WorldWideScience

Sample records for melting metals part

  1. Melting of contaminated metallic waste

    International Nuclear Information System (INIS)

    Lee, Y.-S.; Cheng, S.-Y.; Kung, H.-T.; Lin, L.-F.

    2004-01-01

    Approximately 100 tons of contaminated metallic wastes were produced each year due to maintenance for each TPC's nuclear power reactor and it was roughly estimated that there will be 10,000 tons of metallic scraps resulted from decommissioning of each reactor in the future. One means of handling the contaminated metal is to melt it. Melting process owns not only volume reduction which saves the high cost of final disposal but also resource conservation and recycling benefits. Melting contaminated copper and aluminum scraps in the laboratory scale have been conducted at INER. A total of 546 kg copper condenser tubes with a specific activity of about 2.7 Bq/g was melted in a vacuum induction melting facility. Three types of products, ingot, slag and dust were derived from the melting process, with average activities of 0.10 Bq/g, 2.33 Bq/g and 84.3 Bq/g respectively. After the laboratory melting stage, a pilot plant with a 500 kg induction furnace is being designed to melt the increasingly produced contaminated metallic scraps from nuclear facilities and to investigate the behavior of different radionuclides during melting. (author)

  2. Feasibility of re-melting NORM-contaminated scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Winters, S. J.; Smith, K. P.

    1999-10-26

    Naturally occurring radioactive materials (NORM) sometimes accumulate inside pieces of equipment associated with oil and gas production and processing activities. Typically, the NORM accumulates when radium that is present in solution in produced water precipitates out in scale and sludge deposits. Scrap equipment containing residual quantities of these NORM-bearing scales and sludges can present a waste management problem if the radium concentrations exceed regulatory limits or activate the alarms on radiation screening devices installed at most scrap metal recycling facilities. Although NORM-contaminated scrap metal currently is not disposed of by re-melting, this form of recycling could present a viable disposition option for this waste stream. Studies indicate that re-melting NORM-contaminated scrap metal is a viable recycling option from a risk-based perspective. However, a myriad of economic, regulatory, and policy issues have caused the recyclers to turn away virtually all radioactive scrap metal. Until these issues can be resolved, re-melting of the petroleum industry's NORM-impacted scrap metal is unlikely to be a widespread practice. This paper summarizes the issues associated with re-melting radioactive scrap so that the petroleum industry and its regulators will understand the obstacles. This paper was prepared as part of a report being prepared by the Interstate Oil and Gas Compact Commission's NORM Subcommittee.

  3. Structure of polyvalent metal halide melts

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1990-12-01

    A short review is given of recent progress in determining and understanding the structure of molten halide salts involving polyvalent metal ions. It covers the following three main topics: (i) melting mechanisms and types of liquid structure for pure polyvalent-metal chlorides; (ii) geometry and stability of local coordination for polyvalent metal ions in molten mixtures of their halides with alkali halides; and (iii) structure breaking and electron localization on addition of metal to the melt. (author). 28 refs, 3 figs, 1 tab

  4. Vacancies and a generalised melting curve of metals

    International Nuclear Information System (INIS)

    Gorecki, T.

    1979-01-01

    The vacancy mechanism of the melting process is used as a starting point for deriving an expression for the pressure dependence of the melting temperature of metals. The results obtained for the initial slope of the melting curve are compared with experimental data for 45 metals and in most cases the agreement is very good. The nonlinearity of the melting curve and the appearance of a maximum on the melting curve at a pressure approximately equal to the bulk modules is also predicted, with qualitative agreement with experimental data. A relation between bonding energy, atomic volume, and bulk modulus of metals is established. On the basis of this relation and the proposed vacancy mechanism, a generalised equation for the pressure dependence of the melting temperature of metals is derived. (author)

  5. Synthesis of carbides of refractory metals in salt melts

    International Nuclear Information System (INIS)

    Ilyushchenko, N.G.; Anfinogenov, A.I.; Chebykin, V.V.; Chernov, Ya.B.; Shurov, N.I.; Ryaposov, Yu.A.; Dobrynin, A.I.; Gorshkov, A.V.; Chub, A.V.

    2003-01-01

    The ion-electron melts, obtained through dissolving the alkali and alkali-earth metals in the molten chlorides above the chloride melting temperature, were used for manufacturing the high-melting metal carbides as the transport melt. The lithium, calcium and magnesium chlorides and the mixture of the lithium chloride with the potassium or calcium chloride were used from the alkali or alkali-earth metals. The metallic lithium, calcium, magnesium or the calcium-magnesium mixtures were used as the alkali or alkali-earth metals. The carbon black or sugar was used as carbon. It is shown, that lithium, magnesium or calcium in the molten salts transfer the carbon on the niobium, tantalum, titanium, forming the carbides of the above metals. The high-melting metal carbides are obtained both from the metal pure powders and from the oxides and chlorides [ru

  6. An Experimental Investigation on APR1400 Penetration Weld Failure by Metallic Melt

    International Nuclear Information System (INIS)

    An, Sang Mo; Ha, Kwang Soon; Kim, Hwan Yeol

    2014-01-01

    The penetrations are considered as the most vulnerable parts with respect to the reactor vessel failure when a core melt severe accident occurs and the corium reaches the lower head. Penetration tube failure modes can be divided into two categories; tube ejection out of the vessel lower head and rupture of the penetration tube outside the vessel. Tube ejection begins with degrading the penetration tube weld strength to zero as the weld is exposed to temperatures as high as the weld melting temperature, which is called weld failure, and then overcoming any binding force in the hole in the vessel wall that results from differential thermal expansion of the tube and vessel wall. Tube rupture assumes that the debris bed has melted the instrument tube inside the reactor and melt migrates down into the tube to a location outside the vessel wall where a pressure rupture can occur, thus breaching the pressure boundary. In the present paper, we have a focus on the tube ejection failure mode, specifically on the APR1400 weld failure by direct contact with a metallic melt. The objective is to investigate experimentally the ablation kinetics of an APR1400 penetration weld during the interactions with a metallic melt and to suggest the modification of the existing weld failure model. This paper involves the interaction experiments of two different metallic melts (metallic corium and stainless steel melts) with a weld specimen, and rough estimation of weld failure time. The interaction experiments between the metallic melts and an APR1400 penetration weld were performed to investigate the ablation kinetics of the penetration weld. Metallic corium and stainless steel melts were generated using an induction heating technique and interacted with a penetration weld specimen. The ablation rate of the weld specimen showed a range from 0.109 to 0..244 mm/s and thus the APR1400 penetration weld was estimated to be failed at hundreds of times after the interaction with the melt

  7. Fabrication of hard cermets by in-situ synthesis and infiltration of metal melts into WC powder compacts

    Directory of Open Access Journals (Sweden)

    Guanghua Liu

    2017-12-01

    Full Text Available Hard carbide cermets are prepared by in-situ synthesis and infiltration of metal melts into WC powder compacts. Ni–W and Ni–W–Cr metal melts are in-situ synthesized from thermite reactions and infiltrated into WC powder compacts under high-gravity. During the infiltration, W in the metal melts reacts with WC to form W2C, and more W2C and W are observed at the upper parts of the cermets than the lower parts. The cermets show a maximum hardness of 15.4 GPa, which is higher than most commercial cemented carbides, although they are not fully dense and have a porosity of 15–20%.

  8. Decontamination of transuranic contaminated metals by melt refining

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.; Heestand, R.L.

    1983-01-01

    Melt refining of transuranic contaminated metals is a possible decontamination process with the potential advantages of producing metal for reuse and of simplifying chemical analyses. By routinely achieving the 10 nCi/g( about0.1ppm) level by melt refining, scrap metal can be removed from the transuranic waste category. (To demonstrate the effectiveness of this melt refining process, mild steel, stainless steel, nickel, and copper were contaminated with 500 ppm (μg/g) PuO 2 and melted with various fluxes. The solidified slags and metals were analyzed for their plutonium contents, and corresponding partition ratios for plutonium were calculated. Some metals were double refined in order to study the effect of secondary slag treatment. The initial weight of the slags was also varied to investigate the effect of slag weight on the degree of plutonium removal. In general, all four metals could be decontaminated below 1 ppm (μg/g) Pu ( about100 nCi/g) by a single slag treatment. Doubling the slag weight did not improve decontamination significantly; however, double slag treatment using 5 wt.% slag did decontaminate the metals to below 0.1 ppm (μg/g) Pu (10 nCi/g).)

  9. Melting in trivalent metal chlorides

    International Nuclear Information System (INIS)

    Saboungi, M.L.; Price, D.L.; Scamehorn, C.; Tosi, M.P.

    1990-11-01

    We report a neutron diffraction study of the liquid structure of YCl 3 and combine the structural data with macroscopic melting and transport data to contrast the behaviour of this molten salt with those of SrCl 2 , ZnCl 2 and AlCl 3 as prototypes of different melting mechanisms for ionic materials. A novel melting mechanism for trivalent metal chlorides, leading to a loose disordered network of edge-sharing octahedral units in the liquid phase, is thereby established. The various melting behaviours are related to bonding character with the help of Pettifor's phenomenological chemical scale. (author). 25 refs, 4 figs, 3 tabs

  10. APPARATUS FOR MELTING AND POURING METAL

    Science.gov (United States)

    Harris, F.A.

    1958-02-25

    This patent relates to a crucible for melting and pouring a metal under controlled atmospheric conditions. The crucible has a frangible plug in the bottom and a retaining device to prevent the entrance of the broken portions of the plug into the mold without interfering with the flow of the melt. After the charge has been melted, a knockout rod is lowered through the charge and forced against the frangible plug sufficiently to break off the closure disk along a previously scored line. The disk drops onto a retaining grid large enough to permit the flow of metal around the disk and into the mold below. Thts arrangement elimnates the entry of broken portions of the plug into the mold, thereby elimnating a common cause of imperfect castings.

  11. Melting-decontamination method for radioactive contaminated metals

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Tsuchiya, Hiroyuki; Miura, Noboru; Iba, Hajime.

    1985-01-01

    Purpose: To eliminate uranium components remaining in metals even after the uranium-contaminated metals are melted. Method: Metal wastes contaminated with actinide element or its compound as nuclear fuel substance are melted in a crucible. Molten metals are fallen through a filter disposed at the bottom of the crucible into another receiving crucible. Uranium compounds are still left in the molten metal fallen in the receiving crucible. The residual uranium compounds are concentrated by utilizing the principle of the zone-refining process. That is, a displaceable local-heating heater is disposed to the receiving crucible, by which metals once solidified in the receiving crucible is again heated locally to transfer from solid to molten phase in a quasi-equibilized manner. In this way, by eliminating the end of the metal rod at which the uranium is segregated, the contaminating coefficient can be improved. (Ikeda, J.)

  12. On Thermocapillary Mechanism of Spatial Separation of Metal Melts

    Science.gov (United States)

    Demin, V. A.; Mizev, A. I.; Petukhov, M. I.

    2018-02-01

    Theoretical research has been devoted to the study of binary metal melts behavior in a thin capillary. Earlier it has been found experimentally that unusually significant and quick redistribution of melts components takes place along capillary after the cooling. Numerical simulation of concentration-induced convection has been carried out to explain these experimental data. Two-component melt of both liquid metals filling vertical thin capillary with non-uniform temperature distribution on the boundaries is considered. It is assumed that the condition of absolute non-wetting is valid on the sidewalls. Because of this effect there is a free surface on vertical boundaries, where thermocapillary force is appeared due to the external longitudinal temperature gradient. It makes to move liquid elements at a big distance, compared with axial size of capillary. Effects of adsorption-desorption on the surface, thermal and concentration-capillary forces, convective motion in a volume and diffusion generate the large-scale circulation. This process includes the admixture carrying-out on the surface in the more hot higher part of the channel, its following transfer down along the boundary due to the thermocapillary force and its return in the volume over the desorption in the lower part of capillary. Intensity of motion and processes of adsorption-desorption on the free boundary have the decisive influence upon the formation of concentration fields and speed of components redistribution. Thus, one of the possible mechanisms of longitudinal division on components of liquid binary mixtures in thin channels has been demonstrated.

  13. Melting of Uranium Metal Powders with Residual Salts

    International Nuclear Information System (INIS)

    Jin-Mok Hur; Dae-Seung Kang; Chung-Seok Seo

    2007-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) of the Korea Atomic Energy Research Institute focuses on the conditioning of Pressurized Water Reactor spent oxide nuclear fuel. After the oxide reduction step of the ACP, the resultant metal powders containing ∼ 30 wt% residual LiCl-Li 2 O should be melted for a consolidation of the fine metal powders. In this study, we investigated the melting behaviors of uranium metal powders considering the effects of a LiCl-Li 2 O residual salt. (authors)

  14. Application of metal oxide refractories for melting and casting reactive metals

    International Nuclear Information System (INIS)

    Jessen, N.C. Jr.; Holcombe, C.E. Jr.; Townsend, A.B.

    1979-01-01

    Extensive investigations have been conducted to develop metal oxide refractories for containment of molten uranium and uranium alloys. Since uranium and uranium alloys are readily susceptable to the formation of complex oxides, carbides, nitrides, intermetallic compounds, and suboxide reactions, severe problems exist for the production of quality castings. These contamination reactions are dependent on temperature, pressure, and molten metal interfacial reactions. The need for high purity metals to meet specification repeatedly has resulted in the development of improved metal oxide refractories and sophisticated furnace controls. Applications of Y 2 O 3 for use as a crucible and mold coating, precision molds and cores, and high temperature castable ceramics are discussed. Experimental results on melt impurity levels, thermal controls during melting, surface interactions and casting quality are presented

  15. Melting and liquid structure of polyvalent metal halides

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1992-08-01

    A short review is given of recent progress in determining and understanding liquid structure types and melting mechanisms for halides of polyvalent metals. The nature of the preferred local coordination for the polyvalent metal ion in the melt can usually be ascertained from data on liquid mixtures with halogen-donating alkali halides. The stability of these local coordination states and the connectivity that arises between them in the approach to the pure melt determines the character of its short-range and possible medium-range order. A broad classification of structural and melting behaviours can be given on the basis of measured melting parameters and transport coefficients for many compounds, in combination with the available diffraction data on the liquid structure of several compounds. Correlations have been shown to exist with a simple indicator of the nature of the chemical bond and also with appropriate parameters of ionic models, wherever the latter are usefully applicable for semiquantitative calculations of liquid structure. Consequences on the mechanisms for valence electron localization in solutions of metallic elements into strongly structured molten salts are also briefly discussed. (author). 46 refs, 4 figs, 2 tabs

  16. Vacancies und melting curves of metals at high pressure

    International Nuclear Information System (INIS)

    Gorecki, T.

    1977-01-01

    The vacancy mechanism of the melting process is utilized as a starting point in derivation of the pressure dependence of melting temperature for metals. The results obtained for the initial slope of the melting curve are compared with experimental data for 45 metals (including U, Np, Pu, rare earths) and in most cases the agreement is very good. An on-linearity of the fusion curve and appearence of the maximum on the melting curve at a pressure approximately equal to the bulk modulus is also predicted with qualitative agreement with existing experimental data. (orig./GSC) [de

  17. Induction melting for volume reduction of metallic TRU wastes

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.; Montgomery, D.R.; Katayama, Y.B.; Ross, W.A.

    1986-01-01

    Volume reduction of metallic transuranic wastes offers economic and safety incentives for treatment of wastes generated at a hypothetical commercial fuel reprocessing facility. Induction melting has been identified as the preferred process for volume reduction of spent fuel hulls, fuel assembly hardware, and failed equipment from a reprocessing plant. Bench-scale melting of Zircaloy and stainless steel mixtures has been successfully conducted in a graphite crucible inside a large vacuum chamber. A low-melting-temperature alloy forms that has demonstrated excellent leach resistance. The alloy can be used to encapsulate other metallic wastes that cannot be melted using the existing equipment design

  18. Contaminated metallic melt volume reduction testing

    International Nuclear Information System (INIS)

    Deichman, J.L.

    1981-01-01

    Laboratory scale metallic melts (stainless steel) were accomplished in support of Decontamination and Decommissioning's (D and D) contaminated equipment volume reduction and Low-Level Lead Site Waste programs. Six laboratory scale melts made with contaminated stainless steel provided data that radionuclide distribution can be predicted when proper temperature rates and ranges are employed, and that major decontamination occurs with the use of designed slagging materials. Stainless steel bars were contaminated with plutonium, cobalt, cesium and europium. This study was limited to stainless steel, however, further study is desirable to establish data for other metals and alloys. This study represents a positive beginning in defining the feasibility of economical volume reduction or conversion from TRU waste forms to LLW forms for a large portion of approximately 50 thousand tons of contaminated metal waste now being stored at Hanford underground or in deactivated facilities

  19. Observation of melting conditions in selective laser melting of metals (SLM)

    Science.gov (United States)

    Thombansen, U.; Abels, Peter

    2016-03-01

    Process observation in 3D printing of metals currently is one of the central challenges. Many companies strive to employ this additive manufacturing process in their production chains in order to gain competitive advantages through added flexibility in product design and embedded features. The new degrees of freedom are accompanied with the challenge to manufacture every detail of the product to the predefined specifications. Products with filigree internal structures for example require a perfect build to deliver the performance that was designed into these structures. Melting conditions determine properties such as grain structure and density of the finished part before it is sent to post processing steps. Monitoring of such melting conditions is still a challenge where the use of photodiodes, pyrometry and camera systems contribute to an overall picture that might identify errors or deviations during the build process. Additional considerations must be made to decide if these sensors are applied coaxially or from a lateral perspective. Furthermore, setting parameters of focal plane array (FPA) sensors are discussed and events that are seen in the machine vision image are compared against the pyrometry data. The resume of the experiments suggests the application of multiple sensors to the selective laser melting process (SLM) as they jointly contribute to an identification of events. These events need to be understood in order to establish cause effect relationships in the future.

  20. Character of changes in the thermodynamic properties of alloyed melts of rare-earth metals with low-melting-point p- and d-metals

    International Nuclear Information System (INIS)

    Yamshchikov, L.F.; Zyapaev, A.A.; Raspopin, S.P.

    2003-01-01

    Published data on thermodynamic characteristics of lanthanides in liquid-metal melts of gallium, indium and zinc were systematized. The monotonous change from lanthanum to lutetium was ascertained for activity values and activity coefficients of trivalent lanthanides in the melts, which permits calculating the values for the systems of fusible metals, where no experimental data are available [ru

  1. Induction melting for volume reduction of metallic TRU wastes

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.; Montgomery, D.R.; Katayama, Y.B.; Ross, W.A.

    1986-02-01

    Volume reduction of metallic transuranic wastes offers economic and safety incentives for treatment of wastes generated at a hypothetical commercial fuel reprocessing facility. Induction melting has been identified as the preferred process for volume reduction of spent fuel hulls, fuel assembly hardware, and failed equipment from a reprocessing plant. Bench-scale melting of Zircaloy and stainless steel mixtures has been successfully conducted in a graphite crucible inside a large vacuum chamber. A low-melting-temperature alloy forms that has demonstrated excellent leach resistance. The alloy can be used to encapsulate other metallic wastes that cannot be melted using the existing equipment design. 18 refs., 4 figs., 3 tabs

  2. Liquid structure and melting of trivalent metal chlorides

    International Nuclear Information System (INIS)

    Tosi, M.P.; Pastore, G.; Saboungi, M.L.; Price, D.L.

    1991-03-01

    Many divalent and trivalent metal ions in stoichiometric liquid mixtures of their halides with alkali halides are fourfold or sixfold coordinated by halogens into relatively long-lived ''complexes''. The stability of these local coordination states and the connectivity that arises between them in the approach to the pure polyvalent metal halide melt determines the character of its short-range and possible intermediate-range order. The available evidence on local coordination in some 140 mixtures has been successfully classified by a structure sorting method based on Pettifor's chemical scale of the elements. Within the general phenomenological frame provided by structure sorting, main attention is given in this work to the liquid structure and melting mechanisms of trivalent metal chlorides. The liquid structure of YCl 3 is first discussed on the basis of neutron diffraction measurements and of calculations within a simple ionic model, and the melting mechanisms of YCl 3 and AlCl 3 , which are structurally isomorphous in the crystalline state, are contrasted. By appeal to macroscopic melting parameters and transport coefficients and to liquid structure data on SbCl 3 , it is proposed that the melting mechanisms of these salts may be classified into three main types in correlation with the character of the chemical bond. (author). 31 refs, 1 fig., 3 tabs

  3. Joining of parts via magnetic heating of metal aluminum powders

    Science.gov (United States)

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  4. Precipitation of metal nitrides from chloride melts

    International Nuclear Information System (INIS)

    Slater, S.A.; Miller, W.E.; Willit, J.L.

    1996-01-01

    Precipitation of actinides, lanthanides, and fission products as nitrides from molten chloride melts is being investigated for use as a final cleanup step in treating radioactive salt wastes generated by electrometallurgical processing of spent nuclear fuel. The radioactive components (eg, fission products) need to be removed to reduce the volume of high-level waste that requires disposal. To extract the fission products from the salt, a nitride precipitation process is being developed. The salt waste is first contacted with a molten metal; after equilibrium is reached, a nitride is added to the metal phase. The insoluble nitrides can be recovered and converted to a borosilicate glass after air oxidation. For a bench-scale experimental setup, a crucible was designed to contact the salt and metal phases. Solubility tests were performed with candidate nitrides and metal nitrides for which there are no solubility data. Experiments were performed to assess feasibility of precipitation of metal nitrides from chloride melts

  5. Melt Fragmentation Characteristics of Metal Fuel with Melt Injection Mass during Initiating Phase of SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Lee, Min Ho; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ., Seoul (Korea, Republic of)

    2016-05-15

    The PGSFR has adopted the metal fuel for its inherent safety under severe accident conditions. However, this fuel type is not demonstrated clearly yet under the such severe accident conditions. Additional experiments for examining these issues should be performed to support its licensing activities. Under initiating phase of hypothetic core disruptive accident (HCDA) conditions, the molten metal could be better dispersed and fragmented into the coolant channel than in the case of using oxide fuel. This safety strategy provides negative reactivity driven by a good dispersion of melt. If the coolant channel does not sufficient coolability, the severe recriticality would occur within the core region. Thus, it is important to examine the extent of melt fragmentation. The fragmentation behaviors of melt are closely related to a formation of debris shape. Once the debris shape is formed through the fragmentation process, its coolability is determined by the porosity or thermal conductivity of the melt. There were very limited studies for transient irradiation experiments of the metal fuel. These studies were performed by Transient Reactor Test Facility (TREAT) M series tests in U.S. The TREAT M series tests provided basic information of metal fuel performance under transient conditions. The effect of melt injection mass was evaluated in terms of the fragmentation behaviors of melt. These behaviors seemed to be similar between single-pin and multi-pins failure condition. However, the more melt was agglomerated in case of multi-pins failure.

  6. Fuel Rod Melt Progression Simulation Using Low-Temperature Melting Metal Alloy

    International Nuclear Information System (INIS)

    Seung Dong Lee; Suh, Kune Y.; GoonCherl Park; Un Chul Lee

    2002-01-01

    The TMI-2 accident and various severe fuel damage experiments have shown that core damage is likely to proceed through various states before the core slumps into the lower head. Numerous experiments were conducted to address when and how the core can lose its original geometry, what geometries are formed, and in what processes the core materials are transported to the lower plenum of the reactor pressure vessel. Core degradation progresses along the line of clad ballooning, clad oxidation, material interaction, metallic blockage, molten pool formation, melt progression, and relocation to the lower head. Relocation into the lower plenum may occur from the lateral periphery or from the bottom of the core depending upon the thermal and physical states of the pool. Determining the quantities and rate of molten material transfer to the lower head is important since significant amounts of molten material relocated to the lower head can threaten the vessel integrity by steam explosion and thermal and mechanical attack of the melt. In this paper the focus is placed on the melt flow regime on a cylindrical fuel rod utilizing the LAMDA (Lumped Analysis of Melting in Degrading Assemblies) facility at the Seoul National University. The downward relocation of the molten material is a combination of the external film flow and the internal pipe flow. The heater rods are 0.8 m long and are coated by a low-temperature melting metal alloy. The electrical internal heating method is employed during the test. External heating is adopted to simulate the exothermic Zircaloy-steam reaction. Tests are conducted in several quasi-steady-state conditions. Given the variable boundary conditions including the heat flux and the water level, observation is made for the melting location, progression, and the mass of molten material. Finally, the core melt progression model is developed from the visual inspection and quantitative analysis of the experimental data. As the core material relocates

  7. Melt-quenched glasses of metal-organic frameworks

    DEFF Research Database (Denmark)

    Bennett, T.D.; Yue, Yuanzheng; Li, P.

    2016-01-01

    Crystalline solids dominate the field of metal−organic frameworks (MOFs), with access to the liquid and glass states of matter usually prohibited by relatively low temperatures of thermal decomposition. In this work, we give due consideration to framework chemistry and topology to expand...... of other MOFs. The glasses formed upon vitrification are chemically and structurally distinct from the three other existing categories of melt-quenched glasses (inorganic nonmetallic, organic, and metallic), and retain the basic metal−ligand connectivity of crystalline MOFs, which connects their mechanical...... the phenomenon of the melting of 3D MOFs, linking crystal chemistry to framework melting temperature and kinetic fragility of the glass-forming liquids. Here we show that melting temperatures can be lowered by altering the chemistry of the crystalline MOF state, which provides a route to facilitate the melting...

  8. Volume dependence of the melting temperature for alkali metals with Debye's model

    International Nuclear Information System (INIS)

    Soma, T.; Kagaya, H.M.; Nishigaki, M.

    1983-01-01

    Using the volume dependence of the Grueneisen constant at higher temperatures, the volume effect on the melting temperature of alkali metals is studied by Lindeman's melting law and Debye's model. The obtained melting curve increases as a function of the compressed volume and shows the maximum of the melting point at the characteristic volume. The resultant data are qualitatively in agreement with the observed tendency for alkali metals. (author)

  9. Numerical simulation of complex part manufactured by selective laser melting process

    Science.gov (United States)

    Van Belle, Laurent

    2017-10-01

    Selective Laser Melting (SLM) process belonging to the family of the Additive Manufacturing (AM) technologies, enable to build parts layer by layer, from metallic powder and a CAD model. Physical phenomena that occur in the process have the same issues as conventional welding. Thermal gradients generate significant residual stresses and distortions in the parts. Moreover, the large and complex parts to manufacturing, accentuate the undesirable effects. Therefore, it is essential for manufacturers to offer a better understanding of the process and to ensure production reliability of parts with high added value. This paper focuses on the simulation of manufacturing turbine by SLM process in order to calculate residual stresses and distortions. Numerical results will be presented.

  10. Decontamination of metals by melt refinings/slagging: An annotated bibliography

    International Nuclear Information System (INIS)

    Mizia, R.E.; Worcester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A.

    1993-07-01

    As the number of nuclear installations undergoing decontamination and decommissioning (D ampersand D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult, the problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste storage problems, Westinghouse Idaho Nuclear Company (WINCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technology for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small scale melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of large scale melting demonstrations (100--500 lbs) to be conducted at selected facilities. The program will support recycling and decontaminating stainless steel RSM for use in waste canisters for Idaho Waste Immobilization Facility densified high level waste. This report is the result of the literature search conducted to establish a basis for experimental melt/slag program development

  11. Decontamination of metals by melt refinings/slagging: An annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, R.E. [ed.; Worcester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A.

    1993-07-01

    As the number of nuclear installations undergoing decontamination and decommissioning (D&D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult, the problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste storage problems, Westinghouse Idaho Nuclear Company (WINCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technology for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small scale melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of large scale melting demonstrations (100--500 lbs) to be conducted at selected facilities. The program will support recycling and decontaminating stainless steel RSM for use in waste canisters for Idaho Waste Immobilization Facility densified high level waste. This report is the result of the literature search conducted to establish a basis for experimental melt/slag program development.

  12. INVESTIGATION OF THE METAL MELTING PROCESS

    Directory of Open Access Journals (Sweden)

    V. I. Timoshpolskij

    2006-01-01

    Full Text Available The nonlinear mathematical model of calculation of temperature fields in the process of metal melting is formulated and solved using the method of equivalent source taking into account nonlinearity of thermophysical properties of material and variable terms of heat exchange.

  13. Method of studying polymorphic transformations in melts of metals

    International Nuclear Information System (INIS)

    Magomedov, A.M.

    1986-01-01

    This paper presents a method used to study the dynamics of the change in the electrical properties of specimens during melting and crystallization and to quite accurately determine the phase transformation temperatures in melts. A block diagram of the unit for measuring the magnetoresistive effect in melts of metals is shown. The authors found that the strength of the magnetic field affects the magnitude of the jumps associated with the anomalies rather than the temperature range of the polymorphic transformations. The method described accurately determines the transformation temperatures for first- and second-order phase transformations; it does not require the use of complicated and expensive equipment. The measurement time is much shorter and the amount of material needed for studies is much smaller than with the use of any other method. The proposed method can be used to study melts of metals and construct phase deagrams of alloys

  14. Method for preparation of melts of alkali metal chlorides with highly volatile polyvalent metal chlorides

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Kudyakov, V.Ya.

    1990-01-01

    A method for production of alkali metal (Cs, Rb, K) chloride melts with highly volatile polyvalent metal chlorides is suggested. The method consists, in saturation of alkali metal chlorides, preheated to the melting point, by volatile component vapours (titanium tetrachloride, molybdenum or tantalum pentachloride) in proportion, corresponding to the composition reguired. The saturation is realized in an evacuated vessel with two heating areas for 1-1.5 h. After gradual levelling of temperature in both areas the product is rapidly cooled. 1 fig.; 1 tab

  15. Effects of slag composition and process variables on decontamination of metallic wastes by melt refining

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.

    1981-01-01

    Melt refining has been suggested as an alternative for decontamination and volume reduction of low-level-contaminated metallic wastes. Knowledge of metallurgical and thermochemical aspects of the process is essential for effective treatment of various metals. Variables such as slag type and composition, melting technique, and refractory materials need to be identified for each metal or alloy. Samples of contaminated metals were melted with fluxes by resistance furnace or induction heating. The resulting ingots as well as the slags were analyzed for their nuclide contents, and the corresponding partition ratios were calculated. Compatibility of slags and refractories was also investigated, and proper refractory materials were identified. Resistance furnace melting appeared to be a better melting technique for nonferrous scrap, while induction melting was more suitable for ferrous metals. In general uranium contents of the metals, except for aluminum, could be reduced to as low as 0.01 to 0.1 ppM by melt refining. Aluminum could be decontaminated to about 1 to 2 ppM U when certain fluoride slags were used. The extent of decontamination was not very sensitive to slag type and composition. However, borosilicate and basic oxidizing slags were more effective on ferrous metals and Cu; NaNO 3 -NaCl-NaOH type fluxes were desirable for Zn, Pb, and Sn; and fluoride type slags were effective for decontamination of Al. Recrystallized alumina proved to be the most compatible refractory for melt refining both ferrous and nonferrous metals, while graphite was suitable for nonferrous metal processing. In conclusion, melt refining is an effective technique for volume reduction ad decontamination of contaminated metal scrap when proper slags, melting technique, and refractories are used

  16. Melt layer behavior of metal targets irradiatead by powerful plasma streams

    International Nuclear Information System (INIS)

    Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Garkusha, I.E.; Makhlaj, V.A.; Solyakov, D.G.; Tereshin, V.I.; Wuerz, H.

    2002-01-01

    In this paper melt layer erosion of metal targets under pulsed high-heat loads is studied. Experiments with steel, copper, aluminum and titanium samples were carried out in two plasma accelerator devices with different time durations of the heat load. The surfaces of the resolidified melt layers show a considerable roughness with microcraters and ridge like relief on the surface. For each material the mass loss was determined. Melt layer erosion by melt motion was clearly identified. However it is masked by boiling, bubble expansion and bubble collapse and by formation of a Kelvin-Helmholtz instability. The experimental results can be used for validation of numerical codes which model melt layer erosion of metallic armour materials in off-normal events, in tokamaks

  17. Melt layer behavior of metal targets irradiatead by powerful plasma streams

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Garkusha, I.E. E-mail: garkusha@ipp.kharkov.ua; Makhlaj, V.A.; Solyakov, D.G.; Tereshin, V.I.; Wuerz, H

    2002-12-01

    In this paper melt layer erosion of metal targets under pulsed high-heat loads is studied. Experiments with steel, copper, aluminum and titanium samples were carried out in two plasma accelerator devices with different time durations of the heat load. The surfaces of the resolidified melt layers show a considerable roughness with microcraters and ridge like relief on the surface. For each material the mass loss was determined. Melt layer erosion by melt motion was clearly identified. However it is masked by boiling, bubble expansion and bubble collapse and by formation of a Kelvin-Helmholtz instability. The experimental results can be used for validation of numerical codes which model melt layer erosion of metallic armour materials in off-normal events, in tokamaks.

  18. Melting metal waste for volume reduction and decontamination

    International Nuclear Information System (INIS)

    Copeland, G.L.; Heshmatpour, B.; Heestand, R.L.

    1980-01-01

    Melt-slagging was investigated as a technique for volume reduction and decontamination of radioactively contaminated scrap metals. Experiments were conducted using several metals and slags in which the partitioning of the contaminant U or Pu to the slag was measured. Concentrations of U or Pu in the metal product of about 1 ppM were achieved for many metals. A volume reduction of 30:1 was achieved for a typical batch of mixed metal scrap. Additionally, the production of granular products was demonstrated with metal shot and crushed slag

  19. Emerging melt quality control solution technologies for aluminium melt

    Directory of Open Access Journals (Sweden)

    Arturo Pascual, Jr

    2009-11-01

    Full Text Available The newly developed “MTS 1500” Melt Treatment System is performing the specifi cally required melt treatment operations like degassing, cleaning, modification and/or grain refinement by an automated process in one step and at the same location. This linked process is saving time, energy and metal losses allowing - by automated dosage of the melt treatment agents - the production of a consistent melt quality batch after batch. By linking the MTS Metal Treatment System with sensors operating on-line in the melt, i.e., with a hydrogen sensor “Alspek H”, a fully automated control of parts of the process chain like degassing is possible. This technology does guarantee a pre-specifi ed and documented melt quality in each melt treatment batch. Furthermore, to ensure that castings are consistent and predictable there is a growing realization that critical parameters such as metal cleanliness must be measured prior to casting. There exists accepted methods for measuring the cleanliness of an aluminum melt but these can be both slow and costly. A simple, rapid and meaningful method of measuring and bench marking the cleanliness of an aluminum melt has been developed to offer the foundry a practical method of measuring melt cleanliness. This paper shows the structure and performance of the integrated MTS melt treatment process and documents achieved melt quality standards after degassing, cleaning, modifi cation and grain refi nement operations under real foundry conditions. It also provides an insight on a melt cleanliness measuring device “Alspek MQ” to provide foundry men better tools in meeting the increasing quality and tighter specifi cation demand from the industry.

  20. Melting, solidification, remelting, and separation of glass and metal

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Xin, R.C.; Liu, Y.Z.

    1998-01-01

    Several high-temperature vitrification technologies have been developed for the treatment of a wide range of mixed waste types in both the low-level waste and transuranic (TRU) mixed waste categories currently in storage at DOE sites throughout the nation. The products of these processes are an oxide slag phase and a reduced metal phase. The metal phase has the potential to be recycled within the DOE Complex. Enhanced slag/metal separation methods are needed to support these processes. This research project involves an experimental investigation of the melting, solidification, remelting, and separation of glass and metal and the development of an efficient separation technology. The ultimate goal of this project is to find an efficient way to separate the slag phase from the metal phase in the molten state. This two-year project commenced in October 1995 (FY96). In the first fiscal year, the following tasks were accomplished: (1) A literature review and an assessment of the baseline glass and metal separation technologies were performed. The results indicated that the baseline technology yields a high percentage of glass in the metal phase, requiring further separation. (2) The main melting and solidification system setup was established. A number of melting and solidification tests were conducted. (3) Temperature distribution, solidification patterns, and flow field in the molten metal pool were simulated numerically for the solidification processes of molten aluminum and iron steel. (4) Initial designs of the laboratory-scale DCS and CS technologies were also completed. The principal demonstration separation units were constructed. (5) An application for a patent for an innovative liquid-liquid separation technology was submitted and is pending

  1. Effects of holding pressure and process temperatures on the mechanical properties of moulded metallic parts

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Esteves, N.M.

    2013-01-01

    Metal injection moulding is gaining more and more importance over the time and needs more research to be done to understand the sensitivity of process to different process parameters. The current paper makes an attempt to better understand the effects of holding pressure and process temperatures...... on the moulded metallic parts. Stainless steel 316L is used in the investigation to produce the specimen by metal injection moulding (MIM) and multiple analyses were carried out on samples produced with different combinations of holding pressure, mould temperature and melt temperature. Finally, the parts were...... characterized to investigate mechanical properties like density, ultimate tensile strength, shrinkage etc. The results are discussed in the paper. The main conclusion from this study is unlike plastic moulding, the tensile properties of MIM parts doesn’t vary based on the flow direction of the melt, and tensile...

  2. The role of noble metals in electric melting of nuclear waste glass

    International Nuclear Information System (INIS)

    Roth, G.; Weisenburger, S.

    1990-01-01

    Electrical melting of nuclear waste glass in ceramic melters applies Joule heating, with the molten glass acting as the conductive medium. The local energy release inside the melt relieves from the restriction of external heat addition, allowing to scale up the melter to industrial units. Certainly, that principle makes the melter operation susceptible for changes of the electrical properties of the glass melt. Hence, the melt properties are required to be locally uniform and constant with time. Temporary fluctuations in the feed composition, however, are usually attenuated by the high retention times being in the order of a day and more. More essential for the melter operation are segregation effects occurring systematically. This behaviour can be observed in the case of the so-called noble metal elements Ruthenium, Palladium and Rhodium, belonging to the Platinum metal group. The subject of this paper is to describe the behaviour of the noble metals in electric melting and the problems they can contribute to. The discussion is based on detailed knowledge gained from PAMELA's LEWC processing and from large-scale vitrification of commercial-like waste simulate at INE/KfK. Finally, ways are indicated to solve the noble metal problem technically

  3. Systematic prediction of high-pressure melting curves of transition metals

    International Nuclear Information System (INIS)

    Hieu, Ho Khac

    2014-01-01

    The pressure effects on melting temperatures of transition metals have been studied based on the combination of the modified Lindemann criterion with statistical moment method in quantum statistical mechanics. Numerical calculations have been performed for five transition metals including Cu, Pd, Pt, Ni, and Mn up to pressure 100 GPa. Our results are in good and reasonable agreements with available experimental data. This approach gives us a relatively simple method for qualitatively calculating high-pressure melting temperature. Moreover, it can be used to verify future experimental and theoretical works. This research proposes the potential of the combination of statistical moment method and the modified Lindemann criterion on predicting high-pressure melting of materials.

  4. Treatment of radioactive metallic waste by the electro-slag melting method

    International Nuclear Information System (INIS)

    Ochiai, Atsuhiro; Nagura, Kanetake; Noura, Tsuyoshi

    1983-01-01

    The applicability of the electro-slag melting method for treating plutonuim contaminated metallic waste was studied. A 100kg test furnace was built and simulated metallic waste was melted and solidified in this furnace. Waste volume was reduced to 1/25 with a decontamination factor of 25 and the slag and the copper mold are repeatedly usable. The process is expected to be employed in the project of PWTF (Plutonium contaminated Wate Treatment Facilities). (author)

  5. Wüstite in the fusion crust of Almahata Sitta sulfide-metal assemblage MS-166: Evidence for oxygen in metallic melts

    Science.gov (United States)

    Horstmann, Marian; Humayun, Munir; Harries, Dennis; Langenhorst, Falko; Chabot, Nancy L.; Bischoff, Addi; Zolensky, Michael E.

    2013-05-01

    Meteorite fusion crusts form during the passage of a meteoroid through the Earth's atmosphere and are highly oxidized intergrowths as documented by the presence of e.g., oxides. The porous and irregular fusion crust surrounding the Almahata Sitta sulfide-metal assemblage MS-166 was found highly enriched in wüstite (Fe1-xO). Frictional heating of the outer portions of the assemblage caused partial melting of predominantly the Fe-sulfide and minor amounts of the outer Ni-rich portions of the originally zoned metal in MS-166. Along with melting significant amounts of oxygen were incorporated into the molten fusion crust and mainly FeS was oxidized and desulfurized to form wüstite. Considerable amounts of FeS were lost due to ablation, whereas the cores of the large metal grains appear largely unmelted leaving behind metal grains and surrounding wüstite-rich material (matte). Metal grains along with the surrounding matte typically form an often highly porous framework of globules interconnected with the matte. Although textures and chemical composition suggest that melting of Fe,Ni metal occurred only partially (Ni-rich rims), there is a trace elemental imprint of siderophile element partitioning influenced by oxygen in the metallic melt as indicated by the behavior of W and Ga, the two elements significantly affected by oxygen in a metallic melt. It is remarkable that MS-166 survived the atmospheric passage as troilite inclusions in iron meteorites are preferentially destroyed.

  6. High-temperature corrosion of metals in the salt and metallic melts containing rare earths

    Science.gov (United States)

    Karpov, V. V.; Abramov, A. V.; Zhilyakov, A. Yu.; Belikov, S. V.; Volkovich, V. A.; Polovov, I. B.; Rebrin, O. I.

    2016-09-01

    A complex of independent methods was employed to study the corrosion resistance of molybdenum, zirconium, tantalum and tungsten in chloride, chloride-fluoride and fluoride-oxide melts based on LiCl, CaCl2, NaCl- KCl, LiF, and containing rare earths. Tests were conducted for 30 h at 750-1050 °C. The metals showed excellent corrosion resistance in fused chlorides (the corrosion rates were below 0.0005 g/(m2 h). Despite the presence of chemically active fluoride ions in the chloride-fluoride melts, the metals studied also showed very low corrosion rates, except molybdenum, for which the rate of corrosion was 0,8 g/(m2 h). The corrosion resistance of tantalum was considerably reduced in the fluoride-oxide melts; the corrosion rate was over 1 g/(m2 h) corresponding to the 8-th grade of stability and placing tantalum to the group of "low stability" materials.

  7. A model for the latent heat of melting in free standing metal nanoparticles

    International Nuclear Information System (INIS)

    Shin, Jeong-Heon; Deinert, Mark R.

    2014-01-01

    Nanoparticles of many metals are known to exhibit scale dependent latent heats of melting. Analytical models for this phenomenon have so far failed to completely capture the observed phenomena. Here we present a thermodynamic analysis for the melting of metal nanoparticles in terms of their internal energy and a scale dependent surface tension proposed by Tolman. The resulting model predicts the scale dependence of the latent heat of melting and is confirmed using published data for tin and aluminum

  8. Final results of the XR2-1 BWR metallic melt relocation experiment

    International Nuclear Information System (INIS)

    Gauntt, R.O.; Humphries, L.L.

    1997-08-01

    This report documents the final results of the XR2-1 boiling water reactor (BWR) metallic melt relocation experiment, conducted at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission. The objective of this experiment was to investigate the material relocation processes and relocation pathways in a dry BWR core following a severe nuclear reactor accident such as an unrecovered station blackout accident. The imposed test conditions (initial thermal state and the melt generation rates) simulated the conditions for the postulated accident scenario and the prototypic design of the lower core test section (in composition and in geometry) ensured that thermal masses and physical flow barriers were modeled adequately. The experiment has shown that, under dry core conditions, the metallic core materials that melt and drain from the upper core regions can drain from the core region entirely without formation of robust coherent blockages in the lower core. Temporary blockages that suspended pools of molten metal later melted, allowing the metals to continue draining downward. The test facility and instrumentation are described in detail. The test progression and results are presented and compared to MERIS code analyses. 6 refs., 55 figs., 4 tabs

  9. Decontamination of metals by melt refining/slagging: First year progress report

    International Nuclear Information System (INIS)

    Mizia, R.E.; Worcester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A.

    1994-03-01

    As the number of nuclear installations undergoing decontamination and decommissioning (D ampersand D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult. The problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste storage problems, Westinghouse Idaho Nuclear Company (WINCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technologies for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small scale melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of pilot scale melting demonstrations (100-500 lbs) to be conducted at selected commercial facilities. This program will identify methods that can be used to recycle stainless steel RSM which will be used to fabricate high and low level waste canisters for the Idaho Waste Immobilization Facility. This report summarizes the results of an extensive literature review and the first year's progress on slag design, small-scale melt refining of surrogate-containing stainless steel (presently only a three month effort), and pilot-scale preparation of surrogate master ingots

  10. Disintegration and size reduction of slags and metals after melt refining of contaminated metallic wastes

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.; Heestand, R.L.

    1981-04-01

    Melting under an oxidizing slag is an attractive method of decontaminating and reducing the volume of radioactively contaminated metal scrap. The contaminants are concentrated in a relatively small volume of slag, which leaves the metal essentially clean. A potential method of permanently disposing of the resulting slags (and metals if necessary) is emplacing them into deep shale by grout hydrofracture. Suspension in grout mixtures requires that the slag and metal be granular. The feasibility of size-reducing slags and disintegrating metals and subsequently incorporating both into grout mixtures was demonstrated. Various types of slags were crushed with a small jaw crusher into particles smaller than 3 mm. Several metals were also melted and water-blasted into coarse metal powder or shot ranging in size from 0.05 to 3 mm. A simple low-pressure water atomizer having a multiple nozzle with a converging-line jet stream was developed and used for this purpose. No significant slag dust and steam were generated during slag crushing and liquid-metal water-blasting tests, indicating that contamination can be well contained within the system. The crushed slags and the coarse metal powders were suspendable in group fluids, which indicates probable disposability by shale hydrofracture. The granulation of slags and metals facilitates their containment, transport, and storage

  11. Induction skull melting facility: an advanced system for electromagnetic processing of metals and alloys

    International Nuclear Information System (INIS)

    Sugilal, G.; Agarwal, K.

    2017-01-01

    Induction Skull Melting (ISM) is an advanced technology for processing highly refractory and extremely reactive metals and their alloys to produce ultra-high purity products. In ISM, the metallic charge is melted in a water-cooled, copper crucible. The crucible is segmented so that the magnetic field can penetrate into the metallic charge to be melted. By virtue of the strong electromagnetic stirring, the ISM technology can also be used to homogenize alloys of metals, which are difficult to be combined uniformly in composition due to large difference in specific gravity. In view of various important applications in frontier areas of material research, development and production, Bhabha Atomic Research Centre developed the ISM technology indigenously

  12. Melt-drop technique for the production of high-purity metal powder

    International Nuclear Information System (INIS)

    Aldinger, F.; Linck, E.; Claussen, N.

    1977-01-01

    The production of high-purity powders of metals and alloys such as beryllium, titanium alloys, or superalloys is a problem. Oxidation of these materials cannot be avoided. Oxidation occurs in inert gases and even in reducing atmospheres when any gas impurities are present. Therefore, the powder production of these materials has to be performed either in high vacuum or at least in a static atmosphere of inert gas purified immediately before coming into contact with the disintegrating material. These requirements are very well met by the melt-drop technique presented in this paper, especially for coarse powders which must not necessarily be cold-workable. This is true, for example, for superalloys where high-temperature applications require large grain sizes; or in titanium alloys because the final microstructure will be achieved by a thermomechanical treatment. In the case of beryllium and beryllium alloys, where grain sizes <5 μm are desired, further milling is necessary. But the melt-drop technique offers a simple and clean method directly from the purifying process of vacuum melting. In melt-drop processes a liquid metal flows through a nozzle at the bottom of a crucible or the melt is just poured through a sieve. The theory of disintegration of a liquid jet into droplets, dates back to the 19th century. More recent investigations attempted to produce uniformly sized droplets by applying a capillary wave of given wave length to the jet. But this has been done only with non-metallic materials. Evidence is presented to prove the theory and show that this concept is applicable to the production of metal powders with controlled particle size

  13. Investigating Planetesimal Evolution by Experiments with Fe-Ni Metallic Melts: Light Element Composition Effects on Trace Element Partitioning Behavior

    Science.gov (United States)

    Chabot, N. L.

    2017-12-01

    As planetesimals were heated up in the early Solar System, the formation of Fe-Ni metallic melts was a common occurrence. During planetesimal differentiation, the denser Fe-Ni metallic melts separated from the less dense silicate components, though some meteorites suggest that their parent bodies only experienced partial differentiation. If the Fe-Ni metallic melts did form a central metallic core, the core eventually crystallized to a solid, some of which we sample as iron meteorites. In all of these planetesimal evolution processes, the composition of the Fe-Ni metallic melt influenced the process and the resulting trace element chemical signatures. In particular, the metallic melt's "light element" composition, those elements present in the metallic melt in a significant concentration but with lower atomic masses than Fe, can strongly affect trace element partitioning. Experimental studies have provided critical data to determine the effects of light elements in Fe-Ni metallic melts on trace element partitioning behavior. Here I focus on combining numerous experimental results to identify trace elements that provide unique insight into constraining the light element composition of early Solar System Fe-Ni metallic melts. Experimental studies have been conducted at 1 atm in a variety of Fe-Ni systems to investigate the effects of light elements on trace element partitioning behavior. A frequent experimental examination of the effects of light elements in metallic systems involves producing run products with coexisting solid metal and liquid metal phases. Such solid-metal-liquid-metal experiments have been conducted in the Fe-Ni binary system as well as Fe-Ni systems with S, P, and C. Experiments with O-bearing or Si-bearing Fe-Ni metallic melts do not lend themselves to experiments with coexisting solid metal and liquid metal phases, due to the phase diagrams of these elements, but experiments with two immiscible Fe-Ni metallic melts have provided insight into

  14. Ultrafast direct imprinting of nanostructures in metals by pulsed laser melting

    International Nuclear Information System (INIS)

    Cui Bo; Keimel, Chris; Chou, Stephen Y

    2010-01-01

    We report a method of one-step direct patterning of metallic nanostructures. In the method, termed laser assisted direct imprinting (LADI), the surface of a metal film on a substrate is melted by a single excimer laser pulse and subsequently imprinted within ∼100 ns using a transparent quartz mold, while the substrate is kept at a low temperature and in a solid phase. Using LADI, we imprinted gratings with ∼100 nm linewidth, 100 nm depth, and 200 nm pitch, as well as isolated mesas of ∼20 μm size, in Al, Au, Cu and Ni thin films. We found that the quartz mold was able to imprint metals even at temperatures higher than its melting point. The technique could be extended to other metals regardless of their ductility and hardness, and would find applications in photonic and plasmonic device production.

  15. Method of melting decontamination of radioactive contaminated metals

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Miura, Noboru; Tsuchiya, Hiroyuki.

    1984-01-01

    Purpose: To improve the transfer efficiency of radioactive materials into slags. Method: Contaminated metals are melt with adding slagging agent in order to transfer the radioactive materials into the slag, where the slagging agent holds less free energy than that of metal oxides contaminated with radioactive materials in order to promote the transfer of the contaminated materials into the slag layer. This effect can also be attained on metals or alloys other than iron contaminated with radioactive materials. In the case of alloy, the slagging agent is to containing such metal oxide that free energy is less than that of the oxide of metal being the main ingredient element of the alloy. The decontamination effect can further be improved by containing halogenide such as calcium fluoride together with the metal oxide into the slagging agent. (Ikeda, J.)

  16. Structure and mechanical properties of parts obtained by selective laser melting of metal powder based on intermetallic compounds Ni3Al

    Science.gov (United States)

    Smelov, V. G.; Sotov, A. V.; Agapovichev, A. V.; Nosova, E. A.

    2018-03-01

    The structure and mechanical properties of samples are obtained from metal powder based on intermetallic compound by selective laser melting. The chemical analysis of the raw material and static tensile test of specimens were made. Change in the samples’ structure and mechanical properties after homogenization during four and twenty-four hours were investigated. A small-sized combustion chamber of a gas turbine engine was performed by the selective laser melting method. The print combustion chamber was subjected to the gas-dynamic test in a certain temperature and time range.

  17. A slow atomic diffusion process in high-entropy glass-forming metallic melts

    Science.gov (United States)

    Chen, Changjiu; Wong, Kaikin; Krishnan, Rithin P.; Embs, Jan P.; Chathoth, Suresh M.

    2018-04-01

    Quasi-elastic neutron scattering has been used to study atomic relaxation processes in high-entropy glass-forming metallic melts with different glass-forming ability (GFA). The momentum transfer dependence of mean relaxation time shows a highly collective atomic transport process in the alloy melts with the highest and lowest GFA. However, a jump diffusion process is the long-range atomic transport process in the intermediate GFA alloy melt. Nevertheless, atomic mobility close to the melting temperature of these alloy melts is quite similar, and the temperature dependence of the diffusion coefficient exhibits a non-Arrhenius behavior. The atomic mobility in these high-entropy melts is much slower than that of the best glass-forming melts at their respective melting temperatures.

  18. Application of Ceramic Bond Coating for Reusable Melting Crucible of Metallic Fuel Slugs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Hwan; Song, Hoon; Ko, Young-Mo; Park, Jeong-Yong; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hong, Ki-Won [Chungnam National University, Daejeon (Korea, Republic of)

    2016-10-15

    Metal fuel slugs of the driver fuel assembly have been fabricated by injection casting of the fuel alloys under a vacuum state or an inert atmosphere. Traditionally, metal fuel such as a U-Zr alloy system for SFR has been melted in slurry-coated graphite crucibles and cast in slurry-coated quartz tube molds to prevent melt/material interactions. Reactive coatings and porous coatings can be a source of melt contaminations, and fuel losses, respectively. Ceramic Y{sub 2}O{sub 3}, TiC, and TaC coating materials showed no penetration in the protective layer after a melt dipping test. However, the ceramic coating materials showed separations in the coating interface between the substrate and coating layer, or between the coating layer and fuel melt after the dipping test. All plasma-spray coated methods maintained a sound coating state after a dipping test with U-10wt.%Zr melt. A single coating Y{sub 2}O{sub 3}(150) layer and double coating layer of TaC(50)-Y{sub 2}O{sub 3}(100), showed a sound state or little penetration in the protective layer after a dipping test with U-10wt.%Zr-5wt.%RE melt. Injection casting experiments of U-10wt.%Zr and U-10wt.%Zr-5wt.%RE fuel slugs have been performed to investigate the feasibility of a reusable crucible of the metal fuel slugs. U–10wt.%Zr and U–10wt.%Zr–5wt.%RE fuel slugs have been soundly fabricated without significant interactions of the graphite crucibles. Thus, the ceramic plasma-spray coatings are thought to be promising candidate coating methods for a reusable graphite crucible to fabricate metal fuel slugs.

  19. Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2005-11-01

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  20. Temperatures and enthalpies of melting of alkali-metal perrhenates

    International Nuclear Information System (INIS)

    Lukas, W.; Gaune-Escard, M.

    1982-01-01

    Melting temperatures and enthalpies of melting were determined for alkali-metal perrhenates by differential enthalpic analysis using a high-temperature Calvet microcalorimeter. The following values were obtained: for LiReO 4 : 692 K and 24.9 kJ.mol -1 ; for NaReO 4 : 693 K and 33 kJ.mol -1 ; for KReO 4 : 828 K and 36 kJ.mol -1 ; for RbReO 4 : 878 K and 34 kJ.mol -1 ; for CsReO 4 : 893 K and 34 kJ.mol -1 . (author)

  1. Inclusions, Porosity, and Fatigue of AlSi10Mg Parts Produced by Selective Laser Melting

    Science.gov (United States)

    Tang, Ming

    Additive manufacturing (AM) has experienced remarkable growth in the past decade with applications in both rapid prototyping and rapid manufacturing for functional end-usable parts. As one of the most promising AM processes, selective laser melting (SLM) can be used to fabricate metal products line by line and layer upon layer within a powder bed system. Such process allows the building of parts with customized shapes, which brings higher design flexibility than traditional casting and wrought manufacturing. In this work, AlSi10Mg powder is chosen as the raw material for producing parts by SLM, since aluminum alloys are widely used in automotive and aerospace industries thanks to an excellent combination of low density and competitive mechanical properties. However, there remain multiple drawbacks which limit further applications of aluminum parts produced by SLM: lack of prediction of solidification microstructure, few studies on fatigue properties, and cost and time caused by the limited production rate. All these issues were studied in this work and summarized as follows: Rapid movement of the melt pool (at a speed around 1 m/s) in SLM of metal powder directly implies rapid solidification. In this research, the length scale of the as-built microstructure of parts built with the alloy AlSi10Mg was measured and compared with the well-known relationship between cell size and cooling rate. Cooling rates during solidification were estimated using the Rosenthal equation. It was found that the solidification structure is the expected cellular combination of silicon with alpha-aluminum. The dependence of the measured cell spacing on the calculated cooling rate follows the well-established relationship for aluminum alloys. The implication is that cell spacing can be manipulated by changing the heat input. Microscopy of polished sections through particles of the metal powder used to build the parts showed that the particles have a dendritic-eutectic structure; the

  2. Decontamination of metals by melt refining/slagging. An annotated bibliography: Update on stainless steel and steel

    Energy Technology Data Exchange (ETDEWEB)

    Worchester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A. [Montana Tech of the Univ., of Montana (United States); Mizia, R.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-01-01

    The following presentation is an update to a previous annotation, i.e., WINCO-1138. The literature search and annotated review covers all metals used in the nuclear industries but the emphasis of this update is directed toward work performed on mild steels. As the number of nuclear installations undergoing decontamination and decommissioning (D&D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult, the problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste problems, Lockheed Idaho Technologies Co (LITCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technology for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small wide melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of large scale melting demonstrations (100--2,000 lbs) to be conducted at selected facilities. The program will support recycling and decontaminating stainless steel RSM for use in waste canisters for Idaho Waste Immobilization Facility densified high level waste and Pit 9/RWMC boxes. This report is the result of the literature search conducted to establish a basis for experimental melt/slag program development. The program plan will be jointly developed by Montana Tech and LITCO.

  3. Application of the zone-melting technique to metal chelate systems-VI A new apparatus for zone-melting chromatography.

    Science.gov (United States)

    Maeda, S; Kobayashi, H; Ueno, K

    1973-07-01

    An improved apparatus has been constructed for zone-melting chromatography. An essential feature of the apparatus is that the length of the molten zone can be kept constant during a zone-melting operation, by employing heating and cooling compartments which are separated from each other by double partition plates. Each compartment is heated or cooled with jets of hot or cold air. The apparatus is suitable for organic materials melting in the range between 40 degrees and 180 degrees . The distribution of metal ion along the column after zone melting of copper acetylacetonate in 2-methoxynaphthalene was a smooth curve. The plot of the position of maximum concentration, x(max), against the number of zone passes, n, gave a relationship in accordance with theoretical prediction.

  4. An assessment of the melting, boiling, and critical point data of the alkali metals

    International Nuclear Information System (INIS)

    Ohse, R.W.; Babelot, J.-F.; Magill, J.

    1985-01-01

    The paper reviews the measured melting, boiling and critical point data of alkali metals. A survey of the static heat generation methods for density and pressure-volume-temperature measurements is given. Measured data on the melting and boiling temperatures of lithium, sodium, potassium, rubidium and caesium are summarised. Also measured critical point data for the same five alkali metals are presented, and discussed. (U.K.)

  5. Electrodeposition of platinum metals and alloys from chloride melts

    Directory of Open Access Journals (Sweden)

    Saltykova N.A.

    2003-01-01

    Full Text Available The structure of platinum metals and their alloys deposited by the electrolysis of chloride melts have been investigated. The cathodic deposits were both in the form of compact layers and dendrites. All the alloys of platinum metals obtained are solid solutions in the whole range of composition. Depending on the experimental conditions the layers had columnar, stratum and spiral (dissipative structures. The stratum and dissipative structures were observed in the case of alloys only.

  6. Parameters in selective laser melting for processing metallic powders

    Science.gov (United States)

    Kurzynowski, Tomasz; Chlebus, Edward; Kuźnicka, Bogumiła; Reiner, Jacek

    2012-03-01

    The paper presents results of studies on Selective Laser Melting. SLM is an additive manufacturing technology which may be used to process almost all metallic materials in the form of powder. Types of energy emission sources, mainly fiber lasers and/or Nd:YAG laser with similar characteristics and the wavelength of 1,06 - 1,08 microns, are provided primarily for processing metallic powder materials with high absorption of laser radiation. The paper presents results of selected variable parameters (laser power, scanning time, scanning strategy) and fixed parameters such as the protective atmosphere (argon, nitrogen, helium), temperature, type and shape of the powder material. The thematic scope is very broad, so the work was focused on optimizing the process of selective laser micrometallurgy for producing fully dense parts. The density is closely linked with other two conditions: discontinuity of the microstructure (microcracks) and stability (repeatability) of the process. Materials used for the research were stainless steel 316L (AISI), tool steel H13 (AISI), and titanium alloy Ti6Al7Nb (ISO 5832-11). Studies were performed with a scanning electron microscope, a light microscopes, a confocal microscope and a μCT scanner.

  7. Saturation of cermets based on titanium carbide and diboride by metal melts

    International Nuclear Information System (INIS)

    Kitsaj, A.A.; Tsyganova, T.V.; Ordan'yan, S.S.

