Sample records for melting points

  1. Relationships between melting point and boiling point of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yalkowsky, S.H.; Krzyzaniak, J.F.; Myrdal, P.B. (Univ. of Arizona, Tucson, AZ (United States). College of Pharmacy)


    Relationships between melting point and boiling point are shown to be dependent upon the molecular symmetry number and a modified count of the total number of atoms in the molecule. Using the above relationships, the boiling and melting points of nearly 1,000 non-hydrogen-bonding organic compounds have been correlated. The correlations for boiling point and melting point have root mean square errors of 28 and 36 C, respectively.

  2. Nanotexturing of surfaces to reduce melting point.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Ernest J.; Zubia, David (University of Texas at El Paso El Paso, TX); Mireles, Jose (Universidad Aut%C3%94onoma de Ciudad Ju%C3%94arez Ciudad Ju%C3%94arez, Mexico); Marquez, Noel (University of Texas at El Paso El Paso, TX); Quinones, Stella (University of Texas at El Paso El Paso, TX)


    This investigation examined the use of nano-patterned structures on Silicon-on-Insulator (SOI) material to reduce the bulk material melting point (1414 C). It has been found that sharp-tipped and other similar structures have a propensity to move to the lower energy states of spherical structures and as a result exhibit lower melting points than the bulk material. Such a reduction of the melting point would offer a number of interesting opportunities for bonding in microsystems packaging applications. Nano patterning process capabilities were developed to create the required structures for the investigation. One of the technical challenges of the project was understanding and creating the specialized conditions required to observe the melting and reshaping phenomena. Through systematic experimentation and review of the literature these conditions were determined and used to conduct phase change experiments. Melting temperatures as low as 1030 C were observed.

  3. Making Sense of Boiling Points and Melting Points

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 6. Making Sense of Boiling Points and Melting Points. S Prahlada Rao Shravan Sunkada. General Article Volume 12 Issue 6 June 2007 pp 43-57. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Making Sense of Boiling Points and Melting Points

    Indian Academy of Sciences (India)

    The boiling and melting points of a pure substance are char- acteristic physical constants of that substance in its pure state. Although it is not possible to predict these physical constants for a given substance, it is, however, possible to rationalize these values on a relative basis for given substances, taking into account the ...

  5. Low-melting point heat transfer fluid (United States)

    Cordaro, Joseph Gabriel; Bradshaw, Robert W.


    A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below C. for some compositions.

  6. Realization of Copper Melting Point for Thermocouple Calibrations

    Directory of Open Access Journals (Sweden)



    Full Text Available Although the temperature stability and uncertainty of the freezing plateau is better than that of the melting plateau in most of the thermometry fixed points, but realization of melting plateaus are easier than that of freezing plateaus for metal fixed points. It will be convenient if the melting points can be used instead of the freezing points in calibration of standard noble metal thermocouples because of easier realization and longer plateau duration of melting plateaus. In this work a comparison between the melting and freezing points of copper (Cu was carried out using standard noble metal thermocouples. Platinum - platinum 10 % rhodium (type S, platinum – 30 % rhodium / platinum 6 % rhodium (type B and platinum - palladium (Pt/Pd thermocouples are used in this study. Uncertainty budget analysis of the melting points and freezing points is presented. The experimental results show that it is possible to replace the freezing point with the melting point of copper cell in the calibration of standard noble metal thermocouples in secondary-level laboratories if the optimal methods of realization of melting points are used.

  7. On changes in melting points of some lanthanide complexes

    International Nuclear Information System (INIS)

    Meshkova, S.B.; Poluehktov, N.S.; Korovin, Yu.V.


    An expression for calculation of melting points of complexes of trivalent lanthanide ions with account for the number of f-electrons, S orbital quantum number of the ground state and the of spin-orbit interaction energy is given. Good agreement of calculated melting points with those determined experimentally supports the consistency of the suggested conrelation

  8. Estimating the melting point, entropy of fusion, and enthalpy of ... (United States)

    The entropies of fusion, enthalies of fusion, and melting points of organic compounds can be estimated through three models developed using the SPARC (SPARC Performs Automated Reasoning in Chemistry) platform. The entropy of fusion is modeled through a combination of interaction terms and physical descriptors. The enthalpy of fusion is modeled as a function of the entropy of fusion, boiling point, and fexibility of the molecule. The melting point model is the enthlapy of fusion divided by the entropy of fusion. These models were developed in part to improve SPARC's vapor pressure and solubility models. These models have been tested on 904 unique compounds. The entropy model has a RMS of 12.5 J mol-1K-1. The enthalpy model has a RMS of 4.87 kJ mol-1. The melting point model has a RMS of 54.4°C. Published in the journal, SAR and QSAR in Environmental Research

  9. Thermal diffusivity of UO2 up to the melting point (United States)

    Vlahovic, L.; Staicu, D.; Küst, A.; Konings, R. J. M.


    The thermal diffusivity of uranium dioxide was measured from 500 to 3060 K with two different set-ups, both based on the laser-flash technique. Above 1600 K the measurements were performed with an advanced laser-flash technique, which was slightly improved in comparison with a former work. In the temperature range 500-2000 K the thermal diffusivity is decreasing, then relatively constant up to 2700 K, and tends to increase by approaching the melting point. The measurements of the thermal diffusivity in the vicinity of the melting point are possible under certain conditions, and are discussed in this paper.

  10. Making Sense of Boiling Points and Melting Points

    Indian Academy of Sciences (India)

    to rationalize the trends in these physical constants based on non- covalent interactions and symmetry, .... the product of distance d between the two points and the magni- tude of charge e gives the magnitude of the ... Individual bond moments in a molecule add up in vector fashion to result in the net dipole moment for the ...

  11. Statistical distribution of thermal vacancies close to the melting point

    Energy Technology Data Exchange (ETDEWEB)

    José Pozo, María, E-mail: [Grupo de Nanomateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Davis, Sergio, E-mail: [Grupo de Nanomateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Peralta, Joaquín, E-mail: [Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Santiago (Chile)


    A detailed description of the statistical distribution of thermal vacancies in an homogeneous crystal near its melting point is presented, using the embedded atom model for copper as an example. As the temperature increase, the average number of thermal vacancies generated by atoms migrating to neighboring sites increases according to Arrhenius’ law. We present for the first time a model for the statistical distribution of thermal vacancies, which according to our atomistic computer simulations follow a Gamma distribution. All the simulations are carried out by classical molecular dynamics and the recognition of vacancies is achieved via a recently developed algorithm. Our results could be useful in the further development of a theory explaining the mechanism of homogeneous melting, which seems to be mediated by the accumulation of thermal vacancies near the melting point.

  12. Low-melting point inorganic nitrate salt heat transfer fluid (United States)

    Bradshaw, Robert W [Livermore, CA; Brosseau, Douglas A [Albuquerque, NM


    A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

  13. Gibbs free energy, surface stress and melting point of nanoparticle

    International Nuclear Information System (INIS)

    Luo, Wenhua; Hu, Wangyu


    Two approaches to calculating Gibbs free energy of nanoparticle are compared. It is found that the contribution from the vibrational entropy of surface atoms of nanoparticle to its Gibbs free energy can be ignored, and Jiang et al.'s formula [J. Phys. Chem. B 105 (2001) 6275] [27] for calculating surface stress is only valid around room temperature. Furthermore, an approximate relationship between surface stress and surface free energy of nanoparticles is revealed. Finally, the reason why effect of size dependent surface energy on melting point of nanoparticle was neglected is clarified

  14. On the correlation between hydrogen bonding and melting points in the inositols

    Directory of Open Access Journals (Sweden)

    Sándor L. Bekö


    Full Text Available Inositol, 1,2,3,4,5,6-hexahydroxycyclohexane, exists in nine stereoisomers with different crystal structures and melting points. In a previous paper on the relationship between the melting points of the inositols and the hydrogen-bonding patterns in their crystal structures [Simperler et al. (2006. CrystEngComm 8, 589], it was noted that although all inositol crystal structures known at that time contained 12 hydrogen bonds per molecule, their melting points span a large range of about 170 °C. Our preliminary investigations suggested that the highest melting point must be corrected for the effect of molecular symmetry, and that the three lowest melting points may need to be revised. This prompted a full investigation, with additional experiments on six of the nine inositols. Thirteen new phases were discovered; for all of these their crystal structures were examined. The crystal structures of eight ordered phases could be determined, of which seven were obtained from laboratory X-ray powder diffraction data. Five additional phases turned out to be rotator phases and only their unit cells could be determined. Two previously unknown melting points were measured, as well as most enthalpies of melting. Several previously reported melting points were shown to be solid-to-solid phase transitions or decomposition points. Our experiments have revealed a complex picture of phases, rotator phases and phase transitions, in which a simple correlation between melting points and hydrogen-bonding patterns is not feasible.

  15. On the correlation between hydrogen bonding and melting points in the inositols

    DEFF Research Database (Denmark)

    Bekö, Sándor L; Alig, Edith; Schmidt, Martin U


    Inositol, 1,2,3,4,5,6-hexahydroxycyclohexane, exists in nine stereoisomers with different crystal structures and melting points. In a previous paper on the relationship between the melting points of the inositols and the hydrogen-bonding patterns in their crystal structures [Simperler et al. (2006...... ▶). CrystEngComm 8, 589], it was noted that although all inositol crystal structures known at that time contained 12 hydrogen bonds per molecule, their melting points span a large range of about 170 °C. Our preliminary investigations suggested that the highest melting point must be corrected for the effect...... ordered phases could be determined, of which seven were obtained from laboratory X-ray powder diffraction data. Five additional phases turned out to be rotator phases and only their unit cells could be determined. Two previously unknown melting points were measured, as well as most enthalpies of melting...

  16. 46 CFR 153.908 - Cargo viscosity and melting point information; measuring cargo temperature during discharge... (United States)


    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo viscosity and melting point information; measuring... Cargo viscosity and melting point information; measuring cargo temperature during discharge: Categories... lading, a written statement of the following: (1) For Category A or B NLS, the cargo's viscosity at 20 °C...

  17. Pre-transition phenomena in CdTe near the melting point (United States)

    Shcherbak, L.


    The influence of slight (up to 2 mol%) CdTe doping by In or Ge on the post-melting effect in CdTe as well as the correlation between the melt's superheating and supercooling has been studied by the DTA method. Some additional endothermic effects above the melting point or liquidus temperature were observed in all the investigated melts. A high degree of structural ordering both in the pure and doped melts was concluded. The structure of the molten state is determined by the thermal pre-history of the solid one. The possibility of a high-temperature CdTe polymorphic modification is discussed.

  18. Effect of Melting Point on the Physical Properties of Anhydrous Milk Fat (United States)

    Wang, Yunna; Li, Yang; Han, Jie; Li, Yan; Zhang, Liebing


    The effect of melting point on the physical properties of anhydrous milk fat were investigated. The results showed that high melting fractions (HMF) (S30,S35) were enriched in long-chain fatty acids, whereas low melting fractions (LMF)(S5,S10,S15) were enriched in short-chain and unsaturated fatty acids. From S5 to S35, enthalpy value was gradually increased on both crystallization and melting condition, so as SFC on different temperature. The mixture and chemical interesterification allowed obtaining fats with various degrees of plasticity, increasing the possibilities for the commercial use of different fraction of AMF.

  19. Prevention of leakage of low-melting-point metals from styrofoam molds. (United States)

    Herman, M W; Robinson, A; Small, R C


    Leakage of low-melting-point metals from the underside of polystyrene molds can be prevented by applying a silicone caulking material to the bottom of the mold and pressing the mold on a metal plate before pouring.

  20. Origin of melting point depression for rare gas solids confined in carbon pores. (United States)

    Morishige, Kunimitsu; Kataoka, Takaaki


    To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests that the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point.

  1. Origin of melting point depression for rare gas solids confined in carbon pores

    International Nuclear Information System (INIS)

    Morishige, Kunimitsu; Kataoka, Takaaki


    To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests that the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point

  2. Estimating the physicochemical properties of polyhalogenated aromatic and aliphatic compounds using UPPER: part 1. Boiling point and melting point. (United States)

    Admire, Brittany; Lian, Bo; Yalkowsky, Samuel H


    The UPPER (Unified Physicochemical Property Estimation Relationships) model uses enthalpic and entropic parameters to estimate 20 biologically relevant properties of organic compounds. The model has been validated by Lian and Yalkowsky on a data set of 700 hydrocarbons. The aim of this work is to expand the UPPER model to estimate the boiling and melting points of polyhalogenated compounds. In this work, 19 new group descriptors are defined and used to predict the transition temperatures of an additional 1288 compounds. The boiling points of 808 and the melting points of 742 polyhalogenated compounds are predicted with average absolute errors of 13.56 K and 25.85 K, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Ultra-dense energy storage utilizing high melting point metallic alloys and photovoltaic cells


    Datas Medina, Alejandro; Martí Vega, Antonio; Cañizo Nadal, Carlos del; Luque López, Antonio


    A novel concept for energy storage utilizing high melting point metallic alloys and photovoltaic cells is presented. In the proposed system, the energy is stored in the form of latent heat of metallic alloys and converted to electricity upon demand by infrared sensitive photovoltaic cells. Silicon is considered in this paper due to its extremely high latent heat (1800 J/g), melting point (1410ºC), low cost (~$1.7/kg) and abundance on earth. The proposed solution enables an enormous energy sto...

  4. Preparation of 147Pm metal and the determination of the melting point and phase transformation temperatures

    International Nuclear Information System (INIS)

    Angelini, P.; Adair, H.L.


    The promethium metal used in the determination of the melting point and phase transformation temperatures was prepared by reduction of promethium oxide with thorium metal at 1600 0 C and distilling the promethium metal into a quartz dome. The melting point and phase transformation temperatures of promethium metal were found to be 1042 +- 5 0 C and 890 +- 5 0 C, respectively. The ratio for the heat of the high-temperature transformation to the heat of fusion was determined to be 0.415

  5. A density functional theory based approach for predicting melting points of ionic liquids. (United States)

    Chen, Lihua; Bryantsev, Vyacheslav S


    Accurate prediction of melting points of ILs is important both from the fundamental point of view and from the practical perspective for screening ILs with low melting points and broadening their utilization in a wider temperature range. In this work, we present an ab initio approach to calculate melting points of ILs with known crystal structures and illustrate its application for a series of 11 ILs containing imidazolium/pyrrolidinium cations and halide/polyatomic fluoro-containing anions. The melting point is determined as a temperature at which the Gibbs free energy of fusion is zero. The Gibbs free energy of fusion can be expressed through the use of the Born-Fajans-Haber cycle via the lattice free energy of forming a solid IL from gaseous phase ions and the sum of the solvation free energies of ions comprising IL. Dispersion-corrected density functional theory (DFT) involving (semi)local (PBE-D3) and hybrid exchange-correlation (HSE06-D3) functionals is applied to estimate the lattice enthalpy, entropy, and free energy. The ions solvation free energies are calculated with the SMD-generic-IL solvation model at the M06-2X/6-31+G(d) level of theory under standard conditions. The melting points of ILs computed with the HSE06-D3 functional are in good agreement with the experimental data, with a mean absolute error of 30.5 K and a mean relative error of 8.5%. The model is capable of accurately reproducing the trends in melting points upon variation of alkyl substituents in organic cations and replacement one anion by another. The results verify that the lattice energies of ILs containing polyatomic fluoro-containing anions can be approximated reasonably well using the volume-based thermodynamic approach. However, there is no correlation of the computed lattice energies with molecular volume for ILs containing halide anions. Moreover, entropies of solid ILs follow two different linear relationships with molecular volume for halides and polyatomic fluoro

  6. Melting point gram-atomic volumes and enthalpies of atomization for liquid elements

    International Nuclear Information System (INIS)

    Lamoreaux, R.H.


    Values of the gram-atomic volumes and enthalpies of atomization to the monatomic ideal gas state for liquid elements at their melting points are collected to facilitate predictions of the behavior of mixed systems. Estimated values are given for experimentally undetermined quantities

  7. Estimating the melting point, entropy of fusion, and enthalpy of fusion of organic compounds via SPARC (United States)

    The entropies of fusion, enthalies of fusion, and melting points of organic compounds can be estimated through three models developed using the SPARC (SPARC Performs Automated Reasoning in Chemistry) platform. The entropy of fusion is modeled through a combination of interaction ...

  8. The Relationship between Lattice Enthalpy and Melting Point in Magnesium and Aluminium Oxides. Science Notes (United States)

    Talbot, Christopher; Yap, Lydia


    This "Science Note" presents a study by Christopher Talbot and Lydia Yap, who teach IB Chemistry at Anglo-Chinese School (Independent), Republic of Singapore, to pre-university students. Pre-university students may postulate the correlation between the magnitude of the lattice enthalpy compound and its melting point, since both…

  9. Predicting Melting Points of Organic Molecules: Applications to Aqueous Solubility Prediction Using the General Solubility Equation. (United States)

    McDonagh, J L; van Mourik, T; Mitchell, J B O


    In this work we make predictions of several important molecular properties of academic and industrial importance to seek answers to two questions: 1) Can we apply efficient machine learning techniques, using inexpensive descriptors, to predict melting points to a reasonable level of accuracy? 2) Can values of this level of accuracy be usefully applied to predicting aqueous solubility? We present predictions of melting points made by several novel machine learning models, previously applied to solubility prediction. Additionally, we make predictions of solubility via the General Solubility Equation (GSE) and monitor the impact of varying the logP prediction model (AlogP and XlogP) on the GSE. We note that the machine learning models presented, using a modest number of 2D descriptors, can make melting point predictions in line with the current state of the art prediction methods (RMSE≥40 °C). We also find that predicted melting points, with an RMSE of tens of degrees Celsius, can be usefully applied to the GSE to yield accurate solubility predictions (log10 S RMSE<1) over a small dataset of drug-like molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Morphological factor in the melting point depression of polypropylene by alkanes

    Czech Academy of Sciences Publication Activity Database

    Šimek, L.; Dostál, J.; Bohdanecký, Miloslav


    Roč. 42, č. 21 (2001), s. 8897-8900 ISSN 0032-3861 R&D Projects: GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : isotactic polypropylene * n-alkanes * melting point depression Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.681, year: 2001

  11. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    Energy Technology Data Exchange (ETDEWEB)

    Omar, M.S., E-mail: [Department of Physics, College of Science, University of Salahaddin-Erbil, Arbil, Kurdistan (Iraq)


    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å{sup 3} for bulk to 57 Å{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup −6} K{sup −1} for a bulk crystal down to a minimum value of 0.1 × 10{sup −6} K{sup −1} for a 6 nm diameter nanoparticle.

  12. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    International Nuclear Information System (INIS)

    Omar, M.S.


    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å 3 for bulk to 57 Å 3 for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10 −6 K −1 for a bulk crystal down to a minimum value of 0.1 × 10 −6 K −1 for a 6 nm diameter nanoparticle.

  13. New Approach in Filling of Fixed-Point Cells: Case Study of the Melting Point of Gallium (United States)

    Bojkovski, J.; Hiti, M.; Batagelj, V.; Drnovšek, J.


    The typical way of constructing fixed-point cells is very well described in the literature. The crucible is loaded with shot, or any other shape of pure metal, inside an argon-filled glove box. Then, the crucible is carefully slid into a fused-silica tube that is closed at the top with an appropriate cap. After that, the cell is removed from the argon glove box and melted inside a furnace while under vacuum or filled with an inert gas like argon. Since the metal comes as shot, or in some other shape such as rods of various sizes, and takes more volume than the melted material, it is necessary to repeat the procedure until a sufficient amount of material is introduced into the crucible. With such a procedure, there is the possibility of introducing additional impurities into the pure metal with each cycle of melting the material and putting it back into the glove box to fill the cell. Our new approach includes the use of a special, so-called dry-box system, which is well known in chemistry. The atmosphere inside the dry box contains less than 20 ppm of water and less than 3 ppm of oxygen. Also, the size of the dry box allows it to contain a furnace for melting materials, not only for gallium but for higher-temperature materials as well. With such an approach, the cell and all its parts (pure metal, graphite, fused-silica tube, and cap) are constantly inside the controlled atmosphere, even while melting the material and filling the crucible. With such a method, the possibility of contaminating the cell during the filling process is minimized.

  14. Degradation mechanism and thermal stability of urea nitrate below the melting point

    International Nuclear Information System (INIS)

    Desilets, Sylvain; Brousseau, Patrick; Chamberland, Daniel; Singh, Shanti; Feng, Hongtu; Turcotte, Richard; Anderson, John


    Highlights: → Decomposition mechanism of urea nitrate. → Spectral characterization of the decomposition mechanism. → Thermal stability of urea nitrate at 50, 70 and 100 o C. → Chemical balance of decomposed products released. - Abstract: Aging and degradation of urea nitrate below the melting point, at 100 o C, was studied by using thermal analysis and spectroscopic methods including IR, Raman, 1 H and 13 C NMR techniques. It was found that urea nitrate was completely degraded after 72 h at 100 o C into a mixture of solids (69%) and released gaseous species (31%). The degradation mechanism below the melting point was clearly identified. The remaining solid mixture was composed of ammonium nitrate, urea and biuret while unreacted residual nitric and isocyanic acids as well as traces of ammonia were released as gaseous species at 100 o C. The thermal stability of urea nitrate, under extreme storage conditions (50 o C), was also examined by isothermal nano-calorimetry.

  15. Determination of melting point of vegetable oils and fats by differential scanning calorimetry (DSC technique.

    Directory of Open Access Journals (Sweden)

    Nassu, Renata Tieko


    Full Text Available Melting point of fats is used to characterize oils and fats and is related to their physical properties, such as hardness and thermal behaviour. The present work shows the utilization of DSC technique on the determination of melting point of fats. In a comparison with softening point (AOCS method Cc 3-25, DSC values were higher than those obtained by AOCS method. It has occurred due to the fact that values obtained by DSC technique were taken when the fat had melted completely. DSC was also useful for determining melting point of liquid oils, such as soybean and cottonseed ones.

    El punto de fusión de grasas es usado para caracterizar aceites y grasas, y está relacionado con sus propiedades físicas, tales como dureza y comportamiento térmico. El presente trabajo muestra la utilización de la técnica de Calorimetría Diferencial de Barrido (DSC en la determinación del punto de fusión de grasas. En comparación con el punto de ablandamiento (AOCS método Cc 3-25, los valores de DSC fueron más altos que los obtenidos por los métodos de AOCS. Esto ha ocurrido debido al hecho que los valores obtenidos por la técnica de DSC fueron tomados cuando la grasa había fundido completamente. DSC fue también útil para determinar puntos de fusión de aceites líquidos, tales como los de soya y algodón.

  16. Draft report on melt point as a function of composition for urania-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Valdez, James A [Los Alamos National Laboratory; Byler, Darrin D [Los Alamos National Laboratory


    This report documents the testing of a urania (UO{sub 2.00}) sample as a baseline and the attempt to determine the melt point associated with 4 compositions of urania-ceria and urania-neodymia pseudo binaries provided by ORNL, with compositions of 95/5, and 80/20 and of (U/Ce)O{sub 2.00} and (U/Nd)O{sub 2.00} in the newly developed ceramic melt point determination system. A redesign of the system using parts fabricated from tungsten was undertaken in order to help prevent contamination and tungsten carbide formation in the crucibles. The previously developed system employed mostly graphite parts that were shown to react with the sample containment black-body crucible leading to unstable temperature readings and crucible failure, thus the redesign. Measured melt point values of UO{sub 2.00} and U{sub 0.95}Ce{sub 0.05}O{sub 2.00}, U{sub 0.80}Ce{sub 0.20}O{sub 2.00}, U{sub 0.95}Nd{sub 0.05}O{sub 2.00} and U{sub 0.80}Nd{sub 0.20}O{sub 2.00} were measured using a 2-color pyrometer. The value measured for UO{sub 2.00} was consistent with the published accepted value 2845 C {+-} 25 C, although a wide range of values has been published by researchers and will be discussed later in the text. For comparison, values obtained from a published binary phase diagram of UO{sub 2}-Nd{sub 2}O{sub 3} were used for comparison with our measure values. No literature melt point values for comparison with the measurements performed in this study were found for (U/Ce)O{sub 2.00} in our stoichiometry range.

  17. Vapor Pressure Data Analysis and Correlation Methodology for Data Spanning the Melting Point (United States)


    specimen is adequately degassed, the liquid menisci in the U-tube are brought to the same level and the pressure read on the manometer . The measurement...VAPOR PRESSURE DATA ANALYSIS AND CORRELATION METHODOLOGY FOR DATA SPANNING THE MELTING POINT ECBC-CR-135 David E...REPORT TYPE Final 3. DATES COVERED (From - To) Mar 2013 - June 2013 4. TITLE AND SUBTITLE Vapor Pressure Data Analysis and Correlation Methodology

  18. 46 CFR 153.488 - Design and equipment for tanks carrying high melting point NLSs: Category B. (United States)


    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design and equipment for tanks carrying high melting... HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.488 Design and equipment for tanks carrying high melting point NLSs: Category B. Unless waived under § 153.491, for a ship...

  19. The role of hydrogen bonds in the melting points of sulfonate-based protic organic salts

    DEFF Research Database (Denmark)

    Luo, Jiangshui


    there is evidence of bond formation [6]. Hydrogen bonds in the solid state fall into the classification of strong, moderate, and weak hydrogen bonds [7]. In molecular systems like H2O (vs. H2S) or NH3 (vs. PH3), strong hydrogen bonds lead to higher melting points. However, in organic salts, the situation may......There are three main types of interactions inside organic salts - electrostatic interaction, hydrogen bonding and van der Waals force [1-4]. While van der Waals force is relatively weak, it is hydrogen bonding and particularly electrostatic interaction that determine the lattice energies of ionic...

  20. Micro- and nano-spheres of low melting point metals and alloys, formed by ultrasonic cavitation. (United States)

    Friedman, H; Reich, S; Popovitz-Biro, R; von Huth, P; Halevy, I; Koltypin, Y; Gedanken, A; Porat, Z


    Metals and alloys of low melting points (metals into microspheres that solidify rapidly upon cooling. This method has been applied to seven pure metals (Ga, In, Sn, Bi, Pb, Zn, Hg) and two eutectic alloys of gold (Au-Ge and Au-Si). The morphology and composition of the resulting microspheres were examined by SEM and EDS. Eutectic Au-Si formed also crystalline Au nanoparticles, which were separated and studied by HRTEM. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Degradation mechanism and thermal stability of urea nitrate below the melting point

    Energy Technology Data Exchange (ETDEWEB)

    Desilets, Sylvain, E-mail: [Defence R and D Canada, Valcartier, 2459 Pie-XI Blvd North, Val-Belair, Quebec, Canada G3J 1X5 (Canada); Brousseau, Patrick; Chamberland, Daniel [Defence R and D Canada, Valcartier, 2459 Pie-XI Blvd North, Val-Belair, Quebec, Canada G3J 1X5 (Canada); Singh, Shanti; Feng, Hongtu; Turcotte, Richard [Canadian Explosives Research Laboratory, 1 Haanel Dr. Ottawa, Quebec, Canada K1A 1M1 (Canada); Anderson, John [Defence R and D Canada, Suffield, Box 4000, stn Main, Medicine Hat, Alberta, Canada T1A 8K6 (Canada)


    Highlights: {yields} Decomposition mechanism of urea nitrate. {yields} Spectral characterization of the decomposition mechanism. {yields} Thermal stability of urea nitrate at 50, 70 and 100 {sup o}C. {yields} Chemical balance of decomposed products released. - Abstract: Aging and degradation of urea nitrate below the melting point, at 100 {sup o}C, was studied by using thermal analysis and spectroscopic methods including IR, Raman, {sup 1}H and {sup 13}C NMR techniques. It was found that urea nitrate was completely degraded after 72 h at 100 {sup o}C into a mixture of solids (69%) and released gaseous species (31%). The degradation mechanism below the melting point was clearly identified. The remaining solid mixture was composed of ammonium nitrate, urea and biuret while unreacted residual nitric and isocyanic acids as well as traces of ammonia were released as gaseous species at 100 {sup o}C. The thermal stability of urea nitrate, under extreme storage conditions (50 {sup o}C), was also examined by isothermal nano-calorimetry.

  2. Mixing and electronic entropy contributions to thermal energy storage in low melting point alloys (United States)

    Shamberger, Patrick J.; Mizuno, Yasushi; Talapatra, Anjana A.


    Melting of crystalline solids is associated with an increase in entropy due to an increase in configurational, rotational, and other degrees of freedom of a system. However, the magnitude of chemical mixing and electronic degrees of freedom, two significant contributions to the entropy of fusion, remain poorly constrained, even in simple 2 and 3 component systems. Here, we present experimentally measured entropies of fusion in the Sn-Pb-Bi and In-Sn-Bi ternary systems, and decouple mixing and electronic contributions. We demonstrate that electronic effects remain the dominant contribution to the entropy of fusion in multi-component post-transition metal and metalloid systems, and that excess entropy of mixing terms can be equal in magnitude to ideal mixing terms, causing regular solution approximations to be inadequate in the general case. Finally, we explore binary eutectic systems using mature thermodynamic databases, identifying eutectics containing at least one semiconducting intermetallic phase as promising candidates to exceed the entropy of fusion of monatomic endmembers, while simultaneously maintaining low melting points. These results have significant implications for engineering high-thermal conductivity metallic phase change materials to store thermal energy.

  3. Melting heat transfer in stagnation point flow of carbon nanotubes towards variable thickness surface

    Directory of Open Access Journals (Sweden)

    T. Hayat


    Full Text Available This work concentrates on the mathematical modeling for stagnation point flow of nanofluids over an impermeable stretching sheet with variable thickness. Carbon nanotubes [single-wall carbon nanotubes (SWCNTs and multi-wall carbon nanotubes (MWCNTs] as the nanoparticles are utilized. Water and kerosene oil are taken as the base fluids. Heat transfer through melting effect is discussed. Transformation procedure is adapted to obtain the non-linear ordinary differential equations from the fundamental laws of mass, linear momentum and energy. The optimal values of convergence control parameters and corresponding individual and total residual errors for SWCNTs and MWCNTs are computed by means of homotopy analysis method (HAM based BVPh 2.0. Characteristics of different involved parameters on the velocity, temperature, skin friction coefficient and Nusselt number are discussed. Higher velocity profile is observed for wall thickness parameter in case of water carbon nanotubes when compared with the kerosene oil carbon nanotubes.

  4. The effect of sire breed on the melting point and fatty acid composition of subcutaneous fat in steers. (United States)

    Perry, D; Nicholls, P J; Thompson, J M


    Fatty acid composition and the melting point of subcutaneous fat was determined in 18 Hereford, 25 Brahman x Hereford, 22 Simmental x Hereford, and 15 Friesian x Hereford steers that were grown out on pasture at two sites and slaughtered when the mean weight of the Herefords at each site was ca. 450 kg. Multivariate and univariate analyses tested the relations of fatty acid composition, degree of saturation, and melting point with sire breed, environment, age, and carcass characteristics. Hereford and Brahman steers were fatter than the Simmental and Friesian steers. Fat from Brahman-sired steers had a melting point 2.5 degrees C lower than fat from the Bos taurus-sired steers at the same age and had a higher proportion of unsaturated fatty acids, independent of variation in carcass weight and fatness. Melting point and degree of saturation decreased as age increased. Step-down discriminant analyses identified a set of three acids (14:0, 16:0, and 17:1) that differed among sire breeds, independent of differences in melting point: the acids 14:0 and 16:0 discriminated between Brahman and Bos taurus steers and 17:1 between Hereford and Simmental and Friesian steers. Increase in fatness was associated with an increase in 17:1, but, at the same fatness, no acids discriminated among the Bos taurus-sired steers. The use of Bos indicus cattle or their crossbreeds in situations in which hard-setting fat is likely may mitigate the problem.

  5. Increase of Unsaturated Fatty Acids (Low Melting Point) of Broiler Fatty Waste Obtained Through Staphylococcus xylosus Fermentation. (United States)

    Marques, Roger V; Duval, Eduarda H; Corrêa, Luciara B; Corrêa, Érico K


    The increasing rise in the production of meat around the world causes a significant generation of agro-industrial waste--most of it with a low value added. Fatty wastes have the potential of being converted into biodiesel, given the overcome of technological and economical barriers, as well as its presentation in solid form. Therefore, the aim of this work was to investigate the capacity of Staphylococcus xylosus strains to modify the chemical structure of chicken fatty wastes intending to reduce the melting points of the wastes to mild temperatures, thereby breaking new ground in the production of biodiesel from these sources in an economically attractive and sustainable manner. The effects in time of fermentation and concentration of the fat in the medium were investigated, assessing the melting point and profile of fatty acids. The melting temperature showed a decrease of approximately 22 °C in the best operational conditions, due to reduction in the content of saturated fatty acids (high melting point) and increase of unsaturated fatty acids (low melting point).

  6. CADASTER QSPR Models for Predictions of Melting and Boiling Points of Perfluorinated Chemicals. (United States)

    Bhhatarai, Barun; Teetz, Wolfram; Liu, Tao; Öberg, Tomas; Jeliazkova, Nina; Kochev, Nikolay; Pukalov, Ognyan; Tetko, Igor V; Kovarich, Simona; Papa, Ester; Gramatica, Paola


    Quantitative structure property relationship (QSPR) studies on per- and polyfluorinated chemicals (PFCs) on melting point (MP) and boiling point (BP) are presented. The training and prediction chemicals used for developing and validating the models were selected from Syracuse PhysProp database and literatures. The available experimental data sets were split in two different ways: a) random selection on response value, and b) structural similarity verified by self-organizing-map (SOM), in order to propose reliable predictive models, developed only on the training sets and externally verified on the prediction sets. Individual linear and non-linear approaches based models developed by different CADASTER partners on 0D-2D Dragon descriptors, E-state descriptors and fragment based descriptors as well as consensus model and their predictions are presented. In addition, the predictive performance of the developed models was verified on a blind external validation set (EV-set) prepared using PERFORCE database on 15 MP and 25 BP data respectively. This database contains only long chain perfluoro-alkylated chemicals, particularly monitored by regulatory agencies like US-EPA and EU-REACH. QSPR models with internal and external validation on two different external prediction/validation sets and study of applicability-domain highlighting the robustness and high accuracy of the models are discussed. Finally, MPs for additional 303 PFCs and BPs for 271 PFCs were predicted for which experimental measurements are unknown. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Organic Crystal Engineering of Thermosetting Cyanate Ester Monomers: Influence of Structure on Melting Point (United States)


    modify, reproduce, release, perform, display, or disclose the work. 14. ABSTRACT Key principles needed for the rational design of thermosetting...determination of the thermodynamic properties associated with melting showed that the substitution of silicon for the central quaternary carbon in...melting, leading to a decrease in the melting temperature of 21.8 ± 0.2 K. In contrast, the analogous silicon substitution in the tri(cyanate ester

  8. Experimental study and numerical simulation of the salinity effect on water-freezing point and ice-melting rate (United States)

    Qin, N.; Wu, Y.; Wang, H. W.; Wang, Y. Y.


    In this paper, based on the background of snowmelt de-icing tools, we studied the effect of salt on freezing point and melting rate of ice through laboratory test and FLUENT numerical simulation analysis. It was confirmed that the freezing point is inversely proportional to the salt solid content, and with the salt solid content increasing, the freezing process of salt water gradually accepts the curing rule of non-crystal solids. At the same temperature, an increase in the salt solid content, the ice melting rate increase by the empirical formula linking the melting time with temperature and salt content. The theoretical aspects of solid/fluid transformation are discussed in detail.

  9. Graphene confinement effects on melting/freezing point and structure and dynamics behavior of water. (United States)

    Foroutan, Masumeh; Fatemi, S Mahmood; Shokouh, F


    In this work, the melting/freezing point of confined water between two graphene sheets was calculated from the direct coexistence of the solid-liquid interface. Also, molecular dynamics simulation of confined liquid water-ice between two graphene sheets was applied. The phase transition temperature of the confined ice-water mixture was calculated as 240K that was 29K less than the non-confined ice-water system. In order to study the behavior of water molecules at different distances from the graphene sheets, 5 regions were provided using some imaginary planes, located between two graphene sheets. The obtained simulation results showed that water molecules located in the region near each graphene sheet with the thickness of 2nm had a different behavior from other water molecules located in other regions. The results demonstrated that water molecules in the vicinity of graphene sheets had more mean square displacements than those in the middle regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Temperature calibration procedure for thin film substrates for thermo-ellipsometric analysis using melting point standards

    Energy Technology Data Exchange (ETDEWEB)

    Kappert, Emiel J.; Raaijmakers, Michiel J.T.; Ogieglo, Wojciech; Nijmeijer, Arian; Huiskes, Cindy; Benes, Nieck E., E-mail:


    Highlights: • Facile temperature calibration method for thermo-ellipsometric analysis. • The melting point of thin films of indium, lead, zinc, and water can be detected by ellipsometry. • In-situ calibration of ellipsometry hot stage, without using any external equipment. • High-accuracy temperature calibration (±1.3 °C). - Abstract: Precise and accurate temperature control is pertinent to studying thermally activated processes in thin films. Here, we present a calibration method for the substrate–film interface temperature using spectroscopic ellipsometry. The method is adapted from temperature calibration methods that are well developed for thermogravimetric analysis and differential scanning calorimetry instruments, and is based on probing a transition temperature. Indium, lead, and zinc could be spread on a substrate, and the phase transition of these metals could be detected by a change in the Ψ signal of the ellipsometer. For water, the phase transition could be detected by a loss of signal intensity as a result of light scattering by the ice crystals. The combined approach allowed for construction of a linear calibration curve with an accuracy of 1.3 °C or lower over the full temperature range.

  11. Characterization of the shear test method with low melting point In-48Sn solder joints

    International Nuclear Information System (INIS)

    Kim, Jong-Woong; Jung, Seung-Boo


    The ball shear tests were investigated in terms of effects of test parameters, i.e. shear height and shear speed, with an experimental and non-linear finite element analysis for evaluating the solder joint integrity of area array packages. A representative low melting point solder, In-48Sn, was examined in this work. The substrate was a common solder mask defined (SMD) type with solder bond pad openings of 460 μm in diameter. The microstructural investigations were carried out using scanning electron microscopy (SEM), and the intermetallic compounds (IMCs) were identified with energy dispersive spectrometer (EDS) and electron probe micro analyzer (EPMA). Shear tests were conducted with the two varying test parameters. It could be observed that increasing shear height, at fixed shear speed, has the effect of decreasing shear force, while the shear force increased with increasing shear speed at fixed shear height. Too high shear height could cause some bad effects on the test results such as unexpected high standard deviation values or shear tip sliding from the solder ball surface. The low shear height conditions were favorable for screening the type of brittle interfacial fractures or the degraded layers in the interfaces. The sensitivity of shear speed in In-48Sn solder is largely higher than those of Sn-based solders

  12. Investigation of the Melting Point Depression of 12-Hydroxystearic Acid Organogels Using the Flory Diluent Model (United States)

    Cavicchi, Kevin; Lipowski, Brian


    This talk will focus on the gelation behavior of 12-hydroxystearic acid (12-HSA) in organic solvents. Thermo-reversible gelation occurs by crystallization of 12-HSA in organic solvent to form 3-D fibrillar networks. The melting point vs. composition for 12-HSA in a range of solvents has been measured. The liquidus lines could be fit with the Flory-diluent model that takes into account the non-ideal free energy of mixing and the disparity in the size of the solvent and 12-HSA molecules. The fits indicated that the effective molar volume of 12-HSA increased as the hydrogen bonding Hansen solubility parameter δh of the solvent decreased. This is attributed to the hydrogen-bonding driven aggregation of the 12-HSA in the liquid state based on previous observations that 12-HSA forms aggregated structures in non-polar solvents (e.g. dimers and tetrameters). These results indicate that the stabilization of the solid phase in 12-HSA solutions has contributions from both variations in the entropy of mixing as well the enthalpy of mixing. The importance of both these factors for designing small molecule gelators will be discussed.

  13. Point, surface and volumetric heat sources in the thermal modelling of selective laser melting (United States)

    Yang, Yabin; Ayas, Can


    Selective laser melting (SLM) is a powder based additive manufacturing technique suitable for producing high precision metal parts. However, distortions and residual stresses within products arise during SLM because of the high temperature gradients created by the laser heating. Residual stresses limit the load resistance of the product and may even lead to fracture during the built process. It is therefore of paramount importance to predict the level of part distortion and residual stress as a function of SLM process parameters which requires a reliable thermal modelling of the SLM process. Consequently, a key question arises which is how to describe the laser source appropriately. Reasonable simplification of the laser representation is crucial for the computational efficiency of the thermal model of the SLM process. In this paper, first a semi-analytical thermal modelling approach is described. Subsequently, the laser heating is modelled using point, surface and volumetric sources, in order to compare the influence of different laser source geometries on the thermal history prediction of the thermal model. The present work provides guidelines on appropriate representation of the laser source in the thermal modelling of the SLM process.

  14. New encapsulation method using low-melting-point alloy for sealing micro heat pipes

    International Nuclear Information System (INIS)

    Li, Congming; Wang, Xiaodong; Zhou, Chuanpeng; Luo, Yi; Li, Zhixin; Li, Sidi


    This study proposed a method using Low-melting-point alloy (LMPA) to seal Micro heat pipes (MHPs), which were made of Si substrates and glass covers. Corresponding MHP structures with charging and sealing channels were designed. Three different auxiliary structures were investigated to study the sealability of MHPs with LMPA. One structure is rectangular and the others are triangular with corner angles of 30° and 45°, respectively. Each auxiliary channel for LMPA is 0.5 mm wide and 135 μm deep. LMPA was heated to molten state, injected to channels, and then cooled to room temperature. According to the material characteristic of LMPA, the alloy should swell in the following 12 hours to form strong interaction force between LMPA and Si walls. Experimental results show that the flow speed of liquid LMPA in channels plays an important role in sealing MHPs, and the sealing performance of triangular structures is always better than that of rectangular structure. Therefore, triangular structures are more suitable in sealing MHPs than rectangular ones. LMPA sealing is a plane packaging method that can be applied in the thermal management of high-power IC device and LEDs. Meanwhile, implanting in commercialized fabrication of MHP is easy.

  15. New encapsulation method using low-melting-point alloy for sealing micro heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Congming; Wang, Xiaodong; Zhou, Chuanpeng; Luo, Yi; Li, Zhixin; Li, Sidi [Dalian University of Technology, Dalian (China)


    This study proposed a method using Low-melting-point alloy (LMPA) to seal Micro heat pipes (MHPs), which were made of Si substrates and glass covers. Corresponding MHP structures with charging and sealing channels were designed. Three different auxiliary structures were investigated to study the sealability of MHPs with LMPA. One structure is rectangular and the others are triangular with corner angles of 30° and 45°, respectively. Each auxiliary channel for LMPA is 0.5 mm wide and 135 μm deep. LMPA was heated to molten state, injected to channels, and then cooled to room temperature. According to the material characteristic of LMPA, the alloy should swell in the following 12 hours to form strong interaction force between LMPA and Si walls. Experimental results show that the flow speed of liquid LMPA in channels plays an important role in sealing MHPs, and the sealing performance of triangular structures is always better than that of rectangular structure. Therefore, triangular structures are more suitable in sealing MHPs than rectangular ones. LMPA sealing is a plane packaging method that can be applied in the thermal management of high-power IC device and LEDs. Meanwhile, implanting in commercialized fabrication of MHP is easy.

  16. Removal of oxides from alkali metal melts by reductive titration to electrical resistance-change end points (United States)

    Tsang, Floris Y.


    Alkali metal oxides dissolved in alkali metal melts are reduced with soluble metals which are converted to insoluble oxides. The end points of the reduction is detected as an increase in electrical resistance across an alkali metal ion-conductive membrane interposed between the oxide-containing melt and a material capable of accepting the alkali metal ions from the membrane when a difference in electrical potential, of the appropriate polarity, is established across it. The resistance increase results from blocking of the membrane face by ions of the excess reductant metal, to which the membrane is essentially non-conductive.

  17. Fabrication and Optimization of a PAGATA Gel Dosimeter: Increasing the Melting Point of the PAGAT Gel Dosimeter with Agarose Additive

    Directory of Open Access Journals (Sweden)

    Bakhtiar Azadbakht


    Full Text Available Introduction: The PAGAT polymer gel dosimeter melts at 30 ˚C and even at room temperature during the summer, so it needs to be kept in a cool place such as a refrigerator. To increase the stability of the PAGAT gel, different amounts of agarose were added to the PAGAT gel composition and the PAGATA gel was manufactured. Material and Methods: The PAGATA gel vials were irradiated using a Co-60 machine. Then, the samples were evaluated using a 1.5 T Siemens MRI scanner. The ingredients of the PAGATA normoxic gel dosimeter were 4.5% N-N' methylen-bis-acrylamide, 4.5% acrylamide, 4.5% gelatine, 5 mM tetrakis (THPC, 0.01 mM hydroquinone (HQ, 0.5% agarose and 86% de-ionized water (HPLC. Results: Melting point and sensitivity of the PAGAT gel dosimeter with addition of 0.0, 0.3, 0.5, 1.0, 1.5 and 2.0% of agarose were measured, in which the melting points were increased to 30, 82, 86, 88, 89 and 90°C and their sensitivities found to be 0.113, 0.1059, 0.125, 0.122, 0.115 and 0.2  respectively. Discussion and Conclusions: Adding agarose increased the sensitivity and background R2 of the evaluated samples. The optimum amount of agarose was found to be 0.5% regarding these parameters and also the melting point of the gel dosimeter. A value of 0.5% agarose was found to be an optimum value considering the increase of sensitivity to 0.125 and melting point to 86°C but at the expense of increasing the background R2 to 4.530.

  18. Determination of the melting point of amorphous semiconductors from the kinetics of their self-sustaining crystallization

    International Nuclear Information System (INIS)

    Kulyasova, O.A.; Balandin, V.Yu.; Dvurechenskii, A.V.; Aleksandrov, L.N.


    Amorphous semiconductors are becoming increasingly important. For this reason it is necessary to study their properties thoroughly. It is well known that the melting of amorphous semiconductors, in particular silicon (a-Si), is a first-order phase transition, occurring at a definite melting point T A that depends on the structural state of the a-Si. As was shown previously, the process of lateral self-sustaining crystallization (SC), characteristic for amorphous layers of silicon, depends on the time and temperature of the preheating, during which the layer remains amorphous but undergoes local structural changes. The purpose of this work is to determine the dependence of the depth of crystallization owing to SC in a-Si on its melting temperature. This will make it possible to determine, under experimental conditions, the value of T A from the depth of crystallization of a-Si

  19. Progress of HDDR NdFeB powders modulated by the diffusion of low melting point elements and their alloys

    Directory of Open Access Journals (Sweden)

    Lyu Meng


    Full Text Available The hydrogenation-disproportionation-desorption-recombination (HDDR process is the main technique for the fabrication of anisotropic NdFeB magnetic powder.But the intrinsic coercivity (HC of HDDR magnetic powder is low.The addition of heavy rare earth element Dy could improve its HC.It was found that the added Dy is mainly distributed in the grain boundary of HDDR magnets,which regulates grain boundary phase and increases the thickness of grain boundary to improve the anisotropy field (HA and HC of the magnets.However,Dy becomes scarcer and more expensive,which limits the practical application of HDDR magnets.To reduce the dependence on heavy rare earth elements and cost,researchers replaced the heavy rare earth element Dy by low melting point elements and their alloys through grain boundary diffusion technique.During diffusion process low melting point metal exists as liquid phase that increases the diffusion coefficient of diffusion medium as well as its contact area with grain boundary phases of HDDR magnets,and benefits its diffusion along grain boundaries and regulation of grain boundary phase.The modified grain boundary in magnets improve HC.This review paper focuses on the research progress in improving HC of HDDR NdFeB magnets by low melting point elements and their alloys.

  20. Nano-pulverization of poorly water soluble compounds with low melting points by a rotation/revolution pulverizer. (United States)

    Yuminoki, K; Takeda, M; Kitamura, K; Numata, S; Kimura, K; Takatsuka, T; Hashimoto, N


    We report a method for pulverizing poorly water soluble compounds with low melting points to nanoparticles without producing an amorphous phase using a rotation/revolution pulverizer. Fenofibrate, flurbiprofen, and probucol were used as crystalline model compounds. They were suspended in a methylcellulose aqueous solution and pulverized with zirconia balls by the rotation/revolution pulverizer. Beeswax, an amorphous compound, was also examined to investigate whether nano-pulverization of a compound with a low melting point was possible. Beeswax was suspended in ethyl alcohol cooled with liquid nitrogen and pulverized with zirconia balls by the rotation/revolution pulverizer. By optimizing the pulverization parameters, nanoparticles (D50 revolution speed of 1000 rpm and a rotation/revolution ratio of 1.0 when the vessel was 0 degrees C. Amorphous fenofibrate and flurbiprofen were not detected by differential scanning calorimetry or powder X-ray diffraction, whereas small amounts of amorphous probucol were detected. Beeswax was pulverized to nanoparticles (D50 = 0.14 microm) with ethyl alcohol cooled with liquid nitrogen. Fine nanoparticles of these poorly water soluble compounds with low melting points were obtained by controlling the rotation/revolution speed and reducing the vessel temperature.

  1. Point, surface and volumetric heat sources in the thermal modelling of selective laser melting

    NARCIS (Netherlands)

    Yang, Y.; Ayas, C.; Brabazon, Dermot; Naher, Sumsun; Ul Ahad, Inam


    Selective laser melting (SLM) is a powder based additive manufacturing technique suitable for producing high precision metal parts. However, distortions and residual stresses within products arise during SLM because of the high temperature gradients created by the laser heating. Residual stresses

  2. Calculation procedure for formulating lauric and palmitic fat blends based on the grouping of triacylglycerol melting points

    International Nuclear Information System (INIS)

    Nusantoro, B.P.; Yanty, N.A.M.; Van de Walle, D.; Hidayat, C.; Danthine, S.; Dewettinck, K.


    A calculation procedure for formulating lauric and palmitic fat blends has been developed based on grouping TAG melting points. This procedure offered more flexibility in choosing the initial fats and oils and eventually gave deeper insight into the existing chemical compositions and better prediction on the physicochemical properties and microstructure of the fat blends. The amount of high, medium and low melting TAGs could be adjusted using the given calculation procedure to obtain the desired functional properties in the fat blends. Solid fat contents and melting behavior of formulated fat blends showed particular patterns with respect to ratio adjustments of the melting TAG groups. These outcomes also suggested that both TAG species and their quantity had a significant influence on the crystallization behavior of the fat blends. Palmitic fat blends, in general, were found to exhibit higher SFC values than those of Lauric fat blends. Instead of the similarity in crystal microstructure, lauric fat blends were stabilized at β polymorph while palmitic fat blends were stabilized at β’ polymorph. [es

  3. Structure and thermal expansion of Lu2O3 and Yb2O3 up to the melting points (United States)

    Pavlik, Alfred; Ushakov, Sergey V.; Navrotsky, Alexandra; Benmore, Chris J.; Weber, Richard J. K.


    Knowledge of thermal expansion and high temperature phase transformations is essential for prediction and interpretation of materials behavior under the extreme conditions of high temperature and intense radiation encountered in nuclear reactors. Structure and thermal expansion of Lu2O3 and Yb2O3 were studied in oxygen and argon atmospheres up to their melting temperatures using synchrotron X-ray diffraction on laser heated levitated samples. Both oxides retained the cubic bixbyite C-type structure in oxygen and argon to melting. In contrast to fluorite-type structures, the increase in the unit cell parameter of Yb2O3 and Lu2O3 with temperature is linear within experimental error from room temperature to the melting point, with mean thermal expansion coefficients (8.5 ± 0.6) · 10-6 K-1 and (7.7 ± 0.6) · 10-6 K-1, respectively. There is no indication of a superionic (Bredig) transition in the C-type structure or of a previously suggested Yb2O3 phase transformation to hexagonal phase prior to melting.

  4. On the yield of cold and ultracold neutrons for liquid hydrogen at low temperatures near the melting point

    CERN Document Server

    Morishima, N


    The neutron scattering cross sections for liquid hydrogen in the temperature range from the melting point to the boiling point are calculated. It is shown that lowering the temperature results in a significant increase in the yield of cold neutrons: for instance, a 44% increase for an incident neutron energy of 19.4 meV. The major cause of this increment is the para-to-ortho transition of a hydrogen molecule though accompanied by an appreciable increase in the density. The results of the cold- and ultracold-neutron yields are discussed in connection with the experimental results of Altarev et al. at the WWR-M reactor.

  5. Surface Observation and Pore Size Analyses of Polypropylene/Low-Melting Point Polyester Filter Materials: Influences of Heat Treatment

    Directory of Open Access Journals (Sweden)

    Lin Jia-Horng


    Full Text Available This study proposes making filter materials with polypropylene (PP and low-melting point (LPET fibers. The influences of temperatures and times of heat treatment on the morphology of thermal bonding points and average pore size of the PP/LPET filter materials. The test results indicate that the morphology of thermal bonding points is highly correlated with the average pore size. When the temperature of heat treatment is increased, the fibers are joined first with the thermal bonding points, and then with the large thermal bonding areas, thereby decreasing the average pore size of the PP/LPET filter materials. A heat treatment of 110 °C for 60 seconds can decrease the pore size from 39.6 μm to 12.0 μm.

  6. The effect of correlated and point defects on the vortex lattice melting transition in single crystal YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Kwok, W.K.; Fleshler, S.; Welp, U.; Downey, J.; Crabtree, G.W.; Fendrich, J. Giapintzakis, J.


    The vortex melting transition T m in several untwinned and twinned crystals measured resistively in fields up to 8 Tesla. A Lindemann criterion for vortex lattice melting is obtained in addition to a sharp hysteresis in the magnetoresistance at B m supporting a first order phase transition. The anisotropy of twin boundary pinning and its reduction of the ''kink'' in ρ(T) associated with the first order melting transition is discussed in samples with very dilute twin boundaries. We also report on direct suppression of melting transition by intrinsic pinning for H parallel ab and by electron-irradiation-induced point defects

  7. Development of high melting point, environmentally friendly solders, using the calphad approach

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri


    An attempt has been made using the CALPHAD approach via Thermo-Calc to explore the various possible chemical compositions that adhere to the melting criterion i.e. 270-350 degrees C, required to replace the traditionally used high lead content solders for first level packaging applications. Various...... of promising solder alloy candidates. The ternary combinations that satisfied the primary solidification requirement were scrutinized taking into account the commercial interests i.e. availability, cost-effectiveness, recyclability and toxicity issues. Technical issues like manufacturability and surface...... tension have also been considered. Special focus has been given to toxicity related issues since the main ideology of looking for an alternative to high lead containing solders is not related to technical issues but due to environmental concerns....

  8. Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen (United States)

    Wang, Lei; Liu, Jing


    A new method to directly print out a solidified electronic circuit through low-melting-point metal ink is proposed. A functional pen with heating capability was fabricated. Several typical thermal properties of the alloy ink Bi35In48.6Sn16Zn0.4 were measured and evaluated. Owing to the specifically selected melting point of the ink, which is slightly higher than room temperature, various electronic devices, graphics or circuits can be manufactured in a short period of time and then rapidly solidified by cooling in the surrounding air. The liquid–solid phase change mechanism of the written lines was experimentally characterized using a scanning electron microscope. In order to determine the matching substrate, wettability between the metal ink Bi35In48.6Sn16Zn0.4 and several materials, including mica plate and silicone rubber, was investigated. The resistance–temperature curve of a printed resistor indicated its potential as a temperature control switch. Furthermore, the measured reflection coefficient of a printed double-diamond antenna accords well with the simulated result. With unique merits such as no pollution, no requirement for encapsulation and easy recycling, the present printing approach is an important supplement to current printed electronics and has enormous practical value in the future. PMID:25484611

  9. Enzyme modification of starch with amylomaltase results in increasing gel melting point

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Blennow, Per Gunnar Andreas; Pedersen, Sven


    Melting properties of gelatin-based gels are fundamental for their functionality. With the aim at generating gelatin-like starch-based systems, thermodynamic properties of 20% (w/w) gels of 51 amylomaltase-(AM) (4-a-glucanotransferase; E.C. modified starches, 7 non-enzyme-modified...... to 70 °C. Only for the combined AM and branching enzyme (BE) modified pea starches decreased Tp (from 79 to 61 °C) was obtained. This effect was followed by a decreased gel formation and hence a fully gelatin comparable gel was not obtained. A two-component principal component analysis (PCA) model...... starches and 2 gelatins were investigated using differential scanning calorimetry (DSC). AM modification generally increased gel peak temperature (Tp) and enthalpy of transition (¿H). The increase in Tp for the potato starches was from 65 to 74 °C, whereas for the maize starches it was elevated from 57...

