WorldWideScience

Sample records for melospiza melodia hypothalamus

  1. Nest predation, clutch size, and physiological costs of egg production in the song sparrow (Melospiza melodia)

    OpenAIRE

    Travers, Marc Simon

    2009-01-01

    We examined the effects of nest predation on both clutch size and the physiological cost of egg production using a clutch removal experiment in free-living song sparrows (Melospiza melodia), inducing “high nest predation” (HNP) females to produce many replacement clutches compared to “low nest predation” (LNP) females. In a preliminary analysis we investigated the utility of multiple measures to assess “physiological condition”, including inter-correlations between physiological traits, sex d...

  2. Song sparrows Melospiza melodia have a home-field advantage in defending against sympatric malarial parasites

    Science.gov (United States)

    Sarquis-Adamson, Yanina

    2016-01-01

    Hosts and parasites interact on both evolutionary and ecological timescales. The outcome of these interactions, specifically whether hosts are more resistant to their local parasites (sympatric) than to parasites from another location (allopatric), is likely to affect the spread of infectious disease and the fitness consequences of host dispersal. We conducted a cross-infection experiment to determine whether song sparrows (Melospiza melodia) have an advantage in dealing with sympatric parasites. We captured birds from two breeding sites 437 km apart, and inoculated them with avian malaria (Plasmodium spp.) cultured either from their capture site or from the other site. Infection risk was lower for birds exposed to sympatric than to allopatric Plasmodium lineages, suggesting that song sparrows may have a home-field advantage in defending against local parasite strains. This pattern was more pronounced at one capture site than at the other, consistent with mosaic models of host–parasite interactions. Home-field advantage may arise from evolutionary processes, whereby host populations become adapted to their local parasites, and/or from ecological interactions, whereby host individuals develop resistance to the local parasites through previous immune exposure. Our findings suggest that greater susceptibility to novel parasites may represent a fitness consequence of natal dispersal. PMID:27853596

  3. Sex-specific differential survival of extra-pair and within-pair offspring in song sparrows, Melospiza melodia.

    Science.gov (United States)

    Sardell, Rebecca J; Arcese, Peter; Keller, Lukas F; Reid, Jane M

    2011-11-07

    It is widely hypothesized that the evolution of female extra-pair reproduction in socially monogamous species reflects indirect genetic benefits to females. However, a critical prediction of this hypothesis, that extra-pair young (EPY) are fitter than within-pair young (WPY), has rarely been rigorously tested. We used 18 years of data from free-living song sparrows, Melospiza melodia, to test whether survival through major life-history stages differed between EPY and WPY maternal half-siblings. On average, survival of hatched chicks to independence from parental care and recruitment, and their total lifespan, did not differ significantly between EPY and WPY. However, EPY consistently tended to be less likely to survive, and recruited EPY survived for significantly fewer years than recruited WPY. Furthermore, the survival difference between EPY and WPY was sex-specific; female EPY were less likely to survive to independence and recruitment and lived fewer years than female WPY, whereas male EPY were similarly or slightly more likely to survive and to live more years than male WPY. These data indicate that extra-pair paternity may impose an indirect cost on females via their female offspring and that sex-specific genetic, environmental or maternal effects may shape extra-pair reproduction.

  4. Distribution and extent of heavy metal accumulation in Song Sparrows (Melospiza melodia), upper Santa Cruz River watershed, southern Arizona, 2011-12

    Science.gov (United States)

    Lester, Michael B.; van Riper, Charles

    2014-01-01

    Riparian ecosystems in arid environments provide critical habitat for breeding, migratory, and wintering birds, yet are often at risk of contamination by heavy metals. Birds and other animals living in contaminated areas are susceptible to adverse health effects as a result of long-term exposure and bioaccumulation of heavy metals. We investigated the distribution and cascading extent of heavy metal accumulation in Song Sparrows (Melospiza melodia) in Arizona’s upper Santa Cruz River watershed. This study had three goals: (1) quantify the degree of heavy metal accumulation in sparrows and determine the distributional patterns among study sites, (2) compare concentrations of metals found in this study to those found in studies performed prior to the 2009 international wastewater treatment plant upgrade, and (3) assess sparrow condition among sites with differing potential sources of contamination exposure. We examined six study sites that reflected different potential sources of contamination. Hematocrit values, body mass residuals, and leukocyte counts were used to assess sparrow condition. Cadmium, copper, mercury, nickel, and selenium exceeded background concentrations at some sites, but generally were lower than or similar to concentrations found in earlier studies performed prior to the 2009 international wastewater treatment plant upgrade. Concentrations were higher in recaptured birds in 2012 than in 2011 for 7 metals in feathers and 14 metals in blood, suggesting possible bioaccumulation. We found no cascading effects as a result of heavy metal exposure, but did find that heavy metal concentrations were reduced following the 2009 international wastewater treatment plant upgrade.

  5. Vision and the hypothalamus.

    Science.gov (United States)

    Trachtman, Joseph N

    2010-02-01

    For nearly 2 millennia, signs of hypothalamic-related vision disorders have been noticed as illustrated by paintings and drawings of that time of undiagnosed Horner's syndrome. It was not until the 1800s, however, that specific connections between the hypothalamus and the vision system were discovered. With a fuller elaboration of the autonomic nervous system in the early to mid 1900s, many more pathways were discovered. The more recently discovered retinohypothalamic tracts show the extent and influence of light stimulation on hypothalamic function and bodily processes. The hypothalamus maintains its myriad connections via neural pathways, such as with the pituitary and pineal glands; the chemical messengers of the peptides, cytokines, and neurotransmitters; and the nitric oxide mechanism. As a result of these connections, the hypothalamus has involvement in many degenerative diseases. A complete feedback mechanism between the eye and hypothalamus is established by the retinohypothalamic tracts and the ciliary nerves innervating the anterior pole of the eye and the retina. A discussion of hypothalamic-related vision disorders includes neurologic syndromes, the lacrimal system, the retina, and ocular inflammation. Tables and figures have been used to aid in the explanation of the many connections and chemicals controlled by the hypothalamus. The understanding of the functions of the hypothalamus will allow the clinician to gain better insight into the many pathologies associated between the vision system and the hypothalamus. In the future, it may be possible that some ocular disease treatments will be via direct action on hypothalamic function. Copyright 2010 American Optometric Association. Published by Elsevier Inc. All rights reserved.

  6. Song competition affects monoamine levels in sensory and motor forebrain regions of male Lincoln's sparrows (Melospiza lincolnii.

    Directory of Open Access Journals (Sweden)

    Kendra B Sewall

    Full Text Available Male animals often change their behavior in response to the level of competition for mates. Male Lincoln's sparrows (Melospiza lincolnii modulate their competitive singing over the period of a week as a function of the level of challenge associated with competitors' songs. Differences in song challenge and associated shifts in competitive state should be accompanied by neural changes, potentially in regions that regulate perception and song production. The monoamines mediate neural plasticity in response to environmental cues to achieve shifts in behavioral state. Therefore, using high pressure liquid chromatography with electrochemical detection, we compared levels of monoamines and their metabolites from male Lincoln's sparrows exposed to songs categorized as more or less challenging. We compared levels of norepinephrine and its principal metabolite in two perceptual regions of the auditory telencephalon, the caudomedial nidopallium and the caudomedial mesopallium (CMM, because this chemical is implicated in modulating auditory sensitivity to song. We also measured the levels of dopamine and its principal metabolite in two song control nuclei, area X and the robust nucleus of the arcopallium (RA, because dopamine is implicated in regulating song output. We measured the levels of serotonin and its principal metabolite in all four brain regions because this monoamine is implicated in perception and behavioral output and is found throughout the avian forebrain. After controlling for recent singing, we found that males exposed to more challenging song had higher levels of norepinephrine metabolite in the CMM and lower levels of serotonin in the RA. Collectively, these findings are consistent with norepinephrine in perceptual brain regions and serotonin in song control regions contributing to neuroplasticity that underlies socially-induced changes in behavioral state.

  7. Adrenergic innervation of the rat hypothalamus

    NARCIS (Netherlands)

    Palkovits, M.; Mezey, E.; Záborszky, L.; Feminger, A.; Versteeg, D.H.G.; Wijnen, H.J.L.M.; Jong, Wybren de; Fekete, M.I.K.; Herman, J.P.; Kanyicska, B.

    The adrenergic innervation of the hypothalamus was studied by measuring hypothalamic adrenaline levels following surgical transection of the lower brain stem or electrolytic lesion of the medullary adrenaline-containing cell groups. The adrenaline levels in some hypothalamic nuclei and in the median

  8. Sexual differentiation of the human hypothalamus

    NARCIS (Netherlands)

    Swaab, Dick F.; Chung, Wilson C. J.; Kruijver, Frank P. M.; Hofman, Michael A.; Ishunina, Tatjana A.

    2002-01-01

    Functional sex differences in reproduction, gender and sexual orientation and in the incidence of neurological and psychiatric diseases are presumed to be based on structural and functional differences in the hypothalamus and other limbic structures. Factors influencing gender, i.e., the feeling to

  9. MicroRNAs in the Hypothalamus

    DEFF Research Database (Denmark)

    Meister, Björn; Herzer, Silke; Silahtaroglu, Asli

    2013-01-01

    MicroRNAs (miRNAs) are short (∼22 nucleotides) non-coding ribonucleic acid (RNA) molecules that negatively regulate the expression of protein-coding genes. Posttranscriptional silencing of target genes by miRNA is initiated by binding to the 3'-untranslated regions of target mRNAs, resulting...... of the hypothalamus and miRNAs have recently been shown to be important regulators of hypothalamic control functions. The aim of this review is to summarize some of the current knowledge regarding the expression and role of miRNAs in the hypothalamus.......RNA molecules are abundantly expressed in tissue-specific and regional patterns and have been suggested as potential biomarkers, disease modulators and drug targets. The central nervous system is a prominent site of miRNA expression. Within the brain, several miRNAs are expressed and/or enriched in the region...

  10. The anterior hypothalamus in cluster headache.

    Science.gov (United States)

    Arkink, Enrico B; Schmitz, Nicole; Schoonman, Guus G; van Vliet, Jorine A; Haan, Joost; van Buchem, Mark A; Ferrari, Michel D; Kruit, Mark C

    2017-10-01

    Objective To evaluate the presence, localization, and specificity of structural hypothalamic and whole brain changes in cluster headache and chronic paroxysmal hemicrania (CPH). Methods We compared T1-weighted magnetic resonance images of subjects with cluster headache (episodic n = 24; chronic n = 23; probable n = 14), CPH ( n = 9), migraine (with aura n = 14; without aura n = 19), and no headache ( n = 48). We applied whole brain voxel-based morphometry (VBM) using two complementary methods to analyze structural changes in the hypothalamus: region-of-interest analyses in whole brain VBM, and manual segmentation of the hypothalamus to calculate volumes. We used both conservative VBM thresholds, correcting for multiple comparisons, and less conservative thresholds for exploratory purposes. Results Using region-of-interest VBM analyses mirrored to the headache side, we found enlargement ( p cluster headache compared to controls, and in all participants with episodic or chronic cluster headache taken together compared to migraineurs. After manual segmentation, hypothalamic volume (mean±SD) was larger ( p cluster headache compared to controls (1.72 ± 0.15 ml) and migraineurs (1.68 ± 0.19 ml). Similar but non-significant trends were observed for participants with probable cluster headache (1.82 ± 0.19 ml; p = 0.07) and CPH (1.79 ± 0.20 ml; p = 0.15). Increased hypothalamic volume was primarily explained by bilateral enlargement of the anterior hypothalamus. Exploratory whole brain VBM analyses showed widespread changes in pain-modulating areas in all subjects with headache. Interpretation The anterior hypothalamus is enlarged in episodic and chronic cluster headache and possibly also in probable cluster headache or CPH, but not in migraine.

  11. Proteomic profiling of the rat hypothalamus

    Directory of Open Access Journals (Sweden)

    Pedroso Amanda P

    2012-04-01

    Full Text Available Abstract Background The hypothalamus plays a pivotal role in numerous mechanisms highly relevant to the maintenance of body homeostasis, such as the control of food intake and energy expenditure. Impairment of these mechanisms has been associated with the metabolic disturbances involved in the pathogenesis of obesity. Since rodent species constitute important models for metabolism studies and the rat hypothalamus is poorly characterized by proteomic strategies, we performed experiments aimed at constructing a two-dimensional gel electrophoresis (2-DE profile of rat hypothalamus proteins. Results As a first step, we established the best conditions for tissue collection and protein extraction, quantification and separation. The extraction buffer composition selected for proteome characterization of rat hypothalamus was urea 7 M, thiourea 2 M, CHAPS 4%, Triton X-100 0.5%, followed by a precipitation step with chloroform/methanol. Two-dimensional (2-D gels of hypothalamic extracts from four-month-old rats were analyzed; the protein spots were digested and identified by using tandem mass spectrometry and database query using the protein search engine MASCOT. Eighty-six hypothalamic proteins were identified, the majority of which were classified as participating in metabolic processes, consistent with the finding of a large number of proteins with catalytic activity. Genes encoding proteins identified in this study have been related to obesity development. Conclusion The present results indicate that the 2-DE technique will be useful for nutritional studies focusing on hypothalamic proteins. The data presented herein will serve as a reference database for studies testing the effects of dietary manipulations on hypothalamic proteome. We trust that these experiments will lead to important knowledge on protein targets of nutritional variables potentially able to affect the complex central nervous system control of energy homeostasis.

  12. Changes in hypothalamus in continuously irradiated sheep

    International Nuclear Information System (INIS)

    Arendarcik, J.; Stanikova, A.; Rajtova, V.; Molnarova, M.

    1983-01-01

    Neurosecretion, PAS-positive mucopolysaccharides and the Nissl substance were studied in the neurons of the rostral, medial and caudal hypothalamus of continuously irradiated ewes. The study was performed on 21 ewes of the Slovak Merino breed of a live weight of 34 kg. The animals were in the period of physiological anoestrus and their age was two to three years. The first group of six ewes was the control. The second group included 15 sheep irradiated with a total dose of 6.7 Gy (700 R) for seven days. Co 60 was used as the source of irradiation. The animals of this group were killed seven days following treatment. The ewes in the third group were left for the study of mortality. The brains were perfused with 2% buffered paraformaldehyde immediately after the bleeding of the sheep; then the brains were removed from the skulls and fixed in buffered picroformol. Paraffin slices were stained with haematoxylin-eosine, aldehyde-fuchsine and alcian blue for neurosecretion, by the PAS reaction for mucopolysaccharides and with cresyl violet for the Nissl substance. It was found that irradiation of the whole body inhibited the activity of neurosecretory cells in the rostral and medial hypothalamus, thus reducing neurosecretion. These regions also showed a reduced activity of the PAS reaction used for the demonstration of mucopolysaccharides. The observed changes also included damage of the endothelium of blood vessels with the occurrence of erythrocyte extravasates and with haemorrhages. In this way, the trophism of neurosecretory cells was affected, which is ascribed to the decrease in the amount of neurosecretory material. In the caudal hypothalamus, neurosecretion and PAS-positivity were slightly stimulated by irradiation. The Nissl substance disappeared as a result of irradiation. (author)

  13. Imaging of serotonin transporters with [123I]FP-CIT SPECT in the human hypothalamus

    NARCIS (Netherlands)

    Borgers, A.J.; Alkemade, A.; Van de Giessen, E.M.; Drent, M.L.; Booij, J.; Bisschop, P.H.; Fliers, E.

    2013-01-01

    Background: Serotonergic neurons in the rodent hypothalamus are implicated in key neuroendocrine and metabolic functions, including circadian rhythmicity. However, the assessment of the serotonergic system in the human hypothalamus in vivo is difficult as delineation of the hypothalamus is

  14. Activity changes of the cat paraventricular hypothalamus during stressor exposure

    DEFF Research Database (Denmark)

    Kristensen, Morten Pilgaard; Rector, David M; Poe, Gina R

    2004-01-01

    Dorso-medial paraventricular hypothalamus (PVH) activity was assessed by light scattering procedures in freely behaving cats during auditory stressor exposure. Acoustic noise (> 95dB) raised plasma ACTH concentrations, somatic muscle tonus, respiratory frequency and cardiac rates; PVH activity...

  15. Neuroanatomical pathways for thyroid hormone feedback in the human hypothalamus

    NARCIS (Netherlands)

    Alkemade, Anneke; Friesema, Edith C.; Unmehopa, Unga A.; Fabriek, Babs O.; Kuiper, George G.; Leonard, Jack L.; Wiersinga, Wilmar M.; Swaab, Dick F.; Visser, Theo J.; Fliers, Eric

    2005-01-01

    Context: Recent findings point to an increasing number of hypothalamic proteins involved in the central regulation of thyroid hormone feedback. The functional neuroanatomy of these proteins in the human hypothalamus is largely unknown at present. Objective: The aim of this study was to report the

  16. Noradrenergic and GABAergic systems in the medial hypothalamus are activated during hypoglycemia

    NARCIS (Netherlands)

    Beverly, JL; De Vries, MG; Bouman, SD; Arseneau, LM

    Noradrenergic and GABAergic systems in the medial hypothalamus influence plasma glucose and may be activated during glucoprivation. Microdialysis probes were placed into the ventromedial nucleus (VMH), lateral hypothalamus (LHA), and paraventricular nucleus (PVH) of male Sprague-Dawley rats to

  17. File list: Unc.Neu.10.AllAg.Hypothalamus [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Hypothalamus mm9 Unclassified Neural Hypothalamus SRX956253,SRX956...254 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Hypothalamus.bed ...

  18. File list: ALL.Neu.10.AllAg.Hypothalamus [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Hypothalamus mm9 All antigens Neural Hypothalamus SRX956253,SRX956...254 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Hypothalamus.bed ...

  19. File list: ALL.Neu.05.AllAg.Hypothalamus [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Hypothalamus mm9 All antigens Neural Hypothalamus SRX956254,SRX956...253 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Hypothalamus.bed ...

  20. File list: ALL.Neu.50.AllAg.Hypothalamus [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Hypothalamus mm9 All antigens Neural Hypothalamus SRX956253,SRX956...254 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Hypothalamus.bed ...

  1. File list: ALL.Neu.20.AllAg.Hypothalamus [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Hypothalamus mm9 All antigens Neural Hypothalamus SRX956253,SRX956...254 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Hypothalamus.bed ...

  2. File list: Unc.Neu.20.AllAg.Hypothalamus [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Hypothalamus mm9 Unclassified Neural Hypothalamus SRX956253,SRX956...254 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Hypothalamus.bed ...

  3. File list: Unc.Neu.05.AllAg.Hypothalamus [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Hypothalamus mm9 Unclassified Neural Hypothalamus SRX956254,SRX956...253 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Hypothalamus.bed ...

  4. File list: Unc.Neu.50.AllAg.Hypothalamus [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Hypothalamus mm9 Unclassified Neural Hypothalamus SRX956253,SRX956...254 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Hypothalamus.bed ...

  5. Social Control of Hypothalamus-Mediated Male Aggression.

    Science.gov (United States)

    Yang, Taehong; Yang, Cindy F; Chizari, M Delara; Maheswaranathan, Niru; Burke, Kenneth J; Borius, Maxim; Inoue, Sayaka; Chiang, Michael C; Bender, Kevin J; Ganguli, Surya; Shah, Nirao M

    2017-08-16

    How environmental and physiological signals interact to influence neural circuits underlying developmentally programmed social interactions such as male territorial aggression is poorly understood. We have tested the influence of sensory cues, social context, and sex hormones on progesterone receptor (PR)-expressing neurons in the ventromedial hypothalamus (VMH) that are critical for male territorial aggression. We find that these neurons can drive aggressive displays in solitary males independent of pheromonal input, gonadal hormones, opponents, or social context. By contrast, these neurons cannot elicit aggression in socially housed males that intrude in another male's territory unless their pheromone-sensing is disabled. This modulation of aggression cannot be accounted for by linear integration of environmental and physiological signals. Together, our studies suggest that fundamentally non-linear computations enable social context to exert a dominant influence on developmentally hard-wired hypothalamus-mediated male territorial aggression. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The accessory magnocellular neurosecretory system of the rostral human hypothalamus

    DEFF Research Database (Denmark)

    Møller, Morten; Busch, Johannes R.; Jacobsen, Christina

    2018-01-01

    magnocellular neurons were often located along the blood vessels and projections of some of these neurons penetrated the vascular endothelium. The accessory magnocellular cell bodies expressed either neurophysin I or neurophysin II immunoreactivity. Summarizing, the accessory magnocellular system in the human......The morphology and neurophysin expression of the magnocellular accessory neuroendocrine system located in the rostral human hypothalamus is investigated in a series of brains obtained at autopsy. The hypothalami were fixed in formalin and embedded in paraffin, or after cryoprotection, frozen...

  7. Metabolic mystery: Aging, obesity, diabetes and ventromedial hypothalamus

    OpenAIRE

    Mobbs, Charles V.; Moreno, Cesar L.; Poplawski, Michael

    2013-01-01

    We propose that energy balance, glucose homeostasis, and aging are all regulated largely by the same nutrient-sensing neurons in the ventromedial hypothalamus (VMH)., Although the central role of these neurons in regulating energy balance is clear, their role in regulating glucose homeostasis has only become more clear recently. It is the latter function that may be most relevant to aging and lifespan, by controlling the rate of glucose metabolism. Specifically, glucose-sensing neurons in VMH...

  8. Short-term fasting promotes insulin expression in rat hypothalamus.

    Science.gov (United States)

    Dakic, Tamara B; Jevdjovic, Tanja V; Peric, Mina I; Bjelobaba, Ivana M; Markelic, Milica B; Milutinovic, Bojana S; Lakic, Iva V; Jasnic, Nebojsa I; Djordjevic, Jelena D; Vujovic, Predrag Z

    2017-07-01

    In the hypothalamus, insulin takes on many roles involved in energy homoeostasis. Therefore, the aim of this study was to examine hypothalamic insulin expression during the initial phase of the metabolic response to fasting. Hypothalamic insulin content was assessed by both radioimmunoassay and Western blot. The relative expression of insulin mRNA was examined by qPCR. Immunofluorescence and immunohistochemistry were used to determine the distribution of insulin immunopositivity in the hypothalamus. After 6-h fasting, both glucose and insulin levels were decreased in serum but not in the cerebrospinal fluid. Our study showed for the first time that, while the concentration of circulating glucose and insulin decreased, both insulin mRNA expression and insulin content in the hypothalamic parenchyma were increased after short-term fasting. Increased insulin immunopositivity was detected specifically in the neurons of the hypothalamic periventricular nucleus and in the ependymal cells of fasting animals. These novel findings point to the complexity of mechanisms regulating insulin expression in the CNS in general and in the hypothalamus in particular. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Sonic hedgehog signaling in the development of the mouse hypothalamus

    Directory of Open Access Journals (Sweden)

    Sandra eBlaess

    2015-01-01

    Full Text Available The expression pattern of Sonic Hedgehog (Shh in the developing hypothalamus changes over time. Shh is initially expressed in the prechordal mesoderm and later in the hypothalamic neuroepithelium-- first medially, and then in two off-medial domains. This dynamic expression suggests that Shh might regulate several aspects of hypothalamic development. To gain insight into them, lineage tracing, (conditional gene inactivation in mouse, in ovo loss- and gain-of-function approaches in chick and analysis of Shh expression regulation have been employed. We will focus on mouse studies and refer to chick and fish when appropriate to clarify. These studies show that Shh-expressing neuroepithelial cells serve as a signaling center for neighboring precursors, and give rise to most of the basal hypothalamus (tuberal and mammillary regions. Shh signaling is initially essential for hypothalamic induction. Later, Shh signaling from the neuroepithelium controls specification of the lateral hypothalamic area and growth-patterning coordination in the basal hypothalamus. To further elucidate the role of Shh in hypothalamic development, it will be essential to understand how Shh regulates the downstream Gli transcription factors.

  10. Neuromyelitis optica spectrum disorder presenting with repeated hypersomnia due to involvement of the hypothalamus and hypothalamus-amygdala linkage.

    Science.gov (United States)

    Kume, Kodai; Deguchi, Kazushi; Ikeda, Kazuyo; Takata, Tadayuki; Kokudo, Yohei; Kamada, Masaki; Touge, Tetsuo; Takahashi, Toshiyuki; Kanbayashi, Takashi; Masaki, Tsutomu

    2015-06-01

    We report the case of a 46-year-old Japanese woman with neuromyelitis optica spectrum disorder presenting with repeated hypersomnia accompanied by decreased CSF orexin level. First episode associated with hypothalamic-pituitary dysfunction showed bilateral hypothalamic lesions that can cause secondary damage to the orexin neurons. The second episode associated with impaired memory showed a left temporal lesion involving the amygdala. The mechanism remains unknown, but the reduced blood flow in the hypothalamus ipsilateral to the amygdala lesion suggested trans-synaptic hypothalamic dysfunction secondary to the impaired amygdala. A temporal lesion involving the amygdala and hypothalamus could be responsible for hypersomnia due to neuromyelitis optica spectrum disorder. © The Author(s), 2015.

  11. Developmental exposure to fluoxetine modulates the serotonin system in hypothalamus.

    Directory of Open Access Journals (Sweden)

    Cecilia Berg

    Full Text Available The selective serotonin reuptake inhibitor (SSRI fluoxetine (FLU, Prozac® is commonly prescribed for depression in pregnant women. This results in SSRI exposure of the developing fetus. However, there are knowledge gaps regarding the impact of SSRI exposure during development. Given the role of serotonin in brain development and its cross-talk with sex hormone function, we investigated effects of developmental exposure to pharmacologically relevant concentrations of FLU (3 and 30 nM (measured on brain neurotransmitter levels, gonadal differentiation, aromatase activity in brain and gonads, and the thyroid system, using the Xenopus tropicalis model. Tadpoles were chronically exposed (8 weeks until metamorphosis. At metamorphosis brains were cryosectioned and levels of serotonin, dopamine, norepinephrine, and their metabolites 5-hydroxyindoleacetic acid, 3,4-dihydroxyphenylacetic acid, and homovanillic acid were measured in discrete regions (telencephalon, hypothalamus and the reticular formation of the cryosections using high-performance liquid chromatography. Exposure to 30 nM FLU increased the concentration of 5-hydroxyindoleacetic acid in hypothalamus compared with controls. FLU exposure did not affect survival, time to metamorphosis, thyroid histology, gonadal sex differentiation, or aromatase activity implying that the effect on the serotonergic neurotransmitter system in the hypothalamus region was specific. The FLU concentration that impacted the serotonin system is lower than the concentration measured in umbilical cord serum, suggesting that the serotonin system of the developing brain is highly sensitive to in utero exposure to FLU. To our knowledge this is the first study showing effects of developmental FLU exposure on brain neurochemistry. Given that SSRIs are present in the aquatic environment the current results warrant further investigation into the neurobehavioral effects of SSRIs in aquatic wildlife.

  12. The hypothalamus at the crossroads of psychopathology and neurosurgery.

    Science.gov (United States)

    Barbosa, Daniel A N; de Oliveira-Souza, Ricardo; Monte Santo, Felipe; de Oliveira Faria, Ana Carolina; Gorgulho, Alessandra A; De Salles, Antonio A F

    2017-09-01

    The neurosurgical endeavor to treat psychiatric patients may have been part of human history since its beginning. The modern era of psychosurgery can be traced to the heroic attempts of Gottlieb Burckhardt and Egas Moniz to alleviate mental symptoms through the ablation of restricted areas of the frontal lobes in patients with disabling psychiatric illnesses. Thanks to the adaptation of the stereotactic frame to human patients, the ablation of large volumes of brain tissue has been practically abandoned in favor of controlled interventions with discrete targets. Consonant with the role of the hypothalamus in the mediation of the most fundamental approach-avoidance behaviors, some hypothalamic nuclei and regions, in particular, have been selected as targets for the treatment of aggressiveness (posterior hypothalamus), pathological obesity (lateral or ventromedial nuclei), sexual deviations (ventromedial nucleus), and drug dependence (ventromedial nucleus). Some recent improvements in outcomes may have been due to the use of stereotactically guided deep brain stimulation and the change of therapeutic focus from categorical diagnoses (such as schizophrenia) to dimensional symptoms (such as aggressiveness), which are nonspecific in terms of formal diagnosis. However, agreement has never been reached on 2 related issues: 1) the choice of target, based on individual diagnoses; and 2) reliable prediction of outcomes related to individual targets. Despite the lingering controversies on such critical aspects, the experience of the past decades should pave the way for advances in the field. The current failure of pharmacological treatments in a considerable proportion of patients with chronic disabling mental disorders is reminiscent of the state of affairs that prevailed in the years before the early psychosurgical attempts. This article reviews the functional organization of the hypothalamus, the effects of ablation and stimulation of discrete hypothalamic regions, and the

  13. Substance P release from rat hypothalamus and spinal cord

    International Nuclear Information System (INIS)

    Kronheim, S.; Sheppard, M.C.; Pimstone, B.L.

    1980-01-01

    A specific and sensitive radioimmunoassay for substance P has been developed to study the release of immunoreactive substance P from incubated rat hypothalamus and rat spinal cord in vitro. Release was significantly increased in the presence of two depolarizing stimuli (56 mM KCl and 75 μM veratrine) and was calcium-dependent. The released immunoreactive material diluted in parallel with synthetic substance P and showed close identity on Sephadex chromatography. A neuromodulator role for the peptide in the central nervous system is suggested

  14. Distinct types of feeding related neurons in mouse hypothalamus

    Directory of Open Access Journals (Sweden)

    Yan eTang

    2016-05-01

    Full Text Available The last two decades of research provided evidence for a substantial heterogeneity among feeding-related neurons (FRNs in the hypothalamus. However, it remains unclear how FRNs differ in their firing patterns during food intake. Here, we investigated the relationship between the activity of neurons in mouse hypothalamus and their feeding behavior. Using tetrode-based in vivo recording technique, we identified various firing patterns of hypothalamic FRNs, which, after the initiation of food intake, can be sorted into four types: sharp increase (type I, slow increase (type II, sharp decrease (type III and sustained decrease (type IV of firing rates. The feeding-related firing response of FRNs was rigidly related to the duration of food intake and, to a less extent, associated with the type of food. The majority of these FRNs responded to glucose and leptin and exhibited electrophysiological characteristics of putative GABAergic neurons. In conclusion, our study demonstrated the diversity of neurons in the complex hypothalamic network coordinating food intake.

  15. The lateral hypothalamus : A site for integration of nutrient and fluid balance

    NARCIS (Netherlands)

    van Dijk, Gertjan; Evers, Simon S.; Guidotti, Stefano; Thornton, Simon N.; Scheurink, Anton J. W.; Nyakas, Csaba

    2011-01-01

    This paper reviews seemingly obligatory relations between nutrient and fluid balance. A relatively novel neuronal pathway involving interplay between acetylcholine and the melanocortins, alpha MSH and AGRP in the arcuate nucleus (Arc) of the hypothalamus projecting to the lateral hypothalamus (LH)

  16. The neuroanatomical function of leptin in the hypothalamus.

    Science.gov (United States)

    van Swieten, M M H; Pandit, R; Adan, R A H; van der Plasse, G

    2014-11-01

    The anorexigenic hormone leptin plays an important role in the control of food intake and feeding-related behavior, for an important part through its action in the hypothalamus. The adipose-derived hormone modulates a complex network of several intercommunicating orexigenic and anorexigenic neuropeptides in the hypothalamus to reduce food intake and increase energy expenditure. In this review we present an updated overview of the functional role of leptin in respect to feeding and feeding-related behavior per distinct hypothalamic nuclei. In addition to the arcuate nucleus, which is a major leptin sensitive hub, leptin-responsive neurons in other hypothalamic nuclei, including the, dorsomedial-, ventromedial- and paraventricular nucleus and the lateral hypothalamic area, are direct targets of leptin. However, leptin also modulates hypothalamic neurons in an indirect manner, such as via the melanocortin system. The dissection of the complexity of leptin's action on the networks involved in energy balance is subject of recent and future studies. A full understanding of the role of hypothalamic leptin in the regulation of energy balance requires cell-specific manipulation using of conditional deletion and expression of leptin receptors. In addition, optogenetic and pharmacogenetic tools in combination with other pharmacological (such as the recent discovery of a leptin receptor antagonist) and neuronal tracing techniques to map the circuit, will be helpful to understand the role of leptin receptor expressing neurons. Better understanding of these circuits and the involvement of leptin could provide potential sites for therapeutic interventions in obesity and metabolic diseases characterized by dysregulation of energy balance. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. M(o)TOR of aging: MTOR as a universal molecular hypothalamus.

    Science.gov (United States)

    Blagosklonny, Mikhail V

    2013-07-01

    A recent ground-breaking publication described hypothalamus-driven programmatic aging. As a Russian proverb goes "everything new is well-forgotten old". In 1958, Dilman proposed that aging and its related diseases are programmed by the hypothalamus. This theory, supported by beautiful experiments, remained unnoticed just to be re-discovered recently. Yet, it does not explain all manifestations of aging. And would organism age without hypothalamus? Do sensing pathways such as MTOR (mechanistic Target of Rapamycin) and IKK-beta play a role of a "molecular hypothalamus" in every cell? Are hypothalamus-driven alterations simply a part of quasi-programmed aging manifested by hyperfunction and secondary signal-resistance? Here are some answers.

  18. Effects of heavy-ion exposure to rat's hypothalamus on the copulatory behavior

    International Nuclear Information System (INIS)

    Saito, Masayoshi; Uno, Takashi; Kawata, Tetsuya; Liu, C.; Kan'o, Momoe; Okamura, Junko; Ito, Hisao; Takai, Nobuhiko; Ando, Koichi

    2006-01-01

    The present study was designed to determine whether irradiation (carbon particles 290 MeV/nucleon, Mono Peak 30-60 Gy, irradiation field 5 mm cube in hypothalamus) to hypothalamus modifies the copulatory behavior of male rats. By the second year, we studied the chronic effects for heavy ions on the copulatory behavior. In addition, the influence of heavy ions to cortex (irradiation field width and depth 5 mm, respectively) was studied. The copulatory items were recorded: frequency number of mounting, intromission and ejaculation during 30 min after 1, 3 and 6-7 months following irradiation. Results are as follows. At 60 Gy to hypothalamus, the frequency number of intromission and ejaculation was decreased from one month to 7 months following irradiation. Particularly, suppression for the copulatory behavior was recognized in 3 and 4 months after irradiation. At 3 and 4 months after 60 Gy irradiation, the frequency number of ejaculation was decreased in comparison with non-irradiated (control) male rats. At 45 Gy to hypothalamus or cortex, the frequency number of ejaculation was decreased after one month (Both sides of hypothalamus and cortex) and 3 months (Only as for hypothalamus) following irradiation. At 30 Gy to cortex, the frequency number of ejaculation was similar but irradiation to hypothalamus decreased it 3 months following irradiation. (author)

  19. Magnetic resonance imaging of hypothalamus hypophysis axis lesions

    International Nuclear Information System (INIS)

    Shiina, Takeki; Uno, Kimiichi; Arimizu, Noboru; Yoshida, Sho; Yamada, Kenichi.

    1990-01-01

    Magnetic resonance imaging (MRI) using a 0.5T superconductive machine was performed to the thirty three cases with a variety of the sellar and parasellar tumors and with dysfunction of the hypothalamus-hypophysis axis. Posterior pituitary bright spot (PBS) on T1 weighted image was evaluated with the pituitary hormonal function. These cases were 12 cases of post-treated tumors including pituitary adenoma (9 patients), suprasellar germinoma (2 patients) and craniopharyngioma (one patient), and non-tumorous conditions including 15 cases of central diabetes insipidus (DI), Syndrome of inappropriate secretion of ADH (SIADH) (one patient), Sheehan's syndrome (3 patients) and anorexia nervosa (2 patients). Pituitary bright spot was not seen in all 19 cases with overt DI. On the other hand, PBS was not seen in 9 cases without overt DI. Three cases of these 9 cases showing Sheehan's syndrome with insufficient antidiuretic hormone (ADH) secretion was considered as the state of subclinical DI. Posterior bright spot was not seen in all 13 cases of empty sella including partial empty sella. The results suggested that disappearance of PBS represents abnormality or loss of posterior pituitary function and also it was considered to be closely related to the empty sella. (author)

  20. Anatomy of the human hypothalamus (chiasmatic and tuberal region).

    Science.gov (United States)

    Braak, H; Braak, E

    1992-01-01

    The hypothalamus sensu stricto consists of the chiasmatic, the tuberal and the mamillary region. The present study is confined to the poorly myelinated chiasmatic and tuberal region. Both regions harbor many nuclear grays with relatively clear-cut boundaries embedded in an ill-defined nerve cell assembly referred to as the hypothalamic gray. Prominent components of the chiasmatic region are the magnocellular neurosecretory complex (supraoptic nucleus, paraventricular nucleus, accessory neurosecretory nucleus), the sexually dimorphic intermediate nucleus, the suprachiasmatic and retrochiasmatic nuclei. The dominating structure of the tuberal region is the complex of the ventromedial, posteromedial and dorsomedial nuclei supplemented by the periventricular and infundibular nuclei. Lateral portions of the tuber cinereum harbor the lateral tuberal nucleus and the tuberomamillary nucleus. The lateral tuberal nucleus exhibits pronounced cell loss in Huntington's chorea and is also severely involved in cases of dementia with argyrophilic grains. The large nerve cells of the tuberomamillary nucleus show particularly severe affection in both Alzheimer's (intraneuronal neurofibrillary changes) and Parkinson's disease (Lewy bodies).

  1. Activity changes of the cat paraventricular hypothalamus during phasic respiratory events

    DEFF Research Database (Denmark)

    Kristensen, Morten Pilgaard; Poe, G R; Rector, D M

    1997-01-01

    We monitored the spatiotemporal organization of cellular activity in the medial paraventricular hypothalamus during spontaneously-occurring periods of increased inspiratory effort followed by prolonged respiratory pauses (sigh/apnea) in the freely-behaving cat. Paraventricular hypothalamic activity...

  2. Decreased number of oxytocin neurons in the paraventricular nucleus of the human hypothalamus in AIDS

    NARCIS (Netherlands)

    Purba, J. S.; Hofman, M. A.; Portegies, P.; Troost, D.; Swaab, D. F.

    1993-01-01

    The number of immunocytochemically identified vasopressin (AVP) and oxytocin (OXT) neurons was determined morphometrically in the paraventricular nucleus of the hypothalamus of 20 acquired immunodeficiency syndrome (AIDS) patients and 10 controls. The AIDS group consisted of 14 homosexual males (age

  3. Volumetric parcellation methodology of the human hypothalamus in neuroimaging: normative data and sex differences

    NARCIS (Netherlands)

    Makris, Nikos; Swaab, Dick F.; van der Kouwe, Andre; Abbs, Brandon; Boriel, Denise; Handa, Robert J.; Tobet, Stuart; Goldstein, Jill M.

    2013-01-01

    There is increasing evidence regarding the importance of the hypothalamus for understanding sex differences in relation to neurological, psychiatric, endocrine and sleep disorders. Although different in histology, physiology, connections and function, multiple hypothalamic nuclei subserve

  4. Localization of 125I-insulin binding sites in the rat hypothalamus by quantitative autoradiography

    International Nuclear Information System (INIS)

    Corp, E.S.; Woods, S.C.; Figlewicz, D.P.; Porte, D. Jr.; Baskin, D.G.; Dorsa, D.M.

    1986-01-01

    In vitro autoradiography and computer video densitometry were used to localize and quantify binding of 125 I-insulin in the hypothalamus of the rat brain. Highest specific binding was found in the arculate, dorsomedial, suprachiasmatic, paraventricular and periventricular regions. Significantly lower binding was present in the ventromedial nucleus and median eminence. The results are consistent with the hypothesis that insulin modulates the neural regulation of feeding by acting at sites in the hypothalamus. (author)

  5. Proteomic profiling of the hypothalamus in a mouse model of cancer-induced anorexia-cachexia

    OpenAIRE

    Ihnatko, Robert; Post, Claes; Blomqvist, Anders

    2013-01-01

    Background: Anorexia-cachexia is a common and severe cancer-related complication but the underlying mechanisms are largely unknown. Here, using a mouse model for tumour-induced anorexia-cachexia, we screened for proteins that are differentially expressed in the hypothalamus, the brain’s metabolic control centre. Methods: The hypothalamus of tumour-bearing mice with implanted methylcholanthrene-induced sarcoma (MCG 101) displaying anorexia and their sham-implanted pair-fed or free-fed litterma...

  6. Slits Are Chemorepellents Endogenous to Hypothalamus and Steer Thalamocortical Axons into Ventral Telencephalon

    OpenAIRE

    Braisted, Janet E.; Ringstedt, Thomas; O'Leary, Dennis D. M.

    2009-01-01

    Thalamocortical axons (TCAs) originate in dorsal thalamus, extend ventrally along the lateral thalamic surface, and as they approach hypothalamus make a lateral turn into ventral telencephalon. In vitro studies show that hypothalamus releases a chemorepellent for TCAs, and analyses of knockout mice indicate that Slit chemorepellents and their receptor Robo2 influence TCA pathfinding. We show that Slit chemorepellents are the hypothalamic chemorepellent and act through Robos to steer TCAs into...

  7. Regulating Hypothalamus Gene Expression in Food Intake: Dietary Composition or Calorie Density?

    Directory of Open Access Journals (Sweden)

    Mi Jang

    2017-01-01

    Full Text Available BackgroundThe proportion of saturated fatty acids/unsaturated fatty acids in the diet seems to act as a physiological regulation on obesity, cardiovascular diseases, and diabetes. Differently composed fatty acid diets may induce satiety of the hypothalamus in different ways. However, the direct effect of the different fatty acid diets on satiety in the hypothalamus is not clear.MethodsThree experiments in mice were conducted to determine whether: different compositions of fatty acids affects gene mRNA expression of the hypothalamus over time; different types of fatty acids administered into the stomach directly affect gene mRNA expression of the hypothalamus; and fat composition changes in the diet affects gene mRNA expression of the hypothalamus.ResultsThe type of fat in cases of purified fatty acid administration directly into the stomach may cause changes of gene expressions in the hypothalamus. Gene expression by dietary fat may be regulated by calorie amount ingested rather than weight amount or type of fat.ConclusionTherefore, the calorie density factor of the diet in regulating hypothalamic gene in food intake may be detrimental, although the possibility of type of fat cannot be ruled out.

  8. Chromium VI administration induces oxidative stress in hypothalamus and anterior pituitary gland from male rats.

    Science.gov (United States)

    Nudler, Silvana I; Quinteros, Fernanda A; Miler, Eliana A; Cabilla, Jimena P; Ronchetti, Sonia A; Duvilanski, Beatriz H

    2009-03-28

    Hexavalent chromium (Cr VI)-containing compounds are known carcinogens which are present in industrial settings and in the environment. The major route of chromium exposure for the general population is oral intake. Previously we have observed that Cr VI affects anterior pituitary secretion and causes oxidative stress in vitro. The aim of the present work was to investigate if in vivo Cr VI treatment (100 ppm of Cr VI in drinking water for up 30 days) causes oxidative stress in hypothalamus and anterior pituitary gland from male rats. This treatment produced a 4-fold increase of chromium content in hypothalamus and 10-fold increase in anterior pituitary gland. Lipid peroxidation showed a significant increase in hypothalamus and anterior pituitary. Cr VI augmented superoxide dismutase activity in anterior pituitary gland and glutathione reductase activity in hypothalamus, but glutathione peroxidase and catalase activities remained unchanged in both tissues. Heme oxygenase-1 mRNA expression significantly rose in both tissues. Metallothionein 1 mRNA content increased in anterior pituitary and metallothionein 3 mRNA increased in hypothalamus. These results show, for the first time, that oral chronic administration of Cr VI produces oxidative stress on the hypothalamus and anterior pituitary gland which may affect normal endocrine function.

  9. Effect of low dose radiation on POMC transcription level in mouse hypothalamus and immune organs

    International Nuclear Information System (INIS)

    Wan Hong; Liu Shuzheng

    1998-01-01

    Objective: To disclose the changes in mRNA transcription level of POMC in the hypothalamus and immune organs after low dose radiation. Method: In situ hybridization was used to examine the changes of POMC mRNA transcription level in mouse hypothalamus and immune organs following whole body irradiation (WBI) with 75 mGy X-rays. Results: There was a basal expression of POMC mRNA in both the hypothalamus and immune organs. POMC mRNA-positive neutron were located in the arcuate nucleus of hypothalamus. WBI with 75 mGy X-rays could significantly down-regulate the POMC transcription level that was remarkable within 1h and remained low in the observation period of 12h. POMC transcription level in mouse immune organs increased with time within 8h after irradiation and then began to decrease but still remained at a higher than normal level. The changes of POMC transcription level were more marked in the spleen than in other immune organs. Conclusion: These findings suggest that the immediate decrease of POMC transcription level in the hypothalamus might be the direct cause of the down-regulation of the hypothalamus-pituitary-adrenocortical axis after WBI with 75 mGy X-rays, accompanied with an increase in POMC transcription in immune organs

  10. The ventromedial hypothalamus oxytocin induces locomotor behavior regulated by estrogen.

    Science.gov (United States)

    Narita, Kazumi; Murata, Takuya; Matsuoka, Satoshi

    2016-10-01

    Our previous studies demonstrated that excitation of neurons in the rat ventromedial hypothalamus (VMH) induced locomotor activity. An oxytocin receptor (Oxtr) exists in the VMH and plays a role in regulating sexual behavior. However, the role of Oxtr in the VMH in locomotor activity is not clear. In this study we examined the roles of oxytocin in the VMH in running behavior, and also investigated the involvement of estrogen in this behavioral change. Microinjection of oxytocin into the VMH induced a dose-dependent increase in the running behavior in male rats. The oxytocin-induced running activity was inhibited by simultaneous injection of Oxtr-antagonist, (d(CH2)5(1), Try(Me)(2), Orn(8))-oxytocin. Oxytocin injection also induced running behavior in ovariectomized (OVX) female rats. Pretreatment of the OVX rats with estrogen augmented the oxytocin-induced running activity twofold, and increased the Oxtr mRNA in the VMH threefold. During the estrus cycle locomotor activity spontaneously increased in the dark period of proestrus. The Oxtr mRNA was up-regulated in the proestrus afternoon. Blockade of oxytocin neurotransmission by its antagonist before the onset of the dark period of proestrus decreased the following nocturnal locomotor activity. These findings demonstrate that Oxtr in the VMH is involved in the induction of running behavior and that estrogen facilitates this effect by means of Oxtr up-regulation, suggesting the involvement of oxytocin in the locomotor activity of proestrus female rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Brain transcriptome sequencing and assembly of three songbird model systems for the study of social behavior

    Directory of Open Access Journals (Sweden)

    Christopher N. Balakrishnan

    2014-05-01

    Full Text Available Emberizid sparrows (emberizidae have played a prominent role in the study of avian vocal communication and social behavior. We present here brain transcriptomes for three emberizid model systems, song sparrow Melospiza melodia, white-throated sparrow Zonotrichia albicollis, and Gambel’s white-crowned sparrow Zonotrichia leucophrys gambelii. Each of the assemblies covered fully or in part, over 89% of the previously annotated protein coding genes in the zebra finch Taeniopygia guttata, with 16,846, 15,805, and 16,646 unique BLAST hits in song, white-throated and white-crowned sparrows, respectively. As in previous studies, we find tissue of origin (auditory forebrain versus hypothalamus and whole brain as an important determinant of overall expression profile. We also demonstrate the successful isolation of RNA and RNA-sequencing from post-mortem samples from building strikes and suggest that such an approach could be useful when traditional sampling opportunities are limited. These transcriptomes will be an important resource for the study of social behavior in birds and for data driven annotation of forthcoming whole genome sequences for these and other bird species.

  12. Transcriptome-wide identification of preferentially expressed genes in the hypothalamus and pituitary gland.

    Science.gov (United States)

    St-Amand, Jonny; Yoshioka, Mayumi; Tanaka, Keitaro; Nishida, Yuichiro

    2011-01-01

    To identify preferentially expressed genes in the central endocrine organs of the hypothalamus and pituitary gland, we generated transcriptome-wide mRNA profiles of the hypothalamus, pituitary gland, and parietal cortex in male mice (12-15 weeks old) using serial analysis of gene expression (SAGE). Total counts of SAGE tags for the hypothalamus, pituitary gland, and parietal cortex were 165824, 126688, and 161045 tags, respectively. This represented 59244, 45151, and 55131 distinct tags, respectively. Comparison of these mRNA profiles revealed that 22 mRNA species, including three potential novel transcripts, were preferentially expressed in the hypothalamus. In addition to well-known hypothalamic transcripts, such as hypocretin, several genes involved in hormone function, intracellular transduction, metabolism, protein transport, steroidogenesis, extracellular matrix, and brain disease were identified as preferentially expressed hypothalamic transcripts. In the pituitary gland, 106 mRNA species, including 60 potential novel transcripts, were preferentially expressed. In addition to well-known pituitary genes, such as growth hormone and thyroid stimulating hormone beta, a number of genes classified to function in transport, amino acid metabolism, intracellular transduction, cell adhesion, disulfide bond formation, stress response, transcription, protein synthesis, and turnover, cell differentiation, the cell cycle, and in the cytoskeleton and extracellular matrix were also preferentially expressed. In conclusion, the current study identified not only well-known hypothalamic and pituitary transcripts but also a number of new candidates likely to be involved in endocrine homeostatic systems regulated by the hypothalamus and pituitary gland.

  13. Transcriptome-wide identification of preferentially expressed genes in the hypothalamus and pituitary gland

    Directory of Open Access Journals (Sweden)

    Jonny eSt-Amand

    2012-01-01

    Full Text Available To identify preferentially expressed genes in the central endocrine organs of the hypothalamus and pituitary gland, we generated transcriptome-wide mRNA profiles of the mouse hypothalamus, pituitary gland and parietal cortex using serial analysis of gene expression (SAGE. Total counts of SAGE tags for the hypothalamus, pituitary gland and parietal cortex were 165824, 126688 and 161045 tags, respectively. This represented 59244, 45151 and 55131 distinct tags, respectively. Comparison of these mRNA profiles revealed that 22 mRNA species, including three potential novel transcripts, were preferentially expressed in the hypothalamus. In addition to well-known hypothalamic transcripts, such as hypocretin, several genes involved in hormone function, intracellular transduction, metabolism, protein transport, steroidogenesis, extracellular matrix and brain disease were identified as preferentially expressed hypothalamic transcripts. In the pituitary gland, 106 mRNA species, including 60 potential novel transcripts, were preferentially expressed. In addition to well-known pituitary genes, such as growth hormone and thyroid stimulating hormone beta, a number of genes classified to function in transport, amino acid metabolism, intracellular transduction, cell adhesion, disulfide bond formation, stress response, transcription, protein synthesis and turnover, cell differentiation, the cell cycle and in the cytoskeleton and extracellular matrix were also preferentially expressed. In conclusion, the current study identified not only well-known hypothalamic and pituitary transcripts but also a number of new candidates likely to be involved in endocrine homeostatic systems regulated by the hypothalamus and pituitary gland.

  14. Hypothalamus-Anchored Resting Brain Network Changes before and after Sertraline Treatment in Major Depression

    Directory of Open Access Journals (Sweden)

    Rui Yang

    2014-01-01

    Full Text Available Sertraline, one of the oldest antidepressants, remains to be the most efficacious treatment for depression. However, major depression disorder (MDD is characterized by altered emotion processing and deficits in cognitive control. In cognitive interference tasks, patients with MDD have shown excessive hypothalamus activity. The purpose of this study was to examine the effects of antidepressant treatment (sertraline on hypothalamus-anchored resting brain circuitry. Functional magnetic resonance imaging was conducted on depressed patients (n=12 both before and after antidepressant treatment. After eight weeks of antidepressant treatment, patients with depression showed significantly increased connectivity between the hypothalamus and dorsolateral prefrontal cortex, orbitofrontal cortex, anterior cingulate cortex, insula, putamen, caudate, and claustrum. By contrast, decreased connectivity of the hypothalamus-related areas was primarily located in the inferior frontal gyrus, medial frontal gyrus, cingulated gyrus, precuneus, thalamus, and cerebellum. After eight weeks of antidepressant therapy, 8 out of the 12 depressed subjects achieved 70% reduction or better in depressive symptoms, as measured on the Hamilton depression rating scale. Our findings may infer that antidepressant treatment can alter the functional connectivity of the hypothalamus resting brain to achieve its therapeutic effect.

  15. Effect of gamma irradiation on the activity of monoamine oxidase in the hypothalamus of ewes

    International Nuclear Information System (INIS)

    Pastorova, B.; Stanikova, A.

    2008-01-01

    The study investigated changes in monoamine oxidase (MAO) activity in the hypothalamus of ewes in the anoestrous period exposed to a whole body Co-60 irradiation with a total dose of 6.7 Gy for the period of 7 days. The activity of MAO was determined by means of a radiochemical method using C-14 tryptamine as a substrate. Whole body exposure to gamma radiation of total dose of 6.7 Gy increased significantly (P < 0.001) the activity of MAO in the caudal, medial and rostral hypothalamus of the investigated ewes. It may by assumed that an increased degradation of catecholamines caused by MAO is one of the mechanisms responsible for pronounced changes in the level of catecholamines in the hypothalamus of ewes after irradiation. (authors)

  16. Study on the interaction between leucine-enkephalin and hypothalamus-pituitary-thyroid axis

    International Nuclear Information System (INIS)

    Li Fengying; Chen Jialun; Chen Mingdao; Tang Jinfeng; Li Jiping

    2001-01-01

    Objective: To study the possible interaction between leucine enkephalin and hypothalamus-pituitary-thyroid axis. Methods: Mice models of hyperthyroidism and hypothyroidism were produced. Serum thyroid hormonal levels (T 3 , T 4 , TSH, TRH), the leucine enkephalin content of the whole brain and 5-HT of the hypothalamus were determined in the animals sacrificed on different days after the animal models were established. Results: In hyperthyroid rats, the levels of T 3 , T 4 increased progressively (P 3 , T 4 levels were persistent lower (P < 0.001) along with gradually increasing of serum TSH and TRH levels while pituitary TSh hypothalamus TRH content decreased gradually (P < 0.01), but rose back when reaching the nadir, Besides, LEK elevated and 5-HT decreased (P<0.01). Conclusion: The thyroid functional hormonal changes are not necessarily accompanied by a corresponding increase or decrease of brain LEK

  17. Catecholamine levels in sheep hypothalamus, hypophysis and adrenals following whole-body gamma irradiation

    International Nuclear Information System (INIS)

    Pastorova, B.; Arendarcik, J.; Molnarova, M.

    1985-01-01

    Changes were studied in the levels of catecholamines and L-DOPA in the control system of the reproduction cycle (hypothalamus, hypophysis) and in the adrenal glands of sheep after whole-body irradiation with 60 Co at a total dose of 6.7 Gy for seven days. The output of the radiation source was 0.039 Gy/h. The catecholamines (noradrenaline, dopamine and adrenaline) and L-DOPA were determined after separation from the tissues by the method of spectral fluorometry. After whole-body exposure to gamma radiation, noradrenaline dropped in the hypothalamus in comparison with the control group, most significantly in the rostral (by 74.2%) and caudal (by 40%) parts. A similar drop was also observed in dopamine, the concentrations of which decreased in the rostral hypothalamus by 60%. Adrenaline showed a drop in the hypothalamus, most significant in the caudal region (by 62%). Consequently, the level of the precursor of the synthesis of catecholamines and L-DOPA changed and showed in the studied regions of the hypothalamus significantly lower levels than in the control group. As regards the hypophysis, after irradiation no significant changes in the levels of noradrenaline and adrenaline were recorded, however, dopamine and L-DOPA dropped significantly (P<0.01). The exposure to gamma radiation also causes a decrease in the concentrations of catecholamines and L-DOPA in the adrenal glands of sheep, most significantly in noradrenaline (by 61%). It was thus found that whole-body irradiation of sheep with a dose of 6.7 Gy results in a significant decrease in the level of catecholamines in the hypothalamus, hypophysis and adrenal glands, which is probably in relation to the failure of synthesis and degradation of catecholamines and to the total organism injury

  18. A Newly Defined Area of the Mouse Anterior Hypothalamus Involved in Septohypothalamic Circuit: Perifornical Area of the Anterior Hypothalamus, PeFAH.

    Science.gov (United States)

    Horii-Hayashi, Noriko; Nishi, Mayumi

    2018-02-27

    Although the hypothalamus is classified into more than 10 compartments, it still contains uncharacterized areas. In this study, we identified a new triangular-shaped area between the paraventricular hypothalamic nucleus (PVN) and the fornix area in the mouse anterior hypothalamus, which is enriched in chondroitin sulfate proteoglycans (CSPGs). We designated this region as the perifornical area of the anterior hypothalamus (PeFAH) based on its anatomical location. As evidenced by Nissl staining, the PeFAH was distinguishable as an area of relatively low density. Immunohistochemical and DNA microarray analyses indicated that PeFAH contains sparsely distributed calretinin-positive neurons and densely clustered enkephalin-positive neurons. Furthermore, the PeFAH was shown to have bidirectional neural connections with the lateral septum. Indeed, we confirmed enkephalinergic projections from PeFAH neurons to the lateral septum, and inversely, calbindin-positive lateral septum neurons as afferents to the PeFAH. Finally, c-Fos expression analysis revealed that the activity of certain PeFAH neuronal populations tended to be increased by psychological stressors, but not that of enkephalinergic neurons. We proposed PeFAH as a new region in the AH.

  19. Pyrrolidon carboxypeptidase activities in the hypothalamus-pituitary-thyroid and hypothalamus-pituitary-ovary axes of rats with mammary gland cancer induced by N-methyl nitrosourea.

    Science.gov (United States)

    Carrera, M P; Ramírez-Expósito, M J; Valenzuela, M T; García, M J; Mayas, M D; Arias de Saavedra, J M; Sánchez, R; Pérez, M C; Martínez-Martos, J M

    2005-02-01

    Pyrrolidon carboxypeptidase is an omega-peptidase that hydrolyses N-terminal pyroglutamyl residues from biologically active peptides such as gonadotropin-releasing and thyrotrophin-releasing hormones. We previously described a decrease in both rat and human pyrrolidon carboxypeptidase activity with breast cancer, suggesting that gonadotropin-releasing hormone may be an important local intracrine, autocrine and/or paracrine hormonal factor in the pathogenesis of breast cancer while playing a role in the tumoral process. However, the other susceptible substrate of pyrrolidon carboxypeptidase, thyrotrophin-releasing hormone, may also be modified with breast cancer, supporting an association between breast cancer and thyroid disorders. The present work analyses soluble and membrane-bound pyrrolidon carboxypeptidase activities in the hypothalamus-pituitary-thyroid and hypothalamus-pituitary-ovary axes in N-methyl nitrosourea-induced breast cancer in rats. Our aim was to determine the possible relationship between gonadotropin-releasing hormone and thyrotrophin-releasing hormone regulation through pyrrolidon carboxypeptidase activity. We propose that pyrrolidon carboxypeptidase activity dysregulation at various local and systemic levels may participate in the initiation, promotion and progression of breast cancer induced in rat by N-methyl nitrosourea through the increase in gonadotropin-releasing hormone. Since pyrrolidon carboxypeptidase activity also acts on thyrotrophin-releasing hormone, the dysregulation of this enzyme's activity could indirectly affect hypothalamus-pituitary-thyroid axis function, and thus potentially represent a link between the diseases of thyroid and breast cancer.

  20. Optogenetic activation of leptin- and glucose-regulated GABAergic neurons in dorsomedial hypothalamus promotes food intake via inhibitory synaptic transmission to paraventricular nucleus of hypothalamus

    Directory of Open Access Journals (Sweden)

    Zesemdorj Otgon-Uul

    2016-08-01

    Full Text Available Objective: The dorsomedial hypothalamus (DMH has been considered an orexigenic nucleus, since the DMH lesion reduced food intake and body weight and induced resistance to diet-induced obesity. The DMH expresses feeding regulatory neuropeptides and receptors including neuropeptide Y (NPY, cocaine- and amphetamine-regulated transcript (CART, cholecystokinin (CCK, leptin receptor, and melanocortin 3/4 receptors. However, the principal neurons generating the orexigenic function in the DMH remain to be defined. This study aimed to clarify the role of the DMH GABAergic neurons in feeding regulation by using optogenetics and electrophysiological techniques. Methods: We generated the mice expressing ChRFR-C167A, a bistable chimeric channelrhodopsin, selectively in GABAergic neurons of DMH via locally injected adeno-associated virus 2. Food intake after optogenetic activation of DMH GABAergic neurons was measured. Electrophysiological properties of DMH GABAergic neurons were measured using slice patch clamp. Results: Optogenetic activation of DMH GABAergic neurons promoted food intake. Leptin hyperpolarized and lowering glucose depolarized half of DMH GABAergic neurons, suggesting their orexigenic property. Optical activation of axonal terminals of DMH GABAergic neurons at the paraventricular nucleus of hypothalamus (PVN, where anorexigenic neurons are localized, increased inhibitory postsynaptic currents on PVN neurons and promoted food intake. Conclusion: DMH GABAergic neurons are regulated by metabolic signals leptin and glucose and, once activated, promote food intake via inhibitory synaptic transmission to PVN. Keywords: Dorsomedial hypothalamus, GABAergic neuron, Feeding, Leptin, Glucose, Optogenetics

  1. Persistent expression of activated notch in the developing hypothalamus affects survival of pituitary progenitors and alters pituitary structure.

    Science.gov (United States)

    Aujla, Paven K; Bogdanovic, Vedran; Naratadam, George T; Raetzman, Lori T

    2015-08-01

    As the pituitary gland develops, signals from the hypothalamus are necessary for pituitary induction and expansion. Little is known about the control of cues that regulate early signaling between the two structures. Ligands and receptors of the Notch signaling pathway are found in both the hypothalamus and Rathke's pouch. The downstream Notch effector gene Hes1 is required for proper pituitary formation; however, these effects could be due to the action of Hes1 in the hypothalamus, Rathke's pouch, or both. To determine the contribution of hypothalamic Notch signaling to pituitary organogenesis, we used mice with loss and gain of Notch function within the developing hypothalamus. We demonstrate that loss of Notch signaling by conditional deletion of Rbpj in the hypothalamus does not affect expression of Hes1 within the posterior hypothalamus or expression of Hes5. In contrast, expression of activated Notch within the hypothalamus results in ectopic Hes5 expression and increased Hes1 expression, which is sufficient to disrupt pituitary development and postnatal expansion. Taken together, our results indicate that Rbpj-dependent Notch signaling within the developing hypothalamus is not necessary for pituitary development, but persistent Notch signaling and ectopic Hes5 expression in hypothalamic progenitors affects pituitary induction and expansion. © 2015 Wiley Periodicals, Inc.

  2. Sex differences in the hypothalamus in the different stages of human life

    NARCIS (Netherlands)

    Swaab, Dick F.; Chung, Wilson C. J.; Kruijver, Frank P. M.; Hofman, Michel A.; Hestiantoro, Andon

    2003-01-01

    Quite a number of structural and functional sex differences have been reported in the human hypothalamus and adjacent structures that may be related to not only reproduction, sexual orientation and gender identity, but also to the often pronounced sex differences in prevalence of psychiatric and

  3. Effects of HPM irradiation on expression of GR in hypothalamus and pituitary gland of rats

    International Nuclear Information System (INIS)

    Meng Li; Peng Ruiyun; Gao Yabing; Ma Junjie; Wang Shuiming; Hu Wenhua; Wang Dewen; Su Zhentao

    2005-01-01

    Objective: To explore the expression and significance of glucocorticoid receptor (GR) in hypothalamus and pituitary gland of rats after high power microwave (HPM) exposure. Methods: A total of 130 male Wistar rats were sacrificed at 6 h, 1 d, 3 d, 7 d, 14 d, 28 d and 3 m after whole body irradiation by 2-90 mW/cm 2 HPM and their hypothalamus and pituitary gland were collected. The changes of GR in the two tissues after HPM exposure were investigated by means of immunohistochemical staining and image analysis. Results: The expression of GR in hypothalamus was decreased after HPM exposure. The level of GR in the group of 10 mW/cm 2 was significantly lower (P 2 group was significantly lower (P 2 group was significantly higher (P 2 group was significantly higher (P<0.01) on 1 d and 3 d after HPM exposure. Conclusion: The expression of GR in hypothalamus was decreased while that in the anterior pituitary was increased after HPM exposure. The refore, the negative feedback of hypothalamic-pituitary-adrenal (HPA) axis was upset and the changes of GR is involved in the pathophysiological course of HPA. (authors)

  4. GABAergic projections from lateral hypothalamus to paraventricular hypothalamic nucleus promote feeding

    Science.gov (United States)

    Lesions of the lateral hypothalamus (LH) cause hypophagia. However, activation of glutamatergic neurons in LH inhibits feeding. These results suggest a potential importance for other LH neurons in stimulating feeding. Our current study in mice showed that disruption of GABA release from adult LH GAB...

  5. Influence of internal exposure on the morphofunctional characteristics of hypothalamus, pituitary and adrenal gland

    International Nuclear Information System (INIS)

    Derev'yanko, L.P.; Nosov, A.T.

    2004-01-01

    The phase changes in morphofunctional states of hypothalamus, pituitary, cortex and medulla of adrenal gland of rats, which for a long time (9 month) were fed a 137 Cs diary, were determined. At early stages of experiment (7 - 30 days) the enhancing of morphofunctional and secretory activity of cells of hypothalamus, pituitary, cortex and medulla of adrenal gland cells, were observed (total absorbed doses of 0,3 sGy). After 9 months (total absorbed doses of 3,0 sGy) in cells of hypothalamus, pituitary, cortex and medulla of adrenal gland the progressions of dystrophic-destructive changes of intracellular structures with the sings of decreasing of morphofunctional and secretory activities were determined. It is necessary to underline, that the sings of intracellular reparative regeneration, were observed in a small part of cells against the background of presence of dystrophic-destructive changes. In spite of the processes of intracellular reparative regeneration which were observed 9 months later after exposure, the completely renewing of morphofunctional and secretory activities in cells of hypothalamus, pituitary, cortex and medulla of adrenal gland cells were absent

  6. The role of gut hormones and the hypothalamus in appetite regulation.

    Science.gov (United States)

    Suzuki, Keisuke; Simpson, Katherine A; Minnion, James S; Shillito, Joyceline C; Bloom, Stephen R

    2010-01-01

    The World Health Organisation has estimated that by 2015 approximately 2.3 billion adults will be overweight and more than 700 million obese. Obesity is associated with an increased risk of diabetes, cardiovascular events, stroke and cancer. The hypothalamus is a crucial region for integrating signals from central and peripheral pathways and plays a major role in appetite regulation. In addition, there are reciprocal connections with the brainstem and higher cortical centres. In the arcuate nucleus of the hypothalamus, there are two major neuronal populations which stimulate or inhibit food intake and influence energy homeostasis. Within the brainstem, the dorsal vagal complex plays a role in the interpretation and relaying of peripheral signals. Gut hormones act peripherally to modulate digestion and absorption of nutrients. However, they also act as neurotransmitters within the central nervous system to control food intake. Peptide YY, pancreatic polypeptide, glucagon-like peptide-1 and oxyntomodulin suppress appetite, whilst ghrelin increases appetite through afferent vagal fibres to the caudal brainstem or directly to the hypothalamus. A better understanding of the role of these gut hormones may offer the opportunity to develop successful treatments for obesity. Here we review the current understanding of the role of gut hormones and the hypothalamus on food intake and body weight control.

  7. Activation and degeneration during aging: a morphometric study of the human hypothalamus

    NARCIS (Netherlands)

    Zhou, J. N.; Swaab, D. F.

    1999-01-01

    During the course of aging both activation and degenerative changes are found in the human hypothalamus. Degeneration may start around middle-age in some neurotransmitter- or neuromodulator-containing neurons. For instance, a decreased number of vasoactive intestinal polypeptide (VIP) neurons was

  8. Estrogen receptor-alpha distribution in the human hypothalamus in relation to sex and endocrine status

    NARCIS (Netherlands)

    Kruijver, Frank P. M.; Balesar, Rawien; Espila, Ana M.; Unmehopa, Unga A.; Swaab, Dick F.

    2002-01-01

    The present study reports the first systematic rostrocaudal distribution of estrogen receptor-a immunoreactivity (ERalpha-ir) in the human hypothalamus and its adjacent areas in young adults. Postmortem material taken from 10 subjects (five male and five female), between 20 and 39 years of age, was

  9. Optimization of viral vector technology to study gene function in the hypothalamus

    NARCIS (Netherlands)

    de Backer, M.W.A.

    2010-01-01

    The neural circuits involved in energy homeostasis are complex and include multiple brain regions and neuropeptides. The many functions of the different neuropeptide systems in the hypothalamus have been described; however, the specific roles of the different neuropeptides in specific hypothalamic

  10. Insulin in the arcuate nucleus of the hypothalamus reduces fat consumption in rats

    NARCIS (Netherlands)

    van Dijk, G; de Groote, C; Chavez, M; van der Werf, Y; Steffens, AB; Strubbe, JH

    1997-01-01

    Data are accumulating that insulin acting in the central nervous system is a physiological regulator of food intake and body weight, presumably via its effect in the hypothalamus. The present study investigated whether infusion of a small dose of insulin into two major hypothalamic insulin-binding

  11. 60 YEARS OF NEUROENDOCRINOLOGY: The structure of the neuroendocrine hypothalamus: the neuroanatomical legacy of Geoffrey Harris.

    Science.gov (United States)

    Watts, Alan G

    2015-08-01

    In November 1955, Geoffrey Harris published a paper based on the Christian A Herter Lecture he had given earlier that year at Johns Hopkins University in Baltimore, MD, USA. The paper reviewed the contemporary research that was starting to explain how the hypothalamus controlled the pituitary gland. In the process of doing so, Harris introduced a set of properties that helped define the neuroendocrine hypothalamus. They included: i) three criteria that putative releasing factors for adenohypophysial hormones would have to fulfill; ii) an analogy between the representation of body parts in the sensory and motor cortices and the spatial localization of neuroendocrine function in the hypothalamus; and iii) the idea that neuroendocrine neurons are motor neurons and the pituitary stalk functions as a Sherringtonian final common pathway through which the impact of sensory and emotional events on neuroendocrine neurons must pass in order to control pituitary hormone release. Were these properties a sign that the major neuroscientific discoveries that were being made in the early 1950s were beginning to influence neuroendocrinology? This Thematic Review discusses two main points: the context and significance of Harris's Herter Lecture for how our understanding of neuroendocrine anatomy (particularly as it relates to the control of the adenohypophysis) has developed since 1955; and, within this framework, how novel and powerful techniques are currently taking our understanding of the structure of the neuroendocrine hypothalamus to new levels. © 2015 Society for Endocrinology.

  12. In vivo somatostatin, vasopressin, and oxytocin synthesis in diabetic rat hypothalamus

    International Nuclear Information System (INIS)

    Fernstrom, J.D.; Fernstrom, M.H.; Kwok, R.P.

    1990-01-01

    The in vivo labeling of somatostatin-14, somatostatin-28, arginine vasopressin, and oxytocin was studied in rat hypothalamus after third ventricular administration of [35S]cysteine to streptozotocin-diabetic and normal rats. Immunoreactive somatostatin levels in hypothalamus were unaffected by diabetes, as was the incorporation of [35S]cysteine into hypothalamic somatostatin-14 and somatostatin-28. In contrast, immunoreactive vasopressin levels in hypothalamus and posterior pituitary (and oxytocin levels in posterior pituitary) were below normal in diabetic rats. Moreover, [35S]cysteine incorporation into hypothalamic vasopressin and oxytocin (probably mainly in the paraventricular nucleus because of its proximity to the third ventricular site of label injection) was significantly above normal. The increments in vasopressin and oxytocin labeling were reversed by insulin administration. In vivo cysteine specific activity and the labeling of acid-precipitable protein did not differ between normal and diabetic animals; effects of diabetes on vasopressin and oxytocin labeling were therefore not caused by simple differences in cysteine specific activity. These results suggest that diabetes (1) does not influence the production of somatostatin peptides in hypothalamus but (2) stimulates the synthesis of vasopressin and oxytocin. For vasopressin at least, the increase in synthesis may be a compensatory response to the known increase in its secretion that occurs in uncontrolled diabetes

  13. Neuroregulatory and neuroendocrine GnRH pathways in the hypothalamus and forebrain of the baboon.

    Science.gov (United States)

    Marshall, P E; Goldsmith, P C

    1980-07-14

    The distribution of neurons containing gonadotropin-releasing hormone (GnRH) in the baboon hypothalamus and forebrain was studied immunocytochemically by light and electron microscopy. GnRH was present in the perikarya, axonal and dendritic processes of immunoreactive neurons. Three populations of GnRH neurons could be distinguished. Most of the GnRH neurons which are assumed to directly influence the anterior pituitary were in the medial basal hypothalamus. Other cells that projected to the median eminence were found scattered throughout the hypothalamus. A second, larger population of neurons apparently was not involved with control of the anterior pituitary. These neurons were generally found within afferent and efferent pathways of the hypothalamus and forebrain, and may receive external information affecting reproduction. A few neurons projecting to the median eminence were also observed sending collaterals to other brain areas. Thus, in addition to their neuroendocrine role, these cells possibly have neuroregulatory functions. The inference is made that these bifunctional neurons, together with the widely observed GnRH-GnRH cellular interactions may help to synchronize ovulation and sexual behavior.

  14. Energy expenditure and bone formation share a common sensitivity to AP-1 transcription in the hypothalamus

    DEFF Research Database (Denmark)

    Rowe, Glenn C; Vialou, Vincent; Sato, Kazusa

    2012-01-01

    ) whether these effects were due to antagonism to AP1. Our results show that stereotactic injection of an adeno-associated virus vector to restrict overexpression of ¿FosB to the ventral hypothalamus of wildtype mice induced a profound increase in both energy expenditure and bone formation and bone mass...

  15. Genome-wide DNA methylation analysis of the porcine hypothalamus-pituitary-ovary axis

    DEFF Research Database (Denmark)

    Yuan, Xiao Long; Zhang, Zhe; Li, Bin

    2017-01-01

    Previous studies have suggested that DNA methylation in both CpG and CpH (where H = C, T or A) contexts plays a critical role in biological functions of different tissues. However, the genome-wide DNA methylation patterns of porcine hypothalamus-pituitary-ovary (HPO) tissues remain virtually unex...

  16. A semi-automated algorithm for hypothalamus volumetry in 3 Tesla magnetic resonance images.

    Science.gov (United States)

    Wolff, Julia; Schindler, Stephanie; Lucas, Christian; Binninger, Anne-Sophie; Weinrich, Luise; Schreiber, Jan; Hegerl, Ulrich; Möller, Harald E; Leitzke, Marco; Geyer, Stefan; Schönknecht, Peter

    2018-07-30

    The hypothalamus, a small diencephalic gray matter structure, is part of the limbic system. Volumetric changes of this structure occur in psychiatric diseases, therefore there is increasing interest in precise volumetry. Based on our detailed volumetry algorithm for 7 Tesla magnetic resonance imaging (MRI), we developed a method for 3 Tesla MRI, adopting anatomical landmarks and work in triplanar view. We overlaid T1-weighted MR images with gray matter-tissue probability maps to combine anatomical information with tissue class segmentation. Then, we outlined regions of interest (ROIs) that covered potential hypothalamus voxels. Within these ROIs, seed growing technique helped define the hypothalamic volume using gray matter probabilities from the tissue probability maps. This yielded a semi-automated method with short processing times of 20-40 min per hypothalamus. In the MRIs of ten subjects, reliabilities were determined as intraclass correlations (ICC) and volume overlaps in percent. Three raters achieved very good intra-rater reliabilities (ICC 0.82-0.97) and good inter-rater reliabilities (ICC 0.78 and 0.82). Overlaps of intra- and inter-rater runs were very good (≥ 89.7%). We present a fast, semi-automated method for in vivo hypothalamus volumetry in 3 Tesla MRI. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions

    Directory of Open Access Journals (Sweden)

    Alvarez-Bolado Gonzalo

    2012-01-01

    Full Text Available Abstract Background The hypothalamus is a brain region with essential functions for homeostasis and energy metabolism, and alterations of its development can contribute to pathological conditions in the adult, like hypertension, diabetes or obesity. However, due to the anatomical complexity of the hypothalamus, its development is not well understood. Sonic hedgehog (Shh is a key developmental regulator gene expressed in a dynamic pattern in hypothalamic progenitor cells. To obtain insight into hypothalamic organization, we used genetic inducible fate mapping (GIFM to map the lineages derived from Shh-expressing progenitor domains onto the four rostrocaudally arranged hypothalamic regions: preoptic, anterior, tuberal and mammillary. Results Shh-expressing progenitors labeled at an early stage (before embryonic day (E9.5 contribute neurons and astrocytes to a large caudal area including the mammillary and posterior tuberal regions as well as tanycytes (specialized median eminence glia. Progenitors labeled at later stages (after E9.5 give rise to neurons and astrocytes of the entire tuberal region and in particular the ventromedial nucleus, but not to cells in the mammillary region and median eminence. At this stage, an additional Shh-expressing domain appears in the preoptic area and contributes mostly astrocytes to the hypothalamus. Shh-expressing progenitors do not contribute to the anterior region at any stage. Finally, we show a gradual shift from neurogenesis to gliogenesis, so that progenitors expressing Shh after E12.5 generate almost exclusively hypothalamic astrocytes. Conclusions We define a fate map of the hypothalamus, based on the dynamic expression of Shh in the hypothalamic progenitor zones. We provide evidence that the large neurogenic Shh-expressing progenitor domains of the ventral diencephalon are continuous with those of the midbrain. We demonstrate that the four classical transverse zones of the hypothalamus have clearly

  18. [Oxidative metabolism of main and accessory olfactory bulbs, limpic system and hypothalamus during the estral cycle of the rat (author's transl)].

    Science.gov (United States)

    Sánchez-Criado, J E

    1979-06-01

    The in vitro oxidative metabolism of hypothalamus, olfactory and limbic systems from female rats in the estrous cycle have been measured. The accessory olfactory bulb becomes most active during diestrous when the hypothalamus reaches its lowest values.

  19. Xiaoyaosan Improves Depressive-Like Behaviors in Mice through Regulating Apelin-APJ System in Hypothalamus.

    Science.gov (United States)

    Yan, Zhiyi; Jiao, Haiyan; Ding, Xiufang; Ma, Qingyu; Li, Xiaojuan; Pan, Qiuxia; Wang, Tingye; Hou, Yajing; Jiang, Youming; Liu, Yueyun; Chen, Jiaxu

    2018-05-03

    Background: The apelin-APJ system has been considered to play a crucial role in HPA axis function, and how the traditional Chinese compound prescription Xiaoyaosan regulates the apelin-APJ system as a supplement to treat depressive disorders. Objective: To investigate the depression-like behaviors and expression of apelin and APJ in hypothalamus of chronic unpredictable mild stress (CUMS) mice and study whether these changes related to the regulation of Xiaoyaosan. Methods: 60 adult C57BL/6J mice were randomly divided into four groups, including control group, CUMS group, Xiaoyaosan treatment group and fluoxetine treatment group. Mice in the control group and CUMS group received 0.5 mL physiological saline once a day by intragastric administration. Mice in two treatment groups received Xiaoyaosan (0.25 g/kg/d) and fluoxetine (2.6 mg/kg/d), respectively. After 21 days of modeling with CUMS, the expression of apelin and APJ in hypothalamus were measured by real-time fluorescence quantitative PCR, western blot and immunohistochemical staining. The physical condition, body weight, food intake and behavior tests such as open field test, sucrose preference test and force swimming test were measured to evaluate depressive-like behaviors. Results: In this study, significant behavioral changes were found in CUMS-induced mice, meanwhile the expressions of apelin and APJ in the hypothalamus were changed after modeling. The body weight, food-intake and depressive-like behaviors in CUMS-induced mice could be improved by Xiaoyaosan treatment which is similar with the efficacy of fluoxetine, while the expressions of apelin and APJ in hypothalamus were modified by Xiaoyaosan. Conclusions: The data suggest that apelin-APJ system changes in the hypothalamus may be a target of depressive disorders, and the beneficial effects of Chinese compound prescription Xiaoyaosan on depressive-like behaviors may be mediated by the apelin-APJ system.

  20. Phenotyping of nNOS neurons in the postnatal and adult female mouse hypothalamus.

    Science.gov (United States)

    Chachlaki, Konstantina; Malone, Samuel A; Qualls-Creekmore, Emily; Hrabovszky, Erik; Münzberg, Heike; Giacobini, Paolo; Ango, Fabrice; Prevot, Vincent

    2017-10-15

    Neurons expressing nitric oxide (NO) synthase (nNOS) and thus capable of synthesizing NO play major roles in many aspects of brain function. While the heterogeneity of nNOS-expressing neurons has been studied in various brain regions, their phenotype in the hypothalamus remains largely unknown. Here we examined the distribution of cells expressing nNOS in the postnatal and adult female mouse hypothalamus using immunohistochemistry. In both adults and neonates, nNOS was largely restricted to regions of the hypothalamus involved in the control of bodily functions, such as energy balance and reproduction. Labeled cells were found in the paraventricular, ventromedial, and dorsomedial nuclei as well as in the lateral area of the hypothalamus. Intriguingly, nNOS was seen only after the second week of life in the arcuate nucleus of the hypothalamus (ARH). The most dense and heavily labeled population of cells was found in the organum vasculosum laminae terminalis (OV) and the median preoptic nucleus (MEPO), where most of the somata of the neuroendocrine neurons releasing GnRH and controlling reproduction are located. A great proportion of nNOS-immunoreactive neurons in the OV/MEPO and ARH were seen to express estrogen receptor (ER) α. Notably, almost all ERα-immunoreactive cells of the OV/MEPO also expressed nNOS. Moreover, the use of EYFP Vglut2 , EYFP Vgat , and GFP Gad67 transgenic mouse lines revealed that, like GnRH neurons, most hypothalamic nNOS neurons have a glutamatergic phenotype, except for nNOS neurons of the ARH, which are GABAergic. Altogether, these observations are consistent with the proposed role of nNOS neurons in physiological processes. © 2017 Wiley Periodicals, Inc.