    1985-01-01

    Different sintered composites - TiC-Ni(Mo), TiC-Fe (Ni), TiB 2 -Fe (Mo) are studied for their interaction in contact with metal melts at the temperature of liquid phase existence in the cermet. Due to structural and physicochemical similarity of cermets the processes occuring with contact interaction are identical: additional quantity of liquid is imbibed into the cermet resulting in reconstruction of the solid phase frame and volumetric growth of the specimen. Elongation of the specimens permits concluding that the intensity of the solid phase (frame) reconstruction process in the cermet TiC-Fe (Ni) is lower than in TiC-Ni (Mo) and TiB 2 -Fe (Mo) systems. In the TiC-Fe (Ni) cermet it causes prevalence of the processes of diffusional levellng for compositions of the metal-binder and contacting metal over the process of laminar flow of the melt into the specimen. Choosing the composite components it is possible to control intensity of the cermet saturation by the additional quantity of the melt and distribution of the liquid phase in the article volume

  8. Melt layer erosion of metallic armour targets during off-normal events in tokamaks

    International Nuclear Information System (INIS)

    Bazylev, B.; Wuerz, H.

    2002-01-01

    Melt layer erosion by melt motion is the dominating erosion mechanism for metallic armours under high heat loads. A 1-D fluid dynamics simulation model for calculation of melt motion was developed and validated against experimental results for tungsten from the e-beam facility JEBIS and beryllium from the e-beam facility JUDITH. The driving force in each case is the gradient of the surface tension. Due to the high velocity which develops in the Be melt considerable droplet splashing occurs

  9. Melt layer erosion of metallic armour targets during off-normal events in tokamaks

    Science.gov (United States)

    Bazylev, B.; Wuerz, H.

    2002-12-01

    Melt layer erosion by melt motion is the dominating erosion mechanism for metallic armours under high heat loads. A 1-D fluid dynamics simulation model for calculation of melt motion was developed and validated against experimental results for tungsten from the e-beam facility JEBIS and beryllium from the e-beam facility JUDITH. The driving force in each case is the gradient of the surface tension. Due to the high velocity which develops in the Be melt considerable droplet splashing occurs.

  10. Removal of oxides from alkali metal melts by reductive titration to electrical resistance-change end points

    Science.gov (United States)

    Tsang, Floris Y.

    1980-01-01

    Alkali metal oxides dissolved in alkali metal melts are reduced with soluble metals which are converted to insoluble oxides. The end points of the reduction is detected as an increase in electrical resistance across an alkali metal ion-conductive membrane interposed between the oxide-containing melt and a material capable of accepting the alkali metal ions from the membrane when a difference in electrical potential, of the appropriate polarity, is established across it. The resistance increase results from blocking of the membrane face by ions of the excess reductant metal, to which the membrane is essentially non-conductive.

  11. Melting decontamination and recycling of radioactive polluted metals from uranium mining and metallurgy

    International Nuclear Information System (INIS)

    Chen Anquan

    2011-01-01

    Melting method is a primary method used for decontamination of radioactive polluted metal from uranium mining and metallurgy. The decontamination mechanism of the method, the way selection and its features are introduced. Taking the ten year's work of CNNC Uranium Mining and Metallurgy Radioactive Polluted Metal Melting Processing Center as example, the effects of processing radioactive polluted metals by smelting method are discussed. The surface pollution levels of radioactive polluted metal from uranium mining and metallurgy decreased from 4-48 Bq/cm 2 before decontamination to 0.004-0.016 Bq/cm 2 after decontamination, and the specific activity of its metal is less than 1 Bq/g, which is below the solution control level proposed by IAEARS-G1.7 'the application of the concepts of exclusion, immunity and solution control'. The metals after decontamination can be recycled by producing tooth plate and bucket teeth of excavator used in mines. (authors)

  12. Features of bicrystal growth during the directional crystallization of metal melts

    Energy Technology Data Exchange (ETDEWEB)

    Gubernatorov, V. V.; Sycheva, T. S., E-mail: sych@imp.uran.ru; Gundyrev, V. M.; Akshentsev, Yu. N. [Russian Academy of Sciences, M.N. Mikheev Institute of Metal Physics, Ural Branch (Russian Federation)

    2017-03-15

    The factors responsible for the formation of different configurations of boundaries between adjacent crystallites during their growth from melt by Bridgman and Czochralski methods have been considered by an of example Fe–20 wt % Ga alloy and Ni bicrystals. It is found that the configuration of intercrystallite boundary is related to the features of crystallite growth, caused by the strained state of intercrystallite and interphase (crystal–melt) boundaries, the difference in the linear thermal expansion coefficients of the crystallite boundaries and bulk, and the shape (geometry) of the bicrystal cross section. It is suggested that the strained state of boundaries and the formation of substructure in crystallites during directional crystallization from metal melt are significantly affected by their deformation under the melt weight.

  13. Preparation of 147Pm metal and the determination of the melting point and phase transformation temperatures

    International Nuclear Information System (INIS)

    Angelini, P.; Adair, H.L.

    1976-07-01

    The promethium metal used in the determination of the melting point and phase transformation temperatures was prepared by reduction of promethium oxide with thorium metal at 1600 0 C and distilling the promethium metal into a quartz dome. The melting point and phase transformation temperatures of promethium metal were found to be 1042 +- 5 0 C and 890 +- 5 0 C, respectively. The ratio for the heat of the high-temperature transformation to the heat of fusion was determined to be 0.415

  14. Additive Manufacturing: Reproducibility of Metallic Parts

    Directory of Open Access Journals (Sweden)

    Konda Gokuldoss Prashanth

    2017-02-01

    Full Text Available The present study deals with the properties of five different metals/alloys (Al-12Si, Cu-10Sn and 316L—face centered cubic structure, CoCrMo and commercially pure Ti (CP-Ti—hexagonal closed packed structure fabricated by selective laser melting. The room temperature tensile properties of Al-12Si samples show good consistency in results within the experimental errors. Similar reproducible results were observed for sliding wear and corrosion experiments. The other metal/alloy systems also show repeatable tensile properties, with the tensile curves overlapping until the yield point. The curves may then follow the same path or show a marginal deviation (~10 MPa until they reach the ultimate tensile strength and a negligible difference in ductility levels (of ~0.3% is observed between the samples. The results show that selective laser melting is a reliable fabrication method to produce metallic materials with consistent and reproducible properties.

  15. Viscosity measurements on metal melts at high pressure and viscosity calculations for the earth's core

    International Nuclear Information System (INIS)

    Mineev, Vladimir N; Funtikov, Aleksandr I

    2004-01-01

    A review is given of experimental and calculated data on the viscosity of iron-based melts on the melting curve. The interest in these data originates in the division of opinion on whether viscosity increases rather moderately or considerably in the high-pressure range. This disagreement is especially pronounced in the interpretation of the values of molten iron and its compounds in the environment of the earth's outer core. The conclusion on a substantial rise in viscosity mostly follows from the universal law, proposed by Brazhkin and Lyapin [1], of viscosity changing along the metal melting curve in the high-pressure range. The review analyzes available experimental and computational data, including the most recent ones. Data on viscosity of metals under shock wave compression in the megabar pressure range are also discussed. It is shown that data on viscosity of metal melts point to a small increase of viscosity on the melting curve. Specifics are discussed of the phase diagram of iron made more complex by the presence of several phase transitions and by the uncertainty in the position of the melting curve in the high-pressure range. Inaccuracies that arise in extrapolating the results of viscosity measurements to the pressure range corresponding to the earth's core environment are pointed out. (reviews of topical problems)

  16. Innovative electron-beam welding of high-melting metals

    International Nuclear Information System (INIS)

    Behr, W.; Reisgen, U.

    2007-01-01

    Since its establishment as nuclear research plant Juelich in the year 1956, the research centre Juelich (FZJ) is concerned with the material processing of special metals. Among those are, above all, the high-melting refractory metals niobium, molybdenum and tungsten. Electron beam welding has always been considered to be an innovative special welding method; in the FZJ, electron beam welding has, moreover, always been adapted to the increasing demands made by research partners and involved manufacturing and design sectors. From the manual equipment technology right up to highly modern multi-beam technique, the technically feasible for fundamental research has, this way, always been realised. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [de

  17. The marginal fit of selective laser melting-fabricated metal crowns: an in vitro study.

    Science.gov (United States)

    Xu, Dan; Xiang, Nan; Wei, Bin

    2014-12-01

    The selective laser melting technique is attracting interest in prosthetic dentistry. The marginal fit is a key criterion for fixed restorations. The purpose of the study was to evaluate the marginal fit of cast cobalt-chromium alloy crowns versus the fit of selective laser melting-fabricated crowns. The marginal gap widths of 36 single crowns (18 selective laser melting-fabricated cobalt-chromium metal crowns and 18 cobalt-chromium cast crowns) were determined with a silicone replica technique. Each crown specimen was cut into 4 sections, and the marginal gap width of each cross section was evaluated by stereomicroscopy (× 100). The Student t test was used to evaluate whether significant differences occurred in the marginal gap widths between the selective laser melting-fabricated and cast cobalt-chromium metal crowns (α=.05). The mean marginal gap width of the cast crowns (170.19 μm) was significantly wider than that of the selective laser melting-fabricated crowns (102.86 μm). Selective laser melting-fabricate cobalt-chromium dental crowns found improved marginal gap widths compared with traditional cast crowns. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. NUMERICAL SIMULATION OF METAL MELT FLOWS IN MOLD CAVITY WITH CERAMIC POROUS MEDIA

    Directory of Open Access Journals (Sweden)

    Changchun Dong

    2016-05-01

    Full Text Available Process modeling of metal melt flow in porous media plays an important role in casting of metal matrix composites. In this work, a mathematical model of the metal melt flow in preform ceramic particles was used to simulate the flow behavior in a mold cavity. The effects of fluid viscosity and permeability (mainly affected by porosity of ceramic preforms on the flow behavior were analyzed. The results indicate that ceramic porous media have a significant effect on the flow behavior by contributing to a low filling velocity and sharp pressure drop in the cavity. The pressure drop has a linear relationship with the fluid velocity, and a nonlinear relationship with porosity. When the porosity is relatively small, the pressure drop is extremely large. When porosity exceeds a certain value, the pressure drop is independent of porosity. The relationship between viscosity and porosity is described, and it is shown that the critical porosity changes when the viscosity of the melt changes. However, due to the limited viscosity change, the critical porosity changes by less than 0.043.

  19. Melting temperature and structural transformation of some rare-earth metals

    International Nuclear Information System (INIS)

    Vu Van Hung; Hoang Van Tich; Dang Thanh Hai

    2009-01-01

    the pressure dependence of the melting temperatures of rare-earth metals is studied using the equation of states derived from the statistical moment (SMM). SMM studies were carried out order to calculate the Helmholtz free energy of hcp, bcc Dy and fcc, bcc Ce metals at a wide range of temperatures. the stable phase of Dy and Ce metals can be determined by examining the Helmholtz free energy at a given temperature, i, e. the phase that gives the lowest free energy will be stable. For example, we found that at T lower than 1750 K the hcp Dy metal is stable. At T higher than 1750 K the bcc Dy metal is also stable. Thus 1750 K marks the phase transition temperature of Dy metal. These findings are in agreement with previous experiments. (author)

  20. Fractionation of families of major, minor, and trace metals across the melt-vapor interface in volcanic exhalations

    Science.gov (United States)

    Hinkley, T.K.; Le Cloarec, M.-F.; Lambert, G.

    1994-01-01

    Chemical families of metals fractionate systematically as they pass from a silicate melt across the interface with the vapor phase and on into a cooled volcanic plume. We measured three groups of metals in a small suite of samples collected on filters from the plumes of Kilauea (Hawaii, USA), Etna (Sicily), and Merapi (Java) volcanoes. These were the major, minor, and trace metals of the alkali and alkaline earth families (K, Rb, Cs, Ca, Sr, Ba), a group of ordinarily rare metals (Cd, Cu, In, Pb, Tl) that are related by their chalcophile affinities, and the radon daughter nuclides 210Po, 210Bi, and 210Pb. The measurements show the range and some details of systematic melt-vapor fractionation within and between these groups of metals. In the plumes of all three volcanoes, the alkali metals are much more abundant than the alkaline earth metals. In the Kilauea plume, the alkali metals are at least six times more abundant than the alkaline earth metals, relative to abundances in the melt; at Etna, the factor is at least 300. Fractionations within each family are, commonly, also distinctive; in the Kilauea plume, in addition to the whole alkaline earth family being depleted, the heaviest metals of the family (Sr, Ba) are progressively more depleted than the light metal Ca. In plumes of fumaroles at Merapi, K/Cs ratios were approximately three orders of magnitude smaller than found in other earth materials. This may represent the largest observed enrichment of the "light ion lithophile" (LIL) metals. Changes in metal ratios were seen through the time of eruption in the plumes of Kilauea and Etna. This may reflect degree of degassing of volatiles, with which metals complex, from the magma bodies. At Kilauea, the changes in fractionation were seen over about three years; fractionation within the alkaline earth family increased, and that between the two families decreased, over that time. All of the ordinarily rare chalcophile metals measured are extremely abundant in

  1. Experience with melting beta and gamma contaminated metals

    International Nuclear Information System (INIS)

    Feaugas, J.; Laplante, D.; Puechlong, Y.; Barbusse, R.

    1994-01-01

    Following a description of the melting facility operated for purposes of decommissioning the G2 and G3 gas-cooled reactors at Marcoule, the physical and radiological characteristics of 4070 tonnes of metal processed to date in the furnace are discussed. Considerable data have been recorded regarding operating and measurement procedures; the results show that secondary wastes account for less than 5 wt% of the processed scrap metal, and that all the 137 Cs is transferred to the dust and slag. During the last two months of 1993, the ingot mold line was replaced by rails on which dollies carrying integral work-form molds can be moved into position beneath the casting ladle. (authors). 21 figs

  2. Consequences of Part Temperature Variability in Electron Beam Melting of Ti-6Al-4V

    Science.gov (United States)

    Fisher, Brian A.; Mireles, Jorge; Ridwan, Shakerur; Wicker, Ryan B.; Beuth, Jack

    2017-12-01

    To facilitate adoption of Ti-6Al-4V (Ti64) parts produced via additive manufacturing (AM), the ability to ensure part quality is critical. Measuring temperatures is an important component of part quality monitoring in all direct metal AM processes. In this work, surface temperatures were monitored using a custom infrared camera system attached to an Arcam electron beam melting (EBM®) machine. These temperatures were analyzed to understand their possible effect on solidification microstructure based on solidification cooling rates extracted from finite element simulations. Complicated thermal histories were seen during part builds, and temperature changes occurring during typical Ti64 builds may be large enough to affect solidification microstructure. There is, however, enough time between fusion of individual layers for spatial temperature variations (i.e., hot spots) to dissipate. This means that an effective thermal control strategy for EBM® can be based on average measured surface temperatures, ignoring temperature variability.

  3. Universal viscosity growth in metallic melts at megabar pressures: the vitreous state of the Earth's inner core

    International Nuclear Information System (INIS)

    Brazhkin, Vadim V; Lyapin, A G

    2000-01-01

    Experimental data on and theoretical models for the viscosity of various types of liquids and melts under pressure are reviewed. Experimentally, the least studied melts are those of metals, whose viscosity is considered to be virtually constant along the melting curve. The authors' new approach to the viscosity of melts involves the measurement of the grain size in solidified samples. Measurements on liquid metals at pressures up to 10 GPa using this method show, contrary to the empirical approach, that the melt viscosity grows considerably along the melting curves. Based on the experimental data and on the critical analysis of current theories, a hypothesis of a universal viscosity behavior is introduced for liquids under pressure. Extrapolating the liquid iron results to the pressures and temperatures at the Earth's core reveals that the Earth's outer core is a very viscous melt with viscosity values ranging from 10 2 Pa s to 10 11 Pa s depending on the depth. The Earth's inner core is presumably an ultraviscous (>10 11 Pa s) glass-like liquid - in disagreement with the current idea of a crystalline inner core. The notion of the highly viscous interior of celestial bodies sheds light on many mysteries of planetary geophysics and astronomy. From the analysis of the pressure variation of the melting and glass-transition temperatures, an entirely new concept of a stable metallic vitreous state arises, calling for further experimental and theoretical study. (reviews of topical problems)

  4. A general melt-injection-decomposition route to oriented metal oxide nanowire arrays

    International Nuclear Information System (INIS)

    Han, Dongqiang; Zhang, Xinwei; Hua, Zhenghe; Yang, Shaoguang

    2016-01-01

    Highlights: • A general melt-injection-decomposition (MID) route is proposed for the fabrication of oriented metal oxide nanowire arrays. • Four kinds of metal oxide (CuO, Mn_2O_3, Co_3O_4 and Cr_2O_3) nanowire arrays have been realized as examples through the developed MID route. • The mechanism of the developed MID route is discussed using Thermogravimetry and Differential Thermal Analysis technique. • The MID route is a versatile, simple, facile and effective way to prepare different kinds of oriented metal oxide nanowire arrays in the future. - Abstract: In this manuscript, a general melt-injection-decomposition (MID) route has been proposed and realized for the fabrication of oriented metal oxide nanowire arrays. Nitrate was used as the starting materials, which was injected into the nanopores of the anodic aluminum oxide (AAO) membrane through the capillarity action in its liquid state. At higher temperature, the nitrate decomposed into corresponding metal oxide within the nanopores of the AAO membrane. Oriented metal oxide nanowire arrays were formed within the AAO membrane as a result of the confinement of the nanopores. Four kinds of metal oxide (CuO, Mn_2O_3, Co_3O_4 and Cr_2O_3) nanowire arrays are presented here as examples fabricated by this newly developed process. X-ray diffraction, scanning electron microscopy and transmission electron microscopy studies showed clear evidence of the formations of the oriented metal oxide nanowire arrays. Formation mechanism of the metal oxide nanowire arrays is discussed based on the Thermogravimetry and Differential Thermal Analysis measurement results.

  5. Reduction of Surface Roughness by Means of Laser Processing over Additive Manufacturing Metal Parts.

    Science.gov (United States)

    Alfieri, Vittorio; Argenio, Paolo; Caiazzo, Fabrizia; Sergi, Vincenzo

    2016-12-31

    Optimization of processing parameters and exposure strategies is usually performed in additive manufacturing to set up the process; nevertheless, standards for roughness may not be evenly matched on a single complex part, since surface features depend on the building direction of the part. This paper aims to evaluate post processing treating via laser surface modification by means of scanning optics and beam wobbling to process metal parts resulting from selective laser melting of stainless steel in order to improve surface topography. The results are discussed in terms of roughness, geometry of the fusion zone in the cross-section, microstructural modification, and microhardness so as to assess the effects of laser post processing. The benefits of beam wobbling over linear scanning processing are shown, as heat effects in the base metal are proven to be lower.

  6. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam

    2012-12-15

    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment may be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.

  7. Self-diffusion at the melting point: From H2 and N2 to liquid metals

    International Nuclear Information System (INIS)

    Armstrong, B.H.

    1992-01-01

    A nominal lower bound to the mean free diffusion time at the melting point T m was obtained earlier which provided a factor-two type estimate for self-diffusion coefficients of the alkali halides, alkali metals, eight other metals, and Ar. The argument was based on the classical Uncertainty Principle applied to the solid crystal, whereby maximum-frequency phonons lose validity as collective excitations and degenerate into aperiodic, single-particle diffusive motion at the melting point. Because of the short time scale of this motion, the perfect-gas diffusion equation and true mass can be used to obtain the self-diffusion coefficient in the Debye approximation to the phonon spectrum. This result for the self-diffusion coefficient also yields the scale factor that determines the order of magnitude of liquid self-diffusion coefficients, which has long been an open question. The earlier theory is summarized and clarified, and the results extended to the more complex molecular liquids H 2 and N 2 . It is also demonstrated that combining Lindemann's melting law with the perfect-gas diffusion equation estimate yields a well-known empirical expression for liquid-metal self-diffusion at T m . Validity of the self-diffusion estimate over a melting temperature range from 14 to more than 1,300 K and over a wide variety of crystals provides strong confirmation for the existence of the specialized diffusive motion at the melting point, as well as confirmation of a relation between the phonon spectrum of the solid crystal and diffusive motion in the melt. 21 refs., 2 tabs

  8. Consolidation of simulated nuclear metallic waste by vacuum coreless induction melting

    International Nuclear Information System (INIS)

    Montgomery, D.R.

    1984-10-01

    Vacuum coreless induction melting with bottom pouring has exceeded expectations for simplicity, reliability, and versatility when melting the zirconium and iron eutectic alloy. The melting tests have established that: the eutectic mixture of oxidized Zircaloy 4 hulls mixed with Type 316 stainless steel hulls can be melted at 41 kg/h at 40 kW with a power consumption of 1.03 kWh/kg and a melting temperature of 1260 0 C; the life of a graphite crucible can be expected to be longer by a factor of 4 than was previously projected; the bottom-pour water-cooled copper freeze plug was 100% reliable; a 24-in.-tall stainless steel canister with 1/4-in.-thick walls (6-in. inside diameter) was satisfactory in every respect; an ingot formed from 4 consecutive heats poured into a stainless steel canister appeared to be approx. 99% dense after sectioning; preplaced scrap in the canister can be encapsulated with molten metal to about 99% density; large pieces of Zircaloy 4 and stainless steel scrap can be melted, but have differing melting parameters; the pouring nozzle requires further development to prevent solidified drops from forming at the hole exit after a pour. It is recommended that a large-scale cold mock-up facility be established to refine and test a full-scale vacuum coreless induction melting system. Other options might include further scaled-down experiments to test other alloys and crucible materials under different atmospheric conditions (i.e., air melting). 1 reference, 18 figures, 1 table

  9. Cladding hull decontamination and densification process. Part 2. Densification by inductoslag melting

    International Nuclear Information System (INIS)

    Nelson, R.G.; Montgomery, D.R.

    1980-04-01

    The Inductoslag melting process was developed to densify Zircaloy-4 cladding hulls. It is a cold crucible process that uses induction heating, a segmented water-cooled copper crucible, and a calcium fluoride flux. Metal and flux are fed into the furnace through the crucible, located at the top of the furnace, and the finished ingot is withdrawn from the bottom of the furnace. Melting rates of 40 to 50 kg/h are achieved, using 100 to 110 kW at an average energy use of 2.5 kWh/kg. The quality of ingots produced from factory supplied cladding tubing is sufficient to satisfy nuclear grade standards. An ingot of Zircaloy-4, made from melted cladding tubing that had been autoclaved to near reactor exposure and then descaled by the hydrogen fluoride decontamination process prior to Inductoslag melting, did not meet nuclear grade standards because the hydrogen, nitrogen, and hardness levels were too high. Melting development work is described that could possibly be used to test the capability of the Inductoslag process to satisfactorily melt a variety and mix of materials from LWR reprocessing, decontamination, and storage options. Results of experiments are also presented that could be used to improve remote operation of the melting process

  10. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp [Laboratory of Solid Waste Disposal Engineering, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Tomikawa, Hiroki [Laboratory of Solid Waste Disposal Engineering, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan)

    2013-03-15

    Highlights: ► Separation of Pb and Zn from Fe and Cu in ash-melting of municipal solid waste. ► Molar ratio of Cl to Na and K in fly ash affected the metal-separation efficiency. ► The low molar ratio and a non-oxidative atmosphere were better for the separation. - Abstract: In the process of metal separation by ash-melting, Fe and Cu in the incineration residue remain in the melting furnace as molten metal, whereas Pb and Zn in the residue are volatilized. This study investigated the effects of the chemical composition of incineration fly ash on the metal-separation efficiency of the ash-melting process. Incineration fly ash with different chemical compositions was melted with bottom ash in a lab-scale reactor, and the efficiency with which Pb and Zn were volatilized preventing the volatilization of Fe and Cu was evaluated. In addition, the behavior of these metals was simulated by thermodynamic equilibrium calculations. Depending on the exhaust gas treatment system used in the incinerator, the relationships among Na, K, and Cl concentrations in the incineration fly ash differed, which affected the efficiency of the metal separation. The amounts of Fe and Cu volatilized decreased by the decrease in the molar ratio of Cl to Na and K in the ash, promoting metal separation. The thermodynamic simulation predicted that the chlorination volatilization of Fe and Cu was prevented by the decrease in the molar ratio, as mentioned before. By melting incineration fly ash with the low molar ratio in a non-oxidative atmosphere, most of the Pb and Zn in the ash were volatilized leaving behind Fe and Cu.

  11. Aspects of interaction with melt zalizonikelkysnevyh 4d-metal - Zr, Nb, Mo

    Directory of Open Access Journals (Sweden)

    Н.О. Шаркіна

    2006-01-01

    Full Text Available  There are the results of investigation of deoxidizing ability of 4d–metals in Fe–Ni–O melting systems (invars carried out by calorimetry method in isoparabolic calorimeter at 1873 K.

  12. Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method

    Science.gov (United States)

    Etesami, S. Alireza; Asadi, Ebrahim

    2018-01-01

    Availability of a reliable interatomic potential is one of the major challenges in utilizing molecular dynamics (MD) for simulations of metals at near the melting temperatures and melting point (MP). Here, we propose a novel approach to address this challenge in the concept of modified-embedded-atom (MEAM) interatomic potential; also, we apply the approach on iron, nickel, copper, and aluminum as case studies. We propose adding experimentally available high temperature elastic constants and MP of the element to the list of typical low temperature properties used for the development of MD interatomic potential parameters. We show that the proposed approach results in a reasonable agreement between the MD calculations of melting properties such as latent heat, expansion in melting, liquid structure factor, and solid-liquid interface stiffness and their experimental/computational counterparts. Then, we present the physical properties of mentioned elements near melting temperatures using the new MEAM parameters. We observe that the behavior of elastic constants, heat capacity and thermal linear expansion coefficient at room temperature compared to MP follows an empirical linear relation (α±β × MP) for transition metals. Furthermore, a linear relation between the tetragonal shear modulus and the enthalpy change from room temperature to MP is observed for face-centered cubic materials.

  13. Dual Phase Lag Model of Melting Process in Domain of Metal Film Subjected to an External Heat Flux

    Directory of Open Access Journals (Sweden)

    Mochnacki B.

    2016-12-01

    Full Text Available Heating process in the domain of thin metal film subjected to a strong laser pulse are discussed. The mathematical model of the process considered is based on the dual-phase-lag equation (DPLE which results from the generalized form of the Fourier law. This approach is, first of all, used in the case of micro-scale heat transfer problems (the extremely short duration, extreme temperature gradients and very small geometrical dimensions of the domain considered. The external heating (a laser action is substituted by the introduction of internal heat source to the DPLE. To model the melting process in domain of pure metal (chromium the approach basing on the artificial mushy zone introduction is used and the main goal of investigation is the verification of influence of the artificial mushy zone ‘width’ on the results of melting modeling. At the stage of numerical modeling the author’s version of the Control Volume Method is used. In the final part of the paper the examples of computations and conclusions are presented.

  14. A general melt-injection-decomposition route to oriented metal oxide nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dongqiang; Zhang, Xinwei; Hua, Zhenghe; Yang, Shaoguang, E-mail: sgyang@nju.edu.cn

    2016-12-30

    Highlights: • A general melt-injection-decomposition (MID) route is proposed for the fabrication of oriented metal oxide nanowire arrays. • Four kinds of metal oxide (CuO, Mn{sub 2}O{sub 3}, Co{sub 3}O{sub 4} and Cr{sub 2}O{sub 3}) nanowire arrays have been realized as examples through the developed MID route. • The mechanism of the developed MID route is discussed using Thermogravimetry and Differential Thermal Analysis technique. • The MID route is a versatile, simple, facile and effective way to prepare different kinds of oriented metal oxide nanowire arrays in the future. - Abstract: In this manuscript, a general melt-injection-decomposition (MID) route has been proposed and realized for the fabrication of oriented metal oxide nanowire arrays. Nitrate was used as the starting materials, which was injected into the nanopores of the anodic aluminum oxide (AAO) membrane through the capillarity action in its liquid state. At higher temperature, the nitrate decomposed into corresponding metal oxide within the nanopores of the AAO membrane. Oriented metal oxide nanowire arrays were formed within the AAO membrane as a result of the confinement of the nanopores. Four kinds of metal oxide (CuO, Mn{sub 2}O{sub 3}, Co{sub 3}O{sub 4} and Cr{sub 2}O{sub 3}) nanowire arrays are presented here as examples fabricated by this newly developed process. X-ray diffraction, scanning electron microscopy and transmission electron microscopy studies showed clear evidence of the formations of the oriented metal oxide nanowire arrays. Formation mechanism of the metal oxide nanowire arrays is discussed based on the Thermogravimetry and Differential Thermal Analysis measurement results.

  15. Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting

    International Nuclear Information System (INIS)

    Vrancken, B.; Thijs, L.; Kruth, J.-P.; Van Humbeeck, J.

    2014-01-01

    Selective laser melting (SLM) is an additive manufacturing process in which functional, complex parts are produced by selectively melting consecutive layers of powder with a laser beam. This flexibility enables the exploration of a wide spectrum of possibilities in creating novel alloys or even metal–metal composites with unique microstructures. In this research, Ti6Al4V-ELI powder was mixed with 10 wt.% Mo powder. In contrast to the fully α′ microstructure of Ti6Al4V after SLM, the novel microstructure consists of a β titanium matrix with randomly dispersed pure Mo particles, as observed by light optical microscopy, scanning electron microscopy and X-ray diffraction. Most importantly, the solidification mechanism changes from planar to cellular mode. Microstructures after heat treatment indicate that the β phase is metastable and locate the β transus at ∼900 °C, and tensile properties are equal to or better than conventional β titanium alloys

  16. Review of selective laser melting: Materials and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yap, C. Y., E-mail: cyap001@e.ntu.edu.sg [Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798 (Singapore); Energy Research Institute @ NTU, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Block S2 - B3a - 01, Singapore 639798 (Singapore); Chua, C. K., E-mail: mckchua@ntu.edu.sg; Liu, Z. H., E-mail: azhliu@ntu.edu.sg; Zhang, D. Q., E-mail: zhangdq@ntu.edu.sg; Loh, L. E., E-mail: leloh1@e.ntu.edu.sg; Sing, S. L., E-mail: sing0011@e.ntu.edu.sg [Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798 (Singapore); Dong, Z. L., E-mail: zldong@ntu.edu.sg [School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N4.1, Singapore 639798 (Singapore)

    2015-12-15

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  17. Review of selective laser melting: Materials and applications

    Science.gov (United States)

    Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.

    2015-12-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  18. Review of selective laser melting: Materials and applications

    International Nuclear Information System (INIS)

    Yap, C. Y.; Chua, C. K.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.; Dong, Z. L.

    2015-01-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section

  19. Computationally efficient thermal-mechanical modelling of selective laser melting

    NARCIS (Netherlands)

    Yang, Y.; Ayas, C.; Brabazon, Dermot; Naher, Sumsun; Ul Ahad, Inam

    2017-01-01

    The Selective laser melting (SLM) is a powder based additive manufacturing (AM) method to produce high density metal parts with complex topology. However, part distortions and accompanying residual stresses deteriorates the mechanical reliability of SLM products. Modelling of the SLM process is

  20. Detonation waves in melt-coolant interaction. Part 2. Applied analysis

    International Nuclear Information System (INIS)

    Kolev, N.I.; Hulin, H.

    2001-01-01

    Making use of the detonation theory presented in part 1 for melt-water interaction, detonation solutions for different melt-water pairs at different conditions are compared to each other. Discussion is provided on the existence of detonation solutions for water droplet - melt droplet - gas systems. The conclusion is made that even if such solution can be realized in the nature, which is highly questionable, the resulting detonation pressures will be below 200 bar. This is an important result for judging the risk of the melt-water disperse mixtures in nuclear safety analysis. In addition, the detonation pressures for alumna-continuous water systems have been found to be stronger then those for urania-continuous water systems, in agreement with the experimental observations and seems to give finally the searched for a long time explanation why alumna-water systems detonate much more violent than urania-water systems. (orig.) [de

  1. Volume reduction of low-level contaminated metal waste by melting: selection of method and conceptual plan

    International Nuclear Information System (INIS)

    Copeland, G.L.; Heestand, R.L.; Mateer, R.S.

    1978-06-01

    A review of the literature and prior experience led to selection of induction melting as the most promising method for volume reduction of low-level transuranic contaminated metal waste. The literature indicates that melting with the appropriate slags significantly lowers the total contamination level of the metals by preferentially concentrating contaminants in the smaller volume of slag. Surface contamination not removed to the slag is diluted in the ingot and is contained uniformly in the metal. This dilution and decontamination offers the potential of lower cost disposal such as shallow burial rather than placement in a national repository. A processing plan is proposed as a model for economic analysis of the collection and volume reduction of contaminated metals. Further development is required to demonstrate feasibility of the plan

  2. Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs

    International Nuclear Information System (INIS)

    Kim, Ki Hwan; Lee, Chong Tak; Lee, Chan Bock; Fielding, R.S.; Kennedy, J.R.

    2013-01-01

    Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 °C showed that HfN, TiC, ZrC, and Y 2 O 3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 °C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y 2 O 3 do not form significant reaction layer between U–20 wt.% Zr melt and the coating layer. Plasma-sprayed Y 2 O 3 coating exhibited the most promising characteristics among HfN, TiC, ZrC, and Y 2 O 3 coating

  3. Melt layer macroscopic erosion of tungsten and other metals under plasma heat loads simulating ITER off-normal events

    International Nuclear Information System (INIS)

    Garkusha, I.E.; Bandura, A.N.; Byrka, O.V.; Kulik, N.V.; Landman, I.; Wuerz, H.

    2002-01-01

    This paper is focused on experimental analysis of metal layer erosion and droplet splashing of tungsten and other metals under heat loads typical for ITER FEAT off-normal events,such as disruptions and VDE's. Plasma pressure gradient action on melt layer results in erosion crater formation with mountains of displaced material at the crater edge. It is shown that macroscopic motion of melt layer and surface cracking are the main factors responsible for tungsten damage. Weight loss measurements of all exposed materials demonstrate inessential contribution of evaporation process to metals erosion

  4. Lessons learnt from FARO/TERMOS corium melt quenching experiments

    Energy Technology Data Exchange (ETDEWEB)

    Magallon, D.; Huhtiniemi, I.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center

    1998-01-01

    The influence of melt quantity, melt composition, water depth and initial pressure on quenching is assessed on the basis of seven tests performed in various conditions in the TERMOS vessel of the FARO facility at JRC-Ispra. Tests involved UO{sub 2}-based melt quantities in the range 18-176 kg at a temperature of approximately 3000 K poured into saturated water. The results suggest that erosion of the melt jet column is an efficient contributor to the amount of break-up, and thus quenching, for large pours of corium melt. The presence of Zr metal in the melt induced a much more efficient quenching than in a similar test with no Zr metal, attributed to the oxidation of the Zr. Significant amounts of H{sub 2} were produced also in tests with pure oxidic melts (e.g. about 300 g for 157 kg melt). In the tests at 5.0 and 2.0 MPa good mixing with significant melt break-up and quenching was obtained during the penetration in the water. At 0.5 MPa, good penetration of the melt into the water could still be achieved, but a jump in the vessel pressurisation occurred when the melt contacted the bottom and part (5 kg) of the debris was re-ejected from the water. (author)

  5. Modelling the evaporation of boron species. Part 1: Alkali-free borosilicate glass melts

    NARCIS (Netherlands)

    Limpt, J.A.C. van; Beerkens, R.G.C.; Cook, S.; O'Connor, R.; Simon, J.

    2011-01-01

    A laboratory test facility has been used to measure the boron evaporation rates from borosilicate glass melts. The impact of furnace atmosphere composition and glass melt composition on the temperature dependent boron evaporation rates has been investigated experimentally. In Part 1 of this paper

  6. Experimental study of dynamic fragmentation of shockloaded metals below and above melting

    Directory of Open Access Journals (Sweden)

    De Rességuier T.

    2010-06-01

    Full Text Available The breakout and reflection of a strong shock-wave upon the free surface of a metallic sample may lead to ejecta production of many types. Spall fracture is due to tensile stresses which result from the interaction of the incident and the reflected release waves. When the sample remains in solid state, one or several layers of finite thickness, called spalls, can be created and ejected. When melting is initiated during shock-wave propagation, tensile stresses are generated in a liquid medium and lead to the creation of an expanding cloud of liquid debris. This phenomenon, sometimes referred to as microspalling, consists in a dynamic fragmentation process in the melted material. The present paper is devoted to the experimental investigation of the transition from spall fracture in solid state to the micro-spalling process in molten metals. This study, realized on tin and on iron, involves different shock generators (gas gun, pulsed laser… and diagnostics (velocimetry, high-speed optical shadowgraphy, fragments recovery.

  7. Influence of initial microstructure of aluminium alloy charge after its melting on the hard metal inherited structure

    Directory of Open Access Journals (Sweden)

    Г. О. Іванов

    2016-07-01

    Full Text Available Metal properties heredity in the chain- initial hard state > liquid state > final solidified state has always been interesting for metallurgists. It is known that after the primary melting of charge there occurs microheterogenеous non-equilibrium melt with crystal-like groups of atoms and disordered area in it. With increase in temperature the melt approaches the equilibrium microhomogeneous state. The aim of this work is to study the charge microstructure influence on melt fluidity in the light of quasi-crystal model of liquid structure. Influence of isothermal heating on fluidity of aluminium melt, smelted from fine-grained and coarse-grained charge has been investigated. It has been stated that for coarse-grained metal additional melting of crystallization «genes» takes place in 1,4-quick time, as compared to fine-grained. The coefficients of exponential function for our experimental data have been calculated. It has been stated that the exponent depends on the charge microstructure, and multiplier depends on the soaking temperature. On the basis of A. Einstein equation for the calculation of liquid viscosity from the known fraction of admixtures and clean liquid viscosity an analogical equation for fluidity and calculation of quasi-crystals volume share in the melt have been derived. It has been found that the charge grain size affects the speed of quasi-crystals additional melting in the melt. The reference amount of quasi-crystals at the initial moment of large- and fine-grained charge melting has been calculated from our metallographic, experimental and estimated data

  8. Model of fracture of metal melts and the strength of melts under dynamic conditions

    International Nuclear Information System (INIS)

    Mayer, P. N.; Mayer, A. E.

    2015-01-01

    The development of a continuum model of deformation and fracture of melts is needed for the description of the behavior of metals in extreme states, in particular, under high-current electron and ultrashort laser irradiation. The model proposed includes the equations of mechanics of a two-phase continuum and the equations of the kinetics of phase transitions. The change (exchange) of the volumes of dispersed and carrier phases and of the number of dispersed particles is described, and the energy and mass exchange between the phases due to phase transitions is taken into account. Molecular dynamic (MD) calculations are carried out with the use of the LAMMPS program. The continuum model is verified by MD, computational, and experimental data. The strength of aluminum, copper, and nickel is determined at various temperatures and strain rates. It is shown that an increase in the strain rate leads to an increase in the strength of a liquid metal, while an increase in temperature leads to a decrease in its strength

  9. Model of fracture of metal melts and the strength of melts under dynamic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, P. N., E-mail: polina.nik@mail.ru; Mayer, A. E., E-mail: mayer@csu.ru [Chelyabinsk State University (Russian Federation)

    2015-07-15

    The development of a continuum model of deformation and fracture of melts is needed for the description of the behavior of metals in extreme states, in particular, under high-current electron and ultrashort laser irradiation. The model proposed includes the equations of mechanics of a two-phase continuum and the equations of the kinetics of phase transitions. The change (exchange) of the volumes of dispersed and carrier phases and of the number of dispersed particles is described, and the energy and mass exchange between the phases due to phase transitions is taken into account. Molecular dynamic (MD) calculations are carried out with the use of the LAMMPS program. The continuum model is verified by MD, computational, and experimental data. The strength of aluminum, copper, and nickel is determined at various temperatures and strain rates. It is shown that an increase in the strain rate leads to an increase in the strength of a liquid metal, while an increase in temperature leads to a decrease in its strength.

  10. Density Determination of Metallic Melts from Diffuse X-Ray Scattering

    Science.gov (United States)

    Brauser, N.; Davis, A.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    Liquids comprise several important structural components of the deep Earth, for example, the present outer core and a hypothesized magma ocean early in Earth history. However, the physical properties of the constituent materials of these structures at high pressures and temperatures are less well constrained than their crystalline counterparts. Determination of the physical properties of these liquids can inform geophysical models of the composition and structure of the Earth, but methods for studying the physical properties of liquids at high pressure and temperatures are underdeveloped. One proposed method for direct determination of density of a melt requires analysis of the diffuse scattered X-ray signal of the liquid. Among the challenges to applying this technique to high-pressure melts within a laser heated diamond anvil cell are the low signal-to-noise ratio and overlapping diffraction peaks from the crystalline components of the sample assembly interfering with the diffuse scattering from the liquid. Recent advances in instrumentation at synchrotron X-ray sources have made this method more accessible for determination of density of melted material. In this work we present the technique and report the densities of three high-pressure melts of the FCC metals iron, nickel, and gold derived from diffuse scattered X-ray spectra collected from in situ laser-heated diamond anvil cell synchrotron experiments. The results are compared to densities derived from shock wave experiments.

  11. Predictive modeling, simulation, and optimization of laser processing techniques: UV nanosecond-pulsed laser micromachining of polymers and selective laser melting of powder metals

    Science.gov (United States)

    Criales Escobar, Luis Ernesto

    One of the most frequently evolving areas of research is the utilization of lasers for micro-manufacturing and additive manufacturing purposes. The use of laser beam as a tool for manufacturing arises from the need for flexible and rapid manufacturing at a low-to-mid cost. Laser micro-machining provides an advantage over mechanical micro-machining due to the faster production times of large batch sizes and the high costs associated with specific tools. Laser based additive manufacturing enables processing of powder metals for direct and rapid fabrication of products. Therefore, laser processing can be viewed as a fast, flexible, and cost-effective approach compared to traditional manufacturing processes. Two types of laser processing techniques are studied: laser ablation of polymers for micro-channel fabrication and selective laser melting of metal powders. Initially, a feasibility study for laser-based micro-channel fabrication of poly(dimethylsiloxane) (PDMS) via experimentation is presented. In particular, the effectiveness of utilizing a nanosecond-pulsed laser as the energy source for laser ablation is studied. The results are analyzed statistically and a relationship between process parameters and micro-channel dimensions is established. Additionally, a process model is introduced for predicting channel depth. Model outputs are compared and analyzed to experimental results. The second part of this research focuses on a physics-based FEM approach for predicting the temperature profile and melt pool geometry in selective laser melting (SLM) of metal powders. Temperature profiles are calculated for a moving laser heat source to understand the temperature rise due to heating during SLM. Based on the predicted temperature distributions, melt pool geometry, i.e. the locations at which melting of the powder material occurs, is determined. Simulation results are compared against data obtained from experimental Inconel 625 test coupons fabricated at the National

  12. [Research progress in CoCr metal-ceramic alloy fabricated by selective laser melting].

    Science.gov (United States)

    Yan, X; Lin, H

    2018-02-09

    Cobalt-chromium alloys have been applied to dental porcelain fused to metal (PFM) restorations over the past decades owing to their excellent corrosion resistance, good biocompatibility and low price. The production of CoCr metal-ceramic restorations has always been based on traditional lost-wax casting techniques. However, in recent years, selective laser melting (SLM) is becoming more and more highly valued by dental laboratories and dental practitioners due to its individuation, precision and efficiency. This paper mainly reviews the recent researches on the production process of copings, microstructure, mechanical property, metal-ceramic bond strength, fit of copings, corrosion resistance and biocompatibility of SLM CoCr metal-ceramic alloy.

  13. Chlorination of uranium oxides in melts of alkali metal chlorides and their mixtures

    International Nuclear Information System (INIS)

    Vorobej, M.P.; Bevz, A.S.; Skiba, O.V.

    1978-01-01

    Chlorination of UO 2 , U 3 O 8 , and UO 3 in melts of chlorides of alkali metals and of their mixtures has been studied by thermogravimetric, X-ray phase, and spectrophotometric methods. The thermogravimetric method has been proposed for evaluating the state of uranylcation in the melt; the effect of the composition of the oxide being chlorinated and of the salt-solvent on the composition of the chlorination products has been studied. The effect of the composition of the chlorination products on the stoichiometry of the electrolytic uranium dioxide has been shown

  14. Laser melt injection of ceramic particles in metals : Processing, microstructure and properties

    NARCIS (Netherlands)

    Ocelík, V.; De Hosson, J.Th.M.

    2010-01-01

    The objective of this paper is to present an overview of the possibilities of the laser melt injection (LMI) methodology to enhance the surface of light-weighted metals by adding hard ceramic particles in the top layer, with the aim to enhance the wear resistance and to increase the hardness. In

  15. Promising technology for the melting and decontamination of dismantled metal by an induction cold crucible

    International Nuclear Information System (INIS)

    Suzuki, M.; Tsurumaki, K.; Akiyama, T.; Fukumura, N.; Tanaka, T.; Yoshida, M.; Ikenaga, Y.

    1998-01-01

    An induction cold crucible melting is one of the most promising technology for the reuse and decontamination of the radioactively contaminated metallic materials generated during the dismantling of nuclear facilities, because the crucible ensures a long life operation without generating the secondary wastes. Based on the knowledge obtained through the fundamental study using the crucible of 45 mm in diameter, the MERC(Melting and Recycling of Metals by -Cold Crucible) process was designed, manufactured and scaled up to 100-140 mm in diameter. Not only cylindrical sectional crucibles but also rectangular slab sectional crucibles were developed. The maximum power of the high frequency generator is 150 kW and the frequency is 25 kHz. In the MERC, either fragments of stainless steel or tubing and pipings with small section, which were the surrogates of contaminated metallic materials, were continuously supplied together with the flux for the decontamination, followed by melting in the crucible and pulling down by the precise withdrawal system ensuring the melt dome to be kept at a suitable level for the melting. The maximal withdrawal velocity employed was 12 mm/min. The Ingot and slab were cut in every 300 mm length by the mechanical saw. They were automatically transported to the outlet of the equipment by the conveying system. Heat efficiency of the MERC was more than 26%. The ingot surface was smooth and crack free, facilitating the removal of radioactive elements concentrated in a slag stuck on the ingot surface. There was no macro segregation inside. Tracer elements of Sr and Hf transferred to the slag, Cs and Zn to the dust. Co and Mn mostly remained in the ingot. However, up to 10% of Co could transfer to the slag. This work was done under the sponsorship of Science and Technology Agency of Japan. (author)

  16. A semi-analytical thermal modelling approach for selective laser melting

    NARCIS (Netherlands)

    Yang, Y.; van Keulen, A.; Ayas, C.

    2018-01-01

    Selective laser melting (SLM) wherein a metal part is built in a layer-by-layer manner in a powder bed is a promising and versatile way for manufacturing components with complex geometry. However, components built by SLM suffer from substantial deformation of the part and residual stresses.

  17. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hui, E-mail: penghui@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Liu, Chang [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Guo, Hongbo, E-mail: guo.hongbo@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Yuan, Yuan [Zhuzhou Seed Cemented Carbide Technology Co. Ltd, No. 1099 Xiangda Road, Zhuzhou, Hunan 412000 (China); Gong, Shengkai; Xu, Huibin [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China)

    2016-06-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  18. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    International Nuclear Information System (INIS)

    Peng, Hui; Liu, Chang; Guo, Hongbo; Yuan, Yuan; Gong, Shengkai; Xu, Huibin

    2016-01-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  19. Properties of cemented carbides alloyed by metal melt treatment

    International Nuclear Information System (INIS)

    Lisovsky, A.F.

    2001-01-01

    The paper presents the results of investigations into the influence of alloying elements introduced by metal melt treatment (MMT-process) on properties of WC-Co and WC-Ni cemented carbides. Transition metals of the IV - VIll groups (Ti, Zr, Ta, Cr, Re, Ni) and silicon were used as alloying elements. It is shown that the MMT-process allows cemented carbides to be produced whose physico-mechanical properties (bending strength, fracture toughness, total deformation, total work of deformation and fatigue fracture toughness) are superior to those of cemented carbides produced following a traditional powder metallurgy (PM) process. The main mechanism and peculiarities of the influence of alloying elements added by the MMT-process on properties of cemented carbides have been first established. The effect of alloying elements on structure and substructure of phases has been analyzed. (author)

  20. Visualization Study of Melt Dispersion Behavior for SFR with a Metallic Fuel under Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo Heo; Park, Seong Dae; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Jerng, Dong Wook [Jungang Univ., Seoul (Korea, Republic of)

    2015-05-15

    The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition.

  1. A general melt-injection-decomposition route to oriented metal oxide nanowire arrays

    Science.gov (United States)

    Han, Dongqiang; Zhang, Xinwei; Hua, Zhenghe; Yang, Shaoguang

    2016-12-01

    In this manuscript, a general melt-injection-decomposition (MID) route has been proposed and realized for the fabrication of oriented metal oxide nanowire arrays. Nitrate was used as the starting materials, which was injected into the nanopores of the anodic aluminum oxide (AAO) membrane through the capillarity action in its liquid state. At higher temperature, the nitrate decomposed into corresponding metal oxide within the nanopores of the AAO membrane. Oriented metal oxide nanowire arrays were formed within the AAO membrane as a result of the confinement of the nanopores. Four kinds of metal oxide (CuO, Mn2O3, Co3O4 and Cr2O3) nanowire arrays are presented here as examples fabricated by this newly developed process. X-ray diffraction, scanning electron microscopy and transmission electron microscopy studies showed clear evidence of the formations of the oriented metal oxide nanowire arrays. Formation mechanism of the metal oxide nanowire arrays is discussed based on the Thermogravimetry and Differential Thermal Analysis measurement results.

  2. A new integrated evaluation method of heavy metals pollution control during melting and sintering of MSWI fly ash.

    Science.gov (United States)

    Li, Rundong; Li, Yanlong; Yang, Tianhua; Wang, Lei; Wang, Weiyun

    2015-05-30

    Evaluations of technologies for heavy metal control mainly examine the residual and leaching rates of a single heavy metal, such that developed evaluation method have no coordination or uniqueness and are therefore unsuitable for hazard control effect evaluation. An overall pollution toxicity index (OPTI) was established in this paper, based on the developed index, an integrated evaluation method of heavy metal pollution control was established. Application of this method in the melting and sintering of fly ash revealed the following results: The integrated control efficiency of the melting process was higher in all instances than that of the sintering process. The lowest integrated control efficiency of melting was 56.2%, and the highest integrated control efficiency of sintering was 46.6%. Using the same technology, higher integrated control efficiency conditions were all achieved with lower temperatures and shorter times. This study demonstrated the unification and consistency of this method. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Influence of plasma pressure gradient on melt layer macroscopic erosion of metal targets in disruption simulation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tereshin, V.I.; Garkusha, I.E. E-mail: garkusha@ipp.kharkov.ua; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Makhlaj, V.A.; Solyakov, D.G.; Wuerz, H

    2003-03-01

    Melt layer erosion of metal targets under pulsed high heat loads is discussed. Tungsten, copper, aluminum, and titanium targets were exposed to perpendicular and inclined plasma impact in the quasi-steady-state plasma accelerator QSPA Kh-50. Melt layer motion results in erosion crater formation with rather large mountains of the resolidified material at the crater edge. It is shown that macroscopic motion of the melt layer and surface cracking are the main factors responsible for tungsten erosion.

  4. Influence of plasma pressure gradient on melt layer macroscopic erosion of metal targets in disruption simulation experiments

    International Nuclear Information System (INIS)

    Tereshin, V.I.; Garkusha, I.E.; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Makhlaj, V.A.; Solyakov, D.G.; Wuerz, H.

    2003-01-01

    Melt layer erosion of metal targets under pulsed high heat loads is discussed. Tungsten, copper, aluminum, and titanium targets were exposed to perpendicular and inclined plasma impact in the quasi-steady-state plasma accelerator QSPA Kh-50. Melt layer motion results in erosion crater formation with rather large mountains of the resolidified material at the crater edge. It is shown that macroscopic motion of the melt layer and surface cracking are the main factors responsible for tungsten erosion

  5. Additive manufacturing of ITER first wall panel parts by two approaches: Selective laser melting and electron beam melting

    International Nuclear Information System (INIS)

    Zhong, Yuan; Rännar, Lars-Erik; Wikman, Stefan; Koptyug, Andrey; Liu, Leifeng; Cui, Daqing; Shen, Zhijian

    2017-01-01

    Highlights: • A novel way using additive manufacturing to fabricated ITER First Wall Panel parts is proposed. • ITER First Wall Panel parts successfully manufactured by both SLM and EBM are compared. • Physical and mechanical properties of SLM and EBM SS316L are clearly compared. • Problems encountered for large scale part building were discussed and possible solutions are given. - Abstract: Fabrication of ITER First Wall (FW) Panel parts by two additive manufacturing (AM) technologies, selective laser melting (SLM) and electron beam melting (EBM), was supported by Fusion for Energy (F4E). For the first time, AM is applied to manufacture ITER In-Vessel parts with complex design. Fully dense SS316L was prepared by both SLM and EBM after developing optimized laser/electron beam parameters. Characterizations on the density, magnetic permeability, microstructure, defects and inclusions were carried out. Tensile properties, Charpy-impact properties and fatigue properties of SLM and EBM SS316L were also compared. ITER FW Panel parts were successfully fabricated by both SLM and EBM in a one-step building process. The SLM part has smoother surface, better size accuracy while the EBM part takes much less time to build. Issues with removing support structures might be solved by slightly changing the design of the internal cooling system. Further investigation of the influence of neutron irradiation on materials properties between the two AM technologies is needed.

  6. Additive manufacturing of ITER first wall panel parts by two approaches: Selective laser melting and electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yuan [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm (Sweden); Rännar, Lars-Erik [Department of Quality Technology, Mechanical Engineering and Mathematics, Sports Tech Research Centre, Mid Sweden University, SE-831 25 Östersund (Sweden); Wikman, Stefan [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Koptyug, Andrey [Department of Quality Technology, Mechanical Engineering and Mathematics, Sports Tech Research Centre, Mid Sweden University, SE-831 25 Östersund (Sweden); Liu, Leifeng; Cui, Daqing [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm (Sweden); Shen, Zhijian, E-mail: shen@mmk.su.se [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm (Sweden)

    2017-03-15

    Highlights: • A novel way using additive manufacturing to fabricated ITER First Wall Panel parts is proposed. • ITER First Wall Panel parts successfully manufactured by both SLM and EBM are compared. • Physical and mechanical properties of SLM and EBM SS316L are clearly compared. • Problems encountered for large scale part building were discussed and possible solutions are given. - Abstract: Fabrication of ITER First Wall (FW) Panel parts by two additive manufacturing (AM) technologies, selective laser melting (SLM) and electron beam melting (EBM), was supported by Fusion for Energy (F4E). For the first time, AM is applied to manufacture ITER In-Vessel parts with complex design. Fully dense SS316L was prepared by both SLM and EBM after developing optimized laser/electron beam parameters. Characterizations on the density, magnetic permeability, microstructure, defects and inclusions were carried out. Tensile properties, Charpy-impact properties and fatigue properties of SLM and EBM SS316L were also compared. ITER FW Panel parts were successfully fabricated by both SLM and EBM in a one-step building process. The SLM part has smoother surface, better size accuracy while the EBM part takes much less time to build. Issues with removing support structures might be solved by slightly changing the design of the internal cooling system. Further investigation of the influence of neutron irradiation on materials properties between the two AM technologies is needed.

  7. Separation of Non-metallic Inclusions from a Fe-Al-O Melt Using a Super-Gravity Field

    Science.gov (United States)

    Song, Gaoyang; Song, Bo; Guo, Zhancheng; Yang, Yuhou; Song, Mingming

    2018-02-01

    An innovative method for separating non-metallic inclusions from a high temperature melt using super gravity was systematically investigated. To explore the separation behavior of inclusion particles with densities less than that of metal liquid under a super-gravity field, a Fe-Al-O melt containing Al2O3 particles was treated with different gravity coefficients. Al2O3 particles migrated rapidly towards the reverse direction of the super gravity and gathered in the upper region of the sample. It was hard to find any inclusion particles with sizes greater than 2 μm in the middle and bottom areas. Additionally, the oxygen content in the middle region of the sample could be reduced to 0.0022 mass pct and the maximum removal rate of the oxygen content reached 61.4 pct. The convection in the melt along the direction of the super gravity was not generated by the super-gravity field, and the fluid velocity in the molten melt consisted only of the rotating tangential velocity. Moreover, the motion behavior of the Al2O3 particles was approximatively determined by Stokes' law along the direction of super gravity.

  8. A Structural Molar Volume Model for Oxide Melts Part III: Fe Oxide-Containing Melts

    Science.gov (United States)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    As part III of this series, the model is extended to iron oxide-containing melts. All available experimental data in the FeO-Fe2O3-Na2O-K2O-MgO-CaO-MnO-Al2O3-SiO2 system were critically evaluated based on the experimental condition. The variations of FeO and Fe2O3 in the melts were taken into account by using FactSage to calculate the Fe2+/Fe3+ distribution. The molar volume model with unary and binary model parameters can be used to predict the molar volume of the molten oxide of the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-FeO-Fe2O3-Al2O3-SiO2 system in the entire range of compositions, temperatures, and oxygen partial pressures from Fe saturation to 1 atm pressure.

  9. Laser Processing Technology using Metal Powders

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jeong-Hwan; Moon, Young-Hoon [Pusan National University, Busan (Korea, Republic of)

    2012-03-15

    The purpose of this paper is to review the state of laser processing technology using metal powders. In recent years, a series of research and development efforts have been undertaken worldwide to develop laser processing technologies to fabricate metal-based parts. Layered manufacturing by the laser melting process is gaining ground for use in manufacturing rapid prototypes (RP), tools (RT) and functional end products. Selective laser sintering / melting (SLS/SLM) is one of the most rapidly growing rapid prototyping techniques. This is mainly due to the processes's suitability for almost any materials, including polymers, metals, ceramics and many types of composites. The interaction between the laser beam and the powder material used in the laser melting process is one of the dominant phenomena defining feasibility and quality. In the case of SLS, the powder is not fully melted during laser scanning, therefore the SLS-processed parts are not fully dense and have relatively low strength. To overcome this disadvantage, SLM and laser cladding (LC) processes have been used to enable full melting of the powder. Further studies on the laser processing technology will be continued due to the many potential applications that the technology offers.

  10. Metal/sulfide-silicate intergrowth textures in EL3 meteorites: Origin by impact melting on the EL parent body

    Science.gov (United States)

    van Niekerk, Deon; Keil, Klaus

    2011-10-01

    We document the petrographic setting and textures of Fe,Ni metal, the mineralogy of metallic assemblages, and the modal mineral abundances in the EL3 meteorites Asuka (A-) 881314, A-882067, Allan Hills 85119, Elephant Moraine (EET) 90299/EET 90992, LaPaz Icefield 03930, MacAlpine Hills (MAC) 02635, MAC 02837/MAC 02839, MAC 88136, Northwest Africa (NWA) 3132, Pecora Escarpment 91020, Queen Alexandra Range (QUE) 93351/QUE 94321, QUE 94594, and higher petrologic type ELs Dar al Gani 1031 (EL4), Sayh al Uhaymir 188 (EL4), MAC 02747 (EL4), QUE 94368 (EL4), and NWA 1222 (EL5). Large metal assemblages (often containing schreibersite and graphite) only occur outside chondrules and are usually intergrown with silicate minerals (euhedral to subhedral enstatite, silica, and feldspar). Sulfides (troilite, daubréelite, and keilite) are also sometimes intergrown with silicates. Numerous authors have shown that metal in enstatite chondrites that are interpreted to have been impact melted contains euhedral crystals of enstatite. We argue that the metal/sulfide-silicate intergrowths in the ELs we studied were also formed during impact melting and that metal in EL3s thus does not retain primitive (i.e., nebular) textures. Likewise, the EL4s are also impact-melt breccias. Modal abundances of metal in the EL3s and EL4s range from approximately 7 to 30 wt%. These abundances overlap or exceed those of EL6s, and this is consistent either with pre-existing heterogeneity in the parent body or with redistribution of metal during impact processes.

  11. Study on severe fuel damage and in-vessel melt progression

    International Nuclear Information System (INIS)

    Kim, Hee Dong; Kim, Sang Baik; Lee, Gyu Jung

    1992-06-01

    In-vessel core melt progression describes the progression of the state of a reactor core from core uncovery up to reactor vessel melt through in uncovered accidents or through temperature stabilization in accidents recovered by core reflooding. Melt progression can be thought as two parts; early melt progression and late melt progression. Early phase of core melt progression includes the progression of core material melting and relocation, which mostly consist of metallic materials. On the other hand, the late phase of core melt progression involves ceramic material melt and relocation to the lower plenum and heat-up the reactor vessel lower head. A large number of information are available for the early melt progression through experiments such as SFD, DF, FLHT test and utilized in the severe accident analysis codes. However, understanding of the late phase melt progression phenomenology is based primary on TMI-2 core examinations and not much experimental information is available. Especilally, the great uncertainties exist in vessel failure mode, melt composition, mass, and temperature. Further research is planned to perform to reduce the uncertainties in understanding of core melt down accidents as parts of long term melt progression research program. A study on the core melt progression at KAERI has been being performed through the Severe Accident Research Program with USNRC. KAERI staff had participated in the PBF SFD experiments at INEL and analyses of experiments were performed using SCDAP code. Experiments of core melt program have not been carried out at KAERI yet. It is planned that further research on core melt down accidents will be performed, which is related to design of future generations of nuclear reactors as parts of long-term project for improvement of nuclear reactor safety. (Author)

  12. Results from operation of metal melting electron gun

    International Nuclear Information System (INIS)

    Balloni, A.J.; Paes, A.C.J.; Miliano, A.C.

