elucidate key factors of the thermal and hydrodynamic interactions for the water jet injection into melt (Coolant Injection mode). Proposed applications include in in-vessel heat exchangers for liquid metal reactor and emergency measures for cooling of molten core debris in severe accidents of light water reactor. Water penetration into melt may occurs also as a result of fuel-coolant interaction (FCI) in modes other than CI, it is anticipated that the present study contributes to understand the fundamental mechanism of the FCI process. The previous works have been limited on understanding the melt-water interaction phenomena in the water-injection mode because of difficulty in experimental measurement where boiling occurs in opaque invisible hot melt unlike the melt-injection mode. We conducted visualization and measurement of melt-water-vapor multiphase flow phenomena by using a high-frame-rate neutron radiography technique and newly-developed probes. Although limited knowledge, however, has been gained even such an approach, the experimental data were analyzed deeply by comparing with the knowledge obtained from relevant matters. As a result, we succeeded in revealing several key phenomena and validity in the conditions under which stable heat transfer is established. Moreover, a non-intrusive technique for measurement of the velocity and pressure fields adjacent to a moving free surface is developed. The technique is based on the measurement of fluid surface profile, which is useful for elucidation of flow mechanism accompanied by a free surface like the present phenomena. (author)

  4. Permeability and 3-D melt geometry in shear-induced high melt fraction conduits

    Science.gov (United States)

    Zhu, W.; Cordonnier, B.; Qi, C.; Kohlstedt, D. L.

    2017-12-01

    Observations of dunite channels in ophiolites and uranium-series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. Formation of high melt fraction conduits could result from mechanical shear, pyroxene dissolution, and lithological partitioning. Deformation experiments (e.g. Holtzman et al., 2003) demonstrate that shear stress causes initially homogeneously distributed melt to segregate into an array of melt-rich bands, flanked by melt-depleted regions. At the same average melt fraction, the permeability of high melt fraction conduits could be orders of magnitude higher than that of their homogenous counterparts. However, it is difficult to determine the permeability of melt-rich bands. Using X-ray synchrotron microtomography, we obtained high-resolution images of 3-dimensional (3-D) melt distribution in a partially molten rock containing shear-induced high melt fraction conduits. Sample CQ0705, an olivine-alkali basalt aggregate with a nominal melt fraction of 4%, was deformed in torsion at a temperature of 1473 K and a confining pressure of 300 MPa to a shear strain of 13.3. A sub-volume of CQ0705 encompassing 3-4 melt-rich bands was imaged. Microtomography data were reduced to binary form so that solid olivine is distinguishable from basalt glass. At a spatial resolution of 160 nm, the 3-D images reveal the shape and connectedness of melt pockets in the melt-rich bands. Thin melt channels formed at grain edges are connected at large melt nodes at grain corners. Initial data analysis shows a clear preferred orientation of melt pockets alignment subparallel to the melt-rich band. We use the experimentally determined geometrical parameters of melt topology to create a digital rock with identical 3-D microstructures. Stokes flow simulations are conducted on the digital rock to obtain the permeability tensor. Using this digital rock physics approach, we determine how deformation

  5. Introduction on Using the FastPCR Software and the Related Java Web Tools for PCR and Oligonucleotide Assembly and Analysis.

    Science.gov (United States)

    Kalendar, Ruslan; Tselykh, Timofey V; Khassenov, Bekbolat; Ramanculov, Erlan M

    2017-01-01

    This chapter introduces the FastPCR software as an integrated tool environment for PCR primer and probe design, which predicts properties of oligonucleotides based on experimental studies of the PCR efficiency. The software provides comprehensive facilities for designing primers for most PCR applications and their combinations. These include the standard PCR as well as the multiplex, long-distance, inverse, real-time, group-specific, unique, overlap extension PCR for multi-fragments assembling cloning and loop-mediated isothermal amplification (LAMP). It also contains a built-in program to design oligonucleotide sets both for long sequence assembly by ligase chain reaction and for design of amplicons that tile across a region(s) of interest. The software calculates the melting temperature for the standard and degenerate oligonucleotides including locked nucleic acid (LNA) and other modifications. It also provides analyses for a set of primers with the prediction of oligonucleotide properties, dimer and G/C-quadruplex detection, linguistic complexity as well as a primer dilution and resuspension calculator. The program consists of various bioinformatical tools for analysis of sequences with the GC or AT skew, CG% and GA% content, and the purine-pyrimidine skew. It also analyzes the linguistic sequence complexity and performs generation of random DNA sequence as well as restriction endonucleases analysis. The program allows to find or create restriction enzyme recognition sites for coding sequences and supports the clustering of sequences. It performs efficient and complete detection of various repeat types with visual display. The FastPCR software allows the sequence file batch processing that is essential for automation. The program is available for download at http://primerdigital.com/fastpcr.html , and its online version is located at http://primerdigital.com/tools/pcr.html .

  6. Recent Changes in the Arctic Melt Season

    Science.gov (United States)

    Stroeve, Julienne; Markus, Thorsten; Meier, Walter N.; Miller, Jeff

    2007-01-01

    Melt-season duration, melt-onset and freeze-up dates are derived from satellite passive microwave data and analyzed from 1979 to 2005 over Arctic sea ice. Results indicate a shift towards a longer melt season, particularly north of Alaska and Siberia, corresponding to large retreats of sea ice observed in these regions. Although there is large interannual and regional variability in the length of the melt season, the Arctic is experiencing an overall lengthening of the melt season at a rate of about 2 weeks decade(sup -1). In fact, all regions in the Arctic (except for the central Arctic) have statistically significant (at the 99% level or higher) longer melt seasons by greater than 1 week decade(sup -1). The central Arctic shows a statistically significant trend (at the 98% level) of 5.4 days decade(sup -1). In 2005 the Arctic experienced its longest melt season, corresponding with the least amount of sea ice since 1979 and the warmest temperatures since the 1880s. Overall, the length of the melt season is inversely correlated with the lack of sea ice seen in September north of Alaska and Siberia, with a mean correlation of -0.8.

  7. Niobium interaction with chloride-carbonate melts

    International Nuclear Information System (INIS)

    Kuznetsov, S.A.; Kuznetsova, S.V.

    1996-01-01

    Niobium interaction with chloride-carbonate melt NaCl-KCl-K 2 CO 3 (5 mass %) in the temperature range of 973-1123 K has been studied. The products and niobium corrosion rate have been ascertained, depending on the temperature of melt and time of allowance. Potentials of niobium corrosion have been measured. Refs. 11, figs. 3, tabs. 2

  8. Attenuation in Melting Layer of Precipitation

    NARCIS (Netherlands)

    Klaassen, W.

    1988-01-01

    A model of the melting layer is employed on radar measurements to simulate the attenuation of radio waves at 12, 20 and 30GHz. The attenuation in the melting layer is simulated to be slightly larger than that of rain with the same path length and precipitation intensity. The result appears to depend

  9. Multiscale approach to equilibrating model polymer melts

    DEFF Research Database (Denmark)

    Svaneborg, Carsten; Ali Karimi-Varzaneh, Hossein; Hojdis, Nils

    2016-01-01

    We present an effective and simple multiscale method for equilibrating Kremer Grest model polymer melts of varying stiffness. In our approach, we progressively equilibrate the melt structure above the tube scale, inside the tube and finally at the monomeric scale. We make use of models designed...

  10. Disordering and Melting of Aluminum Surfaces

    DEFF Research Database (Denmark)

    Stoltze, Per; Nørskov, Jens Kehlet; Landman, U.

    1988-01-01

    We report on a molecular-dynamics simulation of an Al(110) surface using the effective-medium theory to describe the interatomic interactions. The surface region is found to start melting ≅200 K below the bulk melting temperature with a gradual increase in the thickness of the disordered layer as...

  11. Methylation-Sensitive High Resolution Melting (MS-HRM).

    Science.gov (United States)

    Hussmann, Dianna; Hansen, Lise Lotte

    2018-01-01

    Methylation-Sensitive High Resolution Melting (MS-HRM) is an in-tube, PCR-based method to detect methylation levels at specific loci of interest. A unique primer design facilitates a high sensitivity of the assays enabling detection of down to 0.1-1% methylated alleles in an unmethylated background.Primers for MS-HRM assays are designed to be complementary to the methylated allele, and a specific annealing temperature enables these primers to anneal both to the methylated and the unmethylated alleles thereby increasing the sensitivity of the assays. Bisulfite treatment of the DNA prior to performing MS-HRM ensures a different base composition between methylated and unmethylated DNA, which is used to separate the resulting amplicons by high resolution melting.The high sensitivity of MS-HRM has proven useful for detecting cancer biomarkers in a noninvasive manner in urine from bladder cancer patients, in stool from colorectal cancer patients, and in buccal mucosa from breast cancer patients. MS-HRM is a fast method to diagnose imprinted diseases and to clinically validate results from whole-epigenome studies. The ability to detect few copies of methylated DNA makes MS-HRM a key player in the quest for establishing links between environmental exposure, epigenetic changes, and disease.

  12. Two-temperature PCR for Microfluidics

    KAUST Repository

    Kodzius, Rimantas

    2010-05-01

    Since its invention in 1983, polymerase chain reaction (PCR) has been the method of choice for DNA amplification. Successful PCR depends on the optimization of several parameters, which is a cumbersome task due to the many variables (conditions and compon

  13. Two-temperature PCR for Microfluidics

    KAUST Repository

    Kodzius, Rimantas; Chang, Donald Choy; Sheng, Ping; Wen, Weijia; Wu, Jinbo; Xiao, Kang; Yu, Vivian

    2010-01-01

    Since its invention in 1983, polymerase chain reaction (PCR) has been the method of choice for DNA amplification. Successful PCR depends on the optimization of several parameters, which is a cumbersome task due to the many variables (conditions and compon

  14. Shape evolution of a melting nonspherical particle

    Science.gov (United States)

    Kintea, Daniel M.; Hauk, Tobias; Roisman, Ilia V.; Tropea, Cameron

    2015-09-01

    In this study melting of irregular ice crystals was observed in an acoustic levitator. The evolution of the particle shape is captured using a high-speed video system. Several typical phenomena have been discovered: change of the particle shape, appearance of a capillary flow of the melted liquid on the particle surface leading to liquid collection at the particle midsection (where the interface curvature is smallest), and appearance of sharp cusps at the particle tips. No such phenomena can be observed during melting of spherical particles. An approximate theoretical model is developed which accounts for the main physical phenomena associated with melting of an irregular particle. The agreement between the theoretical predictions for the melting time, for the evolution of the particle shape, and the corresponding experimental data is rather good.

  15. Nanotexturing of surfaces to reduce melting point.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Ernest J.; Zubia, David (University of Texas at El Paso El Paso, TX); Mireles, Jose (Universidad Aut%C3%94onoma de Ciudad Ju%C3%94arez Ciudad Ju%C3%94arez, Mexico); Marquez, Noel (University of Texas at El Paso El Paso, TX); Quinones, Stella (University of Texas at El Paso El Paso, TX)

    2011-11-01

    This investigation examined the use of nano-patterned structures on Silicon-on-Insulator (SOI) material to reduce the bulk material melting point (1414 C). It has been found that sharp-tipped and other similar structures have a propensity to move to the lower energy states of spherical structures and as a result exhibit lower melting points than the bulk material. Such a reduction of the melting point would offer a number of interesting opportunities for bonding in microsystems packaging applications. Nano patterning process capabilities were developed to create the required structures for the investigation. One of the technical challenges of the project was understanding and creating the specialized conditions required to observe the melting and reshaping phenomena. Through systematic experimentation and review of the literature these conditions were determined and used to conduct phase change experiments. Melting temperatures as low as 1030 C were observed.

  16. Melting Can Hinder Impact-Induced Adhesion

    Science.gov (United States)

    Hassani-Gangaraj, Mostafa; Veysset, David; Nelson, Keith A.; Schuh, Christopher A.

    2017-10-01

    Melting has long been used to join metallic materials, from welding to selective laser melting in additive manufacturing. In the same school of thought, localized melting has been generally perceived as an advantage, if not the main mechanism, for the adhesion of metallic microparticles to substrates during a supersonic impact. Here, we conduct the first in situ supersonic impact observations of individual metallic microparticles aimed at the explicit study of melting effects. Counterintuitively, we find that under at least some conditions melting is disadvantageous and hinders impact-induced adhesion. In the parameter space explored, i.e., ˜10 μ m particle size and ˜1 km /s particle velocity, we argue that the solidification time is much longer than the residence time of the particle on the substrate, so that resolidification cannot be a significant factor in adhesion.

  17. Modeling the summertime evolution of sea-ice melt ponds

    DEFF Research Database (Denmark)

    Lüthje, Mikael; Feltham, D.L.; Taylor, P.D.

    2006-01-01

    We present a mathematical model describing the summer melting of sea ice. We simulate the evolution of melt ponds and determine area coverage and total surface ablation. The model predictions are tested for sensitivity to the melt rate of unponded ice, enhanced melt rate beneath the melt ponds...

  18. Pathogen Causing Disease of Diagnosis PCR Tecnology

    OpenAIRE

    SEVİNDİK, Emre; KIR, A. Çağrı; BAŞKEMER, Kadir; UZUN, Veysel

    2013-01-01

    Polimerase chain reaction (PCR) with which, the development of recombinant DNA tecnology, a technique commonly used in field of moleculer biology and genetic. Duplication of the target DNA is provided with this technique without the need for cloning. Some fungus species, bacteria, viruses constitutent an important group of pathogenicity in human, animals and plants. There are routinely applied types of PCR in the detection of pathogens infections diseases. These Nested- PCR, Real- Time PCR, M...

  19. Volatile diffusion in silicate melts and its effects on melt inclusions

    Directory of Open Access Journals (Sweden)

    P. Scarlato

    2005-06-01

    Full Text Available A compendium of diffusion measurements and their Arrhenius equations for water, carbon dioxide, sulfur, fluorine, and chlorine in silicate melts similar in composition to natural igneous rocks is presented. Water diffusion in silicic melts is well studied and understood, however little data exists for melts of intermediate to basic compositions. The data demonstrate that both the water concentration and the anhydrous melt composition affect the diffusion coefficient of water. Carbon dioxide diffusion appears only weakly dependent, at most, on the volatilefree melt composition and no effect of carbon dioxide concentration has been observed, although few experiments have been performed. Based upon one study, the addition of water to rhyolitic melts increases carbon dioxide diffusion by orders of magnitude to values similar to that of 6 wt% water. Sulfur diffusion in intermediate to silicic melts depends upon the anhydrous melt composition and the water concentration. In water-bearing silicic melts sulfur diffuses 2 to 3 orders of magnitude slower than water. Chlorine diffusion is affected by both water concentration and anhydrous melt composition; its values are typically between those of water and sulfur. Information on fluorine diffusion is rare, but the volatile-free melt composition exerts a strong control on its diffusion. At the present time the diffusion of water, carbon dioxide, sulfur and chlorine can be estimated in silicic melts at magmatic temperatures. The diffusion of water and carbon dioxide in basic to intermediate melts is only known at a limited set of temperatures and compositions. The diffusion data for rhyolitic melts at 800°C together with a standard model for the enrichment of incompatible elements in front of growing crystals demonstrate that rapid crystal growth, greater than 10-10 ms-1, can significantly increase the volatile concentrations at the crystal-melt interface and that any of that melt trapped

  20. Principles and technical aspects of PCR amplification

    National Research Council Canada - National Science Library

    Pelt-Verkuil, Elizabeth van; Belkum, Alex van; Hays, John P

    2008-01-01

    ... to illustrate any particularly important concepts or comments. Indeed, all commercial PCR biotechnology companies offer information about their products on internet sites and in online technical manuals. These online resources will be invaluable for any readers requiring more detailed PCR protocols. The authors have provided references for many PCR co...

  1. The PCR revolution: basic technologies and applications

    National Research Council Canada - National Science Library

    Bustin, Stephen A

    2010-01-01

    ... by leading authorities on the many applications of PCR and how this technology has revolutionized their respective areas of interest. This book conveys the ways in which PCR has overcome many obstacles in life science and clinical research and also charts the PCR's development from time-consuming, low throughput, nonquantitative proced...

  2. Experimental results for TiO2 melting and release using cold crucible melting

    International Nuclear Information System (INIS)

    Hong, S. W.; Min, B. T.; Park, I. G.; Kim, H. D.

    2000-01-01

    To simulate the severe accident phenomena using the real reactor material which melting point is about 2,800K, the melting and release method for materials with high melting point should be developed. This paper discusses the test results for TiO 2 materials using the cold crucible melting method to study the melting and release method of actual corium. To melt and release of few kg of TiO2, the experimental facility is manufactured through proper selection of design parameters such as frequency and capacity of R.F generator, crucible size and capacity of coolant. The melting and release of TiO 2 has been successfully performed in the cold crucible of 15cm in inner diameter and 30cm in height with 30kW RF power generator of 370 KHz. In the melt delivery experiment, about 2.6kg of molten TiO2, 60% of initial charged mass, is released. Rest of it is remained in the watercage in form of the rubble crust formed at the top of crucible and melt crust formed at the interface between the water-cage and melt. Especially, in the melt release test, the location of the working coil is important to make the thin crust at the bottom of the crucible

  3. Endmembers of Ice Shelf Melt

    Science.gov (United States)

    Boghosian, A.; Child, S. F.; Kingslake, J.; Tedesco, M.; Bell, R. E.; Alexandrov, O.; McMichael, S.

    2017-12-01

    Studies of surface melt on ice shelves have defined a spectrum of meltwater behavior. On one end the storage of meltwater in persistent surface ponds can trigger ice shelf collapse as in the 2002 event leading to the disintegration of the Larsen B Ice Shelf. On the other, meltwater export by rivers can stabilize an ice shelf as was recently shown on the Nansen Ice Shelf. We explore this dichotomy by quantifying the partitioning between stored and transported water on two glaciers adjacent to floating ice shelves, Nimrod (Antarctica) and Peterman (Greenland). We analyze optical satellite imagery (LANDSAT, WorldView), airborne imagery (Operation IceBridge, Trimetrogon Aerial Phototography), satellite radar (Sentinel-1), and digital elevation models (DEMs) to categorize surface meltwater fate and map the evolution of ice shelf hydrology and topographic features through time. On the floating Peterman Glacier tongue a sizable river exports water to the ocean. The surface hydrology of Nimrod Glacier, geometrically similar to Peterman but with ten times shallower surface slope, is dominated by storage in surface lakes. In contrast, the Nansen has the same surface slope as Nimrod but transports water through surface rivers. Slope alone is not the sole control on ice shelf hydrology. It is essential to track the storage and transport volumes for each of these systems. To estimate water storage and transport we analyze high resolution (40 cm - 2 m) modern and historical DEMs. We produce historical (1957 onwards) DEMs with structure-from-motion photogrammetry. The DEMs are used to constrain water storage potential estimates of observed basins and water routing/transport potential. We quantify the total volume of water stored seasonally and interannually. We use the normalize difference water index to map meltwater extent, and estimate lake water depth from optical data. We also consider the role of stored water in subsurface aquifers in recharging surface water after

  4. Improved quantification accuracy for duplex real-time PCR detection of genetically modified soybean and maize in heat processed foods

    Directory of Open Access Journals (Sweden)

    CHENG Fang

    2013-04-01

    Full Text Available Real-time PCR technique has been widely used in quantitative GMO detection in recent years.The accuracy of GMOs quantification based on the real-time PCR methods is still a difficult problem,especially for the quantification of high processed samples.To develop the suitable and accurate real-time PCR system for high processed GM samples,we made ameliorations to several real-time PCR parameters,including re-designed shorter target DNA fragment,similar lengths of amplified endogenous and exogenous gene targets,similar GC contents and melting temperatures of PCR primers and TaqMan probes.Also,one Heat-Treatment Processing Model (HTPM was established using soybean flour samples containing GM soybean GTS 40-3-2 to validate the effectiveness of the improved real-time PCR system.Tested results showed that the quantitative bias of GM content in heat processed samples were lowered using the new PCR system.The improved duplex real-time PCR was further validated using processed foods derived from GM soybean,and more accurate GM content values in these foods was also achieved.These results demonstrated that the improved duplex real-time PCR would be quite suitable in quantitative detection of high processed food products.

  5. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ, Seoul (Korea, Republic of)

    2015-10-15

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  6. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    International Nuclear Information System (INIS)

    Heo, Hyo; Bang, In Cheol; Jerng, Dong Wook

    2015-01-01

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  7. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana

    2013-10-15

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  8. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana; Vasilakopoulos, Thodoris C.; Jeong, Youncheol; Lee, Hyojoon; Rogers, Simon A.; Sakellariou, Georgios; Allgaier, Jü rgen B.; Takano, Atsushi; Brá s, Ana Rita E; Chang, Taihyun; Gooß en, Sebastian; Pyckhout-Hintzen, Wim; Wischnewski, Andreas; Hadjichristidis, Nikolaos; Richter, Dieter R.; Rubinstein, Michael H.; Vlassopoulos, Dimitris

    2013-01-01

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  9. Dynamics of Melting and Melt Migration as Inferred from Incompatible Trace Element Abundance in Abyssal Peridotites

    Science.gov (United States)

    Peng, Q.; Liang, Y.

    2008-12-01

    To better understand the melting processes beneath the mid-ocean ridge, we developed a simple model for trace element fractionation during concurrent melting and melt migration in an upwelling steady-state mantle column. Based on petrologic considerations, we divided the upwelling mantle into two regions: a double- lithology upper region where high permeability dunite channels are embedded in a lherzolite/harzburgite matrix, and a single-lithology lower region that consists of partially molten lherzolite. Melt generated in the single lithology region migrates upward through grain-scale diffuse porous flow, whereas melt in the lherzolite/harzburgite matrix in the double-lithology region is allowed to flow both vertically through the overlying matrix and horizontally into its neighboring dunite channels. There are three key dynamic parameters in our model: degree of melting experienced by the single lithology column (Fd), degree of melting experienced by the double lithology column (F), and a dimensionless melt suction rate (R) that measures the accumulated rate of melt extraction from the matrix to the channel relative to the accumulated rate of matrix melting. In terms of trace element fractionation, upwelling and melting in the single lithology column is equivalent to non-modal batch melting (R = 0), whereas melting and melt migration in the double lithology region is equivalent to a nonlinear combination of non-modal batch and fractional melting (0 abyssal peridotite, we showed, with the help of Monte Carlo simulations, that it is difficult to invert for all three dynamic parameters from a set of incompatible trace element data with confidence. However, given Fd, it is quite possible to constrain F and R from incompatible trace element abundances in residual peridotite. As an illustrative example, we used the simple melting model developed in this study and selected REE and Y abundance in diopside from abyssal peridotites to infer their melting and melt migration

  10. Detection of adenoviruses in shellfish by means of conventional-PCR, nested-PCR, and integrated cell culture PCR (ICC/PCR).

    Science.gov (United States)

    Rigotto, C; Sincero, T C M; Simões, C M O; Barardi, C R M

    2005-01-01

    We tested three PCR based methodologies to detect adenoviruses associated with cultivated oysters. Conventional-PCR, nested-PCR, and integrated cell culture-PCR (ICC/PCR) were first optimized using oysters seeded with know amounts of Adenovirus serotype 5 (Ad5). The maximum sensitivity for Ad5 detection was determined for each method, and then used to detect natural adenovirus contamination in oysters from three aquiculture farms in Florianopolis, Santa Catarina State, Brazil, over a period of 6 months. The results showed that the nested-PCR was more sensitive (limit of detection: 1.2 PFU/g of tissue) than conventional-PCR and ICC-PCR (limit of detection for both: 1.2 x 10(2)PFU/g of tissue) for detection of Ad5 in oyster extracts. Nested-PCR was able to detect 90% of Ad5 contamination in harvested oyster samples, while conventional-PCR was unable to detect Ad5 in any of the samples. The present work suggests that detection of human adenoviruses can be used as a tool to monitor the presence of human viruses in marine environments where shellfish grow, and that nested-PCR is the method of choice.

  11. Amplification of nonspecific products in quantitative polymerase chain reactions (qPCR

    Directory of Open Access Journals (Sweden)

    Adrián Ruiz-Villalba

    2017-12-01

    Full Text Available Quantitative PCR allows the precise measurement of DNA concentrations and is generally considered to be straightforward and trouble free. However, a survey with 93 validated assays for genes in the Wnt-pathway showed that the amplification of nonspecific products occurs frequently and is unrelated to Cq or PCR efficiency values. Titration experiments showed that the occurrence of low and high melting temperature artifacts was shown to be determined by annealing temperature, primer concentration and cDNA input. To explore the range of input variations that occur in the normal use of the Cre assay these conditions were mimicked in a complete two-way design of template −plasmid DNA- and non-template −mouse cDNA- concentrations. These experiments showed that the frequency of the amplification of the correct product and the artifact, as well as the valid quantification of the correct product, depended on the concentration of the non-template cDNA. This finding questions the interpretation of dilution series in which template as well as non-template concentrations are simultaneously decreasing. Repetition of this cDNA concentration experiment with other templates revealed that exact reproduction qPCR experiments was affected by the time it takes to complete the pipetting of a qPCR plate. Long bench times were observed to lead to significantly more artifacts. However, the measurement of artifact-associated fluorescence can be avoided by inclusion of a small heating step after the elongation phase in the amplification protocol. Taken together, this trouble-shooting journey showed that reliability and reproducibility of qPCR experiments not only depends on standardization and reporting of the biochemistry and technical aspects but also on hitherto neglected factors as sample dilution and waiting times in the laboratory work flow. Keywords: RT-qPCR, Melting curve analysis, Reaction parameters, Artifacts

  12. Corium melt researches at VESTA test facility

    Directory of Open Access Journals (Sweden)

    Hwan Yeol Kim

    2017-10-01

    Full Text Available VESTA (Verification of Ex-vessel corium STAbilization and VESTA-S (-small test facilities were constructed at the Korea Atomic Energy Research Institute in 2010 to perform various corium melt experiments. Since then, several tests have been performed for the verification of an ex-vessel core catcher design for the EU-APR1400. Ablation tests of an impinging ZrO2 melt jet on a sacrificial material were performed to investigate the ablation characteristics. ZrO2 melt in an amount of 65–70 kg was discharged onto a sacrificial material through a well-designed nozzle, after which the ablation depths were measured. Interaction tests between the metallic melt and sacrificial material were performed to investigate the interaction kinetics of the sacrificial material. Two types of melt were used: one is a metallic corium melt with Fe 46%, U 31%, Zr 16%, and Cr 7% (maximum possible content of U and Zr for C-40, and the other is a stainless steel (SUS304 melt. Metallic melt in an amount of 1.5–2.0 kg was delivered onto the sacrificial material, and the ablation depths were measured. Penetration tube failure tests were performed for an APR1400 equipped with 61 in-core instrumentation penetration nozzles and extended tubes at the reactor lower vessel. ZrO2 melt was generated in a melting crucible and delivered down into an interaction crucible where the test specimen is installed. To evaluate the tube ejection mechanism, temperature distributions of the reactor bottom head and in-core instrumentation penetration were measured by a series of thermocouples embedded along the specimen. In addition, lower vessel failure tests for the Fukushima Daiichi nuclear power plant are being performed. As a first step, the configuration of the molten core in the plant was investigated by a melting and solidification experiment. Approximately 5 kg of a mixture, whose composition in terms of weight is UO2 60%, Zr 10%, ZrO2 15%, SUS304 14%, and B4C 1%, was melted in a

  13. Melting technique for vanadium containing steels

    Energy Technology Data Exchange (ETDEWEB)

    Grishanov, M P; Gutovskij, I B; Vakhrushev, A S

    1980-04-28

    To descrease cost price of high-quality vanadium steels a method of their melting in open-hearth furnaces with acid lining using slag-metal fraction of vanadium, which is loaded in the content of 2.1-4.7% of melting mass, is suggested. Introduction of slag-metal fraction of vanadium ensures the formation of slag with composition that guarantees the necessary content of vanadium in steel and does not require introduction of expensive vanadium-containing ferroalloys into the melt.

  14. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  15. Technological properties and structure of titanate melts

    International Nuclear Information System (INIS)

    Morozov, A.A.

    2002-01-01

    Power substantiation of existence of tough stream of complex anion ([TiO 6 ] 8- ) as a prevalent unit in titanate melts is given on the base of up-to-date knowledge about structure of metallurgical slags and results of investigations of thermophysical properties of these melts. It is shown that high crystallization ability of titanate melts at technological temperatures is determined by heterogeneity of liquid state - by presence up to 30 % of dispersed particles of solid phase solutions in matrix liquid [ru

  16. Bayesian estimation of core-melt probability

    International Nuclear Information System (INIS)

    Lewis, H.W.

    1984-01-01

    A very simple application of the canonical Bayesian algorithm is made to the problem of estimation of the probability of core melt in a commercial power reactor. An approximation to the results of the Rasmussen study on reactor safety is used as the prior distribution, and the observation that there has been no core melt yet is used as the single experiment. The result is a substantial decrease in the mean probability of core melt--factors of 2 to 4 for reasonable choices of parameters. The purpose is to illustrate the procedure, not to argue for the decrease

  17. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    and their diameter. The variation in melting temperature has little influence on the overall bubble volume. However, the size distribution of the bubbles varies with the melting temperature. When the melt is slowly cooled, the bubble volume increases, implying decreased solubility of the gaseous species. Mass...... spectroscopy analysis of gases liberated during heating of the glass reveals that small bubbles contain predominantly CH4, CO and CO2, whereas large bubbles bear N2, SO2 and H2S. The methodology utilised in this work can, besides mapping the bubbles in a glass, be applied to shed light on the sources of bubble...

  18. Production, pathways and budgets of melts in mid-ocean ridges: An enthalpy based thermo-mechanical model

    Science.gov (United States)

    Mandal, Nibir; Sarkar, Shamik; Baruah, Amiya; Dutta, Urmi

    2018-04-01

    Using an enthalpy based thermo-mechanical model we provide a theoretical evaluation of melt production beneath mid-ocean ridges (MORs), and demonstrate how the melts subsequently develop their pathways to sustain the major ridge processes. Our model employs a Darcy idealization of the two-phase (solid-melt) system, accounting enthalpy (ΔH) as a function of temperature dependent liquid fraction (ϕ). Random thermal perturbations imposed in this model set in local convection that drive melts to flow through porosity controlled pathways with a typical mushroom-like 3D structure. We present across- and along-MOR axis model profiles to show the mode of occurrence of melt-rich zones within mushy regions, connected to deeper sources by single or multiple feeders. The upwelling of melts experiences two synchronous processes: 1) solidification-accretion, and 2) eruption, retaining a large melt fraction in the framework of mantle dynamics. Using a bifurcation analysis we determine the threshold condition for melt eruption, and estimate the potential volumes of eruptible melts (∼3.7 × 106 m3/yr) and sub-crustal solidified masses (∼1-8.8 × 106 m3/yr) on an axis length of 500 km. The solidification process far dominates over the eruption process in the initial phase, but declines rapidly on a time scale (t) of 1 Myr. Consequently, the eruption rate takes over the solidification rate, but attains nearly a steady value as t > 1.5 Myr. We finally present a melt budget, where a maximum of ∼5% of the total upwelling melt volume is available for eruption, whereas ∼19% for deeper level solidification; the rest continue to participate in the sub-crustal processes.

  19. Technical aspects and recommendations for single-cell qPCR.

    Science.gov (United States)

    Ståhlberg, Anders; Kubista, Mikael

    2018-02-01

    Single cells are basic physiological and biological units that can function individually as well as in groups in tissues and organs. It is central to identify, characterize and profile single cells at molecular level to be able to distinguish different kinds, to understand their functions and determine how they interact with each other. During the last decade several technologies for single-cell profiling have been developed and used in various applications, revealing many novel findings. Quantitative PCR (qPCR) is one of the most developed methods for single-cell profiling that can be used to interrogate several analytes, including DNA, RNA and protein. Single-cell qPCR has the potential to become routine methodology but the technique is still challenging, as it involves several experimental steps and few molecules are handled. Here, we discuss technical aspects and provide recommendation for single-cell qPCR analysis. The workflow includes experimental design, sample preparation, single-cell collection, direct lysis, reverse transcription, preamplification, qPCR and data analysis. Detailed reporting and sharing of experimental details and data will promote further development and make validation studies possible. Efforts aiming to standardize single-cell qPCR open up means to move single-cell analysis from specialized research settings to standard research laboratories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Suitability of PCR fingerprinting, infrequent-restriction-site PCR, and pulsed-field gel electrophoresis, combined with computerized gel analysis, in library typing of Salmonella enterica serovar enteritidis

    DEFF Research Database (Denmark)

    Garaizar, J.; Lopez-Molina, N.; Laconcha, I.

