WorldWideScience

Sample records for melatonin reduces oxidative

  1. Weight Loss and Melatonin Reduce Obesity-Induced Oxidative Damage in Rat Testis

    Directory of Open Access Journals (Sweden)

    Dogan Atilgan

    2013-01-01

    Full Text Available Aim. We aimed to evaluate the antioxidant effects of weight loss and melatonin on the obesity-induced oxidative damage in rat testes. Materials and Methods. 28 male Wistar albino rats were randomly divided into 4 groups, each consisting of 7 rats: control group (Group 1, obesity group (Group 2, obesity + MLT group (Group 3, and weight loss group (Group 4. Rats were weighed at the beginning and at the end of the study. Bilateral orchiectomy was performed and 5 cc blood samples were obtained from all of the rats. Superoxide dismutase (SOD, malondialdehyde (MDA, and protein carbonyl (PC levels were analysed in the testicular tissues and serum. Spermatogenesis was evaluated with the Johnsen scoring system. Results. The testicular tissue and serum levels of MDA, PC, and SOD activity were increased in the obesity group in comparison to the sham operated group (P<0.05. Weight loss and melatonin treatment ameliorated MDA, PC, and SOD levels in testicular tissue and serum significantly (P<0.05. There was no significant difference between groups in terms of mean Johnsen score (P=0.727. Conclusion. Experimentally created obesity caused oxidative stress and both melatonin and weight loss reduced oxidative stress parameters in rat testes.

  2. The anti-oxidant effects of melatonin derivatives on human gingival fibroblasts.

    Science.gov (United States)

    Phiphatwatcharaded, Chawapon; Puthongking, Ploenthip; Chaiyarit, Ponlatham; Johns, Nutjaree Pratheepawanit; Sakolchai, Sumon; Mahakunakorn, Pramote

    2017-07-01

    Aim of this in vitro study was to evaluate the anti-oxidant activity of indole ring modified melatonin derivatives as compared with melatonin in primary human gingival fibroblast (HGF) cells. Anti-oxidant activity of melatonin (MLT), acetyl-melatonin (AMLT) and benzoyl-melatonin (BMLT) was evaluated by5 standard methods as follows: 2, 2-diphenyl-1-picrylhydrazyl (DPPH); ferric ion reducing antioxidant power (FRAP); superoxide anion scavenging; nitric oxide (NO) scavenging; and thiobarbituric acid reactive substances (TBARs).Evaluation of cellular antioxidant activity (CAA) and protectivity against H 2 O 2 induced cellular damage was performed via MTT assay in HGF cells. According to the standard anti-oxidant assays, the antioxidant power of AMLT and BMLT were slightly less than MLT in FRAP and superoxide scavenging assays. In the NO scavenging and TBARs assays, BMLT and AMLT were more potent than MLT, whereas DPPH assays demonstrated that MLT was more potent than others. BMLT and AMLT had more potent anti-oxidant and protective activities against H 2 O 2 in HGF cells as compared with MLT. MLT derivatives demonstrated different anti-oxidant activities as compared with MLT, depending upon assays. These findings imply that N-indole substitution of MLT may help to improve hydrogen atom transfer to free radicals but electron transfer property is slightly decreased. Anti-oxidant and protective effects of melatonin derivatives (AMLT and BMLT) on human gingival fibroblasts imply the potential use of these molecules as alternative therapeutics for chronic inflammatory oral diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Melatonin Treatment Reduces Oxidative Damage and Normalizes Plasma Pro-Inflammatory Cytokines in Patients Suffering from Charcot-Marie-Tooth Neuropathy: A Pilot Study in Three Children.

    Science.gov (United States)

    Chahbouni, Mariam; López, María Del Señor; Molina-Carballo, Antonio; de Haro, Tomás; Muñoz-Hoyos, Antonio; Fernández-Ortiz, Marisol; Guerra-Librero, Ana; Acuña-Castroviejo, Darío