    1988-09-01

    The first results obtained during the operation of metal melting electron gun, of power 30Kw and current 1,2A, developed at IEAv, are presented. Details on operation of beam transport system (composed by magnetic lens and prism), from generation to fusion chamber and cathode construction. Into the fusion chamber the presssure can reach 10 -4 Pa, seeing that the gun test consisted in fusion for purification of approximatelly 1Kg titanium bar. The input average power was 12Kw, and the fusion remainded during 16 minutes. The calculated thermal efficiency was of the order of 10% consistent with the results found out in literature, for this type of gun. (M.C.K.) [pt

  13. Fundamentals of Melt infiltration for the Preparation of Supported Metal Catalysts.The Case of Co/SiO2 Fischer-Tropsch Synthesis

    NARCIS (Netherlands)

    Eggenhuisen, T.M.|info:eu-repo/dai/nl/313959498; den Breejen, J.P.|info:eu-repo/dai/nl/304837318; Verdoes, D.; de Jongh, P.E.|info:eu-repo/dai/nl/186125372; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2013-01-01

    We explored melt infiltration of mesoporous silica supports to prepare supported metal catalysts with high loadings and controllable particle sizes. Melting of Co(NO3)2 ·6H2O in the presence of silica supports was studied in situ with differential scanning calorimetry. The melting point depression

  14. Computational dynamics of laser alloyed metallic materials for improved corrosion performance: computational dynamics of laser alloyed metallic materials

    CSIR Research Space (South Africa)

    Fatoba, OS

    2016-04-01

    Full Text Available Laser alloying is a material processing method which utilizes the high power density available from defocused laser beam to melt both metal coatings and a part of the underlying substrate. Since melting occur solitary at the surface, large...

  15. Orthogonal cutting of laser beam melted parts

    Science.gov (United States)

    Götze, Elisa; Zanger, Frederik; Schulze, Volker

    2018-05-01

    The finishing process of parts manufactured by laser beam melting is of high concern due to the lack of surface accuracy. Therefore, the focus of this work lies on the influence of the build-up direction of the parts and their effect on the finishing process. The orthogonal cutting reveals findings in the fields of chip formation, involved forces and temperatures appearing during machining. In the investigations, the cutting depth was varied between 0.05 and 0.15 mm representing a finishing process and the cutting velocity ranges from 30 to 200 m/min depending on the material. The experiments contain the materials stainless steel (AISI 316L), titanium (Ti6Al4V) and nickel-base alloy (IN718). The two materials named latter are of high interest in the aerospace sector and at the same time titanium is used in the medical field due to its biocompatibility. For the materials IN718 and Ti6Al4V a negative rake angle of -7.5° and for stainless steel a rake angle of 12.5° are chosen for the cutting experiments. The results provide the base for processing strategies. Therefore, the specimens were solely laser beam melted without post-processing like heat treatment. The evaluation of the experiments shows that an increase in cutting speed has different effects depending on the material. For stainless steel the measured forces regarding the machining direction to the layers approach the same values. In contrast, the influence of the layers regarding the forces appearing during orthogonal cutting of the materials IN718 and Ti6Al4V differ for lower cutting speeds.

  16. Effect of electric arc, gas oxygen torch and induction melting techniques on the marginal accuracy of cast base-metal and noble metal-ceramic crowns.

    Science.gov (United States)

    Gómez-Cogolludo, Pablo; Castillo-Oyagüe, Raquel; Lynch, Christopher D; Suárez-García, María-Jesús

    2013-09-01

    The aim of this study was to identify the most appropriate alloy composition and melting technique by evaluating the marginal accuracy of cast metal-ceramic crowns. Seventy standardised stainless-steel abutments were prepared to receive metal-ceramic crowns and were randomly divided into four alloy groups: Group 1: palladium-gold (Pd-Au), Group 2: nickel-chromium-titanium (Ni-Cr-Ti), Group 3: nickel-chromium (Ni-Cr) and Group 4: titanium (Ti). Groups 1, 2 and 3 were in turn subdivided to be melted and cast using: (a) gas oxygen torch and centrifugal casting machine (TC) or (b) induction and centrifugal casting machine (IC). Group 4 was melted and cast using electric arc and vacuum/pressure machine (EV). All of the metal-ceramic crowns were luted with glass-ionomer cement. The marginal fit was measured under an optical microscope before and after cementation using image analysis software. All data was subjected to two-way analysis of variance (ANOVA). Duncan's multiple range test was run for post-hoc comparisons. The Student's t-test was used to investigate the influence of cementation (α=0.05). Uncemented Pd-Au/TC samples achieved the best marginal adaptation, while the worst fit corresponded to the luted Ti/EV crowns. Pd-Au/TC, Ni-Cr and Ti restorations demonstrated significantly increased misfit after cementation. The Ni-Cr-Ti alloy was the most predictable in terms of differences in misfit when either torch or induction was applied before or after cementation. Cemented titanium crowns exceeded the clinically acceptable limit of 120μm. The combination of alloy composition, melting technique, casting method and luting process influences the vertical seal of cast metal-ceramic crowns. An accurate use of the gas oxygen torch may overcome the results attained with the induction system concerning the marginal adaptation of fixed dental prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. On the glass transition of the one-component metallic melts

    Czech Academy of Sciences Publication Activity Database

    Fedorchenko, Alexander I.

    2017-01-01

    Roč. 475, October (2017), s. 362-367 ISSN 0022-0248 Institutional support: RVO:61388998 Keywords : equilibrium and non-equilibrium solidification * criterion of the phase transition scenario * one-component metal melts Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 1.751, year: 2016 http://ac.els-cdn.com/S0022024817304281/1-s2.0-S0022024817304281-main.pdf?_tid=a12ba97e-873b-11e7-b6be-00000aacb35e&acdnat=1503407763_5cdbcdb15d504baf5f8dfb94886b3100

  18. Retrograde Melting and Internal Liquid Gettering in Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hudelson, Steve; Newman, Bonna K.; Bernardis, Sarah; Fenning, David P.; Bertoni, Mariana I.; Marcus, Matthew A.; Fakra, Sirine C.; Lai, Barry; Buonassisi, Tonio

    2011-07-01

    Retrograde melting (melting upon cooling) is observed in silicon doped with 3d transition metals, via synchrotron-based temperature-dependent X-ray microprobe measurements. Liquid metal-silicon droplets formed via retrograde melting act as efficient sinks for metal impurities dissolved within the silicon matrix. Cooling results in decomposition of the homogeneous liquid phase into solid multiple-metal alloy precipitates. These phenomena represent a novel pathway for engineering impurities in semiconductor-based systems.

  19. Continuum model of tensile fracture of metal melts and its application to a problem of high-current electron irradiation of metals

    International Nuclear Information System (INIS)

    Mayer, Alexander E.; Mayer, Polina N.

    2015-01-01

    A continuum model of the metal melt fracture is formulated on the basis of the continuum mechanics and theory of metastable liquid. A character of temperature and strain rate dependences of the tensile strength that is predicted by the continuum model is verified, and parameters of the model are fitted with the use of the results of the molecular dynamics simulations for ultra-high strain rates (≥1–10/ns). A comparison with experimental data from literature is also presented for Al and Ni melts. Using the continuum model, the dynamic tensile strength of initially uniform melts of Al, Cu, Ni, Fe, Ti, and Pb within a wide range of strain rates (from 1–10/ms to 100/ns) and temperatures (from melting temperature up to 70–80% of critical temperature) is calculated. The model is applied to numerical investigation of a problem of the high-current electron irradiation of Al, Cu, and Fe targets

  20. Impact of chemical polishing on surface roughness and dimensional quality of electron beam melting process (EBM) parts

    Science.gov (United States)

    Dolimont, Adrien; Rivière-Lorphèvre, Edouard; Ducobu, François; Backaert, Stéphane

    2018-05-01

    Additive manufacturing is growing faster and faster. This leads us to study the functionalization of the parts that are produced by these processes. Electron Beam melting (EBM) is one of these technologies. It is a powder based additive manufacturing (AM) method. With this process, it is possible to manufacture high-density metal parts with complex topology. One of the big problems with these technologies is the surface finish. To improve the quality of the surface, some finishing operations are needed. In this study, the focus is set on chemical polishing. The goal is to determine how the chemical etching impacts the dimensional accuracy and the surface roughness of EBM parts. To this end, an experimental campaign was carried out on the most widely used material in EBM, Ti6Al4V. Different exposure times were tested. The impact of these times on surface quality was evaluated. To help predicting the excess thickness to be provided, the dimensional impact of chemical polishing on EBM parts was estimated. 15 parts were measured before and after chemical machining. The improvement of surface quality was also evaluated after each treatment.

  1. Realization of Copper Melting Point for Thermocouple Calibrations

    Directory of Open Access Journals (Sweden)

    Y. A. ABDELAZIZ

    2011-08-01

    Full Text Available Although the temperature stability and uncertainty of the freezing plateau is better than that of the melting plateau in most of the thermometry fixed points, but realization of melting plateaus are easier than that of freezing plateaus for metal fixed points. It will be convenient if the melting points can be used instead of the freezing points in calibration of standard noble metal thermocouples because of easier realization and longer plateau duration of melting plateaus. In this work a comparison between the melting and freezing points of copper (Cu was carried out using standard noble metal thermocouples. Platinum - platinum 10 % rhodium (type S, platinum – 30 % rhodium / platinum 6 % rhodium (type B and platinum - palladium (Pt/Pd thermocouples are used in this study. Uncertainty budget analysis of the melting points and freezing points is presented. The experimental results show that it is possible to replace the freezing point with the melting point of copper cell in the calibration of standard noble metal thermocouples in secondary-level laboratories if the optimal methods of realization of melting points are used.

  2. Melting Can Hinder Impact-Induced Adhesion

    Science.gov (United States)

    Hassani-Gangaraj, Mostafa; Veysset, David; Nelson, Keith A.; Schuh, Christopher A.

    2017-10-01

    Melting has long been used to join metallic materials, from welding to selective laser melting in additive manufacturing. In the same school of thought, localized melting has been generally perceived as an advantage, if not the main mechanism, for the adhesion of metallic microparticles to substrates during a supersonic impact. Here, we conduct the first in situ supersonic impact observations of individual metallic microparticles aimed at the explicit study of melting effects. Counterintuitively, we find that under at least some conditions melting is disadvantageous and hinders impact-induced adhesion. In the parameter space explored, i.e., ˜10 μ m particle size and ˜1 km /s particle velocity, we argue that the solidification time is much longer than the residence time of the particle on the substrate, so that resolidification cannot be a significant factor in adhesion.

  3. Machine for dismantling metal parts

    Energy Technology Data Exchange (ETDEWEB)

    Prokopov, O.I.; Loginovskiy, V.I.; Yagudin, S.Z.

    1982-01-01

    The purpose of the invention is to reduce the outlays of time for dismantling metal parts under conditions of eliminating open gas and oil gushers in operational drilling. This goal is achieved because the machine for dismantling the metal parts is equipped with a set of clamping elements arranged on the chassis, where each of them has a drive.

  4. Transition metal ions in silicate melts. I. Manganese in sodium silicate melts

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C; White, W B

    1980-01-01

    Optical absorption spectra obtained on glasses quenched from sodium silicate melts show Mn/sup 3 +/ to be the dominant species for melts heated in air and Mn/sup 2 +/ to be the dominant species for melts heated at P/sub O/sub 2// = 10/sup -17/ bar. The absorption spectrum of Mn/sup 3 +/ consists of an intense band at 20,000 cm/sup -1/ with a 15,000 cm/sup -1/ satellite possibly arising from the Jahn-Teller effect. The independence of the spectrum from melt composition and the high band intensity is offered as evidence for a distinct Mn/sup 3 +/ complex in the melt. The spectrum of Mn/sup 2 +/ is weak and many expected bands are not observed. A two-band luminescence spectrum from Mn/sup 2 +/ has been tentatively interpreted as due to Mn/sup 2 +/ in interstitial sites in the network and Mn/sup 2 +/ coordiated by non-bridging oxygens.

  5. Structure, production and properties of high-melting compounds and systems (hard materials and hard metals)

    International Nuclear Information System (INIS)

    Holleck, H.; Thuemmler, F.

    1979-07-01

    The report contains contributions by various authors to the research project on the production, structure, and physical properties of high-melting compounds and systems (hard metals and hard materials), in particular WC-, TaC-, and MoC-base materials. (GSCH) [de

  6. Further studies on melting of radioactive metallic wastes from the dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Diepenau, H.; Seidler, M.

    1991-01-01

    Melting of radioactive waste metal from the dismantling/refurbishing of nuclear installations is an acceptable way for nuclear waste recycling. This material can be used for the casting of qualified products such as type A- and type B-waste containers. The results of the melting facility -TAURUS- were used to build the industrial scale melting facility -CARLA- at Siempelkamp. The test results and the longterm-behaviour of the facility showed that the licensing conditions can be respected. The radiation exposure of workers was in the range of the admissible limit for non-exposed people. The radiation exposure of the environment is far below the value of the German Radiation Protection Law. The activity distribution within the product is homogeneous, so that its activity can be measured exactly before it is sent back in the nuclear area. By melting waste copper it is possible to respect the specific limits for unrestricted reuse, whereas for brass the limit for conditioned reuse in the industrial field was reached. Radioactive carbon can only be bound in form of small graphite lamellas or nodules in the cast iron; i.e. radioactive carbon can only be added to the melt as crushed material. During the research programme 2000 Mg of waste steel was melted at industrial scale and mainly products such as shielding blocks and waste containers were produced. 12 figs., 27 tabs., 6 refs

  7. Containerless solidification of undercooled oxide and metallic eutectic melts

    International Nuclear Information System (INIS)

    Li Mingjun; Nagashio, Kosuke; Kuribayashi, Kazuhiko

    2004-01-01

    A high-speed video was employed to monitor the in situ recalescence of undercooled oxide Al 2 O 3 -36.8 at.% ZrO 2 and metallic Ni-18.7 at.% Sn eutectics that were processed on an aero-acoustic levitator and an electromagnetic levitator, respectively. For the oxide eutectic, the entire sample becomes brighter and brighter without any clear recalescence front during spontaneous crystallization. When the sample was seeded at desired undercoolings, crystallization started from the seeding point and then spread through the entire sample. Microstructures of the oxide solidified via both the spontaneous crystallization and external seeding consist of many independent eutectic colonies at the sample surface, indicating that copious nucleation takes place regardless of melt undercooling and solidification mode. For the metallic eutectics, two kinds of recalescence are visualized. The surface and cross sectional microstructures reveal that copious nucleation is also responsible for the formation of independent eutectic colonies distributing within the entire sample. It is not possible to measure the growth velocity of a single eutectic colony using optical techniques under the usual magnification. The conventional nucleation concept derived from single-phase alloys may not be applicable to the free solidification of the undercooled double-phase oxide and metallic eutectic systems

  8. Thermodynamics of gas-metal-slag equilibria for applications in in situ and ex situ vitrification melts

    International Nuclear Information System (INIS)

    Miller, R.L.; Reimann, G.A.

    1993-05-01

    An equilibrium thermodynamic model for melting mixed waste was evaluated using the STEPSOL computer code. STEPSOL uses free energy minimization techniques to predict equilibrium composition from input species and user selected species in the output. The model assumes equilibrium between gas, slag, and metallic phases. Input for the model was developed using compositional data from Pit 9 of the Subsurface Disposal Area at the Idaho National Engineering Laboratory. Thermodynamic data were primarily from compilations published by the US Government. The results of model evaluation indicate that the amount of plutonium chloride or plutonium oxyhydroxide that would be evaporated into the vapor phase would be minor. Relatively more uranium chloride and uranium oxyhydroxide would be vaporized. However, a hazards analysis was not part of the present task. Minor amounts of plutonium and uranium would be reduced to the metallic state, but these amounts should alloy with the iron-chromium-nickel metallic phase. The vast majority of the plutonium and uranium are in the slag phase as oxides. Results of the calculations show that silica and silicates dominate the products and that the system is very reducing. The major gases are carbon monoxide and hydrogen, with lesser amounts of carbon dioxide and water. High vapor pressure metals are considered but were not analyzed using STEPSOL. STEPSOL does not make predictions of distribution of species between phases

  9. M551 metals melting experiment. [space manufacturing of aluminum alloys, tantalum alloys, stainless steels

    Science.gov (United States)

    Li, C. H.; Busch, G.; Creter, C.

    1976-01-01

    The Metals Melting Skylab Experiment consisted of selectively melting, in sequence, three rotating discs made of aluminum alloy, stainless steel, and tantalum alloy. For comparison, three other discs of the same three materials were similarly melted or welded on the ground. The power source of the melting was an electron beam unit. Results are presented which support the concept that the major difference between ground base and Skylab samples (i.e., large elongated grains in ground base samples versus nearly equiaxed and equal sized grains in Skylab samples) can be explained on the basis of constitutional supercooling, and not on the basis of surface phenomena. Microstructural observations on the weld samples and present explanations for some of these observations are examined. In particular, ripples and their implications to weld solidification were studied. Evidence of pronounced copper segregation in the Skylab A1 weld samples, and the tantalum samples studied, indicates a weld microhardness (and hence strength) that is uniformly higher than the ground base results, which is in agreement with previous predictions. Photographs are shown of the microstructure of the various alloys.

  10. Olivine/melt transition metal partitioning, melt composition, and melt structure—Melt polymerization and Qn-speciation in alkaline earth silicate systems

    Science.gov (United States)

    Mysen, Bjorn O.

    2008-10-01

    The two most abundant network-modifying cations in magmatic liquids are Ca 2+ and Mg 2+. To evaluate the influence of melt structure on exchange of Ca 2+ and Mg 2+ with other geochemically important divalent cations ( m-cations) between coexisting minerals and melts, high-temperature (1470-1650 °C), ambient-pressure (0.1 MPa) forsterite/melt partitioning experiments were carried out in the system Mg 2SiO 4-CaMgSi 2O 6-SiO 2 with ⩽1 wt% m-cations (Mn 2+, Co 2+, and Ni 2+) substituting for Ca 2+ and Mg 2+. The bulk melt NBO/Si-range ( NBO/Si: nonbridging oxygen per silicon) of melt in equilibrium with forsterite was between 1.89 and 2.74. In this NBO/Si-range, the NBO/Si(Ca) (fraction of nonbridging oxygens, NBO, that form bonds with Ca 2+, Ca 2+- NBO) is linearly related to NBO/Si, whereas fraction of Mg 2+- NBO bonds is essentially independent of NBO/Si. For individual m-cations, rate of change of KD( m-Mg) with NBO/Si(Ca) for the exchange equilibrium, mmelt + Mg olivine ⇌ molivine + Mg melt, is linear. KD( m-Mg) decreases as an exponential function of increasing ionic potential, Z/ r2 ( Z: formal electrical charge, r: ionic radius—here calculated with oxygen in sixfold coordination around the divalent cations) of the m-cation. The enthalpy change of the exchange equilibrium, Δ H, decreases linearly with increasing Z/ r2 [Δ H = 261(9)-81(3)· Z/ r2 (Å -2)]. From existing information on (Ca,Mg)O-SiO 2 melt structure at ambient pressure, these relationships are understood by considering the exchange of divalent cations that form bonds with nonbridging oxygen in individual Qn-species in the melts. The negative ∂ KD( m-Mg) /∂( Z/ r2) and ∂(Δ H)/∂( Z/ r2) is because increasing Z/ r2 is because the cations forming bonds with nonbridging oxygen in increasingly depolymerized Qn-species where steric hindrance is decreasingly important. In other words, principles of ionic size/site mismatch commonly observed for trace and minor elements in crystals, also

  11. Electric arc, water jet cutting of metals

    International Nuclear Information System (INIS)

    Bruening, D.

    1991-01-01

    For thermal dismantling and cutting of metallic components, as electric arc, water jet cutting method was developed that can be used for underwater cutting work up to a depth of 20 m. Short-circuiting of a continuously fed electrode wire in contact with the metal generates an electric arc which induces partial melting of the metal, and the water jet surrounding the wire rinses away the molten material, thus making a continuous kerf in the material. The method was also tested and modified to allow larger area, surface cutting and removal of metallic surface coatings. This is achieved by melting parts of the surface with the electric arc and subsequent rinsing by the water jet. The cutting and melting depth for surface removal can be accurately controlled by the operating parameters chosen. (orig./DG) [de

  12. Additive manufacturing of metals

    International Nuclear Information System (INIS)

    Herzog, Dirk; Seyda, Vanessa; Wycisk, Eric; Emmelmann, Claus

    2016-01-01

    Additive Manufacturing (AM), the layer-by layer build-up of parts, has lately become an option for serial production. Today, several metallic materials including the important engineering materials steel, aluminium and titanium may be processed to full dense parts with outstanding properties. In this context, the present overview article describes the complex relationship between AM processes, microstructure and resulting properties for metals. It explains the fundamentals of Laser Beam Melting, Electron Beam Melting and Laser Metal Deposition, and introduces the commercially available materials for the different processes. Thereafter, typical microstructures for additively manufactured steel, aluminium and titanium are presented. Special attention is paid to AM specific grain structures, resulting from the complex thermal cycle and high cooling rates. The properties evolving as a consequence of the microstructure are elaborated under static and dynamic loading. According to these properties, typical applications are presented for the materials and methods for conclusion.

  13. High resolution laser micro sintering / melting using q-switched and high brilliant laser radiation

    Science.gov (United States)

    Exner, H.; Streek, A.

    2015-03-01

    Since the discovery of selective laser sintering/melting, numerous modifications have been made to upgrade or customize this technology for industrial purposes. Laser micro sintering (LMS) is one of those modifications: Powders with particles in the range of a few micrometers are used to obtain products with highly resolved structures. Pulses of a q-switched laser had been considered necessary in order to generate sinter layers from the micrometer scaled metal powders. LMS has been applied with powders from metals as well as from ceramic and cermet feedstock's to generate micro parts. Recent technological progress and the application of high brilliant continuous laser radiation have now allowed an efficient laser sintering/melting of micrometer scaled metal powders. Thereby it is remarkable that thin sinter layers are generated using high continuous laser power. The principles of the process, the state of the art in LMS concerning its advantages and limitations and furthermore the latest results of the recent development of this technology will be presented. Laser Micro Sintering / Laser Micro Melting (LMM) offer a vision for a new dimension of additive fabrication of miniature and precise parts also with application potential in all engineering fields.

  14. Magnetic properties of (misch metal, Nd-Fe-B melt-spun magnets

    Directory of Open Access Journals (Sweden)

    R. Li

    2017-05-01

    Full Text Available The effect of replacing Nd with misch metal (MM on magnetic properties and thermal stability has been investigated on melt-spun (Nd1-xMMx13.5Fe79.5B7 ribbons by varying x from 0 to 1. All of the alloys studied crystallize in the tetragonal 2:14:1 structure with single hard magnetic phase. Curie temperature (Tc, coercivity (Hcj, remanence magnetization (Br and maximum energy product ((BHmax all decrease with MM content. The melt-spun MM13.5Fe79.5B ribbons with high ratio of La and Ce exhibit high magnetic properties of Hcj = 8.2 kOe and (BHmax= 10.3 MGOe at room temperature. MM substitution also significantly strengthens the temperature stability of coercivity. The coercivities of the samples with x = 0.2 and even 0.4 exhibit large values close to that of Nd13.5Fe79.5B7 ribbons above 400 K.

  15. Sizing and melting development activities using noncontaminated metal at the Waste Experimental Reduction Facility

    International Nuclear Information System (INIS)

    Larsen, M.M.; Logan, J.A.

    1984-05-01

    EG and G Idaho, Inc., has established the Waste Experimental Reduction Facility (WERF) at the Idaho National Engineering Laboratory (INEL) to develop the capability to reduce the volume that low-level beta/gamma wastes occupy at the disposal site. The work effort at WERF includes a waste sizing development activity (WSDA), a waste melting development activity (WMDA), and a waste incineration development activity (WIDA). This report describes work and developments to date in the WSDA and WMDA with noncontaminated metallic waste in preparation for operations at WERF involving beta/gamma-contaminated metal

  16. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ, Seoul (Korea, Republic of)

    2015-10-15

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  17. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    International Nuclear Information System (INIS)

    Heo, Hyo; Bang, In Cheol; Jerng, Dong Wook

    2015-01-01

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  18. Grain structure evolution in Inconel 718 during selective electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Helmer, H.; Bauereiß, A., E-mail: Andreas.Bauereiss@fau.de; Singer, R.F.; Körner, C.

    2016-06-21

    Selective electron beam melting (SEBM) is an additive manufacturing method where complex parts are built from metal powders in layers of typically 50 µm. An electron beam is used for heating (about 900 °C building temperature) and selective melting of the material. The grain structure evolution is a result of the complex thermal and hydrodynamic conditions in the melt pool. We show how different scanning strategies can be used to produce either a columnar grain structure with a high texture in building direction or an equiaxed fine grained structure. Numerical simulations of the selective melting process are applied to study the fundamental mechanisms responsible for differing grain structures. It is shown, that the direction of the thermal gradient during solidification can be altered by scanning strategies to acquire either epitaxial growth or stray grains. We show that it is possible to locally alter the grain structure of a part, thus allowing tailoring of the mechanical properties.

  19. Melting technique for vanadium containing steels

    Energy Technology Data Exchange (ETDEWEB)

    Grishanov, M P; Gutovskij, I B; Vakhrushev, A S

    1980-04-28

    To descrease cost price of high-quality vanadium steels a method of their melting in open-hearth furnaces with acid lining using slag-metal fraction of vanadium, which is loaded in the content of 2.1-4.7% of melting mass, is suggested. Introduction of slag-metal fraction of vanadium ensures the formation of slag with composition that guarantees the necessary content of vanadium in steel and does not require introduction of expensive vanadium-containing ferroalloys into the melt.

  20. An assessment of the melting, boiling, and critical point data of the alkali metals

    International Nuclear Information System (INIS)

    Ohse, R.W.; Babelot, J.F.; Magill, J.

    1985-01-01

    The measured melting, boiling and critical point data of the alkali metals are reviewed. Emphasis has been given to the assessment of the critical point data. The main experimental techniques for measurements in the critical region are described. The selected data are given. Best estimates of the critical constants of lithium are given. (author)

  1. Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles

    Science.gov (United States)

    Mungall, J. E.; Brenan, J. M.; Godel, B.; Barnes, S. J.; Gaillard, F.

    2015-03-01

    Emissions of sulphur and metals from magmas in Earth’s shallow crust can have global impacts on human society. Sulphur-bearing gases emitted into the atmosphere during volcanic eruptions affect climate, and metals and sulphur can accumulate in the crust above a magma reservoir to form giant copper and gold ore deposits, as well as massive sulphur anomalies. The volumes of sulphur and metals that accumulate in the crust over time exceed the amounts that could have been derived from an isolated magma reservoir. They are instead thought to come from injections of multiple new batches of vapour- and sulphide-saturated magmas into the existing reservoirs. However, the mechanism for the selective upward transfer of sulphur and metals is poorly understood because their main carrier phase, sulphide melt, is dense and is assumed to settle to the bottoms of magma reservoirs. Here we use laboratory experiments as well as gas-speciation and mass-balance models to show that droplets of sulphide melt can attach to vapour bubbles to form compound drops that float. We demonstrate the feasibility of this mechanism for the upward mobility of sulphide liquids to the shallow crust. Our work provides a mechanism for the atmospheric release of large amounts of sulphur, and contradicts the widely held assumption that dense sulphide liquids rich in sulphur, copper and gold will remain sequestered in the deep crust.

  2. Melt cationic and anionic composition effect on titanium group metal corrosion in halogenides of alkali earths

    International Nuclear Information System (INIS)

    Tkhaj, V.; Kovalik, O.Yu.; Dikunov, Yu.G.; P'yankova, S.P.

    1997-01-01

    A study was made on interaction of titanium group metals with melts of chlorides and chloride-fluorides of alkaline earth metals and magnesium. It was revealed that the rate of metal corrosion increased from BaCl 2 2 2 2 in chloride series. It is explained by amplification of oxidation activity of salt cation in the series: Ba 2+ 2+ 2+ 2+ . It was also determined that corrosion rate of titanium exceeded the one of zirconium and hafnium, became reducing power of titanium was the highest in the given group

  3. German experience in recycling of ferrous metallic residues from nuclear decommissioning by melting

    International Nuclear Information System (INIS)

    Quade, U.; Kluth, Th.

    2008-01-01

    Due to the delay of commissioning of final depositories for nuclear waste on the one hand and the increasing amount of steel scrap resulting from operation and decommissioning of nuclear facilities on the other hand, recycling of ferrous metal scrap to packagings made of ductile cast iron becomes more and more economical. A pool of know-how from waste managers, radiation protection experts, metallurgists and foundry experts and their teamwork is required to run this recycling path successfully. Siempelkamp provides this combination of experience by operating a melting facility for slightly radioactive contaminated scrap as well as a foundry for manufacturing of ductile cast iron products for the nuclear industry, both licensed by the German Radiation Protection Ordinance. In 1989, the CARLA plant (Centrale Anlage zum Rezyklieren von leichtradioaktiven Abfollen) started operation. A medium frequency induction furnace with a capacity of 3,2 t is core of the plant. Tools for dismantling and cutting components to chargeable sizes are available. From the total of 23000 t of melted scrap, 12000 t have been recycled to the manufacturing of containers for transport and storage of medium- and high active waste and for shielding plates. Manufacture of the castings takes place in the Siempelkamp foundry located at the same site. 8000 t of melted scrap could be released for industrial recycling. Scrap metal which does not meet the metallurgical specification for cast iron, is converted into iron granules. Up to now more than 2000 t of iron granules have been recycled as additive for heavy concrete containers. This production is in cooperation with an external partner. With regard to the German situation, the cost for recycling is only half compared to high pressure compaction, long-term interim storage and final disposal. The advantage of recycling is approx. 90 % less volume compared to the volume resulting from other disposal paths. It can be concluded that the German

  4. Suppression of dewetting phenomena during excimer laser melting of thin metal films on SiO2

    International Nuclear Information System (INIS)

    Kline, J.E.; Leonard, J.P.

    2005-01-01

    Pulsed excimer laser irradiation has been used to fully melt 200 nm films of elemental Au and Ni on SiO 2 substrates. With the use of a capping layer of SiO 2 and line irradiation via projection optics, the typical liquid-phase dewetting processes associated with these metals on SiO 2 has been suppressed. In a series of experiments varying line widths and fluence, a process region is revealed immediately above the complete melting threshold for which the films remain continuous and smooth after melting and resolidification. Simple energetic arguments for mechanisms leading to initiation of dewetting support these observations, and a gas-mediated model is proposed to describe the process conditions that are necessary for the suppression of dewetting

  5. Numerical analysis of the effects of non-conventional laser beam geometries during laser melting of metallic materials

    International Nuclear Information System (INIS)

    Safdar, Shakeel; Li, Lin; Sheikh, M A

    2007-01-01

    Laser melting is an important industrial activity encountered in a variety of laser manufacturing processes, e.g. selective laser melting, welding, brazing, soldering, glazing, surface alloying, cladding etc. The majority of these processes are carried out by using either circular or rectangular beams. At present, the melt pool characteristics such as melt pool geometry, thermal gradients and cooling rate are controlled by the variation of laser power, spot size or scanning speed. However, the variations in these parameters are often limited by other processing conditions. Although different laser beam modes and intensity distributions have been studied to improve the process, no other laser beam geometries have been investigated. The effect of laser beam geometry on the laser melting process has received very little attention. This paper presents an investigation of the effects of different beam geometries including circular, rectangular and diamond shapes on laser melting of metallic materials. The finite volume method has been used to simulate the transient effects of a moving beam for laser melting of mild steel (EN-43A) taking into account Marangoni and buoyancy convection. The temperature distribution, melt pool geometry, fluid flow velocities and heating/cooling rates have been calculated. Some of the results have been compared with the experimental data

  6. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Principal Investigator Kent Peaslee; Co-PI’s: Von Richards, Jeffrey Smith

    2012-07-31

    Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

  7. The effect of melt composition on metal-silicate partitioning of siderophile elements and constraints on core formation in the angrite parent body

    Science.gov (United States)

    Steenstra, E. S.; Sitabi, A. B.; Lin, Y. H.; Rai, N.; Knibbe, J. S.; Berndt, J.; Matveev, S.; van Westrenen, W.

    2017-09-01

    We present 275 new metal-silicate partition coefficients for P, S, V, Cr, Mn, Co, Ni, Ge, Mo, and W obtained at moderate P (1.5 GPa) and high T (1683-1883 K). We investigate the effect of silicate melt composition using four end member silicate melt compositions. We identify possible silicate melt dependencies of the metal-silicate partitioning of lower valence elements Ni, Ge and V, elements that are usually assumed to remain unaffected by changes in silicate melt composition. Results for the other elements are consistent with the dependence of their metal-silicate partition coefficients on the individual major oxide components of the silicate melt composition suggested by recently reported parameterizations and theoretical considerations. Using multiple linear regression, we parameterize compiled metal-silicate partitioning results including our new data and report revised expressions that predict their metal-silicate partitioning behavior as a function of P-T-X-fO2. We apply these results to constrain the conditions that prevailed during core formation in the angrite parent body (APB). Our results suggest the siderophile element depletions in angrite meteorites are consistent with a CV bulk composition and constrain APB core formation to have occurred at mildly reducing conditions of 1.4 ± 0.5 log units below the iron-wüstite buffer (ΔIW), corresponding to a APB core mass of 18 ± 11%. The core mass range is constrained to 21 ± 8 mass% if light elements (S and/or C) are assumed to reside in the APB core. Incorporation of light elements in the APB core does not yield significantly different redox states for APB core-mantle differentiation. The inferred redox state is in excellent agreement with independent fO2 estimates recorded by pyroxene and olivine in angrites.

  8. Electron beam melting of sponge titanium

    International Nuclear Information System (INIS)

    Kanayama, Hiroshi; Kusamichi, Tatsuhiko; Muraoka, Tetsuhiro; Onouye, Toshio; Nishimura, Takashi

    1991-01-01

    Fundamental investigations were done on electron beam (EB) melting of sponge titanium by using 80 kW EB melting furnace. Results obtained are as follows: (1) To increase the melting yield of titanium in EB melting of sponge titanium, it is important to recover splashed metal by installation of water-cooled copper wall around the hearth and to decrease evaporation loss of titanium by keeping the surface temperature of molten metal just above the melting temperature of titanium without local heating. (2) Specific power consumption of drip melting of pressed sponge titanium bar and hearth melting of sponge titanium are approximately 0.9 kWh/kg-Ti and 0.5-0.7 kWh/kg-Ti, respectively. (3) Ratios of the heat conducted to water-cooled mould in the drip melting and to water-cooled hearth in the hearth melting to the electron beam input power are 50-65% and 60-65%, respectively. (4) Surface defects of EB-melted ingots include rap which occurs when the EB output is excessively great, and transverse cracks when the EB output is excessively small. To prevent surface defects, the up-down withdrawal method is effective. (author)

  9. Study of interaction of uranium, plutonium and rare earth fluorides with some metal oxides in fluoric salt melts

    International Nuclear Information System (INIS)

    Gorbunov, V.F.; Novoselov, G.P.; Ulanov, S.A.

    1976-01-01

    Interaction of plutonium, uranium, and rare-earth elements (REE) fluorides with aluminium and calcium oxides in melts of eutectic mixture LiF-NaF has been studied at 800 deg C by X-ray diffraction method. It has been shown that tetravalent uranium and plutonium are coprecipitated by oxides as a solid solution UO 2 -PuO 2 . Trivalent plutonium in fluorides melts in not precipitated in the presence of tetravalent uranium which can be used for their separation. REE are precipitated from a salt melt by calcium oxide and are not precipitated by aluminium oxide. Thus, aluminium oxide in a selective precipitator for uranium and plutonium in presence of REE. Addition of aluminium fluoride retains trivalent plutonium and REE in a salt melt in presence of Ca and Al oxides. The mechanism of interacting plutonium and REE trifluorides with metal oxides in fluoride melts has been considered

  10. A thermodynamic model for predicting surface melting and overheating of different crystal planes in BCC, FCC and HCP pure metallic thin films

    International Nuclear Information System (INIS)

    Jahangir, Vafa; Riahifar, Reza; Sahba Yaghmaee, Maziar

    2016-01-01

    In order to predict as well as study the surface melting phenomena in contradiction to surface overheating, a generalized thermodynamics model including the surface free energy of solid and the melt state along with the interfacial energy of solid–liquid (melt on substrate) has been introduced. In addition, the effect of different crystal structures of surfaces in fcc, bcc and hcp metals was included in surface energies as well as in the atomistic model. These considerations lead us to predict surface melting and overheating as two contradictory melting phenomena. The results of the calculation are demonstrated on the example of Pb and Al thin films in three groups of (100), (110) and (111) surface planes. Our conclusions show good agreement with experimental results and other theoretical investigations. Moreover, a computational algorithm has been developed which enables users to investigate the surface melt or overheating of single component metallic thin film with variable crystal structures and different crystalline planes. This model and developed software can be used for studying all related surface phenomena. - Highlights: • Investigating the surface melting and overheating phenomena • Effect of crystal orientations, surface energies, geometry and different atomic surface layers • Developing a computational algorithm and its related code (free-software SMSO-Ver1) • Thickness and orientation of surface plane dominate the surface melting or overheating. • Total excess surface energy as a function of thickness and temperature explains melting.

  11. A thermodynamic model for predicting surface melting and overheating of different crystal planes in BCC, FCC and HCP pure metallic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jahangir, Vafa, E-mail: vafa.jahangir@yahoo.com; Riahifar, Reza, E-mail: reza_rfr@yahoo.com; Sahba Yaghmaee, Maziar, E-mail: fkmsahba@uni-miskolc.hu

    2016-03-31

    In order to predict as well as study the surface melting phenomena in contradiction to surface overheating, a generalized thermodynamics model including the surface free energy of solid and the melt state along with the interfacial energy of solid–liquid (melt on substrate) has been introduced. In addition, the effect of different crystal structures of surfaces in fcc, bcc and hcp metals was included in surface energies as well as in the atomistic model. These considerations lead us to predict surface melting and overheating as two contradictory melting phenomena. The results of the calculation are demonstrated on the example of Pb and Al thin films in three groups of (100), (110) and (111) surface planes. Our conclusions show good agreement with experimental results and other theoretical investigations. Moreover, a computational algorithm has been developed which enables users to investigate the surface melt or overheating of single component metallic thin film with variable crystal structures and different crystalline planes. This model and developed software can be used for studying all related surface phenomena. - Highlights: • Investigating the surface melting and overheating phenomena • Effect of crystal orientations, surface energies, geometry and different atomic surface layers • Developing a computational algorithm and its related code (free-software SMSO-Ver1) • Thickness and orientation of surface plane dominate the surface melting or overheating. • Total excess surface energy as a function of thickness and temperature explains melting.

  12. Plasma facing parts and repairing method

    International Nuclear Information System (INIS)

    Fuse, Toshiaki; Tachikawa, Nobuo.

    1994-01-01

    Plasma facing parts of the present invention are constituted by joining an armour comprising a material having a high melting point and a cooling member comprising copper or the like. A metal member having good solderability with the cooling member is disposed on the joined surface of the armor member. In addition, the joined surface of the cooling member is provided with a barrier layer for preventing invasion of a solder. A solder having a low melting point is interposed between the armour and the cooling member. If they are heated entirely, the solder having low melting point is melted, so that the metal member having good solderability disposed on the armor member is soldered with the barrier layer for the cooling member. Upon exchange of the armour, the joint is heated again. Then, the solder having a low melting point is melted and the armour member and the cooling member are separated. If a solder is put on the cooling member and a new armour is placed and then heated, repairing is completed. (I.S.)

  13. Development of metal uranium fuel and testing of construction materials (I-VI); Part I

    International Nuclear Information System (INIS)

    Mihajlovic, A.

    1965-11-01

    This project includes the following tasks: Study of crystallisation of metal melt and beta-alpha transforms in uranium and uranium alloys; Study of the thermal treatment influence on phase transformations and texture in uranium alloys; Radiation damage of metal uranium; Project related to irradiation of metal uranium in the reactor; Development of fuel element for nuclear reactors

  14. Diffusive exchange of trace elements between basaltic-andesite and dacitic melt: Insights into potential metal fractionation during magma mixing

    Science.gov (United States)

    Fiege, A.; Ruprecht, P.; Simon, A. C.; Holtz, F.

    2017-12-01

    Mafic magma recharge is a common process that triggers physical and chemical mixing in magmatic systems and drives their evolution, resulting in, e.g., hybridization and volcanic eruptions. Once magma-magma contact is initiated, rapid heat-flux commonly leads to the formation of a cooling-induced crystal mush on the mafic side of the interface. Here, on a local scale (µm to cm), at the magma-magma interface, melt-melt diffusive exchange is required to approach equilibrium. Significant chemical potential gradients drive a complex, multi-element mass flux between the two systems (Liang, 2010). This diffusive-equilibration often controls crystal dissolution rates within the boundary layers and, thus, the formation of interconnected melt or fluid networks. Such networks provide important pathways for the transport of volatiles and trace metals from the mafic recharge magma to the felsic host magma, where the latter may feed volcanic activities and ore deposits. While major element diffusion in silicate melts is mostly well understood, even in complex systems, the available data for many trace element metals are limited (Liang, 2010; Zhang et al., 2010). Differences in diffusivity in a dynamic, mixing environment can cause trace element fractionation, in particular during crystallization and volatile exsolution and separation. This may affect trace element signatures in phenocrysts and magmatic volatile phases that can form near a magma-magma boundary. As a result, the chemistry of volcanic gases and magmatic-hydrothermal ore deposits may be partially controlled by such mixing phenomena. We performed melt-melt diffusion-couple experiments at 150 MPa, 1100°C, FMQ, FMQ+1 and FMQ+3 (FMQ: fayalite-magnetite-quartz oxygen fugacity buffer). Hydrated, sulfur-bearing cylinders of dacite and basaltic andesite were equilibrated for up to 20 h. Major and trace element gradients were measured by using laser-ablation ICP-MS and electron microprobe analyses. The results we will

  15. A study of metal-ceramic wettability in SiC-Al using dynamic melt infiltration of SiC

    Science.gov (United States)

    Asthana, R.; Rohatgi, P. K.

    1993-01-01

    Pressure-assisted infiltration with a 2014 Al alloy of plain and Cu-coated single crystal platelets of alpha silicon carbide was used to study particulate wettability under dynamic conditions relevant to pressure casting of metal-matrix composites. The total penetration length of infiltrant metal in porous compacts was measured at the conclusion of solidification as a function of pressure, infiltration time, and SiC size for both plain and Cu-coated SiC. The experimental data were analyzed to obtain a threshold pressure for the effect of melt intrusion through SiC compacts. The threshold pressure was taken either directly as a measure of wettability or converted to an effective wetting angle using the Young-Laplace capillary equation. Cu coating resulted in partial but beneficial improvements in wettability as a result of its dissolution in the melt, compared to uncoated SiC.

  16. Tin in granitic melts: The role of melting temperature and protolith composition

    Science.gov (United States)

    Wolf, Mathias; Romer, Rolf L.; Franz, Leander; López-Moro, Francisco Javier

    2018-06-01

    Granite bound tin mineralization typically is seen as the result of extreme magmatic fractionation and late exsolution of magmatic fluids. Mineralization, however, also could be obtained at considerably less fractionation if initial melts already had enhanced Sn contents. We present chemical data and results from phase diagram modeling that illustrate the dominant roles of protolith composition, melting conditions, and melt extraction/evolution for the distribution of Sn between melt and restite and, thus, the Sn content of melts. We compare the element partitioning between leucosome and restite of low-temperature and high-temperature migmatites. During low-temperature melting, trace elements partition preferentially into the restite with the possible exception of Sr, Cd, Bi, and Pb, that may be enriched in the melt. In high-temperature melts, Ga, Y, Cd, Sn, REE, Pb, Bi, and U partition preferentially into the melt whereas Sc, V, Cr, Co, Ni, Mo, and Ba stay in the restite. This contrasting behavior is attributed to the stability of trace element sequestering minerals during melt generation. In particular muscovite, biotite, titanite, and rutile act as host phases for Sn and, therefore prevent Sn enrichment in the melt as long as they are stable phases in the restite. As protolith composition controls both the mineral assemblage and modal contents of the various minerals, protolith composition eventually also controls the fertility of a rock during anatexis, restite mineralogy, and partitioning behavior of trace metals. If a particular trace element is sequestered in a phase that is stable during partial melting, the resulting melt is depleted in this element whereas the restite becomes enriched. Melt generation at high temperature may release Sn when Sn-hosts become unstable. If melt has not been lost before the breakdown of Sn-hosts, Sn contents in the melt will increase but never will be high. In contrast, if melt has been lost before the decomposition of Sn

  17. Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing

    Science.gov (United States)

    Hofmann, Douglas C.; Borgonia, John Paul C.; Dillon, Robert P.; Suh, Eric J.; Mulder, jerry L.; Gardner, Paul B.

    2013-01-01

    Recently, additive manufacturing (AM) techniques have been developed that may shift the paradigm of traditional metal production by allowing complex net-shaped hardware to be built up layer-by-layer, rather than being machined from a billet. The AM process is ubiquitous with polymers due to their low melting temperatures, fast curing, and controllable viscosity, and 3D printers are widely available as commercial or consumer products. 3D printing with metals is inherently more complicated than with polymers due to their higher melting temperatures and reactivity with air, particularly when heated or molten. The process generally requires a high-power laser or other focused heat source, like an electron beam, for precise melting and deposition. Several promising metal AM techniques have been developed, including laser deposition (also called laser engineered net shaping or LENS® and laser deposition technology (LDT)), direct metal laser sintering (DMLS), and electron beam free-form (EBF). These machines typically use powders or wire feedstock that are melted and deposited using a laser or electron beam. Complex net-shape parts have been widely demonstrated using these (and other) AM techniques and the process appears to be a promising alternative to machining in some cases. Rather than simply competing with traditional machining for cost and time savings, the true advantage of AM involves the fabrication of hardware that cannot be produced using other techniques. This could include parts with "blind" features (like foams or trusses), parts that are difficult to machine conventionally, or parts made from materials that do not exist in bulk forms. In this work, the inventors identify that several AM techniques can be used to develop metal parts that change composition from one location in the part to another, allowing for complete control over the mechanical or physical properties. This changes the paradigm for conventional metal fabrication, which relies on an

  18. Interaction of concretes with oxide + metal corium. The VULCANO VBS series

    International Nuclear Information System (INIS)

    Journeau, Christophe; Bonnet, Jean-Michel; Ferry, Lionel; Haquet, Jean-Francois; Piluso, Pascal

    2009-01-01

    In the hypothetical case of a severe accident, the reactor core could melt and the formed mixture, called corium, could melt through the vessel and interact with the reactor pit concrete. Corium is made from a UO 2 -rich oxidic part, in which most of the decay heat is dissipated, and a metallic part, mainly molten steel. Up to now, due to experimental constraints, most of the experiments have been performed with solely oxidic prototypic corium, or where designed so that most of the simulated decay heat was dissipated in the metallic layer. An experimental program has been set up in the VULCANO facility in which oxidic and metallic mixtures are melted in separate furnaces and poured in a concrete cavity. Induction heating is provided to the pool upper part thanks to shielding coils, so that, in case of stratification, the lighter oxidic corium-concrete mixture receives most of the power. Three experiments have been conducted: one with a limestone-rich concrete and two with a silica-rich concrete. Metal stratification has been determined from modifications of the corium electrical properties in front of the inductor and is in good accordance with calculations. Concrete ablation has been monitored. A significant vertical ablation has been observed, even in case of silica-rich concretes, for which largely radial ablation has been observed in the case of pure oxidic corium melts. Post Test Examinations have shown unexpected repartitions of metal in the pool. (author)

  19. Laser Beam Melting of Multi-Material Components

    Science.gov (United States)

    Laumer, Tobias; Karg, Michael; Schmidt, Michael

    First results regarding the realisation of multi-material components manufactured by Laser Beam Melting of polymers and metals are published. For realising composite structures from polymer powders by additive manufacturing, at first relevant material properties regarding compatibility have to be analysed. The paper shows the main requirements for compatibility between different materials and offers first results in form of a compatibility matrix of possible combinations for composite structures. For achieving gradient properties of additively manufactured metal parts by using composite materials the composition of alloying components in the powder and adapted process strategies are varied. As an alternative to atomizing pre-alloyed materials, mixtures of different powders are investigated.

  20. Plasma arc melting of titanium-tantalum alloys

    International Nuclear Information System (INIS)

    Dunn, P.; Patterson, R.A.; Haun, R.

    1994-01-01

    Los Alamos has several applications for high temperature, oxidation and liquid-metal corrosion resistant materials. Further, materials property constraints are dictated by a requirement to maintain low density; e.g., less than the density of stainless steel. Liquid metal compatibility and density requirements have driven the research toward the Ti-Ta system with an upper bound of 60 wt% Ta-40 wt% Ti. Initial melting of these materials was performed in a small button arc melter with several hundred grams of material; however, ingot quantities were soon needed. But, refractory metal alloys whose constituents possess very dissimilar densities, melting temperatures and vapor pressures pose significant difficulty and require specialized melting practices. The Ti-Ta alloys fall into this category with the density of tantalum 16.5 g/cc and that of titanium 4.5 g/cc. Melting is further complicated by the high melting point of Ta(3020 C) and the relatively low boiling point of Ti(3287 C). Previous electron beam melting experience with these materials resulted, in extensive vaporization of the titanium and poor chemical homogeneity. Vacuum arc remelting(VAR) was considered as a melting candidate and discarded due to density and vapor pressure issues associated with electron beam. Plasma arc melting offered the ability to supply a cover gas to deal with vapor pressure issues as well as solidification control to help with macrosegregation in the melt and has successfully produced high quality ingots of the Ti-Ta alloys

  1. Utilizing Rice Husk Briquettes in Firing Crucible Furnace for Low Temperature Melting Metals in Nigeria

    Directory of Open Access Journals (Sweden)

    N. A. Musa

    2012-08-01

    Full Text Available The search for alternative fuels for firing crucible furnace for low temperature melting metals has become mandatory, as a result of the pollution problem associated with the use of fossil fuels, the expense of electricity and also deforestation as a result of the use of charcoal. An agricultural waste, rice husk, in briquette form was used as an alternative fuel to fire crucible furnace to melt lead, zinc and aluminium. Results showed that lead and zinc melted and reached their pouring temperatures of 3840C and 5300C in 70 minutes and 75 minutes respectively. Aluminium was raised to a maximum temperature of 5200C in 75 and 100 minutes.The average concentration of the pollutants (CO, SO2and NOX were found to be below the tolerance limit and that of TSP (Total Suspended Particulates was found to be within the tolerance limit stipulated by Federal Environmental Protection Agency (FEPA in Nigeria.

  2. Radioactive metal scrap recycling by melting process at the Chernobyl site

    International Nuclear Information System (INIS)

    Steinwarz, W.

    1995-01-01

    Within its TACIS programme the European Union ordered a feasibility study on the cleaning-up of the Chernobyl area from radioactively contaminated metallic material. The study was performed by a Ukrainian German Working Group under the leadership of Siempelkamp and finalized at the end of March 1994. The on-site evaluation for the 30 km exclusion zone showed an overall mass of metal scrap of min. 100,000 Mg with a maximum specific activity of 400 Bq/g based on 48 open depositories within the restricted area. Dominant radionuclides were Cs-137 and Sr-90 accompanied by a very low proportion of α-activity. The study report showed the technical feasibility of a melting plant designed with a throughput of 10'000 Mg per year and its suitability for the overall concept to handle the Chernobyl waste. The main task for the near future can be identified as the establishing of a sound financial concept. (author) 5 figs., 3 tabs., 2 refs

  3. Effect of Low-Melting Metals (Pb, Bi, Cd, In) on the Structure, Phase Composition, and Properties of Casting Al-5% Si-4% Cu Alloy

    Science.gov (United States)

    Yakovleva, A. O.; Belov, N. A.; Bazlova, T. A.; Shkalei, I. V.

    2018-01-01

    The effect of low-melting metals (Pb, Bi, Cd, In) on the structure, phase composition, and properties of the Al-5% Si-4% Cu alloy was studied using calculations. Polythermal sections have been reported, which show that the considered systems are characterized by the presence of liquid regions and monotectic reactions. The effect of low-melting metals on the microstructure and hardening of base alloy in the cast and heat-treated states has been studied.

  4. Wear resistance of WCp/Duplex Stainless Steel metal matrix composite layers prepared by laser melt injection

    NARCIS (Netherlands)

    Do Nascimento, A. M.; Ocelik, V.; Ierardi, M. C. F.; De Hosson, J. Th. M.

    2008-01-01

    Laser Melt Injection (LMI) was used to prepare metal matrix composite layers with a thickness of about 0.7 mm and approximately 10% volume fraction of WC particles in three kinds of Cast Duplex Stainless Steels (CDSSs). WC particles were injected into the molten surface layer using Nd:YAG high power

  5. Leaching characteristics of rare metal elements and chlorine in fly ash from ash melting plants for metal recovery.

    Science.gov (United States)

    Jung, Chang-Hwan; Osako, Masahiro

    2009-05-01

    In terms of resource recovery and environmental impact, melting furnace fly ash (MFA) is attracting much attention in Japan due to its high metal content. The study aims to obtain fundamental information on using a water extraction method not only to concentrate valuable rare metals but also to remove undesirable substances such as chlorine for their recovery from MFA. The composition and leaching characteristics of MFA was investigated. The results revealed that the metal content in MFA is nearly equal to raw ore quality. The content of Ag, In, Pd, Pb, and Zn is, in fact, higher than the content of raw ore. As for leaching behavior, Ag, Bi, In, Ga, Ge, Sb, Sn, and Te showed the lowest release at a neutral pH range. Pd was leached constantly regardless of pH, but its concentration was quite low. On the other hand, most of the Tl was easily leached, revealing that water extraction is not appropriate for Tl recovery from MFA. Major elements Cl, Ca, Na, and K, occupying about 70% of MFA, were mostly leached regardless of pH. Base metal elements Cu, Pb, and Zn showed minimum solubility at a neutral pH. The leaching ratio of target rare metal elements and base metal elements suggests that the optimal pH for water extraction is 8-10, at which the leaching concentration is minimized. The water extraction process removed most of the Cl, Ca, Na, and K, and the concentration of rare metals and base metals increased by four or five times.

  6. BWR core melt progression phenomena: Experimental analyses

    International Nuclear Information System (INIS)

    Ott, L.J.

    1992-01-01

    In the BWR Core Melt in Progression Phenomena Program, experimental results concerning severe fuel damage and core melt progression in BWR core geometry are used to evaluate existing models of the governing phenomena. These include control blade eutectic liquefaction and the subsequent relocation and attack on the channel box structure; oxidation heating and hydrogen generation; Zircaloy melting and relocation; and the continuing oxidation of zirconium with metallic blockage formation. Integral data have been obtained from the BWR DF-4 experiment in the ACRR and from BWR tests in the German CORA exreactor fuel-damage test facility. Additional integral data will be obtained from new CORA BWR test, the full-length FLHT-6 BWR test in the NRU test reactor, and the new program of exreactor experiments at Sandia National Laboratories (SNL) on metallic melt relocation and blockage formation. an essential part of this activity is interpretation and use of the results of the BWR tests. The Oak Ridge National Laboratory (ORNL) has developed experiment-specific models for analysis of the BWR experiments; to date, these models have permitted far more precise analyses of the conditions in these experiments than has previously been available. These analyses have provided a basis for more accurate interpretation of the phenomena that the experiments are intended to investigate. The results of posttest analyses of BWR experiments are discussed and significant findings from these analyses are explained. The ORNL control blade/canister models with materials interaction, relocation and blockage models are currently being implemented in SCDAP/RELAP5 as an optional structural component

  7. Point, surface and volumetric heat sources in the thermal modelling of selective laser melting

    NARCIS (Netherlands)

    Yang, Y.; Ayas, C.; Brabazon, Dermot; Naher, Sumsun; Ul Ahad, Inam

    2017-01-01

    Selective laser melting (SLM) is a powder based additive manufacturing technique suitable for producing high precision metal parts. However, distortions and residual stresses within products arise during SLM because of the high temperature gradients created by the laser heating. Residual stresses

  8. Microstructure and mechanical properties of selective laser melted magnesium

    International Nuclear Information System (INIS)

    Ng, C.C.; Savalani, M.M.; Lau, M.L.; Man, H.C.

    2011-01-01

    The effects of laser processing parameters on the microstructure and mechanical properties of selective laser-melted magnesium were investigated. The results show that the microstructure characteristics of the laser-melted samples are dependent on the grain size of SLM magnesium. The grains in the molten zone coarsen as the laser energy density increases. In addition, the average hardness values of the molten zone decreases significantly with an increase of the laser energy densities and then decreased slowly at a relatively high laser energy density irrespective of mode of irradiation. The hardness value was obtained from 0.59 to 0.95 GPa and corresponding elastic modulus ranging from 27 to 33 GPa. The present selective laser-melted magnesium parts are promising for biomedical applications since the mechanical properties are more closely matched with human bone than other metallic biomaterials.

  9. On the rapid melt quenching

    International Nuclear Information System (INIS)

    Usatyuk, I.I.; Novokhatskij, I.A.; Kaverin, Yu.F.

    1994-01-01

    Specific features of instrumentation of traditionally employed method of melt spinning (rapid quenching), its disadvantages being discussed, were analyzed. The necessity of the method upgrading as applied to the problems of studying fine structure of molten metals and glasses was substantiated. The principle flowsheet of experimental facility for extremely rapid quenching of the melts of metals is described, specificity of its original functional units being considered. The sequence and character of all the principal stages of the method developed were discussed. 18 refs.; 3 figs

  10. Effect of component substitution on the atomic dynamics in glass-forming binary metallic melts

    Science.gov (United States)

    Nowak, B.; Holland-Moritz, D.; Yang, F.; Voigtmann, Th.; Evenson, Z.; Hansen, T. C.; Meyer, A.

    2017-08-01

    We investigate the substitution of early transition metals (Zr, Hf, and Nb) in Ni-based binary glass-forming metallic melts and the impact on structural and dynamical properties by using a combination of neutron scattering, electrostatic levitation (ESL), and isotopic substitution. The self-diffusion coefficients measured by quasielastic neutron scattering (QENS) identify a sluggish diffusion as well as an increased activation energy by almost a factor of 2 for Hf35Ni65 compared to Zr36Ni64 . This finding can be explained by the locally higher packing density of Hf atoms in Hf35Ni65 compared to Zr atoms in Zr36Ni64 , which has been derived from interatomic distances by analyzing the measured partial structure factors. Furthermore, QENS measurements of liquid Hf35Ni65 prepared with 60Ni , which has a vanishing incoherent scattering cross section, have demonstrated that self-diffusion of Hf is slowed down compared to the concentration weighted self-diffusion of Hf and Ni. This implies a dynamical decoupling between larger Hf and smaller Ni atoms, which can be related to a saturation effect of unequal atomic nearest-neighbor pairs, that was observed recently for Ni-rich compositions in Zr-Ni metallic melts. In order to establish a structure-dynamics relation, measured partial structure factors have been used as an input for mode-coupling theory (MCT) of the glass transition to calculate self-diffusion coefficients for the different atomic components. Remarkably, MCT can reproduce the increased activation energy for Hf35Ni65 as well as the dynamical decoupling between Hf and Ni atoms.

  11. Stability and erosion of melt layers formed during plasma disruptions

    International Nuclear Information System (INIS)

    Hassanein, A.M.