    2000-01-01

    Strains of Salmonella enterica (n = 212) of different serovars and phage types were used to establish a library typing computerized system for serovar Enteritidis on the basis of PCR fingerprinting, infrequent-restriction-site PCR (IRS-PCR), or pulsed-field gel electrophoresis (PFGE). The rate...... showed an intercenter reproducibility value of 93.3%. The high reproducibility of PFGE combined with the previously determined high discrimination directed its use for library typing. The use of PFGE with enzymes XbaI, BlnI, and SpeI for library typing of serovar Enteritidis was assessed with GelCompar 4.......0 software, Three computer libraries of PFGE DNA profiles were constructed, and their ability to recognize new DNA profiles was analyzed. The results obtained pointed out that the combination of PFGE with computerized analysis could be suitable in long-term epidemiological comparison and surveillance...

  1. The PCR-GLOBWB global hydrological reanalysis product

    Science.gov (United States)

    Wanders, Niko; Bierkens, Marc; Sutanudjaja, Edwin; van Beek, Rens

    2014-05-01

    Accurate and long time series of hydrological data are important for understanding land surface water and energy budgets in many parts of the world, as well as for improving real-time hydrological monitoring and climate change anticipation. The ultimate goal of the present work is to produce a multi-decadal "land surface hydrological reanalysis" dataset with retrospective and updated hydrological states and fluxes that are constrained to available in-situ river discharge measurements. Here we use PCR-GLOBWB (van Beek et al., 2011), which is a large-scale hydrological model intended for global to regional studies. PCR-GLOBWB provides a grid-based representation of terrestrial hydrology with a typical spatial resolution of approximately 50×50 km (currently 0.5° globally) on a daily basis. For each grid cell, PCR-GLOBWB simulates moisture storage in two vertically stacked soil layers as well as the water exchange between the soil and the atmosphere and the underlying groundwater reservoir. Exchange to the atmosphere comprises precipitation, evaporation and transpiration, as well as snow accumulation and melt, which are all simulated by considering vegetation phenology and sub-grid variations of elevation, land cover and soil saturation distribution. The model includes improved schemes for runoff-infiltration partitioning, interflow, groundwater recharge and baseflow, as well as river routing of discharge. It also dynamically simulates water storage in reservoirs, water demand and the withdrawal, allocation and consumptive use of surface water and groundwater resources. By embedding the PCR-GLOBWB model in an Ensemble Kalman Filter framework, we calibrate the model parameters based on the discharge observations from the Global Runoff Data Centre. The parameters calibrated are related to snow accumulation and melt, runoff-infiltration partitioning, groundwater recharge, channel discharge and baseflow processes, as well as pre-factors to correct forcing precipitation

  2. Cloud screening and melt water detection over melting sea ice using AATSR/SLSTR

    Science.gov (United States)

    Istomina, Larysa; Heygster, Georg

    2014-05-01

    With the onset of melt in the Arctic Ocean, the fraction of melt water on sea ice, the melt pond fraction, increases. The consequences are: the reduced albedo of sea ice, increased transmittance of sea ice and affected heat balance of the system with more heat passing through the ice into the ocean, which facilitates further melting. The onset of melt, duration of melt season and melt pond fraction are good indicators of the climate state of the Arctic and its change. In the absence of reliable sea ice thickness retrievals in summer, melt pond fraction retrieval from satellite is in demand as input for GCM as an indicator of melt state of the sea ice. The retrieval of melt pond fraction with a moderate resolution radiometer as AATSR is, however, a non-trivial task due to a variety of subpixel surface types with very different optical properties, which give non-unique combinations if mixed. In this work this has been solved by employing additional information on the surface and air temperature of the pixel. In the current work, a concept of melt pond detection on sea ice is presented. The basis of the retrieval is the sensitivity of AATSR reflectance channels 550nm and 860nm to the amount of melt water on sea ice. The retrieval features extensive usage of a database of in situ surface albedo spectra. A tree of decisions is employed to select the feasible family of in situ spectra for the retrieval, depending on the melt stage of the surface. Reanalysis air temperature at the surface and brightness temperature measured by the satellite sensor are analyzed in order to evaluate the melting status of the surface. Case studies for FYI and MYI show plausible retrieved melt pond fractions, characteristic for both of the ice types. The developed retrieval can be used to process the historical AATSR (2002-2012) dataset, as well as for the SLSTR sensor onboard the future Sentinel-3 mission (scheduled for launch in 2015), to keep the continuity and obtain longer time sequence

  3. Electron beam melting of bearing materials

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmied, G.; Schuler, A. (Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Elektrotechnik); Elsinger, G.; Koroschetz, F. (MIBA Gleitlager AG, Laakirchen (Austria)); Tschegg, E.K. (Technische Univ., Vienna (Austria). Inst. fuer Angewandte und Technische Physik)

    1990-06-01

    This paper reports on a surface treatment method for the bearing materials AlSn6 which permits the use of this material without the overlay usually required. Microstructural refinement is achieved by means of a surface melting technique using an electron beam with successive rapid solidification. Extremely fine tin precipitates are formed in the melted surface layer which lead to significantly better tribological properties of the bearing material. Tests compared the tribological properties for AlSn6 bearings treated by the surface melting technique with those of untreated bearings. Whereas all untreated bearings failed by seizure after only 2 h of testing, 30% of the tested bearings which had been surface melted survived the entire testing program without damage.

  4. Extraction of scandium by organic substance melts

    International Nuclear Information System (INIS)

    Gladyshev, V.P.; Lobanov, F.I.; Zebreva, A.I.; Andreeva, N.N.; Manuilova, O.A.; Il'yukevich, Yu.A.

    1984-01-01

    Regularities of scandium extraction by the melts of octadecanicoic acid, n-carbonic acids of C 17 -C 20 commerical fraction and mixtures of tributylphosphate (TBP) with paraffin at (70+-1) deg C have been studied. The optimum conditions for scandium extraction in the melt of organic substances are determined. A scheme of the extraction by the melts of higher carbonic acids at ninitial metal concentrations of 10 -5 to 10 -3 mol/l has been suggested. The scandium compound has been isolated in solid form, its composition having been determined. The main advantages of extraction by melts are as follows: a possibility to attain high distribution coefficients, distinct separation of phases after extraction, the absence of emulsions, elimination of employing inflammable and toxic solvents, a possibility of rapid X-ray fluorescence determinatinon of scandium directly in solid extract

  5. Vertical melting of a stack of membranes

    Science.gov (United States)

    Borelli, M. E. S.; Kleinert, H.; Schakel, A. M. J.

    2001-02-01

    A stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is studied. At low temperatures, the system forms a lamellar phase. At a critical temperature, the stack disorders vertically in a melting-like transition.

  6. Selective Laser Ablation and Melting, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project Advratech will develop a new additive manufacturing (AM) process called Selective Laser Ablation and Melting (SLAM). The key innovation in this...

  7. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Principal Investigator Kent Peaslee; Co-PI’s: Von Richards, Jeffrey Smith

    2012-07-31

    Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

  8. Basal melting driven by turbulent thermal convection

    Science.gov (United States)

    Rabbanipour Esfahani, Babak; Hirata, Silvia C.; Berti, Stefano; Calzavarini, Enrico

    2018-05-01

    Melting and, conversely, solidification processes in the presence of convection are key to many geophysical problems. An essential question related to these phenomena concerns the estimation of the (time-evolving) melting rate, which is tightly connected to the turbulent convective dynamics in the bulk of the melt fluid and the heat transfer at the liquid-solid interface. In this work, we consider a convective-melting model, constructed as a generalization of the Rayleigh-Bénard system, accounting for the basal melting of a solid. As the change of phase proceeds, a fluid layer grows at the heated bottom of the system and eventually reaches a turbulent convection state. By means of extensive lattice-Boltzmann numerical simulations employing an enthalpy formulation of the governing equations, we explore the model dynamics in two- and three-dimensional configurations. The focus of the analysis is on the scaling of global quantities like the heat flux and the kinetic energy with the Rayleigh number, as well as on the interface morphology and the effects of space dimensionality. Independently of dimensionality, we find that the convective-melting system behavior shares strong resemblances with that of the Rayleigh-Bénard one, and that the heat flux is only weakly enhanced with respect to that case. Such similarities are understood, at least to some extent, considering the resulting slow motion of the melting front (with respect to the turbulent fluid velocity fluctuations) and its generally little roughness (compared to the height of the fluid layer). Varying the Stefan number, accounting for the thermodynamical properties of the material, also seems to have only a mild effect, which implies the possibility of extrapolating results in numerically delicate low-Stefan setups from more convenient high-Stefan ones. Finally, we discuss the implications of our findings for the geophysically relevant problem of modeling Arctic ice melt ponds.

  9. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational...... viscosity, of up to a factor of 7 times the Trouton limit of 3 times the zero-shear viscosity....

  10. Vacancies in quantal Wigner crystals near melting

    International Nuclear Information System (INIS)

    Barraza, N.; Colletti, L.; Tosi, M.P.

    1999-04-01

    We estimate the formation energy of lattice vacancies in quantal Wigner crystals of charged particles near their melting point at zero temperature, in terms of the crystalline Lindemann parameter and of the static dielectric function of the fluid phase near freezing. For both 3D and 2D crystals of electrons our results suggest the presence of vacancies in the ground state at the melting density. (author)

  11. Electrodepositions on Tantalum in Alkali Halide Melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2013-01-01

    Surface layers of tantalum metal were electrodeposited on steel from K2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO3 melts carbonate ions seems to be reduced to carbon in...

  12. Electrodepositions on Tantalum in alkali halide melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2012-01-01

    Surface layers of tantalum metal were electrodeposited on steel from K 2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO 3 melts carbonate ions seems to be reduced to carbon ...

  13. Depth and degree of melting of komatiites

    Science.gov (United States)

    Herzberg, Claude

    1992-04-01

    High pressure melting experiments have permitted new constraints to be placed on the depth and degree of partial melting of komatiites. Komatiites from Gorgona Island were formed by relatively low degrees of pseudoinvariant melting involving L + Ol + Opx + Cpx + Gt on the solidus at 40 kbar, about 130 km depth. Munro-type komatiites were separated from a harzburgite residue (L + Ol + Opx) at pressures that were poorly constrained, but were probably around 50 kbar, about 165 km depth; the degree of partial melting was less than 40 percent. Secular variations in the geochemistry of komatiites could have formed in response to a reduction in the temperature and pressure of melting with time. The 3.5 Ga Barberton komatiites and the 2.7 Ga Munro-type komatiities could have formed in plumes that were hotter than the present-day mantle by 500 deg and 300 deg, respectively. When excess temperatures are this size, melting is deeper and volcanism changes from basaltic to momatiitic. The komatiities from Gorgona Island, which are Mesozoic in age, may be representative of komatiities that are predicted to occur in oceanic plateaus of Cretaceous age throughout the Pacific (Storey et al., 1991).

  14. The melting and solidification of nanowires

    International Nuclear Information System (INIS)

    Florio, B. J.; Myers, T. G.

    2016-01-01

    A mathematical model is developed to describe the melting of nanowires. The first section of the paper deals with a standard theoretical situation, where the wire melts due to a fixed boundary temperature. This analysis allows us to compare with existing results for the phase change of nanospheres. The equivalent solidification problem is also examined. This shows that solidification is a faster process than melting; this is because the energy transfer occurs primarily through the solid rather than the liquid which is a poorer conductor of heat. This effect competes with the energy required to create new solid surface which acts to slow down the process, but overall conduction dominates. In the second section, we consider a more physically realistic boundary condition, where the phase change occurs due to a heat flux from surrounding material. This removes the singularity in initial melt velocity predicted in previous models of nanoparticle melting. It is shown that even with the highest possible flux the melting time is significantly slower than with a fixed boundary temperature condition.

  15. The melting and solidification of nanowires

    Science.gov (United States)

    Florio, B. J.; Myers, T. G.

    2016-06-01

    A mathematical model is developed to describe the melting of nanowires. The first section of the paper deals with a standard theoretical situation, where the wire melts due to a fixed boundary temperature. This analysis allows us to compare with existing results for the phase change of nanospheres. The equivalent solidification problem is also examined. This shows that solidification is a faster process than melting; this is because the energy transfer occurs primarily through the solid rather than the liquid which is a poorer conductor of heat. This effect competes with the energy required to create new solid surface which acts to slow down the process, but overall conduction dominates. In the second section, we consider a more physically realistic boundary condition, where the phase change occurs due to a heat flux from surrounding material. This removes the singularity in initial melt velocity predicted in previous models of nanoparticle melting. It is shown that even with the highest possible flux the melting time is significantly slower than with a fixed boundary temperature condition.

  16. The melting and solidification of nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Florio, B. J., E-mail: brendan.florio@ul.ie [University of Limerick, Mathematics Applications Consortium for Science and Industry (MACSI), Department of Mathematics and Statistics (Ireland); Myers, T. G., E-mail: tmyers@crm.cat [Centre de Recerca Matemàtica (Spain)

    2016-06-15

    A mathematical model is developed to describe the melting of nanowires. The first section of the paper deals with a standard theoretical situation, where the wire melts due to a fixed boundary temperature. This analysis allows us to compare with existing results for the phase change of nanospheres. The equivalent solidification problem is also examined. This shows that solidification is a faster process than melting; this is because the energy transfer occurs primarily through the solid rather than the liquid which is a poorer conductor of heat. This effect competes with the energy required to create new solid surface which acts to slow down the process, but overall conduction dominates. In the second section, we consider a more physically realistic boundary condition, where the phase change occurs due to a heat flux from surrounding material. This removes the singularity in initial melt velocity predicted in previous models of nanoparticle melting. It is shown that even with the highest possible flux the melting time is significantly slower than with a fixed boundary temperature condition.

  17. On melting criteria for complex plasma

    International Nuclear Information System (INIS)

    Klumov, Boris A

    2011-01-01

    The present paper considers melting criteria for a plasma crystal discovered in dust plasma in 1994. Separate discussions are devoted to three-dimensional (3D) and two-dimensional (2D) systems. In the 3D case, melting criteria are derived based on the properties of local order in a system of microparticles. The order parameters are constructed from the cumulative distributions of the microparticle probability distributions as functions of various rotational invariants. The melting criteria proposed are constructed using static information on microparticle positions: a few snapshots of the system that allow for the determination of particle coordinates are enough to determine the phase state of the system. It is shown that criteria obtained in this way describe well the melting and premelting of 3D complex plasmas. In 2D systems, a system of microparticles interacting via a screened Coulomb (i.e., Debye-Hueckel or Yukawa) potential is considered as an example, using molecular dynamics simulations. A number of new order parameters characterizing the melting of 2D complex plasmas are proposed. The order parameters and melting criteria proposed for 2D and 3D complex plasmas can be applied to other systems as well. (methodological notes)

  18. Rapakivi texture formation via disequilibrium melting in a contact partial melt zone, Antarctica

    Science.gov (United States)

    Currier, R. M.

    2017-12-01

    In the McMurdo Dry Valleys of Antarctica, a Jurassic aged dolerite sill induced partial melting of granite in the shallow crust. The melt zone can be traced in full, from high degrees of melting (>60%) along the dolerite contact, to no apparent signs of melting, 10s of meters above the contact. Within this melt zone, the well-known rapakivi texture is found, arrested in various stages of development. High above the contact, and at low degrees of melting, K-feldspar crystals are slightly rounded and unmantled. In the lower half of the melt zone, mantles of cellular textured plagioclase appear on K-feldspar, and thicken towards the contact heat source. At the highest degrees of melting, cellular-textured plagioclase completely replaces restitic K-feldspar. Because of the complete exposure and intact context, the leading models of rapakivi texture formation can be tested against this system. The previously proposed mechanisms of subisothermal decompression, magma-mixing, and hydrothermal exsolution all fail to adequately describe rapakivi generation in this melt zone. Preferred here is a closed system model that invokes the production of a heterogeneous, disequilibrium melt through rapid heating, followed by calcium and sodium rich melt reacting in a peritectic fashion with restitic K-feldspar crystals. This peritectic reaction results in the production of plagioclase of andesine-oligoclase composition—which is consistent with not just mantles in the melt zone, but globally as well. The thickness of the mantle is diffusion limited, and thus a measure of the diffusive length scale of sodium and calcium over the time scale of melting. Thermal modeling provides a time scale of melting that is consistent with the thickness of observed mantles. Lastly, the distribution of mantled feldspars is highly ordered in this melt zone, but if it were mobilized and homogenized—mixing together cellular plagioclase, mantled feldspars, and unmantled feldspars—the result would be

  19. Application of reverse transcription-PCR and real-time PCR in nanotoxicity research.

    Science.gov (United States)

    Mo, Yiqun; Wan, Rong; Zhang, Qunwei

    2012-01-01

    Reverse transcription-polymerase chain reaction (RT-PCR) is a relatively simple and inexpensive technique to determine the expression level of target genes and is widely used in biomedical science research including nanotoxicology studies for semiquantitative analysis. Real-time PCR allows for the detection of PCR amplification in the exponential growth phase of the reaction and is much more quantitative than traditional RT-PCR. Although a number of kits and reagents for RT-PCR and real-time PCR are commercially available, the basic principles are the same. Here, we describe the procedures for total RNA isolation by using TRI Reagent, for reverse transcription (RT) by M-MLV reverse transcriptase, and for PCR by GoTaq(®) DNA Polymerase. And real-time PCR will be performed on an iQ5 multicolor real-time PCR detection system by using iQ™ SYBR Green Supermix.

  20. Diluted melt proton exchange slab waveguides in LiNbO3: A new fabrication and characterization method

    DEFF Research Database (Denmark)

    Veng, Torben; Skettrup, Torben

    1997-01-01

    A method of dilute-melt proton exchange employing a mixture of glycerol and KHSO4 with lithium benzoate added is used to fabricate planar waveguides in c-cut LiNbO3. With this exchange melt system the waveguide refractive index profiles can be fabricated with a high degree of reproducibility...... the waveguide refractive index profile from the measured mode indices is introduced. The main advantage of this characterization method compared with other methods is that it also applies to single-mode waveguides. Using the new characterization method we investigate in detail the relation between waveguide...

  1. O-5S quantitative real-time PCR: a new diagnostic tool for laboratory confirmation of human onchocerciasis.

    Science.gov (United States)

    Mekonnen, Solomon A; Beissner, Marcus; Saar, Malkin; Ali, Solomon; Zeynudin, Ahmed; Tesfaye, Kassahun; Adbaru, Mulatu G; Battke, Florian; Poppert, Sven; Hoelscher, Michael; Löscher, Thomas; Bretzel, Gisela; Herbinger, Karl-Heinz

    2017-10-02

    Onchocerciasis is a parasitic disease caused by the filarial nematode Onchocerca volvulus. In endemic areas, the diagnosis is commonly confirmed by microscopic examination of skin snip samples, though this technique is considered to have low sensitivity. The available melting-curve based quantitative real-time PCR (qPCR) using degenerated primers targeting the O-150 repeat of O. volvulus was considered insufficient for confirming the individual diagnosis, especially in elimination studies. This study aimed to improve detection of O. volvulus DNA in clinical samples through the development of a highly sensitive qPCR assay. A novel hydrolysis probe based qPCR assay was designed targeting the specific sequence of the O. volvulus O-5S rRNA gene. A total of 200 clinically suspected onchocerciasis cases were included from Goma district in South-west Ethiopia, from October 2012 through May 2013. Skin snip samples were collected and subjected to microscopy, O-150 qPCR, and the novel O-5S qPCR. Among the 200 individuals, 133 patients tested positive (positivity rate of 66.5%) and 67 negative by O-5S qPCR, 74 tested positive by microscopy (37.0%) and 78 tested positive by O-150 qPCR (39.0%). Among the 133 O-5S qPCR positive individuals, microscopy and O-150 qPCR detected 55.6 and 59.4% patients, respectively, implying a higher sensitivity of O-5S qPCR than microscopy and O-150 qPCR. None of the 67 individuals who tested negative by O-5S qPCR tested positive by microscopy or O-150 qPCR, implying 100% specificity of the newly designed O-5S qPCR assay. The novel O-5S qPCR assay is more sensitive than both microscopic examination and the existing O-150 qPCR for the detection of O. volvulus from skin snip samples. The newly designed assay is an important step towards appropriate individual diagnosis and control of onchocerciasis.

  2. The WAIS Melt Monitor: An automated ice core melting system for meltwater sample handling and the collection of high resolution microparticle size distribution data

    Science.gov (United States)

    Breton, D. J.; Koffman, B. G.; Kreutz, K. J.; Hamilton, G. S.

    2010-12-01

    profiles to guide the melting process. The combination of these data allow us to analyze melt head performance, minimize outer-to-inner fraction contamination and avoid melt head flooding. The WAIS Melt Monitor system allows the collection of real-time, sub-annual microparticle and electrical conductivity data while producing and storing enough sample for traditional Coulter-Counter particle measurements as well long term acid leaching of bioactive metals (e.g., Fe, Co, Cd, Cu, Zn) prior to chemical analysis.

  3. Automated Microfluidic Platform for Serial Polymerase Chain Reaction and High-Resolution Melting Analysis.

    Science.gov (United States)

    Cao, Weidong; Bean, Brian; Corey, Scott; Coursey, Johnathan S; Hasson, Kenton C; Inoue, Hiroshi; Isano, Taisuke; Kanderian, Sami; Lane, Ben; Liang, Hongye; Murphy, Brian; Owen, Greg; Shinoda, Nobuhiko; Zeng, Shulin; Knight, Ivor T

    2016-06-01

    We report the development of an automated genetic analyzer for human sample testing based on microfluidic rapid polymerase chain reaction (PCR) with high-resolution melting analysis (HRMA). The integrated DNA microfluidic cartridge was used on a platform designed with a robotic pipettor system that works by sequentially picking up different test solutions from a 384-well plate, mixing them in the tips, and delivering mixed fluids to the DNA cartridge. A novel image feedback flow control system based on a Canon 5D Mark II digital camera was developed for controlling fluid movement through a complex microfluidic branching network without the use of valves. The same camera was used for measuring the high-resolution melt curve of DNA amplicons that were generated in the microfluidic chip. Owing to fast heating and cooling as well as sensitive temperature measurement in the microfluidic channels, the time frame for PCR and HRMA was dramatically reduced from hours to minutes. Preliminary testing results demonstrated that rapid serial PCR and HRMA are possible while still achieving high data quality that is suitable for human sample testing. © 2015 Society for Laboratory Automation and Screening.

  4. Pitfalls in PCR troubleshooting: Expect the unexpected?

    Directory of Open Access Journals (Sweden)

    Livia Schrick

    2016-01-01

    Full Text Available PCR is a well-understood and established laboratory technique often used in molecular diagnostics. Huge experience has been accumulated over the last years regarding the design of PCR assays and their set-up, including in-depth troubleshooting to obtain the optimal PCR assay for each purpose. Here we report a PCR troubleshooting that came up with a surprising result never observed before. With this report we hope to sensitize the reader to this peculiar problem and to save troubleshooting efforts in similar situations, especially in time-critical and ambitious diagnostic settings.

  5. Absolute quantification by droplet digital PCR versus analog real-time PCR

    Science.gov (United States)

    Hindson, Christopher M; Chevillet, John R; Briggs, Hilary A; Gallichotte, Emily N; Ruf, Ingrid K; Hindson, Benjamin J; Vessella, Robert L; Tewari, Muneesh

    2014-01-01

    Nanoliter-sized droplet technology paired with digital PCR (ddPCR) holds promise for highly precise, absolute nucleic acid quantification. Our comparison of microRNA quantification by ddPCR and real-time PCR revealed greater precision (coefficients of variation decreased by 37–86%) and improved day-to-day reproducibility (by a factor of seven) of ddPCR but with comparable sensitivity. When we applied ddPCR to serum microRNA biomarker analysis, this translated to superior diagnostic performance for identifying individuals with cancer. PMID:23995387

  6. Melt migration modeling in partially molten upper mantle

    Science.gov (United States)

    Ghods, Abdolreza

    The objective of this thesis is to investigate the importance of melt migration in shaping major characteristics of geological features associated with the partial melting of the upper mantle, such as sea-floor spreading, continental flood basalts and rifting. The partial melting produces permeable partially molten rocks and a buoyant low viscosity melt. Melt migrates through the partially molten rocks, and transfers mass and heat. Due to its much faster velocity and appreciable buoyancy, melt migration has the potential to modify dynamics of the upwelling partially molten plumes. I develop a 2-D, two-phase flow model and apply it to investigate effects of melt migration on the dynamics and melt generation of upwelling mantle plumes and focusing of melt migration beneath mid-ocean ridges. Melt migration changes distribution of the melt-retention buoyancy force and therefore affects the dynamics of the upwelling plume. This is investigated by modeling a plume with a constant initial melt of 10% where no further melting is considered. Melt migration polarizes melt-retention buoyancy force into high and low melt fraction regions at the top and bottom portions of the plume and therefore results in formation of a more slender and faster upwelling plume. Allowing the plume to melt as it ascends through the upper mantle also produces a slender and faster plume. It is shown that melt produced by decompressional melting of the plume migrates to the upper horizons of the plume, increases the upwelling velocity and thus, the volume of melt generated by the plume. Melt migration produces a plume which lacks the mushroom shape observed for the plume models without melt migration. Melt migration forms a high melt fraction layer beneath the sloping base of the impermeable oceanic lithosphere. Using realistic conditions of melting, freezing and melt extraction, I examine whether the high melt fraction layer is able to focus melt from a wide partial melting zone to a narrow region

  7. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology.

    Science.gov (United States)

    Smith, Cindy J; Osborn, A Mark

    2009-01-01

    Quantitative PCR (Q-PCR or real-time PCR) approaches are now widely applied in microbial ecology to quantify the abundance and expression of taxonomic and functional gene markers within the environment. Q-PCR-based analyses combine 'traditional' end-point detection PCR with fluorescent detection technologies to record the accumulation of amplicons in 'real time' during each cycle of the PCR amplification. By detection of amplicons during the early exponential phase of the PCR, this enables the quantification of gene (or transcript) numbers when these are proportional to the starting template concentration. When Q-PCR is coupled with a preceding reverse transcription reaction, it can be used to quantify gene expression (RT-Q-PCR). This review firstly addresses the theoretical and practical implementation of Q-PCR and RT-Q-PCR protocols in microbial ecology, highlighting key experimental considerations. Secondly, we review the applications of (RT)-Q-PCR analyses in environmental microbiology and evaluate the contribution and advances gained from such approaches. Finally, we conclude by offering future perspectives on the application of (RT)-Q-PCR in furthering understanding in microbial ecology, in particular, when coupled with other molecular approaches and more traditional investigations of environmental systems.

  8. Hydroxyl and molecular H2O diffusivity in a haploandesitic melt

    Science.gov (United States)

    Ni, Huaiwei; Xu, Zhengjiu; Zhang, Youxue

    2013-02-01

    H2O diffusion in a haploandesitic melt (a high-silica and Fe-free andesitic melt, NBO/T = 0.173) has been investigated at 1 GPa in a piston-cylinder apparatus. We adopted a double diffusion couple technique, in which one couple was composed of a nominally anhydrous glass with 0.01 wt.% H2O and a hydrous glass with 5.7 wt.% H2O, and the other contained the same nominally anhydrous glass and a hydrous glass with 3.3 wt.% H2O. Both couples were annealed in a single experimental run and hence experienced exactly the same P-T history, which is crucial for constraining the dependence of H2O diffusivity on water content. H2O concentration profiles were measured by both Fourier transform infrared (FTIR) microspectroscopy and confocal Raman microspectroscopy. Nearly identical profiles were obtained from Raman and FTIR methods for profile length >1 mm (produced at 1619-1842 K). By contrast, for profile lengths <100 μm (produced at 668-768 K), FTIR profiles show marked convolution effects compared to Raman profiles. A comparison between the short FTIR and Raman profiles indicates that the real spatial resolution (FWHM) of FTIR analyses is about 28 μm for a 7 μm wide aperture on ˜200 μm thick glasses. While the short profiles are not reliable for quantitative modeling, the long diffusion profiles at superliquidus temperatures can be fit reasonably well by a diffusivity model previously developed for felsic melts, in which molecular H2O (H2Om) is the only diffusive species and its diffusivity (D) increases exponentially with the content of total water (H2Ot). However, there is noticeable misfit of the data at low H2Ot concentrations, suggesting that OH diffusivity (DOH) cannot be neglected in this andesitic melt at high temperatures and low water contents. We hence develop a new fitting procedure that simultaneously fits both diffusion profiles from a single experimental run and accounts for the roles of both OH and H2Om diffusion. With this procedure, DOH/D is constrained

  9. Identification of the GST-T1 and GST-M1 null genotypes using high resolution melting analysis.

    Science.gov (United States)

    Drobná, Zuzana; Del Razo, Luz Maria; Garcia-Vargas, Gonzalo; Sánchez-Ramírez, Blanca; González-Horta, Carmen; Ballinas-Casarrubias, Lourdes; Loomis, Dana; Stýblo, Miroslav

    2012-01-13

    Glutathione S-transferases, including GST-T1 and GST-M1, are known to be involved in the phase II detoxification pathways for xenobiotics as well as in the metabolism of endogenous compounds. Polymorphisms in these genes have been linked to an increased susceptibility to carcinogenesis and associated with risk factors that predispose to certain inflammatory diseases. In addition, GST-T1 and GST-M1 null genotypes have been shown to be responsible for interindividual variations in the metabolism of arsenic, a known human carcinogen. To assess the specific GST genotypes in the Mexican population chronically exposed to arsenic, we have developed a multiplex High Resolution Melting PCR (HRM-PCR) analysis using a LightCycler480 instrument. This method is based on analysis of the PCR product melting curve that discriminates PCR products according to their lengths and base sequences. Three pairs of primers that specifically recognize GST-T1, GST-M1, and β-globin, an internal control, to produce amplicons of different length were designed and combined with LightCycler480 High Resolution Melting Master Mix containing ResoLight, a completely saturating DNA dye. Data collected from melting curve analysis were evaluated using LightCycler480 software to determine specific melting temperatures of individual melting curves representing target genes. Using this newly developed multiplex HRM-PCR analysis, we evaluated GST-T1 and GST-M1 genotypes in 504 DNA samples isolated from the blood of individuals residing in Zimapan, Lagunera, and Chihuahua regions in Mexico. We found that the Zimapan and Lagunera populations have similar GST-T1 and GST-M1 genotype frequencies which differ from those of the Chihuahua population. In addition, 14 individuals have been identified as carriers of the double null genotype, i.e., null genotypes in both GST-T1 and GST-M1 genes. Although this procedure does not distinguish between biallelic (+/+) and monoallelic (+/-) genotypes, it can be used in an

  10. High-Resolution Melt Analysis for Rapid Comparison of Bacterial Community Compositions

    DEFF Research Database (Denmark)

    Hjelmsø, Mathis Hjort; Hansen, Lars Hestbjerg; Bælum, Jacob

    2014-01-01

    In the study of bacterial community composition, 16S rRNA gene amplicon sequencing is today among the preferred methods of analysis. The cost of nucleotide sequence analysis, including requisite computational and bioinformatic steps, however, takes up a large part of many research budgets. High......-resolution melt (HRM) analysis is the study of the melt behavior of specific PCR products. Here we describe a novel high-throughput approach in which we used HRM analysis targeting the 16S rRNA gene to rapidly screen multiple complex samples for differences in bacterial community composition. We hypothesized...... that HRM analysis of amplified 16S rRNA genes from a soil ecosystem could be used as a screening tool to identify changes in bacterial community structure. This hypothesis was tested using a soil microcosm setup exposed to a total of six treatments representing different combinations of pesticide...