    2017-10-14

    Charcot-Marie-Tooth neuropathy (CMT) is a motor and sensory neuropathy comprising a heterogeneous group of inherited diseases. The CMT1A phenotype is predominant in the 70% of CMT patients, with nerve conduction velocity reduction and hypertrophic demyelination. These patients have elevated oxidative stress and chronic inflammation. Currently, there is no effective cure for CMT; herein, we investigated whether melatonin treatment may reduce the inflammatory and oxidative damage in CMT1A patients. Three patients, aged 8-10 years, were treated with melatonin (60 mg at 21:00 h plus 10 mg at 09:00 h), and plasma levels of lipid peroxidation (LPO), nitrites (NOx), IL-1β, IL-2, IL-6, TNF-α, INF-γ, oxidized to reduced glutathione (GSSG/GSH) ratio, and the activities of superoxide dismutase (SOD), glutathione-S transferase (GST), glutathione peroxidase (GPx), and reductase (GRd), were determined in erythrocytes at 3 and 6 months of treatment. Healthy age- and sex-matched subjects were used as controls. The results showed increased activities of SOD, GST, GPx, and GRd in CMT1A patients, which were reduced at 3 and 6 months of treatment. The GSSG/GSH ratio significantly increased in the patients, returning to control values after melatonin treatment. The inflammatory process was confirmed by the elevation of all proinflammatory cytokines measured, which were also normalized by melatonin. LPO and NOx, which also were elevated in the patients, were normalized by melatonin. The results document beneficial effects of the use of melatonin in CMT1A patients to reduce the hyperoxidative and inflammatory condition, which may correlate with a reduction of the degenerative process.

  4. Melatonin attenuates oxidative stress, liver damage and hepatocyte apoptosis after bile-duct ligation in rats.

    Science.gov (United States)

    Aktas, Cevat; Kanter, Mehmet; Erboga, Mustafa; Mete, Rafet; Oran, Mustafa

    2014-10-01

    The goal of this study was to evaluate the possible protective effects of melatonin against cholestatic oxidative stress, liver damage and hepatocyte apoptosis in the common rats with bile duct ligation (BDL). A total of 24 male Wistar albino rats were divided into three groups: control, BDL and BDL + received melatonin; each group contains eight animals. Melatonin-treated BDL rats received daily melatonin 100 mg/kg/day via intraperitoneal injection. The application of BDL clearly increased the malondialdehyde (MDA) levels and decreased the superoxide dismutase (SOD) and glutathione (GSH) activities. Melatonin treatment significantly decreased the elevated tissue MDA levels and increased the reduced SOD and GSH enzyme levels in the tissues. The changes demonstrate that the bile duct proliferation and fibrosis in expanded portal tracts include the extension of proliferated bile ducts into lobules, mononuclear cells and neutrophil infiltration into the widened portal areas as observed in the BDL group. The data indicate that melatonin attenuates BDL-induced cholestatic liver injury, bile duct proliferation and fibrosis. The α-smooth muscle actin (α-SMA) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in the BDL were observed to be reduced with the melatonin treatment. These results suggest that administration of melatonin is a potentially beneficial agent to reduce liver damage in BDL by decreasing oxidative stress. © The Author(s) 2012.

  5. Melatonin resists oxidative stress-induced apoptosis in nucleus pulposus cells.

    Science.gov (United States)

    He, Ruijun; Cui, Min; Lin, Hui; Zhao, Lei; Wang, Jiayu; Chen, Songfeng; Shao, Zengwu

    2018-04-15

    Intervertebral disc degeneration (IVDD) is thought to be the major cause of low back pain (LBP), which is still in lack of effective etiological treatment. Oxidative stress has been demonstrated to participate in the impairment of nucleus pulposus cells (NPCs). As the most important neuroendocrine hormone in biological clock regulation, melatonin (MLT) is also featured by good antioxidant effect. In this study, we investigated the effect and mechanisms of melatonin on oxidative stress-induced damage in rat NPCs. Cytotoxicity of H 2 O 2 and protecting effect of melatonin were analyzed with Cell Counting kit-8 (CCK-8). Cell apoptosis rate was detected by Annexin V-FITC/PI staining. DCFH-DA probe was used for the reactive oxygen species (ROS) detection. The mitochondrial membrane potential (MMP) changes were analyzed with JC-1 probe. Intracellular oxidation product and reductants were measured through enzymatic reactions. Extracellular matrix (ECM) and apoptosis associated proteins were analyzed with Western blot assays. Melatonin preserved cell viability of NPCs under oxidative stress. The apoptosis rate, ROS level and malonaldehyde (MDA) declined with melatonin. MLT/H 2 O 2 group showed higher activities of GSH and SOD. The fall of MMP receded and the expression of ECM protein increased with treatment of melatonin. The mitochondrial pathway of apoptosis was inhibited by melatonin. Melatonin alleviated the oxidative stress-induced apoptosis of NPCs. Melatonin could be a promising alternative in treatment of IVDD. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis.