    1989-01-01

    Melting and vaporization of metallic reactor components such as the first wall and the limiter/divertor may be expected in fusion reactors due to the high energy deposition resulting from plasma instabilities occuring during both normal and off-normal operating conditions. Off-normal operating conditions result from plasma disruptions where the plasma losses confinement and dumps its energy on parts of reactor components. High heat flux may also result during normal operating conditions due to fluctuations in plasma edge conditions. Of particular significance is the stability and erosion of the resulting melt layer which directly impacts the total expected lifetime of the reactor. The loss of the melt layer during the disruption could have a serious impact on the required safe and economic operation of the reactor. A model is developed to describe the behavior of the melt layer during the time evolution of the disruption. The analysis is done parametrically for a range of disruption times, energy densities and various acting forces

  12. Regulatory Aspects of Clearance and Recycling of Metallic Material forming Part of Buildings of Nuclear Facilities in Germany

    International Nuclear Information System (INIS)

    Thierfeldt, Stefan; Woerlen, Stefan; Harding, Philip

    2014-01-01

    Metallic materials as part of buildings of nuclear installations, like reinforcement in concrete, anchor slabs, pipework buried in concrete, but also steel liners of water basins or anchor rails that are welded to the reinforcement steel etc. require special considerations during decommissioning. It is the aim to release as much of this material as possible for recycling (either by melting in conventional foundries or by melting in a controlled recycling plant for reuse in the nuclear field). This poses problems as on the one hand these metallic materials cannot be removed from the buildings prior to their demolition, while on the other hand they would in principle require a specific clearance procedure for which they should be available separately. Besides aspects of radiological characterisation and measurements, this is also a regulatory issue, as the competent authority has to grant clearance of materials that may not be fully characterised by measurements, but for which a significant part of the information required for clearance is inferred from the operational history, from conclusions by analogy and from other sources. This issue has been resolved in different ways in various NPPs in Germany. Examples of materials that pose problems of the kind listed above (including relevant contamination pathways) are given, together with examples for solving these problems by specific considerations in the clearance procedure. The clearance regulations for metal scrap in Germany require adherence to both mass specific and surface related clearance levels in Bq/g and Bq/cm 2 , respectively, which are similar to those as laid down in the EU recommendations RP 89/101. Therefore, approaches had to be developed for inferring sufficiently comprehensive and conservative estimates of the mass and surface related activities for metallic materials forming an integral part of buildings from measurements that do not cover 100% of the material. The ways are outlined in which the

  13. Integrated System of Thermal/Dimensional Analysis for Quality Control of Metallic Melt and Ductile Iron Casting Solidification

    Science.gov (United States)

    Stan, Stelian; Chisamera, Mihai; Riposan, Iulian; Neacsu, Loredana; Cojocaru, Ana Maria; Stan, Iuliana

    2018-03-01

    The main objective of the present work is to introduce a specific experimental instrument and technique for simultaneously evaluating cooling curves and expansion or contraction of cast metals during solidification. Contraction/expansion analysis illustrates the solidification parameters progression, according to the molten cast iron characteristics, which are dependent on the melting procedure and applied metallurgical treatments, mold media rigidity and thermal behavior [heat transfer parameters]. The first part of the paper summarizes the performance of this two-mold device. Its function is illustrated by representative shrinkage tendency results in ductile cast iron as affected by mold rigidity (green sand and furan resin sand molds) and inoculant type (FeSi-based alloys), published in part previously. The second part of the paper illustrates an application of this equipment adapted for commercial foundry use. It conducts thermal analysis and volume change measurements in a single ceramic cup so that mold media as well as solidification conditions are constants, with cast iron quality as the variable. Experiments compared gray and ductile cast iron solidification patterns. Gray iron castings are characterized by higher undercooling at the beginning and at the end of solidification and lower graphitic expansion. Typically, ductile cast iron exhibits higher graphitic, initial expansion, conducive for shrinkage formation in soft molds.

  14. A combined arc-melting and tilt-casting furnace for the manufacture of high-purity bulk metallic glass materials.

    Science.gov (United States)

    Soinila, E; Pihlajamäki, T; Bossuyt, S; Hänninen, H

    2011-07-01

    An arc-melting furnace which includes a tilt-casting facility was designed and built, for the purpose of producing bulk metallic glass specimens. Tilt-casting was chosen because reportedly, in combination with high-purity processing, it produces the best fatigue endurance in Zr-based bulk metallic glasses. Incorporating the alloying and casting facilities in a single piece of equipment reduces the amount of laboratory space and capital investment needed. Eliminating the sample transfer step from the production process also saves time and reduces sample contamination. This is important because the glass forming ability in many alloy systems, such as Zr-based glass-forming alloys, deteriorates rapidly with increasing oxygen content of the specimen. The challenge was to create a versatile instrument, in which high purity conditions can be maintained throughout the process, even when melting alloys with high affinity for oxygen. Therefore, the design provides a high-vacuum chamber to be filled with a low-oxygen inert atmosphere, and takes special care to keep the system hermetically sealed throughout the process. In particular, movements of the arc-melting electrode and sample manipulator arm are accommodated by deformable metal bellows, rather than sliding O-ring seals, and the whole furnace is tilted for tilt-casting. This performance of the furnace is demonstrated by alloying and casting Zr(55)Cu(30)Al(10)Ni(5) directly into rods up to ø 10 mm which are verified to be amorphous by x-ray diffraction and differential scanning calorimetry, and to exhibit locally ductile fracture at liquid nitrogen temperature.

  15. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum

    International Nuclear Information System (INIS)

    Thijs, Lore; Montero Sistiaga, Maria Luz; Wauthle, Ruben; Xie, Qingge; Kruth, Jean-Pierre; Van Humbeeck, Jan

    2013-01-01

    Selective laser melting (SLM) makes use of a high energy density laser beam to melt successive layers of metallic powders in order to create functional parts. The energy density of the laser is high enough to melt refractory metals like Ta and produce mechanically sound parts. Furthermore, the localized heat input causes a strong directional cooling and solidification. Epitaxial growth due to partial remelting of the previous layer, competitive growth mechanism and a specific global direction of heat flow during SLM of Ta result in the formation of long columnar grains with a 〈1 1 1〉 preferential crystal orientation along the building direction. The microstructure was visualized using both optical and scanning electron microscopy equipped with electron backscattered diffraction and the global crystallographic texture was measured using X-ray diffraction. The thermal profile around the melt pool was modeled using a pragmatic model for SLM. Furthermore, rotation of the scanning direction between different layers was seen to promote the competitive growth. As a result, the texture strength increased to as large as 4.7 for rotating the scanning direction 90° every layer. By comparison of the yield strength measured by compression tests in different orientations and the averaged Taylor factor calculated using the viscoplastic self-consistent model, it was found that both the morphological and crystallographic texture observed in SLM Ta contribute to yield strength anisotropy

  16. Melting method for radioactive solid wastes and device therefor

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Masahiko; Abe, Takashi; Nakayama, Junpei; Kusamichi, Tatsuhiko; Sakamoto, Koichi

    1998-11-17

    Upon melting radioactive solid wastes mixed with radioactive metal wastes and non metal materials such as concrete by cold crucible high frequency induction heating, induction coils are wound around the outer circumference of a copper crucible having a water cooling structure to which radioactive solid wastes are charged. A heating sleeve formed by a material which generates heat by an induction heating function of graphite is disposed to the inside of the crucible at a height not in contact with molten metals in the crucible vertically movably. Radioactive solid wastes are melted collectively by the induction heat of the induction coils and thermal radiation and heat conduction of the heating sleeve heated by the induction heat. With such procedures, non metal materials such as concrete and radioactive metal wastes in a mixed state can be melt collectively continuously highly economically. (T.M.)

  17. Structural Integration of Sensors/Actuators by Laser Beam Melting for Tailored Smart Components

    Science.gov (United States)

    Töppel, Thomas; Lausch, Holger; Brand, Michael; Hensel, Eric; Arnold, Michael; Rotsch, Christian

    2018-03-01

    Laser beam melting (LBM), an additive laser powder bed fusion technology, enables the structural integration of temperature-sensitive sensors and actuators in complex monolithic metallic structures. The objective is to embed a functional component inside a metal part without losing its functionality by overheating. The first part of this paper addresses the development of a new process chain for bonded embedding of temperature-sensitive sensor/actuator systems by LBM. These systems are modularly built and coated by a multi-material/multi-layer thermal protection system of ceramic and metallic compounds. The characteristic of low global heat input in LBM is utilized for the functional embedding. In the second part, the specific functional design and optimization for tailored smart components with embedded functionalities are addressed. Numerical and experimental validated results are demonstrated on a smart femoral hip stem.

  18. External cooling: The SWR 1000 severe accident management strategy. Part 1: motivation, strategy, analysis: melt phase, vessel integrity during melt-water interaction

    International Nuclear Information System (INIS)

    Kolev, Nikolay Ivanov

    2004-01-01

    This paper provides the description of the basics behind design features for the severe accident management strategy of the SWR 1000. The hydrogen detonation/deflagration problem is avoided by containment inertization. In-vessel retention of molten core debris via water cooling of the external surface of the reactor vessel is the severe accident management concept of the SWR 1000 passive plant. During postulated bounding severe accidents, the accident management strategy is to flood the reactor cavity with Core Flooding Pool water and to submerge the reactor vessel, thus preventing vessel failure in the SWR 1000. Considerable safety margins have determined by using state of the art experiment and analysis: regarding (a) strength of the vessel during the melt relocation and its interaction with water; (b) the heat flux at the external vessel wall; (c) the structural resistance of the hot structures during the long term period. Ex-vessel events are prevented by preserving the integrity of the vessel and its penetrations and by assuring positive external pressure at the predominant part of the external vessel in the region of the molten corium pool. Part 1 describes the motivation for selecting this strategy, the general description of the strategy and the part of the analysis associated with the vessel integrity during the melt-water interaction. (author)

  19. Melting of metallic intermediate level waste

    Energy Technology Data Exchange (ETDEWEB)

    Huutoniemi, Tommi; Larsson, Arne; Blank, Eva [Studsvik Nuclear AB, Nykoeping (Sweden)

    2013-08-15

    This report presents a feasibility study of a melting facility for core components and reactor internals. An overview is given of how such a facility for treatment of intermediate level waste might be designed, constructed and operated and highlights both the possibilities and challenges. A cost estimate and a risk analysis are presented in order to make a conclusion of the technical feasibility of such a facility. Based on the authors' experience in operating a low level waste melting facility, their conclusion is that without technical improvements such a facility is not feasible today. This is based on the cost of constructing and operating such a facility, in conjunction with the radiological risks associated with operation and the uncertain benefits to disposal and long term safety.

  20. Melting of metallic intermediate level waste

    International Nuclear Information System (INIS)

    Huutoniemi, Tommi; Larsson, Arne; Blank, Eva

    2013-08-01

    This report presents a feasibility study of a melting facility for core components and reactor internals. An overview is given of how such a facility for treatment of intermediate level waste might be designed, constructed and operated and highlights both the possibilities and challenges. A cost estimate and a risk analysis are presented in order to make a conclusion of the technical feasibility of such a facility. Based on the authors' experience in operating a low level waste melting facility, their conclusion is that without technical improvements such a facility is not feasible today. This is based on the cost of constructing and operating such a facility, in conjunction with the radiological risks associated with operation and the uncertain benefits to disposal and long term safety

  1. Decontamination of steel by melt refining: A literature review

    International Nuclear Information System (INIS)

    Ozturk, B.; Fruehan, R.J.

    1994-01-01

    It has been reported that a large amount of metal waste is produced annually by nuclear fuel processing and nuclear power plants. These metal wastes are contaminated with radioactive elements, such as uranium and plutonium. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain level. Because of high cost, it is important to develop an effective decontamination and volume reduction method for low level contaminated metals. It has been shown by some investigators that a melt refining technique can be used for the processing of the contaminated metal wastes. In this process, contaminated metal is melted wit a suitable flux. The radioactive elements are oxidized and transferred to a slag phase. In order to develop a commercial process it is important to have information on the thermodynamics and kinetics of the removal. Therefore, a literature search was carried out to evaluate the available information on the decontamination uranium and transuranic-contaminated plain steel, copper and stainless steel by melt a refining technique. Emphasis was given to the thermodynamics and kinetics of the removal. Data published in the literature indicate that it is possible to reduce the concentration of radioactive elements to a very low level by the melt refining method. 20 refs

  2. Surface Finish after Laser Metal Deposition

    Science.gov (United States)

    Rombouts, M.; Maes, G.; Hendrix, W.; Delarbre, E.; Motmans, F.

    Laser metal deposition (LMD) is an additive manufacturing technology for the fabrication of metal parts through layerwise deposition and laser induced melting of metal powder. The poor surface finish presents a major limitation in LMD. This study focuses on the effects of surface inclination angle and strategies to improve the surface finish of LMD components. A substantial improvement in surface quality of both the side and top surfaces has been obtained by laser remelting after powder deposition.

  3. Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting.

    Science.gov (United States)

    Van Hooreweder, Brecht; Apers, Yanni; Lietaert, Karel; Kruth, Jean-Pierre

    2017-01-01

    This paper provides new insights into the fatigue properties of porous metallic biomaterials produced by additive manufacturing. Cylindrical porous samples with diamond unit cells were produced from Ti6Al4V powder using Selective Laser Melting (SLM). After measuring all morphological and quasi-static properties, compression-compression fatigue tests were performed to determine fatigue strength and to identify important fatigue influencing factors. In a next step, post-SLM treatments were used to improve the fatigue life of these biomaterials by changing the microstructure and by reducing stress concentrators and surface roughness. In particular, the influence of stress relieving, hot isostatic pressing and chemical etching was studied. Analytical and numerical techniques were developed to calculate the maximum local tensile stress in the struts as function of the strut diameter and load. With this method, the variability in the relative density between all samples was taken into account. The local stress in the struts was then used to quantify the exact influence of the applied post-SLM treatments on the fatigue life. A significant improvement of the fatigue life was achieved. Also, the post-SLM treatments, procedures and calculation methods can be applied to different types of porous metallic structures and hence this paper provides useful tools for improving fatigue performance of metallic biomaterials. Additive Manufacturing (AM) techniques such as Selective Laser Melting (SLM) are increasingly being used for producing customized porous metallic biomaterials. These biomaterials are regularly used for biomedical implants and hence a long lifetime is required. In this paper, a set of post-built surface and heat treatments is presented that can be used to significantly improve the fatigue life of porous SLM-Ti6Al4V samples. In addition, a novel and efficient analytical local stress method was developed to accurately quantify the influence of the post

  4. An Investigation of Sintering Parameters on Titanium Powder for Electron Beam Melting Processing Optimization.

    Science.gov (United States)

    Drescher, Philipp; Sarhan, Mohamed; Seitz, Hermann

    2016-12-01

    Selective electron beam melting (SEBM) is a relatively new additive manufacturing technology for metallic materials. Specific to this technology is the sintering of the metal powder prior to the melting process. The sintering process has disadvantages for post-processing. The post-processing of parts produced by SEBM typically involves the removal of semi-sintered powder through the use of a powder blasting system. Furthermore, the sintering of large areas before melting decreases productivity. Current investigations are aimed at improving the sintering process in order to achieve better productivity, geometric accuracy, and resolution. In this study, the focus lies on the modification of the sintering process. In order to investigate and improve the sintering process, highly porous titanium test specimens with various scan speeds were built. The aim of this study was to decrease build time with comparable mechanical properties of the components and to remove the residual powder more easily after a build. By only sintering the area in which the melt pool for the components is created, an average productivity improvement of approx. 20% was achieved. Tensile tests were carried out, and the measured mechanical properties show comparatively or slightly improved values compared with the reference.

  5. Needleless Melt-Electrospinning of Polypropylene Nanofibres

    Directory of Open Access Journals (Sweden)

    Jian Fang

    2012-01-01

    Full Text Available Polypropylene (PP nanofibres have been electrospun from molten PP using a needleless melt-electrospinning setup containing a rotary metal disc spinneret. The influence of the disc spinneret (e.g., disc material and diameter, operating parameters (e.g., applied voltage, spinning distance, and a cationic surfactant on the fibre formation and average fibre diameter were examined. It was shown that the metal material used for making the disc spinneret had a significant effect on the fibre formation. Although the applied voltage had little effect on the fibre diameter, the spinning distance affected the fibre diameter considerably, with shorter spinning distance resulting in finer fibres. When a small amount of cationic surfactant (dodecyl trimethyl ammonium bromide was added to the PP melt for melt-electrospinning, the fibre diameter was reduced considerably. The finest fibres produced from this system were 400±290 nm. This novel melt-electrospinning setup may provide a continuous and efficient method to produce PP nanofibres.

  6. Fragmentation of low-melting metals by collapsing steam bubbles

    International Nuclear Information System (INIS)

    Benz, R.

    1979-08-01

    When a hot melt meets a vaporable liquid of lower temperature, explosive vaporisation of the cooler liquid may be the result. This is called a steam explosion if a substantial amount of thermal energy is converted into mechanical energy. One important step in understanding about steam explosions is to explain the surface increase of the hot melt. There are several competing fragmentation hypotheses, but so far there has been no model to describe fragmentation criteria as well as the time curve of surface increase on the basis of physical processes. An overall model is now given for one of the possible fragmentation mechanisms, i.e. the division of the melt by collapsing steam bubbles. The model estimates the surface increase of the melt on the basis of heavy supercooled boiling, the heat transfer connected with it, the transfer of mechanical energy during steam bubble collapse, and the solidification of the melt. The results of the calculations have shown that basic experimental observations, e.g. time and extent of fragmentation, are well presented in the model with regard to their order of magnitude. The model presents a qualitatively correct description of the effects of important influencing factors, e.g. supercooling of the coolant or initial temperature of the melt. (orig.) [de

  7. Reduced energy consumption for melting in foundries

    Energy Technology Data Exchange (ETDEWEB)

    Skov-Hansen, S.

    2007-09-15

    By improving the gating technology in traditional gating systems it is possible to reduce the amount of metal to be re-melted, and hence reduce the energy consumption for melting in foundries. Traditional gating systems are known for a straight tapered down runner a well base and 90 deg. bends in the runner system. In the streamlined gating systems there are no sharp changes in direction and a large effort is done to confine and control the flow of the molten metal during mould filling. Experiments in real production lines have proven that using streamlined gating systems improves yield by decreasing the poured weight compared to traditional layouts. In a layout for casting of valve housings in a vertically parted mould the weight of the gating system was reduced by 1,1kg which is a 20% weight reduction for the gating system. In a layout for horizontally parted moulds the weight of the gating system has been reduced by 3,7kg which is a weight reduction of 60% for the gating system. The experiments casting valve housings in ductile iron also proved that it is possible to lower the pouring temperature from 1400 deg. C to 1300 deg. C without the risk of cold runs. Glass plate fronted moulds have been used to study the flow of melt during mould filling. These experiments have also been used for studying the flow pattern when ceramic filters are used. The thorough study of the use of filters revealed that the metal passing through the filter is divided into a number of small jets. This proves that filters do not have the claimed positive effect on the flow of metal. The volumes necessary on either side of the filter is not filled till a backpressure is build up and results in formation of pressure shocks when backfilled. These pressure shocks result in more turbulence inside the casting than the same gating system with no filter. Not using filters can mean a reduction in poured weight of 0,6kg. To examine if the experiments using glass plate fronted moulds give

  8. Erosion of melt layers developed during a plasma disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, A.; Konkashbaev, I.

    1995-01-01

    Material erosion of plasma-facing components during a tokamak disruption is a serious problem that limits reactor operation and economical reactor lifetime. In particular, metallic low-Z components such as Be will be subjected to severe melting during disruptions and edge localized modes (ELMs). Loss of the developed melt layer will critically shorten the lifetime of these components, severely contaminate the plasma, and seriously inhibit successful and reliable operation of the reactor. In this study mechanisms responsible for melt-layer loss during a disruption are modeled and evaluated. Implications of melt-layer loss on the performance of metallic facing components in the reactor environment are discussed. (orig.)

  9. Erosion of melt layers developed during a plasma disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, A.; Konkashbaev, I.

    1994-08-01

    Material erosion of plasma-facing components during a tokamak disruption is a serious problem that limits reactor operation and economical reactor lifetime. In particular, metallic low-Z components such as Be will be subjected to severe melting during disruptions and edge localized models (ELMs). Loss of the developed melt layer will critically shorten the lifetime of these components, severely contaminate the plasma, and seriously inhibit successful and reliable operation of the reactor. In this study mechanisms responsible for melt-layer loss during a disruption are modeled and evaluated. Implications of melt-layer loss on the performance of metallic facing components in the reactor environment are discussed

  10. Industrial opportunities of controlled melt flow during glass melting, part 1: Melt flow evaluation

    Czech Academy of Sciences Publication Activity Database

    Dyrčíková, Petra; Hrbek, Lukáš; Němec, Lubomír

    2014-01-01

    Roč. 58, č. 2 (2014), s. 111-117 ISSN 0862-5468 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melting * controlled flow * space utilization Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.435, year: 2014 http://www.ceramics-silikaty.cz/2014/pdf/2014_02_111.pdf

  11. Modeling of Melting and Resolidification in Domain of Metal Film Subjected to a Laser Pulse

    Directory of Open Access Journals (Sweden)

    Majchrzak E.

    2016-03-01

    Full Text Available Thermal processes in domain of thin metal film subjected to a strong laser pulse are discussed. The heating of domain considered causes the melting and next (after the end of beam impact the resolidification of metal superficial layer. The laser action (a time dependent bell-type function is taken into account by the introduction of internal heat source in the energy equation describing the heat transfer in domain of metal film. Taking into account the extremely short duration, extreme temperature gradients and very small geometrical dimensions of the domain considered, the mathematical model of the process is based on the dual phase lag equation supplemented by the suitable boundary-initial conditions. To model the phase transitions the artificial mushy zone is introduced. At the stage of numerical modeling the Control Volume Method is used. The examples of computations are also presented.

  12. Melting decontamination and free release of metal waste at Studsvik RadWaste Co. in Sweden

    International Nuclear Information System (INIS)

    Kawatsuma, Shinji; Ishikawa, Keiji; Matsubara, Tatsuo; Donomae, Yasushi; Imagawa, Yasuhiro

    2006-01-01

    The Studsvik RadWaste Co. in Sweden was visited on August 29, 2005 by members of radioactive waste and decommissioning subgroup of central safety task force in old Japan Nuclear Cycle Development Institute as 'Overseas investigation'. The visit afforded us the chance to survey melting and decontaminating of metallic waste in this company and the status of free release. Domestic and foreign radioactive metallic waste is accepted in this company after 1987, and the majority of the decontaminated waste have been released freely. In the background of the big effort of this company and the strong leadership of the regulator (SSI: Swedish radiation protection Authority), prosperous operation was able to have been achieved. This survey was done based on 'Free release of radioactive metallic waste in Europe: the free release experience for 17 years at Studsvik RadWaste Co. in Sweden' by Dr. J. Lorenzen. (author)

  13. Melting and solidification behavior of Cu/Al and Ti/Al bimetallic core/shell nanoparticles during additive manufacturing by molecular dynamics simulation

    Science.gov (United States)

    Rahmani, Farzin; Jeon, Jungmin; Jiang, Shan; Nouranian, Sasan

    2018-05-01

    Molecular dynamics (MD) simulations were performed to investigate the role of core volume fraction and number of fusing nanoparticles (NPs) on the melting and solidification of Cu/Al and Ti/Al bimetallic core/shell NPs during a superfast heating and slow cooling process, roughly mimicking the conditions of selective laser melting (SLM). One recent trend in the SLM process is the rapid prototyping of nanoscopically heterogeneous alloys, wherein the precious core metal maintains its particulate nature in the final manufactured part. With this potential application in focus, the current work reveals the fundamental role of the interface in the two-stage melting of the core/shell alloy NPs. For a two-NP system, the melting zone gets broader as the core volume fraction increases. This effect is more pronounced for the Ti/Al system than the Cu/Al system because of a larger difference between the melting temperatures of the shell and core metals in the former than the latter. In a larger six-NP system (more nanoscopically heterogeneous), the melting and solidification temperatures of the shell Al roughly coincide, irrespective of the heating or cooling rate, implying that in the SLM process, the part manufacturing time can be reduced due to solidification taking place at higher temperatures. The nanostructure evolution during the cooling of six-NP systems is further investigated. [Figure not available: see fulltext.

  14. Corium melt researches at VESTA test facility

    Directory of Open Access Journals (Sweden)

    Hwan Yeol Kim

    2017-10-01

    Full Text Available VESTA (Verification of Ex-vessel corium STAbilization and VESTA-S (-small test facilities were constructed at the Korea Atomic Energy Research Institute in 2010 to perform various corium melt experiments. Since then, several tests have been performed for the verification of an ex-vessel core catcher design for the EU-APR1400. Ablation tests of an impinging ZrO2 melt jet on a sacrificial material were performed to investigate the ablation characteristics. ZrO2 melt in an amount of 65–70 kg was discharged onto a sacrificial material through a well-designed nozzle, after which the ablation depths were measured. Interaction tests between the metallic melt and sacrificial material were performed to investigate the interaction kinetics of the sacrificial material. Two types of melt were used: one is a metallic corium melt with Fe 46%, U 31%, Zr 16%, and Cr 7% (maximum possible content of U and Zr for C-40, and the other is a stainless steel (SUS304 melt. Metallic melt in an amount of 1.5–2.0 kg was delivered onto the sacrificial material, and the ablation depths were measured. Penetration tube failure tests were performed for an APR1400 equipped with 61 in-core instrumentation penetration nozzles and extended tubes at the reactor lower vessel. ZrO2 melt was generated in a melting crucible and delivered down into an interaction crucible where the test specimen is installed. To evaluate the tube ejection mechanism, temperature distributions of the reactor bottom head and in-core instrumentation penetration were measured by a series of thermocouples embedded along the specimen. In addition, lower vessel failure tests for the Fukushima Daiichi nuclear power plant are being performed. As a first step, the configuration of the molten core in the plant was investigated by a melting and solidification experiment. Approximately 5 kg of a mixture, whose composition in terms of weight is UO2 60%, Zr 10%, ZrO2 15%, SUS304 14%, and B4C 1%, was melted in a

  15. Stiffness management of sheet metal parts using laser metal deposition

    Science.gov (United States)

    Bambach, Markus; Sviridov, Alexander; Weisheit, Andreas

    2017-10-01

    Tailored blanks are established solutions for the production of load-adapted sheet metal components. In the course of the individualization of production, such semi-finished products are gaining importance. In addition to tailored welded blanks and tailored rolled blanks, patchwork blanks have been developed which allow a local increase in sheet thickness by welding, gluing or soldering patches onto sheet metal blanks. Patchwork blanks, however, have several limitations, on the one hand, the limited freedom of design in the production of patchwork blanks and, on the other hand, the fact that there is no optimum material bonding with the substrate. The increasing production of derivative and special vehicles on the basis of standard vehicles, prototype production and the functionalization of components require solutions with which semi-finished products and sheet metal components can be provided flexibly with local thickenings or functional elements with a firm metallurgical bond to the substrate. An alternative to tailored and patchwork blanks is, therefore, a free-form reinforcement applied by additive manufacturing via laser metal deposition (LMD). By combining metal forming and additive manufacturing, stiffness can be adapted to the loads based on standard components in a material-efficient manner and without the need to redesign the forming tools. This paper details a study of the potential of stiffness management by LMD using a demonstrator part. Sizing optimization is performed and part distortion is taken into account to find an optimal design for the cladding. A maximum stiffness increase of 167% is feasible with only 4.7% additional mass. Avoiding part distortion leads to a pareto-optimal design which achieves 95% more stiffness with 6% added mass.

  16. Melt inclusions: Chapter 6

    Science.gov (United States)

    ,; Lowenstern, J. B.

    2014-01-01

    Melt inclusions are small droplets of silicate melt that are trapped in minerals during their growth in a magma. Once formed, they commonly retain much of their initial composition (with some exceptions) unless they are re-opened at some later stage. Melt inclusions thus offer several key advantages over whole rock samples: (i) they record pristine concentrations of volatiles and metals that are usually lost during magma solidification and degassing, (ii) they are snapshots in time whereas whole rocks are the time-integrated end products, thus allowing a more detailed, time-resolved view into magmatic processes (iii) they are largely unaffected by subsolidus alteration. Due to these characteristics, melt inclusions are an ideal tool to study the evolution of mineralized magma systems. This chapter first discusses general aspects of melt inclusions formation and methods for their investigation, before reviewing studies performed on mineralized magma systems.

  17. Evaporation-induced gas-phase flows at selective laser melting

    Science.gov (United States)

    Zhirnov, I.; Kotoban, D. V.; Gusarov, A. V.

    2018-02-01

    Selective laser melting is the method for 3D printing from metals. A solid part is built from powder layer-by-layer. A continuum-wave laser beam scans every powder layer to fuse powder. The process is studied with a high-speed CCD camera at the frame rate of 104 fps and the resolution up to 5 µm per pixel. Heat transfer and evaporation in the laser-interaction zone are numerically modeled. Droplets are ejected from the melt pool in the direction around the normal to the melt surface and the powder particles move in the horizontal plane toward the melt pool. A vapor jet is observed in the direction of the normal to the melt surface. The velocities of the droplets, the powder particles, and the jet flow and the mass loss due to evaporation are measured. The gas flow around the vapor jet is calculated by Landau's model of submerged jet. The measured velocities of vapor, droplets, and powder particles correlate with the calculated flow field. The obtained results show the importance of evaporation and the flow of the vapor and the ambient gas. These gas-dynamic phenomena can explain the formation of the denudated zones and the instability at high-energy input.

  18. Corrosion of metals and alloys in sulfate melts at 750 C

    Science.gov (United States)

    Misra, A. K.

    1986-01-01

    The corrosion of Ni, Co, Ni-10Cr, Co-21Cr, and IN738 was studied at 750 C in the presence of molten sulfate mixtures (Na2SO4-Li2SO4 and Na2SO4-CoSO4) and in an atmosphere consisting of O2 + 0.12 percent SO2-SO3. The corrosion was observed to be similar for both Na2SO4-Li2SO4 and Na2SO4-CoSO4 melts. The corrosion of Ni and Co took place by the formation of a mixed oxide plus sulfide scale, very similar to the corrosion in SO2 or SO3 alone. The initial stage for the corrosion of Ni-10Cr involved the formation of a thick NiO + Ni3S2 duplex scale, and Cr sulfide was formed during the later stages. A pitting type of morphology was observed for both Co-21Cr and IN738. The pit was Cr sulfide at the beginning, and subsequently the sulfides oxidized to Cr2O3. A base-metal oxide layer was present above the pit, and this was observed to be formed very early in the corrosion process. A mechanism is proposed to explain this. In general, the formation of sulfides appears to be the primary mode of degradation in mixed sulfide melts.

  19. New Approach in Filling of Fixed-Point Cells: Case Study of the Melting Point of Gallium

    Science.gov (United States)

    Bojkovski, J.; Hiti, M.; Batagelj, V.; Drnovšek, J.

    2008-02-01

    The typical way of constructing fixed-point cells is very well described in the literature. The crucible is loaded with shot, or any other shape of pure metal, inside an argon-filled glove box. Then, the crucible is carefully slid into a fused-silica tube that is closed at the top with an appropriate cap. After that, the cell is removed from the argon glove box and melted inside a furnace while under vacuum or filled with an inert gas like argon. Since the metal comes as shot, or in some other shape such as rods of various sizes, and takes more volume than the melted material, it is necessary to repeat the procedure until a sufficient amount of material is introduced into the crucible. With such a procedure, there is the possibility of introducing additional impurities into the pure metal with each cycle of melting the material and putting it back into the glove box to fill the cell. Our new approach includes the use of a special, so-called dry-box system, which is well known in chemistry. The atmosphere inside the dry box contains less than 20 ppm of water and less than 3 ppm of oxygen. Also, the size of the dry box allows it to contain a furnace for melting materials, not only for gallium but for higher-temperature materials as well. With such an approach, the cell and all its parts (pure metal, graphite, fused-silica tube, and cap) are constantly inside the controlled atmosphere, even while melting the material and filling the crucible. With such a method, the possibility of contaminating the cell during the filling process is minimized.

  20. Solid-assisted melt disintegration (SAMD), a novel technique for metal powder production

    International Nuclear Information System (INIS)

    Akhlaghi, F.; Esfandiari, H.

    2007-01-01

    A new process termed 'solid-assisted melt disintegration (SAMD)' has been developed for the preparation of aluminum alloy powder particles. The method consists of introducing and mixing a specified amount of as-received alumina particles (in the range of +700 to 500 μm) in A356 aluminum melt at the temperature of 715 deg. C. Melt disintegration occurs in 10 min by kinetic energy transfer from a rotating impeller (450 rpm) to the metal via the solid atomizing medium (alumina particles). The resulting mixture of aluminum droplets and alumina particles was cooled in air and screened through 300 μm sieve to separate alumina from solidified aluminum powder particles. A356 aluminum alloy was also gas atomized by using a free-fall atomizer operating by nitrogen gas at the pressure of 1.1 MPa and the sub-300 μm of the produced powder was used as a base of comparison. The SAMD produced powders of diameter above 53 μm were mostly spherical while powders less than 53 μm showed various elongated shapes. No evidence was found for satelliting of small particles on to large ones or agglomerated particles. While gas atomized particles in the +53 μm sieve size range showed some signs of porosity, the SAMD particles were dense and did not show any signs of internal porosity in any of the sieve fractions investigated. Comparison of the microstructure of the SAMD and gas-atomized powders revealed that for the same size powder of A356 alloy, the former exhibited a coarser microstructure as a result of a slower cooling rate

  1. Validation of the THIRMAL-1 melt-water interaction code

    Energy Technology Data Exchange (ETDEWEB)

    Chu, C.C.; Sienicki, J.J.; Spencer, B.W. [Argonne National Lab., IL (United States)

    1995-09-01

    The THIRMAL-1 computer code has been used to calculate nonexplosive LWR melt-water interactions both in-vessel and ex-vessel. To support the application of the code and enhance its acceptability, THIRMAL-1 has been compared with available data from two of the ongoing FARO experiments at Ispra and two of the Corium Coolant Mixing (CCM) experiments performed at Argonne. THIRMAL-1 calculations for the FARO Scoping Test and Quenching Test 2 as well as the CCM-5 and -6 experiments were found to be in excellent agreement with the experiment results. This lends confidence to the modeling that has been incorporated in the code describing melt stream breakup due to the growth of both Kelvin-Helmholtz and large wave instabilities, the sizes of droplets formed, multiphase flow and heat transfer in the mixing zone surrounding and below the melt metallic phase. As part of the analysis of the FARO tests, a mechanistic model was developed to calculate the prefragmentation as it may have occurred when melt relocated from the release vessel to the water surface and the model was compared with the relevant data from FARO.

  2. Microstructure and micro-hardness analyses of titanium alloy Ti-6Al-4V parts manufactured by selective laser melting

    Directory of Open Access Journals (Sweden)

    Lancea Camil

    2017-01-01

    Full Text Available Selective Laser Melting (SLM is one of the powder based additive manufacturing technologies and it is, as well, the most rapidly growing technique in Rapid Prototyping. In this paper is presented a microstructure analysis using Scanning Electron Microscope (LEO 1525 SEM, of Ti6Al4V parts exposed into a corrosion environment. The corrosion environment was generated using a salt chamber with 5% and 10% NaCl concentration and an ACS-Sunrise climatic chamber. The parts were also subjected to tests in order to determine their micro-hardness, followed by a statistical processing of the obtained data. The parts, having a lattice structure, were built on a Selective Laser Melting machine.

  3. Fundamental Aspects of Selective Melting Additive Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    van Swol, Frank B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    Certain details of the additive manufacturing process known as selective laser melting (SLM) affect the performance of the final metal part. To unleash the full potential of SLM it is crucial that the process engineer in the field receives guidance about how to select values for a multitude of process variables employed in the building process. These include, for example, the type of powder (e.g., size distribution, shape, type of alloy), orientation of the build axis, the beam scan rate, the beam power density, the scan pattern and scan rate. The science-based selection of these settings con- stitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy, reactive, dynamic wetting followed by re-solidification. In addition, inherent to the process is its considerable variability that stems from the powder packing. Each time a limited number of powder particles are placed, the stacking is intrinsically different from the previous, possessing a different geometry, and having a different set of contact areas with the surrounding particles. As a result, even if all other process parameters (scan rate, etc) are exactly the same, the shape and contact geometry and area of the final melt pool will be unique to that particular configuration. This report identifies the most important issues facing SLM, discusses the fundamental physics associated with it and points out how modeling can support the additive manufacturing efforts.

  4. Studies on the preparation of thorium metal sponge from thorium oxalate

    International Nuclear Information System (INIS)

    Vijay, P.L.; Sehra, J.C.; Sundaram, C.V.; Gurumurthy, K.R.; Raghavan, R.V.

    1978-01-01

    The results of investigations carried out on the production of high purity thorium metal sponge, starting with thorium oxalate are presented. The flow sheet includes chlorination of thorium oxalate, purification of raw thorium tetrachloride, magnesium reduction of anhydrous thorium tetrachloride, slag metal separation, vacuum distillation for removal of residual MgCl 2 and excess magnesium, and consolidation of the metal sponge. Studies have been carried out to investigate the optimum chlorination efficiency and chlorine utilization attainable using different chlorinating agents, and to compare the quality of the sponge obtained with single and double distilled chloride. The overall process efficiency under optimum conditions was 81%. The thorium metal button, prepared from the sponge by arc-melting, analysed : O 2 - 847, N 2 - 20, C - 179, Mg - 100, Fe - 49, Ni<50, Al - 11, Cr - 7 (expressed in parts per million parts of thorium). The button could be further purified by electron beam melting to improve its ductility. (author)

  5. Metal-ceramic bond strength of Co-Cr alloy fabricated by selective laser melting.

    Science.gov (United States)

    Xiang, Nan; Xin, Xian-Zhen; Chen, Jie; Wei, Bin

    2012-06-01

    This study was to evaluated the metal-ceramic bond strength of a Co-Cr dental alloy prepared using a selective laser melting (SLM) technique. Two groups comprised of twenty Co-Cr metal bars each were prepared using either a SLM or traditional lost-wax casting method. Ten bars from each group were moulded into standard ISO 9693:1999 dimensions of 25 mm × 3 mm × 0.5 mm with 1.1 mm of porcelain fused onto an 8 mm × 3 mm rectangular area in the centre of each bar. Metal-ceramic bonding was assessed using a three-point bending test. Fracture mode analysis and area fraction of adherence porcelain (AFAP) were determined by measuring Si content of specimens by SEM/EDS. Student's t-test within the groups demonstrated no significant difference for the mean bond strength between the SLM and traditional cast sample groups. While SEM/EDS analysis indicated a mixed fracture mode on the debonding interface of both the SLM and the cast groups, the SLM group showed significantly more porcelain adherence than the control group (p<0.05). The SLM metal-ceramic system exhibited a bonding strength that exceeds the requirement of ISO 9691:1999(E) and it even showed a better behaviour in porcelain adherence test comparable to traditional cast methods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Acceleration Signal Characteristics for Intuitional Mass Analysis of Metallic Loose Parts

    International Nuclear Information System (INIS)

    Lee, Kwang-Hyun; Jung, Chang-Gyu

    2016-01-01

    Nuclear power plants (NPPs) have operated LPMS (Loose Parts Monitoring System) for early detection of the possible presence of metallic parts in the reactor coolant system (RCS); however, analysis of the metallic impact wave characteristics in the LPMS is an important issue because information, such as the mass of the metallic part and the impact location, is not provided. Most studies have concentrated on fieldwork using the frequency characteristics for the analysis of the metallic part mass. Thus, the field engineers cannot analyze signals without special software and access to the system. This paper is intended to introduce a process of intuitional mass analysis using the attenuation rate of the acceleration signal and the intervals between peak signals. Most studies related to mass analysis of a metallic part impact signal in LPMS have used the frequency spectrum. This paper presents a method of using the acceleration signal characteristics for intuitional mass analysis of loose metallic parts. With the method proposed in this paper, because the mass of a metallic part can be understood intuitionally without any special analysis program, intuitional analysis used in parallel with frequency spectrum analysis will be in effect

  7. Acceleration Signal Characteristics for Intuitional Mass Analysis of Metallic Loose Parts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang-Hyun; Jung, Chang-Gyu [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Nuclear power plants (NPPs) have operated LPMS (Loose Parts Monitoring System) for early detection of the possible presence of metallic parts in the reactor coolant system (RCS); however, analysis of the metallic impact wave characteristics in the LPMS is an important issue because information, such as the mass of the metallic part and the impact location, is not provided. Most studies have concentrated on fieldwork using the frequency characteristics for the analysis of the metallic part mass. Thus, the field engineers cannot analyze signals without special software and access to the system. This paper is intended to introduce a process of intuitional mass analysis using the attenuation rate of the acceleration signal and the intervals between peak signals. Most studies related to mass analysis of a metallic part impact signal in LPMS have used the frequency spectrum. This paper presents a method of using the acceleration signal characteristics for intuitional mass analysis of loose metallic parts. With the method proposed in this paper, because the mass of a metallic part can be understood intuitionally without any special analysis program, intuitional analysis used in parallel with frequency spectrum analysis will be in effect.

  8. Induction melting of simulated transuranic waste

    International Nuclear Information System (INIS)

    Tenaglia, R.D.; McCall, J.L.

    1983-06-01

    Coreless induction melting was investigated as a method to melt and consolidate waste material representative of the transuranic waste (TRU) stored at the Idaho National Engineering Laboratory (INEL). Waste material was introduced onto the surface of a molten cast iron bath in a coreless induction furnace. Waste metallics were incorporated into the bath. Noncombustibles formed a slag which was poured or skimmed from the bath surface. Stack sampling was performed to characterize the off-gas and particulate matter evolved. Experimental melting tests were performed for a variety of types of wastes including metallics, chemical sludge, soil, concrete, and glass. Each test also included a representative level of combustible materials consisting of paper, wood, cloth, polyvinyl chloride and polyethylene. Metallic wastes were readily processed by induction melting with a minimum of slag production. Test waste consisting primarily of chemical sludge provided fluid slags which could be poured from the bath surface. Processing of wastes consisting of soil, concrete, or glass was limited by the inability to achieve fluid slags. It appears from test results that coreless induction melting is a feasible method to process INEL-type waste materials if two problems can be resolved. First, slag fluidity must be improved to facilitate the collection of slags formed from soil, concrete, or glass containing wastes. Secondly, refractory life must be further optimized to permit prolonged processing of the waste materials. The use of a chrome-bearing high-alumina refractory was found to resist slag line attach much better than a magnesia refractory, although some attack was still noted

  9. A spectroscopic study of uranium species formed in chloride melts

    International Nuclear Information System (INIS)

    Volkovich, Vladimir A.; Bhatt, Anand I.; May, Iain; Griffiths, Trevor R.; Thied, Robert C.

    2002-01-01

    The chlorination of uranium metal or uranium oxides in chloride melts offers an acceptable process for the head-end of pyrochemical reprocessing of spent nuclear fuels. The reactions of uranium metal and ceramic uranium dioxide with chlorine and with hydrogen chloride were studied in the alkali metal chloride melts, NaCl-KCl at 973K, NaCl-CsCl between 873 and 923K and LiCl-KCl at 873K. The uranium species formed therein were characterized from their electronic absorption spectra measured in situ. The kinetic parameters of the reactions depend on melt composition, temperature and chlorinating agent used. The reaction of uranium dioxide with oxygen in the presence of alkali metal chlorides results in the formation of alkali metal uranates. A spectroscopic study, between 723 and 973K, on their formation and their solutions was undertaken in LiCl, LiCl-KCl eutectic and NaCl-CsCl eutectic melts. The dissolution of uranium dioxide in LiCl-KCl eutectic at 923K containing added aluminium trichloride in the presence of oxygen has also been investigated. In this case, the reaction leads to the formation of uranyl chloride species. (author)

  10. Microstructures induced by excimer laser surface melting of the SiC{sub p}/Al metal matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Qian, D.S., E-mail: Daishu.qian@postgrad.manchester.ac.uk; Zhong, X.L.; Yan, Y.Z.; Hashimoto, T.; Liu, Z.

    2017-08-01

    Highlights: • Microstructural analysis of the excimer laser-melted SiC{sub p}/AA2124;. • Analytical, FEM, and SPH simulation of the laser-material interaction;. • Mechanism of the formation of the laser-induced microstructure. - Abstract: Laser surface melting (LSM) was carried out on the SiC{sub p}/Al metal matrix composite (MMC) using a KrF excimer laser with a fluence of 7 J/cm{sup 2}. The re-solidification microstructure was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with energy dispersive X-ray detector, and X-ray diffraction (XRD) analysis. It was found that a 2.5 μm thick melted layer was formed in the near-surface region, in which dissolution of the intermetallics and removal of the SiC particles occurred. The thermal and material response upon laser irradiation was simulated using three models, i.e. analytical model, finite element model (FEM) and smoothed-particle hydrodynamics (SPH) model. The effect of SiC particles on the LSM process, the mechanism of the SiC removal and the re-solidification microstructures in the melted layer were discussed. The simulation results were in good agreement with the experimental results and contributed to the generic understanding of the re-solidification microstructures induced by ns-pulsed lasers.

  11. Prereduction and melting of domestic titaniferous materials

    Science.gov (United States)

    Nafziger, R. H.; Jordan, R. R.

    1983-03-01

    Two domestic ilmenites and one titaniferous magnetite were prereduced by the United States Department of the Interior, Bureau of Mines, in a batch rotary kiln with coal char to assess the feasibility of this technique in improving melting operations and subsequent electric furnace processing. All three prereduced titaniferous materials were melted satisfactorily in an electric arc furnace to produce iron as a metal suitable for further refining to steel; metallizations ranging from 63 to 83 pct of the iron oxides were achieved. The ilmenites yielded titanium enriched slags that were amenable to further processing by conventional methods. Prereduction decreased electrode consumption during furnace operation and also conserved expensive electrical energy that otherwise must be used to reduce and melt totally the entire titaniferous materials charge.

  12. Development and licensing of a melting plant for Chernobyl scrap

    International Nuclear Information System (INIS)

    Sappok, M.; Zunk, H.; Fashevsky, K.A.

    1998-01-01

    One decade after the accident at unit 4 of the Chernobyl nuclear power station, a melting plant for radioactively contaminated metallic materials, the so-called SURF facility, is being planned and licensed for erection in the direct neighbourhood of the NPP area. Main goal is the recycling of the material largely decontaminated by the melting process, by means of manufacturing of casks and containers for waste disposal and of shielding equipment. The melting plant will be part of the Ukrainian waste handling centre (CPPRO). The technology is based on the long-term experience gained at Siempelkamp's CARLA plant in Krefeld. Within 1995 and 1996 the licensing conditions were defined, the licensing documents prepared and the formal procedure initiated. The complex is scheduled to start operation in 2001, in case the necessary financing is allocated. To this end the proposed site of the facility has undergone the state assessment. The technical documentation for construction is at the stage of development. (author)

  13. Melt propagation in dry core debris beds

    International Nuclear Information System (INIS)

    Dosanjh, S.S.

    1989-01-01

    During severe light water reactor accidents like Three Mile Island Unit 2, the fuel rods can fragment and thus convert the reactor core into a large particle bed. The postdryout meltdown of such debris beds is examined. A two-dimensional model that considers the presence of oxidic (UO 2 and ZrO 2 ) as well as metallic (e.g., zirconium) constituents is developed. Key results are that a dense metallic crust is created near the bottom of the bed as molten materials flow downward and freeze; liquid accumulates above the blockage and, if zirconium is present, the pool grows rapidly as molten zirconium dissolved both UO 2 and ZrO 2 particles; if the melt wets the solid, a fraction of the melt flows radially outward under the action of capillary forces and freezes near the radial boundary; in a nonwetting system, all of the melt flows into the bottom of the bed; and when zirconium and iron are in intimate contact and the zirconium metal atomic fraction is > 0.33, these metals can liquefy and flow out of the bed very early in the meltdown sequence

  14. Corrosion-electrochemical behavior of nickel in an alkali metal carbonate melt under a chlorine-containing atmosphere

    Science.gov (United States)

    Nikitina, E. V.; Kudyakov, V. Ya.; Malkov, V. B.; Plaksin, S. V.

    2013-08-01

    The corrosion-electrochemical behavior of a nickel electrode is studied in the melt of lithium, sodium, and potassium (40: 30: 30 mol %) carbonates in the temperature range 500-600°C under an oxidizing atmosphere CO2 + 0.5O2 (2: 1), which is partly replaced by gaseous chlorine (30, 50, 70%) in some experiments. In other experiments, up to 5 wt % chloride of sodium peroxide is introduced in a salt melt. A change in the gas-phase composition is shown to affect the mechanism of nickel corrosion.

  15. An Investigation of Sintering Parameters on Titanium Powder for Electron Beam Melting Processing Optimization

    Directory of Open Access Journals (Sweden)

    Philipp Drescher

    2016-12-01

    Full Text Available Selective electron beam melting (SEBM is a relatively new additive manufacturing technology for metallic materials. Specific to this technology is the sintering of the metal powder prior to the melting process. The sintering process has disadvantages for post-processing. The post-processing of parts produced by SEBM typically involves the removal of semi-sintered powder through the use of a powder blasting system. Furthermore, the sintering of large areas before melting decreases productivity. Current investigations are aimed at improving the sintering process in order to achieve better productivity, geometric accuracy, and resolution. In this study, the focus lies on the modification of the sintering process. In order to investigate and improve the sintering process, highly porous titanium test specimens with various scan speeds were built. The aim of this study was to decrease build time with comparable mechanical properties of the components and to remove the residual powder more easily after a build. By only sintering the area in which the melt pool for the components is created, an average productivity improvement of approx. 20% was achieved. Tensile tests were carried out, and the measured mechanical properties show comparatively or slightly improved values compared with the reference.

  16. Electropolishing of Re-melted SLM Stainless Steel 316L Parts Using Deep Eutectic Solvents: 3 × 3 Full Factorial Design

    Science.gov (United States)

    Alrbaey, K.; Wimpenny, D. I.; Al-Barzinjy, A. A.; Moroz, A.

    2016-07-01

    This three-level three-factor full factorial study describes the effects of electropolishing using deep eutectic solvents on the surface roughness of re-melted 316L stainless steel samples produced by the selective laser melting (SLM) powder bed fusion additive manufacturing method. An improvement in the surface finish of re-melted stainless steel 316L parts was achieved by optimizing the processing parameters for a relatively environmentally friendly (`green') electropolishing process using a Choline Chloride ionic electrolyte. The results show that further improvement of the response value-average surface roughness ( Ra) can be obtained by electropolishing after re-melting to yield a 75% improvement compared to the as-built Ra. The best Ra value was less than 0.5 μm, obtained with a potential of 4 V, maintained for 30 min at 40 °C. Electropolishing has been shown to be effective at removing the residual oxide film formed during the re-melting process. The material dissolution during the process is not homogenous and is directed preferentially toward the iron and nickel, leaving the surface rich in chromium with potentially enhanced properties. The re-melted and polished surface of the samples gave an approximately 20% improvement in fatigue life at low stresses (approximately 570 MPa). The results of the study demonstrate that a combination of re-melting and electropolishing provides a flexible method for surface texture improvement which is capable of delivering a significant improvement in surface finish while holding the dimensional accuracy of parts within an acceptable range.

  17. Mechanisms of liquid-metal embrittlement

    International Nuclear Information System (INIS)

    Popovich, V.V.

    1979-01-01

    The mechanism of the embrittlement of metals and alloys during deformation in contact with liquid metals are discussed. With 20Kh13 steel in a Pb-Sn melt and polycrystalline Al in the presence of various mercury solutions a.s examples, considered are the three main processes - adsorption, corrosion (dissolution), formation of new phases which cause the disintegration of materials under the action of liquid-metallic media. Presented are data on plastic ductile and strength properties of the above materials in the presence of liquid-metallic media. A model is described that takes into account the effect of the medium upon the plastic deformation and the part the medium plays in liquid-metallic embrittlement

  18. Study on plasma melting treatment of crucibles, ceramic filter elements, asbestos, and fly ash

    International Nuclear Information System (INIS)

    Hoshi, Akiko; Nakasio, Nobuyuki; Nakajima, Mikio

    2004-01-01

    The Japan Atomic Energy Research Institute (JAERI) decided to adopt an advanced volume reduction program for low-level radioactive wastes. In this program, inorganic wastes are converted to stable glassy products suitable for disposal by a plasma melting system in the Waste Volume Reduction Facilities (WVRF). High melting point wastes such as refractories are excluded from the plasma melting treatment in the WVRF, and wastes difficult to handle such as asbestos are also excluded. However, it is describable to apply the plasma melting treatment to these wastes for stabilization and volume reduction from the viewpoint of disposal. In this paper, plasma melting test of crucibles, ceramic filter elements, asbestos, and simulated fly ashes were carried out as a part of technical support for WVRF. The plasma melting treatment was applicable for crucibles and asbestos because homogeneous and glassy products were obtained by controlling of waste and loading condition. It was found that SiC in ceramic filter elements was volatile with a plasma torch with inert gas, and adding reducer was ineffective against stabilizing volatile metals such as Zn, Pb in a solidified product in the melting test of simulated fly ash. (author)

  19. Study of behaviour of lanthanum- and yttrium electrodes in chloride melts

    International Nuclear Information System (INIS)

    Shkol'nikov, S.I.; Tolypin, E.S.; Yur'ev, B.P.

    1984-01-01

    A study was made on the lanthanum- and yttrium behaviour in a mixture of molten potassium- and sodium chlorides at various temperatures. It is shown that the lanthanum- and yttrium behaviour in KCl-NaCl melt is similar to the behaviour of other metals. Their corrosion rate is much higher as compared to other metals and it grows rapidly with increasing melt temperature. The temperature growth by 200 deg C results in an increase in the corrosion rate almost by an order. The potentials of lanthanum- and yttrium electrodes at the instant they are immersed in the melt have more negative values than the potentials of alkali metals under similar conditions

  20. Electrochemical characterization of melt spun AB{sub 5} alloys for metal hydride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Brateng, Randi

    2003-05-01

    This thesis is part of a larger research project where two metal hydride forming AB{sub 5} type alloys have been investigated. A slightly non-stoichiometric alloy with mischmetal on A-site and nickel, cobalt, manganese and aluminium on B-site has been characterized. The composition of this material, which will be referred to as Mm(NiCoMnA1){sub 5.15}, is close to the normal battery composition. The other alloy characterized is LaNi{sub 5} based, where nickel is partly substituted with tin. This material will later be referred to as La(NiSn){sub 5}. These materials were produced by melt spinning to vary the cooling rate during solidification. The main purpose of the study has been to characterize the electrochemical properties related to battery performance. The production as well as the metallurgical and structural characterization of the materials were performed in another part of the project. For Mm(NiCoMnA1){sub 5.15} the unit cell volume was dependent on the cooling rate before heat treatment, while the unit cell volume was almost independent of the cooling rate for La(NiSn){sub 5}. For both alloy compositions, the electrochemical properties seemed to change with varying cooling rate. The desorption equilibrium potential, the discharge capacity when discharging at a low current and the deterioration rate were found to be reduced with decreasing unit cell volume and increased with increasing unit cell volume, before heat treatment of Mm(NiCoMnA1){sub 5.15}. The self discharge rate was observed to be inversely proportional to the unit cell volume for this material. For not heat treated La(NiSn){sub 5}, produced at different cooling rates, the desorption equilibrium potential decreased when the self discharge rate and the discharge capacity increased after cycling for 300 cycles. The deterioration rate decreased when the desorption equilibrium potential was reduced for La(NiSn){sub 5}. The electrochemical parameters both before and after heat treatment of La

  1. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting

    Science.gov (United States)

    Sun, Zhongji; Tan, Xipeng; Tor, Shu Beng; Chua, Chee Kai

    2018-04-01

    Laser-based powder-bed fusion additive manufacturing or three-dimensional printing technology has gained tremendous attention due to its controllable, digital, and automated manufacturing process, which can afford a refined microstructure and superior strength. However, it is a major challenge to additively manufacture metal parts with satisfactory ductility and toughness. Here we report a novel selective laser melting process to simultaneously enhance the strength and ductility of stainless steel 316L by in-process engineering its microstructure into a crystallographic texture. We find that the tensile strength and ductility of SLM-built stainless steel 316L samples could be enhanced by 16% and 40% respectively, with the engineered textured microstructure compared to the common textured microstructure. This is because the favorable nano-twinning mechanism was significantly more activated in the textured stainless steel 316L samples during plastic deformation. In addition, kinetic simulations were performed to unveil the relationship between the melt pool geometry and crystallographic texture. The new additive manufacturing strategy of engineering the crystallographic texture can be applied to other metals and alloys with twinning-induced plasticity. This work paves the way to additively manufacture metal parts with high strength and high ductility.

  2. Tailoring the thermal conductivity of the powder bed in Electron Beam Melting (EBM) Additive Manufacturing.

    Science.gov (United States)

    Smith, C J; Tammas-Williams, S; Hernandez-Nava, E; Todd, I

    2017-09-05

    Metallic powder bed additive manufacturing is capable of producing complex, functional parts by repeatedly depositing thin layers of powder particles atop of each other whilst selectively melting the corresponding part cross-section into each layer. A weakness with this approach arises when melting overhanging features, which have no prior melted material directly beneath them. This is due to the lower thermal conductivity of the powder relative to solid material, which as a result leads to an accumulation of heat and thus distortion. The Electron Beam Melting (EBM) process alleviates this to some extent as the powder must first be sintered (by the beam itself) before it is melted, which results in the added benefit of increasing the thermal conductivity. This study thus sought to investigate to what extent the thermal conductivity of local regions in a titanium Ti-6Al-4V powder bed could be varied by imparting more energy from the beam. Thermal diffusivity and density measurements were taken of the resulting sintered samples, which ranged from being loosely to very well consolidated. It was found that the calculated thermal conductivity at two temperatures, 40 and 730 °C, was more than doubled over the range of input energies explored.

  3. Single scan vector prediction in selective laser melting

    NARCIS (Netherlands)

    Wits, Wessel Willems; Bruins, R.; Terpstra, L.; Huls, R.A.; Geijselaers, Hubertus J.M.

    2015-01-01

    In selective laser melting (SLM) products are built by melting layers of metal powder successively. Optimal process parameters are usually obtained by scanning single vectors and subsequently determining which settings lead to a good compromise between product density and build speed. This paper

  4. Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Commercially Pure Titanium (CP-Ti)

    Science.gov (United States)

    Kusuma, Chandrakanth; Ahmed, Sazzad H.; Mian, Ahsan; Srinivasan, Raghavan

    2017-07-01

    Selective laser melting (SLM) is an additive manufacturing technique that creates complex parts by selectively melting metal powder layer-by-layer using a laser. In SLM, the process parameters decide the quality of the fabricated component. In this study, single beads of commercially pure titanium (CP-Ti) were melted on a substrate of the same material using an in-house built SLM machine. Multiple combinations of laser power and scan speed were used for single bead fabrication, while the laser beam diameter and powder layer thickness were kept constant. This experimental study investigated the influence of laser power, scan speed, and laser energy density on the melt pool formation, surface morphology, geometry (width and height), and hardness of solidified beads. In addition, the observed unfavorable effect such as inconsistency in melt pool width formation is discussed. The results show that the quality, geometry, and hardness of solidified melt pool are significantly affected by laser power, scanning speed, and laser energy density.

  5. Method of melting and decontaminating radioactive contaminated aluminum material

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Miura, Noboru; Kawasaki, Katsuo; Iba, Hajime.

    1986-01-01

    Purpose: To improve the decontaminating efficiency upon melting decontamination of radioactive-contaminated aluminum materials. Method: This invention concerns an improvement for the method of melting decontamination by adding slug agent composed of organic compound to contaminated aluminum material and extracting the radioactive materials into the slug thereby decontaminating the aluminum material. Specifically metals effective for reducing the active amount of aluminum are added such that the content is greater than a predetermined value in the heat melting process. The metal comprises Mg, Cu or a mixture thereof and the content is more than 4 % including those previously contained in the aluminum material. (Ikeda, J.)

  6. Effect of layer thickness in selective laser melting on microstructure of Al/5 wt.%Fe2O3 powder consolidated parts.

    Science.gov (United States)

    Dadbakhsh, Sasan; Hao, Liang

    2014-01-01

    In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM) to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75  μm layer thickness, and 50  μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance) were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe) oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process.

  7. Plasma arc melting of zirconium

    International Nuclear Information System (INIS)

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

    1997-01-01

    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming

  8. Dynamic fragmentation of laser shock-melted tin: experiment and modelling

    Energy Technology Data Exchange (ETDEWEB)

    De Resseguier, T. [CNRS ENSMA, Lab Combust and Deton, F-86961 Futuroscope (France); Signor, L.; Dragon, A. [CNRS ENSMA, Mecan and Phys Mat Lab, F-86961 Futuroscope (France); Signor, L.; Roy, G. [CEA Valduc, 21 - Is-sur-Tille (France)

    2010-07-01

    Dynamic fragmentation of shock-loaded metals is an issue of considerable importance for both basic science and a variety of technological applications, such as pyrotechnics or inertial confinement fusion, the latter involving high energy laser irradiation of thin metallic shells. Whereas spall fracture in solid materials has been extensively studied for many years, little data can be found yet about the evolution of this phenomenon after partial or full melting on compression or on release. Here, we present an investigation of dynamic fragmentation in laser shock-melted tin, from the 'micro-spall' process (ejection of a cloud of fine droplets) occurring upon reflection of the compressive pulse from the target free surface, to the late rupture observed in the un-spalled melted layer (leading to the formation of larger spherical fragments). Experimental results consist of time-resolved velocity measurements and post-shock observations of recovered targets and fragments. They provide original information regarding the loss of tensile strength associated with melting, the cavitation mechanism likely to occur in the melted metal, the sizes of the subsequent fragments and their ejection velocities. A theoretical description based on an energetic approach adapted to the case of a liquid metal is implemented as a failure criterion in a one-dimensional hydro-code including a multi-phase equation of state for tin. The resulting predictions of the micro-spall process are compared with experimental data. In particular, the use of a new experimental technique to quantify the fragment size distributions leads to a much better agreement with theory than previously reported. Finally, a complementary approach focused on cavitation is proposed to evaluate the role of this phenomenon in the fragmentation of the melted metal. (authors)

  9. Airborne concentrations of toxic metals resulting from the use of low melting point lead alloys to construct radiotherapy shielding

    International Nuclear Information System (INIS)

    McCullough, E.C.; Senjem, D.H.