  10. Liquidus projection of the Ag-Ba-Ge system and melting points of clathrate type-I compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zeiringer, I.; Grytsiv, A. [Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42, 1090 Wien (Austria); Broz, P. [Masaryk University, Faculty of Science, Department of Chemistry, Kotlarska 2, 61137 Brno (Czech Republic); Masaryk University, Central European Institute of Technology, CEITEC, Kamenice 753/5, 62500 Brno (Czech Republic); Rogl, P., E-mail: [Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42, 1090 Wien (Austria)


    The liquidus and solidus projection has been constructed for the Ag-Ba-Ge system up to 33.3 at% Ba, using electron micro probe analysis (EPMA), X-ray powder diffraction (XRD) and differential thermal analysis (DSC/DTA). Eight different primary crystallization regions were found: (Ge), Ba{sub 8}Ag{sub x}Ge{sub 46-x-y}{open_square}{sub y} ({kappa}{sub I}) ({open_square} is a vacancy), Ba{sub 6}Ag{sub x}Ge{sub 25-x} ({kappa}{sub Ix}), BaGe{sub 2}, Ba(Ag{sub 1-x}Ge{sub x}){sub 2} ({tau}{sub 1}), BaAg{sub 2-x}Ge{sub 2+x} ({tau}{sub 2}) BaAg{sub 5} and (Ag). The ternary invariant reactions have been determined for the region investigated and are the basis for a Schulz-Scheil diagram. The second part of this work provides a comprehensive compilation of melting points of ternary A{sub 8}T{sub x}M{sub 46-x} and quaternary (A=Sr, Ba, Eu; T=Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga; M=Si, Ge, Sn) clathrate type-I compounds and decomposition temperatures of inverse clathrate type-I Ge{sub 38}{l_brace}P,As,Sb{r_brace}{sub 8}{l_brace}Cl,Br,I{r_brace}{sub 8}, Si{sub 46-x}P{sub x}Te{sub y} and tin based compounds. - Graphical Abstract: Partial liquidus projection of the Ag-Ba-Ge system. Highlights: Black-Right-Pointing-Pointer The liquidus and solidus projection has been constructed for the Ag-Ba-Ge system up to 33.33 at% Ba. Black-Right-Pointing-Pointer Eight different primary crystallization fields have been found. Black-Right-Pointing-Pointer All the ternary compounds form congruently from the melt. Black-Right-Pointing-Pointer The ternary invariant reactions have been determined and are the basis for a Schulz-Scheil diagram.

  11. Relationships between membrane water molecules and Patman equilibration kinetics at temperatures far above the phosphatidylcholine melting point. (United States)

    Vaughn, Alexandra R; Bell, Thomas A; Gibbons, Elizabeth; Askew, Caitlin; Franchino, Hannabeth; Hirsche, Kelsey; Kemsley, Linea; Melchor, Stephanie; Moulton, Emma; Schwab, Morgan; Nelson, Jennifer; Bell, John D


    The naphthalene-based fluorescent probes Patman and Laurdan detect bilayer polarity at the level of the phospholipid glycerol backbone. This polarity increases with temperature in the liquid-crystalline phase of phosphatidylcholines and was observed even 90°C above the melting temperature. This study explores mechanisms associated with this phenomenon. Measurements of probe anisotropy and experiments conducted at 1M NaCl or KCl (to reduce water permittivity) revealed that this effect represents interactions of water molecules with the probes without proportional increases in probe mobility. Furthermore, comparison of emission spectra to Monte Carlo simulations indicated that the increased polarity represents elevation in probe access to water molecules rather than increased mobility of relevant bilayer waters. Equilibration of these probes with the membrane involves at least two steps which were distinguished by the membrane microenvironment reported by the probe. The difference in those microenvironments also changed with temperature in the liquid-crystalline phase in that the equilibrium state was less polar than the initial environment detected by Patman at temperatures near the melting point, more polar at higher temperatures, and again less polar as temperature was raised further. Laurdan also displayed this level of complexity during equilibration, although the relationship to temperature differed quantitatively from that experienced by Patman. This kinetic approach provides a novel way to study in molecular detail basic principles of what happens to the membrane environment around an individual amphipathic molecule as it penetrates the bilayer. Moreover, it provides evidence of unexpected and interesting membrane behaviors far from the phase transition. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Crack repair welding by CMT brazing using low melting point filler wire for long-term used steam turbine cases of Cr-Mo-V cast steels

    Energy Technology Data Exchange (ETDEWEB)

    Kadoi, Kota, E-mail: [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Murakami, Aoi; Shinozaki, Kenji; Yamamoto, Motomichi [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Matsumura, Hideo [Chugoku Electric Power Co., 3-9-1 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan)


    Surface melting by gas tungsten arc (GTA) welding and overlaying by cold metal transfer (CMT) brazing using low melting point filler wire were investigated to develop a repair process for cracks in worn cast steel of steam turbine cases. Cr-Mo-V cast steel, operated for 188,500 h at 566 °C, was used as the base material. Silver and gold brazing filler wires were used as overlaying materials to decrease the heat input into the base metal and the peak temperature during the welding thermal cycle. Microstructural analysis revealed that the worn cast steel test samples contained ferrite phases with intragranular precipitates of Cr{sub 7}C{sub 3}, Mo{sub 2}C, and CrSi{sub 2} and grain boundary precipitates of Cr{sub 23}C{sub 6} and Mo{sub 2}C. CMT brazing using low melting point filler wire was found to decrease the heat input and peak temperature during the thermal cycle of the process compared with those during GTA surface melting. Thus, the process helped to inhibit the formation of hardened phases such as intermetallics and martensite in the heat affected zone (HAZ). Additionally, in the case of CMT brazing using BAg-8, the change in the hardness of the HAZ was negligible even though other processes such as GTA surface melting cause significant changes. The creep-fatigue properties of weldments produced by CMT brazing with BAg-8 were the highest, and nearly the same as those of the base metal owing to the prevention of hardened phase formation. The number of fracture cycles using GTA surface melting and CMT brazing with BAu-4 was also quite small. Therefore, CMT brazing using low melting point filler wire such as BAg-8 is a promising candidate method for repairing steam turbine cases. However, it is necessary to take alloy segregation during turbine operation into account to design a suitable filler wire for practical use.

  13. Predicting critical temperatures of ionic and non-ionic fluids from thermophysical data obtained near the melting point (United States)

    Weiss, Volker C.


    In the correlation and prediction of thermophysical data of fluids based on a corresponding-states approach, the critical temperature Tc plays a central role. For some fluids, in particular ionic ones, however, the critical region is difficult or even impossible to access experimentally. For molten salts, Tc is on the order of 3000 K, which makes accurate measurements a challenging task. Room temperature ionic liquids (RTILs) decompose thermally between 400 K and 600 K due to their organic constituents; this range of temperatures is hundreds of degrees below recent estimates of their Tc. In both cases, reliable methods to deduce Tc based on extrapolations of experimental data recorded at much lower temperatures near the triple or melting points are needed and useful because the critical point influences the fluid's behavior in the entire liquid region. Here, we propose to employ the scaling approach leading to universal fluid behavior [Román et al., J. Chem. Phys. 123, 124512 (2005)] to derive a very simple expression that allows one to estimate Tc from the density of the liquid, the surface tension, or the enthalpy of vaporization measured in a very narrow range of low temperatures. We demonstrate the validity of the approach for simple and polar neutral fluids, for which Tc is known, and then use the methodology to obtain estimates of Tc for ionic fluids. When comparing these estimates to those reported in the literature, good agreement is found for RTILs, whereas the ones for the molten salts NaCl and KCl are lower than previous estimates by 10%. The coexistence curve for ionic fluids is found to be more adequately described by an effective exponent of βeff = 0.5 than by βeff = 0.33.

  14. A practical approach to obtain the soil freezing characteristic curve and the freezing/melting point of a soil-water system

    NARCIS (Netherlands)

    Aukenthaler, Manuel; Brinkgreve, R.B.J.; Haxaire, A


    Knowing that extensive field tests and laboratory tests are time-consuming and expensive, this paper describes a practical approach to obtain crucial properties of frozen soil such as the soil freezing characteristic curve (SFCC), the freezing/melting point of a soil-water system and its hydraulic


    NRMRL-CIN-1437 Jeselnik, M., Varma*, R.S., Polanc, S., and Kocevar, M. Catalyst-free Reactions under Solvent-fee Conditions: Microwave-assisted Synthesis of Heterocyclic Hydrazones below the Melting Point of Neat Reactants. Published in: Chemical Communications 18:1716-1717 (200...

  16. Low melting point agarose beads as a standard method for plantlet regeneration from protoplasts within the Cichorium genus. (United States)

    Deryckere, Dieter; Eeckhaut, Tom; Van Huylenbroeck, Johan; Van Bockstaele, Erik


    A standard method has been developed with which we are able to fully regenerate protoplasts of different Cichorium species. For the first time, endive protoplasts have been regenerated into plantlets. Protoplast regeneration is essential for somatic hybridizations. In this study, a standard method for plantlet regeneration from Cichorium protoplasts was developed. We evaluated the effect of the low melting point agarose (LMPA) bead technique on the regeneration capacity of protoplasts of seven C. intybus and four C. endivia genotypes. The LMPA bead technique was more efficient than culture in liquid or solid medium and allowed us to obtain plating efficiencies up to 4.9 % in C. intybus genotypes and efficiencies of up to 0.7 % in C. endivia genotypes. Moreover, the LMPA bead technique offers great advantages over liquid and solid culture systems: the media can be readily refreshed, protoplasts can be monitored separately, and microcalli can easily be removed from the beads. This increased efficiency was observed for all of the 11 Cichorium genotypes tested. Shoot formation was induced more efficiently when using 0.5 mg l(-1) indole-3-acetic acid-enriched medium (up to 87.5 % of the protoplast-derived calli started shoot development) compared to 1-naphthaleneacetic acid-enriched medium. The LMPA bead technique optimized in this study enabled for the first time the full plantlet regeneration from protoplasts of C. endivia genotypes and increased the protoplast regenerating ability in other Cichorium species. This fine-tuned LMPA bead technique can therefore be applied for protoplast regeneration after protoplast fusions of the genus Cichorium.

  17. Thermal property prediction and measurement of organic phase change materials in the liquid phase near the melting point

    International Nuclear Information System (INIS)

    O’Connor, William E.; Warzoha, Ronald; Weigand, Rebecca; Fleischer, Amy S.; Wemhoff, Aaron P.


    Highlights: • Liquid-phase thermal properties for five phase change materials were estimated. • Various liquid phase and phase transition thermal properties were measured. • The thermal diffusivity was found using a best path to prediction approach. • The thermal diffusivity predictive method shows 15% agreement for organic PCMs. - Abstract: Organic phase change materials (PCMs) are a popular choice for many thermal energy storage applications including solar energy, building envelope thermal barriers, and passive cooling of portable electronics. Since the extent of phase change during a heating or cooling process is dependent upon rapid thermal penetration into the PCM, accurate knowledge of the thermal diffusivity of the PCM in both solid and liquid phases is crucial. This study addresses the existing gaps in information for liquid-phase PCM properties by examining an approach that determines the best path to prediction (BPP) for the thermal diffusivity of both alkanes and unsaturated acids. Knowledge of the BPP will enable researchers to explore the influence of PCM molecular structure on bulk thermophysical properties, thereby allowing the fabrication of optimized PCMs. The BPP method determines which of the tens of thousands of combinations of 22 different available theoretical techniques provides best agreement with thermal diffusivity values based on reported or measured density, heat capacity, and thermal conductivity for each of five PCMs (heneicosane, tricosane, tetracosane, oleic acid, and linoleic acid) in the liquid phase near the melting point. Separate BPPs were calibrated for alkanes based on heneicosane and tetracosane, and for the unsaturated acids. The alkane and unsaturated acid BPPs were then tested on a variety of similar materials, showing agreement with reported/measured thermal diffusivity within ∼15% for all materials. The alkane BPP was then applied to find that increasing the length of alkane chains decreases the PCM thermal

  18. The Ice-Vapor Interface and the Melting Point of Ice I-h for the Polarizable POL3 Water Model

    Czech Academy of Sciences Publication Activity Database

    Muchová, E.; Gladich, Ivan; Picaud, S.; Hoang, P. N. M.; Roeselová, Martina


    Roč. 115, č. 23 (2011), s. 5973-5982 ISSN 1089-5639 R&D Projects: GA ČR(CZ) GAP208/10/1724; GA MŠk LC512; GA MŠk MEB020919; GA MŠk MEB020715 Institutional research plan: CEZ:AV0Z40550506 Keywords : polarizable water force field * ice surface * melting point * ice slab Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.946, year: 2011

  19. The effect of coconut oil and palm oil as substituted oils to cocoa butter on chocolate bar texture and melting point (United States)

    Limbardo, Rebecca Putri; Santoso, Herry; Witono, Judy Retti


    Cocoa butter has responsibility for dispersion medium to create a stable chocolate bar. Due to the economic reason, cocoa butter is partially or wholly substituted by edible oils e.g palm oil and coconut oil. The objective of the research was to observe the effect of oil substitution in the chocolate bar towards its melting point and texture. The research were divided in three steps which were preliminary research started with fat content analysis in cocoa powder, melting point analysis of substituted oils anc cocoa butter, and iodine number analysis in vegetable fats (cocoa butter, coconut oil, and palm oil), chocolate bar production with substitution 0%, 20%, 40%, 60%, 80%, and 100%wt of cocoa butter with each of substituted oils, and analysis process to determine the chocolate bar melting point with DSC and chocolate bar hardness with texture analyser. The increasement of substituted oils during substitution in chocolate bar would reduce the melting point of chocolate bar from 33.5°C to 31.6°C in palm oil substitution with cocoa butter and 33.5°C to 30.75°C in coconut oil substitution. The hardness of chocolate with palm oil were around 88.5 to 139 g on the 1st cycle and 22.75 to 132 g on the 2nd cycle. The hardness of chocolate with coconut oil were around 74.75 to 152.5 g on the 1st cycle and 53.25 to 132 g on the 2nd cycle. Maximum amount of fats substitution to produce a stable texture chocolate bar is 60% wt.

  20. The melting points of MgO up to 4 TPa predicted based on ab initio thermodynamic integration molecular dynamics. (United States)

    Taniuchi, Takashi; Tsuchiya, Taku


    The melting curve of MgO is extended up to 4 TPa, corresponding to the Jovian core pressure, based on the one-step thermodynamic integration method implemented on ab initio molecular dynamics. The calculated melting temperatures are 3100 and 16 000 K at 0 and 500 GPa, respectively, which are consistent with previous experimental results, and 20 600 K at 3900 GPa, which is inconsistent with a recent experimental extrapolation, which implies the molten Jovian core. A quite small Clapeyron slope ([Formula: see text]) of [Formula: see text] is found at 3900 GPa due to comparable densities of the liquid and B2 phases under extreme compression. The Mg-O coordination number in the liquid phase is saturated at around 7.5 above 1 TPa and remains smaller than that in the B2 phase (8) even at 4 TPa, suggesting no density crossover between liquid and crystal and thus no further denser crystalline phases. Dynamical properties (atomic diffusivity and viscosity) are also investigated along the melting curve to understand these behaviors in greater detail.

  1. The melting points of MgO up to 4 TPa predicted based on ab initio thermodynamic integration molecular dynamics (United States)

    Taniuchi, Takashi; Tsuchiya, Taku


    The melting curve of MgO is extended up to 4 TPa, corresponding to the Jovian core pressure, based on the one-step thermodynamic integration method implemented on ab initio molecular dynamics. The calculated melting temperatures are 3100 and 16 000 K at 0 and 500 GPa, respectively, which are consistent with previous experimental results, and 20 600 K at 3900 GPa, which is inconsistent with a recent experimental extrapolation, which implies the molten Jovian core. A quite small Clapeyron slope (dT/dP ) of 0.0+/- 0.5 is found at 3900 GPa due to comparable densities of the liquid and B2 phases under extreme compression. The Mg–O coordination number in the liquid phase is saturated at around 7.5 above 1 TPa and remains smaller than that in the B2 phase (8) even at 4 TPa, suggesting no density crossover between liquid and crystal and thus no further denser crystalline phases. Dynamical properties (atomic diffusivity and viscosity) are also investigated along the melting curve to understand these behaviors in greater detail.

  2. Effect of low-melting point phases on the microstructure and properties of spark plasma sintered and hot deformed Nd-Fe-B alloys (United States)

    Zhang, Li; Wang, Meiyu; Yan, Xueliang; Lin, Ye; Shield, Jeffrey


    The effect of adding a low melting point Pr-Cu-Al alloy during spark plasma sintering of melt-spun Nd-Fe-B ribbons is investigated. Regions of coarse grains were reduced and overall grain refinement was observed after the addition of Pr68Cu25Al7, leading to an enhancement of coercivity from 12.7 kOe to 20.4 kOe. Hot deformation of the samples in the spark plasma sintering system resulted in the formation of platelet-like grains, producing crystallographic alignment and magnetic anisotropy. The hot deformation process improved the remanence and energy product but reduced the coercivity. The decrease of coercivity resulted from grain growth and aggregation of Pr and Nd elements at triple-junction phases.

  3. Ab initio analysis of a vacancy and a self-interstitial near single crystal silicon surfaces: Implications for intrinsic point defect incorporation during crystal growth from a melt

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, Eiji; Sueoka, Koji [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan); Vanhellemont, Jan [Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, Gent 9000 (Belgium)


    The microscopic model of the Si (001) crystal surface was investigated by first principles calculations to clarify the behavior of intrinsic point defects near crystal surfaces. A c(4 x 2) structure model was used to describe the crystal surface in contact with vacuum. The calculations show lower formation energy near the surface and the existence of formation energy differences between the surface and the bulk for both types of intrinsic point defects. The tetrahedral (T)-site and the dumbbell (DB)-site, in which a Si atom is captured from the surface and forms a self-interstitial, are found as stable sites near the third atomic layer. The T-site has a barrier of 0.48 eV, whereas the DB-site has no barrier for the interstitial to penetrate into the crystal from the vacuum. Si atoms in a melt can migrate and reach at the third layer during crystal growth when bulk diffusion coefficient is used. Therefore, the melt/solid interface is always a source of intrinsic point defects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Using Paraffin with -10 deg C to 10 deg C Melting Point for Payload Thermal Energy Storage in SpaceX Dragon Trunk (United States)

    Choi, Michael K.


    A concept of using paraffin wax phase change material (PCM) with a melting point between -10 deg C and 10 deg C for payload thermal energy storage in a Space Exploration Technologies (SpaceX) Dragon trunk is presented. It overcomes the problem of limited heater power available to a payload with significant radiators when the Dragon is berthed to the International Space Station (ISS). It stores adequate thermal energy to keep a payload warm without power for 6 hours during the transfer from the Dragon to an ExPRESS logistics carrier (ELC) on the ISS.

  5. Development of complex hydride-based all-solid-state lithium ion battery applying low melting point electrolyte (United States)

    Suzuki, Shohei; Kawaji, Jun; Yoshida, Koji; Unemoto, Atsushi; Orimo, Shin-ichi


    A thermally durable all-solid-state lithium ion battery composed of a complex hydride, oxide electrolytes, and LiNi1/3Mn1/3Co1/3O2 active material is developed. This battery exhibits a discharge capacity of 56 mAh g-1, and the tenth capacity retention ratio is 29% at 150 °C owing to the large contact resistance between the electrolyte layer and the composite positive electrode layer. This large contact resistance is reduced by introducing an adhesive layer comprised of a mixture of LiBH4 and LiNH2 that is easily melted by thermal treatment and fills the voids and pores at the interface between the two layers. As a result, repeated charge-discharge cycles are successfully demonstrated at 150 °C with a high discharge capacity and discharge capacity retention ratio. The first discharge capacity is enhanced to 114 mAh g-1 and the capacity retention ratio at the tenth cycle is improved to 71%. These results demonstrate that using an adhesive layer is an effective measure to reduce the contact resistance and thereby enhance the performance of the battery.

  6. Influence of Immersion Conditions on The Tensile Strength of Recycled Kevlar®/Polyester/Low-Melting-Point Polyester Nonwoven Geotextiles through Applying Statistical Analyses

    Directory of Open Access Journals (Sweden)

    Jing-Chzi Hsieh


    Full Text Available The recycled Kevlar®/polyester/low-melting-point polyester (recycled Kevlar®/PET/LPET nonwoven geotextiles are immersed in neutral, strong acid, and strong alkali solutions, respectively, at different temperatures for four months. Their tensile strength is then tested according to various immersion periods at various temperatures, in order to determine their durability to chemicals. For the purpose of analyzing the possible factors that influence mechanical properties of geotextiles under diverse environmental conditions, the experimental results and statistical analyses are incorporated in this study. Therefore, influences of the content of recycled Kevlar® fibers, implementation of thermal treatment, and immersion periods on the tensile strength of recycled Kevlar®/PET/LPET nonwoven geotextiles are examined, after which their influential levels are statistically determined by performing multiple regression analyses. According to the results, the tensile strength of nonwoven geotextiles can be enhanced by adding recycled Kevlar® fibers and thermal treatment.

  7. Fat accumulation, fatty acids and melting point changes in broiler chick abdominal fat as affected by time of dietary fat feeding and slaughter age. (United States)

    Carmona, J M; Lopez-Bote, C J; Daza, A; Rey, A I


    1. This work aims to quantify changes in fatty acid profile, melting point, abdominal fat accumulation and 2-thiobarbituric acid-reactive substances production depending on dietary fat source and age at slaughter, and to estimate the optimal date for the change from an unsaturated fat to a saturated fat diet or vice versa. 2. Treatments established were (1) birds fed 8% tallow from 21 to 49 d (TTT); (2) birds fed 8% tallow from 21 to 37 d and 8% sunflower oil from d 38 to 49 (TSS); (3) birds fed 8% sunflower oil from 21 to 37 d and 8% tallow from d 38 to 49 (STT); (4) birds fed 8% sunflower oil from 21 to 41 d and 8% tallow from d 42 to 49 (SST); (5) birds fed 8% sunflower oil from 21 to 49 d (SSS). Birds from each group were slaughtered on d 21, 29, 38, 40, 42, 44, 46 and 49. 3. The polyunsaturated fatty acids (PUFAs) proportion in the SSS group reached maximum values at d 40 and fitted a quadratic response. This group also showed a decrease in saturated fatty acids (SATs) and monounsaturated fatty acids (MUFAs) of lower intensity than the PUFA increase. The highest synthesis of SAT + MUFA was found in the SSS and TSS groups, whereas these had the lowest body-to-dietary PUFA ratio. 4. A high and quadratic increase in the MUFA proportion was observed during the first 10 d of feeding with the tallow-enriched diet at the expenses of the proportion of PUFA that quadratically decreased (minimum values at d 38). 5. Lipogenic and desaturation capacity decreased with age. 6. The TSS group increased tissue PUFA content faster that the SST group decreased PUFA content after the change in diet which indicates that the earlier feeding has to be taken into consideration for obtaining higher or lower changes in quality parameters. 7. The melting point of the SSS group showed a lower response to the dietary treatment in the initial period when compared to the TTT treatment. 8. The TTT, STT, SST and TSS groups showed similar fat accumulation, and changes in lipid

  8. Structural phases arising from reconstructive and isostructural transitions in high-melting-point oxides under hydrostatic pressure: A first-principles study (United States)

    Tian, Hao; Kuang, Xiao-Yu; Mao, Ai-Jie; Yang, Yurong; Xu, Changsong; Sayedaghaee, S. Omid; Bellaiche, L.


    High-melting-point oxides of chemical formula A B O3 with A =Ca , Sr, Ba and B =Zr , Hf are investigated as a function of hydrostatic pressure up to 200 GPa by combining first-principles calculations with a particle swarm optimization method. Ca- and Sr-based systems: (1) first undergo a reconstructive phase transition from a perovskite state to a novel structure that belongs to the post-post-perovskite family and (2) then experience an isostructural transition to a second, also new post-post-perovskite state at higher pressures, via the sudden formation of a specific out-of-plane B -O bond. In contrast, the studied Ba compounds evolve from a perovskite phase to a third novel post-post-perovskite structure via another reconstructive phase transition. The original characteristics of these three different post-post-perovskite states are emphasized. Unusual electronic properties, including significant piezochromic effects and an insulator-metal transition, are also reported and explained.

  9. Thermodynamics of freezing and melting


    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas; Schrøder, Thomas; Dyre, Jeppe C.


    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature?pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variatio...

  10. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz


    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  11. Design of Low-Melting Point Compositions Suitable for Transient Liquid Phase Sintering of PM Steels Based on a Thermodynamic and Kinetic Study (United States)

    Bernardo, Elena; de Oro, Raquel; Campos, Mónica; Torralba, José Manuel


    The possibility of tailoring the characteristics of a liquid metal is an important asset in a wide number of processing techniques. For most of these processes, the nature and degree of the interaction between liquid and solid phases are usually a focus of interest since they determine liquid properties such as wettability and infiltration capacity. Particularly, within the powder metallurgy (PM) technology, it is considered one of the key aspects to obtain high performance steels through liquid phase sintering. In this work, it is proved how thermodynamic and kinetics software is a powerful tool to study the liquid/solid interactions. The assessment of different liquid phase promoters for transient liquid phase sintering is addressed through the use of ThermoCalc and DICTRA calculations. Besides melting temperatures, particular attention is given to the solubility phenomena between the phases and the kinetics of these processes. Experimental validation of thermodynamic results is carried out by wetting and infiltration experiments at high temperatures. Compositions presenting different liquid/solid solubility are evaluated and directly correlated to the behavior of the liquid during a real sintering process. Therefore, this work opens the possibility to optimize liquid phase compositions and predict the liquid behavior from the design step, which is considered of high technological value for the PM industry.

  12. Coercivity enhancement of NdFeB sintered magnets by low melting point Dy{sub 32.5}Fe{sub 62}Cu{sub 5.5} alloy modification

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Ma, Tianyu, E-mail:; Zhang, Pei; Jin, Jiaying; Yan, Mi, E-mail:


    To improve coercivity without sacrificing other magnetic performance of NdFeB sintered magnets, a low melting point Dy{sub 32.5}Fe{sub 62}Cu{sub 5.5} alloy was introduced as an intergranular additive. Magnetic properties and microstructure of the magnets with different Dy{sub 32.5}Fe{sub 62}Cu{sub 5.5} contents were studied. At the optimum addition of 3 wt%, coercivity H{sub cj} was enhanced from 12.7 to 15.2 kOe, the maximum magnetic energy product (BH){sub max} was simultaneously increased from 46.6 to 47.8 MG Oe, accompanied by a slight reduction in remanence B{sub r}. Further investigation on microstructure and grain boundary composition indicated that the enhanced H{sub cj} and (BH){sub max} could be attributed to the refined and uniform 2:14:1 phase grains, continuous grain boundaries and a (Nd,Dy){sub 2}Fe{sub 14}B hardening shell surrounding the 2:14:1 phase grains. - Highlights: • Low melting-point Dy{sub 32.5}Fe{sub 62}Cu{sub 5.5} alloy was introduced to NdFeB magnets. • The doped magnet exhibits enhanced coercivity and maximum energy product. • (Nd,Dy){sub 2}Fe{sub 14}B shell was expected to form in the surface of Nd{sub 2}Fe{sub 14}B grains. • The continuous grain boundary layer formed between neighboring Nd{sub 2}Fe{sub 14}B grains.

  13. Petrological Geodynamics of Mantle Melting I. AlphaMELTS + Multiphase Flow: Dynamic Equilibrium Melting, Method and Results

    Directory of Open Access Journals (Sweden)

    Massimiliano Tirone


    with time, the melt and solid composition approach the composition that is found from a dynamic batch melting model which assumes the velocities of melt and residual solid to be the same. Time dependent melt fluctuations can be observed under certain conditions. In this case the composition of the melt that reaches the top side of the model (exit point may vary to some extent. A consistent result of the model under various conditions is that the volume of the first melt that arrives at the exit point is substantially larger than any later melt output. The analogy with large magma emplacements associated to continental break-up or formation of oceanic plateaus seems to suggest that these events are the direct consequence of a dynamic two-phase flow process. Even though chemical equilibrium between melt and the residual solid is imposed locally in space, bulk composition of the whole system (solid+melt varies with depth and may also vary with time, mainly as the result of the changes of the melt abundance. Potential factors that can influence the melting process such as bulk composition, temperature and mantle upwelling velocity at the top boundary (passive flow or bottom boundary (active flow should be addressed more systematically before the DEM model in this study and the dynamic fractional melting (DFM model that will be introduced in the second installment can be applied to interpret real petrological data. Complete data files of most of the simulations and four animations are available following the data repository link provided in the Supplementary Material.

  14. Multiscale Models of Melting Arctic Sea Ice (United States)


    Sea ice reflectance or albedo , a key parameter in climate modeling, is primarily determined by melt pond and ice floe configurations. Ice - albedo ...determine their albedo - a key parameter in climate modeling. Here we explore the possibility of a conceptual sea ice climate model passing through a...bifurcation points. Ising model for melt ponds on Arctic sea ice Y. Ma, I. Sudakov, and K. M. Golden Abstract: The albedo of melting

  15. Thermodynamics of freezing and melting

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas


    phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...

  16. Molecular dynamics simulations on the melting of gold nanoparticles (United States)

    Qiao, Zhiwei; Feng, Haijun; Zhou, Jian


    Molecular dynamics is employed to study the melting of bulk gold and gold nanoparticles. PCFF, Sutton-Chen and COMPASS force fields are adopted to study the melting point of bulk gold and we find out that the Sutton-Chen force field is the most accurate model in predicting the melting point of bulk gold. Consequently, the Sutton-Chen force field is applied to study the melting points of spherical gold nanoparticles with different diameters. Variations of diffusion coefficient, potential energy and translational order parameter with temperature are analyzed. The simulated melting points of gold nanoparticles are between 615∼1115 K, which are much lower than that of bulk gold (1336 K). As the diameter of gold nanoparticle drops, the melting point also descends. The melting mechanism is also analyzed for gold nanoparticles.

  17. Lipídios estruturados obtidos a partir da mistura de gordura de frango, sua estearina e triacilgliceróis de cadeia média: II- pontos de amolecimento e fusão Structured lipids from chicken fat, its stearin, and medium chain triacyglycerol blends: II- softening and melting points

    Directory of Open Access Journals (Sweden)

    Ming Chih Chiu


    Full Text Available The aim of the present work is to investigate the effects of blending and chemical interesterification reactions on the softening and melting behavior of chicken fat, its stearin and medium chain triacylglycerols, and blends thereof in various ratios. Chemical interesterification is a promising alternative to the current processes of modifying the physical properties of fats. In the experimental design 7 samples corresponding to 7 different blend proportions were used. The results were represented in triangular diagrams. The addition of stearin influenced the softening and melting points. The mixture response surface methodology proved to be an extremely useful tool for the optimization of the fat mixtures.

  18. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.


    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  19. [Solder melting torches]. (United States)

    Cubero Postigo, G


    In this study about melting and torchs employed in solder in fixed prosthodontics, it's analysed the accurate melting, adequate quantity, as well as protection of adjacent tissues with an accurate anti-melting. The torch chosen is the oxyacetylene burner, because its greater calorific power.

  20. Quasi-equilibrium melting of quartzite upon extreme friction (United States)

    Lee, Sung Keun; Han, Raehee; Kim, Eun Jeong; Jeong, Gi Young; Khim, Hoon; Hirose, Takehiro


    The friction on fault planes that controls how rocks slide during earthquakes decreases significantly as a result of complex fault-lubrication processes involving frictional melting. Fault friction has been characterized in terms of the preferential melting of minerals with low melting points--so-called disequilibrium melting. Quartz, which has a high melting temperature of about 1,726 °C and is a major component of crustal rocks, is not expected to melt often during seismic slip. Here we use high-velocity friction experiments on quartzite to show that quartz can melt at temperatures of 1,350 to 1,500 °C. This implies that quartz within a fault plane undergoing rapid friction sliding could melt at substantially lower temperatures than expected. We suggest that depression of the melting temperature is caused by the preferential melting of ultra-fine particles and metastable melting of β-quartz at about 1,400 °C during extreme frictional slip. The results for quartzite are applicable to complex rocks because of the observed prevalence of dynamic grain fragmentation, the preferential melting of smaller grains and the kinetic preference of β-quartz formation during frictional sliding. We postulate that frictional melting of quartz on a fault plane at temperatures substantially below the melting temperature could facilitate slip-weakening and lead to large earthquakes.

  1. Investigation of Melting Dynamics of Hafnium Clusters. (United States)

    Ng, Wei Chun; Lim, Thong Leng; Yoon, Tiem Leong


    Melting dynamics of hafnium clusters are investigated using a novel approach based on the idea of the chemical similarity index. Ground state configurations of small hafnium clusters are first derived using Basin-Hopping and Genetic Algorithm in the parallel tempering mode, employing the COMB potential in the energy calculator. These assumed ground state structures are verified by using the Low Lying Structures (LLS) method. The melting process is carried out either by using the direct heating method or prolonged simulated annealing. The melting point is identified by a caloric curve. However, it is found that the global similarity index is much more superior in locating premelting and total melting points of hafnium clusters.

  2. Observation of a prewetting transition during surface melting of caprolactam (United States)

    Chandavarkar, Sumant; Geertman, Rob M.; de Jeu, Wim H.


    The surface-induced melting of the closed-packed (100) face of the anisotropic molecular crystal caprolactam has been studied using x-ray reflectivity. A thin-to-thick film prewetting transition is observed at about 13 K below the bulk melting point. Only above this transition does the thickness of the quasiliquid layer increase continuously with temperature. We speculate that initially the surface melting proceeds via layering transitions.

  3. Melt Cast High Explosives

    Directory of Open Access Journals (Sweden)

    Stanisław Cudziło


    Full Text Available [b]Abstract[/b]. This paper reviews the current state and future developments of melt-cast high explosives. First the compositions, properties and methods of preparation of trinitrotoluene based (TNT conventional mixtures with aluminum, hexogen (RDX or octogen (HMX are described. In the newer, less sensitive explosive formulations, TNT is replaced with dinitroanisole (DNANDNANDNAN and nitrotriazolone (NTONTONTO, nitroguanidine (NG or ammonium perchlorate (AP are the replacement for RDRDX and HMX. Plasticized wax or polymer-based binder systems for melt castable explosives are also included. Hydroxyl terminated polybutadiene (HPTB is the binder of choice, but polyethylene glycol, and polycaprolactone with energetic plasticizers are also used. The most advanced melt-cast explosives are compositions containing energetic thermoplastic elastomers and novel highly energetic compounds (including nitrogen rich molecules in whose particles are nanosized and practically defect-less.[b]Keywords[/b]: melt-cast explosives, detonation parameters

  4. Melt fracture revisited

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, J. M.


    In a previous paper the author and Demay advanced a model to explain the melt fracture instability observed when molten linear polymer melts are extruded in a capillary rheometer operating under the controlled condition that the inlet flow rate was held constant. The model postulated that the melts were a slightly compressible viscous fluid and allowed for slipping of the melt at the wall. The novel feature of that model was the use of an empirical switch law which governed the amount of wall slip. The model successfully accounted for the oscillatory behavior of the exit flow rate, typically referred to as the melt fracture instability, but did not simultaneously yield the fine scale spatial oscillations in the melt typically referred to as shark skin. In this note a new model is advanced which simultaneously explains the melt fracture instability and shark skin phenomena. The model postulates that the polymer is a slightly compressible linearly viscous fluid but assumes no slip boundary conditions at the capillary wall. In simple shear the shear stress {tau}and strain rate d are assumed to be related by d = F{tau} where F ranges between F{sub 2} and F{sub 1} > F{sub 2}. A strain rate dependent yield function is introduced and this function governs whether F evolves towards F{sub 2} or F{sub 1}. This model accounts for the empirical observation that at high shears polymers align and slide more easily than at low shears and explains both the melt fracture and shark skin phenomena.

  5. Radioactive waste melting furnace

    International Nuclear Information System (INIS)

    Nakayama, Junpei.


    The present invention provides a radioactive waste melting furnace excellent in heat insulating property, capable of exchanging only refractory materials with lesser amount of contamination. Namely, an heat insulation layer is disposed on the outer wall of the melting furnace. A refractory layer is disposed on the inner wall being in contact with molten materials in the melting furnace. A metal vessel covering the refractory layer is interposed between the heat insulation layer and the refractory layer. In addition, a metal outer shell covering the heat insulation layer is disposed on the heat insulation layer on the outer wall of the melting furnace. Bricks comprising, for example, alumina, carbon, zircon, magnesia or chromia having a low heat conductivity are used for the outer wall heat insulation layer irrespective of the melting performance. The refractory layer on the inner wall is made of bricks comprising chromia, alumina and zircon as molten materials of low basicity and chromia and magnesia as molten materials of high basicity. The materials of the metal vessel may be ordinary carbon steels, cast irons, or stainless steels. The refractory layer is taken out from the melting furnace together with the metal vessel, and only the refractory layer can be removed. Radiation contamination is eliminated. The metal vessel can be used again. (I.S.)


    Directory of Open Access Journals (Sweden)

    L. V. Golubeva


    Full Text Available Summary. Melted butter is made from dairy butter by rendering the fat phase. It has specific taste and aroma, high-calorie content and good assimilability. Defects of butter which appeared during the storage causes by the development of microbiological processes or by the chemical oxidation. On the development of these processes influence quality and composition of fresh butter, its physical structure, content of the increased amount of gas phase and content of heavy metals, storage conditions. Microbiological spoilage of butter occurs generally due to damage of plasma which is good environment for the development of microorganisms. Defects of microbiological origin include: unclean, sour, moldy, yeasty, cheesy, bitter taste. Defects of test and smell chemical origin are formed due to hydrolytic digestion of lipids. It's prevailed at long storage of butter in the conditions of freezing temperatures. It's picked out the following main processes of spoiling: souring, acidifying and sallowness. Often these processes take place simultaneously.It has been investigated melted butter with lactated additive. The latter improves the microbiological and toxicological safety, prolongs the storage condition of the products. Technological efficiency of the additives is achieved by a multilayer products formation from the inactive bound water, preventing microorganisms growth and by the barrier layer with lactate inhibiting hydrolytic reactions. Oil samples were obtained with the batch-type butter maker application, then they were melted and after that lactated additive were supplemented. It has been studied organoleptic and physico-chemical indices of the melted butter samples. The fatty-acid composition of melted butter were studied. Comparative analysis of fatty-acid composition of cow's milk fat and produced melted butter has shown their similarity. Also in the last sample there is increased weight fraction of linoleic and linolenic acids. The obtained

  7. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.


    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  8. 3He melting pressure temperature scale

    DEFF Research Database (Denmark)

    Halperin, W.P.; Archie, C.N.; Richardson, R.C.


    The latent heat for solidification of **3He has been measured along the **3He melting curve between 23 and 1 mK. A temperature scale is established which depends only on measurements of heat, pressure and volume, and on the condition that the entropy of solid **3He approaches R ln 2 at high...... temperatures. The A feature of the melting curve which suggests itself as a thermometric fixed point is found to be T//A equals 2. 75 plus or minus 0. 11 mK. The agreement between this value and independent measurements of T//A, based on nuclear or electronic paramagnetism, Johnson noise thermometry...

  9. Applications of nonequilibrium melting concept to damage-accumulation processes

    International Nuclear Information System (INIS)

    Lam, N.Q.; Okamoto, P.R.


    The authors recent study of crystalline-to-amorphous transformation led to the successful development of a unified thermodynamic description of disorder-induced amorphization and heat-induced melting, based on a generalized version of the Lindemann melting criterion. The generalized criterion requires that the melting temperature of a defective crystal decreases with increasing static atomic disorder. Hence, any crystal can melt at temperatures below the melting point of its perfect crystalline state when driven far from equilibrium by introducing critical amounts of misfitting solute atoms and lattice imperfections, radiation damage, and/or tensile stresses. This conceptual approach to nonequilibrium melting provides new insight into long-standing materials problems such as brittle fracture, embrittlement, and environmentally-induced cracking, for example irradiation-assisted stress corrosion cracking

  10. Applications of nonequilibrium melting concept to damage-accumulation processes

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.Q.; Okamoto, P.R.


    The authors recent study of crystalline-to-amorphous transformation led to the successful development of a unified thermodynamic description of disorder-induced amorphization and heat-induced melting, based on a generalized version of the Lindemann melting criterion. The generalized criterion requires that the melting temperature of a defective crystal decreases with increasing static atomic disorder. Hence, any crystal can melt at temperatures below the melting point of its perfect crystalline state when driven far from equilibrium by introducing critical amounts of misfitting solute atoms and lattice imperfections, radiation damage, and/or tensile stresses. This conceptual approach to nonequilibrium melting provides new insight into long-standing materials problems such as brittle fracture, embrittlement, and environmentally-induced cracking, for example irradiation-assisted stress corrosion cracking.

  11. In Situ Partial Melt on Venus: Evidence for Ancient Water? (United States)

    Hansen, V. L.


    Shield terrain comprises countless tiny lava flows that coalesced to form an ultra-thin discontinuous regionally extensive mechanically strong layer; lava represents point-source crustal partial melt and may provide evidence for ancient Venus water.


    Directory of Open Access Journals (Sweden)

    Němec L.


    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  13. Viscosity Measurement for Tellurium Melt (United States)

    Lin, Bochuan; Li, Chao; Ban, Heng; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.


    The viscosity of high temperature Te melt was measured using a new technique in which a rotating magnetic field was applied to the melt sealed in a suspended ampoule, and the torque exerted by rotating melt flow on the ampoule wall was measured. Governing equations for the coupled melt flow and ampoule torsional oscillation were solved, and the viscosity was extracted from the experimental data by numerical fitting. The computational result showed good agreement with experimental data. The melt velocity transient initiated by the rotating magnetic field reached a stable condition quickly, allowing the viscosity and electrical conductivity of the melt to be determined in a short period.

  14. MELT-IIIB: an updated version of the melt code

    International Nuclear Information System (INIS)

    Tabb, K.K.; Lewis, C.H.; O'Dell, L.D.; Padilla, A. Jr.; Smith, D.E.; Wilburn, N.P.


    The MELT series is a reactor modeling code designed to investigate a wide variety of hypothetical accident conditions, particularly the transient overpower sequence. MELT-IIIB is the latest in the series

  15. Melt electrospinning of biodegradable polyurethane scaffolds. (United States)

    Karchin, Ari; Simonovsky, Felix I; Ratner, Buddy D; Sanders, Joan E


    Electrospinning from a melt, in contrast to from a solution, is an attractive tissue engineering scaffold manufacturing process as it allows for the formation of small diameter fibers while eliminating potentially cytotoxic solvents. Despite this, there is a dearth of literature on scaffold formation via melt electrospinning. This is likely due to the technical challenges related to the need for a well-controlled high-temperature setup and the difficulty in developing an appropriate polymer. In this paper, a biodegradable and thermally stable polyurethane (PU) is described specifically for use in melt electrospinning. Polymer formulations of aliphatic PUs based on (CH(2))(4)-content diisocyanates, polycaprolactone (PCL), 1,4-butanediamine and 1,4-butanediol (BD) were evaluated for utility in the melt electrospinning process. The final polymer formulation, a catalyst-purified PU based on 1,4-butane diisocyanate, PCL and BD in a 4/1/3M ratio with a weight-average molecular weight of about 40kDa, yielded a nontoxic polymer that could be readily electrospun from the melt. Scaffolds electrospun from this polymer contained point bonds between fibers and mechanical properties analogous to many in vivo soft tissues. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. `Technology for Advanced Treatment of High Melting Point Metal-Based Material,` local research and development of important technology for fiscal 1997. Development of materials creation technology for high efficiency power generator components; 1997 nendo juyo chiiki gijutsu kenkyu kaihatsu. `Koyuten kinzokukei buzai no kodo kako gijutsu` (kokoritsu hatsuden`yo buzai sosei gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)



    Efforts are made for the creation of high melting point metal-base materials to replace the currently-used Ni-base superalloys for the turbine to withstand higher operating temperatures. The main efforts made in fiscal 1997 are outlined. As in fiscal 1996, Nb-base solution alloys, in which solution reinforcement elements such as Mo and W are alloyed, are manufactured by button arc melting and tested for mechanical properties and texture/characteristics. In the designing and evaluation for a strongest Nb-base composite material, Nb-base composite materials are manufactured by use of particle dispersion-strengthening attained by addition of intermetallic compounds or elements to contribute to the formation of oxides, carbides, or nitrides. Nb-base composite materials may also be manufactured by use of eutectic-strengthening attained by utilizing crystallization in the process of coagulation. The resultant Nb-base composite materials are evaluated for their dynamic characteristics at high temperatures. In the development and evaluation of technologies for creating Nb-base materials for high-temperature components, larger specimens as heavy as several kg are tested in line with small specimens for basic studies, and the results are utilized for alloy designing for high-temperature materials. 50 refs., 97 figs., 15 tabs.

  17. Melting graft wound syndrome

    Directory of Open Access Journals (Sweden)

    Shiou-Mei Chen


    Full Text Available Melting graft wound syndrome is characterized by progressive epidermal loss from a previously well-taken skin graft, healed burn, or donor site. It may result in considerable morbidity and require prolonged treatment. We report a 23-year-old flame-burned patient with second- to third-degree burns involving more than 70% of the total body surface area, whose condition was complicated with septic shock. The patient presented with erosions and ulcers occurring on previously well-taken skin graft recipient sites over both legs and progressive epidermal loss on donor sites over the back. The patient's presentation was compatible with the diagnosis of melting graft wound syndrome, and we successfully treated the patient with debridement and supportive treatment.

  18. Mechanical properties of melt-derived erbium oxide

    International Nuclear Information System (INIS)

    Neuman, A.D.; Blacic, M.J.; Platero, M.; Romero, R.S.; McClellan, K.J.; Petrovic, J.J.


    Erbium oxide (Er 2 O 3 ) is a rare earth oxide that is chemically and thermally stable and has a melting point of 2,430 C. There is relatively little information available regarding single crystal growth of erbia or the properties of erbia. In this study, erbia single crystals have been grown in a Xenon Optical Floating Zone Unit (XeOFZ) capable of melting materials at temperatures up to 3,000 C. Erbia was melt synthesized in the XeOFZ unit in a container less fashion, proving for little chance of contamination. Crystals were grown in compressed air and in reducing atmospheres. A recurring problem with melt synthesis of erbia is the appearance of flakes at the edges of the melt zone during growth; these flakes disrupt the growth process. The processing details and an initial survey of the physical properties of erbia single crystals is discussed

  19. Emerging melt quality control solution technologies for aluminium melt

    Directory of Open Access Journals (Sweden)

    Arturo Pascual, Jr


    Full Text Available The newly developed “MTS 1500” Melt Treatment System is performing the specifi cally required melt treatment operations like degassing, cleaning, modification and/or grain refinement by an automated process in one step and at the same location. This linked process is saving time, energy and metal losses allowing - by automated dosage of the melt treatment agents - the production of a consistent melt quality batch after batch. By linking the MTS Metal Treatment System with sensors operating on-line in the melt, i.e., with a hydrogen sensor “Alspek H”, a fully automated control of parts of the process chain like degassing is possible. This technology does guarantee a pre-specifi ed and documented melt quality in each melt treatment batch. Furthermore, to ensure that castings are consistent and predictable there is a growing realization that critical parameters such as metal cleanliness must be measured prior to casting. There exists accepted methods for measuring the cleanliness of an aluminum melt but these can be both slow and costly. A simple, rapid and meaningful method of measuring and bench marking the cleanliness of an aluminum melt has been developed to offer the foundry a practical method of measuring melt cleanliness. This paper shows the structure and performance of the integrated MTS melt treatment process and documents achieved melt quality standards after degassing, cleaning, modifi cation and grain refi nement operations under real foundry conditions. It also provides an insight on a melt cleanliness measuring device “Alspek MQ” to provide foundry men better tools in meeting the increasing quality and tighter specifi cation demand from the industry.

  20. Elastic properties of silicate melts

    DEFF Research Database (Denmark)

    Clark, Alisha N.; Lesher, Charles E.


    Low seismic velocity regions in the mantle and crust are commonly attributed to the presence of silicate melts. Determining melt volume and geometric distribution is fundamental to understanding planetary dynamics. We present a new model for seismic velocity reductions that accounts for the anoma......Low seismic velocity regions in the mantle and crust are commonly attributed to the presence of silicate melts. Determining melt volume and geometric distribution is fundamental to understanding planetary dynamics. We present a new model for seismic velocity reductions that accounts...... for the anomalous compressibility of silicate melt, rendering compressional wave velocities more sensitive to melt fraction and distribution than previous estimates. Forward modeling predicts comparable velocity reductions for compressional and shear waves for partially molten mantle, and for low velocity regions...

  1. Application of the Cold Crucible for Melting of UO2/ZrO2 Mixtures

    International Nuclear Information System (INIS)

    Hong, S.W.; Min, B.T.; Shin, Y.S.; Park, I.K.; Kim, J.H.; Song, J.H.; Kim, H.D.


    The melting and discharge technique of UO 2 /ZrO 2 mixtures using the cold crucible melting method that does not need a separate crucible such as tungsten one with high melting point is developed and applied to the KAERI FCI test called TROI. To discharge the melt from a cold crucible into a fuel-coolant interaction chamber after melting, a plug is specially designed using the concept for electro-magnetic field characteristics so as to as thin as possible the crust that is formed between the melt and plug. Its function keeps the melt in the crucible during melting period and provides the melt discharge path. About 8.5 kg melt is discharged from the cold crucible to the melt-water interaction chamber through the punched hole with 8 cm in diameter. The melt temperature is also measured and analyzed from observation of the melt surface. The power balance using the operating parameters such as current, voltage and coupling factor of R.F generator is analyzed. (authors)

  2. Logistics Reduction: Heat Melt Compactor (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Logistics Reduction (LR) project Heat Melt Compactor (HMC) technology is a waste management technology. Currently, there are...

  3. Melting of contaminated metallic waste

    International Nuclear Information System (INIS)

    Lee, Y.-S.; Cheng, S.-Y.; Kung, H.-T.; Lin, L.-F.


    Approximately 100 tons of contaminated metallic wastes were produced each year due to maintenance for each TPC's nuclear power reactor and it was roughly estimated that there will be 10,000 tons of metallic scraps resulted from decommissioning of each reactor in the future. One means of handling the contaminated metal is to melt it. Melting process owns not only volume reduction which saves the high cost of final disposal but also resource conservation and recycling benefits. Melting contaminated copper and aluminum scraps in the laboratory scale have been conducted at INER. A total of 546 kg copper condenser tubes with a specific activity of about 2.7 Bq/g was melted in a vacuum induction melting facility. Three types of products, ingot, slag and dust were derived from the melting process, with average activities of 0.10 Bq/g, 2.33 Bq/g and 84.3 Bq/g respectively. After the laboratory melting stage, a pilot plant with a 500 kg induction furnace is being designed to melt the increasingly produced contaminated metallic scraps from nuclear facilities and to investigate the behavior of different radionuclides during melting. (author)

  4. Glass forming ability of calcium aluminosilicate melts

    DEFF Research Database (Denmark)

    Moesgaard, Mette; Yue, Yuanzheng


    The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite-wollastonite-tridymite and that of......The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite......-wollastonite-tridymite and that of anorthite-wollastonite-gehlenite. The series includes the eutectic compositions as end members. The second series consists of five compositions on a line parallel to the joining line on the alumina rich side. In the present work, GFA is described in terms of glass stability, i.e., the ability of a glass...... to resist crystallization during reheating. In addition, the fragility index (m) is derived by fitting the viscosity data with the Avramov-Milchev equation. The results show that m is inversely proportional to the glass stability for the two series of melts, implying that m is an indirect measure of GFA...

  5. A thermo dynamical model for the shape and size effect on melting of boron carbide nanoparticles. (United States)

    Antoniammal, Paneerselvam; Arivuoli, Dakshanamoorthy


    The size and shape dependence of the melting temperature of Boron Carbide (B4C) nanoparticles has been investigated with a numerical thermo dynamical approach. The problem considered in this paper is the inward melting of nanoparticles with spherical and cylindrical geometry. The cylindrical Boron Carbide (B4C) nanoparticles, whose melting point has been reported to decrease with decreasing particle radius, become larger than spherical shaped nanoparticle. Comparative investigation of the size dependence of the melting temperature with respect to the two shapes is also been done. The melting temperature obtained in the present study is approximately a dealing function of radius, in a good agreement with prediction of thermo dynamical model.

  6. Free dendritic growth in viscous melts - Cyclohexanol (United States)

    Singh, N. B.; Glicksman, M. E.


    Experiments were carried out to measure the growth speed, V, and dendritic tip radius, R, of highly purified cyclohexanol. The data show that VR-squared = constant over the entire experimentally observed supercooling range, Delta T is between 0.1 and 1 K. The stability parameter estimated from this result indicates that sigma(asterisk) = 0.027, a value in good agreement with the values of sigma(asterisk) found for the cubic plastic crystals succinonitrile pivalic acid. Cyclohexanol differs from other carefully measured plastic crystals in that the viscosity of its melt at the melting point is about 20 times higher, so gravity-induced convection remains weak even at small supercoolings.

  7. Nanorheology of Entangled Polymer Melts (United States)

    Ge, Ting; Grest, Gary S.; Rubinstein, Michael


    We use molecular simulations to probe the local viscoelasticity of an entangled polymer melt by tracking the motion of embedded nonsticky nanoparticles (NPs). As in conventional microrheology, the generalized Stokes-Einstein relation is employed to extract an effective stress relaxation function GGSE(t ) from the mean square displacement of NPs. GGSE(t ) for different NP diameters d are compared with the stress relaxation function G (t ) of a pure polymer melt. The deviation of GGSE(t ) from G (t ) reflects the incomplete coupling between NPs and the dynamic modes of the melt. For linear polymers, a plateau in GGSE(t ) emerges as d exceeds the entanglement mesh size a and approaches the entanglement plateau in G (t ) for a pure melt with increasing d . For ring polymers, as d increases towards the spanning size R of ring polymers, GGSE(t ) approaches G (t ) of the ring melt with no entanglement plateau.

  8. Experiments on melt droplets falling into a water pool

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, T.; Sehgal, B.R. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety


    This paper presents experimental data and analysis related to melt droplets falling into a water pool. A binary CaO-B{sub 2}O{sub 3} melt mixture is used to study the influence of melt superheat and water subcooling on droplet deformation and fragmentation. For the conditions studied (We {<=} 1000), the surface tension of the melt droplet and the film boiling stability greatly affect the fragmentation behaviour. If the melt temperature is between the liquidus and solidus point (mushy zone) or if the film boiling is stable due to a relatively low subcooling, the droplet deformation and fragmentation are mitigated. This behaviour can be related to the effective Weber number (We) of the melt droplet upon entry into the water pool. Similar phenomena can be expected also for interactions of corium (UO{sub 2}-ZrO{sub 2}) and water, which are characterized by a potentially fast transformation of melt into the mushy zone and by particularly stable film boiling. (author)

  9. Hot-melt extrusion--basic principles and pharmaceutical applications. (United States)

    Lang, Bo; McGinity, James W; Williams, Robert O


    Originally adapted from the plastics industry, the use of hot-melt extrusion has gained favor in drug delivery applications both in academia and the pharmaceutical industry. Several commercial products made by hot-melt extrusion have been approved by the FDA, demonstrating its commercial feasibility for pharmaceutical processing. A significant number of research articles have reported on advances made regarding the pharmaceutical applications of the hot-melt extrusion processing; however, only limited articles have been focused on general principles regarding formulation and process development. This review provides an in-depth analysis and discussion of the formulation and processing aspects of hot-melt extrusion. The impact of physicochemical properties of drug substances and excipients on formulation development using a hot-melt extrusion process is discussed from a material science point of view. Hot-melt extrusion process development, scale-up, and the interplay of formulation and process attributes are also discussed. Finally, recent applications of hot-melt extrusion to a variety of dosage forms and drug substances have also been addressed.