  11. Differentiation of minute virus of mice and mouse parvovirus by high resolution melting curve analysis.

    Science.gov (United States)

    Rao, Dan; Wu, Miaoli; Wang, Jing; Yuan, Wen; Zhu, Yujun; Cong, Feng; Xu, Fengjiao; Lian, Yuexiao; Huang, Bihong; Wu, Qiwen; Chen, Meili; Zhang, Yu; Huang, Ren; Guo, Pengju

    2017-12-01

    Murine parvovirus is one of the most prevalent infectious pathogens in mouse colonies. A specific primer pair targeting the VP2 gene of minute virus of mice (MVM) and mouse parvovirus (MPV) was utilized for high resolution melting (HRM) analysis. The resulting melting curves could distinguish these two virus strains and there was no detectable amplification of the other mouse pathogens which included rat parvovirus (KRV), ectromelia virus (ECT), mouse adenovirus (MAD), mouse cytomegalovirus (MCMV), polyoma virus (Poly), Helicobactor hepaticus (H. hepaticus) and Salmonella typhimurium (S. typhimurium). The detection limit of the standard was 10 copies/μL. This study showed that the PCR-HRM assay could be an alternative useful method with high specificity and sensitivity for differentiating murine parvovirus strains MVM and MPV. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Shock melting method to determine melting curve by molecular dynamics: Cu, Pd, and Al

    International Nuclear Information System (INIS)

    Liu, Zhong-Li; Zhang, Xiu-Lu; Cai, Ling-Cang

    2015-01-01

    A melting simulation method, the shock melting (SM) method, is proposed and proved to be able to determine the melting curves of materials accurately and efficiently. The SM method, which is based on the multi-scale shock technique, determines melting curves by preheating and/or prepressurizing materials before shock. This strategy was extensively verified using both classical and ab initio molecular dynamics (MD). First, the SM method yielded the same satisfactory melting curve of Cu with only 360 atoms using classical MD, compared to the results from the Z-method and the two-phase coexistence method. Then, it also produced a satisfactory melting curve of Pd with only 756 atoms. Finally, the SM method combined with ab initio MD cheaply achieved a good melting curve of Al with only 180 atoms, which agrees well with the experimental data and the calculated results from other methods. It turned out that the SM method is an alternative efficient method for calculating the melting curves of materials

  13. Shock melting method to determine melting curve by molecular dynamics: Cu, Pd, and Al.

    Science.gov (United States)

    Liu, Zhong-Li; Zhang, Xiu-Lu; Cai, Ling-Cang

    2015-09-21

    A melting simulation method, the shock melting (SM) method, is proposed and proved to be able to determine the melting curves of materials accurately and efficiently. The SM method, which is based on the multi-scale shock technique, determines melting curves by preheating and/or prepressurizing materials before shock. This strategy was extensively verified using both classical and ab initio molecular dynamics (MD). First, the SM method yielded the same satisfactory melting curve of Cu with only 360 atoms using classical MD, compared to the results from the Z-method and the two-phase coexistence method. Then, it also produced a satisfactory melting curve of Pd with only 756 atoms. Finally, the SM method combined with ab initio MD cheaply achieved a good melting curve of Al with only 180 atoms, which agrees well with the experimental data and the calculated results from other methods. It turned out that the SM method is an alternative efficient method for calculating the melting curves of materials.

  14. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam

    2012-12-15

    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment may be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.

  15. Olivine/melt transition metal partitioning, melt composition, and melt structure—Melt polymerization and Qn-speciation in alkaline earth silicate systems

    Science.gov (United States)

    Mysen, Bjorn O.

    2008-10-01

    The two most abundant network-modifying cations in magmatic liquids are Ca 2+ and Mg 2+. To evaluate the influence of melt structure on exchange of Ca 2+ and Mg 2+ with other geochemically important divalent cations ( m-cations) between coexisting minerals and melts, high-temperature (1470-1650 °C), ambient-pressure (0.1 MPa) forsterite/melt partitioning experiments were carried out in the system Mg 2SiO 4-CaMgSi 2O 6-SiO 2 with ⩽1 wt% m-cations (Mn 2+, Co 2+, and Ni 2+) substituting for Ca 2+ and Mg 2+. The bulk melt NBO/Si-range ( NBO/Si: nonbridging oxygen per silicon) of melt in equilibrium with forsterite was between 1.89 and 2.74. In this NBO/Si-range, the NBO/Si(Ca) (fraction of nonbridging oxygens, NBO, that form bonds with Ca 2+, Ca 2+- NBO) is linearly related to NBO/Si, whereas fraction of Mg 2+- NBO bonds is essentially independent of NBO/Si. For individual m-cations, rate of change of KD( m-Mg) with NBO/Si(Ca) for the exchange equilibrium, mmelt + Mg olivine ⇌ molivine + Mg melt, is linear. KD( m-Mg) decreases as an exponential function of increasing ionic potential, Z/ r2 ( Z: formal electrical charge, r: ionic radius—here calculated with oxygen in sixfold coordination around the divalent cations) of the m-cation. The enthalpy change of the exchange equilibrium, Δ H, decreases linearly with increasing Z/ r2 [Δ H = 261(9)-81(3)· Z/ r2 (Å -2)]. From existing information on (Ca,Mg)O-SiO 2 melt structure at ambient pressure, these relationships are understood by considering the exchange of divalent cations that form bonds with nonbridging oxygen in individual Qn-species in the melts. The negative ∂ KD( m-Mg) /∂( Z/ r2) and ∂(Δ H)/∂( Z/ r2) is because increasing Z/ r2 is because the cations forming bonds with nonbridging oxygen in increasingly depolymerized Qn-species where steric hindrance is decreasingly important. In other words, principles of ionic size/site mismatch commonly observed for trace and minor elements in crystals, also

  16. Melt electrospinning of biodegradable polyurethane scaffolds

    Science.gov (United States)

    Karchin, Ari; Simonovsky, Felix I.; Ratner, Buddy D.; Sanders, Joan E.

    2014-01-01

    Electrospinning from the melt, in contrast to from solution, is an attractive tissue engineering scaffold manufacturing process as it allows for the formation of small diameter fibers while eliminating potentially cytotoxic solvents. Despite this, there is a dearth of literature on scaffold formation via melt electrospinning. This is likely due to the technical challenges related to the need for a well-controlled high temperature setup and the difficulty in developing an appropriate polymer. In this paper, a biodegradable and thermally stable polyurethane (PU) is described specifically for use in melt electrospinning. Polymer formulations of aliphatic PUs based on (CH2)4-content diisocyanates, polycaprolactone (PCL), 1,4-butanediamine and 1,4-butanediol (BD) were evaluated for utility in the melt electrospinning process. The final polymer formulation, a catalyst-purified PU based on 1,4-butane diisocyanate, PCL and BD in a 4/1/3 molar ratio with a weight-average molecular weight of about 40 kDa, yielded a nontoxic polymer that could be readily electrospun from the melt. Scaffolds electrospun from this polymer contained point bonds between fibers and mechanical properties analogous to many in vivo soft tissues. PMID:21640853

  17. Viscosity characteristics of selected volcanic rock melts

    Science.gov (United States)

    Hobiger, Manuel; Sonder, Ingo; Büttner, Ralf; Zimanowski, Bernd

    2011-02-01

    A basic experimental study of the behavior of magma rheology was carried out on remelted volcanic rocks using wide gap viscometry. The complex composition of magmatic melts leads to complicated rheologic behavior which cannot be described with one simple model. Therefore, measurement procedures which are able to quantify non-Newtonian behavior have to be employed. Furthermore, the experimental apparatus must be able to deal with inhomogeneities of magmatic melts. We measured the viscosity of a set of materials representing a broad range of volcanic processes. For the lower viscous melts (low-silica compositions), non-Newtonian behavior is observed, whereas the high-silica melts show Newtonian behavior in the measured temperature and shear rate range (T = 1423 K - 1623 K, γ˙ = 10 - 2 s - 1 - 20 s - 1 ). The non-Newtonian materials show power-law behavior. The measured viscosities η and power-law indexes m lie in the intervals 8 Pa s ≤ η ≤ 210 3 Pa s, 0.71 ≤ m ≤ 1.0 (Grímsvötn basalt), 0.9 Pa s ≤ η ≤ 350 Pa s, 0.61 ≤ m ≤ 0.93 (Hohenstoffeln olivine-melilitite), and 8 Pa s ≤ η ≤ 1.510 4 Pa s, 0.55 ≤ m ≤ 1.0 (Sommata basalt). Measured viscosities of the Newtonian high-silica melts lie in the range 10 4 Pa s ≤ η ≤ 310 5 Pa s.

  18. Data Profiling

    OpenAIRE

    Hladíková, Radka

    2010-01-01

    Title: Data Profiling Author: Radka Hladíková Department: Department of Software Engineering Supervisor: Ing. Vladimír Kyjonka Supervisor's e-mail address: Abstract: This thesis puts mind on problems with data quality and data profiling. This Work analyses and summarizes problems of data quality, data defects, process of data quality, data quality assessment and data profiling. The main topic is data profiling as a process of researching data available in existing...

  19. Description of the heating and expansion process of a water drop enclosed in a hot melt

    International Nuclear Information System (INIS)

    Froehlich, G.; Berg, E. von.

    1985-11-01

    In the present study a simple model for the description of the heating- and expansion-process of a water drop enclosed in hot melt is developed. The model is valid between the first contact of melt and water up to the beginning of evaporation. A possible superheating by retardation of ebullition is disregarded. The balance equations for energy, mass and momentum as well as the equation of state are integrated over the radial space coordinate in both media using appropriate profiles of temperature, pressure and velocity. Thereby a system of coupled ordinary differential equations is formed for the variables of the model which are now time dependent only. The equations are solved numerically by means of a FORTRAN-program. The influence of parameters (melt-temperature, heat-transfer-coefficient between melt and water as well as drop radius) are studied. It is shown that always very rapidly a vapor-layer forms around the water drop, while the inner part of the drop did not yet 'notice' anything of the heating process. An approximation formula for the time-transfer-coefficients between melt and water. Due to this approximation, the time up to incipience of evaporation grows proportional to the drop radius, which means that in the frame of the present model even small droplets won't evaporate as a whole instantaneously. (orig.) [de

  20. Bioinformatic tools for PCR Primer design

    African Journals Online (AJOL)

    ES

    reaction (PCR), oligo hybridization and DNA sequencing. Proper primer design is actually one of the most important factors/steps in successful DNA sequencing. Various bioinformatics programs are available for selection of primer pairs from a template sequence. The plethora programs for PCR primer design reflects the.

  1. [E-MTAB-587] PCR_artifacts

    NARCIS (Netherlands)

    Muino Acuna, J.M.

    2011-01-01

    WARNING: This library was yield low amount of material and it was over-amplified by PCR. This libraries are used study the robustness of several statitical methods against PCR artifacts. ChIP experiments were performed on Arabidopsis wildtype inflorescences using an antibody raised against a

  2. Digital PCR for detection of citrus pathogens

    Science.gov (United States)

    Citrus trees are often infected with multiple pathogens of economic importance, especially those with insect or mite vectors. Real-time/quantitative PCR (qPCR) has been used for high-throughput detection and relative quantification of pathogens; however, target reference or standards are required. I...

  3. Testing for Genetically Modified Foods Using PCR

    Science.gov (United States)

    Taylor, Ann; Sajan, Samin

    2005-01-01

    The polymerase chain reaction (PCR) is a Nobel Prize-winning technique that amplifies a specific segment of DNA and is commonly used to test for the presence of genetic modifications. Students use PCR to test corn meal and corn-muffin mixes for the presence of a promoter commonly used in genetically modified foods, the cauliflower mosaic virus 35S…

  4. Validation of RNAi by real time PCR

    DEFF Research Database (Denmark)

    Josefsen, Knud; Lee, Ying Chiu

    2011-01-01

    Real time PCR is the analytic tool of choice for quantification of gene expression, while RNAi is concerned with downregulation of gene expression. Together, they constitute a powerful approach in any loss of function studies of selective genes. We illustrate here the use of real time PCR to verify...

  5. PCR specific for Actinobacillus pleuropneumoniae serotype 3

    DEFF Research Database (Denmark)

    Zhou, L.; Jones, S.C.P.; Angen, Øystein

    2008-01-01

    , but the method has liminations, for example, cross-reactions between serotypes 3, 6, and 8. This study describes the development of a serotype 3-specific PCR, based on the capsule locus, which can be used in a multiplex format with the organism's specific gene apxIV. The PCR test was evaluated on 266 strains...

  6. Determination of enthalpy–temperature–composition relations in incongruent-melting phase change materials

    International Nuclear Information System (INIS)

    Desgrosseilliers, Louis; Allred, Paul; Groulx, Dominic; White, Mary Anne

    2013-01-01

    This paper demonstrates that liquidus line (T-x) data can be obtained from calorimetric determinations of phase transition enthalpy profiles (H-T) for incongruent-melting phase change materials (PCMs) more efficiently than using traditional cooling curves. An accurate and reliable equilibrium mixture enthalpy model bridges the H-T and T-x gap to provide a full suite of high density H-T-x data to assist latent heat energy storage researchers to evaluate composition-dependent two-phase equilibrium processes. The proposed method is validated for T-history method H-T determinations of 1:1 diluted sodium acetate trihydrate in water, and can also be used with other laboratory calorimetric techniques used to determine the phase transition enthalpy profiles of incongruent-melting compounds. -- Highlights: • H-T data can also be used to obtain valuable liquidus region T-x data. • Applies to all incongruent-melting compounds with known thermodynamic properties. • Reduces the effort and cost of assessing full suite H-T-x data for PCMs. • Uses existing T-x or H-T data of incongruent-melting PCMs to determine the other

  7. Polymerase chain reaction methods (PCR in agrobiotechnology

    Directory of Open Access Journals (Sweden)

    Taški-Ajduković Ksenija

    2006-01-01

    Full Text Available The agricultural biotechnology applies polymerase chain reaction (PCR technology at numerous steps throughout product development. The major uses of PCR technology during product development include gene discovery and cloning, vector construction, transformant identification, screening and characterization as well as seed quality control. Commodity and food companies as well as testing laboratories rely on PCR technology to verify the presence or absence of genetically modification (GM in a product or to quantify the amount of GM material present in the product. This article describes the fundamental elements of PCR analysis and its application to the testing of grains and highlights some of areas to which attention must be paid in order to produce reliable test results. The article also discuses issues related to the analysis of different matrixes and the effect they may have on the accuracy of the PCR analytical results.

  8. Mathematical analysis of the real time array PCR (RTA PCR) process

    NARCIS (Netherlands)

    Dijksman, Johan Frederik; Pierik, A.

    2012-01-01

    Real time array PCR (RTA PCR) is a recently developed biochemical technique that measures amplification curves (like with quantitative real time Polymerase Chain Reaction (qRT PCR)) of a multitude of different templates in a sample. It combines two different methods in order to profit from the

  9. Development of real-time PCR for detection of Mycoplasma hominis

    DEFF Research Database (Denmark)

    Baczynska, A.; Svenstrup, Helle Friis; Fedder, J.

    2004-01-01

    BACKGROUND: Mycoplasma hominis is associated with pelvic inflammatory disease, bacterial vaginosis, post partum fever, sepsis and infections of the central nervous system often leading to serious conditions. Association with development of female infertility has also been suggested, but different....... Information on bacterial load in genital swabs can be obtained. The assay allowed detection of M. hominis in a closed system reducing the risk of contamination by amplicon carry-over......., glyceraldehyde-3-phosphate dehydrogenase (gap), as a target. RESULTS: Real-time PCR was optimized to detect 10 copies of M. hominis PG21 genomic DNA. A fluorescence signal was measured for all 20 other M. hominis isolates, and melting curves analysis showed variations in the melting temperature in agreement...

  10. Real-time PCR in virology.

    Science.gov (United States)

    Mackay, Ian M; Arden, Katherine E; Nitsche, Andreas

    2002-03-15

    The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.

  11. Monitoring device for glass melting furnace

    International Nuclear Information System (INIS)

    Endo, Noboru; Asano, Naoki; Higuchi, Tatsuo; Koyama, Mayumi; Hanado, Shinji.

    1995-01-01

    The device of the present invention can monitor, from a remote place, a liquid surface in a glass melting furnace for use in a solidification treatment, for example, of high level radioactive wastes. Namely, a vertical sleeve is disposed penetrating a ceiling wall of a melting vessel. A reflection mirror is disposed above the vertical sleeve and flex an optical axis. A monitoring means is disposed on the optical axis of the reflecting mirror at a spaced position. The monitoring means may have an optical telescopic means, a monitoring camera by way of a half mirror and an illumination means. The reflection mirror may be made of a metal. The monitoring device thus constituted suffer from no effects of high temperature and high radiation dose rate, thereby enabling to easily monitor the liquid surface in the melting furnace. (I.S.)

  12. Entangled Polymer Melts in Extensional Flow

    DEFF Research Database (Denmark)

    Hengeller, Ludovica

    Many commercial materials derived from synthetic polymers exhibit a complex response under different processing operations such as fiber formation, injection moulding,film blowing, film casting or coatings. They can be processed both in the solid or in the melted state. Often they may contain two...... or more different polymers in addition to additives, fillers or solvents in order to modify the properties of the final product. Usually, it is also desired to improve the processability. For example the supplement of a high molecular weight component improves the stability in elongational flows....... Understanding the behaviour of polymer melts and solutions in complex non-linearflows is crucial for the design of polymeric materials and polymer processes. Through rheological characterization, in shear and extensional flow, of model polymer systems,i.e. narrow molar mass distribution polymer melts...

  13. APPARATUS FOR MELTING AND POURING METAL

    Science.gov (United States)

    Harris, F.A.

    1958-02-25

    This patent relates to a crucible for melting and pouring a metal under controlled atmospheric conditions. The crucible has a frangible plug in the bottom and a retaining device to prevent the entrance of the broken portions of the plug into the mold without interfering with the flow of the melt. After the charge has been melted, a knockout rod is lowered through the charge and forced against the frangible plug sufficiently to break off the closure disk along a previously scored line. The disk drops onto a retaining grid large enough to permit the flow of metal around the disk and into the mold below. Thts arrangement elimnates the entry of broken portions of the plug into the mold, thereby elimnating a common cause of imperfect castings.

  14. Analysis of picosecond pulsed laser melted graphite

    International Nuclear Information System (INIS)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm -1 and the disorder-induced mode at 1360 cm -1 , the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence

  15. Selective Laser Melting of Pure Copper

    Science.gov (United States)

    Ikeshoji, Toshi-Taka; Nakamura, Kazuya; Yonehara, Makiko; Imai, Ken; Kyogoku, Hideki

    2018-03-01

    Appropriate building parameters for selective laser melting of 99.9% pure copper powder were investigated at relatively high laser power of 800 W for hatch pitch in the range from 0.025 mm to 0.12 mm. The highest relative density of the built material was 99.6%, obtained at hatch pitch of 0.10 mm. Building conditions were also studied using transient heat analysis in finite element modeling of the liquidation and solidification of the powder layer. The estimated melt pool length and width were comparable to values obtained by observations using a thermoviewer. The trend for the melt pool width versus the hatch pitch agreed with experimental values.

  16. Prereduction and melting of domestic titaniferous materials

    Science.gov (United States)

    Nafziger, R. H.; Jordan, R. R.

    1983-03-01

    Two domestic ilmenites and one titaniferous magnetite were prereduced by the United States Department of the Interior, Bureau of Mines, in a batch rotary kiln with coal char to assess the feasibility of this technique in improving melting operations and subsequent electric furnace processing. All three prereduced titaniferous materials were melted satisfactorily in an electric arc furnace to produce iron as a metal suitable for further refining to steel; metallizations ranging from 63 to 83 pct of the iron oxides were achieved. The ilmenites yielded titanium enriched slags that were amenable to further processing by conventional methods. Prereduction decreased electrode consumption during furnace operation and also conserved expensive electrical energy that otherwise must be used to reduce and melt totally the entire titaniferous materials charge.

  17. Scrap uranium recycling via electron beam melting

    International Nuclear Information System (INIS)

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R ampersand D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility

  18. Trypanosoma rangeli: RAPD-PCR and LSSP-PCR analyses of isolates from southeast Brazil and Colombia and their relation with KPI minicircles.

    Science.gov (United States)

    Marquez, D S; Ramírez, L E; Moreno, J; Pedrosa, A L; Lages-Silva, E

    2007-09-01

    This study presents the first genetic characterization of five Trypanosoma rangeli isolates from Minas Gerais, in the southeast of Brazil and their comparison with Colombian populations by minicircle classification, RAPD-PCR and LSSP-PCR analyses. Our results demonstrated a homogenous T. rangeli population circulating among Didelphis albiventris as reservoir host in Brazil while heterogeneous populations were found in different regions of Colombia. KP1(+) minicircles were found in 100% isolates from Brazil and in 36.4% of the Colombian samples, whereas the KP2 and KP3 minicircles were detected in both groups. RAPD-PCR and LSSP-PCR profiles revealed a polymorphism within KP1(+) and KP1(-) T. rangeli populations and allowed the division of T. rangeli in two branches. The Brazilian KP1(+) isolates were more homogenous than the KP1(+) isolates from Colombia. The RAPD-PCR were entirely consistent with the distribution of KP1 minicircles while those obtained by LSSP-PCR were associated in 88.9% and 71.4% with KP1(+) and KP1(-) populations, respectively.

  19. Mathematical model of melt flow channel granulator

    Directory of Open Access Journals (Sweden)

    A. A. Kiselev

    2016-01-01

    Full Text Available Granulation of carbohydrate-vitamin-mineral supplements based on molasses is performed at a high humidity (26 %, so for a stable operation of granulator it is necessary to reveal its melt flow pattern. To describe melt non-isothermal flow in the granulator a mathematical model with following initial equations: continuity equation, motion equation and rheological equation – was developed. The following assumptions were adopted: the melt flow in the granulator is a steady laminar flow; inertial and gravity forces can be ignored; melt is an incompressible fluid; velocity gradient in the flow direction is much smaller than in the transverse direction; the pressure gradient over the cross section of the channel is constant; the flow is hydrodynamically fully developed; effects impact on the channel inlet and outlet may be neglected. Due to the assumptions adopted, it can be considered that in this granulator only velocity components in the x-direction are significant and all the members of the equation with the components and their derivatives with respect to the coordinates y and z can be neglected. The resulting solutions were obtained: the equation for the mean velocity, the equation for determining the volume flow, the formula for calculating of mean time of the melt being in the granulator, the equation for determining the shear stress, the equation for determining the shear rate and the equation for determining the pressure loss. The results of calculations of the equations obtained are in complete agreement with the experimental data; deviation range is 16–19 %. The findings about the melt movement pattern in granulator allowed developing a methodology for calculating a rational design of the granulator molding unit.

  20. Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet

    International Nuclear Information System (INIS)

    Bachok, Norfifah; Ishak, Anuar; Pop, Ioan

    2010-01-01

    An analysis is carried out to study the steady two-dimensional stagnation-point flow and heat transfer from a warm, laminar liquid flow to a melting stretching/shrinking sheet. The governing partial differential equations are converted into ordinary differential equations by similarity transformation, before being solved numerically using the Runge-Kutta-Fehlberg method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented for different values of the governing parameters. Effects of the melting parameter, stretching/shrinking parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly examined. Different from a stretching sheet, it is found that the solutions for a shrinking sheet are non-unique.

  1. A FRET-based real-time PCR assay to identify the main causal agents of New World tegumentary leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Pablo Tsukayama

    Full Text Available In South America, various species of Leishmania are endemic and cause New World tegumentary leishmaniasis (NWTL. The correct identification of these species is critical for adequate clinical management and surveillance activities. We developed a real-time polymerase chain reaction (PCR assay and evaluated its diagnostic performance using 64 archived parasite isolates and 192 prospectively identified samples collected from individuals with suspected leishmaniasis enrolled at two reference clinics in Lima, Peru. The real-time PCR assay was able to detect a single parasite and provided unambiguous melting peaks for five Leishmania species of the Viannia subgenus that are highly prevalent in South America: L. (V. braziliensis, L. (V. panamensis, L. (V. guyanensis, L. (V. peruviana and L. (V. lainsoni. Using kinetoplastid DNA-based PCR as a gold standard, the real-time PCR had sensitivity and specificity values of 92% and 77%, respectively, which were significantly higher than those of conventional tests such as microscopy, culture and the leishmanin skin test (LST. In addition, the real-time PCR identified 147 different clinical samples at the species level, providing an overall agreement of 100% when compared to multilocus sequence typing (MLST data performed on a subset of these samples. Furthermore, the real-time PCR was three times faster and five times less expensive when compared to PCR - MLST for species identification from clinical specimens. In summary, this new assay represents a cost-effective and reliable alternative for the identification of the main species causing NWTL in South America.

  2. Mutation spectrum of 122 hemophilia A families from Taiwanese population by LD-PCR, DHPLC, multiplex PCR and evaluating the clinical application of HRM

    Directory of Open Access Journals (Sweden)

    Chang Chieh-Ting

    2008-06-01

    Full Text Available Abstract Background Hemophilia A represents the most common and severe inherited hemorrhagic disorder. It is caused by mutations in the F8 gene, which leads to a deficiency or dysfunctional factor VIII protein, an essential cofactor in the factor X activation complex. Methods We used long-distance polymerase chain reaction and denaturing high performance liquid chromatography for mutation scanning of the F8 gene. We designed the competitive multiplex PCR to identify the carrier with exonal deletions. In order to facilitate throughput and minimize the cost of mutation scanning, we also evaluated a new mutation scanning technique, high resolution melting analysis (HRM, as an alternative screening method. Results We presented the results of detailed screening of 122 Taiwanese families with hemophilia A and reported twenty-nine novel mutations. There was one family identified with whole exons deletion, and the carriers were successfully recognized by multiplex PCR. By HRM, the different melting curve patterns were easily identified in 25 out of 28 cases (89% and 15 out of 15 (100% carriers. The sensitivity was 93 % (40/43. The overall mutation detection rate of hemophilia A was 100% in this study. Conclusion We proposed a diagnostic strategy for hemophilia A genetic diagnosis. We consider HRM as a powerful screening tool that would provide us with a more cost-effective protocol for hemophilia A mutation identification.

  3. Structure of polyvalent metal halide melts

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1990-12-01

    A short review is given of recent progress in determining and understanding the structure of molten halide salts involving polyvalent metal ions. It covers the following three main topics: (i) melting mechanisms and types of liquid structure for pure polyvalent-metal chlorides; (ii) geometry and stability of local coordination for polyvalent metal ions in molten mixtures of their halides with alkali halides; and (iii) structure breaking and electron localization on addition of metal to the melt. (author). 28 refs, 3 figs, 1 tab

  4. Chemical reactions in solvents and melts

    CERN Document Server

    Charlot, G

    1969-01-01

    Chemical Reactions in Solvents and Melts discusses the use of organic and inorganic compounds as well as of melts as solvents. This book examines the applications in organic and inorganic chemistry as well as in electrochemistry. Organized into two parts encompassing 15 chapters, this book begins with an overview of the general properties and the different types of reactions, including acid-base reactions, complex formation reactions, and oxidation-reduction reactions. This text then describes the properties of inert and active solvents. Other chapters consider the proton transfer reactions in

  5. Stress Relaxation in Entangled Polymer Melts

    DEFF Research Database (Denmark)

    Hou, Ji-Xuan; Svaneborg, Carsten; Everaers, Ralf

    2010-01-01

    We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements...... and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter-free tests of several different tube models. We find...

  6. Electrochemistry of uranium in sodium chloroaluminate melts

    International Nuclear Information System (INIS)

    D'olieslager, W.; Meuris, F.; Heerman, L.

    1990-01-01

    The electrochemical behaviour of uranium was studied in basic, NaCl-saturated NaAlCl 4 melts at 175 deg C. Solutions of UO 3 exhibit two oxidation/reduction waves (cyclic voltammetry). Analysis of the peak currents (cyclic voltammetry), the limiting currents (pulse polarography) and the non-linear log i-t curves (anodic controlled potential coulometry) leads to the conclusion that uranium(IV) in the basic chloroaluminate melt exists as two different species in slow equilibrium with one another, of which only one species can be oxidized to U(VI). (author) 16 refs.; 7 figs.; 3 tabs

  7. Assessment of the real-time PCR and different digital PCR platforms for DNA quantification.

    Science.gov (United States)

    Pavšič, Jernej; Žel, Jana; Milavec, Mojca

    2016-01-01

    Digital PCR (dPCR) is beginning to supersede real-time PCR (qPCR) for quantification of nucleic acids in many different applications. Several analytical properties of the two most commonly used dPCR platforms, namely the QX100 system (Bio-Rad) and the 12.765 array of the Biomark system (Fluidigm), have already been evaluated and compared with those of qPCR. However, to the best of our knowledge, direct comparison between the three of these platforms using the same DNA material has not been done, and the 37 K array on the Biomark system has also not been evaluated in terms of linearity, analytical sensitivity and limit of quantification. Here, a first assessment of qPCR, the QX100 system and both arrays of the Biomark system was performed with plasmid and genomic DNA from human cytomegalovirus. With use of PCR components that alter the efficiency of qPCR, each dPCR platform demonstrated consistent copy-number estimations, which indicates the high resilience of dPCR. Two approaches, one considering the total reaction volume and the other considering the effective reaction size, were used to assess linearity, analytical sensitivity and variability. When the total reaction volume was considered, the best performance was observed with qPCR, followed by the QX100 system and the Biomark system. In contrast, when the effective reaction size was considered, all three platforms showed almost equal limits of detection and variability. Although dPCR might not always be more appropriate than qPCR for quantification of low copy numbers, dPCR is a suitable method for robust and reproducible quantification of viral DNA, and a promising technology for the higher-order reference measurement method.

  8. Complementary techniques: validation of gene expression data by quantitative real time PCR.

    Science.gov (United States)

    Provenzano, Maurizio; Mocellin, Simone

    2007-01-01

    Microarray technology can be considered the most powerful tool for screening gene expression profiles of biological samples. After data mining, results need to be validated with highly reliable biotechniques allowing for precise quantitation of transcriptional abundance of identified genes. Quantitative real time PCR (qrt-PCR) technology has recently reached a level of sensitivity, accuracy and practical ease that support its use as a routine bioinstrumentation for gene level measurement. Currently, qrt-PCR is considered by most experts the most appropriate method to confirm or confute microarray-generated data. The knowledge of the biochemical principles underlying qrt-PCR as well as some related technical issues must be beard in mind when using this biotechnology.

  9. Detection and Differentiation of Leishmania spp. in Clinical Specimens by Use of a SYBR Green-Based Real-Time PCR Assay.

    Science.gov (United States)

    de Almeida, Marcos E; Koru, Ozgur; Steurer, Francis; Herwaldt, Barbara L; da Silva, Alexandre J

    2017-01-01

    Leishmaniasis in humans is caused by Leishmania spp. in the subgenera Leishmania and Viannia Species identification often has clinical relevance. Until recently, our laboratory relied on conventional PCR amplification of the internal transcribed spacer 2 (ITS2) region (ITS2-PCR) followed by sequencing analysis of the PCR product to differentiate Leishmania spp. Here we describe a novel real-time quantitative PCR (qPCR) approach based on the SYBR green technology (LSG-qPCR), which uses genus-specific primers that target the ITS1 region and amplify DNA from at least 10 Leishmania spp., followed by analysis of the melting temperature (T m ) of the amplicons on qPCR platforms (the Mx3000P qPCR system [Stratagene-Agilent] and the 7500 real-time PCR system [ABI Life Technologies]). We initially evaluated the assay by testing reference Leishmania isolates and comparing the results with those from the conventional ITS2-PCR approach. Then we compared the results from the real-time and conventional molecular approaches for clinical specimens from 1,051 patients submitted to the reference laboratory of the Centers for Disease Control and Prevention for Leishmania diagnostic testing. Specimens from 477 patients tested positive for Leishmania spp. with the LSG-qPCR assay, specimens from 465 of these 477 patients also tested positive with the conventional ITS2-PCR approach, and specimens from 10 of these 465 patients had positive results because of retesting prompted by LSG-qPCR positivity. On the basis of the T m values of the LSG-qPCR amplicons from reference and clinical specimens, we were able to differentiate four groups of Leishmania parasites: the Viannia subgenus in aggregate; the Leishmania (Leishmania) donovani complex in aggregate; the species L (L) tropica; and the species L (L) mexicana, L (L) amazonensis, L (L) major, and L (L) aethiopica in aggregate. Copyright © 2016 American Society for Microbiology.