    1981-01-01

    Determinations of airborne concentrations of lead, cadmium, bismuth, and tin were made above vessels containing a fusible lead alloy (158 0 F melting point) commonly used for construction of radiotherapy blocks. Fume concentrations were determined by collection on a membrane filter and analysis by atomic absorption spectrophotometry. Samples were obtained for alloy temperatures of 200 0 , 400 0 , and 600 0 F. In all instances, concentrations were much lower than the applicable occupational limits for continuous exposure. The results of this study indicate that the use of a vented hood as a means of reducing air concentrations of toxic metals above and near vessels containing low temperature melting point lead allows commonly used in construction of radiotherapy shields appears unjustifiable. However, proper handling procedures should be observed to avoid entry into the body via alternate pathways (e.g., ingestion or skin absorption). Transmission data of a non-cadmium containing lead alloy with a melting point of 203 0 F was ascertained and is reported on

  10. Recent development of levitation melting equipment; Fuyo yokai sochi (CCLM) no shinten

    Energy Technology Data Exchange (ETDEWEB)

    Tadano, H.; Kainuma, K. [Fuji Electric Furnace Co. Ltd., Mie (Japan)

    1998-05-10

    Fuji Electric Co., Ltd., is advancing its research and development efforts for cold crucible levitation melting (CCLM) equipment in which metal is caused to be levitated in the air and is melted. Such a unit consists of a water-cooled copper crucible, a water-cooled coil installed to surround the crucible, and a high-frequency power source. Eddy currents are induced in the crucible and metal upon application of a high-frequency current to the coil, and electromagnetic repulsion is generated between the eddy currents. When the force of repulsion is greater than the force of gravity acting on the metal, the metal leaves the crucible to be levitated in the air. At the same time, the metal is heated by the Joule heat produced by the eddy currents, and is melted. So far, for the stabilized levitation melting of a kilogram-level amount of metal, a double power source excitation system has been adopted and the crucible bottom configuration has been optimized. Also, non-contact tapping of molten metal from the bottom and increase of the molten metal amount to the 50 kilogram level have been achieved, these for the industrialization of the technology. Already available on the market are equipment for large-capacity CCLM, continuous casting CCLM, and the high-vacuum CCLM. 5 refs., 13 figs., 3 tabs.

  11. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    Energy Technology Data Exchange (ETDEWEB)

    Fasoyinu, Yemi [CanmetMATERIALS

    2014-03-31

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloy systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.

  12. Melting Metal on a Playing Card

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2016-01-01

    Many of us are familiar with the demonstration of boiling water in a paper cup held over a candle or a Bunsen burner; the ignition temperature of paper is above the temperature of 100°C at which water boils under standard conditions. A more dramatic demonstration is melting tin held in a playing card. This illustration is from Tissandier's book on…

  13. Decontamination method of contaminated metals

    International Nuclear Information System (INIS)

    Kawamura, Fumio; Ueda, Yoshihiro; Sato, Chikara; Komori, Itaru.

    1980-01-01

    Purpose: To effectively separate radioactive materials from molten metals in dry-processing method by heating metals contaminated with radioactive materials at a temperature below melting point to oxidize the surface thereof, then heating them to melt and include the radioactive materials into the oxides. Method: Metals contaminated with radioactive materials are heated at a temperature below the melting point thereof in an oxidizing atmosphere to oxidize the surface. Thereafter they are heated to melt at temperature above the melting point of the metals, and the molten metals are separated with the radioactive materials included in the oxides. For instance, radiation-contaminated aluminum pipe placed on the bed of an electrical heating furnace, and heated at 500 0 C which is lower than the melting point 660 0 C of aluminum for 1 - 2 hours while supplying air from an air pipe into the furnace, and an oxide film is formed on the surface of the aluminum pipe. Then, the furnace temperature is increased to 750 0 C wherein molten aluminum is flown down to a container and the oxide film is separated by floating it as the slug on the molten aluminum. (Horiuchi, T.)

  14. Edge-melting: nanoscale key-mechanism to explain nanoparticle formation from heated TEM grids

    Energy Technology Data Exchange (ETDEWEB)

    Cesaria, Maura, E-mail: maura.cesaria@le.infn.it [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce (Italy); Taurino, Antonietta; Catalano, Massimo [Institute for Microelectronics and Microsystems, IMM-CNR, Via Monteroni, 73100 Lecce (Italy); Caricato, Anna Paola; Martino, Maurizio [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce (Italy)

    2016-03-01

    Graphical abstract: - Highlights: • Nanoparticle formation from metal grids explained by edge melting as key mechanism. • The inconsistency of bulk phenomenology invoking the vapor pressure is discussed. • Surface-melting and size-dependent evaporation are questioned as unsatisfactory. • Edge-melting: edges, corners, facets invoked as highly thermally unstable surfaces. • The polycrystalline nature of the really occurring metal grids is accounted for. - Abstract: In this study, we examine at both experimental and fundamental levels, the experimental evidence of nanoparticle formation in transmission electron microscopy (TEM) metal grids annealed at temperatures lower than the melting point of the corresponding metal bulk material. Our experimental investigation considers the most thermally unstable TEM grids (i.e. Cu-grids) and inspects the possible sources and mechanisms of contamination of thin films, conventionally deposited on carbon-coated Cu-grids. The investigations are supported by morphological–compositional analyses performed in different regions of the TEM sample. Then, a general model is formulated and discussed in order to explain the grid thermal instability, based on the critical role of edge-melting (i.e. melting initiated at edges and corners of the grid bars), the enhanced rate of evaporation from a liquid surface and the polycristallinity of the grid bars. Hence, we totally disregard conventional arguments such as bulk evaporation and metal vapor pressure and, in order to emphasize and clarify the alternative point of view of our model, we also overview the nano-scale melting phenomenology relevant to our discussion and survey the discrepancies reported in the literature.

  15. Simulation on the Effects of Surfactants and Observed Thermocapillary Motion for Laser Melting Physics

    Science.gov (United States)

    Nourgaliev, Robert; Barney, Rebecca; Weston, Brian; Delplanque, Jean-Pierre; McCallen, Rose

    2017-11-01

    A newly developed, robust, high-order in space and time, Newton-Krylov based reconstructed discontinuous Galerkin (rDG) method is used to model and analyze thermocapillary convection in melt pools. The application of interest is selective laser melting (SLM) which is an Additive Manufacturing (AM, 3D metal laser printing) process. These surface tension driven flows are influenced by temperature gradients and surfactants (impurities), and are known as the Marangoni flow. They have been experimentally observed in melt pools for welding applications, and are thought to influence the microstructure of the re-solidified material. We study the effects of the laser source configuration (power, beam size and scanning speed), as well as surfactant concentrations. Results indicate that the surfactant concentration influences the critical temperature, which governs the direction of the surface thermocapillary traction. When the surface tension traction changes sign, very complex flow patterns emerge, inducing hydrodynamic instability under certain conditions. These in turn would affect the melt pool size (depth) and shape, influencing the resulting microstructure, properties, and performance of a finished product part produced using 3D metal laser printing technologies. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Information management release number LLNL-ABS-735908.

  16. Modern electrochemical processes and technologies in ionic melts

    Directory of Open Access Journals (Sweden)

    Omelchuk A.

    2003-01-01

    Full Text Available An analysis of the known methods for the electrochemical purification of non-ferrous metals in ionic melts is presented. A comparative estimation of the results of the electrochemical purification of non-ferrous metals by different methods has been performed. The main regularities of the electrochemical behavior of non-ferrous metals in conventional and electrode micro-spacing electrolysis are presented. It has been found that when electrolyzing some metals, e. g. bismuth, gallium, there is either no mass exchange between the electrodes, or it occurs under filtration conditions. It has been shown that the electrode micro-spacing processes provide a high quality of non-ferrous metals purification at low specific consumption of electric power and reagents. The use of bipolar electrodes and β-alumina diaphragms hinders the transfer of metallic impurities from the anode to the cathode. The effects revealed were used to develop new processes for the separation of non-ferrous metal alloys in ionic melts; most of them have been put into practice in non-ferrous metallurgy.

  17. Technical possibilities to support separation of radioactive elements from metallic waste

    International Nuclear Information System (INIS)

    Bjoerkvall, Johan; Ye, Guozhu; Lindberg, Maria

    2014-01-01

    In the nuclear industry metallic objects can be either surface or bulk contaminated. Surface contaminated objects are often decontaminated by chemical or mechanical means, but are there other possibilities? During melting slags are formed either spontaneously or by adding slag forming compounds. However, one question that frequently arises is: Can all nuclides be separated by adding slag forming compounds? This question is not entirely correct as it is not only the radioactive nuclides that are separated from the metal but all atoms of that element present in the melt, radioactive and stable isotopes alike. Part of the answer lays in thermodynamics. Thermodynamics cannot positively answer the question with yes, as there are also practical and economical aspects to take into account, but if the answer is no there will never be any practical or economical efforts that will override nature. This paper will describe the theoretical baseline for evaluating the possibilities to separate certain elements during the melting process, mainly from steel but other metals will also touched on. The most common elements that have radioactive isotopes of interest is of course cobalt (Co-60, Co-58), but other elements of interest are manganese (Mn-54), strontium (Sr- 90), antimony (Sb-125) and of course heavy elements such as uranium, plutonium and americium. The paper will also describe methods used in the normal metal melting industry to separate elements from the base metal melted. This section will cover practical methods used as well as developed methods that are very seldom used due to time or financial constraints. (authors)

  18. An Interconnected Network of Core-Forming Melts Produced by Shear Deformation

    Science.gov (United States)

    Bruhn, D.; Groebner, N.; Kohlstedt, D. L.

    2000-01-01

    The formation mechanism of terrestrial planetary is still poorly understood, and has been the subject of numerous experimental studies. Several mechanisms have been proposed by which metal-mainly iron with some nickel-could have been extracted from a silicate mantle to form the core. Most recent models involve gravitational sinking of molten metal or metal sulphide through a partially or fully molten mantle that is often referred to as a'magma ocean. Alternative models invoke percolation of molten metal along an interconnected network (that is, porous flow) through a solid silicate matrix. But experimental studies performed at high pressures have shown that, under hydrostatic conditions, these melts do not form an interconnected network, leading to the widespread assumption that formation of metallic cores requires a magma ocean. In contrast, here we present experiments which demonstrate that shear deformation to large strains can interconnect a significant fraction of initially isolated pockets of metal and metal sulphide melts in a solid matrix of polycrystalline olivine. Therefore, in a dynamic (nonhydrostatic) environment, percolation remains a viable mechanism for the segregation and migration of core-forming melts in a solid silicate mantle.

  19. Partitioning ratio of depleted uranium during a melt decontamination by arc melting

    International Nuclear Information System (INIS)

    Min, Byeong Yeon; Choi, Wang Kyu; Oh, Won Zin; Jung, Chong Hun

    2008-01-01

    In a study of the optimum operational condition for a melting decontamination, the effects of the basicity, slag type and slag composition on the distribution of depleted uranium were investigated for radioactively contaminated metallic wastes of iron-based metals such as stainless steel (SUS 304L) in a direct current graphite arc furnace. Most of the depleted uranium was easily moved into the slag from the radioactive metal waste. The partitioning ratio of the depleted uranium was influenced by the amount of added slag former and the slag basicity. The composition of the slag former used to capture contaminants such as depleted uranium during the melt decontamination process generally consists of silica (SiO 2 ), calcium oxide (CaO) and aluminum oxide (Al 2 O 3 ). Furthermore, calcium fluoride (CaF 2 ), magnesium oxide (MgO), and ferric oxide (Fe 2 O 3 ) were added to increase the slag fluidity and oxidative potential. The partitioning ratio of the depleted uranium was increased as the amount of slag former was increased. Up to 97% of the depleted uranium was captured between the ingot phase and the slag phase. The partitioning ratio of the uranium was considerably dependent on the basicity and composition of the slag. The optimum condition for the removal of the depleted uranium was a basicity level of about 1.5. The partitioning ratio of uranium was high, exceeding 5.5x10 3 . The slag formers containing calcium fluoride (CaF 2 ) and a high amount of silica proved to be more effective for a melt decontamination of stainless steel wastes contaminated with depleted uranium

  20. Method for producing metallic microparticles

    Science.gov (United States)

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-06-29

    Method for producing metallic particles. The method converts metallic nanoparticles into larger, spherical metallic particles. An aerosol of solid metallic nanoparticles and a non-oxidizing plasma having a portion sufficiently hot to melt the nanoparticles are generated. The aerosol is directed into the plasma where the metallic nanoparticles melt, collide, join, and spheroidize. The molten spherical metallic particles are directed away from the plasma and enter the afterglow where they cool and solidify.

  1. Influence of gas-generation on melt/concrete interaction

    International Nuclear Information System (INIS)

    Powers, D.A.

    1979-01-01

    Gases formed during the interaction of a high-temperature melt with concrete are shown to stem from the thermal dehydration and decarboxylation of the concrete. The kinetics of these decomposition reactions are described. Gases within the melt cause an apparent swelling of the melt. The observed swelling is not easily correlated to the rate of gas evolution. Metallic melts cause CO 2 /CO and H 2 O liberated from the melt to be reduced to CO and hydrogen. When these gases escape from the melt they assist in aerosol formation. As the gases cool they react along a pathway whose oxygen fugacity is apparently buffered by the iron-Wuestite equilibrium. Methane is a product of the gas-phase reaction. (orig./HP) [de

  2. Direct preparation of Al-base alloys from their oxides/metal precursors in the eutectic LiCl–KCl melt

    International Nuclear Information System (INIS)

    Gao, Bingliang; Zhu, Hao; Xia, Yuxiang; Shi, Zhongning; Hu, Xianwei; Wang, Zhaowen

    2016-01-01

    A study was carried out on the preparation of Al–Cu–Li alloy from their oxides/metal precursors using the method of electro-deoxidation in the eutectic LiCl–KCl melt at 648 K. Cyclic voltammetry was used to characterize the system. The samples were prepared by potentiostatic electrolysis at −1.0 V to −2.0 V (vs. Ag + /Ag) for 5 h. XRD analysis shows that Li 2 O is not electrochemically reduced to Li at −1.0 V (vs. Ag + /Ag) or more negative potential. During the preparation process of Al–Cu–Li alloy, lithium peroxide is formed as an intermediate compound. Al–Cu–Li alloy is chemically prepared through the reaction between aluminum and lithium peroxide by heating of Al–Cu–Li 2 O precursors in KCl–LiCl–LiF melt at 1023 K. Eelectro-deoxidation in LiCl–KCl melt can increase the lithium content in the final alloy product. Al–Mg and Al–Nd alloy were also prepared by using the same method from their mixture of aluminum and corresponding oxide, respectively. Al–Nd alloy can only be obtained at the temperature above 773 K. Al–Li alloy could not be obtained in eutectic CaCl 2 –LiCl melt because of formation of calcium aluminates. - Highlights: • Al–Cu–Li alloy was prepared using electrochemical deoxidation of Al–Cu–Li 2 O precursor in eutectic KCl–LiCl melt at 648 K. • Al–Nd alloy was successfully produced by the same method at 773 K. • CaCl 2 –LiCl melt is not a good choice for preparing Al–Li alloy because of formation of calcium aluminate.

  3. Direct preparation of Al-base alloys from their oxides/metal precursors in the eutectic LiCl–KCl melt

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bingliang, E-mail: blgao@mail.neu.edu.cn; Zhu, Hao; Xia, Yuxiang; Shi, Zhongning; Hu, Xianwei; Wang, Zhaowen

    2016-04-25

    A study was carried out on the preparation of Al–Cu–Li alloy from their oxides/metal precursors using the method of electro-deoxidation in the eutectic LiCl–KCl melt at 648 K. Cyclic voltammetry was used to characterize the system. The samples were prepared by potentiostatic electrolysis at −1.0 V to −2.0 V (vs. Ag{sup +}/Ag) for 5 h. XRD analysis shows that Li{sub 2}O is not electrochemically reduced to Li at −1.0 V (vs. Ag{sup +}/Ag) or more negative potential. During the preparation process of Al–Cu–Li alloy, lithium peroxide is formed as an intermediate compound. Al–Cu–Li alloy is chemically prepared through the reaction between aluminum and lithium peroxide by heating of Al–Cu–Li{sub 2}O precursors in KCl–LiCl–LiF melt at 1023 K. Eelectro-deoxidation in LiCl–KCl melt can increase the lithium content in the final alloy product. Al–Mg and Al–Nd alloy were also prepared by using the same method from their mixture of aluminum and corresponding oxide, respectively. Al–Nd alloy can only be obtained at the temperature above 773 K. Al–Li alloy could not be obtained in eutectic CaCl{sub 2}–LiCl melt because of formation of calcium aluminates. - Highlights: • Al–Cu–Li alloy was prepared using electrochemical deoxidation of Al–Cu–Li{sub 2}O precursor in eutectic KCl–LiCl melt at 648 K. • Al–Nd alloy was successfully produced by the same method at 773 K. • CaCl{sub 2}–LiCl melt is not a good choice for preparing Al–Li alloy because of formation of calcium aluminate.

  4. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my; Shirazi, Irfan, E-mail: irfanshirazi@hotmail.com [Mechanical Engineering Universiti Teknologi PETRONAS Malaysia (Malaysia)

    2015-07-22

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Random orientation of fibers was noted in the composites test bars produced from divergent melt flow.

  5. Shear-induced anisotropic plastic flow from body-centred-cubic tantalum before melting

    Science.gov (United States)

    Wu, Christine J.; Söderlind, Per; Glosli, James N.; Klepeis, John E.

    2009-03-01

    There are many structural and optical similarities between a liquid and a plastic flow. Thus, it is non-trivial to distinguish between them at high pressures and temperatures, and a detailed description of the transformation between these phenomena is crucial to our understanding of the melting of metals at high pressures. Here we report a shear-induced, partially disordered viscous plastic flow from body-centred-cubic tantalum under heating before it melts into a liquid. This thermally activated structural transformation produces a unique, one-dimensional structure analogous to a liquid crystal with the rheological characteristics of Bingham plastics. This mechanism is not specific to Ta and is expected to hold more generally for other metals. Remarkably, this transition is fully consistent with the previously reported anomalously low-temperature melting curve and thus offers a plausible resolution to a long-standing controversy about melting of metals under high pressures.

  6. Microstructure and mechanical behavior of porous Ti-6Al-4V parts obtained by selective laser melting.

    Science.gov (United States)

    Sallica-Leva, E; Jardini, A L; Fogagnolo, J B

    2013-10-01

    Rapid prototyping allows titanium porous parts with mechanical properties close to that of bone tissue to be obtained. In this article, porous parts of the Ti-6Al-4V alloy with three levels of porosity were obtained by selective laser melting with two different energy inputs. Thermal treatments were performed to determine the influence of the microstructure on the mechanical properties. The porous parts were characterized by both optical and scanning electron microscopy. The effective modulus, yield and ultimate compressive strength were determined by compressive tests. The martensitic α' microstructure was observed in all of the as-processed parts. The struts resulting from the processing conditions investigated were thinner than those defined by CAD models, and consequently, larger pores and a higher experimental porosity were achieved. The use of the high-energy input parameters produced parts with higher oxygen and nitrogen content, their struts that were even thinner and contained a homogeneous porosity distribution. Greater mechanical properties for a given relative density were obtained using the high-energy input parameters. The as-quenched martensitic parts showed yield and ultimate compressive strengths similar to the as-processed parts, and these were greater than those observed for the fully annealed samples that had the lamellar microstructure of the equilibrium α+β phases. The effective modulus was not significantly influenced by the thermal treatments. A comparison between these results and those of porous parts with similar geometry obtained by selective electron beam melting shows that the use of a laser allows parts with higher mechanical properties for a given relative density to be obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Effect of Layer Thickness in Selective Laser Melting on Microstructure of Al/5 wt.%Fe2O3 Powder Consolidated Parts

    Directory of Open Access Journals (Sweden)

    Sasan Dadbakhsh

    2014-01-01

    Full Text Available In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75 μm layer thickness, and 50 μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process.

  8. Scrap uranium recycling via electron beam melting

    International Nuclear Information System (INIS)

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R ampersand D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility

  9. Decontaminaion of metals containing plutonium and americium

    International Nuclear Information System (INIS)

    Seitz, M.G.; Gerding, T.J.; Steindler, M.J.

    1979-06-01

    Melt-slagging (melt-refining) techniques were evaluated as a decontamination and consolidation step for metals contaminated with oxides of plutonium and americium. Experiments were performed in which mild steel, stainless steel, and nickel contaminated with oxides of plutonium and americium were melted in the presence of silicate slags of various compositions. The metal products were low in contamination, with the plutonium and americium strongly fractionated to the slags. Partition coefficients (plutonium in slag/plutonium in steel) of 7 x 10 6 were measured with boro-silicate slag and of 3 x 10 6 with calcium, magnesium silicate slag. Decontamination of metals containing as much as 14,000 ppM plutonium appears to be as efficient as for metals with plutonium levels of 400 ppM. Staged extraction, that is, a remelting of processed metal with clean slag, results in further decontamination of the metal. The second extraction is effective with either resistance-furnace melting or electric-arc melting. Slag adhering to the metal ingots and in defects within the ingots is in the important contributors to plutonium retained in processed metals. If these sources of plutonium are controlled, the melt-refining process can be used on a large scale to convert highly contaminated metals to homogeneous and compact forms with very low concentrations of plutonium and americium. A conceptual design of a melt-refining process to decontaminate plutonium- and americium-contaminated metals is described. The process includes single-stage refining of contaminated metals to produce a metal product which would have less than 10 nCi/g of TRU-element contamination. Two plant sizes were considered. The smaller conceptual plant processes 77 kg of metal per 8-h period and may be portable.The larger one processes 140 kg of metal per 8-h period, is stationary, and may be near te maximum size that is practical for a metal decontamination process

  10. Energy Saving Melting and Revert Reduction Technology: Innovative Semi-Solid Metal (SSM) Processing

    Energy Technology Data Exchange (ETDEWEB)

    Diran Apelian

    2012-08-15

    Semi-solid metal (SSM) processing has emerged as an attractive method for near-net-shape manufacturing due to the distinct advantages it holds over conventional near-net-shape forming technologies. These advantages include lower cycle time, increased die life, reduced porosity, reduced solidification shrinkage, improved mechanical properties, etc. SSM processing techniques can not only produce the complex dimensional details (e.g. thin-walled sections) associated with conventional high-pressure die castings, but also can produce high integrity castings currently attainable only with squeeze and low-pressure permanent mold casting processes. There are two primary semi-solid processing routes, (a) thixocasting and (b) rheocasting. In the thixocasting route, one starts from a non-dendritic solid precursor material that is specially prepared by a primary aluminum manufacturer, using continuous casting methods. Upon reheating this material into the mushy (a.k.a. "two-phase") zone, a thixotropic slurry is formed, which becomes the feed for the casting operation. In the rheocasting route (a.k.a. "slurry-on-demand" or "SoD"), one starts from the liquid state, and the thixotropic slurry is formed directly from the melt via careful thermal management of the system; the slurry is subsequently fed into the die cavity. Of these two routes, rheocasting is favored in that there is no premium added to the billet cost, and the scrap recycling issues are alleviated. The CRP (Trade Marked) is a process where the molten metal flows through a reactor prior to casting. The role of the reactor is to ensure that copious nucleation takes place and that the nuclei are well distributed throughout the system prior to entering the casting cavity. The CRP (Trade Marked) has been successfully applied in hyper-eutectic Al-Si alloys (i.e., 390 alloy) where two liquids of equal or different compositions and temperatures are mixed in the reactor and creating a SSM slurry. The process has been mostly

  11. Electrodepositions on Tantalum in Alkali Halide Melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2013-01-01

    Surface layers of tantalum metal were electrodeposited on steel from K2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO3 melts carbonate ions seems to be reduced to carbon in...

  12. Electrodepositions on Tantalum in alkali halide melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2012-01-01

    Surface layers of tantalum metal were electrodeposited on steel from K 2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO 3 melts carbonate ions seems to be reduced to carbon ...

  13. Review on progressive microforming of bulk metal parts directly using sheet metals (Keynote Paper

    Directory of Open Access Journals (Sweden)

    Fu M.W.

    2015-01-01

    Full Text Available Due to the ubiquitous trend of product miniaturization, energy saving and weight reduction, micro/meso-scale parts have been widely used in many industrial clusters. Micromanufacturing processes for production of such micro/meso-scale parts are thus critically needed. Microforming, as one of these micro manufacturing processes, is a promising process and thus got many explorations and researches. Compared with the research on size effect affected deformation behaviours, less attention has been paid to the process development for mass production of micro-parts. The product quality and fabrication productivity of micro-parts depend on the involved process chain. To address the difficulty in handling and transporting of the micro-sized workpiece, development of a progressive microforming process for directly fabricating bulk micro-parts using sheet metals seems quite promising as it avoids or facilitates billet handling, transportation, positioning, and ejection in the process chain. In this paper, an intensive review on the latest development of progressive microforming technologies is presented. First of all, the paper summarizes the characteristic of progressive microforming directly using sheet metal. The size effect-affected deformation behaviour and the dimensional accuracy, deformation load, ductile fracture, and the surface finish of the microformed parts by progressive microforming using sheet metals are then presented. Finally, some research issues from the implementation of mass production perspective are also discussed.

  14. Investigation of Selective Laser Melting Surface Alloyed Aluminium Metal Matrix Dispersive Reinforced Layers

    Science.gov (United States)

    Kamburov, V. V.; Dimitrova, R. B.; Kandeva, M. K.; Sofronov, Y. P.

    2018-01-01

    The aim of the paper is to investigate the improvement of mechanical properties and in particular wear resistance of laser surface alloyed dispersive reinforced thin layers produced by selective laser melting (SLM) technology. The wear resistance investigation of aluminium matrix composite layers in the conditions of dry friction surface with abrasive particles and nanoindentation tests were carried out. The process parameters (as scan speed) and their impact on the wear resistant layers have been evaluated. The alloyed layers containing metalized SiC particles were studied by Optical and Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray microanalysis (EDX). The obtained experimental results of the laser alloyed thin layers show significant development of their wear resistance and nanohardness due to the incorporated reinforced phase of electroless nickel coated SiC particles.

  15. Optimization of the ultrasonic processing in a melt flow

    OpenAIRE

    Tzanakis, I; Lebon, GSB; Eskin, DG; Pericleous, K

    2016-01-01

    Ultrasonic cavitation treatment of melt significantly improves the downstream properties and quality of conventional and advanced metallic materials. However, the transfer of this technology to treating large melt volumes has been hindered by a lack of fundamental knowledge, allowing for the ultrasonic processing in the melt flow. In this study, we present the results of experimental validation of an advanced numerical model applied to the acoustic cavitation treatment of liquid aluminum duri...

  16. Melting of iron nanoparticles embedded in silica prepared by mechanical milling

    International Nuclear Information System (INIS)

    Ding, Peng; Ma, Ji; Cao, Hui; Liu, Yi; Wang, Lianwen; Li, Jiangong

    2013-01-01

    Highlights: • Melting of metallic nanoparticles was studied for some eight elements. • This slim range of materials is successfully expanded to iron. • A mechanical-milled iron–silica composite is employed. • For iron particles of 15 nm in diameter, the melting point depression is 30 K. • The measured data is in agreement with our theoretical calculations. -- Abstract: For decades, experimental studies on the size-dependent melting of metals are regretfully limited to some eight archetypal examples. In this work, to expand this slim range of materials, the melting behavior of Fe nanoparticles embedded in SiO 2 prepared by using mechanical milling are investigated. Effects of factors in sample preparation on the size, isolation and thermal stability of Fe nanoparticles are systematically studied. On this basis, the size-dependent melting of Fe is successfully traced: for Fe nanoparticles with a diameter of about 15 nm, the melting point depression is 30 °C in comparison with bulk Fe, in accordance with our recent theoretical prediction

  17. Pavement Snow Melting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.

    2005-01-01

    The design of pavement snow melting systems is presented based on criteria established by ASHRAE. The heating requirements depends on rate of snow fall, air temperature, relative humidity and wind velocity. Piping materials are either metal or plastic, however, due to corrosion problems, cross-linked polyethylene pipe is now generally used instead of iron. Geothermal energy is supplied to systems through the use of heat pipes, directly from circulating pipes, through a heat exchanger or by allowing water to flow directly over the pavement, by using solar thermal storage. Examples of systems in New Jersey, Wyoming, Virginia, Japan, Argentina, Switzerland and Oregon are presented. Key words: pavement snow melting, geothermal heating, heat pipes, solar storage, Wyoming, Virginia, Japan, Argentina, Klamath Falls.

  18. Investigation of the High-Cycle Fatigue Life of Selective Laser Melted and Hot Isostatically Pressed Ti-6Al-4v

    Science.gov (United States)

    2015-03-26

    marketed for production of parts with metal alloys: electron-beam melting and laser sintering (LS) [3, 10, 36]. The primary distinction between EBM and LS...staircase method described in ASTM STP 588 [68]. The first specimen in a staircase test is tested at a maximum stress level corresponding to the

  19. Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting.

    Science.gov (United States)

    Mun, Jiwon; Ju, Jaehyung; Thurman, James

    2016-05-14

    One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique.

  20. Melt processing of radioactive waste: A technical overview

    International Nuclear Information System (INIS)

    Schlienger, M.E.; Buckentin, J.M.; Damkroger, B.K.

    1997-01-01

    Nuclear operations have resulted in the accumulation of large quantities of contaminated metallic waste which are stored at various DOE, DOD, and commercial sites under the control of DOE and the Nuclear Regulatory Commission (NRC). This waste will accumulate at an increasing rate as commercial nuclear reactors built in the 1950s reach the end of their projected lives, as existing nuclear powered ships become obsolete or unneeded, and as various weapons plants and fuel processing facilities, such as the gaseous diffusion plants, are dismantled, repaired, or modernized. For example, recent estimates of available Radioactive Scrap Metal (RSM) in the DOE Nuclear Weapons Complex have suggested that as much as 700,000 tons of contaminated 304L stainless steel exist in the gaseous diffusion plants alone. Other high-value metals available in the DOE complex include copper, nickel, and zirconium. Melt processing for the decontamination of radioactive scrap metal has been the subject of much research. A major driving force for this research has been the possibility of reapplication of RSM, which is often very high-grade material containing large quantities of strategic elements. To date, several different single and multi-step melting processes have been proposed and evaluated for use as decontamination or recycling strategies. Each process offers a unique combination of strengths and weaknesses, and ultimately, no single melt processing scheme is optimum for all applications since processes must be evaluated based on the characteristics of the input feed stream and the desired output. This paper describes various melt decontamination processes and briefly reviews their application in developmental studies, full scale technical demonstrations, and industrial operations

  1. Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts

    Science.gov (United States)

    Dai, Donghua; Gu, Dongdong; Zhang, Han; Xiong, Jiapeng; Ma, Chenglong; Hong, Chen; Poprawe, Reinhart

    2018-02-01

    Selective laser melting additive manufacturing of the AlSi12 material parts through the re-melting of the previously solidified layer using the continuous two layers 90° rotate scan strategy was conducted. The influence of the re-melting behavior and scan strategy on the formation of the ;track-track; and ;layer-layer; molten pool boundaries (MPBs), dimensional accuracy, microstructure feature, tensile properties, microscopic sliding behavior and the fracture mechanism as loaded a tensile force has been studied. It showed that the defects, such as the part distortion, delamination and cracks, were significantly eliminated with the deformation rate less than 1%. The microstructure of a homogeneous distribution of the Si phase, no apparent grain orientation on both sides of the MPBs, was produced in the as-fabricated part, promoting the efficient transition of the load stress. Cracks preferentially initiate at the ;track-track; MPBs when the tensile stress increases to a certain value, resulting in the formation of the cleavage steps along the tensile loading direction. The cracks propagate along the ;layer-layer; MPBs, generating the fine dimples. The mechanical behavior of the SLM-processed AlSi12 parts can be significantly enhanced with the ultimate tensile strength, yield strength and elongation of 476.3 MPa, 315.5 MPa and 6.7%, respectively.

  2. The COMET-L3 experiment on long-term melt. Concrete interaction and cooling by surface flooding

    International Nuclear Information System (INIS)

    Alsmeyer, H.; Cron, T.; Fluhrer, B.; Messemer, G.; Miassoedov, A.; Schmidt-Stiefel, S.; Wenz, T.

    2007-02-01

    The COMET-L3 experiment considers the long-term situation of corium/concrete interaction in an anticipated core melt accident of a light-water-reactor, after the metal melt is layered beneath the oxide melt. The experimental focus is on cavity formation in the basemat and the risk of long term basemat penetration. The experiment investigates the two-dimensional concrete erosion in a cylindrical crucible fabricated from siliceous concrete in the first phase of the test, and the influence of surface flooding in the second phase. Decay heating in the two-component metal and oxide melt is simulated by sustained induction heating of the metal phase that is overlaid by the oxide melt. The inner diameter of the concrete crucible was 60 cm, the initial mass of the melt was 425 kg steel and 211 kg oxide at 1665 C, resulting in a melt height of 450 mm. The net power to the metal melt was about 220 kW from 0 s to 1880 s, when the maximum erosion limit of the crucible was reached and heating was terminated. In the initial phase of the test (less than 100 s), the overheated, highly agitated metal melt causes intense interaction with the concrete, which leads to fast decrease of the initial melt overheat and reduction of the initially high concrete erosion rate. Thereafter, under quasistationary conditions until about 800 s, the erosion by the metal melt slows down to some 0.07 mm/s into the axial direction. Lateral erosion is a factor 3 smaller. Video observation of the melt surface shows an agitated melt with ongoing gas release from the decomposing concrete. Several periods of more intense gas release, gas driven splashing, and release of crusts from the concrete interface indicate the existence and iterative break-up of crusts that probably form at the steel/concrete interface. Surface flooding of the melt is initiated at 800 s by a shower from the crucible head with 0.375 litre water/s. Flooding does not lead to strong melt/water interactions, and no entrapment reactions or

  3. Effect of alkaline metal cations on the ionic structure of cryolite melts: Ab-initio NpT MD study

    Science.gov (United States)

    Bučko, Tomáš; Šimko, František

    2018-02-01

    Ab initio molecular dynamics simulations in an NpT ensemble have been performed to study the role of alkaline metal cations (Me = Li, Na, K, Rb) on the structure and vibrational properties of melts of Me-cryolites (Me3AlF6) at T = 1300 K. In all melts examined in this work, the species AlF52 - has been found to be formed at the highest abundance [from 58% (Li) to 70% (Na)] among the Al-containing anionic clusters. The concentration of clusters AlF4- increases with the size of cations while that of anions AlF63 - follows the opposite trend and it becomes negligible in the melts of the K- and Rb-cryolites. The computed percentage of the Al atoms participating in the formation of dimers Al2Fm6 -m bridged via common F atoms is significant only in the case of Li- and Na-cryolites (16% and 10%, respectively) and the formation of even larger aggregates is found to be unlikely in all four melts. The percentage of the F atoms that are not bound to Al is ˜20% in all four melts and the ions formed by Me+ and F- are found to be only short-lived. Vibrational analysis has been performed using the velocity autocorrelation functions computed for the Cartesian and selected internal coordinates describing Raman-active symmetric stretching vibrations of different AlFn species. The results of vibrational analysis allowed us to identify trends in the variation of positions and shapes of peaks corresponding to the anionic fragments AlF4-, AlF52 -, and AlF63 - with the size of cations, and these trends are found to be consistent with those deduced from the available Raman spectroscopy experiments. Our findings represent a new insight into the properties of cryolite melts, which will be useful for the interpretation of experimental data.

  4. Numerical Investigation of Turbulent Natural Convection Heat Transfer in an Internally-Heated Melt Pool and Metallic Layer

    International Nuclear Information System (INIS)

    Nourgaliev, R.R.; Dinh, A.T.; Dinh, T.N.; Sehgal, B.R.

    1999-01-01

    This paper presents results of numerical investigation of turbulent natural convection in an internally-heated oxidic pool, and in a metallic layer heated from below and cooled from top and sidewalls. Emphasis is placed upon applicability of the existing heat transfer correlations (obtained from simulant-material experiments) in assessments of a prototypic severe reactor accident. The objectives of this study are (i) to improve the current understanding of the physics of unstably stratified flows, and (ii) to reduce uncertainties associated with modeling and assessment of natural convection heat transfer in the above configuration. Prediction capabilities of different turbulence modeling approaches are first examined and discussed, based on extensive results of numerical investigations performed by present authors. Findings from numerical modeling of turbulent natural convection flow and heat transfer in melt pools and metallic layers are then described. (authors)

  5. Property Investigation of Laser Cladded, Laser Melted and Electron Beam Melted Ti-Al6-V4

    Science.gov (United States)

    2006-05-01

    UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Figure 3: Examples of electron beam melted net shape parts; powder bed [3]. 1.4 Laser Cladding ...description, www.arcam.com. [4] K.-H. Hermann, S. Orban, S. Nowotny, Laser Cladding of Titanium Alloy Ti6242 to Restore Damaged Blades, Proceedings...Property Investigation of Laser Cladded , Laser Melted and Electron Beam Melted Ti-Al6-V4 Johannes Vlcek EADS Deutschland GmbH Corporate Research

  6. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines.

    Science.gov (United States)

    Gokuldoss, Prashanth Konda; Kolla, Sri; Eckert, Jürgen

    2017-06-19

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties.

  7. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines

    Science.gov (United States)

    Konda Gokuldoss, Prashanth; Kolla, Sri; Eckert, Jürgen

    2017-01-01

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties. PMID:28773031

  8. Effect Of Turbulence Modelling In Numerical Analysis Of Melting Process In An Induction Furnace

    Directory of Open Access Journals (Sweden)

    Buliński P.

    2015-09-01

    Full Text Available In this paper, the velocity field and turbulence effects that occur inside a crucible of a typical induction furnace were investigated. In the first part of this work, a free surface shape of the liquid metal was measured in a ceramic crucible. Then a numerical model of aluminium melting process was developed. It took into account coupling of electromagnetic and thermofluid fields that was performed using commercial codes. In the next step, the sensitivity analysis of turbulence modelling in the liquid domain was performed. The obtained numerical results were compared with the measurement data. The performed analysis can be treated as a preliminary approach for more complex mathematical modelling for the melting process optimisation in crucible induction furnaces of different types.

  9. 50-kg large-size cold crucible levitation melting apparatus; Teibu shuto kino wo motsu 50kg kyu korudo kurushiburu fuyo yokai shochi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, S. [Fuji Electric Co. Ltd., Tokyo (Japan); Tadano, E. [Fuji Electric Corporate Research and Development Ltd., Kanagawa (Japan)

    1997-06-25

    With an increase in the degree of industrial techniques and the development of high-technology products in recent years, it has been demanded that the quality of high-purity metal materials be improved. The levitation melting method is a new melting method in which a metal material is melted by induction heating while the material is levitated in a water-cooled copper crucible. This paper made clear the principle of the levitation melting method and describes some problems in the development of a 50 kg-class large-capacity levitation melting apparatus and solutions to the problems. The development of a 50 kg-class levitation melting apparatus having a bottom discharging function was carried out on the basis of the results of discussion of the above-mentioned problems, and the noncontact melting of 50 kg cast iron and the noncontact bottom discharging of molten iron succeeded. This enabled the noncontact process of from the melting of a high-purity metal material and a metal of a high melting point to the casting of the molten metal. Since a continuous casting apparatus is provided under the crucible, the casting of an ingot and a rod material becomes possible. When a metal material is levitation-melted in superhigh vacuum, production of a superhigh-purity metal and a new metal material can be attained since the material is not contaminated by the atmosphere. 9 refs., 11 figs., 4 tabs.

  10. Development of melting facilities and techniques for decontamination and recycling of radioactively contaminated material

    International Nuclear Information System (INIS)

    Steinwarz, W.

    1998-01-01

    One decade after the accident at unit 4 of the Chernobyl nuclear power station a melting plant for radioactively contaminated metallic materials, the so-called SURF facility is being planned and licensed for erection in the direct neighbourhood of the NPP area. Main goal is the recycling of the material, largely decontaminated by the melting process, by means of manufacturing of casks and containers for waste disposal and of shielding equipment. The melting plant will be placed as part of the Ukrainian waste handling centre (CPPRO). The technology is based on the long-term experience gained at Siempelkamp's CARLA plant in Krefeld. In 1995-1997 the licensing conditions were defined, the licensing documents prepared and the formal procedure initiated. For completion of the recycling technique and to broaden the application fields for the re-usable material a granules production method has been developed and formally qualified. The essential is the substitution of the hematite portion in concrete structures providing an alternative sink for recycling material. (author)

  11. The melting treatment of bulk scrap from decommissioning

    International Nuclear Information System (INIS)

    Deng Junxian; Deng Feng

    2014-01-01

    Large amount of radioactive scrap will come out from reactor decommissioning. The melting treatment can be used for the volume reduction, the recycle and reuse of the radioactive scrap to reduce the mass of the radioactive waste disposal and to reuse most of the metal. The melting treatment has the advantages in volume reduction, conditioning, radionuclide confinement, reduction of radioactivity concentration, easy monitoring of radioactivity; and the effective of decontamination for several radionuclide. Therefore to use the melting technology other decontamination technology should be performed ahead, the decontamination effect of the melting should be predicted, the utility of recycle and reuse should be defined, and the secondary waste should be controlled effectively. (authors)

  12. In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting.

    Science.gov (United States)

    Hedberg, Yolanda S; Qian, Bin; Shen, Zhijian; Virtanen, Sannakaisa; Wallinder, Inger Odnevall

    2014-05-01

    Selective laser melting (SLM) is increasingly used for the fabrication of customized dental components made of metal alloys such as CoCrMo. The main aim of the present study is to elucidate the influence of the non-equilibrium microstructure obtained by SLM on corrosion susceptibility and extent of metal release (measure of biocompatibility). A multi-analytical approach has been employed by combining microscopic and bulk compositional tools with electrochemical techniques and chemical analyses of metals in biologically relevant fluids for three differently SLM fabricated CoCrMo alloys and one cast CoCrMo alloy used for comparison. Rapid cooling and strong temperature gradients during laser melting resulted in the formation of a fine cellular structure with cell boundaries enriched in Mo (Co depleted), and suppression of carbide precipitation and formation of a martensitic ɛ (hcp) phase at the surface. These features were shown to decrease the corrosion and metal release susceptibility of the SLM alloys compared with the cast alloy. Unique textures formed in the pattern of the melting pools of the three different laser melted CoCrMo alloys predominantly explain observed small, though significant, differences. The susceptibility for corrosion and metal release increased with an increased number (area) of laser melt pool boundaries. This study shows that integrative and interdisciplinary studies of microstructural characteristics, corrosion, and metal release are essential to assess and consider during the design and fabrication of CoCrMo dental components of optimal biocompatibility. The reason is that the extent of metal release from CoCrMo is dependent on fabrication procedures. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Electron spin resonance study of electron localization and dynamics in metal-molten salt solutions: comparison of M-MX and Ln-LnX sub 3 melts (M alkali metal, Ln = rare earth metal, X = halogen)

    CERN Document Server

    Terakado, O; Freyland, W

    2003-01-01

    We have studied the electron spin resonance (ESR) spectra in liquid K-KCl and M-(NaCl/KCl) sub e sub u sub t mixtures at different concentrations in salt-rich melts approaching the metal-nonmetal transition region. In both systems F-centre-like characteristics are found. Strongly exchange narrowed signals clearly indicate that fast electron exchange occurs on the picosecond timescale. In contrast, the ESR spectra of a (NdCl sub 2)(NdCl sub 3)-(LiCl/KCl) sub e sub u sub t melt are characterized by a large line width of the order of 10 sup 2 mT which decreases with increasing temperature. In this case, the g-factor and correlation time are consistent with the model of intervalence charge transfer, which is supported by recent conductivity and optical measurements. The different transport mechanisms will be discussed.

  14. The Microwave Properties of Simulated Melting Precipitation Particles: Sensitivity to Initial Melting

    Science.gov (United States)

    Johnson, B. T.; Olson, W. S.; Skofronick-Jackson, G.

    2016-01-01

    A simplified approach is presented for assessing the microwave response to the initial melting of realistically shaped ice particles. This paper is divided into two parts: (1) a description of the Single Particle Melting Model (SPMM), a heuristic melting simulation for ice-phase precipitation particles of any shape or size (SPMM is applied to two simulated aggregate snow particles, simulating melting up to 0.15 melt fraction by mass), and (2) the computation of the single-particle microwave scattering and extinction properties of these hydrometeors, using the discrete dipole approximation (via DDSCAT), at the following selected frequencies: 13.4, 35.6, and 94.0GHz for radar applications and 89, 165.0, and 183.31GHz for radiometer applications. These selected frequencies are consistent with current microwave remote-sensing platforms, such as CloudSat and the Global Precipitation Measurement (GPM) mission. Comparisons with calculations using variable-density spheres indicate significant deviations in scattering and extinction properties throughout the initial range of melting (liquid volume fractions less than 0.15). Integration of the single-particle properties over an exponential particle size distribution provides additional insight into idealized radar reflectivity and passive microwave brightness temperature sensitivity to variations in size/mass, shape, melt fraction, and particle orientation.

  15. Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances

    Energy Technology Data Exchange (ETDEWEB)

    Pinkerton, Andrew J; Li Lin [Laser Processing Research Centre, Department of Mechanical, Aerospace and Manufacturing Engineering, University of Manchester Institute of Science and Technology, PO Box 88, Sackville Street, Manchester M60 1QD (United Kingdom)

    2004-07-21

    The additive manufacturing technique of laser direct metal deposition allows multiple tracks of full density metallic material to be built to form complex parts for rapid tooling and manufacture. Practical results and theoretical models have shown that the geometries of the tracks are governed by multiple factors. Original work with single layer cladding identified three basic clad profiles but, so far, models of multiple layer, powder-feed deposition have been based on only two of them. At higher powder mass flow rates, experimental results have shown that a layer's width can become greater than the melt pool width at the substrate surface, but previous analytical models have not been able to accommodate this. In this paper, a model based on this third profile is established and experimentally verified. The model concentrates on mathematical analysis of the melt pool and establishes mass and energy balances based on one-dimensional heat conduction to the substrate. Deposition track limits are considered as arcs of circles rather than of ellipses, as used in most established models, reflecting the dominance of surface tension forces in the melt pool, and expressions for elongation of the melt pool with increasing traverse speed are incorporated. Trends in layer width and height with major process parameters are captured and predicted layer dimensions correspond well to the experimental values.

  16. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  17. Frictional melt generated by the 2008 Mw 7.9 Wenchuan earthquake and its faulting mechanisms

    Science.gov (United States)

    Wang, H.; Li, H.; Si, J.; Sun, Z.; Zhang, L.; He, X.

    2017-12-01

    Fault-related pseudotachylytes are considered as fossil earthquakes, conveying significant information that provide improved insight into fault behaviors and their mechanical properties. The WFSD project was carried out right after the 2008 Wenchuan earthquake, detailed research was conducted in the drilling cores. 2 mm rigid black layer with fresh slickenlines was observed at 732.6 m in WFSD-1 cores drilled at the southern Yingxiu-Beichuan fault (YBF). Evidence of optical microscopy, FESEM and FIB-TEM show it's frictional melt (pseudotachylyte). In the northern part of YBF, 4 mm fresh melt was found at 1084 m with similar structures in WFSD-4S cores. The melts contain numerous microcracks. Considering that (1) the highly unstable property of the frictional melt (easily be altered or devitrified) under geological conditions; (2) the unfilled microcracks; (3) fresh slickenlines and (4) recent large earthquake in this area, we believe that 2-4 mm melt was produced by the 2008 Wenchuan earthquake. This is the first report of fresh pseudotachylyte with slickenlines in natural fault that generated by modern earthquake. Geochemical analyses show that fault rocks at 732.6 m are enriched in CaO, Fe2O3, FeO, H2O+ and LOI, whereas depleted in SiO2. XRF results show that Ca and Fe are enriched obviously in the 2.5 cm fine-grained fault rocks and Ba enriched in the slip surface. The melt has a higher magnetic susceptibility value, which may due to neoformed magnetite and metallic iron formed in fault frictional melt. Frictional melt visible in both southern and northern part of YBF reveals that frictional melt lubrication played a major role in the Wenchuan earthquake. Instead of vesicles and microlites, numerous randomly oriented microcracks in the melt, exhibiting a quenching texture. The quenching texture suggests the frictional melt was generated under rapid heat-dissipation condition, implying vigorous fluid circulation during the earthquake. We surmise that during

  18. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder

    International Nuclear Information System (INIS)

    Zhang, Baicheng; Dembinski, Lucas; Coddet, Christian

    2013-01-01

    In this work, a systematic analysis of the main parameters for the selective laser melting (SLM) of a commercial stainless steel 316L powder was conducted to improve the mechanical properties and dimensional accuracy of the fabricated parts. First, the effects of the processing parameters, such as the laser beam scanning velocity, laser power, substrate condition and thickness of the powder layer, on the formation of single tracks for achieving a continuous melting and densification of the material were analysed. Then, the influence of the environmental conditions (gas nature) and of the preheating temperature on the density and dimensional accuracy of the parts was considered. The microstructural features of the SLM SS 316L parts were carefully observed to elucidate the melting-solidification mechanism and the thermal history, which are the basis of the manufacturing process. Finally, the mechanical properties of the corresponding material were also determined

  19. Characterization of ash melting behaviour at high temperatures under conditions simulating combustible solid waste gasification.

    Science.gov (United States)

    Niu, Miaomiao; Dong, Qing; Huang, Yaji; Jin, Baosheng; Wang, Hongyan; Gu, Haiming

    2018-05-01

    To achieve high-temperature gasification-melting of combustible solid waste, ash melting behaviour under conditions simulating high-temperature gasification were studied. Raw ash (RA) and gasified ash (GA) were prepared respectively by waste ashing and fluidized bed gasification. Results of microstructure and composition of the two-ash indicated that GA showed a more porous structure and higher content of alkali and alkali earth metals among metallic elements. Higher temperature promoted GA melting and could reach a complete flowing state at about 1250°C. The order of melting rate of GA under different atmospheres was reducing condition > inert condition > oxidizing condition, which might be related to different existing forms of iron during melting and different flux content with atmosphere. Compared to RA, GA showed lower melting activity at the same condition due to the existence of an unconverted carbon and hollow structure. The melting temperature for sufficient melting and separation of GA should be at least 1250°C in this work.

  20. Development of high-frequency induction melting system for radioactive solid wastes

    International Nuclear Information System (INIS)

    Kawaguchi, Ichiro; Yamazaki, Seichiro; Takahashi, Noriaki; Kugai, Katsutoshi; Yokozawa, Minoru

    2004-01-01

    Kawasaki Heavy Industries, Ltd. developed an active insulation (AI) method radiofrequency melting system as a new melting treatment system of radioactive solid wastes and proved production of waste satisfied the treatment performances and burying by repeating many practical melting tests. The melting vessel uses a low-priced ceramic canister with nonelectrical conductivity, which is able to treat wastes with large amount of inorganic substances. The wastes melted in the canister is taken out the canister itself from radiofrequency melting reactor and solidified after cooling. The cool canister is stored in 2001 metal drum filling up a gap with mortal for laying underground. New radiofrequency melting reactor, 1/3 scale melting test, estimation of scale effects, melting tests for practical use and the total system are explained. (S.Y.)

  1. Research on Computer Integrated Manufacturing of Sheet Metal Parts for Lithium Battery

    Directory of Open Access Journals (Sweden)

    Pan Wei-Min

    2016-01-01

    Full Text Available Lithium battery has been widely used as the main driving force of the new energy vehicle in recent years. Sheet metal parts are formed by means of pressure forming techniques with the characteristics of light weight, small size and high structural strength. The sheet metal forming has higher productivity and material utilization than the mechanical cutting, therefore sheet metal parts are widely used in many fields, such as modern automotive industry, aviation, aerospace, machine tools, instruments and household appliances. In this paper, taking a complex lithium battery box as an example, the integrated manufacturing of sheet metal parts is studied, and the digital integrated design and manufacturing process system is proposed. The technology is studied such as sheet metal design, unfolding, sheet nesting and laser cutting, CNC turret punch stamping programming, CNC bending etc. The feasibility of the method is verified through the examples of products and the integrated manufacturing of sheet metal box is completed.

  2. Corrosion Resistance of Steels and Armco-Fe in Lead Melt Saturated by Oxygen at 550 degree C

    International Nuclear Information System (INIS)

    Tsisar, V.P.; Fedirko, V.N.; Eliseeva, O.I.

    2007-01-01

    Corrosion resistance of stainless steels and Armco-Fe in static lead melt saturated by oxygen at 550 degree C for 2000 h was investigated. It was determined that double oxide layer was formed on the surface of investigated materials. Outer part of double oxide growths from the initial interface 'solid metal/liquid lead' towards the melt and consists of Fe 3 O 4 . Inner part of double oxide based on the matrix is composed of Fe 3 O 4 for Armco-Fe, Fe 1+x Cr 2-x O 4 for martensitic 0.2 C-13 Cr and ferritic-martensitic EP823 steels and Fe 1+x Cr 2- xO 4 +Ni for austenitic 18Cr-10Ni-1Ti. Lead did not penetrate into the matrix of tested materials and was detected only in the scale formed on austenitic steel

  3. Synergistically improved thermal conductivity of polyamide-6 with low melting temperature metal and graphite

    Directory of Open Access Journals (Sweden)

    Y. C. Jia

    2016-08-01

    Full Text Available Low melting temperature metal (LMTM-tin (Sn was introduced into polyamide-6 (PA6 and PA6/graphite composites respectively to improve the thermal conductivity of PA6 by melt processing (extruding and injection molding. After introducing Sn, the thermal conductivity of PA6/Sn was nearly constant because of the serious agglomeration of Sn. However, when 20 wt% (5.4 vol% of Sn was added into PA6 containing 50 wt% (33.3 vol% of graphite, the thermal conductivity of the composite was dramatically increased to 5.364 versus 1.852 W·(m·K–1 for the PA6/graphite composite, which suggests that the incorporation of graphite and Sn have a significant synergistic effect on the thermal conductivity improvement of PA6. What is more, the electrical conductivity of the composite increased nearly 8 orders of magnitudes after introducing both graphite and Sn. Characterization of microstructure and energy dispersive spectrum analysis (EDS indicates that the dispersion of Sn in PA6/graphite/Sn was much more uniform than that of PA6/Sn composite. According to Differential Scanning Calorimetry measurement and EDS, the uniform dispersion of Sn in PA6/graphite/Sn and the high thermal conductivity of PA6/graphite/Sn are speculated to be related with the electron transfer between graphite and Sn, which makes Sn distribute evenly around the graphite layers.

  4. Non-Equilibrium Solidification of Undercooled Metallic Melts

    Directory of Open Access Journals (Sweden)

    Dieter M. Herlach

    2014-06-01

    Full Text Available If a liquid is undercooled below its equilibrium melting temperature an excess Gibbs free energy is created. This gives access to solidification of metastable solids under non-equilibrium conditions. In the present work, techniques of containerless processing are applied. Electromagnetic and electrostatic levitation enable to freely suspend a liquid drop of a few millimeters in diameter. Heterogeneous nucleation on container walls is completely avoided leading to large undercoolings. The freely suspended drop is accessible for direct observation of rapid solidification under conditions far away from equilibrium by applying proper diagnostic means. Nucleation of metastable crystalline phases is monitored by X-ray diffraction using synchrotron radiation during non-equilibrium solidification. While nucleation preselects the crystallographic phase, subsequent crystal growth controls the microstructure evolution. Metastable microstructures are obtained from deeply undercooled melts as supersaturated solid solutions, disordered superlattice structures of intermetallics. Nucleation and crystal growth take place by heat and mass transport. Comparative experiments in reduced gravity allow for investigations on how forced convection can be used to alter the transport processes and design materials by using undercooling and convection as process parameters.

  5. Modeling of melt retention in EU-APR1400 ex-vessel core catcher

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, V. S.; Sulatsky, A. A.; Khabensky, V. B.; Sulatskaya, M. B. [Alexandrov Research Inst. of Technology NITI, Sosnovy Bor (Russian Federation); Gusarov, V. V.; Almyashev, V. I.; Komlev, A. A. [Saint Petersburg State Technological Univ. SPbSTU, St.Petersburg (Russian Federation); Bechta, S. [KTH, Stockholm (Sweden); Kim, Y. S. [KHNP, 1312 Gil 70, Yuseongdaero, Yuseong-gu, Daejeon (Korea, Republic of); Park, R. J.; Kim, H. Y.; Song, J. H. [KAERI, 989 Gil 111, Daedeokdaero, Yuseong-gu, Daejeon (Korea, Republic of)

    2012-07-01

    A core catcher is adopted in the EU-APR1400 reactor design for management and mitigation of severe accidents with reactor core melting. The core catcher concept incorporates a number of engineering solutions used in the catcher designs of European EPR and Russian WER-1000 reactors, such as thin-layer corium spreading for better cooling, retention of the melt in a water-cooled steel vessel, and use of sacrificial material (SM) to control the melt properties. SM is one of the key elements of the catcher design and its performance is critical for melt retention efficiency. This SM consists of oxide components, but the core catcher also includes sacrificial steel which reacts with the metal melt of the molten corium to reduce its temperature. The paper describes the required properties of SM. The melt retention capability of the core catcher can be confirmed by modeling the heat fluxes to the catcher vessel to show that it will not fail. The fulfillment of this requirement is demonstrated on the example of LBLOCA severe accident. Thermal and physicochemical interactions between the oxide and metal melts, interactions of the melts with SM, sacrificial steel and vessel, core catcher external cooling by water and release of non-condensable gases are modeled. (authors)

  6. A powerful way of cooling computer chip using liquid metal with low melting point as the cooling fluid

    Energy Technology Data Exchange (ETDEWEB)

    Li Teng; Lv Yong-Gang [Chinese Academy of Sciences, Beijing (China). Cryogenic Lab.; Chinese Academy of Sciences, Beijing (China). Graduate School; Liu Jing; Zhou Yi-Xin [Chinese Academy of Sciences, Beijing (China). Cryogenic Lab.

    2006-12-15

    With the improvement of computational speed, thermal management becomes a serious concern in computer system. CPU chips are squeezing into tighter and tighter spaces with no more room for heat to escape. Total power-dissipation levels now reside about 110 W, and peak power densities are reaching 400-500 W/mm{sup 2} and are still steadily climbing. As a result, higher performance and greater reliability are extremely tough to attain. But since the standard conduction and forced-air convection techniques no longer be able to provide adequate cooling for sophisticated electronic systems, new solutions are being looked into liquid cooling, thermoelectric cooling, heat pipes, and vapor chambers. In this paper, we investigated a novel method to significantly lower the chip temperature using liquid metal with low melting point as the cooling fluid. The liquid gallium was particularly adopted to test the feasibility of this cooling approach, due to its low melting point at 29.7 C, high thermal conductivity and heat capacity. A series of experiments with different flow rates and heat dissipation rates were performed. The cooling capacity and reliability of the liquid metal were compared with that of the water-cooling and very attractive results were obtained. Finally, a general criterion was introduced to evaluate the cooling performance difference between the liquid metal cooling and the water-cooling. The results indicate that the temperature of the computer chip can be significantly reduced with the increasing flow rate of liquid gallium, which suggests that an even higher power dissipation density can be achieved with a large flow of liquid gallium and large area of heat dissipation. The concept discussed in this paper is expected to provide a powerful cooling strategy for the notebook PC, desktop PC and large computer. It can also be extended to more wide area involved with thermal management on high heat generation rate. (orig.)

  7. Theoretical Melt Curves of Al, Cu, Ta and Pb

    International Nuclear Information System (INIS)

    Mehta, S.

    2006-01-01

    Melt curves of a number of metals are computed using simple models of the solid and liquid phases in conjunction with a minimal amount of experimental data. Ionic motion is modelled using a mean field approximation and a modified CRIS model in the solid and liquid phases respectively. By correcting the liquid Helmholtz free energy to reproduce experimental measurements of various melting quantities at atmospheric pressure, it is found that the melt curve remains in reasonable agreement with experiment and more advanced calculations to high pressure

  8. Radioactive scrap metal decontamination technology assessment report

    International Nuclear Information System (INIS)

    Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E.