    Science.gov (United States)

    Zhai, Mengen; Li, Buying; Duan, Weixun; Jing, Lin; Zhang, Bin; Zhang, Meng; Yu, Liming; Liu, Zhenhua; Yu, Bo; Ren, Kai; Gao, Erhe; Yang, Yang; Liang, Hongliang; Jin, Zhenxiao; Yu, Shiqiang

    2017-09-01

    Sirtuins are a family of highly evolutionarily conserved nicotinamide adenine nucleotide-dependent histone deacetylases. Sirtuin-3 (SIRT3) is a member of the sirtuin family that is localized primarily to the mitochondria and protects against oxidative stress-related diseases, including myocardial ischemia/reperfusion (MI/R) injury. Melatonin has a favorable effect in ameliorating MI/R injury. We hypothesized that melatonin protects against MI/R injury by activating the SIRT3 signaling pathway. In this study, mice were pretreated with or without a selective SIRT3 inhibitor and then subjected to MI/R operation. Melatonin was administered intraperitoneally (20 mg/kg) 10 minutes before reperfusion. Melatonin treatment improved postischemic cardiac contractile function, decreased infarct size, diminished lactate dehydrogenase release, reduced the apoptotic index, and ameliorated oxidative damage. Notably, MI/R induced a significant decrease in myocardial SIRT3 expression and activity, whereas the melatonin treatment upregulated SIRT3 expression and activity, and thus decreased the acetylation of superoxide dismutase 2 (SOD2). In addition, melatonin increased Bcl-2 expression and decreased Bax, Caspase-3, and cleaved Caspase-3 levels in response to MI/R. However, the cardioprotective effects of melatonin were largely abolished by the selective SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl)pyridine (3-TYP), suggesting that SIRT3 plays an essential role in mediating the cardioprotective effects of melatonin. In vitro studies confirmed that melatonin also protected H9c2 cells against simulated ischemia/reperfusion injury (SIR) by attenuating oxidative stress and apoptosis, while SIRT3-targeted siRNA diminished these effects. Taken together, our results demonstrate for the first time that melatonin treatment ameliorates MI/R injury by reducing oxidative stress and apoptosis via activating the SIRT3 signaling pathway. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons

  7. Effects of melatonin on spinal cord injury-induced oxidative damage in mice testis.

    Science.gov (United States)

    Yuan, X-C; Wang, P; Li, H-W; Wu, Q-B; Zhang, X-Y; Li, B-W; Xiu, R-J

    2017-09-01

    This study evaluated the effects of melatonin on spinal cord injury (SCI)-induced oxidative damage in testes. Adult male C57BL/6 mice were randomly divided into sham-, SCI- or melatonin (10 mg/kg, i.p.)-treated SCI groups. To induce SCI, a standard weight-drop method that induced a contusion injury at T10 was used. After 1 week, testicular blood flow velocity was measured using the Laser Doppler Line Scanner. Malondialdehyde (MDA), glutathione (GSH), oxidised glutathione (GSSG) and myeloperoxidase (MPO) were measured in testis homogenates. Microvascular permeability of the testes to Evan's Blue was examined by spectrophotometric and fluorescence microscopic quantitation. The tight junction protein zonula occludens-1 (ZO-1) and occludin in testes were assessed by immunoblot analysis. Melatonin increased the reduced blood flow and decreased SCI-induced permeability of capillaries. MDA levels and MPO activity were elevated in the SCI group compared with shams, which was reversed by melatonin. In contrast, SCI-induced reductions in GSH/GSSG ratio were restored by melatonin. Decreased expression of ZO-1 and occludin was observed, which was attenuated by melatonin. Overall, melatonin treatment protects the testes against oxidative stress damage caused by SCI. © 2016 Blackwell Verlag GmbH.