  10. Multicomponent diffusion in basaltic melts at 1350 °C

    Science.gov (United States)

    Guo, Chenghuan; Zhang, Youxue

    2018-05-01

    Nine successful diffusion couple experiments were conducted in an 8-component SiO2-TiO2-Al2O3-FeO-MgO-CaO-Na2O-K2O system at ∼1350 °C and at 1 GPa, to study multicomponent diffusion in basaltic melts. At least 3 traverses were measured to obtain diffusion profiles for each experiment. Multicomponent diffusion matrix at 1350 °C was obtained by simultaneously fitting diffusion profiles of diffusion couple experiments. Furthermore, in order to better constrain the diffusion matrix and reconcile mineral dissolution data, mineral dissolution experiments in the literature and diffusion couple experiments from this study, were fit together. All features of diffusion profiles in both diffusion couple and mineral dissolution experiments were well reproduced by the diffusion matrix. Diffusion mechanism is inferred from eigenvectors of the diffusion matrix, and it shows that the diffusive exchange between network-formers SiO2 and Al2O3 is the slowest, the exchange of SiO2 with other oxide components is the second slowest with an eigenvalue that is only ∼10% larger, then the exchange between divalent oxide components and all the other oxide components is the third slowest with an eigenvalue that is twice the smallest eigenvalue, then the exchange of FeO + K2O with all the other oxide components is the fourth slowest with an eigenvalue that is 5 times the smallest eigenvalue, then the exchange of MgO with FeO + CaO is the third fastest with an eigenvalue that is 6.3 times the smallest eigenvalue, then the exchange of CaO + K2O with all the other oxide components is the second fastest with an eigenvalue that is 7.5 times the smallest eigenvalue, and the exchange of Na2O with all other oxide components is the fastest with an eigenvalue that is 31 times the smallest eigenvalue. The slowest and fastest eigenvectors are consistent with those for simpler systems in most literature. The obtained diffusion matrix was successfully applied to predict diffusion profiles during

  11. Karolinske psychodynamic profile (KAPP)

    DEFF Research Database (Denmark)

    Mathiesen, Birgit Bork; Søgaard, Ulf

    2006-01-01

    psykologiske testmetoder, assesment, Karolinska psychodynamic profile (KAPP), psykodynamisk profil......psykologiske testmetoder, assesment, Karolinska psychodynamic profile (KAPP), psykodynamisk profil...

  12. The spa typing of methicillin-resistant Staphylococcus aureus isolates by High Resolution Melting (HRM) analysis.

    Science.gov (United States)

    Fasihi, Yasser; Fooladi, Saba; Mohammadi, Mohammad Ali; Emaneini, Mohammad; Kalantar-Neyestanaki, Davood

    2017-09-06

    Molecular typing is an important tool for control and prevention of infection. A suitable molecular typing method for epidemiological investigation must be easy to perform, highly reproducible, inexpensive, rapid and easy to interpret. In this study, two molecular typing methods including the conventional PCR-sequencing method and high resolution melting (HRM) analysis were used for staphylococcal protein A (spa) typing of 30 Methicillin-resistant Staphylococcus aureus (MRSA) isolates recovered from clinical samples. Based on PCR-sequencing method results, 16 different spa types were identified among the 30 MRSA isolates. Among the 16 different spa types, 14 spa types separated by HRM method. Two spa types including t4718 and t2894 were not separated from each other. According to our results, spa typing based on HRM analysis method is very rapid, easy to perform and cost-effective, but this method must be standardized for different regions, spa types, and real-time machinery.

  13. A sensitive, reproducible, and economic real-time reverse transcription PCR detecting avian metapneumovirus subtypes A and B.

    Science.gov (United States)

    Franzo, G; Drigo, M; Lupini, C; Catelli, E; Laconi, A; Listorti, V; Bonci, M; Naylor, C J; Martini, M; Cecchinato, M

    2014-06-01

    Use of real-time PCR is increasing in the diagnosis of infectious disease due to its sensitivity, specificity, and speed of detection. These characteristics make it particularly suited for the diagnosis of viral infections, like avian metapneumovirus (AMPV), for which effective control benefits from continuously updated knowledge of the epidemiological situation. Other real-time reverse transcription (RT)-PCRs have been published based on highly specific fluorescent dye-labeled probes, but they have high initial cost, complex validation, and a marked susceptibility to the genetic variability of their target sequence. With this in mind, we developed and validated a SYBR Green I-based quantitative RT-PCR for the detection of the two most prevalent AMPV subtypes (i.e., subtypes A and B). The assay demonstrated an analytical sensitivity comparable with that of a previously published real-time RT-PCR and the ability to detect RNA equivalent to approximately 0.5 infectious doses for both A and B subtypes. The high efficiency and linearity between viral titer and crossing point displayed for both subtypes make it suited for viral quantification. Optimization of reaction conditions and the implementation of melting curve analysis guaranteed the high specificity of the assay. The stable melting temperature difference between the two subtypes indicated the possibility of subtyping through melting temperature analysis. These characteristics make our assay a sensitive, specific, and rapid tool, enabling contemporaneous detection, quantification, and discrimination of AMPV subtype A and B.

  14. The Microwave Properties of Simulated Melting Precipitation Particles: Sensitivity to Initial Melting

    Science.gov (United States)

    Johnson, B. T.; Olson, W. S.; Skofronick-Jackson, G.

    2016-01-01

    A simplified approach is presented for assessing the microwave response to the initial melting of realistically shaped ice particles. This paper is divided into two parts: (1) a description of the Single Particle Melting Model (SPMM), a heuristic melting simulation for ice-phase precipitation particles of any shape or size (SPMM is applied to two simulated aggregate snow particles, simulating melting up to 0.15 melt fraction by mass), and (2) the computation of the single-particle microwave scattering and extinction properties of these hydrometeors, using the discrete dipole approximation (via DDSCAT), at the following selected frequencies: 13.4, 35.6, and 94.0GHz for radar applications and 89, 165.0, and 183.31GHz for radiometer applications. These selected frequencies are consistent with current microwave remote-sensing platforms, such as CloudSat and the Global Precipitation Measurement (GPM) mission. Comparisons with calculations using variable-density spheres indicate significant deviations in scattering and extinction properties throughout the initial range of melting (liquid volume fractions less than 0.15). Integration of the single-particle properties over an exponential particle size distribution provides additional insight into idealized radar reflectivity and passive microwave brightness temperature sensitivity to variations in size/mass, shape, melt fraction, and particle orientation.

  15. Material Biocompatibility for PCR Microfluidic Chips

    KAUST Repository

    Kodzius, Rimantas; Chang, Donald Choy; Gong, Xiuqing; Wen, Weijia; Wu, Jinbo; Xiao, Kang; Yi, Xin

    2010-01-01

    As part of the current miniaturization trend, biological reactions and processes are being adapted to microfluidics devices. PCR is the primary method employed in DNA amplification, its miniaturization is central to efforts to develop portable devices for diagnostics and testing purposes. A problem is the PCR-inhibitory effect due to interaction between PCR reagents and the surrounding environment, which effect is increased in high-surface-are-to-volume ration microfluidics. In this study, we evaluated the biocompatibility of various common materials employed in the fabrication of microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most of the cases, addition of bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, whereas they did show noticeable interaction with the DNA polymerase. Our test, instead of using microfluidic devices, can be easily conducted in common PCR tubes using a standard bench thermocycler. Our data supports an overview of the means by which the materials most bio-friendly to microfluidics can be selected.

  16. Material Biocompatibility for PCR Microfluidic Chips

    KAUST Repository

    Kodzius, Rimantas

    2010-04-23

    As part of the current miniaturization trend, biological reactions and processes are being adapted to microfluidics devices. PCR is the primary method employed in DNA amplification, its miniaturization is central to efforts to develop portable devices for diagnostics and testing purposes. A problem is the PCR-inhibitory effect due to interaction between PCR reagents and the surrounding environment, which effect is increased in high-surface-are-to-volume ration microfluidics. In this study, we evaluated the biocompatibility of various common materials employed in the fabrication of microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most of the cases, addition of bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, whereas they did show noticeable interaction with the DNA polymerase. Our test, instead of using microfluidic devices, can be easily conducted in common PCR tubes using a standard bench thermocycler. Our data supports an overview of the means by which the materials most bio-friendly to microfluidics can be selected.

  17. Comparison between digital PCR and real-time PCR in detection of Salmonella typhimurium in milk.

    Science.gov (United States)

    Wang, Meng; Yang, Junjie; Gai, Zhongtao; Huo, Shengnan; Zhu, Jianhua; Li, Jun; Wang, Ranran; Xing, Sheng; Shi, Guosheng; Shi, Feng; Zhang, Lei

    2018-02-02

    As a kind of zero-tolerance foodborne pathogens, Salmonella typhimurium poses a great threat to quality of food products and public health. Hence, rapid and efficient approaches to identify Salmonella typhimurium are urgently needed. Combined with PCR and fluorescence technique, real-time PCR (qPCR) and digital PCR (ddPCR) are regarded as suitable tools for detecting foodborne pathogens. To compare the effect between qPCR and ddPCR in detecting Salmonella typhimurium, a series of nucleic acid, pure strain culture and spiking milk samples were applied and the resistance to inhibitors referred in this article as well. Compared with qPCR, ddPCR exhibited more sensitive (10 -4 ng/μl or 10 2 cfu/ml) and less pre-culturing time (saving 2h). Moreover, ddPCR had stronger resistance to inhibitors than qPCR, yet absolute quantification hardly performed when target's concentration over 1ng/μl or 10 6 cfu/ml. This study provides an alternative strategy in detecting foodborne Salmonella typhimurium. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Amphibious Magnetotelluric Investigation of the Aleutian Arc: Mantle Melt Generation and Migration beneath Okmok Caldera

    Science.gov (United States)

    Zelenak, G.; Key, K.; Bennington, N. L.; Bedrosian, P.

    2015-12-01

    Understanding the factors controlling the release of volatiles from the downgoing slab, the subsequent generation of melt in the overlying mantle wedge, the migration of melt to the crust, and its evolution and emplacement within the crust are important for advancing our understanding of arc magmatism and crustal genesis. Because melt and aqueous fluids are a few orders of magnitude more electrically conductive than unmelted peridotite, the conductivity-mapping magnetotelluric (MT) method is well-suited to imaging fluids and melt beneath arc volcanoes. Here we present conductivity results from an amphibious MT profile crossing Okmok volcano in the central Aleutian arc. The Aleutian arc is one of the most volcanically active regions in North America, making it an ideal location for studying arc magnetism. Okmok volcano, located on the northeastern portion of Umnak Island, is among the most active volcanoes in the Aleutian chain. In addition to two caldera-forming events in the Holocene, numerous eruptions in the past century indicate a robust magmatic supply. Previous coarse resolution seismic studies have inferred a crustal magma reservoir. In order to investigate the role fluids play in melting the mantle wedge, how melts ascend through the corner flow regime of the mantle wedge, how melt migrates and is stored within the upper mantle and crust, and how this impacts explosive caldera forming eruptions, we carried out an amphibious geophysical survey across the arc in June-July 2015. Twenty-nine onshore MT stations and 10 offshore stations were collected in a 3D array covering Okmok, and 43 additional offshore MT stations completed a 300 km amphibious profile starting at the trench, crossing the forearc, arc and backarc. Thirteen onshore passive seismic stations were also installed and will remain in place for one year to supplement the twelve permanent stations on the island. Data collected by this project will be used to map seismic velocity and electrical

  19. Soft fruit traceability in food matrices using real-time PCR.

    Science.gov (United States)

    Palmieri, Luisa; Bozza, Elisa; Giongo, Lara

    2009-02-01

    Food product authentication provides a means of monitoring and identifying products for consumer protection and regulatory compliance. There is a scarcity of analytical methods for confirming the identity of fruit pulp in products containing Soft Fruit. In the present work we have developed a very sensible qualitative and quantitative method to determine the presence of berry DNAs in different food matrices. To our knowledge, this is the first study that shows the applicability, to Soft Fruit traceability, of melting curve analysis and multiplexed fluorescent probes, in a Real-Time PCR platform. This methodology aims to protect the consumer from label misrepresentation.

  20. Development of a multiplex real-time PCR assay for phylogenetic analysis of Uropathogenic Escherichia coli.

    Science.gov (United States)

    Hasanpour, Mojtaba; Najafi, Akram

    2017-06-01

    Uropathogenic Escherichia coli (UPEC) is among major pathogens causing 80-90% of all episodes of urinary tract infections (UTIs). Recently, E. coli strains are divided into eight main phylogenetic groups including A, B1, B2, C, D, E, F, and clade I. This study was aimed to develop a rapid, sensitive, and specific multiplex real time PCR method capable of detecting phylogenetic groups of E. coli strains. This study was carried out on E. coli strains (isolated from the patient with UTI) in which the presence of all seven target genes had been confirmed in our previous phylogenetic study. An EvaGreen-based singleplex and multiplex real-time PCR with melting curve analysis was designed for simultaneous detection and differentiation of these genes. The primers were selected mainly based on the production of amplicons with melting temperatures (T m ) ranging from 82°C to 93°C and temperature difference of more than 1.5°C between each peak.The multiplex real-time PCR assays that have been developed in the present study were successful in detecting the eight main phylogenetic groups. Seven distinct melting peaks were discriminated, with Tm value of 93±0.8 for arpA, 89.2±0.1for chuA, 86.5±0.1 for yjaA, 82.3±0.2 for TspE4C2, 87.8±0.1for trpAgpC, 85.4±0.6 for arpAgpE genes, and 91±0.5 for the internal control. To our knowledge, this study is the first melting curve-based real-time PCR assay developed for simultaneous and discrete detection of these seven target genes. Our findings showed that this assay has the potential to be a rapid, reliable and cost-effective alternative for routine phylotyping of E. coli strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Recent Changes in Arctic Sea Ice Melt Onset, Freeze-Up, and Melt Season Length

    Science.gov (United States)

    Markus, Thorsten; Stroeve, Julienne C.; Miller, Jeffrey

    2010-01-01

    In order to explore changes and trends in the timing of Arctic sea ice melt onset and freeze-up and therefore melt season length, we developed a method that obtains this information directly from satellite passive microwave data, creating a consistent data set from 1979 through present. We furthermore distinguish between early melt (the first day of the year when melt is detected) and the first day of continuous melt. A similar distinction is made for the freeze-up. Using this method we analyze trends in melt onset and freeze-up for 10 different Arctic regions. In all regions except for the Sea of Okhotsk, which shows a very slight and statistically insignificant positive trend (O.4 days/decade), trends in melt onset are negative, i.e. towards earlier melt. The trends range from -1.0day/decade for the Bering Sea to -7.3 days/decade for the East Greenland Sea. Except for the Sea of Okhotsk all areas also show a trend towards later autumn freeze onset. The Chukchi/Beaufort Seas and Laptev/East Siberian Seas observe the strongest trends with 7 days/decade. For the entire Arctic, the melt season length has increased by about 20 days over the last 30 years. Largest trends of over 1O days/decade are seen for Hudson Bay, the East Greenland Sea the Laptev/East Siberian Seas, and the Chukchi/Beaufort Seas. Those trends are statistically significant a1 the 99% level.

  2. Differential transcript abundance and genotypic variation of four putative allergen-encoding gene families in melting peach

    NARCIS (Netherlands)

    Yang, Z.; Ma, Y.; Chen, L.; Xie, R.; Zhang, X.; Zhang, B.; Lu, M.; Wu, S.; Gilissen, L.J.W.J.; Ree, van R.; Gao, Z.

    2011-01-01

    We analysed the temporal and spatial transcript expression of the panel of 18 putative isoallergens from four gene families (Pru p 1–4) in the peach fruit, anther and leaf of two melting cultivars, to gain insight into their expression profiles and to identify the key family members. Genotypic

  3. Real-time PCR in virology

    OpenAIRE

    Mackay, Ian M.; Arden, Katherine E.; Nitsche, Andreas

    2002-01-01

    The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of P...

  4. Fuel Rod Melt Progression Simulation Using Low-Temperature Melting Metal Alloy

    International Nuclear Information System (INIS)

    Seung Dong Lee; Suh, Kune Y.; GoonCherl Park; Un Chul Lee

    2002-01-01

    The TMI-2 accident and various severe fuel damage experiments have shown that core damage is likely to proceed through various states before the core slumps into the lower head. Numerous experiments were conducted to address when and how the core can lose its original geometry, what geometries are formed, and in what processes the core materials are transported to the lower plenum of the reactor pressure vessel. Core degradation progresses along the line of clad ballooning, clad oxidation, material interaction, metallic blockage, molten pool formation, melt progression, and relocation to the lower head. Relocation into the lower plenum may occur from the lateral periphery or from the bottom of the core depending upon the thermal and physical states of the pool. Determining the quantities and rate of molten material transfer to the lower head is important since significant amounts of molten material relocated to the lower head can threaten the vessel integrity by steam explosion and thermal and mechanical attack of the melt. In this paper the focus is placed on the melt flow regime on a cylindrical fuel rod utilizing the LAMDA (Lumped Analysis of Melting in Degrading Assemblies) facility at the Seoul National University. The downward relocation of the molten material is a combination of the external film flow and the internal pipe flow. The heater rods are 0.8 m long and are coated by a low-temperature melting metal alloy. The electrical internal heating method is employed during the test. External heating is adopted to simulate the exothermic Zircaloy-steam reaction. Tests are conducted in several quasi-steady-state conditions. Given the variable boundary conditions including the heat flux and the water level, observation is made for the melting location, progression, and the mass of molten material. Finally, the core melt progression model is developed from the visual inspection and quantitative analysis of the experimental data. As the core material relocates

  5. Cross-platform comparison of SYBR® Green real-time PCR with TaqMan PCR, microarrays and other gene expression measurement technologies evaluated in the MicroArray Quality Control (MAQC study

    Directory of Open Access Journals (Sweden)

    Dial Stacey L

    2008-07-01

    Full Text Available Abstract Background The MicroArray Quality Control (MAQC project evaluated the inter- and intra-platform reproducibility of seven microarray platforms and three quantitative gene expression assays in profiling the expression of two commercially available Reference RNA samples (Nat Biotechnol 24:1115-22, 2006. The tested microarrays were the platforms from Affymetrix, Agilent Technologies, Applied Biosystems, GE Healthcare, Illumina, Eppendorf and the National Cancer Institute, and quantitative gene expression assays included TaqMan® Gene Expression PCR Assay, Standardized (Sta RT-PCR™ and QuantiGene®. The data showed great consistency in gene expression measurements across different microarray platforms, different technologies and test sites. However, SYBR® Green real-time PCR, another common technique utilized by half of all real-time PCR users for gene expression measurement, was not addressed in the MAQC study. In the present study, we compared the performance of SYBR Green PCR with TaqMan PCR, microarrays and other quantitative technologies using the same two Reference RNA samples as the MAQC project. We assessed SYBR Green real-time PCR using commercially available RT2 Profiler™ PCR Arrays from SuperArray, containing primer pairs that have been experimentally validated to ensure gene-specificity and high amplification efficiency. Results The SYBR Green PCR Arrays exhibit good reproducibility among different users, PCR instruments and test sites. In addition, the SYBR Green PCR Arrays have the highest concordance with TaqMan PCR, and a high level of concordance with other quantitative methods and microarrays that were evaluated in this study in terms of fold-change correlation and overlap of lists of differentially expressed genes. Conclusion These data demonstrate that SYBR Green real-time PCR delivers highly comparable results in gene expression measurement with TaqMan PCR and other high-density microarrays.

  6. Rotational melting in displacive quantum paraelectrics

    International Nuclear Information System (INIS)

    Martonak, R.; Tosatti, E.

    1994-06-01

    Displacive quantum paraelectrics are discussed as possible realizations of rotational quantum melting. The phenomenology of SrTiO 3 and KTaO 3 is discussed in this light. Both old and fresh theoretical work on two-dimensional lattice models for quantum paraelectricity is reviewed. (author). 73 refs, 15 figs

  7. Using Melting Ice to Teach Radiometric Dating.

    Science.gov (United States)

    Wise, Donald Underkofler

    1990-01-01

    Presented is an activity in which a mystery setting is used to motivate students to construct their own decay curves of melting ice used as an analogy to radioactive decay. Procedures, materials, apparatus, discussion topics, presentation, and thermodynamics are discussed. (CW)

  8. Models and observations of Arctic melt ponds

    Science.gov (United States)

    Golden, K. M.

    2016-12-01

    During the Arctic melt season, the sea ice surface undergoes a striking transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is largely determined by the complex evolution of melt pond configurations. In fact, ice-albedo feedback has played a significant role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a challenge to improving climate projections. It has been found that as the ponds grow and coalesce, the fractal dimension of their boundaries undergoes a transition from 1 to about 2, around a critical length scale of 100 square meters in area. As the ponds evolve they take complex, self-similar shapes with boundaries resembling space-filling curves. I will outline how mathematical models of composite materials and statistical physics, such as percolation and Ising models, are being used to describe this evolution and predict key geometrical parameters that agree very closely with observations.

  9. Erythritol: crystal growth from the melt.

    Science.gov (United States)

    Lopes Jesus, A J; Nunes, Sandra C C; Ramos Silva, M; Matos Beja, A; Redinha, J S

    2010-03-30

    The structural changes occurring on erythritol as it is cooled from the melt to low temperature, and then heated up to the melting point have been investigated by differential scanning calorimetry (DSC), polarized light thermal microscopy (PLTM), X-ray powder diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR). By DSC, it was possible to set up the conditions to obtain an amorphous solid, a crystalline solid, or a mixture of both materials in different proportions. Two crystalline forms have been identified: a stable and a metastable one with melting points of 117 and 104 degrees C, respectively. The fusion curve decomposition of the stable form revealed the existence of three conformational structures. The main paths of the crystallization from the melt were followed by PLTM. The texture and colour changes allowed the characterization of the different phases and transitions in which they are involved on cooling as well as on heating processes. The type of crystallization front and its velocity were also followed by microscopic observation. These observations, together with the data provided by PXRD, allowed elucidating the transition of the metastable form into the stable one. The structural changes occurring upon the cooling and subsequent heating processes, namely those arising from intermolecular hydrogen bonds, were also accompanied by infrared spectroscopy. Particular attention was given to the spectral changes occurring in the OH stretching region. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  10. Melting Metal on a Playing Card

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2016-01-01

    Many of us are familiar with the demonstration of boiling water in a paper cup held over a candle or a Bunsen burner; the ignition temperature of paper is above the temperature of 100°C at which water boils under standard conditions. A more dramatic demonstration is melting tin held in a playing card. This illustration is from Tissandier's book on…

  11. The atmospheric boundary layer over melting glaciers

    NARCIS (Netherlands)

    Oerlemans, J.

    1998-01-01

    Results from a number of glacio-meteorological experiments carried out over melting glaciers are summarized. It is shown that in summer the microclimate of a glacier tongue is dominated by katabatic flow, initiated by the downward sensible heat flux. Characteristic obstacle height is an

  12. Radiation polymerized hot melt pressure sensitive adhesives

    International Nuclear Information System (INIS)

    Pastor, S.D.; Skoultchi, M.M.

    1977-01-01

    Hot melt pressure sensitive adhesive compositions formed by copolymerizing at least one 3-(chlorinated aryloxy)-2-hydroxypropyl ester of an alpha, beta unsaturated carboxylic acid with acrylate based copolymerizable monomers, are described. The resultant ethylenically saturated prepolymer is heated to a temperature sufficient to render it fluid and flowable. This composition is coated onto a substrate and exposed to ultraviolet radiation

  13. Can Text Messages Mitigate Summer Melt?

    Science.gov (United States)

    Castleman, Benjamin L.; Page, Lindsay C.

    2013-01-01

    Higher education officials have long been familiar with the concept of "summer melt," where students who have paid a deposit to attend one college or university instead matriculate at a different institution, usually presumed to be of comparable quality. In previous research, drawing on longitudinal data from various urban school…

  14. Linking Polymer Dynamics to Melt Processing

    Indian Academy of Sciences (India)

    Ashish Lele

    Linking Polymer Dynamics to Melt Processing. Ashish Lele. NaUonal Chemical Laboratory, Pune ak.lele@ncl.res.in www.cfpegroup.net. Mid-‐Year MeeUng July 2-‐3, 2010. Indian Academy of Sciences, Bangalore ...

  15. Educating Multicultural Citizens: Melting Pot or Mosaic?

    Science.gov (United States)

    Entwistle, Harold

    2000-01-01

    Explores the educational metaphors of the melting pot (immigrants must assimilate into the mainstream culture) and the cultural mosaic (immigrants should retain their cultural identifies). Focuses on such issues as multiculturalism and justice for immigrants, social cohesion, the notion of cultural relativism, and differing conceptions of culture.…

  16. Needleless Melt-Electrospinning of Polypropylene Nanofibres

    Directory of Open Access Journals (Sweden)

    Jian Fang

    2012-01-01

    Full Text Available Polypropylene (PP nanofibres have been electrospun from molten PP using a needleless melt-electrospinning setup containing a rotary metal disc spinneret. The influence of the disc spinneret (e.g., disc material and diameter, operating parameters (e.g., applied voltage, spinning distance, and a cationic surfactant on the fibre formation and average fibre diameter were examined. It was shown that the metal material used for making the disc spinneret had a significant effect on the fibre formation. Although the applied voltage had little effect on the fibre diameter, the spinning distance affected the fibre diameter considerably, with shorter spinning distance resulting in finer fibres. When a small amount of cationic surfactant (dodecyl trimethyl ammonium bromide was added to the PP melt for melt-electrospinning, the fibre diameter was reduced considerably. The finest fibres produced from this system were 400±290 nm. This novel melt-electrospinning setup may provide a continuous and efficient method to produce PP nanofibres.

  17. Catastrophic failure of polymer melts during extension

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.

    2013-01-01

    Numerical flow modeling has been applied to study the break of monodisperse polymer melts during extension. These continuum mechanical based computations are within the ideas of the microstructural ’interchain pressure’ theory. Calculated breaks, a result of small initial sample imperfections, ag...

  18. Arctic Ice Melting: National Security Implications

    Science.gov (United States)

    2011-02-01

    be a curse rather than a good, and under no conditions can it either lead into freedom or constitute a proof for its existence. - Hannah ... Arendt 39 How will the domestic or foreign economic policies of the United States be affected by Arctic ice melting? Increased access to the

  19. INVESTIGATION OF THE METAL MELTING PROCESS

    Directory of Open Access Journals (Sweden)

    V. I. Timoshpolskij

    2006-01-01

    Full Text Available The nonlinear mathematical model of calculation of temperature fields in the process of metal melting is formulated and solved using the method of equivalent source taking into account nonlinearity of thermophysical properties of material and variable terms of heat exchange.

  20. Identification of feline immunodeficiency virus subtype-B on St. Kitts, West Indies by quantitative PCR.

    Science.gov (United States)

    Kelly, Patrick J; Stocking, Ruey; Gao, Dongya; Phillips, Nikol; Xu, Chuanling; Kaltenboeck, Bernhard; Wang, Chengming

    2011-07-04

    Although antibodies to the feline immunodeficiency virus (FIV) have been detected by SNAP assay in cats from St. Kitts, there have been no molecular studies to further confirm the infection and determine the FIV subtypes present. Total nucleic acids were extracted from EDTA whole blood specimens from 35 cats, followed by quantitative fluorescence resonance energy transfer (FRET) PCR under a six-channel LightCycler 2.0 Instrument with Software version 4.1. Four of 11 stray cats (36 %) but none of 24 owned cats were FIV positive by real-time PCR.  High-resolution melting curve analysis indicated that all four positive cats were infected with FIV subtype-B. This is the first molecular characterization of FIV subtypes on St. Kitts and the results confirm the high prevalence of FIV infection in stray cats on the island.

  1. A novel photoinduced electron transfer (PET) primer technique for rapid real-time PCR detection of Cryptosporidium spp

    International Nuclear Information System (INIS)

    Jothikumar, N.; Hill, Vincent R.

    2013-01-01

    Highlights: •Uses a single-labeled fluorescent primer for real-time PCR. •The detection sensitivity of PET PCR was comparable to TaqMan PCR. •Melt curve analysis can be performed to confirm target amplicon production. •Conventional PCR primers can be converted to PET PCR primers. -- Abstract: We report the development of a fluorescently labeled oligonucleotide primer that can be used to monitor real-time PCR. The primer has two parts, the 3′-end of the primer is complimentary to the target and a universal 17-mer stem loop at the 5′-end forms a hairpin structure. A fluorescent dye is attached to 5′-end of either the forward or reverse primer. The presence of guanosine residues at the first and second position of the 3′ dangling end effectively quenches the fluorescence due to the photo electron transfer (PET) mechanism. During the synthesis of nucleic acid, the hairpin structure is linearized and the fluorescence of the incorporated primer increases several-fold due to release of the fluorescently labeled tail and the absence of guanosine quenching. As amplicons are synthesized during nucleic acid amplification, the fluorescence increase in the reaction mixture can be measured with commercially available real-time PCR instruments. In addition, a melting procedure can be performed to denature the double-stranded amplicons, thereby generating fluorescence peaks that can differentiate primer dimers and other non-specific amplicons if formed during the reaction. We demonstrated the application of PET-PCR for the rapid detection and quantification of Cryptosporidium parvum DNA. Comparison with a previously published TaqMan® assay demonstrated that the two real-time PCR assays exhibited similar sensitivity for a dynamic range of detection of 6000–0.6 oocysts per reaction. PET PCR primers are simple to design and less-expensive than dual-labeled probe PCR methods, and should be of interest for use by laboratories operating in resource

  2. A novel photoinduced electron transfer (PET) primer technique for rapid real-time PCR detection of Cryptosporidium spp

    Energy Technology Data Exchange (ETDEWEB)

    Jothikumar, N., E-mail: jin2@cdc.gov; Hill, Vincent R.

    2013-06-28

    Highlights: •Uses a single-labeled fluorescent primer for real-time PCR. •The detection sensitivity of PET PCR was comparable to TaqMan PCR. •Melt curve analysis can be performed to confirm target amplicon production. •Conventional PCR primers can be converted to PET PCR primers. -- Abstract: We report the development of a fluorescently labeled oligonucleotide primer that can be used to monitor real-time PCR. The primer has two parts, the 3′-end of the primer is complimentary to the target and a universal 17-mer stem loop at the 5′-end forms a hairpin structure. A fluorescent dye is attached to 5′-end of either the forward or reverse primer. The presence of guanosine residues at the first and second position of the 3′ dangling end effectively quenches the fluorescence due to the photo electron transfer (PET) mechanism. During the synthesis of nucleic acid, the hairpin structure is linearized and the fluorescence of the incorporated primer increases several-fold due to release of the fluorescently labeled tail and the absence of guanosine quenching. As amplicons are synthesized during nucleic acid amplification, the fluorescence increase in the reaction mixture can be measured with commercially available real-time PCR instruments. In addition, a melting procedure can be performed to denature the double-stranded amplicons, thereby generating fluorescence peaks that can differentiate primer dimers and other non-specific amplicons if formed during the reaction. We demonstrated the application of PET-PCR for the rapid detection and quantification of Cryptosporidium parvum DNA. Comparison with a previously published TaqMan® assay demonstrated that the two real-time PCR assays exhibited similar sensitivity for a dynamic range of detection of 6000–0.6 oocysts per reaction. PET PCR primers are simple to design and less-expensive than dual-labeled probe PCR methods, and should be of interest for use by laboratories operating in resource

  3. Induction melting of simulated transuranic waste

    International Nuclear Information System (INIS)

    Tenaglia, R.D.; McCall, J.L.