    1996-04-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material's decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for the liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting

  9. Iron Abundances in Lunar Impact Basin Melt Sheets From Orbital Magnetic Field Data

    Science.gov (United States)

    Oliveira, Joana S.; Wieczorek, Mark A.; Kletetschka, Gunther

    2017-12-01

    Magnetic field data acquired from orbit shows that the Moon possesses many magnetic anomalies. Though most of these are not associated with known geologic structures, some are found within large impact basins within the interior peak ring. The primary magnetic carrier in lunar rocks is metallic iron, but indigenous lunar rocks are metal poor and cannot account easily for the observed field strengths. The projectiles that formed the largest impact basins must have contained a significant quantity of metallic iron, and a portion of this iron would have been retained on the Moon's surface within the impact melt sheet. Here we use orbital magnetic field data to invert for the magnetization within large impact basins using the assumption that the crust is unidirectionally magnetized. We develop a technique based on laboratory thermoremanent magnetization acquisition to quantify the relationship between the strength of the magnetic field at the time the rock cooled and the abundance of metal in the rock. If we assume that the magnetized portion of the impact melt sheet is 1 km thick, we find average abundances of metallic iron ranging from 0.11% to 0.45 wt %, with an uncertainty of a factor of about 3. This abundance is consistent with the metallic iron abundances in sampled lunar impact melts and the abundance of projectile contamination in terrestrial impact melts. These results help constrain the composition of the projectile, the impact process, and the time evolution of the lunar dynamo.

  10. Development of Metal Plate with Internal Structure Utilizing the Metal Injection Molding (MIM Process

    Directory of Open Access Journals (Sweden)

    Kwangho Shin

    2013-12-01

    Full Text Available In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE simulation. PE (high density polyethylene (HDPE and low density polyethylene (LDPE and polypropylene (PP resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made.

  11. Production of metal waste forms from spent fuel treatment

    International Nuclear Information System (INIS)

    Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

    1995-01-01

    Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities

  12. Distribution of radionuclides during melting of carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Thurber, W.C.; MacKinney, J.

    1997-02-01

    During the melting of steel with radioactive contamination, radionuclides may be distributed among the metal product, the home scrap, the slag, the furnace lining and the off-gas collection system. In addition, some radionuclides will pass through the furnace system and vent to the atmosphere. To estimate radiological impacts of recycling radioactive scrap steel, it is essential to understand how radionuclides are distributed within the furnace system. For example, an isotope of a gaseous element (e.g., radon) will exhaust directly from the furnace system into the atmosphere while a relatively non-volatile element (e.g., manganese) can be distributed among all the other possible media. This distribution of radioactive contaminants is a complex process that can be influenced by numerous chemical and physical factors, including composition of the steel bath, chemistry of the slag, vapor pressure of the particular element of interest, solubility of the element in molten iron, density of the oxide(s), steel melting temperature and melting practice (e.g., furnace type and size, melting time, method of carbon adjustment and method of alloy additions). This paper discusses the distribution of various elements with particular reference to electric arc furnace steelmaking. The first two sections consider the calculation of partition ratios for elements between metal and slag based on thermodynamic considerations. The third section presents laboratory and production measurements of the distribution of various elements among slag, metal, and the off-gas collection system; and the final section provides recommendations for the assumed distribution of each element of interest.

  13. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Memarzadeh, Kaveh [Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Newark Street, London E1 2AT (United Kingdom); Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Ren, Guogang [University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Allaker, Robert P., E-mail: r.p.allaker@qmul.ac.uk [Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Newark Street, London E1 2AT (United Kingdom); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-10-01

    Objective: The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Methods: Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. Results: SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. Significance: The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. - Highlights: • Novel CoCrCu alloys were fabricated by using selective laser melting (SLM). • SLM CoCrCu alloys showed satisfied antimicrobial and antibiofilm activities. • SLM CoCrCu alloys have no cytotoxic effect on normal cells. • Other properties of SLM CoCrCu alloys were similar to SLM CoCr alloys. • SLM CoCrCu alloys have the potential to be used as coping metals.

  14. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties

    International Nuclear Information System (INIS)

    Ren, Ling; Memarzadeh, Kaveh; Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang; Ren, Guogang; Allaker, Robert P.; Yang, Ke

    2016-01-01

    Objective: The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Methods: Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. Results: SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. Significance: The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. - Highlights: • Novel CoCrCu alloys were fabricated by using selective laser melting (SLM). • SLM CoCrCu alloys showed satisfied antimicrobial and antibiofilm activities. • SLM CoCrCu alloys have no cytotoxic effect on normal cells. • Other properties of SLM CoCrCu alloys were similar to SLM CoCr alloys. • SLM CoCrCu alloys have the potential to be used as coping metals.

  15. Explosive force of primacord grid forms large sheet metal parts

    Science.gov (United States)

    1966-01-01

    Primacord which is woven through fish netting in a grid pattern is used for explosive forming of large sheet metal parts. The explosive force generated by the primacord detonation is uniformly distributed over the entire surface of the sheet metal workpiece.

  16. Influence of oxide and alloy formation on the Electrochemistry of Ti deposition from the NaCl-KCl-NaF-K-2 TiF6 melt reduced by metallic Ti

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Precht Noyé, Pernille; Barhoun, A

    2005-01-01

    The redox reactions in KCl-NaCl-NaF-K2TiF6 melts reduced by titanium metal have been studied by cyclic voltammetry and chronopotentiommetry. At platinum and nickel electrodes waves due to alloy formation were seen preceding the Ti(III) --> Ti metal deposition wave. The presence of oxide species...

  17. Equilibrium between (Li,Na,K,Mg)-carbonate melt, gaseous CO

    NARCIS (Netherlands)

    Velden, P.F. van

    1967-01-01

    Considerable amounts of MgCO3 may appear in alkali metal carbonate melts in contact with MgO and carbon dioxide gas. The equilibrium between dissolved MgCO3, MgO and carbon dioxide gas has been studied. The results satisfactorily obey thermodynamic theory based upon a melt

  18. Extraction of scandium by organic substance melts

    International Nuclear Information System (INIS)

    Gladyshev, V.P.; Lobanov, F.I.; Zebreva, A.I.; Andreeva, N.N.; Manuilova, O.A.; Il'yukevich, Yu.A.

    1984-01-01

    Regularities of scandium extraction by the melts of octadecanicoic acid, n-carbonic acids of C 17 -C 20 commerical fraction and mixtures of tributylphosphate (TBP) with paraffin at (70+-1) deg C have been studied. The optimum conditions for scandium extraction in the melt of organic substances are determined. A scheme of the extraction by the melts of higher carbonic acids at ninitial metal concentrations of 10 -5 to 10 -3 mol/l has been suggested. The scandium compound has been isolated in solid form, its composition having been determined. The main advantages of extraction by melts are as follows: a possibility to attain high distribution coefficients, distinct separation of phases after extraction, the absence of emulsions, elimination of employing inflammable and toxic solvents, a possibility of rapid X-ray fluorescence determinatinon of scandium directly in solid extract

  19. Use of configuration management to reduce development costs in metal parts

    International Nuclear Information System (INIS)

    Kalsoom, T.; Ahmad, S.

    2005-01-01

    In development and manufacturing phases of metal parts, design efforts are converted in set of engineering data pack under the given guidelines of Configuration Management (CM). These engineering documents define Configuration Management of metal parts production in a local industry. The development phase is normally less structured and open to Engineering Change Proposals. In our local engineering organizations most of the work done is normally not well documented for future revisions and modernization. This leads to delays in development and increase in production costs of metal parts. This becomes more pronounced if any member of the design team disassociates and leaves the organization. The Configuration Management helps to reduce development costs by providing infrastructure for product identification, documentation, change control, interface control and technical reviews and product audits. Automated or Computer-Assisted CM activities can also be used to shorten response time and increase accuracy and reliability of the produced metal components. (author)

  20. Additive manufacturing technologies of porous metal implants

    Directory of Open Access Journals (Sweden)

    Yang Quanzhan

    2014-06-01

    Full Text Available Biomedical metal materials with good corrosion resistance and mechanical properties are widely used in orthopedic surgery and dental implant materials, but they can easily cause stress shielding due to the significant difference in elastic modulus between the implant and human bones. The elastic modulus of porous metals is lower than that of dense metals. Therefore, it is possible to adjust the pore parameters to make the elastic modulus of porous metals match or be comparable with that of the bone tissue. At the same time, the open porous metals with pores connected to each other could provide the structural condition for bone ingrowth, which is helpful in strengthening the biological combination of bone tissue with the implants. Therefore, the preparation technologies of porous metal implants and related research have been drawing more and more attention due to the excellent features of porous metals. Selective laser melting (SLM and electron beam melting technology (EBM are important research fields of additive manufacturing. They have the advantages of directly forming arbitrarily complex shaped metal parts which are suitable for the preparation of porous metal implants with complex shape and fine structure. As new manufacturing technologies, the applications of SLM and EBM for porous metal implants have just begun. This paper aims to understand the technology status of SLM and EBM, the research progress of porous metal implants preparation by using SLM and EBM, and the biological compatibility of the materials, individual design and manufacturing requirements. The existing problems and future research directions for porous metal implants prepared by SLM and EBM methods are discussed in the last paragraph.

  1. Water jet intrusion into hot melt concomitant with direct-contact boiling of water

    Energy Technology Data Exchange (ETDEWEB)

    Sibamoto, Yasuteru [Japan Atomic Energy Research Inst., Tokai Research Establishment, Tokai, Ibaraki (Japan)

    2005-08-01

    Boiling of water poured on surface of high-temperature melt (molten metal or metal oxide) provides an efficient means for heat exchange or cooling of melt. The heat transfer surface area can be extended by forcing water into melt. Objectives of the present study are to elucidate key factors of the thermal and hydrodynamic interactions for the water jet injection into melt (Coolant Injection mode). Proposed applications include in in-vessel heat exchangers for liquid metal reactor and emergency measures for cooling of molten core debris in severe accidents of light water reactor. Water penetration into melt may occurs also as a result of fuel-coolant interaction (FCI) in modes other than CI, it is anticipated that the present study contributes to understand the fundamental mechanism of the FCI process. The previous works have been limited on understanding the melt-water interaction phenomena in the water-injection mode because of difficulty in experimental measurement where boiling occurs in opaque invisible hot melt unlike the melt-injection mode. We conducted visualization and measurement of melt-water-vapor multiphase flow phenomena by using a high-frame-rate neutron radiography technique and newly-developed probes. Although limited knowledge, however, has been gained even such an approach, the experimental data were analyzed deeply by comparing with the knowledge obtained from relevant matters. As a result, we succeeded in revealing several key phenomena and validity in the conditions under which stable heat transfer is established. Moreover, a non-intrusive technique for measurement of the velocity and pressure fields adjacent to a moving free surface is developed. The technique is based on the measurement of fluid surface profile, which is useful for elucidation of flow mechanism accompanied by a free surface like the present phenomena. (author)

  2. Regularities of changes of metal melting entropy

    International Nuclear Information System (INIS)

    Kats, S.A.; Chekhovskoj, V.Ya.

    1980-01-01

    Most trustworthy data on temperatures, heats and entropies of fusion of metals have been used as a basis to throw light on the laws governing variations of the entropy of metals fusion. The elaborated procedure is used to predict the entropies of the metals fusion whose thermodynamic properties under high temperatures have not yet been investigated

  3. HECLA experiments on interaction between metallic melt and hematite-containing concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sevon, Tuomo, E-mail: tuomo.sevon@vtt.f [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland); Kinnunen, Tuomo; Virta, Jouko; Holmstroem, Stefan; Kekki, Tommi; Lindholm, Ilona [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland)

    2010-10-15

    In a hypothetical severe accident in a nuclear power plant, molten materials may come into contact with concrete, causing concrete ablation. In five HECLA experiments the interaction between metallic melt and concrete was investigated by pouring molten stainless steel at almost 1800 {sup o}C into cylindrical concrete crucibles. The tests were transient, i.e. no decay heat simulation was used. The main objective was to test the behavior of the FeSi concrete, containing hematite (Fe{sub 2}O{sub 3}) and siliceous aggregates. This special concrete type is used as a sacrificial layer in the Olkiluoto 3 EPR reactor pit, and very scarce experimental data is available about its behavior at high temperatures. It is concluded that no clear differences between the ablation of FeSi concrete and ordinary siliceous concrete were observed. The ablation depths were small, 25 mm at maximum. No dramatic effects, such as cracking of large pieces of concrete due to the thermal shock, took place. An important side result of the test series was gaining knowledge of the properties of the special concrete type. Chemical analyses were conducted and mechanical properties were measured.

  4. Synthesis of alkaline-earth metal tungstates in melts of [NaNO3-M(NO3)2]eut-Na2WO4 (M=Ca, Sr, Ba) system

    International Nuclear Information System (INIS)

    Shurdumov, G.K.; Shurdumova, Z.V.; Cherkesov, Z.A.; Karmokov, A.M.

    2006-01-01

    Synthesis of alkaline earth metal tungstates in melts of eutectics of NaNO 3 -M(NO 3 ) 2 ] (M=Ca, Sr, Ba) is done. Synthesis is based in exchange reaction of calcium, strontium, and barium nitrates with sodium tungstate [ru

  5. Hard magnetic properties and coercivity mechanism of melt-spun Misch Metal-Fe-B alloy

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Ningtao; Luo, Yang, E-mail: eluoyang@foxmail.com; Yan, Wenlong; Yuan, Chao; Yu, Dunbo; Sun, Liang; Lu, Shuo; Li, Hongwei; Zhang, Hongbin

    2017-09-01

    Highlights: • Melt-spun MM{sub 13}Fe{sub 81}B{sub 6} alloy shows that the distributions of the La, Ce, Pr, Nd, Fe and B elements is uniformly distributed, and the grain size is in the range of 30–40 nm, it can be seen that Pr-rich and La-rich phases concentrated on grain boundaries, which resulted in the coercivity augment with the increase of MMFe{sub 2} content, and the grain size is around 40–50 nm in MM{sub 16}Fe{sub 78}B{sub 6}. • There is a significant formation of MMFe{sub 2} with abundant Pr and La, and a small amount of Ce and Nd enriched at the interfacial region in MM{sub 16}Fe{sub 78}B{sub 6}, thus an inhomogeneous region was formed. It is considered that the inhomogeneous region is effective in increasing the coercivity. • The optimum-quenched MM{sub 13}Fe{sub 81}B{sub 6} alloy have been shown to exhibit a coercive force of 6.9 kOe and an energy product of 8.5 MGOe, which is superior to anisotropic ferrite magnets of 4.5 MGOe. - Abstract: Magnetic and structural properties of Misch Metal (MM)-Fe-B alloys, were examined in the melt-spun ribbons. Melt-spun MM-Fe-B samples were prepared at the surface velocities of 18–30 m/s. Crystalline structure and their room-temperature magnetization characteristics were analyzed, and the optimum surface velocity of 20 m/s and nominal composition of MM{sub 13}Fe{sub 81}B{sub 6} were obtained. Microstructural analyses indicate that the grain size is approximately 30–50 nm in the alloys with the optimum characteristics. In the MM{sub 16}Fe{sub 78}B{sub 6} alloys, Pr-rich and La-rich phases concentrated on grain boundaries, which resulted in the coercivity augment with the increase of MMFe{sub 2} content. Dependence of coercivity on applied magnetic field suggested that the mechanism of coercivity in moderate MM-content samples was inhomogeneous domain wall pinning type. The melt-spun ribbons in the optimum condition exhibit a coercive force of 6.9 kOe and an energy product of 8.5 MGOe, which can be used as

  6. Plasmarc technology for the treatment of metallic radwaste

    International Nuclear Information System (INIS)

    Hoffelner, W.; Weigel, H.

    1999-01-01

    The Plasmarc incineration and melting technology is suitable for processing radioactive wastes arising from the fields of medicine, industry and research, and from the operation and maintenance of nuclear power plants. Combustible wastes can be thermally decomposed and metals melted in the same facility together, and the incineration products and metals are thus turned into a form suitable for disposal in one step. In secondary metallurgy the Plasmarc technology can be used for melting scrap metal and recovering usable metals from metalliferous wastes, particularly composites of different metals and ceramics and metals and plastics. In the case of special wastes, it is possible to thermally decompose otherwise problematic residues in an oxygen free atmosphere at high temperatures. Material construction in the incineration mode could be in 200-litre standard drums with a total weight up to 300 kilograms if an average processing efficiency of 200 kilograms of mixed waste per hours is assumed. Melting: In the melting mode for metals, the drums coming from the storage rack are placed in the slowly rotating furnace using a grabbing device. Because of the low speed of rotation, the central outlet is initially blocked with a stopper. The drums, with contents, are then molten in the plasma arc. As soon as there is a melted mass, the speed of rotation of the furnace is increased until there is no material outflow when the stopper is removed. The stopped is then removed and the speed of rotation is reduced once again to allow the melt to flow out, exactly as in the incineration mode. Mixing: In the mixing mode, metallic/nonmetallic mixtures (e.g. reinforced concrete) can be processed. The meltable components are melted and the organic components are thermally decomposed. Because of differences in density, the inorganic residues float on the surface of the molten metal and can be vitrified using additives. These different operating modes of the Plasmarc furnace allow various

  7. Phytomining of heavy metals from soil by Hibiscus radiatus using phytoremediationtechnology (Part-2)

    Science.gov (United States)

    Panchal, K. J.; Subramanian, R. B.; Gohil, T. P.

    2017-12-01

    Metal ions are not only valuable intermediates in metal extraction, but also important raw materials fortechnical applications. They possess some unique but, identical physical and chemical properties, whichmake them useful probes of low temperature geochemical reactions. Heavy metals are natural constituentsof the earth's crust, but indiscriminate human activities have drastically altered their geochemical cyclesand biochemical balance. Metal concentration in soil typically ranges from less than one to as high as100,000 mg/kg. Heavy metal contaminations of land resources continue to be the focus of numerousenvironmental studies and attract a great deal of attention worldwide. This is attributed to nobiodegradabilityand persistence of heavy metals in soils. Prolonged exposure to heavy metals such ascadmium, copper, lead, nickel, and zinc can cause deleterious health effects in humans. Complexation,separation, and removal of metal ions have become increasingly attractive areas of research and have ledto new technical developments like phytoremediation that has numerous biotechnological implications ofunderstanding of plant metal accumulation. Hibiscus radiatus is newly identified as a potential heavymetal hypreaccumulator. In this study Hibiscus radiatus was subjected for in vitro heavy metalaccumulation, to explore the accumulation pattern of four heavy metals viz Cadmium, Lead, Nickel andZinc in various parts of Hibiscus radiatus plant parts. Translocation of metals in Hibiscus radiatus plant parts from soil makes this plant an eligible candidate to remove heavy metals from soil.

  8. Hidden scale invariance of metals

    DEFF Research Database (Denmark)

    Hummel, Felix; Kresse, Georg; Dyre, Jeppe C.

    2015-01-01

    Density functional theory (DFT) calculations of 58 liquid elements at their triple point show that most metals exhibit near proportionality between the thermal fluctuations of the virial and the potential energy in the isochoric ensemble. This demonstrates a general “hidden” scale invariance...... of metals making the condensed part of the thermodynamic phase diagram effectively one dimensional with respect to structure and dynamics. DFT computed density scaling exponents, related to the Grüneisen parameter, are in good agreement with experimental values for the 16 elements where reliable data were...... available. Hidden scale invariance is demonstrated in detail for magnesium by showing invariance of structure and dynamics. Computed melting curves of period three metals follow curves with invariance (isomorphs). The experimental structure factor of magnesium is predicted by assuming scale invariant...

  9. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting

    Science.gov (United States)

    Li, Ruidi; Shi, Yusheng; Wang, Zhigang; Wang, Li; Liu, Jinhui; Jiang, Wei

    2010-04-01

    The densification during selective laser melting (SLM) process is an important factor determining the final application of SLM-part. In the present work, the densifications under different processing conditions were investigated and the densification mechanisms were elucidated. It was found that the higher laser power, lower scan speed, narrower hatch spacing and thinner layer thickness could enable a much smoother melting surface and consequently a higher densification. The gas atomized powder possessed better densification than water atomized powder, due to the lower oxygen content and higher packing density of gas atomized powder. A large number of regular-shaped pores can be generated at a wider hatch spacing, even if the scanning track is continuous and wetted very well. The densification mechanisms were addressed and the methods for building dense metal parts were also proposed as follows: inhibiting the balling phenomenon, increasing the overlap ratio of scanning tracks and reducing the micro-cracks.

  10. The Properties of Ammonium Dinitramine (ADN): Part 2: Melt Casting

    Science.gov (United States)

    Hahma, A.; Edvinsson, H.; Östmark, H.

    2010-04-01

    A melt casting technique for ammonium dinitramine (ADN) and ADN/aluminum was developed. ADN proved relatively easy to cast, when 1% of magnesium oxide was used as a stabilizer and crystallization kernels. Densities of ADN/MgO 99/1 were 92 to 97% of theoretical mean density (TMD) and those of ADN/Al/MgO 64/35/1 were between 95 and 99% of TMD. Sedimentation of Al in the melt was prevented and the particle wetting was ensured by selecting a suitable particle size for Al. No gelling agents or other additives were used. The casting process and factors influencing it are discussed.

  11. The Melting Point of Palladium Using Miniature Fixed Points of Different Ceramic Materials: Part II—Analysis of Melting Curves and Long-Term Investigation

    Science.gov (United States)

    Edler, F.; Huang, K.

    2016-12-01

    Fifteen miniature fixed-point cells made of three different ceramic crucible materials (Al2O3, ZrO2, and Al2O3(86 %)+ZrO2(14 %)) were filled with pure palladium and used to calibrate type B thermocouples (Pt30 %Rh/Pt6 %Rh). A critical point by using miniature fixed points with small amounts of fixed-point material is the analysis of the melting curves, which are characterized by significant slopes during the melting process compared to flat melting plateaus obtainable using conventional fixed-point cells. The method of the extrapolated starting point temperature using straight line approximation of the melting plateau was applied to analyze the melting curves. This method allowed an unambiguous determination of an electromotive force (emf) assignable as melting temperature. The strict consideration of two constraints resulted in a unique, repeatable and objective method to determine the emf at the melting temperature within an uncertainty of about 0.1 μ V. The lifetime and long-term stability of the miniature fixed points was investigated by performing more than 100 melt/freeze cycles for each crucible of the different ceramic materials. No failure of the crucibles occurred indicating an excellent mechanical stability of the investigated miniature cells. The consequent limitation of heating rates to values below {± }3.5 K min^{-1} above 1100° C and the carefully and completely filled crucibles (the liquid palladium occupies the whole volume of the crucible) are the reasons for successfully preventing the crucibles from breaking. The thermal stability of the melting temperature of palladium was excellent when using the crucibles made of Al2O3(86 %)+ZrO2(14 %) and ZrO2. Emf drifts over the total duration of the long-term investigation were below a temperature equivalent of about 0.1 K-0.2 K.

  12. 2D modeling of direct laser metal deposition process using a finite particle method

    Science.gov (United States)

    Anedaf, T.; Abbès, B.; Abbès, F.; Li, Y. M.

    2018-05-01

    Direct laser metal deposition is one of the material additive manufacturing processes used to produce complex metallic parts. A thorough understanding of the underlying physical phenomena is required to obtain a high-quality parts. In this work, a mathematical model is presented to simulate the coaxial laser direct deposition process tacking into account of mass addition, heat transfer, and fluid flow with free surface and melting. The fluid flow in the melt pool together with mass and energy balances are solved using the Computational Fluid Dynamics (CFD) software NOGRID-points, based on the meshless Finite Pointset Method (FPM). The basis of the computations is a point cloud, which represents the continuum fluid domain. Each finite point carries all fluid information (density, velocity, pressure and temperature). The dynamic shape of the molten zone is explicitly described by the point cloud. The proposed model is used to simulate a single layer cladding.

  13. Correlations between entropy and volume of melting in halide salts

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    1991-09-01

    Melting parameters and transport coefficients in the melt are collated for halides of monovalent, divalent and trivalent metals. A number of systems show a deficit of entropy of melting relative to the linear relationships between entropy change and relative volume change on melting that are found to be approximately obeyed by a majority of halides. These behaviours are discussed on the basis of structural and transport data. The deviating systems are classified into three main classes, namely (i) fast-ion conductors in the high-temperature crystal phase such as AgI, (ii) strongly structured network-like systems such as ZnCl 2 , and (iii) molecular systems melting into associated molecular liquids such as SbCl 3 . (author). 35 refs, 1 fig., 3 tabs

  14. Extraction process for removing metallic impurities from alkalide metals

    Science.gov (United States)

    Royer, Lamar T.

    1988-01-01

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  15. Modeling of velocity field for vacuum induction melting process

    Institute of Scientific and Technical Information of China (English)

    CHEN Bo; JIANG Zhi-guo; LIU Kui; LI Yi-yi

    2005-01-01

    The numerical simulation for the recirculating flow of melting of an electromagnetically stirred alloy in a cylindrical induction furnace crucible was presented. Inductive currents and electromagnetic body forces in the alloy under three different solenoid frequencies and three different melting powers were calculated, and then the forces were adopted in the fluid flow equations to simulate the flow of the alloy and the behavior of the free surface. The relationship between the height of the electromagnetic stirring meniscus, melting power, and solenoid frequency was derived based on the law of mass conservation. The results show that the inductive currents and the electromagnetic forces vary with the frequency, melting power, and the physical properties of metal. The velocity and the height of the meniscus increase with the increase of the melting power and the decrease of the solenoid frequency.

  16. Optimization of Thermochemical, Kinetic, and Electrochemical Factors Governing Partitioning of Radionuclides During Melt Decontamination of Radioactively Contaminated Stainless Steel; TOPICAL

    International Nuclear Information System (INIS)

    VAN DEN AVYLE, JAMES A.; MALGAARD, DAVID; MOLECKE, MARTIN; PAL, UDAY B.; WILLIAMSON, RODNEY L.; ZHIDKOV, VASILY V.

    1999-01-01

    The Research Objectives of this project are to characterize and optimize the use of molten slags to melt decontaminate radioactive stainless steel scrap metal. The major focus is on optimizing the electroslag remelting (ESR) process, a widely used industrial process for stainless steels and other alloys, which can produce high quality ingots directly suitable for forging, rolling, and parts fabrication. It is our goal to have a melting process ready for a DOE D and D demonstration at the end of the third year of EMSP sponsorship, and this technology could be applied to effective stainless steel scrap recycle for internal DOE applications. It also has potential international applications. The technical approach has several elements: (1) characterize the thermodynamics and kinetics of slag/metal/contaminate reactions by models and experiments, (2) determine the capacity of slags for radioactive containment, (3) characterize the minimum levels of residual slags and contaminates in processed metal, and (4) create an experimental and model-based database on achievable levels of decontamination to support recycle applications. Much of the experimental work on this project is necessarily focused on reactions of slags with surrogate compounds which behave similar to radioactive transuranic and actinide species. This work is being conducted at three locations. At Boston University, Prof. Uday Pal's group conducts fundamental studies on electrochemical and thermochemical reactions among slags, metal, and surrogate contaminate compounds. The purpose of this work is to develop a detailed understanding of reactions in slags through small laboratory scale experiments and modeling. At Sandia, this fundamental information is applied to the design of electroslag melting experiments with surrogates to produce and characterize metal ingots. In addition, ESR furnace conditions are characterized, and both thermodynamic and ESR process models are utilized to optimize the process. To

  17. Angular forces and melting in bcc transition metals: A case study of molybdenum

    International Nuclear Information System (INIS)

    Moriarty, J.A.

    1994-01-01

    Both the multi-ion and effective pair potentials also permit a large amount of supercooling of the liquid before the onset of freezing. With v 2 eff a bcc structure is nucleated at freezing, while with the multi-ion potentials an amorphous glasslike structure is obtained, which appears to be related to the energetically competitive A15 structure. In our second approach to melting, the multi-ion potentials have been used to obtain accurate solid and liquid free energies from quasiharmonic lattice dynamics and MD calculations of thermal energies and pressures. The resulting ion-thermal melting curve exactly overlaps the dynamically observed melting point, indicating that no superheating of the solid occurred in our MD simulations. To obtain a full melting curve, electron-thermal contributions to the solid and liquid free energies are added in terms of the density of electronic states at the Fermi level, ρ(E F ). Here the density of states for the solid has been calculated with the linear-muffin-tin-orbital method, while for the liquid tight-binding calculations have been used to justify a simple model. In the liquid ρ(E F ) is increased dramatically over the bcc solid, and the net effect of the electron-thermal contributions is to lower the calculated melting temperatures by about a factor of 2. A full melting curve to 2 Mbar has thereby been obtained and the calculated melting properties near zero pressure are in generally good agreement with experiment

  18. Monitoring device for glass melting furnace

    International Nuclear Information System (INIS)

    Endo, Noboru; Asano, Naoki; Higuchi, Tatsuo; Koyama, Mayumi; Hanado, Shinji.

    1995-01-01

    The device of the present invention can monitor, from a remote place, a liquid surface in a glass melting furnace for use in a solidification treatment, for example, of high level radioactive wastes. Namely, a vertical sleeve is disposed penetrating a ceiling wall of a melting vessel. A reflection mirror is disposed above the vertical sleeve and flex an optical axis. A monitoring means is disposed on the optical axis of the reflecting mirror at a spaced position. The monitoring means may have an optical telescopic means, a monitoring camera by way of a half mirror and an illumination means. The reflection mirror may be made of a metal. The monitoring device thus constituted suffer from no effects of high temperature and high radiation dose rate, thereby enabling to easily monitor the liquid surface in the melting furnace. (I.S.)

  19. Tensile properties and microstructure of direct metal laser-sintered TI6AL4V (ELI alloy

    Directory of Open Access Journals (Sweden)

    Moletsane, M. G.

    2016-11-01

    Full Text Available Direct metal laser sintering (DMLS is an additive manufacturing technology used to melt metal powder by high laser power to produce customised parts, light-weight structures, or other complex objects. During DMLS, powder is melted and solidified track-by-track and layer-by-layer; thus, building direction can influence the mechanical properties of DMLS parts. The mechanical properties and microstructure of material produced by DMLS can depend on the powder properties, process parameters, scanning strategy, and building geometry. In this study, the microstructure, tensile properties, and porosity of DMLS Ti6Al4V (ELI horizontal samples were analysed. Defect analysis by CT scans in pre-strained samples was used to detect the crack formation mechanism during tensile testing of as-built and heat-treated samples. The mechanical properties of the samples before and after stress relieving are discussed.

  20. Reduction of Oxidative Melt Loss of Aluminum and Its Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Subodh K. Das; Shridas Ningileri

    2006-03-17

    This project led to an improved understanding of the mechanisms of dross formation. The microstructural evolution in industrial dross samples was determined. Results suggested that dross that forms in layers with structure and composition determined by the local magnesium concentration alone. This finding is supported by fundamental studies of molten metal surfaces. X-ray photoelectron spectroscopy data revealed that only magnesium segregates to the molten aluminum alloy surface and reacts to form a growing oxide layer. X-ray diffraction techniques that were using to investigate an oxidizing molten aluminum alloy surface confirmed for the first time that magnesium oxide is the initial crystalline phase that forms during metal oxidation. The analytical techniques developed in this project are now available to investigate other molten metal surfaces. Based on the improved understanding of dross initiation, formation and growth, technology was developed to minimize melt loss. The concept is based on covering the molten metal surface with a reusable physical barrier. Tests in a laboratory-scale reverberatory furnace confirmed the results of bench-scale tests. The main highlights of the work done include: A clear understanding of the kinetics of dross formation and the effect of different alloying elements on dross formation was obtained. It was determined that the dross evolves in similar ways regardless of the aluminum alloy being melted and the results showed that amorphous aluminum nitride forms first, followed by amorphous magnesium oxide and crystalline magnesium oxide in all alloys that contain magnesium. Evaluation of the molten aluminum alloy surface during melting and holding indicated that magnesium oxide is the first crystalline phase to form during oxidation of a clean aluminum alloy surface. Based on dross evaluation and melt tests it became clear that the major contributing factor to aluminum alloy dross was in the alloys with Mg content. Mg was

  1. Multiphysics modeling of selective laser sintering/melting

    Science.gov (United States)

    Ganeriwala, Rishi Kumar

    A significant percentage of total global employment is due to the manufacturing industry. However, manufacturing also accounts for nearly 20% of total energy usage in the United States according to the EIA. In fact, manufacturing accounted for 90% of industrial energy consumption and 84% of industry carbon dioxide emissions in 2002. Clearly, advances in manufacturing technology and efficiency are necessary to curb emissions and help society as a whole. Additive manufacturing (AM) refers to a relatively recent group of manufacturing technologies whereby one can 3D print parts, which has the potential to significantly reduce waste, reconfigure the supply chain, and generally disrupt the whole manufacturing industry. Selective laser sintering/melting (SLS/SLM) is one type of AM technology with the distinct advantage of being able to 3D print metals and rapidly produce net shape parts with complicated geometries. In SLS/SLM parts are built up layer-by-layer out of powder particles, which are selectively sintered/melted via a laser. However, in order to produce defect-free parts of sufficient strength, the process parameters (laser power, scan speed, layer thickness, powder size, etc.) must be carefully optimized. Obviously, these process parameters will vary depending on material, part geometry, and desired final part characteristics. Running experiments to optimize these parameters is costly, energy intensive, and extremely material specific. Thus a computational model of this process would be highly valuable. In this work a three dimensional, reduced order, coupled discrete element - finite difference model is presented for simulating the deposition and subsequent laser heating of a layer of powder particles sitting on top of a substrate. Validation is provided and parameter studies are conducted showing the ability of this model to help determine appropriate process parameters and an optimal powder size distribution for a given material. Next, thermal stresses upon

  2. Extraction of acetylacetonates of some metals from melts of trihydrate lithium nitrate

    International Nuclear Information System (INIS)

    Sevast'yanov, A.I.; Rudenko, N.P.; Kuznetsov, A.F.; Lanskaya, N.G.

    1987-01-01

    Extraction of beryllium cobalt and lithium from melts of trihydrate lithium nitrate at 37 deg C using 0.5 mol solutions of acetylacetone in chloroform, tetrachlorethylene and carbon tetrachloride is studied. Beryllium is quantitatively extracted at pH 3.8-5.5, the phase volume ratio being V org :V melt from 1:1 to 1:10. The degree of the beryllium complex unitary extraction from melt depends on the nature of organic solvent and is 100% for CCl 4 , CHCl 3 and 85% for C 2 Cl 4 . Solvents on Be extraction ability are placed in the following series CCl 4 > CHCl 3 >C 2 Cl 4

  3. Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies

    Directory of Open Access Journals (Sweden)

    Chao Guo

    2015-03-01

    Full Text Available Electron beam selective melting (EBSM is an additive manufacturing technique that directly fabricates three-dimensional parts in a layerwise fashion by using an electron beam to scan and melt metal powder. In recent years, EBSM has been successfully used in the additive manufacturing of a variety of materials. Previous research focused on the EBSM process of a single material. In this study, a novel EBSM process capable of building a gradient structure with dual metal materials was developed, and a powder-supplying method based on vibration was put forward. Two different powders can be supplied individually and then mixed. Two materials were used in this study: Ti6Al4V powder and Ti47Al2Cr2Nb powder. Ti6Al4V has excellent strength and plasticity at room temperature, while Ti47Al2Cr2Nb has excellent performance at high temperature, but is very brittle. A Ti6Al4V/Ti47Al2Cr2Nb gradient material was successfully fabricated by the developed system. The microstructures and chemical compositions were characterized by optical microscopy, scanning microscopy, and electron microprobe analysis. Results showed that the interface thickness was about 300 μm. The interface was free of cracks, and the chemical compositions exhibited a staircase-like change within the interface.

  4. Cleaning Process Development for Metallic Additively Manufactured Parts

    Science.gov (United States)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  5. Uranium and plutonium extraction from fluoride melts by lithium-tin alloys

    International Nuclear Information System (INIS)

    Kashcheev, I.N.; Novoselov, G.P.; Zolotarev, A.B.

    1975-01-01

    Extraction of small amounts of uranium (12 wt. % concentration) and plutonium (less than 1.10sup(-10) % concentration) from lithium fluoride melts into the lithium-tin melts is studied. At an increase of temperature from 850 to 1150 deg the rate of process increases 2.5 times. At an increase of melting time the extraction rapidly enhances at the starting moment and than its rate reduces. Plutonium is extracted into the metallic phase for 120 min. (87-96%). It behaves analogously to uranium

  6. A multi-component evaporation model for beam melting processes

    Science.gov (United States)

    Klassen, Alexander; Forster, Vera E.; Körner, Carolin

    2017-02-01

    In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.

  7. Equation for the melting curve of solids under high pressure

    International Nuclear Information System (INIS)

    Boguslavskii, Yu.Ya.

    1982-01-01

    Simon's equation of the melting curve is obtained using the Clausius-Clapeyron equation in the linear approximation of the pressure dependence of the melting entropy and the volume change at the melting point. The constants in Simon's equation are calculated in this approximation for the alkali metals Li, Na, K, Rb, Cs and also for hydrogen, H 2 , and argon. It is shown that one can obtain the constants of Simon's equation in a pressure range which is wider than the region of the thermodynamical validity of Simon's equation by averaging the values of the constants determined in different points of the melting curves. The constants obtained by this manner agree well with the experimental data. (author)

  8. Shear melting and high temperature embrittlement: theory and application to machining titanium.

    Science.gov (United States)

    Healy, Con; Koch, Sascha; Siemers, Carsten; Mukherji, Debashis; Ackland, Graeme J

    2015-04-24

    We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding are supplanted by amorphization in a highly localized nanoscale band, which allows for massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are lack of dislocation slip systems, low thermal conduction, and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting-point elements: specifically, we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.

  9. Melting temperature of uranium - plutonium mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Tetsuya; Hirosawa, Takashi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960`s and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960`s and that some of the 1960`s data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO{sub 2} - PuO{sub 2} - PuO{sub 1.61} ideal solution model, and then formulized. (J.P.N.)

  10. Melting temperature of uranium - plutonium mixed oxide fuel

    International Nuclear Information System (INIS)

    Ishii, Tetsuya; Hirosawa, Takashi

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960's and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960's and that some of the 1960's data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO 2 - PuO 2 - PuO 1.61 ideal solution model, and then formulized. (J.P.N.)

  11. Surface tension and density of fusible metal melt with sulphur and selenium

    International Nuclear Information System (INIS)

    Najdich, Yu.V.; Krasovskij, Yu.P.; Chuvashov, Yu.N.

    1990-01-01

    Surface tension and density at 970 K have been determined for melts of Ga, In, Sn and Pb with S and Se. High surface activity of chalcogens in the melts has been found. A maximal adsorption of the active components and their ultimate surface activity that correlate with thermodinamical strength of the corresponding sulfides and selenides have been calculated

  12. Development of metal uranium fuel and testing of construction materials (I-VI); Part I; Razvoj metalnog goriva i ispitivanje konstrukcionih materijala (I-VI deo); I deo

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlovic, A [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    This project includes the following tasks: Study of crystallisation of metal melt and beta-alpha transforms in uranium and uranium alloys; Study of the thermal treatment influence on phase transformations and texture in uranium alloys; Radiation damage of metal uranium; Project related to irradiation of metal uranium in the reactor; Development of fuel element for nuclear reactors.

  13. The matter of probability controlling melting of nuclear ship reactor

    International Nuclear Information System (INIS)

    Pihowicz, W.; Sobczyk, S.

    2008-01-01

    In the first part of this work beside description of split power, power of radioactivity disintegration and afterpower and its ability to extinguish, the genera condition of melting nuclear reactor core and its detailed versions were described. This paper also include the description of consequences melting nuclear reactor core both in case of stationary and mobile (ship) reactor and underline substantial differences. Next, fulfilled with succeed, control under melting of stationary nuclear reactor core was characterized.The middle part describe author's idea of controlling melting of nuclear ship reactor core. It is based on: - the suggestion of prevention pressure's untightness in safety tank of nuclear ship reactor by '' corium '' - and the suggestion of preventing walls of this tank from melting by '' corium ''. In the end the technological and construction barriers of the prevention from melting nuclear ship reactor and draw conclusions was presented. (author)

  14. A New Approach for Handling of Micro Parts in Bulk Metal Forming

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Arentoft, M.

    2012-01-01

    of production [1]. This can fulfill the demands for mass production and miniaturization in industries and academic communities. According to the recent studies, topics related to materials, process and simulation have been investigated intensively and well documented. Machines, forming tools and handling...... systems are critical elements to complete micro forming technology for transferring knowledge to industries and toward miniature manufacturing systems (micro factory) [2]. Since most metal forming processes are multi stage, making a new handling system with high reliability on accuracy and speed...... have been optimized or handling systems based on new concepts for gripping and releasing micro parts have been proposed. Making a handling system for micro parts made by sheet metals or foils is easier than those in bulk metal forming because parts are attached to the sheet during the forming process...

  15. Joining technique of silicon nitride and silicon carbide in a mixture and/or in contact with high-melting metals and alloys

    International Nuclear Information System (INIS)

    Mueller-Zell, A.

    1980-01-01

    The following work gives a survey on possible joining techniques of silicon nitride (Si 3 N 4 ) and silicon carbide (SiC) in a mixture and/or in contact with high-melting metals and alloys. The problem arose because special ceramic materials such as Si 3 N 4 and SiC are to be used in gas turbines. The special ceramics in use may unavoidably come into contact with metals or the one hand, or form intended composite systems with them on the other hand, like e.g. the joining of a Si 3 N 4 disc with a metallic drive axis or ceramic blades with a metal wheel. The mixed body of X% ceramic (Si 3 N 4 , SiC) and Y% metal powder were prepared depending on the material combination at 1200 0 C-1750 0 C by hot-pressing or at 1200 0 C-2050 0 C by hot-pressing or pressureless sintering. The following possible ways were chosen as interlaminar bonding ceramic/metal/ceramic: on the one hand pressure welding (composite hot pressing) and the solid-state bonding in direct contact and by means of artificially included transition mixed layers, as well as material intermediate layers between metal and ceramic and on the other hand, soldering with active solder with molten phase. (orig./RW) [de

  16. PRODUCTION OF PROTOTYPE PARTS USING DIRECT METAL LASER SINTERING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Josef Sedlak

    2015-08-01

    Full Text Available Unconventional methods of modern materials preparation include additive technologies which involve the sintering of powders of different chemical composition, granularity, physical, chemical and other utility properties. The technology called Rapid Prototyping, which uses different technological principles of producing components, belongs to this type of material preparation. The Rapid Prototyping technology facilities use photopolymers, thermoplastics, specially treated paper or metal powders. The advantage is the direct production of metal parts from input data and the fact that there is no need for the production of special tools (moulds, press tools, etc.. Unused powder from sintering technologies is re-used for production 98% of the time, which means that the process is economical, as well as ecological.The present paper discusses the technology of Direct Metal Laser Sintering (DMLS, which falls into the group of additive technologies of Rapid Prototyping (RP. The major objective is a detailed description of DMLS, pointing out the benefits it offers and its application in practice. The practical part describes the production and provides an economic comparison of several prototype parts that were designed for testing in the automotive industry.

  17. Inverse shear viscosity (fluidity) scaled with melting point properties: Almost 'universal' behaviour of heavier alkalis

    International Nuclear Information System (INIS)

    Tankeshwar, K.; March, N.H.

    1997-07-01

    Some numerical considerations relating to the potential of mean force at the melting point of Rb metal are first presented, which argue against the existence of a well defined activation energy for the shear viscosity of this liquid. Therefore, a scaling approach is developed, based on a well established formula for the viscosity η m of sp liquid metals at their melting points T m . This approach is shown to lead to an 'almost' universal plot of scaled fluidity η -1 η m against (T/T m ) 1/2 for the liquid alkali metals, excluding Li. This metal is anomalous because it is a strong scattering liquid, in marked contrast to the other alkali metals. (author). 9 refs, 3 figs, 1 tab

  18. Effect of cationic composition of electrolyte on kinetics of lead electrolytic separation in chloride melts

    International Nuclear Information System (INIS)

    Yurkinskij, V.P.; Makarov, D.V.

    1995-01-01

    The mechanism has been studied and kinetic parameters of the process of Pb(2) ion electrochemical reduction have been ascertained for different individual melts of alkali metal chlorides and their mixtures, using methods of linear voltammetry chronopotentiometry and chronoamperometry. It has been ascertained that cations in the melts of alkali metal chlorides affect stability of [PbCl n ] 2-n ions. The data obtained suggest that the strength of the complexes increases in the series NaCl-KCl-CsCl. In the melt of sodium chloride the electrode process is limited by diffusion, whereas in the melts of KCl, CsCl, CsCl-NaCl with cesium chloride content exceeding 70 mol% lead electrochemical reduction is controlled by preceding dissociation of the complexes. 10 refs., 3 figs., 2 tabs

  19. A metastable liquid melted from a crystalline solid under decompression

    Science.gov (United States)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin

    2017-01-01

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure-temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.

  20. Chemical decontamination and melt densification of chop-leach fuel hulls

    International Nuclear Information System (INIS)

    Dillon, R.L.; Griggs, B.; Kemper, R.S.; Nelson, R.G.

    1976-01-01

    This paper reports on decontamination and densification studies of chop-leach fuel hull residues designed to minimize the transuranic element (TRU) contaminated waste stream. Decontamination requirements have been established from studies of TRU element distribution in the fuel hull residues. Effective surface decontamination of Zircaloy requires removal of zirconium oxide corrosion products. Good decontamination factors have been achieved with aqueous solutions following high temperature HF conditioning of oxide films. Molten fluoride salt mixtures are effective decontaminants, but pose problems in metal loss and salt dragout. Molten metal decontamination methods are highly preliminary, but may be required to reduce TRU originating from tramp uranium in Zircaloy. Low melting (1300 0 C) alloy of Zircaloy, stainless steel, and Inconel have been prepared in induction heated graphite crucibles. High quality ingots of Zircaloy-2 have been prepared directly from short sections of descaled fuel clad tubing using the Inductoslag process. This material is readily capable of refabrication. Inductoslag melts have also been prepared from heavily oxidized Zircaloy tubing demonstrating melt densification without prior decontamination is technically feasible. Hydrogen absorption kinetics have been demonstrated with cast Zircaloy-2 and cast Zircaloy-stainless steel-Inconel alloys. Metallic fuel hull residues have been proposed as a storage medium for tritium released from fuel during reprocessing. (author)

  1. Mechanism of anodic oxidation of molybdenum and tungsten in nitrate-nitrite melts

    International Nuclear Information System (INIS)

    Yurkinskij, V.P.; Firsova, E.G.; Morachevskij, A.G.

    1987-01-01

    The mechanism of anode oxidation of tungsten and molybdenum in NaNO 3 -KNO 3 (50 mass %) nitrate-nitrite melts with NaNO 2 -KNO 2 (0.5-50 mass %) addition and in NaNO 2 -KNO 2 (35 mole %) nitrite melt in the 516-580 K temperature range is studied. It is supposed that the process of anode dissloving of the mentioned metals in nitrite melt and nitrate-nitrite mixtures is two-electron. Formation of oxide passivating film is possible under electrolysis on the anode surface, the film is then dissolved in nitrate-nitrite melt with formation of molybdates or tungstates

  2. Standard practice for process compensated resonance testing via swept sine input for metallic and Non-Metallic parts

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice describes a general procedure for using the process compensated resonance testing (PCRT) via swept sine input method to identify metallic and non-metallic parts’ resonant pattern differences that can be used to indentify parts with anomalies causing deficiencies in the expected performance of the part in service. This practice is intended for use with instruments capable of exciting, measuring, recording, and analyzing multiple whole body mechanical vibration resonant frequencies within parts exhibiting acoustical ringing in the audio, or ultrasonic, resonant frequency ranges, or both. PCRT is used in the presence of manufacturing process variance to distinguish acceptable parts from those containing significant anomalies in physical characteristics expected to significantly alter the performance. Such physical characteristics include, but are not limited to, cracks, voids, porosity, shrink, inclusions, discontinuities, grain and crystalline structure differences, density related anomalies...

  3. The thermal expansion of gold: point defect concentrations and pre-melting in a face-centred cubic metal.

    Science.gov (United States)

    Pamato, Martha G; Wood, Ian G; Dobson, David P; Hunt, Simon A; Vočadlo, Lidunka

    2018-04-01

    On the basis of ab initio computer simulations, pre-melting phenomena have been suggested to occur in the elastic properties of hexagonal close-packed iron under the conditions of the Earth's inner core just before melting. The extent to which these pre-melting effects might also occur in the physical properties of face-centred cubic metals has been investigated here under more experimentally accessible conditions for gold, allowing for comparison with future computer simulations of this material. The thermal expansion of gold has been determined by X-ray powder diffraction from 40 K up to the melting point (1337 K). For the entire temperature range investigated, the unit-cell volume can be represented in the following way: a second-order Grüneisen approximation to the zero-pressure volumetric equation of state, with the internal energy calculated via a Debye model, is used to represent the thermal expansion of the 'perfect crystal'. Gold shows a nonlinear increase in thermal expansion that departs from this Grüneisen-Debye model prior to melting, which is probably a result of the generation of point defects over a large range of temperatures, beginning at T / T m > 0.75 (a similar homologous T to where softening has been observed in the elastic moduli of Au). Therefore, the thermodynamic theory of point defects was used to include the additional volume of the vacancies at high temperatures ('real crystal'), resulting in the following fitted parameters: Q = ( V 0 K 0 )/γ = 4.04 (1) × 10 -18  J, V 0 = 67.1671 (3) Å 3 , b = ( K 0 ' - 1)/2 = 3.84 (9), θ D = 182 (2) K, ( v f /Ω)exp( s f / k B ) = 1.8 (23) and h f = 0.9 (2) eV, where V 0 is the unit-cell volume at 0 K, K 0 and K 0 ' are the isothermal incompressibility and its first derivative with respect to pressure (evaluated at zero pressure), γ is a Grüneisen parameter, θ D is the Debye temperature, v f , h f and s f are the vacancy formation volume, enthalpy and entropy

  4. Behavior of nuclides at plasma melting of TRU wastes

    International Nuclear Information System (INIS)

    Amakawa, Tadashi; Adachi, Kazuo

    2001-01-01

    Arc plasma heating technique can easily be formed at super high temperature, and can carry out stable heating without any effect of physical and chemical properties of the wastes. By focussing to these characteristics, this technique was experimentally investigated on behavior of TRU nuclides when applying TRU wastes forming from reprocessing process of used fuels to melting treatment by using a mimic non-radioactive nuclide. At first, according to mechanism determining the behavior of TRU nuclides, an element (mimic nuclide) to estimate the behavior was selected. And then, to zircaloy with high melting point or steel can simulated to metal and noncombustible wastes and fly ash, the mimic nuclide was added, prior to melting by using the arc plasma heating technique. As a result, on a case of either melting sample, it was elucidated that the nuclides hardly moved into their dusts. Then, the technique seems to be applicable for melting treatment of the TRU wastes. (G.K.)

  5. Stationary potentials and corrosion of metals and steels in sodium and potassium chloride eutectic melts saturated with hydrogen chloride

    International Nuclear Information System (INIS)

    Belov, V.N.; Ershova, T.K.; Kochergin, V.P.

    1978-01-01

    Stationary potentials have been measured at 850 deg C and corrosion rates found gravimetrically for a number of metals and steels in the eutectic NaCl-KCl melt saturated with HCl. Periodic shifts of the stationary potentials towards positive values have been established in the Ti-V-Cr-Fe-Ni, Cu-Zr-Nb-Mo, Ag-Ta-W-Pt systems, with the corrosion rate of metals decreasing in them. The stationary potentials are shown to shift towards positive values in the series: st.08 KP, st.3, Kh17N2, Kh22N6T, Kh13NChG9, 1Kh18N10T, Kh17N13M2T, OKh17N16M3T, Kh23N18, Kh25N16G7, Kh23N28M3D3T, with corrosive resistance in this series increasing

  6. Post-processing of 3D-printed parts using femtosecond and picosecond laser radiation

    Science.gov (United States)

    Mingareev, Ilya; Gehlich, Nils; Bonhoff, Tobias; Meiners, Wilhelm; Kelbassa, Ingomar; Biermann, Tim; Richardson, Martin C.

    2014-03-01

    Additive manufacturing, also known as 3D-printing, is a near-net shape manufacturing approach, delivering part geometry that can be considerably affected by various process conditions, heat-induced distortions, solidified melt droplets, partially fused powders, and surface modifications induced by the manufacturing tool motion and processing strategy. High-repetition rate femtosecond and picosecond laser radiation was utilized to improve surface quality of metal parts manufactured by laser additive techniques. Different laser scanning approaches were utilized to increase the ablation efficiency and to reduce the surface roughness while preserving the initial part geometry. We studied post-processing of 3D-shaped parts made of Nickel- and Titanium-base alloys by utilizing Selective Laser Melting (SLM) and Laser Metal Deposition (LMD) as additive manufacturing techniques. Process parameters such as the pulse energy, the number of layers and their spatial separation were varied. Surface processing in several layers was necessary to remove the excessive material, such as individual powder particles, and to reduce the average surface roughness from asdeposited 22-45 μm to a few microns. Due to the ultrafast laser-processing regime and the small heat-affected zone induced in materials, this novel integrated manufacturing approach can be used to post-process parts made of thermally and mechanically sensitive materials, and to attain complex designed shapes with micrometer precision.

  7. Manufacturing processes of cellular metals. Part I. Liquid route processes

    International Nuclear Information System (INIS)

    Fernandez, P.; Cruz, L. J.; Coleto, J.

    2008-01-01

    With its interesting and particular characteristics, cellular metals are taking part of the great family of new materials. They can have open or closed porosity. At the present time, the major challenge for the materials researchers is based in the manufacturing techniques improvement in order to obtain reproducible and reliable cellular metals with quality. In the present paper, the different production methods to manufacture cellular metals by liquid route are reviewed; making a short description about the main parameters involved and the advantages and drawbacks in each of them. (Author) 106 refs

  8. Melt-assisted synthesis to lanthanum hexaboride nanoparticles and ...

    Indian Academy of Sciences (India)

    2017-09-22

    Sep 22, 2017 ... cubes (100–300 nm) when metal zinc was used as reaction melt. Photothermal ... powder (Zn, AR), potassium chloride (KCl, AR), sodium chloride (NaCl, AR) and ... ized water to remove NaCl, KCl and other impurities. The.

  9. Reaction- and melting behaviour of LWR-core components UO2, Zircaloy and steel during the meltdown period

    International Nuclear Information System (INIS)

    Hofmann, P.

    1976-07-01

    The reaction behaviour of the UO 2 , Zircaloy-4 and austenitic steel core components was investigated as a function of temperature (till melting temperatures) under inert and oxidizing conditions. Component concentrations varied between that of Corium-A (65 wt.% UO 2 , 18% Zry, 17% steel) and that of Corium-E (35 wt.% UO 2 , 10% Zry, 55% steel). In addition, Zircaloy and stainless steel were used with different degrees of oxidation. The paper describes systematically the phases that arise during heating and melting. The integral composition of the melts and the qualitative as well as quantitative analysis of the phases present in solidified corium are given. In some cases melting points have been determined. The reaction and melting behaviour of the corium specimens strongly depends on the concentration and on the degree of oxidation of the core components. First liquid phases are formed at the Zry-steel interface at about 1,350 0 C. The maximum temperatures of about 2,500 0 C for the complete melting of the corium-specimens are well below the UO 2 melting point. Depending on the steel content and/or degree of oxidation of Zry and steel, a homogeneous metallic or oxide melt or two immiscible melts - one oxide and the other metallic - are obtained. During the melting experiments performed under inert gas conditions the chemical composition of the molten specimens generally change by evaporation losses of single elements, especially of uranium, zirconium and oxygen. The total weight losses go up to 30%; under oxidizing conditions they are substantially smaller due to the occurrence of different phases. In air or water vapor, the occurrence of the phases and the melting behaviour of the core components are strongly influenced by the oxidation rate and the oxygen supply to the surface of the melt. In the case of the hypothetical core melting accident, a heterogeneous melt (oxide and metallic) is probable after the meltdown period. (orig./RW) [de

  10. Simulation experiment on the flooding behaviour of core melts: KATS-9

    International Nuclear Information System (INIS)

    Fieg, G.; Massier, H.; Schuetz, W.; Stegmaier, U.; Stern, G.

    2000-11-01

    For future Light Water Reactors special devices (core catchers) are being developed to prevent containment failure by basement erosion after reactor pressure vessel meltthrough during a core meltdown accident. Quick freezing of the molten core masses is desirable to reduce release of radioactivity. Several concepts of core catcher devices have been proposed based on the spreading of corium melt onto flat surfaces with subsequent water cooling. A KATS-experiment has been performed to investigate the flooding behaviour of high temperature melts using alumina-iron thermite melts as a simulant. The oxidic thermite melt is conditioned by adding other oxides to simulate a realistic corium melt as close as possible in terms of liquidus and solidus temperatures. Before flooding with water, spreading of the separate oxidic and metallic melts has been done in one-dimensional channels with a silicate concrete as the substrate. The flooding rate was, in relation to the melt surface, identical to the flooding rate in EPR. (orig.) [de

  11. A thermodynamic approach to the quantitative evaluation of the metallic melts glass-forming ability

    International Nuclear Information System (INIS)

    Zajtsev, A.I.

    2004-01-01

    The outlook for development of quantitative criteria of the tendency of metallic melt to render amorphous is shown with taking into account specific features of chemical interaction between components. With the use of statistical physics methods and thermodynamics as well as concepts of association the techniques are devised for quantitative separation of contributions to liquid alloy thermodynamic functions conditioned by various types of chemical interaction between components. The results Knudsen mass-spectroscopic comprehensive thermodynamic study of a wide range of systems with various tendency to vitrification are summarized. It is shown that excessive (configurational) entropy and specific heat of the liquid are key features predetermining thermodynamic and kinetic stimuli of amorphization. Their values are completely determined by a covalent constituent of chemical interaction on entropic term of association reaction. The possibility of construction of quantitative amorphization criteria on the basis of this feature and the outlook for the use of the approach proposed to predict physicochemical and mechanical properties of solid amorphous materials are illustrated [ru

  12. A technology development for the purification and utilization of rare metals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The electronics and semi-conductor industries require the use of high-purity rare metals and their alloys more than ever. High purity metals such as titanium, molybdenum, nickel and cobalt are used in the manufacture of gate electrodes, interconnectors, and metal barriers due to their excellent properties. However, domestic production of these rare metals has not been achieved due mainly to the low metal content in their ore in the nation. For these reasons, a strategy for the value addition of rare metal sponges by processes like vacuum melting and by the remelting of expensive scraps should be seek to meet the growing domestic demand and to reduce the import from foreign countries. The major sponge-melting methods are VAR (Vacuum Arc Remelting), VIM (Vacuum Induction Melting), Plasma melting, PAM (Plasma Arc Melting), and EBM (Electron Beam Melting) in the order of development sequence. Among these, VAR obtained most wide application due to their lower cost and ease of producing large ingots. However, the method suffers from the difficulties in the control of melting rate, segregation of certain elements including interstitial impurities during the preparation of electrode. The recent trend for more strict control of impurities in electronics industries forces titanium metal producers to use more sophisticated equipment like EBM. The objectives for this research are two fold : One is to develop a titanium purification process utilizing the EBM method. The other is to develop a multi-stage cascade process of supported liquid membrane (SLM) for separation and purification of rare metals such as cobalt and nickel. (author). 50 refs., 18 tabs., 39 figs.

  13. Parametric studies on containment thermal hydraulic loads during high pressure melt ejection in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Silde, A.; Lindholm, I. [VTT Energy, Espoo (Finland)

    1997-12-01

    The containment thermal hydraulic loads during high pressure melt ejection in a Nordic BWR are studied parametrically with the CONTAIN and the MELCOR codes. The work is part of the Nordic RAK-2 project. The containment analyses were divided into two categories according to composition of the discharged debris: metallic and oxidic debris cases. In the base case with highly metallic debris, all sources from the reactor coolant system to the containment were based on the MELCOR/BH calculation. In the base case with the oxidic debris, the source data was specified assuming that {approx} 15% of the whole core material inventory and 34,000 kg of saturated water was discharged from the reactor pressure vessel (RPV) during 30 seconds. In this case, the debris consisted mostly of oxides. The highest predicted containment pressure peaks were about 8.5 bar. In the scenarios with highly metallic debris source, very high gas temperature of about 1900 K was predicted in the pedestal, and about 1400 K in the upper drywell. The calculations with metallic debris were sensititive to model parameters, like the particle size and the parameters, which control the chemical reaction kinetics. In the scenarios with oxidic debris source, the predicted pressure peaks were comparable to the cases with the metallic debris source. The maximum gas temperatures (about 450-500 K) in the containment were, however, significantly lower than in the respective metallic debris case. The temperatures were also insensitive to parametric variations. In addition, one analysis was performed with the MELCOR code for benchmarking of the MELCOR capabilities against the more detailed CONTAIN code. The calculations showed that leak tightness of the containment penetrations could be jeopardized due to high temperature loads, if a high pressure melt ejection occurred during a severe accident. Another consequence would be an early containment venting. (au). 28 refs.

  14. Changes in density of aluminium, lead and zinc melts dependent on temperature

    International Nuclear Information System (INIS)

    Kazachkov, S.P.; Kochegura, N.M.; Markovskij, E.A.