  10. A metastable liquid melted from a crystalline solid under decompression (United States)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin


    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure-temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.

  11. Physical properties of Al-R melts

    International Nuclear Information System (INIS)

    Sidorov, V.; Gornov, O.; Bykov, V.; Son, L.; Ryltsev, R.; Uporov, S.; Shevchenko, V.; Kononenko, V.; Shunyaev, K.; Ilynykh, N.; Moiseev, G.; Kulikova, T.; Sordelet, D.


    In this work, we present experimental data of physical properties (viscosity, surface tension, magnetic susceptibility and electroresistivity) studies for Al-R (R = Ce, Pr, Sm, Gd, Dy, Ho, Yb and Y) alloys and first intermetallic compounds from aluminum side, Al 11 R 3 (Al 3 R). All properties were measured during heating up to 2000 K and the following cooling down under helium atmosphere. The main results are: (1) the electronic characteristics of the objects are in good correlation with R positions in the periodic table, but rather lower than for pure elements. The conclusion is that through all investigated temperature range, the rare-earth elements have partly covalent but not only metallic states; (2) all the melts remain strongly microheterogeneous even at high overheatings above liquidus. The existence of associations with Al 2 R type is highly probable here. Some destruction of these associations takes place with increasing temperature above melting point at the composition of Al 2 R compound. However, the transformation into true solution state is somewhere above 1900 K. To check the idea, the thermodynamic modeling of the melts was performed. It was shown that associates with Al 2 R type are stable up to 2000 K

  12. Nitrogen Control in VIM Melts (United States)

    Jablonski, P. D.; Hawk, J. A.

    NETL has developed a design and control philosophy for the addition of nitrogen to austenitic and ferritic steels. The design approach uses CALPHAD as the centerpiece to predict the level to which nitrogen is soluble in both the melt and the solid. Applications of this technique have revealed regions of "exclusion" in which the alloy, while within specification limits of prescribed, cannot be made by conventional melt processing. Furthermore, other investigations have found that substantial retrograde solubility of nitrogen exists, which can become problematic during subsequent melt processing and/or other finishing operations such as welding. Additionally, the CALPHAD method has been used to adjust primary melt conditions. To that end, nitrogen additions have been made using chrome nitride, silicon nitride, high-nitrogen ferrochrome as well as nitrogen gas. The advantages and disadvantages of each approach will be discussed and NETL experience in this area will be summarized with respect to steel structure.

  13. [Pelletization of melts and liquids]. (United States)

    Rabisková, Miloslava


    During the second half of the last century, pelletization methods based on wetting were developed, e.g. agglomeration in coating pans, pelletization plates or fluid-bed equipment, layering of the drug in solution or suspension on inactive spherical cores, extrusion/spheronization and later on also rotoagglomeration in rotogranulators or rotoprocessors. These technologies have become a requisite part of industrial production of solid dosage forms. At present, numerous experimental papers deal with pellet preparation from melts and liquids. These new pelletization methods are the topic of the present article. Pellet preparation from melts is represented by three methods, i.e. fluid hot melt agglomeration, hot melt extrusion, and freeze pelletization. Jet cutting and cryopelletization are the techniques dealing with pellet preparation from liquids.

  14. Scaleable Clean Aluminum Melting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Das, S.K. (Secat, Inc.)


    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  15. Modified enthalpy method for the simulation of melting and ...

    Indian Academy of Sciences (India)

    ulate melting/solidification on a coarse grid and the temperature of a point close to the interface is plotted as a function of time, ... This function ensures that the viscosity of the solid is very large and approaches that of the molten liquid when f = 1. ...... transient dynamic fluid-structure interactions. Comput. Method Appl. M.

  16. Fugacity ratio estimations for high-melting rigid aromatic compounds. (United States)

    Van Noort, Paul C M


    Prediction of the environmental fate of organic compounds requires knowledge of their tendency to stay in the gas and water phase. Vapor pressure and aqueous solubility are commonly used descriptors for these processes. Depending on the type of distribution process, values for either the pure solid state or the (subcooled) liquid state have to be used. Values for the (subcooled) liquid state can be calculated from those for the solid state, and vice versa, using the fugacity ratio. Fugacity ratios are usually calculated from the entropy of fusion and the melting point. For polycyclic aromatic hydrocarbons, chlorobenzenes, chlorodibenzofuranes, and chlorodibenzo(p)dioxins, fugacity ratios calculated using experimental entropies of fusion were systematically less than those obtained from a thermodynamically more rigorous approach using heat capacity data. The deviation was more than 1 order of magnitude at the highest melting point. The use of a universal value for the entropy of fusion of 56 J/molK resulted in either over or underestimation by up to more than 1 order of magnitude. A simple correction factor, based on the melting point only, was derived. This correction factor allowed the fugacity ratios to be estimated from experimental entropies of fusion and melting point with an accuracy better than 0.1-0.2 log units. Copyright 2004 Elsevier Ltd.

  17. Size-dependent melting of nanoparticles: Hundred years of ...

    Indian Academy of Sciences (India)

    point depression of nanoparticles and the variation is linear with the inverse of the particle size. An attempt to confirm this experimentally has been made first by. Pawlow [2] in 1910. Subsequently, other researchers [3–30] have investigated the variation of melting temperature with particle size and many theoretical models.

  18. Modified enthalpy method for the simulation of melting and ...

    Indian Academy of Sciences (India)

    The control volumes sharing a common face and having liquid fractions between 0 and 1 are identified. ... The constructed interface is then used to obtain geometric properties such as the centroids, the distances of ..... the centroid of the control volume which is undergoing a phase change is anchored at the melt- ing point.

  19. On melting dynamics and the glass transition. II. Glassy dynamics as a melting process. (United States)

    Krzakala, Florent; Zdeborová, Lenka


    There are deep analogies between the melting dynamics in systems with a first-order phase transition and the dynamics from equilibrium in super-cooled liquids. For a class of Ising spin models undergoing a first-order transition--namely p-spin models on the so-called Nishimori line--it can be shown that the melting dynamics can be exactly mapped to the equilibrium dynamics. In this mapping the dynamical--or mode-coupling--glass transition corresponds to the spinodal point, while the Kauzmann transition corresponds to the first-order phase transition itself. Both in mean field and finite dimensional models this mapping provides an exact realization of the random first-order theory scenario for the glass transition. The corresponding glassy phenomenology can then be understood in the framework of a standard first-order phase transition.

  20. Numerical simulation of hot-melt extrusion processes for amorphous solid dispersions using model-based melt viscosity. (United States)

    Bochmann, Esther S; Steffens, Kristina E; Gryczke, Andreas; Wagner, Karl G


    Simulation of HME processes is a valuable tool for increased process understanding and ease of scale-up. However, the experimental determination of all required input parameters is tedious, namely the melt rheology of the amorphous solid dispersion (ASD) in question. Hence, a procedure to simplify the application of hot-melt extrusion (HME) simulation for forming amorphous solid dispersions (ASD) is presented. The commercial 1D simulation software Ludovic ® was used to conduct (i) simulations using a full experimental data set of all input variables including melt rheology and (ii) simulations using model-based melt viscosity data based on the ASDs glass transition and the physical properties of polymeric matrix only. Both types of HME computation were further compared to experimental HME results. Variation in physical properties (e.g. heat capacity, density) and several process characteristics of HME (residence time distribution, energy consumption) among the simulations and experiments were evaluated. The model-based melt viscosity was calculated by using the glass transition temperature (T g ) of the investigated blend and the melt viscosity of the polymeric matrix by means of a T g -viscosity correlation. The results of measured melt viscosity and model-based melt viscosity were similar with only few exceptions, leading to similar HME simulation outcomes. At the end, the experimental effort prior to HME simulation could be minimized and the procedure enables a good starting point for rational development of ASDs by means of HME. As model excipients, Vinylpyrrolidone-vinyl acetate copolymer (COP) in combination with various APIs (carbamazepine, dipyridamole, indomethacin, and ibuprofen) or polyethylene glycol (PEG 1500) as plasticizer were used to form the ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Predicting the enthalpies of melting and vaporization for pure components (United States)

    Esina, Z. N.; Korchuganova, M. R.


    A mathematical model of the melting and vaporization enthalpies of organic components based on the theory of thermodynamic similarity is proposed. In this empirical model, the phase transition enthalpy for the homological series of n-alkanes, carboxylic acids, n-alcohols, glycols, and glycol ethers is presented as a function of the molecular mass, the number of carbon atoms in a molecule, and the normal transition temperature. The model also uses a critical or triple point temperature. It is shown that the results from predicting the melting and vaporization enthalpies enable the calculation of binary phase diagrams.

  2. Dense Pure Tungsten Fabricated by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Dianzheng Wang


    Full Text Available Additive manufacturing using tungsten, a brittle material, is difficult because of its high melting point, thermal conductivity, and oxidation tendency. In this study, pure tungsten parts with densities of up to 18.53 g/cm3 (i.e., 96.0% of the theoretical density were fabricated by selective laser melting. In order to minimize balling effects, the raw polyhedral tungsten powders underwent a spheroidization process before laser consolidation. Compared with polyhedral powders, the spherical powders showed increased laser absorptivity and packing density, which helped in the formation of a continuous molten track and promoted densification.

  3. Lithium diffusion in silicate melts (United States)

    Cunningham, G. J.; Henderson, P.; Lowry, R. K.; Nolan, J.; Reed, S. J. B.; Long, J. V. P.


    The diffusion properties of Li in an andesitic and pitchstone melt have been determined over the temperature range 1300-1400°C. The diffusion data have been fitted to an Arrhenius relationship between log D0 and 1/ T, and give relatively small activation energies of diffusion: 21.4±5.8 kcal mol -1 in the andesite and 20.1±2.8 kcal mol -1 in the pitchstone. Li +, unlike several other cations, shows similar diffusivities in these melt compositions to that in a basaltic melt. Despite the similar ionic radius of Li + to that of Co 2+, the diffusion properties of the two ions are very different from each other.

  4. Tipping Point

    Medline Plus

    Full Text Available ... en español Blog About OnSafety CPSC Stands for Safety The Tipping Point Home > 60 Seconds of Safety (Videos) > The Tipping Point The Tipping Point by ... danger death electrical fall furniture head injury product safety television tipover tv Watch the video in Adobe ...

  5. Challenges in Melt Furnace Tests (United States)

    Belt, Cynthia


    Measurement is a critical part of running a cast house. Key performance indicators such as energy intensity, production (or melt rate), downtime (or OEE), and melt loss must all be understood and monitored on a weekly or monthly basis. Continuous process variables such as bath temperature, flue temperature, and furnace pressure should be used to control the furnace systems along with storing the values in databases for later analysis. While using measurement to track furnace performance over time is important, there is also a time and place for short-term tests.

  6. Melting processes of oligomeric α and β isotactic polypropylene crystals at ultrafast heating rates

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Xiaojing [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); He, Xuehao, E-mail:, E-mail: [Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Jiang, Shichun, E-mail:, E-mail: [School of Material, Tianjin University, Tianjin 300072 (China)


    The melting behaviors of α (stable) and β (metastable) isotactic polypropylene (iPP) crystals at ultrafast heating rates are simulated with atomistic molecular dynamics method. Quantitative information about the melting processes of α- and β-iPP crystals at atomistic level is achieved. The result shows that the melting process starts from the interfaces of lamellar crystal through random dislocation of iPP chains along the perpendicular direction of lamellar crystal structure. In the melting process, the lamellar crystal gradually expands but the corresponding thickness decreases. The analysis shows that the system expansion lags behind the crystallinity decreasing and the lagging extents for α- and β-iPP are significantly different. The apparent melting points of α- and β-iPP crystals rise with the increase of the heating rate and lamellar crystal thickness. The apparent melting point of α-iPP crystal is always higher than that of β-iPP at differently heating rates. Applying the Gibbs-Thomson rule and the scaling property of the melting kinetics, the equilibrium melting points of perfect α- and β-iPP crystals are finally predicted and it shows a good agreement with experimental result.

  7. Multivariate data analysis for finding the relevant fatty acids contributing to the melting fractions of cream

    DEFF Research Database (Denmark)

    Buldo, Patrizia; Larsen, Mette Krogh; Wiking, Lars


    : Multivariate analysis of data from individual cows identified the most relevant fatty acids contributing to the melting point of the medium melting fraction of cream. The fatty acid composition of milk fat could differentiate cream from different feeding strategies; however, owing to individual cow variation......BACKGROUND: The melting behaviour and fatty acid composition of cream from a total of 33 cows from four farms were analysed. Multivariate data analysis was used to identify the fatty acids that contributed most to the melting points and to differentiate between creams from different practical......:0 and palmitoleic acid (C16:1) in milk fat, whereas it decreased the amount of stearic acid (C18:0) and C18:1 trans fatty acid. Average data on the melting behaviour of cream separated the farms into two groups where the main differences in feeding were the amounts of maize silage and rapeseed cake used. CONCLUSION...

  8. Progress in Research on Green Lead-free Low-melting Sealing Glasses

    Directory of Open Access Journals (Sweden)

    HE Peng


    Full Text Available Traditional sealing glasses, which contain heavy metal Pb, posing threat to humans and environment, have been restricted or forbidden by most countries. Therefore, lead-free of low-melting sealing glasses will be the main future development direction. This article based on lead-free of low-melting sealing glasses, the main properties of low-melting sealing glasses were summarized. First, the composition, structural characteristics, performance and research status of several main low-melting sealing glasses, such as phosphate glass, borate glass, vanadate glass and bismuthate glass were introduced. Second, the low temperature and lead-free development directions were put forward. At last, regarding the shortcomings in the research of low-melting sealing glasses, it was pointed out that the future focused breaking points for research are composite doping modification, theoretical research on glass and new technology development of glass preparation.

  9. The infidelity of melt inclusions? (United States)

    Kent, A. J.


    Melt inclusions provide important information about magmatic systems and represent unique records of magma composition and evolution. However, it is also clear that melt inclusions do not necessarily constitute a petrological 'magic bullet', and potential exists for trapped melt compositions to be modified by a range of inclusion-specific processes. These include trapping of diffusional boundary layers, crystallization of the host mineral after trapping and dissolution of co-trapped minerals during homogenization, diffusional exchange between trapped liquid and the host mineral and external melt, and cryptic alteration of trapped material during weathering or hydrothermal alteration. It clearly important to identify when melt inclusions are unmodified, and which compositional indices represent the most robust sources of petrogenetic information. In this presentation I review and discuss various approaches for evaluating compositions and compositional variations in inclusion suites. An overriding principle is that the variations evident in melt inclusions should be able to be understood in terms of petrological processes that are known, or can be reasonably inferred to also effect bulk magma compositions. One common approach is to base petrological conclusions on species that should be more robust, and many workers use variations in incompatible trace elements for this purpose. However important information may also be obtained from a comparison of variations in melt inclusions and the lavas that host them, and in most cases this comparison is the key to identifying inclusions and suites that are potentially suspect. Comparisons can be made between individual inclusions and lavas, although comparison of average inclusion composition and the host lava, after correction for differences in crystal fractionation, may also be valuable. An important extension of this is the comparison of the variability of different species in inclusions and host lavas. This also provides

  10. Effect of tellurium on viscosity and liquid structure of GaSb melts

    Energy Technology Data Exchange (ETDEWEB)

    Ji Leilei [School of Material Science and Engineering, Jinan University, Jinan 250022 (China); Geng Haoran [School of Material Science and Engineering, Jinan University, Jinan 250022 (China)], E-mail:; Sun Chunjing [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Teng Xinying; Liu Yamei [School of Material Science and Engineering, Jinan University, Jinan 250022 (China)


    The behavior of GaSb melt with tellurium addition was investigated using viscometer and differential scanning calorimetry (DSC). Normally, the viscosity of all melts measured decreased with the increasing temperature. However, anomalous transition points were observed in the temperature dependence of viscosity for Ga-Sb-Te system. Corresponded with the abnormal points on the viscosity-temperature curves, there were thermal effect peaks on the DSC curves. Furthermore, viscous activation energy and flow units of these melts and their structural features were discussed in this paper.

  11. Fundamentals of Melt infiltration for the Preparation of Supported Metal Catalysts.The Case of Co/SiO2 Fischer-Tropsch Synthesis

    NARCIS (Netherlands)

    Eggenhuisen, T.M.|info:eu-repo/dai/nl/313959498; den Breejen, J.P.|info:eu-repo/dai/nl/304837318; Verdoes, D.; de Jongh, P.E.|info:eu-repo/dai/nl/186125372; de Jong, K.P.|info:eu-repo/dai/nl/06885580X


    We explored melt infiltration of mesoporous silica supports to prepare supported metal catalysts with high loadings and controllable particle sizes. Melting of Co(NO3)2 ·6H2O in the presence of silica supports was studied in situ with differential scanning calorimetry. The melting point depression

  12. Tipping Point

    Medline Plus

    Full Text Available ... OnSafety CPSC Stands for Safety The Tipping Point Home > 60 Seconds of Safety (Videos) > The Tipping Point ... 24 hours a day. For young children whose home is a playground, it’s the best way to ...

  13. Fixed Points

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 5. Fixed Points - From Russia with Love - A Primer of Fixed Point Theory. A K Vijaykumar. Book Review Volume 5 Issue 5 May 2000 pp 101-102. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Alloying titanium and tantalum by cold crucible levitation melting (CCLM) furnace

    Energy Technology Data Exchange (ETDEWEB)

    Morita, A. [Fuji Electric Furnace Co., Ltd., Suzuka, Mie (Japan); Fukui, H. [Depart of Dental Materials, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya (Japan); Tadano, H.; Hayashi, S. [Fuji Electric Furnace Co., Ltd., 5520, Minami tamagaki-cho, Suzuka, Mie (Japan); Hasegawa, J. [Depart of Dental Materials, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya (Japan); Niinomi, M. [Department of Production Systems Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi (Japan)


    Recently, titanium alloys have been studied as implant materials for dental and orthopedic surgery. Titanium alloys have distinguished characteristics of biocompatibility, corrosion resistance and mechanical properties. Having non-poisonous character to a living body, Ta, Zr and Nb have been used for addition to titanium alloys, which are free of vanadium and aluminum. It is well-known that titanium and tantalum are difficult metals to alloy in usual furnaces as these are very reactive metals, having great differences in melting point and specific gravity. To produce an alloy of titanium and tantalum, cold crucible levitation melting (CCLM) is effective in obtaining a uniform composition. Notable features of CCLM are that it can (1) melt metals with a high melting point, (2) create an alloy of uniform composition with a strong stirring effect by an electromagnetic force and (3) allow metals to be melted without contamination. We have melted 850 g of titanium and 150 g of tantalum by a CCLM furnace and have successfully made 1.0 kg of uniform composite Ti-15wt.% Ta alloy. It is noteworthy that the alloy was produced from pure base metals which were not alloyed beforehand and was made by a single melting (no re-melting) process. (orig.)

  15. SAXS study of transient pre-melting in chain-folded alkanes

    International Nuclear Information System (INIS)

    Ungar, G.; Wills, H.H.


    A pronounced pre-melting effect is observed in chain-folded crystals of pure monodisperse n-alkane C 246 H 494 . The effect is reversible on a short time scale, but at longer times the once-folded chain crystals are irreversibly lost as slow chain extension proceeds by solid diffusion well below the melting point. The melting process is thus monitored by rapid time-resolved small-angle X-ray (SAXS) measurements, using synchrotron radiation. The results show that the observed pronounced broadening of the DSC melting endotherm for chain-folded crystals is entirely due to genuine pre-melting of lamellar surfaces. Although a significant portion of material is already molten below the final melting point of chain-folded crystals T F , no recrystallization in the chain-extended form can occur until the cores of the crystalline lamellae melt at T F . Pre-melting of extended chain crystals is significantly less pronounced than that of folded chain crystals

  16. Grain boundary melting in ice


    Thomson, E. S.; Hansen-Goos, Hendrik; Wilen, L. A.; Wettlaufer, J. S.


    We describe an optical scattering study of grain boundary premelting in water ice. Ubiquitous long ranged attractive polarization forces act to suppress grain boundary melting whereas repulsive forces originating in screened Coulomb interactions and classical colligative effects enhance it. The liquid enhancing effects can be manipulated by adding dopant ions to the system. For all measured grain boundaries this leads to increasing premelted film thickness with increasing electrolyte concentr...

  17. Tipping Point

    Medline Plus

    Full Text Available ... Point by CPSC Blogger September 22, 2009 appliance child Childproofing CPSC danger death electrical fall furniture head ... see news reports about horrible accidents involving young children and furniture, appliance and tv tip-overs. The ...

  18. Eutectic melting temperature of the lowermost Earth's mantle (United States)

    Andrault, D.; Lo Nigro, G.; Bolfan-Casanova, N.; Bouhifd, M.; Garbarino, G.; Mezouar, M.


    Partial melting of the Earth's deep mantle probably occurred at different stages of its formation as a consequence of meteoritic impacts and seismology suggests that it even continues today at the core-mantle boundary. Melts are important because they dominate the chemical evolution of the different Earth's reservoirs and more generally the dynamics of the whole planet. Unfortunately, the most critical parameter, that is the temperature profile inside the deep Earth, remains poorly constrained accross the planet history. Experimental investigations of the melting properties of materials representative of the deep Earth at relevant P-T conditions can provide anchor points to refine past and present temperature profiles and consequently determine the degree of melting at the different geological periods. Previous works report melting relations in the uppermost lower mantle region, using the multi-anvil press [1,2]. On the other hand, the pyrolite solidus was determined up to 65 GPa using optical observations in the laser-heated diamond anvil cell (LH-DAC) [3]. Finally, the melting temperature of (Mg,Fe)2SiO4 olivine is documented at core-mantle boundary (CMB) conditions by shock wave experiments [4]. Solely based on these reports, experimental data remain too sparse to draw a definite melting curve for the lower mantle in the relevant 25-135 GPa pressure range. We reinvestigated melting properties of lower mantle materials by means of in-situ angle dispersive X-ray diffraction measurements in the LH-DAC at the ESRF [5]. Experiments were performed in an extended P-T range for two starting materials: forsterite and a glass with chondrite composition. In both cases, the aim was to determine the onset of melting, and thus the eutectic melting temperatures as a function of pressure. Melting was evidenced from drastic changes of diffraction peak shape on the image plate, major changes in diffraction intensities in the integrated pattern, disappearance of diffraction rings

  19. The surface quasiliquid melt acceleration and the role of thermodynamic phase in the thermal decomposition of crystalline organic explosives

    Energy Technology Data Exchange (ETDEWEB)

    Henson, Bryan F [Los Alamos National Laboratory


    We show that melt acceleration in the thermal decomposition of crystalline organic solids is a manifestation of the surface quasiliquid phase. We derive a single universal rate law for melt acceleration that is a simple function of the metastable liquid activity below the melting point, and has a zero order term proportional to the quasiliquid thickness. We argue that the underlying mechanisms of this model will provide a molecular definition for the stability of the class of secondary explosives.

  20. Direct contact heat transfer characteristics between melting alloy and water

    International Nuclear Information System (INIS)

    Kinoshita, Izumi; Nishi, Yoshihisa; Furuya, Masahiro


    As a candidate for an innovative steam generator for fast breeder reactors, a heat exchanger with direct contact heat transfer between melting alloy and water was proposed. The evaluation of heat transfer characteristics of this heat exchanger is one of the research subjects for the design and development of the steam generator. In this study, the effect of the pressure on heat transfer characteristics and the required degree of superheating of melting alloy above water saturation temperature are evaluated during the direct contact heat transfer experiment by injecting water into Wood's alloy. In the experiment, the pressure, the temperature of the Wood's alloy, the flow rate of feed water, and the depth of the feed water injection point are varied as parameters. As a result of the experiment, the product of the degree of Wood's alloy superheating above water saturation temperature and the depth of the feed water injection point is constant for each pressure. This constant increases as the pressure rises. (author)

  1. Melt-decontamination method for radioactive metal wastes

    International Nuclear Information System (INIS)

    Otsuka, Hisao; Izumida, Tatsuo; Kondo, Yasuo; Fujii, Norihisa; Tsuchiya, Hiroyuki.


    When metals contaminated by radioactive materials are melted by heating with addition of slugs, the weight ratio of basic slugs to acidic slugs constituting the molten slugs is controlled to from 0.5 to 0.3, and the transfer of radioactive materials in the molten metals to the slug phase is promoted. Then, Co, Ni and/or Cr as radioactive materials are removed. The temperature of the molten metals is controlled to higher than the melting point of the metals and lower than the decomposition point of oxides of the radioactive materials. With such procedures, not only Co but also a plurality of nuclides to be removed from the radioactive metal wastes can be decontaminated simultaneously, the operation is simplified and the amount of secondary wastes upon decontamination can be reduced. (T.M.)

  2. String-like cooperative motion in homogeneous melting. (United States)

    Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F


    Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of "superheated" Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of "homogeneous" melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional "static

  3. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng


    The effect of the melting temperature on bubble size and bubble formation in an iron bearing calcium aluminosilicate melt is studied by means of in-depth images acquired by optical microscopy. The bubble size distribution and the total bubble volume are determined by counting the number of bubbles...... and their diameter. The variation in melting temperature has little influence on the overall bubble volume. However, the size distribution of the bubbles varies with the melting temperature. When the melt is slowly cooled, the bubble volume increases, implying decreased solubility of the gaseous species. Mass...

  4. Anomalous melting behavior of solid hydrogen at high pressures


    Liu, Hanyu; Hernández, Eduardo R.; Yan, Jun; Ma, Yanming


    Hydrogen is the most abundant element in the universe, and its properties under conditions of high temperature and pressure are crucial to understand the interior of of large gaseous planets and other astrophysical bodies. At ultra high pressures solid hydrogen has been predicted to transform into a quantum fluid, because of its high zero point motion. Here we report first principles two phase coexistence and Z method determinations of the melting line of solid hydrogen in a pressure range sp...

  5. A method of heat accumulation and a direct-contact latent melting heat thermal accumulator

    International Nuclear Information System (INIS)

    Cachard, Maurice de; Goffinet, Pierre; Kurka, Gerard; Bricard, Alain; Morrachioli, Robert.


    The invention relates to a method for the accumulation of heat, and to a direct-contact latent melting-heat thermal accumulator. According to the invention, a coolant fluid F is caused to be in direct contact with a material C having a high latent melting-heat, said fluid F and material C being in heat exchange relationship at a temperature in the vicinity of the melting point of C, whereby, when hot fluid F is caused to be in direct contact with material C, the later will melt and store heat in the form of latent melting-heat while cooling fluid F, and when cold fluid F is caused to be in direct contact with material C, the latter will solidify by transferring heat to fluid F. This can be applied to the manufacturing of heat-exchangers for coupling an electric power-station to a distribution network [fr

  6. Simulation and measurement of melting effects on metal sheets caused by direct lightning strikes (United States)

    Kern, Alexander


    Direct lightning strikes melt metal parts of various systems, like fuel and propellant tanks of rockets and airplanes, at the point of strike. Responsible for this melting are the impulse current and, if occurring, the long duration current, both carrying a remarkable charge Q. For studying these meltings the simulation in the laboratory has to be based on the parameters of natural lightnings. International standards exist defining certain threat levels of natural lightnings and giving possible generator circuits for the simulation. The melting caused by both types of lightning currents show different appearance. Their characteristics, their differences in melting and heating of metal sheets are investigated. Nevertheless the simulation of lightning in the laboratory is imperfect. While natural lightning is a discharge without a counter electrode, the simulation always demands a close counter electrode. The influence of this counter electrode is studied.

  7. Industrial opportunities of controlled melt flow during glass melting, part 1: Melt flow evaluation

    Czech Academy of Sciences Publication Activity Database

    Dyrčíková, Petra; Hrbek, Lukáš; Němec, Lubomír


    Roč. 58, č. 2 (2014), s. 111-117 ISSN 0862-5468 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melting * controlled flow * space utilization Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.435, year: 2014

  8. Structure of Cd-Ga melts. Pt. 2

    International Nuclear Information System (INIS)

    Hermann, G.; Rainer-Harbach, G.; Steeb, S.


    X-ray small-angle scattering experiments were performed on nine melts of the Cd-Ga system at different temperatures up to 440 0 C. Evaluation of the data follows the Ornstein-Zernike theory of critical scattering, thus yielding correlation lengths xi of concentration fluctuations and the long-wavelenght limit Ssub(C)sub(C)(0) of the Bhatia-Thornton structure factor. Studies of the concentration and temperature dependence of xi and Ssub(C)sub(C)(0) indicate that the critical point occurs at csub(c) = 50.0 +- 1.0 at% Ga and Tsub(c) = 295.2 +- 0.1 0 C. For a melt with the critical concentration, Ssub(C)sub(C)(0) increases up to 3500 times the ideal Ssup(i)sup(d)sub(c)sub(c)(0) = csub(A)csub(B). This indicates a strong segregation tendency. In the vicinity of the critical point of the Cd-Ga system, experimental correlation lengths xi > 100 Angstroem were obtained. The critical-point exponents ν and γ were determined. It follows that the behaviour of a critical Cd-Ga melt satisfies the prediction of the classical mean-field theory for higher temperatures, whereas, within experimental accuracy, the lattice-gas predictions are satisfied upon approaching the critical temperature. (orig.)

  9. ELM-induced transient tungsten melting in the JET divertor (United States)

    Coenen, J. W.; Arnoux, G.; Bazylev, B.; Matthews, G. F.; Autricque, A.; Balboa, I.; Clever, M.; Dejarnac, R.; Coffey, I.; Corre, Y.; Devaux, S.; Frassinetti, L.; Gauthier, E.; Horacek, J.; Jachmich, S.; Komm, M.; Knaup, M.; Krieger, K.; Marsen, S.; Meigs, A.; Mertens, Ph.; Pitts, R. A.; Puetterich, T.; Rack, M.; Stamp, M.; Sergienko, G.; Tamain, P.; Thompson, V.; Contributors, JET-EFDA


    The original goals of the JET ITER-like wall included the study of the impact of an all W divertor on plasma operation (Coenen et al 2013 Nucl. Fusion 53 073043) and fuel retention (Brezinsek et al 2013 Nucl. Fusion 53 083023). ITER has recently decided to install a full-tungsten (W) divertor from the start of operations. One of the key inputs required in support of this decision was the study of the possibility of W melting and melt splashing during transients. Damage of this type can lead to modifications of surface topology which could lead to higher disruption frequency or compromise subsequent plasma operation. Although every effort will be made to avoid leading edges, ITER plasma stored energies are sufficient that transients can drive shallow melting on the top surfaces of components. JET is able to produce ELMs large enough to allow access to transient melting in a regime of relevance to ITER. Transient W melt experiments were performed in JET using a dedicated divertor module and a sequence of IP = 3.0 MA/BT = 2.9 T H-mode pulses with an input power of PIN = 23 MW, a stored energy of ˜6 MJ and regular type I ELMs at ΔWELM = 0.3 MJ and fELM ˜ 30 Hz. By moving the outer strike point onto a dedicated leading edge in the W divertor the base temperature was raised within ˜1 s to a level allowing transient, ELM-driven melting during the subsequent 0.5 s. Such ELMs (δW ˜ 300 kJ per ELM) are comparable to mitigated ELMs expected in ITER (Pitts et al 2011 J. Nucl. Mater. 415 (Suppl.) S957-64). Although significant material losses in terms of ejections into the plasma were not observed, there is indirect evidence that some small droplets (˜80 µm) were released. Almost 1 mm (˜6 mm3) of W was moved by ˜150 ELMs within 7 subsequent discharges. The impact on the main plasma parameters was minor and no disruptions occurred. The W-melt gradually moved along the leading edge towards the high-field side, driven by j × B forces. The evaporation rate determined

  10. Measuring melting capacity with calorimetry


    Betten, Linda


    Road salting is an important aspect of winter maintenance. There has been an increase in the usage of salt in later years to keep the road safe and accessible. It is a desire to reduce the amount of salt due to environmental aspects. To achieve better practices for winter maintenance it is necessary to obtain more knowledge about the different properties of salt. The motivation for this thesis is to develop a better method for determining the melting capacity for salt, which is an important p...

  11. Eruption style at Kīlauea Volcano in Hawai‘i linked to primary melt composition (United States)

    Sides. I.R.,; Edmonds, M.; Maclennan, J.; Swanson, Don; Houghton, Bruce F.


    Explosive eruptions at basaltic volcanoes have been linked to gas segregation from magmas at shallow depths in the crust. The composition of primary melts formed at greater depths was thought to have little influence on eruptive style. Ocean island basaltic volcanoes are the product of melting of a geochemically heterogeneous mantle plume and are expected to give rise to heterogeneous primary melts. This range in primary melt composition, particularly with respect to the volatile components, will profoundly influence magma buoyancy, storage and eruption style. Here we analyse the geochemistry of a suite of melt inclusions from 25 historical eruptions at the ocean island volcano of Kīlauea, Hawai‘i, over the past 600 years. We find that more explosive styles of eruption at Kīlauea Volcano are associated statistically with more geochemically enriched primary melts that have higher volatile concentrations. These enriched melts ascend faster and retain their primary nature, undergoing little interaction with the magma reservoir at the volcano’s summit. We conclude that the eruption style and magma-supply rate at Kīlauea are fundamentally linked to the geochemistry of the primary melts formed deep below the volcano. Magmas might therefore be predisposed towards explosivity right at the point of formation in their mantle source region.

  12. Retrieving original melt compositions in migmatites (United States)

    Kriegsman, L. M.; Nyström, A. I.


    The final textures and mineral modes of anatectic migmatites are affected by four successive processes: (i) prograde partial melting and small-scale segregation into melt-rich domains and restitic domains; (ii) partial melt extraction; (iii) partial retrograde reactions (back reaction) between in situ crystallizing melt and the restite; (iv) crystallization of remaining melt at the water-saturated solidus, releasing volatiles (Kriegsman, 2001). These processes are investigated using mass balance calculations in the KFMASH chemical system. Starting from a fixed bulk composition, fluid-absent melting reactions are considered along an isobaric heating path, followed by mineral-melt reactions during isobaric cooling (path 1), and uplift (path 2). Variables in the model are the restite fraction X and the melt fraction Y involved in back reaction, the melt fraction Z extracted from the system, and the melt fraction 1-Y-Z crystallized in situ at the water-saturated solidus. Incongruent phases are considered to be part of the restite. To facilitate calculations, mineral and melt compositions are taken to be constant. It is shown that melanosome, leucosome, and mesosome compositions generally do not show linear compositional trends in a closed system. Instead, mesosome, neosome, protolith and melt compositions lie on a hyperplane and form linear trends in any compositional diagram. Several methods are proposed to retrieve the melt composition from neosome and mesosome compositions. Applications to natural examples (dataset of Ashworth, 1976; and our new data from SW Finland) strengthen the migmatite-to-granite connection which may notably be obscured by the back reaction process. References: Kriegsman, L.M., 2001, Lithos 56, 75-96 Ashworth, J.R., 1976. Mineralogical Magazine 40, 661-682

  13. Melting curve of compressed barium carbonate from in situ ionic conductivity measurements: Implications for the melting behavior of alkaline earth carbonates in Earth's deep carbon cycle (United States)

    Dong, J.; Li, J.; Zhu, F.; Li, Z.; Farawi, R.


    The whereabouts of subducted carbonates place a major constraint on the Earth's deep carbon cycle, but the fraction of carbon retained in the slab and transported into the deep mantle, compared to that released from the slab and recycled to the surface, is still under debate. Knowledge of the stability of carbonated mantle rocks is pivotal for assessing the ability of slabs to carry carbonates into the deep mantle. Determination and systematic comparison of the melting curves of alkali and alkaline earth carbonates at high pressure can help construct thermodynamic models to predict the melting behavior of complex carbonated mantle rocks. Among alkaline earth carbonates, the melting behavior of barium carbonate (BaCO3) has not been adequately understood. The reported melting point of BaCO3at 1 bar differ by nearly 800 °C and constraints on the melting curve of BaCO3 at high pressure are not available. In this study, the melting temperatures of BaCO3 were determined up to 11 GPa from in situ ionic conductivity measurements using the multi-anvil apparatus at the University of Michigan. The solid-liquid boundary at high pressure was detected on the basis of a steep rise in conductivity through the sample upon melting. The melting point of BaCO3 was found to drop from 1797 °C at 3.3 GPa to 1600 °C at 5.5 GPa and then rise with pressure to 2180 °C at 11 GPa. The observed melting depression point at 5.5 GPa corresponds to the phase transition of BaCO3 from the aragonite structure (Pmcn) to post-aragonite structure (Pmmn) at 6.3 GPa, 877 °C and 8.0 GPa, 727 °C, determined from synchrotron X-ray diffraction measurements using laser-heated DAC experiments at the Advanced Photon Source, Argonne National Laboratory. These results are also compared with ex situ falling marker experiments, and the three methods together place tight constraints on the melting curve of BaCO3 and elucidates the effect of structural phase transitions on its melting behavior.

  14. Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice

    DEFF Research Database (Denmark)

    Sánchez, M. Alejandra; Kling, Tanja; Ishiyama, Tatsuya


    On the surface of water ice, a quasi-liquid layer (QLL) has been extensively reported at temperatures below its bulk melting point at 273 K. Approaching the bulk melting temperature from below, the thickness of the QLL is known to increase. To elucidate the precise temperature variation of the QLL......, and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surfacespecific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice...

  15. Point defects in hard-sphere crystals

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.


    We report numerical calculations of the concentration of interstitials in hard-sphere crystals. We find that in a three-dimensional fcc hard-sphere crystal at the melting point, the concentration of interstitials is 2.7(4) × 10-8. This is some 3 orders of magnitude lower than the concentration of

  16. Monitoring of polymer melt processing

    International Nuclear Information System (INIS)

    Alig, Ingo; Steinhoff, Bernd; Lellinger, Dirk


    The paper reviews the state-of-the-art of in-line and on-line monitoring during polymer melt processing by compounding, extrusion and injection moulding. Different spectroscopic and scattering techniques as well as conductivity and viscosity measurements are reviewed and compared concerning their potential for different process applications. In addition to information on chemical composition and state of the process, the in situ detection of morphology, which is of specific interest for multiphase polymer systems such as polymer composites and polymer blends, is described in detail. For these systems, the product properties strongly depend on the phase or filler morphology created during processing. Examples for optical (UV/vis, NIR) and ultrasonic attenuation spectra recorded during extrusion are given, which were found to be sensitive to the chemical composition as well as to size and degree of dispersion of micro or nanofillers in the polymer matrix. By small-angle light scattering experiments, process-induced structures were detected in blends of incompatible polymers during compounding. Using conductivity measurements during extrusion, the influence of processing conditions on the electrical conductivity of polymer melts with conductive fillers (carbon black or carbon nanotubes) was monitored. (topical review)

  17. Chemical decontamination and melt densification

    International Nuclear Information System (INIS)

    Dillon, R.L.; Griggs, B.; Kemper, R.S.; Nelson, R.G.


    Preliminary studies on the chemical decontamination and densification of Zircaloy, stainless steel, and Inconel undissolved residues remaining after dissolution of the UO 2 --PuO 2 spent fuel material from sheared fuel bundles are reported. The studies were made on cold or very small samples to demonstrate the feasibility of the processes developed before proceeding to hot cell demonstrations with kg level of the sources. A promising aqueous decontamination method for Zr alloy cladding was developed in which oxidized surfaces are conditioned with HF prior to leaching with ammonium oxalate, ammonium citrate, ammonium fluoride, and hydrogen peroxide. Feasibility of molten salt decontamination of oxidized Zircaloy was demonstrated. A low melting alloy of Zircaloy, stainless steel, and Inconel was obtained in induction heated graphite crucibles. Segregated Zircaloy cladding sections were directly melted by the inductoslag process to yield a metal ingot suitable for storage. Both Zircaloy and Zircaloy--stainless steel--Inconel alloys proved to be highly satisfactory getters and sinks for recovered tritium

  18. Viscosity model for aluminosilicate melt

    Directory of Open Access Journals (Sweden)

    Zhang G.H.


    Full Text Available The structurally based viscosity model proposed in our previous study is extended to include more components, e.g. SiO2, Al2O3, FeO, MnO, MgO, CaO, Na2O and K2O. A simple method is proposed to calculate the numbers of different types of oxygen ions classified by the different cations they bonded with, which is used to characterize the influence of composition on viscosity. When dealing with the aluminosilicate melts containing several basic oxides, the priority order is established for different cations for charge compensating Al3+ ions, according to the coulombic force between cation and oxygen anion. It is indicated that basic oxides have two paradox influences on viscosity: basic oxide with a higher basicity decreases viscosity more greatly by forming weaker non-bridging oxygen bond; while it increases viscosity more greatly by forming stronger bridging oxygen bond in tetrahedron after charge compensating Al3+ ion. The present model can extrapolate its application range to the system without SiO2. Furthermore, it could also give a satisfy interpretation to the abnormal phenomenon that viscosity increases when adding K2O to CaO-Al2O3-SiO2 melt within a certain composition range.

  19. Sound propagation in selenium and tellurium melts

    International Nuclear Information System (INIS)

    Glazov, V.M.; Kim, S.G.; Sulejmenov, T.


    Methods, that under similar frequences of ten MHz and using one sample permit to study temperature dependences and propagation velocities, the absorption coefficient of the sound in melts, are described. As a result studying selenium and tellurium melts intricate polytherms of sound propagation velocity and absorption coefficient, that are interpreted usiung representations on breaking chains in associated liquid(selenium) and dissolution of short chains in the melt(tellurium) atomic matrix, are constructed

  20. Direct writing by way of melt electrospinning. (United States)

    Brown, Toby D; Dalton, Paul D; Hutmacher, Dietmar W


    Melt electrospun fibers of poly(ϵ-caprolactone) are accurately deposited using an automated stage as the collector. Matching the translation speed of the collector to the speed of the melt electrospinning jet establishes control over the location of fiber deposition. In this sense, melt electrospinning writing can be seen to bridge the gap between solution electrospinning and direct writing additive manufacturing processes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Melting phenomena: effect of composition for 55-atom Ag-Pd bimetallic clusters. (United States)

    Cheng, Daojian; Wang, Wenchuan; Huang, Shiping


    Understanding the composition effect on the melting processes of bimetallic clusters is important for their applications. Here, we report the relationship between the melting point and the metal composition for the 55-atom icosahedral Ag-Pd bimetallic clusters by canonical Monte Carlo simulations, using the second-moment approximation of the tight-binding potentials (TB-SMA) for the metal-metal interactions. Abnormal melting phenomena for the systems of interest are found. Our simulation results reveal that the dependence of the melting point on the composition is not a monotonic change, but experiences three different stages. The melting temperatures of the Ag-Pd bimetallic clusters increase monotonically with the concentration of the Ag atoms first. Then, they reach a plateau presenting almost a constant value. Finally, they decrease sharply at a specific composition. The main reason for this change can be explained in terms of the relative stability of the Ag-Pd bimetallic clusters at different compositions. The results suggest that the more stable the cluster, the higher the melting point for the 55-atom icosahedral Ag-Pd bimetallic clusters at different compositions.

  2. Surface melting of deuterium hydride thick films


    Zeppenfeld, P.; Bienfait, M.; Feng Chuan Liu,; Vilches, O.E.; Coddens, G.


    Quasi-elastic neutron scattering has been used to measure, below the bulk melting temperature, the thickness and the diffusion coefficient of the mobile surface layer of 8 and 10 layer thick films of deuterium hydride (HD) condensed on MgO(100). The measurements show that the close-packed surface of solid HD surface melts gradually, with the thickness of the melted layer increasing from 0.5 to 6 molecular layers as the temperature rises from 4 K to 0.05 K below the bulk melting temperature. T...

  3. Grain boundary melting in ice (United States)

    Thomson, E. S.; Hansen-Goos, Hendrik; Wettlaufer, J. S.; Wilen, L. A.


    We describe an optical scattering study of grain boundary premelting in water ice. Ubiquitous long ranged attractive polarization forces act to suppress grain boundary melting whereas repulsive forces originating in screened Coulomb interactions and classical colligative effects enhance it. The liquid enhancing effects can be manipulated by adding dopant ions to the system. For all measured grain boundaries this leads to increasing premelted film thickness with increasing electrolyte concentration. Although we understand that the interfacial surface charge densities qs and solute concentrations can potentially dominate the film thickness, we cannot directly measure them within a given grain boundary. Therefore, as a framework for interpreting the data we consider two appropriate qs dependent limits; one is dominated by the colligative effect and other is dominated by electrostatic interactions.

  4. Electrolysis of simulated lunar melts (United States)

    Lewis, R. H.; Lindstrom, D. J.; Haskin, L. A.


    Electrolysis of molten lunar soil or rock is examined as an attractive means of wresting useful raw materials from lunar rocks. It requires only hat to melt the soil or rock and electricity to electrolyze it, and both can be developed from solar power. The conductivities of the simple silicate diopside, Mg CaSi2O6 were measured. Iron oxide was added to determine the effect on conductivity. The iron brought about substantial electronic conduction. The conductivities of simulated lunar lavas were measured. The simulated basalt had an AC conductivity nearly a fctor of two higher than that of diopside, reflecting the basalt's slightly higher total concentration of the 2+ ions Ca, Mg, and Fe that are the dominant charge carriers. Electrolysis was shown to be about 30% efficient for the basalt composition.

  5. A Unified Theory of Melting, Crystallization and Glass Formation

    DEFF Research Database (Denmark)

    Cotterill, R. M. J.; Jensen, F. J.; Damgaard Kristensen, W.


    In recent years, dislocations have been involved in theories of melting, in models of the liquid state, and in calculations of the viscosity of glasses. Particularly noteworthy are the Mott-Gurney model of a liquid as a polycrystal with a grain size (i. e. a dislocation network size) of near......-atomic dimensions, and the demonstration by Kotze and Kuhlmann-Wilsdorf that the solid-liquid interfacial energy is proportional to the grain boundary energy for a number of elements. These developments suggest the possibility of a relatively simple picture of crystallization and glass formation. In the liquid...... state dislocations, at the saturation density, are in constant motion and the microscopic grain boundary structure that they form is constantly changing due to dislocation-dislocation interaction. As the liquid is cooled below the melting point the free energy favors the crystalline form and grains...

  6. Devitrification of defense nuclear waste glasses: role of melt insolubles

    International Nuclear Information System (INIS)

    Bickford, D.F.; Jantzen, C.M.


    Time-temperature-transformation (TTT) curves have been determined for simulated nuclear waste glasses bounding the compositional range in the Defense Waste Processing Facility (DWPF). Formulations include all of the minor chemical elements such as ruthenium and chromium which have limited solubility in borosilicate glasses. Heterogeneous nucleation of spinel on ruthenium dioxide, and subsequent nucleation of acmite on spinel is the major devitrification path. Heterogeneous nucleation on melt insolubles causes more rapid growth of crystalline devitrification phases, than in glass free of melt insolubles. These studies point out the importance of simulating waste glass composition and processing as accurately as possible to obtain reliable estimates of glass performance. 11 refs., 8 figs., 1 tab

  7. Melting and glass transition of radiation-induced graft polyethylene

    International Nuclear Information System (INIS)

    Toi, K.; Kikuchi, M.; Tokuda, T.


    Melting and glass transition data are reported employing DSC for styrene-grafted high-density polyethylene obtained by γ radiation. Judging from the data of the melting point and the heat of fusion, the grafted polystyrene had no effect on the polyethylene crystallites, but the half-width of the thermogram was observed to increase slightly, showing an effect on the crystallite size distribution. As no effect was observed on the glass transition temperature by grafting, the amorphous region of the polyethylene apparently was not affected. It is suggested, therefore, that the free volume or segmental mobility will not be decreased by radiation-induced grafting. Very few but long grafted chains had negligible effect on the average polyethylene chain length available for segmental motion, and grafted polystyrene should be expected to differ from the styrene homopolymer in thermal motions

  8. Melting and solidification of bismuth inclusions in aluminium

    DEFF Research Database (Denmark)

    Thoft, N.B.; Bohr, J.; Buras, B.


    Supercooling of crystalline bismuth inclusions in aluminium crystals has been observed and studied with different techniques: x-ray diffraction, in situ Rutherford backscattering/channelling spectrometry and transmission electron microscopy. The results of the measurements with different experime......Supercooling of crystalline bismuth inclusions in aluminium crystals has been observed and studied with different techniques: x-ray diffraction, in situ Rutherford backscattering/channelling spectrometry and transmission electron microscopy. The results of the measurements with different...... experimental methods (and on different samples) agree remarkably well. The inclusions melt at temperatures at or below the bismuth bulk melting point, and the solid/liquid phase transition exhibits a hysteresis of 100-150 K. Average inclusion sizes ranged from a few nm to some tens of nm. The x-ray diffraction...

  9. Reaction of soda-lime-silica glass melt with water vapour at melting temperatures

    Czech Academy of Sciences Publication Activity Database

    Vernerová, Miroslava; Kloužek, Jaroslav; Němec, Lubomír


    Roč. 416, MAY 15 (2015), s. 21-30 ISSN 0022-3093 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melt * sulfate * water vapour * bubble nucleation * melt foaming * glass melting Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  10. Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study (United States)

    Liang, Tianshou; Zhou, Dejian; Wu, Zhaohua; Shi, Pengpeng


    The size-dependent melting behaviors and mechanisms of Ag nanoparticles (NPs) with diameters of 3.5–16 nm were investigated by molecular dynamics (MD). Two distinct melting modes, non-premelting and premelting with transition ranges of about 7–8 nm, for Ag NPs were demonstrated via the evolution of distribution and transition of atomic physical states during annealing. The small Ag NPs (3.5–7 nm) melt abruptly without a stable liquid shell before the melting point, which is characterized as non-premelting. A solid-solid crystal transformation is conducted through the migration of adatoms on the surface of Ag NPs with diameters of 3.5–6 nm before the initial melting, which is mainly responsible for slightly increasing the melting point of Ag NPs. On the other hand, surface premelting of Ag NPs with diameters of 8–16 nm propagates from the outer shell to the inner core with initial anisotropy and late isotropy as the temperature increases, and the close-packed facets {111} melt by a side-consumed way which is responsible for facets {111} melting in advance relative to the crystallographic plane {111}. Once a stable liquid shell is formed, its size-independent minimum thickness is obtained, and a three-layer structure of atomic physical states is set up. Lastly, the theory of point defect-pair (vacancy-interstitial) severing as the mechanism of formation and movement of the solid-liquid interface was also confirmed. Our study provides a basic understanding and theoretical guidance for the research, production and application of Ag NPs.

  11. Permeability and 3-D melt geometry in shear-induced high melt fraction conduits (United States)

    Zhu, W.; Cordonnier, B.; Qi, C.; Kohlstedt, D. L.


    Observations of dunite channels in ophiolites and uranium-series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. Formation of high melt fraction conduits could result from mechanical shear, pyroxene dissolution, and lithological partitioning. Deformation experiments (e.g. Holtzman et al., 2003) demonstrate that shear stress causes initially homogeneously distributed melt to segregate into an array of melt-rich bands, flanked by melt-depleted regions. At the same average melt fraction, the permeability of high melt fraction conduits could be orders of magnitude higher than that of their homogenous counterparts. However, it is difficult to determine the permeability of melt-rich bands. Using X-ray synchrotron microtomography, we obtained high-resolution images of 3-dimensional (3-D) melt distribution in a partially molten rock containing shear-induced high melt fraction conduits. Sample CQ0705, an olivine-alkali basalt aggregate with a nominal melt fraction of 4%, was deformed in torsion at a temperature of 1473 K and a confining pressure of 300 MPa to a shear strain of 13.3. A sub-volume of CQ0705 encompassing 3-4 melt-rich bands was imaged. Microtomography data were reduced to binary form so that solid olivine is distinguishable from basalt glass. At a spatial resolution of 160 nm, the 3-D images reveal the shape and connectedness of melt pockets in the melt-rich bands. Thin melt channels formed at grain edges are connected at large melt nodes at grain corners. Initial data analysis shows a clear preferred orientation of melt pockets alignment subparallel to the melt-rich band. We use the experimentally determined geometrical parameters of melt topology to create a digital rock with identical 3-D microstructures. Stokes flow simulations are conducted on the digital rock to obtain the permeability tensor. Using this digital rock physics approach, we determine how deformation

  12. Disordering and Melting of Aluminum Surfaces

    DEFF Research Database (Denmark)

    Stoltze, Per; Nørskov, Jens Kehlet; Landman, U.


    We report on a molecular-dynamics simulation of an Al(110) surface using the effective-medium theory to describe the interatomic interactions. The surface region is found to start melting ≅200 K below the bulk melting temperature with a gradual increase in the thickness of the disordered layer as...

  13. Recent Changes in the Arctic Melt Season (United States)

    Stroeve, Julienne; Markus, Thorsten; Meier, Walter N.; Miller, Jeff


    Melt-season duration, melt-onset and freeze-up dates are derived from satellite passive microwave data and analyzed from 1979 to 2005 over Arctic sea ice. Results indicate a shift towards a longer melt season, particularly north of Alaska and Siberia, corresponding to large retreats of sea ice observed in these regions. Although there is large interannual and regional variability in the length of the melt season, the Arctic is experiencing an overall lengthening of the melt season at a rate of about 2 weeks decade(sup -1). In fact, all regions in the Arctic (except for the central Arctic) have statistically significant (at the 99% level or higher) longer melt seasons by greater than 1 week decade(sup -1). The central Arctic shows a statistically significant trend (at the 98% level) of 5.4 days decade(sup -1). In 2005 the Arctic experienced its longest melt season, corresponding with the least amount of sea ice since 1979 and the warmest temperatures since the 1880s. Overall, the length of the melt season is inversely correlated with the lack of sea ice seen in September north of Alaska and Siberia, with a mean correlation of -0.8.

  14. Heterozygote PCR product melting curve prediction. (United States)

    Dwight, Zachary L; Palais, Robert; Kent, Jana; Wittwer, Carl T


    Melting curve prediction of PCR products is limited to perfectly complementary strands. Multiple domains are calculated by recursive nearest neighbor thermodynamics. However, the melting curve of an amplicon containing a heterozygous single-nucleotide variant (SNV) after PCR is the composite of four duplexes: two matched homoduplexes and two mismatched heteroduplexes. To better predict the shape of composite heterozygote melting curves, 52 experimental curves were compared with brute force in silico predictions varying two parameters simultaneously: the relative contribution of heteroduplex products and an ionic scaling factor for mismatched tetrads. Heteroduplex products contributed 25.7 ± 6.7% to the composite melting curve, varying from 23%-28% for different SNV classes. The effect of ions on mismatch tetrads scaled to 76%-96% of normal (depending on SNV class) and averaged 88 ± 16.4%. Based on uMelt ( with an expanded nearest neighbor thermodynamic set that includes mismatched base pairs, uMelt HETS calculates helicity as a function of temperature for homoduplex and heteroduplex products, as well as the composite curve expected from heterozygotes. It is an interactive Web tool for efficient genotyping design, heterozygote melting curve prediction, and quality control of melting curve experiments. The application was developed in Actionscript and can be found online at © 2013 WILEY PERIODICALS, INC.

  15. Recharging "Hot-Melt" Adhesive Film (United States)

    Progar, D. J.


    Technique for recharging surface with "hot-melt" film makes use of one sided, high-temperature, pressure-sensitive adhesive tape. Purpose of the one-sided tape is to hold hot-melt charge in place until fused to surface. After adhesive has fused to surface and cooled, tape is removed, leaving adhesive on surface.