  1. First records of several bird species for Zacatecas, Mexico

    Directory of Open Access Journals (Sweden)

    Alejandro Pérez-Arteaga

    2017-10-01

    Full Text Available We report the first records of five species of birds for the state of Zacatecas, Mexico: Ortalis poliocephala (West Mexican Chachalaca, Progne sinaloae (Sinaloa Martin, Peucaea carpalis (Rufous-winged Sparrow, Melospiza melodia (Song Sparrow and Cyanocompsa parellina (Blue Bunting. Ortalis poliocephala is also a new record for the Western Sierra Madre biogeographic region. These records are ecologically relevant as they extend the known distribution ranges and suggest that the southern Zacatecas region might be more diverse than previously thought.

  2. One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice.

    Science.gov (United States)

    Waise, T M Zaved; Toshinai, Koji; Naznin, Farhana; NamKoong, Cherl; Md Moin, Abu Saleh; Sakoda, Hideyuki; Nakazato, Masamitsu

    2015-09-04

    A high-fat diet (HFD) induces inflammation in systemic organs including the hypothalamus, resulting in obesity and diabetes. The vagus nerve connects the visceral organs and central nervous system, and the gastric-derived orexigenic peptide ghrelin transmits its starvation signals to the hypothalamus via the vagal afferent nerve. Here we investigated the inflammatory response in vagal afferent neurons and the hypothalamus in mice following one day of HFD feeding. This treatment increased the number of macrophages/microglia in the nodose ganglion and hypothalamus. Furthermore, one-day HFD induced expression of Toll-like receptor 4 in the goblet cells of the colon and upregulated mRNA expressions of the proinflammatory biomarkers Emr1, Iba1, Il6, and Tnfα in the nodose ganglion and hypothalamus. Both subcutaneous administration of ghrelin and celiac vagotomy reduced HFD-induced inflammation in these tissues. HFD intake triggered inflammatory responses in the gut, nodose ganglion, and subsequently in the hypothalamus within 24 h. These findings suggest that the vagal afferent nerve may transfer gut-derived inflammatory signals to the hypothalamus via the nodose ganglion, and that ghrelin may protect against HFD-induced inflammation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Lhx6 delineates a pathway mediating innate reproductive behaviors from the amygdala to the hypothalamus.

    Science.gov (United States)

    Choi, Gloria B; Dong, Hong-Wei; Murphy, Andrew J; Valenzuela, David M; Yancopoulos, George D; Swanson, Larry W; Anderson, David J

    2005-05-19

    In mammals, innate reproductive and defensive behaviors are mediated by anatomically segregated connections between the amygdala and hypothalamus. This anatomic segregation poses the problem of how the brain integrates activity in these circuits when faced with conflicting stimuli eliciting such mutually exclusive behaviors. Using genetically encoded and conventional axonal tracers, we have found that the transcription factor Lhx6 delineates the reproductive branch of this pathway. Other Lhx proteins mark neurons in amygdalar nuclei implicated in defense. We have traced parallel projections from the posterior medial amygdala, activated by reproductive or defensive olfactory stimuli, respectively, to a point of convergence in the ventromedial hypothalamus. The opposite neurotransmitter phenotypes of these convergent projections suggest a "gate control" mechanism for the inhibition of reproductive behaviors by threatening stimuli. Our data therefore identify a potential neural substrate for integrating the influences of conflicting behavioral cues and a transcription factor family that may contribute to the development of this substrate.

  4. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    International Nuclear Information System (INIS)

    Niles, L.P.; Hashemi, F.

    1990-01-01

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, [ 125 I]iodomelatonin, was examined using an incubation temperature (30 degree C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing [ 125 I]iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus

  5. Stability Analysis for an Extended Model of the Hypothalamus-Pituitary-Thyroid Axis

    OpenAIRE

    Beata Jackowska-Zduniak

    2016-01-01

    We formulate and analyze a mathematical model describing dynamics of the hypothalamus-pituitary-thyroid homoeostatic mechanism in endocrine system. We introduce to this system two types of couplings and delay. In our model, feedback controls the secretion of thyroid hormones and delay reflects time lags required for transportation of the hormones. The influence of delayed feedback on the stability behaviour of the system is discussed. Analytical results are illustrated by...

  6. Galanin-Expressing GABA Neurons in the Lateral Hypothalamus Modulate Food Reward and Noncompulsive Locomotion

    OpenAIRE

    Qualls-Creekmore, Emily; Yu, Sangho; Francois, Marie; Hoang, John; Huesing, Clara; Bruce-Keller, Annadora; Burk, David; Berthoud, Hans-Rudolf; Morrison, Christopher D.; Münzberg, Heike

    2017-01-01

    The lateral hypothalamus (LHA) integrates reward and appetitive behavior and is composed of many overlapping neuronal populations. Recent studies associated LHA GABAergic neurons (LHAGABA), which densely innervate the ventral tegmental area (VTA), with modulation of food reward and consumption; yet, LHAGABA projections to the VTA exclusively modulated food consumption, not reward. We identified a subpopulation of LHAGABA neurons that coexpress the neuropeptide galanin (LHAGal). These LHAGal n...

  7. Progesterone metabolism by the hypothalamus, pituitary, and uterus of the rat during pregnancy

    International Nuclear Information System (INIS)

    Marrone, B.L.; Karavolas, H.J.

    1981-01-01

    Metabolites of [ 3 H]progesterone were quantitated from incubations of hypothalamus, pituitary, and uterus of rats during different stages of pregnancy. The hypothalamus, anterior pituitary, and a section of uterus from five rats on Days 1, 8, 15, and 21 of pregnancy were incubated individually with [3H]progesterone and analyzed for metabolite formation by reverse isotopic dilution analysis. The radioactive metabolites present were 5 alpha-pregnane-3,20-dione (5 alpha-DHP), 3 alpha-hydroxy-5 alpha-pregnan-20-one, 20 alpha-hydroxy-4-pregnen-3-one, 20 alpha-hydroxy-5 alpha-pregnan-3-one, and 5 alpha-pregnane-3 alpha, 20 alpha-diol. The major metabolite formed by the hypothalamus and pituitary was 5 alpha-DHP. In the pituitary samples, formation of 5 alpha-DHP was decreased on Days 15 and 21 of pregnancy compared to Day 1, and formation of 20 alpha-hydroxy-5 alpha-pregnan-3-one was decreased on Day 21 compared to Day 1. In the uterine samples, 3 alpha-hydroxy-5 alpha-pregnan-20-one was the major metabolite formed at all stages of pregnancy. The formation of all metabolic products of progesterone by the uterus was increased on Day 21 compared to Days 1, 8, and 15 of pregnancy. No changes in the formation of progesterone metabolites were observed in the hypothalamic samples during pregnancy. It is concluded that there are different profiles in the in vitro metabolism of [3H]progesterone by the hypothalamus, pituitary, and uterus of the rat during the course of pregnancy

  8. A route for direct retinal input to the preoptic hypothalamus: dendritic projections into the optic chiasm.

    Science.gov (United States)

    Silver, J; Brand, S

    1979-07-01

    With the use of Golgi, horseradish peroxidase, and electron microscopic techniques, neurons within a broad region of the preoptic hypothalamus of the mouse were shown to have dendrites that projected well into the depths of the optic chiasm. Further experimental and ultrastructural investigation demonstrated synapses between these dendrites and retinal axonal boutons within the chiasm. All synapses located in the chiasm were classified as Gray's type I. The possible function of these dendritic projections is discussed.

  9. A Role for Glucocorticoids in Stress-Impaired Reproduction: Beyond the Hypothalamus and Pituitary

    OpenAIRE

    Whirledge, Shannon; Cidlowski, John A.

    2013-01-01

    In addition to the well-characterized role of the sex steroid receptors in regulating fertility and reproduction, reproductive events are also mediated by the hypothalamic-pituitary-adrenal axis in response to an individual's environment. Glucocorticoid secretion in response to stress contributes to the well-characterized suppression of the hypothalamic-pituitary-gonadal axis through central actions in the hypothalamus and pituitary. However, both animal and in vitro studies indicate that oth...

  10. Hypothalamus-Related Resting Brain Network Underlying Short-Term Acupuncture Treatment in Primary Hypertension

    Directory of Open Access Journals (Sweden)

    Hongyan Chen

    2013-01-01

    Full Text Available The present study attempted to explore modulated hypothalamus-seeded resting brain network underlying the cardiovascular system in primary hypertensive patients after short-term acupuncture treatment. Thirty right-handed patients (14 male were divided randomly into acupuncture and control groups. The acupuncture group received a continuous five-day acupuncture treatment and undertook three resting-state fMRI scans and 24-hour ambulatory blood pressure monitoring (ABPM as well as SF-36 questionnaires before, after, and one month after acupuncture treatment. The control group undertook fMRI scans and 24-hour ABPM. For verum acupuncture, average blood pressure (BP and heart rate (HR decreased after treatment but showed no statistical differences. There were no significant differences in BP and HR between the acupuncture and control groups. Notably, SF-36 indicated that bodily pain (P = 0.005 decreased and vitality (P = 0.036 increased after acupuncture compared to the baseline. The hypothalamus-related brain network showed increased functional connectivity with the medulla, brainstem, cerebellum, limbic system, thalamus, and frontal lobes. In conclusion, short-term acupuncture did not decrease BP significantly but appeared to improve body pain and vitality. Acupuncture may regulate the cardiovascular system through a complicated brain network from the cortical level, the hypothalamus, and the brainstem.

  11. Large central lesions compressing the hypothalamus and brainstem. Operative approaches and combination treatment with radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Hiroshi K.; Negishi, Masatoshi; Kohga, Hideaki; Hirato, Masafumi; Ohye, Chihiro [Gunma Univ., Maebashi (Japan). School of Medicine; Shibazaki, Tohru

    1998-09-01

    A major aim of minimally invasive neurosurgery is to preserve function in the brain and cranial nerves. Based on previous results of radiosurgery for central lesions (19 craniopharyngiomas, 46 pituitary adenomas, 9 meningeal tumors), combined micro- and/or radiosurgery was applied for large lesions compressing the hypothalamus and/or brainstem. A basal interhemispheric approach via superomedial orbitotomy or a transcallosal-transforaminal approach was used for these large tumors. Tumors left behind in the hypothalamus or cavernous sinus were treated with radiosurgery using a gamma unit. Preoperative hypothalamo-pituitary functions were preserved in most of these patients. Radiosurgical results were evaluated in patients followed for more than 2 years after treatment. All 9 craniopharyngiomas decreased in size after radiosurgery, although a second treatment was required in 4 patients. All 20 pituitary adenomas were stable or decreased in size and 5 of 7 functioning adenomas showed normalized values of hormones in the serum. All 3 meningeal tumors were stable or decreased in size after treatment. No cavernous sinus symptoms developed after radiosurgery. We conclude that combined micro- and radio-neurosurgery is an effective and less invasive treatment for large central lesions compressing the hypothalamus and brainstem. (author)

  12. Prosomeric organization of the hypothalamus in an elasmobranch, the catshark Scyliorhinus canicula.

    Directory of Open Access Journals (Sweden)

    Gabriel-Nicolás eSantos-Durán

    2015-04-01

    Full Text Available The hypothalamus has been a central topic in neuroanatomy because of its important physiological functions, but its mature organization remains elusive. Deciphering its embryonic and adult organization is crucial in an evolutionary approach of the organization of the vertebrate forebrain. Here we studied the molecular organization of the hypothalamus and neighboring telencephalic domains in a cartilaginous fish, the catshark, Scyliorhinus canicula, focusing on ScFoxg1a, ScShh, ScNkx2.1, ScDlx2/5, ScOtp and ScTbr1 expression profiles and on the identification α-acetylated-tubulin-immunoreactive (ir, TH-ir, 5-HT-ir and GFAP-ir structures by means of immunohistochemistry. Analysis of the results within the updated prosomeric model framework support the existence of alar and basal histogenetic compartments in the hypothalamus similar to those described in the mouse, suggesting the ancestrality of these subdivisions in jawed vertebrates. These data provide new insights into hypothalamic organization in cartilaginous fishes and highlight the generality of key features of the prosomeric model in jawed vertebrates.

  13. Prosomeric organization of the hypothalamus in an elasmobranch, the catshark Scyliorhinus canicula.

    Science.gov (United States)

    Santos-Durán, Gabriel N; Menuet, Arnaud; Lagadec, Ronan; Mayeur, Hélène; Ferreiro-Galve, Susana; Mazan, Sylvie; Rodríguez-Moldes, Isabel; Candal, Eva

    2015-01-01

    The hypothalamus has been a central topic in neuroanatomy because of its important physiological functions, but its mature organization remains elusive. Deciphering its embryonic and adult organization is crucial in an evolutionary approach of the organization of the vertebrate forebrain. Here we studied the molecular organization of the hypothalamus and neighboring telencephalic domains in a cartilaginous fish, the catshark, Scyliorhinus canicula, focusing on ScFoxg1a, ScShh, ScNkx2.1, ScDlx2/5, ScOtp, and ScTbr1 expression profiles and on the identification α-acetylated-tubulin-immunoreactive (ir), TH-ir, 5-HT-ir, and GFAP-ir structures by means of immunohistochemistry. Analysis of the results within the updated prosomeric model framework support the existence of alar and basal histogenetic compartments in the hypothalamus similar to those described in the mouse, suggesting the ancestrality of these subdivisions in jawed vertebrates. These data provide new insights into hypothalamic organization in cartilaginous fishes and highlight the generality of key features of the prosomeric model in jawed vertebrates.

  14. Morphometry of the pituitary gland and hypothalamus in long-term survivors of childhood trauma.

    Science.gov (United States)

    Porto, L; Margerkurth, J; Althaus, J; You, S-J; Zanella, F E; Kieslich, M

    2011-11-01

    Chronic pituitary dysfunction is increasingly recognized as a sequela of traumatic brain injury (TBI). Our aim was to rule out any late morphometric changes of the pituitary gland and hypothalamus in survivors of TBI during childhood requiring intensive care. We assessed morphometric abnormalities of the sella region and hypothalamus in patients who sustained TBI during childhood. The patients showed no clinical hormonal dysfunction at the acute phase and pituitary hormone levels at the time of our study were within normal limits. From the 18 enrolled patients in the magnetic resonance study, five were removed due to morphological changes or anatomical variations. We studied the MRI of 13 male survivors (mean age 27 years, mean time after trauma 20 years) and compared them to 13 male control subjects who were matched in terms of age (mean age, 26 years), education and ethnicity. Analyses of the pituitary gland and sella on a midsagittal T2- and T1-weighted image were performed. We used voxel-based morphometry (VBM), an unbiased MRI morphometric method to investigate hypothalamic region in this group of patients. There was only a trend towards a reduced pituitary gland width in the patient group compared to controls. However, no significant morphological and morphometric abnormality was seen and VBM showed no hypothalamic grey matter loss. In the absence of hormonal dysfunction, no persisting morphometric changes of the pituitary gland and hypothalamus were seen in survivors of childhood TBI requiring intensive care.

  15. Active coping with stress suppresses glucose metabolism in the rat hypothalamus.

    Science.gov (United States)

    Ono, Yumie; Lin, Hsiao-Chun; Tzen, Kai-Yuan; Chen, Hui-Hsing; Yang, Pai-Feng; Lai, Wen-Sung; Chen, Jyh-Horng; Onozuka, Minoru; Yen, Chen-Tung

    2012-03-01

    We used 18F-fluorodeoxyglucose small-animal positron-emission tomography to determine whether different styles of coping with stress are associated with different patterns of neuronal activity in the hypothalamus. Adult rats were subjected to immobilization (IMO)-stress or to a non-immobilized condition for 30 min, in random order on separate days, each of which was followed by brain-scanning. Some rats in the immobilized condition were allowed to actively cope with the stress by chewing a wooden stick during IMO, while the other immobilized rats were given nothing to chew on. Voxel-based statistical analysis of the brain imaging data shows that chewing counteracted the stress-induced increased glucose uptake in the hypothalamus to the level of the non-immobilized condition. Region-of-interest analysis of the glucose uptake values further showed that chewing significantly suppressed stress-induced increased glucose uptake in the paraventricular hypothalamic nucleus and the anterior hypothalamic area but not in the lateral hypothalamus. Together with the finding that the mean plasma corticosterone concentration at the termination of the IMO was also significantly suppressed when rats had an opportunity to chew a wooden stick, our results showed that active coping by chewing inhibited the activation of the hypothalamic-pituitary-adrenal axis to reduce the endocrine stress response.

  16. Large central lesions compressing the hypothalamus and brainstem. Operative approaches and combination treatment with radiosurgery

    International Nuclear Information System (INIS)

    Inoue, Hiroshi K.; Negishi, Masatoshi; Kohga, Hideaki; Hirato, Masafumi; Ohye, Chihiro; Shibazaki, Tohru

    1998-01-01

    A major aim of minimally invasive neurosurgery is to preserve function in the brain and cranial nerves. Based on previous results of radiosurgery for central lesions (19 craniopharyngiomas, 46 pituitary adenomas, 9 meningeal tumors), combined micro- and/or radiosurgery was applied for large lesions compressing the hypothalamus and/or brainstem. A basal interhemispheric approach via superomedial orbitotomy or a transcallosal-transforaminal approach was used for these large tumors. Tumors left behind in the hypothalamus or cavernous sinus were treated with radiosurgery using a gamma unit. Preoperative hypothalamo-pituitary functions were preserved in most of these patients. Radiosurgical results were evaluated in patients followed for more than 2 years after treatment. All 9 craniopharyngiomas decreased in size after radiosurgery, although a second treatment was required in 4 patients. All 20 pituitary adenomas were stable or decreased in size and 5 of 7 functioning adenomas showed normalized values of hormones in the serum. All 3 meningeal tumors were stable or decreased in size after treatment. No cavernous sinus symptoms developed after radiosurgery. We conclude that combined micro- and radio-neurosurgery is an effective and less invasive treatment for large central lesions compressing the hypothalamus and brainstem. (author)

  17. Effects of heavy-ion exposure to rat's hypothalamus on the copulatory behavior

    International Nuclear Information System (INIS)

    Saito, Masayoshi; Kawata, Tetsuya; Liu, C.; Kan'o, Momoe; Ito, Hisao; Takai, Nobuhiko; Ando, Koichi

    2005-01-01

    The effect of heavy-ion irradiation to brain on sexual behavior is not yet known. The present study was designed to determine whether irradiation (carbon particles 290 MeV/nucleon, Mono peak 15∼120 Gy, irradiation field 5-millimeter cube in hypothalamus) to rat's hypothalamus modifies the copulatory behavior of male rats. For the first year, we planned to estimate the short-term effects of carbon-irradiation on the copulatory behavior using a relatively high doses, and observation of sexual behavior was conducted for 30 min after 1, 2 or 3 months following irradiation. Results obtained in the first year are as follows. At dosages of 15 Gy, 30 Gy, 45 Gy and 60 Gy these were no changes in copulatory behavior after one month following irradiation; however, the intromission and ejaculation was found to decrease after 3-month follow-up in rats exposed to 60 Gy. At higher doses such as 90 Gy, 120 Gy, the number of mounting, intromission (120 Gy alone) and ejaculation (90 Gy, 120 Gy) were decreased. It may be possible to describe that carbon irradiation to hypothalamus does not inhibit the activity of copulatory behavior after short-term. Further experiments after long-term follow-up after irradiation are necessary to determine the chronic effects of heavy ions on the copulatory behavior. (author)

  18. [Biogenic amines in the epiphysis and hypothalamus under normal conditions and following ovariectomy].

    Science.gov (United States)

    Grishchenko, V I; Koliada, L D; Demidenko, D I

    1977-01-01

    Melatonin content in the epiphysis, serotonin, noradrenaline, dopamine-in the hypothalamus, gonadotropins--in the hypophysis of rats was studied under normal conditions and following ovariectomy; regularly of the estral cycle phases was studied as well. Two series of experiments were conducted on 120 rats with regular estral cycles. The animals were divided into groups according to the estral cycle phase. Melatonin concentration in the epiphysis, serotonin, noradrenaline, dopamine--in the hypothalamus was subject to variations coinciding with the estral cycle phases. Serotonin, noradrenaline, and dopamine content decreased in the hypophysis of ovariectomized rats in comparison with control; melatonin content rose in the epiphysis. There was no complete extinction of the estral cycle in the course of investigation (20 days). The action of castration on the sexual cycle depended on the phase at which the rats were subjected to ovariectomy. A reverse relationship existed between the melatonin content in the epiphysis and serotonin content in the hypothalamus, this serving as one of the important factors in the regulation of the sexual function.

  19. Dynamic of bioelectric activity back hypothalamus changes in conditions of pyroxan application on the background of stress-reaction developmen

    Directory of Open Access Journals (Sweden)

    T. G. Chaus

    2005-04-01

    Full Text Available The dynamic of changes of capacity of electroencephalogram’s rhythms back hypothalamus at animals of control group and group in stress conditions in parallel with rats who on a background of stress development accepted pyroxan is analyzed. The submitted results have shown influence of a pharmacological preparation pyroxan on bioelectric activity of back hypothalamus in stress conditions that restoration of electric activity under action of this preparation was more shown at 3 weeks of its application.

  20. [The catecholamine content of the hypothalamus during the modelling of the ulcer process in the gastroduodenal area].

    Science.gov (United States)

    Iemel'ianenko, I V; Sultanova, I D; Voronych, N M

    1995-01-01

    The content of catecholamines in rat hypothalamus in experimental ulcer process in gastroduodenal region has been studied in experiments on rats. It was determined that under these conditions the content of hypothalamus adrenalin increases and the content of noradrenalin decreases. The level of dofamin and DOFA in this brain structure changes in phases. The mentioned shifts depended on the duration and character of the pathological process in the gastroduodenal region.

  1. The different roles of glucocorticoids in the hippocampus and hypothalamus in chronic stress-induced HPA axis hyperactivity.

    Directory of Open Access Journals (Sweden)

    Li-Juan Zhu

    Full Text Available Hypothalamus-pituitary-adrenal (HPA hyperactivity is observed in many patients suffering from depression and the mechanism underling the dysfunction of HPA axis is not well understood. Chronic stress has a causal relationship with the hyperactivity of HPA axis. Stress induces the over-synthesis of glucocorticoids, which will arrive at all the body containing the brain. It is still complicated whether glucocorticoids account for chronic stress-induced HPA axis hyperactivity and in which part of the brain the glucocorticoids account for chronic stress-induced HPA axis hyperactivity. Here, we demonstrated that glucocorticoids were indispensable and sufficient for chronic stress-induced hyperactivity of HPA axis. Although acute glucocorticoids elevation in the hippocampus and hypothalamus exerted a negative regulation of HPA axis, we found that chronic glucocorticoids elevation in the hippocampus but not in the hypothalamus accounted for chronic stress-induced hyperactivity of HPA axis. Chronic glucocorticoids exposure in the hypothalamus still exerted a negative regulation of HPA axis activity. More importantly, we found mineralocorticoid receptor (MR - neuronal nitric oxide synthesis enzyme (nNOS - nitric oxide (NO pathway mediated the different roles of glucocorticoids in the hippocampus and hypothalamus in regulating HPA axis activity. This study suggests that the glucocorticoids in the hippocampus play an important role in the development of HPA axis hyperactivity and the glucocorticoids in the hypothalamus can't induce hyperactivity of HPA axis, revealing new insights into understanding the mechanism of depression.

  2. Effect of prolonged gamma irradiation (6.7 Gy) on monoamine oxidase activity in ewe hypothalamus in anestral period

    International Nuclear Information System (INIS)

    Pastorova, B.; Arendarcik, J.

    1988-01-01

    Changes were studied of monoamine oxidase (MAO) activity in the hypothalamus and hypophysis of ewes in the anestral period following whole-body 60 Co irradiation for 7 days with a dose of 6.7 Gy. The gamma radiation exposure rate was 0.039 Gy/h. The activity of MAO was determined using the radiochemical method. 14 C-tryptamine was used as the substrate. The highest activity was determined in the rostral hypothalamus (1100 pmol.mg -1 .min -1 ). MAO activity was at its lowest in the caudal region of the hypothalamus (550 pmol). The results show that whole-body exposure to gamma radiation with a total dose of 6.7 Gy makes a statistically significant increase (P<0.001) in MAO activity in the caudal hypothalamus of ewes while remaining at the level of the control group or increasing insignificantly in the rostral and medial hypothalamus. A significant decrease (P<0.05) was recorded in the hypophysis. It may be assumed that the increased degradation of catecholamines caused by MAO is one of the mechanisms responsible for the decreased concentration of catecholamines in the hypothalamus of ewes after irradiation. (author). 1 fig., 22 refs

  3. Hyperactive hypothalamus, motivated and non-distractible chronic overeating in ADAR2 transgenic mice.

    Science.gov (United States)

    Akubuiro, A; Bridget Zimmerman, M; Boles Ponto, L L; Walsh, S A; Sunderland, J; McCormick, L; Singh, M

    2013-04-01

    ADAR2 transgenic mice misexpressing the RNA editing enzyme ADAR2 (Adenosine Deaminase that act on RNA) show characteristics of overeating and experience adult onset obesity. Behavioral patterns and brain changes related to a possible addictive overeating in these transgenic mice were explored as transgenic mice display chronic hyperphagia. ADAR2 transgenic mice were assessed in their food preference and motivation to overeat in a competing reward environment with ad lib access to a running wheel and food. Metabolic activity of brain and peripheral tissue were assessed with [(18) F] fluorodeoxyglucose positron emission tomography (FDG-PET) and RNA expression of feeding related genes, ADAR2, dopamine and opiate receptors from the hypothalamus and striatum were examined. The results indicate that ADAR2 transgenic mice exhibit, (1) a food preference for diets with higher fat content, (2) significantly increased food intake that is non-distractible in a competing reward environment, (3) significantly increased messenger RNA (mRNA) expressions of ADAR2, serotonin 2C receptor (5HT2C R), D1, D2 and mu opioid receptors and no change in corticotropin-releasing hormone mRNAs and significantly reduced ADAR2 protein expression in the hypothalamus, (4) significantly increased D1 receptor and altered bioamines with no change in ADAR2, mu opioid and D2 receptor mRNA expression in the striatum and (5) significantly greater glucose metabolism in the hypothalamus, brain stem, right hippocampus, left and right mid brain regions and suprascapular peripheral tissue than controls. These results suggest that highly motivated and goal-oriented overeating behaviors of ADAR2 transgenic mice are associated with altered feeding, reward-related mRNAs and hyperactive brain mesolimbic region. Genes, Brain and Behavior © 2013 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  4. Effect of monochromatic light on circadian rhythmic expression of clock genes in the hypothalamus of chick.

    Science.gov (United States)

    Jiang, Nan; Wang, Zixu; Cao, Jing; Dong, Yulan; Chen, Yaoxing

    2017-08-01

    To clarify the effect of monochromatic light on circadian clock gene expression in chick hypothalamus, a total 240 newly hatched chickens were reared under blue light (BL), green light (GL), red light (RL) and white light (WL), respectively. On the post-hatched day 14, 24-h profiles of seven core clock genes (cClock, cBmal1, cBmal2, cCry1, cCry2, cPer2 and cPer3) were measured at six time points (CT 0, CT 4, CT 8, CT 12, CT 16, CT 20, circadian time). We found all these clock genes expressed with a significant rhythmicity in different light wavelength groups. Meanwhile, cClock and cBmal1 showed a high level under GL, and followed a corresponding high expression of cCry1. However, RL decreased the expression levels of these genes. Be consistent with the mRNA level, CLOCK and BMAL1 proteins also showed a high level under GL. The CLOCK-like immunoreactive neurons were observed not only in the SCN, but also in the non-SCN brain region such as the nucleus anterior medialis hypothalami, the periventricularis nucleus, the paraventricular nucleus and the median eminence. All these results are consistent with the auto-regulatory circadian feedback loop, and indicate that GL may play an important role on the circadian time generation and development in the chick hypothalamus. Our results also suggest that the circadian clock in the chick hypothalamus such as non-SCN brain region were involved in the regulation of photo information. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Melatonin modulates monochromatic light-induced melatonin receptor expression in the hypothalamus of chicks.

    Science.gov (United States)

    Zhang, Liwei; Chen, Funing; Cao, Jing; Dong, Yulan; Wang, Zixu; Chen, Yaoxing

    2017-09-01

    To study the mechanism of the effect of monochromatic light on physiological function in chicken, a total of 192 newly hatched chicks were randomly divided into intact, sham-operated and pinealectomy groups then exposed to white light (WL), red light (RL), green light (GL) and blue light (BL) using a light-emitting diode (LED) system for two weeks. At P14, the hypothalami were immediately collected for immunohistochemical staining of melatonin receptor subtypes (Mel1a and Mel1b) and detection of Mel1a and Mel1b expressions using RT-PCR and western blot. Immunohistochemical staining of the hypothalamus showed that the Mel1a-ir cells were distributed in the preoptic area (POA), nucleus preopticus periventricularis (POP) and suprachiasmatic nuclei (SCN), and the Mel1b-ir cells were presented in the POA and SCN. Analysis of RT-PCR and western blot showed that the mRNA and protein levels of Mel1a and Mel1b in the hypothalamus of chick exposed to GL were increased by 10.7-29.3%, 9.18-35.9% and 8.97-27.3% compared to those in the chicks exposed to WL (P=0.029-0.002), RL (P=0.027-0.001) and BL (P=0.038-0.007) in the intact group, respectively. After pinealectomy, however, these parameters decreased and there were no significant differences among the WL, RL, GL and BL groups. These findings suggested that melatonin plays a critical role in GL illumination-enhanced Mel1a and Mel1b expressions in the hypothalamus of chicks. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. The role of hypothalamus tuberomammillary nucleus on the regulation of respiratory movement of rats with asthma

    Directory of Open Access Journals (Sweden)

    Chen CHEN

    2016-01-01

    Full Text Available Objective  To explore the role of central histaminergic neurons in the tuberomammillary nucleus (TMN of posterior hypothalamus on asthma. Methods  Seventy-two healthy male SD rats were served as study objects. Sixty-four rats were sensitized with ovalbumin (OA solution intraperitoneally and challenged with OA aerosol inhalation to prepare asthma model. Asthma attack was evoked in asthmatic rats by OA solution injected intravenously, the electrical activities of TMN in posterior hypothalamus were recorded with biological signal collecting system and the power spectra were analyzed. TMN was lesioned or stimulated electrically by central stereo positioning technology. Histamine H3 receptor agonist R-(α-methylhistamine (RMHA or antagonist thioperamide (THIO was microinjected into TMN by central nuclear group microinjection technology, and the pulmonary function indexes were detected including diaphragm electromyography (EMGdi frequency, EMGdi integral, minute ventilation volume (MVV, expiratory time/inspiratory time (TE/TI, airway resistance (Raw and dynamic pulmonary compliance (Cdyn. Results  Compared with control group, the percentage of α, β1 and β2 wave in the electrical activities of TMN of asthmatic rats increased significantly, while the percentage of δ and θ wave decreased and the total discharge power increased. Compared with the corresponding control group, electric lesion of TMN or TMN microinjected with histamine H3 receptor antagonist increased EMGdi frequency, TE/TI, Raw, and decreased EMGdi integral, MVV and Cdyn. Compared with the corresponding control group, electric stimulation of TMN or TMN microinjected with histamine H3 receptor agonist decreased EMGdi frequency, TE/TI, Raw, and increased EMGdi integral, MVV and Cdyn. Conclusion  Central histaminergic neurons in tuberomammillary nucleus of posterior hypothalamus are activated in asthmatic rats. DOI: 10.11855/j.issn.0577-7402.2015.12.09

  7. NPY intraperitoneal injections produce antidepressant-like effects and downregulate BDNF in the rat hypothalamus.

    Science.gov (United States)

    Gelfo, Francesca; Tirassa, Paola; De Bartolo, Paola; Croce, Nicoletta; Bernardini, Sergio; Caltagirone, Carlo; Petrosini, Laura; Angelucci, Francesco

    2012-06-01

    Several studies have documented an involvement of Neuropeptide Y (NPY) in stress-related disorders. Stress-related disorders are also characterized by changes in brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), neurotrophins implicated in the survival and function of neurons. Thus the aim of this study was to investigate whether an NPY intraperitoneal treatment has antidepressant-like effects in rats subjected to a classical stress paradigm, the Forced Swim Test (FST), in association with changes in local brain neurotrophin production. Rats were intraperitoneally injected with either NPY (60 μg/kg) or a vehicle for three consecutive days between two FST sessions and then tested for time spent (or delay onset) in immobile posture. Moreover, we measured by enzyme-linked immunosorbent assay (ELISA) neurotrophin levels in the hypothalamus and corticosterone levels in plasma. The data showed that NPY induced a significant delay in the onset and a significant reduction in the duration of the immobility posture in FST. We also found that NPY decreased BDNF levels in the hypothalamus and corticosterone levels in plasma. Immobility posture in FST can be reduced by antidepressant drugs. Thus, our data show an antidepressant-like effect of NPY associated with changes in BDNF levels in the hypothalamus and reduced activity of hypothalamic-pituitary-adrenal (HPA) axis. These findings, while confirming the involvement of the NPY system in stress-related disorders, suggest that a less invasive route of administration, such as an intraperitoneal injection, may be instrumental in coping with stressful events in animal models and perhaps in humans. © 2012 Blackwell Publishing Ltd.

  8. Energy metabolism of rat cerebral cortex, hypothalamus and hypophysis during ageing.

    Science.gov (United States)

    Villa, R F; Ferrari, F; Gorini, A

    2012-12-27

    Ageing is one of the main risk factors for brain disorders. According to the neuroendocrine theory, ageing modifies the sensitivity of hypothalamus-pituitary-adrenal axis to homoeostatic signals coming from the cerebral cortex. The relationships between the energy metabolism of these areas have not been considered yet, in particular with respect to ageing. For these reasons, this study was undertaken to systematically investigate in female Sprague-Dawley rats aged 4, 6, 12, 18, 24, 28 months and in 4-month-old male ones, the catalytic properties of energy-linked enzymes of the Krebs' cycle, electron transport chain, glutamate and related amino acids on different mitochondrial subpopulations, i.e. non-synaptic perikaryal and intra-synaptic (two types) mitochondria. The biochemical enzymatic pattern of these mitochondria shows different expression of the above-mentioned enzymatic activities in the investigated brain areas, including frontal cerebral cortex, hippocampus, striatum, hypothalamus and hypophysis. The study shows that: (i) the energy metabolism of the frontal cerebral cortex is poorly affected by physiological ageing; (ii) the biochemical machinery of non-synaptic perikaryal mitochondria is differently expressed in the considered brain areas; (iii) at 4-6 months, hypothalamus and hypophysis possess lower oxidative metabolism with respect to the frontal cerebral cortex while (iv), during ageing, the opposite situation occurs. We hypothesised that these metabolic modifications likely try to grant HPA functionality in response to the incoming external stress stimuli increased during ageing. It is particularly notable that age-related changes in brain bioenergetics and in mitochondrial functionality may be considered as remarkable factors during physiological ageing and should play important roles in predisposing the brain to physiopathological events, tightly related to molecular mechanisms evoked for pharmacological treatments. Copyright © 2012 IBRO

  9. Neonatal maternal separation up-regulates protein signalling for cell survival in rat hypothalamus.

    Science.gov (United States)

    Irles, Claudine; Nava-Kopp, Alicia T; Morán, Julio; Zhang, Limei

    2014-05-01

    We have previously reported that in response to early life stress, such as maternal hyperthyroidism and maternal separation (MS), the rat hypothalamic vasopressinergic system becomes up-regulated, showing enlarged nuclear volume and cell number, with stress hyperresponsivity and high anxiety during adulthood. The detailed signaling pathways involving cell death/survival, modified by adverse experiences in this developmental window remains unknown. Here, we report the effects of MS on cellular density and time-dependent fluctuations of the expression of pro- and anti-apoptotic factors during the development of the hypothalamus. Neonatal male rats were exposed to 3 h-daily MS from postnatal days 2 to 15 (PND 2-15). Cellular density was assessed in the hypothalamus at PND 21 using methylene blue staining, and neuronal nuclear specific protein and glial fibrillary acidic protein immunostaining at PND 36. Expression of factors related to apoptosis and cell survival in the hypothalamus was examined at PND 1, 3, 6, 9, 12, 15, 20 and 43 by Western blot. Rats subjected to MS exhibited greater cell-density and increased neuronal density in all hypothalamic regions assessed. The time course of protein expression in the postnatal brain showed: (1) decreased expression of active caspase 3; (2) increased Bcl-2/Bax ratio; (3) increased activation of ERK1/2, Akt and inactivation of Bad; PND 15 and PND 20 were the most prominent time-points. These data indicate that MS can induce hypothalamic structural reorganization by promoting survival, suppressing cell death pathways, increasing cellular density which may alter the contribution of these modified regions to homeostasis.

  10. State-dependent cellular activity patterns of the cat paraventricular hypothalamus measured by reflectance imaging

    DEFF Research Database (Denmark)

    Kristensen, Morten Pilgaard; Rector, D M; Poe, G R

    1996-01-01

    Activity within the cat paraventricular hypothalamus (PVH) during sleep and waking states was measured by quantifying intrinsic tissue reflectivity. A fiber optic probe consisting of a 1.0 mm coherent image conduit, surrounded by plastic fibers which conducted 660 nm source light, was attached...... to a charge-coupled device camera, and positioned over the PVH in five cats. Electrodes for assessing state variables, including electroencephalographic activity, eye movement, and somatic muscle tone were also placed. After surgical recovery, reflected light intensity was measured continuously at 2.5 Hz...

  11. Effect of. beta. -endorphin on catecholamine levels in rat hypothalamus and cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Slavnov, V.N.; Valueva, G.V.; Markov, V.V.; Luchitskii, E.V.

    1986-10-01

    The authors studied the effect of beta-endorphin on catecholamine concentrations in the hypothalmus and cerebral cortex in rats, as a contribution to the explanation of the mechanism of action of this peptide on certain pituitary trophic functions. Concentrations of dopamine, noradrenalin, and adrenalin were determined by a radioenzymatic method. A Mark 3 scintillation system was used for radiometric investigation of the samples. The results of these experiments indicate that beta-endorphin has a marked effect on brain catecholamine levels mainly in the hypothalamus.

  12. Effect of β-endorphin on catecholamine levels in rat hypothalamus and cerebral cortex

    International Nuclear Information System (INIS)

    Slavnov, V.N.; Valueva, G.V.; Markov, V.V.; Luchitskii, E.V.

    1986-01-01

    The authors studied the effect of beta-endorphin on catecholamine concentrations in the hypothalmus and cerebral cortex in rats, as a contribution to the explanation of the mechanism of action of this peptide on certain pituitary trophic functions. Concentrations of dopamine, noradrenalin, and adrenalin were determined by a radioenzymatic method. A Mark 3 scintillation system was used for radiometric investigation of the samples. The results of these experiments indicate that beta-endorphin has a marked effect on brain catecholamine levels mainly in the hypothalamus

  13. Turnover of Biogenic Amines in the Hypothalamus of Rats during Pyrogen Fever

    Science.gov (United States)

    Penn, P. E.; Williams, B. A.

    1979-01-01

    Many pharmacological studies have implicated the biogenic amines in the hypothalamus as playing a role in the production of fever, but few investigations of endogenous neurochemicals have been made during fever. Turnover rates of transmitters utilizing radioactive precursors may be one of the most accurate measurements of activity in brain regions. The present study was designed to measure the turnover of 5-hydroxytryptamine (5-HT) norepinephrine (NE) and dopamine (DA) in the hypothalamus of rats during pyrogen fever. Salmonella typhosa (Wyeth, 8 units) was previously found in our laboratory to produce a significant hyperthermia in most rats by 2.5 hours. This pyrogen (N = l2) or saline control (N = 8) was injected intraperitoneally and the rats killed 2.75 hours later. Rectal temperatures (Tr) were monitored continuously with thermocouples taped to the tail and recorded automatically every 3 minutes. Half of each group received an injection of radioactive precursors, (3)H-tryptophan (0.5 mCi) and (3)H-tryptophan (1.0 mCi), via an indwelling jugular catheter 60 minutes before killing, and the other half at 90 minutes. The rats were killed by near freezing in liquid nitrogen and the brains dissected in the cold. Turnover was measured by the method of Lane (Life Sci 21, 1101, 1977). At the time of killing most of the pyrogen group showed a significant (p pyrogen and saline groups. A significant difference was found in the specific activity of NE between the 60 minute pyrogen and saline groups (4.41 +/- 0.41 vs 2.6 +/- 0.51 dpm/pmole) but no change in turnover. This suggests an increased accumulation of (3)H-NE in the pyrogen group, but no change in utilization. An increased turnover of DA for the pyrogen group (44.5 vs 19.2 pmole/mg protein/hr) was found. However, DA is mainly a precursor in the hypothalamus and measurement was near the limit of sensitivity for the assay; these limitations Must be considered in interpreting this data. The most significant finding was

  14. Sex differences in feeding behavior in rats: the relationship with neuronal activation in the hypothalamus

    Directory of Open Access Journals (Sweden)

    Atsushi eFukushima

    2015-03-01

    Full Text Available There is general agreement that the central nervous system in rodents differs between sexes due to the presence of gonadal steroid hormone during differentiation. Sex differences in feeding seem to occur among species, and responses to fasting (i.e., starvation, gonadal steroids (i.e., testosterone and estradiol, and diet (i.e., western-style diet vary significantly between sexes. The hypothalamus is the center for controlling feeding behavior. We examined the activation of feeding-related peptides in neurons in the hypothalamus. Phosphorylation of cyclic AMP response element-binding protein (CREB is a good marker for neural activation, as is the Fos antigen. Therefore, we predicted that sex differences in the activity of melanin-concentrating hormone (MCH neurons would be associated with feeding behavior. We determined the response of MCH neurons to glucose in the lateral hypothalamic area (LHA and our results suggested MCH neurons play an important role in sex differences in feeding behavior. In addition, fasting increased the number of orexin neurons harboring phosphorylated CREB in female rats (regardless of the estrous day, but not male rats. Glucose injection decreased the number of these neurons with phosphorylated CREB in fasted female rats. Finally, under normal spontaneous food intake, MCH neurons, but not orexin neurons, expressed phosphorylated CREB. These sex differences in response to fasting and glucose, as well as under normal conditions, suggest a vulnerability to metabolic challenges in females.

  15. Proteomic profiling of the hypothalamus in a mouse model of cancer-induced anorexia-cachexia.

    Science.gov (United States)

    Ihnatko, R; Post, C; Blomqvist, A

    2013-10-01

    Anorexia-cachexia is a common and severe cancer-related complication but the underlying mechanisms are largely unknown. Here, using a mouse model for tumour-induced anorexia-cachexia, we screened for proteins that are differentially expressed in the hypothalamus, the brain's metabolic control centre. The hypothalamus of tumour-bearing mice with implanted methylcholanthrene-induced sarcoma (MCG 101) displaying anorexia and their sham-implanted pair-fed or free-fed littermates was examined using two-dimensional electrophoresis (2-DE)-based comparative proteomics. Differentially expressed proteins were identified by liquid chromatography-tandem mass spectrometry. The 2-DE data showed an increased expression of dynamin 1, hexokinase, pyruvate carboxylase, oxoglutarate dehydrogenase, and N-ethylmaleimide-sensitive factor in tumour-bearing mice, whereas heat-shock 70 kDa cognate protein, selenium-binding protein 1, and guanine nucleotide-binding protein Gα0 were downregulated. The expression of several of the identified proteins was similarly altered also in the caloric-restricted pair-fed mice, suggesting an involvement of these proteins in brain metabolic adaptation to restricted nutrient availability. However, the expression of dynamin 1, which is required for receptor internalisation, and of hexokinase, and pyruvate carboxylase were specifically changed in tumour-bearing mice with anorexia. The identified differentially expressed proteins may be new candidate molecules involved in the pathophysiology of tumour-induced anorexia-cachexia.

  16. Stiletto stabbing: penetrating injury to the hypothalamus with hyperacute diabetes insipidus.

    Science.gov (United States)

    Itshayek, Eyal; Gomori, John Moshe; Spektor, Sergey; Cohen, José E

    2010-12-01

    Diabetes insipidus (DI) is a well documented complication observed after traumatic head injuries. We report a case of hyperacute onset DI in a 19-year-old male who sustained a hypothalamic-pituitary injury when he was stabbed in the head with a 30-cm long thin-bladed knife. At CT, our patient showed significant hemorrhagic contusions of the lower hypothalamus. He developed polydipsia, polyuria, and mild hypernatremia in the Emergency Department. Diagnostic digital subtraction angiography showed a hypervascular congestive pituitary gland with prominent draining veins. On the third day his hypernatremia became severe (183mEq/L). He was managed with parenteral fluids and a regimen of intranasal DDAVP (1-desamino 8-d-arginine vasopressin), leading to improved plasmatic sodium levels, urine output, and urinary specific gravity. In patients presenting with hyperacute posttraumatic DI, emergency room physicians and neurosurgeons should rule out direct injury to the hypothalamus and/or the posterior lobe of the pituitary, and initiate early pharmacological treatment. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Characterization of taurine binding, uptake, and release in the rat hypothalamus

    International Nuclear Information System (INIS)

    Hanretta, A.T.

    1985-01-01

    The neurotransmitter criteria of specific receptors, inactivation, and release were experimentally examined for taurine in the hypothalamus. Specific membrane binding and synaptosomal uptake of taurine both displayed high affinity and low affinity systems. The neurotransmitter criterion of release was studied in superfused synaptosomes. Exposure of synaptosomes which had been preloaded with a concentration of [ 3 H]taurine in the high affinity uptake range (1.5 μM) to either 56 mM K + or 100 μM veratridine evoked a Ca 2+ -independent release. Exposure of synaptosomes which had been preloaded with a concentration of [ 3 H]taurine in the low affinity uptake range (2 mM) to 56 mM K + induced a Ca 2+ -independent release, whereas 100 + M veratridine did not, either in the presence or absence of Ca 2+ . Based on these results, as well as other observations, a model is proposed in which the high affinity uptake system is located on neuronal membranes and the low affinity uptake system is located on glial membranes. The mechanisms of binding, uptake, and release in relation to the cellular location of each are discussed. We conclude that the neurotransmitter criterion of activation by re-uptake is satisfied for taurine in the hypothalamus. However, the failure to demonstrate both a specific taurine receptor site and a Ca 2+ -dependent evoked release, necessitates that we conclude that taurine appears not to function as a hypothalamic neurotransmitter, at least not in the classical sense

  18. Differential requirements for Gli2 and Gli3 in the regional specification of the mouse hypothalamus

    Directory of Open Access Journals (Sweden)

    Roberta eHaddad-Tóvolli

    2015-03-01

    Full Text Available Secreted protein Sonic hedgehog (Shh ventralizes the neural tube by modulating the crucial balance between activating and repressing functions (GliA, GliR of transcription factors Gli2 and Gli3. This balance—the Shh-Gli code—is species- and context-dependent and has been elucidated for the mouse spinal cord. The hypothalamus, a forebrain region regulating vital functions like homeostasis and hormone secretion, shows dynamic and intricate Shh expression as well as complex regional differentiation. Here we asked if particular combinations of Gli2 and Gli3 and of GliA and GliR functions contribute to the variety of hypothalamic regions, i.e. we wanted to clarify the hypothalamic version of the Shh-Gli code. Based on mouse mutant analysis, we show that: 1 hypothalamic regional heterogeneity is based in part on differentially stringent requirements for Gli2 or Gli3; 2 another source of diversity are differential requirements for Shh of neural vs non-neural origin; 3 Gli2 is indispensable for the specification of a medial progenitor domain generating several essential hypothalamic nuclei plus the pituitary and median eminence; 4 the suppression of Gli3R by neural and non-neural Shh is essential for hypothalamic specification. Finally, we have mapped our results on a recent model which considers the hypothalamus as a transverse region with alar and basal portions. Our data confirm the model and are explained by it.

  19. Reactive oxygen species in the paraventricular nucleus of the hypothalamus alter sympathetic activity during metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    JOSIANE CAMPOS CRUZ

    2015-12-01

    Full Text Available The paraventricular nucleus of the hypothalamus (PVN contains heterogeneous populations of neurons involved in autonomic and neuroendocrine regulation. The PVN plays an important role in the sympathoexcitatory response to increasing circulating levels of angiotensin II (Ang-II, which activates AT1 receptors in the circumventricular organs (OCVs, mainly in the subfornical organ (SFO. Circulating Ang-II induces a de novo synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation of AT1 receptors induces intracellular increases in reactive oxygen species (ROS, leading to increases in sympathetic nerve activity (SNA. Chronic sympathetic nerve activation promotes a series of metabolic disorders that characterizes the metabolic syndrome (MetS: dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin, insulin and Ang-II. This review will discuss the contribution of our laboratory and others regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen species along the subfornical organ and paraventricular nucleus of the hypothalamus. We hypothesize that this mechanism could be involved in metabolic disorders underlying MetS.

  20. Induction of Autophagy in the Striatum and Hypothalamus of Mice after 835 MHz Radiofrequency Exposure.

    Directory of Open Access Journals (Sweden)

    Ju Hwan Kim

    Full Text Available The extensive use of wireless mobile phones and associated communication devices has led to increasing public concern about potential biological health-related effects of the exposure to electromagnetic fields (EMFs. EMFs emitted by a mobile phone have been suggested to influence neuronal functions in the brain and affect behavior. However, the affects and phenotype of EMFs exposure are unclear. We applied radiofrequency (RF of 835 MHz at a specific absorption rate (SAR of 4.0 W/kg for 5 hours/day for 4 and 12 weeks to clarify the biological effects on mouse brain. Interestingly, microarray data indicated that a variety of autophagic related genes showed fold-change within small range after 835 MHz RF exposure. qRT-PCR revealed significant up-regulation of the autophagic genes Atg5, LC3A and LC3B in the striatum and hypothalamus after a 12-week RF. In parallel, protein expression of LC3B-II was also increased in both brain regions. Autophagosomes were observed in the striatum and hypothalamus of RF-exposed mice, based on neuronal transmission electron microscopy. Taken together, the results indicate that RF exposure of the brain can induce autophagy in neuronal tissues, providing insight into the protective mechanism or adaptation to RF stress.

  1. The effect of radioactive radiation of the neurotransmitter levels in the hypothalamus, pituitary and pineal glands of sheeps

    International Nuclear Information System (INIS)

    Pastorova, B.; Maracek, I.; Stanikova, A.; Halagan, J.; Sopkova, D.

    2006-01-01

    The effect of the exposure of the whole body to continuous radiation was studied of catecholamines (epinephrine and unepinephrine) in the hypothalamus, pineal and pituitary glands of ewes during the anestric period with synchronized oestrus. The radiation was provided at the rate 0.020 Gy per hour. Catecholamines were separated from the tissue supernatants by the absorption chromatographic method and the catecholamine contents in the eluates were determined spectrofluorometrically. Protracted exposure to gamma radiation and hormone stimulation with SG reduces the concentration of unepinephrine (P<0.001) in the whole hypothalamus of the sheep. A statistically significant decrease (P<0.001) was recorded in the medial and caudal hypothalamus of ewes. If is assumed that the decrease in catecholamine concentration after irradiation (2.4 Gy) is associated with the destroyed metabolism of catecholamines in nervous tissue and activity its degradation enzyme monoaminooxidase. (authors)

  2. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    Science.gov (United States)

    Canelles, Sandra; Argente, Jesús; Barrios, Vicente

    2016-01-01

    ABSTRACT Insulin receptor substrate-2-deficient (IRS2−/−) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  3. Modulation of sibutramine-induced increases in extracellular noradrenaline concentration in rat frontal cortex and hypothalamus by α2-adrenoceptors

    Science.gov (United States)

    Wortley, K E; Heal, D J; Stanford, S C

    1999-01-01

    The effects of sibutramine (0.25–10 mg kg−1 i.p.) on extracellular noradrenaline concentration in the frontal cortex and hypothalamus of freely-moving rats were investigated using microdialysis. The role of presynaptic α2-adrenoceptors in modulating the effects of sibutramine in these brain areas was also determined.Sibutramine induced an increase in extracellular noradrenaline concentration, the magnitude of which paralleled dose, in both brain areas. In the cortex, this increase was gradual and sustained, whereas in the hypothalamus it was more rapid and of shorter duration.In both the cortex and hypothalamus, pretreatment of rats with the α2-adrenoceptor antagonist RX821002 (3 mg kg−1 i.p.) potentiated increases in the accumulation of extracellular noradrenaline induced by sibutramine (10 mg kg−1 i.p.), by 7 and 10 fold respectively. RX821002 also reduced the latency of sibutramine to reach its maximum effect in the cortex, but not in the hypothalamus.Infusion of RX821002 (1 μM) via the probe increased the accumulation of extracellular noradrenaline induced by sibutramine (10 mg kg−1 i.p.) in both brain areas. In the hypothalamus, the effects of RX821002 on the accumulation of noradrenaline induced by sibutramine were 2 fold greater than those in the cortex.These findings support evidence that sibutramine inhibits the reuptake of noradrenaline in vivo, but that the accumulation of extracellular noradrenaline is limited by noradrenergic activation of presynaptic α2-adrenoceptors. Furthermore, the data suggest that terminal α2-adrenoceptors in the hypothalamus exert a greater inhibitory effect over the control of extracellular noradrenaline accumulation than do those in the cortex. PMID:10516646

  4. Histological changes in the hypothalamus and ependyne in the third ventricle of the brain in sheep after irradiation

    International Nuclear Information System (INIS)

    Stanikova, A.; Pastorova, B.

    2008-01-01

    We focused on changes in the hypothalamic neuro-secretion, morphology of brain ventricle ependyma of sheep after irradiation and hormonal stimulation. We observed sheep in anoestrous. Synchronization was ensured with Agelin for 10 days. On day 5 after instilation of sponges, we started with irradiation lasting for 5 days (2.5 Gy) and on day 10 we stimulated the sheep with SG and FSH. The samples from hypothalamus intended for REM, were processed according to Murakami et al. (1977). Hormonal treatment in combination with irradiation produced qualitative changes, more marked in the ependyma than in the hypothalamus. (authors)

  5. Morphological changes in the neurons of hypothalamus and ependyma of the third cerebral ventricle of sheep after irradiation

    International Nuclear Information System (INIS)

    Stanikova, A.; Pastorova, B.; Maracek, I.; Sopkova, D.; Halagan, J.

    2004-01-01

    We focused on changes in the hypothalamic neuro-secretion, morphology of brain ventricle ependyma of sheep after irradiation and hormonal stimulation. We observed sheep in anoestrus. Synchronization was ensured with Agelin for 10 days. On day 5 after the instillation of sponges, we started with irradiation lasting for 5 days (2.5 Gy) and on day 10 we stimulated the sheep with SG and FSH. The samples from hypothalamus intended for REM, were processed according to Murakami et al. (1977). Hormonal treatment in combination with irradiation produced qualitative changes, more marked in the ependyma than in the hypothalamus. (authors)

  6. Opioid systems in the lateral hypothalamus regulate feeding behavior through orexin and GABA neurons.

    Science.gov (United States)

    Ardianto, C; Yonemochi, N; Yamamoto, S; Yang, L; Takenoya, F; Shioda, S; Nagase, H; Ikeda, H; Kamei, J

    2016-04-21

    The hypothalamus controls feeding behavior. Since central opioid systems may regulate feeding behavior, we examined the role of μ-, δ- and κ-opioid receptors in the lateral hypothalamus (LH), the hunger center, in feeding behavior of mice. Non-selective (naloxone; 3 mg/kg, s.c.) and selective μ- (β-funaltrexamine, β-FNA; 10 mg/kg, s.c.), δ- (naltrindole; 3 mg/kg, s.c.) and κ- (norbinaltorphimine, norBNI; 20 mg/kg, s.c.) opioid receptor antagonists significantly decreased food intake in food-deprived mice. The injection of naloxone (20 μg/side) into the LH significantly decreased food intake whereas the injection of naloxone (20 μg/side) outside of the LH did not affect food intake. The injection of β-FNA (2 μg/side), naltrindole (1 μg/side) or norBNI (2 μg/side) into the LH significantly decreased food intake. Furthermore, all these antagonists significantly decreased the mRNA level of preproorexin, but not those of other hypothalamic neuropeptides. In addition, the injection of the GABAA receptor agonist muscimol (5 μg/side) into the LH significantly decreased food intake, and this effect was abolished by the GABAA receptor antagonist bicuculline (50 μg/side). Muscimol (1mg/kg, i.p.) decreased the mRNA level of preproorexin in the hypothalamus. Naloxone (3mg/kg, s.c.) significantly increased the GABA level in the LH and both bicuculline and the GABA release inhibitor 3-mercaptopropionic acid (3-MP, 5 μg/side) attenuated the inhibitory effect of naloxone on feeding behavior. 3-MP also attenuated the effects of β-FNA and norBNI, but not that of naltrindole. These results show that opioid systems in the LH regulate feeding behavior through orexin neurons. Moreover, μ- and κ-, but not δ-, opioid receptor antagonists inhibit feeding behavior by activating GABA neurons in the LH. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. A capital cearense do Jazz & Blues: outros acordes desta melodia

    Directory of Open Access Journals (Sweden)

    Germana Lima de Almeida

    2015-01-01

    Full Text Available O presente artigo tece considerações sobre o processo de mudança social desencadeado na população de moradores dos sítios cafeicultores de Guaramiranga, município serrano de 4.070 habitantes, situado a 110 km da capital cearense. Essencialmente ligado à agricultura até a década de 1980, a partir dos anos 1990 este município torna-se vetor de políticas públicas voltadas para a atividade turística local. O objetivo deste artigo é observar os efeitos da acelerada transformação socioespacial decorrente da nova atividade, graças a investimentos públicos e particulares, que reformulam monumentos e imóveis, conferindo-lhes novos usos e signos. Neste processo, evidenciou-se uma acelerada reformulação não apenas espacial, mas também da subjetividade destes lugares. Por exemplo, a alteração das características identitárias, relacionais e históricas destes ambientes em relação aos seus habitantes. Diante dos resultados obtidos, constatou-se que a atividade turística na forma que foi inserida em Guaramiranga, reflete a atual conjuntura do capitalismo pós-moderno ou transnacional, que avança sobre mercados e populações, ampliando segregações e desigualdades sociais e a transformação dos seus referenciais de pertencimento.

  8. Pedophilia is linked to reduced activation in hypothalamus and lateral prefrontal cortex during visual erotic stimulation.

    Science.gov (United States)

    Walter, Martin; Witzel, Joachim; Wiebking, Christine; Gubka, Udo; Rotte, Michael; Schiltz, Kolja; Bermpohl, Felix; Tempelmann, Claus; Bogerts, Bernhard; Heinze, Hans Jochen; Northoff, Georg

    2007-09-15

    Although pedophilia is of high public concern, little is known about underlying neural mechanisms. Although pedophilic patients are sexually attracted to prepubescent children, they show no sexual interest toward adults. This study aimed to investigate the neural correlates of deficits of sexual and emotional arousal in pedophiles. Thirteen pedophilic patients and 14 healthy control subjects were tested for differential neural activity during visual stimulation with emotional and erotic pictures with functional magnetic resonance imaging. Regions showing differential activations during the erotic condition comprised the hypothalamus, the periaqueductal gray, and dorsolateral prefrontal cortex, the latter correlating with a clinical measure. Alterations of emotional processing concerned the amygdala-hippocampus and dorsomedial prefrontal cortex. Hypothesized regions relevant for processing of erotic stimuli in healthy individuals showed reduced activations during visual erotic stimulation in pedophilic patients. This suggests an impaired recruitment of key structures that might contribute to an altered sexual interest of these patients toward adults.

  9. Macronutrients and the FTO gene expression in hypothalamus; a systematic review of experimental studies

    Directory of Open Access Journals (Sweden)

    Saeid Doaei

    2017-03-01

    Full Text Available The various studies have examined the relationship between FTO gene expression and macronutrients levels. In order to obtain better viewpoint from this interactions, all of existing studies were reviewed systematically. All published papers have been obtained and reviewed using standard and sensitive keywords from databases such as CINAHL, Embase, PubMed, PsycInfo, and the Cochrane, from 1990 to 2016. The results indicated that all of 6 studies that met the inclusion criteria (from a total of 428 published article found FTO gene expression changes at short-term follow-ups. Four of six studies found an increased FTO gene expression after calorie restriction, while two of them indicated decreased FTO gene expression. The effect of protein, carbohydrate and fat were separately assessed and suggested by all of six studies. In Conclusion, The level of FTO gene expression in hypothalamus is related to macronutrients levels. Future research should evaluate the long-term impact of dietary interventions.

  10. Hypothalamus-pituitary-thyroid axis activity and function of cardiac muscle in energy deficit

    Directory of Open Access Journals (Sweden)

    Katarzyna Lachowicz

    2017-12-01

    Full Text Available Frequently repeated statement that energy restriction is a factor that improves cardiovascular system function seems to be not fully truth. Low energy intake modifies the hypothalamus-pituitary-thyroid axis activity and thyroid hormone peripheral metabolism. Thyroid hormones, as modulators of the expression and activity of many cardiomyocyte proteins, control heart function. Decreased thyroid hormone levels and their disturbanced conversion and action result in alternation of cardiac remodeling, disorder of calcium homeostasis and diminish myocardial contractility. This review provides a summary of the current state of knowledge about the mechanisms of energy restriction effects on thyroidal axis activity, thyroid hormone peripheral metabolism and action in target tissues, especially in cardiac myocytes. We also showed the existence of energy restriction-thyroid-heart pathway.

  11. Structural and Ultrastructural Analysis of Cerebral Cortex, Cerebellum, and Hypothalamus from Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Juan P. Hernández-Fonseca

    2009-01-01

    Full Text Available Autonomic and peripheral neuropathies are well-described complications in diabetes. Diabetes mellitus is also associated to central nervous system damage. This little-known complication is characterized by impairment of brain functions and electrophysiological changes associated with neurochemical and structural abnormalities. The purpose of this study was to investigate brain structural and ultrastructural changes in rats with streptozotocin-induced diabetes. Cerebral cortex, hypothalamus, and cerebellum were obtained from controls and 8 weeks diabetic rats. Light and electron microscope studies showed degenerative changes of neurons and glia, perivascular and mitochondrial swelling, disarrangement of myelin sheath, increased area of myelinated axons, presynaptic vesicle dispersion in swollen axonal boutoms, fragmentation of neurofilaments, and oligodendrocyte abnormalities. In addition, depressive mood was observed in diabetic animals. The brain morphological alterations observed in diabetic animals could be related to brain pathologic process leading to abnormal function, cellular death, and depressive behavioral.

  12. State-dependent cellular activity patterns of the cat paraventricular hypothalamus measured by reflectance imaging

    DEFF Research Database (Denmark)

    Kristensen, Morten Pilgaard; Rector, D M; Poe, G R

    1996-01-01

    Activity within the cat paraventricular hypothalamus (PVH) during sleep and waking states was measured by quantifying intrinsic tissue reflectivity. A fiber optic probe consisting of a 1.0 mm coherent image conduit, surrounded by plastic fibers which conducted 660 nm source light, was attached...... to a charge-coupled device camera, and positioned over the PVH in five cats. Electrodes for assessing state variables, including electroencephalographic activity, eye movement, and somatic muscle tone were also placed. After surgical recovery, reflected light intensity was measured continuously at 2.5 Hz...... changes with behavioral state in a regionally specific manner, and that overall activity increases during quiet sleep, and is even more enhanced in active sleep. PVH activation could be expected to stimulate pituitary release of adrenocorticotropic hormone (ACTH) and affect input to autonomic regulatory...

  13. Metabolic activity in the insular cortex and hypothalamus predicts hot flashes: an FDG-PET study.

    Science.gov (United States)

    Joffe, Hadine; Deckersbach, Thilo; Lin, Nancy U; Makris, Nikos; Skaar, Todd C; Rauch, Scott L; Dougherty, Darin D; Hall, Janet E

    2012-09-01

    Hot flashes are a common side effect of adjuvant endocrine therapies (AET; leuprolide, tamoxifen, aromatase inhibitors) that reduce quality of life and treatment adherence in breast cancer patients. Because hot flashes affect only some women, preexisting neurobiological traits might predispose to their development. Previous studies have implicated the insula during the perception of hot flashes and the hypothalamus in thermoregulatory dysfunction. The aim of the study was to understand whether neurobiological factors predict hot flashes. [18F]-Fluorodeoxyglucose (FDG) positron emission tomography (PET) brain scans coregistered with structural magnetic resonance imaging were used to determine whether metabolic activity in the insula and hypothalamic thermoregulatory and estrogen-feedback regions measured before and in response to AET predict hot flashes. Findings were correlated with CYP2D6 genotype because of CYP2D6 polymorphism associations with tamoxifen-induced hot flashes. We measured regional cerebral metabolic rate of glucose uptake (rCMRglu) in the insula and hypothalamus on FDG-PET. Of 18 women without hot flashes who began AET, new-onset hot flashes were reported by 10 (55.6%) and were detected objectively in nine (50%) participants. Prior to the use of all AET, rCMRglu in the insula (P ≤ 0.01) and hypothalamic thermoregulatory (P = 0.045) and estrogen-feedback (P = 0.007) regions was lower in women who reported developing hot flashes. In response to AET, rCMRglu was further reduced in the insula in women developing hot flashes (P ≤ 0.02). Insular and hypothalamic rCMRglu levels were lower in intermediate than extensive CYP2D6 metabolizers. Trait neurobiological characteristics predict hot flashes. Genetic variability in CYP2D6 may underlie the neurobiological predisposition to hot flashes induced by AET.

  14. Nutritional status affects the microRNA profile of the hypothalamus of female sheep.

    Science.gov (United States)

    Yang, Heng; Lin, Shan; Lei, Xiaoping; Yuan, Cong; Yu, Yaosheng; Zhao, Zongsheng; Chen, Jingbo

    2018-01-25

    Recent studies on the seasonal regulation of the oestrous cycle in sheep have focussed mainly on the responses to photoperiod. However, the brain systems that control reproductive activity also respond to nutritional inputs, although the molecular mechanisms involved are not completely understood. One possibility is that small, non-coding RNAs, such as micro-RNAs (miRNAs), have significant influence. In the present study, the amounts and characteristics of miRNAs in hypothalamus from oestrous and anestrous ewes, fed low- or high-nutrient diets, were compared using Illumina HiSeq sequencing technology. In total, 398 miRNAs, including 261 novel miRNAs, were identified in ewes with an enhanced nutritional status (HEN), whereas 384 miRNAs, including 247 novel miRNAs, were identified in the ewes with a lesser nutritional status (HAN). There were eight conserved and 140 novel miRNAs expressed differentially between the two libraries. Based on quantitative real-time polymerase chain reaction, six miRNAs were assessed to verify the accuracy of the library database. Moreover, the correlation between the miRNA target and several upstream and downstream genes in the oestrus-related pathways were also verified in hypothalamus nerve cells. According to the results, nutritional status plays an important role in oestrous regulation in sheep, and the hypothalamic processes and pathways induced by nutritional signals (folic acid and tyrosine) are different from those induced by photoperiodic regulation of oestrus. We have expanded the repertoire of sheep miRNAs that could contribute to the molecular mechanisms that regulate the initiation of oestrous cycles in anestrous ewes in response to the influence of nutritional status.

  15. Topography of somatostatin gene expression relative to molecular progenitor domains during ontogeny of the mouse hypothalamus

    Directory of Open Access Journals (Sweden)

    Nicanor eMorales-Delgado

    2011-02-01

    Full Text Available The hypothalamus comprises alar, basal and floor plate developmental compartments. Recent molecular data support a rostro-caudal subdivision into rostral (terminal and caudal (peduncular halves. In this context, the distribution of neuronal populations expressing somatostatin (Sst mRNA was analyzed in the developing mouse hypothalamus, comparing with the expression pattern of the genes Orthopedia (Otp, Distal-less 5 (Dlx5, Sonic Hedgehog (Shh and Nk2 homeobox 1 (Nkx2.1. At embryonic day 10.5 (E10.5, Sst mRNA was first detectable in the anterobasal nucleus, a Nkx2.1-, Shh- and Otp- positive basal domain. By E13.5, nascent Sst expression was also related to two additional Otp-positive domains within the alar plate and one in the basal plate. In the alar plate, Sst-positive cells were observed in rostral and caudal ventral subdomains of the Otp-positive paraventricular complex. An additional basal Sst-expressing cell group was found within a longitudinal Otp-positive periretromamillary band that separates the retromamillary area from tuberal areas. Apart of subsequent growth of these initial populations, at E13.5 and E15.5 some Sst-positive derivatives migrate tangentially into neighboring regions. A subset of cells produced at the anterobasal nucleus disperses ventralwards into the shell of the ventromedial hypothalamic nucleus and the arcuate nucleus. Cells from the rostroventral paraventricular subdomain reach the suboptic nucleus, whereas a caudal contingent migrates radially into lateral paraventricular, perifornical and entopeduncular nuclei. Our data provide a topologic map of molecularly-defined progenitor areas originating a specific neuron type during early hypothalamic development. Identification of four main separate sources helps to understand causally its complex adult organization.

  16. Sexually dimorphic transcriptomic responses in the teleostean hypothalamus: a case study with the organochlorine pesticide dieldrin.

    Science.gov (United States)

    Martyniuk, Christopher J; Doperalski, Nicholas J; Kroll, Kevin J; Barber, David S; Denslow, Nancy D

    2013-01-01

    Organochlorine pesticides (OCPs) such as dieldrin are a persistent class of aquatic pollutants that cause adverse neurological and reproductive effects in vertebrates. In this study, female and male largemouth bass (Micropterus salmoides) (LMB) were exposed to 3mg dieldrin/kg feed in a 2 month feeding exposure (August-October) to (1) determine if the hypothalamic transcript responses to dieldrin were conserved between the sexes; (2) characterize cell signaling cascades underlying dieldrin neurotoxicity; and (3) determine whether or not co-feeding with 17β-estradiol (E(2)), a hormone with neuroprotective roles, mitigates responses in males to dieldrin. Despite also being a weak estrogen, dieldrin treatments did not elicit changes in reproductive endpoints (e.g. gonadosomatic index, vitellogenin, or plasma E(2)). Sub-network (SNEA) and gene set enrichment analysis (GSEA) revealed that neuro-hormone networks, neurotransmitter and nuclear receptor signaling, and the activin signaling network were altered by dieldrin exposure. Most striking was that the majority of cell pathways identified by the gene set enrichment were significantly increased in females while the majority of cell pathways were significantly decreased in males fed dieldrin. These data suggest that (1) there are sexually dimorphic responses in the teleost hypothalamus; (2) neurotransmitter systems are a target of dieldrin at the transcriptomics level; and (3) males co-fed dieldrin and E(2) had the fewest numbers of genes and cell pathways altered in the hypothalamus, suggesting that E(2) may mitigate the effects of dieldrin in the central nervous system. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Alterations in opioid parameters in the hypothalamus of rats with estradiol-induced polycystic ovarian disease

    International Nuclear Information System (INIS)

    Desjardins, G.C.; Beaudet, A.; Brawer, J.R.

    1990-01-01

    The distribution and density of selectively labeled mu-, delta-, and kappa-opioid binding sites were examined by in vitro radioautography in the hypothalamus of normal, estradiol valerate (EV)-injected, and estradiol (E2)-implanted female rats. Hypothalamic beta-endorphin concentration was also examined by RIA in these three groups of animals. Quantitative analysis of film radioautographs demonstrated a selective increase in mu-opioid binding in the medial preoptic area of EV-treated, but not of E2-implanted rats. However, both these estrogenized groups exhibited a reduction in the density of delta-opioid binding in the suprachiasmatic nucleus. Statistically significant changes between either estrogenized groups were not observed for kappa-opioid binding. Results on the hypothalamic concentration of beta-endorphin indicated a marked reduction in EV-injected animals with respect to controls. In contrast, the E2-implanted animals exhibited beta-endorphin concentrations similar to controls. The present results confirm the increase in opioid receptor binding previously reported in the hypothalamus of EV-treated rats and further demonstrate that this increase is confined to the medial preoptic area and exclusively concerns mu-opioid receptors. The concomitant reduction in beta-endorphin levels observed in the same group of animals suggests that the observed increase in mu-opioid binding could reflect a chronic up-regulation of the receptor in response to compromised beta-endorphin input. Given the restriction of this effect to the site of origin of LHRH neurons and the demonstrated inhibitory role of opioids on LHRH release, it is tempting to postulate that such up-regulation could lead to the suppression of the plasma LH pattern that characterizes polycystic ovarian disease in the EV-treated rat

  18. Alterations in opioid parameters in the hypothalamus of rats with estradiol-induced polycystic ovarian disease

    Energy Technology Data Exchange (ETDEWEB)

    Desjardins, G.C.; Beaudet, A.; Brawer, J.R. (McGill Univ., Quebec (Canada))

    1990-12-01

    The distribution and density of selectively labeled mu-, delta-, and kappa-opioid binding sites were examined by in vitro radioautography in the hypothalamus of normal, estradiol valerate (EV)-injected, and estradiol (E2)-implanted female rats. Hypothalamic beta-endorphin concentration was also examined by RIA in these three groups of animals. Quantitative analysis of film radioautographs demonstrated a selective increase in mu-opioid binding in the medial preoptic area of EV-treated, but not of E2-implanted rats. However, both these estrogenized groups exhibited a reduction in the density of delta-opioid binding in the suprachiasmatic nucleus. Statistically significant changes between either estrogenized groups were not observed for kappa-opioid binding. Results on the hypothalamic concentration of beta-endorphin indicated a marked reduction in EV-injected animals with respect to controls. In contrast, the E2-implanted animals exhibited beta-endorphin concentrations similar to controls. The present results confirm the increase in opioid receptor binding previously reported in the hypothalamus of EV-treated rats and further demonstrate that this increase is confined to the medial preoptic area and exclusively concerns mu-opioid receptors. The concomitant reduction in beta-endorphin levels observed in the same group of animals suggests that the observed increase in mu-opioid binding could reflect a chronic up-regulation of the receptor in response to compromised beta-endorphin input. Given the restriction of this effect to the site of origin of LHRH neurons and the demonstrated inhibitory role of opioids on LHRH release, it is tempting to postulate that such up-regulation could lead to the suppression of the plasma LH pattern that characterizes polycystic ovarian disease in the EV-treated rat.

  19. Estrogen- and Satiety State-Dependent Metabolic Lateralization in the Hypothalamus of Female Rats.

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    Full Text Available Hypothalamus is the highest center and the main crossroad of numerous homeostatic regulatory pathways including reproduction and energy metabolism. Previous reports indicate that some of these functions may be driven by the synchronized but distinct functioning of the left and right hypothalamic sides. However, the nature of interplay between the hemispheres with regard to distinct hypothalamic functions is still unclear. Here we investigated the metabolic asymmetry between the left and right hypothalamic sides of ovariectomized female rats by measuring mitochondrial respiration rates, a parameter that reflects the intensity of cell and tissue metabolism. Ovariectomized (saline injected and ovariectomized+estrogen injected animals were fed ad libitum or fasted to determine 1 the contribution of estrogen to metabolic asymmetry of hypothalamus; and 2 whether the hypothalamic asymmetry is modulated by the satiety state. Results show that estrogen-priming significantly increased both the proportion of animals with detected hypothalamic lateralization and the degree of metabolic difference between the hypothalamic sides causing a right-sided dominance during state 3 mitochondrial respiration (St3 in ad libitum fed animals. After 24 hours of fasting, lateralization in St3 values was clearly maintained; however, instead of the observed right-sided dominance that was detected in ad libitum fed animals here appeared in form of either right- or left-sidedness. In conclusion, our results revealed estrogen- and satiety state-dependent metabolic differences between the two hypothalamic hemispheres in female rats showing that the hypothalamic hemispheres drive the reproductive and satiety state related functions in an asymmetric manner.

  20. Crosstalks between kisspeptin neurons and somatostatin neurons are not photoperiod dependent in the ewe hypothalamus.

    Science.gov (United States)

    Dufourny, Laurence; Lomet, Didier

    2017-12-01

    Seasonal reproduction is under the control of gonadal steroid feedback, itself synchronized by day-length or photoperiod. As steroid action on GnRH neurons is mostly indirect and therefore exerted through interneurons, we looked for neuroanatomical interactions between kisspeptin (KP) neurons and somatostatin (SOM) neurons, two populations targeted by sex steroids, in three diencephalic areas involved in the central control of ovulation and/or sexual behavior: the arcuate nucleus (ARC), the preoptic area (POA) and the ventrolateral part of the ventromedial hypothalamus (VMHvl). KP is the most potent secretagogue of GnRH secretion while SOM has been shown to centrally inhibit LH pulsatile release. Notably, hypothalamic contents of these two neuropeptides vary with photoperiod in specific seasonal species. Our hypothesis is that SOM inhibits KP neuron activity and therefore indirectly modulate GnRH release and that this effect may be seasonally regulated. We used sections from ovariectomized estradiol-replaced ewes killed after photoperiodic treatment mimicking breeding or anestrus season. We performed triple immunofluorescent labeling to simultaneously detect KP, SOM and synapsin, a marker for synaptic vesicles. Sections from the POA and from the mediobasal hypothalamus were examined using a confocal microscope. Randomly selected KP or SOM neurons were observed in the POA and ARC. SOM neurons were also observed in the VMHvl. In both the ARC and POA, nearly all KP neurons presented numerous SOM contacts. SOM neurons presented KP terminals more frequently in the ARC than in the POA and VMHvl. Quantitative analysis failed to demonstrate major seasonal variations of KP and SOM interactions. Our data suggest a possible inhibitory action of SOM on all KP neurons in both photoperiodic statuses. On the other hand, the physiological significance of KP modulation of SOM neuron activity and vice versa remain to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Influence of radon (222Rn) on hypothalamus, hypophysis, ovaries and uterus in Balb C strain mice

    International Nuclear Information System (INIS)

    Koziorowski, A.

    1997-01-01

    Curative properties of radon waters have been applied in balneotherapy for a long time. Therapeutic action is connected with radioactive properties of radon and the products of its degradation. All of them are the source of ionizing radiation, the alpha rays in particular. Radon therapy is widely applied to the treatment of many illnesses, especially of the circulatory system, rheumatism, and arthritis, bronchial asthma and many others. Good therapeutic results have also been achieved in gynecology to mention chronic inflammation of female reproductive organs and endocrinological disorders (of the ovary and during the period of sterilization). Positive results of radon therapy can also be associated with the influence of ionizing radiation on the activity of endocrine glands, mainly the axis hypothalamus - hypophysis - adrenal gland - ovary. There has been neither regular investigation into this problem nor into the morphology of the organs mentioned above. The present paper is an attempt to evaluate the influence of radon inhalations on the structure and function of hypothalamus, hypophysis ovary and uterus. This investigation was performed on hypothalamus, hypophysis, ovary and uterus in Balb C virgin mice. The total population of the mice under study was 140; with a control group of 40. The mice inhalated radon for 30 min. a day, starting with a single irradiation up to a 30-fold. I applied traditional histological techniques and immunocytochemical localization of selected hormones (FSH, LH, ADH). I also tried to evaluate the quantitative activity of mentioned glands by means of the computer morphometric and densitometric analyses of the immunocytochemical slides using an image analyzer Vidas 25 manufactured by Kontron. The results underwent statistical analysis. In order to examine the uterus the ultrastructural evaluation of its functioning was made. Moreover, I analyzed the concentration of FSH, LH, estrogens and progesterone in the serum by means of the

  2. Defective functional connectivity between posterior hypothalamus and regions of the diencephalic-mesencephalic junction in chronic cluster headache.

    Science.gov (United States)

    Ferraro, Stefania; Nigri, Anna; Bruzzone, Maria Grazia; Brivio, Luca; Proietti Cecchini, Alberto; Verri, Mattia; Chiapparini, Luisa; Leone, Massimo

    2018-01-01

    Objective We tested the hypothesis of a defective functional connectivity between the posterior hypothalamus and diencephalic-mesencephalic regions in chronic cluster headache based on: a) clinical and neuro-endocrinological findings in cluster headache patients; b) neuroimaging findings during cluster headache attacks; c) neuroimaging findings in drug-refractory chronic cluster headache patients improved after successful deep brain stimulation. Methods Resting state functional magnetic resonance imaging, associated with a seed-based approach, was employed to investigate the functional connectivity of the posterior hypothalamus in chronic cluster headache patients (n = 17) compared to age and sex-matched healthy subjects (n = 16). Random-effect analyses were performed to study differences between patients and controls in ipsilateral and contralateral-to-the-pain posterior hypothalamus functional connectivity. Results Cluster headache patients showed an increased functional connectivity between the ipsilateral posterior hypothalamus and a number of diencephalic-mesencephalic structures, comprising ventral tegmental area, dorsal nuclei of raphe, and bilateral substantia nigra, sub-thalamic nucleus, and red nucleus ( p cluster headache patients mainly involves structures that are part of (i.e. ventral tegmental area, substantia nigra) or modulate (dorsal nuclei of raphe, sub-thalamic nucleus) the midbrain dopaminergic systems. The midbrain dopaminergic systems could play a role in cluster headache pathophysiology and in particular in the chronicization process. Future studies are needed to better clarify if this finding is specific to cluster headache or if it represents an unspecific response to chronic pain.