    1979-01-01

    Density of aluminium, lead and zinc in various aggregate states has been studied in a wide temperature range. The density of the above metals was found to manifest temperature hysteresis after melting and cyclic change at the temperature of melting and crystallization. These phenomena are in agreement with the Stuart model of liquid state

  15. AsS melt under pressure: one substance, three liquids.

    Science.gov (United States)

    Brazhkin, V V; Katayama, Y; Kondrin, M V; Hattori, T; Lyapin, A G; Saitoh, H

    2008-04-11

    An in situ high-temperature--high-pressure study of liquid chalcogenide AsS by x-ray diffraction, resistivity measurements, and quenching from melt is presented. The obtained data provide direct evidence for the existence in the melt under compression of two transformations: one is from a moderate-viscosity molecular liquid to a high-viscosity nonmetallic polymerized liquid at P approximately 1.6-2.2 GPa; the other is from the latter to a low-viscosity metallic liquid at P approximately 4.6-4.8 GPa. Upon rapid cooling, molecular and metallic liquids crystallize to normal and high-pressure phases, respectively, while a polymerized liquid is easily quenched to a new AsS glass. General aspects of multiple phase transitions in liquid AsS, including relations to the phase diagram of the respective crystalline, are discussed.

  16. Evolution of Shock Melt Compositions in Lunar Agglutinates

    Science.gov (United States)

    Vance, A. M.; Christoffersen, R.; Keller, L. P.

    2015-01-01

    Lunar agglutinates are aggregates of regolith grains fused together in a glassy matrix of shock melt produced during smaller-scale (mostly micrometeorite) impacts. Agglutinate formation is a key space weathering process under which the optically-active component of nanophase metallic Fe (npFe(sup 0)) is added to the lunar regolith. Here we have used energy-dispersive X-ray (EDX) compositional spectrum imaging in the SEM to quantify the chemical homogeneity of agglutinitic glass, correlate its homogeneity to its parent soil maturity, and identify the principle chemical components contributing to the shock melt compositional variations.

  17. Structure, morphology and melting hysteresis of ion-implanted nanocrystals

    International Nuclear Information System (INIS)

    Andersen, H.H.; Johnson, E.

    1995-01-01

    Investigations of nanosized metal and semimetal inclusions produced by ion implantation in aluminium are reviewed. The inclusions are from 1 nm to 15 nm in size and contain from 80 to 100,000 atoms. Embedded crystallites, which are topotactically aligned with the surrounding matrix, may not be produced in this size range by any other method. The inclusions offer unique possibilities for study of the influence of interfaces on the crystal structure of the inclusions as well as on their melting and solidification behaviour. Studies are made with transmission electron microscopy (TEM), electron- and x-ray diffraction and in situ RBS- channeling measurements. Bi, Cd, In, Pb and Tl inclusions all show a substantial melting/solidification temperature hysteresis, which, in all cases except for Bi, is placed around the bulk melting temperature, while bismuth melts below that temperature. (au) 46 refs

  18. A circular feature-based pose measurement method for metal part grasping

    International Nuclear Information System (INIS)

    Wu, Chenrui; He, Zaixing; Zhang, Shuyou; Zhao, Xinyue

    2017-01-01

    The grasping of circular metal parts such as bearings and flanges is a common task in industry. Limited by low texture and repeated features, the point-feature-based method is not applicable in pose measurement of these parts. In this paper, we propose a novel pose measurement method for grasping circular metal parts. This method is based on cone degradation and involves a monocular camera. To achieve higher measurement accuracy, a position-based visual servoing method is presented to continuously control an eye-in-hand, six-degrees-of-freedom robot arm to grasp the part. The uncertainty of the part’s coordinate frame during the control process is solved by defining a fixed virtual coordinate frame. Experimental results are provided to illustrate the effectiveness of the proposed method and the factors that affect measurement accuracy are analyzed. (paper)

  19. Numerical simulation of fragmentation of hot metal and oxide melts with the computer code IVA3

    International Nuclear Information System (INIS)

    Mussa, S.; Tromm, W.

    1994-01-01

    The phenomena of fragmentation of melts caused by water-inlet from the bottom with the computer code IVA3/11,12,13/ are investigated. With the computer code IVA3 three-component-multiphase flows can be numerically simulated. Two geometrical models are used. Both consist of a cylindrical vessel for water lying beneath a cylindrical vessel for melt. The vessels are connected to each other through a hole. Steel and UO 2 melts are. The following parameters were varied: the type of the melt (steel,UO 2 ), the water supply pressure and the geometry of the hole in the bottom plate through which the water and melt vessels are connected. As results of the numerical simulations temperature and pressure versus time curves are plotted. Additionally the volume flow rates and the volume fractions of the various phases in the vessels and the increase in surface and enthalpy of the melt during the time of simulation are depicted. With steel melts the rate of fragmentation increases with increasing water pressure and melt temperature, whereby stable channels are formed in the melt layer showing a very low flow resistance for steam. With UO 2 the formations of channels are also observed. However, these channels are not so stable that they eventually break apart and lead to the fragmentation of the UO 2 melt in drops. The fragmentation of the steel melt in water vessel is less than that of UO 2 . No essential solidification of the melt is observed in the respective duration of the simulations. However, a small drop in the melt temperature is observed. With a slight or no water pressure the melt flows from the upper vessel into the water vessel via the connecting hole. The processes take place in a very slow manner and with such a low steam production so that despite the occuring pressure peaks no sign of steam explosions could be observed. (orig./HP) [de

  20. High-temperature oxidation of tungsten covered by layer of glass-enamel melt

    International Nuclear Information System (INIS)

    Vasnetsova, V.B.; Shardakov, N.T.; Kudyakov, V.Ya.; Deryabin, V.A.

    1997-01-01

    Corrosion losses of tungsten covered by the layer of glass-enamel melt were determined at 800, 850, 900, 950 deg C. It is shown that the rate of high-temperature oxidation of tungsten decreases after application of glass-enamel melt on its surface. This is probably conditioned by reduction of area of metal interaction with oxidizing atmosphere

  1. Chrono-amperometric studies in melt alkaline nitrates and chlorides

    International Nuclear Information System (INIS)

    Stemmelin, Jean-Claude

    1969-01-01

    This research thesis proposes a large overview of the electrochemical behaviour of a number of metals and alloys in melt alkaline chlorides and nitrates at various temperatures. These salts are generally pure but, in some experiments, contain humidity or gases. The author addresses and discusses all the reactions which may occur at the electrode between the salt decomposition potentials. After having recalled and commented some definitions and fundamental principles of thermodynamics and electrochemical kinetics, presented the methods (polarization curves, measurements and additional analysis), the experimental apparatus and the reference electrodes in melt salts, the author reports the results obtained with the studied melt salts, and proposes an interpretation of Log i/U curves

  2. Observation of melting in 30 angstrom diameter CdS nanocrystals

    International Nuclear Information System (INIS)

    Goldstein, A.N.; Colvin, V.L.; Alivisatos, A.P.

    1991-01-01

    In this paper temperature dependent electron diffraction studies on 30 Angstrom diameter CdS nanocrystals are described. The linear thermal expansion coefficient of the nanocrystals is 2.75 * 10 -5 Angstrom/K, and the melting point is 575 K. These data are in contrast to bulk CdS which has a melting point of 1750 K and a linear expansion coefficient of 5.5 * 10 -6 Angstrom/K. The observed depression in the melting point of these semiconductor clusters is similar to effects observed in metals and molecular crystals, indicating that the phenomenon of reduced melting point in small systems is a general one regardless of the type of material. The observation of melting point depression in these clusters also has far reaching implications for the preparation of highly crystalline clusters of CdS, as well as for the use of these nanocrystals as precursors to thin films

  3. Computer-integrated electric-arc melting process control system

    OpenAIRE

    Дёмин, Дмитрий Александрович

    2014-01-01

    Developing common principles of completing melting process automation systems with hardware and creating on their basis rational choices of computer- integrated electricarc melting control systems is an actual task since it allows a comprehensive approach to the issue of modernizing melting sites of workshops. This approach allows to form the computer-integrated electric-arc furnace control system as part of a queuing system “electric-arc furnace - foundry conveyor” and consider, when taking ...

  4. Review and evaluation of metallic TRU nuclear waste consolidation methods

    International Nuclear Information System (INIS)

    Montgomery, D.R.; Nesbitt, J.F.

    1983-08-01

    The US Department of Energy established the Commercial Waste Treatment Program to develop, demonstrate, and deploy waste treatment technology. In this report, viable methods are identified that could consolidate the volume of metallic wastes generated in a fuel reprocessing facility. The purpose of this study is to identify, evaluate, and rate processes that have been or could be used to reduce the volume of contaminated/irradiated metallic waste streams and to produce an acceptable waste form in a safe and cost-effective process. A technical comparative evaluation of various consolidation processes was conducted, and these processes were rated as to the feasibility and cost of producing a viable product from a remotely operated radioactive process facility. Out of the wide variety of melting concepts and consolidation systems that might be applicable for consolidating metallic nuclear wastes, the following processes were selected for evaluation: inductoslay melting, rotating nonconsumable electrode melting, plasma arc melting, electroslag melting with two nonconsumable electrodes, vacuum coreless induction melting, and cold compaction. Each process was evaluated and rated on the criteria of complexity of process, state and type of development required, safety, process requirements, and facility requirements. It was concluded that the vacuum coreless induction melting process is the most viable process to consolidate nuclear metallic wastes. 11 references

  5. STUDY ON SOFTENING AND DROPPING PROPERTIES OF METALIZED BURDEN INSIDE BLAST FURNACE

    Directory of Open Access Journals (Sweden)

    Bi-yang Tuo

    2014-12-01

    Full Text Available The inferences of burden metallization rate on softening-melting dropping properties were investigated through softening-melting dropping test of three kinds of metalized burden pressure drop. The results indicated that the softeningmelting temperature interval of pre-reduction mixed burden is bigger than primeval mixed burden, the melting interval narrow with the rise of metallization rate of ferric burden as well as dropping temperature interval. The average pressure drop, maximum pressure drop and softening-melting dropping properties eigenvalue decrease with the rise of metallization rate of ferric burden. Besides, the dropping temperature of burden reduces with the rise of carbon content of molten iron. The combination high metalized burden and higher carbon content of molten iron is benefit to decreasing thickness of cohesive zone and improve permeability of cohesive zone.

  6. Ferrous and common nonferrous metals industries and associated scrap metals: a review

    International Nuclear Information System (INIS)

    Mautz, E.W.

    1975-11-01

    Literature on the common metals industries, scrap metal relationships, and transportation aspects has been reviewed as background information in a study to determine the feasibility of a portable melting facility for radioactively contaminated metals. This report draws substantially on government-sponsored studies. Aluminum, copper, iron and steel, and nickel metal industries are discussed from the viewpoints of the general industry characteristics, primary metal production processes, and secondary metal processing aspects. 46 references, 10 tables

  7. GeoMelt{sup R} ICV{sup TM} Treatment of Sellafield Pond Solids Waste - 13414

    Energy Technology Data Exchange (ETDEWEB)

    Witwer, Keith; Woosley, Steve; Campbell, Brett [Kurion, Inc., GeoMelt Division, 3015 Horn Rapids Road, Richland, Washington (United States); Wong, Martin; Hill, Joanne [AMEC Inc., Birchwood Park, 601 Faraday Street, Birchwood, Warrington, WA3 6GN (United Kingdom)

    2013-07-01

    Kurion, Inc., in partnership with AMEC Ltd., is demonstrating its GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} Technology to Sellafield Ltd. (SL). SL is evaluating the proposition of directly converting a container (skip/box/drum) of raw solid ILW into an immobilized waste form using thermal treatment, such that the resulting product is suitable for interim storage at Sellafield and subsequent disposal at a future Geological Disposal Facility. Potential SL feed streams include sludges, ion-exchange media, sand, plutonium contaminated material, concrete, uranium, fuel cladding, soils, metals, and decommissioning wastes. The solid wastes have significant proportions of metallic constituents in the form of containers, plant equipment, structural material and swarf arising from the nuclear operations at Sellafield. GeoMelt's proprietary ICV process was selected for demonstration, with the focus being high and reactive metal wastes arising from solid ILW material. A composite surrogate recipe was used to demonstrate the technology towards treating waste forms of diverse types and shapes, as well as those considered difficult to process; all the while requiring few (if any) pre-treatment activities. Key strategic objectives, along with their success criterion, were established by SL for this testing, namely: 1. Passivate and stabilize the raw waste simulant, as demonstrated by the entire quantity of material being vitrified, 2. Immobilize the radiological and chemo-toxic species, as demonstrated via indicative mass balance using elemental analyses from an array of samples, 3. Production of an inert and durable product as evidenced by transformation of reactive metals to their inert oxide forms and satisfactory leachability results using PCT testing. Two tests were performed using the GeoMelt Demonstration Unit located at AMEC's Birchwood Park Facilities in the UK. Post-melt examination of the first test indicated some of the waste simulant had not

  8. Determination of hydrogen in zirconium and its alloys by melt extraction under carrier gas flow using thermal conductivity cell as detector

    International Nuclear Information System (INIS)

    Akhtar, J.; Ahmed, M.; Mohammad, B.; Jan, S.; Waqar, F.

    1987-06-01

    In the production of zirconium metal and its alloys the presence of hydrogen impurity affects mechanical and corrosion resistance properties of the product. Therefore, determination of hydrogen contents of the product is necessary. Conditions for its analysis by melt extraction under carrier gas stream using thermal conductivity cell as detector were studied and optimised. The method is capable of measuring hydrogen impurity in parts per million range. (author)

  9. Melting point of polymers under high pressure Part I: Influence of the polymer properties

    International Nuclear Information System (INIS)

    Seeger, Andreas; Freitag, Detlef; Freidel, Frank; Luft, Gerhard

    2004-01-01

    The pressure dependence of the melting point of various polymers including homo- and copolymers (HDPE, LDPE, PP and ethylene vinyl acetate copolymers (EVA)) was investigated under nitrogen atmosphere up to 330 MPa within a high pressure differential thermal analysis cell designed by our group. The properties of the polymers (vinylacetate content, melt flow index, molecular weight, isotactic index, crystallinity, density, and frequency of branching) have been correlated with the change of the melting point under pressure (dT m /dp). It could be shown that the melting point always increases linearly with pressure up to 330 MPa. The pressure dependence was found to be in the range of 11-17 K/(100 MPa). From these results it is possible to approximate dT m /dp using the enthalpy of fusion of the polymers at ambient pressure

  10. Advanced methods for incineration of solid, burnable LLW and melting for recycling of scrap metals

    International Nuclear Information System (INIS)

    Krause, G.; Lorenzen, J.; Lindberg, M.; Olsson, L.; Wirendal, B.

    2003-01-01

    Radioactive contaminated waste is a great cost factor for nuclear power plants and other nuclear industry. On the deregulated electricity market the price on produced kWh is an important competition tool. Therefore the waste minimisation and volume reduction has given highest priority by many power producers in the process to achieve savings and hence low production cost. Studsvik RadWaste AB in Nykoeping, Sweden, is a company specialised in volume reduction of LLW, as solid combustible waste and as scrap metal for melting and recycling. The treatment facility in Sweden offers this kind of services - together with segmentation and decontamination when necessary - for several customers from Europe, Japan and USA. In addition to these treatment services a whole spectrum of services like transportation, measurement and safeguard, site assistance, industrial cleaning and decontamination in connection with demolition at site is offered from the Studsvik company. (orig.)

  11. Melt cooling by bottom flooding: The experiment CometPC-H3. Ex-vessel core melt stabilization research

    International Nuclear Information System (INIS)

    Alsmeyer, H.; Cron, T.; Merkel, G.; Schmidt-Stiefel, S.; Tromm, W.; Wenz, T.

    2003-03-01

    The CometPC-H3 experiment was performed to investigate melt cooling by water addition to the bottom of the melt. The experiment was performed with a melt mass of 800 kg, 50% metal and 50% oxide, and 300 kW typical decay heat were simulated in the melt. As this was the first experiment after repair of the induction coil, attention was given to avoid overload of the induction coil and to keep the inductor voltage below critical values. Therefore, the height of the sacrificial concrete layer was reduced to 5 cm only, and the height of the porous concrete layers was also minimized to have a small distance and good coupling between heated melt and induction coil. After quite homogeneous erosion of the upper sacrificial concrete layer, passive bottom flooding started from the porous concrete after 220 s with 1.3 liter water/s. The melt was safely stopped, arrested and cooled. The porous, water filled concrete was only slightly attacked by the hot melt in the upper 25 mm of one sector of the coolant device. The peak cooling rate in the early contact phase of coolant water and melt was 4 MW/m 2 , and exceeded the decay heat by one order of magnitude. The cooling rate remarkably dropped, when the melt was covered by the penetrating water and a surface crust was formed. Volcanic eruptions from the melt during the solidification process were observed from 360 - 510 s and created a volcanic dome some 25 cm high, but had only minor effect on the generation of a porous structure, as the expelled melt solidified mostly with low porosity. Unfortunately, decay heat simulation in the melt was interrupted at 720 s by an incorrect safety signal, which excluded further investigation of the long term cooling processes. At that time, the melt was massively flooded by a layer of water, about 80 cm thick, and coolant water inflow was still 1 l/s. The melt had reached a stable situation: Downward erosion was stopped by the cooling process from the water filled, porous concrete layer. Top

  12. Oxidation effects during corium melt in-vessel retention

    Energy Technology Data Exchange (ETDEWEB)

    Almyashev, V.I.; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Sulatsky, A.A.; Vitol, S.A. [Alexandrov Scientific-Research Institute of Technology (NITI), Sosnovy Bor (Russian Federation); Gusarov, V.V. [Ioffe Institute, St. Petersburg (Russian Federation); Bechta, S. [Royal Institute of Technology (KHT), Stockholm (Sweden); Barrachin, M.; Fichot, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), St Paul lez Durance (France); Bottomley, P.D., E-mail: paul.bottomley@ec.europa.eu [Joint Research Centre, Institut für Transurane (ITU), Karlsruhe (Germany); Fischer, M. [AREVA GmbH, Erlangen (Germany); Piluso, P. [CEA Cadarache-DEN/DTN/STRI (France)

    2016-08-15

    Highlights: • Corium–steel interaction tests were re-examined particularly for transient processes. • Oxidation of corium melt was sensitive to oxidant supply and surface characteristics. • Consequences for vessel steel corrosion rates in severe accidents were discussed. - Abstract: In the in-vessel corium retention studies conducted on the Rasplav-3 test facility within the ISTC METCOR-P project and OECD MASCA program, experiments were made to investigate transient processes taking place during the oxidation of prototypic molten corium. Qualitative and quantitative data have been produced on the sensitivity of melt oxidation rate to the type of oxidant, melt composition, molten pool surface characteristics. The oxidation rate is a governing factor for additional heat generation and hydrogen release; also for the time of secondary inversion of oxidic and metallic layers of corium molten pool.

  13. Economic comparison of management modes for contaminated metal scrap

    International Nuclear Information System (INIS)

    Janberg, K.

    1987-01-01

    This report presents an economic study of the three following management modes for contaminated metal scrap: - decontamination of scrap metal followed by release, - direct melting of scrap metal, followed by release or restricted reuse, - super-compaction followed by disposal as radioactive waste. The present study, which refers to conditions prevailing in Germany, includes reviews of the contaminated scrap arisings, of experience with scrap management and of the licensing conditions for metal recycling. The results obtained during the treatment of more than 140 t of contaminated scrap metal show that: - super-compaction is the best procedure for all mixed metallic wastes of small dimensions and complex geometries, as decontamination is very costly in such a case and the melting would lead to undefined metallurgical products; - decontamination is recommendable for simple geometries and activities higher than the regulatory upper limit for melting in an industrial foundry (74 Bq/g); - direct melting for lower activity levels is gaining in competitiveness and has a good chance to be the best solution, in particular when the free use levels will be reduced below the currently accepted levels in Germany

  14. Comparative analysis of the possibility of applying low-melting metals with the capillary-porous system in tokamak conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lyublinski, I. E., E-mail: lyublinski@yandex.ru; Vertkov, A. V., E-mail: avertkov@yandex.ru; Semenov, V. V., E-mail: darkfenix2006@mail.ru [OAO Krasnaya Zvezda (Russian Federation)

    2016-12-15

    The use of capillary-porous systems (CPSs) with liquid Li, Ga, and Sn is considered as an alternative for solving the problem of creating plasma-facing elements (PFEs) of the fusion neutron source (FNS) and the DEMO-type reactor. The main advantages of CPSs with liquid metal compared with hard materials are their stability with respect to the degradation of properties in tokamak conditions and capability of surface self-restoration. The evaluation of applicability of liquid metals is performed on the basis of the analysis of their physical and chemical properties, the interaction with the tokamak plasma, and constructive and process features of in-vessel elements with CPSs implementing the application of these metals in a tokamak. It is shown that the upper limit of the PFE working temperature for all low-melting metals under consideration lies in the range of 550–600°Ð¡. The decisive factor for PFEs with Li is the limitation on the admissible atomic flux into plasma, while for those with Ga and Sn it is the corrosion resistance of construction materials. The upper limit of thermal loads in the steady-state operating mode for the considered promising PFE design with the use of Li, Ga, and Sn is close to 18–20 MW/m{sup 2}. It is seen from the analysis that the use of metals with a low equilibrium vapor pressure of (Ga, Sn) gives no gain in extension of the region of admissible working temperatures of PFEs. However, with respect to the totality of properties, the possibility of implementing the self-restoration and stabilization effect of the liquid surface, the influence on the plasma discharge parameters, and the ability to protect the PFE surface in conditions of plasma perturbations and disruption, lithium is the most attractive liquid metal to create CPS-based PFEs for the tokamak.

  15. Plasma melting and recycling technology for decommissioning material. Removal of zinc and lead of ferrous scrap

    International Nuclear Information System (INIS)

    Ikeda, Koichi; Amakawa, Tadashi; Yasui, Shinji

    2001-01-01

    A great amount of nonradioactive waste such as concrete, metal and the like, will be generated intensively in a short period when dismantling nuclear power plants. Thus, it is very important for smooth dismantling to promote their recycling. Melting operates conditions to recycle metal easily, but degrades the quality by contamination of tramp elements. So it was performed to melt carbon steel coated with anti-corrosive paint including lead, zinc, etc. and to analyze the steel grade for study of obtaining the desired grade. On some test conditions, concentration of lead and zinc just after melting all samples lowered less than target concentration which was permissible for cast iron. About the unsatisfactory conditions when a lot of slag generated, concentration of zinc was simulated changing the sequence of plasma melting. The result showed that an efficient sequence controlled input energy to maintain molten bath after melting all samples as quickly as possible. (author)

  16. Comparison of high-intensity sound and mechanical vibration for cleaning porous titanium cylinders fabricated using selective laser melting.

    Science.gov (United States)

    Seiffert, Gary; Hopkins, Carl; Sutcliffe, Chris

    2017-01-01

    Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high-intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting-fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high-intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117-123, 2017. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  17. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    KAUST Repository

    Vakarelski, Ivan Uriev; Chan, Derek Y.  C.; Thoroddsen, Sigurdur T

    2015-01-01

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  18. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    KAUST Repository

    Vakarelski, Ivan Uriev

    2015-07-24

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  19. Research on NC laser combined cutting optimization model of sheet metal parts

    Science.gov (United States)

    Wu, Z. Y.; Zhang, Y. L.; Li, L.; Wu, L. H.; Liu, N. B.

    2017-09-01

    The optimization problem for NC laser combined cutting of sheet metal parts was taken as the research object in this paper. The problem included two contents: combined packing optimization and combined cutting path optimization. In the problem of combined packing optimization, the method of “genetic algorithm + gravity center NFP + geometric transformation” was used to optimize the packing of sheet metal parts. In the problem of combined cutting path optimization, the mathematical model of cutting path optimization was established based on the parts cutting constraint rules of internal contour priority and cross cutting. The model played an important role in the optimization calculation of NC laser combined cutting.

  20. Heavy metals accumulation in edible part of vegetables irrigated ...

    African Journals Online (AJOL)

    Heavy metals accumulation in edible part of vegetables irrigated with untreated municipal wastewater in tropical savannah zone, Nigeria. HI Mustapha, OB Adeboye. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  1. Constant electrical resistivity of Ni along the melting boundary up to 9 GPa

    Science.gov (United States)

    Silber, Reynold E.; Secco, Richard A.; Yong, Wenjun

    2017-07-01

    Characterization of transport properties of liquid Ni at high pressures has important geophysical implications for terrestrial planetary interiors, because Ni is a close electronic analogue of Fe and it is also integral to Earth's core. We report measurements of the electrical resistivity of solid and liquid Ni at pressures 3-9 GPa using a 3000 t multianvil large volume press. A four-wire method, in conjunction with a rapid acquisition meter and polarity switch, was used to overcome experimental challenges such as melt containment and maintaining sample geometry and to mitigate the extreme reactivity/solubility of liquid Ni with most thermocouple and electrode materials. Thermal conductivity is calculated using the Wiedemann-Franz law. Electrical resistivity of solid Ni exhibits the expected P dependence and is consistent with earlier experimental values. Within experimental uncertainties, our results indicate that resistivity of liquid Ni remains invariant along the P-dependent melting boundary, which is in disagreement with earlier prediction for liquid transition metals. The potential reasons for such behavior are examined qualitatively through the impact of P-independent local short-range ordering on electron mean free path and the possibility of constant Fermi surface at the onset of Ni melting. Correlation among metals obeying the Kadowaki-Woods ratio and the group of late transition metals with unfilled d-electron band displaying anomalously shallow melting curves suggests that on the melting boundary, Fe may exhibit the same resistivity behavior as Ni. This could have important implications for the heat flow in the Earth's core.

  2. Microstructure and mechanical properties of direct metal laser sintered TI-6AL-4V

    Directory of Open Access Journals (Sweden)

    Becker, Thorsten Hermann

    2015-05-01

    Full Text Available Direct metal laser sintering (DMLS is a selective laser melting (SLM manufacturing process that can produce near net shape parts from metallic powders. A range of materials are suitable for SLM; they include various metals such as titanium, steel, aluminium, and cobalt-chrome alloys. This paper forms part of a research drive that aims to evaluate the material performance of the SLM-manufactured metals. It presents DMLS-produced Ti-6Al-4V, a titanium alloy often used in biomedical and aerospace applications. This paper also studies the effect of several heat treatments on the microstructure and mechanical properties of Ti-6Al-4V processed by SLM. It reports the achievable mechanical properties of the alloy, including quasi-static, crack growth behaviour, density and porosity distribution, and post-processing using various heat-treatment conditions.

  3. Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics

    Science.gov (United States)

    Kogarko, L. N.; Lahaye, Y.; Brey, G. P.

    2010-03-01

    The two world’s largest complexes of highly alkaline nepheline syenites and related rare metal loparite and eudialyte deposits, the Khibina and Lovozero massifs, occur in the central part of the Kola Peninsula. We measured for the first time in situ the trace element concentrations and the Sr, Nd and Hf isotope ratios by LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometer) in loparite, eudialyte an in some other pegmatitic minerals. The results are in aggreement with the whole rock Sr and Nd isotope which suggests the formation of these superlarge rare metal deposits in a magmatic closed system. The initial Hf, Sr, Nd isotope ratios are similar to the isotopic signatures of OIB indicating depleted mantle as a source. This leads to the suggestion that the origin of these gigantic alkaline intrusions is connected to a deep seated mantle source—possibly to a lower mantle plume. The required combination of a depleted mantle and high rare metal enrichment in the source can be explained by the input of incompatible elements by metasomatising melts/fluids into the zones of alkaline magma generation shortly before the partial melting event (to avoid ingrowth of radiogenic isotopes). The minerals belovite and pyrochlore from the pegmatites are abnormally high in 87Sr /86Sr ratios. This may be explained by closed system isotope evolution as a result of a significant increase in Rb/Sr during the evolution of the peralkaline magma.

  4. Material interactions between system components and glass product melts in a ceramic melter

    International Nuclear Information System (INIS)

    Knitter, R.

    1989-07-01

    The interactions of the ceramic and metallic components of a ceramic melter for the vitrification of High Active Waste were investigated with simulated glass product melts in static crucible tests at 1000 0 C and 1150 0 C. Corrosion of the fusion-cast Al 2 O 3 -ZrO 2 -SiO 2 - and Al 2 O 3 -ZrO 2 -SiO 2 -Cr 2 O 3 -refractories (ER 1711 and ER 2161) is characterized by homogeneous chemical dissolution and diffusion through the glass matrix of the refractory. The resulting boundary compositions lead to characteristic modification and formation of phases, not only inside the refractory but also in the glass melt. The attack of the electrode material, a Ni-Cr-Fe-alloy Inconel 690, by the glass melt takes place via grain boundaries and leads to the oxidation of Cr and growth of Cr 2 O 3 -crystals at the boundary layer. Noble metals, added to the glass melt can form solid solutions with the alloy with varying compositions. (orig.) [de

  5. Experimental study of REE, Ba, Sr, Mo and W partitioning between carbonatitic melt and aqueous fluid with implications for rare metal mineralization

    Science.gov (United States)

    Song, WenLei; Xu, Cheng; Veksler, Ilya V.; Kynicky, Jindrich

    2016-01-01

    Carbonatites host some unique ore deposits, especially rare earth elements (REE). Hydrothermal fluids have been proposed to play a significant role in the concentration and transport of REE and other rare metals in carbonatites, but experimental constraints on fluid-melt equilibria in carbonatitic systems are sparse. Here we present an experimental study of trace element (REE, Ba, Sr, Mo and W) partitioning between hydrous fluids and carbonatitic melts, bearing on potential hydrothermal activity associated with carbonatite ore-forming systems. The experiments were performed on mixtures of synthetic carbonate melts and aqueous fluids at 700-800 °C and 100-200 MPa using rapid-quench cold-seal pressure vessels and double-capsule assemblages with diamond traps for analyzing fluid precipitates in the outer capsule. Starting mixtures were composed of Ca, Mg and Na carbonates spiked with trace elements. Small amounts of F or Cl were added to some of the mixtures to study the effects of halogens on the element distribution. The results show that REE, Ba, Sr, Mo and W all preferentially partition into carbonatite melt and have fluid-melt distribution coefficients ( D f/m) below unity. The REE partitioning is slightly dependent on the major element (Ca, Mg and Na) composition of the starting mixtures, and it is influenced by temperature, pressure, and the presence of halogens. The fluid-melt D values of individual REE vary from 0.02 to 0.15 with D_{Lu}^{f} / {fm}{m} being larger than D_{La}^{f} / {fm}{m} by a factor of 1.1-2. The halogens F and Cl have strong and opposite effects on the REE partitioning. Fluid-melt D REE are about three times higher in F-bearing compositions and ten times lower in Cl-bearing compositions than in halogen-free systems. D_{W}^{f} / {fm}{m} and D_{Mo}^{f} / {fm}{m} are the highest among the studied elements and vary between 0.6 and 0.7; D_{Ba}^{f} / {fm}{m} is between 0.05 and 0.09, whereas D_{Sr}^{f} / {fm}{m} is at about 0.01-0.02. The

  6. Petrological Geodynamics of Mantle Melting II. AlphaMELTS + Multiphase Flow: Dynamic Fractional Melting

    Science.gov (United States)

    Tirone, Massimiliano

    2018-03-01

    In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.

  7. Melt refining of uranium contaminated copper, nickel, and mild steel

    International Nuclear Information System (INIS)

    Ren Xinwen; Liu Wencang; Zhang Yuan

    1993-01-01

    This paper presents the experiment results on melt refining of uranium contaminated metallic discards such as copper, nickel, and mild steel. Based on recommended processes, uranium contents in ingots shall decrease below 1 ppm; metal recovery is higher than 96%; and slag production is below 5% in weight of the metal to be refined. The uranium in the slag is homogeneously distributed. The slag seems to be hard ceramics, insoluble in water, and can be directly disposed of after proper packaging

  8. Electron beam melting state-of-the-art 1984

    International Nuclear Information System (INIS)

    Bakish, R.

    1984-01-01

    In 1984 electron beam melting and refining appear poised for an important new growth phase. The driving force for this phase is improved production economics made possible by technological advances. There is also a new and exciting growth application for electron beam melting: its use for surface properties beneficiation. This article is based in part on the content of the Conference on Electron Beam Melting and Refining, The State-of-the-Art 1983, held in November 1983 in Reno, Nevada

  9. Production and Physical Metallurgy of Pure Metals - Part V

    Science.gov (United States)

    1960-07-25

    crucible . The essence of arc melting consists in the ignit- ion of an arc between the specimen placed in an intensively cooled copper crucible , and...water-cooled, and the cooling can be regulated by valves. -14- Universal laboratory arc furnace with cooled copper crucible : LOsend continued on next pag...furnaces by ordinary methods is very difficult and re- quires a fundamentally new method of melting. Such a method is arc melting in a water-cooled copper

  10. The interaction of a core melt with concrete

    International Nuclear Information System (INIS)

    Reimann, M.; Holleck, H.; Skokan, A.; Perinic, D.

    1977-01-01

    In its fourth phase, a hypothetic core melt interacts with the concrete of the reactor foundation. This phase may last several days. Experimental laboratory investigations and theoretical models on the basis of model experiments aim at determining the time curve of the temperature of the core melt in order to quantify the processes up to the solidification of the melt and the end of concrete destroyal. Material interactions: 1) The two phases of the core melt, oxidic and metallic, remain separate for a long period of time. In dependence of the degree of oxidation of the system, the elemental distribution and, in particular, the fission products in the melt may be assessed. 2) The changes in the material values of the core melt in dependence of the temperature curve may be qualitatively assessed. 3) The solidification temperature of the oxidic phase of the core melt may be given in dependence of (UO 2 + ZrO 2 ) content. Thermal interactions: 1) The ratio vertical/radial erosion, which determines the cavity shape, is described in the correct order of magnitude by the extended film model. 2) The correct order of magnitude of the erosion rates is described by the concrete destruction model coupled with the film model. 3) The effects of the different concrete destruction enthalpies and concrete compositions (amount of gaseous decomposition products) may be estimated by the model calculations. (orig./HP) [de

  11. Evaluation of methods for characterizing the melting curves of a high temperature cobalt-carbon fixed point to define and determine its melting temperature

    Science.gov (United States)

    Lowe, David; Machin, Graham

    2012-06-01

    The future mise en pratique for the realization of the kelvin will be founded on the melting temperatures of particular metal-carbon eutectic alloys as thermodynamic temperature references. However, at the moment there is no consensus on what should be taken as the melting temperature. An ideal melting or freezing curve should be a completely flat plateau at a specific temperature. Any departure from the ideal is due to shortcomings in the realization and should be accommodated within the uncertainty budget. However, for the proposed alloy-based fixed points, melting takes place over typically some hundreds of millikelvins. Including the entire melting range within the uncertainties would lead to an unnecessarily pessimistic view of the utility of these as reference standards. Therefore, detailed analysis of the shape of the melting curve is needed to give a value associated with some identifiable aspect of the phase transition. A range of approaches are or could be used; some purely practical, determining the point of inflection (POI) of the melting curve, some attempting to extrapolate to the liquidus temperature just at the end of melting, and a method that claims to give the liquidus temperature and an impurity correction based on the analytical Scheil model of solidification that has not previously been applied to eutectic melting. The different methods have been applied to cobalt-carbon melting curves that were obtained under conditions for which the Scheil model might be valid. In the light of the findings of this study it is recommended that the POI continue to be used as a pragmatic measure of temperature but where required a specified limits approach should be used to define and determine the melting temperature.

  12. Freezing and melting line invariants of the Lennard-Jones system

    DEFF Research Database (Denmark)

    Costigliola, Lorenzo; Schrøder, Thomas; Dyre, Jeppe C.

    2016-01-01

    The invariance of several structural and dynamical properties of the Lennard-Jones (LJ) system along the freezing and melting lines is interpreted in terms of isomorph theory. First the freezing/melting lines of the LJ system are shown to be approximated by isomorphs. Then we show...... that the invariants observed along the freezing and melting isomorphs are also observed on other isomorphs in the liquid and crystalline phases. The structure is probed by the radial distribution function and the structure factor and dynamics are probed by the mean-square displacement, the intermediate scattering...... function, and the shear viscosity. Studying these properties with reference to isomorph theory explains why the known single-phase melting criteria hold, e.g., the Hansen–Verlet and the Lindemann criteria, and why the Andrade equation for the viscosity at freezing applies, e.g., for most liquid metals. Our...

  13. WINCO Metal Recycle annual report, FY 1993

    International Nuclear Information System (INIS)

    Bechtold, T.E.

    1993-12-01

    This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94

  14. WINCO Metal Recycle annual report, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, T.E. [ed.

    1993-12-01

    This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94.

  15. Chemical and electrochemical behaviour of halides in nitrate melts

    International Nuclear Information System (INIS)

    Tkalenko, D.A.; Kudrya, S.A.; Delimarskij, Yu.K.; Antropov, L.I.

    1978-01-01

    The possibility of improving the positive electrode characteristics of medium temperature lithium-nitrate element by means of adding alkali metal halogenides into nitrate melt is considered. The experiments have been made at the temperature of 150 deg C in (K, Na, Li) NO 3 melts of eutectic composition. It has been found that only at temperatures higher than 250 deg C in nitrate melts containing Li + and Na + cations, an interaction of nitrate ions with the added iodides is possible. The interaction does not take place in case of chloride, bromide, and fluoride additions. The waves of halogenide oxidation and reduction of the corresponding halogens have been identified. The analysis of the obtained experimental data shows that halogenide addition into nitrate melt does not result in speed increase of cathodic reduction of nitrate ions or in formation of a new cathode process at more positive potentials. A conclusion is made that halogenide addition into electrolyte of lithium-nitrate current source is inexpedient

  16. Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology.

    Science.gov (United States)

    Huang, Zhuoli; Zhang, Lu; Zhu, Jingwei; Zhang, Xiuyin

    2015-06-01

    Selective laser melting (SLM) technology has been introduced to fabricate dental restorations. However, the fit of these restorations still needs further study. The purpose of this in vivo investigation was to compare the marginal and internal fit of SLM metal ceramic crowns with 2 lost-wax cast metal ceramic crowns and to evaluate the influence of tooth type on the marginal and internal fit of these crowns. A total of 330 metal ceramic crowns were evaluated. The metal copings were fabricated with SLM Co-Cr, cast Au-Pt, and cast Co-Cr alloy (n=110). The marginal and internal gaps of crowns were recorded by using a replica technique. The anterior and premolar replicas were sectioned 2 times, and molar replicas were sectioned 4 times. The marginal and internal gap width of each cross section was examined by stereomicroscope at ×30 magnification. Two-way analysis of variance was performed to identify the statistical difference among the groups. The marginal fit of the SLM Co-Cr group (75.6 ±32.6 μm) was not different from the cast Au-Pt group (76.8 ±32.1 μm) (P>.05) but was better than the cast Co-Cr group (91.0 ±36.3 μm) (P.05). The mean occlusal gap width of the SLM Co-Cr group (309.8 ±106.6 μm) was significantly higher than that of the cast Au-Pt group (254.6 ±109.6 μm) and the cast Co-Cr group (249.6 ±110.4 μm) (P.05). Also, no significant difference was found in the axial fit among the anterior group (138.3 ±52.5 μm), the premolar group (132.9 ±50.4 μm), and the molar group (134.4 ±52.5 μm) (P>.05). The anterior group (267.6 ±110.2 μm) did not differ from the premolar group (270.2 ±112.8 μm) and the molar group (268.6 ±110.5 μm) in occlusal fit (P>.05). The marginal fit of SLM Co-Cr metal ceramic crowns was similar to that of the cast Au-Pt metal ceramic crowns and was better than that of the cast Co-Cr metal ceramic crowns. The SLM Co-Cr metal ceramic crowns were not significantly different from the 2 cast metal ceramic crowns in axial

  17. Seismic Evidence for Possible Slab Melting from Strong Scattering Waves

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin

    2011-01-01

    Full Text Available Slab melting in young and hot subduction zones has been studied using geochemical observations and thermal modelling, but there are few data from seismic studies to confirm slab melting. Also the detailed geometry in the deep part of the melting slab is often ambiguous in that the intraslab earthquakes within the Wadati-Benioff zone are only limited to shallower depths. To improve our understanding of both the seismic features and geometry found in a young and hot subducted slab, I analyzed anomalous moonquake-like seismograms that were generated by an intermediate-depth earthquake recorded in central Japan. For this study, possible reflected (or scattered sources were examined using detailed analyses of particle motions and a grid search for travel-time differences between the direct and later P-waves. The results show that using strong seismic scattering, slab melting is likely occurring in the deeper, flexing part of the subducted Philippine Sea plate. Because the subducted Philippine Sea plate in central Japan is young and therefore hot, partial melting might have taken place to produce abundant melting spots in the subducted slab. Melting spots, identified as ¡§bright spots,¡¨ could efficiently reflect or scatter seismic energy and generate many later phases with large amplitudes.

  18. A Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting.

    Science.gov (United States)

    Wang, Hong; Zhao, Bingjing; Liu, Changkui; Wang, Chao; Tan, Xinying; Hu, Min

    2016-01-01

    Electron beam melting (EBM) and selective laser melting (SLM) are two advanced rapid prototyping manufacturing technologies capable of fabricating complex structures and geometric shapes from metallic materials using computer tomography (CT) and Computer-aided Design (CAD) data. Compared to traditional technologies used for metallic products, EBM and SLM alter the mechanical, physical and chemical properties, which are closely related to the biocompatibility of metallic products. In this study, we evaluate and compare the biocompatibility, including cytocompatibility, haemocompatibility, skin irritation and skin sensitivity of Ti6Al4V fabricated by EBM and SLM. The results were analysed using one-way ANOVA and Tukey's multiple comparison test. Both the EBM and SLM Ti6Al4V exhibited good cytobiocompatibility. The haemolytic ratios of the SLM and EBM were 2.24% and 2.46%, respectively, which demonstrated good haemocompatibility. The EBM and SLM Ti6Al4V samples showed no dermal irritation when exposed to rabbits. In a delayed hypersensitivity test, no skin allergic reaction from the EBM or the SLM Ti6Al4V was observed in guinea pigs. Based on these results, Ti6Al4V fabricated by EBM and SLM were good cytobiocompatible, haemocompatible, non-irritant and non-sensitizing materials. Although the data for cell adhesion, proliferation, ALP activity and the haemolytic ratio was higher for the SLM group, there were no significant differences between the different manufacturing methods.

  19. GLASS MELTING PHENOMENA, THEIR ORDERING AND MELTING SPACE UTILISATION

    Directory of Open Access Journals (Sweden)

    Němec L.

    2013-12-01

    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  20. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    Science.gov (United States)

    Kim, Choong Paul; Hays, Charles C.; Johnson, William L.

    2004-03-23

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  1. Anodic solution of alkali earth alloys in potassium chloride-sodium chloride melts

    International Nuclear Information System (INIS)

    Volkovich, A.V.

    1997-01-01

    Generalized results of studying the process of anodic dissolution of alkaline-earth metal alloys with zinc, aluminium and copper in the melts of KCl-NaCl equimolar mixture containing alkaline-earth metal chlorides, are presented. It is shown that during dissolution of both pure liquid metals and their alloys there is no electrode polarization in the range of the current densities lower or comparable in their values to corrosion current

  2. Metals for bone implants. Part 1. Powder metallurgy and implant rendering.

    Science.gov (United States)

    Andani, Mohsen Taheri; Shayesteh Moghaddam, Narges; Haberland, Christoph; Dean, David; Miller, Michael J; Elahinia, Mohammad

    2014-10-01

    New metal alloys and metal fabrication strategies are likely to benefit future skeletal implant strategies. These metals and fabrication strategies were looked at from the point of view of standard-of-care implants for the mandible. These implants are used as part of the treatment for segmental resection due to oropharyngeal cancer, injury or correction of deformity due to pathology or congenital defect. The focus of this two-part review is the issues associated with the failure of existing mandibular implants that are due to mismatched material properties. Potential directions for future research are also studied. To mitigate these issues, the use of low-stiffness metallic alloys has been highlighted. To this end, the development, processing and biocompatibility of superelastic NiTi as well as resorbable magnesium-based alloys are discussed. Additionally, engineered porosity is reviewed as it can be an effective way of matching the stiffness of an implant with the surrounding tissue. These porosities and the overall geometry of the implant can be optimized for strain transduction and with a tailored stiffness profile. Rendering patient-specific, site-specific, morphology-specific and function-specific implants can now be achieved using these and other metals with bone-like material properties by additive manufacturing. The biocompatibility of implants prepared from superelastic and resorbable alloys is also reviewed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Fragility of superheated melts and glass-forming ability in Pr-based alloys

    International Nuclear Information System (INIS)

    Meng, Q.G.; Zhou, J.K.; Zheng, H.X.; Li, J.G.

    2006-01-01

    The kinetic viscosity (η) of superheated melts, thermal properties (T x , T m , T L ) and X-ray diffraction analysis on the Pr-based bulk metallic glasses (BMG) are reported and discussed. A new refined concept, the superheated fragility defined as M' = E S δ x /k B , has been developed based on common solidification theory and the Arrhenius equation. The interrelationship between this kind of fragility and the glass-forming ability (GFA) is elaborated on and evaluated in Pr-based BMG and Al-based amorphous ribbon alloys. Using viscosity data of superheated melts, it is shown, theoretically and experimentally, that the fragility parameter M' may be used as a GFA indicator for metallic alloys

  4. Melt-and-mold fabrication (MnM-Fab) of reconfigurable low-cost devices for use in resource-limited settings.

    Science.gov (United States)

    Li, Zhi; Tevis, Ian D; Oyola-Reynoso, Stephanie; Newcomb, Lucas B; Halbertsma-Black, Julian; Bloch, Jean-Francis; Thuo, Martin

    2015-12-01

    Interest in low-cost analytical devices (especially for diagnostics) has recently increased; however, concomitant translation to the field has been slow, in part due to personnel and supply-chain challenges in resource-limited settings. Overcoming some of these challenges require the development of a method that takes advantage of locally available resources and/or skills. We report a Melt-and-mold fabrication (MnM Fab) approach to low-cost and simple devices that has the potential to be adapted locally since it requires a single material that is recyclable and simple skills to access multiple devices. We demonstrated this potential by fabricating entry level bio-analytical devices using an affordable low-melting metal alloy, Field's metal, with molds produced from known materials such as plastic (acrylonitrile-butadiene-styrene (ABS)), glass, and paper. We fabricated optical gratings then 4×4 well plates using the same recycled piece of metal. We then reconfigured the well plates into rapid prototype microfluidic devices with which we demonstrated laminar flow, droplet generation, and bubble formation from T-shaped channels. We conclude that this MnM-Fab method is capable of addressing some challenges typically encountered with device translation, such as technical know-how or material supply, and that it can be applied to other devices, as needed in the field, using a single moldable material. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Iron metal production in silicate melts through the direct reduction of Fe/II/ by Ti/III/, Cr/II/, and Eu/II/. [in lunar basalts

    Science.gov (United States)

    Schreiber, H. D.; Balazs, G. B.; Shaffer, A. P.; Jamison, P. L.

    1982-01-01

    The production of metallic iron in silicate melts by chemical reactions of Ti(3+), Cr(2+), and Eu(2+) with Fe(2+) is demonstrated under experimental conditions in a simplified basaltic liquid. These reactions form a basis for interpreting the role of isochemical valency exchange models in explanations for the reduced nature of lunar basalts. The redox couples are individually investigated in the silicate melt to ascertain reference redox ratios that are independent of mutual interactions. These studies also provide calibrations of spectral absorptions of the Fe(2+) and Ti(2+) species in these glasses. Subsequent spectrophotometric analyses of Fe(2+) and Ti(2+) in glasses doped with both iron and titanium and of Fe(2+) in glasses doped with either iron and chromium or iron and europium ascertain the degree of mutual interactions in these dual-doped glasses.

  6. Characterization study of heavy metal-bearing phases in MSW slag

    International Nuclear Information System (INIS)

    Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Motomura, Yoshinobu; Watanabe, Koichiro

    2009-01-01

    Slag products derived from the pyrolysis/melting and plasma/melting treatment of municipal solid waste (MSW) in Japan were examined for the characterization study of heavy metal-bearing phases using petrographic techniques. Detailed microscopic observations revealed that the shapes of heavy metal-rich inclusions are generally spherical to semi-spherical and their sizes range from submicron to scarcely large size spheres (over 100 μm). The experiments (both optical microscopy and electron probe microanalysis) indicated that Fe and Cu participate in mutual substitution and different proportions, and form mainly two-phase Fe-Cu alloys that bound in the silicate glass. This alloy characterizes the composition of more than 80% of the metal-rich inclusions. Other metals and non-metals (such as Pb, Ni, Sb, Sn, P, Si, Al and S) with variable amounts and uneven distributions are also incorporated in the Fe-Cu alloy. In average, the bulk concentration of heavy metals in samples from pyrolysis/melting type is almost six times greater than samples treated under plasma/arc processing. The observations also confirmed that slag from pyrolysis origin contains remarkably higher concentration of metallic inclusions than slag from plasma treatment. In the latter, the metallic compounds are separately tapped from molten slag during the melting treatment that might lead to the generation of safer slag product for end users from environmental viewpoint.

  7. Quality of structural steel melted by single-slag process

    International Nuclear Information System (INIS)

    Levin, A.M.; Andreev, V.I.; Monastyrskij, A.V.; Drozdova, M.F.; Pashchenko, V.E.; Orzhekh, M.B.

    1982-01-01

    The 40Kh and 12KhN3A steels were used to compare the quality of the metal manufactured according to several variants of a single-slag process with the metal of a conventional melting technology. Investigation results show, that a single-slag process metal has higher sulfides and oxides contents as well as an increased anisotropy of mechanical properties while its tendency to flake formation is weaker due to a less degree of gas saturation. It is marked that anisotropy in the properties and a sulfide content may be decreased by out-of-furnace treatment of steels

  8. Development of metallic fuel fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Ho; Lee, Chong Yak; Lee, Myung Ho and others

    1999-03-01

    With the vacuum melting and casting of the U-10wt%Zr alloy which is metallic fuel for liquid metal fast breeder reactor, we studied the microstructure of the alloy and the parameters of the melting and casting for the fuel rods. Internal defects of the U-10wt%Zr fuel by gravity casting, were inspected by non-destructive test. U-10wt%Zr alloy has been prepared for the thermal stability test in order to estimate the decomposition of the lamellar structure with relation to swelling under irradiation condition. (author)

  9. Process combinations for the manufacturing of metal-plastic hybrid parts

    International Nuclear Information System (INIS)

    Drossel, W-G; Lies, C; Albert, A; Haase, R; Müller, R; Scholz, P

    2016-01-01

    The usage of innovative lightweight materials and processing technologies gains importance in manifold industrial scopes. Especially for moving parts and mobility products the weight is decisively. The aerospace and automotive industries use light and high-strength materials to reduce weight and energy consumption and thereby improve the performance of their products. Composites with reinforced plastics are of particular importance. They offer a low density in combination with high specific stiffness and strength. A pure material substitution through reinforced plastics is still not economical. The approach of using hybrid metal-plastic structures with the principle of “using the right material at the right place” is a promising solution for the economical realization of lightweight structures with a high achievement potential. The article shows four innovative manufacturing possibilities for the realization of metal-plastic-hybrid parts. (paper)

  10. Use of reliability engineering in development and manufacturing of metal parts

    International Nuclear Information System (INIS)

    Khan, A.; Iqbal, M.A.; Asif, M.

    2005-01-01

    The reliability engineering predicts modes of failures and weak links before the system is built instead of failure case study. The reliability engineering analysis will help in the manufacturing economy, assembly accuracy and qualification by testing, leading to production of metal parts in an aerospace industry. This methodology will also minimize the performance constraints in any requirement for the application of metal components in aerospace systems. The reliability engineering predicts the life of the parts under loading conditions whether dynamic or static. Reliability predictions can help engineers in making decisions about design of components, materials selection and qualification under applied stress levels. Two methods of reliability prediction i.e. Part Stress Analysis and Part Count have been used in this study. In this paper we will discuss how these two methods can be used to measure reliability of a system during development phases, which includes the measuring effect of environmental and operational variables. The equations are used to measure the reliability of each type of component, as well as, integration for measuring system applied for the reliability analysis. (author)

  11. Numerical simulation of the alloying process during impulse induction heating of the metal substrate

    Science.gov (United States)

    Popov, V. N.

    2017-10-01

    2D numerical modeling of the processes during the alloying of the substrate surface metal layer is carried out. Heating, phase transition, heat and mass transfer in the molten metal, solidification of the melt are considered with the aid the proposed mathematical model. Under study is the applicability of the high-frequency electromagnetic field impulse for metal heating and melting. The distribution of the electromagnetic energy in the metal is described by empirical formulas. According to the results of numerical experiments, the flow structure in the melt and distribution of the alloying substances is evaluated.

  12. Behavior of a corium jet in high pressure melt ejection from a reactor pressure vessel

    International Nuclear Information System (INIS)

    Frid, W.

    1988-04-01

    Discharge of the molten core debris from a pressurized reactor vessel has been recognized as an important accident scenario for pressurized water reactors. Recent high-pressure melt streaming experiments conducted at Sandia National Laboratories, designed to study cavity and containment events related to melt ejection, have resulted in two important observations: (1) Expansion and breakup of the ejected molten jet. (2) Significant aerosol generation during the ejection process. The expansion and breakup of the jet in the experiments are attributed to rapid evolution of the pressurizing gas (nitrogen or hydrogen) dissolved in the melt. It has been concluded that aerosol particles may be formed by condensation of melt vapor and mechanical breakup of the melt and generation. It was also shown that the above stated phenomena are likely to occur in reactor accidents. This report provides results from analytical and experimental investigations on the behavior of a gas supersaturated molten jet expelled from a pressurized vessel. Aero-hydrodynamic stability of liquid jets in gas, stream degassing of molten metals, and gas bubble nucleation in molten metals are relevant problems that are addressed in this work

  13. Powder metallurgy of refractory metals

    International Nuclear Information System (INIS)

    Eck, R.

    1979-01-01

    This paper reports on the powder metallurgical methods for the production of high-melting materials, such as pure metals and their alloys, compound materials with a tungsten base and hard metals from liquid phase sintered carbides. (author)

  14. Petrological Geodynamics of Mantle Melting I. AlphaMELTS + Multiphase Flow: Dynamic Equilibrium Melting, Method and Results

    Directory of Open Access Journals (Sweden)

    Massimiliano Tirone

    2017-10-01

    Full Text Available The complex process of melting in the Earth's interior is studied by combining a multiphase numerical flow model with the program AlphaMELTS which provides a petrological description based on thermodynamic principles. The objective is to address the fundamental question of the effect of the mantle and melt dynamics on the composition and abundance of the melt and the residual solid. The conceptual idea is based on a 1-D description of the melting process that develops along an ideal vertical column where local chemical equilibrium is assumed to apply at some level in space and time. By coupling together the transport model and the chemical thermodynamic model, the evolution of the melting process can be described in terms of melt distribution, temperature, pressure and solid and melt velocities but also variation of melt and residual solid composition and mineralogical abundance at any depth over time. In this first installment of a series of three contributions, a two-phase flow model (melt and solid assemblage is developed under the assumption of complete local equilibrium between melt and a peridotitic mantle (dynamic equilibrium melting, DEM. The solid mantle is also assumed to be completely dry. The present study addresses some but not all the potential factors affecting the melting process. The influence of permeability and viscosity of the solid matrix are considered in some detail. The essential features of the dynamic model and how it is interfaced with AlphaMELTS are clearly outlined. A detailed and explicit description of the numerical procedure should make this type of numerical models less obscure. The general observation that can be made from the outcome of several simulations carried out for this work is that the melt composition varies with depth, however the melt abundance not necessarily always increases moving upwards. When a quasi-steady state condition is achieved, that is when melt abundance does not varies significantly

  15. Heavy metals behavior during thermal plasma vitrification of incineration residues

    International Nuclear Information System (INIS)

    Cerqueira, N.; Vandensteendam, C.; Baronnet, J.M.

    2005-01-01

    In the developed world, incineration of wastes is widely and increasingly practiced. Worldwide, a total of approximately 100 millions of tons of municipal solid waste (MSW) material is incinerated annually. Incineration of one ton of MSW leads to the formation of 30 to 50 kg of fly ash, depending on the type of incinerator. The waste disposal of these dusts already causes great problems today; they are of low bulk density, they contain high concentrations of hazardous water-soluble heavy metal compounds, organohalogen compounds (dioxines, furanes), sulfur, and chlorinated compounds. Thermal processes, based mainly on electrical arc processes, show great promise: the residues are melted at high temperature and converted in a relatively inert glass. A few tens of plants, essentially in Japan and Taiwan, have been in industrial operation for a few years. To be authorized to be dumped in a common landfill, the glassy product has to satisfy the leaching test procedure to ensure long-term durability. But to satisfy the regulation to be reused, for example as a nonhazardous standard material in road building, the glassy product would probably include contents in some heavy metals lower than critical limits. So today, there are two alternatives: the first one is to improve the heavy toxic metals evaporation to get a 'light' glassy product and to recycle separately the said separated metals; the second is on the contrary to improve the incorporation of a maximum of heavy metals into the vitreous silicate matrix. Whatever, it is highly required to control, in situ and in real time, volatility of these metals during ash melting under electrical arc. The objective of this work was to reach basic data about metals volatility under the plasma column of an electrical arc transferred on the melt: an experiment has been designed to examine the effects of processing conditions, such as melt temperature, melt composition, and furnace atmosphere, upon volatilization and glassy slag

  16. Preparation and melting of uranium from U3O8

    International Nuclear Information System (INIS)

    Hur, Jin-Mok; Choi, In-Kyu; Cho, Soo-Haeng; Jeong, Sang-Mun; Seo, Chung-Seok

    2008-01-01

    In this paper, we report on the preparation and melting of uranium in association with a spent nuclear fuel conditioning process. U 3 O 8 powder was electrochemically reduced in a mixture of molten LiCl-Li 2 O (∼3 wt.% of Li 2 O in LiCl) at 650 deg. C resulting in the formation of uranium and Li 2 O with a yield of >99%. When the powder of uranium with a residual LiCl-Li 2 O salt was heated in order to melt the metal, the uranium oxidation to UO 2 due to the reaction with Li 2 O was observed. We were able to synthesize FeU 6 by using a Fe based cathode during the U 3 O 8 reduction procedure. FeU 6 could be melted to below the temperatures where the oxidation of uranium by Li 2 O occurred. The idea of compound formation and melting is applicable to the melting and casting of a spent nuclear fuel which contains oxidative residual salts due to its conditioning in a molten salt

  17. Clean Metal Casting

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  18. Control of Variability in the Performance of Selective Laser Melting (SLM) Parts through Microstructure Control and Design

    Data.gov (United States)

    National Aeronautics and Space Administration — The high variability and low repeatability of metal parts produced using Additive Manufacturing (AM) represent a major barrier in getting AM into the mainstream....

  19. Effect of adding support structures for overhanging part on fatigue strength in selective laser melting.

    Science.gov (United States)

    Kajima, Yuka; Takaichi, Atsushi; Nakamoto, Takayuki; Kimura, Takahiro; Kittikundecha, Nuttaphon; Tsutsumi, Yusuke; Nomura, Naoyuki; Kawasaki, Akira; Takahashi, Hidekazu; Hanawa, Takao; Wakabayashi, Noriyuki

    2018-02-01

    Selective laser melting (SLM) technology was recently introduced to fabricate dental prostheses. However, the fatigue strength of clasps in removable partial dentures prepared by SLM still requires improvement. In this study, we attempted to improve the fatigue strength of clasps by adding support structures for overhanging parts, which can generally be manufactured at an angle to be self-supporting. The results show that the fatigue strength of the supported specimens was more than twice that of unsupported specimens. Electron back-scattered diffraction analysis revealed that the supported specimens exhibited lower kernel average misorientation values than the unsupported specimens, which suggested that the support structure reduced the residual strain during the SLM process and helped to prevent micro-cracks led by thermal distortion. In addition, the supported specimens cooled more rapidly, thereby forming a finer grain size compared to that of the unsupported specimens, which contributed to improving the fatigue strength. The results of this study suggest that the fatigue strength of overhanging parts can be improved by intentionally adding support structures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Electrical resistivity discontinuity of iron along the melting curve

    Science.gov (United States)

    Wagle, Fabian; Steinle-Neumann, Gerd

    2018-04-01

    Discontinuous changes of electrical resistivity ρel (increase), density ϱ and isothermal compressibility βT (decrease) occur across the melting temperature of metals and can be directly related by Ziman's theory in the long-wavelength approximation. By evaluating experimental data at ambient pressure, we show that Ziman's approximation holds for iron and other simple and transition metals. Using a thermodynamic model to determine βT for γ-, ɛ- and liquid Fe and a previously published model for ρel of liquid Fe, we apply Ziman's approximation to calculate ρel of solid Fe along the melting curve. For pure Fe, we find the discontinuity in ρel to decrease with pressure and to be negligibly small at inner core boundary conditions. However, if we account for light element enrichment in the liquid outer core, the electrical resistivity decrease across the inner core boundary is predicted to be as large as 36 per cent.