  16. Summer Melts Immigrant Students' College Plans (United States)

    Naranjo, Melissa M.; Pang, Valerie Ooka; Alvarado, Jose Luis


    Many college-intending students find themselves dealing with the undermatch and summer melt phenomena. Undermatch refers to the situation where academically-successful high-school graduates choose not to go to any college or to go to a local community college not commensurate with their academic achievements. Summer melt describes how students may…

  17. Modeling the summertime evolution of sea-ice melt ponds

    DEFF Research Database (Denmark)

    Lüthje, Mikael; Feltham, D.L.; Taylor, P.D.


    We present a mathematical model describing the summer melting of sea ice. We simulate the evolution of melt ponds and determine area coverage and total surface ablation. The model predictions are tested for sensitivity to the melt rate of unponded ice, enhanced melt rate beneath the melt ponds...

  18. Shape evolution of a melting nonspherical particle. (United States)

    Kintea, Daniel M; Hauk, Tobias; Roisman, Ilia V; Tropea, Cameron


    In this study melting of irregular ice crystals was observed in an acoustic levitator. The evolution of the particle shape is captured using a high-speed video system. Several typical phenomena have been discovered: change of the particle shape, appearance of a capillary flow of the melted liquid on the particle surface leading to liquid collection at the particle midsection (where the interface curvature is smallest), and appearance of sharp cusps at the particle tips. No such phenomena can be observed during melting of spherical particles. An approximate theoretical model is developed which accounts for the main physical phenomena associated with melting of an irregular particle. The agreement between the theoretical predictions for the melting time, for the evolution of the particle shape, and the corresponding experimental data is rather good.

  19. Melting Can Hinder Impact-Induced Adhesion (United States)

    Hassani-Gangaraj, Mostafa; Veysset, David; Nelson, Keith A.; Schuh, Christopher A.


    Melting has long been used to join metallic materials, from welding to selective laser melting in additive manufacturing. In the same school of thought, localized melting has been generally perceived as an advantage, if not the main mechanism, for the adhesion of metallic microparticles to substrates during a supersonic impact. Here, we conduct the first in situ supersonic impact observations of individual metallic microparticles aimed at the explicit study of melting effects. Counterintuitively, we find that under at least some conditions melting is disadvantageous and hinders impact-induced adhesion. In the parameter space explored, i.e., ˜10 μ m particle size and ˜1 km /s particle velocity, we argue that the solidification time is much longer than the residence time of the particle on the substrate, so that resolidification cannot be a significant factor in adhesion.

  20. Study on plasma melting treatment of crucibles, ceramic filter elements, asbestos, and fly ash

    International Nuclear Information System (INIS)

    Hoshi, Akiko; Nakasio, Nobuyuki; Nakajima, Mikio


    The Japan Atomic Energy Research Institute (JAERI) decided to adopt an advanced volume reduction program for low-level radioactive wastes. In this program, inorganic wastes are converted to stable glassy products suitable for disposal by a plasma melting system in the Waste Volume Reduction Facilities (WVRF). High melting point wastes such as refractories are excluded from the plasma melting treatment in the WVRF, and wastes difficult to handle such as asbestos are also excluded. However, it is describable to apply the plasma melting treatment to these wastes for stabilization and volume reduction from the viewpoint of disposal. In this paper, plasma melting test of crucibles, ceramic filter elements, asbestos, and simulated fly ashes were carried out as a part of technical support for WVRF. The plasma melting treatment was applicable for crucibles and asbestos because homogeneous and glassy products were obtained by controlling of waste and loading condition. It was found that SiC in ceramic filter elements was volatile with a plasma torch with inert gas, and adding reducer was ineffective against stabilizing volatile metals such as Zn, Pb in a solidified product in the melting test of simulated fly ash. (author)

  1. Volatile diffusion in silicate melts and its effects on melt inclusions

    Directory of Open Access Journals (Sweden)

    P. Scarlato


    Full Text Available A compendium of diffusion measurements and their Arrhenius equations for water, carbon dioxide, sulfur, fluorine, and chlorine in silicate melts similar in composition to natural igneous rocks is presented. Water diffusion in silicic melts is well studied and understood, however little data exists for melts of intermediate to basic compositions. The data demonstrate that both the water concentration and the anhydrous melt composition affect the diffusion coefficient of water. Carbon dioxide diffusion appears only weakly dependent, at most, on the volatilefree melt composition and no effect of carbon dioxide concentration has been observed, although few experiments have been performed. Based upon one study, the addition of water to rhyolitic melts increases carbon dioxide diffusion by orders of magnitude to values similar to that of 6 wt% water. Sulfur diffusion in intermediate to silicic melts depends upon the anhydrous melt composition and the water concentration. In water-bearing silicic melts sulfur diffuses 2 to 3 orders of magnitude slower than water. Chlorine diffusion is affected by both water concentration and anhydrous melt composition; its values are typically between those of water and sulfur. Information on fluorine diffusion is rare, but the volatile-free melt composition exerts a strong control on its diffusion. At the present time the diffusion of water, carbon dioxide, sulfur and chlorine can be estimated in silicic melts at magmatic temperatures. The diffusion of water and carbon dioxide in basic to intermediate melts is only known at a limited set of temperatures and compositions. The diffusion data for rhyolitic melts at 800°C together with a standard model for the enrichment of incompatible elements in front of growing crystals demonstrate that rapid crystal growth, greater than 10-10 ms-1, can significantly increase the volatile concentrations at the crystal-melt interface and that any of that melt trapped

  2. Melt Rate Improvement for DWPF MB3: Melt Rate Furnace Testing

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M.E.


    The Defense Waste Processing Facility (DWPF) would like to increase its canister production rate. The goal of this study is to improve the melt rate in DWPF specifically for Macrobatch 3. However, the knowledge gained may result in improved melting efficiencies translating to future DWPF macrobatches and in higher throughput for other Department of Energy's (DOE) melters. Increased melting efficiencies decrease overall operational costs by reducing the immobilization campaign time for a particular waste stream. For melt rate limited systems, a small increase in melting efficiency translates into significant hard dollar savings by reducing life cycle operational costs.

  3. [Study on fluidized melt-granulation. I. Examination of the factors on the granulation]. (United States)

    Haramiishi, Y; Kitazawa, Y; Sakai, M; Kataoka, K


    The purpose of this study is to develop a new granulation method by using a fluidized-bed granulator, which requires a nucleus with a low melting point as a binder. This method was named as fluidized melt-granulation. The technique is very simple and useful. In this paper, the granulation mechanism and the effect of the physico-chemical properties of raw materials on the growth of the granules were investigated. The results were as follows: (1) The mixture of the nucleus and the other powder particles was heated up to the melting point of the nucleus by hot inlet air, immediately resulting in the generation of the adhesion of the powders on the melted nucleus. The granules grew as the melted material immersed into the void space among the adhered particles. (2) The lower the viscosity of the melted nucleus was, the faster the granule grew. (3) The shape and the size of the nucleus affected those of the products. (4) The optimum mixing ratio between the nucleus and the granulated materials existed and it depended on the ratio between the surface areas of these materials.

  4. Effects of Melt Processing on Evolution of Structure in PEEK (United States)

    Georgiev, Georgi; Dai, Patrick Shuanghua; Oyebode, Elizabeth; Cebe, Peggy; Capel, Malcolm


    We report on the effects of melt processing temperature on structure formation in Poly(ether-ether-ketone), PEEK. Real time Small Angle X-ray Scattering, SAXS, and thermal analysis are used to follow the melting behavior after various stages of processing. Assignment of peaks to structural entities within the material, the relative perfection of the crystals, and the possibility of their reorganization, are all influenced by the melt processing history. With the advent of high intensity synchrotron sources of X-radiation, polymer scientists gain a research tool which, when used along with thermal analysis, provides additional structural information about the crystals during growth and subsequent melting. PEEK is an engineering thermoplastic polymer with a very high glass transition temperature (145 C) and crystal melting point (337 C). PEEK has been the subject of recent studies by X-ray scattering in which melt and cold crystallization were followed in real-time. X-ray scattering and thermal studies have been used to address the formation of dual endothermic response which has been variously ascribed to lamellar insertion, dual crystal populations, or melting followed by re-crystallization. Another important issue is whether all of the amorphous phase is located in interlamellar regions, or alternatively whether some is located in "pockets" away from the crystalline lamellar stacks. The interpretation of scattering from lamellar stacks varies depending upon whether such amorphous pockets are formed. Some groups believe all of the amorphous phase is interlamellar. This leads to selection of a smaller thickness for the crystals. Other groups suggest that most amorphous phase is not interlamellar, and this leads to the suggestion that the crystal thickness is larger than the amorphous layer within the stacks. To investigate these ideas, we used SAXS and Differential Scanning Calorimetry to compare results of single and dual stage melt crystallization of PEEK using a

  5. Terrestrial impact melt rocks and glasses (United States)

    Dressler, B. O.; Reimold, W. U.


    The effects of meteorite and comet impact on Earth are rock brecciation, the formation of shock metamorphic features, rock melting, and the formation of impact structures, i.e. simple craters, complex craters, and multi-ring basins. Large events, such as the 65-Ma Chicxulub impact, are believed to have had catastrophic environmental effects that profoundly influenced the development of life on Earth. In this review, an attempt is made to summarize some of the voluminous literature on impact melting, one important aspect of planetary impact, provide some comments on this process, and to make suggestions for future research. The products of impact melting are glasses, impact melt rocks, and pseudotachylites. Our treatise deals mainly with the geological setting, petrography, and major-element chemistry of melt rocks and glasses. Impact glasses, in several petrographic aspects, are similar to volcanic glasses, but they are associated with shock metamorphosed mineral and rock fragments and, in places, with siderophile element anomalies suggestive of meteoritic contamination. They are found in allogenic breccia deposits within (fall-back 'suevite') and outside (fall-out 'suevite') impact craters and, as spherules, in distal ejecta. Large events, such as the K/T boundary Chicxulub impact, are responsible for the formation of worldwide ejecta horizons which are associated with siderophile element anomalies and shock metamorphosed mineral and rock debris. Impact glasses have a bulk chemical composition that is homogeneous but exemptions to this rule are common. On a microscopic scale, however, impact glasses are commonly strikingly heterogeneous. Tektites are glasses ejected from craters over large distances. They are characterized by very low water and volatile contents and element abundances and ratios that are evidence that tektites formed by melting of upper crustal, sedimentary rocks. Four tektite strewn-fields are known, three of which can be tied to specific impact

  6. Experimental testing of olivine-melt equilibrium models at high temperatures (United States)

    Krasheninnikov, S. P.; Sobolev, A. V.; Batanova, V. G.; Kargaltsev, A. A.; Borisov, A. A.


    Data are presented on the equilibrium compositions of olivine and melts in the products of 101 experiments performed at 1300-1600°C, atmospheric pressure, and controlled oxygen fugacity by means of new equipment at the Vernadsky Institute. It was shown that the available models of the olivine-melt equilibrium describe with insufficient adequacy the natural systems at temperatures over 1400°C. The most adequate is the model by Ford et al. (1983). However, this model overestimates systematically the equilibrium temperature with underestimating by 20-40°C at 1450-1600°C. These data point to the need for developing a new, improved quantitative model of the olivine-melt equilibrium for high-temperature magnesian melts, as well as to the possibility of these studies on the basis of the equipment presented.

  7. Melting of iron at the Earth's core conditions by molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Y. N. Wu


    Full Text Available By large scale molecular dynamics simulations of solid-liquid coexistence, we have investigated the melting of iron under pressures from 0 to 364 GPa. The temperatures of liquid and solid regions, and the pressure of the system are calculated to estimate the melting point of iron. We obtain the melting temperature of iron is about 6700±200K under the inner-outer core boundary, which is in good agreement with the result of Alfè et al. By the pair analysis technique, the microstructure of liquid iron under higher pressures is obviously different from that of lower pressures and ambient condition, indicating that the pressure-induced liquid-liquid phase transition may take place in iron melts.

  8. Movement of liquid beryllium during melt events in JET with ITER-like wall

    International Nuclear Information System (INIS)

    Sergienko, G; Huber, A; Brezinsek, S; Coenen, J W; Mertens, Ph; Philipps, V; Samm, U; Arnoux, G; Matthews, G F; Nunes, I; Riccardo, V; Sirinelli, A; Devaux, S


    The ITER-like wall recently installed in JET comprises solid beryllium limiters and a combination of bulk tungsten and tungsten-coated carbon fibre composite divertor tiles without active cooling. During a beryllium power handling qualification experiment performed in limiter configuration with 5 MW neutral beam injection input power, accidental beryllium melt events, melt layer motion and splashing were observed locally on a few beryllium limiters in the plasma contact areas. The Lorentz force is responsible for the observed melt layer movement. To move liquid beryllium against the gravity force, the current flowing from the plasma perpendicularly to the limiter surface must be higher than 6 kA m −2 . The thermo-emission current at the melting point of beryllium is much lower. The upward motion of the liquid beryllium against gravity can be due to a combination of the Lorentz force from the secondary electron emission and plasma pressure force. (paper)

  9. MELTING, a flexible platform to predict the melting temperatures of nucleic acids

    Directory of Open Access Journals (Sweden)

    Dumousseau Marine


    Full Text Available Abstract Background Computing accurate nucleic acid melting temperatures has become a crucial step for the efficiency and the optimisation of numerous molecular biology techniques such as in situ hybridization, PCR, antigene targeting, and microarrays. MELTING is a free open source software which computes the enthalpy, entropy and melting temperature of nucleic acids. MELTING 4.2 was able to handle several types of hybridization such as DNA/DNA, RNA/RNA, DNA/RNA and provided corrections to melting temperatures due to the presence of sodium. The program can use either an approximative approach or a more accurate Nearest-Neighbor approach. Results Two new versions of the MELTING software have been released. MELTING 4.3 is a direct update of version 4.2, integrating newly available thermodynamic parameters for inosine, a modified adenine base with an universal base capacity, and incorporates a correction for magnesium. MELTING 5 is a complete reimplementation which allows much greater flexibility and extensibility. It incorporates all the thermodynamic parameters and corrections provided in MELTING 4.x and introduces a large set of thermodynamic formulae and parameters, to facilitate the calculation of melting temperatures for perfectly matching sequences, mismatches, bulge loops, CNG repeats, dangling ends, inosines, locked nucleic acids, 2-hydroxyadenines and azobenzenes. It also includes temperature corrections for monovalent ions (sodium, potassium, Tris, magnesium ions and commonly used denaturing agents such as formamide and DMSO. Conclusions MELTING is a useful and very flexible tool for predicting melting temperatures using approximative formulae or Nearest-Neighbor approaches, where one can select different sets of Nearest-Neighbor parameters, corrections and formulae. Both versions are freely available at at the terms of the GPL license.

  10. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana


    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  11. Dynamics of Melting and Melt Migration as Inferred from Incompatible Trace Element Abundance in Abyssal Peridotites (United States)

    Peng, Q.; Liang, Y.


    To better understand the melting processes beneath the mid-ocean ridge, we developed a simple model for trace element fractionation during concurrent melting and melt migration in an upwelling steady-state mantle column. Based on petrologic considerations, we divided the upwelling mantle into two regions: a double- lithology upper region where high permeability dunite channels are embedded in a lherzolite/harzburgite matrix, and a single-lithology lower region that consists of partially molten lherzolite. Melt generated in the single lithology region migrates upward through grain-scale diffuse porous flow, whereas melt in the lherzolite/harzburgite matrix in the double-lithology region is allowed to flow both vertically through the overlying matrix and horizontally into its neighboring dunite channels. There are three key dynamic parameters in our model: degree of melting experienced by the single lithology column (Fd), degree of melting experienced by the double lithology column (F), and a dimensionless melt suction rate (R) that measures the accumulated rate of melt extraction from the matrix to the channel relative to the accumulated rate of matrix melting. In terms of trace element fractionation, upwelling and melting in the single lithology column is equivalent to non-modal batch melting (R = 0), whereas melting and melt migration in the double lithology region is equivalent to a nonlinear combination of non-modal batch and fractional melting (0 abyssal peridotite, we showed, with the help of Monte Carlo simulations, that it is difficult to invert for all three dynamic parameters from a set of incompatible trace element data with confidence. However, given Fd, it is quite possible to constrain F and R from incompatible trace element abundances in residual peridotite. As an illustrative example, we used the simple melting model developed in this study and selected REE and Y abundance in diopside from abyssal peridotites to infer their melting and melt migration

  12. Molecular mechanism of melting of a helical polymer crystal: Role of conformational order, packing and mobility of polymers (United States)

    Cheerla, Ramesh; Krishnan, Marimuthu


    The molecular mechanism of melting of a superheated helical polymer crystal has been investigated using isothermal-isobaric molecular dynamics simulation that allows anisotropic deformation of the crystal lattice. A detailed microscopic analysis of the onset and progression of melting and accompanying changes in the polymer conformational order, translational, and orientation order of the solid along the melting pathway is presented. Upon gradual heating from room temperature to beyond the melting point at ambient pressure, the crystal exhibits signatures of premelting well below the solid-to-liquid melting transition at the melting point. The melting transition is manifested by abrupt changes in the crystal volume, lattice energy, polymer conformation, and dynamical properties. In the premelting stage, the crystal lattice structure and backbone orientation of the polymer chains are retained but with the onset of weakening of long-range helical order and interchain packing of polymers perpendicular to the fibre axis of the crystal. The premelting also marks the onset of conformational defects and anisotropic solid-state diffusion of polymers along the fibre axis. The present study underscores the importance of the interplay between intermolecular packing, interactions, and conformational dynamics at the atomic level in determining the macroscopic melting behavior of polymer crystals.

  13. Photogeologic analysis of impact melt-rich lithologies in Kepler crater that could be sampled by future missions (United States)

    Öhman, Teemu; Kring, David A.


    Kepler is a 31 km diameter Copernican age complex impact crater located on the nearside maria of the Moon. We used Lunar Reconnaissance Orbiter imagery and topographic data in combination with Kaguya terrain camera and other image data sets to construct a new geomorphologic sketch map of the Kepler crater, with a focus on impact melt-rich lithologies. Most of the interior melt rocks are preserved in smooth and hummocky floor materials. Smaller volumes of impact melt were deposited in rim veneer, interior and exterior ponds, and lobe-like overlapping flows on the upper crater wall. Based on shadow lengths, typical flows of melt-rich material on crater walls and the western rim flank are ˜1-5 m thick, and have yield strengths of ˜1-10 kPa. The melt rock distribution is notably asymmetric, with interior and exterior melt-rich deposits concentrated north and west of the crater center. This melt distribution and the similarly asymmetric ray distribution imply a slightly less than 45° impact trajectory from the southeast. The exposed wall of Kepler displays distinct layering, with individual layers having typical thicknesses of ˜3-5 m. These are interpreted as flows of Procellarum mare basalts in the impact target. From the point of view of exploration, numerous fractures and pits in the melt-rich floor materials not only enable detailed studies of melt-related processes of impact crater formation, but also provide potential shelters for longer duration manned lunar missions.

  14. Fundamental Aspects of Selective Melting Additive Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    van Swol, Frank B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Certain details of the additive manufacturing process known as selective laser melting (SLM) affect the performance of the final metal part. To unleash the full potential of SLM it is crucial that the process engineer in the field receives guidance about how to select values for a multitude of process variables employed in the building process. These include, for example, the type of powder (e.g., size distribution, shape, type of alloy), orientation of the build axis, the beam scan rate, the beam power density, the scan pattern and scan rate. The science-based selection of these settings con- stitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy, reactive, dynamic wetting followed by re-solidification. In addition, inherent to the process is its considerable variability that stems from the powder packing. Each time a limited number of powder particles are placed, the stacking is intrinsically different from the previous, possessing a different geometry, and having a different set of contact areas with the surrounding particles. As a result, even if all other process parameters (scan rate, etc) are exactly the same, the shape and contact geometry and area of the final melt pool will be unique to that particular configuration. This report identifies the most important issues facing SLM, discusses the fundamental physics associated with it and points out how modeling can support the additive manufacturing efforts.

  15. Melting of 2D monatomic solids: Lennard-Jones system

    International Nuclear Information System (INIS)

    Yi, Y.M.; Guo, Z.C.


    The Lennard-Jones interaction has been introduced into the Collins mix lattice of 2D liquids. By means of rigorous calculation of the total potential and the free area, the Gibbs functions for 2D liquid and solid have been derived. The melting line obtained from the phase transition equation agrees quite well with the result of recent computer simulation experiments. The obtained reduced temperature of the triple point T* t =0.438 agrees with the data measured in experiments of some inert gas monolayers adsorbed on graphite as well as in computer simulation experiments. (author). 11 refs, 7 figs, 3 tabs

  16. Melt processed high-temperature superconductors

    CERN Document Server


    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  17. Bayesian estimation of core-melt probability

    International Nuclear Information System (INIS)

    Lewis, H.W.


    A very simple application of the canonical Bayesian algorithm is made to the problem of estimation of the probability of core melt in a commercial power reactor. An approximation to the results of the Rasmussen study on reactor safety is used as the prior distribution, and the observation that there has been no core melt yet is used as the single experiment. The result is a substantial decrease in the mean probability of core melt--factors of 2 to 4 for reasonable choices of parameters. The purpose is to illustrate the procedure, not to argue for the decrease

  18. Corium melt researches at VESTA test facility


    Hwan Yeol Kim; Sang Mo An; Jaehoon Jung; Kwang Soon Ha; Jin Ho Song


    VESTA (Verification of Ex-vessel corium STAbilization) and VESTA-S (-small) test facilities were constructed at the Korea Atomic Energy Research Institute in 2010 to perform various corium melt experiments. Since then, several tests have been performed for the verification of an ex-vessel core catcher design for the EU-APR1400. Ablation tests of an impinging ZrO2 melt jet on a sacrificial material were performed to investigate the ablation characteristics. ZrO2 melt in an amount of 65–70 kg w...

  19. Corium melt researches at VESTA test facility

    Directory of Open Access Journals (Sweden)

    Hwan Yeol Kim


    Full Text Available VESTA (Verification of Ex-vessel corium STAbilization and VESTA-S (-small test facilities were constructed at the Korea Atomic Energy Research Institute in 2010 to perform various corium melt experiments. Since then, several tests have been performed for the verification of an ex-vessel core catcher design for the EU-APR1400. Ablation tests of an impinging ZrO2 melt jet on a sacrificial material were performed to investigate the ablation characteristics. ZrO2 melt in an amount of 65–70 kg was discharged onto a sacrificial material through a well-designed nozzle, after which the ablation depths were measured. Interaction tests between the metallic melt and sacrificial material were performed to investigate the interaction kinetics of the sacrificial material. Two types of melt were used: one is a metallic corium melt with Fe 46%, U 31%, Zr 16%, and Cr 7% (maximum possible content of U and Zr for C-40, and the other is a stainless steel (SUS304 melt. Metallic melt in an amount of 1.5–2.0 kg was delivered onto the sacrificial material, and the ablation depths were measured. Penetration tube failure tests were performed for an APR1400 equipped with 61 in-core instrumentation penetration nozzles and extended tubes at the reactor lower vessel. ZrO2 melt was generated in a melting crucible and delivered down into an interaction crucible where the test specimen is installed. To evaluate the tube ejection mechanism, temperature distributions of the reactor bottom head and in-core instrumentation penetration were measured by a series of thermocouples embedded along the specimen. In addition, lower vessel failure tests for the Fukushima Daiichi nuclear power plant are being performed. As a first step, the configuration of the molten core in the plant was investigated by a melting and solidification experiment. Approximately 5 kg of a mixture, whose composition in terms of weight is UO2 60%, Zr 10%, ZrO2 15%, SUS304 14%, and B4C 1%, was melted in a

  20. Shear melting and high temperature embrittlement: theory and application to machining titanium. (United States)

    Healy, Con; Koch, Sascha; Siemers, Carsten; Mukherji, Debashis; Ackland, Graeme J


    We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding are supplanted by amorphization in a highly localized nanoscale band, which allows for massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are lack of dislocation slip systems, low thermal conduction, and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting-point elements: specifically, we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.

  1. Decompression Melting beneath the Indonesian Volcanic Front (United States)

    Kelley, K. A.; Colabella, A.; Sisson, T. W.; Hauri, E. H.; Sigurdsson, H.


    Subduction zone magmas are typically characterized by high concentrations of dissolved H2O (up to 6-7 wt%), presumably derived from the subducted plate and ultimately responsible for melt generation in this tectonic setting. Pressure-release melting from upward mantle flow, however, is increasingly cited as a secondary driver of mantle wedge melting. Here we report new SIMS volatile and LA-ICP-MS trace element data for olivine-hosted melt inclusions from Galunggung (GG) and Tambora (TB) volcanoes in the Indonesian subduction zone to evaluate the relative importance of decompression vs. H2O-flux melting beneath arc volcanoes. Prior studies of melt inclusions from Galunggung showed unusually low primary H2O concentrations (~0.5 wt%), implicating decompression as a significant mechanism of mantle melting beneath this volcano (Sisson &Bronto, 1998). Our new data from a larger suite of Galunggung melt inclusions show a bimodal distribution of H2O concentrations: a dominant population with ~0.5 wt% H2O, and a small group with 1.5-2.5 wt% H2O, indicating that a small amount of H2O addition from the slab may also contribute to mantle melting here. New volatile data from Tambora melt inclusions also indicate low primary H2O contents (1-2 wt%), suggesting that decompression melting may be a large-scale characteristic of the Indonesian volcanic front. Our new trace element data show both volcanoes are LREE enriched relative to MORB, but Tambora melts show greater LREE enrichment (La/Sm=1.7-2.7[GG]; 6.0- 9.5[TB]). Galunggung melts have Nb/Y in the range of NMORB (0.1-0.2), whereas Tambora Nb/Y is similar to EMORB (0.3-0.5). Most Tambora melt inclusions also have H2O/Y (Y (200-1000) and H2O/Ce (100-1400) relative to NMORB, suggesting a larger influence from slab-derived H2O despite having lower average H2O concentrations than Tambora. The range of H2O/Y and H2O/Ce at Galunggung, however, is largely within the range of back-arc basin basalts and does not preclude a major

  2. Evidence of melting, melt percolation and deformation in a supra-subduction zone (Marum ophiolite complex - Papua New Guinea) (United States)

    Kaczmarek, M. A.; Jonda, L.; Davies, H. L.


    New geochemical and microstructural data from the Marum ophiolite in Papua New Guinea describe a piece of most depleted mantle made essentially of dunite and harzburgite showing compositions of supra-subduction zone (SSZ) peridotite. Strong olivine crystallographic preferred orientations (CPO) in dunite and harzburgite inferred the activation of both (001)[100] and (010)[100] slip systems. Clinopyroxene and orthopyroxene CPOs inferred the activation of (100)[001] and (010)[001] slip systems. This plastic deformation is interpreted to have developed at high temperature during the formation of the Marum ophiolite, prior to melt percolation. The orientation of the foliation and olivine [100] slip directions sub-parallel to the subduction zone indicates that mantle flow was parallel to the trench pointing a fast polarization direction parallel to the arc. Marum depleted mantle has been fertilised by diffuse crystallisation of a low proportion of clinopyroxene (1-2%) in the dunite and formation of cm-scale ol-clinopyroxenite and ol-websterite veins cross-cutting the foliation. This percolating melt shows silica-rich magnesian affinities (boninite-like) related to supra-subduction zone in a young fore-arc environment. The peridotite has also been percolated by a melt with more tholeiite affinities precipitating plagioclase-rich wehrlite and thin gabbroic veins; these are interpreted to form after the boninitic event. The small proportion of newly crystallized pyroxene distributed in the dunite shows similar orientation of crystallographic axes to the host dunite (ol parallel to cpx-opx). In contrast, the pyroxenes in ol-clinopyroxenite, ol-websterite and the thin gabbroic veins in the wehrlite, record their own orientation with axes at 45 to 60˚ to olivine axes. For low melt proportion, such as crystallization of pyroxenes in the dunite, the crystallization is governed by epitaxial growth, and when the proportion of melt is higher the newly formed minerals record syn

  3. Microstructures and microhardness evolutions of melt-spun Al-8Ni-5Nd-4Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Karakoese, Ercan, E-mail: [Karatekin University, Faculty of Sciences, Department of Physics, 18100 Cank Latin-Small-Letter-Dotless-I r Latin-Small-Letter-Dotless-I (Turkey); Keskin, Mustafa [Erciyes University, Faculty of Sciences, Department of Physics, 38039 Kayseri (Turkey)


    Al-Ni-Nd-Si alloy with nominal composition of Al-8 wt.%Ni-5 wt.%Nd-4 wt.%Si was rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The resulting conventional cast (ingot) and melt-spun ribbons were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry, differential thermal analysis and Vickers microhardness tester. The ingot alloys consists of four phases namely {alpha}-Al, intermetallic Al{sub 3}Ni, Al{sub 11}Nd{sub 3} and fcc Si. Melt-spun ribbons are completely composed of {alpha}-Al phase. The optical microscopy and scanning electron microscopy results show that the microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. The change in microhardness is discussed based on the microstructural observations. - Highlights: Black-Right-Pointing-Pointer Rapid solidification allows a reduction in grain size, extended solid solution ranges. Black-Right-Pointing-Pointer We observed the matrix lattice parameter increases with increasing wheel speed. Black-Right-Pointing-Pointer Melt-spun ribbons consist of partly amorphous phases embedded in crystalline phases. Black-Right-Pointing-Pointer The solidification rate is high enough to retain most of alloying elements in the Al matrix. Black-Right-Pointing-Pointer The rapid solidification has effect on the phase constitution.

  4. Electron beam melting of bearing materials

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmied, G.; Schuler, A. (Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Elektrotechnik); Elsinger, G.; Koroschetz, F. (MIBA Gleitlager AG, Laakirchen (Austria)); Tschegg, E.K. (Technische Univ., Vienna (Austria). Inst. fuer Angewandte und Technische Physik)


    This paper reports on a surface treatment method for the bearing materials AlSn6 which permits the use of this material without the overlay usually required. Microstructural refinement is achieved by means of a surface melting technique using an electron beam with successive rapid solidification. Extremely fine tin precipitates are formed in the melted surface layer which lead to significantly better tribological properties of the bearing material. Tests compared the tribological properties for AlSn6 bearings treated by the surface melting technique with those of untreated bearings. Whereas all untreated bearings failed by seizure after only 2 h of testing, 30% of the tested bearings which had been surface melted survived the entire testing program without damage.

  5. ESR melting under constant voltage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schlienger, M.E.


    Typical industrial ESR melting practice includes operation at a constant current. This constant current operation is achieved through the use of a power supply whose output provides this constant current characteristic. Analysis of this melting mode indicates that the ESR process under conditions of constant current is inherently unstable. Analysis also indicates that ESR melting under the condition of a constant applied voltage yields a process which is inherently stable. This paper reviews the process stability arguments for both constant current and constant voltage operation. Explanations are given as to why there is a difference between the two modes of operation. Finally, constant voltage process considerations such as melt rate control, response to electrode anomalies and impact on solidification will be discussed.

  6. Selective Laser Ablation and Melting, Phase I (United States)

    National Aeronautics and Space Administration — In this project Advratech will develop a new additive manufacturing (AM) process called Selective Laser Ablation and Melting (SLAM). The key innovation in this...

  7. Are Entangled Polymer Melts Different From Solutions?

    DEFF Research Database (Denmark)

    Huang, Qian; Mednova, Olga; Rasmussen, Henrik K.

    to further investigate the extensional steady state viscosity of polymer melts, we carefully synthesized two monodisperse polystyrenes with molar masses of 248 and 484 kg/mole. The start-up and steady uniaxial elongational viscosity have been measured for the two melts using a filament stretching rheometer....... We then compared the measurements with the bi-disperse polystyrene melts made from the above two polymers. The influence and sensitivity of impurities were studied by adding different percentages of 484k into 248k polystyrene melt. Furthermore a polydisperse polystyrene with weight average molecular...... weight 230 kg/mole was also measured for comparison. Possible reasons for the differences shown in the previously mentioned experiments are discussed....

  8. Melt Stirring by Horizontal Crucible Vibration (United States)

    Wolf, M. F.; Elwell, D.; Feigelson, R. S.


    Horizontal vibration suggested as technique for more effective stirring of melts in crystal-growth apparatus. Vibrational technique may replace accelerated crucible rotation. Potential superiority of vibrational technique shown by preliminary experiments in which ink stirred into water.

  9. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Principal Investigator Kent Peaslee; Co-PI’s: Von Richards, Jeffrey Smith


    Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

  10. Partial Melting of Lower Oceanic Crust Gabbro: Constraints From Poikilitic Clinopyroxene Primocrysts

    Directory of Open Access Journals (Sweden)

    Julien Leuthold


    Full Text Available Successive magma batches underplate, ascend, stall and erupt along spreading ridges, building the oceanic crust. It is therefore important to understand the processes and conditions under which magma differentiates at mid ocean ridges. Although fractional crystallization is considered to be the dominant mechanism for magma differentiation, open-system igneous complexes also experience Melting-Assimilation-Storage-Hybridization (MASH, Hildreth and Moorbath, 1988 processes. Here, we examine crystal-scale records of partial melting in lower crustal gabbroic cumulates from the slow-spreading Atlantic oceanic ridge (Kane Megamullion; collected with Jason ROV and the fast-spreading East Pacific Rise (Hess Deep; IODP expedition 345. Clinopyroxene oikocrysts in these gabbros preserve marked intra-crystal geochemical variations that point to crystallization-dissolution episodes in the gabbro eutectic assemblage. Kane Megamullion and Hess Deep clinopyroxene core1 primocrysts and their plagioclase inclusions indicate crystallization from high temperature basalt (>1,160 and >1,200°C, respectively, close to clinopyroxene saturation temperature (<50% and <25% crystallization. Step-like compatible Cr (and co-varying Al and incompatible Ti, Zr, Y and rare earth elements (REE decrease from anhedral core1 to overgrown core2, while Mg# and Sr/Sr* ratios increase. We show that partial resorption textures and geochemical zoning result from partial melting of REE-poor lower oceanic crust gabbroic cumulate (protolith following intrusion by hot primitive mantle-derived melt, and subsequent overgrowth crystallization (refertilization from a hybrid melt. In addition, toward the outer rims of crystals, Ti, Zr, Y and the REE strongly increase and Al, Cr, Mg#, Eu/Eu*, and Sr/Sr* decrease, suggesting crystallization either from late-stage percolating relatively differentiated melt or from in situ trapped melt. Intrusion of primitive hot reactive melt and percolation of

  11. DWPF Macrobatch 2 Melt Rate Tests

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M.E.


    The Defense Waste Processing Facility (DWPF) canister production rate must be increased to meet canister production goals. Although a number of factors exist that could potentially increase melt rate, this study focused on two: (1) changes in frit composition and (2) changes to the feed preparation process to alter the redox of the melter feed. These two factors were investigated for Macrobatch 2 (sludge batch 1B) utilizing crucible studies and a specially designed ''melt rate'' furnace. Other potential factors that could increase melt rate include: mechanical mixing via stirring or the use of bubblers, changing the power skewing to redistribute the power input to the melter, and elimination of heat loss (e.g. air in leakage). The melt rate testing in FY00 demonstrated that melt rate can be improved by adding a different frit or producing a much more reducing glass by the addition of sugar as a reductant. The frit that melted the fastest in the melt rate testing was Frit 165. A paper stud y was performed using the Product Composition Control System (PCCS) to determine the impact on predicted glass viscosity, liquidus, durability, and operating window if the frit was changed from Frit 200 to Frit 165. PCCS indicated that the window was very similar for both frits. In addition, the predicted viscosity of the frit 165 glass was 46 poise versus 84 poise for the Frit 200 glass. As a result, a change from Frit 200 to Frit 165 is expected to increase the melt rate in DWPF without decreasing waste loading.

  12. Grain boundary disordering just before partial melting (United States)

    Takei, Y.


    Recent experimental studies by using a rock analogue (organic polycrystals) have shown that significant enhancement of anelastic relaxation and steady-state creep in the partially molten aggregates starts from considerably below the solidus temperature in the absence of melt (Takei et al, 2014; Yamauchi & Takei, 2016, JGR). These results suggest that melt is not necessary to explain the seismic low velocity, high attenuation, and weak viscosity regions in the upper mantle. Indeed, Priestley & McKenzie (2006, 2013, EPSL) captured a steep reduction of seismic Vs just below the dry peridotite solidus, which was explained well by the empirical model of Yamauchi & Takei (2016). In spite of many geophysical implications (Takei, 2017, Ann. Rev. EPS, in press), however, underlying physics for the mechanical weakening just before partial melting remains unclear. The purpose of this study is to develop a physical model. Anelasticity and viscosity measured by Yamauchi & Takei (2016) are both rate-controlled by grain-boundary diffusion. Therefore, their observations suggest that the dynamic properties of grain boundary change just before partial melting. Significant disordering of grain boundary just before partial melting has been predicted theoretically in the area of material sciences (sometimes called `pre-melting'). I will summarize the thermodynamic models of grain boundary developed in these studies, and compare the predictions of these models to the experimental observations by Yamauchi & Takei (2016). Using these models, I will also clarify a relationship between grain-boundary disordering and grain-boundary wetting, and a different behavior between pure and binary systems in pre-melting. Acknowledgement: I thank R. Cooper for letting me know about the theoretical studies of pre-melting in binary eutectic system.

  13. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole


    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational...... viscosity, of up to a factor of 7 times the Trouton limit of 3 times the zero-shear viscosity....

  14. Electrodepositions on Tantalum in Alkali Halide Melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik


    Surface layers of tantalum metal were electrodeposited on steel from K2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO3 melts carbonate ions seems to be reduced to carbon in...

  15. Electrodepositions on Tantalum in alkali halide melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik


    Surface layers of tantalum metal were electrodeposited on steel from K 2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO 3 melts carbonate ions seems to be reduced to carbon ...

  16. Melt spreading code assessment, modifications, and application to the EPR core catcher design

    International Nuclear Information System (INIS)

    Farmer, M.T.


    of: (1) comparison to an analytical solution for the dam break problem, (2) water spreading tests in a 1/10 linear scale model of the Mark I containment by Theofanous et al., and (3) steel spreading tests by Suzuki et al. that were also conducted in a geometry similar to the Mark I. The objective of this work was to utilize the MELTSPREAD code to check the assumption of uniform melt spreading in the EPR core catcher design. As a starting point for the project, the code was validated against the worldwide melt spreading database that emerged after the code was originally written in the very early 1990's. As part of this exercise, the code was extensively modified and upgraded to incorporate findings from these various analytical and experiment programs. In terms of expanding the ability of the code to analyze various melt simulant experiments, the options to input user-specified melt and/or substrate material properties was added. The ability to perform invisicid and/or adiabatic spreading analysis was also added so that comparisons with analytical solutions and isothermal spreading tests could be carried out. In terms of refining the capability to carry out reactor material melt spreading analyses, the code was upgraded with a new melt viscosity model; the capability was added to treat situations in which solid fraction buildup between the liquidus-solidus is non-linear; and finally, the ability to treat an interfacial heat transfer resistance between the melt and substrate was incorporated. This last set of changes substantially improved the predictive capability of the code in terms of addressing reactor material melt spreading tests. Aside from improvements and upgrades, a method was developed to fit the model to the various melt spreading tests in a manner that allowed uncertainties in the model predictions to be statistically characterized. With these results, a sensitivity study was performed to investigate the assumption of uniform spreading in the EPR core

  17. Behavior of metals in ash melting and gasification-melting of municipal solid waste (MSW). (United States)

    Jung, C H; Matsuto, T; Tanaka, N


    In this study, metal behavior in ash-melting and municipal solid waste (MSW) gasification-melting facilities were investigated. Eight ash-melting and three MSW gasification-melting facilities with a variety of melting processes and feedstocks were selected. From each facility, melting furnace fly ash (MFA) and molten slag were sampled, and feedstock of the ash-melting processes was also taken. For the ash melting process, the generation rate of MFA was well correlated with the ratio of incineration fly ash (IFA) in feedstock, and this was because MFA was formed mostly by mass transfer from IFA and a limited amount from bottom ash (BA). Distribution ratios of metal elements to MFA were generally determined by volatility of the metal element, but chlorine content in feedstock had a significant effect on Cu and a marginal effect on Pb. Distribution ratio of Zn to MFA was influenced by the oxidizing atmosphere in the furnace. High MFA generation and distribution ratio of non-volatile metals to MFA in gasification-melting facilities was probably caused by carry-over of fine particles to the air pollution control system due to large gas volume. Finally, dilution effect was shown to have a significant effect on metal concentration in MFA.

  18. Rapakivi texture formation via disequilibrium melting in a contact partial melt zone, Antarctica (United States)

    Currier, R. M.


    In the McMurdo Dry Valleys of Antarctica, a Jurassic aged dolerite sill induced partial melting of granite in the shallow crust. The melt zone can be traced in full, from high degrees of melting (>60%) along the dolerite contact, to no apparent signs of melting, 10s of meters above the contact. Within this melt zone, the well-known rapakivi texture is found, arrested in various stages of development. High above the contact, and at low degrees of melting, K-feldspar crystals are slightly rounded and unmantled. In the lower half of the melt zone, mantles of cellular textured plagioclase appear on K-feldspar, and thicken towards the contact heat source. At the highest degrees of melting, cellular-textured plagioclase completely replaces restitic K-feldspar. Because of the complete exposure and intact context, the leading models of rapakivi texture formation can be tested against this system. The previously proposed mechanisms of subisothermal decompression, magma-mixing, and hydrothermal exsolution all fail to adequately describe rapakivi generation in this melt zone. Preferred here is a closed system model that invokes the production of a heterogeneous, disequilibrium melt through rapid heating, followed by calcium and sodium rich melt reacting in a peritectic fashion with restitic K-feldspar crystals. This peritectic reaction results in the production of plagioclase of andesine-oligoclase composition—which is consistent with not just mantles in the melt zone, but globally as well. The thickness of the mantle is diffusion limited, and thus a measure of the diffusive length scale of sodium and calcium over the time scale of melting. Thermal modeling provides a time scale of melting that is consistent with the thickness of observed mantles. Lastly, the distribution of mantled feldspars is highly ordered in this melt zone, but if it were mobilized and homogenized—mixing together cellular plagioclase, mantled feldspars, and unmantled feldspars—the result would be

  19. Fatigue behavior of porous biomaterials manufactured using selective laser melting. (United States)

    Yavari, S Amin; Wauthle, R; van der Stok, J; Riemslag, A C; Janssen, M; Mulier, M; Kruth, J P; Schrooten, J; Weinans, H; Zadpoor, A A


    Porous titanium alloys are considered promising bone-mimicking biomaterials. Additive manufacturing techniques such as selective laser melting allow for manufacturing of porous titanium structures with a precise design of micro-architecture. The mechanical properties of selective laser melted porous titanium alloys with different designs of micro-architecture have been already studied and are shown to be in the range of mechanical properties of bone. However, the fatigue behavior of this biomaterial is not yet well understood. We studied the fatigue behavior of porous structures made of Ti6Al4V ELI powder using selective laser melting. Four different porous structures were manufactured with porosities between 68 and 84% and the fatigue S-N curves of these four porous structures were determined. The three-stage mechanism of fatigue failure of these porous structures is described and studied in detail. It was found that the absolute S-N curves of these four porous structures are very different. In general, given the same absolute stress level, the fatigue life is much shorter for more porous structures. However, the normalized fatigue S-N curves of these four structures were found to be very similar. A power law was fitted to all data points of the normalized S-N curves. It is shown that the measured data points conform to the fitted power law very well, R(2)=0.94. This power law may therefore help in estimating the fatigue life of porous structures for which no fatigue test data is available. It is also observed that the normalized endurance limit of all tested porous structures (<0.2) is lower than that of corresponding solid material (c.a. 0.4). © 2013.

  20. Experimental Investigation of Concrete Runway Snow Melting Utilizing Heat Pipe Technology

    Directory of Open Access Journals (Sweden)

    Fengchen Chen


    Full Text Available A full scale snow melting system with heat pipe technology is built in this work, which avoids the negative effects on concrete structure and environment caused by traditional deicing chemicals. The snow melting, ice-freezing performance and temperature distribution characteristics of heat pipe concrete runway were discussed by the outdoor experiments. The results show that the temperature of the concrete pavement is greatly improved with the heat pipe system. The environment temperature and embedded depth of heat pipe play a dominant role among the decision variables of the snow melting system. Heat pipe snow melting pavement melts the snow completely and avoids freezing at any time when the environment temperature is below freezing point, which is secure enough for planes take-off and landing. Besides, the exportation and recovery of geothermal energy indicate that this system can run for a long time. This paper will be useful for the design and application of the heat pipe used in the runway snow melting.

  1. A Novel Inorganic Low Melting Electrolyte for Secondary-Aluminum-Nickel Sulfide Batteries

    DEFF Research Database (Denmark)

    Hjuler, H.A.; Winbrush, S. von; Berg, Rolf W.


    A new, inorganic low melting electrolyte with the composition LiAlCl4-NaAlCl4-NaAlBr4-KAlCl4 (3:2:3:2) [or equivalentlyLiAlBr4-NaAlCl4-KAlCl4 (3:5:2)] has been developed. The melting point for this neutral melt is 86°C; the decompositionpotential is approximately 2.0V; the ionic conductivity...... is measured in the range 97°–401°C and is 0.142s cm–1 at100°C, and the density is 2.07g cm–3. The conductivity seems to be an almost linear combination of the conductivities ofthe four individual halo salts which form the melt. Other examined higher melting mixtures exhibit conductivities deviatingless than...... ±10% from their combination expectations. The low melting electrolyte is employed in the rechargeable batterysystem Al/electrolyte/Ni3S2 at 100°C. The open-circuit voltage of this system is from 0.82 to 1.0V. Dendrite-free aluminumdeposits are obtained. The cycling behavior of the battery system...

  2. Effect of disorder on the melting phase transition

    International Nuclear Information System (INIS)

    Storey, M.


    This Ph.D thesis is concerned with the effect of disorder on the melting phase transition. In the first part, the research is focused on the melting of the flux lines in high temperature superconductors. An analytical approach to studying the effect of quenched disorder on the vortices is proposed. The main steps in proposed approach are drawn from classical thermodynamics. The principal step is to relate a superconductor in the flux line lattice state to a closed system in which two phases are in contact, solid and liquid, with the aim of determining what effect the pinning centres have on the melting temperature. That is to determine whether the melting temperature is raised or lowered with respect to that of the clean non-pinned superconductor. Flux lines are modelled by an elastic Hamiltonian and the quenched disorder by the Larkin pinning Hamiltonian. This analyses is performed for two-dimensional systems as well as three-dimensional ones. The second part of this thesis is concerned with a simulation approach to analysing the melting transition in two-dimension. Joint Molecular Dynamics-Monte Carlo simulations are performed to study the melting transition in two dimensions. Firstly, classical point particles interacting via a r -12 repulsive pair potential are investigated and secondly, disorder is added to this system by introducing randomly positioned attractive pins. In both cases the simulation method chosen is based on the bicanonical ensemble in conjunction with constant temperature molecular dynamics as introduced by H.C. Andersen. Bond orientational order, transitional order, pressure, and the specific heat as well as the potential energy of the system are determined. Histograms of these quantities are obtained throughout the transition region and used together with finite size scaling analysis to deduce t lie nature of the transition by, means of the Lee-Kosterlitz method. For the clean system the r -12 potential is first studied and is chosen for its

  3. Point Defects in Hard Sphere Crystals


    Pronk, Sander; Frenkel, Daan


    We report numerical calculations of the concentration of interstitials in hard-sphere crystals. We find that, in a three-dimensional fcc hard-sphere crystal at the melting point, the concentration of interstitials is 2 * 10^-8. This is some three orders of magnitude lower than the concentration of vacancies. A simple, analytical estimate yields a value that is in fair agreement with the numerical results.

  4. Wetting and surface tension of bismate glass melt

    International Nuclear Information System (INIS)

    Shim, Seung-Bo; Kim, Dong-Sun; Hwang, Seongjin; Kim, Hyungsun


    Lead oxide glass frits are used widely in the electronics industry for low-temperature firing. On the other hand, one of the low-sintering and low-melting lead-free glass systems available, the bismate glass system, is considered to be an alternative to lead oxide glass. In order to extend the applications of Bi 2 O 3 glasses, this study examined the thermophysical properties of low-melting Bi 2 O 3 -B 2 O 3 -ZnO-BaO-Al 2 O 3 -SiO 2 glass frits with various ZnO/B 2 O 3 ratios. The fundamental thermal properties, such as glass transition temperature and softening point, were examined by differential thermal analysis and a glass softening point determination system. The wetting angles, viscosities and surface tension of the various bismate glasses on an alumina substrate were measured using hot-stage microscopy and the sessile drop method. These thermophysical properties will be helpful in understanding the work of adhesion and the liquid spread kinetics of glass frits.

  5. Low melting high lithia glass compositions and methods (United States)

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.


    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  6. The role of albedo and accumulation in the 2010 melting record in Greenland

    NARCIS (Netherlands)

    Tedesco, M.; Fettweis, X.; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; van de Wal, R.S.W.|info:eu-repo/dai/nl/101899556; Smeets, C.J.P.P.|info:eu-repo/dai/nl/191522236; van de Berg, W.J.|info:eu-repo/dai/nl/304831611; Serreze, M.C.; Box, J.E.


    Analyses of remote sensing data, surface observations and output from a regional atmosphere model point to new records in 2010 for surface melt and albedo, runoff, the number of days when bare ice is exposed and surface mass balance of the Greenland ice sheet, especially over its west and southwest

  7. Final report for SERDP WP-2209 Replacement melt-castable formulations for Composition B (United States)


    using Topspin© software. FTIR spectra were acquired on a Nicolet iQ system using Omnic© software. Melting point determination was accomplished using a...salts tend to absorb water. In the case of AAD this sorption was studied by ARDEC and determined to be an issue only above a relative humidity of 50

  8. Melting of size-selected gallium clusters with 60-183 atoms. (United States)

    Pyfer, Katheryne L; Kafader, Jared O; Yalamanchali, Anirudh; Jarrold, Martin F


    Heat capacities have been measured as a function of temperature for size-selected gallium cluster cations with between 60 and 183 atoms. Almost all clusters studied show a single peak in the heat capacity that is attributed to a melting transition. The peaks can be fit by a two-state model incorporating only fully solid-like and fully liquid-like species, and hence no partially melted intermediates. The exceptions are Ga90(+), which does not show a peak, and Ga80(+) and Ga81(+), which show two peaks. For the clusters with two peaks, the lower temperature peak is attributed to a structural transition. The melting temperatures for clusters with less than 50 atoms have previously been shown to be hundreds of degrees above the bulk melting point. For clusters with more than 60 atoms the melting temperatures decrease, approaching the bulk value (303 K) at around 95 atoms, and then show several small upward excursions with increasing cluster size. A plot of the latent heat against the entropy change for melting reveals two groups of clusters: the latent heats and entropy changes for clusters with less than 94 atoms are distinct from those for clusters with more than 93 atoms. This observation suggests that a significant change in the nature of the bonding or the structure of the clusters occurs at 93-94 atoms. Even though the melting temperatures are close to the bulk value for the larger clusters studied here, the latent heats and entropies of melting are still far from the bulk values.

  9. Influence of repetitive pulsed laser irradiation on the surface characteristics of an aluminum alloy in the melting regime

    International Nuclear Information System (INIS)

    Choi, Sung Ho; Jhang, Kyung Young


    We have investigated the influence of repetitive near-infrared (NIR) pulsed laser shots in the melting regime on the surface characteristics of an aluminum 6061-T6 alloy. Characteristics of interest include surface morphology, surface roughness, and surface hardness in the melted zone as well as the size of the melted zone. For this study, the proper pulse energy for inducing surface melting at one shot is selected using numerical simulations that calculate the variation in temperature at the laser beam spot for various input pulse energies in order to find the proper pulse energy for raising the temperature to the melting point. In this study, 130 mJ was selected as the input energy for a Nd:YAG laser pulse with a duration of 5 ns. The size of the melted zone measured using optical microscopy (OM) increased logarithmically with an increasing shot number. The surface morphology observed by scanning electron microscopy (SEM) clearly showed a re-solidified microstructure evolution after surface melting. The surface roughness and hardness were measured by atomic force microscopy (AFM) and nano-indentation, respectively. The surface roughness showed almost no variation due to the surface texturing after laser shots over 10. The hardness inside the melted zone was lower than that outside the zone because the β'' phase was transformed to a β phase or dissolved into a matrix.

  10. Using ice melting and ice rolling technologies to remove ice from sub-transmission and transmission lines at Manitoba Hydro

    International Nuclear Information System (INIS)

    Farias, A. R.


    Development of an of an Ice Storm Management program by Manitoba Hydro to reduce ice storm damage to its 8 kV feeders to 115 kV transmission lines, is discussed. The program consists of the de-icing of overhead lines, either by ice melting, or ice rolling. Ice melting involves the placement of a three-phase short at a calculated point. The term ice rolling denotes a process of mechanically stripping the ice from conductors. The most recent major ice storm experienced by Manitoba Hydro was in the winter of 1997/1998. During the period from February 6 to February 17, 1998, a total of 83 'ice melt' procedures were performed to melt the ice from 2,628 km of overhead line (7,883 km of conductor), in addition to 'ice rolling'. This paper describes Manitoba Hydro's 25-years' experience with ice melting and it also describes the advantages and disadvantages of both ice melting and ice rolling. Although not a panacea to combat the effects of ice storms, ice melting was found to be the most effective way of removing ice from overhead transmission and sub-transmission lines. Ice rolling was also found to be effective. Other tools that have been found to be useful by various utilities in combating ice storm damage include improved structure and line design, system design that provide more redundancies and emergency sources, and standby generators at critical load points

  11. Carbon-dioxide-rich silicate melt in the Earth's upper mantle. (United States)

    Dasgupta, Rajdeep; Mallik, Ananya; Tsuno, Kyusei; Withers, Anthony C; Hirth, Greg; Hirschmann, Marc M


    The onset of melting in the Earth's upper mantle influences the thermal evolution of the planet, fluxes of key volatiles to the exosphere, and geochemical and geophysical properties of the mantle. Although carbonatitic melt could be stable 250 km or less beneath mid-oceanic ridges, owing to the small fraction (∼0.03 wt%) its effects on the mantle properties are unclear. Geophysical measurements, however, suggest that melts of greater volume may be present at ∼200 km (refs 3-5) but large melt fractions are thought to be restricted to shallower depths. Here we present experiments on carbonated peridotites over 2-5 GPa that constrain the location and the slope of the onset of silicate melting in the mantle. We find that the pressure-temperature slope of carbonated silicate melting is steeper than the solidus of volatile-free peridotite and that silicate melting of dry peridotite + CO(2) beneath ridges commences at ∼180 km. Accounting for the effect of 50-200 p.p.m. H(2)O on freezing point depression, the onset of silicate melting for a sub-ridge mantle with ∼100 p.p.m. CO(2) becomes as deep as ∼220-300 km. We suggest that, on a global scale, carbonated silicate melt generation at a redox front ∼250-200 km deep, with destabilization of metal and majorite in the upwelling mantle, explains the oceanic low-velocity zone and the electrical conductivity structure of the mantle. In locally oxidized domains, deeper carbonated silicate melt may contribute to the seismic X-discontinuity. Furthermore, our results, along with the electrical conductivity of molten carbonated peridotite and that of the oceanic upper mantle, suggest that mantle at depth is CO(2)-rich but H(2)O-poor. Finally, carbonated silicate melts restrict the stability of carbonatite in the Earth's deep upper mantle, and the inventory of carbon, H(2)O and other highly incompatible elements at ridges becomes controlled by the flux of the former.

  12. Internal stress-induced melting below melting temperature at high-rate laser heating

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Seok, E-mail: [Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011 (United States); Levitas, Valery I., E-mail: [Departments of Aerospace Engineering, Mechanical Engineering, and Material Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)


    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamic equilibrium temperatures for the heating rate Q≤1.51×10{sup 10}K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 10{sup 11 }K/s and 936.9 K for Q = 1.46 × 10{sup 12 }K/s.