    1983-06-01

    Coreless induction melting was investigated as a method to melt and consolidate waste material representative of the transuranic waste (TRU) stored at the Idaho National Engineering Laboratory (INEL). Waste material was introduced onto the surface of a molten cast iron bath in a coreless induction furnace. Waste metallics were incorporated into the bath. Noncombustibles formed a slag which was poured or skimmed from the bath surface. Stack sampling was performed to characterize the off-gas and particulate matter evolved. Experimental melting tests were performed for a variety of types of wastes including metallics, chemical sludge, soil, concrete, and glass. Each test also included a representative level of combustible materials consisting of paper, wood, cloth, polyvinyl chloride and polyethylene. Metallic wastes were readily processed by induction melting with a minimum of slag production. Test waste consisting primarily of chemical sludge provided fluid slags which could be poured from the bath surface. Processing of wastes consisting of soil, concrete, or glass was limited by the inability to achieve fluid slags. It appears from test results that coreless induction melting is a feasible method to process INEL-type waste materials if two problems can be resolved. First, slag fluidity must be improved to facilitate the collection of slags formed from soil, concrete, or glass containing wastes. Secondly, refractory life must be further optimized to permit prolonged processing of the waste materials. The use of a chrome-bearing high-alumina refractory was found to resist slag line attach much better than a magnesia refractory, although some attack was still noted

  4. Calibrated user-friendly reverse transcriptase-PCR assay

    DEFF Research Database (Denmark)

    Bor, M V; Sørensen, B S; Rammer, P

    1998-01-01

    We report a competitive reverse transcriptase-PCR (RT-PCR) assay and a calibrated user-friendly RT-PCR assay (CURT-PCR) for epidermal growth factor receptor (EGFR) mRNA. A calibrator was prepared from isolated rat liver RNA, and the amount of EGFR mRNA was determined by competitive RT-PCR. In CUR...

  5. High-resolution melting analysis of the single nucleotide polymorphism hot-spot region in the rpoB gene as an indicator of reduced susceptibility to rifaximin in Clostridium difficile.

    Science.gov (United States)

    Pecavar, Verena; Blaschitz, Marion; Hufnagl, Peter; Zeinzinger, Josef; Fiedler, Anita; Allerberger, Franz; Maass, Matthias; Indra, Alexander

    2012-06-01

    Clostridium difficile, a Gram-positive, spore-forming, anaerobic bacterium, is the main causative agent of hospital-acquired diarrhoea worldwide. In addition to metronidazole and vancomycin, rifaximin, a rifamycin derivative, is a promising antibiotic for the treatment of recurring C. difficile infections (CDI). However, exposure of C. difficile to this antibiotic has led to the development of rifaximin-resistance due to point mutations in the β-subunit of the RNA polymerase (rpoB) gene. In the present study, 348 C. difficile strains with known PCR-ribotypes were investigated for respective single nucleotide polymorphisms (SNPs) within the proposed rpoB hot-spot region by using high-resolution melting (HRM) analysis. This method allows the detection of SNPs by comparing the altered melting behaviour of dsDNA with that of wild-type DNA. Discrimination between wild-type and mutant strains was enhanced by creating heteroduplexes by mixing sample DNA with wild-type DNA, leading to characteristic melting curve shapes from samples containing SNPs in the respective rpoB section. In the present study, we were able to identify 16 different rpoB sequence-types (ST) by sequencing analysis of a 325 bp fragment. The 16 PCR STs displayed a total of 24 different SNPs. Fifteen of these 24 SNPs were located within the proposed 151 bp SNP hot-spot region, resulting in 11 different HRM curve profiles (CP). Eleven SNPs (seven of which were within the proposed hot-spot region) led to amino acid substitutions associated with reduced susceptibility to rifaximin and 13 SNPs (eight of which were within the hot-spot region) were synonymous. This investigation clearly demonstrates that HRM analysis of the proposed SNP hot-spot region in the rpoB gene of C. difficile is a fast and cost-effective method for the identification of C. difficile samples with reduced susceptibility to rifaximin and even allows simultaneous SNP subtyping of the respective C. difficile isolates.

  6. Diagnosis of trichomonas vaginalis infection by PCR

    International Nuclear Information System (INIS)

    Issa, R.M.; Shalaby, M.A.

    2007-01-01

    To compare the sensitivity of PCR, wet preparation and culture in detecting Trichomonas vaginalis in urine and vaginal fluid. A PCR targeting the beta-tubulin genes of T. vaginalis was used for the detection of the organism in both vaginal swab and urine specimens from infected patients. Random urine samples were collected from 30 patients (23 females and 7 males), and tested for T. vaginalis by wet preparation and the Inpouch T. vaginalis culture systeme. Two vaginal swabs were collected by each woman. PCR detection. was carried out on samples negative by first methods. The positive result was found in 28.57% in male urine and 39.13% in female urine samples, 65.21% in 1st swab and 78.26 % in 2nd swab by wet preparation. By culture, the male urine samples showed 42.85% positive, female urine 69.56% while 1st swab showed 86.95% positive and 2nd swab 91.30% positive. All negative cases by culture in urine and vaginal samples were tested by PCR, which showed 2 cases to be positive in male urine samples and 5 cases positive in female urine sample. PCR assay was as good as or more sensitive than wet preparation and culture and resulted in practical advantage of providing results in shorter time. However, PCR test is still very expensive. (author)

  7. Numerical modelling of an industrial glass-melting furnace

    Energy Technology Data Exchange (ETDEWEB)

    Hill, S C [Brigham Young Univ., Advanced Combustion Engineering Research Center, Provo, UT (United States); Webb, B W; McQuay, M Q [Brigham Young Univ., Mechanical Engineering Dept., Provo, UT (United States); Newbold, J [Lockheed Aerospace, Denver, CO (United States)

    2000-03-01

    The predictive capability of two comprehensive combustion codes, PCGC-3 and FLUENT, to simulate local flame structure and combustion characteristics in a industrial gas-fired, flat-glass furnace is investigated. Model predictions are compared with experimental data from the furnace for profiles of velocity, species concentrations, temperatures, and wall-incident radiative heat flux. Predictions from both codes show agreement with the measured mean velocity profiles and incident radiant flux on the crown. However, significant differences between the code predictions and measurements are observed for the flame-ozone temperatures and species concentrations. The observed discrepancies may be explained by (i) uncertainties in the distributions of mean velocity and turbulence in the portneck, (ii) uncertainties in the port-by-port stoichiometry, (iii) different grid-based approximations to the furnace geometry made in the two codes, (iv) the assumption of infinitely fast chemistry made in the chemical reaction model of both codes, and (v) simplifying assumptions made in the simulations regarding the complex coupling between the combustion space, batch blanket, and melt tank. The study illustrates the critical need for accurate boundary conditions (inlet air and fuel flow distributions, boundary surface temperatures, etc.) and the importance of representative furnace geometry in simulating these complex industrial combustion systems. (Author)

  8. Electric melting furnace of solidifying radioactive waste by utilizing magnetic field and melting method

    International Nuclear Information System (INIS)

    Igarashi, Hiroshi.

    1990-01-01

    An electric melting furnace for solidification of radioactive wastes utilizing magnetic fields in accordance with the present invention comprises a plurality of electrodes supplying AC current to molten glass in a glass melting furnace and a plurality of magnetic poles for generating AC magnetic fields. Interactions between the current and the magnetic field, generated forces in the identical direction in view of time in the molten glass. That is, forces for promoting the flow of molten glass in the melting furnace are resulted due to the Fleming's left-hand rule. As a result, the following effects can be obtained. (1) The amount of heat ransferred from the molten glass to the starting material layer on the molten surface is increased to improve the melting performance. (2) For an identical melting performance, the size and the weight of the melting furnace can be reduced to decrease the amount of secondary wastes when the apparatus-life is exhausted. (3) Bottom deposits can be suppressed and prevented from settling and depositing to the reactor bottom by the promoted flow in the layer. (4) Further, the size of auxiliary electrodes for directly supplying electric current to heat the molten glass near the reactor bottom can be decreased. (I.S.)

  9. Can Nano-Particle Melt below the Melting Temperature of Its Free Surface Partner?

    International Nuclear Information System (INIS)

    Sui Xiao-Hong; Qin Shao-Jing; Wang Zong-Guo; Kang Kai; Wang Chui-Lin

    2015-01-01

    The phonon thermal contribution to the melting temperature of nano-particles is inspected. The discrete summation of phonon states and its corresponding integration form as an approximation for a nano-particle or for a bulk system have been analyzed. The discrete phonon energy levels of pure size effect and the wave-vector shifts of boundary conditions are investigated in detail. Unlike in macroscopic thermodynamics, the integration volume of zero-mode of phonon for a nano-particle is not zero, and it plays an important role in pure size effect and boundary condition effect. We find that a nano-particle will have a rising melting temperature due to purely finite size effect; a lower melting temperature bound exists for a nano-particle in various environments, and the melting temperature of a nano-particle with free boundary condition reaches this lower bound. We suggest an easy procedure to estimation the melting temperature, in which the zero-mode contribution will be excluded, and only several bulk quantities will be used as input. We would like to emphasize that the quantum effect of discrete energy levels in nano-particles, which is not present in early thermodynamic studies on finite size corrections to melting temperature in small systems, should be included in future researches. (condensed matter: structural, mechanical, and thermal properties)

  10. High-resolution melting analysis (HRM) for differentiation of four major Taeniidae species in dogs Taenia hydatigena, Taenia multiceps, Taenia ovis, and Echinococcus granulosus sensu stricto.

    Science.gov (United States)

    Dehghani, Mansoureh; Mohammadi, Mohammad Ali; Rostami, Sima; Shamsaddini, Saeedeh; Mirbadie, Seyed Reza; Harandi, Majid Fasihi

    2016-07-01

    Tapeworms of the genus Taenia include several species of important parasites with considerable medical and veterinary significance. Accurate identification of these species in dogs is the prerequisite of any prevention and control program. Here, we have applied an efficient method for differentiating four major Taeniid species in dogs, i.e., Taenia hydatigena, T. multiceps, T. ovis, and Echinococcus granulosus sensu stricto. High-resolution melting (HRM) analysis is simpler, less expensive, and faster technique than conventional DNA-based assays and enables us to detect PCR amplicons in a closed system. Metacestode samples were collected from local abattoirs from sheep. All the isolates had already been identified by PCR-sequencing, and their sequence data were deposited in the GenBank. Real-time PCR coupled with HRM analysis targeting mitochondrial cox1 and ITS1 genes was used to differentiate taeniid species. Distinct melting curves were obtained from ITS1 region enabling accurate differentiation of three Taenia species and E. granulosus in dogs. The HRM curves of Taenia species and E .granulosus were clearly separated at Tm of 85 to 87 °C. In addition, double-pick melting curves were produced in mixed infections. Cox1 melting curves were not decisive enough to distinguish four taeniids. In this work, the efficiency of HRM analysis to differentiate four major taeniid species in dogs has been demonstrated using ITS1 gene.

  11. Causes of Glacier Melt Extremes in the Alps Since 1949

    Science.gov (United States)

    Thibert, E.; Dkengne Sielenou, P.; Vionnet, V.; Eckert, N.; Vincent, C.

    2018-01-01

    Recent record-breaking glacier melt values are attributable to peculiar extreme events and long-term warming trends that shift averages upward. Analyzing one of the world's longest mass balance series with extreme value statistics, we show that detrending melt anomalies makes it possible to disentangle these effects, leading to a fairer evaluation of the return period of melt extreme values such as 2003, and to characterize them by a more realistic bounded behavior. Using surface energy balance simulations, we show that three independent drivers control melt: global radiation, latent heat, and the amount of snow at the beginning of the melting season. Extremes are governed by large deviations in global radiation combined with sensible heat. Long-term trends are driven by the lengthening of melt duration due to earlier and longer-lasting melting of ice along with melt intensification caused by trends in long-wave irradiance and latent heat due to higher air moisture.

  12. Sea Ice Melt Pond Data from the Canadian Arctic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains observations of albedo, depth, and physical characteristics of melt ponds on sea ice, taken during the summer of 1994. The melt ponds studied...

  13. Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases.

    Science.gov (United States)

    Rossetti, Lia; Giraffa, Giorgio

    2005-11-01

    About a thousand lactic acid bacteria (LAB) isolated from dairy products, especially cheeses, were identified and typed by species-specific PCR and RAPD-PCR, respectively. RAPD-PCR profiles, which were obtained by using the M13 sequence as a primer, allowed us to implement a large database of different fingerprints, which were analysed by BioNumerics software. Cluster analysis of the combined RAPD-PCR fingerprinting profiles enabled us to implement a library, which is a collection of library units, which in turn is a selection of representative database entries. A library unit, in this case, can be considered to be a definable taxon. The strains belonged to 11 main RAPD-PCR fingerprinting library units identified as Lactobacillus casei/paracasei, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus helveticus, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus brevis, Enterococcus faecium, Enterococcus faecalis, Streptococcus thermophilus and Lactococcus lactis. The possibility to routinely identify newly typed, bacterial isolates by consulting the library of the software was valued. The proposed method could be suggested to refine previous strain identifications, eliminate redundancy and dispose of a technologically useful LAB strain collection. The same approach could also be applied to identify LAB strains isolated from other food ecosystems.

  14. A 2D double-porosity model for melting and melt migration beneath mid-oceanic ridges

    Science.gov (United States)

    Liu, B.; Liang, Y.; Parmentier, E.

    2017-12-01

    Several lines of evidence suggest that the melting and melt extraction region of the MORB mantle is heterogeneous consisting of an interconnected network of high permeability dunite channels in a low porosity harzburgite or lherzolite matrix. In principle, one can include channel formation into the tectonic-scale geodynamic models by solving conservation equations for a chemically reactive and viscously deformable porous medium. Such an approach eventually runs into computational limitations such as resolving fractal-like channels that have a spectrum of width. To better understand first order features of melting and melt-rock interaction beneath MOR, we have formulated a 2D double porosity model in which we treat the triangular melting region as two overlapping continua occupied by the low-porosity matrix and interconnected high-porosity channels. We use melt productivity derived from a thermodynamic model and melt suction rate to close our problem. We use a high-order accurate numerical method to solve the conservation equations in 2D for porosity, solid and melt velocities and concentrations of chemical tracers in the melting region. We carry out numerical simulations to systematically study effects of matrix-to-channel melt suction and spatially distributed channels on the distributions of porosity and trace element and isotopic ratios in the melting region. For near fractional melting with 10 vol% channel in the melting region, the flow field of the matrix melt follows closely to that of the solid because the small porosity (exchange between the melt and the solid. The smearing effect can be approximated by dispersion coefficient. For slowly diffusing trace elements (e.g., LREE and HFSE), the melt migration induced dispersion can be as effective as thermal diffusion. Therefore, sub-kilometer scale heterogeneities of Nd and Hf isotopes are significantly damped or homogenized in the melting region.

  15. Rapid detection and identification of four major Schistosoma species by high-resolution melt (HRM) analysis.

    Science.gov (United States)

    Li, Juan; Zhao, Guang-Hui; Lin, RuiQing; Blair, David; Sugiyama, Hiromu; Zhu, Xing-Quan

    2015-11-01

    Schistosomiasis, caused by blood flukes belonging to several species of the genus Schistosoma, is a serious and widespread parasitic disease. Accurate and rapid differentiation of these etiological agents of animal and human schistosomiasis to species level can be difficult. We report a real-time PCR assay coupled with a high-resolution melt (HRM) assay targeting a portion of the nuclear 18S rDNA to detect, identify, and distinguish between four major blood fluke species (Schistosoma japonicum, Schistosoma mansoni, Schistosoma haematobium, and Schistosoma mekongi). Using this system, the Schistosoma spp. was accurately identified and could also be distinguished from all other trematode species with which they were compared. As little as 10(-5) ng genomic DNA from a Schistosoma sp. could be detected. This process is inexpensive, easy, and can be completed within 3 h. Examination of 21 representative Schistosoma samples from 15 geographical localities in seven endemic countries validated the value of the HRM detection assay and proved its reliability. The melting curves were characterized by peaks of 83.65 °C for S. japonicum and S. mekongi, 85.65 °C for S. mansoni, and 85.85 °C for S. haematobium. The present study developed a real-time PCR coupled with HRM analysis assay for detection and differential identification of S. mansoni, S. haematobium, S. japonicum, and S. mekongi. This method is rapid, sensitive, and inexpensive. It has important implications for epidemiological studies of Schistosoma.

  16. Multiplex fluorescence melting curve analysis for mutation detection with dual-labeled, self-quenched probes.

    Directory of Open Access Journals (Sweden)

    Qiuying Huang

    2011-04-01

    Full Text Available Probe-based fluorescence melting curve analysis (FMCA is a powerful tool for mutation detection based on melting temperature generated by thermal denaturation of the probe-target hybrid. Nevertheless, the color multiplexing, probe design, and cross-platform compatibility remain to be limited by using existing probe chemistries. We hereby explored two dual-labeled, self-quenched probes, TaqMan and shared-stem molecular beacons, in their ability to conduct FMCA. Both probes could be directly used for FMCA and readily integrated with closed-tube amplicon hybridization under asymmetric PCR conditions. Improved flexibility of FMCA by using these probes was illustrated in three representative applications of FMCA: mutation scanning, mutation identification and mutation genotyping, all of which achieved improved color-multiplexing with easy probe design and versatile probe combination and all were validated with a large number of real clinical samples. The universal cross-platform compatibility of these probes-based FMCA was also demonstrated by a 4-color mutation genotyping assay performed on five different real-time PCR instruments. The dual-labeled, self-quenched probes offered unprecedented combined advantage of enhanced multiplexing, improved flexibility in probe design, and expanded cross-platform compatibility, which would substantially improve FMCA in mutation detection of various applications.

  17. Fission Product Release from Molten Pool: ceramic melt tests

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Yu.B.; Lopukh, D.B.; Petchenkov, A.Yu. [AO ' NP Sintez' , St. Petersburg (RU)] [and others

    1999-07-01

    Experimental results are presented on the volatilisation of UO{sub 2{+-}}{sub x}, SrO, BaO, CeO{sub 2} from corium melts. Corium melts were generated by high frequency induction melting in a cold crucible. The surface temperature of the melts was in the range from 1753 to 3023 K. Some results of the tests are discussed and a comparison with published data is made. (author)

  18. Molecular characterization of Salmonella isolates by REP-PCR and RAPD analysis.

    Science.gov (United States)

    Albufera, U; Bhugaloo-Vial, P; Issack, M I; Jaufeerally-Fakim, Y

    2009-05-01

    Eighteen Salmonella isolates from both human and food (non-human) sources (fish, meat, and poultry) were characterized using conventional culture methods, biochemical, serological, and molecular analyses. REP-PCR and RAPD produced DNA profiles for differentiation purposes. Enterobacterial repetitive intergenic consensus (ERIC), repetitive extragenic palindronic (REP) and BOXAIR primers were selected for REP-PCR and two arbitrary primers, namely OPP-16 and OPS-11 were used for RAPD to generate DNA fingerprints from the Salmonella isolates. REP-PCR method showed greater discriminatory power in differentiating closely related strains of the related strains of Salmonella and produced more complex banding patterns as compared with RAPD. A dendogram was constructed with both sets of profiles using SPSS Version 13.0 computer software and showed that most human isolates were separately clustered from the non-human isolates. Two of the human isolates were closely related to some of the non-human isolates. A good correlation was also observed between the serogrouping of the O antigen and the molecular profiles obtained from REP-PCR and RAPD data of the Salmonella isolates. The results of a principal coordinate analysis (PCA) corresponded to the clustering in the dendrogram.

  19. Real-time PCR for Leishmania species identification: Evaluation and comparison with classical techniques.

    Science.gov (United States)

    de Morais, Rayana Carla Silva; da Costa Oliveira, Cintia Nascimento; de Albuquerque, Suênia da Cunha Gonçalves; Mendonça Trajano Silva, Lays Adrianne; Pessoa-E-Silva, Rômulo; Alves da Cruz, Heidi Lacerda; de Brito, Maria Edileuza Felinto; de Paiva Cavalcanti, Milena

    2016-06-01

    Cutaneous leishmaniasis (CL) is a parasitic disease caused by various Leishmania species. Several studies have shown that real time quantitative PCR (qPCR) can be used for Leishmania spp. identification by analyzing the melting temperature (Tm). Thus, the aim of this study was to evaluate the viability of qPCR for differentiating eight closely related Leishmania species that cause the same clinical form of the disease and to compare the results with classical techniques. qPCR assays for standardizing the Tm using reference strains were performed. After the CL diagnosis on blood samples of domestic animals, positive samples were analyzed by their Tm and qPCR products were purified and sequenced. Ten human samples previously characterized by Multilocus Enzyme Electrophoresis (MLEE) were also analyzed by Tm. A Restriction Fragment Length Polymorphism (RFLP) assay, a reference test, was also standardized, by using the reference strains. Through standardization of Tm for Leishmania spp., two Tm ranges were created for analysis: 1 (Tm = 78-79.99 °C) included Leishmania (V.) braziliensis, Leishmania (V.) panamensis, Leishmania (V.) lainsoni, Leishmania (V.) guyanensis and Leishmania (V.) shawi; and 2 (Tm = 80-82.2 °C) included Leishmania (V.) naiffi, Leishmania (L.) amazonensis and Leishmania (L.) mexicana. A total of 223 positive blood samples were analyzed, with 58 included in range 1 and 165 in range 2. L. (V.) braziliensis, L. (V.) panamensis and L. (V.) guyanensis were identified by sequencing, while L. (V.) braziliensis, L. (L.) mexicana and L. (V.) panamensis were identified by RFLP analysis. Ten human samples previously characterized by Multilocus Enzyme Electrophoresis (MLEE) were also analyzed by qPCR Tm analysis; five were classified in range 1 and five in range 2. A concordance of 80% was calculated between qPCR and the gold-standard (MLEE) with no significant difference between the methods (p = 0.6499); a similar result was observed for sequencing

  20. Dynamics of vaginal bacterial communities in women developing bacterial vaginosis, candidiasis, or no infection, analyzed by PCR-denaturing gradient gel electrophoresis and real-time PCR.

    Science.gov (United States)

    Vitali, Beatrice; Pugliese, Ciro; Biagi, Elena; Candela, Marco; Turroni, Silvia; Bellen, Gert; Donders, Gilbert G G; Brigidi, Patrizia

    2007-09-01

    The microbial flora of the vagina plays a major role in preventing genital infections, including bacterial vaginosis (BV) and candidiasis (CA). An integrated approach based on PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR was used to study the structure and dynamics of bacterial communities in vaginal fluids of healthy women and patients developing BV and CA. Universal eubacterial primers and Lactobacillus genus-specific primers, both targeted at 16S rRNA genes, were used in DGGE and real-time PCR analysis, respectively. The DGGE profiles revealed that the vaginal flora was dominated by Lactobacillus species under healthy conditions, whereas several potentially pathogenic bacteria were present in the flora of women with BV. Lactobacilli were the predominant bacterial population in the vagina for patients affected by CA, but changes in the composition of Lactobacillus species were observed. Real-time PCR analysis allowed the quantitative estimation of variations in lactobacilli associated with BV and CA diseases. A statistically significant decrease in the relative abundance of lactobacilli was found in vaginal fluids of patients with BV compared to the relative abundance of lactobacilli in the vaginal fluids of healthy women and patients with CA.

  1. SASqPCR: robust and rapid analysis of RT-qPCR data in SAS.

    Directory of Open Access Journals (Sweden)

    Daijun Ling

    Full Text Available Reverse transcription quantitative real-time PCR (RT-qPCR is a key method for measurement of relative gene expression. Analysis of RT-qPCR data requires many iterative computations for data normalization and analytical optimization. Currently no computer program for RT-qPCR data analysis is suitable for analytical optimization and user-controllable customization based on data quality, experimental design as well as specific research aims. Here I introduce an all-in-one computer program, SASqPCR, for robust and rapid analysis of RT-qPCR data in SAS. This program has multiple macros for assessment of PCR efficiencies, validation of reference genes, optimization of data normalizers, normalization of confounding variations across samples, and statistical comparison of target gene expression in parallel samples. Users can simply change the macro variables to test various analytical strategies, optimize results and customize the analytical processes. In addition, it is highly automatic and functionally extendable. Thus users are the actual decision-makers controlling RT-qPCR data analyses. SASqPCR and its tutorial are freely available at http://code.google.com/p/sasqpcr/downloads/list.

  2. Effect of the distribution of saturated fatty acids in the melting and crystallization profiles of high-oleic high-stearic oils; Efecto de la distribución de los ácidos grasos saturados en los perfiles de fusión y cristalización de los aceites alto esteárico alto oleico

    Energy Technology Data Exchange (ETDEWEB)

    Bootello, M.A.; Garces, R.; Martinez-Force, E.; Salas, J.J.

    2016-07-01

    The composition and distribution of fatty acids in triacylglycerol (TAG) molecules are commonly considered as factors that determine the physical properties of a given oil or fat. The distribution of any fatty acid in fats and oils can be described through the α coefficient of asymmetry, which can be calculated from the TAG composition and fatty acid composition of the Sn-2 position of the TAGs determined through lipase hydrolysis. High-oleic high-stearic oils and fats are considered stable and healthy, and they are good substitutes for hydrogenated vegetable oils and palm fractions in many food products, such as spreads and confectionery. Here, different high-oleic high-stearic acid oils were formulated which contained different distributions of saturated fatty acids in their TAGs, while maintaining a similar fatty acid composition. The aim of this work was to discuss the possibility of using the α coefficient to predict the physical properties of fats in function of their chemical composition and their melting and crystallization behavior as examined by differential scanning calorimetry.

  3. Modeling of evaporation processes in glass melting furnaces

    NARCIS (Netherlands)

    Limpt, van J.A.C.

    2007-01-01

    The majority of glass furnaces worldwide, apply fossil fuel combustion to transfer heat directly by radiation from the combustion processes to the melting batch and glass melt. During these high temperature melting processes, some glass components, such as: sodium, potassium, boron and lead species

  4. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The start-up and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 and 103 kg/mole, and for three bidisperse polystyrene melts. The monodisperse melts show a maximum in the steady elongational viscosity vs. the elongational...

  5. Melt behaviour, crystallinity and morphology of poly(p-dioxanone)

    NARCIS (Netherlands)

    Pezzin, APT; van Ekenstein, GOR; Duek, EAR

    The melt behaviour of poly(p-dioxanone) (PPD) has been studied by differential scanning calorimetry (DSC). Crystallinity and morphology were evaluated by modulated differential scanning calorimetry (MDSC) and polarizing optical microscopy. The melting curves showed two melting endotherms, a higher

  6. Quality improvement of melt extruded laminar systems using mixture design.

    Science.gov (United States)

    Hasa, D; Perissutti, B; Campisi, B; Grassi, M; Grabnar, I; Golob, S; Mian, M; Voinovich, D

    2015-07-30

    This study investigates the application of melt extrusion for the development of an oral retard formulation with a precise drug release over time. Since adjusting the formulation appears to be of the utmost importance in achieving the desired drug release patterns, different formulations of laminar extrudates were prepared according to the principles of Experimental Design, using a design for mixtures to assess the influence of formulation composition on the in vitro drug release from the extrudates after 1h and after 8h. The effect of each component on the two response variables was also studied. Ternary mixtures of theophylline (model drug), monohydrate lactose and microcrystalline wax (as thermoplastic binder) were extruded in a lab scale vertical ram extruder in absence of solvents at a temperature below the melting point of the binder (so that the crystalline state of the drug could be maintained), through a rectangular die to obtain suitable laminar systems. Thanks to the desirability approach and a reliability study for ensuring the quality of the formulation, a very restricted optimal zone was defined within the experimental domain. Among the mixture components, the variation of microcrystalline wax content played the most significant role in overall influence on the in vitro drug release. The formulation theophylline:lactose:wax, 57:14:29 (by weight), selected based on the desirability zone, was subsequently used for in vivo studies. The plasma profile, obtained after oral administration of the laminar extruded system in hard gelatine capsules, revealed the typical trend of an oral retard formulation. The application of the mixture experimental design associated to a desirability function permitted to optimize the extruded system and to determine the composition space that ensures final product quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Prediction of waste glass melt rates

    International Nuclear Information System (INIS)

    Lee, L.

    1987-01-01

    Under contract to the Department of Energy, the Du Pont Company has begun construction of a Defense Waste Processing Facility to immobilize radioactive wastes now stored as liquids at the Department of Energy's Savannah River Plant. The immobilization process solidifies waste sludge by vitrification into a leach-resistant borosilicate glass. Development of this process has been the responsibility of the Savannah River Laboratory. As part of the development, a simple model was developed to predict the melt rates for the waste glass melter. This model is based on an energy balance for the cold cap and gives very good agreement with melt rate data obtained from experimental campaigns in smaller scale waste glass melters

  8. Melting of metallic intermediate level waste

    Energy Technology Data Exchange (ETDEWEB)

    Huutoniemi, Tommi; Larsson, Arne; Blank, Eva [Studsvik Nuclear AB, Nykoeping (Sweden)

    2013-08-15

    This report presents a feasibility study of a melting facility for core components and reactor internals. An overview is given of how such a facility for treatment of intermediate level waste might be designed, constructed and operated and highlights both the possibilities and challenges. A cost estimate and a risk analysis are presented in order to make a conclusion of the technical feasibility of such a facility. Based on the authors' experience in operating a low level waste melting facility, their conclusion is that without technical improvements such a facility is not feasible today. This is based on the cost of constructing and operating such a facility, in conjunction with the radiological risks associated with operation and the uncertain benefits to disposal and long term safety.

  9. Melting of metallic intermediate level waste

    International Nuclear Information System (INIS)

    Huutoniemi, Tommi; Larsson, Arne; Blank, Eva

    2013-08-01

    This report presents a feasibility study of a melting facility for core components and reactor internals. An overview is given of how such a facility for treatment of intermediate level waste might be designed, constructed and operated and highlights both the possibilities and challenges. A cost estimate and a risk analysis are presented in order to make a conclusion of the technical feasibility of such a facility. Based on the authors' experience in operating a low level waste melting facility, their conclusion is that without technical improvements such a facility is not feasible today. This is based on the cost of constructing and operating such a facility, in conjunction with the radiological risks associated with operation and the uncertain benefits to disposal and long term safety

  10. Contaminated metallic melt volume reduction testing

    International Nuclear Information System (INIS)

    Deichman, J.L.

    1981-01-01

    Laboratory scale metallic melts (stainless steel) were accomplished in support of Decontamination and Decommissioning's (D and D) contaminated equipment volume reduction and Low-Level Lead Site Waste programs. Six laboratory scale melts made with contaminated stainless steel provided data that radionuclide distribution can be predicted when proper temperature rates and ranges are employed, and that major decontamination occurs with the use of designed slagging materials. Stainless steel bars were contaminated with plutonium, cobalt, cesium and europium. This study was limited to stainless steel, however, further study is desirable to establish data for other metals and alloys. This study represents a positive beginning in defining the feasibility of economical volume reduction or conversion from TRU waste forms to LLW forms for a large portion of approximately 50 thousand tons of contaminated metal waste now being stored at Hanford underground or in deactivated facilities

  11. Precipitation of metal nitrides from chloride melts

    International Nuclear Information System (INIS)

    Slater, S.A.; Miller, W.E.; Willit, J.L.