  8. Melatonin inhibits snake venom and antivenom induced oxidative stress and augments treatment efficacy.

    Science.gov (United States)

    Sharma, Rachana D; Katkar, Gajanan D; Sundaram, Mahalingam S; Swethakumar, Basavarajaiah; Girish, Kesturu S; Kemparaju, Kempaiah

    2017-05-01

    Snakebite is a neglected health hazard. Its patho-physiology has largely been focused on systemic and local toxicities; whereas, venom and antivenom induced oxidative stress has long been ignored. Antivenom therapy although neutralizes venom lethality and saves many lives, remains ineffective against oxidative stress. This prompted us to complement antivenom with an antioxidant molecule melatonin that would protect against oxidative stress and increase the efficacy of the existing snakebite therapy. Here we show that D. russelli and E. carinatus venoms induce strong oxidative stress that persists even after antivenom administration in mice model. Additionally, antivenoms also induce oxidative stress. Polyvalent antivenom induce more oxidative stress than monovalent antivenom. Strikingly, antivenom and melatonin together not only inhibit venom and antivenom induced oxidative stress but also significantly reduce the neutralizing antivenom dose. This study provides a therapeutic potential for enhancing the existing snakebite therapy. The combined treatment of antivenom+melatonin would prevent the upsurge of oxidative stress as well as minimize the antivenom load. Thus the investigation offers immense scope for physicians and toxinologists to reinvestigate, design new strategies and think beyond the conventional mode of antivenom therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Melatonin protects against taurolithocholic-induced oxidative stress in rat liver.

    Science.gov (United States)

    Fuentes-Broto, Lorena; Miana-Mena, Francisco J; Piedrafita, Eduardo; Berzosa, César; Martínez-Ballarín, Enrique; García-Gil, Francisco A; Reiter, Russel J; García, Joaquín J

    2010-08-01

    Cholestasis, encountered in a variety of clinical disorders, is characterized by intracellular accumulation of toxic bile acids in the liver. Furthermore, oxidative stress plays an important role in the pathogenesis of bile acids. Taurolithocholic acid (TLC) was revealed in previous studies as the most pro-oxidative bile acid. Melatonin, a well-known antioxidant, is a safe and widely used therapeutic agent. Herein, we investigated the hepatoprotective role of melatonin on lipid and protein oxidation induced by TLC alone and in combination with FeCl(3) and ascorbic acid in rat liver homogenates and hepatic membranes. The lipid peroxidation products, malondialdehyde and 4-hydroxyalkenals (MDA + 4-HDA), and carbonyl levels were quantified as indices of oxidative damage to hepatic lipids and proteins, respectively. In the current study, the rise in MDA + 4-HDA levels induced by TLC was inhibited by melatonin in a concentration-dependent manner in both liver homogenates and in hepatic membranes. Melatonin also had protective effects against structural damage to proteins induced by TLC in membranes. These results suggest that the indoleamine melatonin may potentially act as a protective agent in the therapy of those diseases that involve bile acid toxicity. Published 2010 Wiley-Liss, Inc.

  10. Oxidative Modification of Blood Serum Proteins in Multiple Sclerosis after Interferon Beta and Melatonin Treatment

    Directory of Open Access Journals (Sweden)

    Monika Adamczyk-Sowa

    2017-01-01

    Full Text Available Multiple sclerosis (MS is a disease involving oxidative stress (OS. This study was aimed at examination of the effect of melatonin supplementation on OS parameters, especially oxidative protein modifications of blood serum proteins, in MS patients. The study included 11 control subjects, 14 de novo diagnosed MS patients with the relapsing-remitting form of MS (RRMS, 36 patients with RRMS receiving interferon beta-1b (250 μg every other day, and 25 RRMS patients receiving interferon beta-1b plus melatonin (5 mg daily. The levels of N′-formylkynurenine, kynurenine, dityrosine, carbonyl groups, advanced glycation products (AGEs, advanced oxidation protein products (AOPP, and malondialdehyde were elevated in nontreated RRSM patients. N′-Formylkynurenine, kynurenine, AGEs, and carbonyl contents were decreased only in the group treated with interferon beta plus melatonin, while dityrosine and AOPP contents were decreased both in the group of patients treated with interferon beta and in the group treated with interferon beta-1b plus melatonin. These results demonstrate that melatonin ameliorates OS in MS patients supporting the view that combined administration of interferon beta-1b and melatonin can be more effective in reducing OS in MS patients than interferon beta-1b alone.