  13. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam


    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment may be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.

  14. Effect of melting conditions on striae in iron-bearing silicate melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Yue, Yuanzheng


    of melt temperature and/or a decrease of viscosity play a more important role in decreasing the stria content. We also demonstrate that the extent of striation is influenced by the crucible materials that causes a change of redox state of the melt, and hence its viscosity. We discuss the effect of other...

  15. Olivine/melt transition metal partitioning, melt composition, and melt structure—Melt polymerization and Qn-speciation in alkaline earth silicate systems (United States)

    Mysen, Bjorn O.


    The two most abundant network-modifying cations in magmatic liquids are Ca 2+ and Mg 2+. To evaluate the influence of melt structure on exchange of Ca 2+ and Mg 2+ with other geochemically important divalent cations ( m-cations) between coexisting minerals and melts, high-temperature (1470-1650 °C), ambient-pressure (0.1 MPa) forsterite/melt partitioning experiments were carried out in the system Mg 2SiO 4-CaMgSi 2O 6-SiO 2 with ⩽1 wt% m-cations (Mn 2+, Co 2+, and Ni 2+) substituting for Ca 2+ and Mg 2+. The bulk melt NBO/Si-range ( NBO/Si: nonbridging oxygen per silicon) of melt in equilibrium with forsterite was between 1.89 and 2.74. In this NBO/Si-range, the NBO/Si(Ca) (fraction of nonbridging oxygens, NBO, that form bonds with Ca 2+, Ca 2+- NBO) is linearly related to NBO/Si, whereas fraction of Mg 2+- NBO bonds is essentially independent of NBO/Si. For individual m-cations, rate of change of KD( m-Mg) with NBO/Si(Ca) for the exchange equilibrium, mmelt + Mg olivine ⇌ molivine + Mg melt, is linear. KD( m-Mg) decreases as an exponential function of increasing ionic potential, Z/ r2 ( Z: formal electrical charge, r: ionic radius—here calculated with oxygen in sixfold coordination around the divalent cations) of the m-cation. The enthalpy change of the exchange equilibrium, Δ H, decreases linearly with increasing Z/ r2 [Δ H = 261(9)-81(3)· Z/ r2 (Å -2)]. From existing information on (Ca,Mg)O-SiO 2 melt structure at ambient pressure, these relationships are understood by considering the exchange of divalent cations that form bonds with nonbridging oxygen in individual Qn-species in the melts. The negative ∂ KD( m-Mg) /∂( Z/ r2) and ∂(Δ H)/∂( Z/ r2) is because increasing Z/ r2 is because the cations forming bonds with nonbridging oxygen in increasingly depolymerized Qn-species where steric hindrance is decreasingly important. In other words, principles of ionic size/site mismatch commonly observed for trace and minor elements in crystals, also

  16. Bloomington (LL6) chondrite and its shock melt glasses

    International Nuclear Information System (INIS)

    Dodd, R.T.; Olsen, E.J.; Clarke, R.S. Jr.; National Museum of Natural History, Washington, DC; Field Museum of Natural History, Chicago, IL)


    The shock melt glasses of the Bloomington LL-group chondrite were examined using electron-beam microscopy and compared with data from studies of other shock melt glasses. Petrologic and mineralogic characterizations were also performed of the samples. The metal contents of the meteorite were almost wholly Ni-rich martensite. The glasses resembled shock melt glasses in L-group chondrites, and were indicative of isochemical melting during one melt phase, i.e., a very simple history. 12 references

  17. Melting of the Earth's inner core. (United States)

    Gubbins, David; Sreenivasan, Binod; Mound, Jon; Rost, Sebastian


    The Earth's magnetic field is generated by a dynamo in the liquid iron core, which convects in response to cooling of the overlying rocky mantle. The core freezes from the innermost surface outward, growing the solid inner core and releasing light elements that drive compositional convection. Mantle convection extracts heat from the core at a rate that has enormous lateral variations. Here we use geodynamo simulations to show that these variations are transferred to the inner-core boundary and can be large enough to cause heat to flow into the inner core. If this were to occur in the Earth, it would cause localized melting. Melting releases heavy liquid that could form the variable-composition layer suggested by an anomaly in seismic velocity in the 150 kilometres immediately above the inner-core boundary. This provides a very simple explanation of the existence of this layer, which otherwise requires additional assumptions such as locking of the inner core to the mantle, translation from its geopotential centre or convection with temperature equal to the solidus but with composition varying from the outer to the inner core. The predominantly narrow downwellings associated with freezing and broad upwellings associated with melting mean that the area of melting could be quite large despite the average dominance of freezing necessary to keep the dynamo going. Localized melting and freezing also provides a strong mechanism for creating seismic anomalies in the inner core itself, much stronger than the effects of variations in heat flow so far considered.

  18. Melting behavior of Earth's lower mantle minerals at high pressures (United States)

    Fu, S.; Yang, J.; Prakapenka, V. B.; Zhang, Y.; Greenberg, E.; Lin, J. F.


    Melting behavior of the most abundant lower mantle minerals, bridgmanite and ferropericlase, at high pressure-temperature (P-T) conditions is of critical importance to understand the dynamic evolution of the early Earth and to explain the seismological and geochemical signatures in the present lowermost mantle. Theoretical calculations [1] and geodynamical models [2] suggested that partial melting of early Earth among MgO-FeO-SiO2 ternary could be located at the eutectic point where a pyrolitic composition formed for the Earth's lower mantle and the eutectic crystallization process could provide a plausible mechanism to the origin of the ultra-low velocity zones (ULVZs) near the core-mantle boundary. Here we have investigated the melting behavior of ferropericlase and Al,Fe-bearing bridgmanite in laser-heated diamond anvil cells coupled with in situ X-ray diffraction up to 120 GPa. Together with chemical and texture characterizations of the quenched samples, these results are analyzed using thermodynamic models to address the effects of iron on the liquidus and solidus temperatures as well as solid-liquid iron partitioning and the eutectic point in ferropericlase-bridgmanite existing system at lower-mantle pressure. In this presentation, we discuss the application of these results to better constrain the seismic observations of the deep lowermost mantle such as large low shear wave velocity provinces (LLSVPs) and ULVZs. We will also discuss the geochemical consequences of the ferropericlase-bridgmanite melting due to the changes in the electronic spin and valence states of iron in the system. ADDIN EN.REFLIST 1. Boukaré, C.E., Y. Ricard, and G. Fiquet, Thermodynamics of the MgO-FeO-SiO2 system up to 140 GPa: Application to the crystallization of Earth's magma ocean. Journal of Geophysical Research: Solid Earth, 2015. 120(9): p. 6085-6101. 2. Labrosse, S., J. Hernlund, and N. Coltice, A crystallizing dense magma ocean at the base of the Earth's mantle. Nature, 2007


    International Nuclear Information System (INIS)

    Newell, J; Miller, D; Stone, M; Pickenheim, B


    510 based system without Al-dissolution relative to the Frit 418 based system with Al-dissolution. Though the without aluminum dissolution scenario suggests a slightly higher melt rate with frit 510, several points must be taken into consideration: (1) The MRF does not have the ability to assess liquid feeds and, thus, rheology impacts. Instead, the MRF is a 'static' test bed in which a mass of dried melter feed (SRAT product plus frit) is placed in an 'isothermal' furnace for a period of time to assess melt rate. These conditions, although historically effective in terms of identifying candidate frits for specific sludge batches and mapping out melt rate versus waste loading trends, do not allow for assessments of the potential impact of feed rheology on melt rate. That is, if the rheological properties of the slurried melter feed resulted in the mounding of the feed in the melter (i.e., the melter feed was thick and did not flow across the cold cap), melt rate and/or melter operations (i.e., surges) could be negatively impacted. This could affect one or both flowsheets. (2) Waste throughput factors were not determined for Frit 510 and Frit 418 over multiple waste loadings. In order to provide insight into the mission life versus canister count question, one needs to define the maximum waste throughput for both flowsheets. Due to funding limitations, the melt rate testing only evaluated melt rate at a fixed waste loading. (3) DWPF will be processing SB5 through their facility in mid-November 2008. Insight into the over arching questions of melt rate, waste throughput, and mission life can be obtained directly from the facility. It is recommended that processing of SB5 through the facility be monitored closely and that data be used as input into the decision making process on whether to implement Al-dissolution for future sludge batches

  20. Activities in Cu2S-FeS-SnS melts at 1200 °C (United States)

    Eric, R. Hurman


    The dew-point technique was used to measure the vapor pressures of SnS over liquid sulfides of the system Cu2S-FeS-SnS at 1200 °C. Activities of SnS were generated from the measured vapor pressures of SnS. Activities of Cu2S and FeS were evaluated both in binary and ternary melts by Gibbs-Duhem calculations from the known SnS activity data. The systems Cu2S-SnS and Cu2S-FeS exhibit negative departures from ideal behavior, while FeS-SnS melts exhibit positive deviations.

  1. Viscosity of Hg(0.84)Zn(0.16)Te Pseudobinary Melt (United States)

    Mazuruk, K.; Su, Ching-Hua; Sha, Yi-Gao; Lehoczky, S. L.


    An oscillating-cup viscometer was developed to measure viscosity of molten HgZnTe ternary semiconductor alloys. Data were collected for the pseudobinary Hg(0.84)Zn(0.16)Te melt between 770 and 850 C. The kinematic viscosity was found to vary from approximately 1.1 to 1.4 x 10(sup -3)sq cm/s. A slow relaxation phenomena was also observed for temperatures from the melting point of 770 to approx. 800 C. Possible mechanisms for this effect are discussed.

  2. Method for preparation of melts of alkali metal chlorides with highly volatile polyvalent metal chlorides

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Kudyakov, V.Ya.


    A method for production of alkali metal (Cs, Rb, K) chloride melts with highly volatile polyvalent metal chlorides is suggested. The method consists, in saturation of alkali metal chlorides, preheated to the melting point, by volatile component vapours (titanium tetrachloride, molybdenum or tantalum pentachloride) in proportion, corresponding to the composition reguired. The saturation is realized in an evacuated vessel with two heating areas for 1-1.5 h. After gradual levelling of temperature in both areas the product is rapidly cooled. 1 fig.; 1 tab

  3. Entangled Polymer Melts in Extensional Flow

    DEFF Research Database (Denmark)

    Hengeller, Ludovica

    . On the other hand, addition of low-volatility solvents to polymers is also a common industrial practice that others a means for lowering the Tg of the polymers. Moreover industrial polymers present a wide distribution of chain lengths and/or branched architectures that strongly influence their response....... Understanding the behaviour of polymer melts and solutions in complex non-linearflows is crucial for the design of polymeric materials and polymer processes. Through rheological characterization, in shear and extensional flow, of model polymer systems,i.e. narrow molar mass distribution polymer melts......Many commercial materials derived from synthetic polymers exhibit a complex response under different processing operations such as fiber formation, injection moulding,film blowing, film casting or coatings. They can be processed both in the solid or in the melted state. Often they may contain two...

  4. Melting of peridotite to 140 gigapascals. (United States)

    Fiquet, G; Auzende, A L; Siebert, J; Corgne, A; Bureau, H; Ozawa, H; Garbarino, G


    Interrogating physical processes that occur within the lowermost mantle is a key to understanding Earth's evolution and present-day inner composition. Among such processes, partial melting has been proposed to explain mantle regions with ultralow seismic velocities near the core-mantle boundary, but experimental validation at the appropriate temperature and pressure regimes remains challenging. Using laser-heated diamond anvil cells, we constructed the solidus curve of a natural fertile peridotite between 36 and 140 gigapascals. Melting at core-mantle boundary pressures occurs at 4180 ± 150 kelvin, which is a value that matches estimated mantle geotherms. Molten regions may therefore exist at the base of the present-day mantle. Melting phase relations and element partitioning data also show that these liquids could host many incompatible elements at the base of the mantle.

  5. Analysis of Picosecond Pulsed Laser Melted Graphite (United States)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.


    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  6. Analysis of picosecond pulsed laser melted graphite

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.


    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm/sup -1/ and the disorder-induced mode at 1360 cm/sup -1/, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  7. Scrap uranium recycling via electron beam melting

    International Nuclear Information System (INIS)

    McKoon, R.


    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R ampersand D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility

  8. Scleral melt following Retisert intravitreal fluocinolone implant

    Directory of Open Access Journals (Sweden)

    Georgalas I


    Full Text Available Ilias Georgalas,1 Chrysanthi Koutsandrea,1 Dimitrios Papaconstantinou,1 Dimitrios Mpouritis,1 Petros Petrou1,2 1Ophthalmology Department, University of Athens, Athens, Greece; 2Moorfields Eye Hospital, London, UKAbstract: Intravitreal fluocinolone acetonide implant (Retisert has a high potency, a low solubility, and a very short duration of action in the systemic circulation, enabling the steroid pellet to be small and reducing the risk of systemic side effects. Scleral melt has not been reported as a possible complication of Retisert implant. The authors describe the occurrence of scleral melt 18 months after the implantation of fluocinolone acetonide implant in a 42-year-old Caucasian woman. To the authors’ knowledge, this is the first report of this possible complication.Keywords: Retisert, scleral melt, complication, surgical management

  9. Analysis of picosecond pulsed laser melted graphite

    International Nuclear Information System (INIS)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.


    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm -1 and the disorder-induced mode at 1360 cm -1 , the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence

  10. Selective Laser Melting of Pure Copper (United States)

    Ikeshoji, Toshi-Taka; Nakamura, Kazuya; Yonehara, Makiko; Imai, Ken; Kyogoku, Hideki


    Appropriate building parameters for selective laser melting of 99.9% pure copper powder were investigated at relatively high laser power of 800 W for hatch pitch in the range from 0.025 mm to 0.12 mm. The highest relative density of the built material was 99.6%, obtained at hatch pitch of 0.10 mm. Building conditions were also studied using transient heat analysis in finite element modeling of the liquidation and solidification of the powder layer. The estimated melt pool length and width were comparable to values obtained by observations using a thermoviewer. The trend for the melt pool width versus the hatch pitch agreed with experimental values.

  11. Melt spun aluminium alloys for moulding optics (United States)

    Gubbels, G.; Tegelaers, L.; Senden, R.


    Melt spinning is a rapid quenching process that makes it possible to create materials with a very fine microstructure. Due to this very fine microstructure the melt spinning process is an enabler for diamond turning optics and moulds without the need of post-polishing. Using diamond turning of melt spun aluminium one can achieve coating concept RSA-905 can be upgraded to a competitive alternative to steel in terms of price, performance and logistics. This paper presents some recent developments for improved mould performance of such concept. Hardness, wear resistance and adhesion are topics of interest and they can be applied by special coatings such as diamond-like carbon (DLC) and chromium nitride (CrN). These coatings make the aluminium alloy suitable for moulding mass production of small as well as larger optics, such as spectacle lenses.

  12. The rock melting approach to drilling

    Energy Technology Data Exchange (ETDEWEB)

    Cort, G.E.; Goff, S.J.; Rowley, J.C.; Neudecker, J.W. Jr.; Dreesen, D.S.; Winchester, W.


    During the early and mid-1970`s the Los Alamos National Laboratory demonstrated practical applications of drilling and coring using an electrically-heated graphite, tungsten, or molybdenum penetrator that melts a hole as it is slowly pushed through the rock or soil. The molten material consolidates into a rugged glass lining that prevents hole collapse; minimizes the potential for cross-flow, lost circulation, or the release of hazardous materials without casing operations; and produces no cuttings in porous or low density (<1.7 g/cc) formations. Because there are no drilling fluids required, the rock melting approach reduces waste handling, treatment and disposal. Drilling by rock melting has been demonstrated to depths up to 30 m in caliche, clay, alluvium, cobbles, sand, basalt, granite, and other materials. Penetrating large cobbles without debris removal was achieved by thermal stress fracturing and lateral extrusion of portions of the rock melt into the resulting cracks. Both horizontal and vertical holes in a variety of diameters were drilled in these materials using modular, self-contained field units that operate in remote areas. Because the penetrator does not need to rotate, steering by several simple approaches is considered quite feasible. Melting is ideal for obtaining core samples in alluvium and other poorly consolidated soils since the formed-in-place glass liner stabilizes the hole, encapsulates volatile or hazardous material, and recovers an undisturbed core. Because of the relatively low thermal conductivity of rock and soil materials, the heat-affected zone beyond the melt layer is very small, <1 inch thick. Los Alamos has begun to update the technology and this paper will report on the current status of applications and designs for improved drills.

  13. Structure of polyvalent metal halide melts

    International Nuclear Information System (INIS)

    Tosi, M.P.


    A short review is given of recent progress in determining and understanding the structure of molten halide salts involving polyvalent metal ions. It covers the following three main topics: (i) melting mechanisms and types of liquid structure for pure polyvalent-metal chlorides; (ii) geometry and stability of local coordination for polyvalent metal ions in molten mixtures of their halides with alkali halides; and (iii) structure breaking and electron localization on addition of metal to the melt. (author). 28 refs, 3 figs, 1 tab

  14. Chemical reactions in solvents and melts

    CERN Document Server

    Charlot, G


    Chemical Reactions in Solvents and Melts discusses the use of organic and inorganic compounds as well as of melts as solvents. This book examines the applications in organic and inorganic chemistry as well as in electrochemistry. Organized into two parts encompassing 15 chapters, this book begins with an overview of the general properties and the different types of reactions, including acid-base reactions, complex formation reactions, and oxidation-reduction reactions. This text then describes the properties of inert and active solvents. Other chapters consider the proton transfer reactions in

  15. A characterization of Greenland Ice Sheet surface melt and runoff in contemporary reanalyses and a regional climate model (United States)

    Cullather, Richard; Nowicki, Sophie; Zhao, Bin; Koenig, Lora


    For the Greenland Ice Sheet (GrIS), large-scale melt area has increased in recent years and is detectable via remote sensing, but its relation to runoff is not known. Historical, modeled melt area and runoff from Modern-Era Retrospective Analysis for Research and Applications (MERRA-Replay), the Interim Re-Analysis of the European Centre for Medium Range Weather Forecasts (ERA-I), the Climate Forecast System Reanalysis (CFSR), the Modèle Atmosphérique Régional (MAR), and the Arctic System Reanalysis (ASR) are examined. These sources compare favorably with satellite-derived estimates of surface melt area for the period 2000-2012. Spatially, the models markedly disagree on the number of melt days in the interior of the southern part of the ice sheet, and on the extent of persistent melt areas in the northeastern GrIS. Temporally, the models agree on the mean seasonality of daily surface melt and on the timing of large-scale melt events in 2012. In contrast, the models disagree on the amount, seasonality, spatial distribution, and temporal variability of runoff. As compared to global reanalyses, time series from MAR indicate a lower correlation between runoff and melt area (r2 = 0.805). Runoff in MAR is much larger in the second half of the melt season for all drainage basins, while the ASR indicates larger runoff in the first half of the year. This difference in seasonality for the MAR and to an extent for the ASR provide a hysteresis in the relation between runoff and melt area, which is not found in the other models. The comparison points to a need for reliable observations of surface runoff.

  16. Study of formation mechanism of incipient melting in thixo-cast Al–Si–Cu–Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Du, Kang, E-mail:; Zhu, Qiang, E-mail:; Li, Daquan, E-mail:; Zhang, Fan, E-mail:


    Mechanical properties of thixo-cast Al–Si–Cu–Mg alloys can be enhanced by T61 heat treatment. Copper and magnesium atoms in aluminum matrix can form homogeneously distributed precipitations after solution and aging treatment which harden the alloys. However, microsegregation of these alloying elements could form numerous tiny multi-compound phases during solidification. These phases could cause incipient melting defects in subsequent heat treatment process and degrade the macro-mechanical properties of productions. This study is to present heterogeneous distribution of Cu, Si, and Mg elements and formation of incipient melting defects (pores). In this study, incipient melting pores that occurred during solution treatment at various temperatures, even lower than common melting points of various intermetallic phases, were identified, in terms of a method of investigating the same surface area in the samples before and after solution treatment in a vacuum environment. The results also show that the incipient melting mostly originates at the clusters with fine intermetallic particles while also some at the edge of block-like Al{sub 2}Cu. The fine particles were determined being Al{sub 2}Cu, Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and Al{sub 8}Mg{sub 3}FeSi{sub 2}. Tendency of the incipient melting decreases with decreases of the width of the clusters. The formation mechanism of incipient melting pores in solution treatment process was discussed using both the Fick law and the LSW theory. Finally, a criterion of solution treatment to avoid incipient melting pores for the thixo-cast alloys is proposed. - Highlights: • In-situ comparison technique was used to analysis the change of eutectic phases. • The ralationship between eutectic phase size and incipient melting was studied. • Teat treatment criterion for higher incipient melting resistance was proposed.

  17. The Microwave Properties of Simulated Melting Precipitation Particles: Sensitivity to Initial Melting (United States)

    Johnson, B. T.; Olson, W. S.; Skofronick-Jackson, G.


    A simplified approach is presented for assessing the microwave response to the initial melting of realistically shaped ice particles. This paper is divided into two parts: (1) a description of the Single Particle Melting Model (SPMM), a heuristic melting simulation for ice-phase precipitation particles of any shape or size (SPMM is applied to two simulated aggregate snow particles, simulating melting up to 0.15 melt fraction by mass), and (2) the computation of the single-particle microwave scattering and extinction properties of these hydrometeors, using the discrete dipole approximation (via DDSCAT), at the following selected frequencies: 13.4, 35.6, and 94.0GHz for radar applications and 89, 165.0, and 183.31GHz for radiometer applications. These selected frequencies are consistent with current microwave remote-sensing platforms, such as CloudSat and the Global Precipitation Measurement (GPM) mission. Comparisons with calculations using variable-density spheres indicate significant deviations in scattering and extinction properties throughout the initial range of melting (liquid volume fractions less than 0.15). Integration of the single-particle properties over an exponential particle size distribution provides additional insight into idealized radar reflectivity and passive microwave brightness temperature sensitivity to variations in size/mass, shape, melt fraction, and particle orientation.

  18. Effect of water on mantle melting and magma differentiation, as modeled using Adiabat_1ph 3.0 (United States)

    Antoshechkina, P. M.; Asimow, P. D.; Hauri, E. H.; Luffi, P. I.


    MELTS [1] and pMELTS [2] are widely used for modeling hydrous magma differentiation and water-saturated mantle melting, respectively. In pHMELTS [3] the water species can partition into melt, pure vapor, and hydrous or nominally anhydrous minerals so that phase relations for water-undersaturated systems may also be constructed. Adiabat_1ph is a text-based front end to the (pH)MELTS algorithms; in version 3.0 (Antoshechkina and Asimow, this meeting) we have added tools to further explore the effect of water on melting and fractional crystallization. Asimow and coworkers developed two schemes for fractionation-correction of major and trace elements: a forward model that considers the effects of water, pressure, and fO2 on the liquid line of descent (LLD) [3] and a hybrid back- and forward-fractionation model that may be used for individual samples when trends are poorly defined [4]. An extensive melt inclusion dataset for the Mariana Trough [5] shows evidence for simultaneous fractionation and degassing, so we have adapted routines from [4] to cope with hydrous conditions. For H2O approached as incremental feed of the same agent into a solid whose composition progressively modifies as it reacts with melt. The observation that incremental flux melting of peridotites leads to a broader diversity and steeper gradients in residue compositions than batch fluxing [6] also holds for water-fluxed melting of peridotites. Liquids resulting from the two mechanisms differ most at the point of highest melt/rock ratio. Melts generated by incremental fluxing are poorer in Si and richer in Al and Fe than those resulting from batch water addition, implying that hydrous melts traversing the lithosphere via porous flow tend to appear deeper and hotter than do melts traveling in conduits. [1] Ghiorso & Sack 1995 CMP [2] Ghiorso et al. 2002 [3] Asimow et al. 2004 [4] Cooper et al 2004 EPSL [5] Shaw, Hauri et al., in prep [6] Luffi et al. 2009 EOS

  19. Melting of KCl and pressure calibration from in situ ionic conductivity measurements in a multi-anvil apparatus (United States)

    Li, J.; Dong, J.; Zhu, F.


    Melting plays an unparalleled role in planetary differentiation processes including the formation of metallic cores, basaltic crusts, and atmospheres. Knowledge of the melting behavior of Earth materials provides critical constraints for establishing the Earth's thermal structure, interpreting regional seismic anomalies, and understanding the nature of chemical heterogeneity. Measuring the melting points of compressed materials, however, have remained challenging mainly because melts are often mobile and reactive, and temperature and pressure gradients across millimeter or micron-sized samples introduce large uncertainties in melting detection. Here the melting curve of KCl was determined through in situ ionic conductivity measurements, using the multi-anvil apparatus at the University of Michigan. The method improves upon the symmetric configuration that was used recently for studying the melting behaviors of NaCl, Na2CO3, and CaCO3 (Li and Li 2015 American Mineralogist, Li et al. 2017 Earth and Planetary Science Letters). In the new configuration, the thermocouple and electrodes are placed together with the sample at the center of a cylindrical heater where the temperature is the highest along the axis, in order to minimize uncertainties in temperature measurements and increase the stability of the sample and electrodes. With 1% reproducibility in melting point determination at pressures up to 20 GPa, this method allows us to determine the sample pressure to oil load relationship at high temperatures during multiple heating and cooling cycles, on the basis of the well-known melting curves of ionic compounds. This approach enables more reliable pressure measurements than relying on a small number of fixed-point phase transitions. The new data on KCl bridge the gap between the piston-cylinder results up to 4 GPa (Pistorius 1965 J. of Physics and Chemistry of Solids) and several diamond-anvil cell data points above 20 GPa (Boehler et al. 1996 Physical Review). We

  20. A quasimechanism of melt acceleration in the thermal decomposition of crystalline organic solids

    Energy Technology Data Exchange (ETDEWEB)

    Henson, Bryan F [Los Alamos National Laboratory


    It has been know for half a century that many crystalline organic solids undergo an acceleration in the rate of thermal decomposition as the melting temperature is approached. This acceleration terminates at the melting point, exhibiting an Arrhenius-like temperature dependence in the faster decomposition rate from the liquid phase. This observation has been modeled previously using various premelting behaviors based on e.g. freezing point depression induced by decomposition products or solvent impurities. These models do not, however, indicate a mechanism for liquid formation and acceleration which is an inherent function of the bulk thermodynamics of the molecule. Here we show that such an inherent thermodynamic mechanism for liquid formation exists in the form of the so-called quasi-liquid layer at the solid surface. We explore a kinetic mechanism which describes the acceleration of rate and is a function of the free energies of sublimation and vaporization. We construct a differential rate law from these thermodynamic free energies and a normalized progress variable. We further construct a reduced variable formulation of the model which is a simple function of the metastable liquid activity below the melting point, and show that it is applicable to the observed melt acceleration in several common organic crystalline solids. A component of the differential rate law, zero order in the progress variable, is shown to be proportional to the thickness of the quasiliquid layer predicted by a recent thermodynamic theory for this phenomenon. This work therefore serves not only to provide new insight into thermal decomposition in a broad class or organic crystalline solids, but also further validates the underlying thermodynamic nature of the phenomenon of liquid formation on the molecular surface at temperatures below the melting point.

  1. Recent Changes in Arctic Sea Ice Melt Onset, Freeze-Up, and Melt Season Length (United States)

    Markus, Thorsten; Stroeve, Julienne C.; Miller, Jeffrey


    In order to explore changes and trends in the timing of Arctic sea ice melt onset and freeze-up and therefore melt season length, we developed a method that obtains this information directly from satellite passive microwave data, creating a consistent data set from 1979 through present. We furthermore distinguish between early melt (the first day of the year when melt is detected) and the first day of continuous melt. A similar distinction is made for the freeze-up. Using this method we analyze trends in melt onset and freeze-up for 10 different Arctic regions. In all regions except for the Sea of Okhotsk, which shows a very slight and statistically insignificant positive trend (O.4 days/decade), trends in melt onset are negative, i.e. towards earlier melt. The trends range from -1.0day/decade for the Bering Sea to -7.3 days/decade for the East Greenland Sea. Except for the Sea of Okhotsk all areas also show a trend towards later autumn freeze onset. The Chukchi/Beaufort Seas and Laptev/East Siberian Seas observe the strongest trends with 7 days/decade. For the entire Arctic, the melt season length has increased by about 20 days over the last 30 years. Largest trends of over 1O days/decade are seen for Hudson Bay, the East Greenland Sea the Laptev/East Siberian Seas, and the Chukchi/Beaufort Seas. Those trends are statistically significant a1 the 99% level.

  2. Thermal interaction in crusted melt jets with large-scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Ken-ichiro; Sotome, Fuminori; Ishikawa, Michio [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering


    The objective of the present study is to experimentally observe thermal interaction which would be capable of triggering due to entrainment, or entrapment in crusted melt jets with `large-scale structure`. The present experiment was carried out by dropping molten zinc and molten tin of 100 grams, of which mass was sufficient to generate large-scale structures of melt jets. The experimental results show that the thermal interaction of entrapment type occurs in molten-zinc jets with rare probability, and the thermal interaction of entrainment type occurs in molten tin jets with high probability. The difference of thermal interaction between molten zinc and molten tin may attribute to differences of kinematic viscosity and melting point between them. (author)

  3. Impact of melting heat transfer and nonlinear radiative heat flux mechanisms for the generalized Burgers fluids

    Directory of Open Access Journals (Sweden)

    Waqar Azeem Khan

    Full Text Available The present paper deals with the analysis of melting heat and mass transfer characteristics in the stagnation point flow of an incompressible generalized Burgers fluid over a stretching sheet in the presence of non-linear radiative heat flux. A uniform magnetic field is applied normal to the flow direction. The governing equations in dimensional form are reduced to a system of dimensionless expressions by implementation of suitable similarity transformations. The resulting dimensionless problem governing the generalized Burgers is solved analytically by using the homotopy analysis method (HAM. The effects of different flow parameters like the ratio parameter, magnetic parameter, Prandtl number, melting parameter, radiation parameter, temperature ratio parameter and Schmidt number on the velocity, heat and mass transfer characteristics are computed and presented graphically. Moreover, useful discussions in detail are carried out with the help of plotted graphs and tables. Keywords: Generalized Burgers fluid, Non-linear radiative flow, Magnetic field, Melting heat transfer

  4. Experiments on transient melting of tungsten by ELMs in ASDEX Upgrade (United States)

    Krieger, K.; Balden, M.; Coenen, J. W.; Laggner, F.; Matthews, G. F.; Nille, D.; Rohde, V.; Sieglin, B.; Giannone, L.; Göths, B.; Herrmann, A.; de Marne, P.; Pitts, R. A.; Potzel, S.; Vondracek, P.; ASDEX-Upgrade Team; EUROfusion MST1 Team


    Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the divertor manipulator II (DIM-II) system (Herrmann et al 2015 Fusion Eng. Des. 98–9 1496–9). Designed as near replicas of the geometries used also in separate experiments on the JET tokamak (Coenen et al 2015 J. Nucl. Mater. 463 78–84 Coenen et al 2015 Nucl. Fusion 55 023010; Matthews et al 2016 Phys. Scr. T167 7), the samples featured a misaligned leading edge and a sloped ridge respectively. Both structures protrude above the default target plate surface thus receiving an increased fraction of the parallel power flux. Transient melting by ELMs was induced by moving the outer strike point to the sample location. The temporal evolution of the measured current flow from the samples to vessel potential confirmed transient melting. Current magnitude and dependency from surface temperature provided strong evidence for thermionic electron emission as main origin of the replacement current driving the melt motion. The different melt patterns observed after exposures at the two sample geometries support the thermionic electron emission model used in the MEMOS melt motion code, which assumes a strong decrease of the thermionic net current at shallow magnetic field to surface angles (Pitts et al 2017 Nucl. Mater. Energy 12 60–74). Post exposure ex situ analysis of the retrieved samples show recrystallization of tungsten at the exposed surface areas to a depth of up to several mm. The melt layer transport to less exposed surface areas leads to ratcheting pile up of re-solidified debris with zonal growth extending from the already enlarged grains at the surface.

  5. A melt evolution model for Kerimasi volcano, Tanzania: Evidence from carbonate melt inclusions in jacupirangite (United States)

    Káldos, Réka; Guzmics, Tibor; Mitchell, Roger H.; Dawson, John Barry; Milke, Ralf; Szabó, Csaba


    This study presents compositional data for a statistically significant number (n = 180) of heated and quenched (recreated) carbonate melt inclusions trapped in magnetite and clinopyroxene in jacupirangite from Kerimasi volcano (Tanzania). On the basis of homogenization experiments for clinopyroxene-hosted melt inclusions and forsterite-monticellite-calcite phase relations, a range of 1000 to 900 °C is estimated for their crystallization temperatures. Petrographic observations and geochemical data show that during jacupirangite crystallization, a CaO-rich and alkali-"poor" carbonate melt (relative to Oldoinyo Lengai natrocarbonatite) existed and was entrapped in the precipitating magnetite, forming primary melt inclusions, and was also enclosed in previously crystallized clinopyroxene as secondary melt inclusions. The composition of the trapped carbonate melts in magnetite and clinopyroxene is very similar to the parental melt of Kerimasi calciocarbonatite; i.e., enriched in Na2O, K2O, F, Cl and S, but depleted in SiO2 and P2O5 relative to carbonate melts entrapped at an earlier stage and higher temperature (1050-1100 °C) during the formation of Kerimasi afrikandite. Significant compositional variation is shown by the major minerals of Kerimasi plutonic rocks (afrikandite, jacupirangite and calciocarbonatite). Magnetite and clinopyroxene in the jacupirangite are typically transitional in composition between those of afrikandite and calciocarbonatite. These data suggest that the jacupirangite represents an intermediate stage between the formation of afrikandite and calciocarbonatite. Jacupirangite most probably formed when immiscible silicate and carbonate melts separated from the afrikandite body, although the carbonate melt was not separated completely from the silicate melt fraction. In general, during the evolution of the carbonate melt at Kerimasi, concentrations of P2O5 and SiO2 decreased, whereas volatile content (alkalis, S, F, Cl and H2O) increased

  6. Colloidal glass transition in unentangled polymer nanocomposite melts

    International Nuclear Information System (INIS)

    Anderson, Benjamin J; Zukoski, Charles F


    The linear and non-linear rheology of a high volume fraction particle filled unentangled polymer melt is measured. The particles in the polymer melt behave like hard spheres as the particle volume fraction is raised. At high volume fractions, the suspension develops a plateau elastic modulus. Over the frequency range of the elastic modulus plateau, the viscous modulus develops a minimum and a maximum. The frequencies of the two local extrema initially have critical power law scaling, suggesting the approach of a singular glass transition. At higher volume fractions in excess of the glass transition, the viscous modulus continues to show a well defined minimum and a well defined maximum. The non-linear moduli show a single perturbative yield point beyond which the suspension softens. The yielding behavior of the nanocomposite is shown to be sensitive to the strain frequency and the proximity of the strain frequency to the maximum frequency for the linear viscous modulus from linear rheology which characterizes thermal relaxation of glassy particle clusters in the zero strain limit. The linear and non-linear measurements are compared against a recently developed mechanical theory for colloidal glasses.

  7. Safety rod/thimble melt failure characterization experiments

    International Nuclear Information System (INIS)

    Stoots, C.M.; Hawkes, G.L.


    The Department of Energy (DOE) requested that he INEL perform experiments to study the thermal failure characteristics of a simulated Savannah River Site nuclear reactor safety rod and its surrounding thimble assembly. An electrically heated stainless steel rod simulated a reactor safety rod located eccentrically or concentrically within a perforated aluminum guide tube or thimble. A total of 37 experiments were conducted for a range of power levels and safety rod/thimble relative orientations. Video tapes were made of the four failure tests that were conducted to the melting point of the thimble. Although the primary emphasis of the experiments were to characterize the melting of the thimble qualitatively, experimental transient measurements included heater voltage and current, heater surface temperatures, aluminum thimble temperatures, and ambient temperature. Numerical studies were also performed in support of the experiments and data interpretation. Two finite element models were created to model the heat conduction-radiation between the stainless steel heater and thimble. The predicted temperatures were in good agreement with the experimental results

  8. Pressure Melting and Ice Skating / Bunsen Burner

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Pressure Melting and Ice Skating / Bunsen Burner - Revisited. Classroom Volume 1 Issue 5 May 1996 pp 71-78. Fulltext. Click here to view fulltext PDF. Permanent link: Resonance ...

  9. Record Summer Melt in Greenland in 2010

    NARCIS (Netherlands)

    Tedesco, M.; Fettweis, X.; van den Broeke, M.R.; van de Wal, R.S.W.; Smeets, C.J.P.P.; van de Berg, W.J.; Serreze, M.C.; Box, J.E.


    As Arctic temperatures increase, there is growing concern about the melting of the Greenland ice sheet, which reached a new record during the summer of 2010. Understanding the changing surface mass balance of the Greenland ice sheet requires appreciation of the close links among changes in surface

  10. Hot-Melt Adhesive Attachment System (United States)

    Fox, R. L.; Frizzell, A. W.; Little, B. D.; Progar, D. J.; Coultrip, R. H.; Couch, R. H.; Stein, B. A.; Buckley, J. D.; St. Clair, T. L.; Gleason, J. R.


    Adhesive system is as effective on Earth as in space. Fiberglass cloth mounted in head assembly. When adhesive reaches melt temperature head is attached to metals composites, ceramics, and other materials. Once attached, head cooled rapidly for quick stick. Used to tether tools or attach temporary scaffolding to walls, buildings, or beams.

  11. Stress Relaxation in Entangled Polymer Melts

    DEFF Research Database (Denmark)

    Hou, Ji-Xuan; Svaneborg, Carsten; Everaers, Ralf


    We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements and into the t...

  12. Can Text Messages Mitigate Summer Melt? (United States)

    Castleman, Benjamin L.; Page, Lindsay C.


    Higher education officials have long been familiar with the concept of "summer melt," where students who have paid a deposit to attend one college or university instead matriculate at a different institution, usually presumed to be of comparable quality. In previous research, drawing on longitudinal data from various urban school…

  13. Radiation polymerized hot melt pressure sensitive adhesives

    International Nuclear Information System (INIS)

    Pastor, S.D.; Skoultchi, M.M.


    Hot melt pressure sensitive adhesive compositions formed by copolymerizing at least one 3-(chlorinated aryloxy)-2-hydroxypropyl ester of an alpha, beta unsaturated carboxylic acid with acrylate based copolymerizable monomers, are described. The resultant ethylenically saturated prepolymer is heated to a temperature sufficient to render it fluid and flowable. This composition is coated onto a substrate and exposed to ultraviolet radiation

  14. Catastrophic failure of polymer melts during extension

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.


    Numerical flow modeling has been applied to study the break of monodisperse polymer melts during extension. These continuum mechanical based computations are within the ideas of the microstructural ’interchain pressure’ theory. Calculated breaks, a result of small initial sample imperfections, ag...

  15. Pressure-Induced Melting of Confined Ice

    NARCIS (Netherlands)

    Sotthewes, Kai; Bampoulis, Pantelis; Zandvliet, Henricus J.W.; Lohse, Detlef; Poelsema, B.


    The classic regelation experiment of Thomson in the 1850s deals with cutting an ice cube, followed by refreezing. The cutting was attributed to pressure-induced melting but has been challenged continuously, and only lately consensus emerged by understanding that compression shortens the O:H nonbond

  16. Melting Metal on a Playing Card (United States)

    Greenslade, Thomas B., Jr.


    Many of us are familiar with the demonstration of boiling water in a paper cup held over a candle or a Bunsen burner; the ignition temperature of paper is above the temperature of 100°C at which water boils under standard conditions. A more dramatic demonstration is melting tin held in a playing card. This illustration is from Tissandier's book on…

  17. Needleless Melt-Electrospinning of Polypropylene Nanofibres

    Directory of Open Access Journals (Sweden)

    Jian Fang


    Full Text Available Polypropylene (PP nanofibres have been electrospun from molten PP using a needleless melt-electrospinning setup containing a rotary metal disc spinneret. The influence of the disc spinneret (e.g., disc material and diameter, operating parameters (e.g., applied voltage, spinning distance, and a cationic surfactant on the fibre formation and average fibre diameter were examined. It was shown that the metal material used for making the disc spinneret had a significant effect on the fibre formation. Although the applied voltage had little effect on the fibre diameter, the spinning distance affected the fibre diameter considerably, with shorter spinning distance resulting in finer fibres. When a small amount of cationic surfactant (dodecyl trimethyl ammonium bromide was added to the PP melt for melt-electrospinning, the fibre diameter was reduced considerably. The finest fibres produced from this system were 400±290 nm. This novel melt-electrospinning setup may provide a continuous and efficient method to produce PP nanofibres.

  18. Multicomponent Diffusion in Experimentally Cooled Melt Inclusions (United States)

    Saper, L.; Stolper, E.


    Glassy olivine-hosted melt inclusions are compositionally zoned, characterized by a boundary layer depleted in olivine-compatible components that extends into the melt inclusion from its wall. The boundary layer forms in response to crystallization of olivine and relaxes with time due to diffusive exchange with the interior of the inclusion. At magmatic temperatures, the time scale for homogenization of inclusions is minutes to hours. Preservation of compositional gradients in natural inclusions results from rapid cooling upon eruption. A model of MgO concentration profiles that couples crystal growth and diffusive relaxation of a boundary layer can be used to solve for eruptive cooling rates [1]. Controlled cooling-rate experiments were conducted to test the accuracy of the model. Mauna Loa olivine containing >80 µm melt inclusions were equilibrated at 1225°C in a 1-atm furnace for 24 hours, followed by linear cooling at rates of 102 - 105 °C/hr. High-resolution concentration profiles of 40 inclusions were obtained using an electron microprobe. The model of [1] fits the experimental data with low residuals and the best-fit cooling rates are within 30% of experimental values. The initial temperature of 1225 °C is underestimated by 65°C. The model was modified using (i) MELTS to calculate the interface melt composition as a function of temperature, and (ii) a concentration-dependent MgO diffusion coefficient using the functional form of [2]. With this calibration the best-fit starting temperatures are within 5°C of the experimental values and the best-fit cooling rates are within 20% of experimental rates. The evolution of the CaO profile during cooling is evidence for strong diffusive coupling between melt components. Because CaO is incompatible in olivine, CaO concentrations are expected to be elevated in the boundary layer adjacent to the growing olivine. Although this is observed at short time scales, as the profile evolves the CaO concentration near the

  19. Address Points - Allegheny County Address Points 201601 (United States)

    NSGIC Education | GIS Inventory — This dataset contains Address Points in Allegheny County. The Address Points were created by GDR for the Allegheny County CAD project, October 2008. Data is updated...

  20. Cold crucible levitation melting of biomedical Ti-30 wt%Ta alloy. (United States)

    Fukui, H; Yang, W; Yamada, S; Fujishiro, Y; Morita, A; Niinomi, M


    Recently, titanium-tantalum alloys have been studied as implant materials for dental and orthopedic surgery. However, titanium and tantalum are difficult to mix by common arc melting and induction melting, because of their high melting point and the marked difference between their densities (Ti: 1,680 degrees C, 4.5 g/cm3, Ta: 2,990 degrees C, 16.6 g/cm3). Thus, the Cold Crucible Levitation Melting (CCLM) method was chosen to produce a Ti-30 wt%Ta binary alloy in the present study. The CCLM furnace, with 1 kg capacity, consisted of a water-cooled crucible comprising oxygen-free high purity copper segments and coils wrapped around the crucible and connected to a frequency inverter power supply. A qualified ingot of 1.0 kg of Ti-30 wt%Ta alloy was obtained. The ingot was characterized from the surface quality, chemical composition distribution and microstructure, and finally the melting process was discussed.

  1. Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method (United States)

    Etesami, S. Alireza; Asadi, Ebrahim


    Availability of a reliable interatomic potential is one of the major challenges in utilizing molecular dynamics (MD) for simulations of metals at near the melting temperatures and melting point (MP). Here, we propose a novel approach to address this challenge in the concept of modified-embedded-atom (MEAM) interatomic potential; also, we apply the approach on iron, nickel, copper, and aluminum as case studies. We propose adding experimentally available high temperature elastic constants and MP of the element to the list of typical low temperature properties used for the development of MD interatomic potential parameters. We show that the proposed approach results in a reasonable agreement between the MD calculations of melting properties such as latent heat, expansion in melting, liquid structure factor, and solid-liquid interface stiffness and their experimental/computational counterparts. Then, we present the physical properties of mentioned elements near melting temperatures using the new MEAM parameters. We observe that the behavior of elastic constants, heat capacity and thermal linear expansion coefficient at room temperature compared to MP follows an empirical linear relation (α±β × MP) for transition metals. Furthermore, a linear relation between the tetragonal shear modulus and the enthalpy change from room temperature to MP is observed for face-centered cubic materials.

  2. Investigation of transient melting of tungsten by ELMs in ASDEX Upgrade (United States)

    Krieger, K.; Sieglin, B.; Balden, M.; Coenen, J. W.; Göths, B.; Laggner, F.; de Marne, P.; Matthews, G. F.; Nille, D.; Rohde, V.; Dejarnac, R.; Faitsch, M.; Giannone, L.; Herrmann, A.; Horacek, J.; Komm, M.; Pitts, R. A.; Ratynskaia, S.; Thoren, E.; Tolias, P.; ASDEX-Upgrade Team; EUROfusion MST1 Team


    Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in the tokamak experiment ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the Divertor Manipulator II system. The exposed sample was designed with an elevated sloped surface inclined against the incident magnetic field to increase the projected parallel power flux to a level were transient melting by ELMs would occur. Sample exposure was controlled by moving the outer strike point to the sample location. As extension to previous melt studies in the new experiment both the current flow from the sample to vessel potential and the local surface temperature were measured with sufficient time resolution to resolve individual ELMs. The experiment provided for the first time a direct link of current flow and surface temperature during transient ELM events. This allows to further constrain the MEMOS melt motion code predictions and to improve the validation of its underlying model assumptions. Post exposure ex situ analysis of the retrieved samples confirms the decreased melt motion observed at shallower magnetic field line to surface angles compared to that at leading edges exposed to the parallel power flux.

  3. Study of Using Solar Thermal Power for the Margarine Melting Heat Process. (United States)

    Sharaf Eldean, Mohamed A; Soliman, A M


    The heating process of melting margarine requires a vast amount of thermal energy due to its high melting point and the size of the reservoir it is contained in. Existing methods to heat margarine have a high hourly cost of production and use fossil fuels which have been shown to have a negative impact on the environment. Thus, we perform an analytical feasibility study of using solar thermal power as an alternative energy source for the margarine melting process. In this study, the efficiency and cost effectiveness of a parabolic trough collector (PTC) solar field are compared with that of a steam boiler. Different working fluids (water vapor and Therminol-VP1 heat transfer oil (HTO)) through the solar field are also investigated. The results reveal the total hourly cost ($/h) by the conventional configuration is much greater than the solar applications regardless of the type of working fluid. Moreover, the conventional configuration causes a negative impact to the environment by increasing the amount of CO 2 , CO, and NO 2 by 117.4 kg/day, 184 kg/day, and 74.7 kg/day, respectively. Optimized period of melt and tank volume parameters at temperature differences not exceeding 25 °C are found to be 8-10 h and 100 m 3 , respectively. The solar PTC operated with water and steam as the working fluid is recommended as a vital alternative for the margarine melting heating process.

  4. Focused ion beam structuring of low melting polymeric materials

    International Nuclear Information System (INIS)

    Schmied, R.


    This thesis focuses on heating effects during focused ion beam (FIB) processing of low melting polymers. The combined approach using experiments and simulations identifies the in part massive local temperatures as a convolution between intrinsic ion-matter effects and a considerable, technically-induced heating component. While the former is invariable, the latter has been minimized by an alternative process strategy which massively improves the morphological stability and minimizes chemical damage during FIB processing, thus opening new possibilities for application on sensitive, low melting materials. The study starts with systematic experimental investigations which strongly suggested the existence of a technically-induced heating component as a consequence of classically-used serpentine or raster-like patterning strategies. Based on these results, a combined simulation approach of ion trajectories and thermal spike model calculations have been employed to get a deeper insight into spatial and temporal temperature evolution. The results were then combined with the thermodynamic behavior of polymers by means of melting and volatizing temperatures. The comparison of these simulationbased predictions with real FIB experiments revealed very good agreement, proving the applicability of the approach used to describe the temperature evolution from a fundamental point of view. As a next step, these simulations were then applied to the dierent scanning strategies which further con rmed the existence of a technically-induced heating component via classically-used patterning approaches. Due to the deep insight gained via simulations, an alternative patterning strategy was developed, which was expected to minimize these avoidable influences. This new strategy was then evaluated using a multi-technique approach, which revealed strongly reduced chemical damage together with increasing morphological stabilities even for temperature-sensitive polymers. Finally, this alternative

  5. Shallow mantle melt stagnation under Gakkel Ridge (United States)

    von der Handt, A.; Snow, J. E.; Hellebrand, E.; Dick, H. J. B.; Michael, P.


    Few studies have been devoted to abyssal plagioclase peridotites, despite their relatively high abundance (30% of AP). Their origin is still unresolved, probably because intense alteration sets limits to spatially controlled geochemical analysis and obliterates textural relationships. Impregnation by a melt is the most widely accepted theory whereas other studies propose an origin by retrogression from spinel to plagioclase facies conditions. During the AMORE cruise along Gakkel Ridge in summer 2001, a dredge haul recovered spinel and plagioclase lherzolites in the axial valley of the amagmatic area. Their exceptional freshness has allowed to analyse all mineral phases. Plagioclase-bearing and -free samples are coarse-grained cpx-rich lherzolites. The plagioclase lherzolites show a wide range of modal plagioclase-contents and often showes textures related to impregnation. Noticeable are the common symplectite textures in the plagioclase peridotites, mostly opx-plag around cpx grains but also one ol-plag around cpx, suggesting a breakdown origin. The spinel lherzolites are characterised by low spinel-Cr# (˜16) and homogeneous flat cpx REE-patterns (~6 x CI). The plagioclase peridotites display strong compositional heterogeneities with pronounced core-rim variations in major and trace elements. Trace element variations in cpx show consistent correlations with textures as contact with plagioclase or symplectite formation. The An-contents of plagioclase range from 76 to 94, spinel Cr# from 10 to 48. Plagioclase trace element data reveal low concentrations for the LREE and no positive Sr-anomaly. Therefore it suggests an impregnation origin for most of the plagioclase by an already fractionated and depleted melt. Yet a minor breakdown component can be observed which was probably triggered by the impregnation. The inferred composition of this melt cannot be correlated with the nearest basalts in this region nor with a melt produced by melting of the spinel lherzolites.

  6. Local and bulk melting of Cu at grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shengnian [Los Alamos National Laboratory; Han, Li - Bo [USTC; An, Qi [USTC/CALTECH; Fu, Rong - Shan [USTC; Zheng, Lianqing [FSU


    We investigate gain boundary (GB) melting using molecular dynamics simulations on face-centered-cubic Cu bicrystals with symmetric {l_angle}110{r_angle} tilt grain boundaries. Two representative types of GBs are explored: {Sigma} = 11/(113)/50.48{sup o} (low GB energy) and {Sigma} = 27/(552)/148.41{sup o} (high GB energy). The temperature and temporal evolutions of the Cu bicrystals under stepped heating are characterized in terms of order parameters and diffusion coefficients, as ell as the nucleation and growth of melt. Within the GB region, continuous local melting precedes discontinuous bulk melting, while continuous solid state disordering may precede local melting. Premelting may occur for local melting but not for bulk melting. For {Sigma} = 11/(113)/50.48{sup o}, premelting of the GB region is negligible, and local melting occurs near the thermodynamic melting temperature. The GB region as a whole is superheated by about 13% before its bulk melting. In the case of {Sigma} = 27/(552)/148.41, considerable premelting is observed for local melting, while the bulk melting occurs with negligible superheating. The exact melting behavior of a general GB depends on the GB energy, but is likely bracketed within these two cases.

  7. The influence of partial melting and melt migration on the rheology of the continental crust (United States)

    Cavalcante, Geane Carolina G.; Viegas, Gustavo; Archanjo, Carlos José; da Silva, Marcos Egydio


    The presence of melt during deformation produces a drastic change in the rheological behavior of the continental crust; rock strength is decreased even for melt fractions as low as ∼7%. At pressure/temperature conditions typical of the middle to lower crust, melt-bearing systems may play a critical role in the process of strain localization and in the overall strength of the continental lithosphere. In this contribution we focus on the role and dynamics of melt flow in two different mid-crustal settings formed during the Brasiliano orogeny: (i) a large-scale anatectic layer in an orthogonal collision belt, represented by the Carlos Chagas anatexite in southeastern Brazil, and (ii) a strike-slip setting, in which the Espinho Branco anatexite in the Patos shear zone (northeast Brazil) serves as an analogue. Both settings, located in eastern Brazil, are part of the Neoproterozoic tectonics that resulted in widespread partial melting, shear zone development and the exhumation of middle to lower crustal layers. These layers consist of compositionally heterogeneous anatexites, with variable former melt fractions and leucosome structures. The leucosomes usually form thick interconnected networks of magma that reflect a high melt content (>30%) during deformation. From a comparison of previous work based on detailed petrostructural and AMS studies of the anatexites exposed in these areas, we discuss the rheological implications caused by the accumulation of a large volume of melt ;trapped; in mid-crustal levels, and by the efficient melt extraction along steep shear zones. Our analyses suggest that rocks undergoing partial melting along shear settings exhibit layers with contrasting competence, implying successive periods of weakening and strengthening. In contrast, regions where a large amount of magma accumulates lack clear evidence of competence contrast between layers, indicating that they experienced only one major stage of dramatic strength drop. This comparative

  8. Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor (United States)

    Golliher, Eric L.; Gotti, Daniel J.; Rymut, Joseph Edward; Nguyen, Brian K; Owens, Jay C.; Pace, Gregory S.; Fisher, John W.; Hong, Andrew E.


    This paper will discuss the status of microgravity analysis and testing for the development of a Heat Melt Compactor (HMC). Since fluids behave completely differently in microgravity, the evaporation process for the HMC is expected to be different than in 1-g. A thermal model is developed to support the design and operation of the HMC. Also, low-gravity aircraft flight data is described to assess the point at which water may be squeezed out of the HMC during microgravity operation. For optimum heat transfer operation of the HMC, the compaction process should stop prior to any water exiting the HMC, but nevertheless seek to compact as much as possible to cause high heat transfer and therefore shorter evaporation times.

  9. Investigation on contact melting of Cu/Al laminated composite

    Energy Technology Data Exchange (ETDEWEB)

    Pronicheva, D.V.; Gurevicha, L.M.; Trykova, Y.P.; Trunov, M.D.


    The study presents investigation of chemical composition, microhardness and electrical conductivity of Cu/Al laminated metal composite after heat treatment at temperatures higher than Cu–Al eutectic melting point. The Cu/Al bimetal was obtained via explosion welding. Chemical composition of the material after heat treatments was identified using EDS analysis. Eddy current testing was applied to investigate electrical conductivity of the composite’s components. Strain-hardened zones were identified in the explosion welded composite. The experimental value of electrical conductivity of explosion welded composite was in good coherence with calculated by additivity rule results. Heat treatments resulted in the formation of multiple interlayers which had high microhardness value and had intermetallics in composition. The electrical conductivity of the identified interlayers was significantly lower than of Cu and Al. (Author)

  10. Can Nano-Particle Melt below the Melting Temperature of Its Free Surface Partner?

    International Nuclear Information System (INIS)

    Sui Xiao-Hong; Qin Shao-Jing; Wang Zong-Guo; Kang Kai; Wang Chui-Lin


    The phonon thermal contribution to the melting temperature of nano-particles is inspected. The discrete summation of phonon states and its corresponding integration form as an approximation for a nano-particle or for a bulk system have been analyzed. The discrete phonon energy levels of pure size effect and the wave-vector shifts of boundary conditions are investigated in detail. Unlike in macroscopic thermodynamics, the integration volume of zero-mode of phonon for a nano-particle is not zero, and it plays an important role in pure size effect and boundary condition effect. We find that a nano-particle will have a rising melting temperature due to purely finite size effect; a lower melting temperature bound exists for a nano-particle in various environments, and the melting temperature of a nano-particle with free boundary condition reaches this lower bound. We suggest an easy procedure to estimation the melting temperature, in which the zero-mode contribution will be excluded, and only several bulk quantities will be used as input. We would like to emphasize that the quantum effect of discrete energy levels in nano-particles, which is not present in early thermodynamic studies on finite size corrections to melting temperature in small systems, should be included in future researches. (condensed matter: structural, mechanical, and thermal properties)

  11. Sea Ice Melt Pond Data from the Canadian Arctic (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains observations of albedo, depth, and physical characteristics of melt ponds on sea ice, taken during the summer of 1994. The melt ponds studied...