    1996-01-01

    Precipitation of actinides, lanthanides, and fission products as nitrides from molten chloride melts is being investigated for use as a final cleanup step in treating radioactive salt wastes generated by electrometallurgical processing of spent nuclear fuel. The radioactive components (eg, fission products) need to be removed to reduce the volume of high-level waste that requires disposal. To extract the fission products from the salt, a nitride precipitation process is being developed. The salt waste is first contacted with a molten metal; after equilibrium is reached, a nitride is added to the metal phase. The insoluble nitrides can be recovered and converted to a borosilicate glass after air oxidation. For a bench-scale experimental setup, a crucible was designed to contact the salt and metal phases. Solubility tests were performed with candidate nitrides and metal nitrides for which there are no solubility data. Experiments were performed to assess feasibility of precipitation of metal nitrides from chloride melts

  12. Permanganate-assisted removal of PCR inhibitors during the DNA Chelex extraction from stained denim samples.

    Science.gov (United States)

    Pîrlea, Sorina; Puiu, Mihaela; Răducan, Adina; Oancea, Dumitru

    2017-03-01

    In this study, it was demonstrated that the DNA Chelex extraction combined with the permanganate assisted-oxidation is highly efficient in removing the PCR inhibitors often found in clothing materials, such as phthalocyanine. The extraction assays were conducted in saliva, blood and epithelial cells samples mixed with three oxidation-resistant dye copper(II) α-phthalocyanine, copper(II) β-phthalocyanine and tetrasulfonated copper(II) β-phthalocyanine. After DNA amplification, all samples were able to provide full DNA profiles. The permanganate/Chelex system was tested further on denim-stained samples and displayed the same ability to remove the PCR inhibitors from the commercial textile materials.

  13. High resolution melting curve analysis as a new tool for rapid identification of canine parvovirus type 2 strains.

    Science.gov (United States)

    Bingga, Gali; Liu, Zhicheng; Zhang, Jianfeng; Zhu, Yujun; Lin, Lifeng; Ding, Shuangyang; Guo, Pengju

    2014-01-01

    A high resolution melting (HRM) curve method was developed to identify canine parvovirus type 2 (CPV-2) strains by nested PCR. Two sets of primers, CPV-426F/426R and CPV-87R/87F, were designed that amplified a 52 bp and 53 bp product from the viral VP2 capsid gene. The region amplified by CPV-426F/426R included the A4062G and T4064A mutations in CPV-2a, CPV-2b and CPV-2c. The region amplified by CPV-87F/87R included the A3045T mutation in the vaccine strains of CPV-2 and CPV-2a, CPV-2b and CPV-2c. Faecal samples were obtained from 30 dogs that were CPV antigen-positive. The DNA was isolated from the faecal samples and PCR-amplified using the two sets of primers, and genotyped by HRM curve analysis. The PCR-HRM assay was able to distinguish single nucleotide polymorphisms between CPV-2a, CPV-2b and CPV-2c using CPV-426F/426R. CPV-2a was distinguished from CPV-2b and CPV-2c by differences in the melting temperature. CPV-2b and CPV-2c could be distinguished based on the shape of the melting curve after generating heteroduplexes using a CPV-2b reference sample. The vaccine strains of CPV-2 were identified using CPV-87F/87R. Conventional methods for genotyping CPV strains are labor intensive, expensive or time consuming; the present PCR-based HRM assay might be an attractive alternative. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Laser melting of groove defect repair on high thermal conductivity steel (HTCS-150)

    Science.gov (United States)

    Norhafzan, B.; Aqida, S. N.; Fazliana, F.; Reza, M. S.; Ismail, I.; Khairil, C. M.

    2018-02-01

    This paper presents laser melting repair of groove defect on HTCS-150 surface using Nd:YAG laser system. Laser melting process was conducted using JK300HPS Nd:YAG twin lamp laser source with 1064 nm wavelength and pulsed mode. The parameters are pulse repetition frequency (PRF) that is set from 70 to 100 Hz, average power ( P A) of 50-70 W, and laser spot size of 0.7 mm. HTCS-150 samples were prepared with groove dimension of 0.3 mm width and depths of 0.5 mm using EDM wire cut. Groove defect repaired using laser melting process on groove surface area with various parameters' process. The melted surface within the groove was characterized for subsurface hardness profile, roughness, phase identification, chemical composition, and metallographic study. The roughness analysis indicates high PRF at large spot size caused high surface roughness and low surface hardness. Grain refinement of repaired layer was analyzed within the groove as a result of rapid heating and cooling. The hardness properties of modified HTCS inside the groove and the bulk surface increased two times from as received HTCS due to grain refinement which is in agreement with Hall-Petch equation. These findings are significant to parameter design of die repair for optimum surface integrity and potential for repairing crack depth and width of less than 0.5 and 0.3 mm, respectively.

  15. Semi-continuous casting of magnesium alloy AZ91 using a filtered melt delivery system

    Directory of Open Access Journals (Sweden)

    Mainul Hasan

    2015-12-01

    Full Text Available A 3-D numerical simulation of an industrial-sized slab caster for magnesium alloy AZ91 has been carried out for the steady state operational phase of the caster. The simulated model consists of an open-top melt delivery system fitted with a porous filter near the hot-top. The melt flow through the porous filter was modeled on the basis of Brinkmann-Forchimier-Extended non-Darcy model for turbulent flow. An in-house 3-D CFD code was modified to account for the melt flow through the porous filter. Results are obtained for four casting speeds namely, 40, 60, 80, and 100 mm/min. The metal-mold contact region as well as the convective heat transfer coefficient at the mold wall were also varied. In addition to the above, the Darcy number for the porous media was also changed. All parametric studies were performed for a fixed inlet melt superheat of 64 °C. The results are presented pictorially in the form of temperature and velocity fields. The sump depth, mushy region thickness, solid shell thickness at the exit of the mold and axial temperature profiles are also presented and correlated with the casting speed through regression analysis.

  16. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    International Nuclear Information System (INIS)

    Rizzi, Giovanni; Østerberg, Frederik W.; Henriksen, Anders D.; Dufva, Martin; Hansen, Mikkel F.

    2015-01-01

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches of the differential sensor geometry. The sensor surfaces are functionalized with wild type (WT) and mutant type (MT) capture probes, differing by a single base insertion (a single nucleotide polymorphism, SNP). Complementary biotinylated targets in suspension couple streptavidin magnetic beads to the sensor surface. The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover, we demonstrate that a single sensor bridge can be used to genotype a SNP. - Highlights: • We apply magnetoresistive sensors to study solid-surface hybridization kinetics of DNA. • We measure DNA melting profiles for perfectly matching DNA duplexes and for a single base mismatch. • We present a procedure to correct for temperature dependencies of the sensor output. • We reliably extract melting temperatures for the DNA hybrids. • We demonstrate direct measurement of differential binding signal for two probes on a single sensor

  17. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum

    International Nuclear Information System (INIS)

    Thijs, Lore; Montero Sistiaga, Maria Luz; Wauthle, Ruben; Xie, Qingge; Kruth, Jean-Pierre; Van Humbeeck, Jan

    2013-01-01

    Selective laser melting (SLM) makes use of a high energy density laser beam to melt successive layers of metallic powders in order to create functional parts. The energy density of the laser is high enough to melt refractory metals like Ta and produce mechanically sound parts. Furthermore, the localized heat input causes a strong directional cooling and solidification. Epitaxial growth due to partial remelting of the previous layer, competitive growth mechanism and a specific global direction of heat flow during SLM of Ta result in the formation of long columnar grains with a 〈1 1 1〉 preferential crystal orientation along the building direction. The microstructure was visualized using both optical and scanning electron microscopy equipped with electron backscattered diffraction and the global crystallographic texture was measured using X-ray diffraction. The thermal profile around the melt pool was modeled using a pragmatic model for SLM. Furthermore, rotation of the scanning direction between different layers was seen to promote the competitive growth. As a result, the texture strength increased to as large as 4.7 for rotating the scanning direction 90° every layer. By comparison of the yield strength measured by compression tests in different orientations and the averaged Taylor factor calculated using the viscoplastic self-consistent model, it was found that both the morphological and crystallographic texture observed in SLM Ta contribute to yield strength anisotropy

  18. STR melting curve analysis as a genetic screening tool for crime scene samples.

    Science.gov (United States)

    Nguyen, Quang; McKinney, Jason; Johnson, Donald J; Roberts, Katherine A; Hardy, Winters R

    2012-07-01

    In this proof-of-concept study, high-resolution melt curve (HRMC) analysis was investigated as a postquantification screening tool to discriminate human CSF1PO and THO1 genotypes amplified with mini-STR primers in the presence of SYBR Green or LCGreen Plus dyes. A total of 12 CSF1PO and 11 HUMTHO1 genotypes were analyzed on the LightScanner HR96 and LS-32 systems and were correctly differentiated based upon their respective melt profiles. Short STR amplicon melt curves were affected by repeat number, and single-source and mixed DNA samples were additionally differentiated by the formation of heteroduplexes. Melting curves were shown to be unique and reproducible from DNA quantities ranging from 20 to 0.4 ng and distinguished identical from nonidentical genotypes from DNA derived from different biological fluids and compromised samples. Thus, a method is described which can assess both the quantity and the possible probative value of samples without full genotyping. 2012 American Academy of Forensic Sciences. Published 2012. This article is a U.S. Government work and is in the public domain in the U.S.A.

  19. In vessel core melt progression phenomena

    International Nuclear Information System (INIS)

    Courtaud, M.

    1993-01-01

    For all light water reactor (LWR) accidents, including the so called severe accidents where core melt down can occur, it is necessary to determine the amount and characteristics of fission products released to the environment. For existing reactors this knowledge is used to evaluate the consequences and eventual emergency plans. But for future reactors safety authorities demand decrease risks and reactors designed in such a way that fission products are retained inside the containment, the last protective barrier. This requires improved understanding and knowledge of all accident sequences. In particular it is necessary to be able to describe the very complex phenomena occurring during in vessel core melt progression because they will determine the thermal and mechanical loads on the primary circuit and the timing of its rupture as well as the fission product source term. On the other hand, in case of vessel failure, knowledge of the physical and chemical state of the core melt will provide the initial conditions for analysis of ex-vessel core melt progression and phenomena threatening the containment. Finally a good understanding of in vessel phenomena will help to improve accident management procedures like Emergency Core Cooling System water injection, blowdown and flooding of the vessel well, with their possible adverse effects. Research and Development work on this subject was initiated a long time ago and is still in progress but now it must be intensified in order to meet the safety requirements of the next generation of reactors. Experiments, limited in scale, analysis of the TMI 2 accident which is a unique source of global information and engineering judgment are used to establish and assess physical models that can be implemented in computer codes for reactor accident analysis

  20. Low-melting point heat transfer fluid

    Science.gov (United States)

    Cordaro, Joseph Gabriel; Bradshaw, Robert W.

    2010-11-09

    A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.

  1. Holographic picture of heavy vector meson melting

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Nelson R.F.; Diles, Saulo [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil); Martin Contreras, Miguel Angel [Universidad de los Andes, High Energy Group, Department of Physics, Bogota (Colombia)

    2016-11-15

    The fraction of heavy vector mesons produced in a heavy ion collision, as compared to a proton-proton collision, serves as an important indication of the formation of a thermal medium, the quark-gluon plasma. This sort of analysis strongly depends on understanding the thermal effects of a medium like the plasma on the states of heavy mesons. In particular, it is crucial to know the temperature ranges where they undergo a thermal dissociation, or melting. AdS/QCD models are know to provide an important tool for the calculation of hadronic masses, but in general are not consistent with the observation that decay constants of heavy vector mesons decrease with excitation level. It has recently been shown that this problem can be overcome using a soft wall background and introducing an extra energy parameter, through the calculation of correlation functions at a finite position of anti-de Sitter space. This approach leads to the evaluation of masses and decay constants of S wave quarkonium states with just one flavor dependent and one flavor independent parameter. Here we extend this more realistic model to finite temperatures and analyze the thermal behavior of the states 1S, 2S and 3S of bottomonium and charmonium. The corresponding spectral function exhibits a consistent picture for the melting of the states where, for each flavor, the higher excitations melt at lower temperatures. We estimate for these six states the energy ranges in which the heavy vector mesons undergo a transition from a well-defined peak in the spectral function to complete melting in the thermal medium. A very clear distinction between the heavy flavors emerges, with the bottomonium state Υ(1S) surviving a deconfinement transition at temperatures much larger than the critical deconfinement temperature of the medium. (orig.)

  2. How ice shelf morphology controls basal melting

    Science.gov (United States)

    Little, Christopher M.; Gnanadesikan, Anand; Oppenheimer, Michael

    2009-12-01

    The response of ice shelf basal melting to climate is a function of ocean temperature, circulation, and mixing in the open ocean and the coupling of this external forcing to the sub-ice shelf circulation. Because slope strongly influences the properties of buoyancy-driven flow near the ice shelf base, ice shelf morphology plays a critical role in linking external, subsurface heat sources to the ice. In this paper, the slope-driven dynamic control of local and area-integrated melting rates is examined under a wide range of ocean temperatures and ice shelf shapes, with an emphasis on smaller, steeper ice shelves. A 3-D numerical ocean model is used to simulate the circulation underneath five idealized ice shelves, forced with subsurface ocean temperatures ranging from -2.0°C to 1.5°C. In the sub-ice shelf mixed layer, three spatially distinct dynamic regimes are present. Entrainment of heat occurs predominately under deeper sections of the ice shelf; local and area-integrated melting rates are most sensitive to changes in slope in this "initiation" region. Some entrained heat is advected upslope and used to melt ice in the "maintenance" region; however, flow convergence in the "outflow" region limits heat loss in flatter portions of the ice shelf. Heat flux to the ice exhibits (1) a spatially nonuniform, superlinear dependence on slope and (2) a shape- and temperature-dependent, internally controlled efficiency. Because the efficiency of heat flux through the mixed layer decreases with increasing ocean temperature, numerical simulations diverge from a simple quadratic scaling law.

  3. "Chemical contraction" in rubidium-bismuth melts

    Science.gov (United States)

    Khairulin, R. A.; Abdullaev, R. N.; Stankus, S. V.

    2017-10-01

    The density and thermal expansion of liquid rubidium and rubidium-bismuth alloy containing 25.0 at % Bi were measured by the gamma-ray attenuation technique at temperatures from liquidus to 1000 K. The results of this study were compared with the data obtained by other authors. The molar volume of the Rb75Bi25 melt strongly deviates from the additivity rule for ideal solutions.

  4. Selective laser melting of Al-12Si

    OpenAIRE

    Prashanth, Konda Gokuldoss

    2014-01-01

    Selective laser melting (SLM) is a powder-based additive manufacturing technique consisting of the exact reproduction of a three dimensional computer model (generally a computer-aided design CAD file or a computer tomography CT scan) through an additive layer-by-layer strategy. Because of the high degree of freedom offered by the additive manufacturing, parts having almost any possible geometry can be produced by SLM. More specifically, with this process it is possible to build parts with ext...

  5. BWR core melt progression phenomena: Experimental analyses

    International Nuclear Information System (INIS)

    Ott, L.J.

    1992-01-01

    In the BWR Core Melt in Progression Phenomena Program, experimental results concerning severe fuel damage and core melt progression in BWR core geometry are used to evaluate existing models of the governing phenomena. These include control blade eutectic liquefaction and the subsequent relocation and attack on the channel box structure; oxidation heating and hydrogen generation; Zircaloy melting and relocation; and the continuing oxidation of zirconium with metallic blockage formation. Integral data have been obtained from the BWR DF-4 experiment in the ACRR and from BWR tests in the German CORA exreactor fuel-damage test facility. Additional integral data will be obtained from new CORA BWR test, the full-length FLHT-6 BWR test in the NRU test reactor, and the new program of exreactor experiments at Sandia National Laboratories (SNL) on metallic melt relocation and blockage formation. an essential part of this activity is interpretation and use of the results of the BWR tests. The Oak Ridge National Laboratory (ORNL) has developed experiment-specific models for analysis of the BWR experiments; to date, these models have permitted far more precise analyses of the conditions in these experiments than has previously been available. These analyses have provided a basis for more accurate interpretation of the phenomena that the experiments are intended to investigate. The results of posttest analyses of BWR experiments are discussed and significant findings from these analyses are explained. The ORNL control blade/canister models with materials interaction, relocation and blockage models are currently being implemented in SCDAP/RELAP5 as an optional structural component

  6. Surface Hardening by Laser Skin Melting

    Science.gov (United States)

    1979-07-01

    typical cross-sectional view of a melt region. Various solutions includina Murakami’s reaqent, Vilella’s reagent and an oxalic acid solution were used...each type selectively revealinq different microstructu- ral features. A second etch in an oxalic acid /hydrochloric acid solution was used in the...genization due to vigorous hydrothermal mixing and liquid super- heating. Computations by Greenwald (13) from a heat flow model are graphically represented

  7. Bursting the bubble of melt inclusions

    Science.gov (United States)

    Lowenstern, Jacob B.

    2015-01-01

    Most silicate melt inclusions (MI) contain bubbles, whose significance has been alternately calculated, pondered, and ignored, but rarely if ever directly explored. Moore et al. (2015) analyze the bubbles, as well as their host glasses, and conclude that they often hold the preponderance of CO2 in the MI. Their findings entreat future researchers to account for the presence of bubbles in MI when calculating volatile budgets, saturation pressures, and eruptive flux.

  8. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meihui [Univ. of California, Berkeley, CA (United States)

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na2S4 and Na2S5 were measured as a function of temperature (range: 300 to 360°C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  9. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Meihui Wang.

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na{sub 2}S{sub 4} and Na{sub 2}S{sub 5} were measured as a function of temperature (range: 300 to 360{degree}C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  10. Vacuum induction melting of uranium ingots

    International Nuclear Information System (INIS)

    Hussain, M.M.; Bagchi, S.N.; Singh, S.P.

    1992-01-01

    Massive uranium ingot is produced from green salt (UF 4 ) using calciothermic reduction (CTR) or magnesiothermic reduction (MTR) process. CTR process has been replaced by MTR process at Trombay due to economic considerations. This paper highlights problems associated with the vacuum induction melting of MTR ingots and the remedial measures taken to produce good quality billets. Details of metallographic examination of inclusions in ingots and billets have been incorporated. (author). 3 figs

  11. Applications of the rep-PCR DNA fingerprinting technique to study microbial diversity, ecology and evolution.

    Science.gov (United States)

    Ishii, Satoshi; Sadowsky, Michael J

    2009-04-01

    A large number of repetitive DNA sequences are found in multiple sites in the genomes of numerous bacteria, archaea and eukarya. While the functions of many of these repetitive sequence elements are unknown, they have proven to be useful as the basis of several powerful tools for use in molecular diagnostics, medical microbiology, epidemiological analyses and environmental microbiology. The repetitive sequence-based PCR or rep-PCR DNA fingerprint technique uses primers targeting several of these repetitive elements and PCR to generate unique DNA profiles or 'fingerprints' of individual microbial strains. Although this technique has been extensively used to examine diversity among variety of prokaryotic microorganisms, rep-PCR DNA fingerprinting can also be applied to microbial ecology and microbial evolution studies since it has the power to distinguish microbes at the strain or isolate level. Recent advancement in rep-PCR methodology has resulted in increased accuracy, reproducibility and throughput. In this minireview, we summarize recent improvements in rep-PCR DNA fingerprinting methodology, and discuss its applications to address fundamentally important questions in microbial ecology and evolution.

  12. Mantle melting and melt refertilization beneath the Southwest Indian Ridge: Mineral composition of abyssal peridotites

    Science.gov (United States)

    Chen, Ling; Zhu, Jihao; Chu, Fengyou; Dong, Yan-hui; Liu, Jiqiang; Li, Zhenggang; Zhu, Zhimin; Tang, Limei

    2017-04-01

    As one of the slowest spreading ridges of the global ocean ridge system, the Southwest Indian Ridge (SWIR) is characterized by discontinued magmatism. The 53°E segment between the Gallieni fracture zone (FZ) (52°20'E) and the Gazelle FZ (53°30'E) is a typical amagmatic segment (crustal thickness 1cm) Opx, and Mg-rich mineral compositions akin to harzburgite xenoliths that sample old continental lithospheric mantle (Kelemen et al., 1998). Melt refertilization model shows that Group 2 peridotites were affected by an enriched low-degree partial melt from the garnet stability field. These results indicate that depleted mantle which experiences ancient melting event are more sensitive to melt refertilization, thus may reduce the melt flux, leading to extremely thin crust at 53°E segment. This research was granted by the National Basic Research Programme of China (973 programme) (grant No. 2013CB429705) and the Fundamental Research Funds of Second Institute of Oceanography, State Oceanic Administration (JG1603, SZ1507). References: Johnson K T M, Dick H J B, Shimizu N. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites[J]. Journal of Geophysical Research, 1990, 95(B3):2661-2678. Kelemen P B, Hart S R, Bernstein S. Silica enrichment in the continental upper mantle via melt/rock reaction[J]. Earth & Planetary Science Letters, 1998, 164(1-2):387-406. Zhou H, Dick H J. Thin crust as evidence for depleted mantle supporting the Marion Rise.[J]. Nature, 2013, 494(7436):195-200.

  13. Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite

    Science.gov (United States)

    Grove, Timothy L.; Holbig, Eva S.; Barr, Jay A.; Till, Christy B.; Krawczynski, Michael J.

    2013-01-01

    Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.

  14. Detection and quantification of Spirocerca lupi by HRM qPCR in fecal samples from dogs with spirocercosis.

    Science.gov (United States)

    Rojas, Alicia; Segev, Gilad; Markovics, Alex; Aroch, Itamar; Baneth, Gad

    2017-09-19

    Spirocerca lupi, the dog oesophageal nematode, causes a potentially fatal disease in domestic dogs, and is currently clinically diagnosed by coproscopy and oesophagoscopy. To date, a single molecular method, a semi-nested PCR, targeting the cox1 gene, has been developed to aid in the diagnosis of spirocercosis. The present study describes three novel high-resolution melt (HRM) quantitative PCR (qPCR) assays targeting fragments of the ITS1, 18S and cytb loci of S. lupi. The performance of these molecular assays in feces was compared to fecal flotation and to the previously described cox1 gene semi-nested PCR in 18 fecal samples from dogs with clinical oesophageal spirocercosis diagnosed by oesophagoscopy. The HRM qPCR for ITS1 and 18S were both able to detect 0.2 S. lupi eggs per gram (epg), while the HRM qPCR for the cytb and the semi-nested PCR for the cox1 detected 6 epg and 526 epg, respectively. Spirocerca lupi was detected in 61.1%, 44.4%, 27.8%, 11.1% and 5.6% of the fecal samples of dogs diagnosed with spirocercosis by using the ITS1 and 18S HRM qPCR assays, fecal flotation, cytb HRM qPCR and cox1 semi-nested PCR, respectively. All dogs positive by fecal flotation were also positive by ITS1 and 18S HRM qPCRs. Quantification of S. lupi eggs was successfully achieved in the HRM qPCRs and compared to the fecal flotation with no significant difference in the calculated concentrations between the HRM qPCRs that detected the 18S and ITS1 loci and the fecal flotation. The HRM qPCR for the 18S cross-amplified DNA from Toxocara canis and Toxascaris leonina. In contrast, the HRM qPCR for ITS1 did not cross-amplify DNA from other canine gastrointestinal parasites. This study presents two new molecular assays with significantly increased sensitivity for confirming and quantifying fecal S. lupi eggs. Of these, the HRM qPCR for ITS1 showed the best performance in terms of the limit of detection and absence of cross-amplification with other parasites. These assays will be

  15. Electric melting furnace for waste solidification

    International Nuclear Information System (INIS)

    Masaki, Toshio.

    1990-01-01

    To avoid electric troubles or reduction of waste processing performance even when platinum group elements are contained in wastes to be applied with glass solidification. For this purpose, a side electrode is disposed to the side wall of a melting vessel and a central electrode serving as a counter electrode is disposed about at the center inside the melting vessel. With such a constitution, if conductive materials are deposited at the bottom of the furnace or the bottom of the melting vessel, heating currents flow selectively between the side electrode and the central electrode. Accordingly, no electric currents flow through the conductive deposits thereby enabling to prevent abnormal heating in the bottom of the furnace. Further, heat generated by electric supply between the side electrode and the central electrode is supplied efficiently to raw material on the surface of the molten glass liquid to improve the processing performance. Further, disposition of the bottom electrode at the bottom of the furnace enables current supply between the central electrode and the bottom electrode to facilitate the temperature control for the molten glass in the furnace than in the conventional structure. (I.S.)

  16. Ionic diffusion in superionic-conductor melts

    International Nuclear Information System (INIS)

    Tankeshwar, K.; Tosi, M.P.

    1991-03-01

    The self-diffusion coefficients D + and D - of the two ionic species in molten AgI, CuCl, CuBr and CuI are evaluated and contrasted with those calculated for molten NaCl. The evaluation adopts a simple model for liquid state dynamics, earlier proposed by Zwanzig to justify the Stokes-Einstein formula for monatomic fluids, and by suitable approximations relates the self-diffusion coefficients to pair potentials and to the pair structure of the melt. The results offer an interpretation for molecular dynamics data showing that, whereas for a ''normal'' system such as NaCl the ratio D + /D - in the melt is of the order unity, a sizable difference between D + and D - persists in salts melting from a fast-cation conducting solid. This difference is explicitly related to liquid structure through differences in the structural backscattering of cations by cations and of halogens by halogens. The calculated magnitudes of D + /D - are quite satisfactory, while the absolute magnitudes of D + and D - are in good agreement with the data only for those salts (AgI, CuBr and NaCl) in which the masses of the two ionic species are not greatly different. (author). 21 refs, 2 tabs

  17. Glass forming ability of calcium aluminosilicate melts

    DEFF Research Database (Denmark)

    Moesgaard, Mette; Yue, Yuanzheng

    2011-01-01

    The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite-wollastonite-tridymite and that of......The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite......-wollastonite-tridymite and that of anorthite-wollastonite-gehlenite. The series includes the eutectic compositions as end members. The second series consists of five compositions on a line parallel to the joining line on the alumina rich side. In the present work, GFA is described in terms of glass stability, i.e., the ability of a glass...... to resist crystallization during reheating. In addition, the fragility index (m) is derived by fitting the viscosity data with the Avramov-Milchev equation. The results show that m is inversely proportional to the glass stability for the two series of melts, implying that m is an indirect measure of GFA...

  18. Melt propagation in dry core debris beds

    International Nuclear Information System (INIS)

    Dosanjh, S.S.

    1989-01-01

    During severe light water reactor accidents like Three Mile Island Unit 2, the fuel rods can fragment and thus convert the reactor core into a large particle bed. The postdryout meltdown of such debris beds is examined. A two-dimensional model that considers the presence of oxidic (UO 2 and ZrO 2 ) as well as metallic (e.g., zirconium) constituents is developed. Key results are that a dense metallic crust is created near the bottom of the bed as molten materials flow downward and freeze; liquid accumulates above the blockage and, if zirconium is present, the pool grows rapidly as molten zirconium dissolved both UO 2 and ZrO 2 particles; if the melt wets the solid, a fraction of the melt flows radially outward under the action of capillary forces and freezes near the radial boundary; in a nonwetting system, all of the melt flows into the bottom of the bed; and when zirconium and iron are in intimate contact and the zirconium metal atomic fraction is > 0.33, these metals can liquefy and flow out of the bed very early in the meltdown sequence

  19. Melt processing of Yb-123 tapes

    International Nuclear Information System (INIS)

    Athur, S. P.; Balachandran, U.; Salama, K.

    2000-01-01

    The innovation of a simple, scalable process for manufacturing long-length conductors of HTS is essential to potential commercial applications such as power cables, magnets, and transformers. In this paper the authors demonstrate that melt processing of Yb-123 tapes made by the PIT route is an alternative to the coated conductor and Bi-2223 PIT tape fabrication techniques. Ag-clad Yb-123 tapes were fabricated by groove rolling and subsequently, melt processed in different oxygen partial pressures in a zone-melting furnace with a gradient of 140 C/cm. The transition temperatures measured were found to be around 81 K undermost processing conditions. EPMA of the tapes processed under different conditions show the 123 phase to be Ba deficient and Cu and Yb rich. Critical current was measured at various temperatures from 77 K to 4.2 K. The J c increased with decrease in pO 2 . The highest I c obtained was 52 A at 4.2 K

  20. The kinetic fragility of natural silicate melts

    International Nuclear Information System (INIS)

    Giordano, Daniele; Dingwell, Donald B

    2003-01-01

    Newtonian viscosities of 19 multicomponent natural and synthetic silicate liquids, with variable contents of SiO 2 (41-79 wt%), Al 2 O 3 (10-19 wt%), TiO 2 (0-3 wt%), FeO tot (0-11 wt%); alkali oxides (5-17 wt%), alkaline-earth oxides (0-35 wt%), and minor oxides, obtained at ambient pressure using the high-temperature concentric cylinder, the low-temperature micropenetration, and the parallel plates techniques, have been analysed. For each silicate liquid, regression of the experimentally determined viscosities using the well known Vogel-Fulcher-Tammann (VFT) equation allowed the viscosity of all these silicates to be accurately described. The results of these fits, which provide the basis for the subsequent analysis here, permit qualitative and quantitative correlations to be made between the VFT adjustable parameters (A VFT , B VFT , and T 0 ). The values of B VFT and T 0 , calibrated via the VFT equation, are highly correlated. Kinetic fragility appears to be correlated with the number of non-bridging oxygens per tetrahedrally coordinated cation (NBO/T). This is taken to infer that melt polymerization controls melt fragility in liquid silicates. Thus NBO/T might form an useful ingredient of a structure-based model of non-Arrhenian viscosity in multicomponent silicate melts

  1. Vortex lattice melting, pinning and kinetics

    International Nuclear Information System (INIS)

    Doniach, S.; Ryu, S.; Kapitulnik, A.

    1994-01-01

    The phenomenology of the high T c superconductors is discussed both at the level of the thermodynamics of melting of the Abrikosov flux lattice and in terms of the melting and kinetics of the flux lattice for a pinned system. The authors review results on 3D melting obtained by a Monte Carlo simulation approach in which the 2D open-quotes pancakeclose quotes vortices are treated as statistical variables. The authors discuss pinning in the context of the strong pinning regime in which the vortex density given in terms of the applied field B is small compared to that represented by an effective field B pin measuring the pinning center density. The authors introduce a new criterion for the unfreezing of a vortex glass on increase of magnetic field or temperature, in the strong pinning, small field unit. The authors model this limit in terms of a single flux line interacting with a columnar pin. This model is studied both analytically and by computer simulation. By applying a tilt potential, the authors study the kinetics of the vortex motion in an external current and show that the resulting current-voltage characteristic follows a basic vortex glass-like scaling relation in the vicinity of the depinning transition

  2. Prediction of melt geometry in laser cutting

    Energy Technology Data Exchange (ETDEWEB)

    Tani, Giovanni; Tomesani, Luca; Campana, Giampaolo

    2003-03-15

    In this paper, an analytical model for the evaluation of the melt film geometry in laser cutting of steels is developed. Using as basis, a previous model for kerf geometry estimation developed by the authors, with both reactive and non-reactive process gases, the film thickness and velocity were determined as a function of the kerf depth in the cutting plate. Two criteria were then adopted to predict the quality of the laser cutting operation: the first is based on a minimum acceptable value of the ejection speed of the melt from the bottom of the kerf, the second on the occlusion of the kerf itself due to an excess of molten material in the boundary layer at the kerf width. These criteria determined a feasibility region in the domain of the process and material variables, such as cutting speed, assistant gas pressure, laser beam power and material characteristics. These factors may be successfully used to build a process-planning tool for parameters optimisation and setting, in order to achieve a satisfactory process quality. The model response is in excellent agreement with the feasibility regions reported from experimental data by various authors and demonstrates a relationship between the occurrence of dross adhesion and the two different mechanisms predicted for such a phenomenon were: unsatisfactory ejection speed of the melt film from the bottom of the kerf and occlusion of the kerf.

  3. Rock melting technology and geothermal drilling

    Science.gov (United States)

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  4. PCR+ In Diesel Fuels and Emissions Research

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, H.T.