  1. Viscosity Meaurement Technique for Metal Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Heng [Utah State Univ., Logan, UT (United States). Mechanical and Aerospace Engineering; Kennedy, Rory [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-09

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.

  2. Viscosity Meaurement Technique for Metal Fuels

    International Nuclear Information System (INIS)

    Ban, Heng

    2015-01-01

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.

  3. Comparison of Microstructure and Mechanical Properties of Scalmalloy® Produced by Selective Laser Melting and Laser Metal Deposition.

    Science.gov (United States)

    Awd, Mustafa; Tenkamp, Jochen; Hirtler, Markus; Siddique, Shafaqat; Bambach, Markus; Walther, Frank

    2017-12-23

    The second-generation aluminum-magnesium-scandium (Al-Mg-Sc) alloy, which is often referred to as Scalmalloy ® , has been developed as a high-strength aluminum alloy for selective laser melting (SLM). The high-cooling rates of melt pools during SLM establishes the thermodynamic conditions for a fine-grained crack-free aluminum structure saturated with fine precipitates of the ceramic phase Al₃-Sc. The precipitation allows tensile and fatigue strength of Scalmalloy ® to exceed those of AlSi10Mg by ~70%. Knowledge about properties of other additive manufacturing processes with slower cooling rates is currently not available. In this study, two batches of Scalmalloy ® processed by SLM and laser metal deposition (LMD) are compared regarding microstructure-induced properties. Microstructural strengthening mechanisms behind enhanced strength and ductility are investigated by scanning electron microscopy (SEM). Fatigue damage mechanisms in low-cycle (LCF) to high-cycle fatigue (HCF) are a subject of study in a combined strategy of experimental and statistical modeling for calculation of Woehler curves in the respective regimes. Modeling efforts are supported by non-destructive defect characterization in an X-ray computed tomography (µ-CT) platform. The investigations show that Scalmalloy ® specimens produced by LMD are prone to extensive porosity, contrary to SLM specimens, which is translated to ~30% lower fatigue strength.

  4. Thermogravimetric method of estimation of uranyl cation state in melts of alkali metal chlorides and their mixtures

    International Nuclear Information System (INIS)

    Vorobej, M.P.; Desyatnik, V.N.

    1979-01-01

    The thermogravimetric method was used to study the chloridizing of uranium oxides in molten media. The study of the uranium oxide chloridizing served as a basis for evaluating comparatively, using the DTA method, the uranyl-cation state in a melt. Using the alkali metals as example, it was shown that the decomposition of the frozen uranium oxychlorides proceeds with the formation of intermediate chlorouranates. The final product of the thermolysis are uranates Me 2 U 2 O 7 (Me-Li, Na, K, Rb, Cs). The time and the conditions of the change of uranium oxides to the oxyanion [UO 2 Cl 4 ] 2- were determined as a function of the chloridizing agent. The method can be employed for evaluating uranyl-ions in molten media where they are used as electrolytes in the extraction of uranium dioxide

  5. Analysis of ex-vessel melt jet breakup and coolability. Part 1: Sensitivity on model parameters and accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Kiyofumi; Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr; Hwang, Byoungcheol; Jung, Woo Hyun

    2016-06-15

    Highlights: • Application of JASMINE code to melt jet breakup and coolability in APR1400 condition. • Coolability indexes for quasi steady state breakup and cooling process. • Typical case in complete breakup/solidification, film boiling quench not reached. • Significant impact of water depth and melt jet size; weak impact of model parameters. - Abstract: The breakup of a melt jet falling in a water pool and the coolability of the melt particles produced by such jet breakup are important phenomena in terms of the mitigation of severe accident consequences in light water reactors, because the molten and relocated core material is the primary heat source that governs the accident progression. We applied a modified version of the fuel–coolant interaction simulation code, JASMINE, developed at Japan Atomic Energy Agency (JAEA) to a plant scale simulation of melt jet breakup and cooling assuming an ex-vessel condition in the APR1400, a Korean advanced pressurized water reactor. Also, we examined the sensitivity on seven model parameters and five initial/boundary condition variables. The results showed that the melt cooling performance of a 6 m deep water pool in the reactor cavity is enough for removing the initial melt enthalpy for solidification, for a melt jet of 0.2 m initial diameter. The impacts of the model parameters were relatively weak and that of some of the initial/boundary condition variables, namely the water depth and melt jet diameter, were very strong. The present model indicated that a significant fraction of the melt jet is not broken up and forms a continuous melt pool on the containment floor in cases with a large melt jet diameter, 0.5 m, or a shallow water pool depth, ≤3 m.

  6. Rock melting technology and geothermal drilling

    Science.gov (United States)

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  7. Development of the inductive ring susceptor technique for sustaining oxide melts

    International Nuclear Information System (INIS)

    Copus, E.R.

    1983-09-01

    A method for melting and sustaining large volumes of UO 2 has been developed at Sandia. This capability will greatly enhance reactor safety studies in the areas of ex-vessel interactions and degraded core retention by providing out-of-pile simulation for the decay heat process that is inherent to reactor core debris. The method, referred to as the Inductive Ring Susceptor Technique, melts UO 2 powder via inductively heated susceptor rings fashioned from highly conductive refractory metal. These rings are embedded in the non-conductive charge material. Placement of the rings is designed for optimum heat transfer and a controlled pool-type geometry. The technique has been demonstrated by a series of sustained oxide melt experiments

  8. Laser Beam Melting of Alumina: Effect of Absorber Additions

    Science.gov (United States)

    Moniz, Liliana; Colin, Christophe; Bartout, Jean-Dominique; Terki, Karim; Berger, Marie-Hélène

    2018-03-01

    Ceramic laser beam melting offers new manufacturing possibilities for complex refractory structures. Poor absorptivity in near infra-red wavelengths of oxide ceramics is overcome with absorber addition to ceramic powders. Absorbers affect powder bed densities and geometrical stability of melted tracks. Optimum absorber content is defined for Al2O3 by minimizing powder bed porosity, maximizing melting pool geometrical stability and limiting shrinkage. Widest stability fields are obtained with addition of 0.1 wt.% C and 0.5 wt.% β-SiC. Absorption coefficient values of Beer-Lambert law follow stability trends: they increase with C additions, whereas with β-SiC, a maximum is reached for 0.5 wt.%. Powder particle ejections are also identified. Compared to metallic materials, this ejection phenomenon can no longer be neglected when establishing a three-dimensional manufacturing strategy.

  9. Influence of gas generation on high-temperature melt/concrete interactions

    International Nuclear Information System (INIS)

    Powers, D.A.

    1979-01-01

    Accidents involving fuel melting and eventual contact between the high temperature melt and structural concrete may be hypothesized for both light water thermal reactors and liquid metal cooled breeder reactors. Though these hypothesized accidents have a quite low probability of occurring, it is necessary to investigate the probable natures of the accidents if an adequate assessment of the risks associated with the use of nuclear reactors is to be made. A brief description is given of a program addressing the nature of melt/concrete interactions which has been underway for three years at Sandia Laboratories. Emphasis in this program has been toward the behavior of prototypic melts of molten core materials with concrete representative of that found in existing or proposed reactors. The goals of the experimentation have been to identify phenomena particularly pertinent to questions of reactor safety, and phenomena particularly pertinent to questions of reactor safety, and provide quantitative data suitable for the purposes of risk assessment

  10. Melt spreading code assessment, modifications, and application to the EPR core catcher design

    International Nuclear Information System (INIS)

    Farmer, M.T.

    2009-01-01

    The Evolutionary Power Reactor (EPR) is under consideration by various utilities in the United States to provide base load electrical production, and as a result the design is undergoing a certification review by the U.S. Nuclear Regulatory Commission (NRC). The severe accident design philosophy for this reactor is based upon the fact that the projected power rating results in a narrow margin for in-vessel melt retention by external cooling of the reactor vessel. As a result, the design addresses ex-vessel core melt stabilization using a mitigation strategy that includes: (1) an external core melt retention system to temporarily hold core melt released from the vessel; (2) a layer of 'sacrificial' material that is admixed with the melt while in the core melt retention system; (3) a melt plug in the lower part of the retention system that, when failed, provides a pathway for the mixture to spread to a large core spreading chamber; and finally, (4) cooling and stabilization of the spread melt by controlled top and bottom flooding. The overall concept is illustrated in Figure 1.1. The melt spreading process relies heavily on inertial flow of a low-viscosity admixed melt to a segmented spreading chamber, and assumes that the melt mass will be distributed to a uniform height in the chamber. The spreading phenomenon thus needs to be modeled properly in order to adequately assess the EPR design. The MELTSPREAD code, developed at Argonne National Laboratory, can model segmented, and both uniform and nonuniform spreading. The NRC is thus utilizing MELTSPREAD to evaluate melt spreading in the EPR design. MELTSPREAD was originally developed to support resolution of the Mark I containment shell vulnerability issue. Following closure of this issue, development of MELTSPREAD ceased in the early 1990's, at which time the melt spreading database upon which the code had been validated was rather limited. In particular, the database that was utilized for initial validation consisted

  11. Immobilization of carbon 14 contained in spent fuel hulls through melting-solidification treatment

    International Nuclear Information System (INIS)

    Mizuno, T.; Maeda, T.; Nakayama, S.; Banba, T.

    2004-01-01

    The melting-solidification treatment of spent nuclear fuel hulls is a potential technique to improve immobilization/stabilization of carbon-14 which is mobile in the environment due to its weakly absorbing properties. Carbon-14 can be immobilized in a solid during the treatment under an inert gas atmosphere, where carbon is not oxidized to gaseous form and remains in the solid. A series of laboratory scale experiments on retention of carbon into an alloy waste form was conducted. Metallic zirconium was melted with metallic copper (Zr/Cu=8/2 in weight) at 1200 deg C under an argon atmosphere. Almost all of the carbon remained in the resulting zirconium-copper alloy. (authors)

  12. Mechanical and fatigue properties of martensitic 20X13 and austenitic 12X18H10T at interaction with lead nad lead-bismuth melts

    International Nuclear Information System (INIS)

    Yas'kiv, O.I.; Fedirko, V.M.

    2013-01-01

    The effect of Pb and Pb-Bi melts on mechanical properties and fatigue of Fe-13Cr and Fe-18Cr-10Ni-Ti steels in temperature interval 250...750 deg C has been investigated. It was shown that metal melts lead to increasing of strength of Fe-13Cr steel on 10...20 % as compared with vacuum and this effect increases with temperature rising. Fe-13Cr steel is prone to liquid metal embrittlement in temperature interval 350...450 deg C, particularly in Pb-Bi melt. Mechanical properties of Fe-18Cr-10Ni-Ti are not affected by metal melts. Both Pb and Pb-Bi assist in reducing of fatigue life of steels and this effect is more significant in Pb-Bi

  13. Effect of melting technique on grain size and heat resistance of the 12Kh1MF steel

    International Nuclear Information System (INIS)

    Lanskaya, K.A.; Kulikova, L.V.; Butneva, N.I.

    1978-01-01

    Investigated are the 12Kh1MF steel melted in open-hearth and arc furnaces (deoxidation by aluminium in 1.0 kg/t quantity) and then subjected to electroslag melting. The size of an austenitic grain depends on the residual contents of nitrogen and aluminium in steel. The open-hearth metal subjected to electroslag melting and containing a small quantity of nitrogen (0.006%) and aluminium (0.013%) has coarse austenitic grains and higher heat resistance compared to the steel melted in an arc furnace and also sub ected to electroslag melting. The nitride analysis of steel is carried out

  14. Chemical decontamination and melt densification

    International Nuclear Information System (INIS)

    Dillon, R.L.; Griggs, B.; Kemper, R.S.; Nelson, R.G.

    1976-01-01

    Preliminary studies on the chemical decontamination and densification of Zircaloy, stainless steel, and Inconel undissolved residues remaining after dissolution of the UO 2 --PuO 2 spent fuel material from sheared fuel bundles are reported. The studies were made on cold or very small samples to demonstrate the feasibility of the processes developed before proceeding to hot cell demonstrations with kg level of the sources. A promising aqueous decontamination method for Zr alloy cladding was developed in which oxidized surfaces are conditioned with HF prior to leaching with ammonium oxalate, ammonium citrate, ammonium fluoride, and hydrogen peroxide. Feasibility of molten salt decontamination of oxidized Zircaloy was demonstrated. A low melting alloy of Zircaloy, stainless steel, and Inconel was obtained in induction heated graphite crucibles. Segregated Zircaloy cladding sections were directly melted by the inductoslag process to yield a metal ingot suitable for storage. Both Zircaloy and Zircaloy--stainless steel--Inconel alloys proved to be highly satisfactory getters and sinks for recovered tritium

  15. Chemical reactions in solvents and melts

    CERN Document Server

    Charlot, G

    1969-01-01

    Chemical Reactions in Solvents and Melts discusses the use of organic and inorganic compounds as well as of melts as solvents. This book examines the applications in organic and inorganic chemistry as well as in electrochemistry. Organized into two parts encompassing 15 chapters, this book begins with an overview of the general properties and the different types of reactions, including acid-base reactions, complex formation reactions, and oxidation-reduction reactions. This text then describes the properties of inert and active solvents. Other chapters consider the proton transfer reactions in

  16. Variation in patterns of metal accumulation in thallus parts of Lessonia trabeculata (Laminariales; Phaeophyceae: implications for biomonitoring.

    Directory of Open Access Journals (Sweden)

    Claudio A Sáez

    Full Text Available Seaweeds are well known to concentrate metals from seawater and have been employed as monitors of metal pollution in coastal waters and estuaries. However, research showing that various intrinsic and extrinsic factors can influence metal accumulation, raises doubts about the basis for using seaweeds in biomonitoring programmes. The thallus of brown seaweeds of the order Laminariales (kelps is morphologically complex but there is limited information about the variation in metal accumulation between the different parts, which might result in erroneous conclusions being drawn if not accounted for in the biomonitoring protocol. To assess patterns of individual metals in the differentiated parts of the thallus (blade, stipe, holdfast, concentrations of a wide range of essential and non-essential metals (Fe, Cr, Cu, Zn, Mn, Pb, Cd, Ni and Al were measured in the kelp Lessonia trabeculata. Seaweeds were collected from three sampling stations located at 5, 30 and 60 m from an illegal sewage outfall close to Ventanas, Chile and from a pristine location at Faro Curaumilla. For the majority of metals the highest concentrations in bottom sediment and seaweed samples were found at the site closest to the outfall, with concentrations decreasing with distance from the outfall and at control stations; the exception was Cd, concentrations of which were higher at control stations. The patterns of metal concentrations in different thallus parts were metal specific and independent of sampling station. These results and the available literature suggest that biomonitoring of metals using seaweeds must take account of differences in the accumulation of metals in thallus parts of complex seaweeds.

  17. Microstructure-Based Counterfeit Detection in Metal Part Manufacturing

    Science.gov (United States)

    Dachowicz, Adam; Chaduvula, Siva Chaitanya; Atallah, Mikhail; Panchal, Jitesh H.

    2017-11-01

    Counterfeiting in metal part manufacturing has become a major global concern. Although significant effort has been made in detecting the implementation of such counterfeits, modern approaches suffer from high expense during production, invasiveness during manufacture, and unreliability in practice if parts are damaged during use. In this paper, a practical microstructure-based counterfeit detection methodology is proposed, which draws on inherent randomness present in the microstructure as a result of the manufacturing process. An optical Physically Unclonable Function (PUF) protocol is developed which takes a micrograph as input and outputs a compact, unique string representation of the micrograph. The uniqueness of the outputs and their robustness to moderate wear and tear is demonstrated by application of the methodology to brass samples. The protocol is shown to have good discriminatory power even between samples manufactured in the same batch, and runs on the order of several seconds per part on inexpensive machines.

  18. Removal of Non-metallic Inclusions from Nickel Base Superalloys by Electromagnetic Levitation Melting in a Slag

    Science.gov (United States)

    Manjili, Mohsen Hajipour; Halali, Mohammad

    2018-02-01

    Samples of INCONEL 718 were levitated and melted in a slag by the application of an electromagnetic field. The effects of temperature, time, and slag composition on the inclusion content of the samples were studied thoroughly. Samples were compared with the original alloy to study the effect of the process on inclusions. Size, shape, and chemical composition of remaining non-metallic inclusions were investigated. The samples were prepared by Standard Guide for Preparing and Evaluating Specimens for Automatic Inclusion Assessment of Steel (ASTM E 768-99) method and the results were reported by means of the Standard Test Methods for Determining the Inclusion Content of Steel (ASTM E 45-97). Results indicated that by increasing temperature and processing time, greater level of cleanliness could be achieved, and numbers and size of the remaining inclusions decreased significantly. It was also observed that increasing calcium fluoride content of the slag helped reduce inclusion content.

  19. Melting of Grey Cast Iron Based on Steel Scrap Using Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Stojczew A.

    2014-08-01

    Full Text Available The paper presents the issue of synthetic cast iron production in the electric induction furnace exclusively on the steel scrap base. Silicon carbide and synthetic graphite were used as carburizers. The carburizers were introduced with solid charge or added on the liquid metal surface. The chemical analysis of the produced cast iron, the carburization efficiency and microstructure features were presented in the paper. It was stated that ferrosilicon can be replaced by silicon carbide during the synthetic cast iron melting process. However, due to its chemical composition (30% C and 70% Si which causes significant silicon content in iron increase, the carbon deficit can be partly compensated by the carburizer introduction. Moreover it was shown that the best carbon and silicon assimilation rate is obtained where the silicon carbide is being introduced together with solid charge. When it is thrown onto liquid alloy surface the efficiency of the process is almost two times less and the melting process lasts dozen minutes long. The microstructure of the cast iron produced with the silicon carbide shows more bulky graphite flakes than inside the microstructure of cast iron produced on the pig iron base.

  20. Estimation of structural strength of 38KhN3MFA steel, melted using different methods

    International Nuclear Information System (INIS)

    Kudrya, A.V.; Mochalov, B.V.; Fadeev, Yu.I.

    1982-01-01

    Quantity of steel melted by different methods using criteria of fracture mechanics is evaluated. Three technological variants of the 38KhN3MFA steel melting: acid Martin steel prepared by the duplex-process (melt 1); the main Martin steel melting with deoxidation and alloying in a ladle by liquid alloy and treatment with synthetic slag with argon purging after production (melt 2) and its electroslag remelt - ESP process (melt 3) are investigated. The analysis of the investigated melts has revealed that crack resistances of the acid Martin steel is higher than that of other melts at practically similar standard mechanical properties with 0.35 probability at 0.05 significance level in the low-tempered state; in the tempered state the best crack resistance is observed in the ESP main Martin steel. Metal of the main Martin melting has lower crack resistance as compared with other meltings at both strength levels. The results of the work point out the necessity of applying the criteria of fracture mechanics for obtaining an objective evaluation of the steel quality

  1. Hydrogen storage in Mg-Ni-Fe compounds prepared by melt spinning and ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Palade, P. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Sartori, S. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); Maddalena, A. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); Principi, G. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy)]. E-mail: giovanni.principi@unipd.it; Lo Russo, S. [Dipartimento di Fisica, Universita di Padova, Via Marzolo 8, 35131 Padova (Italy); Lazarescu, M. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Schinteie, G. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Kuncser, V. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Filoti, G. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania)

    2006-05-18

    Magnesium-rich Mg-Ni-Fe intermetallic compounds have been prepared by two different routes: (a) short time ball milling of ribbons obtained by melt spinning; (b) long time ball milling of a mixture of MgH{sub 2}, Ni and Fe powders. The first type of samples displays an hydrogen desorption kinetics better than the second one. Pressure composition isotherm measurements exhibit for both type of samples two plateaux, the lower and wider corresponding to the MgH{sub 2} phase and the upper and shorter corresponding to the Mg{sub 2}NiH{sub 4} phase. The presence of the two types of hydrides is confirmed by X-ray diffraction analysis. Moessbauer spectroscopy shows that in melt spun and subsequently milled samples iron is mainly in a disordered structure and segregates after hydrogenation, while in directly milled powders remains mainly unalloyed. After multiple hydrogen absorption/desorption cycles the main part of iron is in metallic state in samples of both types, those of first type preserving better hydrogen desorption kinetics.

  2. Investigation of platinum alloys for melting of inclusion free laser glass: Final report

    International Nuclear Information System (INIS)

    Izumitani, T.; Toratani, H.; Meissner, H.E.

    1986-01-01

    The objective of this work is to evaluate the suitability of Pt alloys as crucible materials for melting LHG-8 phosphate laser glass. The tendency of forming metallic inclusions and ionic dissolution of alloy components in the glass is to be compared with that of pure Pt. Ionic Pt is introduced into the glass melt by direct dissolution of Pt at the crucible-melt interface and by vapor phase transport. It was felt that a Pt-alloy may behave sufficiently differently from Pt that a number of alloys should be studied. Pt inclusions may originate from Pt which reprecipitates from the glass melt on cooling or change in redox-conditions; from volatilized Pt which deposits in colder zones of the melting environment as crystallites which may drop back into the glass melt; and/or from Pt particles which are mechanically removed from the crucible and drop into the glass melt. Besides pure Pt, the following alloys have been tested: Pt/ 10 Ir, Pt/ 10 Rh, Pt/ 5 Au, Pt-ZGS, Pt/ 5 Au-ZGS, Pt/ 10 Rh-ZGS

  3. Volatilization of heavy metals and radionuclides from soil heated in an induction ''cold'' crucible melter

    International Nuclear Information System (INIS)

    Aloy, A.S.; Belov, V.Z.; Trofimenko, A.S.; Dmitriev, S.A.; Stefanovsky, S.V.; Gombert, D.; Knecht, D.A.

    1997-01-01

    The behavior of heavy metals and radionuclides during high-temperature treatment is very important for the design and operational capabilities of the off-gas treatment system, as well as for a better understanding of the nature and forms of the secondary waste. In Russia, a process for high-temperature melting in an induction heated cold crucible system is being studied for vitrification of Low Level Waste (LLW) flyash and SYNROC production with simulated high level waste (HLW). This work was done as part of a Department of Energy (DOE) funded research project for thermal treatment of mixed low level waste (LLW). Soil spiked with heavy metals (Cd, Pb) and radionuclides (Cs-137, U-239, Pu-239) was used as a waste surrogate. The soil was melted in an experimental lab-scale system that consisted of a high-frequency generator (1.76 MHz, 60 kW), a cold crucible melter (300 mm high and 90 mm in diameter), a shield box, and an off-gas system. The process temperature was 1,350--1,400 C. Graphite and silicon carbide were used as sacrificial conductive materials to start heating and initial melting of the soil batch. The off-gas system was designed in such a manner that after each experiment, it can be disconnected to collect and analyze all deposits to determine the mass balance. The off-gases were also sampled during an experiment to analyze for hydrogen, NO x , carbon dioxide, carbon monoxide and chlorine formation. This paper describes distribution and mass balance of metals and radionuclides in various parts of the off-gas system. The leach rate of the solidified blocks identified by the PCT method is also reported

  4. Modeling and simulation of melt-layer erosion during a plasma disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Belan, V.; Konkashbaev, I.; Nikandrov, L.; Safronov, V.; Zhitlukhin, A.; Litunovsky, V.

    1997-01-01

    Metallic plasma-facing components (PFCs) e.g. beryllium and tungsten, will be subjected to severe melting during plasma instabilities such as disruptions, edge-localized modes and high power excursions. Because of the greater thickness of the resulting melt layers relative to that of the surface vaporization, the potential loss of the developing melt-layer can significantly shorten PFC lifetime, severely contaminate the plasma and potentially prevent successful operation of the tokamak reactor. Mechanisms responsible for melt-layer loss during plasma instabilities are being modeled and evaluated. Of particular importance are hydrodynamic instabilities developed in the liquid layer due to various forces such as those from magnetic fields, plasma impact momentum, vapor recoil and surface tension. Another mechanism found to contribute to melt-layer splashing loss is volume bubble boiling, which can result from overheating of the liquid layer. To benchmark these models, several new experiments were designed and performed in different laboratory devices for this work; the SPLASH codes) are generally in good agreement with the experimental results. The effect of in-reactor disruption conditions, which do not exist in simulation experiments, on melt-layer erosion is discussed. (orig.)

  5. Implementation of a thermomechanical model for the simulation of selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, N. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ferencz, R. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Solberg, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-07-01

    Selective laser melting (SLM) is an additive manufacturing process in which multiple, successive layers of metal powders are heated via laser in order to build a part. Modeling of SLM requires consideration of both heat transfer and solid mechanics. The present work describes continuum modeling of SLM as envisioned for eventual support of part-scale modeling of this fabrication process to determine end-state information such as residual stresses and distortion. The determination of the evolving temperatures is dependent on the material, the state of the material (powder or solid), the specified heating, and the configuration. Similarly, the current configuration is dependent on the temperatures, the powder-solid state, and the constitutive models. A multi-physics numerical formulation is required to solve such problems. This article describes the problem formulation, numerical method, and constitutive parameters necessary to solve such a problem. Additionally, various verification and example problems are simulated in the parallel, multi-physics finite element code Diablo, and the results presented herein.

  6. A thermomechanical model for the fragmentation of a liquid metal droplet cooled by water

    Science.gov (United States)

    Ivochkin, Yu P.; Monastyrskiy, V. P.

    2017-11-01

    A thermo mechanical aspect of the fragmentation of a liquid metal droplet, solidified as it falls into cold water, is considered in the presented model. The formation of a solid phase in the form of continuous, fluid-tight and relatively rigid casting skin results in a pressure decrease inside the droplet due to the difference between liquid and solid metal density. Because of the high compression modulus of the melt, the pressure in the droplet becomes negative when the thickness of the solid skin achieves several microns. The tensile stress in the melt results in the deformation of the casting skin or the melt’s continuity violation in the form of a shrinkage pore. The rupture of the deformed solid crust results in the penetration of steam jets into the liquid part of the drop. Due to the difference in pressure in the surrounding steam and in the droplet, the casting skin is crushed and the melt is blown out. Both scenarios contribute to the hydrodynamic destruction of the droplet. The suggested thermo mechanical model gives a qualitative explanation for experimental data. In the experimental part of the work, droplets of molten Sn were solidified in water. The solidified pieces of the droplets usually include deformed, thin-walled shells and dispersed particles. On a qualitative level the composition and shape of the solid fragments can be explained within the bounds of the suggested thermo mechanical model.

  7. Influence of fining agents on glass melting: A review, Part 2

    Czech Academy of Sciences Publication Activity Database

    Hujová, Miroslava; Vernerová, Miroslava

    2017-01-01

    Roč. 61, č. 3 (2017), s. 202-208 ISSN 0862-5468 Institutional support: RVO:67985891 Keywords : glass melting * sodium sulphate * chemical reactions * gas evolution * dissolution * fining * bubble nucleation * foaming Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 0.439, year: 2016

  8. Influence of fining agents on glass melting: A review, Part 1

    Czech Academy of Sciences Publication Activity Database

    Hujová, Miroslava; Vernerová, Miroslava

    2017-01-01

    Roč. 61, č. 2 (2017), s. 119-126 ISSN 0862-5468 Institutional support: RVO:67985891 Keywords : glass melting * sodium sulphate * chemical reactions * gas evolution * dissolution * fining * bubble nucleation * foaming Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 0.439, year: 2016

  9. Volcanic Metal Emissions and Implications for Geochemical Cycling and Mineralization

    Science.gov (United States)

    Edmonds, M.; Mather, T. A.

    2016-12-01

    Volcanoes emit substantial fluxes of metals to the atmosphere in volcanic gas plumes in the form of aerosol, adsorbed onto silicate particles and even in some cases as gases.. A huge database of metal emissions has been built over the preceding decades, which shows that volcanoes emit highly volatile metals into the atmosphere, such as As, Bi, Cd, Hg, Re, Se, Tl, among others. Understanding the cycling of metals through the Solid Earth system has importance for tackling a wide range of Earth Science problems, e.g. (1) the environmental impacts of metal emissions; (2) the sulfur and metal emissions of volcanic eruptions; (3) the behavior of metals during subduction and slab devolatilization; (4) the influence of redox on metal behavior in subduction zones; (5) the partitioning of metals between magmatic vapor, brines and melts; and (6) the relationships between volcanism and ore deposit formation. It is clear, when comparing the metal composition and flux in the gases and aerosols emitted from volcanoes, that they vary with tectonic setting. These differences allow insights into how the magmatic vapor was generated and how it interacted with melts and sulfides during magma differentiation and decompression. Hotspot volcanoes (e.g. Kilauea, Hawaii; volcanoes in Iceland) outgas a metal suite that mirrors the sulfide liquid-silicate melt partitioning behaviors reconstructed from experiments (as far as they are known), suggesting that the aqueous fluids (that will later be outgassed from the volcano) receive metals directly from oxidation of sulfide liquids during degassing and ascent of magmas towards the surface. At arc volcanoes, the gaseous fluxes of metals are typically much higher; and there are greater enrichments in elements that partition strongly into vapor or brine from silicate melts such as Cu, Au, Zn, Pb, W. We collate and present data on volcanic metal emissions from volcanoes worldwide and review the implications of the data array for metal cycling

  10. An expert system for process planning of sheet metal parts produced ...

    Indian Academy of Sciences (India)

    Sachin Salunkhe

    set of production rules and frames for process planning of axisymmetric deep ... parameters for design of stamping die for manufacturing of circular cup with ..... proper sequence of operations to manufacture sheet metal part correctly and ...

  11. Improving the understanding of the melting behaviour of Mo, Ta, and W at extreme pressures

    International Nuclear Information System (INIS)

    Errandonea, Daniel

    2005-01-01

    We discuss the existing conflicts between experimentally measured and theoretically calculated melting curves of Mo, Ta, and W. By assuming that vacancy formation plays a fundamental role in the melting process, an explanation for the measured melting curves is provided. Furthermore, we show that the Lindemann law fits well all the measured melting curves of BCC transition metals if the Grueneisen parameter is written as a power series of the interatomic distance. For completeness, we examine possible reasons for current disagreements between shock-wave and DAC experiments. To solve them, we propose the existence of an extra high P-T phase for Mo, Ta, and W

  12. Progress in vacuum metal extraction, refining and consolidation

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Mukherjee, T.K.; Sharma, B.P.

    1973-01-01

    The unique achievements in the process metallurgy of rare metals in the past quarter century should largely be attributed to advances in vacuum technology. New standards for high purity, increasing demand for pure metals and alloys for established applications, and steady improvement in sophistication and capacity of vacuum furnaces have provided the stimulus for developing and expanding vacuum metal extraction processes, and also exploring totally new processes. The paper discusses the thermochemistry of vacuum metallurgy, carbothermic and metallothermic reduction reactions, consolidation and refining by vacuum arc melting, electron beam melting and high temperature high vacuum sintering, and ultrapurification, with special reference to the reactive and refractory metals of Group IV to VI. (author)

  13. The Peltier and Zeebeck coefficients of the Cd-CdI2 melt

    International Nuclear Information System (INIS)

    Kuzyakin, E.B.; Kuz'minskij, E.V.

    1979-01-01

    For the CdI 2 -Cd melt with the usage of molybdenum ''inert'' electrodes in the temperature range of 670-850 K and metal cadmium concentration of 0-5 mol % experimentally determined are the Peltier (PI = 0.67+0.07 V at T = 722 K and 0.23 mol %) and Zeebeck (epsilonsub(in) 1.175+-0.107 mV/deg -1 at 0.20 mol % Cd and T = 700-780 K) coefficients. Calculated is heat transfer coefficient from the electrode to the melt (a = 65+-10 W/m 2 K), reaffirmed is applicability of the second Thomson ratio (PI = Txepsilonsub(in)). It is shown that the method of non-stationary temperature waves, suggested for the Peltier coefficient determination can be applied for evaluation of metal solubility values in their molten salts

  14. Improved capacitive melting curve measurements

    International Nuclear Information System (INIS)

    Sebedash, Alexander; Tuoriniemi, Juha; Pentti, Elias; Salmela, Anssi

    2009-01-01

    Sensitivity of the capacitive method for determining the melting pressure of helium can be enhanced by loading the empty side of the capacitor with helium at a pressure nearly equal to that desired to be measured and by using a relatively thin and flexible membrane in between. This way one can achieve a nanobar resolution at the level of 30 bar, which is two orders of magnitude better than that of the best gauges with vacuum reference. This extends the applicability of melting curve thermometry to lower temperatures and would allow detecting tiny anomalies in the melting pressure, which must be associated with any phenomena contributing to the entropy of the liquid or solid phases. We demonstrated this principle in measurements of the crystallization pressure of isotopic helium mixtures at millikelvin temperatures by using partly solid pure 4 He as the reference substance providing the best possible universal reference pressure. The achieved sensitivity was good enough for melting curve thermometry on mixtures down to 100 μK. Similar system can be used on pure isotopes by virtue of a blocked capillary giving a stable reference condition with liquid slightly below the melting pressure in the reference volume. This was tested with pure 4 He at temperatures 0.08-0.3 K. To avoid spurious heating effects, one must carefully choose and arrange any dielectric materials close to the active capacitor. We observed some 100 pW loading at moderate excitation voltages.

  15. Clean Metal Casting; FINAL

    International Nuclear Information System (INIS)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-01-01

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components

  16. On the Selective Laser Melting (SLM of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Francesco Trevisan

    2017-01-01

    Full Text Available The aim of this review is to analyze and to summarize the state of the art of the processing of aluminum alloys, and in particular of the AlSi10Mg alloy, obtained by means of the Additive Manufacturing (AM technique known as Selective Laser Melting (SLM. This process is gaining interest worldwide, thanks to the possibility of obtaining a freeform fabrication coupled with high mechanical properties related to a very fine microstructure. However, SLM is very complex, from a physical point of view, due to the interaction between a concentrated laser source and metallic powders, and to the extremely rapid melting and the subsequent fast solidification. The effects of the main process variables on the properties of the final parts are analyzed in this review: from the starting powder properties, such as shape and powder size distribution, to the main process parameters, such as laser power and speed, layer thickness, and scanning strategy. Furthermore, a detailed overview on the microstructure of the AlSi10Mg material, with the related tensile and fatigue properties of the final SLM parts, in some cases after different heat treatments, is presented.

  17. On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties.

    Science.gov (United States)

    Trevisan, Francesco; Calignano, Flaviana; Lorusso, Massimo; Pakkanen, Jukka; Aversa, Alberta; Ambrosio, Elisa Paola; Lombardi, Mariangela; Fino, Paolo; Manfredi, Diego

    2017-01-18

    The aim of this review is to analyze and to summarize the state of the art of the processing of aluminum alloys, and in particular of the AlSi10Mg alloy, obtained by means of the Additive Manufacturing (AM) technique known as Selective Laser Melting (SLM). This process is gaining interest worldwide, thanks to the possibility of obtaining a freeform fabrication coupled with high mechanical properties related to a very fine microstructure. However, SLM is very complex, from a physical point of view, due to the interaction between a concentrated laser source and metallic powders, and to the extremely rapid melting and the subsequent fast solidification. The effects of the main process variables on the properties of the final parts are analyzed in this review: from the starting powder properties, such as shape and powder size distribution, to the main process parameters, such as laser power and speed, layer thickness, and scanning strategy. Furthermore, a detailed overview on the microstructure of the AlSi10Mg material, with the related tensile and fatigue properties of the final SLM parts, in some cases after different heat treatments, is presented.

  18. Development Algorithm of the Technological Process of Manufacturing Gas Turbine Parts by Selective Laser Melting

    Science.gov (United States)

    Sotov, A. V.; Agapovichev, A. V.; Smelov, V. G.; Kyarimov, R. R.

    2018-01-01

    The technology of the selective laser melting (SLM) allows making products from powders of aluminum, titanium, heat-resistant alloys and stainless steels. Today the use of SLM technology develops at manufacture of the functional parts. This in turn requires development of a methodology projection of technological processes (TP) for manufacturing parts including databases of standard TP. Use of a technique will allow to exclude influence of technologist’s qualification on made products quality, and also to reduce labor input and energy consumption by development of TP due to use of the databases of standard TP integrated into a methodology. As approbation of the developed methodology the research of influence of the modes of a laser emission on a roughness of a surface of synthesized material was presented. It is established that the best values of a roughness of exemplars in the longitudinal and transversal directions make 1.98 μm and 3.59 μm respectively. These values of a roughness were received at specific density of energy 6.25 J/mm2 that corresponds to power and the speed of scanning of 200 W and 400 mm/s, respectively, and a hatch distance of 0.08 mm.

  19. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  20. The analysis of environmental impact in electromagnetic radiation of melting equipment

    International Nuclear Information System (INIS)

    Zhang Baozeng; Xia Zitong

    2012-01-01

    High or medium-frequency electromagnetic melting equipment is always used in metals refining, but it will creates electromagnetic fields of powerful high-frequency in operation. With the development of our national economy and the raising of environmental awareness among the people, the electromagnetic pollution of industrial electromagnetic has aroused great concern in administrative department, analyzing the effects scope and influencing depth of electromagnetic radiation by field monitoring for the electromagnetic melting equipment in a steel mills, this paper discussed the protective key for this project on radiation and putforward some corresponding preventive measures. (authors)

  1. Volatile diffusion in silicate melts and its effects on melt inclusions

    Directory of Open Access Journals (Sweden)

    P. Scarlato

    2005-06-01

    Full Text Available A compendium of diffusion measurements and their Arrhenius equations for water, carbon dioxide, sulfur, fluorine, and chlorine in silicate melts similar in composition to natural igneous rocks is presented. Water diffusion in silicic melts is well studied and understood, however little data exists for melts of intermediate to basic compositions. The data demonstrate that both the water concentration and the anhydrous melt composition affect the diffusion coefficient of water. Carbon dioxide diffusion appears only weakly dependent, at most, on the volatilefree melt composition and no effect of carbon dioxide concentration has been observed, although few experiments have been performed. Based upon one study, the addition of water to rhyolitic melts increases carbon dioxide diffusion by orders of magnitude to values similar to that of 6 wt% water. Sulfur diffusion in intermediate to silicic melts depends upon the anhydrous melt composition and the water concentration. In water-bearing silicic melts sulfur diffuses 2 to 3 orders of magnitude slower than water. Chlorine diffusion is affected by both water concentration and anhydrous melt composition; its values are typically between those of water and sulfur. Information on fluorine diffusion is rare, but the volatile-free melt composition exerts a strong control on its diffusion. At the present time the diffusion of water, carbon dioxide, sulfur and chlorine can be estimated in silicic melts at magmatic temperatures. The diffusion of water and carbon dioxide in basic to intermediate melts is only known at a limited set of temperatures and compositions. The diffusion data for rhyolitic melts at 800°C together with a standard model for the enrichment of incompatible elements in front of growing crystals demonstrate that rapid crystal growth, greater than 10-10 ms-1, can significantly increase the volatile concentrations at the crystal-melt interface and that any of that melt trapped

  2. Analysis of precious metals at parts-per-billion levels in industrial applications

    International Nuclear Information System (INIS)

    Tickner, James; O'Dwyer, Joel; Roach, Greg; Smith, Michael; Van Haarlem, Yves

    2015-01-01

    Precious metals, including gold and the platinum group metals (notable Pt, Pd and Rh), are mined commercially at concentrations of a few parts-per-million and below. Mining and processing operations demand sensitive and rapid analysis at concentrations down to about 100 parts-per-billion (ppb). In this paper, we discuss two technologies being developed to meet this challenge: X-ray fluorescence (XRF) and gamma-activation analysis (GAA). We have designed on-stream XRF analysers capable of measuring targeted elements in slurries with precisions in the 35–70 ppb range. For the past two years, two on-stream analysers have been in continuous operation at a precious metals concentrator plant. The simultaneous measurement of feed and waste stream grades provides real-time information on metal recovery, allowing changes in operating conditions and plant upsets to be detected and corrected more rapidly. Separately, we have been developing GAA for the measurement of gold as a replacement for the traditional laboratory fire-assay process. High-energy Bremsstrahlung X-rays are used to excite gold via the 197 Au(γ,γ′) 197 Au-M reaction, and the gamma-rays released in the decay of the meta-state are then counted. We report on work to significantly improve accuracy and detection limits. - Highlights: • X-ray fluorescence analysis at sub-parts-per-million concentration in bulk materials. • Gamma activation analysis of gold at high accuracy and low concentrations. • Use of advanced Monte Carlo techniques to optimise radiation-based analysers. • Industrial application of XRF and GAA technologies for minerals processing.

  3. Effect of melt surface depression on the vaporization rate of a metal heated by an electron beam

    International Nuclear Information System (INIS)

    Guilbaud, D.

    1995-01-01

    In order to produce high density vapor, a metal confined in a water cooled crucible is heated by an electron beam (eb). The energy transfer to the metal causes partial melting, forming a pool where the flow is driven by temperature induced buoyancy and capillary forces. Furthermore, when the vaporization rate is high, the free surface is depressed by the thrust of the vapor. The main objective of this paper is to analyse the combined effects of liquid flow and vapor condensation back on the liquid surface. This is done with TRIO-EF, a general purpose fluid mechanics finite element code. A suitable iterative scheme is used to calculate the free surface flow and the temperature field. The numerical simulation gives an insight about the influence of the free surface in heat transfer. The depression of the free surface induces strong effects on both liquid and vapor. As liquid is concerned, buoyancy convection in the pool is enhanced, the energy flux from electron beam is spread and constriction of heat flux under the eb spot is weakened. It results that heat transfer towards the crucible is reinforced. As vapor is concerned, its fraction that condenses back on the liquid surface is increased. These phenomena lead to a saturation of the net vaporization rate as the eb spot radius is reduced, at constant eb power. (author). 8 refs., 13 figs., 2 tabs

  4. Dimensional accuracy of internal cooling channel made by selective laser melting (SLM And direct metal laser sintering (DMLS processes in fabrication of internally cooled cutting tools

    Directory of Open Access Journals (Sweden)

    Ghani S. A. C.

    2017-01-01

    Full Text Available Selective laser melting(SLM and direct metal laser sintering(DMLS are preferred additive manufacturing processes in producing complex physical products directly from CAD computer data, nowadays. The advancement of additive manufacturing promotes the design of internally cooled cutting tool for effectively used in removing generated heat in metal machining. Despite the utilisation of SLM and DMLS in a fabrication of internally cooled cutting tool, the level of accuracy of the parts produced remains uncertain. This paper aims at comparing the dimensional accuracy of SLM and DMLS in machining internally cooled cutting tool with a special focus on geometrical dimensions such as hole diameter. The surface roughness produced by the two processes are measured with contact perthometer. To achieve the objectives, geometrical dimensions of identical tool holders for internally cooled cutting tools fabricated by SLM and DMLS have been determined by using digital vernier calliper and various magnification of a portable microscope. In the current study, comparing internally cooled cutting tools made of SLM and DMLS showed that generally the higher degree of accuracy could be obtained with DMLS process. However, the observed differences in surface roughness between SLM and DMLS in this study were not significant. The most obvious finding to emerge from this study is that the additive manufacturing processes selected for fabricating the tool holders for internally cooled cutting tool in this research are capable of producing the desired internal channel shape of internally cooled cutting tool.

  5. Experiments with the low-melting indium-bismuth alloy system

    International Nuclear Information System (INIS)

    Krepski, R.P.

    1992-01-01

    The following is a laboratory experiment designed to create an interest in and to further understanding of materials science. The primary audience for this material is the junior high school or middle school science student having no previous familiarity with the material, other than some knowledge of temperature and the concepts of atoms, elements, compounds, and chemical reactions. The objective of the experiment is to investigate the indium-bismuth alloy system. Near the eutectic composition, the liquidus is well below the boiling point of water, allowing simple, minimal hazard casting experiments. Such phenomena as metal oxidation, formation of intermetallic compound crystals, and an unusual volume increase during solidification could all be directly observed. A key concept for students to absorb is that properties of an alloy (melting point, mechanical behavior) may not correlate with simple interpolation of properties of the pure components. Discussion of other low melting metals and alloys leads to consideration of environmental and toxicity issues, as well as providing some historical context. Wetting behavior can also be explored

  6. Application of siliceous metal product for preliminary deoxidizing of metal in open-hearth furnaces

    International Nuclear Information System (INIS)

    Luk'yanenko, A.A.; Evdokimov, A.V.; Kornilov, V.N.; Il'in, V.I.; Kuleshov, Yu.V.

    1995-01-01

    Metal wastes of abrasive processes-concomitant product of synthetic corundum production containing approximately 10 % Si - were tested for preliminary deoxidizing of metal in furnace to reduce manganese loss in burning and to increase the steel deoxidizing. The technology of preliminary deoxidizing of metal by siliceous metal product was mastered in the course of low carbon steel melting (st3sp, st4sp). The results of the study has shown that the use of siliceous metal product permits reducing the consumption of manganese-containing ferroalloys. 1 tab

  7. Additive manufacturing of metals the technology, materials, design and production

    CERN Document Server

    Yang, Li; Baughman, Brian; Godfrey, Donald; Medina, Francisco; Menon, Mamballykalathil; Wiener, Soeren

    2017-01-01

    This book offers a unique guide to the three-dimensional (3D) printing of metals. It covers various aspects of additive, subtractive, and joining processes used to form three-dimensional parts with applications ranging from prototyping to production. Examining a variety of manufacturing technologies and their ability to produce both prototypes and functional production-quality parts, the individual chapters address metal components and discuss some of the important research challenges associated with the use of these technologies. As well as exploring the latest technologies currently under development, the book features unique sections on electron beam melting technology, material lifting, and the importance this science has in the engineering context. Presenting unique real-life case studies from industry, this book is also the first to offer the perspective of engineers who work in the field of aerospace and transportation systems, and who design components and manufacturing networks. Written by the leadin...

  8. Ductility improvement due to martensite α' decomposition in porous Ti-6Al-4V parts produced by selective laser melting for orthopedic implants.

    Science.gov (United States)

    Sallica-Leva, E; Caram, R; Jardini, A L; Fogagnolo, J B

    2016-02-01

    Ti-6Al-4V parts obtained by selective laser melting typically have an acicular α' martensitic microstructure whose ductility is low. Thus, post-heat treatments are useful for increasing ductility. In this work, the effects of sub-β-transus heat treatments on the mechanical properties of Ti-6Al-4V parts with porous structures are correlated with martensite α' phase decomposition. The precipitation of β phase and the gradual transformation of α' into α phase by the diffusion of excess vanadium from α' to β phase are proposed to be the main events of martensite α' phase decomposition in parts fabricated by selective laser melting. The heat treatment performed at 650°C for 1h produced no microstructural changes, but the samples treated for at the same temperature 2h showed a fine precipitation of β phase along the α' needle boundaries. The heat treatment performed at 800°C for 1 or 2h produced a fine α+β microstructure, in which β phase are present as particles fewer in number and larger in size, when compared with the ones present in the sample heat-treated at 650°C for 2h. Heat-treatment of the parts at 800°C for 2h proved to be the best condition, which improved the ductility of the samples while only slightly reducing their strength. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Contribution of early impact events to metal-silicate separation, thermal annealing, and volatile redistribution: Evidence in the Pułtusk H chondrite

    Science.gov (United States)

    Krzesińska, Agata M.

    2017-11-01

    Three-dimensional X-ray tomographic reconstructions and petrologic studies reveal voluminous accumulations of metal in Pułtusk H chondrite. At the contact of these accumulations, the chondritic rock is enriched in troilite. The rock contains plagioclase-rich bands, with textures suggesting crystallization from melt. Unusually large phosphates are associated with the plagioclase and consist of assemblages of merrillite, and fluorapatite and chlorapatite. The metal accumulations were formed by impact melting, rapid segregation of metal-sulfide melt and the incorporation of this melt into the fractured crater basement. The impact most likely occurred in the early evolution of the H chondrite parent body, when post-impact heat overlapped with radiogenic heat. This enabled slow cooling and separation of the metallic melt into metal-rich and sulfide-rich fractions. This led to recrystallization of chondritic rock in contact with the metal accumulations and the crystallization of shock melts. Phosphorus was liberated from the metal and subsumed by the silicate shock melt, owing to oxidative conditions upon slow cooling. The melt was also a host for volatiles. Upon further cooling, phosphorus reacted with silicates leading to the formation of merrillite, while volatiles partitioned into the residual halogen-rich, dry fluid. In the late stages, the fluid altered merrillite to patchy Cl/F-apatite. The above sequence of alterations demonstrates that impact during the early evolution of chondritic parent bodies might have contributed to local metal segregation and silicate melting. In addition, postshock conditions supported secondary processes: compositional/textural equilibration, redistribution of volatiles, and fluid alterations.

  10. Double melting in polytetrafluoroethylene γ-irradiated above its melting point

    International Nuclear Information System (INIS)

    Serov, S.A.; Khatipov, S.A.; Sadovskaya, N.V.; Tereshenkov, A.V.; Chukov, N.A.

    2012-01-01

    Highlights: ► PTFE irradiation leads to formation of double melting peaks in DSC curves. ► This is connected to dual crystalline morphology typical for PTFE. ► Two crystalline types exist in the PTFE irradiated in the melt. - Abstract: PTFE irradiation above its melting point leads to formation of double melting and crystallization peaks in DSC curves. Splitting of melting peaks is connected to dual crystalline morphology typical for PTFE irradiated in the melt. According to electron microscopy, two crystalline types with different size and packing density exist in the irradiated PTFE.

  11. Flux Decoupling and Chemical Diffusion in Redox Dynamics in Aluminosilicate Melts and Glasses (Invited)

    Science.gov (United States)

    Cooper, R. F.

    2010-12-01

    Measurements of redox dynamics in silicate melts and glasses suggest that, for many compositions and for many external environments, the reaction proceeds and is rate-limited by the diffusive flux of divalent-cation network modifiers. Application of ion-backscattering spectrometry either (i) on oxidized or reduced melts (subsequently quenched before analysis) or (ii) on similarly reacted glasses, both of basalt-composition polymerization, demonstrates that the network modifiers move relative to the (first-order-rigid) aluminosilicate network. Thus, the textures associated with such reactions are often surprising, and frequently include metastable or unstable phases and/or spatial compositional differences. This response is only possible if the motion of cations can be decoupled from that of anions. In many cases, decoupling is accomplished by the presence in the melt/glass of transition-metal cations, whose heterovalency creates distortions in the electronic band structure resulting in electronic defects: electron “holes” in the valence band or electrons in the conduction band. (The prevalence of holes or electrons being a function of bulk chemistry and oxygen activity.) These electronic species make the melt/glass a “defect semiconductor.” Because (a) the critical issue in reaction dynamics is the transport coefficient (the product of species mobility and species concentration) and (b) the electronic species are many orders of magnitude more mobile than are the ions, very low concentrations of transition-metal ions are required for flux decoupling. For example, 0.04 at% Fe keeps a magnesium aluminosilicate melt/glass a defect semiconductor down to 800°C [Cook & Cooper, 2000]. Depending on composition, high-temperature melts can see ion species having a high-enough transport coefficient to allow decoupling, e.g., alkali cations in a basaltic melt [e.g., Pommier et al., 2010]. In this presentation, these ideas will be illustrated by examining redox dynamics

  12. Recycling of waste printed circuit boards with simultaneous enrichment of special metals by using alkaline melts: A green and strategically advantageous solution

    Energy Technology Data Exchange (ETDEWEB)

    Stuhlpfarrer, Philipp, E-mail: philipp-johannes.stuhlpfarrer@stud.unileoben.ac.at; Luidold, Stefan; Antrekowitsch, Helmut

    2016-04-15

    Highlights: • Removal of plastics. • Enrichment of In, Ga and Ge. • Low temperature. • No dioxines. - Abstract: The increasing consumption of electric and electronic equipment has led to a rise in toxic waste. To recover the metal fraction, a separation of the organic components is necessary because harmful substances such as chlorine, fluorine and bromine cause ecological damage, for example in the form of dioxins and furans at temperature above 400 °C. Hence, an alternative, environmentally friendly approach was investigated exploiting that a mixture of caustic soda and potassium hydroxide in eutectic composition melts below 200 °C, enabling a fast cracking of the long hydrocarbon chains. The trials demonstrate the removal of organic compounds without a loss of copper and precious metals, as well as a suppressed formation of hazardous off-gases. In order to avoid an input of alkaline elements into the furnace and ensuing problems with refractory materials, a washing step generates a sodium and potassium hydroxide solution, in which special metals like indium, gallium and germanium are enriched. Their concentrations facilitate the recovery of these elements, because otherwise they become lost in the typical recycling processes. The aim of this work was to find an environmental solution for the separation of plastics and metals as well as a strategically important answer for the recycling of printed circuit boards and mobile phones.

  13. Recycling of waste printed circuit boards with simultaneous enrichment of special metals by using alkaline melts: A green and strategically advantageous solution.

    Science.gov (United States)

    Stuhlpfarrer, Philipp; Luidold, Stefan; Antrekowitsch, Helmut

    2016-04-15

    The increasing consumption of electric and electronic equipment has led to a rise in toxic waste. To recover the metal fraction, a separation of the organic components is necessary because harmful substances such as chlorine, fluorine and bromine cause ecological damage, for example in the form of dioxins and furans at temperature above 400°C. Hence, an alternative, environmentally friendly approach was investigated exploiting that a mixture of caustic soda and potassium hydroxide in eutectic composition melts below 200°C, enabling a fast cracking of the long hydrocarbon chains. The trials demonstrate the removal of organic compounds without a loss of copper and precious metals, as well as a suppressed formation of hazardous off-gases. In order to avoid an input of alkaline elements into the furnace and ensuing problems with refractory materials, a washing step generates a sodium and potassium hydroxide solution, in which special metals like indium, gallium and germanium are enriched. Their concentrations facilitate the recovery of these elements, because otherwise they become lost in the typical recycling processes. The aim of this work was to find an environmental solution for the separation of plastics and metals as well as a strategically important answer for the recycling of printed circuit boards and mobile phones. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Recycling of waste printed circuit boards with simultaneous enrichment of special metals by using alkaline melts: A green and strategically advantageous solution

    International Nuclear Information System (INIS)

    Stuhlpfarrer, Philipp; Luidold, Stefan; Antrekowitsch, Helmut

    2016-01-01

    Highlights: • Removal of plastics. • Enrichment of In, Ga and Ge. • Low temperature. • No dioxines. - Abstract: The increasing consumption of electric and electronic equipment has led to a rise in toxic waste. To recover the metal fraction, a separation of the organic components is necessary because harmful substances such as chlorine, fluorine and bromine cause ecological damage, for example in the form of dioxins and furans at temperature above 400 °C. Hence, an alternative, environmentally friendly approach was investigated exploiting that a mixture of caustic soda and potassium hydroxide in eutectic composition melts below 200 °C, enabling a fast cracking of the long hydrocarbon chains. The trials demonstrate the removal of organic compounds without a loss of copper and precious metals, as well as a suppressed formation of hazardous off-gases. In order to avoid an input of alkaline elements into the furnace and ensuing problems with refractory materials, a washing step generates a sodium and potassium hydroxide solution, in which special metals like indium, gallium and germanium are enriched. Their concentrations facilitate the recovery of these elements, because otherwise they become lost in the typical recycling processes. The aim of this work was to find an environmental solution for the separation of plastics and metals as well as a strategically important answer for the recycling of printed circuit boards and mobile phones.

  15. Melt migration modeling in partially molten upper mantle

    Science.gov (United States)

    Ghods, Abdolreza

    beneath the observed neo-volcanic zone. My models consist of three parts; lithosphere, asthenosphere and a melt extraction region. It is shown that melt migrates vertically within the asthenosphere, and forms a high melt fraction layer beneath the sloping base of the impermeable lithosphere. Within the sloping high melt fraction layer, melt migrates laterally towards the ridge. In order to simulate melt migration via crustal fractures and cracks, melt is extracted from a melt extraction region extending to the base of the crust. Performance of the melt focusing mechanism is not significantly sensitive to the size of melt extraction region, melt extraction threshold and spreading rate. In all of the models, about half of the total melt production freezes beneath the cooling base of the lithosphere, and the rest is effectively focused towards the ridge and forms the crust. To meet the computational demand for a precise tracing of the deforming upwelling plume and including the chemical buoyancy of the partially molten zone in my models, a new numerical method is developed to solve the related pure advection equations. The numerical method is based on Second Moment numerical method of Egan and Mahoney [1972] which is improved to maintain a high numerical accuracy in shear and rotational flow fields. In comparison with previous numerical methods, my numerical method is a cost-effective, non-diffusive and shape preserving method, and it can also be used to trace a deforming body in compressible flow fields.

  16. Mathematical modeling of quartz particle melting process in plasma-chemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Volokitin, Oleg, E-mail: volokitin-oleg@mail.ru; Volokitin, Gennady, E-mail: vgg-tomsk@mail.ru; Skripnikova, Nelli, E-mail: nks2003@mai.ru; Shekhovtsov, Valentin, E-mail: shehovcov2010@yandex.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Vlasov, Viktor, E-mail: rector@tsuab.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Ave., 634050, Tomsk (Russian Federation)

    2016-01-15

    Among silica-based materials vitreous silica has a special place. The paper presents the melting process of a quartz particle under conditions of low-temperature plasma. A mathematical model is designed for stages of melting in the experimental plasma-chemical reactor. As calculation data show, quartz particles having the radius of 0.21≤ r{sub p} ≤0.64 mm completely melt at W = 0.65 l/s particle feed rate depending on the Nusselt number, while 0.14≤ r{sub p} ≤0.44 mm particles melt at W = 1.4 l/s. Calculation data showed that 2 mm and 0.4 mm quartz particles completely melted during and 0.1 s respectively. Thus, phase transformations occurred in silicon dioxide play the important part in its heating up to the melting temperature.

  17. Experiments and analyses on melt-structure-water interactions during severe accidents

    International Nuclear Information System (INIS)

    Seghal, B.R.; Dinh, T.N.; Bui, V.A.; Green, J.A.; Nourgaliev, R.R.; Okkonen, T.O.; Dinh, A.T.

    1998-04-01

    This report is the final report for the research project Melt Structure Water Interactions (MSWI). It describes results of analytical and experimental studies concerning MSWI during the course of a hypothetical core meltdown accident in a LWR. Emphasis has been placed on phenomena which govern vessel failure mode and timing and the mechanisms and properties which govern the fragmentation and breakup of melt jets and droplets. It was found that: 2-D effects significantly diminished the focusing effect of an overlying metallic layer on top of an oxide melt pool. This result improves the feasibility of in-vessel retention of a melt pool through external cooling of the lower head; phenomena related to hole ablation and melt discharge, in the event of vessel failure, are affected significantly by crust formation; the jet fragmentation process is a function of many related phenomena. The fragmentation rate depends not only on the traditional parameters but also on the melt physical properties, which change as the melt cools down from liquid to solid temperature; film boiling was investigated by developing a two-phase flow model and inserting it in a multi-D fluid dynamics code. It was concluded that the thickness of the film on the surface of a melt jet would be small and that the effects of the film on the process should not be large. This conclusion is contrary to the modeling employed in some other codes. The computer codes were developed and validated against the data obtained in the MSWI Project. The melt vessel interaction thermal analysis code describes the process of melt pool formation and convection and the resulting vessel thermal loadings. In addition, several innovative models were developed to describe the melt-water interaction process. The code MELT-3D treats the melt jet as a collection of particles whose movement is described with a three-dimensional Eulerian formulation. The model (SIPHRA) tracks the melt jet with an additional equation, using the

  18. Cathodic processes during ruthenium electrodeposition from a chloride melt

    International Nuclear Information System (INIS)

    Sokol'skij, D.V.

    1985-01-01

    Cathodic processes occurring during the electrolysis of chloride melts in the presence of oxygen-containing impurities were studied. The experiments were carried out at 500, 550 600 and 680 deg C, ruthenium ions concentration in KCl-NaCl-CsCl eutectic melt being 0.4-1.5 mol% and BaO additions 4.8x10 -2 mol%. Temperature dependence of Ru(3) ion diffusion coefficient in the chloride melt (lg D=3.25-1508/T+-0.02) and activation energy of the diffusion process (6.9 k cal/mol) were determined. It is shown that changes of the shape of E, t-curve and the deviation of values determined in the cause of chronopotentiometric investigations from the corresponding values of reversable processes are related in many respects to the participation of oxygen-containing compounds in the cathodic process. Irreversibility of the cathodic process is also connected with metal crystallization during electrodeposition

  19. Noise temperature measurements for the determination of the thermodynamic temperature of the melting point of palladium

    Energy Technology Data Exchange (ETDEWEB)

    Edler, F.; Kuhne, M.; Tegeler, E. [Bundesanstalt Physikalisch-Technische, Berlin (Germany)

    2004-02-01

    The thermodynamic temperature of the melting point of palladium in air was measured by noise thermometric methods. The temperature measurement was based on noise comparison using a two-channel arrangement to eliminate parasitic noises of electronic components by cross correlation. Three miniature fixed points filled with pure palladium (purity: {approx}99.99%, mass: {approx}90 g) were used to realize the melts of the fixed point metal. The measured melting temperature of palladium in air amounted to 1552.95 deg C {+-} 0.21 K (k = 2). This temperature is 0.45 K lower than the temperature of the melting point of palladium measured by radiation thermometry. (authors)

  20. Electron beam selectively seals porous metal filters

    Science.gov (United States)

    Snyder, J. A.; Tulisiak, G.

    1968-01-01

    Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.