  12. Improved procedures for separating crystals from the melt

    NARCIS (Netherlands)

    Verdoes, D.; Arkenbout, G.J.; Bruinsma, O.S.L.; Koutsoukos, P.G.; Ulrich, J.


    Innovative separation techniques like melt crystallization have the potential to fulfil two important demands, namely: a significant reduction of energy consumption by the chemical industry, and the production of high quality products required by industry. Several industrial applications of melt

  13. Causes of Glacier Melt Extremes in the Alps Since 1949 (United States)

    Thibert, E.; Dkengne Sielenou, P.; Vionnet, V.; Eckert, N.; Vincent, C.


    Recent record-breaking glacier melt values are attributable to peculiar extreme events and long-term warming trends that shift averages upward. Analyzing one of the world's longest mass balance series with extreme value statistics, we show that detrending melt anomalies makes it possible to disentangle these effects, leading to a fairer evaluation of the return period of melt extreme values such as 2003, and to characterize them by a more realistic bounded behavior. Using surface energy balance simulations, we show that three independent drivers control melt: global radiation, latent heat, and the amount of snow at the beginning of the melting season. Extremes are governed by large deviations in global radiation combined with sensible heat. Long-term trends are driven by the lengthening of melt duration due to earlier and longer-lasting melting of ice along with melt intensification caused by trends in long-wave irradiance and latent heat due to higher air moisture.

  14. Students' Understanding of Boiling Points and Intermolecular Forces (United States)

    Schmidt, Hans-Jurgen; Kaufmann, Birgit; Treagust, David F.


    In introductory chemistry courses students are presented with the model that matter is composed of particles, and that weak forces of attraction exist between them. This model is used to interpret phenomena such as solubility and melting points, and aids in understanding the changes in states of matter as opposed to chemical reactions. We…

  15. Efficient approach to compute melting properties fully from ab initio with application to Cu (United States)

    Zhu, Li-Fang; Grabowski, Blazej; Neugebauer, Jörg


    Applying thermodynamic integration within an ab initio-based free-energy approach is a state-of-the-art method to calculate melting points of materials. However, the high computational cost and the reliance on a good reference system for calculating the liquid free energy have so far hindered a general application. To overcome these challenges, we propose the two-optimized references thermodynamic integration using Langevin dynamics (TOR-TILD) method in this work by extending the two-stage upsampled thermodynamic integration using Langevin dynamics (TU-TILD) method, which has been originally developed to obtain anharmonic free energies of solids, to the calculation of liquid free energies. The core idea of TOR-TILD is to fit two empirical potentials to the energies from density functional theory based molecular dynamics runs for the solid and the liquid phase and to use these potentials as reference systems for thermodynamic integration. Because the empirical potentials closely reproduce the ab initio system in the relevant part of the phase space the convergence of the thermodynamic integration is very rapid. Therefore, the proposed approach improves significantly the computational efficiency while preserving the required accuracy. As a test case, we apply TOR-TILD to fcc Cu computing not only the melting point but various other melting properties, such as the entropy and enthalpy of fusion and the volume change upon melting. The generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional and the local-density approximation (LDA) are used. Using both functionals gives a reliable ab initio confidence interval for the melting point, the enthalpy of fusion, and entropy of fusion.

  16. A 2D double-porosity model for melting and melt migration beneath mid-oceanic ridges (United States)

    Liu, B.; Liang, Y.; Parmentier, E.


    Several lines of evidence suggest that the melting and melt extraction region of the MORB mantle is heterogeneous consisting of an interconnected network of high permeability dunite channels in a low porosity harzburgite or lherzolite matrix. In principle, one can include channel formation into the tectonic-scale geodynamic models by solving conservation equations for a chemically reactive and viscously deformable porous medium. Such an approach eventually runs into computational limitations such as resolving fractal-like channels that have a spectrum of width. To better understand first order features of melting and melt-rock interaction beneath MOR, we have formulated a 2D double porosity model in which we treat the triangular melting region as two overlapping continua occupied by the low-porosity matrix and interconnected high-porosity channels. We use melt productivity derived from a thermodynamic model and melt suction rate to close our problem. We use a high-order accurate numerical method to solve the conservation equations in 2D for porosity, solid and melt velocities and concentrations of chemical tracers in the melting region. We carry out numerical simulations to systematically study effects of matrix-to-channel melt suction and spatially distributed channels on the distributions of porosity and trace element and isotopic ratios in the melting region. For near fractional melting with 10 vol% channel in the melting region, the flow field of the matrix melt follows closely to that of the solid because the small porosity (exchange between the melt and the solid. The smearing effect can be approximated by dispersion coefficient. For slowly diffusing trace elements (e.g., LREE and HFSE), the melt migration induced dispersion can be as effective as thermal diffusion. Therefore, sub-kilometer scale heterogeneities of Nd and Hf isotopes are significantly damped or homogenized in the melting region.

  17. Electrochemistry of silicon in chloro-fluoride and carbonate melts

    Directory of Open Access Journals (Sweden)

    Devyatkin S.V.


    Full Text Available The electrochemical behavior of K2SiF6 in chloro-fluoride melts and that of SiO2 in carbonate melts has been studied. Silicon, titanium silicides, boron silicide and ternary compounds Ti-Si-B have been deposited from chloro-fluoride melts. Only SiC was deposited from carbonate-silica melts under carbon dioxide atmosphere (that is, excessive pressure of CO2.

  18. Nanoparticle-induced unusual melting and solidification behaviours of metals


    Ma, Chao; Chen, Lianyi; Cao, Chezheng; Li, Xiaochun


    Effective control of melting and solidification behaviours of materials is significant for numerous applications. It has been a long-standing challenge to increase the melted zone (MZ) depth while shrinking the heat-affected zone (HAZ) size during local melting and solidification of materials. In this paper, nanoparticle-induced unusual melting and solidification behaviours of metals are reported that effectively solve this long-time dilemma. By introduction of Al2O3 nanoparticles, the MZ dep...

  19. Investigating the vortex melting phenomenon in BSCCO crystals ...

    Indian Academy of Sciences (India)

    To study the fluctuations in the local melting temperature/field, we have constructed maps of the melting landscape m(, ), viz., the melting temperature (m) at ... Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot 76100, Israel; Department of Applied Physics, The University of Tokyo, ...

  20. Melt flow characteristics in gas-assisted laser cutting

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. We present a study on laser cutting of mild steel with oxygen as an assist gas. We correlate the cut surface quality with the melt film thickness. We estimate the optimum pressure required for melt ejection under laminar flow regime. The thickness of melt film inside the kerf is estimated using mass balance and the ...

  1. Investigation of the stability of melt flow in gating systems

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Larsen, Per


    Melt flow in four different gating systems designed for production of brake discs was analysed experimentally and by numerical modelling. In the experiments moulds were fitted with glass fronts and melt flow was recorded on video. The video recordings were compared with modelling of melt flow in ...

  2. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole


    The start-up and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 and 103 kg/mole, and for three bidisperse polystyrene melts. The monodisperse melts show a maximum in the steady elongational viscosity vs. the elongational...

  3. Melt pool vorticity in deep penetration laser material welding

    Indian Academy of Sciences (India)

    this value, convective heat transfer indicates melting and evaporation occurring in the weld pool during laser ... while surface tension and hydrostatic pressure help to retain the melt in the keyhole cavity in this high .... so does the strength of the shock wave and the Mach angle becomes increasingly narrow. As the melt flow ...

  4. Solidification and Re-melting Phenomena During Slurry Preparation Using the RheoMetal™ Process (United States)

    Payandeh, M.; Sabzevar, Mohsen Haddad; Jarfors, A. E. W.; Wessén, M.


    The melting sequence of the enthalpy exchange material (EEM) and formation of a slurry in the RheoMetal™ process was investigated. The EEM was extracted and quenched, together with a portion of the slurry at different processing times before complete melting. The EEM initially increased in size/diameter due to melt freezing onto its surface, forming a freeze- on layer. The initial growth of this layer was followed by a period of a constant diameter of the EEM with subsequent melting and decrease of diameter. Microstructural characterization of the size and morphology of different phases in the EEM and in the freeze-on layer was made. Dendritic equiaxed grains and eutectic regions containing Si particles and Cu-bearing particles and Fe-rich particles were observed in the as-cast EEM. The freeze-on layer consisted of dendritic aluminum tilted by about 30 deg in the upstream direction, caused by the rotation of the EEM. Energy dispersion spectroscopy analysis showed that the freeze-on layer had a composition corresponding to an alloy with higher melting point than the EEM and thus shielding the EEM from the surrounding melt. Microstructural changes in the EEM showed that temperature rapidly increased to 768 K (495 °C), indicated by incipient melting of the lowest temperature melting eutectic in triple junction grain boundary regions with Al2Cu and Al5Mg8Si6Cu2 phases present. As the EEM temperature increased further the binary Al-Si eutectic started to melt to form a region of a fully developed coherent mushy state. Experimental results and a thermal model indicated that as the dendrites spheroidized near to the interface at the EEM/freeze-on layer reached a mushy state with 25 pct solid fraction, coherency was lost and disintegration of the freeze-on layer took place. Subsequently, in the absence of the shielding effect from the freeze-on Layer, the EEM continued to disintegrate with a coherency limit of a solid fraction estimated to be 50 pct.

  5. Melting of metallic intermediate level waste

    International Nuclear Information System (INIS)

    Huutoniemi, Tommi; Larsson, Arne; Blank, Eva


    This report presents a feasibility study of a melting facility for core components and reactor internals. An overview is given of how such a facility for treatment of intermediate level waste might be designed, constructed and operated and highlights both the possibilities and challenges. A cost estimate and a risk analysis are presented in order to make a conclusion of the technical feasibility of such a facility. Based on the authors' experience in operating a low level waste melting facility, their conclusion is that without technical improvements such a facility is not feasible today. This is based on the cost of constructing and operating such a facility, in conjunction with the radiological risks associated with operation and the uncertain benefits to disposal and long term safety

  6. Detection of structural heterogeneity of glass melts

    DEFF Research Database (Denmark)

    Yue, Yuanzheng


    The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One...... is discussed. The ordered structure of glass melts above the liquidus temperature is indirectly characterized by use of X-ray diffraction method. The new approaches are of importance for monitoring the glass melting and forming process and for improving the physical properties of glasses and glass fibers....... is the hyperquench-anneal-calorimetric scan approach, by which the structural information of a basaltic supercooled liquid and three binary silicate liquids is acquired. Another is the calorimetrically repeated up- and downscanning approach, by which the structural heterogeneity, the intermediate range order...

  7. Melting of metallic intermediate level waste

    Energy Technology Data Exchange (ETDEWEB)

    Huutoniemi, Tommi; Larsson, Arne; Blank, Eva [Studsvik Nuclear AB, Nykoeping (Sweden)


    This report presents a feasibility study of a melting facility for core components and reactor internals. An overview is given of how such a facility for treatment of intermediate level waste might be designed, constructed and operated and highlights both the possibilities and challenges. A cost estimate and a risk analysis are presented in order to make a conclusion of the technical feasibility of such a facility. Based on the authors' experience in operating a low level waste melting facility, their conclusion is that without technical improvements such a facility is not feasible today. This is based on the cost of constructing and operating such a facility, in conjunction with the radiological risks associated with operation and the uncertain benefits to disposal and long term safety.

  8. Stress Relaxation in Entangled Polymer Melts

    DEFF Research Database (Denmark)

    Hou, Ji-Xuan; Svaneborg, Carsten; Everaers, Ralf


    We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements and into the t......We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements...... excellent agreement for the Likhtman-McLeish theory using the double reptation approximation for constraint release, if we remove the contribution of high-frequency modes to contour length fluctuations of the primitive chain....

  9. BWR core melt progression phenomena: Experimental analyses

    International Nuclear Information System (INIS)

    Ott, L.J.


    In the BWR Core Melt in Progression Phenomena Program, experimental results concerning severe fuel damage and core melt progression in BWR core geometry are used to evaluate existing models of the governing phenomena. These include control blade eutectic liquefaction and the subsequent relocation and attack on the channel box structure; oxidation heating and hydrogen generation; Zircaloy melting and relocation; and the continuing oxidation of zirconium with metallic blockage formation. Integral data have been obtained from the BWR DF-4 experiment in the ACRR and from BWR tests in the German CORA exreactor fuel-damage test facility. Additional integral data will be obtained from new CORA BWR test, the full-length FLHT-6 BWR test in the NRU test reactor, and the new program of exreactor experiments at Sandia National Laboratories (SNL) on metallic melt relocation and blockage formation. an essential part of this activity is interpretation and use of the results of the BWR tests. The Oak Ridge National Laboratory (ORNL) has developed experiment-specific models for analysis of the BWR experiments; to date, these models have permitted far more precise analyses of the conditions in these experiments than has previously been available. These analyses have provided a basis for more accurate interpretation of the phenomena that the experiments are intended to investigate. The results of posttest analyses of BWR experiments are discussed and significant findings from these analyses are explained. The ORNL control blade/canister models with materials interaction, relocation and blockage models are currently being implemented in SCDAP/RELAP5 as an optional structural component

  10. In vessel core melt progression phenomena

    International Nuclear Information System (INIS)

    Courtaud, M.


    For all light water reactor (LWR) accidents, including the so called severe accidents where core melt down can occur, it is necessary to determine the amount and characteristics of fission products released to the environment. For existing reactors this knowledge is used to evaluate the consequences and eventual emergency plans. But for future reactors safety authorities demand decrease risks and reactors designed in such a way that fission products are retained inside the containment, the last protective barrier. This requires improved understanding and knowledge of all accident sequences. In particular it is necessary to be able to describe the very complex phenomena occurring during in vessel core melt progression because they will determine the thermal and mechanical loads on the primary circuit and the timing of its rupture as well as the fission product source term. On the other hand, in case of vessel failure, knowledge of the physical and chemical state of the core melt will provide the initial conditions for analysis of ex-vessel core melt progression and phenomena threatening the containment. Finally a good understanding of in vessel phenomena will help to improve accident management procedures like Emergency Core Cooling System water injection, blowdown and flooding of the vessel well, with their possible adverse effects. Research and Development work on this subject was initiated a long time ago and is still in progress but now it must be intensified in order to meet the safety requirements of the next generation of reactors. Experiments, limited in scale, analysis of the TMI 2 accident which is a unique source of global information and engineering judgment are used to establish and assess physical models that can be implemented in computer codes for reactor accident analysis

  11. Conditioning of nuclear cladding wastes by melting

    International Nuclear Information System (INIS)

    Puyou, M.; Jouan, A.; Jacquet-Francillon, N.


    This paper discusses a cold-crucible induction melting process to condition cladding waste from irradiated fast breeder reactor fuel. The process has been developed by the CEA at Marcoule (France) as part of a major R and D program. It has been qualified at industrial scale on nonradioactive waste, and at laboratory scale on radioactive waste: several radioactive ingots have been produced from actual stainless steel or zircaloy hulls. The results confirm the numerous advantages of this containment method

  12. Holographic picture of heavy vector meson melting

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Nelson R.F.; Diles, Saulo [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil); Martin Contreras, Miguel Angel [Universidad de los Andes, High Energy Group, Department of Physics, Bogota (Colombia)


    The fraction of heavy vector mesons produced in a heavy ion collision, as compared to a proton-proton collision, serves as an important indication of the formation of a thermal medium, the quark-gluon plasma. This sort of analysis strongly depends on understanding the thermal effects of a medium like the plasma on the states of heavy mesons. In particular, it is crucial to know the temperature ranges where they undergo a thermal dissociation, or melting. AdS/QCD models are know to provide an important tool for the calculation of hadronic masses, but in general are not consistent with the observation that decay constants of heavy vector mesons decrease with excitation level. It has recently been shown that this problem can be overcome using a soft wall background and introducing an extra energy parameter, through the calculation of correlation functions at a finite position of anti-de Sitter space. This approach leads to the evaluation of masses and decay constants of S wave quarkonium states with just one flavor dependent and one flavor independent parameter. Here we extend this more realistic model to finite temperatures and analyze the thermal behavior of the states 1S, 2S and 3S of bottomonium and charmonium. The corresponding spectral function exhibits a consistent picture for the melting of the states where, for each flavor, the higher excitations melt at lower temperatures. We estimate for these six states the energy ranges in which the heavy vector mesons undergo a transition from a well-defined peak in the spectral function to complete melting in the thermal medium. A very clear distinction between the heavy flavors emerges, with the bottomonium state Υ(1S) surviving a deconfinement transition at temperatures much larger than the critical deconfinement temperature of the medium. (orig.)

  13. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meihui [Univ. of California, Berkeley, CA (United States)


    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na2S4 and Na2S5 were measured as a function of temperature (range: 300 to 360°C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  14. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Meihui Wang.


    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na{sub 2}S{sub 4} and Na{sub 2}S{sub 5} were measured as a function of temperature (range: 300 to 360{degree}C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  15. "Chemical contraction" in rubidium-bismuth melts (United States)

    Khairulin, R. A.; Abdullaev, R. N.; Stankus, S. V.


    The density and thermal expansion of liquid rubidium and rubidium-bismuth alloy containing 25.0 at % Bi were measured by the gamma-ray attenuation technique at temperatures from liquidus to 1000 K. The results of this study were compared with the data obtained by other authors. The molar volume of the Rb75Bi25 melt strongly deviates from the additivity rule for ideal solutions.

  16. Vacuum induction melting of uranium ingots

    International Nuclear Information System (INIS)

    Hussain, M.M.; Bagchi, S.N.; Singh, S.P.


    Massive uranium ingot is produced from green salt (UF 4 ) using calciothermic reduction (CTR) or magnesiothermic reduction (MTR) process. CTR process has been replaced by MTR process at Trombay due to economic considerations. This paper highlights problems associated with the vacuum induction melting of MTR ingots and the remedial measures taken to produce good quality billets. Details of metallographic examination of inclusions in ingots and billets have been incorporated. (author). 3 figs

  17. Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite (United States)

    Grove, Timothy L.; Holbig, Eva S.; Barr, Jay A.; Till, Christy B.; Krawczynski, Michael J.


    Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.

  18. Electric melting furnace for waste solidification

    International Nuclear Information System (INIS)

    Masaki, Toshio.


    To avoid electric troubles or reduction of waste processing performance even when platinum group elements are contained in wastes to be applied with glass solidification. For this purpose, a side electrode is disposed to the side wall of a melting vessel and a central electrode serving as a counter electrode is disposed about at the center inside the melting vessel. With such a constitution, if conductive materials are deposited at the bottom of the furnace or the bottom of the melting vessel, heating currents flow selectively between the side electrode and the central electrode. Accordingly, no electric currents flow through the conductive deposits thereby enabling to prevent abnormal heating in the bottom of the furnace. Further, heat generated by electric supply between the side electrode and the central electrode is supplied efficiently to raw material on the surface of the molten glass liquid to improve the processing performance. Further, disposition of the bottom electrode at the bottom of the furnace enables current supply between the central electrode and the bottom electrode to facilitate the temperature control for the molten glass in the furnace than in the conventional structure. (I.S.)

  19. The kinetic fragility of natural silicate melts

    International Nuclear Information System (INIS)

    Giordano, Daniele; Dingwell, Donald B


    Newtonian viscosities of 19 multicomponent natural and synthetic silicate liquids, with variable contents of SiO 2 (41-79 wt%), Al 2 O 3 (10-19 wt%), TiO 2 (0-3 wt%), FeO tot (0-11 wt%); alkali oxides (5-17 wt%), alkaline-earth oxides (0-35 wt%), and minor oxides, obtained at ambient pressure using the high-temperature concentric cylinder, the low-temperature micropenetration, and the parallel plates techniques, have been analysed. For each silicate liquid, regression of the experimentally determined viscosities using the well known Vogel-Fulcher-Tammann (VFT) equation allowed the viscosity of all these silicates to be accurately described. The results of these fits, which provide the basis for the subsequent analysis here, permit qualitative and quantitative correlations to be made between the VFT adjustable parameters (A VFT , B VFT , and T 0 ). The values of B VFT and T 0 , calibrated via the VFT equation, are highly correlated. Kinetic fragility appears to be correlated with the number of non-bridging oxygens per tetrahedrally coordinated cation (NBO/T). This is taken to infer that melt polymerization controls melt fragility in liquid silicates. Thus NBO/T might form an useful ingredient of a structure-based model of non-Arrhenian viscosity in multicomponent silicate melts

  20. Melt processing of Yb-123 tapes

    International Nuclear Information System (INIS)

    Athur, S. P.; Balachandran, U.; Salama, K.


    The innovation of a simple, scalable process for manufacturing long-length conductors of HTS is essential to potential commercial applications such as power cables, magnets, and transformers. In this paper the authors demonstrate that melt processing of Yb-123 tapes made by the PIT route is an alternative to the coated conductor and Bi-2223 PIT tape fabrication techniques. Ag-clad Yb-123 tapes were fabricated by groove rolling and subsequently, melt processed in different oxygen partial pressures in a zone-melting furnace with a gradient of 140 C/cm. The transition temperatures measured were found to be around 81 K undermost processing conditions. EPMA of the tapes processed under different conditions show the 123 phase to be Ba deficient and Cu and Yb rich. Critical current was measured at various temperatures from 77 K to 4.2 K. The J c increased with decrease in pO 2 . The highest I c obtained was 52 A at 4.2 K

  1. Vortex lattice melting, pinning and kinetics

    International Nuclear Information System (INIS)

    Doniach, S.; Ryu, S.; Kapitulnik, A.


    The phenomenology of the high T c superconductors is discussed both at the level of the thermodynamics of melting of the Abrikosov flux lattice and in terms of the melting and kinetics of the flux lattice for a pinned system. The authors review results on 3D melting obtained by a Monte Carlo simulation approach in which the 2D open-quotes pancakeclose quotes vortices are treated as statistical variables. The authors discuss pinning in the context of the strong pinning regime in which the vortex density given in terms of the applied field B is small compared to that represented by an effective field B pin measuring the pinning center density. The authors introduce a new criterion for the unfreezing of a vortex glass on increase of magnetic field or temperature, in the strong pinning, small field unit. The authors model this limit in terms of a single flux line interacting with a columnar pin. This model is studied both analytically and by computer simulation. By applying a tilt potential, the authors study the kinetics of the vortex motion in an external current and show that the resulting current-voltage characteristic follows a basic vortex glass-like scaling relation in the vicinity of the depinning transition

  2. Rapid-melt Dynamic Nuclear Polarization (United States)

    Sharma, M.; Janssen, G.; Leggett, J.; Kentgens, A. P. M.; van Bentum, P. J. M.


    In recent years, Dynamic Nuclear Polarization (DNP) has re-emerged as a means to ameliorate the inherent problem of low sensitivity in nuclear magnetic resonance (NMR). Here, we present a novel approach to DNP enhanced liquid-state NMR based on rapid melting of a solid hyperpolarized sample followed by 'in situ' NMR detection. This method is applicable to small (10 nl to 1 μl) sized samples in a microfluidic setup. The method combines generic DNP enhancement in the solid state with the high sensitivity of stripline 1 H NMR detection in the liquid state. Fast cycling facilitates options for signal averaging or 2D structural analysis. Preliminary tests show solid-state 1 H enhancement factors of up to 500 for H2O/D2O/d6-glycerol samples doped with TEMPOL radicals. Fast paramagnetic relaxation with nitroxide radicals, In nonpolar solvents such as toluene, we find proton enhancement factors up to 400 with negligible relaxation losses in the liquid state, using commercially available BDPA radicals. A total recycling delay (including sample freezing, DNP polarization and melting) of about 5 s can be used. The present setup allows for a fast determination of the hyper-polarization as function of the microwave frequency and power. Even at the relatively low field of 3.4 T, the method of rapid melting DNP can facilitate the detection of small quantities of molecules in the picomole regime.

  3. July 2012 Greenland melt extent enhanced by low-level liquid clouds. (United States)

    Bennartz, R; Shupe, M D; Turner, D D; Walden, V P; Steffen, K; Cox, C J; Kulie, M S; Miller, N B; Pettersen, C


    Melting of the world's major ice sheets can affect human and environmental conditions by contributing to sea-level rise. In July 2012, an historically rare period of extended surface melting was observed across almost the entire Greenland ice sheet, raising questions about the frequency and spatial extent of such events. Here we show that low-level clouds consisting of liquid water droplets ('liquid clouds'), via their radiative effects, played a key part in this melt event by increasing near-surface temperatures. We used a suite of surface-based observations, remote sensing data, and a surface energy-balance model. At the critical surface melt time, the clouds were optically thick enough and low enough to enhance the downwelling infrared flux at the surface. At the same time they were optically thin enough to allow sufficient solar radiation to penetrate through them and raise surface temperatures above the melting point. Outside this narrow range in cloud optical thickness, the radiative contribution to the surface energy budget would have been diminished, and the spatial extent of this melting event would have been smaller. We further show that these thin, low-level liquid clouds occur frequently, both over Greenland and across the Arctic, being present around 30-50 per cent of the time. Our results may help to explain the difficulties that global climate models have in simulating the Arctic surface energy budget, particularly as models tend to under-predict the formation of optically thin liquid clouds at supercooled temperatures--a process potentially necessary to account fully for temperature feedbacks in a warming Arctic climate.

  4. Contrasting melt equilibration conditions across Anatolia (United States)

    Reid, Mary; Delph, Jonathan; Schleiffarth, W. Kirk; Cosca, Michael


    The widespread mafic volcanism, elevated crustal temperatures, and plateau-type topography in Central Anatolia, Turkey, could collectively be the result of lithospheric delamination, mantle upwelling, and tectonic escape in response to Arabian-Anatolian plate collision. We used the results from basalt geochemistry and a passive-source broadband seismic experiment obtained as part of an international collaborative effort (Continental Dynamics - Central Anatolia Tectonics) to investigate the crust-mantle structure and melting conditions associated with the Quaternary Hasandag Monogenic Cluster (HMC) south and west of Hasandag volcano. The HMC is unusually mafic, not only for Central Anatolia but globally, enabling meaningful comparisons between geochemical and seismic interpretations of mantle conditions. HMC basalts are characterized by orogenic signatures that could have originated (1) in mantle wedge that, after stagnating because of collision, was remobilized south and upward as a result of rollback of the African slab or, alternatively (2) by piecemeal foundering of residual mantle lithosphere into convecting upper mantle, producing small-scale convection and associated decompression melting. Melt equilibration conditions for the HMC are hot (TP ˜1335-1250˚ C, assuming 1-4 wt.% H2O) and shallow (P = 1.1 to 1.6 GPa), approaching those for MORB. Shear wave velocities are relatively constant at ˜4.1 km/s between the Moho and a depth of ˜45-50 km (˜1.4 GPa; Fig. 6), below which Vs increases with increasing depth. We infer that a melt-perfused mantle lid could be locally present between 40 and 55 km. In contrast to Central Anatolia, estimated equilibration conditions for Western Anatolia and Eastern Anatolia (east of the Inner Tauride Suture) mantle melts are hotter (by ≥60˚ C) and deeper (mostly by 0.6-1.0 GPa). They also have chemical signatures that, unlike Central Anatolia, are similar to those of intraplate basalts. These differences are likely related

  5. Quantifying variant differences in DNA melting curves: Effects of length, melting rate, and curve overlay. (United States)

    Li, M; Palais, R A; Zhou, L; Wittwer, C T


    High resolution DNA melting of PCR products is a simple technique for sequence variant detection and analysis. However, sensitivity and specificity vary and depend on many factors that continue to be defined. We introduce the area between normalized melting curves as a metric to quantify genotype discrimination. The effects of amplicon size (51-547 bp), melting rate (0.01-0.64 °C/s) and analysis method (curve shape by overlay vs absolute temperature differences) were qualitatively and quantitatively analyzed. To limit experimental variance, we studied a single nucleotide variant with identical predicted wild type and homozygous variant stabilities by nearest neighbor thermodynamic theory. Heterozygotes were easier to detect in smaller amplicons, at faster melting rates, and after curve overlay (superimposition), with some p-values overlay, PCR product size, and analysis method is complicated for homozygote genotype discrimination and is difficult to predict. Similar to temperature cycling in PCR, if the temperature control and temperature homogeneity of the solution are adequate, faster rates improve melting analysis, just like faster rates improve PCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Crystallization, recrystallization, and melting lines in syndiotactic polypropylene crystallized from quiescent melt and semicrystalline state due to stress-induced localized melting and recrystallization. (United States)

    Lu, Ying; Wang, Yaotao; Fu, Lianlian; Jiang, Zhiyong; Men, Yongfeng


    Crystalline lamellar thickness in syndiotactic polypropylene (sPP) during crystallization from either isothermal molten or stretching induced localized melt states and during subsequent heating was investigated by means of temperature dependent small-angle X-ray scattering techniques. Well-defined crystallization lines where the reciprocal lamellar thickness is linearly dependent on crystallization temperature were observed. Unlike in the case of polybutene-1 where stretching crystallization line was shifted to direction of much smaller lamellar thickness (Macromolecules 2013, 46, 7874), the stretching induced crystallization line for sPP deviates from its corresponding isothermal crystallization line only slightly. Such phenomenon could be attributed to the fact that both crystallization processes from quiescent melt and stress induced localized melt are mediated in a mesomorphic phase in sPP. Subsequent heating of sPP after crystallization revealed the same melting behavior in both systems for the two kinds of crystallites obtained from either quiescent melt or stretching induced localized melt. Both of them underwent melting and recrystallization when the lamellar thickness was smaller than a critical value and melting directly without changing in thickness when the lamellar thickness was larger than the critical value. The melting behavior in sPP systems can be understood by considering the chain relaxation ability within crystalline phase and also can be used as evidence that the crystallization from molten state and stress-induced crystallization passed through the intermediate phase before forming crystallites.

  7. Melting and Its Influence on the Long-term Evolution of the Lower Mantle Heterogeneities (LLSVP and ULVZ) (United States)

    Fomin, I.; Tackley, P. J.


    Recent investigations have shown mantle solidus close to the range of proposed core-mantle boundary (CMB) temperatures (e.g. [Andrault et al., 2011, 2014], [de Koker et al., 2013]). Certain fraction of distinct rocks may reduce the effective melting temperature to values below the CMB temperature. It is especially true for iron enriched materials such as MORB [Nomura et al., 2011], BIF [Kato et al., 2016], iron-rich periclase [Boukare et al., 2015] and other rock species used to explain observed seismic anomalies. Computer simulations allow to study evolution and stability for chemically distinct piles proposed from geophysical data. Previous researches (e.g. [Mulyukova et al., 2015]) found those piles stirring in several hundreds of Ma. Our investigation adds influence of melting and following chemical differentiation on preservation of such structures.We present StagYY code [Tackley et al., 2008] with extended set of routines to model melting, melt redistribution and melt-dependent rheology in addition to solid-state mantle convection to reveal fate of chemically distinct piles in long-term (millions of years) perspective. A new point of our approach is usage of chemically independent oxides to describe rock composition and physical properties. Thin layers homogenize in few tens of millions of years despite whether melting happens or not. Thick structures (like periclase piles proposed for ULVZ [Wicks et al., 2010] or MORB-bearing domes for LLSVP [Ohta et al., 2008]) undergo partial melting if CMB temperature is above 3700K. Melt migration results in extraction of fusible components and therefore segregation of iron-enriched material. However, we weren't able to obtain any stabilized layer of iron-rich partially molten material at the CMB, because ongoing interaction and reequilibration of melt and solid results in buoyant liquids spreading to the adjacent mantle. Rheological influence of melt on bulk rock properties reduces time pile can exist.Our modeling puts

  8. Melting heat transport of nanofluidic problem over a Riga plate with erratic thickness: Use of Keller Box scheme

    Directory of Open Access Journals (Sweden)

    Z. Iqbal

    Full Text Available Present article is a study of stagnation point flow over Riga plate with erratic thickness. Riga plate is an electromagnetic surface in which electrodes are assembled alternatively. This arrangement generates electromagnetic hydrodynamic behavior in the fluid flow. This is an attempt to investigate influence of melting heat, thermal radiation and viscous dissipation effects on Riga plate. A traversal electric and magnetic fields are produced by Riga plate. It causes Lorentz force parallel to wall which contributes in directing flow pattern. Physical problem is modeled and reduced nonlinear system is solved numerically. Comparative analysis is carried out between solutions obtained by Keller Box Method and shooting technique with Runge-Kutta Fehlberg method of order 5. It is noted that melting heat transfer reduces temperature distribution whereas radiation parameter upsurge it. Velocity is accelerated by modified Hartman number and Eckert number contributes in raising temperature. Keywords: Keller Box method, Computational design, Melting heat transfer, Stagnation point, Viscous dissipation, Thermal radiation

  9. Lessons learnt from FARO/TERMOS corium melt quenching experiments

    Energy Technology Data Exchange (ETDEWEB)

    Magallon, D.; Huhtiniemi, I.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center


    The influence of melt quantity, melt composition, water depth and initial pressure on quenching is assessed on the basis of seven tests performed in various conditions in the TERMOS vessel of the FARO facility at JRC-Ispra. Tests involved UO{sub 2}-based melt quantities in the range 18-176 kg at a temperature of approximately 3000 K poured into saturated water. The results suggest that erosion of the melt jet column is an efficient contributor to the amount of break-up, and thus quenching, for large pours of corium melt. The presence of Zr metal in the melt induced a much more efficient quenching than in a similar test with no Zr metal, attributed to the oxidation of the Zr. Significant amounts of H{sub 2} were produced also in tests with pure oxidic melts (e.g. about 300 g for 157 kg melt). In the tests at 5.0 and 2.0 MPa good mixing with significant melt break-up and quenching was obtained during the penetration in the water. At 0.5 MPa, good penetration of the melt into the water could still be achieved, but a jump in the vessel pressurisation occurred when the melt contacted the bottom and part (5 kg) of the debris was re-ejected from the water. (author)

  10. Rheo-electrical approximate simulation of monocrystal growth from the melt

    International Nuclear Information System (INIS)

    Vernois, G.


    On a two-dimensional model, the advantages of rheo-electrical simulation for studying monocrystal growth from the melt are pointed out. In the case of an opaque body, it is always possible to make a fairly exact model. As regards a transparent body, the simulation of radiation thermal exchange is fairly difficult. It is shown how the plans of a constant level complex crucible are established. (author) [fr

  11. Physical properties of steel and concrete up to melting and ablation

    International Nuclear Information System (INIS)

    Schneider, U.; Diederichs, U.


    The relevant physical properties of typical steels and concretes which are used in HTGR constructional design are presented. Special consideration has been given to the properties and phenomena concerning thermal behaviour e.g. thermal diffusivity and conductivity, heat capacity, density, thermal expansion and decomposition effects. Data from the literature and recent test results will be discussed. A temperature range from 20 0 C up to the melting points is considered. (orig./HP)

  12. Nanoparticle-induced unusual melting and solidification behaviours of metals (United States)

    Ma, Chao; Chen, Lianyi; Cao, Chezheng; Li, Xiaochun


    Effective control of melting and solidification behaviours of materials is significant for numerous applications. It has been a long-standing challenge to increase the melted zone (MZ) depth while shrinking the heat-affected zone (HAZ) size during local melting and solidification of materials. In this paper, nanoparticle-induced unusual melting and solidification behaviours of metals are reported that effectively solve this long-time dilemma. By introduction of Al2O3 nanoparticles, the MZ depth of Ni is increased by 68%, while the corresponding HAZ size is decreased by 67% in laser melting at a pulse energy of 0.18 mJ. The addition of SiC nanoparticles shows similar results. The discovery of the unusual melting and solidification of materials that contain nanoparticles will not only have impacts on existing melting and solidification manufacturing processes, such as laser welding and additive manufacturing, but also on other applications such as pharmaceutical processing and energy storage.

  13. Electrically isolated, high melting point, metal wire arrays and method of making same (United States)

    Simpson, John T.; Cunningham, Joseph P.; D'Urso, Brian R.; Hendricks, Troy R.; Schaeffer, Daniel A.


    A method of making a wire array includes the step of providing a tube of a sealing material and having an interior surface, and positioning a wire in the tube, the wire having an exterior surface. The tube is heated to soften the tube, and the softened tube is drawn and collapsed by a mild vacuum to bring the interior surface of the tube into contact with the wire to create a coated wire. The coated wires are bundled. The bundled coated wires are heated under vacuum to fuse the tube material coating the wires and create a fused rod with a wire array embedded therein. The fused rod is cut to form a wire array. A wire array is also disclosed.

  14. Structure changes in UO2(hfa)2 NH3 near the melting point

    International Nuclear Information System (INIS)

    Johnson, D.A.; Taylor, J.C.; Waugh, A.B.


    A reversible colour change from lemon-yellow to orange was observed for polycrystalline UO 2 (hfa) 2 NH 3 at 100 0 C (hfa = (1,1,1,5,5,5-hexafluoro-2,4-pentanedione)). The changes in the X-ray powder pattern between -196 0 and 130 0 C were followed with a Guinier-Simon focussing camera. The colour change was not due to an α - β type structural transition as found earlier in α and β-UO 2 (hfa) 2 tmp (tmp = trimethyl phosphate), but was considered to be due to changes in the hydrogen bonding of the ammonia molecules. (author)

  15. Temperature calibration procedure for thin film substrates for thermo-ellipsometric analysis using melting point standards

    NARCIS (Netherlands)

    Kappert, Emiel; Raaijmakers, Michiel; Ogieglo, Wojciech; Nijmeijer, Arian; Huiskes, Cindy; Huiskes, C.; Benes, Nieck Edwin


    Precise and accurate temperature control is pertinent to studying thermally activated processes in thin films. Here, we present a calibration method for the substrate–film interface temperature using spectroscopic ellipsometry. The method is adapted from temperature calibration methods that are well

  16. Simulation of melt spreading in consideration of phase transitions

    International Nuclear Information System (INIS)

    Spengler, C.


    The analysis of melt spreading and relocation phenomena in the containment of LWR power plants in case of hypothetical severe accidents leading to core melting is an important issue for reactor safety investigations. For the simulation of melt spreading the code LAVA has been developed on the basis of a method from the related subject of volcanology by adding more detailed models for heat transfer phenomena and flow rheology. The development is supported by basic analysis of the spreading of gravity currents as well as experimental investigations of the rheology of solidifying melts. These exhibit strong non-Newtonian effects in case of a high content of solids in the freezing melt. The basic model assumption in LAVA is the ideal Bingham plastic approach to the non-Newtonian, shear-thinning characteristic of solidifying melts. For the recalculation of melt spreading experiments, the temperature-dependent material properties for solidifying melt mixtures have been calculated using correlations from the literature. With the parameters and correlations for the rheological material properties approached by results from literature, it was possible to recalculate successfully recent spreading experiments with simulant materials and prototypic reactor core materials. An application to the behaviour of core melt in the reactor cavity assumed a borderline case for the issue of spreading. This limit is represented by melt conditions (large solid fraction, low volume flux), under which the melt is hardly spreadable. Due to the persistent volume flux the reactor cavity is completely, but inhomogeneously filled with melt. The degree of inhomogeneity is rather small, so it is concluded, that for the long-term coolability of a melt pool in narrow cavities the spreading of melt will probably have only negligible influence. (orig.)

  17. Revisiting the Potential of Melt Pond Fraction as a Predictor for the Seasonal Arctic Sea Ice Extent Minimum (United States)

    Liu, Jiping; Song, Mirong; Horton, Radley M.; Hu, Yongyun


    The rapid change in Arctic sea ice in recent decades has led to a rising demand for seasonal sea ice prediction. A recent modeling study that employed a prognostic melt pond model in a stand-alone sea ice model found that September Arctic sea ice extent can be accurately predicted from the melt pond fraction in May. Here we show that satellite observations show no evidence of predictive skill in May. However, we find that a significantly strong relationship (high predictability) first emerges as the melt pond fraction is integrated from early May to late June, with a persistent strong relationship only occurring after late July. Our results highlight that late spring to mid summer melt pond information is required to improve the prediction skill of the seasonal sea ice minimum. Furthermore, satellite observations indicate a much higher percentage of melt pond formation in May than does the aforementioned model simulation, which points to the need to reconcile model simulations and observations, in order to better understand key mechanisms of melt pond formation and evolution and their influence on sea ice state.

  18. Lattice stability and high-pressure melting mechanism of dense hydrogen up to 1.5 TPa

    KAUST Repository

    Geng, Hua Y.


    © 2015 American Physical Society. Lattice stability and metastability, as well as melting, are important features of the physics and chemistry of dense hydrogen. Using ab initio molecular dynamics (AIMD), the classical superheating limit and melting line of metallic hydrogen are investigated up to 1.5 TPa. The computations show that the classical superheating degree is about 100 K, and the classical melting curve becomes flat at a level of 350 K when beyond 500 GPa. This information allows us to estimate the well depth and the potential barriers that must be overcome when the crystal melts. Inclusion of nuclear quantum effects (NQE) using path integral molecular dynamics (PIMD) predicts that both superheating limit and melting temperature are lowered to below room temperature, but the latter never reaches absolute zero. Detailed analysis indicates that the melting is thermally activated, rather than driven by pure zero-point motion (ZPM). This argument was further supported by extensive PIMD simulations, demonstrating the stability of Fddd structure against liquefaction at low temperatures.

  19. Extended T-index models for glacier surface melting: a case study from Chorabari Glacier, Central Himalaya, India (United States)

    Karakoti, Indira; Kesarwani, Kapil; Mehta, Manish; Dobhal, D. P.


    Two enhanced temperature-index (T-index) models are proposed by incorporating meteorological parameters viz. relative humidity, wind speed and net radiation. The models are an attempt to explore different climatic variables other than temperature affecting glacier surface melting. Weather data were recorded at Chorabari Glacier using an automatic weather station during the summers of 2010 (July 10 to September 10) and 2012 (June 10 to October 25). The modelled surface melt is validated against the measured point surface melting at the snout. Performance of the developed models is evaluated by comparing with basic temperature-index model and is quantified through different efficiency criteria. The results suggest that proposed models yield considerable improvement in surface melt simulation . Consequently, the study reveals that glacier surface melt depends not only on temperature but also on weather parameters viz. relative humidity, wind speed and net radiation play a significant role in glacier surface melting. This approach provides a major improvement on basic temperature-index method and offers an alternative to energy balance model.

  20. Myofascial trigger point pain. (United States)

    Jaeger, Bernadette


    Myofascial trigger point pain is an extremely prevalent cause of persistent pain disorders in all parts of the body, not just the head, neck, and face. Features include deep aching pain in any structure, referred from focally tender points in taut bands of skeletal muscle (the trigger points). Diagnosis depends on accurate palpation with 2-4 kg/cm2 of pressure for 10 to 20 seconds over the suspected trigger point to allow the referred pain pattern to develop. In the head and neck region, cervical muscle trigger points (key trigger points) often incite and perpetuate trigger points (satellite trigger points) and referred pain from masticatory muscles. Management requires identification and control of as many perpetuating factors as possible (posture, body mechanics, psychological stress or depression, poor sleep or nutrition). Trigger point therapies such as spray and stretch or trigger point injections are best used as adjunctive therapy.

  1. Recent results in characterization of melt-grown and quench-melt- grown YBCO superconductors

    International Nuclear Information System (INIS)

    Balachandran, U.; Poeppel, R.B.; Gangopadhyay, A.K.


    From the standpoint of applications, melt-grown (MG) and quench-melt-grown (QMG) bulk YBCO superconductors are of considerable interest. In this paper, we studied the intragranular critical current density (J c ), the apparent pinning potential (U o ), and the irreversibility temperature (T irr ) of MG and QMG samples and compared the results to those for conventionally sintered YBCO. A systematic increase in U o and a slower drop in J c with temperature indicate a systematic improvement in flux-pinning properties in progressing from the sintered YBCO to QMG and MG samples. Weaker pinning is observed in the QMG YBCO than in the MG samples

  2. Quality improvement of melt extruded laminar systems using mixture design. (United States)

    Hasa, D; Perissutti, B; Campisi, B; Grassi, M; Grabnar, I; Golob, S; Mian, M; Voinovich, D


    This study investigates the application of melt extrusion for the development of an oral retard formulation with a precise drug release over time. Since adjusting the formulation appears to be of the utmost importance in achieving the desired drug release patterns, different formulations of laminar extrudates were prepared according to the principles of Experimental Design, using a design for mixtures to assess the influence of formulation composition on the in vitro drug release from the extrudates after 1h and after 8h. The effect of each component on the two response variables was also studied. Ternary mixtures of theophylline (model drug), monohydrate lactose and microcrystalline wax (as thermoplastic binder) were extruded in a lab scale vertical ram extruder in absence of solvents at a temperature below the melting point of the binder (so that the crystalline state of the drug could be maintained), through a rectangular die to obtain suitable laminar systems. Thanks to the desirability approach and a reliability study for ensuring the quality of the formulation, a very restricted optimal zone was defined within the experimental domain. Among the mixture components, the variation of microcrystalline wax content played the most significant role in overall influence on the in vitro drug release. The formulation theophylline:lactose:wax, 57:14:29 (by weight), selected based on the desirability zone, was subsequently used for in vivo studies. The plasma profile, obtained after oral administration of the laminar extruded system in hard gelatine capsules, revealed the typical trend of an oral retard formulation. The application of the mixture experimental design associated to a desirability function permitted to optimize the extruded system and to determine the composition space that ensures final product quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Ice shelf melt rates in Greenland and Antarctica using time-tagged digital imagery from World View and TanDEM-X (United States)

    Charolais, A.; Rignot, E. J.; Milillo, P.; Scheuchl, B.; Mouginot, J.


    The floating extensions of glaciers, or ice shelves, melt vigorously in contact with ocean waters. Melt is non uniform, with the highest melt taking place in the deepest part of the cavity, where thermal forcing is the greatest because of 1) the pressure dependence of the freezing point of the seawater/ice mixture and 2) subglacial water injects fresh, buoyant, cold melt water to fuel stronger ice-ocean interactions. Melt also forms along preferential channels, which are not stationary, and create lines of weakness in the shelf. Ice shelf melt rates have been successfully measured from space over the entire Antarctic continent and on the ice shelves in Greenland using an Eulerian approach that combines ice thickness, ice velocity vectors, surface mass balance data, and measurements of ice thinning rates. The Eulerian approach is limited by the precision of the thickness gradients, typically of a few km, and requires significant spatial averaging to remove advection effects. A Lagrangian approach has been shown to be robust to advection effects and provides higher resolution details. We implemented a Lagrangian methodology for time-tagged World View DEMs by the Polar Geoscience Center (PGS) at the University of Minnesota and time-tagged TanDEM-X DEMs separated by one year. We derive melt rates on a 300-m grid with a precision of a few m/yr. Melt is strongest along grounding lines and along preferred channels. Channels are non-stationary because melt is not the same on opposite sides of the channels. Examining time series of data and comparing with the time-dependent grounding line positions inferred from satellite radar interferometry, we evaluate the magnitude of melt near the grounding line and even within the grounding zone. A non-zero melt rate in the grounding zone has vast implications for ice sheet modeling. This work is funded by a grant from NASA Cryosphere Program.

  4. Properties of aspirin modified enteric polymer prepared by hot-melt mixing. (United States)

    Chomcharn, Nonjaros; Xanthos, Marino


    Melt mixing in batch equipment or continuous extruders is a technique that recently gained the attention of the pharmaceutical industry. The present work has employed hot-melt mixing to prepare a modified enteric matrix, as a delayed-release dosage form. Different concentrations of aspirin (ASP) ranging from 10 to -30% (w/w) were melt-mixed with a plasticized methacrylic acid copolymer, Eudragit(®) L100-55 in a batch mixer for 5 min at 100 °C which is above the plasticized polymer's glass transition temperature and below the ASP's melting point. The samples were cooled down to room temperature and compressed to thin discs. Processing ASP with Eudragit(®) L100-55 did not promote hydrolysis of ASP. X-ray diffraction spectra obtained at room temperature revealed that aspirin was present in a crystalline state. However, at elevated temperatures the dissolved aspirin displayed a plasticizing effect by reducing the glass transition temperature (Tg) and lowering the viscosity of the polymer in proportion to its increasing concentration. The addition of ASP altered to some extent the rheological behavior of the polymer from rubbery to viscous. However, the amount of ASP loading had no significant impact on the dissolution profiles. The samples met USP delayed-release requirements and the API release mechanism was shown to be diffusion dominant. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors (United States)

    Lee, Seongsuk; Yi, Yu


    The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/ or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).

  6. Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

    Directory of Open Access Journals (Sweden)

    Seongsuk Lee


    Full Text Available The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP F13 Special Sensor Microwave/Imagers (SSMI and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily and monthly sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole even during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA.

  7. High DNA melting temperature predicts transcription start site location in human and mouse.

    LENUS (Irish Health Repository)

    Dineen, David G


    The accurate computational prediction of transcription start sites (TSS) in vertebrate genomes is a difficult problem. The physicochemical properties of DNA can be computed in various ways and a many combinations of DNA features have been tested in the past for use as predictors of transcription. We looked in detail at melting temperature, which measures the temperature, at which two strands of DNA separate, considering the cooperative nature of this process. We find that peaks in melting temperature correspond closely to experimentally determined transcription start sites in human and mouse chromosomes. Using melting temperature alone, and with simple thresholding, we can predict TSS with accuracy that is competitive with the most accurate state-of-the-art TSS prediction methods. Accuracy is measured using both experimentally and manually determined TSS. The method works especially well with CpG island containing promoters, but also works when CpG islands are absent. This result is clear evidence of the important role of the physical properties of DNA in the process of transcription. It also points to the importance for TSS prediction methods to include melting temperature as prior information.

  8. SWISS: Sustained heated metallic melt/concrete interactions with overlying water pools

    International Nuclear Information System (INIS)

    Blose, R.E.; Gronager, J.E.; Suo-Anttila, A.J.; Brockmann, J.E.


    Results of the test SWISS-1 and test SWISS-2 are reported. These tests examined the effects of an overlying water pool on high temperature melt interactions with concrete. In both tests, a melt of about 46 kilograms of type 304 stainless steel was formed and deposited onto a 21.6 cm diameter disk of limestone/common sand concrete. The concrete disk was retained within a cast MgO annulus. The molten steel was sustained at a power input of 1.3 to 1.7 Watts/gram by induction heating. In test SWISS-1 a water pool was formed over the melt after about 12 cm of concrete had eroded. In test SWISS-2, the water pool was formed about one minute after melt contacted the concrete and before any significant erosion of concrete could take place. In both tests the water pool was kept below the boiling point. Interactions were sustained for about 40 minutes in the two tests. Concrete erosion rates, concrete temperatures, heat fluxes to the overlying water pool, gas generation rates, and evolved gas compositions during tests SWISS-1 and SWISS-2 are reported. Aerosol generation rates are reported for test SWISS-2. 46 refs., 70 figs., 26 tabs

  9. Reversed Extension Flow of Polymer melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Nielsen, Jens Kromann


    The measurement of the startup of uni axial elongational flow (potentially until steady state) followed by reversed bi axial flow, both with a constant elongational rate was made possible using a Filament Stretching Rheometer (FSR). The filament stretching rheometer rheometer is surrounded by a t...... by a thermostated environment and allows measurements on polymeric melts and liquids from room temperatures until 200 °C. In the experiments the Hencky strain at which the stress becomes zero (the recovery strain) of the reversed flow can be identified....

  10. Pressure-induced melting of micellar crystal

    DEFF Research Database (Denmark)

    Mortensen, K.; Schwahn, D.; Janssen, S.


    that pressure improves the solvent quality of water, thus resulting in decomposition of the micelles and consequent melting of the micellar crystal. The combined pressure and temperature dependence reveals that in spite of the apparent increase of order on the 100 angstrom length scale upon increasing......Aqueous solutions of triblock copolymers of poly(ethylene oxide) and poly(propylene oxide) aggregate at elevated temperatures into micelles which for polymer concentrations greater-than-or-equal-to 20% make a hard sphere crystallization to a cubic micellar crystal. Structural studies show...... temperature (decreasing pressure) the overall entropy increases through the inverted micellar crystallization characteristic....

  11. Manufacturing of implants by selective laser melting

    Directory of Open Access Journals (Sweden)

    Cosma Sorin Cosmin


    Full Text Available In recent years, digitizing and automation have gained an important place in fabrication of medical parts. Rapid Prototyping could be very suitable for medical applications due to their complex geometry, low volume and strong individualization. The presented study investigates the possibility to produce medical or dental parts by Selective Laser Melting (SLM. The SLM process is optimized and fully characterized for different biocompatible metal alloys, such as: TiAl6V4 and CoCrMo. The potential of SLM as medical manufacturing technique is proved by a developed procedure to fabricate frameworks for complex dental prostheses.

  12. Identification of squid species by melting temperature shifts on fluorescence melting curve analysis (FMCA) using single dual-labeled probe (United States)

    Koh, Eunjung; Song, Ha Jeong; Kwon, Na Young; Kim, Gi Won; Lee, Kwang Ho; Jo, Soyeon; Park, Sujin; Park, Jihyun; Park, Eun Kyeong; Hwang, Seung Yong


    Real time PCR is a standard method for identification of species. One of limitations of the qPCR is that there would be false-positive result due to mismatched hybridization between target sequence and probe depending on the annealing temperature in the PCR condition. As an alternative, fluorescence melting curve analysis (FMCA) could be applied for species identification. FMCA is based on a dual-labeled probe. Even with subtle difference of target sequence, there are visible melting temperature (Tm) shift. One of FMCA applications is distinguishing organisms distributed and consumed globally as popular food ingredients. Their prices are set by species or country of origin. However, counterfeiting or distributing them without any verification procedure are becoming social problems and threatening food safety. Besides distinguishing them in naked eye is very difficult and almost impossible in any processed form. Therefore, it is necessary to identify species in molecular level. In this research three species of squids which have 1-2 base pair differences each are selected as samples since they have the same issue. We designed a probe which perfectly matches with one species and the others mismatches 2 and 1 base pair respectively and labeled with fluorophore and quencher. In an experiment with a single probe, we successfully distinguished them by Tm shift depending on the difference of base pair. By combining FMCA and qPCR chip, smaller-scale assay with higher sensitivity and resolution could be possible, andc furthermore, enabling results analysis with smart phone would realize point-of-care testing (POCT).

  13. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines. (United States)

    Gokuldoss, Prashanth Konda; Kolla, Sri; Eckert, Jürgen


    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties.

  14. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines (United States)

    Konda Gokuldoss, Prashanth; Kolla, Sri; Eckert, Jürgen


    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties. PMID:28773031

  15. Proton NMR relaxation in hydrous melts

    International Nuclear Information System (INIS)

    Braunstein, J.; Bacarella, A.L.; Benjamin, B.M.; Brown, L.L.; Girard, C.


    Pulse and continuous wave NMR measurements are reported for protons in hydrous melts of calcium nitrate at temperatures between -4 and 120 0 C. Although measured in different temperature ranges, spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times appear to be nearly equal to each other and proportional to the self-diffusion coefficients of solute metal cations such as Cd 2+ . At temperatures near 50 0 C, mean Arrhenius coefficients Δ H/sub T 1 / (kcal/mol) are 7.9, 7.3, and 4.8, respectively, for melts containing 2.8, 4.0, and 8.0 moles of water per mole of calcium nitrate, compared to 4.6 kcal/mol for pure water. Temperature dependence of T 1 and T 2 in Ca(NO 3 ) 2 -2.8 H 2 O between -4 and 120 0 C are non-Arrhenius and can be represented by a Fulcher-type equation with a ''zero mobility temperature'' (T 0 ) of 225 0 K, close to the value of T 0 for solute diffusion, electrical conductance and viscosity. Resolution of the relaxation rates into correlation times for intramolecular (rotational) and intermolecular (translational) diffusional motion is discussed in terms of the Bloembergen-Purcell-Pound and more recent models for dipolar relaxation

  16. Molecular thermodynamics of polymer melts at interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Theodorou, D.N.