    2002-04-15

    In past work for the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL), PCR+ was developed as an alternative methodology for building statistical models. PCR+ is an extension of Principal Components Regression (PCR), in which the eigenvectors resulting from Principal Components Analysis (PCA) are used as predictor variables in regression analysis. The work was motivated by the observation that most heavy-duty diesel (HDD) engine research was conducted with test fuels that had been ''concocted'' in the laboratory to vary selected fuel properties in isolation from each other. This approach departs markedly from the real world, where the reformulation of diesel fuels for almost any purpose leads to changes in a number of interrelated properties. In this work, we present new information regarding the problems encountered in the conventional approach to model-building and how the PCR+ method can be used to improve research on the relationship between fuel characteristics and engine emissions. We also discuss how PCR+ can be applied to a variety of other research problems related to diesel fuels.

  5. Molecular, Serological And Microbiological Profiling Evidence Of ...

    African Journals Online (AJOL)

    All items that the boy had contact with including a laboratory coat, bunch of keys and shoes were swabbed. Finally samples of all the boy's food and drinks were taken. Microbiological, Serological and Polymerase Chain Reaction (PCR) Profiling Assays. l the samples were cultured on Sorbitol - MacConkey (SMAC) agar, ...

  6. Quality assessment of DNA derived from up to 30 years old formalin fixed paraffin embedded (FFPE) tissue for PCR-based methylation analysis using SMART-MSP and MS-HRM.

    Science.gov (United States)

    Kristensen, Lasse S; Wojdacz, Tomasz K; Thestrup, Britta B; Wiuf, Carsten; Hager, Henrik; Hansen, Lise Lotte

    2009-12-21

    The High Resolution Melting (HRM) technology has recently been introduced as a rapid and robust analysis tool for the detection of DNA methylation. The methylation status of multiple tumor suppressor genes may serve as biomarkers for early cancer diagnostics, for prediction of prognosis and for prediction of response to treatment. Therefore, it is important that methodologies for detection of DNA methylation continue to evolve. Sensitive Melting Analysis after Real Time - Methylation Specific PCR (SMART-MSP) and Methylation Sensitive - High Resolution Melting (MS-HRM) are two methods for single locus DNA methylation detection based on HRM. Here, we have assessed the quality of DNA extracted from up to 30 years old Formalin Fixed Paraffin Embedded (FFPE) tissue for DNA methylation analysis using SMART-MSP and MS-HRM. The quality assessment was performed on DNA extracted from 54 Non-Small Cell Lung Cancer (NSCLC) samples derived from FFPE tissue, collected over 30 years and grouped into five years intervals. For each sample, the methylation levels of the CDKN2A (p16) and RARB promoters were estimated using SMART-MSP and MS-HRM assays designed to assess the methylation status of the same CpG positions. This allowed for a direct comparison of the methylation levels estimated by the two methods for each sample. CDKN2A promoter methylation levels were successfully determined by SMART-MSP and MS-HRM in all 54 samples. Identical methylation estimates were obtained by the two methods in 46 of the samples. The methylation levels of the RARB promoter were successfully determined by SMART-MSP in all samples. When using MS-HRM to assess RARB methylation five samples failed to amplify and 15 samples showed a melting profile characteristic for heterogeneous methylation. Twenty-seven of the remaining 34 samples, for which the methylation level could be estimated, gave the same result as observed when using SMART-MSP. MS-HRM and SMART-MSP can be successfully used for single locus

  7. Laser post-processing of Inconel 625 made by selective laser melting

    Science.gov (United States)

    Witkin, David; Helvajian, Henry; Steffeney, Lee; Hansen, William

    2016-04-01

    The effect of laser remelting of surfaces of as-built Selective Laser Melted (SLM) Inconel 625 was evaluated for its potential to improve the surface roughness of SLM parts. Many alloys made by SLM have properties similar to their wrought counterparts, but surface roughness of SLM-made parts is much higher than found in standard machine shop operations. This has implications for mechanical properties of SLM materials, such as a large debit in fatigue properties, and in applications of SLM, where surface roughness can alter fluid flow characteristics. Because complexity and netshape fabrication are fundamental advantages of Additive Manufacturing (AM), post-processing by mechanical means to reduce surface roughness detracts from the potential utility of AM. Use of a laser to improve surface roughness by targeted remelting or annealing offers the possibility of in-situ surface polishing of AM surfaces- the same laser used to melt the powder could be amplitude modulated to smooth the part during the build. The effects of remelting the surfaces of SLM Inconel 625 were demonstrated using a CW fiber laser (IPG: 1064 nm, 2-50 W) that is amplitude modulated with a pulse profile to induce remelting without spallation or ablation. The process achieved uniform depth of melting and improved surface roughness. The results show that with an appropriate pulse profile that meters the heat-load, surface features such as partially sintered powder particles and surface connected porosity can be mitigated via a secondary remelting/annealing event.

  8. Population diversity of ammonium oxidizers investigated by specific PCR amplification

    Science.gov (United States)

    Ward, B.B.; Voytek, M.A.; Witzel, K.-P.

    1997-01-01

    The species composition of ammonia-oxidizing bacteria in aquatic environments was investigated using PCR primers for 16S rRNA genes to amplify specific subsets of the total ammonia-oxidizer population. The specificity of the amplification reactions was determined using total genomic DNA from known nitrifying strains and non-nitrifying strains identified as having similar rDNA sequences. Specificity of amplification was determined both for direct amplification, using the nitrifier specific primers, and with nested amplification, in which the nitrifier primers were used to reamplify a fragment obtained from direct amplification with Eubacterial universal primers. The present level of specificity allows the distinction between Nitrosomonas europaea, Nitrosomonas sp. (marine) and the other known ammonia-oxidizers in the beta subclass of the Proteobacteria. Using total DNA extracted from natural samples, we used direct amplification to determine presence/absence of different species groups. Species composition was found to differ among depths in vertical profiles of lake samples and among samples and enrichments from various other aquatic environments. Nested PCR yielded several more positive reactions, which implies that nitrifier DNA was present in most samples, but often at very low levels.

  9. Dynamics of upper mantle rocks decompression melting above hot spots under continental plates

    Science.gov (United States)

    Perepechko, Yury; Sorokin, Konstantin; Sharapov, Victor

    2014-05-01

    temperature (THS) > 1900oC asthenolens size ~700 km. When THS = of 2000oC the maximum melting degree of the primitive mantle is near 40%. An increase in the TB > 1900oC the maximum degree of melting could rich 100% with the same size of decompression melting zone (700 km). We examined decompression melting above the HS having LHS = 100 km - 780 km at a TB 1850- 2100oC with the thickness of lithosphere = 100 km.It is shown that asthenolens size (Lln) does not change substantially: Lln=700 km at LHS = of 100 km; Lln= 800 km at LHS = of 780 km. In presence of asymmetry of large HS the region of advection is developed above the HS maximum with the formation of asymmetrical cell. Influence of lithospheric plate thicknesses on appearance and evolution of asthenolens above the HS were investigated for the model stepped profile for the TB ≤ of 1750oS with Lhs = 100km and maximum of THS =2350oC. With an increase of TB the Lln difference beneath lithospheric steps is leveled with retention of a certain difference to melting degrees and time of the melting appearance a top of the HS. RFBR grant 12-05-00625.

  10. From the 'PCR' function to the 'PCR' profession; de la fonction 'PCR' au metier 'PCR'

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, L. [CERAP, 91 - Gif sur Yvette (France)

    2008-07-01

    After having recalled the legal context concerning the appointment and training of a radiation protection expert (PCR for 'personne competente en radioprotection'), the author outlines that the PCR's role has notably evolved: his function is now of primary importance in the company and his activity does not correspond to the legal framework any longer. Moreover, with the application of a European directive, some small establishments possessing ionizing radiation sources are disadvantaged, and the PCR is now facing an increasing number of missions and tasks. The author gives a list of them and assesses a needed time of 146 days per year: this means PCRs cannot have an other activity within their company

  11. Profiling cancer

    DEFF Research Database (Denmark)

    Ciro, Marco; Bracken, Adrian P; Helin, Kristian

    2003-01-01

    In the past couple of years, several very exciting studies have demonstrated the enormous power of gene-expression profiling for cancer classification and prediction of patient survival. In addition to promising a more accurate classification of cancer and therefore better treatment of patients......, gene-expression profiling can result in the identification of novel potential targets for cancer therapy and a better understanding of the molecular mechanisms leading to cancer....

  12. Transition metal ions in silicate melts. I. Manganese in sodium silicate melts

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C; White, W B

    1980-01-01

    Optical absorption spectra obtained on glasses quenched from sodium silicate melts show Mn/sup 3 +/ to be the dominant species for melts heated in air and Mn/sup 2 +/ to be the dominant species for melts heated at P/sub O/sub 2// = 10/sup -17/ bar. The absorption spectrum of Mn/sup 3 +/ consists of an intense band at 20,000 cm/sup -1/ with a 15,000 cm/sup -1/ satellite possibly arising from the Jahn-Teller effect. The independence of the spectrum from melt composition and the high band intensity is offered as evidence for a distinct Mn/sup 3 +/ complex in the melt. The spectrum of Mn/sup 2 +/ is weak and many expected bands are not observed. A two-band luminescence spectrum from Mn/sup 2 +/ has been tentatively interpreted as due to Mn/sup 2 +/ in interstitial sites in the network and Mn/sup 2 +/ coordiated by non-bridging oxygens.

  13. Ultrasensitive quantitation of human papillomavirus type 16 E6 oncogene sequences by nested real time PCR

    Directory of Open Access Journals (Sweden)

    López-Revilla Rubén

    2010-05-01

    Full Text Available Abstract Background We have developed an ultrasensitive method based on conventional PCR preamplification followed by nested amplification through real time PCR (qPCR in the presence of the DNA intercalating agent EvaGreen. Results Amplification mixtures calibrated with a known number of pHV101 copies carrying a 645 base pair (bp-long insert of the human papillomavirus type 16 (HPV16 E6 oncogene were used to generate the E6-1 amplicon of 645 bp by conventional PCR and then the E6-2 amplicon of 237 bp by nested qPCR. Direct and nested qPCR mixtures for E6-2 amplification corresponding to 2.5 × 102-2.5 × 106 initial pHV101 copies had threshold cycle (Ct values in the ranges of 18.7-29.0 and 10.0-25.0, respectively. The Ct of qPCR mixtures prepared with 1/50 volumes of preamplified mixtures containing 50 ng of DNA of the SiHa cell line (derived from an invasive cervical cancer with one HPV16 genome per cell was 19.9. Thermal fluorescence extinction profiles of E6-2 amplicons generated from pHV101 and SiHa DNA were identical, with a peak at 85.5°C. Conclusions Our method based on conventional preamplification for 15 cycles increased 10,750 times the sensitivity of nested qPCR for the quantitation of the E6 viral oncogene and confirmed that the SiHa cell line contains one E6-HPV16 copy per cell.

  14. PCR analysis is superior to histology for diagnosis of Whipple's disease mimicking seronegative rheumatic diseases.

    Science.gov (United States)

    Lehmann, P; Ehrenstein, B; Hartung, W; Dragonas, C; Reischl, U; Fleck, M

    2017-03-01

    The diagnosis of Whipple's disease (WD) is commonly confirmed by histology demonstrating Periodic Acid Schiff (PAS)-positive macrophages in the duodenal mucosa. Analysis of intestinal tissue or other specimens using polymerase chain reaction (PCR) is a more sensitive method. However, the relevance of positive PCR findings is still controversial. Therefore, we evaluated the relevance of histology and PCR findings to establishing the diagnosis of WD in a series of WD patients initially presenting with suspected rheumatic diseases. Between 2006 and 2014, 20 patients with seronegative rheumatic diseases tested positive for Tropheryma whipplei (Tw) by PCR and/or histology and were enrolled in a retrospective analysis of the diagnostic value of both procedures. Seven of the 20 cases (35%) were diagnosed with 'classic' WD as indicated by PAS-positive macrophages. In the remaining 13 patients, the presence of Tw was detected by intestinal (n = 10) or synovial PCR analysis (n = 3). Two of the 20 patients (10%) with evidence of Tw did not respond to antibiotic therapy. They were not considered to suffer from WD. Therefore, relying only on histological findings of intestinal biopsies would have missed 11 (61%) of the 18 patients with WD in our cohort. In comparison, PCR of intestinal biopsies detected Tw-DNA in 14 (93%) of the 15 WD patients evaluated. Patients with a positive histology did not differ from PCR-positive patients with regard to sex, age, or duration of disease, but more often presented with gastrointestinal symptoms. A substantial number of WD patients present without typical intestinal histology findings. Additional PCR analysis of intestinal tissue or synovial fluid increased the sensitivity of the diagnostic evaluation and should be considered particularly in patients presenting with atypical seronegative rheumatic diseases and a high-risk profile for WD.

  15. Propidium monoazide reverse transcription PCR and RT-qPCR for detecting infectious enterovirus and norovirus

    Science.gov (United States)

    Presently there is no established cell line or small animal model that allows for the detection of infectious human norovirus. Current methods based on RT-PCR and RT-qPCR detect both infectious and non-infectious virus and thus the conclusions that may be drawn regarding the publ...

  16. Detection of Leishmania infantum in animals and their ectoparasites by conventional PCR and real time PCR.

    Science.gov (United States)

    de Morais, Rayana Carla Silva; Gonçalves, Suênia da Cunha; Costa, Pietra Lemos; da Silva, Kamila Gaudêncio; da Silva, Fernando José; Silva, Rômulo Pessoa E; de Brito, Maria Edileuza Felinto; Brandão-Filho, Sinval Pinto; Dantas-Torres, Filipe; de Paiva-Cavalcanti, Milena

    2013-04-01

    Visceral leishmaniosis (VL) is a parasitic disease caused by Leishmania infantum, which is primarily transmitted by phlebotomine sandflies. However, there has been much speculation on the role of other arthropods in the transmission of VL. Thus, the aim of this study was to assess the presence of L. infantum in cats, dogs and their ectoparasites in a VL-endemic area in northeastern Brazil. DNA was extracted from blood samples and ectoparasites, tested by conventional PCR (cPCR) and quantitative real time PCR (qPCR) targeting the L. infantum kinetoplast DNA. A total of 280 blood samples (from five cats and 275 dogs) and 117 ectoparasites from dogs were collected. Animals were apparently healthy and not previously tested by serological or molecular diagnostic methods. Overall, 213 (76.1 %) animals and 51 (43.6 %) ectoparasites were positive to L. infantum, with mean parasite loads of 795.2, 31.9 and 9.1 fg in dogs, cats and ectoparasites, respectively. Concerning the positivity between dogs and their ectoparasites, 32 (15.3 %) positive dogs were parasitized by positive ectoparasites. The overall concordance between the PCR protocols used was 59.2 %, with qPCR being more efficient than cPCR; 34.1 % of all positive samples were exclusively positive by qPCR. The high number of positive animals and ectoparasites also indicates that they could serve as sentinels or indicators of the circulation of L. infantum in risk areas.

  17. Rapid Detection and Identification of Human Hookworm Infections through High Resolution Melting (HRM) Analysis

    Science.gov (United States)

    Ngui, Romano; Lim, Yvonne A. L.; Chua, Kek Heng

    2012-01-01

    Background Hookworm infections are still endemic in low and middle income tropical countries with greater impact on the socioeconomic and public health of the bottom billion of the world's poorest people. In this study, a real-time polymerase chain reaction (PCR) coupled with high resolution melting-curve (HRM) analysis was evaluated for an accurate, rapid and sensitive tool for species identification focusing on the five human hookworm species. Methods Real-time PCR coupled with HRM analysis targeting the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA as the genetic marker was used to identify and distinguish hookworm species in human samples. Unique and distinct characteristics of HRM patterns were produced for each of the five hookworm species. The melting curves were characterized by peaks of 79.24±0.05°C and 83.00±0.04°C for Necator americanus, 79.12±0.10°C for Ancylostoma duodenale, 79.40±0.10°C for Ancylostoma ceylanicum, 79.63±0.05°C for Ancylostoma caninum and 79.70±0.14°C for Ancylostoma braziliense. An evaluation of the method's sensitivity and specificity revealed that this assay was able to detect as low as 0.01 ng/µl hookworm DNA and amplification was only recorded for hookworm positive samples. Conclusion The HRM assay developed in this study is a rapid and straightforward method for the diagnosis, identification and discrimination of five human hookworms. This assay is simple compared to other probe-based genotyping methods as it does not require multiplexing, DNA sequencing or post-PCR processing. Therefore, this method offers a new alternative for rapid detection of human hookworm species. PMID:22844538

  18. Rapid detection and identification of human hookworm infections through high resolution melting (HRM analysis.

    Directory of Open Access Journals (Sweden)

    Romano Ngui

    Full Text Available BACKGROUND: Hookworm infections are still endemic in low and middle income tropical countries with greater impact on the socioeconomic and public health of the bottom billion of the world's poorest people. In this study, a real-time polymerase chain reaction (PCR coupled with high resolution melting-curve (HRM analysis was evaluated for an accurate, rapid and sensitive tool for species identification focusing on the five human hookworm species. METHODS: Real-time PCR coupled with HRM analysis targeting the second internal transcribed spacer (ITS-2 of nuclear ribosomal DNA as the genetic marker was used to identify and distinguish hookworm species in human samples. Unique and distinct characteristics of HRM patterns were produced for each of the five hookworm species. The melting curves were characterized by peaks of 79.24±0.05°C and 83.00±0.04°C for Necator americanus, 79.12±0.10°C for Ancylostoma duodenale, 79.40±0.10°C for Ancylostoma ceylanicum, 79.63±0.05°C for Ancylostoma caninum and 79.70±0.14°C for Ancylostoma braziliense. An evaluation of the method's sensitivity and specificity revealed that this assay was able to detect as low as 0.01 ng/µl hookworm DNA and amplification was only recorded for hookworm positive samples. CONCLUSION: The HRM assay developed in this study is a rapid and straightforward method for the diagnosis, identification and discrimination of five human hookworms. This assay is simple compared to other probe-based genotyping methods as it does not require multiplexing, DNA sequencing or post-PCR processing. Therefore, this method offers a new alternative for rapid detection of human hookworm species.

  19. Diagnosis of Cutaneous Leishmaniasis by Multiplex PCR

    Directory of Open Access Journals (Sweden)

    M Heiat

    2010-07-01

    Full Text Available Introduction: Annually, more than 14 million people are reported to be infected with Leishmaniasis all over the world. In Iran, this disease is seen in the form of cutaneous and visceral leishmaniasis, of which the cutaneous form is more wide spread. In recent years, cutaneous leishmaniaisis is diagnosed by PCR utilizing specific primers in order to amplify different parasite genes including ribosomal RNA genes, kinetoplast DNA or tandem repeating sequences. The aim of this research was to detect early stage cutaneous leishmaniasis using Multiplex-PCR technique. Methods: In this study, 67 samples were prepared from patients with cutaneous leishmaniasis. DNA was extracted with phenolchloroform. Each specimen was analyzed using two different pairs of PCR primers. The sensitivity of each PCR was optimized on pure Leishmania DNA prior to use for diagnosis. Two standard parasites L. major and L. tropica were used as positive control. Results: DNA amplification fragments were two 115 bp and 683 bp for AB and UL primers, respectively. The sensitivity of two primers was not equal for detection of L. major and L. tropica. The sensivity of PCR with AB primer was 35 cells, while that for UL primer was 40 cells. Conclusion: The results of this study indicate that PCR is a sensitive diagnostic assay for cutaneous leishmaniasis and could be employed as the new standard for routine diagnosis when species identification is not required. However, the ability to identify species is especially important in prognosis of the disease and in deciding appropriate therapy, especially in regions where more than one type of species and disease are seen by clinicians.

  20. Lessons learnt from FARO/TERMOS corium melt quenching experiments

    Energy Technology Data Exchange (ETDEWEB)

    Magallon, D.; Huhtiniemi, I.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center

    1998-01-01

    The influence of melt quantity, melt composition, water depth and initial pressure on quenching is assessed on the basis of seven tests performed in various conditions in the TERMOS vessel of the FARO facility at JRC-Ispra. Tests involved UO{sub 2}-based melt quantities in the range 18-176 kg at a temperature of approximately 3000 K poured into saturated water. The results suggest that erosion of the melt jet column is an efficient contributor to the amount of break-up, and thus quenching, for large pours of corium melt. The presence of Zr metal in the melt induced a much more efficient quenching than in a similar test with no Zr metal, attributed to the oxidation of the Zr. Significant amounts of H{sub 2} were produced also in tests with pure oxidic melts (e.g. about 300 g for 157 kg melt). In the tests at 5.0 and 2.0 MPa good mixing with significant melt break-up and quenching was obtained during the penetration in the water. At 0.5 MPa, good penetration of the melt into the water could still be achieved, but a jump in the vessel pressurisation occurred when the melt contacted the bottom and part (5 kg) of the debris was re-ejected from the water. (author)

  1. Melting of glass by direct induction heating in ceramic container

    International Nuclear Information System (INIS)

    Ooka, Kazuo; Oguino, Naohiko; Kawanishi, Nobuo

    1981-01-01

    The direct induction melting, a process of glass melting by high frequency induction heating, was found to be the effective way of glass melting, especially desirable for the vitrification of High Level Radioactive Liquid Wastes, HLLW. A test instrument in the cold level was equipped with a high frequency oscillator of 65 kW anode output. The direct induction melting was successfully performed with two frequencies of 400 kHz and 3 MHz, and the operation conditions were determined in the five cases of ceramic pot inner diameters of 170, 200, 230, 280 and 325 mm. The start-up of the direct induction melting was carried out by induction heating using a silicon carbide rod which was inserted in raw material powders in the ceramic pot. After the raw material powders partly melted down and the direct induction in the melt began, the start-up rod was removed out of the melt. At this stage, the direct induction melting was successively performed by adjusting the output power of the oscillator and by supplying the raw materials. It was also found that the capacity of this type of melting was reasonably large and the operation could be remotely controlled. Both applied frequencies of 400 kHz and 3 MHz was found to be successful with this melting system, especially in the case of lower frequency which proved more preferable for the in-cell work. (author)

  2. Reduction of heteroduplex formation in PCR amplification

    Czech Academy of Sciences Publication Activity Database

    Michu, Elleni; Mráčková, Martina; Vyskot, Boris; Žlůvová, Jitka

    2010-01-01

    Roč. 54, č. 1 (2010), s. 173-176 ISSN 0006-3134 R&D Projects: GA AV ČR(CZ) KJB600040801; GA ČR(CZ) GD204/09/H002; GA AV ČR(CZ) IAA600040801; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : polymerase chain reaction * reconditioning PCR * mixed-template PCR Subject RIV: BO - Biophysics Impact factor: 1.582, year: 2010

  3. A naked-eye colorimetric "PCR developer"

    Science.gov (United States)

    Valentini, Paola; Pompa, Pier Paolo

    2016-04-01

    Despite several advances in molecular biology and diagnostics, Polymerase Chain Reaction (PCR) is currently the gold standard for nucleic acids amplification and detection, due to its versatility, low-cost and universality, with estimated genetically modified organisms, and pathogens). The PCR developer proved to be highly specific and ultra-sensitive, discriminating down to few copies of HIV viral DNA, diluted in an excess of interfering human genomic DNA, which is a clinically relevant viral load. Hence, it could be a valuable tool for both academic research and clinical applications.

  4. Simulation of melt spreading in consideration of phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Spengler, C. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Germany)

    2002-07-01

    The analysis of melt spreading and relocation phenomena in the containment of LWR power plants in case of hypothetical severe accidents leading to core melting is an important issue for reactor safety investigations. For the simulation of melt spreading the code LAVA has been developed on the basis of a method from the related subject of volcanology by adding more detailed models for heat transfer phenomena and flow rheology. The development is supported by basic analysis of the spreading of gravity currents as well as experimental investigations of the rheology of solidifying melts. These exhibit strong non-Newtonian effects in case of a high content of solids in the freezing melt. The basic model assumption in LAVA is the ideal Bingham plastic approach to the non-Newtonian, shear-thinning characteristic of solidifying melts. For the recalculation of melt spreading experiments, the temperature-dependent material properties for solidifying melt mixtures have been calculated using correlations from the literature. With the parameters and correlations for the rheological material properties approached by results from literature, it was possible to recalculate successfully recent spreading experiments with simulant materials and prototypic reactor core materials. An application to the behaviour of core melt in the reactor cavity assumed a borderline case for the issue of spreading. This limit is represented by melt conditions (large solid fraction, low volume flux), under which the melt is hardly spreadable. Due to the persistent volume flux the reactor cavity is completely, but inhomogeneously filled with melt. The degree of inhomogeneity is rather small, so it is concluded, that for the long-term coolability of a melt pool in narrow cavities the spreading of melt will probably have only negligible influence. (orig.)

  5. Core melt retention and cooling concept of the ERP

    Energy Technology Data Exchange (ETDEWEB)

    Weisshaeupl, H [SIEMENS/KWU, Erlangen (Germany); Yvon, M [Nuclear Power International, Paris (France)

    1996-12-01

    For the French/German European Pressurized Water Reactor (EPR) mitigative measures to cope with the event of a severe accident with core melt down are considered already at the design stage. Following the course of a postulated severe accident with reactor pressure vessel melt through one of the most important features of a future design must be to stabilize and cool the melt within the containment by dedicated measures. This measures should - as far as possible - be passive. One very promising solution for core melt retention seems to be a large enough spreading of the melt on a high temperature resistant protection layer with water cooling from above. This is the favorite concept for the EPR. In dealing with the retention of a molten core outside of the RPV several ``steps`` from leaving the RPV to finally stabilize the melt have to gone through. These steps are: collection of the melt; transfer of the melt; distribution of the melt; confining; cooling and stabilization. The technical features for the EPR solution of a large spreading of the melt are: Dedicated spreading chamber outside the reactor pit (area about 150 m{sup 2}); high temperature resistant protection layers (e.g. Zirconia bricks) at the bottom and part of the lateral structures (thus avoiding melt concrete interaction); reactor pit and spreading compartment are connected via a discharge channel which has a slope to the spreading area and is closed by a steel plate, which will resist the core melt for a certain time in order to allow a collection of the melt; the spreading compartments is connected with the In-Containment Refuelling Water Storage Tank (IRWST) with pipes for water flooding after spreading. These pipes are closed and will only be opened by the hot melt itself. It is shown how the course of the different steps mentioned above is processed and how each of these steps is automatically and passively achieved. (Abstract Truncated)

  6. Composition profile determination in isomorphous binary alloys

    International Nuclear Information System (INIS)

    An, C.Y.; Bandeira, I.N.

    1983-07-01

    The inhomogeneity along the growth axis of the pseudo-binary alloys is due to the segregation of the solute which will be mixed in the melt due to convective and diffusive flows. A process for determination of the exact composition profile by measurements of the crystal density, for alloys of the type A sub(1-x) B sub(x), is shown. (Author) [pt

  7. Tungsten melt layer erosion due to J x B force under conditions relevant to ITER ELMs

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)]. E-mail: garkusha@ipp.kharkov.ua; Bazylev, B.N. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Bandura, A.N. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Byrka, O.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Landman, I.S. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Kulik, N.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Makhlaj, V.A. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Petrov, Yu.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Solyakov, D.G. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Tereshin, V.I. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2007-06-15

    The behavior of tungsten under repetitive hydrogen plasma impacts causing surface melting in conditions of an applied J x B force of up to 20 MN/m{sup 3} is studied with the plasma accelerator QSPA Kh-50. Tungsten samples of EU trademark have been exposed to up to 100 pulses simulating ITER ELMs of the energy load 0.7 MJ/m{sup 2} and the duration 0.25 ms. An electric current J flows across the magnetic field B of 1.4 T, and the resulting J x B force produces a displacement of the melt with formation of an erosion crater and an inclination of the surface profile along the force. Surface morphology and the damage by surface cracks are discussed. Comparisons of experimental results with numerical simulations of the code MEMOS-1.5D are presented.

  8. Advanced One-Dimensional Entrained-Flow Gasifier Model Considering Melting Phenomenon of Ash

    Directory of Open Access Journals (Sweden)

    Jinsu Kim

    2018-04-01

    Full Text Available A one-dimensional model is developed to represent the ash-melting phenomenon, which was not considered in the previous one-dimensional (1-D entrained-flow gasifier model. We include sensible heat of slag and the fusion heat of ash in the heat balance equation. To consider the melting of ash, we propose an algorithm that calculates the energy balance for three scenarios based on temperature. We also use the composition and the thermal properties of anorthite mineral to express ash. gPROMS for differential equations is used to solve this algorithm in a simulation; the results include coal conversion, gas composition, and temperature profile. Based on the Texaco pilot plant gasifier, we validate our model. Our results show good agreement with previous experimental data. We conclude that the sensible heat of slag and the fusion heat of ash must be included in the entrained flow gasifier model.

  9. Recent results in characterization of melt-grown and quench-melt- grown YBCO superconductors

    International Nuclear Information System (INIS)

    Balachandran, U.; Poeppel, R.B.; Gangopadhyay, A.K.

    1992-02-01

    From the standpoint of applications, melt-grown (MG) and quench-melt-grown (QMG) bulk YBCO superconductors are of considerable interest. In this paper, we studied the intragranular critical current density (J c ), the apparent pinning potential (U o ), and the irreversibility temperature (T irr ) of MG and QMG samples and compared the results to those for conventionally sintered YBCO. A systematic increase in U o and a slower drop in J c with temperature indicate a systematic improvement in flux-pinning properties in progressing from the sintered YBCO to QMG and MG samples. Weaker pinning is observed in the QMG YBCO than in the MG samples

  10. High-resolution melting analysis for prenatal diagnosis of beta-thalassemia in northern Thailand.

    Science.gov (United States)

    Charoenkwan, Pimlak; Sirichotiyakul, Supatra; Phusua, Arunee; Suanta, Sudjai; Fanhchaksai, Kanda; Sae-Tung, Rattika; Sanguansermsri, Torpong

    2017-12-01

    High-resolution melting (HRM) analysis is a rapid mutation analysis which assesses the pattern of reduction of fluorescence signal after subjecting the amplified PCR product with saturated fluorescence dye to an increasing temperature. We used HRM analysis for prenatal diagnosis of beta-thalassemia disease in northern Thailand. Five PCR-HRM protocols were used to detect point mutations in five different segments of the beta-globin gene, and one protocol to detect the 3.4 kb beta-globin deletion. We sought to characterize the mutations in carriers and to enable prenatal diagnosis in 126 couples at risk of having a fetus with beta-thalassemia disease. The protocols identified 18 common mutations causing beta-thalassemia, including the rare codon 132 (A-T) mutation. Each mutation showed a specific HRM pattern and all results were in concordance with those from direct DNA sequencing or gap-PCR methods. In cases of beta-thalassemia disease resulting from homozygosity for a mutation or compound heterozygosity for two mutations on the same amplified segment, the HRM patterns were different to those of a single mutation and were specific for each combination. HRM analysis is a simple and useful method for mutation identification in beta-thalassemia carriers and prenatal diagnosis of beta-thalassemia in northern Thailand.

  11. Simulation of core melt spreading with lava: theoretical background and status of validation

    International Nuclear Information System (INIS)

    Allelein, H.-J.; Breest, A.; Spengler, C.

    2000-01-01

    The goal of this paper is to present the GRS R and D achievements and perspectives of its approach to simulate ex-vessel core melt spreading. The basic idea followed by GRS is the analogy of core melt spreading to volcanic lava flows. A fact first proposed by Robson (1967) and now widely accepted is that lava rheologically behaves as a Bingham fluid, which is characterized by yield stress and plastic viscosity. Recent experimental investigations by Epstein (1996) reveal that corium-concrete mixtures may be described as Bingham fluids. The GRS code LAVA is based on a successful lava flow model, but is adapted to prototypic corium and corium-simulation spreading. Furthermore some detailed physical models such as a thermal crust model on the free melt surface and a model for heat conduction into the substratum are added. Heat losses of the bulk, which is represented by one mean temperature, are now determined by radiation and by temperature profiles in the upper crust and in the substratum. In order to reduce the weak mesh dependence of the original algorithm, a random space method of cellular automata is integrated, which removes the mesh bias without increasing calculation time. LAVA is successfully validated against a lot of experiments using different materials spread. The validation process has shown that LAVA is a robust and fast running code to simulate corium-type spreading. LAVA provides all integral information of practical interest (spreading length, height of the melt after stabilization) and seems to be an appropriate tool for handling large core melt masses within a plant application. (orig.)