  11. Effects of Exogenous Melatonin on Methyl Viologen-Mediated Oxidative Stress in Apple Leaf

    Directory of Open Access Journals (Sweden)

    Zhiwei Wei

    2018-01-01

    Full Text Available Oxidative stress is a major source of damage of plants exposed to adverse environments. We examined the effect of exogenous melatonin (MT in limiting of oxidative stress caused by methyl viologen (MV; paraquatin in apple leaves (Malus domestica Borkh.. When detached leaves were pre-treated with melatonin, their level of stress tolerance increased. Under MV treatment, melatonin effectively alleviated the decrease in chlorophyll concentrations and maximum potential Photosystem II efficiency while also mitigating membrane damage and lipid peroxidation when compared with control leaves that were sprayed only with water prior to the stress experiment. The melatonin-treated leaves also showed higher activities and transcripts of antioxidant enzymes superoxide dismutase, peroxidase, and catalase. In addition, the expression of genes for those enzymes was upregulated. Melatonin-synthesis genes MdTDC1, MdT5H4, MdAANAT2, and MdASMT1 were also upregulated under oxidative stress in leaves but that expression was suppressed in response to 1 mM melatonin pretreatment during the MV treatments. Therefore, we conclude that exogenous melatonin mitigates the detrimental effects of oxidative stress, perhaps by slowing the decline in chlorophyll concentrations, moderating membrane damage and lipid peroxidation, increasing the activities of antioxidant enzymes, and changing the expression of genes for melatonin synthesis.

  12. Melatonin Does Not Affect Oxidative/Inflammatory Biomarkers in a Closed-Chest Porcine Model of Acute Myocardial Infarction

    DEFF Research Database (Denmark)

    Halladin, Natalie L.; Ekelof, Sarah; Jensen, Svend Eggert

    2014-01-01

    Aim: To test whether melatonin reduces oxidative and inflammatory biomarkers in a closed-chest porcine model of acute myocardial infarction. Materials and Methods: Twenty pigs were randomized to receive a total dosage of 200 mg (0.4 mg/ml) of melatonin, or placebo immediately prior to reperfusion....... There was an increase in hs-TnT, but no significant difference between the melatonin-treated and placebo-treated groups. There were no significant differences in development of any of the circulating plasma markers between the two groups. Conclusion: Melatonin treatment did not result in reduction of inflammatory...

  13. Effect of exogenous melatonin and different photoperiods on oxidative status and antioxidant enzyme activity in Chhotanagpuri ewe.

    Science.gov (United States)

    Choudhary, Pankaj Kumar; Ishwar, Ajay Kumar; Kumar, Rajesh; Niyogi, Debasish; Kumar, Mukesh

    2018-02-01

    The present study was conducted to evaluate the effect of exogenous melatonin under different photoperiods on oxidative status in Chhotanagpuri ewe. A total of 42 non-pregnant, non-lactating Chhotanagpuri ewe, having body weight ranging between 14.11±0.09 and 15.38±0.06 kg, were selected and were isolated from rams 2 months before melatonin administration. The selected animals were allocated randomly into seven groups, namely, Group I (normal control), Group II (long day [LD] control), Group III (LD+melatonin administration orally, 3 mg/day), Group IV (LD+melatonin administration subcutaneously, 1 mg/day), Group V (short day [SD] control), Group VI (SD+melatonin administration orally, 3 mg/day), and Group VII (SD+melatonin administration subcutaneously, 1 mg/day) comprising six animals in each group. Rams were then introduced into each group after completion of exogenous administration of melatonin. Blood samples with anticoagulant in vials were collected from each animal day before the start of the experiment and thereafter every month up to 5 th month. Hemolysate was prepared for estimation of oxidative stress parameters such as malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT). It was observed that the level of MDA was significantly (pexogenous administration of melatonin was significantly (pexogenous administration of melatonin, SOD concentration was significantly (pexogenous administration of melatonin, CAT concentration was significantly (pexogenous melatonin was able to reduce significantly the level of MDA and increased the activity of SOD and CAT in Chhotanagpuri ewe.

  14. Melatonin inhibits endothelin-1 and induces endothelial nitric oxide ...

    African Journals Online (AJOL)

    Although, I/R augmented the endothelin-1 (ET-1) gene expression and the level of big endothelin-1 (big ET-1) in liver tissue, melatonin attenuated these increases. Conversely, non-significant decrease in endothelial nitric oxide synthase (eNOS) mRNA expression in I/R group was significantly elevated by melatonin in ...