    A lattice model is developed for the prediction of structure and thermodynamic properties at free polymer melt surfaces and polymer melt/solid interfaces. Density variations in the interfacial region are taken into account by introducing voids in the lattice, in the spirit of the equation of state theory of Sanchez and Lacombe. Intramolecular energy (chain stiffness) effects are explicitly incorporated. The model is derived through a rigorous statistical mechanical and thermodynamic analysis, which is based on the concept of availability. Two cases are considered: ''full equilibrium,'' whereby the interfacial polymer is taken as free to exchange heat, work and mass with a bulk polymer phase at given temperature and pressure; and ''restricted equilibrium,'' whereby a thin polymer film is allowed to equilibrate locally in response to ambient temperature and pressure, but in which chains do not necessarily have the same chemical potential as in the unconstrained bulk. Techniques are developed for calculating surface tension, adhesion tension, density profiles, chain shape, bond orientation, as well as the distribution of segments of various orders in the interfacial region. 28 refs., 6 figs.

  17. Biomass preservation in impact melt ejecta (United States)

    Howard, Kieren Torres; Bailey, Melanie J.; Berhanu, Deborah; Bland, Phil A.; Cressey, Gordon; Howard, Lauren E.; Jeynes, Chris; Matthewman, Richard; Martins, Zita; Sephton, Mark A.; Stolojan, Vlad; Verchovsky, Sasha


    Meteorites can have played a role in the delivery of the building blocks of life to Earth only if organic compounds are able to survive the high pressures and temperatures of an impact event. Although experimental impact studies have reported the survival of organic compounds, there are uncertainties in scaling experimental conditions to those of a meteorite impact on Earth and organic matter has not been found in highly shocked impact materials in a natural setting. Impact glass linked to the 1.2-km-diameter Darwin crater in western Tasmania is strewn over an area exceeding 400km2 and is thought to have been ejected by a meteorite impact about 800kyr ago into terrain consisting of rainforest and swamp. Here we use pyrolysis-gas chromatography-mass spectrometry to show that biomarkers representative of plant species in the local ecosystem--including cellulose, lignin, aliphatic biopolymer and protein remnants--survived the Darwin impact. We find that inside the impact glass the organic components are trapped in porous carbon spheres. We propose that the organic material was captured within impact melt and preserved when the melt quenched to glass, preventing organic decomposition since the impact. We suggest that organic material can survive capture and transport in products of extreme impact processing, at least for a Darwin-sized impact event.

  18. Do cracks melt their way through solids?

    International Nuclear Information System (INIS)

    Okamoto, P. R.


    Real-time, in situ fracture studies in the high-voltage electron microscope (HVEM) show that microscopically thin regions of amorphous NiTi form ahead of moving crack tips in the B2-NiTi intermetallic compound during tensile straining at temperatures equal to or below 600K. The upper cutoff temperature of 600K for this stress-induced melting (or amorphization) is identical to the upper cutoff temperatures reported in the literature for both heavy-ion-induced amorphization of the intermetallic NiTi and ion-beam-mixing-induced amorphization of Ni and Ti multilayer. These results, together with the fact that the higher crystallization temperatures (∼800K)of unrelaxed amorphous NiTi alloys obtained by rapid quenching can also be reduced to, but not lower than 600K, by heavy-ion irradiation, strongly suggest that structural relaxation processes enhanced or induced by dynamic atomic disordering allow the formation of a unique, fully-relaxed glassy state which is characterized by a unique isothermal crystallization temperature. We believe that this unique temperature is the Kauzmann glass-transition temperature, corresponding to the ideal glass having the same entropy as the crystalline state. As the glassy state with the lowest global free energy, the preferential formation of this ideal glass by disorder-induced amorphization processes can be understood as the most energetically-favored, kinetically-constrained melting response of crystalline materials driven far from equilibrium at low temperatures

  19. Synthesis of ammonia using sodium melt. (United States)

    Kawamura, Fumio; Taniguchi, Takashi


    Research into inexpensive ammonia synthesis has increased recently because ammonia can be used as a hydrogen carrier or as a next generation fuel which does not emit CO 2 . Furthermore, improving the efficiency of ammonia synthesis is necessary, because current synthesis methods emit significant amounts of CO 2 . To achieve these goals, catalysts that can effectively reduce the synthesis temperature and pressure, relative to those required in the Haber-Bosch process, are required. Although several catalysts and novel ammonia synthesis methods have been developed previously, expensive materials or low conversion efficiency have prevented the displacement of the Haber-Bosch process. Herein, we present novel ammonia synthesis route using a Na-melt as a catalyst. Using this route, ammonia can be synthesized using a simple process in which H 2 -N 2 mixed gas passes through the Na-melt at 500-590 °C under atmospheric pressure. Nitrogen molecules dissociated by reaction with sodium then react with hydrogen, resulting in the formation of ammonia. Because of the high catalytic efficiency and low-cost of this molten-Na catalyst, it provides new opportunities for the inexpensive synthesis of ammonia and the utilization of ammonia as an energy carrier and next generation fuel.

  20. Ferric iron partitioning between pyroxene and melt during partial melting of the Earth's upper mantle (United States)

    Rudra, A.; Hirschmann, M. M.


    The oxidation state of the Earth's mantle influences melt production, volatile behavior, partitioning of key trace elements and possible saturation of alloy at depth. Average Fe3+/FeT ratios in MORBs indicate oxygen fugacitiy of the source regions is close to QFM, in contrast to a 3 log unit variation of fO2 recorded by abyssal peridotites. Quantification of the relationship between basalt and source Fe3+/FeT, oxygen fugacity, and melting requires constraints on Fe3+ partitioning between melt and mantle minerals and in particular the principal Fe3+ host, pyroxene. McCanta et al. (2004) investigated valence dependent partitioning of Fe between Martian ferroan pigeonites and melt, but behavior in terrestrial pyroxene compositions relevant to MORB petrogenesis has not been investigated. We are conducting 1 atm controlled fO2 experiments over 4 log unit variation of fO2 between ΔQFM = 2.5 to -1.5 to grow pyroxenes of variable tetrahedral and octahedral cationic population from andesitic melts of varying Mg#, alumina and alkali content. Dynamic crystallization technique facilitates growth of pyroxene crystals (100-200 um) that EPMA analyses show to be compositionally homogeneous and in equilibrium with the melt. Fe3+/FeT ratio of the synthetic pyroxenes have been analyzed by XAFS spectroscopy at the APS (GSECARS) synchrotron. To quantify the x-ray anisotropy in pyroxenes, we collected Fe K-edge XAFS spectra of oriented natural single crystals for a wide range compositions whose Fe3+/FeT ratios we determined by Mossbauer spectroscopy. We have collected both XANES and EXAFS spectral regions spanning from 7020-7220 eV to explore predictive capabilities of different spectral regions about ferric iron concentration and site occupancy. Our results will document the Fe3+ compatibility in pyroxenes of different compositions under a variety of fO2 conditions, which in turn will better constrain the interrelationship between mantle redox and melting.

  1. Premixing and steam explosion phenomena in the tests with stratified melt-coolant configuration and binary oxidic melt simulant materials

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, Pavel, E-mail:; Grishchenko, Dmitry, E-mail:; Konovalenko, Alexander, E-mail:; Karbojian, Aram, E-mail:


    Highlights: • Steam explosion in stratified melt-coolant configuration is studied experimentally. • Different binary oxidic melt simulant materials were used. • Five spontaneous steam explosions were observed. • Instability of melt-coolant interface and formation of premixing layer was observed. • Explosion strength is influenced by melt superheat and water subcooling. - Abstract: Steam explosion phenomena in stratified melt-coolant configuration are considered in this paper. Liquid corium layer covered by water on top can be formed in severe accident scenarios with (i) vessel failure and release of corium melt into a relatively shallow water pool; (ii) with top flooding of corium melt layer. In previous assessments of potential energetics in stratified melt-coolant configuration, it was assumed that melt and coolant are separated by a stable vapor film and there is no premixing prior to the shock wave propagation. This assumption was instrumental for concluding that the amount of energy that can be released in such configuration is not of safety importance. However, several recent experiments carried out in Pouring and Under-water Liquid Melt Spreading (PULiMS) facility with up to 78 kg of binary oxidic corium simulants mixtures have resulted in spontaneous explosions with relatively high conversion ratios (order of one percent). The instability of the melt-coolant interface, melt splashes and formation of premixing layer were observed in the tests. In this work, we present results of experiments carried out more recently in steam explosion in stratified melt-coolant configuration (SES) facility in order to shed some light on the premixing phenomena and assess the influence of the test conditions on the steam explosion energetics.

  2. Introduction of Electrostatically Charged Particles into Metal Melts (United States)

    Kudryashova, Olga; Vorozhtsov, Sergey; Stepkina, Maria; Khrustalev, Anton


    One of the possible methods to produce composite alloys with improved mechanical characteristics is the modification of metal melts using submicron- or nanosized particles. Different methods, like ultrasonic or vibration processing, have been used to introduce these particles into the metal melt. The introduction of particles into a metal melt is prevented by the poor wettability of the liquid metal. The present study explores the use of electrostatic charge for increasing the wettability of the particles and preventing their agglomeration. The wettability of electrostatically charged particles by the metal melt under the impact of ultrasound has been studied. The relationships between the impact time and the physical and chemical properties of the particles and the melt along with the characteristics of the acoustic radiation have been studied. It was experimentally demonstrated that the introduction of electrostatically charged particles into the metal melt reduces the porosity and the crystal grain size.

  3. Reaction between YBCO/Ag superconductor and melted silver

    International Nuclear Information System (INIS)

    Maeda, Junya; Izumi, Teruo; Shiohara, Yuh


    In order to study the feasibility of applying liquid phase processing using melted silver to fabricate YBCO/silver contacts, the chemical reaction at the boundaries between the Y-Ba-Cu-O (YBCO) superconducting matrix and melted silver was observed. YBCO superconducting current leads prepared by the unidirectional solidification method were dipped into liquid silver melted by an electric furnace. Copper-poor layers were formed at the boundary between the YBCO matrix and melted silver, although the temperatures were lower than the YBCO/Ag melting temperature (∼970 deg. C). It was considered that melted silver took up copper from the YBa 2 Cu 3 O x (Y123) crystal, and it is considered that the phase equilibrium at the boundary between the YBCO matrix and molten silver was changed from Y 2 Ba 1 Cu 1 O 5 (Y211)-Y123 to another phase. (author)

  4. Influence of gas-generation on melt/concrete interaction

    International Nuclear Information System (INIS)

    Powers, D.A.


    Gases formed during the interaction of a high-temperature melt with concrete are shown to stem from the thermal dehydration and decarboxylation of the concrete. The kinetics of these decomposition reactions are described. Gases within the melt cause an apparent swelling of the melt. The observed swelling is not easily correlated to the rate of gas evolution. Metallic melts cause CO 2 /CO and H 2 O liberated from the melt to be reduced to CO and hydrogen. When these gases escape from the melt they assist in aerosol formation. As the gases cool they react along a pathway whose oxygen fugacity is apparently buffered by the iron-Wuestite equilibrium. Methane is a product of the gas-phase reaction. (orig./HP) [de

  5. Differential melt scaling for oblique impacts on terrestrial planets (United States)

    Abramov, Oleg; Wong, Stephanie M. Wong; Kring, David A. Kring


    Analytical estimates of melt volumes produced by a given projectile and contained in a given impact crater are derived as a function of impact velocity, impact angle, planetary gravity, target and projectile densities, and specific internal energy of melting. Applications to impact events and impact craters on the Earth, Moon, and Mars are demonstrated and discussed. The most probable oblique impact (45°) produces ∼1.6 times less melt volume than a vertical impact, and ∼1.6 and 3.7 times more melt volume than impacts with 30° and 15° trajectories, respectively. The melt volume for a particular crater diameter increases with planetary gravity, so a crater on Earth should have more melt than similar-size craters on Mars and the Moon. The melt volume for a particular projectile diameter does not depend on gravity, but has a strong dependence on impact velocity, so the melt generated by a given projectile on the Moon is significantly larger than on Mars. Higher surface temperatures and geothermal gradients increase melt production, as do lower energies of melting. Collectively, the results imply thinner central melt sheets and a smaller proportion of melt particles in impact breccias on the Moon and Mars than on Earth. These effects are illustrated in a comparison of the Chicxulub crater on Earth, linked to the Cretaceous–Tertiary mass extinction, Gusev crater on Mars, where the Mars Exploration Rover Spirit landed, and Tsiolkovsky crater on the Moon. The results are comparable to those obtained from field and spacecraft observations, other analytical expressions, and hydrocode simulations.

  6. Melting tests for recycling of radioactive metal wastes

    International Nuclear Information System (INIS)

    Nakamura, Hisashi; Kanazawa, Katsuo; Fujiki, Kazuo


    To allow the future recycling of decommissioning wastes to promote smoothly, melting tests were conducted using metal wastes and simulated wastes with radioisotopes. The test results indicate that the transfer behavior of radionuclides during melting is basically understood by considering the volatility and oxidizable tendency of each radionuclide. The partitioning of some radionuclides into products was influenced by the melting process of wastes. The radioactivity distribution in ingots was uniform regardless of the kinds of radionuclide. (author)

  7. Retrograde Melting and Internal Liquid Gettering in Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hudelson, Steve; Newman, Bonna K.; Bernardis, Sarah; Fenning, David P.; Bertoni, Mariana I.; Marcus, Matthew A.; Fakra, Sirine C.; Lai, Barry; Buonassisi, Tonio


    Retrograde melting (melting upon cooling) is observed in silicon doped with 3d transition metals, via synchrotron-based temperature-dependent X-ray microprobe measurements. Liquid metal-silicon droplets formed via retrograde melting act as efficient sinks for metal impurities dissolved within the silicon matrix. Cooling results in decomposition of the homogeneous liquid phase into solid multiple-metal alloy precipitates. These phenomena represent a novel pathway for engineering impurities in semiconductor-based systems.

  8. Nitrogen distribution between aqueous fluids and silicate melts (United States)

    Li, Yuan; Huang, Ruifang; Wiedenbeck, Michael; Keppler, Hans


    The partitioning of nitrogen between hydrous fluids and haplogranitic, basaltic, or albitic melts was studied at 1-15 kbar, 800-1200 °C, and oxygen fugacities (fO2) ranging from the Fe-FeO buffer to 3log units above the Ni-NiO buffer. The nitrogen contents in quenched glasses were analyzed either by electron microprobe or by secondary ion mass spectrometry (SIMS), whereas the nitrogen contents in fluids were determined by mass balance. The results show that the nitrogen content in silicate melt increases with increasing nitrogen content in the coexisting fluid at given temperature, pressure, and fO2. Raman spectra of the silicate glasses suggest that nitrogen species change from molecular N2 in oxidized silicate melt to molecular ammonia (NH3) or the ammonium ion (NH4+) in reduced silicate melt, and the normalized Raman band intensities of the nitrogen species linearly correlate with the measured nitrogen content in silicate melt. Elevated nitrogen contents in silicate melts are observed at reduced conditions and are attributed to the dissolution of NH3/NH4+. Measured fluid/melt partition coefficients for nitrogen (DNfluid/ melt) range from 60 for reduced haplogranitic melts to about 10 000 for oxidized basaltic melts, with fO2 and to a lesser extent melt composition being the most important parameters controlling the partitioning of nitrogen. Pressure appears to have only a minor effect on DNfluid/ melt in the range of conditions studied. Our data imply that degassing of nitrogen from both mid-ocean ridge basalts and arc magmas is very efficient, and predicted nitrogen abundances in volcanic gases match well with observations. Our data also confirm that nitrogen degassing at present magma production rates is insufficient to accumulate the atmosphere. Most of the nitrogen in the atmosphere must have degassed very early in Earth's history and degassing was probably enhanced by the oxidation of the mantle.

  9. The End of Points (United States)

    Feldman, Jo


    Have teachers become too dependent on points? This article explores educators' dependency on their points systems, and the ways that points can distract teachers from really analyzing students' capabilities and achievements. Feldman argues that using a more subjective grading system can help illuminate crucial information about students and what…

  10. Predicting the fibre diameter of melt blown nonwovens: comparison of physical, statistical and artificial neural network models (United States)

    Chen, Ting; Li, Liqing; Huang, Xiubao


    Physical, statistical and artificial neural network (ANN) models are established for predicting the fibre diameter of melt blown nonwovens from the processing parameters. The results show that the ANN model yields a very accurate prediction (average error of 0.013%), and a reasonably good ANN model can be achieved with relatively few data points. Because the physical model is based on the inherent physical principles of the phenomena of interest, it can yield reasonably good prediction results when experimental data are not available and the entire physical procedure is of interest. This area of research has great potential in the field of computer assisted design in melt blowing technology.

  11. Erosion of melt layers developed during a plasma disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, A.; Konkashbaev, I.


    Material erosion of plasma-facing components during a tokamak disruption is a serious problem that limits reactor operation and economical reactor lifetime. In particular, metallic low-Z components such as Be will be subjected to severe melting during disruptions and edge localized modes (ELMs). Loss of the developed melt layer will critically shorten the lifetime of these components, severely contaminate the plasma, and seriously inhibit successful and reliable operation of the reactor. In this study mechanisms responsible for melt-layer loss during a disruption are modeled and evaluated. Implications of melt-layer loss on the performance of metallic facing components in the reactor environment are discussed. (orig.)

  12. Constraints on melt migration in the Earth's upper mantle (United States)

    Garapic, Gordana

    Melting and melt segregation are key processes in the geochemical evolution of the Earth. However, mechanism and time scale of melt transport from the source to the surface are still not well understood and are dependent on the grain-scale distribution of melt. A related question is the retention of melt in partially molten regions of the Earth's upper mantle. Seismic observations from mid-ocean ridges (MOR) and subduction zones are interpreted to show in-situ melt contents up to 3%, while geochemical observations from MOR basalts are inferred to indicate very efficient extraction of melt (porosities of order of 0.1%). Earlier theoretical models of the melt distribution were based on the balance of surface tension between melt and uniform crystalline grains, predicting a simple network of melt along three-grain edges. Analyses of experimentally produced samples of olivine and basaltic melt show that the melt geometry is much more complex, and includes wetted two-grain boundaries. I reconstructed the 3-D model of melt geometry of two experimentally produced samples by serial sectioning and rendering of the pore space which demonstrates for the first time that melt exists in thin layers on two-grain boundaries. This confirms the inferences from previous 2-D observations and has significant implications for physical properties of partially molten regions, for example seismic velocities and attenuation. The wetted two-grain boundaries are inferred to be a consequence of continuous grain growth. Due to the complexity of the 3-D melt geometry the permeability of partially molten rocks can not be predicted from simple models. I therefore investigated the permeability as a function of porosity for both synthetic and experimentally determined pore geometries using a lattice-Boltzmann method. The calculated permeability is not a simple function of porosity, but increases rapidly at a critical fraction of wetted two-grain boundaries. To extrapolate the experimentally based

  13. Isothermal Gas assisted displacement of a polystyrene melt

    DEFF Research Database (Denmark)

    Eriksson, Torbjörn Gerhard; Rasmussen, Henrik K.


    Isothermal gas displacements of a polystyrene melt (shaped as circular cylinder with a radius of 2.5mm) placed inside a circular steel annulus were performed. A flow valve ensures a constant flow rate and rotational symmetric flow during the displacement. The experiments show an increase...... in the steady fractional coverage above a Newtonian level at very low Deborah numbers. At higher Deborah numbers, where the melt behaves as an entangled melt system, the steady fractional coverage decreases. The fractional coverage is the fraction of melt left in the cylinder during steady displacement...

  14. Investigation of the core melt accident in light water reactors

    International Nuclear Information System (INIS)

    Koerber, H.


    In the thesis the core melt accident, heating up and collapsing of the reactor core were investigated. The most important parameters of influence were found and their effect on the development of the accident were shown. A causal diagram was developed representing the great number of events occurring in the course of the core melt accident as well as their mutual dependences. Models were developed and applied for a detailed description of the collapse process, melting of materials, heat and material transport at flow-off of the melted mass and for taking into account steam blocking in the destroyed core sections. (orig.) [de

  15. Does buoyancy matter in the melting dynamics of ice? (United States)

    Guo, Jicheng; Ordu, Mustafa; Basu, Soumendra; Bird, James


    Ice in a horizontal cylindrical container will melt when placed in a sufficient warm environment. Because of the density difference between the ice and the continuously forming water, the ice can rise close to the boundary, separated by a thin gap of water. The melting dynamics of the ice appear qualitatively similar to the evaporation of a drop under Leidenfrost conditions; however, the extent of the analogy is unclear. Here we investigate the melting dynamics of ice in thin-walled cylindrical containers. Through a combination of experiments and physical modeling, we identify a characteristic melting time and gap thickness, which we compare to evaporating droplets.

  16. Experimental study of thermocapillary convection in a germanium melt (United States)

    Gorbunov, Leonid A.


    The present paper is dedicated to the experimental investigation of thermocapillary convection (TCC) in semiconductor melts. The investigation showed that in the process of single crystal growth under terrestrial conditions TCC could be compared to thermogravity convection (TGC) for a number of semiconductor melts such as Ge, Si, GaAs. But in comparatively thin layers with H container radius) it can dominate over TGC. The experiments were conducted with a Ge melt. Oxide particle tracers were used to measure the melt motion rate. The results obtained emphasize the significance of TCC in the process of single crystal growth under terrestrial conditions.

  17. Surface reconstruction precursor to melting in Au309 clusters

    Directory of Open Access Journals (Sweden)

    Fuyi Chen


    Full Text Available The melting of gold cluster is one of essential properties of nanoparticles and revisited to clarify the role played by the surface facets in the melting transition by molecular dynamics simulations. The occurrence of elaborate surface reconstruction is observed using many-body Gupta potential as energetic model for 309-atom (2.6 nm decahedral, cuboctahedral and icosahedral gold clusters. Our results reveal for the first time a surface reconstruction as precursor to the melting transitions. The surface reconstruction lead to an enhanced melting temperature for (100 faceted decahedral and cuboctahedral cluster than (111 faceted icosahedral gold cluster, which form a liquid patch due to surface vacancy.

  18. Electrochemistry of the Oxofluoro Complexes of Boron in Fluoride Melts

    DEFF Research Database (Denmark)

    Polyakova, L.P.; Bukatova, G.A.; Polyakov, E.G.


    Electrochemical behavior of oxofluoro complexes of boron, synthesized both in situ in FLINAK melt and added into the melt as Na3B3O3F6 compound, was by linear voltammetry within the range of 570-750 oC. It was shown that in lower part of this range the electrochemical reduction of BOF2- complexes...... energy of 61.6 kJ/mol. Study of the thermal stability of boron containing oxofluoro melts showed that O/B ratio changes in time due to evaporation of BF3. As a result borate complexes emerge in the melt alongside with oxofluoro ones....

  19. Blends of poly(hydroxybutyrate and poly (epsilon-caprolactone obtained from melting mixture

    Directory of Open Access Journals (Sweden)

    Maria Cecília M. Antunes


    Full Text Available Poly(3-hydroxybutyrate (PHB is a thermoplastic polyester with a great potential owing to its biodegradability, bioreabsorbation and biological synthesis from a renewable source. Despite these characteristics, the applications of this polymer are very restricted due to its poor mechanical properties and thermal instability at temperatures above its melting point (around 175°C. Among the possibilities of improvement of these materials, the development of blends is a relatively fast and inexpensive option. Poly(epsilon-caprolactone (PCL is a semi-crystalline polymer that may be used as a biomaterial. It presents good mechanical properties, a low melting point (around 55 °C, and could be a good option to develop PHB blends, maintaining the biodegradability and bioreabsorption properties. The objective of the present work was to obtain blends of PHB and PCL by melting mixture in an internal mixer. The compositions varied from 0 to 30 wt% of PCL. DSC, DMA, and SEM were used to characterize the blends. The blends were found to be imiscible with no indication of interaction either the amorphous or crystalline state. The morphology shows PHB as the matrix and PCL as the dispersed phase.

  20. Development of foams from linear polypropylene (PP) and high melt strength polypropylene (HMSPP) polymeric blends

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth Carvalho Leite


    Foamed polymers are future materials, with a comprehensive application field. They can be used in order to improve appearance of insulation structures, for example, or to reduce costs involving materials. This work address to Isotactic Polypropylene / High Melt Strength Polypropylene blends, for foams production. Rheological behavior of polymer melt, especially referring to viscosity in processing temperature, plays a decisive role in applications where dominates extensional flow, as in case of foaming. If the viscosity is very low, it will correspond to a low melt strength, as in case of linear homopolymer (Isotact PP), and the foam will be prejudiced, due to the impossibility of expansion. Otherwise, if the viscosity is very high, with a high melt strength, the foam will collapse immediately after its formation. In order to get foams with an homogeneous and defined cellular structure, there were accomplished blends, 50% in weight, between linear homopolymer (isotactic PP) and HMSPP, from PP modified as per gamma radiation, in acetylene environment and at a 12.5 kGy doses. Extrusion process used a soluble foaming methodology, according to a processing/dissolution principle, which involves the dissolution of a Physical Blowing Agent (PBA), under 30 bar pressure, homogeneously mixed with polymeric melt. Extrusion conditions, that generally involve temperature, pressure and viscoelastic material flow control were experimentally investigated to define prevalent characteristics for producing foams. Nitrogen was the used PBA and process extrusion parameters were adapted to PP, HMSPP and their 50% in weight mixtures thereof. Major PP and HMSPP characteristics were obtained via melt Index and melt strength and thermal analyses (DSC/TGA), in order to make viable and to reproduce foaming as per extrusion process. Foams cellular morphology of PP, HMSPP and their 50% in weight mixtures thereof was investigated, with and without talc addition, as nucleating agent, by using

  1. Spontaneous rotation of a melting ice disk (United States)

    Dorbolo, Stephane; Vandewalle, Nicolas; Darbois-Texier, Baptiste; Grasp Team

    Ice disks were released at the surface of a thermalised aluminium plate. The fusion of the ice creates a lubrication film between the ice disk and the plate. The situation is similar to the Leidenfrost effect reported for liquid droplet evaporating at the surface of a plate which temperature is above the boiling temperature of the liquid. An analogy is depicted between the Leidenfrost phenomenon and the rapid fusion of a solid at the contact of a hot plate. Similarly to Leidenfrost droplet, we observe that, while the ice disks were melting, the disks were very mobile: translation and rotation. SD acknowledges support from FNRS as Senior Research Associate. This research has been funded by the Interuniversity Attraction Pole Programme (IAP 7/38 MicroMAST) initiated by the Belgian Science Policy Office.

  2. Reduced energy consumption for melting in foundries

    Energy Technology Data Exchange (ETDEWEB)

    Skov-Hansen, S.


    By improving the gating technology in traditional gating systems it is possible to reduce the amount of metal to be re-melted, and hence reduce the energy consumption for melting in foundries. Traditional gating systems are known for a straight tapered down runner a well base and 90 deg. bends in the runner system. In the streamlined gating systems there are no sharp changes in direction and a large effort is done to confine and control the flow of the molten metal during mould filling. Experiments in real production lines have proven that using streamlined gating systems improves yield by decreasing the poured weight compared to traditional layouts. In a layout for casting of valve housings in a vertically parted mould the weight of the gating system was reduced by 1,1kg which is a 20% weight reduction for the gating system. In a layout for horizontally parted moulds the weight of the gating system has been reduced by 3,7kg which is a weight reduction of 60% for the gating system. The experiments casting valve housings in ductile iron also proved that it is possible to lower the pouring temperature from 1400 deg. C to 1300 deg. C without the risk of cold runs. Glass plate fronted moulds have been used to study the flow of melt during mould filling. These experiments have also been used for studying the flow pattern when ceramic filters are used. The thorough study of the use of filters revealed that the metal passing through the filter is divided into a number of small jets. This proves that filters do not have the claimed positive effect on the flow of metal. The volumes necessary on either side of the filter is not filled till a backpressure is build up and results in formation of pressure shocks when backfilled. These pressure shocks result in more turbulence inside the casting than the same gating system with no filter. Not using filters can mean a reduction in poured weight of 0,6kg. To examine if the experiments using glass plate fronted moulds give

  3. Antibacterial Titanium Produced Using Selective Laser Melting (United States)

    Macpherson, Andrew; Li, Xiaopeng; McCormick, Paul; Ren, Ling; Yang, Ke; Sercombe, Timothy B.


    Titanium and titanium alloys used in current medical and dental applications do not possess antibacterial properties, and therefore, postoperative infection remains a significant risk. Recently, the addition of silver and copper to conventional biomaterials has been shown to produce a material with good antibacterial properties. In this article, we investigate selective laser melting as a method of producing antibacterial Ti-6Al-4V containing elemental additions of Cu or Ag. The addition of Ag had no effect on the microstructure or strength, but it did result in a 300% increase in the ductility of the alloy. In contrast, the addition of Cu resulted in an increase in strength but in a decrease in ductility, along with a change in the structure of the material. The Cu-containing alloy also showed moderate antibacterial properties and was superior to the Ag-containing alloy.

  4. Effect of turbulence and convection on melting of the ice shelves in stratified environment (United States)

    Gayen, Bishakdatta; Mondal, Mainak; Griffiths, Ross


    We have performed high-resolution simulations to investigate the convective boundary layer when a wall of ice dissolves into stratified seawater under polar ocean conditions. Under the stratified ambient condition, melt water spreads out into the interior in a series of nearly horizontal layers due to double diffusive convection. The layer thickness depends on the ambient density gradient and the difference in density between the freezing point (interface temperature) and the ambient water temperature. For a small O(1) m hight box the layers are laminar and results for layer depth are in agreement with the experimental results. However, for significantly higher ice walls the layer scaling differs as a result of turbulent mixing. Stratification has a significant effect on melt rate which further helps in the shaping of ice-wall. The temperature and density structures found under Pine Island Glacier show several layers having a vertical scale that can also be explained by this study.

  5. Large single crystals of graphene on melted copper using chemical vapor deposition. (United States)

    Wu, Yimin A; Fan, Ye; Speller, Susannah; Creeth, Graham L; Sadowski, Jerzy T; He, Kuang; Robertson, Alex W; Allen, Christopher S; Warner, Jamie H


    A simple method is presented for synthesizing large single crystal graphene domains on melted copper using atmospheric pressure chemical vapor deposition (CVD). This is achieved by performing the reaction above the melting point of copper (1090 °C) and using a molybdenum or tungsten support to prevent balling of the copper from dewetting. By controlling the amount of hydrogen during growth, individual single crystal domains of monolayer graphene greater than 200 μm are produced within a continuous film. Stopping growth before a complete film is formed reveals individual hexagonal domains of graphene that are epitaxially aligned in their orientation. Angular resolved photoemission spectroscopy is used to show that the graphene grown on copper exhibits a linear dispersion relationship and no sign of doping. HRTEM and electron diffraction reveal a uniform high quality crystalline atomic structure of monolayer graphene.

  6. Impact of melting heat transfer and nonlinear radiative heat flux mechanisms for the generalized Burgers fluids (United States)

    Khan, Waqar Azeem; Khan, Masood; Irfan, Muhammad; Alshomrani, A. S.

    The present paper deals with the analysis of melting heat and mass transfer characteristics in the stagnation point flow of an incompressible generalized Burgers fluid over a stretching sheet in the presence of non-linear radiative heat flux. A uniform magnetic field is applied normal to the flow direction. The governing equations in dimensional form are reduced to a system of dimensionless expressions by implementation of suitable similarity transformations. The resulting dimensionless problem governing the generalized Burgers is solved analytically by using the homotopy analysis method (HAM). The effects of different flow parameters like the ratio parameter, magnetic parameter, Prandtl number, melting parameter, radiation parameter, temperature ratio parameter and Schmidt number on the velocity, heat and mass transfer characteristics are computed and presented graphically. Moreover, useful discussions in detail are carried out with the help of plotted graphs and tables.

  7. Emergence of chiral spin liquids via quantum melting of noncoplanar magnetic orders (United States)

    Hickey, Ciarán; Cincio, Lukasz; Papić, Zlatko; Paramekanti, Arun


    Quantum spin liquids (QSLs) are highly entangled states of quantum magnets which lie beyond the Landau paradigm of classifying phases of matter via broken symmetries. A physical route to arriving at QSLs is via frustration-induced quantum melting of ordered states such as valence bond crystals or magnetic orders. Here we show, using extensive exact diagonalization (ED) and density-matrix renormalization group (DMRG) studies of concrete S U (2 ) invariant spin models on honeycomb, triangular, and square lattices, that chiral spin liquids (CSLs) emerge as descendants of triple-Q spin crystals with tetrahedral magnetic order and a large scalar spin chirality. Such ordered-to-CSL melting transitions may yield lattice realizations of effective Chern-Simons-Higgs field theories. Our work provides a distinct unifying perspective on the emergence of CSLs and suggests that materials with certain noncoplanar magnetic orders might provide a good starting point to search for CSLs.

  8. Electrochemical study of actinide nitrides in LiCl-KCl eutectic melts

    International Nuclear Information System (INIS)

    Shirai, Osamu; Iwai, Takashi; Arai, Yasuo; Kato, Tetsuya


    Nitride fuels for advanced fast breeder reactors, transmutation of minor actinides and Pu burning fast reactors have been contemplated because of their high thermal conductivity and high melting point. Research on the pyro-chemical reprocessing of nitride fuels has been conducted at the JAERI based on chlorine molten salt electro-refining to obtain fundamental data of redox reactions and pyro-chemistry for minor actinides such as NpN, AmN, CmN and their solid solutions. Experiments on anodic dissolution of UN, PuN and NpN in LiCl-KCl eutectic melts were made with cyclic voltamogram measurements and redox reactions of each actinide nitride were analyzed to show mechanisms of chlorine nitrides formation and establish optimum conditions of actinide metal recovery onto solid cathode. (T. Tanaka)

  9. The hardness of synthetic products obtained from cooled and crystallized basaltic melts (in Romanian

    Directory of Open Access Journals (Sweden)

    Daniela Ogrean


    Full Text Available The Hardness of Synthetic Products Obtained from Cooled and Crystallized Basaltic Melts. Hardness is one of the main properties of the products obtained from cooled and crystallized basaltic melts under a controlled thermal regime. It influences the abrasion tear resistance of the resulted material. The microhardness measurements on the samples (bricks, boards, gutters, armour plates, tubes indicated Vickers hardness value between 757–926 for the materials obtained from Şanovita basalts (Timiş district and between 539–958 respectively, in case of the Racoş basalts (Braşov district. There is a certain variation of the hardness within the same sample, in various measurement points, within the theoretical limits of the hardnesses of the pyroxenes and that of the spinels.

  10. On melt solutions for the growth of CaTiO3 crystals (United States)

    Klimm, Detlef; Schmidt, Max; Wolff, Nora; Guguschev, Christo; Ganschow, Steffen


    When calcium titanate crystals are grown from stoichiometric melts, they crystallize in the cubic perovskite structure. Upon cooling to room temperature they undergo subsequent phase transitions to tetragonal and orthorhombic modifications. These phase transitions are disruptive and result in severely damaged crystals. This paper presents differential thermal analysis data for several prospective solvents, with the aim to identify a system offering the possibility to perform crystal growth of undistorted CaTiO3 crystals by crystallizing them significantly below the melting point directly in the low temperature modification. From mixtures CaF2:TiO2:CaTiO3 = 3:1:1 (molar ratio) the growth of undistorted, at least millimeter-sized CaTiO3 crystals is possible.

  11. Modification of Pawlow's thermodynamical model for the melting of small single-component particles (United States)

    Barybin, Anatoly; Shapovalov, Victor


    A new approach to the melting of small particles is proposed to modify the known Pawlow's model by taking into account the transfer of material from solid spherical particles to liquid ones through a gas phase. Thermodynamical analysis gives rise to a differential equation for the melting point Tm involving such size-dependent and temperature-dependent parameters of a material as the surface tensions σs(l ), molar heat of fusion ΔHm and molar volumes vs(l ). Solution of this equation has shown that all the limiting cases for size-independent situations coincide with results known in the literature and our analysis of size-dependent situations gives results close to the experimental data previously obtained by other authors for some metallic particles.

  12. Vapor segregation and loss in basaltic melts (United States)

    Edmonds, M.; Gerlach, T.M.


    Measurements of volcanic gases at Pu'u'O??'o??, Kilauea Volcano, Hawai'i, reveal distinct degassing regimes with respect to vapor segregation and loss during effusive activity in 2004-2005. Three styles of vapor loss are distinguished by the chemical character of the emitted volcanic gases, measured by open path Fourier transform infrared spectroscopy: 1 persistent continuous gas emission, 2 gas piston events, and 3 lava spattering. Persistent continuous gas emission is associated with magma ascent and degassing beneath the crater vents, then eruption of the degassed magma from flank vents. Gas piston events are the result of static gas accumulation at depths of 400-900 m beneath Pu'u'O??'o??. A CO2-rich gas slug travels up the conduit at a few meters per second, displacing magma as it expands. Lava spattering occurs due to dynamic bubble coalescence in a column of relatively stagnant magma. The Large gas bubbles are H2O rich and are generated by open-system degassing at depths of gas accumulation and dynamic bubble coalescence are both manifestations of vapor segregation in basaltic melts, but their implications differ. Accumulation and segregation of CO2-rich vapor at depth does not deplete the melt of H2O (required to drive lava fountains near to the surface) and therefore gas piston events can occur interspersed with lava fountaining activity. Lava spattering, however, efficiently strips H2O-rich vapor from magma beneath the crater vents; the magma must then erupt effusively from vents on the flank of the cone. ?? 2007 The Geological Society of America.

  13. Sea ice breakup and marine melt of a retreating tidewater outlet glacier in northeast Greenland (81 degrees N)

    DEFF Research Database (Denmark)

    Bendtsen, Jorgen; Mortensen, John; Lennert, Kunuk


    Rising temperatures in the Arctic cause accelerated mass loss from the Greenland Ice Sheet and reduced sea ice cover. Tidewater outlet glaciers represent direct connections between glaciers and the ocean where melt rates at the ice-ocean interface are influenced by ocean temperature and circulation...... glacier is a floating ice shelf with near-glacial subsurface temperatures at the freezing point. Melting from the surface layer significantly influenced the ice foot morphology of the glacier terminus. Hence, melting of the tidewater outlet glacier was found to be critically dependent on the retreat....... However, few measurements exist near outlet glaciers from the northern coast towards the Arctic Ocean that has remained nearly permanently ice covered. Here we present hydrographic measurements along the terminus of a major retreating tidewater outlet glacier from Flade Isblink Ice Cap. We show...

  14. Biomass Burning and the 2012 Greenland Ice Sheet (GrIS) melt (United States)

    Choi, H. D.; Soja, A. J.; Polashenski, C.; Fairlie, T. D.; Winker, D. M.; Trepte, C. R.


    This study is the part of the Sunlight Absorption on the Greenland ice sheet Experiment (SAGE) project investigating the impact of light absorbing impurities (e.g., aerosols) on the Greenland Ice Sheet (GrIS). Satellite observations, [e.g. Oceansat-2 (OS2) and the Moderate-resolution Imaging Spectroradionmeter (MODIS)] discovered an unusually large melt event in July 2012. NASA sensors showed that nearly 98.6% of the GrIS experienced melting at or near surface [Nghiem et al., 2012]. In this study, we question the extent to which biomass burning derived aerosols enhanced melting across the GrIS. Random points [59 total, 13 coincident with snow pit sites and 46 gridded] are selected across the entire extent of the GrIS from April 1st to August 31st 2012, and then the NASA Langley Trajectory Model (LaTM) is used to simulate the transport of potentially smoke-filled air parcels backwards for 5 days form these points, evaluation the back trajectory for coincidence with active fire detections. The trajectory model is initialized for 24-hour sustained injection from each site, and air parcels are released from the surface to 2 km at 200m intervals. With the trajectory model outputs, we are able to identify trajectories that have coincidences with fires. We focus on events in April through July when the GrIS albedo was dramatically decreased. We also utilize Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data to verify smoke-aerosol signatures in boreal regions based on the NASA LaTM results. The results of this study will help us better understand the transport of biomass burning plumes and black carbon deposition that could lead to enhanced GrIS melting.

  15. Understanding Ice Shelf Basal Melting Using Convergent ICEPOD Data Sets: ROSETTA-Ice Study of Ross Ice Shelf (United States)

    Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.


    The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude

  16. A compositional tipping point governing the mobilization and eruption style of rhyolitic magma. (United States)

    Di Genova, D; Kolzenburg, S; Wiesmaier, S; Dallanave, E; Neuville, D R; Hess, K U; Dingwell, D B


    The most viscous volcanic melts and the largest explosive eruptions on our planet consist of calcalkaline rhyolites. These eruptions have the potential to influence global climate. The eruptive products are commonly very crystal-poor and highly degassed, yet the magma is mostly stored as crystal mushes containing small amounts of interstitial melt with elevated water content. It is unclear how magma mushes are mobilized to create large batches of eruptible crystal-free magma. Further, rhyolitic eruptions can switch repeatedly between effusive and explosive eruption styles and this transition is difficult to attribute to the rheological effects of water content or crystallinity. Here we measure the viscosity of a series of melts spanning the compositional range of the Yellowstone volcanic system and find that in a narrow compositional zone, melt viscosity increases by up to two orders of magnitude. These viscosity variations are not predicted by current viscosity models and result from melt structure reorganization, as confirmed by Raman spectroscopy. We identify a critical compositional tipping point, independently documented in the global geochemical record of rhyolites, at which rhyolitic melts fluidize or stiffen and that clearly separates effusive from explosive deposits worldwide. This correlation between melt structure, viscosity and eruptive behaviour holds despite the variable water content and other parameters, such as temperature, that are inherent in natural eruptions. Thermodynamic modelling demonstrates how the observed subtle compositional changes that result in fluidization or stiffening of the melt can be induced by crystal growth from the melt or variation in oxygen fugacity. However, the rheological effects of water and crystal content alone cannot explain the correlation between composition and eruptive style. We conclude that the composition of calcalkaline rhyolites is decisive in determining the mobilization and eruption dynamics of Earth

  17. A compositional tipping point governing the mobilization and eruption style of rhyolitic magma (United States)

    di Genova, D.; Kolzenburg, S.; Wiesmaier, S.; Dallanave, E.; Neuville, D. R.; Hess, K. U.; Dingwell, D. B.


    The most viscous volcanic melts and the largest explosive eruptions on our planet consist of calcalkaline rhyolites. These eruptions have the potential to influence global climate. The eruptive products are commonly very crystal-poor and highly degassed, yet the magma is mostly stored as crystal mushes containing small amounts of interstitial melt with elevated water content. It is unclear how magma mushes are mobilized to create large batches of eruptible crystal-free magma. Further, rhyolitic eruptions can switch repeatedly between effusive and explosive eruption styles and this transition is difficult to attribute to the rheological effects of water content or crystallinity. Here we measure the viscosity of a series of melts spanning the compositional range of the Yellowstone volcanic system and find that in a narrow compositional zone, melt viscosity increases by up to two orders of magnitude. These viscosity variations are not predicted by current viscosity models and result from melt structure reorganization, as confirmed by Raman spectroscopy. We identify a critical compositional tipping point, independently documented in the global geochemical record of rhyolites, at which rhyolitic melts fluidize or stiffen and that clearly separates effusive from explosive deposits worldwide. This correlation between melt structure, viscosity and eruptive behaviour holds despite the variable water content and other parameters, such as temperature, that are inherent in natural eruptions. Thermodynamic modelling demonstrates how the observed subtle compositional changes that result in fluidization or stiffening of the melt can be induced by crystal growth from the melt or variation in oxygen fugacity. However, the rheological effects of water and crystal content alone cannot explain the correlation between composition and eruptive style. We conclude that the composition of calcalkaline rhyolites is decisive in determining the mobilization and eruption dynamics of Earth

  18. Uranium and neodymium partitioning in alkali chloride melts using low-melting gallium-based alloys

    Directory of Open Access Journals (Sweden)

    Melchakov Stanislav Yu.


    Full Text Available Partitioning of uranium and neodymium was studied in a ‘molten chloride salt - liquid Ga-X (X = In or Sn alloy’ system. Chloride melts were based on the low-melting ternary LiCl-KCl-CsCl eutectic. Nd/U separation factors were calculated from the thermodynamic data as well as determined experimentally. Separation of uranium and neodymium was studied using reductive extraction with neodymium acting as a reducing agent. Efficient partitioning of lanthanides (Nd and actinides (U, simulating fission products and fissile materials in irradiated nuclear fuels, was achieved in a single stage process. The experimentally observed Nd/U separation factor valued up to 106, depending on the conditions.

  19. Melting process by means of the hollow electrode melting system. Einschmelzverfahren mit dem Hohlelektroden-Schmelzsystem

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, F. (Mannesmann Anlagenbau AG, Duesseldorf (Germany)); Schubert, J. (Mannesmann Anlagenbau AG, Duesseldorf (Germany)); Staeubner, H. (Mannesmann Demag AG, Duisburg (Germany)); Lembgen, E. (Mannesmann Demag AG, Duisburg (Germany))


    It is shown that the proven hollow electrode melting system permits conversion of flue ash from waste incineration plants to reusable materials in full complience with the legal regulations, thus providing its recirculation as a raw or final product in the materials flow. This not only reduces the disposal of toxic substances, i.e., counteracts the practice of putting off problems, but also permits the recovery of a large fraction of the reusable materials. Moreover, it helps conserve resources. The glass-like product of this process is similar in composition to natural products and environmentally neutral. The process also provides a sink for toxic substances such as dioxins, which otherwise persist beyond disposal. The specific costs of a complete plant with all the necessary components for melting and cleaning systems are low. (orig./EF)

  20. Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes (United States)

    Lazeroms, Werner M. J.; Jenkins, Adrian; Hilmar Gudmundsson, G.; van de Wal, Roderik S. W.


    Basal melting below ice shelves is a major factor in mass loss from the Antarctic Ice Sheet, which can contribute significantly to possible future sea-level rise. Therefore, it is important to have an adequate description of the basal melt rates for use in ice-dynamical models. Most current ice models use rather simple parametrizations based on the local balance of heat between ice and ocean. In this work, however, we use a recently derived parametrization of the melt rates based on a buoyant meltwater plume travelling upward beneath an ice shelf. This plume parametrization combines a non-linear ocean temperature sensitivity with an inherent geometry dependence, which is mainly described by the grounding-line depth and the local slope of the ice-shelf base. For the first time, this type of parametrization is evaluated on a two-dimensional grid covering the entire Antarctic continent. In order to apply the essentially one-dimensional parametrization to realistic ice-shelf geometries, we present an algorithm that determines effective values for the grounding-line depth and basal slope in any point beneath an ice shelf. Furthermore, since detailed knowledge of temperatures and circulation patterns in the ice-shelf cavities is sparse or absent, we construct an effective ocean temperature field from observational data with the purpose of matching (area-averaged) melt rates from the model with observed present-day melt rates. Our results qualitatively replicate large-scale observed features in basal melt rates around Antarctica, not only in terms of average values, but also in terms of the spatial pattern, with high melt rates typically occurring near the grounding line. The plume parametrization and the effective temperature field presented here are therefore promising tools for future simulations of the Antarctic Ice Sheet requiring a more realistic oceanic forcing.

  1. Identification of a melting type variant among peach (P. persica L. Batsch) fruit textures by a digital penetrometer. (United States)

    Ciacciulli, Angelo; Chiozzotto, Remo; Attanasio, Giovanna; Cirilli, Marco; Bassi, Daniele


    The increase of peach (Prunus persica L. Batsch) fruit shelf-life is one of the most important objectives of breeding activities, as peach is a highly perishable fruit which undergoes rapid softening during ripening. The loss of fruit firmness is accompanied by a modification of textural properties. At least four distinct textures were described in peach: melting, non-melting, stony-hard, and slow-melting (better defined as "slow-softening"). Flesh textures are usually discriminated using different approaches, specific for each type. Objective of this work was the development of a reliable method to assess flesh texture variants in peach fruit, with special attention to the slow-softening type which is currently scored by sensorial evaluation. A puncture-based test using a digital penetrometer was performed on 20 accessions belonging to the four textural groups, obtaining a series of rheological measures related to mechanical flesh properties and including Young's Modulus, Upper Yield Point, and Slope of Yield Stress. Among the components of elasto-plastic behavior of the fruits, the texture dynamic index (TD) was shown to be a reliable parameter to distinguish the group of melting flesh texture from slow-softening, non-melting, and stony-hard, these last resulting characterized by similar mechanical properties. The TD index can be applied to discriminate slow-softening and melting fruits, although variability within the different texture groups suggests the existence of accessions with intermediate phenotypes and minor quantitative trait variation. The availability of an objective method to clearly distinguish the melting from the slow-softening phenotypes paves the road to phenotype segregating progenies in order to find molecular markers associated to the slow-softening trait. The TD index could be considered to determine different textures in fleshy fruits in preharvest and postharvest, to support evaluation of quality for the intended use. © 2017 Wiley

  2. Industrial opportunities of controlled melt flow during glass melting, part 2: Potential applications

    Czech Academy of Sciences Publication Activity Database

    Hrbek, Lukáš; Dyrčíková, Petra; Němec, Lubomír; Jebavá, Marcela


    Roč. 58, č. 3 (2014), s. 202-209 ISSN 0862-5468 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melting * controlled flow * space utilization * homogenization processess Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.435, year: 2014

  3. Metaharmonic Lattice Point Theory

    CERN Document Server

    Freeden, Willi


    Metaharmonic Lattice Point Theory covers interrelated methods and tools of spherically oriented geomathematics and periodically reflected analytic number theory. The book establishes multi-dimensional Euler and Poisson summation formulas corresponding to elliptic operators for the adaptive determination and calculation of formulas and identities of weighted lattice point numbers, in particular the non-uniform distribution of lattice points. The author explains how to obtain multi-dimensional generalizations of the Euler summation formula by interpreting classical Bernoulli polynomials as Green

  4. Observation of melting conditions in selective laser melting of metals (SLM) (United States)

    Thombansen, U.; Abels, Peter


    Process observation in 3D printing of metals currently is one of the central challenges. Many companies strive to employ this additive manufacturing process in their production chains in order to gain competitive advantages through added flexibility in product design and embedded features. The new degrees of freedom are accompanied with the challenge to manufacture every detail of the product to the predefined specifications. Products with filigree internal structures for example require a perfect build to deliver the performance that was designed into these structures. Melting conditions determine properties such as grain structure and density of the finished part before it is sent to post processing steps. Monitoring of such melting conditions is still a challenge where the use of photodiodes, pyrometry and camera systems contribute to an overall picture that might identify errors or deviations during the build process. Additional considerations must be made to decide if these sensors are applied coaxially or from a lateral perspective. Furthermore, setting parameters of focal plane array (FPA) sensors are discussed and events that are seen in the machine vision image are compared against the pyrometry data. The resume of the experiments suggests the application of multiple sensors to the selective laser melting process (SLM) as they jointly contribute to an identification of events. These events need to be understood in order to establish cause effect relationships in the future.

  5. Deciphering the flow structure of Czochralski melt using Partially ...

    Indian Academy of Sciences (India)

    Sudeep Verma


    Feb 5, 2018 ... Abstract. Czochralski melt flow is an outcome of complex interactions of centrifugal, buoyancy, coriolis and surface tension forces, which act at different length and time scales. As a consequence, the characteristic flow structures that develop in the melt are delineated in terms of recirculating flow cells typical ...

  6. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces. (United States)

    Chu, Fuqiang; Wu, Xiaomin; Wang, Lingli


    Condensed droplet freezing and freezing droplet melting phenomena on the prepared ultraslippery superhydrophobic surface were observed and discussed in this study. Although the freezing delay performance of the surface is common, the melting of the freezing droplets on the surface is quite interesting. Three self-propelled movements of the melting droplets (ice- water mixture) were found including the droplet rotating, the droplet jumping, and the droplet sliding. The melting droplet rotating, which means that the melting droplet rotates spontaneously on the superhydrophobic surface like a spinning top, is first reported in this study and may have some potential applications in various engineering fields. The melting droplet jumping and sliding are similar to those occurring during condensation but have larger size scale and motion scale, as the melting droplets have extra-large specific surface area with much more surface energy available. These self-propelled movements make all the melting droplets on the superhydrophobic surface dynamic, easily removed, which may be promising for the anti-icing/frosting applications.

  7. Effect of stirring on striae in glass melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Yue, Yuanzheng


    Chemical striae have often negative effect on the glass properties, and hence, elimination of striae has been a key issue in glass science and technology. To produce highly homogeneous glasses, it is necessary to stir melts during the melting process. To explore the physical origin of the stria...

  8. Deciphering the flow structure of Czochralski melt using Partially ...

    Indian Academy of Sciences (India)

    Czochralski melt flow is an outcome of complex interactions of centrifugal, buoyancy, coriolis and surface tension forces, which act at different length and time scales. As a consequence, the characteristic flow structures that develop in the melt are delineated in terms of recirculating flow cells typical of rotating ...

  9. Melt rheological properties of natural fiber-reinforced polypropylene (United States)

    Jarrod J. Schemenauer; Tim A. Osswald; Anand R. Sanadi; Daniel F. Caulfield


    The melt viscosities and mechanical properties of 3 different natural fiber-polypropylene composites were investigated. Coir (coconut), jute, and kenaf fibers were compounded with polypropylene at 30% by weight content. A capillary rheometer was used to evaluate melt viscosity. The power-law model parameters are reported over a shear rate range between 100 to 1000 s–1...

  10. Rapid bottom melting widespread near Antarctic ice sheet grounding lines (United States)

    Rignot, E.; Jacobs, S.


    As continental ice from Antartica reaches the grounding line and begins to float, its underside melts into the ocean. Results obtained with satellite radar interferometry reveal that bottom melt rates experienced by large outlet glaciers near their grounding lines are far higher than generally assumed.

  11. Temperature dependence of nitrogen solubility in iron base multicomponent melts

    International Nuclear Information System (INIS)

    Sokolov, V.M.; Koval'chuk, L.A.


    Method for calculating temperature dependence of nitrogen solubility in iron base multicomponent melts is suggested. Application areas of existing methods were determined and advantages of the new method for calculating nitrogen solubility in multicomponent-doped iron melts (Fe-Ni-Cr-Mo, Fe-Ni-Cr-Mn, Fe-Mo-V) at 1773-2073 K are shown

  12. Melting behaviour of lead and bismuth nano-particles in ...

    Indian Academy of Sciences (India)

    Melting behaviour of nanocrystalline interfaces, created by embedding lead and bismuth nanoparticles in quasicrystalline matrices, was studied. Sharply faceted and coherent interfaces can be related to sharper melting transitions, while irregularly shaped and incoherent interfaces can be directly correlated with lowering of ...

  13. Incorporation of Certain Hydrophobic Excipients in the Core of Melt ...

    African Journals Online (AJOL)

    Purpose: A process of melt granulation whereby the drug powder is mixed with a melted wax has been used to modify the dissolution rates of drug particles. The present study investigated how the incorporation of hydrophobic materials (talc or magnesium stearate) in the core of such granules may further retard drug ...

  14. Incorporation of Certain Hydrophobic Excipients in the Core of Melt ...

    African Journals Online (AJOL)

    Patrick Erah

    Objective - A process of melt granulation whereby the drug powder is mixed with a melted wax has been used to modify the dissolution rates of drug particles. The present study investigated how the incorporation of hydrophobic materials (talc or magnesium stearate) in the core of such granules may further retard drug ...

  15. Joint electroreduction of lanthanum, gadolinium and boron in halide melts

    Directory of Open Access Journals (Sweden)

    Khushkhov KH.B.