  3. Ascending Projections from the Solitary Tract Nucleus to the Hypothalamus : A Phaseolus vulgaris Lectin Tracing Study in the Rat

    NARCIS (Netherlands)

    Horst, G.J. ter; de Boer, P.; Luiten, P.G.M.; Willigen, J.D. van

    1989-01-01

    The course of the ascending pathways originating from the anterior gustatory and posterior visceral sensory part of the solitary tract nucleus and the topographic organization of the projections to the hypothalamus in the rat were studied with anterogradely transported Phuseolus vulgaris lectin. In

  4. Atrazine alters expression of reproductive and stress genes in the developing hypothalamus of the snapping turtle, Chelydra serpentina.

    Science.gov (United States)

    Russart, Kathryn L G; Rhen, Turk

    2016-07-29

    Atrazine is an herbicide used to control broadleaf grasses and a suspected endocrine disrupting chemical. Snapping turtles lay eggs between late May and early June, which could lead to atrazine exposure via field runoff. Our goal was to determine whether a single exposure to 2ppb or 40ppb atrazine during embryogenesis could induce short- and long-term changes in gene expression within the hypothalamus of snapping turtles. We treated eggs with atrazine following sex determination and measured gene expression within the hypothalamus. We selected genes a priori for their role in the hypothalamus-pituitary-gonad or the hypothalamus-pituitary-adrenal axes of the endocrine system. We did not identify any changes in gene expression 24-h after treatment. However, at hatching AR, Kiss1R, and POMC expression was upregulated in both sexes, while expression of CYP19A1 and PDYN was increased in females. Six months after hatching, CYP19A1 and PRLH expression was increased in animals treated with 2ppb atrazine. Our study shows persistent changes in hypothalamic gene expression due to low-dose embryonic exposure to the herbicide atrazine with significant effects in both the HPG and HPA axes. Effects reported here appear to be conserved among vertebrates. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. An adeno-associated viral vector transduces the rat hypothalamus and amygdala more efficient than a lentiviral vector

    Directory of Open Access Journals (Sweden)

    Vreugdenhil Erno

    2010-07-01

    Full Text Available Abstract Background This study compared the transduction efficiencies of an adeno-associated viral (AAV vector, which was pseudotyped with an AAV1 capsid and encoded the green fluorescent protein (GFP, with a lentiviral (LV vector, which was pseudotyped with a VSV-G envelop and encoded the discosoma red fluorescent protein (dsRed, to investigate which viral vector transduced the lateral hypothalamus or the amygdala more efficiently. The LV-dsRed and AAV1-GFP vector were mixed and injected into the lateral hypothalamus or into the amygdala of adult rats. The titers that were injected were 1 × 108 or 1 × 109 genomic copies of AAV1-GFP and 1 × 105 transducing units of LV-dsRed. Results Immunostaining for GFP and dsRed showed that AAV1-GFP transduced significantly more cells than LV-dsRed in both the lateral hypothalamus and the amygdala. In addition, the number of LV particles that were injected can not easily be increased, while the number of AAV1 particles can be increased easily with a factor 100 to 1000. Both viral vectors appear to predominantly transduce neurons. Conclusions This study showed that AAV1 vectors are better tools to overexpress or knockdown genes in the lateral hypothalamus and amygdala of adult rats, since more cells can be transduced with AAV1 than with LV vectors and the titer of AAV1 vectors can easily be increased to transduce the area of interest.

  6. Energy balance affects luteinizing hormone pulses and expression of neurokinin B in the hypothalamus of ovariectomized gilts

    Science.gov (United States)

    The pubertal transition of gonadotropin secretion in pigs is metabolically gated, but the mechanisms that underpin this regulation are unknown. Kisspeptin and neurokinin B (NKB) are coexpressed in neurons within the arcuate nucleus of the hypothalamus (ARC) and are thought to play an important role ...

  7. Music exposure differentially alters the levels of brain-derived neurotrophic factor and nerve growth factor in the mouse hypothalamus.

    Science.gov (United States)

    Angelucci, Francesco; Ricci, Enzo; Padua, Luca; Sabino, Andrea; Tonali, Pietro Attilio

    2007-12-18

    It has been reported that music may have physiological effects on blood pressure, cardiac heartbeat, respiration, and improve mood state in people affected by anxiety, depression and other psychiatric disorders. However, the physiological bases of these phenomena are not clear. Hypothalamus is a brain region involved in the regulation of body homeostasis and in the pathophysiology of anxiety and depression through the modulation of hypothalamic-pituitary-adrenal (HPA) axis. Hypothalamic functions are also influenced by the presence of the neurotrophins brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are proteins involved in the growth, survival and function of neurons in the central nervous system. The aim of this study was to investigate the effect of music exposure in mice on hypothalamic levels of BDNF and NGF. We exposed young adult mice to slow rhythm music (6h per day; mild sound pressure levels, between 50 and 60 dB) for 21 consecutive days. At the end of the treatment mice were sacrificed and BDNF and NGF levels in the hypothalamus were measured by enzyme-linked immunosorbent assay (ELISA). We found that music exposure significantly enhanced BDNF levels in the hypothalamus. Furthermore, we observed that music-exposed mice had decreased NGF hypothalamic levels. Our results demonstrate that exposure to music in mice can influence neurotrophin production in the hypothalamus. Our findings also suggest that physiological effects of music might be in part mediated by modulation of neurotrophins.

  8. Effects of acute dieldrin exposure on neurotransmitters and global gene transcription in largemouth bass (Micropterus salmoides) hypothalamus

    Science.gov (United States)

    Martyniuk, Christopher J.; Feswick, April; Spade, Daniel J.; Kroll, Kevin J.; Barber, David S.; Denslow, Nancy D.

    2010-01-01

    Exposure to dieldrin induces neurotoxic effects in the vertebrate CNS and disrupts reproductive processes in teleost fish. Reproductive impairment observed in fish by dieldrin is likely the result of multiple effects along the hypothalamic-pituitary-gonadal axis but the molecular signaling cascades are not well characterized. To better elucidate the mode of action of dieldrin in the hypothalamus, this study measured neurotransmitter levels and examined the transcriptomic response in female largemouth bass (LMB) to an acute treatment of dieldrin. Male and female LMB were injected with either vehicle or 10 mg dieldrin/kg and sacrificed after seven days. There were no significant changes in dopamine or DOPAC concentrations in the neuroendocrine brain of males and females after treatment but GABA levels in females were moderately increased 20–30% in the hypothalamus and cerebellum. In the female hypothalamus, there were 227 transcripts (p<0.001) identified as being differentially regulated by dieldrin. Functional enrichment analysis revealed transcription, DNA repair, ubiquitin-proteasome pathway, and cell communication, as biological processes over-represented in the microarray analysis. Pathway analysis identified DNA damage, inflammation, regeneration, and Alzheimer’s disease as major cell processes and diseases affected by dieldrin. Using multiple bioinformatics approaches, this study demonstrates that the teleostean hypothalamus is a target for dieldrin-induced neurotoxicity and provides mechanistic evidence that dieldrin activates similar cell pathways and biological processes that are also associated with the etiology of human neurological disorders. PMID:20438755

  9. The Abnormal Functional Connectivity between the Hypothalamus and the Temporal Gyrus Underlying Depression in Alzheimer's Disease Patients.

    Science.gov (United States)

    Liu, Xiaozheng; Chen, Wei; Tu, Yunhai; Hou, Hongtao; Huang, Xiaoyan; Chen, Xingli; Guo, Zhongwei; Bai, Guanghui; Chen, Wei

    2018-01-01

    Hypothalamic communication with the rest of the brain is critical for accomplishing a wide variety of physiological and psychological functions, including the maintenance of neuroendocrine circadian rhythms and the management of affective processes. Evidence has shown that major depressive disorder (MDD) patients exhibit increased functioning of the hypothalamic-pituitary-adrenal (HPA) axis. Neurofibrillary tangles are also found in the hypothalamus of Alzheimer's disease (AD) patients, and AD patients exhibit abnormal changes in the HPA. However, little is known of how the hypothalamus interacts with other brain regions in AD patients with depression (D-AD). Functional connectivity (FC) analysis explores the connectivity between brain regions that share functional properties. Here, we used resting-state (rs) magnetic resonance imaging (MRI) technology and the FC method to measure hypothalamic connectivity across the whole brain in 22 D-AD patients and 21 non-depressed AD patients (nD-AD). Our results showed that D-AD patients had reduced FC among the hypothalamus, the right middle temporal gyrus (MTG) and the right superior temporal gyrus (STG) compared with the FC of nD-AD patients, suggesting that the abnormal FC between the hypothalamus and the temporal lobe may play a key role in the pathophysiology of depression in AD patients.

  10. PPARg mRNA in the adult mouse hypothalamus: distribution and regulation in response to dietary challenges

    Directory of Open Access Journals (Sweden)

    Yang eLiu

    2015-09-01

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPARg is a ligand-activated transcription factor that was originally identified as a regulator of peroxisome proliferation and adipocyte differentiation. Emerging evidence suggests that functional PPARg signaling also occurs within the hypothalamus. However, the exact distribution and identities of PPARg-expressing hypothalamic cells remains under debate. The present study systematically mapped PPARg mRNA expression in the adult mouse brain using in situ hybridization histochemistry. PPARg mRNA was found to be expressed at high levels outside the hypothalamus including the neocortex, the olfactory bulb, the organ of the vasculosum of the lamina terminalis, and the subfornical organ. Within the hypothalamus, PPARg was present at moderate levels in the suprachiasmatic nucleus and the ependymal of the 3rd ventricle. In all examined feeding-related hypothalamic nuclei, PPARg was expressed at very low levels that were close to the limit of detection. Using qPCR techniques, we demonstrated that PPARg mRNA expression was upregulated in the suprachiasmatic nucleus in response to fasting. Double in situ hybridization further demonstrated that PPARg was primarily expressed in neurons. Collectively, our observations provide a comprehensive map of PPARg distribution and regulation in the intact adult mouse hypothalamus.

  11. Differential contribution of CBP:CREB binding to corticotropin-releasing hormone expression in the infant and adult hypothalamus

    NARCIS (Netherlands)

    Cope, J.L.; Regev, L.; Chen, Y.; Korosi, A.; Rice, C.J.; Ji, S.; Rogge, G.A.; Wood, M.A.; Baram, T.Z.

    2014-01-01

    Corticotropin-releasing hormone (CRH) contributes crucially to the regulation of central and peripheral responses to stress. Because of the importance of a finely-tuned stress system, CRH expression is tightly regulated in an organ- and brain region-specific manner. Thus, in hypothalamus, CRH is

  12. Time-dependent effects of neuropeptide Y infusion in the paraventricular hypothalamus on ingestive and associated behaviors in rats

    NARCIS (Netherlands)

    van Dijk, G; Strubbe, JH

    In this study the role of neuropeptide Y (NPY) in the paraventricular nucleus of the hypothalamus (PVN) in the daily regulation of feeding, drinking, locomotor activity, and nestbox occupation was investigated. These behaviors were recorded during and after bilateral infusion of NPY into the PVN of

  13. Specific expression of an oxytocin-enhanced cyan fluorescent protein fusion transgene in the rat hypothalamus and posterior pituitary

    Czech Academy of Sciences Publication Activity Database

    Katoh, A.; Fujihara, H.; Ohbuchi, T.; Onaka, T.; Scott, W. S. III.; Dayanithi, Govindan; Yamasaki, Y.; Kawata, M.; Suzuki, H.; Otsubo, H.; Suzuki, Hi.; Murphy, D.; Ueta, Y.

    2010-01-01

    Roč. 204, č. 3 (2010), s. 275-285 ISSN 0022-0795 Institutional research plan: CEZ:AV0Z50390703 Keywords : magnocellular neurons * neurosecretory-cells * hypothalamus Subject RIV: FH - Neurology Impact factor: 3.099, year: 2010

  14. Changes in orexinergic immunoreactivity of the piglet hypothalamus and pons after exposure to chronic postnatal nicotine and intermittent hypercapnic hypoxia.

    Science.gov (United States)

    Hunt, Nicholas J; Russell, Benjamin; Du, Man K; Waters, Karen A; Machaalani, Rita

    2016-06-01

    We recently showed that orexin expression in sudden infant death syndrome (SIDS) infants was reduced by 21% in the hypothalamus and by 40-50% in the pons as compared with controls. Orexin maintains wakefulness/sleeping states, arousal, and rapid eye movement sleep, abnormalities of which have been reported in SIDS. This study examined the effects of two prominent risk factors for SIDS, intermittent hypercapnic hypoxia (IHH) (prone-sleeping) and chronic nicotine exposure (cigarette-smoking), on orexin A (OxA) and orexin B (OxB) expression in piglets. Piglets were randomly assigned to five groups: saline control (n = 7), air control (n = 7), nicotine [2 mg/kg per day (14 days)] (n = 7), IHH (6 min of 7% O2 /8% CO2 alternating with 6-min periods of breathing air, for four cycles) (n = 7), and the combination of nicotine and IHH (N + IHH) (n = 7). OxA/OxB expression was quantified in the central tuberal hypothalamus [dorsal medial hypothalamus (DMH), perifornical area (PeF), and lateral hypothalamus], and the dorsal raphe, locus coeruleus of the pons. Nicotine and N + IHH exposures significantly increased: (i) orexin expression in the hypothalamus and pons; and (ii) the total number of neurons in the DMH and PeF. IHH decreased orexin expression in the hypothalamus and pons without changing neuronal numbers. Linear relationships existed between the percentage of orexin-positive neurons and the area of pontine orexin immunoreactivity of control and exposure piglets. These results demonstrate that postnatal nicotine exposure increases the proportion of orexin-positive neurons in the hypothalamus and fibre expression in the pons, and that IHH exposure does not prevent the nicotine-induced increase. Thus, although both nicotine and IHH are risk factors for SIDS, it appears they have opposing effects on OxA and OxB expression, with the IHH exposure closely mimicking what we recently found in SIDS. © 2016 Federation of European Neuroscience Societies and John

  15. Anti-TNF-alpha antibody attenuates subarachnoid hemorrhage-induced apoptosis in the hypothalamus by inhibiting the activation of Erk

    Directory of Open Access Journals (Sweden)

    Ma L

    2018-02-01

    Full Text Available Ling Ma,1 Yong Jiang,2 Yanan Dong,2 Jun Gao,2 Bin Du,2 Dianwei Liu2 1Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, People’s Republic of China; 2Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China Background: Subarachnoid hemorrhage (SAH can induce apoptosis in many regions of the brain including the cortex and hippocampus. However, few studies have focused on apoptosis in the hypothalamus after SAH. Although some antiapoptotic strategies have been developed for SAH, such as anti-tumor necrosis factor-alpha (TNF-α antibody, the molecular mechanisms underlying this condition have yet to be elucidated. Therefore, the purpose of this study was to evaluate whether SAH could induce apoptosis in the hypothalamus and identify the potential molecular mechanisms underlying the actions of anti-TNF-α antibody, as a therapeutic regimen, upon apoptosis. Materials and methods: SAH was induced in a rat model. Thirty minutes prior to SAH, anti-TNF-α antibody or U0126, an extracellular signal-regulated kinase (Erk inhibitor, was microinjected into the left lateral cerebral ventricle. In addition, phorbol-12-myristate-13-acetate was injected intraperitoneally immediately after the anti-TNF-α antibody microinjection. Then, real-time polymerase chain reaction, Western blotting and immunohistochemistry were used to detect the expression of caspase-3, bax, bcl-2, phosphorylated Erk (p-Erk and Erk. Finally, anxiety-like behavior was identified by using open field. Results: Levels of caspase-3, bax and bcl-2, all showed a temporary rise after SAH in the hypothalamus, indicating the induction of apoptosis in this brain region. Interestingly, we found that the microinjection of anti-TNF-α antibody could selectively block the elevated levels of bax, suggesting the potential role of anti-TNF-α antibody in the inhibition of SAH

  16. Effects of amino acids and vitamins on the ultrastructure of the hypothalamus and neurotransmitter in exhausted rats

    Directory of Open Access Journals (Sweden)

    Jian-wei CHEN

    2012-01-01

    Full Text Available Objective  To investigate the effects of amino acids and vitamins on the ultrastructure of the hypothalamus and neurotransmitter in exhausted rats. Methods  After adaptive swimming, 36 male SD rats were randomly divided into three groups, namely, capsule, control, and granules, with 12 rats in each group. Rats in 3 groups were given respectively amino acids capsule (8 kinds of essential amino acids and 11 kinds of vitamins were contained, normal drinking water, or amino acid-fructose beverage (2.5ml/100g, 2 times per day by gavage for 14 days. Exhaustion of rats was produced by non-loading swimming. The duration of the experiment lasted 14 days. After the last exhaustive swimming, the hypothalamus of the rats was removed for the observation of its ultrastructure under electron microscope. The contents of 5-hydroxytryptamine (5-HT, 5-hydroxyindole acetic acid (5HIAA, hydroxyphenyl acetic acid (HOPAC, and γ-aminobutyric acid (GABA in the hypothalamus were measured with high performance liquid chromatography (HPLC-ECD. Results  The mitochondrial structure in the brain cells of the capsule and granules groups were basically intact. On the other hand, the cells in the control group swelled and degenerated. Different degrees of swelling could be seen in the mitochondria. In addition, obvious morphological changes of the ultrastructure were observed under electron microscopy. Dissolution and rupture of the mitochondrial membrane and cristae were noted, even with the whole mitochondria disrupted and vacuolated. The contents of 5-HT, 5-HTAA, HOPAC, and GABA in the hypothalamus of rats in the capsule and the granules groups were significantly lower than those in the control group (PConclusion  Amino acids and vitamins compound can increase the resistance of the nerve center to fatigue by alleviating pathological changes of ultrastructure and changes in neurotransmitter levels of the hypothalamus.

  17. Galanin-Expressing GABA Neurons in the Lateral Hypothalamus Modulate Food Reward and Noncompulsive Locomotion.

    Science.gov (United States)

    Qualls-Creekmore, Emily; Yu, Sangho; Francois, Marie; Hoang, John; Huesing, Clara; Bruce-Keller, Annadora; Burk, David; Berthoud, Hans-Rudolf; Morrison, Christopher D; Münzberg, Heike

    2017-06-21

    The lateral hypothalamus (LHA) integrates reward and appetitive behavior and is composed of many overlapping neuronal populations. Recent studies associated LHA GABAergic neurons (LHA GABA ), which densely innervate the ventral tegmental area (VTA), with modulation of food reward and consumption; yet, LHA GABA projections to the VTA exclusively modulated food consumption, not reward. We identified a subpopulation of LHA GABA neurons that coexpress the neuropeptide galanin (LHA Gal ). These LHA Gal neurons also modulate food reward, but lack direct VTA innervation. We hypothesized that LHA Gal neurons may represent a subpopulation of LHA GABA neurons that mediates food reward independent of direct VTA innervation. We used chemogenetic activation of LHA Gal or LHA GABA neurons in mice to compare their role in feeding behavior. We further analyzed locomotor behavior to understand how differential VTA connectivity and transmitter release in these LHA neurons influences this behavior. LHA Gal or LHA GABA neuronal activation both increased operant food-seeking behavior, but only activation of LHA GABA neurons increased overall chow consumption. Additionally, LHA Gal or LHA GABA neuronal activation similarly induced locomotor activity, but with striking differences in modality. Activation of LHA GABA neurons induced compulsive-like locomotor behavior; while LHA Gal neurons induced locomotor activity without compulsivity. Thus, LHA Gal neurons define a subpopulation of LHA GABA neurons without direct VTA innervation that mediate noncompulsive food-seeking behavior. We speculate that the striking difference in compulsive-like locomotor behavior is also based on differential VTA innervation. The downstream neural network responsible for this behavior and a potential role for galanin as neuromodulator remains to be identified. SIGNIFICANCE STATEMENT The lateral hypothalamus (LHA) regulates motivated feeding behavior via GABAergic LHA neurons. The molecular identity of LHA

  18. Restoring Serotonergic Homeostasis in the Lateral Hypothalamus Rescues Sleep Disturbances Induced by Early-Life Obesity.

    Science.gov (United States)

    Gazea, Mary; Patchev, Alexandre V; Anderzhanova, Elmira; Leidmaa, Este; Pissioti, Anna; Flachskamm, Cornelia; Almeida, Osborne F X; Kimura, Mayumi

    2018-01-10

    Early-life obesity predisposes to obesity in adulthood, a condition with broad medical implications including sleep disorders, which can exacerbate metabolic disturbances and disrupt cognitive and affective behaviors. In this study, we examined the long-term impact of transient peripubertal diet-induced obesity (ppDIO, induced between 4 and 10 weeks of age) on sleep-wake behavior in male mice. EEG and EMG recordings revealed that ppDIO increases sleep during the active phase but reduces resting-phase sleep quality. This impaired sleep phenotype persisted for up to 1 year, although animals were returned to a non-obesiogenic diet from postnatal week 11 onwards. To better understand the mechanisms responsible for the ppDIO-induced alterations in sleep, we focused on the lateral hypothalamus (LH). Mice exposed to ppDIO did not show altered mRNA expression levels of orexin and melanin-concentrating hormone, two peptides that are important for sleep-wake behavior and food intake. Conversely, the LH of ppDIO-exposed mice had reduced contents of serotonin (5-hydroxytryptamine, 5-HT), a neurotransmitter involved in both sleep-wake and satiety regulation. Interestingly, an acute peripheral injection of the satiety-signaling peptide YY 3-36 increased 5-HT turnover in the LH and ameliorated the ppDIO-induced sleep disturbances, suggesting the therapeutic potential of this peptide. These findings provide new insights into how sleep-wake behavior is programmed during early life and how peripheral and central signals are integrated to coordinate sleep. SIGNIFICANCE STATEMENT Adult physiology and behavior are strongly influenced by dynamic reorganization of the brain during puberty. The present work shows that obesity during puberty leads to persistently dysregulated patterns of sleep and wakefulness by blunting serotonergic signaling in the lateral hypothalamus. It also shows that pharmacological mimicry of satiety with peptide YY 3-36 can reverse this neurochemical imbalance and

  19. Inhibition of serotonin release by bombesin-like peptides in rat hypothalamus in vitro

    International Nuclear Information System (INIS)

    Saporito, M.S.; Warwick, R.O. Jr.

    1989-01-01

    We investigated the activity of bombesin (BN), neuromedin-C (NM-C) and neuromedin-B (NM-B) on serotonin (5-HT) release and reuptake in rat hypothalamus (HYP) in vitro. BN and NM-C but not NM-B decreased K + evoked 3 H-5-HT release from superfused HYP slices by 25%. Bacitracin, a nonspecific peptidase inhibitor, reversed the inhibitory effect of BN on K + evoked 3 H-5-HT release. Phosphoramidon (PAN, 10 μM) an endopeptidase 24.11 inhibitor, abolished the inhibitory effect of BN, but not NM-C, on K + evoked 3 H-5-HT release. The peptidyl dipeptidase A inhibitor enalaprilat (ENP, 10 μM), enhanced both BN and NM-C inhibition of 3 H-5-HT release. Bestatin (BST, 10 μM) had no effect on BN or NM-C inhibitory activity on 3 H-5-HT release. Neither BN, NM-C nor NM-B affected reuptake of 3 H-5-HT into HYP synaptosomes alone or in combination with any of the peptidase inhibitors, nor did these peptides alter the ability of fluoxetine to inhibit 3 H-5-HT uptake

  20. Effects of estradiol on norepinephrine and prostaglandin efflux in medial basal hypothalamus of ovariectomized rats

    International Nuclear Information System (INIS)

    Cardinali, D.P.; Fernandez Pardal, J.; Gimeno, M.F.; Gimeno, A.L.

    1982-01-01

    The spontaneous and K + -stimulated efflux of norepinephrine (NE) and the release of PGE 2 and PGF 2 α were examined in medial basal hypothalamus (MBH) of ovariectomized rats killed before and during the LH release that follows estradiol treatment. As compared to vehicle-treated, ovariectomized rats, estradiol-primed rats exhibited a 60% more increase in K + -stimulated 3 H-overflow of MBH slices preloaded with 3 H-NE at morning hours (1000 hours). Estradiol treatment did not result in further increase of K + -induced 3 H release from MBH slices at the time of LH release (1700 hours), nor affected labelled NE release in occipital cortex slices. A significant difference between K + -stimulated NE release of vehicle-treated spayed rats killed at 1000 and 1700 hours was observed, the latter showing 54% more release upon stimulus. PGE 2 efflux was time-dependent being highest at the evening in both vehicle- and estradiol-treated animals. The MBH of estrogenized rats released significantly more PGE 2 at the evening as compared to the controls. The release of PGF 2 α remained essentially unchanged regardless of estradiol treatment or time of day. The present results offer additional support to the involvement of MBH catecholamines and prostaglandins in the mechanism of LH secretion in the rat. (author)

  1. Hypothalamus transcriptome profile suggests an anorexia-cachexia syndrome in the anx/anx mouse model.

    Science.gov (United States)

    Mercader, Josep Maria; Lozano, Juan José; Sumoy, Lauro; Dierssen, Mara; Visa, Joana; Gratacòs, Mònica; Estivill, Xavier

    2008-11-12

    The anx/anx mouse displays poor appetite and lean appearance and is considered a good model for the study of anorexia nervosa. To identify new genes involved in feeding behavior and body weight regulation we performed an expression profiling in the hypothalamus of the anx/anx mice. Using commercial microarrays we detected 156 differentially expressed genes and validated 92 of those using TaqMan low-density arrays. The expression of a set of 87 candidate genes selected based on literature evidences was also quantified by TaqMan low-density arrays. Our results showed enrichment in deregulated genes involved in cell death, cell morphology, and cancer, as well as an alteration of several signaling circuits involved in energy balance including neuropeptide Y and melanocortin signaling. The expression profile along with the phenotype led us to conclude that anx/anx mice resemble the anorexia-cachexia syndrome typically observed in cancer, infection with human immunodeficiency virus or chronic diseases, rather than starvation, and that anx/anx mice could be considered a good model for the treatment and investigation of this condition.

  2. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus.

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    Full Text Available The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC, plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat.

  3. Androstenol--a steroid derived odor activates the hypothalamus in women.

    Directory of Open Access Journals (Sweden)

    Ivanka Savic

    Full Text Available BACKGROUND: Whether pheromone signaling exists in humans is still a matter of intense discussion. In the present study we tested if smelling of Androstenol, a steroid produced by the human body and reported to affect human behavior, may elicit cerebral activation. A further issue was to evaluate whether the pattern of activation resembles the pattern of common odors. METHODOLOGY: PET measurements of regional cerebral blood flow (rCBF were conducted in 16 healthy heterosexual women during passive smelling of Androstenol, four ordinary odors (OO, and odorless air (the base line condition. PRINCIPAL FINDINGS: Smelling Androstenol caused activation of a portion of the hypothalamus, which according to animal data mediates the pheromone triggered mating behavior. Smelling of OO, on the other hand, engaged only the classical olfactory regions (the piriform cortex, lateral amygdala, anterior insular and anterior cingulate cortex. CONCLUSIONS: The observed pattern of activation is very similar to the pattern previously detected with 4,16-androstadien-3-one in heterosexual females. It suggests that several compounds released by human body may activate cerebral networks involved in human reproduction.

  4. Effect of parenteral glutamate treatment on the localization of neurotransmitters in the mediobasal hypothalamus

    Energy Technology Data Exchange (ETDEWEB)

    Walaas, I; Fonnum, F

    1978-01-01

    The localization of cholinergic, aminergic and amino acid-ergic neurones in the mediobasal hypothalamus has been studied in normal rat brain and in brains where neurones in nucleus arcuatus were destroyed by repeated administration of 2 mg/g body weight monosodium glutamate to newborn animals. In normal animals acetylcholinesterase staining, choline acetyltransferase and aromatic L-amino acid decarboxylase were concentrated in the median eminence and the arcuate nucleus. Glutamate decarboxylase was concentrated at the boundary between the ventromedial and the arcuate nuclei, with lower activity in the arcuate nucleus and very low activity in the median eminence. Nucleus arcuatus contained an intermediate level of high affinity glutamate uptake. In the lesioned animals, there were significant decreases in choline acetyltransferase, acetylcholinesterase staining and glutamate decarboxylase in the median eminence, whereas choline acetyltransferase activity and acetylcholinesterase staining, but not glutamate decarboxylase activity, were decreased in nucleus arcuatus. Aromatic L-amino acid decarboxylase was unchanged in all regions studied. The high affinity uptakes of glutamate, dopamine and noradrenaline, and the endogenous amino acid levels were also unchanged in the treated animals. The results indicate the existence of acetylcholine- and GABA-containing elements in the tuberoinfundibular tract. They further indicate that the dopamine cells in the arcuate nucleus are less sensitive to the toxic effect of glutamate than other cell types, possibly because they contain less glutamate receptors.

  5. Leptin-dependent neuronal NO signaling in the preoptic hypothalamus facilitates reproduction.

    Science.gov (United States)

    Bellefontaine, Nicole; Chachlaki, Konstantina; Parkash, Jyoti; Vanacker, Charlotte; Colledge, William; d'Anglemont de Tassigny, Xavier; Garthwaite, John; Bouret, Sebastien G; Prevot, Vincent

    2014-06-01

    The transition to puberty and adult fertility both require a minimum level of energy availability. The adipocyte-derived hormone leptin signals the long-term status of peripheral energy stores and serves as a key metabolic messenger to the neuroendocrine reproductive axis. Humans and mice lacking leptin or its receptor fail to complete puberty and are infertile. Restoration of leptin levels in these individuals promotes sexual maturation, which requires the pulsatile, coordinated delivery of gonadotropin-releasing hormone to the pituitary and the resulting surge of luteinizing hormone (LH); however, the neural circuits that control the leptin-mediated induction of the reproductive axis are not fully understood. Here, we found that leptin coordinated fertility by acting on neurons in the preoptic region of the hypothalamus and inducing the synthesis of the freely diffusible volume-based transmitter NO, through the activation of neuronal NO synthase (nNOS) in these neurons. The deletion of the gene encoding nNOS or its pharmacological inhibition in the preoptic region blunted the stimulatory action of exogenous leptin on LH secretion and prevented the restoration of fertility in leptin-deficient female mice by leptin treatment. Together, these data indicate that leptin plays a central role in regulating the hypothalamo-pituitary-gonadal axis in vivo through the activation of nNOS in neurons of the preoptic region.

  6. α/β-Hydrolase Domain 6 in the Ventromedial Hypothalamus Controls Energy Metabolism Flexibility

    Directory of Open Access Journals (Sweden)

    Alexandre Fisette

    2016-10-01

    Full Text Available α/β-Hydrolase domain 6 (ABHD6 is a monoacylglycerol hydrolase that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG. Although complete or peripheral ABHD6 loss of function is protective against diet-induced obesity and insulin resistance, the role of ABHD6 in the central control of energy balance is unknown. Using a viral-mediated knockout approach, targeted endocannabinoid measures, and pharmacology, we discovered that mice lacking ABHD6 from neurons of the ventromedial hypothalamus (VMHKO have higher VMH 2-AG levels in conditions of endocannabinoid recruitment and fail to physiologically adapt to key metabolic challenges. VMHKO mice exhibited blunted fasting-induced feeding and reduced food intake, energy expenditure, and adaptive thermogenesis in response to cold exposure, high-fat feeding, and dieting (transition to a low-fat diet. Our findings identify ABHD6 as a regulator of the counter-regulatory responses to major metabolic shifts, including fasting, nutrient excess, cold, and dieting, thereby highlighting the importance of ABHD6 in the VMH in mediating energy metabolism flexibility.

  7. Self-administration of morphine into the lateral hypothalamus in the mouse.

    Science.gov (United States)

    Cazala, P; Darracq, C; Saint-Marc, M

    1987-07-28

    BALB/c mice were chronically and unilaterally implanted with a guide cannula, the tip of which was positioned 1 mm above the lateral hypothalamus (LH). On each experimental day, a stainless-steel injection cannula was inserted into the LH, and self-administration of morphine or vehicle in this brain area was studied by using a spatial discrimination test in a Y-maze. In a first experiment, we observed that when mice had access to morphine (0.1 microgram by injection) they rapidly discriminated the reinforced arm from the neutral arm of the maze in order to self administer, with increasing frequency, the drug into the LH. In contrast when only vehicle was present, the two arms were no longer discriminated. In a second experiment we compared the effects of 3 doses of morphine (0.1 microgram, 0.05 microgram and 0.025 microgram by injection); optimal discrimination was obtained with the lowest dose used. In a third experiment we observed that subcutaneous injections of naloxone (4 mg/kg) progressively reduced the number of self-administrations of morphine into the LH, a result which suggests that this response is dependent on an opiate receptor mechanism.

  8. Lateral hypothalamus contains two types of palatability-related taste responses with distinct dynamics.

    Science.gov (United States)

    Li, Jennifer X; Yoshida, Takashi; Monk, Kevin J; Katz, Donald B

    2013-05-29

    The taste of foods, in particular the palatability of these tastes, exerts a powerful influence on our feeding choices. Although the lateral hypothalamus (LH) has long been known to regulate feeding behavior, taste processing in LH remains relatively understudied. Here, we examined single-unit LH responses in rats subjected to a battery of taste stimuli that differed in both chemical composition and palatability. Like neurons in cortex and amygdala, LH neurons produced a brief epoch of nonspecific responses followed by a protracted period of taste-specific firing. Unlike in cortex, however, where palatability-related information only appears 500 ms after the onset of taste-specific firing, taste specificity in LH was dominated by palatability-related firing, consistent with LH's role as a feeding center. Upon closer inspection, taste-specific LH neurons fell reliably into one of two subtypes: the first type showed a reliable affinity for palatable tastes, low spontaneous firing rates, phasic responses, and relatively narrow tuning; the second type showed strongest modulation to aversive tastes, high spontaneous firing rates, protracted responses, and broader tuning. Although neurons producing both types of responses were found within the same regions of LH, cross-correlation analyses suggest that they may participate in distinct functional networks. Our data shed light on the implementation of palatability processing both within LH and throughout the taste circuit, and may ultimately have implications for LH's role in the formation and maintenance of taste preferences and aversions.

  9. Macronutrients and the FTO gene expression in hypothalamus; a systematic review of experimental studies.

    Science.gov (United States)

    Doaei, Saeid; Kalantari, Naser; Mohammadi, Nastaran Keshavarz; Tabesh, Ghasem Azizi; Gholamalizadeh, Maryam

    The various studies have examined the relationship between FTO gene expression and macronutrients levels. In order to obtain better viewpoint from this interactions, all of existing studies were reviewed systematically. All published papers have been obtained and reviewed using standard and sensitive keywords from databases such as CINAHL, Embase, PubMed, PsycInfo, and the Cochrane, from 1990 to 2016. The results indicated that all of 6 studies that met the inclusion criteria (from a total of 428 published article) found FTO gene expression changes at short-term follow-ups. Four of six studies found an increased FTO gene expression after calorie restriction, while two of them indicated decreased FTO gene expression. The effect of protein, carbohydrate and fat were separately assessed and suggested by all of six studies. In Conclusion, The level of FTO gene expression in hypothalamus is related to macronutrients levels. Future research should evaluate the long-term impact of dietary interventions. Copyright © 2017. Published by Elsevier B.V.

  10. Leptin and glucocorticoid signaling pathways in the hypothalamus of female and male fructose-fed rats

    Directory of Open Access Journals (Sweden)

    Vojnović-Milutinović Danijela

    2014-01-01

    Full Text Available Alterations in leptin and glucocorticoid signaling pathways in the hypothalamus of male and female rats subjected to a fructose-enriched diet were studied. The level of expression of the key components of the leptin signaling pathway (neuropeptide Y /NPY/ and suppressor of cytokine signaling 3 /SOCS3/, and the glucocorticoid signaling pathway (glucocorticoid receptor /GR/, 11β-hydroxysteroid dehydrogenase type 1 /11βHSD1/ and hexose-6-phosphate dehydrogenase /H6PDH/ did not differ between fructose-fed rats and control animals of both genders. However, in females, a fructose-enriched diet provoked increases in the adiposity index, plasma leptin and triglyceride concentrations, and displayed a tendency to decrease the leptin receptor (ObRb protein and mRNA levels. In male rats, the fructose diet caused elevations in plasma non-esterified fatty acids and triglycerides, as well as in both plasma and hypothalamic leptin concentrations. Our results suggest that a fructose-enriched diet can induce hyperleptinemia in both female and male rats, but with a more pronounced effect on hypothalamic leptin sensitivity in females, probably contributing to the observed development of visceral adiposity. [Projekat Ministarstva nauke Republike Srbije, br. III41009

  11. Maternal Cortisol Mediates Hypothalamus-Pituitary-Interrenal Axis Development in Zebrafish

    Science.gov (United States)

    Nesan, Dinushan; Vijayan, Mathilakath M.

    2016-01-01

    In zebrafish (Danio rerio), de novo synthesis of cortisol in response to stressor exposure commences only after hatch. Maternally deposited cortisol is present during embryogenesis, but a role for this steroid in early development is unclear. We tested the hypothesis that maternal cortisol is essential for the proper development of hypothalamus-pituitary-interrenal (HPI) axis activity and the onset of the stressor-induced cortisol response in larval zebrafish. In this study, zygotic cortisol content was manipulated by microinjecting antibody to sequester this steroid, thereby making it unavailable during embryogenesis. This was compared with embryos containing excess cortisol by microinjection of exogenous steroid. The resulting larval phenotypes revealed distinct treatment effects, including deformed mesoderm structures when maternal cortisol was unavailable and cardiac edema after excess cortisol. Maternal cortisol unavailability heightened the cortisol stress response in post-hatch larvae, whereas excess cortisol abolished the stressor-mediated cortisol elevation. This contrasting hormonal response corresponded with altered expression of key HPI axis genes, including crf, 11B hydroxylase, pomca, and star, which were upregulated in response to reduced cortisol availability and downregulated when embryos had excess cortisol. These findings for the first time underscore a critical role for maternally deposited cortisol in programming HPI axis development and function in zebrafish. PMID:26940285

  12. A role for glucocorticoids in stress-impaired reproduction: beyond the hypothalamus and pituitary.

    Science.gov (United States)

    Whirledge, Shannon; Cidlowski, John A

    2013-12-01

    In addition to the well-characterized role of the sex steroid receptors in regulating fertility and reproduction, reproductive events are also mediated by the hypothalamic-pituitary-adrenal axis in response to an individual's environment. Glucocorticoid secretion in response to stress contributes to the well-characterized suppression of the hypothalamic-pituitary-gonadal axis through central actions in the hypothalamus and pituitary. However, both animal and in vitro studies indicate that other components of the reproductive system are also regulated by glucocorticoids. Furthermore, in the absence of stress, it appears that homeostatic glucocorticoid signaling plays a significant role in reproduction and fertility in all tissues comprising the hypothalamic-pituitary-gonadal axis. Indeed, as central regulators of the immune response, glucocorticoids are uniquely poised to integrate an individual's infectious, inflammatory, stress, nutritional, and metabolic status through glucocorticoid receptor signaling in target tissues. Endocrine signaling between tissues regulating the immune and stress response and those determining reproductive status provides an evolutionary advantage, facilitating the trade-off between reproductive investment and offspring fitness. This review focuses on the actions of glucocorticoids in tissues important for fertility and reproduction, highlighting recent studies that show glucocorticoid signaling plays a significant role throughout the hypothalamic-pituitary-gonadal axis and characterizing these effects as permissive or inhibitory in terms of facilitating reproductive success.

  13. Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation

    DEFF Research Database (Denmark)

    Dragano, Nathalia R V; Solon, Carina; Ramalho, Albina F

    2017-01-01

    BACKGROUND: The consumption of large amounts of dietary fats is one of the most important environmental factors contributing to the development of obesity and metabolic disorders. GPR120 and GPR40 are polyunsaturated fatty acid receptors that exert a number of systemic effects that are beneficial...... for metabolic and inflammatory diseases. Here, we evaluate the expression and potential role of hypothalamic GPR120 and GPR40 as targets for the treatment of obesity. METHODS: Male Swiss (6-weeks old), were fed with a high fat diet (HFD, 60% of kcal from fat) for 4 weeks. Next, mice underwent stereotaxic...... the treatment period. At the end of the experiment, the hypothalamus was collected for real-time PCR analysis. RESULTS: We show that both receptors are expressed in the hypothalamus; GPR120 is primarily present in microglia, whereas GPR40 is expressed in neurons. Upon intracerebroventricular treatment, GW9508...

  14. [Role of estrogen-sensitive neurons in the arcuate region of the hypothalamus in the mechanism of luteinizing hormone release].

    Science.gov (United States)

    Babichev, V N; Ignatkov, V Ia

    1978-01-01

    Experiments were conducted on rats; estradiol brought to the arcuate region of the hypothalamus by means of microionophoresis led to the increase of the region of the hypothalamus by means of microionophoresis led to the increase of the blood luteinizing hormone (LH) level during the following stages of the estral cycle-diestrus 1, diestrus 2, and the first half day of the proestrus; as to the second half of the proestrus day--estradiol decreased its level. Changes in the LH level in the hypophysis under the influence of the microionophoretic introduction of estradiol into the arcuate region occurred during the second half of the day of diestrus 2 (reduction), and during the estrus (elevation). In the majority of cases a rise of the blood level was combined with the neuron activation in the arcuate region under the influence of estradiol.

  15. A very large number of GABAergic neurons are activated in the tuberal hypothalamus during paradoxical (REM sleep hypersomnia.

    Directory of Open Access Journals (Sweden)

    Emilie Sapin

    Full Text Available We recently discovered, using Fos immunostaining, that the tuberal and mammillary hypothalamus contain a massive population of neurons specifically activated during paradoxical sleep (PS hypersomnia. We further showed that some of the activated neurons of the tuberal hypothalamus express the melanin concentrating hormone (MCH neuropeptide and that icv injection of MCH induces a strong increase in PS quantity. However, the chemical nature of the majority of the neurons activated during PS had not been characterized. To determine whether these neurons are GABAergic, we combined in situ hybridization of GAD(67 mRNA with immunohistochemical detection of Fos in control, PS deprived and PS hypersomniac rats. We found that 74% of the very large population of Fos-labeled neurons located in the tuberal hypothalamus after PS hypersomnia were GAD-positive. We further demonstrated combining MCH immunohistochemistry and GAD(67in situ hybridization that 85% of the MCH neurons were also GAD-positive. Finally, based on the number of Fos-ir/GAD(+, Fos-ir/MCH(+, and GAD(+/MCH(+ double-labeled neurons counted from three sets of double-staining, we uncovered that around 80% of the large number of the Fos-ir/GAD(+ neurons located in the tuberal hypothalamus after PS hypersomnia do not contain MCH. Based on these and previous results, we propose that the non-MCH Fos/GABAergic neuronal population could be involved in PS induction and maintenance while the Fos/MCH/GABAergic neurons could be involved in the homeostatic regulation of PS. Further investigations will be needed to corroborate this original hypothesis.

  16. Intrauterine Growth Restriction Programs the Hypothalamus of Adult Male Rats: Integrated Analysis of Proteomic and Metabolomic Data.

    Science.gov (United States)

    Pedroso, Amanda P; Souza, Adriana P; Dornellas, Ana P S; Oyama, Lila M; Nascimento, Cláudia M O; Santos, Gianni M S; Rosa, José C; Bertolla, Ricardo P; Klawitter, Jelena; Christians, Uwe; Tashima, Alexandre K; Ribeiro, Eliane B

    2017-04-07

    Programming of hypothalamic functions regulating energy homeostasis may play a role in intrauterine growth restriction (IUGR)-induced adulthood obesity. The present study investigated the effects of IUGR on the hypothalamus proteome and metabolome of adult rats submitted to 50% protein-energy restriction throughout pregnancy. Proteomic and metabolomic analyzes were performed by data independent acquisition mass spectrometry and multiple reaction monitoring, respectively. At age 4 months, the restricted rats showed elevated adiposity, increased leptin and signs of insulin resistance. 1356 proteins were identified and 348 quantified while 127 metabolites were quantified. The restricted hypothalamus showed down-regulation of 36 proteins and 5 metabolites and up-regulation of 21 proteins and 9 metabolites. Integrated pathway analysis of the proteomics and metabolomics data indicated impairment of hypothalamic glucose metabolism, increased flux through the hexosamine pathway, deregulation of TCA cycle and the respiratory chain, and alterations in glutathione metabolism. The data suggest IUGR modulation of energy metabolism and redox homeostasis in the hypothalamus of male adult rats. The present results indicated deleterious consequences of IUGR on hypothalamic pathways involved in pivotal physiological functions. These results provide guidance for future mechanistic studies assessing the role of intrauterine malnutrition in the development of metabolic diseases later in life.

  17. Transcriptome analyses identify five transcription factors differentially expressed in the hypothalamus of post- versus prepubertal Brahman heifers.

    Science.gov (United States)

    Fortes, M R S; Nguyen, L T; Weller, M M D C A; Cánovas, A; Islas-Trejo, A; Porto-Neto, L R; Reverter, A; Lehnert, S A; Boe-Hansen, G B; Thomas, M G; Medrano, J F; Moore, S S

    2016-09-01

    Puberty onset is a developmental process influenced by genetic determinants, environment, and nutrition. Mutations and regulatory gene networks constitute the molecular basis for the genetic determinants of puberty onset. The emerging knowledge of these genetic determinants presents opportunities for innovation in the breeding of early pubertal cattle. This paper presents new data on hypothalamic gene expression related to puberty in (Brahman) in age- and weight-matched heifers. Six postpubertal heifers were compared with 6 prepubertal heifers using whole-genome RNA sequencing methodology for quantification of global gene expression in the hypothalamus. Five transcription factors (TF) with potential regulatory roles in the hypothalamus were identified in this experiment: , , , , and . These TF genes were significantly differentially expressed in the hypothalamus of postpubertal versus prepubertal heifers and were also identified as significant according to the applied regulatory impact factor metric ( cancer and developmental processes. Mutations in were associated with puberty in humans. Mutations in these TF, together with other genetic determinants previously discovered, could be used in genomic selection to predict the genetic merit of cattle (i.e., the likelihood of the offspring presenting earlier than average puberty for Brahman). Knowledge of key mutations involved in genetic traits is an advantage for genomic prediction because it can increase its accuracy.

  18. Biochemical evidence for glutamate as a transmitter in hippocampal efferents to the basal forebrain and hypothalamus in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Walaas, I; Fonnum, F

    1980-01-01

    The effects of bilateral transection of the fornix bundle on the high affinity uptake of glutamate and on the amino acid content in several nuclei of rat forebrain and hypothalamus were studied in order to investigate the possible role of glutamate as a transmitter of these fibres. This lesion decreased the high affinity uptake of L-glutamate by 60 to 70% in the mammillary body and lateral septum, and by 40 to 50% in the anterior diagonal band nucleus, the bed nucleus of the stria terminalis, the mediobasal hypothalamus and the nucleus accumbens. The content of endogenous glutamate in samples dissected from freeze-dried tissue also decreased significantly in these regions. Endogenous aspartate was slightly decreased in the anterior diagonal band nucleus and the mammillary body, but unchanged in the other regions. No significant changes were seen in the levels of serine, ..gamma..-aminobutyric acid, glutamine and taurine, except for an increase in glutamine and taurine in the bed nucleus of the stria terminalis. The high affinity uptake of ..gamma..-aminobutyric acid, tested in the bed nucleus of the stria terminalis, the mediobasal hypothalamus and the mammillary body, was unchanged after the lesion. The results indicate that allocortical efferents innervating subcortial nuclei through the fornix might use glutamate as a transmitter. The study further supports the concept that glutamate plays an important role as transmitter of several different corticofugal fibre systems in mammalian brain.

  19. Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: colocalization of MT1 with vasopressin, oxytocin, and corticotropin-releasing hormone.

    NARCIS (Netherlands)

    Wu, Y.-H.; Zhou, J.-N.; Balesar, R.; Unmehopa, U.; Bao, A.; Jockers, R.; Heerikhuize, J.; Swaab, D.F.

    2006-01-01

    Melatonin is implicated in numerous physiological processes, including circadian rhythms, stress, and reproduction, many of which are mediated by the hypothalamus and pituitary. The physiological actions of melatonin are mainly mediated by melatonin receptors. We here describe the distribution of

  20. Anabolic steroids alter the physiological activity of aggression circuits in the lateral anterior hypothalamus.

    Science.gov (United States)

    Morrison, T R; Sikes, R W; Melloni, R H

    2016-02-19

    Syrian hamsters exposed to anabolic/androgenic steroids (AAS) during adolescence consistently show increased aggressive behavior across studies. Although the behavioral and anatomical profiles of AAS-induced alterations have been well characterized, there is a lack of data describing physiological changes that accompany these alterations. For instance, behavioral pharmacology and neuroanatomical studies show that AAS-induced changes in the vasopressin (AVP) neural system within the latero-anterior hypothalamus (LAH) interact with the serotonin (5HT) and dopamine (DA) systems to modulate aggression. To characterize the electrophysiological profile of the AAS aggression circuit, we recorded LAH neurons in adolescent male hamsters in vivo and microiontophoretically applied agonists and antagonists of aggressive behavior. The interspike interval (ISI) of neurons from AAS-treated animals correlated positively with aggressive behaviors, and adolescent AAS exposure altered parameters of activity in regular firing neurons while also changing the proportion of neuron types (i.e., bursting, regular, irregular). AAS-treated animals had more responsive neurons that were excited by AVP application, while cells from control animals showed the opposite effect and were predominantly inhibited by AVP. Both DA D2 antagonists and 5HT increased the firing frequency of AVP-responsive cells from AAS animals and dual application of AVP and D2 antagonists doubled the excitatory effect of AVP or D2 antagonist administration alone. These data suggest that multiple DA circuits in the LAH modulate AAS-induced aggressive responding. More broadly, these data show that multiple neurochemical interactions at the neurophysiological level are altered by adolescent AAS exposure. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Chemogenetic activation of the lateral hypothalamus reverses early life stress-induced deficits in motivational drive.

    Science.gov (United States)

    Campbell, Erin J; Mitchell, Caitlin S; Adams, Cameron D; Yeoh, Jiann Wei; Hodgson, Deborah M; Graham, Brett A; Dayas, Christopher V

    2017-10-01

    Altered motivated behaviour is a cardinal feature of several neuropsychiatric conditions including mood disorders. One well-characterized antecedent to the development of mood disorders is exposure to early life stress (ELS). A key brain substrate controlling motivated behaviour is the lateral hypothalamus (LH). Here, we examined the effect of ELS on LH activation and the motivation to self-administer sucrose. We tested whether chemogenetic activation of LH circuits could modify sucrose responding in ELS rats and examined the impact on LH cell populations. Male rat pups were maternally separated for 0 or 3 h on postnatal days 2-14. During adolescence, rats received bilateral injections of hM3D(Gq), the excitatory designer receptor exclusively activated by designer drugs, into LH. In adulthood, rats were trained to self-administer sucrose and tested under a progressive ratio schedule to determine their motivation for reward following injection with either vehicle or 5 mg/kg clozapine-N-oxide. Brains were processed for Fos-protein immunohistochemistry. ELS significantly suppressed lever responding for sucrose, indicating a long-lasting impact of ELS on motivation circuits. hM3D(Gq) activation of LH increased responding, normalizing deficits in ELS rats, and increased Fos-positive orexin and MCH cell numbers within LH. Our findings indicate that despite being susceptible to environmental stressors, LH circuits retain the capacity to overcome ELS-induced deficits in motivated behaviour. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Arcuate nucleus of hypothalamus is involved in mediating the satiety effect of electroacupuncture in obese rats.

    Science.gov (United States)

    Fei Wang; Tian, De Run; Tso, Patrick; Han, Ji Sheng

    2011-12-01

    Obesity is a major health problem in the world. Since effective remedies are rare, researchers are trying to discover new therapies for obesity, and acupuncture is among the most popular alternative approaches. This study investigated the anti-obesity mechanisms of EA, using a rat model of diet-induced obesity. After feeding with a high-fat diet for 9 weeks, a number of rats who gained weight that surpassed the maximal body weight of rats in the chow-fed group were considered obese and employed in the study. A 2 Hz EA treatment at the acupoints ST36/SP6 with the intensity increasing stepwise from 0.5-1-1.5 mA was given once a day for 30 min. Rats treated with EA showed significantly decreased food intake and reduced body weight compared with the rats in DIO and restraint group. EA treatment increased peptide levels of α-MSH and mRNA levels of its precursor POMC in the arcuate nuclear of hypothalamus (ARH) neurons. In addition, the cerebral spinal fluid (CSF) content of α-MSH was elevated by EA application. ARH lesions by monosodium glutamate abolished the inhibition effect of EA on food intake and body weight. A non-acupoint stimulation did not show the benefit effect on food intake inhibition and body weight reduction compared with restraint and ST36/SP6 EA treatment. We concluded that EA treatment at ST36/SP6 acted through ARH to significantly inhibit food intake and body weight gain when fed a high-fat diet and that the stimulation of α-MSH expression and release might be involved in the mechanism. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Identification of transcripts related to high egg production in the chicken hypothalamus and pituitary gland.

    Science.gov (United States)

    Shiue, Yow-Ling; Chen, Lih-Ren; Chen, Chih-Feng; Chen, Yi-Ling; Ju, Jhy-Phen; Chao, Ching-Hsien; Lin, Yuan-Ping; Kuo, Yu-Ming; Tang, Pin-Chi; Lee, Yen-Pai

    2006-09-15

    To identify transcripts related to high egg production expressed specifically in the hypothalamus and pituitary gland of the chicken, two subtracted cDNA libraries were constructed. Two divergently selected strains of Taiwan Country Chickens (TCCs), B (sire line) and L2 (dam line) were used; they had originated from a single population and were further subjected (since 1982) to selection for egg production to 40 wk of age and body weight/comb size, respectively. A total of 324 and 370 clones were identified from the L2-B (L2-subtract-B) and the B-L2 subtracted cDNA libraries, respectively. After sequencing and annotation, 175 and 136 transcripts that represented 53 known and 65 unknown non-redundant sequences were characterized in the L2-B subtracted cDNA library. Quantitative reverse-transcription (RT)-PCR was used to screen the mRNA expression levels of 32 randomly selected transcripts in another 78 laying hens from five different strains. These strains included the two original strains (B and L2) used to construct the subtracted cDNA libraries and an additional three commercial strains, i.e., Black- and Red-feather TCCs and Single-Comb White Leghorn (WL) layer. The mRNA expression levels of 16 transcripts were significantly higher in the L2 than in the B strain, whereas the mRNA expression levels of nine transcripts, BDH, NCAM1, PCDHA@, PGDS, PLAG1, PRL, SAR1A, SCG2 and STMN2, were significantly higher in two high egg production strains, L2 and Single-Comb WL; this indicated their usefulness as molecular markers of high egg production.

  4. Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus.

    Science.gov (United States)

    Lee, Hyosang; Kim, Dong-Wook; Remedios, Ryan; Anthony, Todd E; Chang, Angela; Madisen, Linda; Zeng, Hongkui; Anderson, David J

    2014-05-29

    Social behaviours, such as aggression or mating, proceed through a series of appetitive and consummatory phases that are associated with increasing levels of arousal. How such escalation is encoded in the brain, and linked to behavioural action selection, remains an unsolved problem in neuroscience. The ventrolateral subdivision of the murine ventromedial hypothalamus (VMHvl) contains neurons whose activity increases during male-male and male-female social encounters. Non-cell-type-specific optogenetic activation of this region elicited attack behaviour, but not mounting. We have identified a subset of VMHvl neurons marked by the oestrogen receptor 1 (Esr1), and investigated their role in male social behaviour. Optogenetic manipulations indicated that Esr1(+) (but not Esr1(-)) neurons are sufficient to initiate attack, and that their activity is continuously required during ongoing agonistic behaviour. Surprisingly, weaker optogenetic activation of these neurons promoted mounting behaviour, rather than attack, towards both males and females, as well as sniffing and close investigation. Increasing photostimulation intensity could promote a transition from close investigation and mounting to attack, within a single social encounter. Importantly, time-resolved optogenetic inhibition experiments revealed requirements for Esr1(+) neurons in both the appetitive (investigative) and the consummatory phases of social interactions. Combined optogenetic activation and calcium imaging experiments in vitro, as well as c-Fos analysis in vivo, indicated that increasing photostimulation intensity increases both the number of active neurons and the average level of activity per neuron. These data suggest that Esr1(+) neurons in VMHvl control the progression of a social encounter from its appetitive through its consummatory phases, in a scalable manner that reflects the number or type of active neurons in the population.

  5. Contributions of HIV infection in the hypothalamus and substance abuse/use to HPT dysregulation

    Science.gov (United States)

    Langford, Dianne; Baron, David; Joy, Javed; Valle, Luis Del; Shack, Jonathon

    2010-01-01

    Over the last two decades, consequences of HIV infection of the CNS on disease severity and clinical neuropsychiatric manifestations have changed. These changes are due, in part, to improved control of peripheral infection by new anti-retroviral medications and more efficient CNS penetration of combination anti-retroviral therapies (cART). While the life spans of HIV-infected patients have been prolonged with successful cART, the spectrum of cognitive alterations observed in these patients has broadened. Recent studies report that there does not appear to be a single prototypical pattern of neuropsychological impairment associated with HIV, but rather it includes diverse manifestations. Some co-morbidities such as substance abuse or depression, likely play significant roles in the neuropsychiatric profiles of some HIV-infected patients. Newly recognized factors contributing to neurocognitive impairments include ageing and unanticipated side effects from cART. Likewise, disturbances in neuroendocrine functioning are emerging as potentially important contributors to HIV-associated neurocognitive alterations. A retrospective review of clinical data from a small cohort of HIV-infected patients admitted to the psychiatric unit of an inner city hospital indicates that thyroid stimulating hormone levels were abnormal in 27% of the patients. Our data from analyses of post-mortem tissues from HIV patients show for the first time HIV infection of the hypothalamus and altered levels of thyroid hormone processing enzymes. Decreased vasopressin and oxytocin immunoreactivity in hypothalamic neurons was also observed. Thus, HIV infection of the CNS may contribute to changes in hypothalamic hormone signaling, thereby resulting in abnormal hypothalamic-pituitary-thyroid axis feedback and neuropsychiatric dysfunction. PMID:21115295

  6. Triple X syndrome and puberty: focus on the hypothalamus-hypophysis-gonad axis.

    Science.gov (United States)

    Stagi, Stefano; di Tommaso, Mariarosaria; Scalini, Perla; Lapi, Elisabetta; Losi, Stefania; Bencini, Erica; Masoni, Fabrizio; Dosa, Laura; Becciani, Sabrina; de Martino, Maurizio

    2016-06-01

    To evaluate the hypothalamus-hypophysis-gonad axis in a cohort of children and adolescents with nonmosaic triple X syndrome. Cross-sectional study with retrospective analysis. University pediatric hospital. Fifteen prepubertal subjects (median age 9.0 years, range 6.9-11.9 years) with nonmosaic triple X syndrome and age- and pubertal-matched control group (30 girls, median age 9.1 y, range 6.9-11.6 years). None. We evaluated FSH, LH, and E2 levels and performed an autoimmunity screening as well as a pelvic ultrasonography and an LH-releasing hormone stimulation test. All triple X patients (with and without pubertal signs) showed a pubertal LH peak level that was significantly different from controls. Triple X patients showed increased basal and peak FSH and LH values compared with control subjects. However, the mean E2 level was significantly lower than control subjects. However, triple X patients showed reduced DHEAS levels and reduced inhibin levels compared with control subjects. Finally, triple X patients had a significantly reduced ovarian volume compared with control subjects, in both prepubertal and pubertal patients. Triple X patients showed premature activation of the GnRH pulse generator, even without puberty signs. Both basal and peak LH and FSH levels were higher than in control subjects, and E2 and inhibin levels and ovarian volume were reduced, which led to a reduced gonadal function. Other studies and a longitudinal evaluation is necessary to better understand the endocrinologic features of these subjects. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus

    Directory of Open Access Journals (Sweden)

    Guilding Clare

    2009-08-01

    Full Text Available Abstract Background In mammals, the synchronized activity of cell autonomous clocks in the suprachiasmatic nuclei (SCN enables this structure to function as the master circadian clock, coordinating daily rhythms in physiology and behavior. However, the dominance of this clock has been challenged by the observations that metabolic duress can over-ride SCN controlled rhythms, and that clock genes are expressed in many brain areas, including those implicated in the regulation of appetite and feeding. The recent development of mice in which clock gene/protein activity is reported by bioluminescent constructs (luciferase or luc now enables us to track molecular oscillations in numerous tissues ex vivo. Consequently we determined both clock activities and responsiveness to metabolic perturbations of cells and tissues within the mediobasal hypothalamus (MBH, a site pivotal for optimal internal homeostatic regulation. Results Here we demonstrate endogenous circadian rhythms of PER2::LUC expression in discrete subdivisions of the arcuate (Arc and dorsomedial nuclei (DMH. Rhythms resolved to single cells did not maintain long-term synchrony with one-another, leading to a damping of oscillations at both cell and tissue levels. Complementary electrophysiology recordings revealed rhythms in neuronal activity in the Arc and DMH. Further, PER2::LUC rhythms were detected in the ependymal layer of the third ventricle and in the median eminence/pars tuberalis (ME/PT. A high-fat diet had no effect on the molecular oscillations in the MBH, whereas food deprivation resulted in an altered phase in the ME/PT. Conclusion Our results provide the first single cell resolution of endogenous circadian rhythms in clock gene expression in any intact tissue outside the SCN, reveal the cellular basis for tissue level damping in extra-SCN oscillators and demonstrate that an oscillator in the ME/PT is responsive to changes in metabolism.

  8. Connectivity from OR37 expressing olfactory sensory neurons to distinct cell types in the hypothalamus

    Directory of Open Access Journals (Sweden)

    Andrea eBader

    2012-11-01

    Full Text Available Olfactory sensory neurons which express a member from the OR37 subfamily of odorant receptor genes are wired to the main olfactory bulb in a unique monoglomerular fashion; from these glomeruli an untypical connectivity into higher brain centers exists. In the present study we have investigated by DiI and transsynaptic tracing approaches how the connection pattern from these glomeruli into distinct hypothalamic nuclei is organized. The application of DiI onto the ventral domain of the bulb which harbors the OR37 glomeruli resulted in the labeling of fibers within the paraventricular and supraoptic nucleus of the hypothalamus; some of these fibers were covered with varicose-like structures. No DiI-labeled cell somata were detectable in these nuclei. The data indicate that projection neurons which originate in the OR37 region of the main olfactory bulb form direct connections into these nuclei. The cells that were labeled by the transsynaptic tracer WGA in these nuclei were further characterized. Their distribution pattern in the paraventricular nucleus was reminiscent of cells which produce distinct neuropeptides. Double labeling experiments confirmed that they contained vasopressin, but not the related neuropeptide oxytocin. Morphological analysis revealed that they comprise of magno- and parvocellular cells. A comparative investigation of the WGA-positive cells in the supraoptic nucleus demonstrated that these were vasopressin-positive, as well, whereas oxytocin-producing cells of this nucleus also contained no transsynaptic tracer. Together, the data demonstrate a connectivity from OR37 expressing sensory neurons to distinct hypothalamic neurons with the same neuropeptide content.

  9. Neurotensin releases norepinephrine differentially from perfused hypothalamus of sated and fasted rat

    International Nuclear Information System (INIS)

    Lee, T.F.; Rezvani, A.H.; Hepler, J.R.; Myers, R.D.

    1987-01-01

    The central injection of neurotensin (NT) has been reported to attenuate the intake of food in the fasted animal. To determine whether endogenous norepinephrine (NE) is involved in the satiating effect of NT, the in vivo activity of NE in circumscribed sites in the hypothalamus of the unanesthetized rat was examined. Bilateral guide tubes for push-pull perfusion were implanted stereotaxically to rest permanently above one of several intended sites of perfusion, which included the paraventricular nucleus (PVN), ventromedial nucleus (VMN), and the lateral hypothalamic (LH) area. After endogenous stores of NE at a specific hypothalamic locus were radiolabeled by microinjection of 0.02-0.5 μCi of [ 3 H]NE, an artificial cerebrospinal fluid was perfused at the site at a rate of 20 μl/min over successive intervals of 5.0 min. When 0.05 or 0.1 μg/μl NT was added to the perfusate, the peptide served either to enhance or educe the local release of NE at 50% of the sites of perfusion. In these experiments, the circumscribed effect of NT on the characteristics of catecholamine efflux depended entirely on the state of hunger or satiety of the rat. That is, when NT was perfused in the fully satiated rat, NE release was augmented within the PVn or VMN; conversely, NE release was inhibited in the LH. in the animal fasted for 18-22 h, NT exerted an opposite effect on the activity of NE within the same anatomical loci in that the efflux of NE was enhanced in the LH but attenuated or unaffected in the PVN or VMN. Taken together, these observations provide experimental support for the view-point that NT could act as a neuromodulator of the activity of hypothalamic noradrenergic neurons that are thought to play a functional role in the regulation of food intake

  10. The role of hypothalamus-pituitary-adrenal genes and childhood trauma in borderline personality disorder.

    Science.gov (United States)

    Martín-Blanco, Ana; Ferrer, Marc; Soler, Joaquim; Arranz, Maria Jesús; Vega, Daniel; Calvo, Natalia; Elices, Matilde; Sanchez-Mora, Cristina; García-Martinez, Iris; Salazar, Juliana; Carmona, Cristina; Bauzà, Joana; Prat, Mónica; Pérez, Víctor; Pascual, Juan C

    2016-06-01

    Current knowledge suggests that borderline personality disorder (BPD) results from the interaction between genetic and environmental factors. Research has mainly focused on monoaminergic genetic variants and their modulation by traumatic events, especially those occurring during childhood. However, to the best of our knowledge, there are no studies on the genetics of hypothalamus-pituitary-adrenal (HPA) axis, despite its vulnerability to early stress and its involvement in BPD pathogenesis. The aim of this study was to investigate the contribution of genetic variants in the HPA axis and to explore the modulating effect of childhood trauma in a large sample of BPD patients and controls. DNA was obtained from a sample of 481 subjects with BPD and 442 controls. Case-control differences in allelic frequencies of 47 polymorphisms in 10 HPA axis genes were analysed. Modulation of genetic associations by the presence of childhood trauma was also investigated by dividing the sample into three groups: BPD with trauma, BPD without trauma and controls. Two FKBP5 polymorphisms (rs4713902-C and rs9470079-A) showed significant associations with BPD. There were also associations between BPD and haplotype combinations of the genes FKBP5 and CRHR1. Two FKBP5 alleles (rs3798347-T and rs10947563-A) were more frequent in BPD subjects with history of physical abuse and emotional neglect and two CRHR2 variants (rs4722999-C and rs12701020-C) in BPD subjects with sexual and physical abuse. Our findings suggest a contribution of HPA axis genetic variants to BPD pathogenesis and reinforce the hypothesis of the modulating effect of childhood trauma in the development of this disorder.

  11. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour

    Science.gov (United States)

    Bonnavion, Patricia; Mickelsen, Laura E.; Fujita, Akie; de Lecea, Luis

    2016-01-01

    Abstract The hypothalamus is among the most phylogenetically conserved regions in the vertebrate brain, reflecting its critical role in maintaining physiological and behavioural homeostasis. By integrating signals arising from both the brain and periphery, it governs a litany of behaviourally important functions essential for survival. In particular, the lateral hypothalamic area (LHA) is central to the orchestration of sleep–wake states, feeding, energy balance and motivated behaviour. Underlying these diverse functions is a heterogeneous assembly of cell populations typically defined by neurochemical markers, such as the well‐described neuropeptides hypocretin/orexin and melanin‐concentrating hormone. However, anatomical and functional evidence suggests a rich diversity of other cell populations with complex neurochemical profiles that include neuropeptides, receptors and components of fast neurotransmission. Collectively, the LHA acts as a hub for the integration of diverse central and peripheral signals and, through complex local and long‐range output circuits, coordinates adaptive behavioural responses to the environment. Despite tremendous progress in our understanding of the LHA, defining the identity of functionally discrete LHA cell types, and their roles in driving complex behaviour, remain significant challenges in the field. In this review, we discuss advances in our understanding of the neurochemical and cellular heterogeneity of LHA neurons and the recent application of powerful new techniques, such as opto‐ and chemogenetics, in defining the role of LHA circuits in feeding, reward, arousal and stress. From pioneering work to recent developments, we review how the interrogation of LHA cells and circuits is contributing to a mechanistic understanding of how the LHA coordinates complex behaviour. PMID:27302606

  12. Lesions of the lateral hypothalamus impair pilocarpine-induced salivation in rats.

    Science.gov (United States)

    Renzi, A; De Luca, L A; Menani, J V

    2002-09-15

    In the present study we investigated the effects of electrolytic lesions of the lateral hypothalamus (LH) in the salivation induced by intracerebroventricular (i.c.v.) or intraperitoneal (i.p.) injection of the cholinergic agonist pilocarpine. Rats with sham or LH lesions and stainless steel cannulas implanted into the lateral ventricle (LV) were used. In rats anesthetized with urethane (1.25mg/kg of body weight) saliva was collected using pre-weighed cotton balls inserted in the animal mouth during a period of 7 min following i.c.v. or i.p. injection of pilocarpine. Injection of pilocarpine (1mg/kg of body weight) i.p. in sham-operated rats (6h, 2, 7, and 15 days after the surgery) induced salivation (497+/-24, 452+/-26, 476+/-30, and 560+/-75 mg/7 min, respectively). The effects of i.p. pilocarpine was reduced 6h, 2 and 7 days after LH lesions (162+/-37, 190+/-32, and 229+/-27 mg/7 min, respectively), not 15 days after LH lesions (416+/-89 mg/7 min). Injection of pilocarpine (120 micro g/micro l) i.c.v., in sham-operated rats (6h, 2, 7, and 15 days after the surgery) also produced salivation (473+/-20, 382+/-16, 396+/-14, and 427+/-47 mg/7 min, respectively). The salivation induced by i.c.v. pilocarpine was also reduced 6h, 2 and 7 days after LH lesions (243+/-19, 278+/-24, and 295+/-27 mg/7 min, respectively), not 15 days after LH lesions (385+/-48 mg/7 min). The present results show the participation of the LH in the salivation induced by central or peripheral injection of pilocarpine in rats, reinforcing the involvement of central mechanisms on pilocarpine-induced salivation.

  13. Lateral Hypothalamus as a Motivation-Cognition Interface in the Control of Feeding Behavior

    Directory of Open Access Journals (Sweden)

    Gorica D. Petrovich

    2018-04-01

    Full Text Available Converging evidence for an essential function of the lateral hypothalamus (LHA in the control of feeding behavior has been accumulating since the classic work conducted almost 80 years ago. The LHA is also important in reward and reinforcement processes and behavioral state control. A unifying function for the LHA across these processes has not been fully established. Nonetheless, it is considered to integrate motivation with behavior. More recent work has demonstrated that the LHA is also required when cognitive processes, such as associative learning and memory control feeding behavior, suggesting it may serve as a motivation-cognition interface. Structurally, the LHA is well positioned within the cerebral hemisphere, with its extensive connectional network across the forebrain-brainstem axis, to link motivational and behavioral systems with cognitive processes. Studies that examined how learned cues control food seeking and consumption have implicated the LHA, but due to methodological limitations could not determine whether it underlies motivation, learning, or the integration of these processes. Furthermore, the identification of specific substrates has been limited by the LHA’s extraordinary complexity and heterogeneity. Recent methodological advancements with chemo-and opto-genetic approaches have enabled unprecedented specificity in interrogations of distinct neurons and their pathways in behaving animals, including manipulations during temporally distinct events. These approaches have revealed novel insights about the LHA structure and function. Recent findings that the GABA LHA neurons control feeding and food-reward learning and memory will be reviewed together with past work within the context of the LHA function as an interface between cognition and motivation.

  14. Maternal high-fat diet induces metabolic stress response disorders in offspring hypothalamus.

    Science.gov (United States)

    Nguyen, Long The; Saad, Sonia; Tan, Yi; Pollock, Carol; Chen, Hui

    2017-07-01

    Maternal obesity has been shown to increase the risk of obesity and related disorders in the offspring, which has been partially attributed to changes of appetite regulators in the offspring hypothalamus. On the other hand, endoplasmic reticulum (ER) stress and autophagy have been implicated in hypothalamic neuropeptide dysregulation, thus may also play important roles in such transgenerational effect. In this study, we show that offspring born to high-fat diet-fed dams showed significantly increased body weight and glucose intolerance, adiposity and plasma triglyceride level at weaning. Hypothalamic mRNA level of the orexigenic neuropeptide Y (NPY) was increased, while the levels of the anorexigenic pro-opiomelanocortin (POMC), NPY1 receptor (NPY1R) and melanocortin-4 receptor (MC4R) were significantly downregulated. In association, the expression of unfolded protein response (UPR) markers including glucose-regulated protein (GRP)94 and endoplasmic reticulum DNA J domain-containing protein (Erdj)4 was reduced. By contrast, protein levels of autophagy-related genes Atg5 and Atg7, as well as mitophagy marker Parkin, were slightly increased. The administration of 4-phenyl butyrate (PBA), a chemical chaperone of protein folding and UPR activator, in the offspring from postnatal day 4 significantly reduced their body weight, fat deposition, which were in association with increased activating transcription factor (ATF)4, immunoglobulin-binding protein (BiP) and Erdj4 mRNA as well as reduced Parkin, PTEN-induced putative kinase (PINK)1 and dynamin-related protein (Drp)1 protein expression levels. These results suggest that hypothalamic ER stress and mitophagy are among the regulatory factors of offspring metabolic changes due to maternal obesity. © 2017 Society for Endocrinology.

  15. Colloid cyst of the third ventricle, hypothalamus, and heart: a dangerous link for sudden death

    Directory of Open Access Journals (Sweden)

    Turillazzi Emanuela

    2012-10-01

    Full Text Available Abstract Colloid cysts are rare congenital, intracranial neoplasms, commonly located in the third ventricle. Colloid cysts are endodermal congenital malformations. The cysts commonly range in size from 1–2 cm in diameter, although large cysts >3 cm in size have been reported. The components of the cyst include an outer fibrous capsule over an inner epithelium. The epithelium is usually a single layer of mucin-producing or ciliated cells. Such cysts contain mucoid and gelatinous material, which is positive for both Periodic acid Schiff (PAS and mucicarmen staining. Although colloid cysts usually represent histopathologically benign neoplasms, they can result in sudden, unexpected and potentially lethal complications. The mechanism(s of death is still a controversial subject and several mechanisms have been postulated to explain the sudden onset of severe symptoms and of fatal rapid deterioration in patients with colloid cysts. In this case, macroscopic and histological findings addressed the diagnosis of colloid cyst of the third ventricle with diffuse myocardial injury (coagulative myocytolysis or contraction band necrosis, CBN and led us to conclude that acute cardiac arrest due to hypothalamus stimulation in the context of colloid cyst of the third ventricle was the cause of death. As the hypothalamic structures which are involved in neuroendocrine and autonomic regulation playing a key role in cardiovascular control are located close to the walls of the third ventricle which is the most frequent anatomical site of colloid cyst, this may suggest that reflex cardiac effects due to the compression of the hypothalamic cardiovascular regulatory centers by the cyst explain the sudden death in patients harboring a colloid cyst when signs of hydrocephalus or brain herniation are lacking. Virtual slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4915842848034158

  16. Acid sensing ion channel 1 in lateral hypothalamus contributes to breathing control.

    Directory of Open Access Journals (Sweden)

    Nana Song

    Full Text Available Acid-sensing ion channels (ASICs are present in neurons and may contribute to chemoreception. Among six subunits of ASICs, ASIC1 is mainly expressed in the central nervous system. Recently, multiple sites in the brain including the lateral hypothalamus (LH have been found to be sensitive to extracellular acidification. Since LH contains orexin neurons and innervates the medulla respiratory center, we hypothesize that ASIC1 is expressed on the orexin neuron and contributes to acid-induced increase in respiratory drive. To test this hypothesis, we used double immunofluorescence to determine whether ASIC1 is expressed on orexin neurons in the LH, and assessed integrated phrenic nerve discharge (iPND in intact rats in response to acidification of the LH. We found that ASIC1 was co-localized with orexinA in the LH. Microinjection of acidified artificial cerebrospinal fluid increased the amplitude of iPND by 70% (pH 7.4 v.s. pH 6.5:1.05±0.12 v.s. 1.70±0.10, n = 6, P<0.001 and increased the respiratory drive (peak amplitude of iPND/inspiratory time, PA/Ti by 40% (1.10±0.23 v.s. 1.50±0.38, P<0.05. This stimulatory effect was abolished by blocking ASIC1 with a nonselective inhibitor (amiloride 10 mM, a selective inhibitor (PcTX1, 10 nM or by damaging orexin neurons in the LH. Current results support our hypothesis that the orexin neuron in the LH can exert an excitation on respiration via ASIC1 during local acidosis. Since central acidification is involved in breathing dysfunction in a variety of pulmonary diseases, understanding its underlying mechanism may improve patient management.

  17. Lipopolysaccharide-induced neuronal activation in the paraventricular and dorsomedial hypothalamus depends on ambient temperature.

    Directory of Open Access Journals (Sweden)

    Samuel P Wanner

    Full Text Available Systemic inflammatory response syndrome is associated with either fever or hypothermia, but the mechanisms responsible for switching from one to the other are unknown. In experimental animals, systemic inflammation is often induced by bacterial lipopolysaccharide (LPS. To identify the diencephalic and brainstem structures involved in the fever-hypothermia switch, we studied the expression of c-Fos protein, a marker of neuronal activation, in rats treated with the same high dose of LPS (0.5 mg/kg, intravenously either in a thermoneutral (30 °C or cool (24 °C environment. At 30 °C, LPS caused fever; at 24 °C, the same dose caused profound hypothermia. Both fever and hypothermia were associated with the induction of c-Fos in many brain areas, including several structures of the anterior preoptic, paraventricular, lateral, and dorsal hypothalamus, the bed nucleus of the stria terminalis, the posterior pretectal nucleus, ventrolateral periaqueductal gray, lateral parabrachial nucleus, area postrema, and nucleus of the solitary tract. Every brain area studied showed a comparable response to LPS at the two different ambient temperatures used, with the exception of two areas: the dorsomedial hypothalamic nucleus (DMH, which we studied together with the adjacent dorsal hypothalamic area (DA, and the paraventricular hypothalamic nucleus (PVH. Both structures had much stronger c-Fos expression during LPS hypothermia than during fever. We propose that PVH and DMH/DA neurons are involved in a circuit, which - depending on the ambient temperature - determines whether the thermoregulatory response to bacterial LPS will be fever or hypothermia.

  18. Angiotensin II Reduces Food Intake by Altering Orexigenic Neuropeptide Expression in the Mouse Hypothalamus

    Science.gov (United States)

    Yoshida, Tadashi; Semprun-Prieto, Laura; Wainford, Richard D.; Sukhanov, Sergiy; Kapusta, Daniel R.

    2012-01-01

    Angiotensin II (Ang II), which is elevated in many chronic disease states such as end-stage renal disease and congestive heart failure, induces cachexia and skeletal muscle wasting by increasing muscle protein breakdown and reducing food intake. Neurohormonal mechanisms that mediate Ang II-induced appetite suppression are unknown. Consequently, we examined the effect of Ang II on expression of genes regulating appetite. Systemic Ang II (1 μg/kg · min) infusion in FVB mice rapidly reduced hypothalamic expression of neuropeptide Y (Npy) and orexin and decreased food intake at 6 h compared with sham-infused controls but did not change peripheral leptin, ghrelin, adiponectin, glucagon-like peptide, peptide YY, or cholecystokinin levels. These effects were completely blocked by the Ang II type I receptor antagonist candesartan or deletion of Ang II type 1a receptor. Ang II markedly reduced phosphorylation of AMP-activated protein kinase (AMPK), an enzyme that is known to regulate Npy expression. Intracerebroventricular Ang II infusion (50 ng/kg · min) caused a reduction of food intake, and Ang II dose dependently reduced Npy and orexin expression in the hypothalamus cultured ex vivo. The reduction of Npy and orexin in hypothalamic cultures was completely prevented by candesartan or the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside. Thus, Ang II type 1a receptor-dependent Ang II signaling reduces food intake by suppressing the hypothalamic expression of Npy and orexin, likely via AMPK dephosphorylation. These findings have major implications for understanding mechanisms of cachexia in chronic disease states such as congestive heart failure and end-stage renal disease, in which the renin-angiotensin system is activated. PMID:22234465

  19. A Computational Model of the Rainbow Trout Hypothalamus-Pituitary-Ovary-Liver Axis.

    Directory of Open Access Journals (Sweden)

    Kendall Gillies

    2016-04-01

    Full Text Available Reproduction in fishes and other vertebrates represents the timely coordination of many endocrine factors that culminate in the production of mature, viable gametes. In recent years there has been rapid growth in understanding fish reproductive biology, which has been motivated in part by recognition of the potential effects that climate change, habitat destruction and contaminant exposure can have on natural and cultured fish populations. New approaches to understanding the impacts of these stressors are being developed that require a systems biology approach with more biologically accurate and detailed mathematical models. We have developed a multi-scale mathematical model of the female rainbow trout hypothalamus-pituitary-ovary-liver axis to use as a tool to help understand the functioning of the system and for extrapolation of laboratory findings of stressor impacts on specific components of the axis. The model describes the essential endocrine components of the female rainbow trout reproductive axis. The model also describes the stage specific growth of maturing oocytes within the ovary and permits the presence of sub-populations of oocytes at different stages of development. Model formulation and parametrization was largely based on previously published in vivo and in vitro data in rainbow trout and new data on the synthesis of gonadotropins in the pituitary. Model predictions were validated against several previously published data sets for annual changes in gonadotropins and estradiol in rainbow trout. Estimates of select model parameters can be obtained from in vitro assays using either quantitative (direct estimation of rate constants or qualitative (relative change from control values approaches. This is an important aspect of mathematical models as in vitro, cell-based assays are expected to provide the bulk of experimental data for future risk assessments and will require quantitative physiological models to extrapolate across

  20. Unilateral Hypothalamus Inactivation Prevents PTZ Kindling Development through Hippocampal Orexin Receptor 1 Modulation

    Directory of Open Access Journals (Sweden)

    Nasibe Akbari

    2014-02-01

    Full Text Available Introduction: Epilepsy is a neural disorder in which abnormal plastic changes during short and long term periods lead to increased excitability of brain tissue. Kindling is an animal model of epileptogenesis which results in changes of synaptic plasticity due to repetitive electrical or chemical sub-convulsive stimulations of the brain. Lateral hypothalamus, as the main niche of orexin neurons with extensive projections, is involved in sleep and wakefulness and so it affects the excitability of the brain. Therefore, we investigated whether lateral hypothalamic area (LHA inactivation or orexin-A receptor blocking could change convulsive behavior of acute and kindled PTZ treated animals and if glutamate has a role in this regard.  Methods: Kindling was induced by 40 mg/kg PTZ, every 48 hours up to 13 injections to each rat. Three consecutive stages 4 or 5 of convulsive behavior were used to ensure kindling. Lidocaine was injected stereotaxically to inactivate LHA, unilaterally. SB334867 used for orexin receptor 1 (OX1R blocking administered in CSF.  Results: We demonstrated that LHA inactivation prevented PTZ kindling and hence, excitability evolution. Hippocampal glutamate content was decreased due to LHA inactivation, OX1R antagonist infusion, lidocaine injection and kindled groups. In accordance, OX1R antagonist (SB334867 and lidocaine injection decreased PTZ single dose induced convulsive behavior. While orexin-A i.c.v. infusion increased hippocampal glutamate content, it did not change PTZ induced convulsive intensity.  Discussion: It is concluded that LHA inactivation prevented kindling development probably through orexin receptor antagonism. CSF orexin probably acts as an inhibitory step on convulsive intensity through another unknown process.