  12. Detection of Mycobacterium Tuberculosis by using PCR

    International Nuclear Information System (INIS)

    Suhadi, F; Dadang-Sudrajat; Maria-Lina, R.

    1996-01-01

    Polymerase Chain Reaction (PCR) procedure using three primary set derived from repetitive DNA sequence specific to mycobacteria was used to diagnose pathogenic Mycobacterium tuberculosis. The assay was specific for M. tuberculosis and could be used to detect the amount DNA less than 10 -9 g

  13. PCR detection of potato cyst nematode.

    Science.gov (United States)

    Reid, Alex

    2009-01-01

    Potato cyst nematode (PCN) is responsible for losses in potato production totalling millions of euros every year in the EC. It is important for growers to know which species is present in their land as this determines its subsequent use. The two species Globodera pallida and Globodera rostochiensis can be differentiated using an allele-specific PCR.

  14. A high-resolution melting (HRM) assay for the differentiation between Israeli field and Neethling vaccine lumpy skin disease viruses.

    Science.gov (United States)

    Menasherow, Sophia; Erster, Oran; Rubinstein-Giuni, Marisol; Kovtunenko, Anita; Eyngor, Evgeny; Gelman, Boris; Khinich, Evgeny; Stram, Yehuda

    2016-06-01

    Lumpy skin disease (LSD) is a constant threat to the Middle East including the State of Israel. During vaccination programs it is essential for veterinary services and farmers to be able to distinguish between animals affected by the cattle-borne virulent viruses and vaccinated animals, subsequently affected by the vaccine strain. This study describes an improved high resolution-melting (HRM) test that exploits a 27 base pair (bp) fragment of the LSDV126 extracellular enveloped virion (EEV) gene that is present in field viruses but is absent from the Neethling vaccine strain. This difference leads to ∼0.5 °C melting point change in the HRM assay, when testing the quantitative PCR (qPCR) products generated from the virulent field viruses compared to the attenuated vaccine. By exploiting this difference, it could be shown using the newly developed HRM assay that virus isolated from vaccinated cattle that developed disease symptoms behave similarly to vaccine virus control, indicating that the vaccine virus can induce disease symptoms. This assay is not only in full agreement with the previously published PCR gradient and restriction fragment length polymorphism (RFLP) tests but it is faster with, fewer steps, cheaper and dependable. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Redox kinetics and mechanism in silicate melts

    International Nuclear Information System (INIS)

    Cochain, B.

    2009-12-01

    This work contributes to better understand iron redox reactions and mechanisms in silicate melts. It was conducted on compositions in both Na 2 O-B 2 O 3 -SiO 2 -FeO and Na 2 O-Al 2 O 3 -SiO 2 -FeO systems. The influence of boron-sodium and aluminum-sodium substitutions and iron content on properties and structure of glasses and on the iron redox kinetics has been studied by Raman, Moessbauer and XANES spectroscopies at the B and Fe K-edges. In borosilicate glasses, an increase in iron content or in the Fe 3+ /ΣFe redox state implies a structural rearrangement of the BO 4 species in the glass network whereas the BO 3 and BO 4 relative proportions remain nearly constant. In all studied glasses and melts, Fe 3+ is a network former in tetrahedral coordination, unless for aluminosilicates of ratio Al/Na≥1 where Fe 3+ is a network modifier in five-fold coordination. Near Tg, diffusion of network modifying cations controls the iron redox kinetics along with a flux of electron holes. At liquidus temperatures, oxygen diffusion is considered to be the mechanism that governs redox reactions. This study shows the role played by the silicate network polymerization on the redox kinetics. In borosilicate melts, iron redox kinetics depends on the boron speciation between BO 3 and BO 4 that depends itself on the sodium content. Furthermore, an increase in the network-former/network-modifier ratio implies a decrease in oxygen diffusion that results in a slowing down of the redox kinetics. The obtained results allow a description of the iron redox kinetics for more complex compositions as natural lavas or nuclear waste model glasses. (author)

  16. An Evaluation of Quantitative PCR Assays (TaqMan® and SYBR Green for the Detection of Babesia bigemina and Babesia bovis, and a Novel Fluorescent-ITS1-PCR Capillary Electrophoresis Method for Genotyping B. bovis Isolates

    Directory of Open Access Journals (Sweden)

    Bing Zhang

    2016-09-01

    Full Text Available Babesia spp. are tick-transmitted haemoparasites causing tick fever in cattle. In Australia, economic losses to the cattle industry from tick fever are estimated at AUD$26 Million per annum. If animals recover from these infections, they become immune carriers. Here we describe a novel multiplex TaqMan qPCR targeting cytochrome b genes for the identification of Babesia spp. The assay shows high sensitivity, specificity and reproducibility, and allows quantification of parasite DNA from Babesia bovis and B. bigemina compared to standard PCR assays. A previously published cytochrome b SYBR Green qPCR was also tested in this study, showing slightly higher sensitivity than the Taqman qPCRs but requires melting curve analysis post-PCR to confirm specificity. The SYBR Green assays were further evaluated using both diagnostic submissions and vaccinated cattle (at 7, 9, 11 and 14 days post-inoculation showed that B. bigemina can be detected more frequently than B. bovis. Due to fewer circulating parasites, B. bovis detection in carrier animals requires higher DNA input. Preliminary data for a novel fluorescent PCR genotyping based on the Internal Transcribed Spacer 1 region to detect vaccine and field alleles of B. bovis are described. This assay is capable of detecting vaccine and novel field isolate alleles in a single sample.

  17. Shear Melting of a Colloidal Glass

    Science.gov (United States)

    Eisenmann, Christoph; Kim, Chanjoong; Mattsson, Johan; Weitz, David A.

    2010-01-01

    We use confocal microscopy to explore shear melting of colloidal glasses, which occurs at strains of ˜0.08, coinciding with a strongly non-Gaussian step size distribution. For larger strains, the particle mean square displacement increases linearly with strain and the step size distribution becomes Gaussian. The effective diffusion coefficient varies approximately linearly with shear rate, consistent with a modified Stokes-Einstein relationship in which thermal energy is replaced by shear energy and the length scale is set by the size of cooperatively moving regions consisting of ˜3 particles.

  18. Pressure-induced melting of micellar crystal

    DEFF Research Database (Denmark)

    Mortensen, K.; Schwahn, D.; Janssen, S.

    1993-01-01

    that pressure improves the solvent quality of water, thus resulting in decomposition of the micelles and consequent melting of the micellar crystal. The combined pressure and temperature dependence reveals that in spite of the apparent increase of order on the 100 angstrom length scale upon increasing......Aqueous solutions of triblock copolymers of poly(ethylene oxide) and poly(propylene oxide) aggregate at elevated temperatures into micelles which for polymer concentrations greater-than-or-equal-to 20% make a hard sphere crystallization to a cubic micellar crystal. Structural studies show...... temperature (decreasing pressure) the overall entropy increases through the inverted micellar crystallization characteristic....

  19. Reversed Extension Flow of Polymer melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Nielsen, Jens Kromann

    2007-01-01

    The measurement of the startup of uni axial elongational flow (potentially until steady state) followed by reversed bi axial flow, both with a constant elongational rate was made possible using a Filament Stretching Rheometer (FSR). The filament stretching rheometer rheometer is surrounded...... by a thermostated environment and allows measurements on polymeric melts and liquids from room temperatures until 200 °C. In the experiments the Hencky strain at which the stress becomes zero (the recovery strain) of the reversed flow can be identified....

  20. A survey of tools for the analysis of quantitative PCR (qPCR) data.

    Science.gov (United States)

    Pabinger, Stephan; Rödiger, Stefan; Kriegner, Albert; Vierlinger, Klemens; Weinhäusel, Andreas

    2014-09-01

    Real-time quantitative polymerase-chain-reaction (qPCR) is a standard technique in most laboratories used for various applications in basic research. Analysis of qPCR data is a crucial part of the entire experiment, which has led to the development of a plethora of methods. The released tools either cover specific parts of the workflow or provide complete analysis solutions. Here, we surveyed 27 open-access software packages and tools for the analysis of qPCR data. The survey includes 8 Microsoft Windows, 5 web-based, 9 R-based and 5 tools from other platforms. Reviewed packages and tools support the analysis of different qPCR applications, such as RNA quantification, DNA methylation, genotyping, identification of copy number variations, and digital PCR. We report an overview of the functionality, features and specific requirements of the individual software tools, such as data exchange formats, availability of a graphical user interface, included procedures for graphical data presentation, and offered statistical methods. In addition, we provide an overview about quantification strategies, and report various applications of qPCR. Our comprehensive survey showed that most tools use their own file format and only a fraction of the currently existing tools support the standardized data exchange format RDML. To allow a more streamlined and comparable analysis of qPCR data, more vendors and tools need to adapt the standardized format to encourage the exchange of data between instrument software, analysis tools, and researchers.

  1. Quantitative Real-Time PCR using the Thermo Scientific Solaris qPCR Assay

    Science.gov (United States)

    Ogrean, Christy; Jackson, Ben; Covino, James

    2010-01-01

    The Solaris qPCR Gene Expression Assay is a novel type of primer/probe set, designed to simplify the qPCR process while maintaining the sensitivity and accuracy of the assay. These primer/probe sets are pre-designed to >98% of the human and mouse genomes and feature significant improvements from previously available technologies. These improvements were made possible by virtue of a novel design algorithm, developed by Thermo Scientific bioinformatics experts. Several convenient features have been incorporated into the Solaris qPCR Assay to streamline the process of performing quantitative real-time PCR. First, the protocol is similar to commonly employed alternatives, so the methods used during qPCR are likely to be familiar. Second, the master mix is blue, which makes setting the qPCR reactions easier to track. Third, the thermal cycling conditions are the same for all assays (genes), making it possible to run many samples at a time and reducing the potential for error. Finally, the probe and primer sequence information are provided, simplifying the publication process. Here, we demonstrate how to obtain the appropriate Solaris reagents using the GENEius product search feature found on the ordering web site (www.thermo.com/solaris) and how to use the Solaris reagents for performing qPCR using the standard curve method. PMID:20567213

  2. Pneumocystis PCR: It Is Time to Make PCR the Test of Choice.

    Science.gov (United States)

    Doyle, Laura; Vogel, Sherilynn; Procop, Gary W

    2017-01-01

    The testing strategy for Pneumocystis at the Cleveland Clinic changed from toluidine blue staining to polymerase chain reaction (PCR). We studied the differences in positivity rates for these assays and compared each with the detection of Pneumocystis in companion specimens by cytology and surgical pathology. We reviewed the results of all Pneumocystis test orders 1 year before and 1 year after the implementation of a Pneumocystis -specific PCR. We also reviewed the corresponding cytology and surgical pathology results, if performed. Finally, we reviewed the medical records of patients with rare Pneumocystis detected by PCR in an effort to differentiate colonization vs true disease. Toluidine blue staining and surgical pathology had similar sensitivities and negative predictive values, both of which were superior to cytology. There was a >4-fold increase in the annual detection of Pneumocystis by PCR compared with toluidine blue staining (toluidine blue staining: 11/1583 [0.69%] vs PCR: 44/1457 [3.0%]; chi-square P < .001). PCR detected 1 more case than surgical pathology and was far more sensitive than cytology. Chart review demonstrated that the vast majority of patients with rare Pneumocystis detected were immunosuppressed, had radiologic findings supportive of this infection, had no other pathogens detected, and were treated for pneumocystosis by the clinical team. PCR was the most sensitive method for the detection of Pneumocystis and should be considered the diagnostic test of choice. Correlation with clinical and radiologic findings affords discrimination of early true disease from the far rarer instances of colonization.

  3. Development of Quantitative Competitive PCR and Absolute Based Real-Time PCR Assays for Quantification of The Butyrate Producing Bacterium: Butyrivibrio fibrisolvens

    Directory of Open Access Journals (Sweden)

    Mojtaba Tahmoorespur

    2016-04-01

    fibrisolvens were successfully used for amplifying the specific fragments from this bacteria. The main and important factors for increasing the accuracy of Q-C PCR is the degree of similarity between competitor and target fragment. In this study the competitor fragment was highest homology to target sequences. In this regards it seems obtained results have considerable accuracy. The intensity of bands was evaluated and analyzed using Image J software. The results of band intensity analysis showed linear trend between competitor and target in different serial dilution of competitors. The specific fragment from 16S rDNA region of Butyrivibrio fibriolvents Bacteria was amplified using specific primers and cloned in pTZ57R/T plasmid. After amplifying the competitor fragment and target sequence simultaneously, the two bands were detectable in gel electrophoresis. The range of 10-1 to 10-6 serial dilution from competitor was selected for QC-PCR reaction. The results of this section showed that the considerable linear correlation was exist between competitor and target fragment in QC-PCR reaction (R2=0.985. In this study, Real-time PCR was also used for quantification of Butyrivibrio fibriolvents Bacteria strain. Melting analysis was showed that the reaction in Real-time PCR had appropriate condition for amplifying the target sequence. We used a standard in this study. This standard was designed as a vector contain of competitor fragment. This kind of standard was successfully used for QC-PCR and Real-time PCR analyses. Standard competitor could be used for absolute quantification for this bacterial strain. Overall, our results showed that the designed standard and optimized QC-PCR have considerable potential for Butyrivibrio fibriolvents Bacteria strain. Conclusion In this study, the two methods of quantification of nucleotide acids in biological samples were optimized. These two methods were performed in order to optimize Butyrivibrio fibriolvents Bacteria strain quantification

  4. Digital PCR for direct quantification of viruses without DNA extraction

    OpenAIRE

    Pav?i?, Jernej; ?el, Jana; Milavec, Mojca

    2015-01-01

    DNA extraction before amplification is considered an essential step for quantification of viral DNA using real-time PCR (qPCR). However, this can directly affect the final measurements due to variable DNA yields and removal of inhibitors, which leads to increased inter-laboratory variability of qPCR measurements and reduced agreement on viral loads. Digital PCR (dPCR) might be an advantageous methodology for the measurement of virus concentrations, as it does not depend on any calibration mat...

  5. Detection of Lymnaea columella infection by Fasciola hepatica through Multiplex-PCR

    Directory of Open Access Journals (Sweden)

    Kelly Grace Magalhães

    2004-06-01

    Full Text Available From complete mitochondrial DNA sequence of Fasciola hepatica available in Genbank, specific primers were designed for a conserved and repetitive region of this trematode. A pair of primers was used for diagnosis of infected Lymnaea columella by F. hepatica during the pre-patent period simultaneously with another pair of primers which amplified the internal transcribed spacer (ITS region of rDNA from L. columella in a single Multiplex-PCR. The amplification generated a ladder band profile specific for F. hepatica. This profile was observed in positive molluscs at different times of infection, including adult worms from the trematode. The Multiplex-PCR technique showed to be a fast and safe tool for fascioliasis diagnosis, enabling the detection of F. hepatica miracidia in L. columella during the pre-patent period and identification of transmission areas.

  6. Comparison of simultaneous splenic sample PCR with blood sample PCR for diagnosis and treatment of experimental Ehrlichia canis infection.

    Science.gov (United States)

    Harrus, Shimon; Kenny, Martin; Miara, Limor; Aizenberg, Itzhak; Waner, Trevor; Shaw, Susan

    2004-11-01

    This report presents evidence that dogs recover from acute canine monocytic ehrlichiosis (CME) after 16 days of doxycycline treatment (10 mg/kg of body weight every 24 h). Blood PCR was as valuable as splenic aspirate PCR for early diagnosis of acute CME. Splenic aspirate PCR was, however, superior to blood PCR for the evaluation of ehrlichial elimination.

  7. Interface Shape and Convection During Solidification and Melting of Succinonitrile

    Science.gov (United States)

    Degroh, Henry C., III; Lindstrom, Tiffany

    1994-01-01

    An experimental study was conducted of the crystal growth of succinonitrile during solidification, melting, and no-growth conditions using a horizontal Bridgman furnace and square glass ampoule. For use as input boundary conditions to numerical codes, thermal profiles on the outside of the ampoule at five locations around its periphery were measured along the ampoule's length. Temperatures inside the ampoule were also measured. The shapes of the s/l interface in various two dimensional planes were quantitatively determined. Though interfaces were nondendritic and noncellular, they were not flat, but were highly curved and symmetric in only one unique longitudinal y-z plane (at x=O). The shapes of the interface were dominated by the primary longitudinal flow cell characteristic of shallow cavity flow in horizontal Bridgman; this flow cell was driven by the imposed furnace temperature gradient and caused a 'radical' thermal gradient such that the upper half of the ampoule was hotter than the bottom half. We believe that due to the strong convection, the release of latent heat does not significantly influence the thermal conditions near the interface. We hope that the interface shape and thermal data presented in this paper can be used to optimize crystal growth processes and validate numerical models.

  8. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines

    Science.gov (United States)

    Konda Gokuldoss, Prashanth; Kolla, Sri; Eckert, Jürgen

    2017-01-01

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties. PMID:28773031

  9. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines.

    Science.gov (United States)

    Gokuldoss, Prashanth Konda; Kolla, Sri; Eckert, Jürgen

    2017-06-19

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties.

  10. PCR-DGGE Analysis of Bacterial Population Attached to the Bovine Rumen Wall

    OpenAIRE

    Lukáš, F. (Filip); Šimůnek, J. (Jiří); Mrázek, J. (Jakub); Kopečný, J. (Jan)

    2010-01-01

    We isolated and amplified by PCR 16S rDNA from bacteria attached to the bovine rumen wall and analyzed it by denaturing gradient gel electrophoresis (DGGE) with subsequent sequence analysis. The attached bacterial community differed from the bacteria of rumen content; however, no differences were observed among the five epithelial sampling sites taken from each animal. The DGGE profile of the bacterial population attached to the rumen wall represented a high inter-animal variation.

  11. Do cracks melt their way through solids?

    International Nuclear Information System (INIS)

    Okamoto, P. R.

    1998-01-01

    Real-time, in situ fracture studies in the high-voltage electron microscope (HVEM) show that microscopically thin regions of amorphous NiTi form ahead of moving crack tips in the B2-NiTi intermetallic compound during tensile straining at temperatures equal to or below 600K. The upper cutoff temperature of 600K for this stress-induced melting (or amorphization) is identical to the upper cutoff temperatures reported in the literature for both heavy-ion-induced amorphization of the intermetallic NiTi and ion-beam-mixing-induced amorphization of Ni and Ti multilayer. These results, together with the fact that the higher crystallization temperatures (∼800K)of unrelaxed amorphous NiTi alloys obtained by rapid quenching can also be reduced to, but not lower than 600K, by heavy-ion irradiation, strongly suggest that structural relaxation processes enhanced or induced by dynamic atomic disordering allow the formation of a unique, fully-relaxed glassy state which is characterized by a unique isothermal crystallization temperature. We believe that this unique temperature is the Kauzmann glass-transition temperature, corresponding to the ideal glass having the same entropy as the crystalline state. As the glassy state with the lowest global free energy, the preferential formation of this ideal glass by disorder-induced amorphization processes can be understood as the most energetically-favored, kinetically-constrained melting response of crystalline materials driven far from equilibrium at low temperatures

  12. Melting curve of materials: theory versus experiments

    International Nuclear Information System (INIS)

    Alfe, D; Vocadlo, L; Price, G D; Gillan, M J

    2004-01-01

    A number of melting curves of various materials have recently been measured experimentally and calculated theoretically, but the agreement between different groups is not always good. We discuss here some of the problems which may arise in both experiments and theory. We also report the melting curves of Fe and Al calculated recently using quantum mechanics techniques, based on density functional theory with generalized gradient approximations. For Al our results are in very good agreement with both low pressure diamond-anvil-cell experiments (Boehler and Ross 1997 Earth Planet. Sci. Lett. 153 223, Haenstroem and Lazor 2000 J. Alloys Compounds 305 209) and high pressure shock wave experiments (Shaner et al 1984 High Pressure in Science and Technology ed Homan et al (Amsterdam: North-Holland) p 137). For Fe our results agree with the shock wave experiments of Brown and McQueen (1986 J. Geophys. Res. 91 7485) and Nguyen and Holmes (2000 AIP Shock Compression of Condensed Matter 505 81) and the recent diamond-anvil-cell experiments of Shen et al (1998 Geophys. Res. Lett. 25 373). Our results are at variance with the recent calculations of Laio et al (2000 Science 287 1027) and, to a lesser extent, with the calculations of Belonoshko et al (2000 Phys. Rev. Lett. 84 3638). The reasons for these disagreements are discussed

  13. Proton NMR relaxation in hydrous melts

    International Nuclear Information System (INIS)

    Braunstein, J.; Bacarella, A.L.; Benjamin, B.M.; Brown, L.L.; Girard, C.

    1976-01-01

    Pulse and continuous wave NMR measurements are reported for protons in hydrous melts of calcium nitrate at temperatures between -4 and 120 0 C. Although measured in different temperature ranges, spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times appear to be nearly equal to each other and proportional to the self-diffusion coefficients of solute metal cations such as Cd 2+ . At temperatures near 50 0 C, mean Arrhenius coefficients Δ H/sub T 1 / (kcal/mol) are 7.9, 7.3, and 4.8, respectively, for melts containing 2.8, 4.0, and 8.0 moles of water per mole of calcium nitrate, compared to 4.6 kcal/mol for pure water. Temperature dependence of T 1 and T 2 in Ca(NO 3 ) 2 -2.8 H 2 O between -4 and 120 0 C are non-Arrhenius and can be represented by a Fulcher-type equation with a ''zero mobility temperature'' (T 0 ) of 225 0 K, close to the value of T 0 for solute diffusion, electrical conductance and viscosity. Resolution of the relaxation rates into correlation times for intramolecular (rotational) and intermolecular (translational) diffusional motion is discussed in terms of the Bloembergen-Purcell-Pound and more recent models for dipolar relaxation

  14. Synthesis of ammonia using sodium melt.

    Science.gov (United States)

    Kawamura, Fumio; Taniguchi, Takashi

    2017-09-14

    Research into inexpensive ammonia synthesis has increased recently because ammonia can be used as a hydrogen carrier or as a next generation fuel which does not emit CO 2 . Furthermore, improving the efficiency of ammonia synthesis is necessary, because current synthesis methods emit significant amounts of CO 2 . To achieve these goals, catalysts that can effectively reduce the synthesis temperature and pressure, relative to those required in the Haber-Bosch process, are required. Although several catalysts and novel ammonia synthesis methods have been developed previously, expensive materials or low conversion efficiency have prevented the displacement of the Haber-Bosch process. Herein, we present novel ammonia synthesis route using a Na-melt as a catalyst. Using this route, ammonia can be synthesized using a simple process in which H 2 -N 2 mixed gas passes through the Na-melt at 500-590 °C under atmospheric pressure. Nitrogen molecules dissociated by reaction with sodium then react with hydrogen, resulting in the formation of ammonia. Because of the high catalytic efficiency and low-cost of this molten-Na catalyst, it provides new opportunities for the inexpensive synthesis of ammonia and the utilization of ammonia as an energy carrier and next generation fuel.

  15. Dynamics and Melting of Finite Plasma Crystals

    Science.gov (United States)

    Ludwig, Patrick; K"Ahlert, Hanno; Baumgartner, Henning; Thomsen, Hauke; Bonitz, Michael

    2009-11-01

    Interacting few-particle systems in external trapping potentials are of strong current interest since they allow to realize and control strong correlation and quantum effects [1]. Here, we present our recent results on the structural and thermodynamic properties of the crystal-like Wigner phase of complex plasma confined in a 3D harmonic potential. We discuss the linear response of the strongly correlated system to external excitations, which can be described in terms of normal modes [2]. By means of first-principle simulations the details of the melting phase transitions of these mesoscopic systems are systematically analysed with the melting temperatures being determined by a modified Lindemann parameter for the pair distance fluctuations [3]. The critical temperatures turn out to be utmost sensitive to finite size effects (i.e., the exact particle number), and form of the (screened) interaction potential.[4pt] [1] PhD Thesis, P. Ludwig, U Rostock (2008)[0pt] [2] C. Henning et al., J. Phys. A 42, 214023 (2009)[0pt] [3] B"oning et al., Phys. Rev. Lett. 100, 113401 (2008)

  16. Detection of structural heterogeneity of glass melts

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    2004-01-01

    The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One is the hyp......The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One...... is the hyperquench-anneal-calorimetric scan approach, by which the structural information of a basaltic supercooled liquid and three binary silicate liquids is acquired. Another is the calorimetrically repeated up- and downscanning approach, by which the structural heterogeneity, the intermediate range order...... is discussed. The ordered structure of glass melts above the liquidus temperature is indirectly characterized by use of X-ray diffraction method. The new approaches are of importance for monitoring the glass melting and forming process and for improving the physical properties of glasses and glass fibers....

  17. Simulation of steam explosion in stratified melt-coolant configuration

    International Nuclear Information System (INIS)

    Leskovar, Matjaž; Centrih, Vasilij; Uršič, Mitja

    2016-01-01

    Highlights: • Strong steam explosions may develop spontaneously in stratified configurations. • Considerable melt-coolant premixed layer formed in subcooled water with hot melts. • Analysis with MC3D code provided insight into stratified steam explosion phenomenon. • Up to 25% of poured melt was mixed with water and available for steam explosion. • Better instrumented experiments needed to determine dominant mixing process. - Abstract: A steam explosion is an energetic fuel coolant interaction process, which may occur during a severe reactor accident when the molten core comes into contact with the coolant water. In nuclear reactor safety analyses steam explosions are primarily considered in melt jet-coolant pool configurations where sufficiently deep coolant pool conditions provide complete jet breakup and efficient premixture formation. Stratified melt-coolant configurations, i.e. a molten melt layer below a coolant layer, were up to now believed as being unable to generate strong explosive interactions. Based on the hypothesis that there are no interfacial instabilities in a stratified configuration it was assumed that the amount of melt in the premixture is insufficient to produce strong explosions. However, the recently performed experiments in the PULiMS and SES (KTH, Sweden) facilities with oxidic corium simulants revealed that strong steam explosions may develop spontaneously also in stratified melt-coolant configurations, where with high temperature melts and subcooled water conditions a considerable melt-coolant premixed layer is formed. In the article, the performed study of steam explosions in a stratified melt-coolant configuration in PULiMS like conditions is presented. The goal of this analytical work is to supplement the experimental activities within the PULiMS research program by addressing the key questions, especially regarding the explosivity of the formed premixed layer and the mechanisms responsible for the melt-water mixing. To

  18. Ferric iron partitioning between pyroxene and melt during partial melting of the Earth's upper mantle

    Science.gov (United States)

    Rudra, A.; Hirschmann, M. M.

    2017-12-01

    The oxidation state of the Earth's mantle influences melt production, volatile behavior, partitioning of key trace elements and possible saturation of alloy at depth. Average Fe3+/FeT ratios in MORBs indicate oxygen fugacitiy of the source regions is close to QFM, in contrast to a 3 log unit variation of fO2 recorded by abyssal peridotites. Quantification of the relationship between basalt and source Fe3+/FeT, oxygen fugacity, and melting requires constraints on Fe3+ partitioning between melt and mantle minerals and in particular the principal Fe3+ host, pyroxene. McCanta et al. (2004) investigated valence dependent partitioning of Fe between Martian ferroan pigeonites and melt, but behavior in terrestrial pyroxene compositions relevant to MORB petrogenesis has not been investigated. We are conducting 1 atm controlled fO2 experiments over 4 log unit variation of fO2 between ΔQFM = 2.5 to -1.5 to grow pyroxenes of variable tetrahedral and octahedral cationic population from andesitic melts of varying Mg#, alumina and alkali content. Dynamic crystallization technique facilitates growth of pyroxene crystals (100-200 um) that EPMA analyses show to be compositionally homogeneous and in equilibrium with the melt. Fe3+/FeT ratio of the synthetic pyroxenes have been analyzed by XAFS spectroscopy at the APS (GSECARS) synchrotron. To quantify the x-ray anisotropy in pyroxenes, we collected Fe K-edge XAFS spectra of oriented natural single crystals for a wide range compositions whose Fe3+/FeT ratios we determined by Mossbauer spectroscopy. We have collected both XANES and EXAFS spectral regions spanning from 7020-7220 eV to explore predictive capabilities of different spectral regions about ferric iron concentration and site occupancy. Our results will document the Fe3+ compatibility in pyroxenes of different compositions under a variety of fO2 conditions, which in turn will better constrain the interrelationship between mantle redox and melting.

  19. ICG: a wiki-driven knowledgebase of internal control genes for RT-qPCR normalization.

    Science.gov (United States)

    Sang, Jian; Wang, Zhennan; Li, Man; Cao, Jiabao; Niu, Guangyi; Xia, Lin; Zou, Dong; Wang, Fan; Xu, Xingjian; Han, Xiaojiao; Fan, Jinqi; Yang, Ye; Zuo, Wanzhu; Zhang, Yang; Zhao, Wenming; Bao, Yiming; Xiao, Jingfa; Hu, Songnian; Hao, Lili; Zhang, Zhang

    2018-01-04

    Real-time quantitative PCR (RT-qPCR) has become a widely used method for accurate expression profiling of targeted mRNA and ncRNA. Selection of appropriate internal control genes for RT-qPCR normalization is an elementary prerequisite for reliable expression measurement. Here, we present ICG (http://icg.big.ac.cn), a wiki-driven knowledgebase for community curation of experimentally validated internal control genes as well as their associated experimental conditions. Unlike extant related databases that focus on qPCR primers in model organisms (mainly human and mouse), ICG features harnessing collective intelligence in community integration of internal control genes for a variety of species. Specifically, it integrates a comprehensive collection of more than 750 internal control genes for 73 animals, 115 plants, 12 fungi and 9 bacteria, and incorporates detailed information on recommended application scenarios corresponding to specific experimental conditions, which, collectively, are of great help for researchers to adopt appropriate internal control genes for their own experiments. Taken together, ICG serves as a publicly editable and open-content encyclopaedia of internal control genes and accordingly bears broad utility for reliable RT-qPCR normalization and gene expression characterization in both model and non-model organisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Premixing and steam explosion phenomena in the tests with stratified melt-coolant configuration and binary oxidic melt simulant materials

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se; Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Konovalenko, Alexander, E-mail: kono@kth.se; Karbojian, Aram, E-mail: karbojan@kth.se

    2017-04-01

    Highlights: • Steam explosion in stratified melt-coolant configuration is studied experimentally. • Different binary oxidic melt simulant materials were used. • Five spontaneous steam explosions were observed. • Instability of melt-coolant interface and formation of premixing layer was observed. • Explosion strength is influenced by melt superheat and water subcooling. - Abstract: Steam explosion phenomena in stratified melt-coolant configuration are considered in this paper. Liquid corium layer covered by water on top can be formed in severe accident scenarios with (i) vessel failure and release of corium melt into a relatively shallow water pool; (ii) with top flooding of corium melt layer. In previous assessments of potential energetics in stratified melt-coolant configuration, it was assumed that melt and coolant are separated by a stable vapor film and there is no premixing prior to the shock wave propagation. This assumption was instrumental for concluding that the amount of energy that can be released in such configuration is not of safety importance. However, several recent experiments carried out in Pouring and Under-water Liquid Melt Spreading (PULiMS) facility with up to 78 kg of binary oxidic corium simulants mixtures have resulted in spontaneous explosions with relatively high conversion ratios (order of one percent). The instability of the melt-coolant interface, melt splashes and formation of premixing layer were observed in the tests. In this work, we present results of experiments carried out more recently in steam explosion in stratified melt-coolant configuration (SES) facility in order to shed some light on the premixing phenomena and assess the influence of the test conditions on the steam explosion energetics.