    Full Text Available The joint electroreduction of La, Gd and B from chloride-fluoride melts has been studied by cyclic voltametry. Based on the analysis of voltamograms the possibility of electrosynthesis of lanthanum-gadolinium borides from chloride-fluoride melts has been shown.

  16. Water-fluxed melting of the continental crust: A review

    Czech Academy of Sciences Publication Activity Database

    Weinberg, R. F.; Hasalová, Pavlína

    212-215, January (2015), s. 158-188 ISSN 0024-4937 Institutional support: RVO:67985530 Keywords : aqueous fluids * crustal anatexis * granites * silicate melts * water-fluxed melting Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.723, year: 2015

  17. Coatings with laser melt injection of ceramic particles

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Ocelik, V.; de Oliveira, U.; Seal, S; Dahotre, NB; Moore, JJ; Suryanarayana, C; Agarwal, A


    The conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of Al8Si and Ti6Al4V alloys were studied experimentally and theoretically by FEM calculations. The laser employed is a high power Nd:YAG The formation of a relatively thick aluminium oxide layer on

  18. Single scan vector prediction in selective laser melting

    NARCIS (Netherlands)

    Wits, Wessel Willems; Bruins, R.; Terpstra, L.; Huls, R.A.; Geijselaers, Hubertus J.M.


    In selective laser melting (SLM) products are built by melting layers of metal powder successively. Optimal process parameters are usually obtained by scanning single vectors and subsequently determining which settings lead to a good compromise between product density and build speed. This paper

  19. Size-dependent melting of nanoparticles: Hundred years of ...

    Indian Academy of Sciences (India)

    Thermodynamic model first published in 1909, is being used extensively to understand the size-dependent melting of nanoparticles. Pawlow deduced an expression for the size-dependent melting temperature of small particles based on the thermodynamic model which was then modified and applied to different ...

  20. Size-dependent melting of nanoparticles: Hundred years of ...

    Indian Academy of Sciences (India)

    Abstract. Thermodynamic model first published in 1909, is being used extensively to understand the size-dependent melting of nanoparticles. Pawlow deduced an expression for the size-dependent melting temperature of small particles based on the thermodynamic model which was then modified and applied to different ...

  1. Melt flow characteristics in gas-assisted laser cutting

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    email: MS received 24 May 2001; revised 28 December 2001. Abstract. We present a study on laser cutting of mild steel with oxygen as an assist gas. We correlate the cut surface quality with the melt film thickness. We estimate the optimum pressure required for melt ejection under laminar flow regime.

  2. The Chemical Consequences of Partial Melting, Melt Transport and Melt-Rock Reaction in a Two-Porosity Double- or Triple-Lithology Mantle: A Trace Element Perspective (United States)

    Liang, Y.; Parmentier, E. M.


    Several lines of evidence suggest that the melting and melt extraction region of the mantle is heterogeneous consisting of interconnected networks of high permeability dunite channels in a low permeability harzburgite or lherzolite matrix. The formation of dunite channel network involves preferential dissolution of pyroxene and precipitation of olivine as olivine normative basalt percolating through a porous harzburgite or lherzolite matrix. To better understand the chemical consequences of partial melting, melt extraction, and melt-rock reaction in such a heterogeneous mantle, mass conservation equations for a two-porosity dunite-harzburgite (double lithology) or dunite-harzburgite-lherzolite (triple-lithology) mantle have been developed. Here the region of interest is treated as two or three overlapping continua occupied by the low porosity matrix and high porosity channel system. Mass conservation equations for the channel and the matrix continuum are coupled through exchange terms that include dissolution of the harzburgite or lherzolite matrix, and diffusive and advective mixings between the melt in the channel and that in the matrix. The chemical consequences of partial melting, melt transport, and melt-rock reaction in a two porosity dunite-harzburgite or dunite-harzburgite-lherzolite mantle have been investigated using simplified 1-D mass conservation equations and parameters relevant to melt generation under the mid-ocean ridge. In general, the abundance of compatible trace element such as Ni in the dunite channel is very sensitive to the rate of matrix dissolution in the mantle column. Preferential dissolution of pyroxenes from the harzburgite (or lherzolite) matrix and precipitation of olivine lower the Ni abundance in the dunite (or dunite and harzburgite). In the absence of matrix dissolution, the Ni abundance in the dunite can be equal to or higher than that in the host harzburgite or lherzolite, depending on the Ni content of the melt entering the

  3. Structural controls and mechanisms of diffusion in natural silicate melts (United States)

    Henderson, P.; Nolan, J.; Cunningham, G. C.; Lowry, R. K.


    The diffusion properties of Na, Cs, Ba, Fe and Eu ions have been determined experimentally for a pantellerite melt and of these ions plus Li, Mn and Co in pitchstone melt, using the radiotracer residual-activity method, and narrow platinum capillaries, over the temperature range 1,200 1,400° C. In addition, Eu diffusion in a basaltic and an andesitic melt was determined. Diffusion of all cations follows an Arrhenius relationship, activation energy values being high for diffusion in the pantellerite melt (e.g. Eu: 100 kcal mol-1) except in the case of Na (24.3 kcal mol-1). Activation energies of diffusion in the pitchstone melt are similar to values recorded earlier for andesitic and basaltic melts. The new data are used, along with previously published data for diffusion in other composition melts, to examine the compositional and structural controls on diffusion. The range of diffusivities shows a marked change with melt composition; over two orders of magnitude for a basaltic melt, and nearly four orders for a pantellerite melt (both at 1,300° C). Diffusivity of all cations (except Li and Na) correlates positively with the proportion of network modifying cations. In the case of Li and Na the correlation is negative but the diffusivity of these ions correlates positively with the proportion of Na or of Na + K ions in the bulk melt. Diffusion behaviour in the pantellerite melt departs from the relationships shown by the data for other melt compositions, which could be partly explained by trivalent ions (such as Fe) occupying network forming positions. The diffusivity of alkali metal ions is strongly dependent on ionic radius, but this is not the case with the divalent and trivalent ions; diffusivity of these ions remains relatively constant with change in radius but decreases with increase in ionic charge. A compensation diagram shows four distinct but parallel trends for the majority of the cations in four melt types but the data for Li and Na plot on a separate

  4. Continuous eclogite melting and variable refertilisation in upwelling heterogeneous mantle. (United States)

    Rosenthal, Anja; Yaxley, Gregory M; Green, David H; Hermann, Joerg; Kovács, István; Spandler, Carl


    Large-scale tectonic processes introduce a range of crustal lithologies into the Earth's mantle. These lithologies have been implicated as sources of compositional heterogeneity in mantle-derived magmas. The model being explored here assumes the presence of widely dispersed fragments of residual eclogite (derived from recycled oceanic crust), stretched and stirred by convection in the mantle. Here we show with an experimental study that these residual eclogites continuously melt during upwelling of such heterogeneous mantle and we characterize the melting reactions and compositional changes in the residue minerals. The chemical exchange between these partial melts and more refractory peridotite leads to a variably metasomatised mantle. Re-melting of these metasomatised peridotite lithologies at given pressures and temperatures results in diverse melt compositions, which may contribute to the observed heterogeneity of oceanic basalt suites. We also show that heterogeneous upwelling mantle is subject to diverse local freezing, hybridization and carbonate-carbon-silicate redox reactions along a mantle adiabat.

  5. Laser-based microbonding using hot melt adhesives (United States)

    Hemken, G.; Böhm, S.


    This paper presents an alternative adhesive bonding system which is able to join very small parts as well as relatively large parts with high accuracy requirements. The main advantages are the possibility to apply small volumes, to preapply the adhesive with a temporarily delayed joining procedure and extremely short set cycles. The center of micro joining develops suitable joining techniques on the basis of non-viscous adhesive systems (hot melts). The process development focuses on the suitability for automation, process times and the applicability of batch processes. The article discusses certain hot melt application techniques that are suitable for batch production e. g. the laser-sintering of hot melt powder, presents an adapted assembly system and shows an example of an automated assembly process for hot melt coated micro components. Therefore, using hot melts can be a technologically and economically interesting alternative for the assembly and packaging of MEMS.

  6. A multi-component evaporation model for beam melting processes (United States)

    Klassen, Alexander; Forster, Vera E.; Körner, Carolin


    In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.

  7. Melt-quenched glasses of metal-organic frameworks

    DEFF Research Database (Denmark)

    Bennett, T.D.; Yue, Yuanzheng; Li, P.


    Crystalline solids dominate the field of metal−organic frameworks (MOFs), with access to the liquid and glass states of matter usually prohibited by relatively low temperatures of thermal decomposition. In this work, we give due consideration to framework chemistry and topology to expand...... of other MOFs. The glasses formed upon vitrification are chemically and structurally distinct from the three other existing categories of melt-quenched glasses (inorganic nonmetallic, organic, and metallic), and retain the basic metal−ligand connectivity of crystalline MOFs, which connects their mechanical...... the phenomenon of the melting of 3D MOFs, linking crystal chemistry to framework melting temperature and kinetic fragility of the glass-forming liquids. Here we show that melting temperatures can be lowered by altering the chemistry of the crystalline MOF state, which provides a route to facilitate the melting...

  8. Synthesis of carbides of refractory metals in salt melts

    International Nuclear Information System (INIS)

    Ilyushchenko, N.G.; Anfinogenov, A.I.; Chebykin, V.V.; Chernov, Ya.B.; Shurov, N.I.; Ryaposov, Yu.A.; Dobrynin, A.I.; Gorshkov, A.V.; Chub, A.V.


    The ion-electron melts, obtained through dissolving the alkali and alkali-earth metals in the molten chlorides above the chloride melting temperature, were used for manufacturing the high-melting metal carbides as the transport melt. The lithium, calcium and magnesium chlorides and the mixture of the lithium chloride with the potassium or calcium chloride were used from the alkali or alkali-earth metals. The metallic lithium, calcium, magnesium or the calcium-magnesium mixtures were used as the alkali or alkali-earth metals. The carbon black or sugar was used as carbon. It is shown, that lithium, magnesium or calcium in the molten salts transfer the carbon on the niobium, tantalum, titanium, forming the carbides of the above metals. The high-melting metal carbides are obtained both from the metal pure powders and from the oxides and chlorides [ru

  9. Experimental constraints on the degree of melting beneath tectonic plates (United States)

    Clark, A. N.; Lesher, C. E.


    Determining the volume and geometric distribution of silicate melts is fundamentally important to understand the current structure of the Earth as well as the dynamics of the Earth's interior. Regions in the upper mantle and crust that have lower velocities than the 1D global average are commonly attributed to the presence of silicate melts. Constraining melt fraction and distribution from seismic data requires a robust equation of state for silicate melts. Commonly, silicate melts are modeled at high pressure using equations of state developed for crystalline materials (e.g. the Birch-Murnaghan equation of state). However, amorphous silicates (glasses and melts), which lack long-range ordering, violate Birch's law at high pressures and high temperatures (Clark et al., 2016). We present a new model for seismic velocity reductions that accounts for the violation of Birch's law (anomalous compressibility) observed in amorphous silicates, rendering compressional wave velocities more sensitive to melt fraction and distribution than previous estimates. Forward modeling that combines our experimental data with the analytical solution of Takei (2002) predicts comparable velocity reductions for compressional and shear waves for partially molten mantle. Additionally, models that use crystalline equations of state to determine melt fraction at high pressure may overestimate melt fraction by 20% at pressures corresponding to the lithosphere-asthenosphere boundary (LAB) with the overestimation increasing with depth (e.g. a factor of 2 at the transition zone). By applying our results to recent seismic studies below the western Pacific plate that have reported low velocity regions associated with the lithosphere - asthenosphere boundary (LAB), we predict melt present at Journal of Geophysical Research: Solid Earth, v. 121, no. 6, p. 4232-4248. Takei, Y., 2002, Journal of Geophysical Research: Solid Earth (1978-2012), v. 107, no. B2, p. 6-12.

  10. Melt pelletization in high shear mixer using a hydrophobic melt binder: influence of some apparatus and process variables. (United States)

    Voinovich, D; Moneghini, M; Perissutti, B; Franceschinis, E


    The effects of process conditions and the apparatus variables on the granulometric characteristics of a formulation containing a hydrophobic binder (stearic acid), lactose and paracetamol prepared by melt pelletization process were investigated in a 10-litre high shear mixer. The factors under investigation were: impeller speed, massing time, type of impeller blades and presence of the deflector and their reciprocal interactions. Two granule characteristics were analysed: the percentage of aggregates larger than 3000 microm (Y(1)) and the yield of the 2000-microm pellet size fraction (Y(2)). In order to estimate simultaneously the above-mentioned factors, a particular experimental design was adopted, that allowed the reduction of the number of trials from 378 to 35 and took into consideration other uncontrolled factors with the aid of a block variable. Using the postulated model, we found the optimal operating conditions to minimize Y(1) and increase Y(2) by selecting the type of impeller, and by using an impeller speed lower than 300 rpm, a massing time of 8-9 min and by not using the deflector. Finally, the validity of the adopted strategy has been proved with an additional check point.

  11. Evolution of the vortex phase diagram in YBa2Cu3O7-δ with random point disorder

    International Nuclear Information System (INIS)

    Paulius, L. M.; Kwok, W.-K.; Olsson, R. J.; Petrean, A. M.; Tobos, V.; Fendrich, J. A.; Crabtree, G. W.; Burns, C. A.; Ferguson, S.


    We demonstrate the gradual evolution of the first-order vortex melting transition into a continuous transition with the systematic addition of point disorder induced by proton irradiation. The evolution occurs via the decrease of the upper critical point and the increase of the lower critical point. The collapse of the first-order melting transition occurs when the two critical points merge. We compare these results with the effects of electron irradiation on the first-order transition. (c) 2000 The American Physical Society

  12. Interesting Interest Points

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Dahl, Anders Lindbjerg; Pedersen, Kim Steenstrup


    Not all interest points are equally interesting. The most valuable interest points lead to optimal performance of the computer vision method in which they are employed. But a measure of this kind will be dependent on the chosen vision application. We propose a more general performance measure bas...

  13. Poisson branching point processes

    International Nuclear Information System (INIS)

    Matsuo, K.; Teich, M.C.; Saleh, B.E.A.


    We investigate the statistical properties of a special branching point process. The initial process is assumed to be a homogeneous Poisson point process (HPP). The initiating events at each branching stage are carried forward to the following stage. In addition, each initiating event independently contributes a nonstationary Poisson point process (whose rate is a specified function) located at that point. The additional contributions from all points of a given stage constitute a doubly stochastic Poisson point process (DSPP) whose rate is a filtered version of the initiating point process at that stage. The process studied is a generalization of a Poisson branching process in which random time delays are permitted in the generation of events. Particular attention is given to the limit in which the number of branching stages is infinite while the average number of added events per event of the previous stage is infinitesimal. In the special case when the branching is instantaneous this limit of continuous branching corresponds to the well-known Yule--Furry process with an initial Poisson population. The Poisson branching point process provides a useful description for many problems in various scientific disciplines, such as the behavior of electron multipliers, neutron chain reactions, and cosmic ray showers

  14. Indexing Moving Points

    DEFF Research Database (Denmark)

    Agarwal, Pankaj K.; Arge, Lars Allan; Erickson, Jeff


    We propose three indexing schemes for storing a set S of N points in the plane, each moving along a linear trajectory, so that any query of the following form can be answered quickly: Given a rectangle R and a real value t, report all K points of S that lie inside R at time t. We first present an...

  15. Model Breaking Points Conceptualized (United States)

    Vig, Rozy; Murray, Eileen; Star, Jon R.


    Current curriculum initiatives (e.g., National Governors Association Center for Best Practices and Council of Chief State School Officers 2010) advocate that models be used in the mathematics classroom. However, despite their apparent promise, there comes a point when models break, a point in the mathematical problem space where the model cannot,…

  16. Rapid melting dynamics of the Morteratsch glacier (Swiss Alps) from UAV photogrammetry and field spectroscopy data (United States)

    Di Mauro, Biagio; Garzonio, Roberto; Rossini, Micol; Baccolo, Giovanni; Julitta, Tommaso; Cavallini, Giuseppe; Mattavelli, Matteo; Colombo, Roberto


    The impact of atmospheric impurities on the optical properties of snow and ice has been largely acknowledged in the scientific literature. Beyond this, the evaluation of the effect of specific organic and inorganic particles on melting dynamics remains a major challenge. In this contribution, we examine the annual melting dynamics of a large valley glacier of the Swiss Alps using UAV photogrammetry. We then compare the melting patterns to the presence of surface impurities on the glacier surface. Two surveys (in July and September 2016) with a lightweight Unmanned Aerial Vehicle (UAV) were organized on the ablation zone of the Morteratsch glacier (Swiss Alps). The UAV (DJI, Phantom 4) was equipped with a high resolution digital camera, and flew at a constant altitude of 150 from the glacier surface. 30 ground control points were placed on the glacier, and their coordinates were determined with a differential GPS (dGPS) for georeferencing UAV images. Contemporary to the UAV surveys, field spectroscopy data were collected on the glacier surface with an Analytical Spectral Device (ASD Field spec.) spectrometer covering the visible and near infrared spectral ranges, and ice samples were collected to determine the abundance of microorganism and algae. From the UAV RGB data, two point clouds were created using Structure from Motion (SfM) algorithms. The point clouds (each consisting of about 15M points) were then converted in Digital Surface Models (DSM) and orthomosaics by interpolation. The difference between the two DSM was calculated and converted in Snow Water Equivalent (SWE), in order to assess the ice lost by the glacier during the ablation season. The point clouds were compared and the displacement vectors were estimated using different algorithms. The elevation changes estimated from UAV data were compared with the abundance of microorganisms and algae. The reflectance spectra of ice with microorganisms and algae show a chlorophyll absorption feature at 680 nm

  17. Bubble removal and sand dissolution in an electrically heated glass melting channel with defined melt flow examined by mathematical modelling

    Czech Academy of Sciences Publication Activity Database

    Hrbek, L.; Kocourková, P.; Jebavá, Marcela; Cincibusová, P.; Němec, Lubomír


    Roč. 456, JAN 15 (2017), s. 101-113 ISSN 0022-3093 Institutional support: RVO:67985891 Keywords : glass melt flow * mathematical modelling * energy distribution * space utilization * melting performance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 2.124, year: 2016

  18. Analysis of elementary process steps in industrial glass melting tanks: some ideas on innovations in industrial glass melting

    NARCIS (Netherlands)

    Beerkens, R.G.C.


    Conventional industrial glass furnaces show broad glass melt residence time distributions in the melting tanks and average residence times may be up to more than two days for high quality glass products, such as float glass or TV glass, despite the minimum residence times of 8-10 hours (or even less

  19. Multispectral Image Feature Points

    Directory of Open Access Journals (Sweden)

    Cristhian Aguilera


    Full Text Available This paper presents a novel feature point descriptor for the multispectral image case: Far-Infrared and Visible Spectrum images. It allows matching interest points on images of the same scene but acquired in different spectral bands. Initially, points of interest are detected on both images through a SIFT-like based scale space representation. Then, these points are characterized using an Edge Oriented Histogram (EOH descriptor. Finally, points of interest from multispectral images are matched by finding nearest couples using the information from the descriptor. The provided experimental results and comparisons with similar methods show both the validity of the proposed approach as well as the improvements it offers with respect to the current state-of-the-art.

  20. Polymer-organoclay nanocomposites by melt processing (United States)

    Cui, Lili


    Polymer-layered silicate nanocomposites based on a variety of polymer matrices and several organoclays were prepared by melt processing. A detailed characterization of the thermal degradation of several commercial and experimental organoclays often used to form polymer nanocomposites was reported. The surfactant type, loading, and purification level of organoclay significantly affect their thermal stability; however, broadly speaking, the results suggest that these differences in thermal stability do not appear to have much effect on the morphology and properties of the nanocomposites formed from them. It seems that the thermal stability of organoclays is not the key factor in organoclay exfoliation in melt processed polymer nanocomposites, since the exfoliation/dispersion process may have been completed on a time scale before the degradation of surfactant progresses to a detrimental level. Polymer nanocomposites have been made from a variety of polymers; however, few matrices have demonstrated the ability to readily exfoliate the organoclay as well as nylon 6, especially for highly hydrophobic materials like polyolefins. Hence, a significant part of this research work was devoted to explore various routes to improve polyolefin-organoclay interactions, and thus, organoclay exfoliation in these systems. Amine grafted polypropylenes and a conventionally used maleic anhydride grafted polypropylene were used as compatibilizers for polypropylene based nanocomposites to improve the organoclay exfoliation. A series of ethylene vinyl acetate copolymers, the polarity of which can be adjusted by varying their vinyl acetate contents, based nanocomposites were prepared as the model system to address the relationship between the polarity of the polymers and their preferences over various organoclay structures. Attempts were made to explore the effect of degree of neutralization of acid groups in ionomers on the morphology and properties of nanocomposites, and it seems that the

  1. Processing and characterization of Al–Cu–Li alloy AA2195 undergoing scale up production through the vacuum induction melting technique

    International Nuclear Information System (INIS)

    Nayan, Niraj; Murty, S.V.S. Narayana; Jha, Abhay K.; Pant, Bhanu; Sharma, S.C.; George, Koshy M.; Sastry, G.V.S.


    The inherent properties of lithium, such as high reactivity and toxicity, relatively low density, low melting point, along with its high cost requires a special technological approach to cast Al–Cu–Li alloy AA2195 as compared to the conventional Direct Chill (DC) casting of aluminum alloys. This paper describes the processing requirements for melting and casting of 200 kg of Al–Cu–Li alloy in a Vacuum Induction Melting (VIM) furnace under dynamic inert atmosphere. The as-cast billets have been homogenized to remove microsegregation as well as to avoid incipient melting, and subsequently subjected for secondary metal processing operations viz., forging and rolling. The product in the form of 4 mm thick sheets was subjected to various heat treatments in T8 (Solution Treatment+WQ+CW+Aging) condition. Mechanical properties were evaluated at room temperature and were correlated with microstructures of the sheets processed under different conditions using transmission electron microscopy (TEM)

  2. Olivine and melt inclusion chemical constraints on the source of intracontinental basalts from the eastern North China Craton: Discrimination of contributions from the subducted Pacific slab (United States)

    Li, Hong-Yan; Xu, Yi-Gang; Ryan, Jeffrey G.; Huang, Xiao-Long; Ren, Zhong-Yuan; Guo, Hua; Ning, Zhen-Guo


    Contributions from fluid and melt inputs from the subducting Pacific slab to the chemical makeup of intraplate basalts erupted on the eastern Eurasian continent have long been suggested but have not thus far been geochemically constrained. To attempt to address this question, we have investigated Cenozoic basaltic rocks from the western Shandong and Bohai Bay Basin, eastern North China Craton (NCC), which preserve coherent relationships among the chemistries of their melt inclusions, their hosting olivines and their bulk rock compositions. Three groups of samples are distinguished: (1) high-Si and (2) moderate-Si basalts (tholeiites, alkali basalts and basanites) which were erupted at ∼23-20 Ma, and (3) low-Si basalts (nephelinites) which were erupted at <9 Ma. The high-Si basalts have lower alkalies, CaO and FeOT contents, lower trace element concentrations, lower La/Yb, Sm/Yb and Ce/Pb but higher Ba/Th ratios, and lower εNd and εHf values than the low-Si basalts. The olivines in the high-Si basalts have higher Ni and lower Mn and Ca at a given Fo value than those crystallizing from peridotite melts, and their corresponding melt inclusions have lower CaO contents than peridotite melts, suggesting a garnet pyroxenitic source. The magmatic olivines from low-Si basalts have lower Ni but higher Mn at a given Fo value than that of the high-Si basalts, suggesting more olivine in its source. The olivine-hosted melt inclusions of the low-Si basalts have major elemental signatures different from melts of normal peridotitic or garnet pyroxenitic mantle sources, pointing to their derivation from a carbonated mantle source consisting of peridotite and garnet pyroxenite. We propose a model involving the differential melting of a subduction-modified mantle source to account for the generation of these three suites of basalts. Asthenospheric mantle beneath the eastern NCC, which entrains garnet pyroxenite with an EM1 isotopic signature, was metasomatized by carbonatitic

  3. Why Permafrost Is Thawing, Not Melting (United States)

    Grosse, Guido; Romanovsky, Vladimir; Nelson, Frederick E.; Brown, Jerry; Lewkowicz, Antoni G.


    As global climate change is becoming an increasingly important political and social issue, it is essential for the cryospheric and global change research communities to speak with a single voice when using basic terminology to communicate research results and describe underlying physical processes. Experienced science communicators have highlighted the importance of using the correct terms to communicate research results to the media and general public [e.g., Akasofu, 2008; Hassol, 2008]. The consequences of scientists using improper terminology are at best oversimplification, but they more likely involve misunderstandings of the facts by the public. A glaring example of scientifically incorrect terminology appearing frequently in scientific and public communication relates to reports on the degradation of permafrost. Numerous research papers have appeared in recent years, broadly echoed in the news media, describing the “melting of permafrost,” its effects in the Arctic, and its feedbacks on climate through the carbon cycle. Although permafrost researchers have attempted to distinguish between the appropriate term “permafrost thawing” and the erroneous “permafrost melting” [e.g., van Everdingen, 2005; French, 2002], the latter is still used widely. A Web-based search using the phrase “permafrost melting” reveals hundreds of occurrences, many from highly regarded news and scientific organizations, including Reuters, New Scientist, ABC, The Guardian, Discovery News, Smithsonian magazine, the National Science Foundation, and others.

  4. Melt extrusion with poorly soluble drugs. (United States)

    Shah, Sejal; Maddineni, Sindhuri; Lu, Jiannan; Repka, Michael A


    Melt extrusion (ME) over recent years has found widespread application as a viable drug delivery option in the drug development process. ME applications include taste masking, solid-state stability enhancement, sustained drug release and solubility enhancement. While ME can result in amorphous or crystalline solid dispersions depending upon several factors, solubility enhancement applications are centered around generating amorphous dispersions, primarily because of the free energy benefits they offer. In line with the purview of the current issue, this review assesses the utility of ME as a means of enhancing solubility of poorly soluble drugs/chemicals. The review describes major processing aspects of ME technology, definition and understanding of the amorphous state, manufacturability, analytical characterization and biopharmaceutical performance testing to better understand the strength and weakness of this formulation strategy for poorly soluble drugs. In addition, this paper highlights the potential advantages of employing a fusion of techniques, including pharmaceutical co-crystals and spray drying/solvent evaporation, facilitating the design of formulations of API exhibiting specific physico-chemical characteristics. Finally, the review presents some successful case studies of commercialized ME based products. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Charged Water Droplets can Melt Metallic Electrodes (United States)

    Elton, Eric; Rosenberg, Ethan; Ristenpart, William


    A water drop, when immersed in an insulating fluid, acquires charge when it contacts an energized electrode. Provided the electric field is strong enough, the drop will move away to the opposite electrode, acquire the opposite charge, and repeat the process, effectively 'bouncing' back and forth between the electrodes. A key implicit assumption, dating back to Maxwell, has been that the electrode remains unaltered by the charging process. Here we demonstrate that the electrode is physically deformed during each charge transfer event with an individual water droplet or other conducting object. We used optical, electron, and atomic force microscopy to characterize a variety of different metallic electrodes before and after drops were electrically bounced on them. Although the electrodes appear unchanged to the naked eye, the microscopy reveals that each charge transfer event yielded a crater approximately 1 micron wide and 50 nm deep, with the exact dimensions proportional to the applied field strength. We present evidence that the craters are formed by localized melting of the electrodes via Joule heating in the metal and concurrent dielectric breakdown of the surrounding fluid, suggesting that the electrode locally achieves temperatures exceeding 3400°C. Present address: Dept. Materials Sci. Engineering, MIT.

  6. Determination of the solid-liquid-vapor triple point pressure of carbon

    International Nuclear Information System (INIS)

    Haaland, D.M.


    A detailed experimental study of the triple point pressure of carbon using laser heating techniques has been completed. Uncertainties and conflict in previous investigations have been addressed and substantial data presented which places the solid-liquid-vapor carbon triple point at 107 +- 2 atmospheres. This is in agreement with most investigations which have located the triple point pressure between 100 and 120 atmospheres, but is in disagreement with recent low pressure carbon experiments. The absence of any significant polymorphs of carbon other than graphite suggests that the graphite-liquid-vapor triple point has been measured. Graphite samples were melted in a pressure vessel using a 400 W Nd:YAG continuous-wave laser focused to a maximum power density of approximately 80 kW/cm 2 . Melt was confirmed by detailed microstructure analysis and x-ray diffraction of the recrystallized graphite. Experiments to determine the minimum melt pressure of carbon were completed as a function of sample size, type of inert gas, and laser power density to asure that laser power densities were sufficient to produce melt at the triple point pressure of carbon, and the pressure of carbon at the surface of the sample was identical to the measured pressure of the inert gas in the pressure vessel. High-speed color cinematography of the carbon heating revealed the presence of a laser-generated vapor or particle plume in front of the sample. The existence of this bright plume pevented the measurement of the carbon triple point temperature

  7. Transient High-Temperature Processing of Silicates in Fulgurites as Analogues for Meteorite and Impact Melts (United States)

    Parnell, J.; Thackrey, S.; Muirhead, D. K.; Wright, A. J.


    A fulgurite from the Sahara yielded petrographic data valuable as an analogue for highly reduced meteorite and impact melts, including iron silicide formation, devolatilization features, zircon melting and extreme melt heterogeneity.

  8. Do acupuncture points exist?

    International Nuclear Information System (INIS)

    Yan Xiaohui; Zhang Xinyi; Liu Chenglin; Dang, Ruishan; Huang Yuying; He Wei; Ding Guanghong


    We used synchrotron x-ray fluorescence analysis to probe the distribution of four chemical elements in and around acupuncture points, two located in the forearm and two in the lower leg. Three of the four acupuncture points showed significantly elevated concentrations of elements Ca, Fe, Cu and Zn in relation to levels in the surrounding tissue, with similar elevation ratios for Cu and Fe. The mapped distribution of these elements implies that each acupuncture point seems to be elliptical with the long axis along the meridian. (note)

  9. Do acupuncture points exist?

    Energy Technology Data Exchange (ETDEWEB)

    Yan Xiaohui; Zhang Xinyi [Department of Physics, Surface Physics Laboratory (State Key Laboratory), and Synchrotron Radiation Research Center of Fudan University, Shanghai 200433 (China); Liu Chenglin [Physics Department of Yancheng Teachers' College, Yancheng 224002 (China); Dang, Ruishan [Second Military Medical University, Shanghai 200433 (China); Huang Yuying; He Wei [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Ding Guanghong [Shanghai Research Center of Acupuncture and Meridian, Pudong, Shanghai 201203 (China)


    We used synchrotron x-ray fluorescence analysis to probe the distribution of four chemical elements in and around acupuncture points, two located in the forearm and two in the lower leg. Three of the four acupuncture points showed significantly elevated concentrations of elements Ca, Fe, Cu and Zn in relation to levels in the surrounding tissue, with similar elevation ratios for Cu and Fe. The mapped distribution of these elements implies that each acupuncture point seems to be elliptical with the long axis along the meridian. (note)

  10. Direct Measurements of Iceberg Melt in Greenland Tidewater Glacier Fjords (United States)

    Schild, K. M.; Sutherland, D.; Straneo, F.; Elosegui, P.


    The increasing input of freshwater to the subpolar North Atlantic, both through glacier meltwater runoff and the melting of calved icebergs, has significant implications for the Atlantic meridional overturning circulation and regional scale circulation. However, the magnitude and timing of this meltwater input has been challenging to quantify because iceberg melt rates are largely unknown. Here we use data from a simultaneous glaciological and oceanographic field campaign conducted in Sermilik Fjord, southeast Greenland, during July 2017 to map the surface and submarine geometry of large icebergs and use repeat surveys to directly measure iceberg melt rates. We use a combination of coincident ship-based multibeam submarine scans, ocean hydrography measurements, aerial drone mapping, and high precision iceberg-mounted GPS measurements to construct a detailed picture of iceberg geometry and melt. This synthesis of in situ iceberg melt measurements is amongst the first of its kind. Here, we will discuss the results of the 2017 field campaign, the implications of variable iceberg meltwater input throughout the water column, and comparisons to standard melt rate parameterizations and tidewater glacier submarine melt rate calculations.

  11. Role of crucible partition in improving Czochralski melt conditions (United States)

    Jafri, I. H.; Prasad, V.; Anselmo, A. P.; Gupta, K. P.


    Many of the inhomogeneities and defects in the crystal grown from a pool of melt are because of the inherent unsteady growth kinetics and flow instabilities of the process. A scaled up version of the Czochralski process induces oscillatory and turbulent conditions in the melt, thereby resulting in the production of non-uniform silicon crystals. This numerical study reveals that a crucible partition shorter than the melt height can significantly improve the melt conditions. The obstruction at the bottom of the crucible is helpful but the variations in heat flux and flow patterns remain random. However, when the obstruction is introduced at the top of the melt, the flow conditions become much more desirable and oscillations are greatly suppressed. It is also found that a full-melt height partition or a double-crucible may not be a good choice. An optimal size of the blockage and its location to produce the most desirable process conditions will depend on the growth parameters including the melt height and the crucible diameter. These findings should be particularly useful in designing a solid polysilicon pellets-feed continuous Czochralski process for Si crystals.

  12. Transition in the fractal geometry of Arctic melt ponds

    Directory of Open Access Journals (Sweden)

    C. Hohenegger


    Full Text Available During the Arctic melt season, the sea ice surface undergoes a remarkable transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is determined by the complex evolution of melt pond configurations. In fact, ice–albedo feedback has played a major role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a significant challenge to improving climate projections. By analyzing area–perimeter data from hundreds of thousands of melt ponds, we find here an unexpected separation of scales, where pond fractal dimension D transitions from 1 to 2 around a critical length scale of 100 m2 in area. Pond complexity increases rapidly through the transition as smaller ponds coalesce to form large connected regions, and reaches a maximum for ponds larger than 1000 m2, whose boundaries resemble space-filling curves, with D ≈ 2. These universal features of Arctic melt pond evolution are similar to phase transitions in statistical physics. The results impact sea ice albedo, the transmitted radiation fields under melting sea ice, the heat balance of sea ice and the upper ocean, and biological productivity such as under ice phytoplankton blooms.

  13. Devolatilization or melting of carbonates at Meteor Crater, AZ? (United States)

    Hörz, F.; Archer, P. D.; Niles, P. B.; Zolensky, M. E.; Evans, M.


    We have investigated the carbonates in the impact melts and in a monolithic clast of highly shocked Coconino sandstone of Meteor Crater, AZ to evaluate whether melting or devolatilization is the dominant response of carbonates during high-speed meteorite impact. Both melt- and clast-carbonates are calcites that have identical crystal habits and that contain anomalously high SiO2 and Al2O3. Also, both calcite occurrences lack any meteoritic contamination, such as Fe or Ni, which is otherwise abundantly observed in all other impact melts and their crystallization products at Meteor Crater. The carbon and oxygen isotope systematics for both calcite deposits suggest a low temperature environment (impact melts, yield 100 wt% element totals by EMPA, suggesting complete loss of CO2. The target dolomite decomposed into MgO, CaO, and CO2; the CO2 escaped and the CaO and MgO combined with SiO2 from coexisting quartz and FeO from the impactor to produce the dominant impact melt at Meteor Crater. Although confined to Meteor Crater, these findings are in stark contrast to Osinski et al. (2008) who proposed that melting of carbonates, rather than devolatilization, is the dominant process during hypervelocity impact into carbonate-bearing targets, including Meteor Crater.

  14. Heterogeneous nucleation of solid Al from the melt by Al 3 Ti : Molecular dynamics simulations

    KAUST Repository

    Wang, Junsheng


    It has been known experimentally for some time that Al3 Ti is a powerful nucleant for the solidification of aluminum from the melt; however, a full microscopic understanding is still lacking. To develop this understanding, we have performed molecular dynamics simulations of the nucleation and early stages of growth using published embedded atom method potentials for Al-Ti, but modified by us to stabilize the D 022 structure. We discover that Al3 Ti can indeed be very effective in promoting the growth of solid Al but the manner in which growth takes place depends sensitively on the surface on which the Al nucleates. In particular, complete growth of solid Al from the liquid on the (001) and (110) surfaces of Al3 Ti occurs at a lower temperature than on the (112) surface. This anisotropy agrees with observations in previous experiments. We explain this observation in terms of interfacial energies. On the preferential (111) surface of Al the solid-liquid interfacial energy is highest while the solid-vacuum energy is lowest. Our simulations also show that the extent of ordering taking place in liquid Al close to the Al 3 Ti substrate above the melting point correlates well with the effectiveness of the substrate as a nucleant below the melting temperature: this could provide a computationally efficient scheme to identify good nucleants. © 2010 The American Physical Society.

  15. Correlations between the disintegration of melt and the measured impulses in steam explosions

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, G.; Linca, A.; Schindler, M. [Univ. of Stuttgart (Germany)


    To find our correlations in steam explosions (melt water interactions) between the measured impulses and the disintegration of the melt, experiments were performed in three configurations i.e. stratified, entrapment and jet experiments. Linear correlations were detected between the impulse and the total surface of the fragments. Theoretical considerations point out that a linear correlation assumes superheating of a water layer around the fragments of a constant thickness during the fragmentation process to a constant temperature (here the homogeneous nucleation temperature of water was assumed) and a constant expansion velocity of the steam in the main expansion time. The correlation constant does not depend on melt temperature and trigger pressure, but it depends on the configuration of the experiment or of a scenario of an accident. Further research is required concerning the correlation constant. For analysing steam explosion accidents the explosivity is introduced. The explosivity is a mass specific impulse. The explosivity is linear correlated with the degree of fragmentation. Knowing the degree of fragmentation with proper correlation constant the explosivity can be calculated and from the explosivity combined with the total mass of fragments the impulse is obtained which can be used to an estimation of the maximum force.

  16. Measuring the Melting Curve of Iron at Super Earth Core Conditions (United States)

    Kraus, Rg; Hemley, Rj; Cohen, R.; Newman, Mg; Rygg, Jr.; Stewart, St; Stixrude, L.; Belof, Jl; Benedict, Lx; Coppari, F.; Fratanduono, De; Hamel, S.; Lazicki, A.; McNaney, J.; Millot, M.; Wehrenberg, C.; Eggert, Jh


    The melting transition is critical to the Earth's evolution and habitability, as the latent heat from solidification of the inner core helps drive the magneto-dynamo in the liquid outer-core, which creates a magnetosphere that protects Earth's surface from harmful charged particles emitted from the Sun. As thousands of extrasolar planets are being discovered, an important question is whether a super Earth could have a solidifying iron inner core at pressures of 5-30 Mbar. At the National Ignition Facility (NIF), we have begun a campaign to experimentally address this question, where we shock the iron samples into the liquid state and then subsequently shocklessly compress the iron along a high temperature adiabat until the sample reaches a well defined peak pressure. At this point, we probe the iron sample with x-ray diffraction and test for solidification. We will present initial results on the melting curve of iron up to 5.5 Mbar and also the phase of iron below the melting curve. These results provide us with the stable phase of iron at the pressure and temperature conditions that are found within the Earth's inner core and the cores of Super Earths. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Melt onset dates for Arctic regions derived from satellite passive microwave data for 1979-2010; a comparison between the operational CDR and research level ESDR data sets (United States)

    Anderson, M. R.; Bliss, A. C.


    for these effects, the NASA ESDR algorithm implements a ten day window. Since the brightness temperature differences do not persist over the ten day window no melt is indicated. Therefore both algorithms do not interpret the resulting brightness temperature differences the same, and thus, calculate a different melt date. Another situation where large differences exist between the data sets occurs with the land and coastal pixel identifications used with each data set. There are many points where one algorithm does not calculate melt compared to the other because of the land or coastal mask. These differences in melt onset dates between the NOAA CDR and NASA ESDR are highlighted through year to year comparisons and regional statistics for locations around the Arctic basin. Each data record is available and knowing the details of each data set demonstrates the usefulness of these data.

  18. Carbonatite melt in oceanic upper mantle beneath the Kerguelen Archipelago (United States)

    Moine, B. N.; Grégoire, M.; O'Reilly, Suzanne Y.; Delpech, G.; Sheppard, S. M. F.; Lorand, J. P.; Renac, C.; Giret, A.; Cottin, J. Y.


    Some mantle-derived Kerguelen harzburgite and dunite xenoliths have bulk-rock and mineral trace element compositions that provide evidence of carbonatitic metasomatism similar to that described in some continental and other oceanic settings. Rare xenoliths contain carbonates that are highly enriched in rare earth elements (REE), interpreted to be quenched, evolved carbonatitic melts. One amphibole-bearing dunite mantle wall-rock containing carbonates in small interstitial pockets (100-500 μm across) has been studied in detail. Mg-bearing calcite (MgO: magnesio-wüstite concentrated near the boundaries of the carbonate pockets. The unusual metasomatic mineral assemblage, together with the microstructural features and chemical composition of carbonates (with trace element contents similar to those of common carbonatite magmas), suggests that the pockets of Mg-bearing calcite represent quenched carbonate melts rather than crystal cumulates from carbonate-rich melts. The associated mafic silicate glass could represent the immiscible silicate fraction of an evolved fluid produced by the dissolution-percolation of the original carbonate melt in the dunitic matrix and subsequent unmixing as the xenoliths ascended to the surface. Clinopyroxene formed during the percolation event and is therefore inferred to be in chemical equilibrium with the carbonate melt. This allowed calculation of clinopyroxene/carbonate melt partition coefficients for a large set of trace elements at relatively low pressure (1 GPa). As a result, a significant pressure control on REE partitioning between carbonate melt and silicate minerals was observed. This study provides further evidence for the occurrence of carbonate melts and demonstrates that these melts can be preserved in hot oceanic uppermost mantle.

  19. Partitioning ratio of depleted uranium during a melt decontamination by arc melting

    International Nuclear Information System (INIS)

    Min, Byeong Yeon; Choi, Wang Kyu; Oh, Won Zin; Jung, Chong Hun


    In a study of the optimum operational condition for a melting decontamination, the effects of the basicity, slag type and slag composition on the distribution of depleted uranium were investigated for radioactively contaminated metallic wastes of iron-based metals such as stainless steel (SUS 304L) in a direct current graphite arc furnace. Most of the depleted uranium was easily moved into the slag from the radioactive metal waste. The partitioning ratio of the depleted uranium was influenced by the amount of added slag former and the slag basicity. The composition of the slag former used to capture contaminants such as depleted uranium during the melt decontamination process generally consists of silica (SiO 2 ), calcium oxide (CaO) and aluminum oxide (Al 2 O 3 ). Furthermore, calcium fluoride (CaF 2 ), magnesium oxide (MgO), and ferric oxide (Fe 2 O 3 ) were added to increase the slag fluidity and oxidative potential. The partitioning ratio of the depleted uranium was increased as the amount of slag former was increased. Up to 97% of the depleted uranium was captured between the ingot phase and the slag phase. The partitioning ratio of the uranium was considerably dependent on the basicity and composition of the slag. The optimum condition for the removal of the depleted uranium was a basicity level of about 1.5. The partitioning ratio of uranium was high, exceeding 5.5x10 3 . The slag formers containing calcium fluoride (CaF 2 ) and a high amount of silica proved to be more effective for a melt decontamination of stainless steel wastes contaminated with depleted uranium

  20. Point/Counterpoint

    DEFF Research Database (Denmark)

    Ungar, David; Ernst, Erik


    Point Argument: "Dynamic Languages (in Reactive Environments) Unleash Creativity," by David Ungar. For the sake of creativity, the profession needs to concentrate more on inventing new and better dynamic languages and environments and less on improving static languages. Counterpoint Argument...

  1. Bedrock Outcrop Points Compilation (United States)

    Vermont Center for Geographic Information — A compilation of bedrock outcrops as points and/or polygons from 1:62,500 and 1:24,000 geologic mapping by the Vermont Geological Survey, the United States...

  2. Triple Point Topological Metals

    Directory of Open Access Journals (Sweden)

    Ziming Zhu


    Full Text Available Topologically protected fermionic quasiparticles appear in metals, where band degeneracies occur at the Fermi level, dictated by the band structure topology. While in some metals these quasiparticles are direct analogues of elementary fermionic particles of the relativistic quantum field theory, other metals can have symmetries that give rise to quasiparticles, fundamentally different from those known in high-energy physics. Here, we report on a new type of topological quasiparticles—triple point fermions—realized in metals with symmorphic crystal structure, which host crossings of three bands in the vicinity of the Fermi level protected by point group symmetries. We find two topologically different types of triple point fermions, both distinct from any other topological quasiparticles reported to date. We provide examples of existing materials that host triple point fermions of both types and discuss a variety of physical phenomena associated with these quasiparticles, such as the occurrence of topological surface Fermi arcs, transport anomalies, and topological Lifshitz transitions.

  3. National Wetlands Inventory Points (United States)

    Minnesota Department of Natural Resources — Wetland point features (typically wetlands that are too small to be as area features at the data scale) mapped as part of the National Wetlands Inventory (NWI). The...

  4. Allegheny County Address Points (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains address points which represent physical address locations assigned by the Allegheny County addressing authority. Data is updated by County...

  5. Designated Wildlife Lakes - points (United States)

    Minnesota Department of Natural Resources — This is a point shapefile of Designated Wildlife Lakes in Minnesota. This shapefile was created by converting lake polygons from the Designated Wildlife Lakes...

  6. Arctic climate tipping points. (United States)

    Lenton, Timothy M


    There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the Arctic are briefly reviewed. Then, the current behaviour of a range of Arctic systems is summarised. Looking ahead, a range of potential tipping phenomena are described. This leads to a revised and expanded list of potential Arctic climate tipping elements, whose likelihood is assessed, in terms of how much warming will be required to tip them. Finally, the available responses are considered, especially the prospects for avoiding Arctic climate tipping points.

  7. connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited) (United States)

    Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.


    This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total ice sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and ice flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare ice expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the ice sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the ice sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the ice; 3.) Friction from water turbulence heats the ice. It has been shown that for a point on the ice sheet, basal lubrication increases ice flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the ice sheet glides on a wet bed increases inland to a larger area. This effect draws down the ice surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to ice sheet loss reversible only through much slower ice sheet growth in an ice age environment. As the inland ice sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated ice. As the bare ice area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the ice warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the ice integrity

  8. Unconventional Quantum Critical Points


    Xu, Cenke


    In this paper we review the theory of unconventional quantum critical points that are beyond the Landau's paradigm. Three types of unconventional quantum critical points will be discussed: (1). The transition between topological order and semiclassical spin ordered phase; (2). The transition between topological order and valence bond solid phase; (3). The direct second order transition between different competing orders. We focus on the field theory and universality class of these unconventio...

  9. Melt-Vapor Phase Diagram of the Te-S System (United States)

    Volodin, V. N.; Trebukhov, S. A.; Kenzhaliyev, B. K.; Nitsenko, A. V.; Burabaeva, N. M.


    The values of partial pressure of saturated vapor of the constituents of the Te-S system are determined from boiling points. The boundaries of the melt-vapor phase transition at atmospheric pressure and in vacuum of 2000 and 100 Pa are calculated on the basis of partial pressures. A phase diagram that includes vapor-liquid equilibrium fields whose boundaries allow us to assess the behavior of elements upon distillation fractioning is plotted. It is established that the separation of elements is possible at the first evaporation-condensation cycle. Complications can be caused by crystallization of a sulfur solid solution in tellurium.

  10. Reprocessing method of ceramic nuclear fuels in low-melting nitrate molten salts

    International Nuclear Information System (INIS)

    Brambilla, G.; Caporali, G.; Zambianchi, M.


    Ceramic nuclear fuel is reprocessed through a method wherein the fuel is dispersed in a molten eutectic mixture of at least two alkali metal nitrates and heated to a temperature in the range between 200 and 300 0 C. That heated mixture is then subjected to the action of a gaseous stream containing nitric acid vapors, preferably in the presence of a catalyst such as sodium fluoride. Dissolved fuel can then be precipitated out of solution in crystalline form by cooling the solution to a temperature only slightly above the melting point of the bath

  11. Numerical analysis of grid plate melting after a severe accident in a ...

    Indian Academy of Sciences (India)

    This total heat of the element may also be approximated as the sum of the heat in the solid and liquid parts of the element as. CpTl f + (CpTl + L)(1 − f )z. This implies that. Hl = CpTl f + (CpTl + L)(1 − f ). (15). When the melt-front reaches the node i and is at the mid point, we have fi = 1/2 and Ti = Tm, then Hi can be rewritten as.

  12. Slab melting and magma formation beneath the southern Cascade arc (United States)

    Walowski, Kristina J.; Wallace, Paul J.; Clynne, Michael A.; Rasmussen, D.J.; Weis, D.


    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO>7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the

  13. Research of Snow-Melt Process on a Heated Platform

    Directory of Open Access Journals (Sweden)

    Vasilyev Gregory P.


    Full Text Available The article has shown the results of experimental researches of the snow-melt on a heated platform-near building heat-pump snow-melt platform. The near-building (yard heat pump platforms for snow melt with the area up to 10-15 m2 are a basis of the new ideology of organization of the street cleaning of Moscow from snow in the winter period which supposes the creation in the megalopolis of the «distributed snow-melt system» (DSMS using non-traditional energy sources. The results of natural experimental researches are presented for the estimation of efficiency of application in the climatic conditions of Moscow of heat pumps in the snow-melt systems. The researches were conducted on a model sample of the near-building heat-pump platform which uses the low-potential thermal energy of atmospheric air. The conducted researches have confirmed experimentally in the natural conditions the possibility and efficiency of using of atmospheric air as a source of low-potential thermal energy for evaporation of the snow-melt heat pump systems in the climatic conditions of Moscow. The results of laboratory researches of snow-melt process on a heated horizontal platform are presented. The researches have revealed a considerable dependence of efficiency of the snow-melt process on its piling mode (form-building and the organization of the process of its piling mode (form-building and the organization of the process of its (snow mass heat exchange with the surface of the heated platform. In the process of researches the effect of formation of an «ice dome» under the melting snow mass called by the fact that in case of the thickness of snow loaded on the platform more than 10 cm the water formed from the melting snow while the contact with the heating surface don’t spread on it, but soaks into the snow, wets it due to capillary effect and freezes. The formation of «ice dome» leads to a sharp increase of snow-melt period and decreases the operating

  14. Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model (United States)

    Liu, Zhuangzhuang; Blanpain, Bart; Guo, Muxing


    The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.

  15. Diffusive fractionation of U-series radionuclides during mantle melting and shallow-level melt cumulate interaction (United States)

    Van Orman, James A.; Saal, Alberto E.; Bourdon, Bernard; Hauri, Erik H.


    U-series radioactive disequilibria in basaltic lavas have been used to infer many important aspects of melt generation and extraction processes in Earth's mantle and crust, including the porosity of the melting zone, the solid mantle upwelling rate, and the melt transport rate. Most of these inferences have been based on simplified theoretical treatments of the fractionation process, which assume equilibrium partitioning of U-series nuclides among minerals and melt. We have developed a numerical model in which solid-state diffusion controls the exchange of U-series nuclides among multiple minerals and melt. First the initial steady-state distribution of nuclides among the phases, which represents a balance between diffusive fluxes and radioactive production and decay, is calculated. Next, partial melting begins, or a foreign melt is introduced into the system, and nuclides are again redistributed among the phases via diffusion. U-series nuclides can be separated during this stage due to differences in their diffusivity; radium in particular, and possibly protactinium as well, can be strongly fractionated from slower-diffusing thorium and uranium. We show that two distinct processes are not required for the generation of 226Ra and 230Th excesses in mid-ocean ridge basalts, as has been argued previously; instead the observed negative correlations of the ( 226Ra/ 230Th) activity ratio with ( 230Th/ 238U) and with the extent of trace element enrichment may result from diffusive fractionation of Ra from Th during partial melting of the mantle. Alternatively, the ( 226Ra/ 230Th) disequilibrium in mid-ocean ridge basalts may result from diffusive fractionation during shallow-level interaction of mantle melts with gabbroic cumulates, and we show that the results of the interaction have a weak dependence on the age of the cumulate if both plagioclase and clinopyroxene are present.

  16. Melting behaviour of raw materials and recycled stone wool waste

    DEFF Research Database (Denmark)

    Schultz-Falk, Vickie; Agersted, Karsten; Jensen, Peter Arendt


    Stone wool is a widely used material for building insulation, to provide thermal comfort along with fire stability and acoustic comfort for all types of buildings. Stone wool waste generated either during production or during renovation or demolition of buildings can be recycled back into the stone...... indicates that the wool waste initiates melting at a lower temperature than the conventional charge. Also DSC measurements show that the wool waste requires less energy for heating and melting than the conventional charge, making stone wool waste recycling desirable both for environmental and for process...... wool melt production. This study investigates and compares the thermal response and melting behaviour of a conventional stone wool charge and stone wool waste. The study combines differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray diffraction (XRD). DSC reveals...

  17. Setting of the Optimal Parameters of Melted Glass

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Matejíčka, L.; Krečmer, N.


    Roč. 10, č. 1 (2015), s. 73-79 ISSN 1802-2308 Institutional support: RVO:68081723 Keywords : Striae * Glass * Glass melting * Regression * Optimal parameters Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  18. Absence of grain boundary melting in solid helium

    Energy Technology Data Exchange (ETDEWEB)

    Caupin, Frederic; Sasaki, Satoshi; Balibar, Sebastien [Laboratoire de Physique Statistique de l' Ecole Normale Superieure, associe au CNRS et aux Universites Paris 6 et 7, 24 rue Lhomond, 75005 Paris (France)], E-mail:


    Crystals are often expected to start melting at their free surface or at the interface between grains. Grain boundary melting corresponds to the situation where the interface between grains is invaded by a thick liquid film at the bulk melting temperature T{sub m}. In some cases, premelting is predicted, with liquid-like layers appearing between grains at temperatures below T{sub m}. We review this topic, and describe our experiments on solid helium 4. We find that grain boundaries are not wetted by the liquid at T{sub m}: they emerge at the liquid-solid interface with a non-zero contact angle. This is consistent with a general argument which predicts that, although systems with short-range forces might show grain boundary melting and premelting, in systems with long-range forces (like helium), grain boundaries can only be wetted incompletely by the liquid at T{sub m}.

  19. [Peripheral corneal melting syndrome in psoriatic arthritis treated with adalimumab]. (United States)

    Restrepo, Juan Pablo; Medina, Luis Fernando; Molina, María del Pilar


    Peripheral corneal melting syndrome is a rare immune condition characterized by marginal corneal thinning and sometimes perforation. It is associated with rheumatic and non-rheumatic diseases. Few cases of peripheral corneal melting have been reported in patients with psoriasis. The pathogenesis is not fully understood but metalloproteinases may play a pathogenic role. Anti-TNF therapy has shown to decrease skin and serum metalloproteinases levels in psoriasis. We report a 61-year-old man with peripheral corneal melting syndrome associated with psoriatic arthritis who received Adalimumab to control skin and ocular inflammation. To our knowledge, this is the first case report of peripheral corneal melting syndrome in psoriatic arthritis treated with Adalimumab showing resolution of skin lesions and complete healing of corneal perforation in three months. Copyright © 2013 Elsevier Editora Ltda. All rights reserved.

  20. In situ viscosity measurements of albite melt under high pressure

    CERN Document Server

    Funakoshi, K I; Terasaki, H


    The viscosities of albite (NaAlSi sub 3 O sub 8) melt under high pressures have been measured using an x-ray radiography falling sphere method with synchrotron radiation. This method has enabled us to determine the precise sinking velocity directly. Recent experiments of albite melt showed the presence of a viscosity minimum around 5 GPa (Poe et al 1997 Science 276 1245, Mori et al 2000 Earth Planet. Sci. Lett. 175 87). We present the results for albite melt up to 5.2 GPa at 1600 and 1700 deg. C. The viscosity minimum is clearly observed to be around 4.5 GPa, and it might be explained not by the change of the compression mechanism in albite melt but by change of the phase itself.