  1. Involvement of hypothalamus autoimmunity in patients with autoimmune hypopituitarism: role of antibodies to hypothalamic cells.

    Science.gov (United States)

    De Bellis, A; Sinisi, A A; Pane, E; Dello Iacovo, A; Bellastella, G; Di Scala, G; Falorni, A; Giavoli, C; Gasco, V; Giordano, R; Ambrosio, M R; Colao, A; Bizzarro, A; Bellastella, A

    2012-10-01

    Antipituitary antibodies (APA) but not antihypothalamus antibodies (AHA) are usually searched for in autoimmune hypopituitarism. Our objective was to search for AHA and characterize their hypothalamic target in patients with autoimmune hypopituitarism to clarify, on the basis of the cells stained by these antibodies, the occurrence of autoimmune subclinical/clinical central diabetes insipidus (CDI) and/or possible joint hypothalamic contribution to their hypopituitarism. We conducted a cross-sectional cohort study. Ninety-five APA-positive patients with autoimmune hypopituitarism, 60 without (group 1) and 35 with (group 2) lymphocytic hypophysitis, were studied in comparison with 20 patients with postsurgical hypopituitarism and 50 normal subjects. AHA by immunofluorescence and posterior pituitary function were evaluated; then AHA-positive sera were retested by double immunofluorescence to identify the hypothalamic cells targeted by AHA. AHA were detected at high titer in 12 patients in group 1 and in eight patients in group 2. They immunostained arginine vasopressin (AVP)-secreting cells in nine of 12 in group 1 and in four of eight in group 2. All AVP cell antibody-positive patients presented with subclinical/clinical CDI; in contrast, four patients with GH/ACTH deficiency but with APA staining only GH-secreting cells showed AHA targeting CRH- secreting cells. The occurrence of CDI in patients with lymphocytic hypophysitis seems due to an autoimmune hypothalamic involvement rather than an expansion of the pituitary inflammatory process. To search for AVP antibody in these patients may help to identify those of them prone to develop an autoimmune CDI. The detection of AHA targeting CRH-secreting cells in some patients with GH/ACTH deficiency but with APA targeting only GH-secreting cells indicates that an autoimmune aggression to hypothalamus is jointly responsible for their hypopituitarism.

  2. Efferent connections of the parvalbumin-positive (PV1) nucleus in the lateral hypothalamus of rodents.

    Science.gov (United States)

    Celio, Marco R; Babalian, Alexandre; Ha, Quan Hue; Eichenberger, Simone; Clément, Laurence; Marti, Christiane; Saper, Clifford B

    2013-10-01

    A solitary cluster of parvalbumin-positive neurons--the PV1 nucleus--has been observed in the lateral hypothalamus of rodents. In the present study, we mapped the efferent connections of the PV1 nucleus using nonspecific antero- and retrograde tracers in rats, and chemoselective, Cre-dependent viral constructs in parvalbumin-Cre mice. In both species, the PV1 nucleus was found to project mainly to the periaqueductal grey matter (PAG), predominantly ipsilaterally. Indirectly in rats and directly in mice, a discrete, longitudinally oriented cylindrical column of terminal fields (PV1-CTF) was identified ventrolateral to the aqueduct on the edge of the PAG. The PV1-CTF is particularly dense in the rostral portion, which is located in the supraoculomotor nucleus (Su3). It is spatially interrupted over a short stretch at the level of the trochlear nucleus and abuts caudally on a second parvalbumin-positive (PV2) nucleus. The rostral and the caudal portions of the PV1-CTF consist of axonal endings, which stem from neurons scattered throughout the PV1 nucleus. Topographically, the longitudinal orientation of the PV1-CTF accords with that of the likewise longitudinally oriented functional modules of the PAG, but overlaps none of them. Minor terminal fields were identified in a crescentic column of the lateral PAG, as well as in the Edinger-Westphal, the lateral habenular, and the laterodorsal tegmental nuclei. So far, no obvious functions have been attributed to this small, circumscribed column ventrolateral to the aqueduct, the prime target of the PV1 nucleus. © 2013 Wiley Periodicals, Inc.

  3. To be, or not to be obese - that's the challenge: a hypothesis on the cortical inhibition of the hypothalamus and its therapeutical consequences.

    Science.gov (United States)

    Kreier, Felix

    2010-08-01

    Today, obesity is the most urgent unsolved medical problem, with the threat of a decreased life expectancy rate for the first time in medical history. Many obese subjects try to lose weight by dieting and exercising, without success on a long term basis. The only therapy with some effect is bariatric surgery with the impact of sustainable adverse effects only suitable in morbid obesity. Why are the therapies to treat obesity not working? Within the last years, we have become more aware of the role of the brain in energy homeostasis. The three main players within the brain controlling our weight are the cortex for cognition, hypothalamus for vital body functions and limbic-reward system for emotions. One hypothesizes that the failure of the cortex to inhibit the hypothalamus is the main cause of obesity. The evolutionary old hypothalamus constantly seeks for a positive energy balance, always in endeavor to avoid any energy shortage in the future. The hypothalamus is executing its tasks in a parallel mode. It can coordinate a set of vital routines independently, yet simultaneously. For e.g., energy balance, salt balance, body temperature and sleep are executed even in a coma. The hypothalamus is primitive but stable. The cortex in humans is, compared to rodents, much bigger and more complex, while the hypothalamus bears more similarities between these two species. The cortex in humans is evolutionary younger and represents higher cognition, an unique human feature. In contrast to the hypothalamus, the cortex focuses on one problem at a time, thus functioning on an attention-based manner. Due to this serial mode, the cortex uses a large part of its capacity for one problem at a time. Therefore, it can solve more complex calculations than the hypothalamus by thinking about one problem after another. It is even strong enough to veto the hypothalamus, if necessary. If the concentration on weight loss is distorted, the hypothalamus is free of inhibition by the cortex, and

  4. Effects of high fat diet on the Basal activity of the hypothalamus-pituitary-adrenal axis in mice: a systematic review.

    Science.gov (United States)

    Auvinen, H E; Romijn, J A; Biermasz, N R; Havekes, L M; Smit, J W A; Rensen, P C N; Pereira, A M

    2011-12-01

    Hypothalamus-pituitary-adrenal-axis activity is suggested to be involved in the pathophysiology of the metabolic syndrome. In diet-induced obesity mouse models, features of the metabolic syndrome are induced by feeding high fat diet. However, the models reveal conflicting results with respect to the hypothalamus-pituitary-adrenal-axis activation. The aim of this review was to assess the effects of high fat feeding on the activity of the hypothalamus-pituitary-adrenal-axis in mice. PubMed, EMBASE, Web of Science, the Cochrane database, and Science Direct were electronically searched and reviewed by 2 individual researchers. We included only original mouse studies reporting parameters of the hypothalamus-pituitary-adrenal-axis after high fat feeding, and at least 1 basal corticosterone level with a proper control group. Studies with adrenalectomized mice, transgenic animals only, high fat diet for less than 2 weeks, or other interventions besides high fat diet, were excluded. 20 studies were included. The hypothalamus-pituitary-adrenal-axis evaluation was the primary research question in only 5 studies. Plasma corticosterone levels were unchanged in 40%, elevated in 30%, and decreased in 20% of the studies. The effects in the peripheral tissues and the central nervous system were also inconsistent. However, major differences were found between mouse strains, experimental conditions, and the content and duration of the diets. This systematic review demonstrates that the effects of high fat feeding on the basal activity of the hypothalamus-pituitary-adrenal-axis in mice are limited and inconclusive. Differences in experimental conditions hamper comparisons and accentuate the need for standardized evaluations to discern the effects of diet-induced obesity on the hypothalamus-pituitary-adrenal-axis. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Evolution of hypothalamus-pituitary growth axis among fish, amphibian, birds and mammals

    Directory of Open Access Journals (Sweden)

    Moaeen-Ud-Din M.

    2015-01-01

    Full Text Available Hypothalamus-pituitary growth axis (HP growth axis regulates animal growth and development in pre-natal and post natal life governed by many factors. However, until recently, the evolutionary history of this axis among lineages is not understood. Aim of the present study was to understand the major events in evolution and evolutionary history and trend of HP growth axis. The diversity among Homo sapience, Mus musculus, Rattus norvegicus, Gallus gallus, Danio rerio and Xenopus laevis was determined for genes involved in HP growth axis in current study. Sequences of HP growth axis genes were retrieved from NCBI (http://www.ncbi.nlm.nih.gov/. Nucleotide diversity using Kimura’s two-parameter method; codon-based test of positive selection using the Nei-Gojobori; equality of evolutionary rate with Tajima's relative rate test and phylogenetic history using the RelTime method were estimated in MEGA6. Estimates of the coefficients of evolutionary differentiation based on nucleotides and amino acids substitution patterns of HP growth axis genes showed contrasting evolutionary patterns among the lineages. The results demonstrated that although these genes might have crucial functional roles in each of the species, however, their sequence divergence did not necessarily reflect similar molecular evolution among the species. Codon-based test of positive selection revealed that Human vs Mouse, Chicken vs Rat, Human vs Rat and Mouse vs Rat had similar and higher non synonymous substitutions (P > 0.05. Higher rate of non-synonymous substitutions at similar orthologs level among species indicated a similar positive selection pressure in these species. Results for relative rate test assessed with the chi-squared test showed difference on unique mutations among lineages at synonymous and non synonymous sites except Chicken vs Mouse, Human vs Mouse, Chicken vs Rat, Human vs Rat and Mouse vs Rat. This indicated that the mutagenic process that generates

  6. Environmental Impact Research Program and Defense Natural Resources Program: Section 7.5.7, US Army Corps of Engineers Wildlife Resources Management Manual

    Science.gov (United States)

    1992-02-01

    throated sparrow (Z. albicollis) X X Song sparrow (Melospiza melodia) X X Fox sparrow (Passerella iliaca) X X Mammals Opossum (Didelphis virginiana ) X...cm) and should not be less than 0.38 in. (0.4 cm). When Ellagood is pruned severely, an abundance of new shoots are produced (SCS, undated). Planting...Holes for the plants should be deep enough to take the full root without bending. Unusually long roots and tops may be pruned to 6 in. (15.2 cm) if

  7. In a rat model of night work, activity during the normal resting phase produces desynchrony in the hypothalamus.

    Science.gov (United States)

    Salgado-Delgado, Roberto; Nadia, Saderi; Angeles-Castellanos, M; Buijs, Ruud M; Escobar, Carolina

    2010-12-01

    Internal synchrony among external cycles and internal oscillators allows adaptation of physiology to cyclic demands for homeostasis. Night work and shift work lead to a disrupted phase relationship between external time cues and internal rhythms, also losing internal coherence among oscillations. This process results in internal desynchrony (ID) in which behavioral, hormonal, and metabolic variables cycle out of phase. It is still not clear whether ID originates at a peripheral or at a central level. In order to determine the possible role of hypothalamic oscillators in ID, we explored with a rat model of "night work" daily rhythms of activity and clock gene expression in the hypothalamus. This study provides evidence that wakefulness and activity during the normal resting phase lead to a shift in the diurnal rhythms of c-Fos and induce a rhythm of PER1 in the arcuate and dorsomedial nucleus of the hypothalamus, both associated with metabolism and regulation of the sleep/wake cycle. Moreover, the number of orexin (ORX)-positive neurons and c-Fos in the perifornical area increased during the working period, suggesting a relevant switch of activity in this brain region induced by the scheduled activity; however, the colocalization of c-Fos in ORX-positive cells was not increased. In contrast, the suprachiasmatic nucleus and the paraventricular nucleus remained locked to the light/dark cycle, resulting in ID in the hypothalamus. Present data suggest that ID occurs already at the level of the first output projections from the SCN, relaying nuclei that transmit temporal signals to other brain areas and to the periphery.

  8. Long-Term Effect of Cranial Radiotherapy on Pituitary-Hypothalamus Area in Childhood Acute Lymphoblastic Leukemia Survivors.

    Science.gov (United States)

    Follin, Cecilia; Erfurth, Eva Marie

    2016-09-01

    Survival rates of childhood cancer have improved markedly, and today more than 80 % of those diagnosed with a pediatric malignancy will become 5-year survivors. Nevertheless, survivors exposed to cranial radiotherapy (CRT) are at particularly high risk for long-term morbidity, such as endocrine insufficiencies, metabolic complications, and cardiovascular morbidity. Deficiencies of one or more anterior pituitary hormones have been described following therapeutic CRT for primary brain tumors, nasopharyngeal tumors, and following prophylactic CRT for childhood acute lymphoblastic leukemia (ALL). Studies have consistently shown a strong correlation between the total radiation dose and the development of pituitary deficits. Further, age at treatment and also time since treatment has strong implications on pituitary hormone deficiencies. There is evidence that the hypothalamus is more radiosensitive than the pituitary and is damaged by lower doses of CRT. With doses of CRT hypothalamus and this usually causes isolated GH deficiency (GHD). Higher doses (>50 Gy) may produce direct anterior pituitary damage, which contributes to multiple pituitary deficiencies. The large group of ALL survivors treated with CRT in the 70-80-ties has now reached adulthood, and these survivors were treated mainly with 24 Gy, and the vast majority of these patients suffer from GHD. Further, after long-term follow-up, insufficiencies in prolactin (PRL) and thyroid stimulating hormone (TSH) have also been reported and a proportion of these patients were also adrenocoticotrophic hormone (ACTH) deficient. CRT to the hypothalamus causes neuroendocrine dysfunction, which means that the choice of GH test is crucial for the diagnosis of GHD.

  9. Preoperative Assessment of Craniopharyngioma Adherence: Magnetic Resonance Imaging Findings Correlated with the Severity of Tumor Attachment to the Hypothalamus.

    Science.gov (United States)

    Prieto, Ruth; Pascual, José M; Rosdolsky, Maria; Barrios, Laura

    2018-02-01

    Craniopharyngioma (CP) adherence represents a heterogeneous pathologic feature that critically influences the potentially safe and radical resection. The aim of this study was to define the magnetic resonance imaging (MRI) predictors of CP adherence severity. This study retrospectively investigated a cohort of 200 surgically treated CPs with their corresponding preoperative conventional MRI scans. MRI findings related to the distortions of anatomic structures along the sella turcica-third ventricle axis caused by CPs, in addition to the tumor's shape and calcifications, were analyzed and correlated with the definitive type of CP adherence observed during the surgical procedures. CP adherence is defined by 3 components, as follows: 1) the specific structures attached to the tumor, 2) the adhesion's extent, and 3) its strength. Combination of these 3 components determines 5 hierarchical levels of adherence severity with gradually increasing surgical risk of hypothalamic injury. Multivariate analysis identified 4 radiologic variables that allowed a correct overall prediction of the levels of CP adherence severity in 81.5% of cases: 1) the position of the hypothalamus in relation to the tumor-the most discriminant factor; 2) the type of pituitary stalk distortion; 3) the tumor shape; and 4) the presence of calcifications. A binary logistic regression model including the first 3 radiologic variables correctly identified the CPs showing the highest level of adherence severity (severe/critical) in almost 90% of cases. A position of the hypothalamus around the middle portion of the tumor, an amputated or infiltrated appearance of the pituitary stalk, and the elliptical shape of the tumor are reliable predictors of strong and extensive CP adhesions to the hypothalamus. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Nutrient restriction induces failure of reproductive function and molecular changes in hypothalamus-pituitary-gonadal axis in postpubertal gilts.

    Science.gov (United States)

    Zhou, Dongsheng; Zhuo, Yong; Che, Lianqiang; Lin, Yan; Fang, Zhengfeng; Wu, De

    2014-07-01

    People on a diet to lose weight may be at risk of reproductive failure. To investigate the effects of nutrient restriction on reproductive function and the underlying mechanism, changes of reproductive traits, hormone secretions and gene expressions in hypothalamus-pituitary-gonadal axis were examined in postpubertal gilts at anestrus induced by nutrient restriction. Gilts having experienced two estrus cycles were fed a normal (CON, 2.86 kg/d) or nutrient restricted (NR, 1 kg/d) food regimens to expect anestrus. NR gilts experienced another three estrus cycles, but did not express estrus symptoms at the anticipated fourth estrus. Blood samples were collected at 5 days' interval for consecutive three times for measurement of hormone concentrations at the 23th day of the fourth estrus cycle. Individual progesterone concentrations of NR gilts from three consecutive blood samples were below 1.0 ng/mL versus 2.0 ng/mL in CON gilts, which was considered anestrus. NR gilts had impaired development of reproductive tract characterized by absence of large follicles (diameter ≥ 6 mm), decreased number of corepus lutea and atrophy of uterus and ovary tissues. Circulating concentrations of IGF-I, kisspeptin, estradiol, progesterone and leptin were significantly lower in NR gilts than that in CON gilts. Nutrient restriction down-regulated gene expressions of kiss-1, G-protein coupled protein 54, gonadotropin-releasing hormone, estrogen receptor α, progesterone receptor, leptin receptor, follicle-stimulating hormone and luteinizing hormone and insulin-like growth factor I in hypothalamus-pituitary-gonadal axis of gilts. Collectively, nutrient restriction resulted in impairment of reproductive function and changes of hormone secretions and gene expressions in hypothalamus-pituitary-gonadal axis, which shed light on the underlying mechanism by which nutrient restriction influenced reproductive function.

  11. α-MSH Influences the Excitability of Feeding-Related Neurons in the Hypothalamus and Dorsal Vagal Complex of Rats

    Directory of Open Access Journals (Sweden)

    Hong-Zai Guan

    2017-01-01

    Full Text Available Alpha-melanocyte-stimulating hormone (α-MSH is processed from proopiomelanocortin (POMC and acts on the melanocortin receptors, MC3 and MC4. α-MSH plays a key role in energy homeostasis. In the present study, to shed light on the mechanisms by which α-MSH exerts its anorectic effects, extracellular neuronal activity was recorded in the hypothalamus and the dorsal vagal complex (DVC of anesthetized rats. We examined the impact of α-MSH on glucose-sensing neurons and gastric distension (GD sensitive neurons. In the lateral hypothalamus (LHA, α-MSH inhibited 75.0% of the glucose-inhibited (GI neurons. In the ventromedial nucleus (VMN, most glucose-sensitive neurons were glucose-excited (GE neurons, which were mainly activated by α-MSH. In the paraventricular nucleus (PVN, α-MSH suppressed the majority of GI neurons and excited most GE neurons. In the DVC, among the 20 GI neurons examined for a response to α-MSH, 1 was activated, 16 were depressed, and 3 failed to respond. Nineteen of 24 GE neurons were activated by α-MSH administration. Additionally, among the 42 DVC neurons examined for responses to GD, 23 were excited (GD-EXC and 19 were inhibited (GD-INH. Fifteen of 20 GD-EXC neurons were excited, whereas 11 out of 14 GD-INH neurons were suppressed by α-MSH. All these responses were abolished by pretreatment with the MC3/4R antagonist, SHU9119. In conclusion, the activity of glucose-sensitive neurons and GD-sensitive neurons in the hypothalamus and DVC can be modulated by α-MSH.

  12. Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats

    Energy Technology Data Exchange (ETDEWEB)

    Esquifino, A.I. [Dept. de Bioquimica y Biologia Molecular III, Universidad Complutense, Madrid (Spain); Seara, R.; Fernandez-Rey, E.; Lafuente, A. [Lab. de Toxicologia, Universidad de Vigo, Orense (Spain)

    2001-05-01

    This work examines changes of gamma aminobutyric acid (GABA) and taurine contents in the hypothalamus, striatum and prefrontal cortex of the rat after an alternate schedule of cadmium administration. Age-associated changes were also evaluated, of those before puberty and after adult age. In control rats GABA content decreased with age in the median eminence and in anterior, mediobasal and posterior hypothalamus, prefrontal cortex and the striatum. Taurine content showed similar results with the exception of mediobasal hypothalamus and striatum, where no changes were detected. In pubertal rats treated with cadmium from 30 to 60 days of life, GABA content significantly decreased in all brain regions except in the striatum. When cadmium was administered from day 60 to 90 of life, GABA content was significantly changed in prefrontal cortex only compared with the age matched controls. Taurine content showed similar results in pubertal rats, with the exception of the median eminence and the mediobasal hypothalamus, neither of which showed a change. However, when cadmium was administered to rats from day 60 to 90 of life, taurine content only changed in prefrontal cortex compared with the age matched controls. These results suggest that cadmium differentially affects GABA and taurine contents within the hypothalamus, median eminence, striatum and prefrontal cortex as a function of age. (orig.)

  13. Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats

    International Nuclear Information System (INIS)

    Esquifino, A.I.; Seara, R.; Fernandez-Rey, E.; Lafuente, A.

    2001-01-01

    This work examines changes of gamma aminobutyric acid (GABA) and taurine contents in the hypothalamus, striatum and prefrontal cortex of the rat after an alternate schedule of cadmium administration. Age-associated changes were also evaluated, of those before puberty and after adult age. In control rats GABA content decreased with age in the median eminence and in anterior, mediobasal and posterior hypothalamus, prefrontal cortex and the striatum. Taurine content showed similar results with the exception of mediobasal hypothalamus and striatum, where no changes were detected. In pubertal rats treated with cadmium from 30 to 60 days of life, GABA content significantly decreased in all brain regions except in the striatum. When cadmium was administered from day 60 to 90 of life, GABA content was significantly changed in prefrontal cortex only compared with the age matched controls. Taurine content showed similar results in pubertal rats, with the exception of the median eminence and the mediobasal hypothalamus, neither of which showed a change. However, when cadmium was administered to rats from day 60 to 90 of life, taurine content only changed in prefrontal cortex compared with the age matched controls. These results suggest that cadmium differentially affects GABA and taurine contents within the hypothalamus, median eminence, striatum and prefrontal cortex as a function of age. (orig.)

  14. Peripheral Injection of SB203580 Inhibits the Inflammatory-Dependent Synthesis of Proinflammatory Cytokines in the Hypothalamus

    Directory of Open Access Journals (Sweden)

    Andrzej P. Herman

    2014-01-01

    Full Text Available The study was designed to determine the effects of peripheral injection of SB203580 on the synthesis of interleukin- (IL- 1β, IL-6, and tumor necrosis factor (TNF α in the hypothalamus of ewes during prolonged inflammation. Inflammation was induced by the administration of lipopolysaccharide (LPS (400 ng/kg over 7 days. SB203580 is a selective ATP-competitive inhibitor of the p38 mitogen-activated protein kinase (MAPK, which is involved in the regulation of proinflammatory cytokines IL-1β, IL-6 and TNFα synthesis. Intravenous injection of SB203580 successfully inhibited (P<0.01 synthesis of IL-1β and reduced (P<0.01 the production of IL-6 in the hypothalamus. The p38 MAPK inhibitor decreased (P<0.01 gene expression of TNFα but its effect was not observed at the level of TNFα protein synthesis. SB203580 also reduced (P<0.01 LPS-stimulated IL-1 receptor type 1 gene expression. The conclusion that inhibition of p38 MAPK blocks LPS-induced proinflammatory cytokine synthesis seems to initiate new perspectives in the treatment of chronic inflammatory diseases also within the central nervous system. However, potential proinflammatory effects of SB203580 treatment suggest that all therapies using p38 MAPK inhibitors should be introduced very carefully with analysis of all expected and unexpected consequences of treatment.

  15. Reversible inactivation of the lateral hypothalamus reversed high reward choices in cost-benefit decision-making in rats.

    Science.gov (United States)

    Karimi, Sara; Mesdaghinia, Azam; Farzinpour, Zahra; Hamidi, Gholamali; Haghparast, Abbas

    2017-11-01

    The Lateral hypothalamus (LH) is an important component of the networks underlying the control of feeding and other motivated behaviors. Cost-benefit decision-making is mediated largely by the prefrontal cortex (PFC) which strongly innervates the LH. Therefore, in the current study, we conducted a series of experiments to elucidate the role of the perifornical area of the lateral hypothalamus (PeF-LH) in effort and/or delay-based decision-making. We trained different groups of rats in a delay-based and/or an effort-based form of cost-benefit T-maze decision- making task in which they could either choose to pay the cost to obtain a high reward in one arm or could obtain a low reward in the other arm with no cost. During test days, the rats received local injections of either vehicle or lidocaine4% (0.5 μl/side), in the PeF-LH. In an effort-based decision task, PeF-LH inactivation led to decrease in high reward choice. Similarly, in a delay-based decision task animals' preference changed to a low but immediately available reward. This was not caused by a spatial memory or motor deficit. PeF-LH inactivation modified decision behavior. The results imply that PeF-LH is important for allowing the animal to pay a cost to acquire greater rewards. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. [Clinical study on the postburn change in the hypothalamus-pituitary-adrenal hormones in severely burned patients].

    Science.gov (United States)

    Li, Hong-mian; Liang, Zi-qian; Luo, Zuo-jie

    2003-06-01

    To investigate the postburn dynamic changes in the hypothalamus-pituitary-adrenal hormones in severely burned patients. Fifty burn patients were enrolled in the study. The plasma contents of total GC (cortisol), ACTH and aldosterone (ALDO) and urinary contents of 17-OHO and 17-KS were determined with radio-immunological assay (RIA) method after burn injury to compare with the normal values which were well established clinically. The postburn plasma and urinary contents of the above indices were increased evidently with two peak values in shock and infectious stages, whilst the majority of he indices were lower than the normal values after 6 postburn weeks (PBWs). The values of these hormones were the lowest in dying patients. On the other hand, the values approached normal levels in those patients whose burn wounds were healing. Increases of the plasma and urinary levels of hypothalamus-pituitary -adrenal hormones in severely burned patients were constantly seen. Burn shock and infection seemed to be the two major factors in inducing postburn stress reaction in burn victims. Abrupt decrease of the hormone levels in plasma and or urine indicated adrenal failure predicting a poor prognosis of the burn patients.

  17. The tuberal lateral hypothalamus is a major target for GABAA--but not GABAB-mediated control of food intake.

    Science.gov (United States)

    Turenius, Christine I; Charles, Jonathan R; Tsai, Donna H; Ebersole, Priscilla L; Htut, Myat H; Ngo, Phuong T; Lara, Raul N; Stanley, B Glenn

    2009-08-04

    The lateral hypothalamus (LH) is a site of integration for control mechanisms of feeding behavior as it has extensive reciprocal connections with multiple intrahypothalamic and extrahypothalamic brain areas. Evidence suggests that blockade of ionotropric gamma-aminobutyric acid (GABA) receptors in the LH elicits eating in satiated rats. To determine whether this GABA(A) receptor antagonist effect is specific to the LH, the antagonist picrotoxin was injected into one of six nearby sites and food intake was measured. Picrotoxin at 133 pmol elicited eating in the LH, but not in surrounding sites (thalamus, lateral preoptic area, ventral tegmental area, dorsomedial hypothalamus, and entopeduncular nucleus). More specifically, picrotoxin injected into the tuberal LH (tLH) elicited eating, but was ineffective when injected into the anterior or posterior LH. We also investigated whether GABA(B) receptors in the LH participated in the control of food intake and found that neither blockade nor activation of these receptors under multiple conditions changed food intake. Collectively, our findings suggest that GABA(A) but not GABA(B) receptors in the tLH act to suppress feeding behavior.

  18. Evidence for the Presence of Glucosensor Mechanisms Not Dependent on Glucokinase in Hypothalamus and Hindbrain of Rainbow Trout (Oncorhynchus mykiss.

    Directory of Open Access Journals (Sweden)

    Cristina Otero-Rodiño

    Full Text Available We hypothesize that glucosensor mechanisms other than that mediated by glucokinase (GK operate in hypothalamus and hindbrain of the carnivorous fish species rainbow trout and stress affected them. Therefore, we evaluated in these areas changes in parameters which could be related to putative glucosensor mechanisms based on liver X receptor (LXR, mitochondrial activity, sweet taste receptor, and sodium/glucose co-transporter 1 (SGLT-1 6 h after intraperitoneal injection of 5 mL x Kg(-1 of saline solution alone (normoglycaemic treatment or containing insulin (hypoglycaemic treatment, 4 mg bovine insulin x Kg(-1 body mass, or D-glucose (hyperglycaemic treatment, 500 mg x Kg(-1 body mass. Half of tanks were kept at a 10 Kg fish mass x m(-3 and denoted as fish under normal stocking density (NSD whereas the remaining tanks were kept at a stressful high stocking density (70 kg fish mass x m(-3 denoted as HSD. The results obtained in non-stressed rainbow trout provide evidence, for the first time in fish, that manipulation of glucose levels induce changes in parameters which could be related to putative glucosensor systems based on LXR, mitochondrial activity and sweet taste receptor in hypothalamus, and a system based on SGLT-1 in hindbrain. Stress altered the response of parameters related to these systems to changes in glycaemia.

  19. Glucostatic regulation of (+)-[3H]amphetamine binding in the hypothalamus: correlation with Na+, K+-ATPase activity

    International Nuclear Information System (INIS)

    Angel, I.; Hauger, R.L.; Luu, M.D.; Giblin, B.; Skolnick, P.; Paul, S.M.

    1985-01-01

    Preincubation of rat hypothalamic slices in glucose-free Krebs-Ringer buffer (37 0 C) resulted in a time-dependent decrease in specific (+)-[ 3 H]amphetamine binding in the crude synaptosomal fraction prepared from these slices. The addition of D-glucose resulted in a dose- and time-dependent stimulation of (+)-[ 3 H]amphetamine binding, whereas incubations with L-glucose, 2-deoxy-D-glucose, or 3-O-methyl-D-glucose failed to increase the number of (+)-[ 3 H]amphetamine binding sites. Ouabain potently inhibited the glucose-induced stimulation of (+)-[ 3 H]amphetamine binding, suggesting the involvement of Na + , K + -ATPase. Preincubation of hypothalamic slices with glucose also resulted in an increase in Na + ,K + -ATPase activity and the number of specific high-affinity binding sites for [ 3 H]ouabain, and a good correlation was observed between the glucose-stimulated increase in (+)-[ 3 H]amphetamine and [ 3 H]ouabain binding. These data suggest that the (+)-[ 3 H]amphetamine binding site in hypothalamus, previously linked to the anorectic actions of various phenylethylamines, is regulated both in vitro and in vivo by physiological concentrations of glucose. Glucose and amphetamine appear to interact at common sites in the hypothalamus to stimulate Na + ,K + -ATPase activity, and the latter may be involved in the glucostatic regulation of appetite

  20. Effect of chronic exposure to gamma radiation and of hormonal stimulation with serum gonadotropin on catecholamine levels in hypothalamus, epiphysis and adrenals of ewes

    International Nuclear Information System (INIS)

    Pastorova, B.; Arendarcik, J.

    1989-01-01

    The effects were studied of exposure to whole body continuous irradiation and of the administration of serum gonadotropin (SG) on the concentration of catecholamines (epinephrine and norepinephrine) in the hypothalamus, epiphysis and adrenal glands of ewes during the anestric period with synchronized estrus. The first group (young barren ewes) and second group (older ewes) were exposed to continuous radiation of 60 Co for five days. The radiation was applied at a rate of 0.020 Gy per hour. After the termination of irradiation the ewes were subjected to hormonal stimulation by fractionated administration of 1500 I.U. SG. The third and fourth experimental groups of ewes were stimulated with 1500 I.U. SG without irradiation. Catecholamines were separated from the tissue supernatants by adsorption chromatography and the catecholamine contents in the eluates were determined spectrofluorometrically. Chronic exposure to gamma radiation and hormonal stimulation with SG reduced the concentration of norepinephrine in the whole hypothalamus of the sheep. A statistically significant decrease (P<0.001) was recorded in the medial and caudal hypothalamus of the adult ewes and in the rostral and caudal hypothalamus regions of the young ewes. A decrease in norepinephrine concentration, statistically significant in the caudal (P<0.01) and medial hypothalamus was recorded in the group of adult ewes after hormonal stimulation with SG without irradiation. The experimental group of young ewes responded to hormonal stimulation by a greater reduction of norepinephrine contents as compared with combined exposure to radiation and hormonal stimulation. It is assumed that the decrease in catecholamine concentration after hormonal stimulation with SG is associated with the increase in the contents of estrogens which act on the adrenergic receptors of the hypothalamus. (author). 4 figs., 21 refs

  1. [Age-related changes in biogenic amine content and oxidative stress profile in the rat hypothalamus in hyperhomocysteinemia].

    Science.gov (United States)

    Milyutina, Yu P; Pustygina, A V; Zaloznyaya, I V; Arutjunyan, A V

    2016-01-01

    The article presents a detailed analysis of correlations between the content of a variety of biogenic amines in the hypothalamic structures responsible for the luteinizing hormone releasing hormone synthesis and secretion (the medial preoptic area and median eminence) and such independent factors as total L-homocysteine plasma level elevation induced by L-methionine loading and aging. Both a nature and a pattern of changes in oxidative stress profile were evaluated. It was shown that ageing, when compared to hyperhomocysteinemia, is a determining factor influencing biogenic amine content in the studied hypothalamic structures. Unlike antioxidant defense system profile, considerable changes in macromolecule oxidative modification were not found, which evidences a balanced activity of pro- and antioxidant systems in the hypothalamus.

  2. Thyroid Hormone Receptor Beta in the Ventromedial Hypothalamus Is Essential for the Physiological Regulation of Food Intake and Body Weight

    Directory of Open Access Journals (Sweden)

    Saira Hameed

    2017-06-01

    Full Text Available The obesity epidemic is a significant global health issue. Improved understanding of the mechanisms that regulate appetite and body weight will provide the rationale for the design of anti-obesity therapies. Thyroid hormones play a key role in metabolic homeostasis through their interaction with thyroid hormone receptors (TRs, which function as ligand-inducible transcription factors. The TR-beta isoform (TRβ is expressed in the ventromedial hypothalamus (VMH, a brain area important for control of energy homeostasis. Here, we report that selective knockdown of TRβ in the VMH of adult mice results in severe obesity due to hyperphagia and reduced energy expenditure. The observed increase in body weight is of a similar magnitude to murine models of the most extreme forms of monogenic obesity. These data identify TRβ in the VMH as a major physiological regulator of food intake and energy homeostasis.

  3. [Changes in the monoamine content in different parts of hypothalamus depending on the stages of the estrous cycle].

    Science.gov (United States)

    Babichev, V N; Adamskaia, E I

    1976-01-01

    Fluorimetric determination of monoamines in various regions of the hypothalamus and at different stages of the estral cycle in rats showed that the serotonin, noradrenaline, and particularly dophamine content changed both in the course of the cycle and at different time (10, 15 and 18 hours) of the same stage of the cycle. Dophamine concentration in the arcuate area--the centre of the tonic activity--reached its maximum at 18 hours of the diestrus-2 (D2) and fell to the minimum at 10 hours of the proestrus (P). Noradrenaline level in the preoptic area increased at 18 hours of the D2 and fell at 10 hours of the P. It is supposed that in the hypothalamic regulation of the estral cycle at least two monoamines (dopamine and noradrenaline) took part; the trigger role belongs to noradrenaline of the preoptic area (the cyclic centre).

  4. Differential Changes in Expression of Stress- and Metabolic-Related Neuropeptides in the Rat Hypothalamus during Morphine Dependence and Withdrawal.

    Directory of Open Access Journals (Sweden)

    Bernadett Pintér-Kübler

    Full Text Available Chronic morphine treatment and naloxone precipitated morphine withdrawal activates stress-related brain circuit and results in significant changes in food intake, body weight gain and energy metabolism. The present study aimed to reveal hypothalamic mechanisms underlying these effects. Adult male rats were made dependent on morphine by subcutaneous implantation of constant release drug pellets. Pair feeding revealed significantly smaller weight loss of morphine treated rats compared to placebo implanted animals whose food consumption was limited to that eaten by morphine implanted pairs. These results suggest reduced energy expenditure of morphine-treated animals. Chronic morphine exposure or pair feeding did not significantly affect hypothalamic expression of selected stress- and metabolic related neuropeptides - corticotropin-releasing hormone (CRH, urocortin 2 (UCN2 and proopiomelanocortin (POMC compared to placebo implanted and pair fed animals. Naloxone precipitated morphine withdrawal resulted in a dramatic weight loss starting as early as 15-30 min after naloxone injection and increased adrenocorticotrophic hormone, prolactin and corticosterone plasma levels in morphine dependent rats. Using real-time quantitative PCR to monitor the time course of relative expression of neuropeptide mRNAs in the hypothalamus we found elevated CRH and UCN2 mRNA and dramatically reduced POMC expression. Neuropeptide Y (NPY and arginine vasopressin (AVP mRNA levels were transiently increased during opiate withdrawal. These data highlight that morphine withdrawal differentially affects expression of stress- and metabolic-related neuropeptides in the rat hypothalamus, while relative mRNA levels of these neuropeptides remain unchanged either in rats chronically treated with morphine or in their pair-fed controls.

  5. Lipoprotein lipase in hypothalamus is a key regulator of body weight gain and glucose homeostasis in mice.

    Science.gov (United States)

    Laperrousaz, Elise; Moullé, Valentine S; Denis, Raphaël G; Kassis, Nadim; Berland, Chloé; Colsch, Benoit; Fioramonti, Xavier; Philippe, Erwann; Lacombe, Amélie; Vanacker, Charlotte; Butin, Noémie; Bruce, Kimberley D; Wang, Hong; Wang, Yongping; Gao, Yuanqing; Garcia-Caceres, Cristina; Prévot, Vincent; Tschöp, Matthias H; Eckel, Robert H; Le Stunff, Hervé; Luquet, Serge; Magnan, Christophe; Cruciani-Guglielmacci, Céline

    2017-07-01

    Regulation of energy balance involves the participation of many factors, including nutrients, among which are circulating lipids, acting as peripheral signals informing the central nervous system of the energy status of the organism. It has been shown that neuronal lipoprotein lipase (LPL) participates in the control of energy balance by hydrolysing lipid particles enriched in triacylglycerols. Here, we tested the hypothesis that LPL in the mediobasal hypothalamus (MBH), a well-known nucleus implicated in the regulation of metabolic homeostasis, could also contribute to the regulation of body weight and glucose homeostasis. We injected an adeno-associated virus (AAV) expressing Cre-green fluorescent protein into the MBH of Lpl-floxed mice (and wild-type mice) to specifically decrease LPL activity in the MBH. In parallel, we injected an AAV overexpressing Lpl into the MBH of wild-type mice. We then studied energy homeostasis and hypothalamic ceramide content. The partial deletion of Lpl in the MBH in mice led to an increase in body weight compared with controls (37.72 ± 0.7 g vs 28.46 ± 0.12, p < 0.001) associated with a decrease in locomotor activity. These mice developed hyperinsulinaemia and glucose intolerance. This phenotype also displayed reduced expression of Cers1 in the hypothalamus as well as decreased concentration of several C18 species of ceramides and a 3-fold decrease in total ceramide intensity. Conversely, overexpression of Lpl specifically in the MBH induced a decrease in body weight. Our study shows that LPL in the MBH is an important regulator of body weight and glucose homeostasis.

  6. Exposure to chronic isolation modulates receptors mRNAs for oxytocin and vasopressin in the hypothalamus and heart.

    Science.gov (United States)

    Pournajafi-Nazarloo, Hossein; Kenkel, William; Mohsenpour, Seyed Ramezan; Sanzenbacher, Lisa; Saadat, Habibollah; Partoo, Leila; Yee, Jason; Azizi, Fereidoun; Carter, C Sue

    2013-05-01

    The goal of our study was to explore the effect of social isolation stress of varying durations on the plasma oxytocin (OT), messenger ribonucleic acid (mRNA) for oxytocin receptor (OTR), plasma arginine vasopressin (AVP) and mRNA for V1a receptor of AVP (V1aR) expression in the hypothalamus and heart of socially monogamous female and male prairie voles (Microtus ochrogaster). Continuous isolation for 4 weeks (chronic isolation) increased plasma OT level in females, but not in males. One hour of isolation every day for 4 weeks (repeated isolation) was followed by a significant increase in plasma AVP level. Chronic isolation, but not repeated isolation, significantly decreased OTR mRNA in the hypothalamus and heart in both sexes. Chronic isolation significantly decreased cardiac V1aR mRNA, but no effect on hypothalamic V1aR mRNA expression. We did not find a gender difference within repeated social isolation groups. The results of the present study reveal that although chronic social isolation can down-regulate gene expression for the OTR in both sexes, the release of the OT peptide was increased after chronic isolation only in females, possibly somewhat protecting females from the negative consequences of isolation. In both sexes repeated, but not chronic, isolation increased plasma AVP, which could be permissive for mobilization and thus adaptive in response to a repeated stressor. The differential effects of isolation on OT and AVP systems may help in understanding mechanisms through social interactions can be protective against emotional and cardiovascular disorders. Published by Elsevier Inc.

  7. Expression of stress hormones AVP and CRH in the hypothalamus of Mus musculus following water and food deprivation.

    Science.gov (United States)

    Yadawa, Arun Kumar; Chaturvedi, Chandra Mohini

    2016-12-01

    Neurohypophyseal hormone, arginine vasopressin (AVP), in addition to acting as antidiuretic hormone is also considered to be stress hormone like hypothalamic corticotropin-releasing hormone (CRH). Present study was designed to investigate the relative response of these stress hormones during water and food deprivation. In this study, male laboratory mice of Swiss strain were divided in 5 groups, control - provided water and food ad libitum, two experimental groups water deprived for 2 and 4days respectively (WD2 and WD4) and another two groups food deprived for 2 and 4days respectively (FD2 and FD4). Results indicate an increased expression of AVP mRNA as well as peptide in the hypothalamus of WD2 mice and the expression was further upregulated after 4days of water deprivation but the expression of CRH remained unchanged compare to their respective controls. On the other hand no change was observed in the expression of hypothalamic AVP mRNA while AVP peptide increased significantly in FD2 and FD4 mice compare to control. Further, the expression of CRH mRNA although increased in hypothalamus of both FD2 and FD4 mice, the immunofluorescent staining shows decreased expression of CRH in PVN of food deprived mice. Based on these findings it is concluded that since during osmotic stress only AVP expression is upregulated but during metabolic stress i.e. food deprivation transcription and translation of both the stress hormones are differentially regulated. Further, it is suggested that role of AVP and CRH may be stress specific. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Changes in estrogen receptor-alpha and -beta in the infundibular nucleus of the human hypothalamus are related to the occurrence of Alzheimer's disease neuropathology

    NARCIS (Netherlands)

    Hestiantoro, Andon; Swaab, Dick F.

    2004-01-01

    The expression of estrogen receptor (ER)alpha and -beta in the infundibular nucleus of the hypothalamus was studied immunocytochemically in 28 control subjects and 14 patients with Alzheimer's disease (AD). A shift was found from more nuclear staining of ERalpha in young female controls to more

  9. CARDIOVASCULAR EFFECTS AND CHANGES IN MIDBRAIN PERIAQUEDUCTAL GRAY NEURONAL-ACTIVITY INDUCED BY ELECTRICAL-STIMULATION OF THE HYPOTHALAMUS IN THE RAT

    NARCIS (Netherlands)

    VANDERPLAS, J; WIERSINGAPOST, JEC; MAES, FW; BOHUS, B

    1995-01-01

    The effects of low-intensity electrical stimulation of sites in the hypothalamus and zona incerta (ZI) on mean blood pressure (MBP), heart rate (HR), and neuronal activity in the midbrain periaqueductal gray (FAG) were investigated in rats. Longlasting depressor responses were elicited from 67 sites

  10. Low dietary protein is associated with an increase in food intake and a decrease in the in vitro release of radiolabeled glutamate and GABA from the lateral hypothalamus.

    Science.gov (United States)

    White, B D; Du, F; Higginbotham, D A

    2003-12-01

    Moderately low-protein diets lead to a rapid increase in food intake and body fat. The increase in feeding is associated with a decrease in the concentration of serum urea nitrogen, suggesting that the low-protein-induced increase in food intake may be related to the decreased metabolism of nitrogen from amino acids. We hypothesized that low dietary protein would be associated with a decrease in the synaptic release of two nitrogen-containing neurotransmitters, GABA and glutamate, whose nitrogen can be derived from amino acids. In this study, we examined the effects of a low-protein diet (10% casein) in Sprague-Dawley rats on the in vitro release of 3H-GABA and 14C-glutamate from the lateral and medial hypothalamus. The low-protein diet increased food intake by about 25% after one day. After four days, the in vitro release of radiolabeled GABA and glutamate was assessed. The calcium-dependent, potassium-stimulated release of radiolabeled GABA and glutamate from the lateral hypothalamus was decreased in rats fed the low-protein diet. The magnitude of neurotransmitter release from the lateral hypothalamus inversely correlated with food intake. No dietary differences in the release of neurotransmitters from the medial hypothalamus were observed. These results support the contention that alterations in nitrogen metabolism are associated with low-protein-induced feeding.

  11. Noradrenaline concentration and turnover in nuclei of the hypothalamus and the medulla oblongata at two stages in the development of renal hypertension in the rat

    NARCIS (Netherlands)

    Wijnen, H.J.L.M.; Kloet, E.R. de; Versteeg, D.H.G.; Jong, Wybren de

    1980-01-01

    The noradrenaline concentration and the α-methyl-para-tyrosine (α-MPT)-induced disappearance of noradrenaline were determined in several nuclei of the hypothalamus and the medulla oblongata of renal hypertensive rats (two-kidney Goldblatt hypertension). A decreased α-MPT-induced disappearance of

  12. Differential effects of recombinant adeno-associated virus-mediated neuropeptide Y overexpression in the hypothalamic paraventricular nucleus and lateral hypothalamus on feeding behavior

    NARCIS (Netherlands)

    Tiesjema, Birgitte; Adan, Roger A. H.; Luijendijk, Mieneke C. M.; Kalsbeek, Andries; la Fleur, Susanne E.

    2007-01-01

    It is well known that neuropeptide Y (NPY) increases food intake. The hypothalamic paraventricular nucleus (PVN) and the lateral hypothalamus (LH) are both involved in the acute, hyperphagic effects of NPY. Although it is obvious that increased energy intake may lead to obesity, it is less

  13. Prenatal Stress Induces Long-Term Effects in Cell Turnover in the Hippocampus-Hypothalamus-Pituitary Axis in Adult Male Rats

    Science.gov (United States)

    Baquedano, Eva; García-Cáceres, Cristina; Diz-Chaves, Yolanda; Lagunas, Natalia; Calmarza-Font, Isabel; Azcoitia, Iñigo; Garcia-Segura, Luis M.; Argente, Jesús; Chowen, Julie A.; Frago, Laura M.

    2011-01-01

    Subchronic gestational stress leads to permanent modifications in the hippocampus-hypothalamus-pituitary-adrenal axis of offspring probably due to the increase in circulating glucocorticoids known to affect prenatal programming. The aim of this study was to investigate whether cell turnover is affected in the hippocampus-hypothalamus-pituitary axis by subchronic prenatal stress and the intracellular mechanisms involved. Restraint stress was performed in pregnant rats during the last week of gestation (45 minutes; 3 times/day). Only male offspring were used for this study and were sacrificed at 6 months of age. In prenatally stressed adults a decrease in markers of cell death and proliferation was observed in the hippocampus, hypothalamus and pituitary. This was associated with an increase in insulin-like growth factor-I mRNA levels, phosphorylation of CREB and calpastatin levels and inhibition of calpain -2 and caspase -8 activation. Levels of the anti-apoptotic protein Bcl-2 were increased and levels of the pro-apoptotic factor p53 were reduced. In conclusion, prenatal restraint stress induces a long-term decrease in cell turnover in the hippocampus-hypothalamus-pituitary axis that might be at least partly mediated by an autocrine-paracrine IGF-I effect. These changes could condition the response of this axis to future physiological and pathophysiological situations. PMID:22096592

  14. Effects of high fat diet on the basal activity of the hypothalamus- pituitary-adrenal axis in mice: A systematic review

    NARCIS (Netherlands)

    Auvinen, H.E.; Romijn, J.A.; Biermasz, N.R.; Havekes, L.M.; Smit, J.W.A.; Rensen, P.C.N.; Pereira, A.M.

    2011-01-01

    Hypothalamus-pituitary-adrenal-axis activity is suggested to be involved in the pathophysiology of the metabolic syndrome. In diet-induced obesity mouse models, features of the metabolic syndrome are induced by feeding high fat diet. However, the models reveal conflicting results with respect to the

  15. Biotin augments acetyl CoA carboxylase 2 gene expression in the hypothalamus, leading to the suppression of food intake in mice.

    Science.gov (United States)

    Sone, Hideyuki; Kamiyama, Shin; Higuchi, Mutsumi; Fujino, Kaho; Kubo, Shizuka; Miyazawa, Masami; Shirato, Saya; Hiroi, Yuka; Shiozawa, Kota

    2016-07-29

    It is known that biotin prevents the development of diabetes by increasing the functions of pancreatic beta-cells and improving insulin sensitivity in the periphery. However, its anti-obesity effects such as anorectic effects remain to be clarified. Acetyl CoA carboxylase (ACC), a biotin-dependent enzyme, has two isoforms (ACC1 and ACC2) and serves to catalyze the reaction of acetyl CoA to malonyl CoA. In the hypothalamus, ACC2 increases the production of malonyl CoA, which acts as a satiety signal. In this study, we investigated whether biotin increases the gene expression of ACC2 in the hypothalamus and suppresses food intake in mice administered excessive biotin. Food intake was significantly decreased by biotin, but plasma regulators of appetite, including glucose, ghrelin, and leptin, were not affected. On the other hand, biotin notably accumulated in the hypothalamus and enhanced ACC2 gene expression there, but it did not change the gene expression of ACC1, malonyl CoA decarboxylase (a malonyl CoA-degrading enzyme), and AMP-activated protein kinase α-2 (an ACC-inhibitory enzyme). These findings strongly suggest that biotin potentiates the suppression of appetite by upregulating ACC2 gene expression in the hypothalamus. This effect of biotin may contribute to the prevention of diabetes by biotin treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: the presence of multiple receptor imbalances.

    NARCIS (Netherlands)

    Wang, S.S.; Kamphuis, W.; Huitinga, I.; Zhou, J.N.; Swaab, D.F.

    2008-01-01

    Hyperactivity of corticotropin-releasing factor (CRF) neurons in the paraventricular nucleus (PVN) of the hypothalamus is a prominent feature in depression and may be important in the etiology of this disease. The activity of the CRF neurons in the stress response is modulated by a number of factors

  17. Galanin neurons in the intermediate nucleus (InM) of the human hypothalamus in relation to sex, age, and gender identity

    NARCIS (Netherlands)

    Garcia-Falgueras, Alicia; Ligtenberg, Lisette; Kruijver, Frank P. M.; Swaab, Dick F.

    2011-01-01

    The intermediate nucleus (InM) in the preoptic area of the human brain, also known as the sexually dimorphic nucleus of the preoptic area (SDN-POA) and the interstitial nucleus of the anterior hypothalamus-1 (INAH-1) is explored here. We investigated its population of galanin-immunoreactive (Gal-Ir)

  18. Effect of inhibitory avoidance trainning, ACTH, beta-endorphin and adrenaline on the incorporation of 14C-leucine into synaptosomal proteins of rat hypothalamus, amygdala and hippocampus

    International Nuclear Information System (INIS)

    Dalmaz, C.; Maia, H.M.M.; Izquierdo, I.

    1986-01-01

    'In vitro' incorporation of leucine to protein was studied in synaptosomes isolated from the hypothalamus, amygdala and hippocampus of rats submitted to inhibitory avoidance training or to the i.p. injection of ACTH, beta-endorphin or adrenaline; or in synaptosomes incubated with these substances. (M.A.C.) [pt

  19. Genome-wide analysis of DHEA- and DHT-induced gene expression in mouse hypothalamus and hippocampus.

    Science.gov (United States)

    Mo, Qianxing; Lu, Shifang; Garippa, Carrie; Brownstein, Michael J; Simon, Neal G

    2009-04-01

    Dehydroepiandrosterone (DHEA) is the most abundant steroid in humans and a multi-functional neuroactive steroid that has been implicated in a variety of biological effects in both the periphery and central nervous system. Mechanistic studies of DHEA in the periphery have emphasized its role as a prohormone and those in the brain have focused on effects exerted at cell surface receptors. Recent results demonstrated that DHEA is intrinsically androgenic. It competes with DHT for binding to androgen receptor (AR), induces AR-regulated reporter gene expression in vitro, and exogenous DHEA administration regulates gene expression in peripheral androgen-dependent tissues and LnCAP prostate cancer cells, indicating genomic effects and adding a level of complexity to functional models. The absence of information about the effect of DHEA on gene expression in the CNS is a significant gap in light of continuing clinical interest in the compound as a hormone replacement therapy in older individuals, patients with adrenal insufficiency, and as a treatment that improves sense of well-being, increases libido, relieves depressive symptoms, and serves as a neuroprotective agent. In the present study, ovariectomized CF-1 female mice, an established model for assessing CNS effects of androgens, were treated with DHEA (1mg/day), dihydrotestosterone (DHT, a potent androgen used as a positive control; 0.1mg/day) or vehicle (negative control) for 7 days. The effects of DHEA on gene expression were assessed in two regions of the CNS that are enriched in AR, hypothalamus and hippocampus, using DNA microarray, real-time RT-PCR, and immunohistochemistry. RIA of serum samples assessed treatment effects on circulating levels of major steroids. In hypothalamus, DHEA and DHT significantly up-regulated the gene expression of hypocretin (Hcrt; also called orexin), pro-melanin-concentrating hormone (Pmch), and protein kinase C delta (Prkcd), and down-regulated the expression of deleted in bladder

  20. The testosterone-dependent and independent transcriptional networks in the hypothalamus of Gpr54 and Kiss1 knockout male mice are not fully equivalent

    Directory of Open Access Journals (Sweden)

    Sutcliffe Margaret

    2011-04-01

    Full Text Available Abstract Background Humans and mice with loss of function mutations in GPR54 (KISS1R or kisspeptin do not progress through puberty, caused by a failure to release GnRH. The transcriptional networks regulated by these proteins in the hypothalamus have yet to be explored by genome-wide methods. Results We show here, using 1 million exon mouse arrays (Exon 1.0 Affymetrix and quantitative polymerase chain reaction (QPCR validation to analyse microdissected hypothalamic tissue from Gpr54 and Kiss1 knockout mice, the extent of transcriptional regulation in the hypothalamus. The sensitivity to detect important transcript differences in microdissected RNA was confirmed by the observation of counter-regulation of Kiss1 expression in Gpr54 knockouts and confirmed by immunohistochemistry (IHC. Since Gpr54 and Kiss1 knockout animals are effectively pre-pubertal with low testosterone (T levels, we also determined which of the validated transcripts were T-responsive and which varied according to genotype alone. We observed four types of transcriptional regulation (i genotype only dependent regulation, (ii T only dependent regulation, (iii genotype and T-dependent regulation with interaction between these variables, (iv genotype and T-dependent regulation with no interaction between these variables. The results implicate for the first time several transcription factors (e.g. Npas4, Esr2, proteases (Klk1b22, and the orphan 10-transmembrane transporter TMEM144 in the biology of GPR54/kisspeptin function in the hypothalamus. We show for the neuronal activity regulated transcription factor NPAS4, that distinct protein over-expression is seen in the hypothalamus and hippocampus in Gpr54 knockout mice. This links for the first time the hypothalamic-gonadal axis with this important regulator of inhibitory synapse formation. Similarly we confirm TMEM144 up-regulation in the hypothalamus by RNA in situ hybridization and western blot. Conclusions Taken together, global

  1. Magnetic resonance imaging of hypothalamus hypophysis axis lesions; Relationship between posterior pituitary function and posterior bright spot

    Energy Technology Data Exchange (ETDEWEB)

    Shiina, Takeki; Uno, Kimiichi; Arimizu, Noboru; Yoshida, Sho (Chiba Univ. (Japan). School of Medicine); Yamada, Kenichi

    1990-04-01

    Magnetic resonance imaging (MRI) using a 0.5T superconductive machine was performed to the thirty three cases with a variety of the sellar and parasellar tumors and with dysfunction of the hypothalamus-hypophysis axis. Posterior pituitary bright spot (PBS) on T1 weighted image was evaluated with the pituitary hormonal function. These cases were 12 cases of post-treated tumors including pituitary adenoma (9 patients), suprasellar germinoma (2 patients) and craniopharyngioma (one patient), and non-tumorous conditions including 15 cases of central diabetes insipidus (DI), Syndrome of inappropriate secretion of ADH (SIADH) (one patient), Sheehan's syndrome (3 patients) and anorexia nervosa (2 patients). Pituitary bright spot was not seen in all 19 cases with overt DI. On the other hand, PBS was not seen in 9 cases without overt DI. Three cases of these 9 cases showing Sheehan's syndrome with insufficient antidiuretic hormone (ADH) secretion was considered as the state of subclinical DI. Posterior bright spot was not seen in all 13 cases of empty sella including partial empty sella. The results suggested that disappearance of PBS represents abnormality or loss of posterior pituitary function and also it was considered to be closely related to the empty sella. (author).

  2. Differential regulation of proopiomelanocortin (POMC mRNA expression in hypothalamus and anterior pituitary following repeated cyanamide with ethanol administration

    Directory of Open Access Journals (Sweden)

    Kinoshita Hiroshi

    2005-01-01

    Full Text Available Background/Aim. We have investigated proopiomelanocortin (POMC mRNA expression in the arcuate nucleus of the hypothalamus (ARC and the anterior lobe of the pituitary (AL following repeated cyanamide-ethanol reaction (CER. Methods. Adult male Sprague -Dawley rats (250 −290 gr were housed in a temperature and humidity controlled environment with free access to food and water. Four experimental groups were used as follows: saline (as control, cyanamide alone, ethanol alone and ethanol with cyanamide. The animals received daily intraperitoneal injections (i.p. of cyanamide (10mg/kg, 60 min before ethanol dosing with or without ethanol (1g/kg for 5 consecutive days, and were sacrificed 60 min after the last dosing of ethanol. The results were presented as the mean ± SEM for each group. All groups within each data set were compared by one-way ANOVA followed by Fisher PLSD test for multiple comparisons. A value of p<0.05 was considered significant. Results. The POMC mRNA levels in ARC were significantly decreased with cyanamide compared to the control and ethanol alone (p<0.05 and p<0.05 respectively, but increased in AL following repeated CER. Conclusion. We speculate that this differential regulation of POMC mRNA expression may be partially involved in the preventive effects on alcohol intake in response to CER.

  3. Glutamate AMPA/kainate receptors, not GABA(A) receptors, mediate estradiol-induced sex differences in the hypothalamus.

    Science.gov (United States)

    Todd, Brigitte J; Schwarz, Jaclyn M; Mong, Jessica A; McCarthy, Margaret M

    2007-02-15

    Sex differences in brain morphology underlie physiological and behavioral differences between males and females. During the critical perinatal period for sexual differentiation in the rat, gonadal steroids act in a regionally specific manner to alter neuronal morphology. Using Golgi-Cox impregnation, we examined several parameters of neuronal morphology in postnatal day 2 (PN2) rats. We found that in the ventromedial nucleus of the hypothalamus (VMN) and in areas just dorsal and just lateral to the VMN that there was a sex difference in total dendritic spine number (males greater) that was abolished by treating female neonates with exogenous testosterone. Dendritic branching was similarly sexually differentiated and hormonally modulated in the VMN and dorsal to the VMN. We then used spinophilin, a protein that positively correlates with the amount of dendritic spines, to investigate the mechanisms underlying these sex differences. Estradiol, which mediates most aspects of masculinization and is the aromatized product of testosterone, increased spinophilin levels in female PN2 rats to that of males. Muscimol, an agonist at GABA(A) receptors, did not affect spinophilin protein levels in either male or female neonates. Kainic acid, an agonist at glutamatergic AMPA/kainate receptors, mimicked the effect of estradiol in females. Antagonizing AMPA/kainate receptors with NBQX prevented the estradiol-induced increase in spinophilin in females but did not affect spinophilin level in males. (c) 2007 Wiley Periodicals, Inc.

  4. An Estrogen-Responsive Module in the Ventromedial Hypothalamus Selectively Drives Sex-Specific Activity in Females

    Directory of Open Access Journals (Sweden)

    Stephanie M. Correa

    2015-01-01

    Full Text Available Estrogen-receptor alpha (ERα neurons in the ventrolateral region of the ventromedial hypothalamus (VMHVL control an array of sex-specific responses to maximize reproductive success. In females, these VMHVL neurons are believed to coordinate metabolism and reproduction. However, it remains unknown whether specific neuronal populations control distinct components of this physiological repertoire. Here, we identify a subset of ERα VMHVL neurons that promotes hormone-dependent female locomotion. Activating Nkx2-1-expressing VMHVL neurons via pharmacogenetics elicits a female-specific burst of spontaneous movement, which requires ERα and Tac1 signaling. Disrupting the development of Nkx2-1+ VMHVL neurons results in female-specific obesity, inactivity, and loss of VMHVL neurons coexpressing ERα and Tac1. Unexpectedly, two responses controlled by ERα+ neurons, fertility and brown adipose tissue thermogenesis, are unaffected. We conclude that a dedicated subset of VMHVL neurons marked by ERα, NKX2-1, and Tac1 regulates estrogen-dependent fluctuations in physical activity and constitutes one of several neuroendocrine modules that drive sex-specific responses.

  5. Microstructure alterations in the hypothalamus in cranially radiated childhood leukaemia survivors but not in craniopharyngioma patients unaffected by hypothalamic damage.

    Science.gov (United States)

    Follin, Cecilia; Fjalldal, Sigridur; Svärd, Daniel; van Westen, Danielle; Gabery, Sanaz; Petersén, Åsa; Lätt, Jimmy; Rylander, Lars; Erfurth, Eva Marie

    2017-10-01

    Metabolic complications are frequent in childhood leukaemia (ALL) survivors treated with cranial radiotherapy (CRT). These complications are potentially mediated by damage to the hypothalamus (HT), as childhood onset (CO) craniopharyngioma (CP) survivors without HT involvement are spared overt obesity. Diffusion tensor imaging (DTI) shows brain tissue microstructure alterations, by fractional anisotrophy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). We used DTI to determine the integrity of the microstructure of the HT in ALL survivors. Case-control study. Three groups were included: (i) 27 CRT treated ALL survivors on hormone supplementation, (ii) 17 CO-CP survivors on hormone supplementation but without HT involvement and (iii) 27 matched controls. DTI parameters of the HT were measured and body composition. Microstructural alterations in the HT were more severe in ALL survivors with a BMI ≥25 than with BMI <25. Compared to controls, ALL survivors had reduced FA (P=.04), increased MD (P<.001), AD (P<.001) and RD (P<.001) in the right and left HT. In the right HT, ALL survivors with a BMI ≥25 showed elevated MD (P=.03) and AD (P=.02) compared to ALL survivors with BMI <25. In contrast, DTI parameters did not differ between CP survivors and controls. Long-term follow-up after CRT for ALL DTI measures were affected in the HT despite complete hormone replacement. The present data suggest that ALL survivors have demyelination and axonal loss in the HT. © 2017 John Wiley & Sons Ltd.

  6. The hypothalamus-pituitary-thyroid axis in teleosts and amphibians: Endocrine disruption and its consequences to natural populations

    Science.gov (United States)

    Carr, J.A.; Patino, R.

    2011-01-01

    Teleosts and pond-breeding amphibians may be exposed to a wide variety of anthropogenic, waterborne contaminants that affect the hypothalamus-pituitary-thyroid (HPT) axis. Because thyroid hormone is required for their normal development and reproduction, the potential impact of HPT-disrupting contaminants on natural teleost and amphibian populations raises special concern. There is laboratory evidence indicating that persistent organic pollutants, heavy metals, pharmaceutical and personal care products, agricultural chemicals, and aerospace products may alter HPT activity, development, and reproduction in teleosts and amphibians. However, at present there is no evidence to clearly link contaminant-induced HPT alterations to impairments in teleost or amphibian population health in the field. Also, with the exception of perchlorate for which laboratory studies have shown a direct link between HPT disruption and adverse impacts on development and reproductive physiology, little is known about if or how other HPT-disrupting contaminants affect organismal performance. Future field studies should focus on establishing temporal associations between the presence of HPT-disrupting chemicals, the occurrence of HPT alterations, and adverse effects on development and reproduction in natural populations; as well as determining how complex mixtures of HPT contaminants affect organismal and population health. ?? 2010 Elsevier Inc.

  7. Leucine deprivation stimulates fat loss via increasing CRH expression in the hypothalamus and activating the sympathetic nervous system.

    Science.gov (United States)

    Cheng, Ying; Zhang, Qian; Meng, Qingshu; Xia, Tingting; Huang, Zhiying; Wang, Chunxia; Liu, Bin; Chen, Shanghai; Xiao, Fei; Du, Ying; Guo, Feifan

    2011-09-01

    We previously showed that leucine deprivation decreases abdominal fat mass largely by increasing energy expenditure, as demonstrated by increased lipolysis in white adipose tissue (WAT) and uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT). The goal of the present study was to investigate the possible involvement of central nervous system (CNS) in this regulation and elucidate underlying molecular mechanisms. For this purpose, levels of genes and proteins related to lipolysis in WAT and UCP1 expression in BAT were analyzed in wild-type mice after intracerebroventricular administration of leucine or corticotrophin-releasing hormone antibodies, or in mice deleted for three β-adrenergic receptors, after being maintained on a leucine-deficient diet for 7 d. Here, we show that intracerebroventricular administration of leucine significantly attenuates abdominal fat loss and blocks activation of hormone sensitive lipase in WAT and induction of UCP1 in BAT in leucine-deprived mice. Furthermore, we provide evidence that leucine deprivation stimulates fat loss by increasing expression of corticotrophin-releasing hormone in the hypothalamus via activation of stimulatory G protein/cAMP/protein kinase A/cAMP response element-binding protein pathway. Finally, we show that the effect of leucine deprivation on fat loss is mediated by activation of the sympathetic nervous system. These results suggest that CNS plays an important role in regulating fat loss under leucine deprivation and thereby provide novel and important insights concerning the importance of CNS leucine in the regulation of energy homeostasis.

  8. Na+ pump in renal tubular cells is regulated by endogenous Na+-K+-ATPase inhibitor from hypothalamus

    International Nuclear Information System (INIS)

    Cantiello, H.F.; Chen, E.; Ray, S.; Haupert, G.T. Jr.

    1988-01-01

    Bovine hypothalamus contains a high affinity, specific, reversible inhibitor of mammalian Na + -K + -ATPase. Kinetic analysis using isolated membrane fractions showed binding and dissociation rates of the hypothalamic factor (HF) to be (like ouabain) relatively long (off rate = 60 min). To determine whether the kinetics of inhibition in intact cells might be more consistent with regulation of physiological processes in vivo, binding and dissociation reactions of HF in intact renal epithelial cells (LLC-PK 1 ) were studied using 86 Rb + uptake and [ 3 H]ouabain binding. As with membranes, a 60-min incubation with HF inhibited Na + -K + -ATPase in LLC-PK 1 cells. In contrast to membrane studies, no prolonged incubation with LLC-PK 1 was needed to observe inhibition of Na + -K + -ATPase. HF caused a 33% inhibition of ouabain-sensitive 86 Rb + influx within 10 min. Incubation of cells with HF followed by washout showed rapid reversal of pump inhibition and a doubling of pump activity. The dose-response curve for HF inhibition of LLC-PK 1 86 Rb + uptake showed a sigmoidal shape consistent with an allosteric binding reaction. Thus HF is a potent regulator of Na + -K + -ATPase activity in intact renal cells, with binding and dissociation reactions consistent with relevant physiological processes

  9. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry

    Directory of Open Access Journals (Sweden)

    Daniel Charles Castro

    2015-06-01

    Full Text Available The study of the neural bases of eating behavior, hunger, and reward has consistently implicated the lateral hypothalamus (LH and its interactions with mesocorticolimbic circuitry, such as mesolimbic dopamine projections to nucleus accumbens (NAc and ventral pallidum (VP, in controlling motivation to eat. The NAc and VP play special roles in mediating the hedonic impact (‘liking’ and motivational incentive salience (‘wanting’ of food rewards, and their interactions with LH help permit regulatory hunger/satiety modulation of food motivation and reward. Here, we review some progress that has been made regarding this circuitry and its functions: the identification of localized anatomical hedonic hotspots within NAc and VP for enhancing hedonic impact; interactions of NAc/VP hedonic hotspots with specific LH signals such as orexin; an anterior-posterior gradient of sites in NAc shell for producing intense appetitive eating versus intense fearful reactions; and anatomically distributed appetitive functions of dopamine and mu opioid signals in NAc shell and related structures. Such findings help improve our understanding of NAc, VP, and LH interactions in mediating affective and motivation functions, including ‘liking’ and ‘wanting’ for food rewards.

  10. Effects of hyper- and hypothyroidism on acetylcholinesterase, (Na(+), K (+))- and Mg ( 2+ )-ATPase activities of adult rat hypothalamus and cerebellum.

    Science.gov (United States)

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos

    2007-03-01

    Thyroid hormones (THs) are recognized as key metabolic hormones, and the metabolic rate increases in hyperthyroidism, while it decreases in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na(+), K(+))- and Mg(2+)-ATPase in the hypothalamus and the cerebellum of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, while hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. Neither hyper-, nor hypothyroidism had any effect on the examined hypothalamic enzyme activities. In the cerebellum, hyperthyroidism provoked a significant decrease in both the AChE (-23%, p activities (-26%, p activities: AChE (-17%, p activity was found unaltered in both the hyper- and the hypothyroid brain regions. neither hyper-, nor hypothyroidism had any effect on the examined hypothalamic enzyme activities. In the cerebellum, hyperthyroidism provoked a significant decrease in both the AChE and the Na(+), K(+)-ATPase activities. The decreased (by the THs) Na(+), K(+)-ATPase activities may increase the synaptic acetylcholine release, and thus, could result in a decrease in the cerebellar AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems.

  11. [Effect of Electroacupuncture on Hypothalamus-Pituitary-Ovary (HPO) Axis in Rats with Peri-menopausal Depression].

    Science.gov (United States)

    Jiang, Xi-Rong; Ren, Lu; Li, Chun-Ri

    2017-02-25

    To observe the effect of electroacupuncture (EA) on the hormones derived from the hypothalamus-pituitary-ovary (HPO) axis, so as to explore the neuroendocrine mechanism induced by EA on rats with perimenopausal depression disorder. Sixty female sprague-dawley rats were randomly divided into blank control group, model group, sham-operation (sham) group, clomipramine group, and electroacupuncture (EA) group, with 12 rats in each group. Perimenopausal depression model was established by bilateral ovariectomy combined with chronic unpredictable stimulation.The EA group received continuous treatment at "Baihui" (GV 20), "Shenshu" (BL 23) and "Sanyinjiao" (SP 6) once a day for 28 days. Estrous cycle and sucrose preference test were monitored, and serum estradiol (E 2 ), luteinizing hormone (LH), gonadotropin releasing hormone (GnRH), and β-endorphin (β-EP) were detected by ELISA. Compared to the blank control group, sugar water consumpution rates decreased in the model group and sham group ( P Electroacupuncture can relieve the symptoms of rat with perimenopausal depression by regulating the hormone secretion in HPO axis.

  12. Na sup + pump in renal tubular cells is regulated by endogenous Na sup + -K sup + -ATPase inhibitor from hypothalamus

    Energy Technology Data Exchange (ETDEWEB)

    Cantiello, H.F.; Chen, E.; Ray, S.; Haupert, G.T. Jr. (Harvard medical School, Boston, MA (USA))

    1988-10-01

    Bovine hypothalamus contains a high affinity, specific, reversible inhibitor of mammalian Na{sup +}-K{sup +}-ATPase. Kinetic analysis using isolated membrane fractions showed binding and dissociation rates of the hypothalamic factor (HF) to be (like ouabain) relatively long (off rate = 60 min). To determine whether the kinetics of inhibition in intact cells might be more consistent with regulation of physiological processes in vivo, binding and dissociation reactions of HF in intact renal epithelial cells (LLC-PK{sup 1}) were studied using {sup 86}Rb{sup +} uptake and ({sup 3}H)ouabain binding. As with membranes, a 60-min incubation with HF inhibited Na{sup +}-K{sup +}-ATPase in LLC-PK{sub 1} cells. In contrast to membrane studies, no prolonged incubation with LLC-PK{sub 1} was needed to observe inhibition of Na{sup +}-K{sup +}-ATPase. HF caused a 33% inhibition of ouabain-sensitive {sup 86}Rb{sup +} influx within 10 min. Incubation of cells with HF followed by washout showed rapid reversal of pump inhibition and a doubling of pump activity. The dose-response curve for HF inhibition of LLC-PK{sub 1} {sup 86}Rb{sup +} uptake showed a sigmoidal shape consistent with an allosteric binding reaction. Thus HF is a potent regulator of Na{sup +}-K{sup +}-ATPase activity in intact renal cells, with binding and dissociation reactions consistent with relevant physiological processes.

  13. Estradiol suppresses ingestive response evoked by activation of 5-HT1A receptors in the lateral hypothalamus of ovariectomized rats.

    Science.gov (United States)

    Taschetto, Ana P D; Levone, Brunno R; Kochenborger, Larissa; da Silva, Eduardo S; Flores, Rafael A; Faria, Moacir S; Paschoalini, Marta A

    2018-03-08

    The present study investigated the effects of estradiol (E2) on ingestive behavior after activation of 5-HT1A receptors in the lateral hypothalamus (LH) of female rats habituated to eat a wet mash diet. Ovariectomized rats treated with corn oil (OVX) or estradiol cypionate (OVX+E) received local injections into the LH of vehicle or an agonist of 5-HT1A receptors, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT; at a dose of 6 nmol). To determine the involvement of these receptors in food intake, some animals were pretreated with N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane carboxamide maleate (WAY-100635, a 5-HT1A receptor full antagonist, at a dose of 0.37 nmol), followed by the injection of the agonist 8-OH-DPAT or its vehicle. The results showed that the injection of 8-OH-DPAT into the LH of OVX rats significantly increased food intake, and the duration and frequency of this behavior. The pretreatment with E2 suppressed the hyperphagic response induced by 8-OH-DPAT in OVX animals. The inhibition of 5-HT1A receptors after pretreatment with WAY-100635 blocked the hyperphagic effects evoked by 8-OH-DPAT in OVX. These results indicate that the activity of LH 5-HT1A receptors could be affected by blood E2 levels.

  14. Activation of SF1 Neurons in the Ventromedial Hypothalamus by DREADD Technology Increases Insulin Sensitivity in Peripheral Tissues.

    Science.gov (United States)

    Coutinho, Eulalia A; Okamoto, Shiki; Ishikawa, Ayako Wendy; Yokota, Shigefumi; Wada, Nobuhiro; Hirabayashi, Takahiro; Saito, Kumiko; Sato, Tatsuya; Takagi, Kazuyo; Wang, Chen-Chi; Kobayashi, Kenta; Ogawa, Yoshihiro; Shioda, Seiji; Yoshimura, Yumiko; Minokoshi, Yasuhiko

    2017-09-01

    The ventromedial hypothalamus (VMH) regulates glucose and energy metabolism in mammals. Optogenetic stimulation of VMH neurons that express steroidogenic factor 1 (SF1) induces hyperglycemia. However, leptin acting via the VMH stimulates whole-body glucose utilization and insulin sensitivity in some peripheral tissues, and this effect of leptin appears to be mediated by SF1 neurons. We examined the effects of activation of SF1 neurons with DREADD (designer receptors exclusively activated by designer drugs) technology. Activation of SF1 neurons by an intraperitoneal injection of clozapine- N -oxide (CNO), a specific hM3Dq ligand, reduced food intake and increased energy expenditure in mice expressing hM3Dq in SF1 neurons. It also increased whole-body glucose utilization and glucose uptake in red-type skeletal muscle, heart, and interscapular brown adipose tissue, as well as glucose production and glycogen phosphorylase a activity in the liver, thereby maintaining blood glucose levels. During hyperinsulinemic-euglycemic clamp, such activation of SF1 neurons increased insulin-induced glucose uptake in the same peripheral tissues and tended to enhance insulin-induced suppression of glucose production by suppressing gluconeogenic gene expression and glycogen phosphorylase a activity in the liver. DREADD technology is thus an important tool for studies of the role of the brain in the regulation of insulin sensitivity in peripheral tissues. © 2017 by the American Diabetes Association.

  15. A model for evaluating steroids acting at the hypothalamus-pituitary axis using radioimmunoassay and related procedures

    International Nuclear Information System (INIS)

    Spona, J.; Bieglmayer, C.; Schroeder, R.; Poeckl, E.

    1977-01-01

    Relative affinity constants for binding of estrone (E 1 ), estriol (E 3 ), 17β-estradiol (E 2 ) and 17α-ethinyl-17β-estradiol (EE 2 ) to cytosol estrogen-receptor of rat hypothalamus and pituitary were estimated by radioligand-receptor assays. Relative affinity constants in the hypothalamic system were 6.5 x 10 -1 M for E 2 , 1 x 10 -9 M for EE 2 and 2 x 10 -8 M for E 1 and E 3 , respectively. The affinity constants were 1 x 10 -9 M for E 2 and E 3 and 7 x 10 -9 M for E 1 and E 3 , resp., when pituitary cytosol samples were used. Some discrepancies between biological activity and affinity for the estrogen-receptor was noted, which may be due to differences in the metabolisms and cellular uptake of the estrogens. The present system may be also a useful procedure to help to provide a good definition of estrogen and anti-estroegn acting at the hypothalamic and pituitary level. Sedimentation patterns of cytosol samples labeled with estrogens used in this study revealed protein moieties sedimenting upon ultracentrifugation in the 8 S region. (orig.) [de

  16. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning

    Science.gov (United States)

    Wilson, Yvette M.; Gunnersen, Jenny M.; Murphy, Mark

    2015-01-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in amygdala and hypothalamus, which were specifically activated by fear conditioning to a context. Here we have examined neuronal activation due to fear conditioning to a more specific auditory cue. Discrete populations of learning-specific neurons were identified in only a small number of locations in the brain, including those previously found to be activated in amygdala and hypothalamus by context fear conditioning. These populations, each containing only a relatively small number of neurons, may be directly involved in fear learning and memory. PMID:26179231

  17. An optimized method for measuring hypocretin-1 peptide in the mouse brain reveals differential circadian regulation of hypocretin-1 levels rostral and caudal to the hypothalamus

    DEFF Research Database (Denmark)

    Justinussen, J L; Holm, A; Kornum, B R

    2015-01-01

    an optimized peptide quantification method for hypocretin-1 extracted from different mouse brain areas and use this method for investigating circadian fluctuations of hypocretin-1 levels in these areas. The results show that hypocretin-1 peptide can be extracted from small pieces of intact tissue...... as does prepro-hypocretin mRNA in the hypothalamus. However, in midbrain and brainstem tissue caudal to the hypothalamus, there was less circadian fluctuation and a tendency for higher levels during the light phase. These data suggest that regulation of the hypocretin system differs between brain areas.......The hypocretin/orexin system regulates, among other things, sleep and energy homeostasis. The system is likely regulated by both homeostatic and circadian mechanisms. Little is known about local differences in the regulation of hypocretin activity. The aim of this study was to establish...

  18. Wnt3a upregulates brain-derived insulin by increasing NeuroD1 via Wnt/β-catenin signaling in the hypothalamus.

    Science.gov (United States)

    Lee, Jaemeun; Kim, Kyungchan; Yu, Seong-Woon; Kim, Eun-Kyoung

    2016-03-08

    Insulin plays diverse roles in the brain. Although insulin produced by pancreatic β-cells that crosses the blood-brain barrier is a major source of brain insulin, recent studies suggest that insulin is also produced locally within the brain. However, the mechanisms underlying the production of brain-derived insulin (BDI) are not yet known. Here, we examined the effect of Wnt3a on BDI production in a hypothalamic cell line and hypothalamic tissue. In N39 hypothalamic cells, Wnt3a treatment significantly increased the expression of the Ins2 gene, which encodes the insulin isoform predominant in the mouse brain, by activating Wnt/β-catenin signaling. The concentration of insulin was higher in culture medium of Wnt3a-treated cells than in that of untreated cells. Interestingly, neurogenic differentiation 1 (NeuroD1), a target of Wnt/β-catenin signaling and one of transcription factors for insulin, was also induced by Wnt3a treatment in a time- and dose-dependent manner. In addition, the treatment of BIO, a GSK3 inhibitor, also increased the expression of Ins2 and NeuroD1. Knockdown of NeuroD1 by lentiviral shRNAs reduced the basal expression of Ins2 and suppressed Wnt3a-induced Ins2 expression. To confirm the Wnt3a-induced increase in Ins2 expression in vivo, Wnt3a was injected into the hypothalamus of mice. Wnt3a increased the expression of NeuroD1 and Ins2 in the hypothalamus in a manner similar to that observed in vitro. Taken together, these results suggest that BDI production is regulated by the Wnt/β-catenin/NeuroD1 pathway in the hypothalamus. Our findings will help to unravel the regulation of BDI production in the hypothalamus.

  19. A diphenyl diselenide-supplemented diet and swimming exercise promote neuroprotection, reduced cell apoptosis and glial cell activation in the hypothalamus of old rats.

    Science.gov (United States)

    Leite, Marlon R; Cechella, José L; Pinton, Simone; Nogueira, Cristina W; Zeni, Gilson

    2016-09-01

    Aging is a process characterized by deterioration of the homeostasis of various physiological systems; although being a process under influence of multiple factors, the mechanisms involved in aging are not well understood. Here we investigated the effect of a (PhSe)2-supplemented diet (1ppm, 4weeks) and swimming exercise (1% of body weight, 20min per day, 4weeks) on proteins related to glial cells activation, apoptosis and neuroprotection in the hypothalamus of old male Wistar rats (27month-old). Old rats had activation of astrocytes and microglia which was demonstrated by the increase in the levels of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (Iba-1) in hypothalamus. A decrease of B-cell lymphoma 2 (Bcl-2) and procaspase-3 levels as well as an increase of the cleaved PARP/full length PARP ratio (poly (ADP-ribose) polymerase, PARP) and the pJNK/JNK ratio (c-Jun N-terminal kinase, JNK) were observed. The levels of mature brain-derived neurotrophic factor (mBDNF), the pAkt/Akt ratio (also known as protein kinase B) and NeuN (neuronal nuclei), a neuron marker, were decreased in the hypothalamus of old rats. Old rats that received a (PhSe)2-supplemented diet and performed swimming exercise had the hypothalamic levels of Iba-1 and GFAP decreased. The combined treatment also increased the levels of Bcl-2 and procaspase-3 and decreased the ratios of cleaved PARP/full length PARP and pJNK/JNK in old rats. The levels of mBDNF and NeuN, but not the pAkt/Akt ratio, were increased by combined treatment. In conclusion, a (PhSe)2-supplemented diet and swimming exercise promoted neuroprotection in the hypothalamus of old rats, reducing apoptosis and glial cell activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Profiling of differential gene expression in the hypothalamus of broiler-type Taiwan country chickens in response to acute heat stress.

    Science.gov (United States)

    Tu, Wei-Lin; Cheng, Chuen-Yu; Wang, Shih-Han; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Chen, Shuen-Ei; Huang, San-Yuan

    2016-02-01

    Acute heat stress severely impacts poultry production. The hypothalamus acts as a crucial center to regulate body temperature, detect temperature changes, and modulate the autonomic nervous system and endocrine loop for heat retention and dissipation. The purpose of this study was to investigate global gene expression in the hypothalamus of broiler-type B strain Taiwan country chickens after acute heat stress. Twelve 30-week-old hens were allocated to four groups. Three heat-stressed groups were subjected to acute heat stress at 38 °C for 2 hours without recovery (H2R0), with 2 hours of recovery (H2R2), and with 6 hours of recovery (H2R6). The control hens were maintained at 25 °C. At the end, hypothalamus samples were collected for gene expression analysis. The results showed that 24, 11, and 25 genes were upregulated and 41, 15, and 42 genes were downregulated in H2R0, H2R2, and H2R6 treatments, respectively. The expressions of gonadotropin-releasing hormone 1 (GNRH1), heat shock 27-kDa protein 1 (HSPB1), neuropeptide Y (NPY), and heat shock protein 25 (HSP25) were upregulated at all recovery times after heat exposure. Conversely, the expression of TPH2 was downregulated at all recovery times. A gene ontology analysis showed that most of the differentially expressed genes were involved in biological processes including cellular processes, metabolic processes, localization, multicellular organismal processes, developmental processes, and biological regulation. A functional annotation analysis showed that the differentially expressed genes were related to the gene networks of responses to stress and reproductive functions. These differentially expressed genes might be essential and unique key factors in the heat stress response of the hypothalamus in chickens. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Effects of Qiangji Jianli Yin on the hypothalamus CRH contents and plasma ACTH, cortisol levels in rat models of kidney-yang deficiency syndrome

    International Nuclear Information System (INIS)

    Zhao Hui; Chen Zhixi; Chen Jinyan; Li Zhiqiang; He Zanhou

    2007-01-01

    Objective: To investigate the effects of qiangji jianli yin on hypothalamus CRH contents and plasma ACTH, Cortisol levels in rat models with kidney-yang deficiency syndrome. Methods: Rat models of kidney-yang deficiency syndrome were prepared with intramuscular injuection of hydroeortisone and divided into 5 groups: (1) no further treatment, n=13 (2) treated with high dosage d qiangji jiandi yin, n=12 (3) treated with medium dosage of qiangji jianli yin, n=12 (4) treated with low dosage of qiangji jianli yin n=12, (5) treated with yougui wan, n=12. Ten rats injuected with intramuscular distilled water only served as controls. The animals were sacrificied 14 days later and the hypothalamus CRH contents as well as plasma AOM and cortisol levels were measured with RIA. The thymus gland weight index and the adrenal gland index were calculated. Results: (1) The hypothalamus CRH contents and plasma ACTH, cortisol levels were significantly lower (P<0.01) in the rat models of kidney-yang deficiency syndrome without any treatment thas those in controls rats; the thymus and adrenal gland weight index were significantly decreased too (P <0.01). The CRH conteats and ACTH, cortisol levels in all the three group of rat model treated with different dosage of qiangji jianli yin were significantly higher than those in the models without any treatment (P<0.05-0.01). Conclusion: In rat models of kidney-yang deficiency syndrome, dysfunction of the hypothalamus-pituitary-adrenal axis (HPAA) led to decreased secretion of related hormones. The HPAA function might be partially restored with administation of qiangji jianli yin. (authors)

  2. A contribution to the study of spontaneous and evoked electrical activities of the adult rabbit hypothalamus and application of digital analysis

    International Nuclear Information System (INIS)

    Lasmoles, Francoise

    1974-01-01

    The spontaneous and evoked electrical activities of the hypothalamus were studied in 18 adult rabbits chronically implanted with electrodes. The graphic study of the EEG was completed by digital analyses of the signal considered as a random process and processed both by statistical analysis in order to know the distribution function of the signal amplitude and harmonic analysis allowing classification of power density spectra by the calculation of the autocorrelation function and its Fourier transform. Absolute values and percentage of energy distribution were obtained from 0 to 40 Hz for each frequency rate (0.25 Hz) and in various frequency bands (0-3, 3-6, 7-9, 9-15, 15-20, 20-30 and 30-40 Hz). The experimental methods (electrode implantation, data acquisition and processing) are described: 240 sequences corresponding to stable physiological states were analyzed after analogical-digital conversion (sampling rate: 10 ms, period of integration: 20 s). Whatever the state of vigilance, the hypothalamus had a fairly homogeneous function different from the spontaneous electrical activity of the cortex. The signal characteristics both in amplitude and frequency allowed to distinguish the hypothalamic areas studied (supra-optic area, mammillary body, postero-lateral hypothalamus). The results were reproducible and verified the information supplied by visual examination of the EEG. Following light stimulus, the evoked potentials were collected in the hypothalamus; there should therefore be convergence, yet since the answers are unstable and long latent, the neuronal paths followed by the impulse must not be direct. (author) [fr

  3. Volumetric analysis of the hypothalamus, amygdala and hippocampus in non-suicidal and suicidal mood disorder patients--a post-mortem study.

    Science.gov (United States)

    Bielau, Hendrik; Brisch, Ralf; Gos, Tomasz; Dobrowolny, Henrik; Baumann, Bruno; Mawrin, Christian; Kreutzmann, Peter; Bernstein, Hans-Gert; Bogerts, Bernhard; Steiner, Johann

    2013-11-01

    In recent years, the hypothalamus, amygdala and hippocampus have attracted increased interest with regard to the effects of stress on neurobiological systems in individuals with depression and suicidal behaviour. A large body of evidence indicates that these subcortical regions are involved in the pathogenetic mechanisms of mood disorders and suicide. The current neuroimaging techniques inadequately resolve the structural components of small and complex brain structures. In previous studies, our group was able to demonstrate a structural and neuronal pathology in mood disorders. However, the impact of suicide remains unclear. In the current study we used volumetric measurements of serial postmortem sections with combined Nissl-myelin staining to investigate the hypothalamus, amygdala and hippocampus in suicide victims with mood disorders (n = 11), non-suicidal mood disorder patients (n = 9) and control subjects (n = 23). Comparisons between the groups by using an ANCOVA showed a significant overall difference for the hypothalamus (p = 0.001) with reduced volumes in non-suicidal patients compared to suicide victims (p = 0.018) and controls (p = 0.006). To our surprise, the volumes between the suicide victims and controls did not differ significantly. For the amygdala and hippocampus no volume changes between the groups could be detected (all p values were n. s.). In conclusion our data suggest a structural hypothalamic pathology in non-suicidal mood disorder patients. The detected differences between suicidal and non-suicidal patients suggest that suicidal performances might be related to the degree of structural deficits.

  4. Neuropeptidome of the Hypothalamus and Pituitary Gland of Indicine × Taurine Heifers: Evidence of Differential Neuropeptide Processing in the Pituitary Gland before and after Puberty.

    Science.gov (United States)

    DeAtley, Kasey L; Colgrave, Michelle L; Cánovas, Angela; Wijffels, Gene; Ashley, Ryan L; Silver, Gail A; Rincon, Gonzalo; Medrano, Juan F; Islas-Trejo, Alma; Fortes, Marina R S; Reverter, Antonio; Porto-Neto, Laercio; Lehnert, Sigrid A; Thomas, Milton G

    2018-05-04

    Puberty in cattle is regulated by an endocrine axis, which includes a complex milieu of neuropeptides in the hypothalamus and pituitary gland. The neuropeptidome of hypothalamic-pituitary gland tissue of pre- (PRE) and postpubertal (POST) Bos indicus-influenced heifers was characterized, followed by quantitative analysis of 51 fertility-related neuropeptides in these tissues. Comparison of peptide abundances with gene expression levels allowed assessment of post-transcriptional peptide processing. On the basis of classical cleavage, 124 mature neuropeptides from 35 precursor proteins were detected in hypothalamus and pituitary gland tissues of three PRE and three POST Brangus heifers. An additional 19 peptides (cerebellins, PEN peptides) previously reported as neuropeptides that did not follow classical cleavage were also identified. In the pre-pubertal hypothalamus, a greater diversity of neuropeptides (25.8%) was identified relative to post-pubertal heifers, while in the pituitary gland, 38.6% more neuropeptides were detected in the post-pubertal heifers. Neuro-tissues of PRE and POST heifers revealed abundance differences ( p pituitary before and after puberty.

  5. Tumor necrosis factor-alpha activates signal transduction in hypothalamus and modulates the expression of pro-inflammatory proteins and orexigenic/anorexigenic neurotransmitters.

    Science.gov (United States)

    Amaral, Maria E; Barbuio, Raquel; Milanski, Marciane; Romanatto, Talita; Barbosa, Helena C; Nadruz, Wilson; Bertolo, Manoel B; Boschero, Antonio C; Saad, Mario J A; Franchini, Kleber G; Velloso, Licio A

    2006-07-01

    Tumor necrosis factor-alpha (TNF-alpha) is known to participate in the wastage syndrome that accompanies cancer and severe infectious diseases. More recently, a role for TNF-alpha in the pathogenesis of type 2 diabetes mellitus and obesity has been shown. Much of the regulatory action exerted by TNF-alpha upon the control of energy stores depends on its action on the hypothalamus. In this study, we show that TNF-alpha activates canonical pro-inflammatory signal transduction pathways in the hypothalamus of rats. These signaling events lead to the transcriptional activation of an early responsive gene and to the induction of expression of cytokines and a cytokine responsive protein such as interleukin-1beta, interleukin-6, interleukin-10 and suppressor of cytokine signalling-3, respectively. In addition, TNF-alpha induces the expression of neurotransmitters involved in the control of feeding and thermogenesis. Thus, TNF-alpha may act directly in the hypothalamus inducing a pro-inflammatory response and the modulation of expression of neurotransmitters involved in energy homeostasis.

  6. Alpha2delta-1 in SF1+ Neurons of the Ventromedial Hypothalamus Is an Essential Regulator of Glucose and Lipid Homeostasis

    Directory of Open Access Journals (Sweden)

    Jennifer A. Felsted

    2017-12-01

    Full Text Available Summary: The central mechanisms controlling glucose and lipid homeostasis are inadequately understood. We show that α2δ-1 is an essential regulator of glucose and lipid balance, acting in steroidogenic factor-1 (SF1 neurons of the ventromedial hypothalamus (VMH. These effects are body weight independent and involve regulation of SF1+ neuronal activity and sympathetic output to metabolic tissues. Accordingly, mice with α2δ-1 deletion in SF1 neurons exhibit glucose intolerance, altered lipolysis, and decreased cholesterol content in adipose tissue despite normal energy balance regulation. Profound reductions in the firing rate of SF1 neurons, decreased sympathetic output, and elevated circulating levels of serotonin are associated with these alterations. Normal calcium currents but reduced excitatory postsynaptic currents in mutant SF1 neurons implicate α2δ-1 in the promotion of excitatory synaptogenesis separate from its canonical role as a calcium channel subunit. Collectively, these findings identify an essential mechanism that regulates VMH neuronal activity and glycemic and lipid control and may be a target for tackling metabolic disease. : Felsted et al. show a required role of the calcium channel subunit and thrombospondin receptor α2δ-1 in regulating glucose and lipid homeostasis in the ventromedial hypothalamus (VMH. These effects are caused by regulation of SF1+ neuronal activity in the VMH through non-canonical mechanisms and concomitant influences on sympathetic output. Keywords: diabetes, VMH, hypothalamus, glucose, norepinephrine, serotonin, excitability, lipid, SF1

  7. An acute injection of corticosterone increases thyrotrophin-releasing hormone expression in the paraventricular nucleus of the hypothalamus but interferes with the rapid hypothalamus pituitary thyroid axis response to cold in male rats.

    Science.gov (United States)

    Sotelo-Rivera, I; Jaimes-Hoy, L; Cote-Vélez, A; Espinoza-Ayala, C; Charli, J-L; Joseph-Bravo, P

    2014-12-01

    The activity of the hypothalamic-pituitary-thyroid (HPT) axis is rapidly adjusted by energy balance alterations. Glucocorticoids can interfere with this activity, although the timing of this interaction is unknown. In vitro studies indicate that, albeit incubation with either glucocorticoid receptor (GR) agonists or protein kinase A (PKA) activators enhances pro-thyrotrophin-releasing hormone (pro-TRH) transcription, co-incubation with both stimuli reduces this enhancement. In the present study, we used primary cultures of hypothalamic cells to test whether the order of these stimuli alters the cross-talk. We observed that a simultaneous or 1-h prior (but not later) activation of GR is necessary to inhibit the stimulatory effect of PKA activation on pro-TRH expression. We tested these in vitro results in the context of a physiological stimulus on the HPT axis in adult male rats. Cold exposure for 1 h enhanced pro-TRH mRNA expression in neurones of the hypophysiotrophic and rostral subdivisions of the paraventricular nucleus (PVN) of the hypothalamus, thyrotrophin (TSH) serum levels and deiodinase 2 (D2) activity in brown adipose tissue (BAT). An i.p. injection of corticosterone stimulated pro-TRH expression in the PVN of rats kept at ambient temperature, more pronouncedly in hypophysiotrophic neurones that no longer responded to cold exposure. In corticosterone-pretreated rats, the cold-induced increase in pro-TRH expression was detected only in the rostral PVN. Corticosterone blunted the increase in serum TSH levels and D2 activity in BAT produced by cold in vehicle-injected animals. Thus, increased serum corticosterone levels rapidly restrain cold stress-induced activation of TRH hypophysiotrophic neurones, which may contribute to changing energy expenditure. Interestingly, TRH neurones of the rostral PVN responded to both corticosterone and cold exposure with an amplified expression of pro-TRH mRNA, suggesting that these neurones integrate stress and temperature

  8. Methamphetamine facilitates female sexual behavior and enhances neuronal activation in the medial amygdala and ventromedial nucleus of the hypothalamus.

    Science.gov (United States)

    Holder, Mary K; Hadjimarkou, Maria M; Zup, Susan L; Blutstein, Tamara; Benham, Rebecca S; McCarthy, Margaret M; Mong, Jessica A

    2010-02-01

    Methamphetamine (MA) abuse has reached epidemic proportions in the United States. Users of MA report dramatic increases in sexual drive that have been associated with increased engagement in risky sexual behavior leading to higher rates of sexually transmitted diseases and unplanned pregnancies. The ability of MA to enhance sexual drive in females is enigmatic since related psychostimulants like amphetamine and cocaine appear not to affect sexual drive in women, and in rodents models, amphetamine has been reported to be inhibitory to female sexual behavior. Examination of MA's effects on female sexual behavior in an animal model is lacking. Here, using a rodent model, we have demonstrated that MA enhanced female sexual behavior. MA (5mg/kg) or saline vehicle was administered once daily for 3 days to adult ovariectomized rats primed with ovarian steroids. MA treatment significantly increased the number of proceptive events and the lordosis response compared to hormonally primed, saline controls. The effect of MA on the neural circuitry underlying the motivation for sexual behavior was examined using Fos immunoreactivity. In the medial amygdala and the ventromedial nucleus of the hypothalamus, nuclei implicated in motivated behaviors, ovarian hormones and MA independently enhance the neuronal activation, but more striking was the significantly greater activation induced by their combined administration. Increases in dopamine neurotransmission may underlie the MA/hormone mediated increase in neuronal activation. In support of this possibility, ovarian hormones significantly increased tyrosine hydroxylase (the rate limiting enzyme in dopamine synthesis) immunoreactivity in the medial amygdala. Thus our present data suggest that the interactions of MA and ovarian hormones leads to changes in the neural substrate of key nuclei involved in mediating female sexual behaviors, and these changes may underlie MA's ability to enhance these behaviors. 2009 Elsevier Ltd. All

  9. MYT1L mutations cause intellectual disability and variable obesity by dysregulating gene expression and development of the neuroendocrine hypothalamus.

    Directory of Open Access Journals (Sweden)

    Patricia Blanchet

    2017-08-01

    Full Text Available Deletions at chromosome 2p25.3 are associated with a syndrome consisting of intellectual disability and obesity. The smallest region of overlap for deletions at 2p25.3 contains PXDN and MYT1L. MYT1L is expressed only within the brain in humans. We hypothesized that single nucleotide variants (SNVs in MYT1L would cause a phenotype resembling deletion at 2p25.3. To examine this we sought MYT1L SNVs in exome sequencing data from 4, 296 parent-child trios. Further variants were identified through a genematcher-facilitated collaboration. We report 9 patients with MYT1L SNVs (4 loss of function and 5 missense. The phenotype of SNV carriers overlapped with that of 2p25.3 deletion carriers. To identify the transcriptomic consequences of MYT1L loss of function we used CRISPR-Cas9 to create a knockout cell line. Gene Ontology analysis in knockout cells demonstrated altered expression of genes that regulate gene expression and that are localized to the nucleus. These differentially expressed genes were enriched for OMIM disease ontology terms "mental retardation". To study the developmental effects of MYT1L loss of function we created a zebrafish knockdown using morpholinos. Knockdown zebrafish manifested loss of oxytocin expression in the preoptic neuroendocrine area. This study demonstrates that MYT1L variants are associated with syndromic obesity in humans. The mechanism is related to dysregulated expression of neurodevelopmental genes and altered development of the neuroendocrine hypothalamus.

  10. Differential effect of adrenocorticosteroids on 11 beta-hydroxysteroid dehydrogenase bioactivity at the anterior pituitary and hypothalamus in rats.

    Science.gov (United States)

    Idrus, R B; Mohamad, N B; Morat, P B; Saim, A; Abdul Kadir, K B

    1996-08-01

    11 beta-Hydroxysteroid dehydrogenase (11 beta-OHSD) is a microsomal enzyme that catalyzes the dehydrogenation of cortisol (F) to cortisone (E) in man and corticosterone (B) to 11-dehydrocorticosterone (A) in rats. 11 beta-OHSD has been identified in a wide variety of tissues. The differential distribution of 11 beta-OHSD suggests that this enzyme has locally defined functions that vary from region to region. The aim of this study was to investigate the effects of the glucocorticoids B and dexamethasone (DM), the mineralocorticoid deoxycorticosterone (DOC), and the inhibitors of 11 beta-OHSD glycyrrhizic acid (Gl) and glycyrrhetinic acid (GE) on 11 beta-OHSD bioactivity at the hypothalamus (HT) and anterior pituitary (AP). Male Wistar rats were treated with GI or were adrenalectomized (ADX) and treated with either B, DM, or DOC for 7 days. All treatments were in vivo except GE, which was used in vitro. At the end of treatment, homogenates of HT and AP were assayed for 11 beta-OHSD bioactivity, expressed as the percentage conversion of B to A in the presence of NADP, 11 beta-OHSD bioactivity is significantly higher (P < 0.0001) in the AP compared with the HT. Adrenalectomy significantly increased the enzyme activity in the AP (P < 0.05), an effect reversed by B or DM. ADX rats treated with DOC showed decreased enzyme activity in the AP (P < 0.001) but increased the activity in the HT (P < 0.0001). Gl increased activity in both HT and AP, whereas GE decreased activity significantly. We conclude that the modulation of 11 beta-OHSD is both steroid specific and tissue specific.

  11. Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry. Implications for drug addiction, sleep and pain

    Science.gov (United States)

    Ferré, S.; Diamond, I.; Goldberg, S.R.; Yao, L.; Hourani, S.M.O.; Huang, Z.L.; Urade, Y.; Kitchen, I.

    2007-01-01

    Adenosine A2A receptors localized in the dorsal striatum are considered as a new target for the development of antiparkinsonian drugs. Co-administration of A2A receptor antagonists has shown a significant improvement of the effects of L-DOPA. The present review emphasizes the possible application of A2A receptor antagonists in pathological conditions other than parkinsonism, including drug addiction, sleep disorders and pain. In addition to the dorsal striatum, the ventral striatum (nucleus accumbens) contains a high density of A2A receptors, which presynaptically and postsynaptically regulate glutamatergic transmission in the cortical glutamatergic projections to the nucleus accumbens. It is currently believed that molecular adaptations of the cortico-accumbens glutamatergic synapses are involved in compulsive drug seeking and relapse. Here we review recent experimental evidence suggesting that A2A antagonists could become new therapeutic agents for drug addiction. Morphological and functional studies have identified lower levels of A2A receptors in brain areas other than the striatum, such as the ventrolateral preoptic area of the hypothalamus, where adenosine plays an important role in sleep regulation. Although initially believed to be mostly dependent on A1 receptors, here we review recent studies that demonstrate that the somnogenic effects of adenosine are largely mediated by hypothalamic A2A receptors. A2A receptor antagonists could therefore be considered as a possible treatment for narcolepsy and other sleep-related disorders. Finally, nociception is another adenosine-regulated neural function previously thought to mostly involve A1 receptors. Although there is some conflicting literature on the effects of agonists and antagonists, which may partly be due to the lack of selectivity of available drugs, the studies in A2A receptor knockout mice suggest that A2A receptor antagonists might have some therapeutic potential in pain states, in particular where

  12. A model for evaluating steroids acting at the hypothalamus-pituitary axis using radioimmunoassay and related procedures

    International Nuclear Information System (INIS)

    Spona, J.; Bieglmayer, Ch.; Schroeder, R.; Poeckl, E.

    1978-01-01

    The relative affinity constants for binding of estrone (E 1 ), estriol (E 3 ), 17β-estradiol(E 2 ) and 17α-ethinyl-17β-estradiol(EE 2 ) to cytosol estrogen-receptors of rat hypothalamus and pituitary were estimated by a radioligand-receptor assay procedure. The relative affinity constants in the hypothalamic system were 6.5x10 -10 M for E 2 , 1x10 -9 M for EE 2 and 2x10 -8 M for E 1 and E 3 . The affinity constants were 1x10 -9 M for E 2 and E 3 and 7x10 -9 M for E 1 and E 3 when pituitary cytosol samples were used. Some discrepancies between biological activity and affinity for the estrogen-receptor were noted. These may be due to differences in the metabolism and cellular uptake of the estrogens. The radioligand-receptor assay procedure may be useful in evaluating the action of estrogens and anti-estrogens acting at the hypothalamic and pituitary level. Sedimentation patterns of cytosol samples labelled with the estrogens used in this study revealed, upon ultracentrifugation, protein moieties sedimenting in the 8 S region. The potency of progesterone and D-Norgestrel to modulate the release of LH and FSH stimulated by luteinizing hormone-releasing hormone (LH-RH) in castrated female rats was found to correlate well with the biological activity of the progestogens. It is concluded that the radioligand-receptor assay procedure for estrogens and the in-vivo model for the evaluation of the central action of progestogens may be valuable tools for testing new steroids to be used in oral contraceptives. (author)

  13. Alteration of NPY and Y1 receptor in dorsomedial and ventromedial areas of hypothalamus in anorectic tumor-bearing rats.

    Science.gov (United States)

    Chance, William T; Xiao, Chun; Dayal, Ramesh; Sheriff, Sulaiman

    2007-02-01

    Although previous studies have implicated NPY in the etiology of experimental cancer anorexia, the results have been difficult to interpret. Studies have suggested that although NPY level and message were decreased in the dorsomedial hypothalamic area (DMA), they were elevated in the ventromedial hypothalamic area (VMA). To better assess specific intra-area alterations of NPY, Y(1) receptor (Y(1) R), and agouti-related peptide (AgRP) in TB rats, we used radioimmunoassay, quantitative real-time RT-PCR, and immunohistochemistry. We found that NPY and AgRP mRNA were elevated significantly in whole hypothalamus of anorectic TB rats, while Y(1) R mRNA was decreased. Based on two replicates of four pooled samples each, both NPY and AgRP mRNA appeared to be elevated in the VMA of anorectic TB rats, while only AgRP exhibited a similar increase in the DMA. Levels of NPY were elevated in the VMA of both TB and pair-fed (PF) rats, but in the DMA only PF rats exhibited a significant NPY increase. NPY and Y(1) R immunohistochemistry revealed reduced NPY staining in PVN and ARC nucleus of TB and PF rats. Y(1) R immunostaining was also reduced in the ARC and PVN of TB rats, while PF rats exhibited elevated immunostaining in the PVN. These results continue to implicate dysfunction of NPY feeding systems in experimental cancer anorexia and suggest down-regulation of Y(1) R receptors as well as possible problems in NPY translation.

  14. Effect of injection of antisense oligodeoxynucleotides of GAD isozymes into rat ventromedial hypothalamus on food intake and locomotor activity.

    Science.gov (United States)

    Bannai, M; Ichikawa, M; Nishihara, M; Takahashi, M

    1998-02-16

    In the ventromedial hypothalamus (VMH), gamma-aminobutyric acid (GABA) plays a role in regulating feeding and running behaviors. The GABA synthetic enzyme, glutamic acid decarboxylase (GAD), consists of two isozymes, GAD65 and GAD67. In the present study, the phosphorothioated antisense oligodeoxynucleotides (ODNs) of each GAD isozyme were injected bilaterally into the VMH of male rats, and food intake, body weight and locomotor activity were monitored. ODNs were incorporated in the water-absorbent polymer (WAP, 0.2 nmol/microliter) so that ODNs were retained at the injection site. Each antisense ODN of GAD65 or GAD67 tended to reduce food intake on day 1 (day of injection=day 0) though not significantly. An injection combining both antisense ODNs significantly decreased food intake only on day 1, but body weight remained significantly lower than the control for 5 days. This suppression of body weight gain could be attributed to a significant increase in locomotor activity between days 3 and 5. Individual treatment with either ODNs did not change locomotor activity. The increase in daily locomotor activity in the group receiving the combined antisense ODNs occurred mainly during the light phase. Neither vehicle (WAP) nor control ODN affected food intake, body weight and locomotor activity. Histological studies indicated that antisense ODN distributed within 800 micron from the edge of the area where WAP was located 24 h after the injection gradually disappeared within days, but still remained within 300 micron m distance even 7 days after the injection. Antisense ODN was effectively incorporated by all the cell types examined, i.e., neurons, astrocytes and microglias. Further, HPLC analysis revealed that antisense ODNs of GAD isozymes, either alone or combined, decreased the content of GABA by 50% in VMH 24 h after the injection. These results indicate that suppression of GABA synthesis by either of the GAD isozymes is synergistically involved in suppressing food

  15. Heat stress-induced neuroinflammation and aberration in monoamine levels in hypothalamus are associated with temperature dysregulation.

    Science.gov (United States)

    Chauhan, Nishant Ranjan; Kapoor, Medha; Prabha Singh, Laxmi; Gupta, Rajinder Kumar; Chand Meena, Ramesh; Tulsawani, Rajkumar; Nanda, Sarita; Bala Singh, Shashi

    2017-09-01

    Heat Stress (HS) induces diverse pathophysiological changes, which include brain ischemia, oxidative stress and neuronal damage. The present study was undertaken with the objective to ascertain whether neuroinflammation in Hypothalamus (HTH) caused under HS affects monoamine levels and hence, its physiological role in thermoregulation. Rats were exposed to HS in a heat simulation environmental chamber (Ambient temperature, Ta=45±0.5°C and Relative Humidity, RH=30±10%) with real-time measurement of core temperature (Tc) and skin temperature (Ts). Animals were divided into two subgroups: Moderate HS (MHS) (Tc=40°C) and Severe HS (SHS)/Heat stroke (Tc=42°C). Rats with MHS showed an increase in Mean Arterial Pressure (MAP) and Heart Rate (HR) while fall in MAP and rise in HR was observed in rats with SHS. In addition, oxidative stress and an increase in pyknotic neurons were observed in HTH. High levels of Adrenocorticotropic-hormone (ACTH), Epinephrine (EPI), Norepinephrine (NE) and Dopamine (DA) in the systemic circulation and progressive increase in EPI and DA levels in HTH were recorded after the thermal insult. Moreover, a substantial increase in Glutamate (Glu) level was observed in HTH as well as in systemic circulation of heat stroke rats. We found a rise in NE whereas a fall in Serotonin (5-HT) level in HTH at MHS, without perturbing inflammatory mediators. However, rats with SHS exhibited significant elevations in NF-kB, IL-1β, COX2, GFAP and Iba1 protein expression in HTH. In conclusion, the data suggest that SHS induces neuroinflammation in HTH, which is associated with monoamines and Glu imbalances, leading to thermoregulatory disruption. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. A critical role of lateral hypothalamus in context-induced relapse to alcohol seeking after punishment-imposed abstinence.

    Science.gov (United States)

    Marchant, Nathan J; Rabei, Rana; Kaganovsky, Konstantin; Caprioli, Daniele; Bossert, Jennifer M; Bonci, Antonello; Shaham, Yavin

    2014-05-28

    In human alcoholics, abstinence is often self-imposed, despite alcohol availability, because of the negative consequences of excessive use. During abstinence, relapse is often triggered by exposure to contexts associated with alcohol use. We recently developed a rat model that captures some features of this human condition: exposure to the alcohol self-administration environment (context A), after punishment-imposed suppression of alcohol self-administration in a different environment (context B), provoked renewal of alcohol seeking in alcohol-preferring P rats. The mechanisms underlying context-induced renewal of alcohol seeking after punishment-imposed abstinence are unknown. Here, we studied the role of the lateral hypothalamus (LH) and its forebrain projections in this effect. We first determined the effect of context-induced renewal of alcohol seeking on Fos (a neuronal activity marker) expression in LH. We next determined the effect of LH reversible inactivation by GABAA + GABAB receptor agonists (muscimol + baclofen) on this effect. Finally, we determined neuronal activation in brain areas projecting to LH during context-induced renewal tests by measuring double labeling of the retrograde tracer cholera toxin subunit B (CTb; injected in LH) with Fos. Context-induced renewal of alcohol seeking after punishment-imposed abstinence was associated with increased Fos expression in LH. Additionally, renewal was blocked by muscimol + baclofen injections into LH. Finally, double-labeling analysis of CTb + Fos showed that context-induced renewal of alcohol seeking after punishment-imposed abstinence was associated with selective activation of accumbens shell neurons projecting to LH. The results demonstrate an important role of LH in renewal of alcohol seeking after punishment-imposed abstinence and suggest a role of accumbens shell projections to LH in this form of relapse. Copyright © 2014 the authors 0270-6474/14/347447-11$15.00/0.

  17. Excitatory amino acid receptors mediate asymmetry and lateralization in the descending cardiovascular pathways from the dorsomedial hypothalamus.

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Xavier

    Full Text Available The dorsomedial hypothalamus (DMH and lateral/dorsolateral periaqueductal gray (PAG are anatomically and functionally connected. Both the DMH and PAG depend on glutamatergic inputs for activation. We recently reported that removal of GABA-ergic tone in the unilateral DMH produces: asymmetry, that is, a right- (R- sided predominance in cardiac chronotropism, and lateralization, that is, a greater increase in ipsilateral renal sympathetic activity (RSNA. In the current study, we investigated whether excitatory amino acid (EAA receptors in the DMH-PAG pathway contribute to the functional interhemispheric difference. In urethane (1.2 to 1.4 g/kg, i.p. anesthetized rats, we observed that: (i nanoinjections of N-methyl D-aspartate (NMDA 100 pmol/100 nl into the unilateral DMH produced the same right-sided predominance in the control of cardiac chronotropy, (ii nanoinjections of NMDA into the ipsilateral DMH or PAG evoked lateralized RSNA responses, and (iii blockade of EAA receptors in the unilateral DMH attenuated the cardiovascular responses evoked by injection of NMDA into either the R- or left- (L- PAG. In awake rats, nanoinjection of kynurenic acid (1 nmol/100 nL into the L-DMH or R- or L-PAG attenuated the tachycardia evoked by air stress. However, the magnitude of stress-evoked tachycardia was smallest when the EAA receptors of the R-DMH were blocked. We conclude that EAA receptors contribute to the right-sided predominance in cardiac chronotropism. This interhemispheric difference that involves EAA receptors was observed in the DMH but not in the PAG.

  18. Characterization of central and peripheral components of the hypothalamus-pituitary-adrenal axis in the inbred Roman rat strains.

    Science.gov (United States)

    Carrasco, Javier; Márquez, Cristina; Nadal, Roser; Tobeña, Adolfo; Fernández-Teruel, Albert; Armario, Antonio

    2008-05-01

    Several studies performed in outbred Roman high- and low-avoidance lines (RHA and RLA, respectively) have demonstrated that the more anxious line (RLA) is characterized by a higher hypothalamic-pituitary-adrenal (HPA) response to certain stressors than the less anxious one (RHA). However, inconsistent results have also been reported. Taking advantage of the generation of an inbred colony of RLA and RHA rats (RHA-I and RLA-I, respectively), we have characterized in the two strains not only resting and stress levels of peripheral HPA hormones but also central components of the HPA axis, including CRF gene expression in extra-hypothalamic areas. Whereas resting levels of ACTH and corticosterone did not differ between the strains, a greater response to a novel environment was found in RLA-I as compared to RHA-I rats. RLA-I rats showed enhanced CRF gene expression in the paraventricular nucleus (PVN) of the hypothalamus, with normal arginin-vasopressin gene expression in both parvocellular and magnocellular regions of the PVN. This enhanced CRF gene expression is not apparently related to altered negative corticosteroid feedback as similar levels of expression of brain glucorticoid and mineralocorticoid receptors were found in the two rat strains. CRF gene expression tended to be higher in the central amygdala and it was significantly higher in the dorsal region of the bed nucleus of stria terminalis (BNST) of RLA-I rats, while no differences appeared in the ventral region of BNST. Considering the involvement of CRF and the BNST in anxiety and stress-related behavioral alterations, the present data suggest that the CRF system may be a critical neurobiological substrate underlying differences between the two rat strains.

  19. The role of the hypothalamus-pituitary-adrenal/interrenal axis in mediating predator-avoidance trade-offs.

    Science.gov (United States)

    Harris, Breanna N; Carr, James A

    2016-05-01

    Maintaining energy balance and reproducing are important for fitness, yet animals have evolved mechanisms by which the hypothalamus-pituitary-adrenal/interrenal (HPA/HPI) axis can shut these activities off. While HPA/HPI axis inhibition of feeding and reproduction may have evolved as a predator defense, to date there has been no review across taxa of the causal evidence for such a relationship. Here we review the literature on this topic by addressing evidence for three predictions: that exposure to predators decreases reproduction and feeding, that exposure to predators activates the HPA/HPI axis, and that predator-induced activation of the HPA/HPI axis inhibits foraging and reproduction. Weight of evidence indicates that exposure to predator cues inhibits several aspects of foraging and reproduction. While the evidence from fish and mammals supports the hypothesis that predator cues activate the HPA/HPI axis, the existing data in other vertebrate taxa are equivocal. A causal role for the HPA axis in predator-induced suppression of feeding and reproduction has not been demonstrated to date, although many studies report correlative relationships between HPA activity and reproduction and/or feeding. Manipulation of HPA/HPI axis signaling will be required in future studies to demonstrate direct mediation of predator-induced inhibition of feeding and reproduction. Understanding the circuitry linking sensory pathways to their control of the HPA/HPI axis also is needed. Finally, the role that fear and anxiety pathways play in the response of the HPA axis to predator cues is needed to better understand the role that predators have played in shaping anxiety related behaviors in all species, including humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Angiotensin type 1a receptors in the paraventricular nucleus of the hypothalamus protect against diet-induced obesity

    Science.gov (United States)

    de Kloet, Annette D.; Pati, Dipanwita; Wang, Lei; Hiller, Helmut; Sumners, Colin; Frazier, Charles J.; Seeley, Randy J.; Herman, James P.; Woods, Stephen C.; Krause, Eric G.

    2013-01-01

    Obesity is associated with increased levels of angiotensin-II (Ang-II), which activates angiotensin type-1a receptors (AT1a) to influence cardiovascular function and energy homeostasis. To test the hypothesis that specific AT1a within the brain control these processes, we utilized the Cre/lox system to delete AT1a from the paraventricular nucleus of the hypothalamus (PVN) of mice. PVN AT1a deletion did not affect body mass or adiposity when mice were maintained on standard chow. However, maintenance on a high-fat diet revealed a gene by environment interaction whereby mice lacking AT1a in the PVN had increased food intake and decreased energy expenditure that augmented body mass and adiposity relative to controls. Despite this increased adiposity, PVN AT1a deletion reduced systolic blood pressure, suggesting that this receptor population mediates the positive correlation between adiposity and blood pressure. Gene expression studies revealed that PVN AT1a deletion decreased hypothalamic expression of corticotrophin-releasing hormone and oxytocin, neuropeptides known to control food intake and sympathetic nervous system activity. Whole cell patch clamp recordings confirmed that PVN AT1a deletion eliminates responsiveness of PVN parvocellular neurons to Ang-II, and suggest that Ang-II responsiveness is increased in obese wild-type mice. Central inflammation is associated with metabolic and cardiovascular disorders and PVN AT1a deletion reduced indices of hypothalamic inflammation. Collectively, these studies demonstrate that PVN AT1a regulate energy balance during environmental challenges that promote metabolic and cardiovascular pathologies. The implication is that the elevated Ang-II that accompanies obesity serves as a negative feedback signal that activates PVN neurons to alleviate weight gain. PMID:23486953

  1. Angiotensin Type-2 Receptors Influence the Activity of Vasopressin Neurons in the Paraventricular Nucleus of the Hypothalamus in Male Mice.

    Science.gov (United States)

    de Kloet, Annette D; Pitra, Soledad; Wang, Lei; Hiller, Helmut; Pioquinto, David J; Smith, Justin A; Sumners, Colin; Stern, Javier E; Krause, Eric G

    2016-08-01

    It is known that angiotensin-II acts at its type-1 receptor to stimulate vasopressin (AVP) secretion, which may contribute to angiotensin-II-induced hypertension. Less well known is the impact of angiotensin type-2 receptor (AT2R) activation on these processes. Studies conducted in a transgenic AT2R enhanced green fluorescent protein reporter mouse revealed that although AT2R are not themselves localized to AVP neurons within the paraventricular nucleus of the hypothalamus (PVN), they are localized to neurons that extend processes into the PVN. In the present set of studies, we set out to characterize the origin, phenotype, and function of nerve terminals within the PVN that arise from AT2R-enhanced green fluorescent protein-positive neurons and synapse onto AVP neurons. Initial experiments combined genetic and neuroanatomical techniques to determine that γ-aminobutyric acid (GABA)ergic neurons derived from the peri-PVN area containing AT2R make appositions onto AVP neurons within the PVN, thereby positioning AT2R to negatively regulate neuroendocrine secretion. Subsequent patch-clamp electrophysiological experiments revealed that selective activation of AT2R in the peri-PVN area using compound 21 facilitates inhibitory (ie, GABAergic) neurotransmission and leads to reduced activity of AVP neurons within the PVN. Final experiments determined the functional impact of AT2R activation by testing the effects of compound 21 on plasma AVP levels. Collectively, these experiments revealed that AT2R expressing neurons make GABAergic synapses onto AVP neurons that inhibit AVP neuronal activity and suppress baseline systemic AVP levels. These findings have direct implications in the targeting of AT2R for disorders of AVP secretion and also for the alleviation of high blood pressure.

  2. Short-term Assessment of HSCT Effects on the Hypothalamus-Pituitary Axis in Pediatric Thalassemic Patients.

    Science.gov (United States)

    Hamidieh, Amir Ali; Mohseni, Fariba; Behfar, Maryam; Hamidi, Zohreh; Alimoghaddam, Kamran; Pajouhi, Mohamad; Larijani, Bagher; Mohajeri-Tehrani, Mohammad-Reza; Ghavamzadeh, Ardeshir

    2018-02-01

    Beta thalassemia major (BTM) and its treatment by hematopoietic stem cell transplantation (HSCT) may have deleterious effects on the endocrine systems. We assessed endocrine complications of HSCT in pediatric patients for 3 months. In 20 (6 female) pediatric major thalassemic patients (mean age of 10.8 ± 3.9 years old), prolactin, luteinizing hormone (LH), follicle-stimulating hormone (FSH), T4, T3, thyroid-stimulating hormone (TSH), IGF-1, testosterone (in males) or estradiol (in females) were measured as a batch at the Endocrinology and Metabolism Research Center (EMRC) of Tehran University of Medical Sciences (TUMS) laboratories before HSCT and 1 and 3 months afterwards. The cosyntropin test for all and the clonidine test for short stature patients was conducted before HSCT. Before HSCT, delayed puberty and hypogonadotropic hypogonadism was found in 10% and 20% of patients, respectively. GH deficiency, low IGF1 and short stature was found in 25%, 55% and 40% of patients, respectively. Hypocortisolism, hypothyroidism and panhypopituitarism was found in 15%, 10% and 15% of patients, respectively. Prevalence of hypogonadotropic hypogonadism, low IGF1, hypothyroidism and panhypopituitarism was found in 20%, 40%, 10% and 10% of patients after 3 months, respectively (delayed puberty and short stature prevalence do not change after 3 months). HSCT caused lower T3 and estradiol and higher TSH. Corticosteroid users (15) had higher GH and lower T3 and testosterone or estradiol. Ferritin had a significant (negative) correlation with (before) prolactin and a significant correlation with T3 and T4 after HSCT. Age and acute graft-versus-host disease (GVHD) had no significant effect. Considering the small sample size and short duration of the study, it is difficult to reach any conclusion however it seems HSCT does not appear to have an overall positive or negative effect on prevalence of pituitary- hypothalamus axis disorders in pediatric thalassemic patients in 3 months.

  3. GABAergic and cortical and subcortical glutamatergic axon terminals contain CB1 cannabinoid receptors in the ventromedial nucleus of the hypothalamus.

    Directory of Open Access Journals (Sweden)

    Leire Reguero

    Full Text Available BACKGROUND: Type-1 cannabinoid receptors (CB(1R are enriched in the hypothalamus, particularly in the ventromedial hypothalamic nucleus (VMH that participates in homeostatic and behavioral functions including food intake. Although CB(1R activation modulates excitatory and inhibitory synaptic transmission in the brain, CB(1R contribution to the molecular architecture of the excitatory and inhibitory synaptic terminals in the VMH is not known. Therefore, the aim of this study was to investigate the precise subcellular distribution of CB(1R in the VMH to better understand the modulation exerted by the endocannabinoid system on the complex brain circuitries converging into this nucleus. METHODOLOGY/PRINCIPAL FINDINGS: Light and electron microscopy techniques were used to analyze CB(1R distribution in the VMH of CB(1R-WT, CB(1R-KO and conditional mutant mice bearing a selective deletion of CB(1R in cortical glutamatergic (Glu-CB(1R-KO or GABAergic neurons (GABA-CB(1R-KO. At light microscopy, CB(1R immunolabeling was observed in the VMH of CB(1R-WT and Glu-CB(1R-KO animals, being remarkably reduced in GABA-CB(1R-KO mice. In the electron microscope, CB(1R appeared in membranes of both glutamatergic and GABAergic terminals/preterminals. There was no significant difference in the percentage of CB(1R immunopositive profiles and CB(1R density in terminals making asymmetric or symmetric synapses in CB(1R-WT mice. Furthermore, the proportion of CB(1R immunopositive terminals/preterminals in CB(1R-WT and Glu-CB(1R-KO mice was reduced in GABA-CB(1R-KO mutants. CB(1R density was similar in all animal conditions. Finally, the percentage of CB(1R labeled boutons making asymmetric synapses slightly decreased in Glu-CB(1R-KO mutants relative to CB(1R-WT mice, indicating that CB(1R was distributed in cortical and subcortical excitatory synaptic terminals. CONCLUSIONS/SIGNIFICANCE: Our anatomical results support the idea that the VMH is a relevant hub candidate in

  4. Estrous cycle modulation of extracellular serotonin in mediobasal hypothalamus: role of the serotonin transporter and terminal autoreceptors.

    Science.gov (United States)

    Maswood, S; Truitt, W; Hotema, M; Caldarola-Pastuszka, M; Uphouse, L

    1999-06-12

    In vivo microdialysis was used to examine extracellular serotonin (5-HT) in the mediobasal hypothalamus (MBH) of male and female Fischer (CDF-344) rats. Females from the stages of diestrus, proestrus, and estrus were used. Additionally, ovariectomized rats, primed subcutaneously (s.c.) with estradiol benzoate or estradiol benzoate plus progesterone were examined. Extracellular 5-HT in the MBH varied with stage of the estrous cycle and with the light/dark cycle. Proestrous females had the highest microdialysate concentrations of 5-HT during the light portion of the light/dark cycle and lowest concentrations during the dark portion of the cycle. Diestrous females had the highest levels during the dark portion of the cycle, while males and estrous females showed little change between light and dark portions of the cycle. In ovariectomized rats, there was no effect of 2.5 microg or 25 microg estradiol benzoate (s.c.) on extracellular 5-HT; but the addition of 500 microg progesterone, 48 h after estrogen priming, reduced microdialysate 5-HT near the threshold for detection. In intact females and in males, reverse perfusion with 3 microM fluoxetine, a selective serotonin reuptake inhibitor (SSRI), or 2 microM methiothepin, a 5-HT receptor antagonist, increased microdialysate concentrations of 5-HT. Estrous females and males showed nearly a 4-fold increase in microdialysate 5-HT in response to fluoxetine while smaller responses were seen in diestrous and proestrous rats. In contrast, proestrous rats showed the largest response to methiothepin. Estrous females showed a delayed response to methiothepin, but there was no methiothepin-induced increase in extracellular 5-HT in males. These findings are discussed in reference to the suggestion that extracellular 5-HT in the MBH is regulated in a manner that is gender and estrous cycle dependent. The 5-HT terminal autoreceptor may exert a greater role in proestrous females; the serotonin transporter appears to play a more active

  5. Overactivity of Liver-Related Neurons in the Paraventricular Nucleus of the Hypothalamus: Electrophysiological Findings in db/db Mice.

    Science.gov (United States)

    Gao, Hong; Molinas, Adrien J R; Miyata, Kayoko; Qiao, Xin; Zsombok, Andrea

    2017-11-15

    Preautonomic neurons in the paraventricular nucleus (PVN) of the hypothalamus play a large role in the regulation of hepatic functions via the autonomic nervous system. Activation of hepatic sympathetic nerves increases glucose and lipid metabolism and contributes to the elevated hepatic glucose production observed in the type 2 diabetic condition. This augmented sympathetic output could originate from altered activity of liver-related PVN neurons. Remarkably, despite the importance of the brain-liver pathway, the cellular properties of liver-related neurons are not known. In this study, we provide the first evidence of overall activity of liver-related PVN neurons. Liver-related PVN neurons were identified with a retrograde, trans-synaptic, viral tracer in male lean and db/db mice and whole-cell patch-clamp recordings were conducted. In db/db mice, the majority of liver-related PVN neurons fired spontaneously; whereas, in lean mice the majority of liver-related PVN neurons were silent, indicating that liver-related PVN neurons are more active in db/db mice. Persistent, tonic inhibition was identified in liver-related PVN neurons; although, the magnitude of tonic inhibitory control was not different between lean and db/db mice. In addition, our study revealed that the transient receptor potential vanilloid type 1-dependent increase of excitatory neurotransmission was reduced in liver-related PVN neurons of db/db mice. These findings demonstrate plasticity of liver-related PVN neurons and a shift toward excitation in a diabetic mouse model. Our study suggests altered autonomic circuits at the level of the PVN, which can contribute to autonomic dysfunction and dysregulation of neural control of hepatic functions including glucose metabolism. SIGNIFICANCE STATEMENT A growing body of evidence suggests the importance of the autonomic control in the regulation of hepatic metabolism, which plays a major role in the development and progression of type 2 diabetes mellitus

  6. Disinhibiting neurons in the dorsomedial hypothalamus delays the onset of exertional fatigue and exhaustion in rats exercising in a warm environment.

    Science.gov (United States)

    Zaretsky, Dmitry V; Kline, Hannah; Zaretskaia, Maria V; Brown, Mary Beth; Durant, Pamela J; Alves, Nathan J; Rusyniak, Daniel E

    2018-06-15

    Stimulants cause hyperthermia, in part, by increasing heat generation through exercise. Stimulants also delay the onset of fatigue and exhaustion allowing animals to exercise longer. If used in a warm environment, this combination (increased exercise and decreased fatigue) can cause heat stroke. The dorsomedial hypothalamus (DMH) is involved in mediating locomotion from stimulants. Furthermore, inhibiting the DMH decreases locomotion and prevents hyperthermia in rats given stimulants in a warm environment. Whether the DMH is involved in mediating exercise-induced fatigue and exhaustion is not known. We hypothesized that disinhibiting neurons in the dorsomedial hypothalamus (DMH) would delay the onset of fatigue and exhaustion in animals exercising in a warm environment. To test this hypothesis, we used automated video tracking software to measure fatigue and exhaustion. In rats, using wearable mini-pumps, we demonstrated that disinhibiting the DMH, via bicuculline perfusion (5 µM), increased the duration of exercise in a warm environment as compared to control animals (25 ± 3 min vs 15 ± 2 min). Bicuculline-perfused animals also had higher temperatures at exhaustion (41.4 ± 0.2 °C vs 40.0 ± 0.4 °C). Disinhibiting neurons in the DMH also increased the time to fatigue. Our data show that the same region of the hypothalamus that is involved in mediating locomotion to stimulants, is also involved in controlling exhaustion and fatigue. These findings have implications for understanding the cause and treatment of stimulant-induced-hyperthermia. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Insulin-regulated aminopeptidase immunoreactivity is abundantly present in human hypothalamus and posterior pituitary gland, with reduced expression in paraventricular and suprachiasmatic neurons in chronic schizophrenia.

    Science.gov (United States)

    Bernstein, Hans-Gert; Müller, Susan; Dobrowolny, Hendrik; Wolke, Carmen; Lendeckel, Uwe; Bukowska, Alicja; Keilhoff, Gerburg; Becker, Axel; Trübner, Kurt; Steiner, Johann; Bogerts, Bernhard

    2017-08-01

    The vasopressin- and oxytocin-degrading enzyme insulin-regulated aminopeptidase (IRAP) is expressed in various organs including the brain. However, knowledge about its presence in human hypothalamus is fragmentary. Functionally, for a number of reasons (genetic linkage, hydrolysis of oxytocin and vasopressin, its role as angiotensin IV receptor in learning and memory and others) IRAP might play a role in schizophrenia. We studied the regional and cellular localization of IRAP in normal human brain with special emphasis on the hypothalamus and determined numerical densities of IRAP-expressing cells in the paraventricular, supraoptic and suprachiasmatic nuclei in schizophrenia patients and controls. By using immunohistochemistry and Western blot analysis, IRAP was immunolocalized in postmortem human brains. Cell countings were performed to estimate numbers and numerical densities of IRAP immunoreactive hypothalamic neurons in schizophrenia patients and control cases. Shape, size and regional distribution of IRAP-expressing cells, as well the lack of co-localization with the glia marker glutamine synthetase, show that IRAP is expressed in neurons. IRAP immunoreactive cells were observed in the hippocampal formation, cerebral cortex, thalamus, amygdala and, abundantly, hypothalamus. Double labeling experiments (IRAP and oxytocin/neurophysin 1, IRAP with vasopressin/neurophysin 2) revealed that IRAP is present in oxytocinergic and in vasopressinergic neurons. In schizophrenia patients, the numerical density of IRAP-expressing neurons in the paraventricular and the suprachiasmatic nuclei is significantly reduced, which might be associated with the reduction in neurophysin-containing neurons in these nuclei in schizophrenia. The pathophysiological role of lowered hypothalamic IRAP expression in schizophrenia remains to be established.

  8. Adolescent binge-pattern alcohol exposure alters genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve male offspring.

    Science.gov (United States)

    Asimes, AnnaDorothea; Torcaso, Audrey; Pinceti, Elena; Kim, Chun K; Zeleznik-Le, Nancy J; Pak, Toni R

    2017-05-01

    Teenage binge drinking is a major health concern in the United States, with 21% of teenagers reporting binge-pattern drinking behavior in the previous 30 days. Recently, our lab showed that alcohol-naïve offspring of rats exposed to alcohol during adolescence exhibited altered gene expression profiles in the hypothalamus, a brain region involved in stress regulation. We employed Enhanced Reduced Representation Bisulfite Sequencing as an unbiased approach to test the hypothesis that parental exposure to binge-pattern alcohol during adolescence alters DNA methylation profiles in their alcohol-naïve offspring. Wistar rats were administered a repeated binge-ethanol exposure paradigm during early (postnatal day (PND) 37-44) and late (PND 67-74) adolescent development. Animals were mated 24 h after the last ethanol dose and subsequent offspring were produced. Analysis of male PND7 offspring revealed that offspring of alcohol-exposed parents exhibited differential DNA methylation patterns in the hypothalamus. The differentially methylated cytosines (DMCs) were distinct between offspring depending on which parent was exposed to ethanol. Moreover, novel DMCs were observed when both parents were exposed to ethanol and many DMCs from single parent ethanol exposure were not recapitulated with dual parent exposure. We also measured mRNA expression of several differentially methylated genes and some, but not all, showed correlative changes in expression. Importantly, methylation was not a direct predictor of expression levels, underscoring the complexity of transcriptional regulation. Overall, we demonstrate that adolescent binge ethanol exposure causes altered genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Chronic delivery of α-melanocyte-stimulating hormone in rat hypothalamus using albumin-alginate microparticles: effects on food intake and body weight.

    Science.gov (United States)

    Lucas, N; Legrand, R; Breton, J; Déchelotte, P; Edwards-Lévy, F; Fetissov, S O

    2015-04-02

    Chronic delivery of neuropeptides in the brain is a useful experimental approach to study their long-term effects on various biological parameters. In this work, we tested albumin-alginate microparticles, as a potential delivery system, to study if continuous release in the hypothalamus of α-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropeptide, may result in a long-term decrease in food intake and body weight. The 2-week release of α-MSH from peptide-loaded particles was confirmed by an in vitro assay. Then, daily food intake and body weight were studied for 18 days in rats injected bilaterally into the paraventricular hypothalamic nucleus with particles loaded or not with α-MSH. A decrease in body weight gain, persisting throughout the study, was found in rats injected with α-MSH-charged particles as compared with rats receiving non-charged particles and with rats injected with the same dose of α-MSH in solution. Food intake was significantly decreased for 3 days in rats receiving α-MSH-loaded particles and it was not followed by the feeding rebound effect which appears after food restriction. The presence of α-MSH-loaded particles in the hypothalamus was confirmed by immunohistochemistry. In conclusion, our study validates albumin-alginate microparticles as a new carrier system for long-term delivery of neuropeptides in the brain and demonstrates that chronic delivery of α-MSH in the hypothalamus results in a prolonged suppression of food intake and a decrease of body weight gain in rats. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. The role of the lateral hypothalamus and orexin in ingestive behavior: A model for the translation of past experience and sensed deficits into motivated behaviors

    Directory of Open Access Journals (Sweden)

    Seth William Hurley

    2014-11-01

    Full Text Available The hypothalamus has been recognized for its involvement in both maintaining homeostasis and mediating motivated behavior. The present article discusses a region of the hypothalamus known as the lateral hypothalamic area (LHA. It is proposed that brain nuclei within the LHA including the dorsal region of the lateral hypothalamus (LHAd and perifornical area (PeF provide a link between neural systems that regulates homeostasis and those that mediate appetitive motivated behaviors. Functional and immunohistochemical data indicate that the LHA promotes many motivated behaviors including food intake, water intake, salt intake, and sexual behavior. Anatomical tracing experiments demonstrate that the LHA is positioned to receive inputs from brain areas involved in regulating body fluid and energy homeostasis. Regions within the LHA send dense projections to the ventral tegmental area (VTA, providing a pathway for the LHA to influence dopaminergic systems generally recognized to be involved in motivated behaviors and their reinforcement. Furthermore, the LHA contains neurons that synthesize orexin/hypocretin, a neuropeptide that promotes many appetitive motivated behaviors. The LHA also receives inputs from brain areas involved in reward-related learning and orexin neuron activation can become conditioned to environmental stimuli that are associated with rewards. Therefore, it is hypothesized that the LHA integrates signaling from areas that regulate body fluid and energy balance and reward-related learning. In turn, this information is fed into mesolimbic circuitry to influence the performance of motivated behaviors. This hypothesis may foster experiments that will result in an improved understanding of LHA function. An improved understanding of LHA function may aid in treating disorders that are associated with an excess or impairment in the expression of ingestive behavior including obesity, anorexia, impairments in thirst, salt gluttony and salt

  11. The role of the lateral hypothalamus and orexin in ingestive behavior: a model for the translation of past experience and sensed deficits into motivated behaviors.

    Science.gov (United States)

    Hurley, Seth W; Johnson, Alan Kim

    2014-01-01

    The hypothalamus has been recognized for its involvement in both maintaining homeostasis and mediating motivated behaviors. The present article discusses a region of the hypothalamus known as the lateral hypothalamic area (LHA). It is proposed that brain nuclei within the LHA including the dorsal region of the lateral hypothalamus (LHAd) and perifornical area (PeF) provide a link between neural systems that regulate homeostasis and those that mediate appetitive motivated behaviors. Functional and immunohistochemical data indicate that the LHA promotes many motivated behaviors including food intake, water intake, salt intake, and sexual behavior. Anatomical tracing experiments demonstrate that the LHA is positioned to receive inputs from brain areas involved in regulating body fluid and energy homeostasis. Regions within the LHA send dense projections to the ventral tegmental area (VTA), providing a pathway for the LHA to influence dopaminergic systems generally recognized to be involved in motivated behaviors and their reinforcement. Furthermore, the LHA contains neurons that synthesize orexin/hypocretin, a neuropeptide that promotes many appetitive motivated behaviors. The LHA also receives inputs from brain areas involved in reward-related learning and orexin neuron activation can become conditioned to environmental stimuli that are associated with rewards. Therefore, it is hypothesized that the LHA integrates signaling from areas that regulate body fluid and energy balance and reward-related learning. In turn, this information is "fed into" mesolimbic circuitry to influence the performance of motivated behaviors. This hypothesis may foster experiments that will result in an improved understanding of LHA function. An improved understanding of LHA function may aid in treating disorders that are associated with an excess or impairment in the expression of ingestive behavior including obesity, anorexia, impairments in thirst, salt gluttony, and salt deficiency.

  12. Molecular cloning and expression analysis of the synaptotagmin-1 gene in the hypothalamus and pituitary of Huoyan goose during different stages of the egg-laying cycle.

    Science.gov (United States)

    Luan, Xinhong; Luo, Lina; Cao, Zhongzan; Li, Rongrong; Liu, Dawei; Gao, Ming; Liu, Mei; Wang, Laiyou

    2014-08-21

    Synaptotagmin-1 (Syt1) is an abundant, evolutionarily conserved integral membrane protein that plays essential roles in neurotransmitter release and hormone secretion. Neurotransmitters secreted by hypothalamic neurons can alter GnRH (gonadotropin-releasing hormones) neuronal activity by binding to and activating specific membrane receptors in pituitary cells and, in turn, control the release of gonadotropin hormones from the pituitary gland. To reveal the influence of Syt1 on the process of goose egg-laying, we cloned and characterized the cDNA of goose Syt1 originating from hypothalamus and pituitary tissues of Huoyan goose and investigated the mRNA expression profiles during different stages of the egg-laying cycle. Hypothalamus and pituitary tissues were obtained from 36 Huoyan geese in the pre-laying period, early laying period, peak-laying period, and ceased period. The cDNA sequences of goose Syt1 were cloned and characterized from Huoyan goose tissues using 5'-RACE and 3'-RACE methods. Multiple alignments and phylogenetic analyses of the deduced Syt1 amino acid sequence were conducted using bioinformatics tools. The expression profiles of the Syt1 mRNA in the hypothalamus and pituitary during pre-laying, early laying, peak-laying and ceased period were examined using real-time PCR (qRT-PCR). The cDNA of Syt1 consisted of a 274 bp 5' UTR, a 1266 bp open reading frame (ORF) encoding 421 amino acids, and a 519 bp 3' UTR. The deduced amino acid sequence of goose Syt1 is highly conserved with the sequence from other species, especially with birds (more than 98%), and contains two protein kinase C2 conserved regions (C2 domain) from amino acids residue 157 to 259 and 288 to 402. The results of qRT-PCR demonstrated that the expression of Syt1 mRNA increased from the pre-laying period to the peak-laying period, reached its peak in the peak-laying period, and then decreased in the ceased period. To the best of our knowledge, this study is the first to obtain full

  13. Locked Nucleic Acid-Based In Situ Hybridization Reveals miR-7a as a Hypothalamus-Enriched MicroRNA with a Distinct Expression Pattern

    DEFF Research Database (Denmark)

    Herzer, S; Silahtaroglu, A; Meister, B

    2012-01-01

    , a part of the brain that controls vital bodily functions, we employed locked nucleic acid (LNA) - fluorescent in situ hybridization (FISH). The expression pattern of the mature miRNAs miR-7a, miR-7b, miR-137 and miR-153 in mouse brain tissue sections was investigated. Whereas all studied miRNAs were......R-7a expression was particularly prominent in the subfornical organ, suprachiasmatic, paraventricular, periventricular, supraoptic, dorsomedial and arcuate nuclei. Identical expression patterns for miR-7a was seen in mouse and rat hypothalamus. By combining LNA-FISH with immunohistochemistry...

  14. Effects of electric stimulation of the hunger center in the lateral hypothalamus on slow electric activity and spike activity of fundal and antral stomach muscles in rabbits under conditions of hunger and satiation.

    Science.gov (United States)

    Kromin, A A; Zenina, O Yu

    2013-09-01

    In chronic experiments on rabbits, the effect of electric stimulation of the hunger center in the lateral hypothalamus on myoelectric activity of the fundal and antral parts of the stomach was studied under conditions of hunger and satiation in the absence of food. Stimulation of the lateral hypothalamus in rabbits subjected to 24-h food deprivation and in previously fed rabbits produced incessant seeking behavior, which was followed by reorganization of the structure of temporal organization of slow wave electric activity of muscles of the stomach body and antrum specific for hungry and satiated animals. Increased hunger motivation during electric stimulation of the lateral hypothalamus manifested in the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles in rabbits subjected to 24-h food deprivation in the replacement of bimodal distribution of slow wave periods to a trimodal type typical of 2-day deprivation, while transition from satiation to hunger caused by electric stimulation of the lateral hypothalamus was associated with a shift from monomodal distributions of slow wave periods to a bimodal type typical of 24-h deprivation. Reorganization of the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles during electric stimulation of the lateral hypothalamus was determined by descending inhibitory influences of food motivational excitation on activity of the myogenic pacemaker of the lesser curvature of the stomach.

  15. Heat loss may explain bill size differences between birds occupying different habitats.

    Directory of Open Access Journals (Sweden)

    Russell Greenberg

    Full Text Available Research on variation in bill morphology has focused on the role of diet. Bills have other functions, however, including a role in heat and water balance. The role of the bill in heat loss may be particularly important in birds where water is limiting. Song sparrows localized in coastal dunes and salt marsh edge (Melospiza melodia atlantica are similar in size to, but have bills with a 17% greater surface area than, those that live in mesic habitats (M. m. melodia, a pattern shared with other coastal sparrows. We tested the hypotheses that sparrows can use their bills to dissipate "dry" heat, and that heat loss from the bill is higher in M. m. atlantica than M. m. melodia, which would indicate a role of heat loss and water conservation in selection for bill size.Bill, tarsus, and body surface temperatures were measured using thermal imaging of sparrows exposed to temperatures from 15-37°C and combined with surface area and physical modeling to estimate the contribution of each body part to total heat loss. Song sparrow bills averaged 5-10°C hotter than ambient. The bill of M. m atlantica dissipated up to 33% more heat and 38% greater proportion of total heat than that of M. m. melodia. This could potentially reduce water loss requirements by approximately 7.7%.This >30% higher heat loss in the bill of M. m. atlantica is independent of evaporative water loss and thus could play an important role in the water balance of sparrows occupying the hot and exposed dune/salt marsh environments during the summer. Heat loss capacity and water conservation could play an important role in the selection for bill size differences between bird populations and should be considered along with trophic adaptations when studying variation in bill size.

  16. Relationship of angiotensin ase and vasopressin ase enzymatic activities between hypothalamus and plasma in an obese rat model by high-fat diet

    International Nuclear Information System (INIS)

    Domínguez-Vías, G.; Segarra Robles, A.B.; Ramirez-Sánchez, M.; Jiménez Serrano, S.

    2016-01-01

    High-fat diets are associated with the development of hypertension. However, a high intake of monounsaturated fat has been proposed to be a dietary factor that can decrease the incidence of hypertension. The renin-angiotensin system (RAS) and vasopressin interact to regulate blood pressure at central and peripheral level. In this study, we investigated the effect of different degrees of dietary fatty acid saturation in the control of RAS and vasopressin on brain-blood. To improve our understanding of their interaction and their relationship, we analyzed angiotensin- and vasopressin-metabolizing activities in hypothalamus and plasma, collected from Wistar rats fed during 24 weeks with diets enriched with extra virgin olive oil (monounsaturated fat) or butter plus cholesterol (saturated fat) compared with a standard diet. As results no angiotensinase and vasopressinase activities were found in hypothalamus and plasma, however significant correlations between enzymatic activities in both regions were noticed. They indicated that our results do not support the beneficial influence of extra virgin olive oil on central and systemic level to regulate blood pressure. Therefore, the substrates hydrolyzed by these activities as well as their functions may be similarly affected and suggest that these studies should be continued because of beneficial of Mediterranean diet, found previously in different works, which may also be an effective tool in the treatment of hypertension.

  17. Angiotensin II (AngII) induces the expression of suppressor of cytokine signaling (SOCS)-3 in rat hypothalamus - a mechanism for desensitization of AngII signaling.

    Science.gov (United States)

    Torsoni, Márcio A; Carvalheira, José B; Calegari, Vivian C; Bezerra, Rosangela M N; Saad, Mário J A; Gontijo, José A; Velloso, Lício A

    2004-04-01

    Angiotensin II exerts a potent dypsogenic stimulus on the hypothalamus, which contributes to its centrally mediated participation in the control of water balance and blood pressure. Repetitive intracerebroventricular (i.c.v.) injections of angiotensin II lead to a loss of effect characterized as physiological desensitization to the peptide's action. In the present study, we demonstrate that angiotensin II induces the expression of suppressor of cytokine signaling (SOCS)-3 via angiotensin receptor 1 (AT1) and JAK-2, mostly located at the median preoptic lateral and anterodorsal preoptic nuclei. SOCS-3 produces an inhibitory effect upon the signal transduction pathways of several cytokines and hormones that employ members of the JAK/STAT families as intermediaries. The partial inhibition of SOCS-3 translation by antisense oligonucleotide was sufficient to significantly reduce the refractoriness of repetitive i.c.v. angiotensin II injections, as evaluated by water ingestion. Thus, by acting through AT1 on the hypothalamus, angiotensin II induces the expression of SOCS-3 which, in turn, blocks further activation of the pathway and consequently leads to desensitization to angiotensin II stimuli concerning its dypsogenic effect.

  18. An optimized method for measuring hypocretin-1 peptide in the mouse brain reveals differential circadian regulation of hypocretin-1 levels rostral and caudal to the hypothalamus.

    Science.gov (United States)

    Justinussen, J L; Holm, A; Kornum, B R

    2015-12-03

    The hypocretin/orexin system regulates, among other things, sleep and energy homeostasis. The system is likely regulated by both homeostatic and circadian mechanisms. Little is known about local differences in the regulation of hypocretin activity. The aim of this study was to establish an optimized peptide quantification method for hypocretin-1 extracted from different mouse brain areas and use this method for investigating circadian fluctuations of hypocretin-1 levels in these areas. The results show that hypocretin-1 peptide can be extracted from small pieces of intact tissue, with sufficient yield for measurements in a standard radioimmunoassay. Utilizing the optimized method, it was found that prepro-hypocretin mRNA and peptide show circadian fluctuations in the mouse brain. This study further demonstrates that the hypocretin-1 peptide level in the frontal brain peaks during dark as does prepro-hypocretin mRNA in the hypothalamus. However, in midbrain and brainstem tissue caudal to the hypothalamus, there was less circadian fluctuation and a tendency for higher levels during the light phase. These data suggest that regulation of the hypocretin system differs between brain areas. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Serotonin transporter binding in the hypothalamus correlates negatively with tonic heat pain ratings in healthy subjects: A [11C]DASB PET study

    DEFF Research Database (Denmark)

    Kupers, Ron; Frokjaer, Vibe G.; Erritzoe, David

    2010-01-01

    There is a large body of evidence that the serotonergic system plays an important role in the transmission and regulation of pain. Here we used positron emission tomography (PET) with the serotonin transporter (SERT) tracer [11C]DASB to study the relationship between SERT binding in the brain and....... The negative correlation between SERT binding in the hypothalamus and insula with tonic pain ratings suggests a possible serotonergic control of the role of these areas in the modulation or in the affective appreciation of pain.......) tonic noxious heat stimulus. PET data were analyzed using both volume-of-interest (VOI) and voxel-based approaches. VOI analysis revealed a significant negative correlation between tonic pain ratings and SERT binding in the hypothalamus (r = −0.59; p = 0.008), a finding confirmed by the parametric...... analysis. The parametric analysis also revealed a negative correlation between tonic pain ratings and SERT binding in the right anterior insula. Measures of regional SERT binding did not correlate with pain threshold or with responses to short phasic suprathreshold phasic heat stimuli. Finally, the VOI...

  20. Membrane-initiated non-genomic signaling by estrogens in the hypothalamus: cross-talk with glucocorticoids with implications for behavior

    Directory of Open Access Journals (Sweden)

    Jennifer eRainville

    2015-02-01

    Full Text Available The estrogen receptor (ER and glucocorticoid receptor (GR are members of the nuclear receptor superfamily that can signal using both non-genomic and genomic transcriptional modes. Though genomic modes of signaling have been well characterized and several behaviors attributed to this signaling mechanism, the physiological significance of non-genomic modes of signaling has not been well understood. This has partly been due to the controversy regarding the identity of the membrane ER (mER or membrane GR (mGR that may mediate rapid, non-genomic signaling and the downstream signaling cascades that may result as a consequence of steroid ligands binding the mER or the mGR. Both estrogens and glucocorticoids exert a number of actions on the hypothalamus, including feedback. This review focuses on the various candidates for the mER or mGR in the hypothalamus and the contribution of non-genomic signaling to classical hypothalamically-driven behaviors and changes in neuronal morphology. It also attempts to categorize some of the possible functions of non-genomic signaling at both the cellular level and at the organismal level that are relevant for behavior, including some behaviors that are regulated by both estrogens and glucocorticoids in a potentially synergistic manner. Lastly, it attempts to show that steroid signaling via non-genomic modes may provide the organism with rapid behavioral responses to stimuli.

  1. Relationship of angiotensinase and vasopressinase enzymatic activities between hypothalamus and plasma in an obese rat model by high-fat diet

    Directory of Open Access Journals (Sweden)

    Germán Domínguez-Vías

    2016-07-01

    Full Text Available High-fat diets are associated with the development of hypertension. However, a high intake of monounsaturated fat has been proposed to be a dietary factor that can decrease the incidence of hypertension. The renin-angiotensin system (RAS and vasopressin interact to regulate blood pressure at central and peripheral level. In this study, we investigated the effect of different degrees of dietary fatty acid saturation in the control of RAS and vasopressin on brain-blood. To improve our understanding of their interaction and their relationship, we analyzed angiotensin- and vasopressin-metabolizing activities in hypothalamus and plasma, collected from Wistar rats fed during 24 weeks with diets enriched with extra virgin olive oil (monounsaturated fat or butter plus cholesterol (saturated fat compared with a standard diet. As results no angiotensinase and vasopressinase activities were found in hypothalamus and plasma, however significant correlations between enzymatic activities in both regions were noticed. They indicated that our results do not support the beneficial influence of extra virgin olive oil on central and systemic level to regulate blood pressure. Therefore, the substrates hydrolyzed by these activities as well as their functions may be similarly affected and suggest that these studies should be continued because of beneficial of Mediterranean diet, found previously in different works, which may also be an effective tool in the treatment of hypertension.

  2. Distinct modulatory effects of satiety and sibutramine on brain responses to food images in humans: a double dissociation across hypothalamus, amygdala and ventral striatum

    Science.gov (United States)

    Fletcher, PC; Napolitano, A; Skeggs, A; Miller, SR; Delafont, B; Cambridge, VC; de Wit, S; Nathan, PJ; Brooke, A; O’Rahilly, S; Farooqi, IS; Bullmore, ET

    2012-01-01

    We used fMRI to explore brain responses to food images in overweight humans, examining independently the impact of a pre-scan meal (“satiety”) and the anti-obesity drug sibutramine, a serotonin and noradrenaline reuptake inhibitor. We identified significantly different responses to these manipulations in amygdala, hypothalamus and ventral striatum. Each region was specifically responsive to high calorie compared to low calorie food images. However, the ventral striatal response was attenuated by satiety (but unaffected by sibutramine) while the hypothalamic and amygdala responses were attenuated by drug but unaffected by satiety. Direct assessment of regional interactions confirmed the significance of this double dissociation. We explored the regional responses in greater detail by determining whether they were predictive of eating behaviour and weight change. We observed that across the different regions, the individual-specific magnitude of drug- and satiety-induced modulation was associated with both variables: the sibutramine-induced modulation of the hypothalamic response was correlated with the drug’s impact on both weight and subsequently-measured ad libitum eating. The satiety-induced modulation of striatal response also correlated with subsequent ad lib eating. These results suggest that hypothalamus and amygdala have roles in the control of food intake that are distinct from those of ventral striatum. Furthermore, they support a regionally-specific effect on brain function through which sibutramine exerts its clinical effect. PMID:20980590

  3. Some morphometric and radio-isotopic studies of the early post-natal development of the hypothalamus of the normal and androgenized rat

    International Nuclear Information System (INIS)

    Martyn, C.N.

    1979-01-01

    Female rats given a single injection of testosterone propionate (TP) in the first few days of post-natal life exhibit post-pubertally, persistent vaginal oestrous, sterility, disordered secretion of gonadotrophins and modified patterns of sexual behaviour. The effects of TP on the incorporation of 14 C-uridine in the CNS of 5 and 61/2 day old litter mate triads consisting of male, female and TP treated female rats were investigated. Low resolution autoradiographs of serial sections of brain were prepared and analysed. A sexual dimorphism in cell nuclear size was found in the suprachiasmatic, arcuate and paraventricular nuclei of the hypothalamus. TP treatment resulted in an increase in nuclear size towards the male pattern in the latter two areas. A decrease in cell nuclear size was found in the ventromedial and suprachiasmatic nuclei. Neither sex differences nor changes following TP injection were detected in rate of incorporation of 14 C-uridine in any areas of the brain, although a significant (p<0.02) reduction in uridine incorporation in the adrenal of the female animal 24 hours after TP injection was demonstrated. The results suggested an immediate direct action of TP on the hypothalamus and peripheral tissues of the neonatal rat. (author)

  4. Relationship of angiotensin ase and vasopressin ase enzymatic activities between hypothalamus and plasma in an obese rat model by high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Domínguez-Vías, G.; Segarra Robles, A.B.; Ramirez-Sánchez, M.; Jiménez Serrano, S.

    2016-07-01

    High-fat diets are associated with the development of hypertension. However, a high intake of monounsaturated fat has been proposed to be a dietary factor that can decrease the incidence of hypertension. The renin-angiotensin system (RAS) and vasopressin interact to regulate blood pressure at central and peripheral level. In this study, we investigated the effect of different degrees of dietary fatty acid saturation in the control of RAS and vasopressin on brain-blood. To improve our understanding of their interaction and their relationship, we analyzed angiotensin- and vasopressin-metabolizing activities in hypothalamus and plasma, collected from Wistar rats fed during 24 weeks with diets enriched with extra virgin olive oil (monounsaturated fat) or butter plus cholesterol (saturated fat) compared with a standard diet. As results no angiotensinase and vasopressinase activities were found in hypothalamus and plasma, however significant correlations between enzymatic activities in both regions were noticed. They indicated that our results do not support the beneficial influence of extra virgin olive oil on central and systemic level to regulate blood pressure. Therefore, the substrates hydrolyzed by these activities as well as their functions may be similarly affected and suggest that these studies should be continued because of beneficial of Mediterranean diet, found previously in different works, which may also be an effective tool in the treatment of hypertension.

  5. Ccl22/MDC, is a prostaglandin dependent pyrogen, acting in the anterior hypothalamus to induce hyperthermia via activation of brown adipose tissue.

    Science.gov (United States)

    Osborn, Olivia; Sanchez-Alavez, Manuel; Dubins, Jeffrey S; Gonzalez, Alejandro Sanchez; Morrison, Brad; Hadcock, John R; Bartfai, Tamas

    2011-03-01

    CC Chemokine ligand 22 (Ccl22) is a selective, high affinity ligand at the CC chemokine receptor 4 (Ccr4). We have identified cDNAs encoding both ligand and receptor of the Ccl22-Ccr4 pair in cDNA libraries of the anterior hypothalamus/pre-optic area (AH/POA) by PCR. The AH/POA is the key brain region where endogenous pyrogens have been shown to act on warm sensitive neurons to affect thermogenesis in brown adipose tissue (BAT) and other thermogenically responsive tissues. We show that functional Ccr4 receptors are present in the AH/POA neurons as injection of Ccl22 into the POA but not to other hypothalamic nuclei induces an increase in core body temperature as measured by radiotelemetry. Indomethacin (5 mg/kg s.c) pre-treatment markedly reduced the hyperthermia evoked by POA injection of Ccl22 (10 ng/0.5 ul) and thus suggests that this hyperthermia is mediated through cyclooxygenase activation and thus likely through the formation and action of the pyrogen prostaglandin E2. The temperature elevation involves a decrease in the respiratory exchange ratio and increased activation of the brown adipose tissue as demonstrated by ¹⁸F-FDG-PET imaging. We describe a novel role to the ligand Ccl22 and its receptor Ccr4 in the anterior hypothalamus in temperature regulation that depends on the synthesis of the endogenous pyrogen, prostaglandin E2. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Some effects of prostaglandins E1 and E2 and of endotoxin injected into the hypothalamus of young chicks: dissociation between endotoxin fever and the effects of prostaglandins.

    Science.gov (United States)

    Artunkal, A A; Marley, E; Stephenson, J D

    1977-09-01

    Prostaglandins E1 and E2 elevated body temperature of young chicks when injected into the hypothalamus at thermoneutrality (31 degrees C). In contrast, they lowered body temperature when so injected below thermoneutrality (16degreesC): the relation of the fall in body temperature to increased heat loss and decreased heat production was examined. 2 The above effects below thermoneutrality were potentiated by pretreatment with inhibitors of prostaglandin synthetase and possible reasons for this potentation are given. 3 The O-somatic antigen of Shigella dysenteriae consistently evoked hyperthermia when injected into the hypothalamus, irrespective of whether the chicks were within or below thermoneutrality. 4 Pretreatment with prostaglandin synthetase inhibitors failed to prevent the onset of endotoxin fever; however, duration of the fever, induced by intrahypothalamic injection of the O-somatic antigen of Shigella dysenteriae was reduced. 5 The intrahypothalamic injection, belwo thermoneutrality of prostaglandins E1, E2, noradrenaline, 5-hydroxytryptamine or carbachol reversed endotoxin fever, inducing even substantial falls in body temperature. 6 While the results cast some doubts on the role of prostaglandins of the E series as mediators of endotoxin fever in chicks, they cannot be eliminated as mediators until the significance of the reduction in duration of the pyrexic response by indomethacin and 5,8,11,14-eicosatetraynoic acid, and the degree of synthesis inhibition attained, are known.

  7. Octylphenol (OP) alters the expression of members of the amyloid protein family in the hypothalamus of the snapping turtle, Chelydra serpentina serpentina.

    Science.gov (United States)

    Trudeau, Vance L; Chiu, Suzanne; Kennedy, Sean W; Brooks, Ronald J

    2002-03-01

    The gonadal estrogen estradiol-17beta (E(2)) is important for developing and regulating hypothalamic function and many aspects of reproduction in vertebrates. Pollutants such as octylphenol (OP) that mimic the actions of estrogens are therefore candidate endocrine-disrupting chemicals. We used a differential display strategy (RNA-arbitrarily primed polymerase chain reaction) to isolate partial cDNA sequences of neurotransmitter, developmental, and disease-related genes that may be regulated by OP or E(2) in the snapping turtle Chelydra serpentina serpentina hypothalamus. Hatchling and year-old male snapping turtles were exposed to a 10 ng/mL nominal concentration of waterborne OP or E(2) for 17 days. One transcript [421 base pairs (bp)] regulated by OP and E(2) was 93% identical to human APLP-2. APLP-2 and the amyloid precursor protein (APP) regulate neuronal differentiation and are also implicated in the genesis of Alzheimer disease in humans. Northern blot analysis determined that the turtle hypothalamus contains a single APLP-2 transcript of 3.75 kb in length. Exposure to OP upregulated hypothalamic APLP-2 mRNA levels 2-fold (p < 0.05) in month-old and yearling turtles. E(2) did not affect APLP-2 mRNA levels in hatchlings but stimulated a 2-fold increase (p < 0.05) in APLP-2 mRNA levels in yearling males. The protein beta-amyloid, a selectively processed peptide derived from APP, is also involved in neuronal differentiation, and accumulation of this neurotoxic peptide causes neuronal degeneration in the brains of patients with Alzheimer disease. Therefore, we also sought to determine the effects of estrogens on the expression of beta-amyloid. Using homology cloning based on known sequences, we isolated a cDNA fragment (474 bp) from turtle brain with 88% identity to human APP. Northern blot analysis determined that a single 3.5-kb transcript was expressed in the turtle hypothalamus. Waterborne OP also increased the expression of hypothalamic APP after 35 days of

  8. Oral delivery of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3, synthetic peptide leptin mimetics: Immunofluorescent localization in the mouse hypothalamus.

    Science.gov (United States)

    Anderson, Brian M; Jacobson, Lauren; Novakovic, Zachary M; Grasso, Patricia

    2017-06-01

    This study describes the localization of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3, synthetic peptide leptin mimetics, in the hypothalamus of Swiss Webster and C57BL/6J wild-type mice, leptin-deficient ob/ob mice, and leptin-resistant diet-induced obese (DIO) mice. The mice were given [D-Leu-4]-OB3 or MA-[D-Leu-4]-OB3 in 0.3% dodecyl maltoside by oral gavage. Once peak serum concentrations were reached, the mice received a lethal dose of pentobarbital and were subjected to intracardiac perfusion fixation. The brains were excised, post-fixed in paraformaldehyde, and cryo-protected in sucrose. Free-floating frozen coronal sections were cut at 25-µm and processed for imaging by immunofluorescence microscopy. In all four strains of mice, dense staining was concentrated in the area of the median eminence, at the base and/or along the inner wall of the third ventricle, and in the brain parenchyma at the level of the arcuate nucleus. These results indicate that [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 cross the blood-brain barrier and concentrate in an area of the hypothalamus known to regulate energy balance and glucose homeostasis. Most noteworthy is the localization of [D-Leu-4]-OB3 immunoreactivity within the hypothalamus of DIO mice via a conduit that is closed to leptin in this rodent model, and in most cases of human obesity. Together with our previous studies describing the effects of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 on energy balance, glucose regulation, and signal transduction pathway activation, these findings are consistent with a central mechanism of action for these synthetic peptide leptin mimetics, and suggest their potential usefulness in the management of leptin-resistant obesity and type 2 diabetes in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Beta-endorphin in the plasma: Radioimmunological determination and findings in patients showing disorders at the level of the hypothalamus-pituitary-adrenal axis

    International Nuclear Information System (INIS)

    Hoerl, A.

    1985-01-01

    Beta-endorphin and adrenocorticotropic hormone (ACTH) were determined simultaneously in the plasma using a radioimmunological procedure. It was found that in patients showing imbalances within the hypothalamus-pituitary-adrenal system (Addison's disease, Cushing's Syndrome, Nelson's Syndrome) as well as elevated levels of beta-endorphin the values of ACHT invariably were also increased. The behaviour of the plasma levels of beta-endorphin and ACTH before, during and subsequent to hypophyseal surgery gives evidence to prove the close link between the two hormones. Tests performed to examine the function of the corticotropin releasing factor (CRF) both in healthy volunteers and patients suffering from endocrinological disorders likewise pointed to a parallel behaviour pattern of the two hormones in their responding or failure to respond to stimulation. The fact that a significant correlation was established between all measured values of beta-endorphin and ACTH is further evidence in confirmation of a parallel release of these two hormones in man. (TRV) [de

  10. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) syndrome may have a hypothalamus-periaqueductal gray localization.

    Science.gov (United States)

    Chow, Cristelle; Fortier, Marielle Valerie; Das, Lena; Menon, Anuradha P; Vasanwala, Rashida; Lam, Joyce C M; Ng, Zhi Min; Ling, Simon Robert; Chan, Derrick W S; Choong, Chew Thye; Liew, Wendy K M; Thomas, Terrence

    2015-05-01

    Anatomical localization of the rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) syndrome has proved elusive. Most patients had neuroimaging after cardiorespiratory collapse, revealing a range of ischemic lesions. A 15-year-old obese boy with an acute febrile encephalopathy had hypoventilation, autonomic dysfunction, visual hallucinations, hyperekplexia, and disordered body temperature, and saltwater regulation. These features describe the ROHHAD syndrome. Cerebrospinal fluid analysis showed pleocytosis, elevated neopterins, and oligoclonal bands, and serology for systemic and antineuronal antibodies was negative. He improved after receiving intravenous steroids, immunoglobulins, and long-term mycophenolate. Screening for neural crest tumors was negative. Magnetic resonance imaging of the brain early in his illness showed focal inflammation in the periaqueductal gray matter and hypothalamus. This unique localization explains almost all symptoms of this rare autoimmune encephalitis. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Panhypopituitarism due to metastases to the hypothalamus and the pituitary resulting from primary breast cancer: a case report and review of the literature.

    Science.gov (United States)

    Peppa, Melpomeni; Papaxoinis, Georgios; Xiros, Nikolaos; Raptis, Sotirios A; Economopoulos, Theofanis; Hadjidakis, Dimitrios

    2009-11-01

    Pituitary metastasis occurs rarely in cancer patients and often remains undiagnosed. However, early detection and appropriate treatment can improve the patient's quality of life and possibly prolong survival. Herein, we describe the case of a 52-year-old woman with panhypopituitarism caused by metastases to the hypothalamus and pituitary from primary breast cancer. She had a 5-year history of breast cancer with metastases to the bones 1.5 years after initial diagnosis and mastectomy. She presented with severe headaches, generalized fatigue, dizziness, hypotension, difficulties with balance and coordination, polyuria, and polydipsia. Laboratory work-up revealed panhypopituitarism (central diabetes insipidus; hypothyroidism; and low prolactin, gonadotrophin, and adrenocorticotropic hormone levels), and magnetic resonance imaging confirmed the pituitary and hypothalamic involvement. She received hormone replacement therapy, radiation therapy of the sella turcica and suprasellar lesion, and chemotherapy, with significant improvement of her clinical status, but she died 15 months later.

  12. Study on changes of hypothalamus-pituitary-target axis hormones in patients with insomnia of fire-symdrome due to the stagnation

    International Nuclear Information System (INIS)

    Chen Jianfei; Yan Songqin

    2007-01-01

    Objective: To study the changes of hypothalamus-pituitary-target axis hormones in patients with insomnia of fire-symdrom due to the stagnation of liver-qi. Methods: Serum thyrotropin-releasing hormone (TRH), thyroid stimulating hormone (TSH), growth hormone (GH), free thyroxine (FT 4 ), cortisol levels were measured with immunoradioassay (IMRA) and radioimmunoassay (RIA) in 30 patients with this type of insomnia and 30 controls. Results: The serum TSH levels were significantly lower and serum TRH, GH, cortisol FT 4 levels were significantly higher in the patients than those in controls (P<0.05 or P<0.01). Conclusion: This insomnia syndrome was closely related to the dysfunction of mpothalamus-pituitary-thyroid and adrenal axis. (authors)

  13. Adaptation of the hypothalamus-pituitary-adrenal axis to daily repeated stress does not follow the rules of habituation: A new perspective.

    Science.gov (United States)

    Rabasa, Cristina; Gagliano, Humberto; Pastor-Ciurana, Jordi; Fuentes, Silvia; Belda, Xavier; Nadal, Roser; Armario, Antonio

    2015-09-01

    Repeated exposure to a wide range of stressors differing in nature and intensity results in a reduced response of prototypical stress markers (i.e. plasma levels of ACTH and adrenaline) after an acute challenge with the same (homotypic) stressor. This reduction has been considered to be a habituation-like phenomenon. However, direct experimental evidence for this assumption is scarce. In the present work we demonstrate in adult male rats that adaptation of the hypothalamus-pituitary-adrenal (HPA) axis to repeated stress does not follow some of the critical rules of habituation. Briefly, adaptation was stronger and faster with more severe stressors, maximally observed even with a single exposure to severe stressors, extremely long-lasting, negatively related to the interval between the exposures and positively related to the length of daily exposure. We offer a new theoretical view to explain adaptation to daily repeated stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    Energy Technology Data Exchange (ETDEWEB)

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F. [Univ. of California, San Francisco, CA (United States)

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing to the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.

  15. The effects of subchronic acrylamide exposure on gene expression, neurochemistry, hormones, and histopathology in the hypothalamus-pituitary-thyroid axis of male Fischer 344 rats

    International Nuclear Information System (INIS)

    Bowyer, J.F.; Latendresse, J.R.; Delongchamp, R.R.; Muskhelishvili, L.; Warbritton, A.R.; Thomas, M.; Tareke, E.; McDaniel, L.P.; Doerge, D.R.

    2008-01-01

    Acrylamide (AA) is an important industrial chemical that is neurotoxic in rodents and humans and carcinogenic in rodents. The observation of cancer in endocrine-responsive tissues in Fischer 344 rats has prompted hypotheses of hormonal dysregulation, as opposed to DNA damage, as the mechanism for tumor induction by AA. The current investigation examines possible evidence for disruption of the hypothalamic-pituitary-thyroid axis from 14 days of repeated exposure of male Fischer 344 rats to doses of AA that range from one that is carcinogenic after lifetime exposure (2.5 mg/kg/d), an intermediate dose (10 mg/kg/d), and a high dose (50 mg/kg/d) that is neurotoxic for this exposure time. The endpoints selected include: serum levels of thyroid and pituitary hormones; target tissue expression of genes involved in hormone synthesis, release, and receptors; neurotransmitters in the CNS that affect hormone homeostasis; and histopathological evaluation of target tissues. These studies showed virtually no evidence for systematic alteration of the hypothalamic-pituitary-thyroid axis and do not support hormone dysregulation as a plausible mechanism for AA-induced thyroid cancer in the Fischer 344 rat. Specifically, there were no significant changes in: 1) mRNA levels in hypothalamus or pituitary for TRH, TSH, thyroid hormone receptor α and β, as well 10 other hormones or releasing factors; 2) mRNA levels in thyroid for thyroglobulin, thyroid peroxidase, sodium iodide symporter, or type I deiodinases; 3) serum TSH or T3 levels (T4 was decreased at high dose only); 4) dopaminergic tone in the hypothalamus and pituitary or importantly 5) increased cell proliferation (Mki67 mRNA and Ki-67 protein levels were not increased) in thyroid or pituitary. These negative findings are consistent with a genotoxic mechanism of AA carcinogenicity based on metabolism to glycidamide and DNA adduct formation. Clarification of this mechanistic dichotomy may be useful in human cancer risk

  16. Alarin-induced antidepressant-like effects and their relationship with hypothalamus-pituitary-adrenal axis activity and brain derived neurotrophic factor levels in mice.

    Science.gov (United States)

    Wang, Ming; Chen, Qian; Li, Mei; Zhou, Wei; Ma, Tengfei; Wang, Yun; Gu, Shuling

    2014-06-01

    Alarin is a newly identified member of the galanin family of peptides. Galanin has been shown to exert regulatory effects on depression. Similar to galanin in distribution, alarin is also expressed in the medial amygdala and hypothalamus, i.e., regions interrelated with depression. However, it remains a puzzle whether alarin is involved in depression. Accordingly, we established the depression-like mouse model using behavioral tests to ascertain the possible involvement of alarin, with fluoxetine as a positive control. With the positive antidepressant-like effects of alarin, we further examined its relationship to HPA axis activity and brain-derived neurotrophic factor (BDNF) levels in different brain areas in a chronic unpredictable mild stress (CUMS) paradigm. In the acute studies, alarin produced a dose-related reduction in the immobility duration in tail suspension test (TST) in mice. In the open-field test, intracerebroventricular (i.c.v.) injection of alarin (1.0 nmol) did not impair locomotion or motor coordination in the treated mice. In the CUMS paradigm, alarin administration (1.0 nmol, i.c.v.) significantly improved murine behaviors (FST and locomotor activity), which was associated with a decrease in corticotropin-releasing hormone (CRH) mRNA levels in the hypothalamus, as well as a decline in serum levels of CRH, adrenocorticotropic hormone (ACTH) and corticosterone (CORT), all of which are key hormones of the HPA axis. Furthermore, alarin upregulated BDNF mRNA levels in the prefrontal cortex and hippocampus. These findings suggest that alarin may potentiate the development of new antidepressants, which would be further secured with the identification of its receptor(s). Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Oral leucine supplementation is sensed by the brain but neither reduces food intake nor induces an anorectic pattern of gene expression in the hypothalamus.

    Directory of Open Access Journals (Sweden)

    Thais T Zampieri

    Full Text Available Leucine activates the intracellular mammalian target of the rapamycin (mTOR pathway, and hypothalamic mTOR signaling regulates food intake. Although central infusion of leucine reduces food intake, it is still uncertain whether oral leucine supplementation is able to affect the hypothalamic circuits that control energy balance. We observed increased phosphorylation of p70s6k in the mouse hypothalamus after an acute oral gavage of leucine. We then assessed whether acute oral gavage of leucine induces the activation of neurons in several hypothalamic nuclei and in the brainstem. Leucine did not induce the expression of Fos in hypothalamic nuclei, but it increased the number of Fos-immunoreactive neurons in the area postrema. In addition, oral gavage of leucine acutely increased the 24 h food intake of mice. Nonetheless, chronic leucine supplementation in the drinking water did not change the food intake and the weight gain of ob/ob mice and of wild-type mice consuming a low- or a high-fat diet. We assessed the hypothalamic gene expression and observed that leucine supplementation increased the expression of enzymes (BCAT1, BCAT2 and BCKDK that metabolize branched-chain amino acids. Despite these effects, leucine supplementation did not induce an anorectic pattern of gene expression in the hypothalamus. In conclusion, our data show that the brain is able to sense oral leucine intake. However, the food intake is not modified by chronic oral leucine supplementation. These results question the possible efficacy of leucine supplementation as an appetite suppressant to treat obesity.

  18. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus.

    Science.gov (United States)

    Zhao, Xiao-Jie; Zhao, Zhan; Yang, Dan-Dan; Cao, Lu-Lu; Zhang, Ling; Ji, Juan; Gu, Jun; Huang, Ji-Ye; Sun, Xiu-Lan

    2017-04-01

    Stress-induced disturbance of the hypothalamic-pituitary-adrenal (HPA) axis is strongly implicated in incidence of mood disorders. A heightened neuroinflammatory response and oxidative stress play a fundamental role in the dysfunction of the HPA axis. We have previously demonstrated that iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could prevent oxidative injury and neuroinflammation against multiple stimuli-induced brain injury. The present study was to demonstrate the impacts of Ipt in stress-induced HPA axis disorder and depressive behavior. We employed 2 stress paradigms: 8 weeks of continuous restraint stress (chronic restraint stress, CRS) and 2h of restraint stress (acute restraint stress, ARS), to mimic both chronic stress and severe acute stress. Prolonged (4 weeks) and short-term (a single injection) Ipt treatment was administered 30min before each stress paradigm. We found that HPA axis was altered after stress, with different responses to CRS (lower ACTH and CORT, higher AVP, but normal CRH) and ARS (higher CRH, ACTH and CORT, but normal AVP). Both prolonged and short-term Ipt treatment normalized stress-induced HPA axis disorders and abnormal behaviors in mice. CRS and ARS up-regulated mRNA levels of inflammation-related molecules (TNFα, IL-1β, IL-6 and TLR4) and oxidative stress molecules (gp91phox, iNOS and Nrf2) in the mouse hypothalamus. Double immunofluorescence showed CRS and ARS increased microglia activation (CD11b and TNFα) and oxidative stress in neurons (NeuN and gp91phox), which were alleviated by Ipt. Therefore, the present study reveals that Ipt could prevent against stress-induced HPA axis disorders and depressive behavior by alleviating inflammation and oxidative stress in the hypothalamus. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effects of corticotropin-releasing hormone and its antagonist on the gene expression of gonadotrophin-releasing hormone (GnRH) and GnRH receptor in the hypothalamus and anterior pituitary gland of follicular phase ewes.

    Science.gov (United States)

    Ciechanowska, Magdalena; Łapot, Magdalena; Malewski, Tadeusz; Mateusiak, Krystyna; Misztal, Tomasz; Przekop, Franciszek

    2011-01-01

    There is no information in the literature regarding the effect of corticotropin-releasing hormone (CRH) on genes encoding gonadotrophin-releasing hormone (GnRH) and the GnRH receptor (GnRHR) in the hypothalamus or on GnRHR gene expression in the pituitary gland in vivo. Thus, the aim of the present study was to investigate, in follicular phase ewes, the effects of prolonged, intermittent infusion of small doses of CRH or its antagonist (α-helical CRH 9-41; CRH-A) into the third cerebral ventricle on GnRH mRNA and GnRHR mRNA levels in the hypothalamo-pituitary unit and on LH secretion. Stimulation or inhibition of CRH receptors significantly decreased or increased GnRH gene expression in the hypothalamus, respectively, and led to different responses in GnRHR gene expression in discrete hypothalamic areas. For example, CRH increased GnRHR gene expression in the preoptic area, but decreased it in the hypothalamus/stalk median eminence and in the anterior pituitary gland. In addition, CRH decreased LH secretion. Blockade of CRH receptors had the opposite effect on GnRHR gene expression. The results suggest that activation of CRH receptors in the hypothalamus of follicular phase ewes can modulate the biosynthesis and release of GnRH through complex changes in the expression of GnRH and GnRHR genes in the hypothalamo-anterior pituitary unit. © CSIRO 2011 Open Access

  20. 5-HT has contrasting effects in the frontal cortex, but not the hypothalamus, on changes in noradrenaline efflux induced by the monoamine releasing-agent, d-amphetamine, and the reuptake inhibitor, BTS 54 354.

    Science.gov (United States)

    Géranton, Sandrine M; Heal, David J; Stanford, S Clare

    2004-03-01

    There is extensive evidence for functional interactions between central noradrenergic and serotonergic neurones. Here, dual-probe microdialysis was used in freely-moving rats to compare the effects of 5-HT on noradrenergic transmission in the rat frontal cortex and hypothalamus. We studied the effects of the 5-HT synthesis inhibitor, para-chlorophenylalanine (pCPA; which depleted 5-HT stores in both the frontal cortex and the hypothalamus), on spontaneous efflux of noradrenaline and on the noradrenergic responses to d-amphetamine, and the monoamine reuptake inhibitor, BTS 54 354. pCPA pretreatment alone did not affect spontaneous noradrenaline efflux in either brain region, whether or not alpha2-autoreceptors were inactivated by administration of the alpha2-antagonist, atipamezole (1 mg/kg i.p). However, in the frontal cortex, pCPA pretreatment augmented the amplitude of, and prolonged, the noradrenergic response to local infusion of d-amphetamine (10 microM). In contrast, pCPA abolished the increase in cortical noradrenaline efflux induced by local infusion of BTS 54 354 (50 microM). In the hypothalamus, pCPA did not affect the amplitude of the response to either of these agents but did prolong the effects of d-amphetamine on noradrenaline efflux. These findings suggest that serotonergic transmission has complex effects on the noradrenergic response to drugs that increase noradrenergic transmission in the frontal cortex, but has less influence in the hypothalamus.

  1. Effect of serum from rats with destructed nuclei of the posterior hypothalamus on the formation of hemopoietic colonies in the spleen of lethally irradiated mice after bone marrow cell transplantation

    International Nuclear Information System (INIS)

    Fedorov, N.A.; Likhovetskaya, Z.M.; Kurbanova, G.N.; Prigozhina, T.A.; L'vovich, A.I.

    1982-01-01

    Colony formation capability of serum from animals with destructed nuclei of the posterior hypothalamus was studied in lethally irradiated mice. Male-rats of Wistar line and hybrid mice (CBA x C57 BL) were used in the experiments. The serum from rats with destructed nuclei of the posterior hypothalamus was injected simultaneously with bone marrow transplantation into lethally irradiated mice. The number of macrocolonies in the spleen was counted on the 9th day. It was ascertained that the serum from rats with destructed nuclei of the posterior hypothalamus caused an increase of the number of macroscopically visible colonies in the spleen of lethally irradiated mice. The determination of hemopoetic types of colonies showed that the effect of the serum from those animals caused an increase of the number of granulocytic-type colonies. The initiation of colony stimulating and leukopoetic activity in the blood of animals after the destruction of mammillary body nuclei and posterior hypothalamic nucleus attested, according to the authors point of view, that humoral mediators (humoral mediator) could participated in the mechanism of hypothalamus effect on leulopoiesis

  2. Expression of the GnRH and GnRH receptor (GnRH-R) genes in the hypothalamus and of the GnRH-R gene in the anterior pituitary gland of anestrous and luteal phase ewes.

    Science.gov (United States)

    Ciechanowska, Magdalena; Lapot, Magdalena; Malewski, Tadeusz; Mateusiak, Krystyna; Misztal, Tomasz; Przekop, Franciszek

    2008-11-01

    Data exists showing that seasonal changes in the innervations of GnRH cells in the hypothalamus and functions of some neural systems affecting GnRH neurons are associated with GnRH release in ewes. Consequently, we put the question as to how the expression of GnRH gene and GnRH-R gene in the hypothalamus and GnRH-R gene in the anterior pituitary gland is reflected with LH secretion in anestrous and luteal phase ewes. Analysis of GnRH gene expression by RT-PCR in anestrous ewes indicated comparable levels of GnRH mRNA in the preoptic area, anterior and ventromedial hypothalamus. GnRH-R mRNA at different concentrations was found throughout the preoptic area, anterior and ventromedial hypothalamus, stalk/median eminence and in the anterior pituitary gland. The highest GnRH-R mRNA levels were detected in the stalk/median eminence and in the anterior pituitary gland. During the luteal phase of the estrous cycle in ewes, the levels of GnRH mRNA and GnRH-R mRNA in all structures were significantly higher than in anestrous ewes. Also LH concentrations in blood plasma of luteal phase ewes were significantly higher than those of anestrous ewes. In conclusion, results from this study suggest that low expression of the GnRH and GnRH-R genes in the hypothalamus and of the GnRH-R gene in the anterior pituitary gland, amongst others, may be responsible for a decrease in LH secretion and the anovulatory state in ewes during the long photoperiod.

  3. Response to nestling throat ligatures by three songbirds

    Science.gov (United States)

    Robinson, G.L.; Conway, C.J.; Kirkpatrick, C.; Laroche, D.D.

    2010-01-01

    We attempted to collect diet samples using throat ligatures from nestlings of three songbird species in a riparian woodland in southeastern Arizona from May to August 2009. We had success with Song Sparrows (Melospiza melodia), observed adult Yellow-breasted Chats (Icteria virens) reclaim food from nestlings, and discontinued the use of throat ligatures when we observed an adult Abert's Towhee (Pipilo aberti) remove two, 34-day-old ligatured nestlings from its nest. Previous studies have reported problems (e.g., aggression toward nestlings by adults) with throat ligatures, but we are the first to document removal (and subsequent nestling mortality) in response to this technique. We urge investigators to exercise caution when using throat ligatures on species for which evidence of the safety and efficacy of this method are lacking, especially when nestlings are small in size relative to adults. ?? 2010 by the Wilson Ornithological Society.

  4. [Electroacupuncture Intervention Enhances Splenic Natural Killer Cell Activity via Inhibiting Phosphorylation of ERK 5 in the Hypothalamus of Surgically Traumatized Rats].

    Science.gov (United States)

    Chen, Yan; Li, Jing; Zhu, Ke-ying; Xiao, Sheng; Wang, Yan-qing; Wu, Gen-cheng; Wang, Jun

    2015-06-01

    To observe the effect of electroacupuncture (EA) on cytotoxic activity of splenic natural killer (NK) cells after surgical trauma via extracellular signal-regulated kinase (ERK) 5 pathway in the rats' hypothalamus, so as to explore its mechanism underlying improving immune disorders after surgery. Sprague-Dawley rats were randomly divided into the following 6 groups: control, trauma model, EA, sham EA, 4 nmol-BIX 02188 (an inhibitor for ERK 5 catalytic activity) and 20 nmol-BIX 02188 (n = 6 rats per group). The surgical trauma model was established by making a longitudinal incision (6 cm in length) along the median line of the back to expose the spinal column and another longitudinal incision along the abdominal median line. EA (2 Hz/15 Hz, 1 - 2 mA) was applied to bilateral "Zusanli" (ST 36) for 30 min immediately after surgery. For rats of the BIX groups, intra-lateral ventricular microinjection of BIX 02188 (10 µL, 4 nmol or 20 nmol, or saline for control rats) was conducted 30 min before the surgery. The expression level and protein of phosphorylated ERK 5 (p-ERK 5) and corticotropin-releasing factor (CRF) protein were measured by immunohistochemistry and Western blot, respectively. The cytotoxicity of splenic NK cells and the expression of splenic Perforin and Granzyme-B genes were measured by lactate dehydrogenase (LDH) release assay and real-time PCR, respectively. In comparison with the control group, hypothalamic p-ERK 5 immunoactivity, p-ERK 5 protein and CRF protein expression levels were significantly up-regulated in the model group (Psplenic NK cell cytotoxicity and Perforin mRNA and Granzyme-B mRNA expression levels were notably down-regulated in the model group (P 0. 05) except the increased p-ERK 5 protein in the 4 nmol-BIX 02188 group. In addition, the down-regulated NK cell activity, Perforin mRNA and Granzyme-B mRNA expression levels were significantly reversed in the EA and 20 nmol-BIX 02188 groups (Psplenic NK cytotoxicity and Perforin and

  5. Laying traits and underlying transcripts, expressed in the hypothalamus and pituitary gland, that were associated with egg production variability in chickens.

    Science.gov (United States)

    Chen, Chih-Feng; Shiue, Yow-Ling; Yen, Cheng-Ju; Tang, Pin-Chi; Chang, Hui-Chiu; Lee, Yen-Pai

    2007-12-01

    The objective was to characterize the potential laying traits and underlying transcripts expressed in the hypothalamus and pituitary gland that were associated with egg production variability in five genetic stocks of chickens: two commercial lines, Red- (n=12) and Black-feather (n=14) Taiwan country chickens (TCCs); two selected lines of TCCs, B (high body weight/comb size; n=17) and L2 (high-egg production; n=14); and a commercial single comb White Leghorn (WL; n=17). Six laying traits, age at first egg, clutch length, pause length, oviposition lag within clutch, follicle rapid growth period, and rate of yolk accumulation were measured. The significance of differential values among five chicken stocks and correlation coefficients between laying traits and number of eggs to 50 weeks of age or laying rate after first egg, and the expression level of 33 transcripts were determined. Longer clutch length and shorter oviposition lag within clutch contributed to a higher number of eggs to 50 weeks of age or laying rate after first egg in L2 (Pdifferent, indicating the accumulation of different alleles after long-term, independent selection. Across all five strains, numbers of eggs to 50 weeks of age were positive correlated with average clutch length (P<0.05) as well as the rate of yolk accumulation (P<0.05). Expressions of PLAG1, STMN2, PGDS, PARK7, ANP32A, PCDHA@, SCG2, BDH and SAR1A transcripts contributed to number of eggs to 50 weeks of age (P<0.05) or laying rate after first egg (P<0.05). Analysis of correlation coefficients indicated that PLAG1 additionally played roles in decreasing average pause length. Two transcripts, PRL and GARNL1, specifically contributed to number of eggs to 50 weeks of age or laying rate after first egg by reducing oviposition lag within clutch (P<0.05) and/or increasing average clutch length (P<0.05), respectively. Expression level of NCAM1, contributed to laying rate after first egg by association with a shorter oviposition lag within

  6. A useful PET probe [11C]BU99008 with ultra-high specific radioactivity for small animal PET imaging of I2-imidazoline receptors in the hypothalamus

    International Nuclear Information System (INIS)

    Kawamura, Kazunori; Shimoda, Yoko; Yui, Joji; Zhang, Yiding; Yamasaki, Tomoteru; Wakizaka, Hidekatsu; Hatori, Akiko; Xie, Lin; Kumata, Katsushi; Fujinaga, Masayuki; Ogawa, Masanao; Kurihara, Yusuke; Nengaki, Nobuki; Zhang, Ming-Rong

    2017-01-01

    Introduction: A positron emission tomography (PET) probe with ultra-high specific radioactivity (SA) enables measuring high receptor specific binding in brain regions by avoiding mass effect of the PET probe itself. It has been reported that PET probe with ultra-high SA can detect small change caused by endogenous or exogenous ligand. Recently, Kealey et al. developed [ 11 C]BU99008, a more potent PET probe for I 2 -imidazoline receptors (I 2 Rs) imaging, with a conventional SA (mean 76 GBq/μmol) showed higher specific binding in the brain. Here, to detect small change of specific binding for I 2 Rs caused by endogenous or exogenous ligand in an extremely small region, such as hypothalamus in the brain, we synthesized and evaluated [ 11 C]BU99008 with ultra-high SA as a useful PET probe for small-animal PET imaging of I 2 Rs. Methods: [ 11 C]BU99008 was prepared by [ 11 C]methylation of N-desmethyl precursor with [ 11 C]methyl iodide. Biodistribution, metabolite analysis, and brain PET studies were conducted in rats. Results: [ 11 C]BU99008 with ultra-high SA in the range of 5400–16,600 GBq/μmol were successfully synthesized (n = 7), and had appropriate radioactivity for in vivo study. In the biodistribution study, the mean radioactivity levels in all investigated tissues except for the kidney did not show significant difference between [ 11 C]BU99008 with ultra-high SA and that with conventional SA. In the metabolite analysis, the percentage of unchanged [ 11 C]BU99008 at 30 min after the injection of probes with ultra-high and conventional SA was similar in rat brain and plasma. In the PET study of rats' brain, radioactivity level (AUC 30–60 min ) in the hypothalamus of rats injected with [ 11 C]BU99008 with ultra-high SA (64 [SUV ∙ min]) was significantly higher than that observed for that with conventional SA (50 [SUV ∙ min]). The specific binding of [ 11 C]BU99008 with ultra-high SA (86% of total binding) for I 2 R was higher than that of

  7. Feeding prepubescent gilts a high-fat diet induces molecular changes in the hypothalamus-pituitary-gonadal axis and predicts early timing of puberty.

    Science.gov (United States)

    Zhuo, Yong; Zhou, Dongsheng; Che, Lianqiang; Fang, Zhengfeng; Lin, Yan; Wu, De

    2014-01-01

    The onset of puberty in females has been occurring earlier over the past decades, presumably as a result of improved nutrition in developed countries. However, the underlying molecular mechanisms responsible for the early attainment of puberty as a result of nutrition fortification remain largely unknown. The aim of this study was to evaluate the hormone and gene expression changes in prepubescent gilts fed a high-fat diet to investigate whether these changes could predict the early timing of puberty. Forty gilts were fed a daily basal diet (LE) or a basal diet with an additional 270 g/d or 340 g/d of fat (HE) during the prepubescent phase. Blood samples were collected during the prepubescent phase to detect hormone secretion changes in insulin-like growth factor-1, kisspeptin, estradiol, progesterone, and leptin. The gene expressions at the hypothalamus-pituitary-gonadal axis were examined on day 73 of the experiment (average age on day 177) during the prepubescent phase. An HE diet resulted in accelerated body weight gain and back-fat thickness at the P2 point compared with LE gilts during the prepubescent phase. Gilts that were fed HE diets attained puberty 12 d earlier than LE gilts, and a larger proportion of HE gilts reached puberty at day 180 or 190 of age. A postmortem analysis revealed a promoted development of the uterus and ovary tissue that was characterized by a 53.7% and 29.5% increase in the uterine and ovary weight, respectively, and an increased length of the uterine horn and oviduct tissue in HE gilts. Real-time quantitative polymerase chain reaction revealed that HE gilts had higher Kiss-1, G protein-coupled receptor 54, gonadotropin-releasing hormone and estrogen receptor α mRNA expression levels in the hypothalamic anteroventral periventricular nucleus; the leptin receptor mRNA expression level was higher in the hypothalamic arcuate nucleus and ovary tissue; the insulin-like growth factor-1 receptor expression was higher in the pituitary and

  8. Prenatal exposure to dietary fat induces changes in the transcriptional factors, TEF and YAP, which may stimulate differentiation of peptide neurons in rat hypothalamus.

    Directory of Open Access Journals (Sweden)

    Kinning Poon

    Full Text Available Gestational exposure to a high-fat diet (HFD stimulates the differentiation of orexigenic peptide-expressing neurons in the hypothalamus of offspring. To examine possible mechanisms that mediate this phenomenon, this study investigated the transcriptional factor, transcription enhancer factor-1 (TEF, and co-activator, Yes-associated protein (YAP, which when inactivated stimulate neuronal differentiation. In rat embryos and postnatal offspring prenatally exposed to a HFD compared to chow, changes in hypothalamic TEF and YAP and their relationship to the orexigenic peptide, enkephalin (ENK, were measured. The HFD offspring at postnatal day 15 (P15 exhibited in the hypothalamic paraventricular nucleus a significant reduction in YAP mRNA and protein, and increased levels of inactive and total TEF protein, with no change in mRNA. Similarly, HFD-exposed embryos at embryonic day 19 (E19 showed in whole hypothalamus significantly decreased levels of YAP mRNA and protein and TEF mRNA, and increased levels of inactive TEF protein, suggesting that HFD inactivates TEF and YAP. This was accompanied by increased density and fluorescence intensity of ENK neurons. A close relationship between TEF and ENK was suggested by the finding that TEF co-localizes with this peptide in hypothalamic neurons and HFD reduced the density of TEF/ENK co-labeled neurons, even while the number and fluorescence intensity of single-labeled TEF neurons were increased. Increased YAP inactivity by HFD was further evidenced by a decrease in number and fluorescence intensity of YAP-containing neurons, although the density of YAP/ENK co-labeled neurons was unaltered. Genetic knockdown of TEF or YAP stimulated ENK expression in hypothalamic neurons, supporting a close relationship between these transcription factors and neuropeptide. These findings suggest that prenatal HFD exposure inactivates both hypothalamic TEF and YAP, by either decreasing their levels or increasing their inactive

  9. Assessment of endocrine disorders of the hypothalamic-pituitary axis by nuclear medicine techniques; Nuklearmedizinische Verfahren zur Abklaerung endokrinologischer Erkrankungen der Hypothalamus-Hypophysen-Achse

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, M.; Theissen, P.; Dietlein, M.; Schicha, H. [Koeln Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin; Jackenhoevel, F.; Krone, W. [Koeln Univ. (Germany). Klinik II fuer Innere Medizin

    2002-04-01

    The following article reviews nuclear medicine techniques which can be used for assessment of endocrine disorders of the hypothalamic-pituitary axis. For planar and SPECT imaging somatostatin-receptor- and dopamine-D2-receptor-scintigraphy are the most widely distributed techniques. These nuclear medicine techniques may be indicated in selected cases to answer differential diagnostic problems. They can be helpful to search for presence and localization of receptor positive tissue. Furthermore they can detect metastasis in the rare cases of a pituitary carcinoma. Scintigraphy with Gallium-67 is suitable for further diagnostic evaluation in suspected hypophysitis. Other SPECT radiopharmaca do not have relevant clinical significance. F-18-FDG as PET radiopharmacon is not ideal because obvious pituitary adenomas could not be visualized. Other PET radiopharmaca including C-11-methionine, C-11-tyrosine, F-18-fluoroethylspiperone, C-11-methylspiperone, and C-11-raclopride are available in specialized centers only. Overall indications for nuclear medicine in studies for the assessment of endocrine disorders of the hypothalamic-pituitary-axis are rare. Original studies often report only about a small number of patients. According to the authors' opinion the relevance of nuclear medicine in studies of clinically important endocrinologic fields, e. g. localization of small ACTH-producing pituitary adenomas, tumor localization in ectopic ACTH syndrome, localization of recurrent pituitary tissue, assessment of small incidentalomas, can not be definitely given yet. (orig.) [German] Diese Uebersichtsarbeit fasst die nuklearmedizinischen Untersuchungsverfahren zur Abklaerung endokrinologischer Erkrankungen der Hypothalamus-Hypophysen-Achse zusammen. Bei den planaren und SPECT-Unter suchungen sind Somatostatin-Rezeptor- und Dopamin-D2-Rezeptor-Szintigraphie die verbreitetsten Untersuchungstechniken. Im Einzelfall sind sie zur Differenzialdiagnostik, zum Nachweis und zur

  10. Effect of Electromagnetic Radiation Exposure on Histology and DNA Content of the Brain Cortex and Hypothalamus of Young and Adult Male Albino Rats

    International Nuclear Information System (INIS)

    Othman, A.I.; Othman, A.I.

    2012-01-01

    Concerns have been raised regarding the potential adverse effects of exposure to electromagnetic radiation (EMR) arising from mobile phone. The present study investigates the effect of the daily exposure of adult and young rats to EMR for 1 hour (at a frequency of 900 MHz, a power density of 0.02 mW/cm 2 and an average specific absorption rate of 1.165 W/kg) on the DNA content and tissue architecture of the cortex and hypothalamus of the rat brain. Both young and adult rats were sacrificed at two intervals, after 4 months of daily EMR exposure and after 1 month of stopping the exposure. The present results showed a significant increase in the DNA intensity of young and adult rats in both areas after 4 months of daily EMR exposure. However, decreased DNA content around the normal level was observed after one month of stopping the exposure. Light microscopic examination of irradiated rats revealed edema, vacuolation, necrosis and proliferated glial cells. Stopping EMR exposure showed mild amelioration in the structural damage of the cerebral cortex of young animals, however, most drastic changes still persisted in the other animals. In conclusion, these data may confirm the neurotoxic risks arising from the extensive use of mobile phones that may alter the brain histology and impair its function

  11. Age-dependent changes in 24-hour rhythms of catecholamine content and turnover in hypothalamus, corpus striatum and pituitary gland of rats injected with Freund's adjuvant

    Directory of Open Access Journals (Sweden)

    Reyes Toso Carlos A

    2001-11-01

    Full Text Available Abstract Background Little information is available on the circadian sequela of an immune challenge in the brain of aged rats. To assess them, we studied 24-hour rhythms in hypothalamic and striatal norepinephrine (NE content, hypothalamic and striatal dopamine (DA turnover and hypophysial NE and DA content, in young (2 months and aged (18–20 months rats killed at 6 different time intervals, on day 18th after Freund's adjuvant or adjuvant's vehicle administration. Results Aging decreased anterior and medial hypothalamic NE content, medial and posterior hypothalamic DA turnover, and striatal NE concentration and DA turnover. Aging also decreased NE and DA content in pituitary neurointermediate lobe and augmented DA content in the anterior pituitary lobe. Immunization by Freund's adjuvant injection caused: (i reduction of DA turnover in anterior hypothalamus and corpus striatum; (ii acrophase delay of medial hypothalamic DA turnover in old rats, and of striatal NE content in young rats; (iii abolition of 24-h rhythm in NE and DA content of neurointermediate pituitary lobe, and in DA content of anterior lobe, of old rats. Conclusions The decline in catecholamine neurotransmission with aging could contribute to the decrease of gonadotropin and increase of prolactin release reported in similar groups of rats. Some circadian responses to immunization, e.g. suppression of 24-h rhythms of neurointermediate lobe NE and DA and of anterior lobe DA were seen only in aged rats.

  12. Effect of endotoxin on the expression of GnRH and GnRHR genes in the hypothalamus and anterior pituitary gland of anestrous ewes.

    Science.gov (United States)

    Herman, Andrzej Przemysław; Tomaszewska-Zaremba, Dorota

    2010-07-01

    An immune/inflammatory challenge can affect reproduction at the level of the hypothalamus, pituitary gland, or gonads. Nonetheless, the major impact is thought to occur within the brain or the pituitary gland. The present study was designed to examine the effect of intravenous (i.v.) lipopolysaccharide (LPS) injection on the expression of gonadotropin-releasing hormone (GnRH) and the gonadotropin-releasing hormone receptor (GnRHR) genes in the hypothalamic structures where GnRH neurons are located as well as in the anterior pituitary gland (AP) of anestrous ewes. We also determined the effect of LPS on luteinizing hormone (LH) release. It was found that i.v. LPS injection significantly decreased GnRH and GnRHR mRNAs levels in the preoptic area (40%, ppituitary cells to GnRH stimulation. The presence of GnRH mRNA in the median eminence, the hypothalamic structure where GnRH-ergic neurons' terminals are located, suggests that the axonal transport of GnRH mRNA may occur in these neurons. This phenomenon could play an important role in the physiology of GnRH neurons. Our data demonstrate that immune stress could be important inhibitor of this process. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Investigation of brain-derived neurotrophic factor (BDNF) gene expression in hypothalamus of obese rats: Modulation by omega-3 fatty acids.

    Science.gov (United States)

    Abdel-Maksoud, Sahar M; Hassanein, Sally I; Gohar, Neveen A; Attia, Saad M M; Gad, Mohamed Z

    2017-10-01

    The aim of this study was investigating the effect of omega-3 fatty acids (ω-3 FAs) on brain-derived neurotrophic factor (BDNF) gene expression, using in vivo and in vitro models, to unravel the potential mechanisms of polyunsaturated fatty acids use in obesity. Twenty-nine Sprague-Dawley rats were divided into three groups; lean controls fed normal chow diet for 14 weeks, obese controls fed 60% of their diet as saturated fats for 14 weeks, and ω-3 FAs-treated rats fed 60% saturated fat diet for 14 weeks with concomitant oral administration of 400 mg/kg/day ω-3 FAs, mainly docosahexaenoic acid and EPA, from week 12 to week 14. For the in vitro experiment, hypothalamic cells from six obese rats were cultured in the presence of different concentrations of ω-3 FAs to determine its direct effect on BDNF expression. In vivo results showed that obesity has negative effect on BDNF gene expression in rat hypothalamus that was reversed by administration of ω-3 FAs. Obese rats showed hypercholesterolemia, hypertriglyceridemia, normoinsulinemia, hyperglycemia and hyperleptinemia. Treatment with ω-3 FAs showed significant decrease in serum total cholesterol and TAG. Also serum glucose level and HOMA index were decreased significantly. In vitro results demonstrated the increase in BDNF expression by ω-3 FAs in a dose-dependent manner. Obesity causes down-regulation of BDNF gene expression that can be reversed by ω-3 FAs treatment, making them an interesting treatment approach for obesity and metabolic disease.

  14. Molecular characterization of kiss2 and differential regulation of reproduction-related genes by sex steroids in the hypothalamus of half-smooth tongue sole (Cynoglossus semilaevis).

    Science.gov (United States)

    Wang, Bin; Liu, Quan; Liu, Xuezhou; Xu, Yongjiang; Song, Xuesong; Shi, Bao

    2017-11-01

    Kisspeptin (Kiss) plays a critical role in mediating gonadal steroid feedback to the gonadotropin-releasing hormone (GnRH) neurons in mammals. However, little information regarding the regulation of kisspeptin gene by sex steroids is available in teleosts. In this study, we examined the direct actions of estradiol (E2) and testosterone (T) on hypothalamic expression of kisspeptin and other key factors involved in reproductive function of half-smooth tongue sole. As a first step, a partial-length cDNA of kiss2 was identified from the brain of tongue sole and kiss2 transcript levels were shown to be widely expressed in various tissues, notably in the ovary. Then, the actions of sex steroids on kiss2 and other reproduction-related genes were evaluated using a primary hypothalamus culture system. Our results showed that neither kiss2 nor its receptor kiss2r mRNA levels were significantly altered by sex steroids. Moreover, sex steroids did not modify hypothalamic expression of gonadotropin-inhibitory hormone (gnih) and its receptor gnihr mRNAs, either. However, E2 markedly stimulated both gnrh2 and gnrh3 mRNAs levels. Overall, this study provides insights into the role of sex steroids in the reproductive function of Pleuronectiform teleosts. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The dual orexin receptor antagonist, DORA-22, lowers histamine levels in the lateral hypothalamus and prefrontal cortex without lowering hippocampal acetylcholine.

    Science.gov (United States)

    Yao, Lihang; Ramirez, Andres D; Roecker, Anthony J; Fox, Steven V; Uslaner, Jason M; Smith, Sean M; Hodgson, Robert; Coleman, Paul J; Renger, John J; Winrow, Christopher J; Gotter, Anthony L

    2017-07-01

    Chronic insomnia is defined as a persistent difficulty with sleep initiation maintenance or non-restorative sleep. The therapeutic standard of care for this condition is treatment with gamma-aminobutyric acid (GABA) A receptor modulators, which promote sleep but are associated with a panoply of side effects, including cognitive and memory impairment. Dual orexin receptor antagonists (DORAs) have recently emerged as an alternative therapeutic approach that acts via a distinct and more selective wake-attenuating mechanism with the potential to be associated with milder side effects. Given their distinct mechanism of action, the current work tested the hypothesis that DORAs and GABA A receptor modulators differentially regulate neurochemical pathways associated with differences in sleep architecture and cognitive performance induced by these pharmacological mechanisms. Our findings showed that DORA-22 suppresses the release of the wake neurotransmitter histamine in the lateral hypothalamus, prefrontal cortex, and hippocampus with no significant alterations in acetylcholine levels. In contrast, eszopiclone, commonly used as a GABA A modulator, inhibited acetylcholine secretion across brain regions with variable effects on histamine release depending on the extent of wakefulness induction. In normal waking rats, eszopiclone only transiently suppressed histamine secretion, whereas this suppression was more obvious under caffeine-induced wakefulness. Compared with the GABA A modulator eszopiclone, DORA-22 elicits a neurotransmitter profile consistent with wake reduction that does not impinge on neurotransmitter levels associated with cognition and rapid eye movement sleep. © 2017 International Society for Neurochemistry.

  16. Dopamine D1 and D2 dopamine receptors regulate immobilization stress-induced activation of the hypothalamus-pituitary-adrenal axis.

    Science.gov (United States)

    Belda, Xavier; Armario, Antonio

    2009-10-01

    Whereas the role of most biogenic amines in the control of the hypothalamus-pituitary-adrenal (HPA) response to stress has been extensively studied, the role of dopamine has not. We studied the effect of different dopamine receptor antagonists on HPA response to a severe stressor (immobilization, IMO) in adult male Sprague-Dawley rats. Haloperidol administration reduced adrenocorticotropin hormone and corticosterone responses to acute IMO, particularly during the post-IMO period. This effect cannot be explained by a role of dopamine to maintain a sustained activation of the HPA axis as haloperidol did not modify the response to prolonged (up to 6 h) IMO. Administration of more selective D1 and D2 receptor antagonists (SCH23390 and eticlopride, respectively) also resulted in lower and/or shorter lasting HPA response to IMO. Dopamine, acting through both D1 and D2 receptors, exerts a stimulatory role on the activation of the HPA axis in response to a severe stressor. The finding that dopamine is involved in the maintenance of post-stress activation of the HPA axis is potentially important because the actual pathological impact of HPA activation is likely to be related to the area under the curve of plasma glucocorticoid levels, which is critically dependent on how long after stress high levels of glucocorticoid are maintained.

  17. The glucagon-like peptide-1 receptor in the ventromedial hypothalamus reduces short-term food intake in male mice by regulating nutrient sensor activity.

    Science.gov (United States)

    Burmeister, Melissa A; Brown, Jacob D; Ayala, Jennifer E; Stoffers, Doris A; Sandoval, Darleen A; Seeley, Randy J; Ayala, Julio E

    2017-12-01

    Pharmacological activation of the glucagon-like peptide-1 receptor (GLP-1R) in the ventromedial hypothalamus (VMH) reduces food intake. Here, we assessed whether suppression of food intake by GLP-1R agonists (GLP-1RA) in this region is dependent on AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR). We found that pharmacological inhibition of glycolysis, and thus activation of AMPK, in the VMH attenuates the anorectic effect of the GLP-1R agonist exendin-4 (Ex4), indicating that glucose metabolism and inhibition of AMPK are both required for this effect. Furthermore, we found that Ex4-mediated anorexia in the VMH involved mTOR but not acetyl-CoA carboxylase, two downstream targets of AMPK. We support this by showing that Ex4 activates mTOR signaling in the VMH and Chinese hamster ovary (CHO)-K1 cells. In contrast to the clear acute pharmacological impact of the these receptors on food intake, knockdown of the VMH Glp1r conferred no changes in energy balance in either chow- or high-fat-diet-fed mice, and the acute anorectic and glucose tolerance effects of peripherally dosed GLP-1RA were preserved. These results show that the VMH GLP-1R regulates food intake by engaging key nutrient sensors but is dispensable for the effects of GLP-1RA on nutrient homeostasis. Copyright © 2017 the American Physiological Society.

  18. Effect of Testosterone on Neuronal Morphology and Neuritic Growth of Fetal Lamb Hypothalamus-Preoptic Area and Cerebral Cortex in Primary Culture.

    Directory of Open Access Journals (Sweden)

    Radhika C Reddy

    Full Text Available Testosterone plays an essential role in sexual differentiation of the male sheep brain. The ovine sexually dimorphic nucleus (oSDN, is 2 to 3 times larger in males than in females, and this sex difference is under the control of testosterone. The effect of testosterone on oSDN volume may result from enhanced expansion of soma areas and/or dendritic fields. To test this hypothesis, cells derived from the hypothalamus-preoptic area (HPOA and cerebral cortex (CTX of lamb fetuses were grown in primary culture to examine the direct morphological effects of testosterone on these cellular components. We found that within two days of plating, neurons derived from both the HPOA and CTX extend neuritic processes and express androgen receptors and aromatase immunoreactivity. Both treated and control neurites continue to grow and branch with increasing time in culture. Treatment with testosterone (10 nM for 3 days significantly (P < 0.05 increased both total neurite outgrowth (35% and soma size (8% in the HPOA and outgrowth (21% and number of branch points (33% in the CTX. These findings indicate that testosterone-induced somal enlargement and neurite outgrowth in fetal lamb neurons may contribute to the development of a fully masculine sheep brain.

  19. [Concentration of monoamines and activity of several enzymes in the arcuate nucleus of the hypothalamus in young and aging rats during the estrous cycle].

    Science.gov (United States)

    Grantyn', V A

    1976-07-01

    The arcuate nucleus (AN) and the median eminence (ME) of the hypothalamus were investigated in young and ageing female rats. During the estral cycle (EC) the monoamine (MA) content, the monoaminoxidase (MAO), NADP and NAD-diaphorase activities were determined in the AN, and the MA content and the activity of alkaline phosphatase (AP) -- in the ME. In young rats in the proestrus-estrus there was an increase in the activity of the NADP and NAD-diaphorase and of the MA content, but a decrease of the MAO activity. This indicated an intensified function of the nucleus at these stages of the EC. Accumulation of the MA in the ME was noted in the diestrus, while in the proestrus their concentration sharply fell; on the other hand, the activity of the AP was considerably increased. In the ageing rats the dynamics of the indices under study during the EC were largely unchanged. However, the functional activity of the AN proved to increase, and in the ME and elevation of the MA concentration and disturbance of its release from the nerve terminals was seen.

  20. The orexin-1 receptor antagonist SB-334867 decreases anxiety-like behavior and c-Fos expression in the hypothalamus of rats exposed to cat odor.

    Science.gov (United States)

    Vanderhaven, M W; Cornish, J L; Staples, L G

    2015-02-01

    Increasing evidence suggests that the orexin system is involved in modulating anxiety, and we have recently shown that cat odor-induced anxiety in rats is attenuated by the orexin receptor antagonist SB-334867. In the current experiment, c-Fos expression was used to map changes in neuronal activation following SB-334867 administration in the cat odor anxiety model. Male Wistar rats were exposed to cat odor with or without SB-334867 pre-treatment (10 mg/kg, i.p.). A naïve control group not exposed to cat odor was also used. Following cat odor exposure, brains were processed for c-Fos expression. Vehicle-treated rats showed an increase in anxiety-like behaviors (increased hiding and decreased approach toward the cat odor), and increased c-Fos expression in the posteroventral medial amygdala (MePV), paraventricular hypothalamus (PVN) and dorsal premammillary nucleus (PMd). In rats pretreated with SB-334867, approach scores increased and c-Fos expression decreased in the PVN and PMd. These results provide both behavioral and neuroanatomical evidence for the attenuation of cat odor-induced anxiety in rats via the orexin system. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  1. Alpha2delta-1 in SF1+ Neurons of the Ventromedial Hypothalamus Is an Essential Regulator of Glucose and Lipid Homeostasis.

    Science.gov (United States)

    Felsted, Jennifer A; Chien, Cheng-Hao; Wang, Dongqing; Panessiti, Micaella; Ameroso, Dominique; Greenberg, Andrew; Feng, Guoping; Kong, Dong; Rios, Maribel

    2017-12-05

    The central mechanisms controlling glucose and lipid homeostasis are inadequately understood. We show that α2δ-1 is an essential regulator of glucose and lipid balance, acting in steroidogenic factor-1 (SF1) neurons of the ventromedial hypothalamus (VMH). These effects are body weight independent and involve regulation of SF1 + neuronal activity and sympathetic output to metabolic tissues. Accordingly, mice with α2δ-1 deletion in SF1 neurons exhibit glucose intolerance, altered lipolysis, and decreased cholesterol content in adipose tissue despite normal energy balance regulation. Profound reductions in the firing rate of SF1 neurons, decreased sympathetic output, and elevated circulating levels of serotonin are associated with these alterations. Normal calcium currents but reduced excitatory postsynaptic currents in mutant SF1 neurons implicate α2δ-1 in the promotion of excitatory synaptogenesis separate from its canonical role as a calcium channel subunit. Collectively, these findings identify an essential mechanism that regulates VMH neuronal activity and glycemic and lipid control and may be a target for tackling metabolic disease. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. The effects of prostaglandin E2 on the firing rate activity of thermosensitive and temperature insensitive neurons in the ventromedial preoptic area of the rat hypothalamus.

    Science.gov (United States)

    Ranels, Heather J; Griffin, John D

    2003-02-21

    In response to an immune system challenge with lipopolysaccharide (LPS), recent work has shown that Fos immunoreactivity is displayed by neurons in the ventromedial preoptic area of the hypothalamus (VMPO). In addition, neurons in this region show distinct axonal projections to the anterior perifornical area (APFx) and the paraventricular nucleus (PVN). It has been hypothesized that neurons within the VMPO integrate their local responses to temperature with changes in firing activity that result from LPS induced production of prostaglandin E(2) (PGE(2)). This may be an important mechanism by which the set-point regulation of thermoeffector neurons in the APFx and PVN is altered, resulting in hyperthermia. To characterize the firing rate activity of VMPO neurons, single-unit recordings were made of neuronal extracellular activity in rat hypothalamic tissue slices. Based on the slope of firing rate as a function of tissue temperature, neurons were classified as either warm sensitive or temperature insensitive. Neurons were then treated with PGE(2) (200 nM) while tissue temperature was held at a constant level ( approximately 36 degrees C). The majority of temperature insensitive neurons responded to PGE(2) with an increase in firing rate activity, while warm sensitive neurons showed a reduction in firing rate. This suggests that both warm sensitive and temperature insensitive neurons in the VMPO may play critical and contrasting roles in the production of a fever during an acute phase response to infection.

  3. The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus

    Science.gov (United States)

    Affleck, V.S.; Coote, J.H.; Pyner, S.

    2012-01-01

    Elevated sympathetic nerve activity, strongly associated with cardiovascular disease, is partly generated from the presympathetic neurons of the paraventricular nucleus of the hypothalamus (PVN). The PVN-presympathetic neurons regulating cardiac and vasomotor sympathetic activity receive information about cardiovascular status from receptors in the heart and circulation. These receptors signal changes via afferent neurons terminating in the nucleus tractus solitarius (NTS), some of which may result in excitation or inhibition of PVN-presympathetic neurons. Understanding the anatomy and neurochemistry of NTS afferent connections within the PVN could provide important clues to the impairment in homeostasis cardiovascular control associated with disease. Transynaptic labelling has shown the presence of neuronal nitric oxide synthase (nNOS)-containing neurons and GABA interneurons that terminate on presympathetic PVN neurons any of which may be the target for NTS afferents. So far NTS connections to these diverse neuronal pools have not been demonstrated and were investigated in this study. Anterograde (biotin dextran amine – BDA) labelling of the ascending projection from the NTS and retrograde (fluorogold – FG or cholera toxin B subunit – CTB) labelling of PVN presympathetic neurons combined with immunohistochemistry for GABA and nNOS was used to identify the terminal neuronal targets of the ascending projection from the NTS. It was shown that NTS afferent terminals are apposed to either PVN-GABA interneurons or to nitric oxide producing neurons or even directly to presympathetic neurons. Furthermore, there was evidence that some NTS axons were positive for vesicular glutamate transporter 2 (vGLUT2). The data provide an anatomical basis for the different functions of cardiovascular receptors that mediate their actions via the NTS–PVN pathways. PMID:22698695

  4. Exposure to a complex cocktail of environmental endocrine-disrupting compounds disturbs the kisspeptin/GPR54 system in ovine hypothalamus and pituitary gland.

    Science.gov (United States)

    Bellingham, Michelle; Fowler, Paul A; Amezaga, Maria R; Rhind, Stewart M; Cotinot, Corinne; Mandon-Pepin, Beatrice; Sharpe, Richard M; Evans, Neil P

    2009-10-01

    Ubiquitous environmental chemicals, including endocrine-disrupting chemicals (EDCs), are associated with declining human reproductive health, as well as an increasing incidence of cancers of the reproductive system. Verifying such links requires animal models exposed to "real-life," environmentally relevant concentrations/mixtures of EDC, particularly in utero, when sensitivity to EDC exposure is maximal. We evaluated the effects of maternal exposure to a pollutant cocktail (sewage sludge) on the ovine fetal reproductive neuroendocrine axes, particularly the kisspeptin (KiSS-1)/GPR54 (G-protein-coupled receptor 54) system. KiSS-1, GPR54, and ERalpha (estrogen receptor alpha) mRNA expression was quantified in control (C) and treated (T) maternal and fetal (110-day) hypothalami and pituitary glands using semiquantitative reverse transcription polymerase chain reaction, and colocalization of kisspeptin with LHbeta (luteinizing hormone beta) and ERalpha in C and T fetal pituitary glands quantified using dual-labeling immunohistochemistry. Fetuses exposed in utero to the EDC mixture showed reduced KiSS-1 mRNA expression across three hypothalamic regions examined (rostral, mid, and caudal) and had fewer kisspetin immunopositive cells colocalized with both LHbeta and ERalpha in the pituitary gland. In contrast, treatment had no effect on parameters measured in the adult ewe hypothalamus or pituitary. This study demonstrates that the developing fetus is sensitive to real-world mixtures of environmental chemicals, which cause significant neuroendocrine alterations. The important role of kisspeptin/GPR54 in regulating puberty and adult reproduction means that in utero disruption of this system is likely to have long-term consequences in adulthood and represents a novel, additional pathway through which environmental chemicals perturb human reproduction.

  5. Hypothalamus-pituitary-thyroid axis disruption in rats with breast cancer is related to an altered endogenous oxytocin/insulin-regulated aminopeptidase (IRAP) system.

    Science.gov (United States)

    Carrera-González, María Pilar; Ramírez-Expósito, María Jesús; de Saavedra, Jose Manuel Arias; Sánchez-Agesta, Rafael; Mayas, María Dolores; Martínez-Martos, Jose Manuel

    2011-06-01

    Associations of breast cancer with diseases of the thyroid have been repeatedly reported, but the mechanism underlying this association remains to be elucidated. It has been reported that oxytocin (OXT) attenuates the thyroid-stimulating hormone (TSH) release in response to thyrotrophin-releasing hormone (TRH) and decreased plasma levels of TSH as well as the thyroid hormones by an effect mediated by the central nervous system. Oxytocinase (IRAP) is the regulatory proteolytic enzyme reported to hydrolyze OXT. Changes in IRAP activity have been reported in both human breast cancer and N-methyl-nitrosourea (NMU)-induced rat mammary tumours. Here, we measure IRAP activity fluorometrically using cystyl-β-naphthylamide as the substrate, in the hypothalamus-pituitary-thyroid axis together with the circulating levels of OXT, and its relationship with circulating levels of TSH and free thyroxine (fT4), as markers of thyroid function in control rats and rats with breast cancer induced by NMU. We found decreased thyroid function in rats with breast cancer induced by NMU, supported by the existence of lower serum circulating levels of both TSH and fT4 than their corresponding controls. Concomitantly, we found a decrease of hypothalamic IRAP activity and an increase in circulating levels of OXT. We propose that breast cancer increases OXT pituitary release by decreasing its hypothalamic catabolism through IRAP activity, probably due to the alteration of the estrogenic endocrine status. Thus, high circulating levels of OXT decreased TSH release from the pituitary, and therefore, of thyroid hormones from the thyroid, supporting the association between breast cancer and thyroid function disruption.

  6. Galanin neurons in the intermediate nucleus (InM) of the human hypothalamus in relation to sex, age, and gender identity.

    Science.gov (United States)

    Garcia-Falgueras, Alicia; Ligtenberg, Lisette; Kruijver, Frank P M; Swaab, Dick F

    2011-10-15

    The intermediate nucleus (InM) in the preoptic area of the human brain, also known as the sexually dimorphic nucleus of the preoptic area (SDN-POA) and the interstitial nucleus of the anterior hypothalamus-1 (INAH-1) is explored here. We investigated its population of galanin-immunoreactive (Gal-Ir) neurons in relation to sex, age, and gender identity in the postmortem brain of 77 subjects. First we compared the InM volume and number of Gal-Ir neurons of 22 males and 22 females in the course of aging. In a second experiment, we compared for the first time the InM volume and the total and Gal-Ir neuron number in 43 subjects with different gender identities: 14 control males (M), 11 control females (F), 10 male-to-female (MtF) transsexual people, and 5 men who were castrated because of prostate cancer (CAS). In the first experiment we found a sex difference in the younger age group ( 45 years. In the second experiment the MtF transsexual group presented an intermediate value for the total InM neuron number and volume that did not seem different in males and females. Because the CAS group did not have total neuron numbers that were different from the intact males, the change in adult circulating testosterone levels does not seem to explain the intermediate values in the MtF group. Organizational and activational hormone effects on the InM are discussed. Copyright © 2011 Wiley-Liss, Inc.

  7. Ghrelin fibers from lateral hypothalamus project to nucleus tractus solitaries and are involved in gastric motility regulation in cisplatin-treated rats.

    Science.gov (United States)

    Gong, Yanling; Liu, Yang; Liu, Fei; Wang, Shasha; Jin, Hong; Guo, Feifei; Xu, Luo

    2017-03-15

    Ghrelin can alleviate cancer chemotherapy-induced dyspepsia in rodents, though the neural mechanisms involved are not known. Therefore, ghrelin projections from the lateral hypothalamus (LH) and its involvement in the regulation of gastric motility in cisplatin-treated rats were investigated with a multi-disciplined approach. Retrograde tracing combined with fluoro-immunohistochemical staining were used to investigate ghrelin fiber projections arising from LH and projecting to nucleus tractus solitaries (NTS). Results revealed that ghrelin fibers originating in LH project to NTS. Expression of ghrelin and its receptor growth hormone secretagogue receptor (GHS-R1a) in LH and NTS were detected by Western Blot. 2days after cisplatin dosing, expression of ghrelin in LH decreased while GHS-R1a in both LH and NTS increased. In electrophysiological experiments, the effects of N-methyl-d-aspartate (NMDA) microinjection in LH on neuronal discharge of gastric distension-responsive neurons in NTS and gastric motility were assessed. NMDA in LH excited most of ghrelin-responsive gastric distension (GD)-sensitive neurons in NTS and promoted gastric motility. This effect was partially blocked by ghrelin antibody in NTS. Furthermore, the excitatory effects of NMDA in cisplatin-treated rats were weaker than those in saline-treated rats. Behaviorally, cisplatin induced a significant increase of kaolin consumption and decrease of food intake. These studies reveal a decreased expression of ghrelin in LH and up-regulation of GHS-R1a in LH and NTS, which are involved in the regulation of GD neuronal discharge in NTS and gastric motility. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Ipsilateral feeding-specific circuits between the nucleus accumbens shell and the lateral hypothalamus: regulation by glutamate and GABA receptor subtypes.

    Science.gov (United States)

    Urstadt, Kevin R; Kally, Peter; Zaidi, Sana F; Stanley, B Glenn

    2013-04-01

    The nucleus accumbens shell (AcbSh) and the lateral hypothalamus (LH) are both involved in the control of food intake. Activation of GABA(A) receptors or blockade of AMPA and kainate receptors within the AcbSh induces feeding, as does blockade of GABA(A) receptors or activation of NMDA receptors in the LH. Further, evidence suggests that feeding induced via the AcbSh can be suppressed by LH inhibition. However, it is unclear if this suppression is specific to feeding. Adult male Sprague-Dawley rats with 3 intracranial guide cannulas, one unilaterally into the AcbSh and two bilaterally into the LH, were used to explore this issue. DNQX (1.25 μg) or muscimol (100 ng) infused into the AcbSh unilaterally elicited feeding, and this elicited intake was suppressed by bilateral LH injection of d-AP5 (2 μg) or muscimol (25 ng). The effectiveness of d-AP5 or muscimol infusion into either the LH site ipsilateral or contralateral to the AcbSh injection was compared. Ipsilateral LH injection of d-AP5 or muscimol was significantly more effective than contralateral injection in suppressing food intake initiated by AcbSh injection of DNQX or muscimol. These results add to the prior evidence that inhibition of the LH through pharmacological modulation of NMDA or GABA(A) receptors specifically suppresses feeding initiated by AcbSh inhibition, and that these two regions communicate via an ipsilateral circuit to specifically regulate feeding. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Combined effects of perfluorooctane sulfonate (PFOS) and maternal restraint stress on hypothalamus adrenal axis (HPA) function in the offspring of mice

    International Nuclear Information System (INIS)

    Ribes, Diana; Fuentes, Silvia; Torrente, Margarita; Colomina, M. Teresa; Domingo, Jose L.

    2010-01-01

    Although it is known that prenatal exposure to perfluorooctane sulfonate (PFOS) can cause developmental adverse effects in mammals, the disruptive effects of this compound on hormonal systems are still controversial. Information concerning the effects of PFOS on hypothalamus adrenal (HPA) axis response to stress and corticosterone levels is not currently available. On the other hand, it is well established that stress can enhance the developmental toxicity of some chemicals. In the present study, we assessed the combined effects of maternal restraint stress and PFOS on HPA axis function in the offspring of mice. Twenty plug-positive female mice were divided in two groups. Animals were given by gavage 0 and 6 mg PFOS/kg/day on gestation days 12-18. One half of the animals in each group were also subjected to restraint stress (30 min/session, 3 sessions/day) during the same period. Five plug-positive females were also included as non-manipulated controls. At 3 months of age, activity in an open-field and the stress response were evaluated in male and female mice by exposing them to 30 min of restraint stress. Male and female offspring were subsequently sacrificed and blood samples were collected to measure changes in corticosterone levels at four different moments related to stress exposure conditions: before stress exposure, immediately after 30 min of stress exposure, and recuperation levels at 60 and 90 min after stress exposure. Results indicate corticosterone levels were lower in mice prenatally exposed to restraint. In general terms, PFOS exposure decreased corticosterone levels, although this effect was only significant in females. The recuperation pattern of corticosterone was mainly affected by prenatal stress. Interactive effects between PFOS and maternal stress were sex dependent. The current results suggest that prenatal PFOS exposure induced long-lasting effects in mice.

  10. Repeated in vivo exposure of cocaine induces long-lasting synaptic plasticity in hypocretin/orexin-producing neurons in the lateral hypothalamus in mice.

    Science.gov (United States)

    Rao, Yan; Mineur, Yann S; Gan, Geliang; Wang, Alex Hanxiang; Liu, Zhong-Wu; Wu, Xinyuan; Suyama, Shigetomo; de Lecea, Luis; Horvath, Tamas L; Picciotto, Marina R; Gao, Xiao-Bing

    2013-04-01

    Hypocretin (orexin), a neuropeptide synthesized exclusively in the perifornical/lateral hypothalamus, is critical for drug seeking and relapse, but it is not clear how the circuitry centred on hypocretin-producing neurons (hypocretin neurons) is modified by drugs of abuse and how changes in this circuit might alter behaviours related to drug addiction. In this study, we show that repeated, but not single, in vivo cocaine administration leads to a long-lasting, experience-dependent potentiation of glutamatergic synapses on hypocretin neurons in mice following a cocaine-conditioned place preference (CPP) protocol. The synaptic potentiation occurs postsynaptically and probably involves up-regulation of AMPA-type glutamate receptors on hypocretin neurons. Phosphorylation of cAMP response element-binding protein (CREB) is also significantly increased in hypocretin neurons in cocaine-treated animals, suggesting that CREB-mediated pathways may contribute to synaptic potentiation in these cells. Furthermore, the potentiation of synaptic efficacy in hypocretin neurons persists during cocaine withdrawal, but reverses to baseline levels after prolonged abstinence. Finally, the induction of long-term potentiation (LTP) triggered by a high-frequency stimulation is facilitated in hypocretin neurons in cocaine-treated mice, suggesting that long-lasting changes in synapses onto hypocretin neurons would probably be further potentiated by other stimuli (such as concurrent environmental cues) paired with the drug. In summary, we show here that hypocretin neurons undergo experience-dependent synaptic potentiation that is distinct from that reported in other reward systems, such as the ventral tegmental area, following exposure to cocaine. These findings support the idea that the hypocretin system is important for behavioural changes associated with cocaine administration in animals and humans.

  11. Role of D1- and D2-like dopaminergic receptors in the nucleus accumbens in modulation of formalin-induced orofacial pain: Involvement of lateral hypothalamus.

    Science.gov (United States)

    Shafiei, Iman; Vatankhah, Mahsaneh; Zarepour, Leila; Ezzatpanah, Somayeh; Haghparast, Abbas

    2018-05-01

    The role of dopaminergic system in modulation of formalin-induced orofacial nociception has been established. The present study aims to investigate the role of dopaminergic receptors in the nucleus accumbens (NAc) in modulation of nociceptive responses induced by formalin injection in the orofacial region. One hundred and six male Wistar rats were unilaterally implanted with two cannulae into the lateral hypothalamus (LH) and NAc. Intra-LH microinjection of carbachol, a cholinergic receptor agonist, was done 5min after intra-accumbal administration of different doses of SCH23390 (D1-like receptor antagonist) or sulpiride (D2-like receptor antagonist). After 5min, 50μl of 1% formalin was subcutaneously injected into the upper lip for inducing the orofacial pain. Carbachol alone dose-dependently reduced both phases of the formalin-induced orofacial pain. Intra-accumbal administration of SCH23390 (0.25, 1 and 4μg/0.5μl saline) or sulpiride (0.25, 1 and 4μg/0.5μl DMSO) before LH stimulation by carbachol (250nM/0.5μl saline) antagonized the antinociceptive responses during both phases of orofacial formalin test. The effects of D1- and D2-like receptor antagonism on the LH stimulation-induced antinociception were almost similar during the early phase. However, compared to D1-like receptor antagonism, D2-like receptor antagonism was a little more effective but not significant, at blocking the LH stimulation-induced antinociception during the late phase of formalin test. The findings revealed that there is a direct or indirect neural pathway from the LH to the NAc which is at least partially contributed to the modulation of formalin-induced orofacial nociception through recruitment of both dopaminergic receptors in this region. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. GABA receptors in the region of the dorsomedial hypothalamus of rats regulate anxiety in the elevated plus-maze test. II. Physiological measures.

    Science.gov (United States)

    Shekhar, A; Sims, L S; Bowsher, R R

    1993-11-05

    In the previous report, we had shown that blockade and enhancement of GABAA receptors in the DMH of rats increased or decreased the level of anxiety, respectively, as measured by the elevated plus-maze test. The present study was conducted to assess the effects of enhancing GABAA neurotransmission in the DMH of rats on the physiological concomitants of anxiety such as increases in heart rate (HR), blood pressure (BP) and plasma norepinephrine (NE) levels while the animals were placed on the elevated plus-maze. Male Sprague-Dawley rats were equipped with arterial and venous catheters and stereotaxically implanted with microinjection cannulae in the cardiostimulatory region of the DMH where injection of bicuculline methiodide (BMI) elicited increases in heart rate under anesthesia. After recovery, rats were injected with either saline or the GABAA agonist muscimol and their HR, BP and plasma NE responses were measured when confined in the open or the closed arm of the elevated plus-maze. Injection of muscimol into the DMH reduced the increases seen in HR, BP and plasma NE when the rats were confined to either the closed or the open arms in addition to decreasing 'anxiety' in the plus-maze. Injection of muscimol into the areas of the hypothalamus surrounding the DMH did not significantly affect the changes in HR, BP and plasma NE in the plus-maze. Blocking the changes in HR and BP elicited by microinjecting GABAergic drugs into the DMH of rats, with systemic injections of a combination of atropine and the beta-blocker atenolol, did not block the behavioral effects of the GABAergic drugs in the plus-maze test.

  13. Angiotensin type 1a receptors in the paraventricular nucleus of the hypothalamus control cardiovascular reactivity and anxiety-like behavior in male mice.

    Science.gov (United States)

    Wang, Lei; Hiller, Helmut; Smith, Justin A; de Kloet, Annette D; Krause, Eric G

    2016-09-01

    This study tested the hypothesis that deletion of angiotensin type 1a receptors (AT1a) from the paraventricular nucleus of hypothalamus (PVN) attenuates anxiety-like behavior, hypothalamic-pituitary-adrenal (HPA) axis activity, and cardiovascular reactivity. We used the Cre/LoxP system to generate male mice with AT1a specifically deleted from the PVN. Deletion of the AT1a from the PVN reduced anxiety-like behavior as indicated by increased time spent in the open arms of the elevated plus maze. In contrast, PVN AT1a deletion had no effect on HPA axis activation subsequent to an acute restraint challenge but did reduce hypothalamic mRNA expression for corticotropin-releasing hormone (CRH). To determine whether PVN AT1a deletion inhibits cardiovascular reactivity, we measured systolic blood pressure, heart rate, and heart rate variability (HRV) using telemetry and found that PVN AT1a deletion attenuated restraint-induced elevations in systolic blood pressure and elicited changes in HRV indicative of reduced sympathetic nervous activity. Consistent with the decreased HRV, PVN AT1a deletion also decreased adrenal weight, suggestive of decreased adrenal sympathetic outflow. Interestingly, the altered stress responsivity of mice with AT1a deleted from the PVN was associated with decreased hypothalamic microglia and proinflammatory cytokine expression. Collectively, these results suggest that deletion of AT1a from the PVN attenuates anxiety, CRH gene transcription, and cardiovascular reactivity and reduced brain inflammation may contribute to these effects. Copyright © 2016 the American Physiological Society.

  14. Intracerebroventricular tempol administration in older rats reduces oxidative stress in the hypothalamus but does not change STAT3 signalling or SIRT1/AMPK pathway.

    Science.gov (United States)

    Toklu, Hale Z; Scarpace, Philip J; Sakarya, Yasemin; Kirichenko, Nataliya; Matheny, Michael; Bruce, Erin B; Carter, Christy S; Morgan, Drake; Tümer, Nihal

    2017-01-01

    Hypothalamic inflammation and increased oxidative stress are believed to be mechanisms that contribute to obesity. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol), a free radical scavenger, has been shown to reduce inflammation and oxidative stress. We hypothesized that brain infusion of tempol would reduce oxidative stress, and thus would reduce food intake and body weight and improve body composition in rats with age-related obesity and known elevated oxidative stress. Furthermore, we predicted an associated increase in markers of leptin signalling, including the silent mating type information regulator 2 homolog 1 (SIRT1)/5'AMP-activated protein kinase (AMPK) pathway and the signal transducer and activator of transcription 3 (STAT3) pathway. For this purpose, osmotic minipumps were placed in the intracerebroventricular region of young (3 months) and aged (23 months) male Fischer 344 x Brown Norway rats for the continuous infusion of tempol or vehicle for 2 weeks. Tempol significantly decreased (p < 0.01) nicotinamide adenine dinucleotide phosphate oxidase activity in the hypothalamus but failed to reduce food intake or weight gain and did not alter body composition. SIRT1 activity and Acetyl p53 were decreased and phosphorylation of AMPK was increased with age, but they were unchanged with tempol. Basal phosphorylation of STAT3 was unchanged with age or tempol. These results indicate that tempol decreases oxidative stress but fails to alter feeding behaviour, body weight, or body composition. Moreover, tempol does not modulate the SIRT1/AMPK/p53 pathway and does not change leptin signalling. Thus, a reduction in hypothalamic oxidative stress is not sufficient to reverse age-related obesity.

  15. Effects of electrical stimulation of ventral septal area on firing rates of pyrogen-treated thermosensitive neurons in preoptic anterior hypothalamus from rabbits.

    Science.gov (United States)

    Dong, Jun; Xie, Xin-Hua; Lu, Da-Xiang; Fu, Yong-Mei

    2007-01-09

    Although there is considerable evidence supporting that fever evolved as a host defense response, it is important that the rise in body temperature would not be too high. Many endogenous cryogens or antipyretics that limit the rise in body temperature have been identified. Endogenous antipyretics attenuate fever by influencing the thermoregulatory neurons in the preoptic anterior hypothalamus (POAH) and in adjacent septal areas including ventral septal area (VSA). Our previous study showed that intracerebroventricular (I.C.V.) injection of interleukin-1beta (IL-1beta) affected electrophysiological activities of thermosensitive neurons in VSA regions, and electrical stimulation of POAH reversed the effect of IL-1beta. To further investigate the functional electrophysiological connection between POAH and VSA and its mechanisms in thermoregulation, the firing rates of thermosensitive neurons in POAH of forty-seven unit discharge were recorded by using extracellular microelectrode technique in New Zealand white rabbits. Our results show that the firing rates of the warm-sensitive neurons decreased significantly and those of the cold-sensitive neurons increased in POAH when the pyrogen (IL-1beta) was injected I.C.V. The effects of IL-1beta on firing rates in thermosensitive neurons of POAH were reversed by electrical stimulation of VSA. An arginine vasopressin (AVP) V1 antagonist abolished the regulatory effects of VSA on the firing rates in thermosensitive neurons of POAH evoked by IL-1beta. However, an AVP V2 antagonist had no effects. These data indicated that VSA regulates the activities of the thermosensitive neurons of POAH through AVP V1 but not AVP V2 receptor.

  16. Effects of prostaglandin E2 on the electrical properties of thermally classified neurons in the ventromedial preoptic area of the rat hypothalamus

    Directory of Open Access Journals (Sweden)

    Griffin John D

    2005-02-01

    Full Text Available Abstract Background Physiological and morphological evidence suggests that activation of the ventromedial preoptic area of the hypothalamus (VMPO is an essential component of an intravenous LPS-dependent fever. In response to the endogenous pyrogen prostaglandin E2 (PGE2, the majority of temperature insensitive neurons in the VMPO show an increase in firing rate, while warm sensitive neurons are inhibited. We have hypothesized that these PGE2 dependent effects on firing rate are due to changes in the inherent electrical properties of VMPO neurons, which are regulated by the activity of specific ionic currents. Results To characterize the electrical properties of VMPO neurons, whole-cell recordings were made in tissue slices from male Sprague-Dawley rats. Our results indicate that PGE2 dependent firing rate responses were not the result of changes in resting membrane potential, action potential amplitude and duration, or local synaptic input. However, PGE2 reduced the input resistance of all VMPO neurons, while increasing the excitability of temperature insensitive neurons and decreasing the excitability of warm sensitive neurons. In addition, the majority of temperature insensitive neurons responded to PGE2 with an increase in the rate of rise of the depolarizing prepotential that precedes each action potential. This response to PGE2 was reversed for warm sensitive neurons, in which the prepotential rate of rise decreased. Conclusion We would therefore suggest that PGE2 is having an effect on the ionic currents that regulate firing rate by controlling how fast membrane potential rises to threshold during the prepotential phase of the action potential.

  17. Estradiol and progesterone regulate the expression of insulin-like growth factor-I receptor and insulin-like growth factor binding protein-2 in the hypothalamus of adult female rats.

    Science.gov (United States)

    Cardona-Gómez, G P; Chowen, J A; Garcia-Segura, L M

    2000-06-05

    Gonadal hormones interact with insulin-like growthfactor-I (IGF-I) to regulate synaptic plasticity during the estrous cycle in the rat mediobasal hypothalamus. It has been proposed that tanycytes, specialized glial cells lining the ventral region of the third ventricle, may regulate the availability of IGF-I to hypothalamic neurons. IGF-I levels in tanycytes fluctuate during the estrous cycle. Furthermore, estrogen administration to ovariectomized rats increases IGF-I levels in tanycytes, while progesterone, injected simultaneously with estrogen, blocks the estrogen-induced increase of IGF-I levels in tanycytes. To test whether hormonal regulation of IGF-I receptor (IGF-IR) and IGF binding protein-2 (IGFBP-2) may be involved in the accumulation of IGF-I in tanycytes, we assessed the effect of ovarian hormones on the levels of these molecules in the mediobasal hypothalamus of adult female rats. Ovariectomized animals were treated with either oil, estrogen, progesterone, or estrogen and progesterone simultaneously and then killed 6 or 24 h later. Some neurons, some astrocytes, and many tanycytes in the mediobasal hypothalamus were found by confocal microscopy to be immunoreactive for IGF-IR. IGFBP-2 immunoreactivity was restricted almost exclusively to tanycytes and ependymal cells and was colocalized with IGF-IR immunoreactivity in tanycytes. By electron microscope immunocytochemistry using colloidal gold labeling, IGF-IR and IGFBP-2 immunoreactivities were observed in the microvilli of tanycytes in the lumen of the third ventricle. IGF-IR and IGFBP-2 immunoreactive levels on the apical surface of tanycytes were significantly decreased by the administration of progesterone, either alone or in the presence of estradiol. IGF-IR levels in the mediobasal hypothalamus, measured by Western blotting, were not significantly affected by the separate administration of estradiol or progesterone to ovariectomized rats. However, the simultaneous administration of both hormones

  18. Estrogen enhances expression of the complement C5a receptor and the C5a-agonist evoked calcium influx in hormone secreting neurons of the hypothalamus.

    Science.gov (United States)

    Farkas, Imre; Varju, Patricia; Szabo, Emese; Hrabovszky, Erik; Okada, Noriko; Okada, Hidechika; Liposits, Zsolt

    2008-01-01

    In the present study we examined presence of the complement C5a receptor (C5aR) in hypothalamic neurosecretory neurons of the rodent brain and effect of estrogen on C5aR expression. Whole cell patch clamp measurements revealed that magnocellular neurons in the supraoptic and paraventricular nuclei of hypothalamic slices of the rats responded to the C5aR-agonist PL37-MAP peptide with calcium ion current pulses. Gonadotropin-releasing hormone (GnRH) producing neurons in slices of the preoptic area of the mice also reacted to the peptide treatment with inward calcium current. PL37-MAP was able to evoke the inward ion current of GnRH neurons in slices from ovariectomized animals. The amplitude of the inward pulses became higher in slices obtained from 17beta-estradiol (E2) substituted mice. Calcium imaging experiments demonstrated that PL37-MAP increased the intracellular calcium content in the culture of the GnRH-producing GT1-7 cell line in a concentration-dependent manner. Calcium imaging also showed that E2 pretreatment elevated the PL37-MAP evoked increase of the intracellular calcium content in the GT1-7 cells. The estrogen receptor blocker Faslodex in the medium prevented the E2-evoked increase of the PL37-MAP-triggered elevation of the intracellular calcium content in the GT1-7 cells demonstrating that the effect of E2 might be related to the presence of estrogen receptor. Real-time PCR experiments revealed that E2 increased the expression of C5aR mRNA in GT1-7 neurons, suggesting that an increased C5aR synthesis could be involved in the estrogenic modulation of calcium response. These data indicate that hypothalamic neuroendocrine neurons can integrate immune and neuroendocrine functions. Our results may serve a better understanding of the inflammatory and neurodegeneratory diseases of the hypothalamus and the related neuroendocrine and autonomic compensatory responses.

  19. Perinatal Western Diet Consumption Leads to Profound Plasticity and GABAergic Phenotype Changes within Hypothalamus and Reward Pathway from Birth to Sexual Maturity in Rat

    Directory of Open Access Journals (Sweden)

    Julie Paradis

    2017-08-01

    hypothalamus. Altogether, these data reveal that maternal WD, restricted to the perinatal period, has no sustained impact on energy homeostasis and fat preference later in life even though a strong remodeling of the hypothalamic homeostatic and reward pathway involved in eating behavior occurred. Further functional experiments would be needed to understand the relevance of these circuits remodeling.

  20. Fourth ventricle injection of ghrelin decreases angiotensin II-induced fluid intake and neuronal activation in the paraventricular nucleus of the hypothalamus.

    Science.gov (United States)

    Plyler, Kimberly S; Daniels, Derek

    2017-09-01

    Ghrelin acts in the CNS to decrease fluid intake under a variety of dipsogenic and natriorexigenic conditions. Previous studies on this topic, however, focused on the forebrain as a site of action for this effect of ghrelin. Because the hindbrain contains neural substrates that are capable of mediating the well-established orexigenic effects of ghrelin, the current study tested the hypothesis that ghrelin applied to the hindbrain also would affect fluid intake. To this end, water and saline intakes were stimulated by central injection of angiotensin II (AngII) in rats that also received injections of ghrelin (0.5μg/μl) into either the lateral or fourth ventricle. Ghrelin injected into either ventricle reduced both water and 1.8% NaCl intake that was stimulated by AngII. The nature of the intake effect revealed some differences between the injection sites. For example, forebrain application of ghrelin reduced saline intake by a reduction in both the number of licking bursts and the size of each licking burst, but hindbrain application of ghrelin had a more selective effect on burst number. In an attempt to elucidate a brain structure in which hindbrain-administered ghrelin and forebrain-administered AngII interact to cause the ingestive response, we used Fos-immunohistochemistry in rats given the treatments used in the behavioral experiments. Although several brain areas were found to respond to either ghrelin or AngII, of the sites examined, only the paraventricular nucleus of the hypothalamus (PVN) emerged as a potential site of interaction. Specifically, AngII treatment caused expression of Fos in the PVN that was attenuated by concomitant treatment with ghrelin. These experiments provide the novel finding that the hindbrain contains elements that can respond to ghrelin and cause decreases in AngII-induced fluid intake, and that direct actions by ghrelin on forebrain structures is not necessary. Moreover, these studies suggest that the PVN is an important site

  1. Inhalation of air polluted with gasoline vapours alters the levels of amino acid neurotransmitters in the cerebral cortex, hippocampus, and hypothalamus of the rat.

    Science.gov (United States)

    Kinawy, Amal A; Ezzat, Ahmed R; Al-Suwaigh, Badryah R

    2014-08-01

    This study was designed to investigate the impact of exposure to the vapours of two kinds of gasoline, a widely used fuel for the internal combustion engines on the levels of the amino acid neurotransmitters of the rat brain. Recent studies provide strong evidence for a causative role for traffic-related air pollution on morbidity outcomes as well as premature death (Health Effects Institute, 2009; Levy et al., 2010; von Stackelberg et al., 2013). Exposure to the vapours of gasoline or its constituents may be accidental, occupational by workers at fuel stations and factories, or through abuse as a mean of mood alteration (Fortenberry, 1985; Mc Garvey et al., 1999). Two kinds of gasoline that are common in Egypt have been used in this study. The first contains octane enhancers in the form of lead derivatives (leaded gasoline; G1) and the other contains methyl-tertiary butyl ether (MTBE) as the octane enhancer (unleaded gasoline; G2). The levels of the major excitatory (aspartic acid and glutamic acid) and the inhibitory (GABA and glycine) amino acid neurotransmitters were determined in the cerebral cortex, hippocampus, and hypothalamus. The current study revealed that the acute inhalation of air polluted with the two types of gasoline vapours (1/2 LC50 for 30 min) induced elevation in the levels of aspartic and glutamic acids along with a decrease in glycine and GABA in most studied brain areas. Chronic inhalation of both types of gasoline (a single daily 30-min session of 1/5 LC50 for 60 days) caused a significant increase in the aspartic and glutamic acid concentrations of the hippocampus without affecting the levels of GABA or glycine. Acute and chronic inhalation of either one of G1 and G2 vapours induced a disturbance and fluctuation in the levels of the free amino acids that act as excitatory and inhibitory neurotransmitters in the brain areas under investigation. These neurotransmitters are fundamental for the communicative functioning of the neurons and such

  2. Cyclic ADP-ribose and heat regulate oxytocin release via CD38 and TRPM2 in the hypothalamus during social or psychological stress in mice

    Directory of Open Access Journals (Sweden)

    Jing Zhong

    2016-07-01

    Full Text Available Hypothalamic oxytocin (OT is released into the brain by cyclic ADP-ribose (cADPR with or without depolarizing stimulation. Previously, we showed that the intracellular free calcium concentration ([Ca2+]i that seems to trigger OT release can be elevated by -NAD+, cADPR, and ADP in mouse oxytocinergic neurons. As these -NAD+ metabolites activate warm-sensitive TRPM2 cation channels, when the incubation temperature is increased, the [Ca2+]i in hypothalamic neurons is elevated. However, it has not been determined whether OT release is facilitated by heat in vitro or hyperthermia in vivo in combination with cADPR. Furthermore, it has not been examined whether CD38 and TRPM2 exert their functions on OT release during stress or stress-induced hyperthermia in relation to the anxiolytic roles and social behaviors of OT under stress conditions. Here, we report that OT release from the isolated hypothalami of male mice in culture was enhanced by extracellular application of cADPR or increasing the incubation temperature from 35°C to 38.5°C, and simultaneous stimulation showed a greater effect. This release was inhibited by a cADPR-dependent ryanodine receptor inhibitor and a nonspecific TRPM2 inhibitor. The facilitated release by heat and cADPR was suppressed in the hypothalamus isolated from CD38 knockout mice and CD38- or TRPM2-knockdown mice. In the course of these experiments, we noted that OT release differed markedly between individual mice under stress with group housing. That is, when male mice received cage-switch stress and eliminated due to their social subclass, significantly higher levels of OT release were found in subordinates compared with ordinates. In mice exposed to anxiety stress in an open field, the cerebrospinal fluid (CSF OT level increased transiently at 5 minutes after exposure, and the rectal temperature also increased from 36.6°C to 37.8°C. OT levels in the CSF of mice with lipopolysaccharide-induced fever (+0.8

  3. Inhibition of central de novo ceramide synthesis restores insulin signaling in hypothalamus and enhances β-cell function of obese Zucker rats

    Directory of Open Access Journals (Sweden)

    Mélanie Campana

    2018-02-01

    Full Text Available Objectives: Hypothalamic lipotoxicity has been shown to induce central insulin resistance and dysregulation of glucose homeostasis; nevertheless, elucidation of the regulatory mechanisms remains incomplete. Here, we aimed to determine the role of de novo ceramide synthesis in hypothalamus on the onset of central insulin resistance and the dysregulation of glucose homeostasis induced by obesity. Methods: Hypothalamic GT1-7 neuronal cells were treated with palmitate. De novo ceramide synthesis was inhibited either by pharmacological (myriocin or molecular (si-Serine Palmitoyl Transferase 2, siSPT2 approaches. Obese Zucker rats (OZR were intracerebroventricularly infused with myriocin to inhibit de novo ceramide synthesis. Insulin resistance was determined by quantification of Akt phosphorylation. Ceramide levels were quantified either by a radioactive kinase assay or by mass spectrometry analysis. Glucose homeostasis were evaluated in myriocin-treated OZR. Basal and glucose-stimulated parasympathetic tonus was recorded in OZR. Insulin secretion from islets and β-cell mass was also determined. Results: We show that palmitate impaired insulin signaling and increased ceramide levels in hypothalamic neuronal GT1-7 cells. In addition, the use of deuterated palmitic acid demonstrated that palmitate activated several enzymes of the de novo ceramide synthesis pathway in hypothalamic cells. Importantly, myriocin and siSPT2 treatment restored insulin signaling in palmitate-treated GT1-7 cells. Protein kinase C (PKC inhibitor or a dominant-negative PKCζ also counteracted palmitate-induced insulin resistance. Interestingly, attenuating the increase in levels of hypothalamic ceramides with intracerebroventricular infusion of myriocin in OZR improved their hypothalamic insulin-sensitivity. Importantly, central myriocin treatment partially restored glucose tolerance in OZR. This latter effect is related to the restoration of glucose-stimulated insulin

  4. Repeated exposure to two stressors in sequence demonstrates that corticosterone and paraventricular nucleus of the hypothalamus interleukin-1β responses habituate independently.

    Science.gov (United States)

    Lovelock, D F; Deak, T

    2017-09-01

    A wide range of stress-related pathologies such as post-traumatic stress disorder are considered to arise from aberrant or maladaptive forms of stress adaptation. The hypothalamic-pituitary-adrenal (HPA) axis readily adapts to repeated stressor exposure, yet little is known about adaptation in neuroimmune responses to repeated or sequential stress challenges. In Experiment 1, rats were exposed to 10 days of restraint alone (60 minutes daily), forced swim alone (30 minutes daily) or daily sequential exposure to restraint (60 minutes) followed immediately by forced swim (30 minutes), termed sequential stress exposure. Habituation of the corticosterone (CORT) response occurred to restraint by 5 days and swim at 10 days, whereas rats exposed to sequential stress exposure failed to display habituation to the combined challenge. Experiment 2 compared 1 or 5 days of forced swim with sequential stress exposure and examined how each affected expression of several neuroimmune and cellular activation genes in the paraventricular nucleus of the hypothalamus (PVN), prefrontal cortex (PFC) and hippocampus (HPC). Sequential exposure to restraint and swim increased interleukin (IL)-1β in the PVN, an effect that was attenuated after 5 days. Sequential stress exposure also elicited IL-6 and tumour necrosis factor-α responses in the HPC and PFC, respectively, which did not habituate after 5 days. Experiment 3 tested whether prior habituation to restraint (5 days) would alter the IL-1β response evoked by swim exposure imposed immediately after the sixth day of restraint. Surprisingly, a history of repeated exposure to restraint attenuated the PVN IL-1β response after swim in comparison to acutely-exposed subjects despite an equivalent CORT response. Overall, these findings suggest that habituation of neuroimmune responses to stress proceeds: (i) independent of HPA axis habituation; (ii) likely requires more daily sessions of stress to develop; and (iii) IL-1β displays

  5. Effects of electrical stimulation of the hunger center in the lateral hypothalamus and food reinforcement on impulse activity of the stomach in rabbits under conditions of hunger and satiation.

    Science.gov (United States)

    Zenina, O Yu; Kromin, A A

    2012-10-01

    Stimulation of the lateral hypothalamus in preliminary fed animals in the presence of the food is associated with successful food-procuring behavior, accompanied by regular generation of high-amplitude slow electrical waves by muscles of the lesser curvature, body, and antrum of the stomach, which was reflected in the structure of temporal organization of slow electrical activity in the form of unimodal distribution of slow wave periods typical of satiation state. Despite increased level of food motivation caused by stimulation of the lateral hypothalamus, the additional food intake completely abolished the inhibitory effects of hunger motivation excitement on slow electrical muscle activity in the lesser curvature, body, and antrum of the stomach of satiated rabbits. Changes in slow electrical activity of the stomach muscles in rabbits deprived of food over 24 h and offered food and associated food-procuring behavior during electrical stimulation of the lateral hypothalamus have a two-phase pattern. Despite food intake during phase I of electrical stimulation, the downstream inhibitory effect of hunger motivation excitement on myogenic pacemaker of the lesser curvature of stomach abolishes the stimulating effect of food reinforcement on slow electrical muscle activity in the lesser curvature, body, and antrum of the stomach. During phase II of electrical stimulation, the food reinforcement decreases inhibitory effect of hunger motivation excitement on myogenic pacemaker of the lesser curvature that paces maximal rhythm of slow electrical waves for muscles activity in the lesser curvature, body, and antrum of the stomach, which is reflected by unimodal distribution of slow electrical wave periods. Our results indicated that the structure of temporal organization of slow electrical activity of the stomach muscles reflects convergent interactions of food motivation and reinforcement excitations on the dorsal vagal complex neurons in medulla oblongata.

  6. Changes in the 5-HT2A receptor system in the pre-mammillary hypothalamus of the ewe are related to regulation of LH pulsatile secretion by an endogenous circannual rhythm

    Directory of Open Access Journals (Sweden)

    Karsch Fred J

    2003-01-01

    Full Text Available Abstract Background We wanted to determine if changes in the expression of serotonin 2A receptor (5HT2A receptor gene in the premammillary hypothalamus are associated with changes in reproductive neuroendocrine status. Thus, we compared 2 groups of ovariectomized-estradiol-treated ewes that expressed high vs low LH pulsatility in two different paradigms (2 groups per paradigm: (a refractoriness (low LH secretion or not (high LH secretion to short days in pineal-intact Ile-de-France ewes (RSD and (b endogenous circannual rhythm (ECR in free-running pinealectomized Suffolk ewes in the active or inactive stage of their reproductive rhythm. Results In RSD ewes, density of 5HT2A receptor mRNA (by in situ hybridization was significantly higher in the high LH group (25.3 ± 1.4 vs 21.4 ± 1.5 grains/neuron, P 3H-Ketanserin binding (a specific radioligand of the median part of the premammillary hypothalamus tended to be higher in the high group (29.1 ± 4.0 vs 24.6 ± 4.2 fmol/mg tissu-equivalent; P A receptor mRNA and 3H-Ketanserin binding were both significantly higher in the high LH group (20.8 ± 1.6 vs 17.0 ± 1.5 grains/neuron, P Conclusions We conclude that these higher 5HT2A receptor gene expression and binding activity of 5HT2A receptor in the premammillary hypothalamus are associated with stimulation of LH pulsatility expressed before the development of refractoriness to short days and prior to the decline of reproductive neuroendocrine activity during expression of the endogenous circannual rhythm.

  7. Radiation necrosis of the optic chiasm, optic tract, hypothalamus, and upper pons after radiotherapy for pituitary adenoma, detected by gadolinium-enhanced, T1-weighted magnetic resonance imaging: Case report

    International Nuclear Information System (INIS)

    Tachibana, O.; Yamaguchi, N.; Yamashima, T.; Yamashita, J.

    1990-01-01

    A 26-year-old woman was treated for a prolactin secreting pituitary adenoma by surgery and radiotherapy (5860 rads). Fourteen months later, she developed right hemiparesis and dysarthria. A T1-weighted magnetic resonance imaging scan using gadolinium contrast showed a small, enhanced lesion in the upper pons. Seven months later, she had a sudden onset of loss of vision, and radiation optic neuropathy was diagnosed. A T1-weighted magnetic resonance imaging scan showed widespread gadolinium-enhanced lesions in the optic chiasm, optic tract, and hypothalamus. Magnetic resonance imaging is indispensable for the early diagnosis of radiation necrosis, which is not visualized by radiography or computed tomography

  8. Distribution of serotonin 5-HT1A-binding sites in the brainstem and the hypothalamus, and their roles in 5-HT-induced sleep and ingestive behaviors in rock pigeons (Columba livia).

    Science.gov (United States)

    Dos Santos, Tiago Souza; Krüger, Jéssica; Melleu, Fernando Falkenburger; Herold, Christina; Zilles, Karl; Poli, Anicleto; Güntürkün, Onur; Marino-Neto, José

    2015-12-15

    Serotonin 1A receptors (5-HT1ARs), which are widely distributed in the mammalian brain, participate in cognitive and emotional functions. In birds, 5-HT1ARs are expressed in prosencephalic areas involved in visual and cognitive functions. Diverse evidence supports 5-HT1AR-mediated 5-HT-induced ingestive and sleep behaviors in birds. Here, we describe the distribution of 5-HT1ARs in the hypothalamus and brainstem of birds, analyze their potential roles in sleep and ingestive behaviors, and attempt to determine the involvement of auto-/hetero-5-HT1ARs in these behaviors. In 6 pigeons, the anatomical distribution of [(3)H]8-OH-DPAT binding in the rostral brainstem and hypothalamus was examined. Ingestive/sleep behaviors were recorded (1h) in 16 pigeons pretreated with MM77 (a heterosynaptic 5-HT1AR antagonist; 23 or 69 nmol) for 20 min, followed by intracerebroventricular ICV injection of 5-HT (N:8; 150 nmol), 8-OH-DPAT (DPAT, a 5-HT1A,7R agonist, 30 nmol N:8) or vehicle. 5-HT- and DPAT-induced sleep and ingestive behaviors, brainstem 5-HT neuronal density and brain 5-HT content were examined in 12 pigeons, pretreated by ICV with the 5-HT neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) or vehicle (N:6/group). The distribution of brainstem and diencephalic c-Fos immunoreactivity after ICV injection of 5-HT, DPAT or vehicle (N:5/group) into birds provided with or denied access to water is also described. 5-HT1ARs are concentrated in the brainstem 5-HTergic areas and throughout the periventricular hypothalamus, preoptic nuclei and circumventricular organs. 5-HT and DPAT produced a complex c-Fos expression pattern in the 5-HT1AR-enriched preoptic hypothalamus and the circumventricular organs, which are related to drinking and sleep regulation, but modestly affected c-Fos expression in 5-HTergic neurons. The 5-HT-induced ingestivebehaviors and the 5-HT- and DPAT-induced sleep behaviors were reduced by MM77 pretreatment. 5,7-DHT increased sleep per se, decreased tryptophan

  9. Molecular characterization of Kiss2 receptor and in vitro effects of Kiss2 on reproduction-related gene expression in the hypothalamus of half-smooth tongue sole (Cynoglossus semilaevis).

    Science.gov (United States)

    Wang, Bin; Liu, Quan; Liu, Xuezhou; Xu, Yongjiang; Shi, Bao

    2017-08-01

    Kisspeptin (Kiss) and its receptor, KissR (previously known as GPR54), play a critical role in the control of reproduction and puberty onset in mammals. Additionally, a number of studies have provided evidence of the existence of multiple Kiss/KissR systems in teleosts, but the physiological relevance and functions of these kisspeptin forms (Kiss1 and Kiss2) still remain to be investigated. To this end, we examined the direct actions of Kiss2 on hypothalamic functions in the half-smooth tongue sole (Cynoglossus semilaevis), a representative species of the order Pleuronectiformes. As a first step, the full-length cDNA for kiss2r was identified and kiss2r transcripts were shown to be widely expressed in various tissues, notably in the brain of tongue sole. Then, the effects of Kiss2 decapeptide on reproduction-related gene expression were evaluated using a primary hypothalamus culture system. Our results showed that neither gnrh2 nor gnrh3 mRNA levels were altered by Kiss2. However, Kiss2 significantly increased the amounts of gnih and kiss2 mRNAs. In contrast, Kiss2 elicited an evident inhibitory effect on both gnihr and kiss2r mRNA levels. To the best of our knowledge, this is the first description of a direct and differential regulation of reproduction-related gene expression by Kiss2 at the hypothalamus level of a teleost fish. Overall, this study provides novel information on the role of Kiss2/Kiss2R system in the reproductive function of teleosts. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Catechol estrogen formation by brain tissue: characterization of a direct product isolation assay for estrogen-2- and 4-hydroxylase activity and its application to studies of 2- and 4-hydroxyestradiol formation by rabbit hypothalamus

    International Nuclear Information System (INIS)

    Hersey, R.M.; Williams, K.I.; Weisz, J.

    1981-01-01

    A direct product isolation assay for quantifying the formation of 2- and 4-hydroxyestradiol (2-OHE2 and 4-OHE2) from [6,7-3H]estradiol by rabbit hypothalami in vitro was developed, and the assay was used to characterize some properties of estrogen-2- and 4-hydroxylase activity in this tissue. The reaction was carried out under conditions that minimized further metabolism of enzymatically formed catechol estrogens. A simple two-step separation procedure, involving the use of a neutral alumina column, followed by thin layer chromatography, was developed to isolate the enzymatically formed catechol estrogens in a radiochemically homogeneous form. The detergent, Tween-80, was found to activate the enzyme and was used routinely at a concentration of 0.1% in the assay. The formation of 2-OHE2 was linear up to 10 min and with increasing protein concentrations up to 150 micrograms/incubation. Similar values were obtained for 4-OHE2. Maximum velocities (Vmax) for the formation of 2- and 4-OHE2 were 190 and 270 pmol/mg protein . 10 min, respectively. The apparent Km values with respect to estradiol for 2-OHE2 and 4-OHE2 were 125 and 150 microM, respectively. The highest specific activity for the enzyme was present in the 100,000 X g supernatant (S3), while the activity in the microsomal fraction (P3) was less than that in the original homogenate. Enzyme activity depended on the presence of NADPH and oxygen and was inhibited by CO as well as by high concentrations of SKF-525A. Estrogen-2- and 4-hydroxylase activity in rabbit hypothalamus differed from that in rat liver in two respects. In the liver, enzyme activity was localized in the microsomal fraction and was virtually abolished by Tween-80. In contrast, enzyme activity in rabbit hypothalamus was maximal in the soluble fraction (100,000 X g supernatant)and was stimulated by the detergent

  11. An optimized method for neurotransmitters and their metabolites analysis in mouse hypothalamus by high performance liquid chromatography-Q Exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry.

    Science.gov (United States)

    Yang, Zong-Lin; Li, Hui; Wang, Bing; Liu, Shu-Ying

    2016-02-15

    Neurotransmitters (NTs) and their metabolites are known to play an essential role in maintaining various physiological functions in nervous system. However, there are many difficulties in the detection of NTs together with their metabolites in biological samples. A new method for NTs and their metabolites detection by high performance liquid chromatography coupled with Q Exactive hybrid quadruple-orbitrap high-resolution accurate mass spectrometry (HPLC-HRMS) was established in this paper. This method was a great development of the applying of Q Exactive MS in the quantitative analysis. This method enabled a rapid quantification of ten compounds within 18min. Good linearity was obtained with a correlation coefficient above 0.99. The concentration range of the limit of detection (LOD) and the limit of quantitation (LOQ) level were 0.0008-0.05nmol/mL and 0.002-25.0nmol/mL respectively. Precisions (relative standard deviation, RSD) of this method were at 0.36-12.70%. Recovery ranges were between 81.83% and 118.04%. Concentrations of these compounds in mouse hypothalamus were detected by Q Exactive LC-MS technology with this method. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Expression of mRNA for galanin, galanin-like peptide and galanin receptors 1-3 in the ovine hypothalamus and pituitary gland: effects of age and gender.

    Science.gov (United States)

    Whitelaw, Christine Margaret; Robinson, Jane Elizabeth; Chambers, George Ballantine; Hastie, Peter; Padmanabhan, Vasantha; Thompson, Robert Charles; Evans, Neil Price

    2009-01-01

    The neurotransmitters/neuromodulators galanin (GAL) and galanin-like peptide (GALP) are known to operate through three G protein-coupled receptors, GALR1, GALR2 and GALR3. The aim of this study was to investigate changes in expression of mRNA for galanin, GALP and GALR1-3 in the hypothalamus and pituitary gland, of male and female sheep, to determine how expression changed in association with growth and the attainment of reproductive competence. Tissue samples from the hypothalami and pituitary glands were analysed from late foetal and pre-pubertal lambs and adult sheep. Although mRNA for galanin and GALR1-3 was present in both tissues, at all ages and in both genders, quantification of GALP mRNA was not possible due to its low levels of expression. mRNA expression for both galanin and its receptors was seen to change significantly in both tissues as a function of age. Specifically, hypothalamic galanin mRNA expression increased with age in the male, but decreased with age in the female pituitary gland. mRNA expression for all receptors increased between foetal and pre-pubertal age groups and decreased significantly between pre-pubertal and adult animals. The results indicate that the expression of mRNA for galanin and its receptors changes dynamically with age and those significant differences exist with regard to tissue type and gender. These changes suggest that galaninergic neuroendocrine systems could be involved in the regulation of ovine growth and or the development of reproductive competence. The roles played by these systems in the sheep, however, may differ from other species, in particular the neuroendocrine link between nutrition and reproduction and GALR1's role in pituitary signalling.

  13. 3,5-Diiodo-L-thyronine (3,5-t2) exerts thyromimetic effects on hypothalamus-pituitary-thyroid axis, body composition, and energy metabolism in male diet-induced obese mice.

    Science.gov (United States)

    Jonas, Wenke; Lietzow, Julika; Wohlgemuth, Franziska; Hoefig, Carolin S; Wiedmer, Petra; Schweizer, Ulrich; Köhrle, Josef; Schürmann, Annette

    2015-01-01

    Effective and safe antiobesity drugs are still needed in face of the obesity pandemic worldwide. Recent interventions in rodents revealed 3,5-diiodo-L-thyronine (3,5-T2) as a metabolically active iodothyronine affecting energy and lipid metabolism without thyromimetic side effects typically associated with T3 administration. Accordingly, 3,5-T2 has been proposed as a potential hypolipidemic agent for treatment of obesity and hepatic steatosis. In contrast to other observations, our experiments revealed dose-dependent thyromimetic effects of 3,5-T2 akin to those of T3 in diet-induced obese male C57BL/6J mice. 3,5-T2 treatment exerted a negative feedback regulation on the hypothalamus-pituitary-thyroid axis, similar to T3. This is demonstrated by decreased expression of genes responsive to thyroid hormones (TH) in pituitary resulting in a suppressed thyroid function with lower T4 and T3 concentrations in serum and liver of 3,5-T2-treated mice. Analyses of hepatic TH target genes involved in lipid metabolism revealed T3-like changes in gene expression and increased type I-deiodinase activity after application of 3,5-T2 (2.5 μg/g body weight). Reduced hepatic triglyceride and serum cholesterol concentrations reflected enhanced lipid metabolism. Desired increased metabolic rate and reduction of different fat depots were, however, compromised by increased food intake preventing significant body weight loss. Moreover, enlarged heart weights indicate potential cardiac side effects of 3,5-T2 beyond hepatic thyromimetic actions. Altogether, the observed thyromimetic effects of 3,5-T2 in several mouse TH target tissues raise concern about indiscriminate administration of 3,5-T2 as powerful natural hormone for the treatment of hyperlipidemia and pandemic obesity.

  14. Emotional exhaustion and overcommitment to work are differentially associated with hypothalamus-pituitary-adrenal (HPA) axis responses to a low-dose ACTH1-24 (Synacthen) and dexamethasone-CRH test in healthy school teachers.

    Science.gov (United States)

    Wolfram, Maren; Bellingrath, Silja; Feuerhahn, Nicolas; Kudielka, Brigitte M

    2013-01-01

    Evidence for a detrimental impact of chronic work stress on health has accumulated in epidemiological research. Recent studies indicate altered hypothalamus-pituitary-adrenal (HPA) axis regulation as a possible biological pathway underlying the link between stress and disease. However, the direction of dysregulation remains unclear, with reported HPA hyper- or hyporeactivity. To disentangle potential effects on different functional levels in the HPA axis, we examined responses using two pharmacological stimulation tests in 53 healthy teachers (31 females, 22 males; mean age: 49.3 years; age range: 30-64 years): a low-dose adrenocorticotrophic hormone (ACTH(1-24), Synacthen) test was used to assess adrenal cortex sensitivity and the combined dexamethasone-corticotropin releasing hormone (DEX-CRH) test to examine pituitary and adrenal cortex reactivity. Blood and saliva samples were collected at - 1,+15,+30,+45,+60,+90,+120 min. Emotional exhaustion (EE), the core dimension of burnout, was measured with the Maslach Burnout Inventory. Overcommitment (OC) was assessed according to Siegrist's effort-reward-imbalance model. We found a significant association between EE and higher plasma cortisol profiles after Synacthen (p = 0.045). By contrast, OC was significantly associated with attenuated ACTH (p = 0.045), plasma cortisol (p = 0.005), and salivary cortisol (p = 0.023) concentrations following DEX-CRH. Results support the notion of altered HPA axis regulation in chronically work-stressed teachers, with differential patterns of hyper- and hyporeactivity depending on individual stress condition and the tested functional level of the HPA axis.

  15. NMDA and AMPA/kainate glutamatergic receptors in the prelimbic medial prefrontal cortex modulate the elaborated defensive behavior and innate fear-induced antinociception elicited by GABAA receptor blockade in the medial hypothalamus.

    Science.gov (United States)

    de Freitas, Renato Leonardo; Salgado-Rohner, Carlos José; Biagioni, Audrey Francisco; Medeiros, Priscila; Hallak, Jaime Eduardo Cecílio; Crippa, José Alexandre S; Coimbra, Norberto Cysne

    2014-06-01

    The aim of the present study was to investigate the involvement of N-methyl-d-aspartate (NMDA) and amino-3-hydroxy-5-methyl-isoxazole-4-proprionate (AMPA)/kainate receptors of the prelimbic (PL) division of the medial prefrontal cortex (MPFC) on the panic attack-like reactions evoked by γ-aminobutyric acid-A receptor blockade in the medial hypothalamus (MH). Rats were pretreated with NaCl 0.9%, LY235959 (NMDA receptor antagonist), and NBQX (AMPA/kainate receptor antagonist) in the PL at 3 different concentrations. Ten minutes later, the MH was treated with bicuculline, and the defensive responses were recorded for 10 min. The antagonism of NMDA receptors in the PL decreased the frequency and duration of all defensive behaviors evoked by the stimulation of the MH and reduced the innate fear-induced antinociception. However, the pretreatment of the PL cortex with NBQX was able to decrease only part of defensive responses and innate fear-induced antinociception. The present findings suggest that the NMDA-glutamatergic system of the PL is critically involved in panic-like responses and innate fear-induced antinociception and those AMPA/kainate receptors are also recruited during the elaboration of fear-induced antinociception and in panic attack-related response. The activation of the glutamatergic neurotransmission of PL division of the MPFC during the elaboration of oriented behavioral reactions elicited by the chemical stimulation of the MH recruits mainly NMDA receptors in comparison with AMPA/kainate receptors.

  16. Thyroid hormone signaling in the hypothalamus

    NARCIS (Netherlands)

    Alkemade, Anneke; Visser, Theo J.; Fliers, Eric

    2008-01-01

    PURPOSE OF REVIEW: Proper thyroid hormone signaling is essential for brain development and adult brain function. Signaling can be disrupted at many levels due to altered thyroid hormone secretion, conversion or thyroid hormone receptor binding. RECENT FINDINGS: Mutated genes involved in thyroid

  17. Demographic consequences of invasion by a native, controphic competitor to an insular bird population.

    Science.gov (United States)

    Johnson, K M; Germain, R R; Tarwater, C E; Reid, J M; Arcese, P

    2018-05-01

    Species invasions and range shifts can lead to novel competitive interactions between historically resident and colonizing species, but the demographic consequences of such interactions remain controversial. We present results from field experiments and 45 years of demographic monitoring to test the hypothesis that the colonization of Mandarte Is., BC, Canada, by fox sparrows (Passerella iliaca) caused the long-term decline of the resident population of song sparrows (Melospiza melodia). Several lines of evidence indicate that competition with fox sparrows for winter food reduced over-winter survival in juvenile song sparrows by 48% from 1960 to 2015, enforcing population decline despite an increase in annual reproductive rate in song sparrows over the same period. Preference for locally abundant seeds presented at experimental arenas suggested complete overlap in diet in song and fox sparrows, and observations at arenas baited with commercial seed showed that fox sparrows displaced song sparrows in 91-100% of interactions in two periods during winter. In contrast, we found no evidence of interspecific competition for resources during the breeding season. Our results indicate that in the absence of marked shifts in niche dimension, range expansions by dominant competitors have the potential to cause the extirpation of historically resident species when competitive interactions between them are strong and resources not equitably partitioned.

  18. Song learning and cognitive ability are not consistently related in a songbird.

    Science.gov (United States)

    Anderson, Rindy C; Searcy, William A; Peters, Susan; Hughes, Melissa; DuBois, Adrienne L; Nowicki, Stephen

    2017-03-01

    Learned aspects of song have been hypothesized to signal cognitive ability in songbirds. We tested this hypothesis in hand-reared song sparrows (Melospiza melodia) that were tutored with playback of adult songs during the critical period for song learning. The songs developed by the 19 male subjects were compared to the model songs to produce two measures of song learning: the proportion of notes copied from models and the average spectrogram cross-correlation between copied notes and model notes. Song repertoire size, which reflects song complexity, was also measured. At 1 year of age, subjects were given a battery of five cognitive tests that measured speed of learning in the context of a novel foraging task, color association, color reversal, detour-reaching, and spatial learning. Bivariate correlations between the three song measures and the five cognitive measures revealed no significant associations. As in other studies of avian cognition, different cognitive measures were for the most part not correlated with each other, and this result remained true when 22 hand-reared female song sparrows were added to the analysis. General linear mixed models controlling for effects of neophobia and nest of origin indicated that all three song measures were associated with better performance on color reversal and spatial learning but were associated with worse performance on novel foraging and detour-reaching. Overall, the results do not support the hypothesis that learned aspects of song signal cognitive ability.

  19. The distribution and extent of heavy metal accumulation in song sparrows along Arizona's upper Santa Cruz River

    Science.gov (United States)

    Lester, Michael B.; van Riper, Charles

    2014-01-01

    Heavy metals are persistent environmental contaminants, and transport of metals into the environment poses a threat to ecosystems, as plants and wildlife are susceptible to long-term exposure, bioaccumulation, and potential toxicity. We investigated the distribution and cascading extent of heavy metal accumulation in southwestern song sparrows (Melospiza melodia fallax), a resident riparian bird species that occurs along the US/Mexico border in Arizona’s upper Santa Cruz River watershed. This study had three goals: (1) quantify the degree of heavy metal accumulation in sparrows and determine the distributional patterns among study sites, (2) compare concentrations of metals found in this study to those found in studies performed prior to a 2009 international wastewater facility upgrade, and (3) assess the condition of song sparrows among sites with differing potential levels of exposure. We examined five study sites along with a reference site that reflect different potential sources of contamination. Body mass residuals and leukocyte counts were used to assess sparrow condition. Birds at our study sites typically had higher metal concentrations than birds at the reference site. Copper, mercury, nickel, and selenium in song sparrows did exceed background levels, although most metals were below background concentrations determined from previous studies. Song sparrows generally showed lower heavy metal concentrations compared to studies conducted prior to the 2009 wastewater facility upgrade. We found no cascading effects as a result of metal exposure.

  20. Changing levels of heavy metal accumulation in birds at Tumacacori National Historic Park along the Upper Santa Cruz River Watershed in southern Arizona

    Science.gov (United States)

    van Riper, Charles; Lester, Michael B.

    2016-01-01

    National Parks and other protected areas can be influenced by contamination from outside their boundaries. This is particularly true of smaller parks and those in riparian ecosystems, a habitat that in arid environments provides critical habitat for breeding, migratory, and wintering birds. Animals living in contaminated areas are susceptible to adverse health effects as a result of long-term exposure and bioaccumulation of heavy metals. We investigated the distribution and cascading extent of heavy metal accumulation in Song Sparrows (Melospiza melodia) at Tumacacori National Historic Park (TUMA) along the upper Santa Cruz River watershed in southern Arizona. This study had three goals: (1) quantify the concentrations and distributional patterns of heavy metals in blood and feathers of Song Sparrows at Tumacacori National Historic Park, (2) quantify hematocrit values, body conditions (that is, residual body mass), and immune conditions of Song Sparrows in the park (3) compare our findings with prior studies at the park to assess the extent of heavy metal accumulation in birds at downstream sites after the 2009 wastewater treatment plant upgrade, and (4) quantify concentrations and distributional patterns of heavy metals in blood and feathers of Song Sparrows among six study sites throughout the upper Santa Cruz River watershed. This study design would allow us to more accurately assess song sparrow condition and blood parameters among sites with differing potential sources of contamination exposure, and how each location could have contributed to heavy metal levels of birds in the park.

  1. Postbreeding elevational movements of western songbirds in Northern California and Southern Oregon.

    Science.gov (United States)

    Wiegardt, Andrew; Wolfe, Jared; Ralph, C John; Stephens, Jaime L; Alexander, John

    2017-10-01

    Migratory species employ a variety of strategies to meet energetic demands of postbreeding molt. As such, at least a few species of western Neotropical migrants are known to undergo short-distance upslope movements to locations where adults molt body and flight feathers (altitudinal molt migration). Given inherent difficulties in measuring subtle movements of birds occurring in western mountains, we believe that altitudinal molt migration may be a common yet poorly documented phenomenon. To examine prevalence of altitudinal molt migration, we used 29 years of bird capture data in a series of linear mixed-effect models for nine commonly captured species that breed in northern California and southern Oregon. Candidate models were formulated a priori to examine whether elevation and distance from the coast can be used to predict abundance of breeding and molting birds. Our results suggest that long-distance migrants such as Orange-crowned Warbler ( Oreothlypis celata ) moved higher in elevation and Audubon's Warbler ( Setophaga coronata ) moved farther inland to molt after breeding. Conversely, for resident and short-distance migrants, we found evidence that birds either remained on the breeding grounds until they finished molting, such as Song Sparrow ( Melospiza melodia ) or made small downslope movements, such as American Robin ( Turdus migratorius ). We conclude that altitudinal molt migration may be a common, variable, and complex behavior among western songbird communities and is related to other aspects of a species' natural history, such as migratory strategy.

  2. Projected Hg dietary exposure of 3 bird species nesting on a contaminated floodplain (South River, Virginia, USA).

    Science.gov (United States)

    Wang, Jincheng; Newman, Michael C

    2013-04-01

    Dietary Hg exposure was modeled for Carolina wren (Thryothorus ludovicianus), Eastern song sparrow (Melospiza melodia), and Eastern screech owl (Otus asio) nesting on the contaminated South River floodplain (Virginia, USA). Parameterization of Monte-Carlo models required formal expert elicitation to define bird body weight and feeding ecology characteristics because specific information was either unavailable in the published literature or too difficult to collect reliably by field survey. Mercury concentrations and weights for candidate food items were obtained directly by field survey. Simulations predicted the probability that an adult bird during breeding season would ingest specific amounts of Hg during daily foraging and the probability that the average Hg ingestion rate for the breeding season of an adult bird would exceed published rates reported to cause harm to other birds (>100 ng total Hg/g body weight per day). Despite the extensive floodplain contamination, the probabilities that these species' average ingestion rates exceeded the threshold value were all <0.01. Sensitivity analysis indicated that overall food ingestion rate was the most important factor determining projected Hg ingestion rates. Expert elicitation was useful in providing sufficiently reliable information for Monte-Carlo simulation. Copyright © 2013 SETAC.

  3. To flock or fight: neurochemical signatures of divergent life histories in sparrows.

    Science.gov (United States)

    Goodson, James L; Wilson, Leah C; Schrock, Sara E

    2012-06-26

    Many bird species exhibit dramatic seasonal switches between territoriality and flocking, but whereas neuroendocrine mechanisms of territorial aggression have been extensively studied, those of seasonal flocking are unknown. We collected brains in spring and winter from male field sparrows (Spizella pusilla), which seasonally flock, and male song sparrows (Melospiza melodia), which are territorial year-round in much of their range. Spring collections were preceded by field-based assessments of aggression. Tissue series were immunofluorescently multilabeled for vasotocin, mesotocin (MT), corticotropin-releasing hormone (CRH), vasoactive intestinal polypeptide, tyrosine hydroxylase, and aromatase, and labeling densities were measured in many socially relevant brain areas. Extensive seasonal differences are shared by both species. Many measures correlate significantly with both individual and species differences in aggression, likely reflecting evolved mechanisms that differentiate the less aggressive field sparrow from the more aggressive song sparrow. Winter-specific species differences include a substantial increase of MT and CRH immunoreactivity in the dorsal lateral septum (LS) and medial amygdala of field sparrows but not song sparrows. These species differences likely relate to flocking rather than the suppression of winter aggression in field sparrows, because similar winter differences were found for two other emberizids that are not territorial in winter--dark-eyed juncos (Junco hyemalis), which seasonally flock, and eastern towhees (Pipilo erythropthalmus), which do not flock. MT signaling in the dorsal LS is also associated with year-round species differences in grouping in estrildid finches, suggesting that common mechanisms are targeted during the evolution of different life histories.

  4. Quantifying inbreeding avoidance through extra-pair reproduction.

    Science.gov (United States)

    Reid, Jane M; Arcese, Peter; Keller, Lukas F; Germain, Ryan R; Duthie, A Bradley; Losdat, Sylvain; Wolak, Matthew E; Nietlisbach, Pirmin

    2015-01-01

    Extra-pair reproduction is widely hypothesized to allow females to avoid inbreeding with related socially paired males. Consequently, numerous field studies have tested the key predictions that extra-pair offspring are less inbred than females' alternative within-pair offspring, and that the probability of extra-pair reproduction increases with a female's relatedness to her socially paired male. However, such studies rarely measure inbreeding or relatedness sufficiently precisely to detect subtle effects, or consider biases stemming from failure to observe inbred offspring that die during early development. Analyses of multigenerational song sparrow (Melospiza melodia) pedigree data showed that most females had opportunity to increase or decrease the coefficient of inbreeding of their offspring through extra-pair reproduction with neighboring males. In practice, observed extra-pair offspring had lower inbreeding coefficients than females' within-pair offspring on average, while the probability of extra-pair reproduction increased substantially with the coefficient of kinship between a female and her socially paired male. However, simulations showed that such effects could simply reflect bias stemming from inbreeding depression in early offspring survival. The null hypothesis that extra-pair reproduction is random with respect to kinship therefore cannot be definitively rejected in song sparrows, and existing general evidence that females avoid inbreeding through extra-pair reproduction requires reevaluation given such biases. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  5. Variation in parent–offspring kinship in socially monogamous systems with extra‐pair reproduction and inbreeding

    Science.gov (United States)

    Reid, Jane M.; Bocedi, Greta; Nietlisbach, Pirmin; Duthie, A. Bradley; Wolak, Matthew E.; Gow, Elizabeth A.; Arcese, Peter

    2016-01-01

    Female extra‐pair reproduction in socially monogamous systems is predicted to cause cuckolded socially‐paired males to conditionally reduce paternal care, causing selection against extra‐pair reproduction and underlying polyandry. However, existing models and empirical studies have not explicitly considered that cuckolded males might be related to their socially‐paired female and/or to her extra‐pair mate, and therefore be related to extra‐pair offspring that they did not sire but could rear. Selection against paternal care, and hence against extra‐pair reproduction, might then be weakened. We derive metrics that quantify allele‐sharing between within‐pair and extra‐pair offspring and their mother and her socially‐paired male in terms of coefficients of kinship and inbreeding. We use song sparrow (Melospiza melodia) paternity and pedigree data to quantify these metrics, and thereby quantify the joint effects of extra‐pair reproduction and inbreeding on a brood's total allelic value to its socially‐paired parents. Cuckolded male song sparrows were almost always detectably related to extra‐pair offspring they reared. Consequently, although brood allelic value decreased substantially following female extra‐pair reproduction, this decrease was reduced by within‐pair and extra‐pair reproduction among relatives. Such complex variation in kinship within nuclear families should be incorporated into models considering coevolutionary dynamics of extra‐pair reproduction, parental care, and inbreeding. PMID:27174154

  6. Relatively lower body mass index is associated with an excess of severe truncal asymmetry in healthy adolescents: Do white adipose tissue, leptin, hypothalamus and sympathetic nervous system influence truncal growth asymmetry?

    Directory of Open Access Journals (Sweden)

    Triantafyllopoulos Georgios

    2009-06-01

    Full Text Available Abstract Background In healthy adolescents normal back shape asymmetry, here termed truncal asymmetry (TA, is evaluated by higher and lower subsets of BMI. The study was initiated after research on girls with adolescent idiopathic scoliosis (AIS showed that higher and lower BMI subsets discriminated patterns of skeletal maturation and asymmetry unexplained by existing theories of pathogenesis leading to a new interpretation which has therapeutic implications (double neuro-osseous theory. Methods 5953 adolescents age 11–17 years (boys 2939, girls 3014 were examined in a school screening program in two standard positions, standing forward bending (FB and sitting FB. The sitting FB position is thought to reveal intrinsic TA free from back humps induced by any leg-length inequality. TA was measured in both positions using a Pruijs scoliometer as angle of trunk inclinations (ATIs across the back at each of three spinal regions, thoracic, thoracolumbar and lumbar. Abnormality of ATIs was defined as being outside 2 standard deviations for each age group, gender, position and spinal region, and termed severe TA. Results In the sitting FB position after correcting for age,relatively lower BMIs are statistically associated with a greater number of severe TAs than with relatively higher BMIs in both girls (thoracolumbar region and boys (thoracolumbar and lumbar regions. The relative frequency of severe TAs is significantly higher in girls than boys for each of the right thoracic (56.76% and thoracolumbar (58.82% regions (p = 0.006, 0.006, respectively. After correcting for age, smaller BMIs are associated with more severe TAs in boys and girls. Discussion BMI is a surrogate measure for body fat and circulating leptin levels. The finding that girls with relatively lower BMI have significantly later menarche, and a significant excess of TAs, suggests a relation to energy homeostasis through the hypothalamus. The hypothesis we suggest for the pathogenesis

  7. The effect of injecting Nesfatin-1 into Lateral ventricle on glucolipid metabolism and its connection with AMPK ex-pression of hypothalamus in rats%大鼠侧脑室注射Nesfatin-1对糖脂代谢的影响及其与下丘脑AMPK表达的关系

    Institute of Scientific and Technical Information of China (English)

    秦小云; 李桂成; 张庆金; 蔡科军; 谢正轶; 覃淑云; 朱琳; 夏春波

    2017-01-01

    目的 探讨侧脑室注射摄食抑制因子Nesfatin-1对糖脂代谢的影响及其与下丘脑AMPK表达的关系.方法 借助脑立体定位技术将Nesfatin-1(1-82)重组蛋白注射至大鼠侧脑室(实验组),设注射等体积人工脑脊液的假手术组和未施加任何干扰因素的对照组,大鼠继续饲养4w后,全自动生化分析仪检测血糖血脂水平变化,RT-PCR法检测大鼠下丘脑组织AMPK mRNA表达,Western blotting法检测大鼠下丘脑组织AMPKα及磷酸化AMPKα(pAMPKα)的表达.结果 (1)生化检测实验结果显示,实验组大鼠FPG和TG与对照组比较均显著下降(P0.05);(2)RT-PCR及Western blotting实验结果显示,与对照组比较,实验组的AMPK mRNA及蛋白表达水平均明显降低(P0.05).结论 Nesfatin-1可能在糖脂代谢神经调节过程中具有重要作用,其机制可能与下丘脑AMPK表达水平有关.%Objective To investigate the effect of injecting the feeding inhibitory factor Nesfatin-1 into Lateral ven-tricle on glucolipid metabolism and its connection with AMPK expression of hypothalamus in rats .Methods With the help of the brain stereotaxic instrument,Nesfatin-1(1-82) recombinant protein (experimental group) and equal artificial cerebro-spinal fluid ( sham-operated group ) were injected into the lateral ventricle of rats ,the control group did not exert any inter-ference.4 weeks later,testing the level of blood glucolipid by automatic biochemical analyzer and detecting the expression of AMPK mRNA,AMPKαand pAMPKαin hypothalamus through RT-PCR and Western blotting.Results (1)According to the results of biochemical tests ,compared to the control group ,the level of FPG and TG in experimental group were signifi-cantly decreased (P0.05);(2)According to the results of RT-PCR and Western blotting ,compared to control group ,the expression of AMPK mRNA and protein level in experimental group were significantly lower (P0.05) with sham-oper-ated group.Conclusion Nesfatin-1 may play an

  8. Hypothesis: Musculin is a hormone secreted by skeletal muscle, the body's largest endocrine organ. Evidence for actions on the endocrine pancreas to restrain the beta-cell mass and to inhibit insulin secretion and on the hypothalamus to co-ordinate the neuroendocrine and appetite responses to exercise.

    Science.gov (United States)

    Engler, Dennis

    2007-01-01

    Recent studies indicate that skeletal muscle may act as an endocrine organ by secreting interleukin-6 (IL-6) into the systemic circulation. From an analysis of the actions of IL-6 and of additional literature, we postulate that skeletal muscle also secretes an unidentified hormone, which we have named Musculin (Latin: musculus = muscle), which acts on the pancreatic beta-cell to restrain the size of the (beta-cell mass and to tonically inhibit insulin secretion and biosynthesis. It is suggested that the amount of Musculin secreted is determined by, and is positively correlated with, the prevailing insulin sensitivity of skeletal muscle, thereby accounting for the hyperinsulinemia that occurs in insulin resistant disorders such as type 2 diabetes mellitus, obesity, and the polycystic ovary syndrome. In addition, it is postulated that Musculin acts on the hypothalamus (arcuate nucleus, dorsomedial hypothalamic nucleus) to co-ordinate the neuroendocrine and appetite responses to exercise. However, the possibilities that Musculin may act on additional central nervous system sites and that an additional hormone(s) may be responsible for these actions are not excluded. It is suggested that a search be made for Musculin, since analogues of such a substance may be of therapeutic benefit in the treatment of the current global diabetes and obesity epidemic.

  9. Avian communities in tidal salt marshes of San Francisco Bay: a review of functional groups by foraging guild and habitat association

    Science.gov (United States)

    Takekawa, John Y.; Woo, Isa; Gardiner, Rachel J.; Casazza, Michael L.; Ackerman, Joshua T.; Nur, Nadav; Liu, Leonard; Spautz, Hildie; Palaima, Arnas

    2011-01-01

    The San Francisco Bay estuary is highly urbanized, but it supports the largest remaining extent of tidal salt marshes on the west coast of North America as well as a diverse native bird community. San Francisco Bay tidal marshes are occupied by more than 113 bird species that represent 31 families, including five subspecies from three families that we denote as tidal-marsh obligates. To better identify the niche of bird species in tidal marshes, we present a review of functional groups based on foraging guilds and habitat associations. Foraging guilds describe the method by which species obtain food from tidal marshes, while habitat associations describe broad areas within the marsh that have similar environmental conditions. For example, the ubiquitous song sparrows (Alameda Melospiza melodia pusillula, Suisun M. m. maxillaris, and San Pablo M. m. samuelis) are surface-feeding generalists that consume prey from vegetation and the ground, and they are found across the entire marsh plain into the upland–marsh transition. In contrast, surface-feeding California black rails (Laterallus jamaicensis coturniculus) are cryptic, and generally restricted in their distribution to the mid- and high-marsh plain. Although in the same family, the endangered California clapper rail (Rallus longirostris obsoletus) has become highly specialized, foraging primarily on benthic fauna within marsh channels when they are exposed at low tide. Shorebirds such as the black-necked stilt (Himantopus mexicanus) typically probe in mud flats to consume macroinvertebrate prey, and are generally restricted to foraging on salt pans within the marsh plain, in ponds, or on mud flats during transitional stages of marsh evolution. The abundance and distribution of birds varies widely with changing water depths and vegetation colonization during different stages of restoration. Thus, tidal-marsh birds represent a rich and diverse community in bay marshes, with niches that may be distinguished by the

  10. Heavy metals and metalloids in egg contents and eggshells of passerine birds from Arizona

    International Nuclear Information System (INIS)

    Mora, Miguel A.

    2003-01-01

    High concentrations of Sr in eggshells may be associated with lower hatching success of some passerine birds. - Concentrations of inorganic elements were determined in eggs of passerine birds including the endangered southwestern willow flycatcher (Empidonax traillii extimus) from four regions in Arizona. The main aim of the study was to determine the distribution of metals in egg contents and eggshells, with emphasis on the deposition of Sr in eggshells. Seventy eggs of 11 passerine species were collected at four nesting locations during 2000. Aluminum, Ba, Cr, Cu, Mn, Se, Sr, and Zn, were detected primarily in egg contents of all bird species. Arsenic, Ni, Pb, and V were detected primarily in eggshells. A proportion of most inorganic elements accumulated in the eggshell. Concentrations of Ba, Cu, Mn, Se, Sr, and Zn in egg contents and As, Ba, Cu, and V in eggshells of yellow-breasted chats (Icteria virens) were similar among locations. However, concentrations of Mn, Ni, Sr, and Zn in eggshells were significant different among locations. Except for Cu, Mn, Se, and Zn, concentrations of inorganic elements were 2-35 times greater in eggshells than in eggs. Most concentrations of metals and metalloids in eggs and eggshells of all the bird species were below levels known to affect reproduction or that have other deleterious effects. However, I found somewhat elevated concentrations of Sr in eggshells (highest mean=1505 μg/g dw, n=3) of yellow-breasted chats and willow flycatchers, and in egg contents of yellow warblers (Dendroica petechia) and song sparrows (Melospiza melodia). Whether current observed concentrations of Sr in eggshells are affecting nesting birds in Arizona remains to be determined. Strontium and other metals could be associated with lower hatching success in some areas. This study shows that a proportion of many inorganic elements accumulates in the eggshell and that the potential effects on the proper structure and functioning of the eggshell

  11. Seasonal Variation in Group Size Is Related to Seasonal Variation in Neuropeptide Receptor Density.

    Science.gov (United States)

    Wilson, Leah C; Goodson, James L; Kingsbury, Marcy A

    2016-01-01

    In many species, seasonal variation in grouping behavior is widespread, with shifts towards territoriality in the breeding season and grouping in the winter. Compared to the hormonal and neural mechanisms of seasonal territorial aggression, the mechanisms that promote seasonal grouping have received little attention. We collected brains in spring and winter from wild-caught males of two species of emberizid sparrows that seasonally flock (the field sparrow, Spizella pusilla, and the dark-eyed junco, Junco hyemalis) and two species that do not seasonally flock (the song sparrow, Melospiza melodia, and the eastern towhee, Pipilo erythrophthalmus). We used receptor autoradiography to quantify seasonal plasticity in available binding sites for three neuropeptides known to influence social behavior. We examined binding sites for 125I-vasoactive intestinal polypeptide (VIP), 125I-sauvagine (SG, a ligand for corticotropin-releasing hormone receptors) and 125I-ornithine vasotocin analog (OVTA, a ligand for the VT3 nonapeptide). For all species and ligands, brain areas that exhibited a seasonal pattern in binding density were characterized by a winter increase. Compared to nonflocking species, seasonally flocking species showed different binding patterns in multiple brain areas. Furthermore, we found that winter flocking was associated with elevated winter 125I-VIP binding density in the medial amygdala, as well as 125I-VIP and 125I-OVTA binding density in the rostral arcopallium. While the functional significance of the avian rostral arcopallium is unclear, it may incorporate parts of the pallial amygdala. Our results point to this previously undescribed area as a likely hot spot of social modulation. © 2016 S. Karger AG, Basel.

  12. Interactive effects of environmental stress and inbreeding on reproductive traits in a wild bird population.

    Science.gov (United States)

    Marr, A B; Arcese, P; Hochachka, W M; Reid, J M; Keller, L F

    2006-11-01

    1. Conservation biologists are concerned about the interactive effects of environmental stress and inbreeding because such interactions could affect the dynamics and extinction risk of small and isolated populations, but few studies have tested for these interactions in nature. 2. We used data from the long-term population study of song sparrows Melospiza melodia on Mandarte Island to examine the joint effects of inbreeding and environmental stress on four fitness traits that are known to be affected by the inbreeding level of adult birds: hatching success, laying date, male mating success and fledgling survival. 3. We found that inbreeding depression interacted with environmental stress to reduce hatching success in the nests of inbred females during periods of rain. 4. For laying date, we found equivocal support for an interaction between parental inbreeding and environmental stress. In this case, however, inbred females experienced less inbreeding depression in more stressful, cooler years. 5. For two other traits, we found no evidence that the strength of inbreeding depression varied with environmental stress. First, mated males fathered fewer nests per season if inbred or if the ratio of males to females in the population was high, but inbreeding depression did not depend on sex ratio. Second, fledglings survived poorly during rainy periods and if their father was inbred, but the effects of paternal inbreeding and rain did not interact. 6. Thus, even for a single species, interactions between the inbreeding level and environmental stress may not occur in all traits affected by inbreeding depression, and interactions that do occur will not always act synergistically to further decrease fitness.

  13. Heavy metals and metalloids in egg contents and eggshells of passerine birds from Arizona

    Science.gov (United States)

    Mora, Miguel A.

    2003-01-01

    Concentrations of inorganic elements were determined in eggs of passerine birds including the endangered southwestern willow flycatcher (Empidonax traillii extimus) from four regions in Arizona. The main aim of the study was to determine the distribution of metals in egg contents and eggshells, with emphasis on the deposition of Sr in eggshells. Seventy eggs of 11 passerine species were collected at four nesting locations during 2000. Aluminum, Ba, Cr, Cu, Mn, Se, Sr, and Zn, were detected primarily in egg contents of all bird species. Arsenic, Ni, Pb, and V were detected primarily in eggshells. A proportion of most inorganic elements accumulated in the eggshell. Concentrations of Ba, Cu, Mn, Se, Sr, and Zn in egg contents and As, Ba, Cu, and V in eggshells of yellow-breasted chats (Icteria virens) were similar among locations. However, concentrations of Mn, Ni, Sr, and Zn in eggshells were significant different among locations. Except for Cu, Mn, Se, and Zn, concentrations of inorganic elements were 2–35 times greater in eggshells than in eggs. Most concentrations of metals and metalloids in eggs and eggshells of all the bird species were below levels known to affect reproduction or that have other deleterious effects. However, I found somewhat elevated concentrations of Sr in eggshells (highest mean=1505 μg/g dw, n=3) of yellow-breasted chats and willow flycatchers, and in egg contents of yellow warblers (Dendroica petechia) and song sparrows (Melospiza melodia). Whether current observed concentrations of Sr in eggshells are affecting nesting birds in Arizona remains to be determined. Strontium and other metals could be associated with lower hatching success in some areas. This study shows that a proportion of many inorganic elements accumulates in the eggshell and that the potential effects on the proper structure and functioning of the eggshell should not be ignored.

  14. Developmental regulation of aromatase activity in the rat hypothalamus

    International Nuclear Information System (INIS)

    Lephart, E.D.

    1989-01-01

    The brain of all mammalian species studied thus far contain an enzymatic activity (aromatase) that catalyzes the conversion of androgens to estrogens. The activity is highest during prenatal development and contributes to the establishment of sex differences which determine adult gonadotropin secretion patterns and reproductive behavior. The studies presented in this dissertation represent a systematic effort to elucidate the mechanism(s) that control the initiation of and contribute to maintaining rat hypothalamic aromatase activity during pre- and postnatal development. Aromatase enzyme activity was measured by the 3 H 2 O release assay or by traditional estrogen product isolation. Brain aromatase mRNA was detected by hybridization to a cDNA encoding rat aromatase cytochrome P-450. In both males and females the time of puberty was associated with a decline in hypothalamic aromatase activity. This decline may represent a factor underlying the peri-pubertal decrease in the sensitivity to gonadal steroid feedback that accompanies completion of puberty. The results also indicate that androgens regulate brain aromatase levels during both the prepubertal and peri-pubertal stages of sexual development and that this regulation is transiently lost in young adults. Utilizing a hypothalamic organotypic culture system, aromatase activity in vitro was maintained for as long as two days. The results of studies of a variety of hormonal and metabolic regulators suggest that prenatal aromatase activity is regulated by factor(s) that function independently from the classical cyclic AMP and protein kinase C trans-membrane signaling pathways

  15. Extracellular pH modulates GABAergic neurotransmission in rat hypothalamus.

    Science.gov (United States)

    Chen, Z L; Huang, R Q

    2014-06-20

    Changes in extracellular pH have a modulatory effect on GABAA receptor function. It has been reported that pH sensitivity of the GABA receptor is dependent on subunit composition and GABA concentration. Most of previous investigations focused on GABA-evoked currents, which only reflect the postsynaptic receptors. The physiological relevance of pH modulation of GABAergic neurotransmission is not fully elucidated. In the present studies, we examined the influence of extracellular pH on the GABAA receptor-mediated inhibitory neurotransmission in rat hypothalamic neurons. The inhibitory postsynaptic currents (IPSCs), tonic currents, and the GABA-evoked currents were recorded with whole-cell patch techniques on the hypothalamic slices from Sprague-Dawley rats at 15-26 postnatal days. The amplitude and frequency of spontaneous GABA IPSCs were significantly increased while the external pH was changed from 7.3 to 8.4. In the acidic pH (6.4), the spontaneous GABA IPSCs were reduced in amplitude and frequency. The pH induced changes in miniature GABA IPSCs (mIPSCs) similar to that in spontaneous IPSCs. The pH effect on the postsynaptic GABA receptors was assessed with exogenously applied varying concentrations of GABA. The tonic currents and the currents evoked by sub-saturating concentration of GABA ([GABA]) (10 μM) were inhibited by acidic pH and potentiated by alkaline pH. In contrast, the currents evoked by saturating [GABA] (1mM) were not affected by pH changes. We also investigated the influence of pH buffers and buffering capacity on pH sensitivity of GABAA receptors on human recombinant α1β2γ2 GABAA receptors stably expressed in HEK 293 cells. The pH influence on GABAA receptors was similar in HEPES- and MES-buffered media, and not dependent on protonated buffers, suggesting that the observed pH effect on GABA response is a specific consequence of changes in extracellular protons. Our data suggest that the hydrogen ions suppress the GABAergic neurotransmission, which is mediated by both presynaptic and postsynaptic mechanisms. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Prenatal PCBs disrupt early neuroendocrine development of the rat hypothalamus

    International Nuclear Information System (INIS)

    Dickerson, Sarah M.; Cunningham, Stephanie L.; Gore, Andrea C.

    2011-01-01

    Neonatal exposure to endocrine disrupting chemicals (EDCs) such as polychlorinated biphenyls (PCBs) can interfere with hormone-sensitive developmental processes, including brain sexual differentiation. We hypothesized that disruption of these processes by gestational PCB exposure would be detectable as early as the day after birth (postnatal day (P) 1) through alterations in hypothalamic gene and protein expression. Pregnant Sprague-Dawley rats were injected twice, once each on gestational days 16 and 18, with one of the following: DMSO vehicle; the industrial PCB mixture Aroclor 1221 (A1221); a reconstituted mixture of the three most prevalent congeners found in humans, PCB138, PCB153, and PCB180; or estradiol benzoate (EB). On P1, litter composition, anogenital distance (AGD), and body weight were assessed. Pups were euthanized for immunohistochemistry of estrogen receptor α (ERα) or TUNEL labeling of apoptotic cells or quantitative PCR of 48 selected genes in the preoptic area (POA). We found that treatment with EB or A1221 had a sex-specific effect on developmental apoptosis in the neonatal anteroventral periventricular nucleus (AVPV), a sexually dimorphic hypothalamic region involved in the regulation of reproductive neuroendocrine function. In this region, exposed females had increased numbers of apoptotic nuclei, whereas there was no effect of treatment in males. For ERα, EB treatment increased immunoreactive cell numbers and density in the medial preoptic nucleus (MPN) of both males and females, while A1221 and the PCB mixture had no effect. PCR analysis of gene expression in the POA identified nine genes that were significantly altered by prenatal EDC exposure, in a manner that varied by sex and treatment. These genes included brain-derived neurotrophic factor, GABA B receptors-1 and -2, IGF-1, kisspeptin receptor, NMDA receptor subunits NR2b and NR2c, prodynorphin, and TGFα. Collectively, these results suggest that the disrupted sexual differentiation of the POA by prenatal EDC exposures is already evident as early as the day after birth, effects that may change the trajectory of postnatal development and compromise adult reproductive function.

  17. Structural and functional sex differences in the human hypothalamus

    NARCIS (Netherlands)

    Swaab, D. F.; Chung, W. C.; Kruijver, F. P.; Hofman, M. A.; Ishunina, T. A.

    2001-01-01

    Sex differences in the brain may be the basis not only for sex differences in reproduction, gender identity (the feeling of being male or female), and sexual orientation (heterosexuality vs homosexuality), but also for the sex difference in prevalence of psychiatric and neurological diseases ( Swaab

  18. 注意力缺陷多动障碍儿童下丘脑-垂体-肾上腺轴的功能研究%Function of the hypothalamus-pituitary-adrenal axis in children with attention deficit hyperactivity disorder

    Institute of Scientific and Technical Information of China (English)

    陈燕惠; 陈辉; 刘艳艳; 林桂秀; 韦立新; 陈丹玲

    2009-01-01

    目的 通过研究注意力缺陷多动障碍(ADHD)儿童下丘脑-垂体-肾上腺轴(HPA)的功能状态,探讨HPA轴在ADHD发生中的作用.方法 128例6~14岁ADHD男童根据DSM-IV ADHD诊断和分型标准,其中注意缺陷为主型(ADHD-I)44例,多动-冲动为主型(ADHD-HI)32例,混合型(ADHD-C)52例,对照组为年龄匹配健康男童30名,于8:00 am空腹采血.分别采用全自动微粒酶免疫分析法及电化学发光法检测血浆皮质醇及促肾上腺皮质激素(ACTH),智力测验采用瑞文标准推理测验.结果 ADHD组IQ(84.5±11.3)低于对照组(94.6±12.4,P<0.01),ADHD 3个亚型组间比较差异有显著性(P<0.01),ADHD-I和ADHD-C两个亚组IQ水低于对照组(P<0.01),ADHD-HI组与对照组比较差异无显著性.ADHD组血浆皮质醇水平(226.5±129.1 mnol/L)较对照组(384.5±141.4 nmol/L)明显降低(P<0.01),ADHD-HI组(154.4±71.6 nmol/L)下降程度较ADHD-I组(219.4±117.7 nmol/L)及ADHD-C组(258.3±136.4 nmol/L)为著(P<0.01),而ADHD各组血浆ACTH水平与对照组比较差异无显著性.结论 在非应激状态下ADHD儿童存在着HPA轴调节功能障碍,这可能系HPA轴低反应性所致.低血浆皮质醇对认知行为影响较小,而与注意缺陷、多动、冲动行为关系更为密切.%Objective To study the function of the hypothalamus-pituitary-adrenal (HPA) axis in children with attention deficit hyperactivity disorder (ADHD). Methods One hundred and twenty-eight boys with ADHD at ages of 6 to 14 years were enrolled. The diagnosis and grouping of ADHD were based on the Diagnostic and Statistical Manual of Mental Disorders ( DSM-IV) : ADHD-predominantly inattention type (ADHD-I, n =44), ADHD-predominantly hyperactive impulsivetype (ADHD-HI, n = 32) and ADHD-combined type (ADHD-C, n =52). Thirty healthy boys served as the control group. Plasma levels of cortisol and adrenocorticotropic hormone ( ACTH) were measured by automatic particle enzyme immunoassay and electrochemiluminescence

  19. Dependent vs. independent juvenile survival: contrasting drivers of variation and the buffering effect of parental care.

    Science.gov (United States)

    Dybala, Kristen E; Gardali, Thomas; Eadie, John M

    2013-07-01

    Juvenile survival is often found to be more sensitive than adult survival to variation in environmental conditions, and variation in juvenile survival can have significant impacts on population growth rates and viability. Therefore, understanding the population-level effects of environmental changes requires understanding the effects on juvenile survival. We hypothesized that parental care will buffer the survival of dependent juveniles from variation in environmental conditions, while the survival of independent juveniles will respond more strongly to environmental variation and, in turn, drive the overall variation in annual juvenile survival. We tested this parental-care hypothesis using a 30-year mark-recapture data set to model the survival of juvenile Song Sparrows (Melospiza melodia) during the dependent and independent stages. We examined the effects of weather, density, and cohort mean fledge date and body mass on annual variation in survival during the first 12 weeks after fledging, as well as effects of individual fledge date and body mass on individual variation in survival. The primary driver of annual variation in juvenile survival was precipitation during the previous rainy season, consistent with an effect on food availability, which had a strong positive effect on the survival of independent juveniles, but no effect on dependent juveniles. We also found strong support for effects of body mass and fledge date on individual survival probability, including striking differences in the effect of fledge date by stage. Our results provided evidence that different mechanisms influence juvenile survival during each stage of fledgling development, and that parental care buffers the survival of dependent juveniles from variation in environmental conditions. Consequently, variation in juvenile survival was driven by independent juveniles, not dependent juveniles, and studies focused only on survival during the dependent stage may not be able to detect the

  20. Demographic mechanisms of inbreeding adjustment through extra-pair reproduction.

    Science.gov (United States)

    Reid, Jane M; Duthie, A Bradley; Wolak, Matthew E; Arcese, Peter

    2015-07-01

    One hypothesis explaining extra-pair reproduction is that socially monogamous females mate with extra-pair males to adjust the coefficient of inbreeding (f) of extra-pair offspring (EPO) relative to that of within-pair offspring (WPO) they would produce with their socially paired male. Such adjustment of offspring f requires non-random extra-pair reproduction with respect to relatedness, which is in turn often assumed to require some mechanism of explicit pre-copulatory or post-copulatory kin discrimination. We propose three demographic processes that could potentially cause mean f to differ between individual females' EPO and WPO given random extra-pair reproduction with available males without necessarily requiring explicit kin discrimination. Specifically, such a difference could arise if social pairings formed non-randomly with respect to relatedness or persisted non-randomly with respect to relatedness, or if the distribution of relatedness between females and their sets of potential mates changed during the period through which social pairings persisted. We used comprehensive pedigree and pairing data from free-living song sparrows (Melospiza melodia) to quantify these three processes and hence investigate how individual females could adjust mean offspring f through instantaneously random extra-pair reproduction. Female song sparrows tended to form social pairings with unrelated or distantly related males slightly less frequently than expected given random pairing within the defined set of available males. Furthermore, social pairings between more closely related mates tended to be more likely to persist across years than social pairings between less closely related mates. However, these effects were small and the mean relatedness between females and their sets of potential extra-pair males did not change substantially across the years through which social pairings persisted. Our framework and analyses illustrate how demographic and social structuring within

  1. Decomposing variation in male reproductive success: age-specific variances and covariances through extra-pair and within-pair reproduction.

    Science.gov (United States)

    Lebigre, Christophe; Arcese, Peter; Reid, Jane M

    2013-07-01

    Age-specific variances and covariances in reproductive success shape the total variance in lifetime reproductive success (LRS), age-specific opportunities for selection, and population demographic variance and effective size. Age-specific (co)variances in reproductive success achieved through different reproductive routes must therefore be quantified to predict population, phenotypic and evolutionary dynamics in age-structured populations. While numerous studies have quantified age-specific variation in mean reproductive success, age-specific variances and covariances in reproductive success, and the contributions of different reproductive routes to these (co)variances, have not been comprehensively quantified in natural populations. We applied 'additive' and 'independent' methods of variance decomposition to complete data describing apparent (social) and realised (genetic) age-specific reproductive success across 11 cohorts of socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia). We thereby quantified age-specific (co)variances in male within-pair and extra-pair reproductive success (WPRS and EPRS) and the contributions of these (co)variances to the total variances in age-specific reproductive success and LRS. 'Additive' decomposition showed that within-age and among-age (co)variances in WPRS across males aged 2-4 years contributed most to the total variance in LRS. Age-specific (co)variances in EPRS contributed relatively little. However, extra-pair reproduction altered age-specific variances in reproductive success relative to the social mating system, and hence altered the relative contributions of age-specific reproductive success to the total variance in LRS. 'Independent' decomposition showed that the (co)variances in age-specific WPRS, EPRS and total reproductive success, and the resulting opportunities for selection, varied substantially across males that survived to each age. Furthermore, extra-pair reproduction increased

  2. Effects of haying on breeding birds in CRP grasslands

    Science.gov (United States)

    Igl, Lawrence D.; Johnson, Douglas H.

    2016-01-01

    The Conservation Reserve Program (CRP) is a voluntary program that is available to agricultural producers to help protect environmentally sensitive or highly erodible land. Management disturbances of CRP grasslands generally are not allowed unless authorized to provide relief to livestock producers during severe drought or a similar natural disaster (i.e., emergency haying and grazing) or to improve the quality and performance of the CRP cover (i.e., managed haying and grazing). Although CRP grasslands may not be hayed or grazed during the primary bird-nesting season, these disturbances may have short-term (1 yr after disturbance) and long-term (≥2 yr after disturbance) effects on grassland bird populations. We assessed the effects of haying on 20 grassland bird species in 483 CRP grasslands in 9 counties of 4 states in the northern Great Plains, USA between 1993 and 2008. We compared breeding bird densities (as determined by total-area counts) in idle and hayed fields to evaluate changes 1, 2, 3, and 4 years after haying. Haying of CRP grasslands had either positive or negative effects on grassland birds, depending on the species, the county, and the number of years after the initial disturbance. Some species (e.g., horned lark [Eremophila alpestris], bobolink [Dolichonyx oryzivorus]) responded positively after haying, and others (e.g., song sparrow [Melospiza melodia]) responded negatively. The responses of some species changed direction as the fields recovered from haying. For example, densities for common yellowthroat (Geothlypis trichas), sedge wren (Cistothorus platensis), and clay-colored sparrow (Spizella pallida) declined the first year after haying but increased in the subsequent 3 years. Ten species showed treatment × county interactions, indicating that the effects of haying varied geographically. This long-term evaluation on the effects of haying on breeding birds provides important information on the strength and direction of changes in

  3. UNPUBLISHED TEXTS / INEDITI

    African Journals Online (AJOL)

    User

    l'equilibrio delle idee fraintendimenti disarmonici da cancellare. Melodia argentata. Ho ripreso a cantare questa melodia argentata alle cime più alte e alla triangolare Grivola scivolata a mezz'aria. Mi attrae la leggerezza del fogliame la punta dei pini il verde del prato dall'erba anche azzurra e cresciuta tra i fiori gialli e.

  4. Paraventricular nucleus of the human hypothalamus in primary hypertension: Activation of corticotropin-releasing hormone neurons

    NARCIS (Netherlands)

    Goncharuk, Valeri D.; van Heerikhuize, Joop; Swaab, Dick F.; Buijs, Ruud M.

    2002-01-01

    By using quantitative immunohistochemical and in situ hybridization techniques, we studied corticotropin-releasing hormone (CRH)-producing neurons of the hypothalamic paraventricular nucleus (PVN) in patients who suffered from primary hypertension and died due to acute cardiac failure. The control

  5. The stress system in depression and neurodegeneration: focus on the human hypothalamus.

    Science.gov (United States)

    Bao, A-M; Meynen, G; Swaab, D F

    2008-03-01

    The stress response is mediated by the hypothalamo-pituitary-adrenal (HPA) system. Activity of the corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus (PVN) forms the basis of the activity of the HPA-axis. The CRH neurons induce adrenocorticotropin (ACTH) release from the pituitary, which subsequently causes cortisol release from the adrenal cortex. The CRH neurons co-express vasopressin (AVP) which potentiates the CRH effects. CRH neurons project not only to the median eminence but also into brain areas where they, e.g., regulate the adrenal innervation of the autonomic system and affect mood. The hypothalamo-neurohypophysial system is also involved in stress response. It releases AVP from the PVN and the supraoptic nucleus (SON) and oxytocin (OXT) from the PVN via the neurohypophysis into the bloodstream. The suprachiasmatic nucleus (SCN), the hypothalamic clock, is responsible for the rhythmic changes of the stress system. Both centrally released CRH and increased levels of cortisol contribute to the signs and symptoms of depression. Symptoms of depression can be induced in experimental animals by intracerebroventricular injection of CRH. Depression is also a frequent side effect of glucocorticoid treatment and of the symptoms of Cushing's syndrome. The AVP neurons in the hypothalamic PVN and SON are also activated in depression, which contributes to the increased release of ACTH from the pituitary. Increased levels of circulating AVP are also associated with the risk for suicide. The prevalence, incidence and morbidity risk for depression are higher in females than in males and fluctuations in sex hormone levels are considered to be involved in the etiology. About 40% of the activated CRH neurons in mood disorders co-express nuclear estrogen receptor (ER)-alpha in the PVN, while estrogen-responsive elements have been found in the CRH gene promoter region, and estrogens stimulate CRH production. An androgen-responsive element in the CRH gene promoter region initiates a suppressing effect on CRH expression. The decreased activity of the SCN is the basis for the disturbances of circadian and circannual fluctuations in mood, sleep and hormonal rhythms found in depression. Neuronal loss was also reported in the hippocampus of stressed or corticosteroid-treated rodents and primates. Because of the inhibitory control of the hippocampus on the HPA-axis, damage to this structure was expected to disinhibit the HPA-axis, and to cause a positive feedforward cascade of increasing glucocorticoid levels over time. This 'glucocorticoid cascade hypothesis' of stress and hippocampal damage was proposed to be causally involved in age-related accumulation of hippocampal damage in disorders like Alzheimer's disease and depression. However, in postmortem studies we could not find the presumed hippocampal damage of steroid overexposure in either depressed patients or in patients treated with synthetic steroids.

  6. Functional neuroanatomy of thyroid hormone feedback in the human hypothalamus and pituitary gland

    NARCIS (Netherlands)

    Fliers, Eric; Unmehopa, Unga A.; Alkemade, Anneke

    2006-01-01

    A major change in thyroid setpoint regulation occurs in various clinical conditions such as critical illness and psychiatric disorders. As a first step towards identifying determinants of these setpoint changes, we have studied the distribution and expression of thyroid hormone receptor (TR)

  7. A molecular census of arcuate hypothalamus and median eminence cell types

    DEFF Research Database (Denmark)

    Campbell, John N; Macosko, Evan Z; Fenselau, Henning

    2017-01-01

    The hypothalamic arcuate-median eminence complex (Arc-ME) controls energy balance, fertility and growth through molecularly distinct cell types, many of which remain unknown. To catalog cell types in an unbiased way, we profiled gene expression in 20,921 individual cells in and around the adult...... mouse Arc-ME using Drop-seq. We identify 50 transcriptionally distinct Arc-ME cell populations, including a rare tanycyte population at the Arc-ME diffusion barrier, a new leptin-sensing neuron population, multiple agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) subtypes, and an orexigenic...... somatostatin neuron population. We extended Drop-seq to detect dynamic expression changes across relevant physiological perturbations, revealing cell type-specific responses to energy status, including distinct responses in AgRP and POMC neuron subtypes. Finally, integrating our data with human genome...

  8. The effect of ovarian steroid feedback upon radioimmunoreactive luteinizing hormone releasing hormone in the hypothalamus

    International Nuclear Information System (INIS)

    Yanaihara, Takumi; Arai, Kiyoshi; Kanazawa, Motomi; Okinaga, Shoichi; Yanaihara, Noboru

    1975-01-01

    A radioimmunoassay (RIA) method for luteinizing hormone (LH) releasing hormone (RH) utilizing rabbit antiserum against synthetic (Glu 1 )-LH-RH coupled with human serum albumin at the N-terminus, is described. This assay system for LH-RH also cross-reacted with several LH-RH analogues or fragments, but not with pituitary trophic hormones. The assay was performed on the hypothalamic extracts of adult ovariectomized rats and female immature rats which had been treated with estradiol. The FSH and LH levels in the pituitary gland and serum of the same animals were determined by RIA. The radioimmunoreactive LH-RH content of the stalk median eminence markedly increased seven days after ovariectomy. The serum levels and the pituitary contents of FSH and LH of the same rats were also significantly augmented. In immature rats, the hypothalamic content of LH-RH, as measured by RIA, was significantly increased one hour after the injection of estradiol. The FSH and LH levels in the pituitary showed a significant rise after 7 hours. (auth.)

  9. Association analyses of depression and genes in the hypothalamus-pituitary-adrenal axis

    DEFF Research Database (Denmark)

    Buttenschøn, Henriette Nørmølle; Krogh, Jesper; Nielsen, Marit Nyholm

    2017-01-01

    OBJECTIVE: Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been reported in depression. The aim was to investigate the potential association between depression and seven genes regulating or interfering with the HPA axis, including the gene encoding angiotensin converting enzyme......) was investigated. RESULTS: After quality control, 68 genetic variants were left for analyses. Four of nine variants within ACE were nominally associated with depression and a gene-wise association was likewise observed. However, none of the SNPs located within AVP, CRH, CRHR1, CRHR2, FKBP5 or NC3C1 were associated...... with depression. One nominally significant interaction, most likely due to chance, was identified. CONCLUSION: The results indicate that ACE could be a potential candidate gene for depression....

  10. Association of IL-6, hypothalamus-pituitary-adrenal axis function, and depression in patients with cancer.

    Science.gov (United States)

    Jehn, Christian Friedrich; Kühnhardt, Dagmar; Bartholomae, Andrea; Pfeiffer, Sebastian; Schmid, Peter; Possinger, Kurt; Flath, Bernd Christian; Lüftner, Diana

    2010-09-01

    Evidence suggests that cytokines (IL-6) and alteration of the hypothalamic-pituitary-adrenal (HPA) axis play a crucial role in the etiology of depression. Patients with cancer show elevated prevalence rates for depression. The objective of this cross-sectional study was to investigate the associations between these abnormalities and depression. Plasma concentrations of IL-6 and cortisol were measured in cancer patients with (N = 31) and without depression (N = 83). The relative diurnal variation of cortisol (cortisol VAR), expressed in percentage, was calculated. There was a significant difference in median plasma concentration of IL-6 between the patients with depression and those without (18.7 vs 2.7 pg/mL; P cancer is associated with increased plasma IL-6 concentrations and dysfunction of the HPA axis.

  11. Reduced ghrelin secretion in the hypothalamus of rats due to cisplatin-induced anorexia.

    Science.gov (United States)

    Yakabi, Koji; Sadakane, Chiharu; Noguchi, Masamichi; Ohno, Shino; Ro, Shoki; Chinen, Katsuya; Aoyama, Toru; Sakurada, Tomoya; Takabayashi, Hideaki; Hattori, Tomohisa

    2010-08-01

    Although chemotherapy with cisplatin is a widely used and effective cancer treatment, the undesirable gastrointestinal side effects associated with it, such as nausea, vomiting, and anorexia, markedly decrease patients' quality of life. To elucidate the mechanism underlying chemotherapy-induced anorexia, focusing on the hypothalamic ghrelin secretion-anorexia association, we measured hypothalamic ghrelin secretion in fasted and cisplatin-treated rats. Hypothalamic ghrelin secretion changes after vagotomy or administration of cisplatin. Cisplatin + rikkunshito, a serotonin 2C receptor antagonist or serotonin 3 receptor antagonist, was investigated. The effects of intracerebroventricular (icv) administration of ghrelin or the serotonin 2C receptor antagonist SB242084 on food intake were also evaluated in cisplatin-treated rats. Hypothalamic ghrelin secretion significantly increased in 24-h-fasted rats compared to freely fed rats and was markedly reduced 24 and 48 h after cisplatin treatment in cisplatin-treated rats compared to saline-treated rats, although their plasma ghrelin levels were comparable. In cisplatin-treated rats, icv ghrelin administration reversed the decrease in food intake, vagotomy partially restored hypothalamic ghrelin secretion, and hypothalamic serotonin 2C receptor mRNA expression increased significantly. Administration of rikkunshito (an endogenous ghrelin enhancer) or a serotonin 2C receptor antagonist reversed the decrease in hypothalamic ghrelin secretion and food intake 24 h after cisplatin treatment. Cisplatin-induced anorexia is mediated through reduced hypothalamic ghrelin secretion. Cerebral serotonin 2C receptor activation partially induces decrease in hypothalamic ghrelin secretion, and rikkunshito suppresses cisplatin-induced anorexia by enhancing this secretion.

  12. The Role of the Hypothalamus-Pituitary-Gonadal Axis in Breast Cancer: a candidate gene approach

    NARCIS (Netherlands)

    D. Piersma (Djura)

    2007-01-01

    textabstractThis chapter provides a general overview of breast cancer, including the possible role of genetic and exogenous factors and an overview of the role of hormones in carcinogenesis of the breast. Variability in susceptibility to the disease, timing of development, as well as tumor

  13. Cross-talk between estrogen and leptin signaling in the hypothalamus.

    Science.gov (United States)

    Gao, Qian; Horvath, Tamas L

    2008-05-01

    Obesity, characterized by enhanced food intake (hyperphagia) and reduced energy expenditure that results in the accumulation of body fat, is a major risk factor for various diseases, including diabetes, cardiovascular disease, and cancer. In the United States, more than half of adults are overweight, and this number continues to increase. The adipocyte-secreted hormone leptin and its downstream signaling mediators play crucial roles in the regulation of energy balance. Leptin decreases feeding while increasing energy expenditure and permitting energy-intensive neuroendocrine processes, such as reproduction. Thus, leptin also modulates the neuroendocrine reproductive axis. The gonadal steroid hormone estrogen plays a central role in the regulation of reproduction and also contributes to the regulation of energy balance. Estrogen deficiency promotes feeding and weight gain, and estrogen facilitates, and to some extent mimics, some actions of leptin. In this review, we examine the functions of estrogen and leptin in the brain, with a focus on mechanisms by which leptin and estrogen cooperate in the regulation of energy homeostasis.

  14. Alteration of hypothalamus-pituitary-adrenal gland axis in colorectal cancer patients. Preliminary report.

    Science.gov (United States)

    Crippa, S; Mussi, C; Angelini, C; Caprotti, R; Bonardi, C; Muselli, P; Scotti, M; Piacentini, G; Uggeri, F

    2003-08-01

    In advanced cancer patients a cell-mediated immunological impairment, both at baseline and during postoperative period, is often found and is associated with poor prognosis. Cortisol is strictly involved in the response to major surgical stress, is an immunosuppressor and causes a redistribution of immunological population cells in different tissues. The aim of the study was to verify serum levels and circadian rhythm of cortisol in patients with colorectal cancer at baseline before surgery and in the postoperative period, and relate it to the immune status. In 21 patients with colorectal cancer undergoing surgery we evaluated the assessment of total lymphocytes, CD4+, cortisolemia, circadian rhythm of cortisol (11 p.m. and 8 a.m.) at baseline and in 3(rd) and 7(th) postoperative days. Increase of cortisolemia, as decrease of total and CD4+ lymphocytes in the postoperative period versus baseline was statistically significant. Patients with an altered circadian rhythm were 47% and 36% at 3rd and 7th postoperative days, respectively. At baseline 19% of patients had an altered cortisol circadian rhythm and it was more frequent in patients with nodal involvement (pcancer patients seems not to be associated with cortisol level and circadian rhythm alteration, either at baseline or after surgical stress. An impairment of circadian rhythm of cortisol was found at baseline in 19% of patients. It was significantly associated with the presence of metastatic disease.

  15. Living without insulin: the role of leptin signaling in the hypothalamus

    OpenAIRE

    Fujikawa Teppei; Coppari Roberto

    2015-01-01

    Since its discovery in 1922, insulin has been thought to be required for normal metabolic homeostasis and survival. However, this view would need to be revised as recent results from different laboratories have convincingly indicated that life without insulin is possible in rodent models. These data indicate that particular neuronal circuitries, which include hypothalamic leptin-responsive neurons, are empowered with the capability of permitting life in complete absence of insulin. Here, we r...

  16. Distribution of angiotensin converting enzyme in sheep hypothalamus and medulla oblongata visualized by in vitro autoradiography

    International Nuclear Information System (INIS)

    Chai, S.Y.; McKinley, M.J.; Mendelsohn, F.A.

    1987-01-01

    In vitro autoradiographic mapping of angiotensin converting enzyme (ACE) in sheep brain using the specific ACE inhibitor, 125 I-351A, revealed very high densities of binding in large blood vessels and choroid plexus. In the a very high density of labelling occurred in the organum vasculosum of the lamina terminalis and median eminence and a high density in the subfornical organ and moderate density in supraoptic, suprachiasmatic, arcuate and paraventricular nuclei. All fiber tracts were unlabelled. In the medulla oblongata, a very high density of binding was detected in the area postrema and a high density in the nucleus of the solitary tract and dorsal motor nucleus of the vagus; a moderate density was found in the substantia gelatinosa of the spinal tract and the inferior olivary nucleus

  17. Effects of vivo morpholino knockdown of lateral hypothalamus orexin/hypocretin on renewal of alcohol seeking.

    Science.gov (United States)

    Prasad, Asheeta A; McNally, Gavan P

    2014-01-01

    Two experiments used vivo morpholinos to assess the role of orexin/hypocretin in ABA renewal of extinguished alcohol seeking. Rats were trained to respond for alcoholic beer in a distinctive context, A, and then extinguished in a second distinctive context, B. When rats were tested in the extinction context, ABB, responding was low but when they were tested in the training context, ABA, responding was significantly higher. Microinjection of an orexin/hypocretin antisense vivo morpholino into LH significantly reduced orexin/hypocretin protein expression but had no effect on the ABA renewal of alcohol seeking (Experiment 1). Microinjection of a higher dose of the antisense vivo morpholino into LH also significantly reduced orexin/hypocretin protein expression but this was not selective and yielded significant reduction in melanin-concentrating hormone (MCH) protein expression. This non-selective knockdown did significantly reduce ABA renewal as well as reduce the reacquisition of alcohol seeking. Taken together, these findings show an important role for LH in the ABA renewal of alcohol seeking but that orexin/hypocretin is not necessary for this renewal.

  18. Hypocretin Deficiency Associated with Narcolepsy Type 1 and Central Hypoventilation Syndrome in Neurosarcoidosis of the Hypothalamus.

    Science.gov (United States)

    Mayo, Mary Catherine; Deng, Jane C; Albores, Jeffrey; Zeidler, Michelle; Harper, Ronald M; Avidan, Alon Y

    2015-09-15

    We report a case of a 53-year-old man presenting with depressed alertness and severe excessive sleepiness in the setting of neurosarcoidosis. Neuroimaging demonstrated hypothalamic destruction due to sarcoidosis with a CSF hypocretin level of 0 pg/mL. The patient also experienced respiratory depression that presumably resulted from hypocretin-mediated hypothalamic dysfunction as a result of extensive diencephalic injury. This is a novel case, demonstrating both hypocretin deficiency syndrome, as well as respiratory dysfunction from destruction of hypocretin neurons and extensive destruction of key diencephalic structures secondary to the underlying neurosarcoidosis. © 2015 American Academy of Sleep Medicine.

  19. Role of the Orexin System on the Hypothalamus-Pituitary-Thyroid Axis

    Science.gov (United States)

    Messina, Antonietta; De Fusco, Carolina; Monda, Vincenzo; Esposito, Maria; Moscatelli, Fiorenzo; Valenzano, Anna; Carotenuto, Marco; Viggiano, Emanuela; Chieffi, Sergio; De Luca, Vincenzo; Cibelli, Giuseppe; Monda, Marcellino; Messina, Giovanni

    2016-01-01

    Hypocretin/orexin (ORX) are two hypothalamic neuropeptides discovered in 1998. Since their discovery, they have been one of the most studied neuropeptide systems because of their projecting fields innervating various brain areas. The orexinergic system is tied to sleep-wakefulness cycle, and narcolepsy is a consequence of their system hypofunction. Orexinergic system is also involved in many other autonomic functions such as feeding, thermoregulation, cardiovascular and neuroendocrine regulation. The main aim of this mini review article is to investigate the relationship between ORX and thyroid system regulation. Although knowledge about the ORX system is evolving, its putative effects on hypothalamic-pituitary-thyroid (HPT) axis still appear unclear. We analyzed some studies about ORX control of HPT axis to know better the relationship between them. The studies that were analyzed suggest Hypocretin/ORX to modulate the thyroid regulation, but the nature (excitatory or inhibitory) of this possible interaction remains actually unclear and needs to be confirmed. PMID:27610076

  20. Effects of vivo morpholino knockdown of lateral hypothalamus orexin/hypocretin on renewal of alcohol seeking.

    Directory of Open Access Journals (Sweden)

    Asheeta A Prasad

    Full Text Available Two experiments used vivo morpholinos to assess the role of orexin/hypocretin in ABA renewal of extinguished alcohol seeking. Rats were trained to respond for alcoholic beer in a distinctive context, A, and then extinguished in a second distinctive context, B. When rats were tested in the extinction context, ABB, responding was low but when they were tested in the training context, ABA, responding was significantly higher. Microinjection of an orexin/hypocretin antisense vivo morpholino into LH significantly reduced orexin/hypocretin protein expression but had no effect on the ABA renewal of alcohol seeking (Experiment 1. Microinjection of a higher dose of the antisense vivo morpholino into LH also significantly reduced orexin/hypocretin protein expression but this was not selective and yielded significant reduction in melanin-concentrating hormone (MCH protein expression. This non-selective knockdown did significantly reduce ABA renewal as well as reduce the reacquisition of alcohol seeking. Taken together, these findings show an important role for LH in the ABA renewal of alcohol seeking but that orexin/hypocretin is not necessary for this renewal.

  1. Regulation of the galanin system in the brainstem and hypothalamus by electroconvulsive stimulation in mice

    DEFF Research Database (Denmark)

    Christiansen, S H

    2011-01-01

    Induction of seizures by electroconvulsive stimulation (ECS) is amongst the most efficacious treatments for major depression. However, the working mechanism by which ECS exerts its antidepressant effects remains elusive. The galanin system is regulated by ECS in seizure-prone brain regions and ha...... in brain regions involved in monoaminergic neurotransmission and stress modulation thus indicating a possible role of the galanin system in the therapeutic effects of ECS.......Induction of seizures by electroconvulsive stimulation (ECS) is amongst the most efficacious treatments for major depression. However, the working mechanism by which ECS exerts its antidepressant effects remains elusive. The galanin system is regulated by ECS in seizure-prone brain regions and has...... been shown to modulate depression-like behaviour. To further explore its potential role in the antidepressant effects of ECS the galanin system was investigated by in situ hybridisation and [(125)I]-galanin receptor binding during repeated ECS in the locus coeruleus, dorsal raphe and discrete nuclei...

  2. Mucuna pruriens improves male fertility by its action on the hypothalamus-pituitary-gonadal axis.

    Science.gov (United States)

    Shukla, Kamla Kant; Mahdi, Abbas Ali; Ahmad, Mohammad Kaleem; Shankhwar, Satya Narain; Rajender, Singh; Jaiswar, Shyam Pyari

    2009-12-01

    To understand the mechanism of action of Mucuna pruriens in the treatment of male infertility. Prospective study. Departments of Biochemistry, Urology, and Obstetrics and Gynecology, C.S.M. Medical University, Lucknow, India. Seventy-five normal healthy fertile men (controls) and 75 men undergoing infertility screening. High-performance liquid chromatography assay for quantitation of dopa, adrenaline, and noradrenaline in seminal plasma and blood. Estimation by RIA of hormonal parameters in blood plasma, namely T, LH, FSH, and PRL. Before and after treatment, serum T, LH, FSH, PRL, dopamine, adrenaline, and noradrenaline in seminal and blood plasma were measured. Decreased sperm count and motility were seen in infertile subjects. Serum T and LH levels, as well as seminal plasma and blood levels of dopamine, adrenaline, and noradrenaline were also decreased in all groups of infertile men. This was accompanied by significantly increased serum FSH and PRL levels in oligozoospermic subjects. Treatment with M. pruriens significantly improved T, LH, dopamine, adrenaline, and noradrenaline levels in infertile men and reduced levels of FSH and PRL. Sperm count and motility were significantly recovered in infertile men after treatment. Treatment with M. pruriens regulates steroidogenesis and improves semen quality in infertile men.

  3. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus.

    Science.gov (United States)

    Jeanneteau, Freddy D; Lambert, W Marcus; Ismaili, Naima; Bath, Kevin G; Lee, Francis S; Garabedian, Michael J; Chao, Moses V

    2012-01-24

    Regulation of the hypothalamic-pituitary-adrenal (HPA) axis is critical for adaptation to environmental changes. The principle regulator of the HPA axis is corticotrophin-releasing hormone (CRH), which is made in the parventricular nucleus and is an important target of negative feedback by glucocorticoids. However, the molecular mechanisms that regulate CRH are not fully understood. Disruption of normal HPA axis activity is a major risk factor of neuropsychiatric disorders in which decreased expression of the glucocorticoid receptor (GR) has been documented. To investigate the role of the GR in CRH neurons, we have targeted the deletion of the GR, specifically in the parventricular nucleus. Impairment of GR function in the parventricular nucleus resulted in an enhancement of CRH expression and an up-regulation of hypothalamic levels of BDNF and disinhibition of the HPA axis. BDNF is a stress and activity-dependent factor involved in many activities modulated by the HPA axis. Significantly, ectopic expression of BDNF in vivo increased CRH, whereas reduced expression of BDNF, or its receptor TrkB, decreased CRH expression and normal HPA functions. We find the differential regulation of CRH relies upon the cAMP response-element binding protein coactivator CRTC2, which serves as a switch for BDNF and glucocorticoids to direct the expression of CRH.

  4. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus

    OpenAIRE

    Jeanneteau, Freddy D.; Lambert, W. Marcus; Ismaili, Naima; Bath, Kevin G.; Lee, Francis S.; Garabedian, Michael J.; Chao, Moses V.

    2012-01-01

    Regulation of the hypothalamic–pituitary–adrenal (HPA) axis is critical for adaptation to environmental changes. The principle regulator of the HPA axis is corticotrophin-releasing hormone (CRH), which is made in the parventricular nucleus and is an important target of negative feedback by glucocorticoids. However, the molecular mechanisms that regulate CRH are not fully understood. Disruption of normal HPA axis activity is a major risk factor of neuropsychiatric disorders in which decreased ...

  5. Interaction involving the thymus and the hypothalamus-pituitary axis, immunomodulation by hormones

    Directory of Open Access Journals (Sweden)

    Marković Ljiljana 2

    2004-01-01

    Full Text Available Perfectly projected and impeccably created, the endocrine system precisely regulates the most delicate immune processes. The immune and neuroendocrine systems are two essential physiological components of mammalian organisms important for protection from the infection and disease on one hand, and on the other, for regulation of metabolism and other physiological activities; namely, the evidence has been found indicating that there is active and dynamic collaboration of these systems in the execution of their designated functions [1, 2,4]. These interactions occur at many stages of embryonic and neonatal development, and they are a continual part of normal homeostatic balance necessary to preserve health. There is communication between neuroendocrine and immune system via cytokines, neurotransmitters and peptide hormones which act, in both systems, through the same receptor molecules (Scheme 1. Many investigators have reported the increased thymic weight in experimental animals due to both castration and adrenalectomy [4]. The discovery from 1898 revealing that thymus was enlarged in castrated rabbits has been considered the embryo of hybrid medical discipline, i.e. the immunoendocrinology [1]. In the actual literature, at least in that available to us, it has not been noted that the appearance of the eunuchs, i.e. the castrates, stimulated the analytical approach to this phenomenon. Endocrine influences appear to be a part of bidirectional circuitry, namely, thymic hormones also regulate the release of hormones from the pituitary gland. Physiologically, thymus is under neuroendocrine control. It is apparent that the circulating levels of distinct peptide hormones are necessary to maintain a series of biological functions related both to micro environmental and lymphoid cells of the organ. The neuroendocrine control of the thymus appears to be extremely complex, with apparent presence of complete intrathymic biological circuitry involving the production of pituitary hormones, as well as the expression of their respective receptors by thymic cell [7-9]. The influence of gonadectomy on the humoral immunity has been controversial. All investigations agree that women have higher titres of all classes of circulating antibodies than men [1, 3]. The application of estrogens stimulated the formation of antibodies in the circulation [17]. Then, if there were no sex glands, the immune response of the individual would be enhanced. Both the cellular and the humoral immune response is more powerful in the adult normal women than in men of the same age. The immune response is different in different sexes meaning that there is a sexual dimorphism. This difference has not been noted before the puberty [4]. It has been noticed that the substitution therapy has alleviated the late skin hypersensitivity [9], The estrogens have also curtailed the rejection time of the transplant and all reactions in which T-effector lymphocytes have been involved. NK-cells and T-lymphocytes activities have been decreased by the action of estrogens, as well as the release of thymus hormones [27]. Cortical RE cells express a surface antigen, gp200-MR6, which plays a significant role in thymocyte differentiation [7, 9]. irrespectively of which pathway may be triggered by neuroendocrine factors, the effects are pleiotropic and result in modulation of the expression of several genes in different cell types. Thymic neuroendocrine polypep-tides are the source of self-antigens presented by MHC molecules enabling the differentiation of haematopoietic stem cells [10]. Thymic nurse cells also produce thymosins beta 3 and beta 4 and display a neuroendocrine cell specific immunophenotype (IP: Thy-1+, A2B5+, TT+TE4+, UJ13/A+, UJ127.11+, UJ167.11+, Š181.4+ and presence of common leukocyte antigen (CLA+ [7,16]. GH enhances thymocyte release from TNCs, as well as the reconstitution of these lymphoepithelial complexes [11]. Similar to its role as a regulator of bone metabolism through regulating osteoprotegerin (OPG production, the estrogen is involved in the processes of thymocyte development although aromatase mRNA has not been detectable in the thymus. While the increase of TNC number during lactation may be linked to the process of reconstruction of the thymic lymphoid population, the increased activity of lymphoepithelial interactions on GD14 may be associated with thymic engagement in pregnancy-induced immune processes [27,29] The major antigens in the experimental autoimmune hypophysitis in rats are growth hormone, thyrotropin, and luteinizing hormone [12]. The intrathymic T-lymphocyte selection is a complex, multistep process, influenced by several functionally specialised RE cells and under immuno-neuroendocrine regulation control reflecting the dynamic changes of the mammalian organism. In HIV-1-infected adults treated with growth hormone [25 ], thymic mass and circulating naive CD4 T cells are increased. The treatment would be easier for the diseased, as well as to us, the physicians, if we were aware of two millennia old wisdom - that the disease is a visit of God.

  6. Suppressor of cytokine signaling 3 knockdown in the mediobasal hypothalamus: counterintuitive effects on energy balance

    NARCIS (Netherlands)

    de Backer, M. W. A.; Brans, M. A. D.; van Rozen, A. J.; van der Zwaal, E. M.; Luijendijk, M. C. M.; Garner, K. G.; de Krom, M.; van Beekum, O.; La Fleur, S. E.; Adan, R. A. H.

    2010-01-01

    An increase in brain suppressor of cytokine signaling 3 (SOCS3) has been implicated in the development of both leptin and insulin resistance. Socs3 mRNA is localized throughout the brain, and it remains unclear which brain areas are involved in the effect of SOCS3 levels on energy balance. We

  7. Diagnosis application of ACTH radioimmunoassay in diseases of hypothalamus, hypophysis and adrenal axis

    International Nuclear Information System (INIS)

    Moreira, A.C.; Foss, M.C.; Iazigi, N.

    1988-01-01

    The diagnostic value of 900-1,100 am plasma ACTH radioimmunoassay were studied in 10 patients with Cushing's disease before and after treatment, three patients with Cushing's syndrome with adrenal tumours, one Nelson's syndrome patient; 13 patients with Addison's disease and 12 patients with hypo-pituitarism. Twenty-seven normal subjects were controls. The measurement of basal plasma ACTH gave good differentiation between: a. pituitary Cushing's disease from adrenal tumors; b. Addison's disease from hypo-pituitarism. However this assay has a limited value for the differentiation between Cushing's disease from normal subjects and it is often unhelpful in the differential diagnosis of hypo-pituitarism from normal subjects. (author)

  8. The stress system in depression and neurodegeneration: Focus on the human hypothalamus

    NARCIS (Netherlands)

    Bao, A.-M.; Meynen, G.; Swaab, D.F.

    2008-01-01

    The stress response is mediated by the hypothalamo-pituitary-adrenal (HPA) system. Activity of the corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus (PVN) forms the basis of the activity of the HPA-axis. The CRH neurons induce adrenocorticotropin (ACTH)

  9. Characterization of insulin and leptin signaling in the hypothalamus of rodents during cancer induced anorexia

    OpenAIRE

    Eduardo Rochete Ropelle

    2010-01-01

    Resumo: A síndrome anorexia-caquexia é observada em cerca de 80% dos pacientes com câncer em estágio avançado e contribui diretamente para o aumento da morbidade e mortalidade desses pacientes. Postula-se que a patogênese da anorexia do câncer seja mediada por persistentes sinais anorexigênicos no hipotálamo, contribuindo com a redução da ingestão alimentar e do peso corporal. No presente estudo, demonstramos que as vias anorexigênicas mediadas pela insulina e pela leptina no hipotálamo estão...

  10. Lhx5 controls mamillary differentiation in the developing hypothalamus of the mouse

    Directory of Open Access Journals (Sweden)

    Michael eHeide

    2015-08-01

    Full Text Available Acquisition of specific neuronal identity by individual brain nuclei is a key step in brain development. However, how the mechanisms that confer neuronal identity are integrated with upstream regional specification networks is still mysterious. Expression of Sonic hedgehog (Shh, is required for hypothalamic specification and is later downregulated by Tbx3 to allow for the differentiation of the tubero-mamillary region. In this region, the mamillary body (MBO, is a large neuronal aggregate essential for memory formation. To clarify how MBO identity is acquired after regional specification, we investigated Lhx5, a transcription factor with restricted MBO expression. We first generated a hypomorph allele of Lhx5—in homozygotes, the MBO disappears after initial specification. Intriguingly, in these mutants, Tbx3 was downregulated and the Shh expression domain abnormally extended. Microarray analysis and chromatin immunoprecipitation indicated that Lhx5 appears to be involved in Shh downregulation through Tbx3 and activates several MBO-specific regulator and effector genes. Finally, by tracing the caudal hypothalamic cell lineage we show that, in the Lhx5 mutant, at least some MBO cells are present but lack characteristic marker expression. Our work shows how the Lhx5 locus contributes to integrate regional specification pathways with downstream acquisition of neuronal identity in the MBO.

  11. Hypothermia in Multiple Sclerosis: Beyond the Hypothalamus? A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Francesco Berti

    2018-01-01

    Full Text Available Hypothermia is a rare and poorly understood complication of Multiple Sclerosis (MS. We report on a 66-year-old patient currently with Secondary Progressive MS (SP-MS who developed unexplained hypothermia associated with multiple hospitalisations and we review the literature on this topic. In our case, magnetic resonance imaging (MRI of the brain failed to highlight hypothalamic disease, but spinal MRI identified a number of spinal cord lesions. Given the incidence and clinical significance of spinal involvement in MS and the hypothermic disturbances observed in high Spinal Cord Injury (SCI, we hypothesise that upper spinal cord pathology, along with hypothalamic and brainstem dysfunctions, can contribute to hypothermia.

  12. Quantitative autoradiographic analysis of estradiol retention by cells in the preoptic area, hypothalamus and amygdala

    International Nuclear Information System (INIS)

    Morrell, J.I.; Krieger, M.S.; Pfaff, D.W.

    1986-01-01

    These experiments were done to compare quantitatively, on a cell-by-cell basis, estradiol retention by cells in the medial preoptic area, arcuate nucleus, ventrolateral subdivision of the ventromedial nucleus, and the caudal half of the medial nucleus of the amygdala. The steroid autoradiograms were prepared from 2 μ sections of brains from overlectomized, adrenalectomized adult female rats that had been infused intravenously with [ 3 H] estradiol (E 2 ) in a regimen which kept circulating hormone concentration at or above proestrus levels for 3-4 h. Even in these brain regions, containing the most dense collections of E 2 -concentrating cells, a maximum of only 27-61% of the cells concentrated E 2 . Therefore, in these regions only a particular subset of the cells retain hormone; other cells in the region do not retain hormone. Frequency distribution histograms of the number of grains per cell versus the number of cells in each region showed a wide range in the amount of E 2 retained per cell, and no modes among E 2 -retaining cells. The data followed a distribution markedly different from that predicted by a simple Poisson distribution, confirming that E 2 -retention does not result from a random, passive process such as diffusion. The overall quantitative characteristics of the frequency distribution histograms were similar across the four brain areas. (orig./MG)

  13. Context Fear Learning Specifically Activates Distinct Populations of Neurons in Amygdala and Hypothalamus

    Science.gov (United States)

    Trogrlic, Lidia; Wilson, Yvette M.; Newman, Andrew G.; Murphy, Mark

    2011-01-01

    The identity and distribution of neurons that are involved in any learning or memory event is not known. In previous studies, we identified a discrete population of neurons in the lateral amygdala that show learning-specific activation of a c-"fos"-regulated transgene following context fear conditioning. Here, we have extended these studies to…

  14. TUB gene expression in hypothalamus and adipose tissue and its association with obesity in humans

    NARCIS (Netherlands)

    Nies, V J M; Struik, D; Wolfs, M G M; Rensen, S S; Szalowska, E; Unmehopa, U A; Fluiter, K.; van der Meer, T P; Hajmousa, G; Buurman, W A; Greve, J W; Rezaee, F; Shiri-Sverdlov, R; Vonk, R.J.; Swaab, D F; Wolffenbuttel, B H R; Jonker, J W; van Vliet-Ostaptchouk, J V

    2018-01-01

    BACKGROUND/OBJECTIVES: Mutations in the Tubby gene (TUB) cause late-onset obesity and insulin resistance in mice and syndromic obesity in humans. Although TUB gene function has not yet been fully elucidated, studies in rodents indicate that TUB is involved in the hypothalamic pathways regulating

  15. TUB gene expression in hypothalamus and adipose tissue and its association with obesity in humans

    NARCIS (Netherlands)

    Nies, V. J. M.; Struik, D.; Wolfs, M. G. M.; Rensen, S. S.; Szalowska, E.; Unmehopa, U. A.; Fluiter, K.; van der Meer, T. P.; Hajmousa, G.; Buurman, W. A.; Greve, J. W.; Rezaee, F.; Shiri-Sverdlov, R.; Vonk, R. J.; Swaab, D. F.; Wolffenbuttel, B. H. R.; Jonker, J. W.; van Vliet-Ostaptchouk, J. V.

    2017-01-01

    Mutations in the Tubby gene (TUB) cause late-onset obesity and insulin resistance in mice and syndromic obesity in humans. Although TUB gene function has not yet been fully elucidated, studies in rodents indicate that TUB is involved in the hypothalamic pathways regulating food intake and adiposity.

  16. TUB gene expression in hypothalamus and adipose tissue and its association with obesity in humans

    NARCIS (Netherlands)

    Nies, V J M; Struik, D; Wolfs, M G M; Rensen, S S; Szalowska, E; Unmehopa, U A; Fluiter, K; van der Meer, T P; Hajmousa, G; Buurman, W A; Greve, J W; Rezaee, F; Shiri-Sverdlov, R; Vonk, R J; Swaab, D F; Wolffenbuttel, B H R; Jonker, J W; van Vliet-Ostaptchouk, J V

    BACKGROUND/OBJECTIVES: Mutations in the Tubby gene (TUB) cause late-onset obesity and insulin resistance in mice and syndromic obesity in humans. Although TUB gene function has not yet been fully elucidated, studies in rodents indicate that TUB is involved in the hypothalamic pathways regulating

  17. Kisspeptin Expression in Guinea Pig Hypothalamus: Effects of 17β-Estradiol

    Science.gov (United States)

    Bosch, Martha A.; Xue, Changhui; Rønnekleiv, Oline K.

    2013-01-01

    Kisspeptin is essential for reproductive functions in humans. As a model for the human we have used the female guinea pig, which has a long ovulatory cycle similar to that of primates. Initially, we cloned a guinea pig kisspeptin cDNA sequence and subsequently explored the distribution and 17β-estradiol (E2) regulation of kisspeptin mRNA (Kiss1) and protein (kisspeptin) by using in situ hybridization, real-time PCR and immunocytochemistry. In ovariectomized females, Kiss1 neurons were scattered throughout the preoptic periventricular areas (PV), but the vast majority of Kiss1 neurons were localized in the arcuate nucleus (Arc). An E2 treatment that first inhibits (negative feedback) and then augments (positive feedback) serum luteinizing hormone (LH) increased Kiss1 mRNA density and number of cells expressing Kiss1 in the PV at both time points. Within the Arc, Kiss1 mRNA density was reduced at both time points. Quantitative real-time PCR confirmed the in situ hybridization results during positive feedback. E2 reduced the number of immunoreactive kisspeptin cells in the PV at both time points, perhaps an indication of increased release. Within the Arc, the kisspeptin immunoreactivity was decreased during negative feedback but increased during positive feedback. Therefore, it appears that in guinea pig both the PV and the Arc kisspeptin neurons act cooperatively to excite gonadotropin-releasing hormone (GnRH) neurons during positive feedback. We conclude that E2 regulation of negative and positive feedback may reflect a complex interaction of the kisspeptin circuitry, and both the PV and the Arc respond to hormone signals to encode excitation of GnRH neurons during the ovulatory cycle. PMID:22173890

  18. Participation of the hypothalamus-hypophysis axis in the sympathetic activation of human obesity.

    Science.gov (United States)

    Grassi, G; Seravalle, G; Dell'Oro, R; Turri, C; Pasqualinotto, L; Colombo, M; Mancia, G

    2001-12-01

    Previous studies have shown that hypothalamic and hypophyseal factors are involved in the acute sympathoexcitation induced by a variety of laboratory stimuli. Whether a chronic condition of sympathetic activation, such as that characterizing human obesity, is also dependent on these factors has never been investigated. In 40 normotensive obese subjects ([mean+/-SEM] age, 39.1+/-0.8 years) we measured blood pressure (Finapres), heart rate (ECG), and postganglionic muscle sympathetic nerve activity (MSNA) (microneurography). In 20 subjects measurements were repeated, according to a double-blind randomized sequence, after a midnight oral dose of dexamethasone (1 mg) (n=10) or placebo (n=10), while in the remaining subjects they were performed again after 1 week of a daily evening oral administration of 1 mg of dexamethasone (n=10) or placebo (n=10). The same protocol was performed in 16 age-matched lean normotensives. In both groups acute dexamethasone administration markedly reduced plasma cortisol (radioimmunoassay), without affecting hemodynamic and neural variables. In contrast to the acute administration, in obese subjects prolonged dexamethasone administration, although not affecting blood pressure and heart rate, significantly reduced both plasma cortisol (from 16.0+/-1.3 to 0.7+/-0.1 microg/dL; P<0.01) and MSNA (from 59.5+/-2.8 to 39.6+/-2.9 bursts per 100 heartbeats; P<0.02; -33.1+/-4.1%). This was not the case in lean subjects, in which the dexamethasone-induced reduction in plasma cortisol was associated with a slight and nonsignificant MSNA decrease. In both lean and obese subjects, placebo administration caused no change in any variable. Thus, prolonged dexamethasone administration exerts in obese subjects marked sympathoinhibitory effects that are not detectable in lean individuals. This suggests that hypothalamic and hypophyseal factors substantially contribute to the sympathoexcitation of obesity.

  19. Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    2015-06-01

    Conclusion: DMH cholinergic neurons directly send efferent signals to sympathetic premotor neurons in the Rpa. Elevated cholinergic input to this area reduces BAT activity through activation of M2 mAChRs on serotonergic neurons. Therefore, the direct DMHACh–Rpa5-HT pathway may mediate physiological heat-defense responses to elevated environmental temperature.

  20. Social condition and oxytocin neuron number in the hypothalamus of naked mole-rats (Heterocephalus glaber).

    Science.gov (United States)

    Mooney, S J; Holmes, M M

    2013-01-29

    The naked mole-rat is a subterranean colonial rodent. In each colony, which can grow to as many as 300 individuals, there is only one female and 1-3 males that are reproductive and socially dominant. The remaining animals are reproductively suppressed subordinates that contribute to colony survival through their cooperative behaviors. Oxytocin is a peptide hormone that has shown relatively widespread effects on prosocial behaviors in other species. We examined whether social status affects the number of oxytocin-immunoreactive neurons in the paraventricular nucleus and the supraoptic nucleus by comparing dominant breeding animals to subordinate non-breeding workers from intact colonies. We also examined these regions in subordinate animals that had been removed from their colony and paired with an opposite- or same-sex conspecific for 6 months. Stereological analyses indicated that subordinates had significantly more oxytocin neurons in the paraventricular nucleus than breeders. Animals in both opposite- and same-sex pairs showed a decreased oxytocin neuron number compared to subordinates suggesting that status differences may be due to social condition rather than the reproductive activity of the animal per se. The effects of social status appear to be region specific as no group differences were found for oxytocin neuron number in the supraoptic nucleus. Given that subordinate naked mole-rats are kept reproductively suppressed through antagonism by the queen, we speculate that status differences are due either to oxytocin's anxiolytic properties to combat the stress of this antagonism or to its ability to promote the prosocial behaviors of subordinates. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Developmental disorders of the hypothalamus and pituitary gland associated with congenital hypopituitarism.

    Science.gov (United States)

    Mehta, Ameeta; Dattani, Mehul T

    2008-02-01

    The pituitary gland is a complex organ secreting six hormones from five different cell types. It is the end product of a carefully orchestrated pattern of expression of signalling molecules and transcription factors. Naturally occurring and transgenic murine models have demonstrated a role for many of these molecules in the aetiology of congenital hypopituitarism. These include the transcription factors HESX1, PROP1, POU1F1, LHX3, LHX4, PITX1, PITX2, SOX2 and SOX3. The expression pattern of these transcription factors dictates the phenotype that results when the gene encoding the relevant transcription factor is mutated. The highly variable phenotype may consist of isolated hypopituitarism or more complex disorders such as septo-optic dysplasia and holoprosencephaly. However, the overall incidence of mutations in known transcription factors in patients with hypopituitarism is low, indicating that many genes remain to be identified; characterization of these will further elucidate the pathogenesis of this complex condition and also shed light on normal pituitary development and function.

  2. (Re-)activation of neurons in aging and dementia: Lessons from the hypothalamus

    NARCIS (Netherlands)

    Swaab, Dick F.; Bao, Ai-Min

    2011-01-01

    Our hypothesis is that there is 'wear and tear' in the brain, which is the basis of the process of aging, but that stimulation of brain function may slow down brain aging and diminish the risk for neurodegenerative diseases such as Alzheimer's disease (AD), possibly by activating repair mechanisms.

  3. Stress and the hypothalamus-pituitary-gonadal axis in the cyclic rat

    NARCIS (Netherlands)

    Roozendaal, M.M.

    1997-01-01


    The influence of stress on reproductive functions has been subject of much research. Various kinds of stress are known to affect reproductive functions. In females, the complex regulation of the ovarian cycle relies on a series of neuroendocrine events whose temporal relationship is so

  4. Tissue-type plasminogen activator in somatostatin cells of rat pancreas and hypothalamus

    DEFF Research Database (Denmark)

    Kristensen, P; Larsson, L I; Danø, K

    1987-01-01

    -PA, and immunoblotting analysis demonstrated one band with a similar electrophoretic mobility. No urokinase-type PA immunoreactivity was found in the rat endocrine pancreas. A granular t-PA immunoreactivity resembling that found in adjacent sections with somatostatin antiserum was found in the median eminence...

  5. Living without insulin: the role of leptin signaling in the hypothalamus

    Directory of Open Access Journals (Sweden)

    Teppei eFujikawa

    2015-03-01

    Full Text Available Since its discovery in 1922, insulin has been thought to be required for normal metabolic homeostasis and survival. However, this view would need to be revised as recent results from different laboratories have convincingly indicated that life without insulin is possible in rodent models. These data indicate that particular neuronal circuitries, which include hypothalamic leptin-responsive neurons, are empowered with the capability of permitting life in complete absence of insulin. Here, we review the neuronal and peripheral mechanisms by which leptin signaling in the central nervous system (CNS regulates glucose metabolism in an insulin-independent manner.

  6. Membrane potential dye imaging of ventromedial hypothalamus neurons from adult mice to study glucose sensing.

    Science.gov (United States)

    Vazirani, Reema P; Fioramonti, Xavier; Routh, Vanessa H

    2013-11-27

    Studies of neuronal activity are often performed using neurons from rodents less than 2 months of age due to the technical difficulties associated with increasing connective tissue and decreased neuronal viability that occur with age. Here, we describe a methodology for the dissociation of healthy hypothalamic neurons from adult-aged mice. The ability to study neurons from adult-aged mice allows the use of disease models that manifest at a later age and might be more developmentally accurate for certain studies. Fluorescence imaging of dissociated neurons can be used to study the activity of a population of neurons, as opposed to using electrophysiology to study a single neuron. This is particularly useful when studying a heterogeneous neuronal population in which the desired neuronal type is rare such as for hypothalamic glucose sensing neurons. We utilized membrane potential dye imaging of adult ventromedial hypothalamic neurons to study their responses to changes in extracellular glucose. Glucose sensing neurons are believed to play a role in central regulation of energy balance. The ability to study glucose sensing in adult rodents is particularly useful since the predominance of diseases related to dysfunctional energy balance (e.g. obesity) increase with age.

  7. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses.

    Science.gov (United States)

    Bonnavion, Patricia; Jackson, Alexander C; Carter, Matthew E; de Lecea, Luis

    2015-02-19

    The hypothalamic-pituitary-adrenal (HPA) axis functions to coordinate behavioural and physiological responses to stress in a manner that depends on the behavioural state of the organism. However, the mechanisms through which arousal and metabolic states influence the HPA axis are poorly understood. Here using optogenetic approaches in mice, we show that neurons that produce hypocretin (Hcrt)/orexin in the lateral hypothalamic area (LHA) regulate corticosterone release and a variety of behaviours and physiological hallmarks of the stress response. Interestingly, we found that Hcrt neuronal activity and Hcrt-mediated stress responses were inhibited by the satiety hormone leptin, which acts, in part, through a network of leptin-sensitive neurons in the LHA. These data demonstrate how peripheral metabolic signals interact with hypothalamic neurons to coordinate stress and arousal and suggest one mechanism through which hyperarousal or altered metabolic states may be linked with abnormal stress responses.

  8. A importância dos quintetos de sopro de Anton Reicha no repertório camerístico dos trompistas : estudo analítico e interpretativo dos quintetos n. 1 opus 88 e n. 24 opus 100, à luz de seus tratados de harmonia, composição e melodia

    OpenAIRE

    Jaqueline de Paula Theoro

    2010-01-01

    Resumo: Verificando a importância dos Quintetos de Sopro de Anton Reicha, no repertório camerístico dos trompistas, esta pesquisa tem como finalidade apresentar um estudo analítico e interpretativo das obras "Quinteto em Mi bemol Maior opus 88 nº1" e "Quinteto em Si bemol Maior opus 100 nº 24", ambos para flauta, oboé, clarinete, fagote e trompa, tendo como parâmetros os tratados: Traite de Melodie (1814), o Cours de Composition Musicale ou Traité Complet et Raisonné d?Harmonie Pratique (1818...

  9. Increase of prolactin mRNA in the rat hypothalamus after intracerebroventricular injection of VIP or PACAP.

    Science.gov (United States)

    Bredow, S; Kacsóh, B; Obál, F; Fang, J; Krueger, J M

    1994-10-17

    Vasoactive intestinal peptide (VIP), the structurally homologous pituitary adenylate cyclase-activating peptide (PACAP) and the pituitary hormone, prolactin (PRL) enhance rapid eye movement sleep (REMS). VIP and PACAP are both inducers of PRL gene expression and release in the pituitary gland. Little is known about PRL regulation in the brain although it is hypothesized that the REMS-promoting activity of i.c.v. administered VIP may be mediated via the activation of cerebral PRL. To test whether VIP or PACAP in fact increase intracerebral mRNA, the peptides (VIP: 30 or 300 pmol; PACAP: 220 pmol) were injected i.c.v. into rats at dark onset. 1 h later, cDNA was synthesized from purified hypothalamic mRNA. Standardized amounts were analysed for PRL using the polymerase chain reaction followed by Southern blotting and hybridization. Compared with beta-actin mRNA levels, both VIP and PACAP increased PRL mRNA levels in a dose-dependent fashion though VIP was more effective on a molar basis. The previously reported alternatively spliced PRL mRNA (lacking exon 4) was not detected. The data support the hypothesis that the REMS-promoting activity of central VIP and PACAP might be mediated by cerebral PRL.

  10. Restoration of tryptophan hydroxylase functions and serotonin content in the Atlantic croaker hypothalamus by antioxidant treatment during hypoxic stress

    Directory of Open Access Journals (Sweden)

    Md. Saydur Rahman

    2014-05-01

    Full Text Available Antioxidants are prototypical scavengers of oxygen-free radicals and have been shown to prevent neuroendocrine dysfunction in vertebrates during oxidative stress. In the present study, we investigated whether antioxidant treatment can reverse hypoxia-induced down-regulation of hypothalamic tryptophan hydroxylase (TPH and serotonergic functions in Atlantic croaker. Hypothalamic neuronal contents of TPH-1 and TPH-2 proteins, serotonin (5-hydroxytryptamine, 5-HT and its precursor, 5-hydroxytryptophan (5-HTP as well as hypothalamic TPH-1 and TPH-2 mRNA expression and TPH activity were measured in croaker after exposure to hypoxia and treatment with pharmacological agents. Multiple injections of N-ethylmaleimide, a sulfhydryl alkylating agent, caused comparable decreases in hypothalamic TPHs functions and 5-HT contents to that induced by hypoxia exposure (dissolved oxygen: 1.7 mg/L for 4 weeks which were partially restored by repeated injections with a nitric oxide synthase (NOS-inhibitor and/or vitamin E. Double-labeled immunohistochemical results showed that TPHs and 5-HT neurons were co-expressed with neuronal NOS (nNOS, a neuroenzyme that catalyzes the production of nitric oxide, a free radical, in hypothalamic neurons. These results suggest that hypoxia-induced impairment of TPH and serotonergic functions are mediated by nNOS and involve the generation of free radicals and a decrease in the antioxidant status. This study provides, to our knowledge, the first evidence of a protective role for an antioxidant in maintaining neural TPHs functions and 5-HT regulation in an aquatic vertebrate during hypoxic stress.

  11. The neuroimmune-endocrine axis: pathophysiological implications for the central nervous system cytokines and hypothalamus-pituitary-adrenal hormone dynamics

    Directory of Open Access Journals (Sweden)

    J. Licinio

    2000-10-01

    Full Text Available Cytokines are molecules that were initially discovered in the immune system as mediators of communication between various types of immune cells. However, it soon became evident that cytokines exert profound effects on key functions of the central nervous system, such as food intake, fever, neuroendocrine regulation, long-term potentiation, and behavior. In the 80's and 90's our group and others discovered that the genes encoding various cytokines and their receptors are expressed in vascular, glial, and neuronal structures of the adult brain. Most cytokines act through cell surface receptors that have one transmembrane domain and which transduce a signal through the JAK/STAT pathway. Of particular physiological and pathophysiological relevance is the fact that cytokines are potent regulators of hypothalamic neuropeptidergic systems that maintain neuroendocrine homeostasis and which regulate the body's response to stress. The mechanisms by which cytokine signaling affects the function of stress-related neuroendocrine systems are reviewed in this article.

  12. Glucose concentrations modulate brain-derived neurotrophic factor responsiveness of neurones in the paraventricular nucleus of the hypothalamus.

    Science.gov (United States)

    McIsaac, W; Ferguson, A V

    2017-04-01

    The hypothalamic paraventricular nucleus (PVN) is critical for normal energy balance and has been shown to contain high levels of both brain-derived neurotrophic factor (BDNF) and tropomyosin-receptor kinase B mRNA. Microinjections of BDNF into the PVN increase energy expenditure, suggesting that BDNF plays an important role in energy homeostasis through direct actions in this nucleus. The present study aimed to examine the postsynaptic effects of BDNF on the membrane potential of PVN neurones, and also to determine whether extracellular glucose concentrations modulated these effects. We used hypothalamic PVN slices from male Sprague-Dawley rats to perform whole cell current-clamp recordings from PVN neurones. BDNF was bath applied at a concentration of 2 nmol L -1 and the effects on membrane potential determined. BDNF caused depolarisations in 54% of neurones (n=25; mean±SEM, 8.9±1.2 mV) and hyperpolarisations in 23% (n=11; -6.7±1.4 mV), whereas the remaining cells were unaffected. These effects were maintained in the presence of tetrodotoxin (n=9; 56% depolarised, 22% hyperpolarised, 22% nonresponders), or the GABA a antagonist bicuculline (n=12; 42% depolarised, 17% hyperpolarised, 41% nonresponders), supporting the conclusion that these effects on membrane potential were postsynaptic. Current-clamp recordings from PVN neurones next examined the effects of BDNF on these neurones at varying extracellular glucose concentrations. Larger proportions of PVN neurones hyperpolarised in response to BDNF as the glucose concentrations decreased [10 mmol L -1 glucose 23% (n=11) of neurones hyperpolarised, whereas, at 0.2 mmol L -1 glucose, 71% showed hyperpolarising effects (n=12)]. Our findings reveal that BDNF has direct GABA A independent effects on PVN neurones, which are modulated by local glucose concentrations. The latter observation further emphasises the critical importance of using physiologically relevant conditions in an investigation of the central pathways involved in the regulation of energy homeostasis. © 2017 British Society for Neuroendocrinology.

  13. A contribution to the knowledge of thyroid-pituitary-hypothalamus - axis in experimental hypoproteinemia in albino wistar rats

    International Nuclear Information System (INIS)

    Borghi, V.C.

    1978-01-01

    The influence of a protein-deficient that on rat TSH levels were evaluated in basal conditions and after TRH administration. Two groups of animals were studied. One group was fed with a normal-protein diet, and the other with a protein-deficient diet. The animals were kept under controlle conditions during the experiment (30d). Their weight was periodically controlled, and its variation analysed. Data were statistically evaluated. The animals in the two groups had similar average initial weight. During the experiment the control had a weight increase whereas the protein-deficient group showed a decrease. The concentration of total serum proteins, and protein fraction (albumin, globulins) analysed, presented significantly lower values in the protein-deficient group, when compared to the control group. After TRH administration, the control group had approximately a tenfold increase in its average basal TSH level, while the protein-deficient group showed a seventeenfold increase. An exaggerated TSH release was demonstrated, in response to TRH in the protein-deficient animals without any evidence of basal level alteration. The increased responsiveness to TRH in protein-deficient animal is probably related to the reduced modulation of pituitary TSH secretion by lower triiodothyronine levels due to deficient extrathyroidal thyroxine conversion [pt

  14. Presynaptic Regulation of Leptin in a Defined Lateral Hypothalamus-Ventral Tegmental Area Neurocircuitry Depends on Energy State.

    Science.gov (United States)

    Liu, Jing-Jing; Bello, Nicholas T; Pang, Zhiping P

    2017-12-06

    Synaptic transmission controls brain activity and behaviors, including food intake. Leptin, an adipocyte-derived hormone, acts on neurons located in the lateral hypothalamic area (LHA) to maintain energy homeostasis and regulate food intake behavior. The specific synaptic mechanisms, cell types, and neural projections mediating this effect remain unclear. In male mice, using pathway-specific retrograde tracing, whole-cell patch-clamp recordings and post hoc cell type identification, we found that leptin reduces excitatory synaptic strength onto both melanin-concentrating hormone- and orexin-expressing neurons projecting from the LHA to the ventral tegmental area (VTA), which may affect dopamine signaling and motivation for feeding. A presynaptic mechanism mediated by distinct intracellular signaling mechanisms may account for this regulation by leptin. The regulatory effects of leptin depend on intact leptin receptor signaling. Interestingly, the synaptic regulatory function of leptin in the LHA-to-VTA neuronal pathway is highly sensitive to energy states: both energy deficiency (acute fasting) and excessive energy storage (high-fat diet-induced obesity) blunt the effect of leptin. These data revealed that leptin may regulate synaptic transmission in the LHA-to-VTA neurocircuitry in an inverted "U-shape" fashion dependent on plasma glucose levels and related to metabolic states. SIGNIFICANCE STATEMENT The lateral hypothalamic area (LHA) to ventral tegmental area (VTA) projection is an important neural pathway involved in balancing whole-body energy states and reward. We found that the excitatory synaptic inputs to both orexin- and melanin-concentrating hormone expressing LHA neurons projecting to the VTA were suppressed by leptin, a peptide hormone derived from adipocytes that signals peripheral energy status to the brain. Interestingly, energy states seem to affect how leptin regulates synaptic transmission since both the depletion of energy induced by acute food deprivation and excessive storage of energy by high-fat diet feeding dampen the suppressive effect of leptin on synaptic transmission. Together, these data show that leptin regulates synaptic transmission and might be important for maintaining energy homeostasis. Copyright © 2017 the authors 0270-6474/17/3711854-13$15.00/0.

  15. Response of arginine vasopressin-enhanced green fluorescent protein fusion gene in the hypothalamus of adjuvant-induced arthritic rats

    Czech Academy of Sciences Publication Activity Database

    Suzuki, H.; Onaka, T.; Kasai, M.; Kawasaki, M.; Ohnishi, H.; Otsubo, H.; Saito, T.; Hashimoto, H.; Yokoyama, T.; Fujihara, H.; Dayanithi, Govindan; Murphy, D.; Nakamura, T.; Ueta, Y.

    2009-01-01

    Roč. 21, č. 3 (2009), s. 183-190 ISSN 0953-8194 Institutional research plan: CEZ:AV0Z50390512 Keywords : arginine vasopressin * Corticotrophin-releasing hormone * GFP Subject RIV: FH - Neurology Impact factor: 3.700, year: 2009

  16. Lithium protects hippocampal progenitors, cognitive performance and hypothalamus-pituitary function after irradiation to the juvenile rat brain

    NARCIS (Netherlands)

    Zhou, Kai; Xie, Cuicui; Wickström, Malin; Dolga, Amalia M; Zhang, Yaodong; Li, Tao; Xu, Yiran; Culmsee, Carsten; Kogner, Per; Zhu, Changlian; Blomgren, Klas

    2017-01-01

    Cranial radiotherapy in children typically causes delayed and progressive cognitive dysfunction and there is no effective preventive strategy for radiation-induced cognitive impairments. Here we show that lithium treatment reduced irradiation-induced progenitor cell death in the subgranular zone of

  17. Estrous cycle influences the expression of neuronal nitric oxide synthase in the hypothalamus and limbic system of female mice

    Directory of Open Access Journals (Sweden)

    Viglietti-Panzica Carla

    2009-07-01

    Full Text Available Abstract Background Nitric oxide plays an important role in the regulation of male and female sexual behavior in rodents, and the expression of the nitric oxide synthase (NOS is influenced by testosterone in the male rat, and by estrogens in the female. We have here quantitatively investigated the distribution of nNOS immunoreactive (ir neurons in the limbic hypothalamic region of intact female mice sacrificed during different phases of estrous cycle. Results Changes were observed in the medial preoptic area (MPA (significantly higher number in estrus and in the arcuate nucleus (Arc (significantly higher number in proestrus. In the ventrolateral part of the ventromedial nucleus (VMHvl and in the bed nucleus of the stria terminalis (BST no significant changes have been observed. In addition, by comparing males and females, we observed a stable sex dimorphism (males have a higher number of nNOS-ir cells in comparison to almost all the different phases of the estrous cycle in the VMHvl and in the BST (when considering only the less intensely stained elements. In the MPA and in the Arc sex differences were detected only comparing some phases of the cycle. Conclusion These data demonstrate that, in mice, the expression of nNOS in some hypothalamic regions involved in the control of reproduction and characterized by a large number of estrogen receptors is under the control of gonadal hormones and may vary according to the rapid variations of hormonal levels that take place during the estrous cycle.

  18. Involvement of the dorsomedial hypothalamus and the nucleus tractus solitarii in chronic cardiovascular changes associated with anxiety in rats

    NARCIS (Netherlands)

    Sevoz-Couche, Caroline; Brouillard, Charly; Camus, Francoise; Laude, Dominique; De Boer, Sietse F.; Becker, Chrystel; Benoliel, Jean-Jacques

    Key points center dot Anxiety disorders reduce both the heart rate variability (HRV) and the sensitivity of the cardiac baroreflex (BRS). This may lead to sudden cardiac death. center dot To elucidate the mechanisms underlying these alterations, male rats were subjected to social defeat sessions

  19. Developmental changes in hypothalamus-pituitary-adrenal activity over the transition to adolescence: normative changes and associations with puberty.

    Science.gov (United States)

    Gunnar, Megan R; Wewerka, Sandi; Frenn, Kristin; Long, Jeffrey D; Griggs, Christopher

    2009-01-01

    Home baseline and laboratory stressor (Trier Social Stress Test for Children) measures of salivary cortisol were obtained from 82 participants (40 girls) aged 9, 11, 13, and 15 years. Measures of pubertal development, self-reported stress, parent reports of child depressive symptoms and fearful temperament, and cardiac measures of sympathetic and parasympathetic activity were also obtained. Significant increases in the home cortisol baselines were found with age and pubertal development. Cortisol stress reactivity differed by age group with 11-year-olds and 13-year-old boys showing blunted reactivity and 9-year-olds, 13-year-old girls, and 15-year-olds showing significant cortisol reactions. Cortisol reactivity correlated marginally with sexual maturation. Measures of sympathetic activity revealed increased sympathetic modulation with age. Higher sympathetic tone was associated with more fearful temperament, whereas greater cortisol reactivity was associated with more anxious and depressed symptoms for girls. The importance of these findings for the hypothesis that puberty-associated increases in hypothalamic-pituitary-adrenal axis activity heightens the risk of psychopathology is discussed.

  20. Photoperiodic Co-Regulation of Kisspeptin, Neurokinin B and Dynorphin in the Hypothalamus of a Seasonal Rodent

    DEFF Research Database (Denmark)

    Bartzen-Sprauer, J; Klosen, P; Ciofi, P

    2014-01-01

    In many species, sexual activity varies on a seasonal basis. Kisspeptin (Kp), a hypothalamic neuropeptide acting as a strong activator of gonadotrophin-releasing hormone neurones, plays a critical role in this adaptive process. Recent studies report that two other neuropeptides, namely neurokinin...... (NKB) and dynorphin (DYN), are co-expressed with Kp (and therefore termed KNDy neurones) in the arcuate nucleus and that these peptides are also considered to influence GnRH secretion. The present study aimed to establish whether hypothalamic NKB and DYN expression is photoperiod......-dependent in a seasonal rodent, the Syrian hamster, which exhibits robust seasonal rhythms in reproductive activity. The majority of Kp neurones in the arcuate nucleus co-express NKB and DYN and the expression of all three peptides is decreased under a short (compared to long) photoperiod, leading to a 60% decrease......-localise with RFRP-immunoreactive neurones, and the expression of both NKB and DYN is higher under a short photoperiod, which is opposite to the short-day inhibition of RFRP expression. In conclusion, the present study shows that NKB and DYN display different photoperiodic variations in the Syrian hamster...

  1. Gad1 mRNA as a reliable indicator of altered GABA release from orexigenic neurons in the hypothalamus.

    Science.gov (United States)

    Dicken, Matthew S; Hughes, Alexander R; Hentges, Shane T

    2015-11-01

    The strength of γ-aminobutyric acid (GABA)-mediated inhibitory synaptic input is a principle determinant of neuronal activity. However, because of differences in the number of GABA afferent inputs and the sites of synapses, it is difficult to directly assay for altered GABA transmission between specific cells. The present study tested the hypothesis that the level of mRNA for the GABA synthetic enzyme glutamate decarboxylase (GAD) can provide a reliable proxy for GABA release. This was tested in a mouse hypothalamic circuit important in the regulation of energy balance. Fluorescent in situ hybridization results show that the expression of Gad1 mRNA (encoding the GAD67 enzyme) was increased in hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons after an overnight fast, consistent with the ability of GABA from these neurons to stimulate food intake. Optogenetic studies confirmed that the observed increase in Gad1 mRNA correlated with an increase in the probability of GABA release from NPY/AgRP neurons onto downstream proopiomelanocortin neurons. Likewise, there was an increase in the readily releasable pool of GABA in NPY/AgRP neurons. Selective inhibition of GAD activity in NPY/AgRP neurons decreased GABA release, indicating that GAD67 activity, which is largely dictated by expression level, is a key determinant of GABA release. Altogether, it appears that Gad expression may be a reliable proxy of altered GABAergic transmission. Examining changes in Gad mRNA as a proxy for GABA release may be particularly helpful when the downstream targets are not known or when limited tools exist for detecting GABA release at a particular synapse. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Impact of obesity on taste receptor expression in extra-oral tissues : emphasis on hypothalamus and brainstem

    NARCIS (Netherlands)

    Herrera, Moro Chao D.; Argmann, C.; Eijk, van M.; Boot, R.G.; Ottenhoff, R.; Roomen, van C.; Foppen, E.; Siljee, J.E.; Unmehopa, U.A.; Kalsbeek, A.; Aerts, J.M.F.G.

    2016-01-01

    Sweet perception promotes food intake, whereas that of bitterness is inhibitory. Surprisingly, the expression of sweet G protein-coupled taste receptor (GPCTR) subunits (T1R2 and T1R3) and bitter GPCTRs (T2R116, T2R118, T2R138 and T2R104), as well as the α-subunits of the associated signalling

  3. Impact of obesity on taste receptor expression in extra-oral tissues: emphasis on hypothalamus and brainstem

    NARCIS (Netherlands)

    Herrera Moro Chao, D.; Argmann, C.; van Eijk, M.; Boot, R. G.; Ottenhoff, R.; van Roomen, C.; Foppen, E.; Siljee, J. E.; Unmehopa, U. A.; Kalsbeek, A.; Aerts, J. M. F. G.

    2016-01-01

    Sweet perception promotes food intake, whereas that of bitterness is inhibitory. Surprisingly, the expression of sweet G protein-coupled taste receptor (GPCTR) subunits (T1R2 and T1R3) and bitter GPCTRs (T2R116, T2R118, T2R138 and T2R104), as well as the alpha-subunits of the associated signalling

  4. Infundibular neurons of the human hypothalamus simultaneously reactive with antisera against endorphins, ACTH, MSH and beta-LPH.

    Science.gov (United States)

    Bugnon, C; Bloch, B; Lenys, D; Fellmann, D

    1979-06-27

    In man, discrete neurons of the infundibular (arcuate) nucleus contain compounds that can be stained with anti-endorphin (alpha and beta), anti-ACTH, anti-MSH (alpha and beta) and anti-beta-LPH immune sera (I.S.). In the fetus, certain neurons stain with anti-beta-endorphin or anti((17--39)ACTH starting from the 11th week of fetal life. At the ultrastructural level, these neurons contain elementary granules that are immunoreactive with anti-beta-endorphin. In the adult, neurons immunoreactive with anti-beta-endorphin are found in the infundibular nucleus. Their axonal fibers terminate around blood vessels in the neurovascular zone and in the pituitary stalk, or establish contacts with non-immunoreactive perikarya of the infundibular nucleus. These neurons can be stained with anti(17--39)ACTH and anti-beta-endorphin I.S. The most reactive are also stained moderately with anti-alpha-MSH, anti-beta-MSH, anti-beta-LPH, anti-alpha-endorphin, or anti(1--24)ACTH I.S. These results indicate that, in man, compound(s) identical with or immunologically related to endorphins, beta-LPH, ACTH and MSH are secreted by certain hypothalamic neurons. These agents probably originate from a common precursor molecula similar to the so-called pro-opiocortin.

  5. Acute and repeated ECS treatment increases CRF, POMC and PENK gene expression in selected regions of the rat hypothalamus.

    Science.gov (United States)

    Garcia-Garcia, L; Llewellyn-Jones, V; Fernandez Fernandez, I; Fuentes, J A; Manzanares, J

    1998-01-05

    The purpose of this study was to investigate the effects of acute and repeated electroconvulsive shock (ECS) on corticotropin releasing factor (CRF), proopiomelanocortin (POMC) and proenkephalin (PENK) gene expression in selected regions of the brain and pituitary of the rat. Acute ECS increased CRF gene expression in the paraventricular nucleus (PVN) by 20%, an effect that was further enhanced to 38% when rats received repeated ECS treatment. Acute and repeated ECS increased POMC gene expression in the arcuate nucleus (ARC) by 49-59% but failed to alter these mRNA levels in the anterior lobe (AL) of the pituitary gland. PENK gene expression was increased by 35% in the nucleus accumbens (NA) and by 180% the ventromedial nucleus (VMN) after acute or repeated ECS treatment but no significant changes were found in the PVN or striatum (ST). Taken together, these results indicate a differential CRF and opioid gene expression regulation after acute or repeated ECS treatment that may be relevant to their therapeutic or side effects in depression.

  6. MYT1L mutations cause intellectual disability and variable obesity by dysregulating gene expression and development of the neuroendocrine hypothalamus

    OpenAIRE

    Blanchet, P.; Bebin, M.; Bruet, S,; Cooper, G.M.; Thompson, M.L.; Duban-Bedu, B.; Gerard, B.; Piton, A.; Suckno, S.; Deshpande, C.; Clowes, V.; Vogt, J.; Turnpenny, P.; Williamson, M.P.; Alembik, Y.

    2017-01-01

    Deletions at chromosome 2p25.3 are associated with a syndrome consisting of intellectual disability and obesity. The smallest region of overlap for deletions at 2p25.3 contains PXDN and MYT1L. MYT1L is expressed only within the brain in humans. We hypothesized that single nucleotide variants (SNVs) in MYT1L would cause a phenotype resembling deletion at 2p25.3. To examine this we sought MYT1L SNVs in exome sequencing data from 4, 296 parent-child trios. Further variants were identified throug...

  7. Effect of Intravasclar Influsion of Endogenous Pyrogen or Prostaglandin E2 on Neuronal Activity of Rat's Hypothalamus

    OpenAIRE

    Sakata, Yoshiyuki; Watanabe, Tatsuo; Morimoto, Akio; Murakami, Naotoshi

    1989-01-01

    We investigated the effects of intracarotid infusion of prostaglandin E2 or intravenous infusion of an endogenous pyrogen on the neuronal activity of the neuronal activity of the preoptic and anterior hypothalamic (PO/AH) region in rats. The present results suggest that thermore sponsive neurons of the PO/AH region respond well to intravascular application of prostaglandin E2 or the endogenous pyrogen, compared with thermally insensive neurons. Intravenous infusion of the endogenous pyrogen a...

  8. The effect of leptin receptor deficiency and fasting on cannabinoid receptor 1 mRNA expression in the rat hypothalamus, brainstem and nodose ganglion.

    Science.gov (United States)

    Jelsing, Jacob; Larsen, Philip Just; Vrang, Niels

    2009-10-02

    Despite ample evidence for the involvement of the endocannabinoid system in the control of appetite, food intake and energy balance, relatively little is known about the regulation of cannabinoid receptor 1 (CB(1)R) expression in respect to leptin signalling and fasting. In the present study, we examined CB(1)R mRNA levels in lean (Fa/?) and obese (fa/fa) male Zucker rats under basal and food-restricted conditions. Using stereological sampling principles coupled with semi-quantitative radioactive in situ hybridization we provide semi-quantitative estimates of CB(1)R mRNA expression in key appetite regulatory hypothalamic and brainstem areas, as well as in the nodose ganglia. Whereas no effect of fasting were determined on CB(1)R mRNA levels in the paraventricular (PVN) and ventromedial hypothalamic (VMH) nucleus, in the brainstem dorsal vagal complex or nodose ganglion of lean Zucker rats, CB(1)R mRNA levels were consistently elevated in obese Zucker rats pointing to a direct influence of disrupted leptin signalling on CB(1)R mRNA regulation.

  9. The effect of perinatal exposure to ethinyl oestradiol or a mixture of endocrine disrupting pesticides on kisspeptin neurons in the rat hypothalamus

    DEFF Research Database (Denmark)

    Overgaard, Agnete; Holst, Klaus; Mandrup, Karen

    2013-01-01

    Early life exposure to endocrine disruptors is considered to disturb normal development of hormone sensitive parameters and contribute to advanced puberty and reduced fecundity in humans. Kisspeptin is a positive regulator of the hypothalamic–pituitary–gonadal axis, and plays a key role in the in......Early life exposure to endocrine disruptors is considered to disturb normal development of hormone sensitive parameters and contribute to advanced puberty and reduced fecundity in humans. Kisspeptin is a positive regulator of the hypothalamic–pituitary–gonadal axis, and plays a key role.......We find that perinatal EE2 exposure did not affect Kiss1 mRNA expression in this study designed to model human exposure to estrogenic compounds, and we find only minor effects on puberty onset. Further, the Kiss1 system does not exhibit persistent changes and puberty onset is not affected after perinatal...... exposure to a pesticide mixture in this experimental setting. However, we find that the pesticide mancozeb tends to increase Kiss1 expression in the ARC, presumably through neurotoxic mechanisms rather than via classical endocrine disruption, calling for increased awareness that Kiss1 expression can...

  10. Colocalization of corticotropin-releasing hormone and oestrogen receptor-alpha in the paraventricular nucleus of the hypothalamus in mood disorders

    NARCIS (Netherlands)

    Bao, Ai-Min; Hestiantoro, Andon; van Someren, Eus J. W.; Swaab, Dick F.; Zhou, Jiang-Ning

    2005-01-01

    Oestrogens may modulate the activity of the hypothalamic-pituitary-adrenal (HPA) axis. The present study was to investigate whether the activity of the HPA axis in mood disorders might be directly modulated by oestrogens via oestrogen receptors (ORs) in the corticotropin-releasing hormone (CRH)

  11. Effects of pre-experience of social exclusion on hypothalamus-pituitary-adrenal axis and catecholaminergic responsiveness to public speaking stress.

    Science.gov (United States)

    Weik, Ulrike; Kuepper, Yvonne; Hennig, Juergen; Deinzer, Renate

    2013-01-01

    Being socially excluded is associated with a variety of psychological changes and with an increased risk of disease. Today, the immediate physiological consequences of being socially excluded are not well understood. In two recent studies employing a standardized exclusion paradigm (Cyberball) we found social exclusion in this virtual game did not alter cortisol secretion directly. However, exclusion pre-experience suppresses the normal cortisol response to public speaking stress in women. The present study aims to replicate our previous finding and further elucidate it by analyzing for the first time whether this alteration of cortisol-responsiveness is associated to ACTH and whether the catecholaminergic system is affected as well. Women were randomly assigned to Cyberball-induced exclusion (SE, n = 22) or inclusion (SI, n = 21), respectively. Immediately afterwards they were subjected to public speaking stress. Salivary cortisol, plasma ACTH, catecholamines and estradiol were assessed as were psychological distress and mood. Cyberball exclusion led to a highly significant immediate increase in negative affect in excluded women. After public speaking negative affect in included women increased as well and groups no longer differed. We replicate our previous finding of cortisol non-responsiveness to public speaking stress after exclusion pre-experience and find this effect to be significantly correlated with ACTH alterations. No such effects are observed for catecholamines. We replicated our previous study result of a suppressed cortisol stress response after a short exclusion experience via Cyberball, thereby underlining the profound effects of social exclusion on a subsequent cortisol stress response. This further demonstrates that these alterations are associated with ACTH. Lack of effects on catecholamines is discussed in view of the tend-and-befriend hypothesis but also from a methodological perspective.

  12. Postnatal growth velocity modulates alterations of proteins involved in metabolism and neuronal plasticity in neonatal hypothalamus in rats born with intrauterine growth restriction.

    Science.gov (United States)

    Alexandre-Gouabau, Marie-Cécile F; Bailly, Emilie; Moyon, Thomas L; Grit, Isabelle C; Coupé, Bérengère; Le Drean, Gwenola; Rogniaux, Hélène J; Parnet, Patricia

    2012-02-01

    Intrauterine growth restriction (IUGR) due to maternal protein restriction is associated in rats with an alteration in hypothalamic centers involved in feeding behaviour. In order to gain insight into the mechanism of perinatal maternal undernutrition in the brain, we used proteomics approach to identify hypothalamic proteins that are altered in their expression following protein restriction in utero. We used an animal model in which restriction of the protein intake of pregnant rats (8% vs. 20%) produces IUGR pups which were randomized to a nursing regimen leading to either rapid or slow catch-up growth. We identified several proteins which allowed, by multivariate analysis, a very good discrimination of the three groups according to their perinatal nutrition. These proteins were related to energy-sensing pathways (Eno 1, E(2)PDH, Acot 1 and Fabp5), redox status (Bcs 1L, PrdX3 and 14-3-3 protein) or amino acid pathway (Acy1) as well as neurodevelopment (DRPs, MAP2, Snca). In addition, the differential expressions of several key proteins suggested possible shunts towards ketone-body metabolism and lipid oxidation, providing the energy and carbon skeletons necessary to lipogenesis. Our results show that maternal protein deprivation during pregnancy only (IUGR with rapid catch-up growth) or pregnancy and lactation (IUGR with slow postnatal growth) modulates numerous metabolic pathways resulting in alterations of hypothalamic energy supply. As several of these pathways are involved in signalling, it remains to be determined whether hypothalamic proteome adaptation of IUGR rats in response to different postnatal growth rates could also interfere with cerebral plasticity or neuronal maturation. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Detection of a high-molecular-weight LHRH precursor by cell-free translation of mRNA from human, rat, and mouse hypothalamus

    International Nuclear Information System (INIS)

    Curtis, A.; Szelke, M.; Fink, G.

    1986-01-01

    Large precursors have also been predicted using the immunoprecipitation technique which relies upon the identification of large immunoreactive molecules following in vitro translation of mRNA. The mRNA is presumed to represent the largest form of a nascent precursor polypeptide molecule irrespective of the number of biosynthetic cleavage steps which are necessary to liberate the active peptide. However, as has been shown for somatostatin, nonprotein modifications may be made which apparently increase molecular weight, such as glycosylation or phosphorylation of the molecule. The authors employed the immunoprecipitation technique to confirm earlier chromatographic studies that the hypothalamic decapeptide, luteinizing hormone releasing hormone (LHRH) is also synthesized by way of a large precursor form. The authors' finding show that the translation of hypothalamic mRNA produces a primary translation product with an apparent molecule weight of 28,000 which contains an amino acid sequence immunologically similar to that of biologically active LHRH. The procedure involved the incorporation of a radioactive amino acid into polypeptides synthesized by in vitro translation of hypothalamic messenger RNA. The resulting complex protein mixture was immunoprecipitated with a specific anti-LHRH serum, and the immunoprecipitate was identified by polyacrylamide gel electrophoresis and autoradiography

  14. Tracking the Fear Memory Engram: Discrete Populations of Neurons within Amygdala, Hypothalamus, and Lateral Septum Are Specifically Activated by Auditory Fear Conditioning

    Science.gov (United States)

    Butler, Christopher W.; Wilson, Yvette M.; Gunnersen, Jenny M.; Murphy, Mark

    2015-01-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used "fos-tau-lacZ" ("FTL") transgenic mice to identify…

  15. Vitamin D receptor in the paraventricular nucleus of the hypothalamus is necessary for beneficial effects of 1,25D[3] on peripheral glucose levels

    Science.gov (United States)

    While a wide range of data correlates low vitamin D levels with type 2 diabetes, few studies examine potential mechanisms by which vitamin D might impact key aspects of metabolism. The active form of 1alpha,25-dihydroxyvitamin D[3] (1,25D[3]; calcitriol) is hydroxylated in the liver and kidney from ...

  16. Direct projection from the suprachiasmatic nucleus to hypophysiotrophic corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus of the hypothalamus demonstrated...

    DEFF Research Database (Denmark)

    Vrang, N.; Larsen, P.J.; Mikkelsen, J.D.

    1995-01-01

    Suprachiasmatic nucleus, paraventricular nucleus, circadian rhythms, phaseolus vulgaris-leucoagglutinin, corticotropin-releasing factor, dual immunocytochemistry......Suprachiasmatic nucleus, paraventricular nucleus, circadian rhythms, phaseolus vulgaris-leucoagglutinin, corticotropin-releasing factor, dual immunocytochemistry...

  17. GPR30 is necessary for estradiol-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the rat hypothalamus.

    Science.gov (United States)

    McAllister, C E; Creech, R D; Kimball, P A; Muma, N A; Li, Q

    2012-08-01

    Estrogen therapy used in combination with selective serotonin reuptake inhibitor (SSRI) treatment improves SSRI efficacy for the treatment of mood disorders. Desensitization of serotonin 1A (5-HT(1A)) receptors, which takes one to two weeks to develop in animals, is necessary for SSRI therapeutic efficacy. Estradiol modifies 5-HT(1A) receptor signaling and induces a partial desensitization in the paraventricular nucleus (PVN) of the rat within two days, but the mechanisms underlying this effect are currently unknown. The purpose of this study was to identify the estrogen receptor necessary for estradiol-induced 5-HT(1A) receptor desensitization. We previously showed that estrogen receptor β is not necessary for 5-HT(1A) receptor desensitization and that selective activation of estrogen receptor GPR30 mimics the effects of estradiol in rat PVN. Here, we used a recombinant adenovirus containing GPR30 siRNAs to decrease GPR30 expression in the PVN. Reduction of GPR30 prevented estradiol-induced desensitization of 5-HT(1A) receptor as measured by hormonal responses to the selective 5-HT(1A) receptor agonist, (+)8-OH-DPAT. To determine the possible mechanisms underlying these effects, we investigated protein and mRNA levels of 5-HT(1A) receptor signaling components including 5-HT(1A) receptor, Gαz, and RGSz1. We found that two days of estradiol increased protein and mRNA expression of RGSz1, and decreased 5-HT(1A) receptor protein but increased 5-HT(1A) mRNA; GPR30 knockdown prevented the estradiol-induced changes in 5-HT(1A) receptor protein in the PVN. Taken together, these data demonstrate that GPR30 is necessary for estradiol-induced changes in the 5-HT(1A) receptor signaling pathway and desensitization of 5-HT(1A) receptor signaling. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Estradiol-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the hypothalamus is independent of estrogen receptor-beta.

    Science.gov (United States)

    Rossi, Dania V; Dai, Ying; Thomas, Peter; Carrasco, Gonzalo A; DonCarlos, Lydia L; Muma, Nancy A; Li, Qian

    2010-08-01

    Estradiol regulates serotonin 1A (5-HT(1A)) receptor signaling. Since desensitization of 5-HT(1A) receptors may be an underlying mechanism by which selective serotonin reuptake inhibitors (SSRIs) mediate their therapeutic effects and combining estradiol with SSRIs enhances the efficacy of the SSRIs, it is important to determine which estrogen receptors are capable of desensitizating 5-HT(1A) receptor function. We previously demonstrated that selective activation of the estrogen receptor, GPR30, desensitizes 5-HT(1A) receptor signaling in rat hypothalamic paraventricular nucleus (PVN). However, since estrogen receptor-beta (ERbeta), is highly expressed in the PVN, we investigated the role of ERbeta in estradiol-induced desensitization of 5-HT(1A) receptor signaling. We first showed that a selective ERbeta agonist, diarylpropionitrile (DPN) has a 100-fold lower binding affinity than estradiol for GPR30. Administration of DPN did not desensitize 5-HT(1A) receptor signaling in rat PVN as demonstrated by agonist-stimulated hormone release. Second, we used a recombinant adenovirus containing ERbeta siRNAs to decrease ERbeta expression in the PVN. Reductions in ERbeta did not alter the estradiol-induced desensitization of 5-HT(1A) receptor signaling in oxytocin cells. In contrast, in