  15. Involvement of the nitric oxide in melatonin-mediated protection against injury.

    Science.gov (United States)

    Fan, Wenguo; He, Yifan; Guan, Xiaoyan; Gu, Wenzhen; Wu, Zhi; Zhu, Xiao; Huang, Fang; He, Hongwen

    2018-05-01

    Melatonin is a hormone mainly synthesized by the pineal gland in vertebrates and known well as an endogenous regulator of circadian and seasonal rhythms. It has been demonstrated that melatonin is involved in many physiological and pathophysiological processes showing antioxidant, anti-apoptotic and anti-inflammatory properties. Nitric oxide (NO) is a free radical gas in the biological system, which is produced by nitric oxide synthase (NOS) family. NO acts as a biological mediator and plays important roles in different systems in humans. The NO/NOS system exerts a broad spectrum of signaling functions. Accumulating evidence has clearly revealed that melatonin regulates NO/NOS system through multiple mechanisms that may influence physiological and pathophysiological processes. This article reviews the latest evidence for the effects of melatonin on NO/NOS regulation in different organs and disease conditions, the potential cellular mechanisms by which melatonin is involved in organ protection are discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. The role of melatonin as an antioxidant in the follicle

    Directory of Open Access Journals (Sweden)

    Tamura Hiroshi

    2012-01-01

    Full Text Available Abstract Melatonin (N-acetyl-5-methoxytryptamine is secreted during the dark hours at night by pineal gland, and it regulates a variety of important central and peripheral actions related to circadian rhythms and reproduction. It has been believed that melatonin regulates ovarian function by the regulation of gonadotropin release in the hypothalamus-pituitary gland axis via its specific receptors. In addition to the receptor mediated action, the discovery of melatonin as a direct free radical scavenger has greatly broadened the understanding of melatonin's mechanisms which benefit reproductive physiology. Higher concentrations of melatonin have been found in human preovulatory follicular fluid compared to serum, and there is growing evidence of the direct effects of melatonin on ovarian function especially oocyte maturation and embryo development. Many scientists have focused on the direct role of melatonin on oocyte maturation and embryo development as an anti-oxidant to reduce oxidative stress induced by reactive oxygen species, which are produced during ovulation process. The beneficial effects of melatonin administration on oocyte maturation and embryo development have been confirmed by in vitro and in vivo experiments in animals. This review also discusses the first application of melatonin to the clinical treatment of infertile women and confirms that melatonin administration reduces intrafollicular oxidative damage and increase fertilization rates. This review summarizes our recent works and new findings related to the reported beneficial effects of melatonin on reproductive physiology in its role as a reducer of oxidative stress, especially on oocyte maturation and embryo development.

  17. Melatonin Regulates Oxidative Stress Initiated by Freund’s Complete Adjuvant

    Directory of Open Access Journals (Sweden)

    Miroslav Pohanka

    2015-07-01

    Full Text Available Melatonin is a hormone with strong antioxidant properties. In this experiment, Freund’s complete adjuvant was used as a stressogenic substance given to laboratory outbred mice, whereas melatonin was investigated as a protectant against the stressogenic effect. Levels of low molecular weight antioxidants, thiobarbituric acid reactive substances, and tumor necrosis factor α and activity of glutathione reductase were determined in blood from the animals. Surprisingly, melatonin was not involved in direct regulation of antioxidants, thiobarbituric acid reactive substances and tumor necrosis factor α. On the other hand, melatonin regulated glutathione reductase activity. We can conclude on regulation of metabolism caused by melatonin in the model. The effect was more important than the expected regulation of immunity and basal oxidative homeostasis.

  18. Endogenous melatonin and oxidatively damaged guanine in DNA

    Directory of Open Access Journals (Sweden)

    Poulsen Henrik E

    2009-10-01

    Full Text Available Abstract Background A significant body of literature indicates that melatonin, a hormone primarily produced nocturnally by the pineal gland, is an important scavenger of hydroxyl radicals and other reactive oxygen species. Melatonin may also lower the rate of DNA base damage resulting from hydroxyl radical attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. Methods Mother-father-daughter(s families (n = 55 were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua results from the repair of DNA or RNA guanine via the nucleobase excision repair pathway, while urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG may possibly result from the repair of DNA guanine via the nucleotide excision repair pathway. Total overnight urinary levels of 8-oxodG and 8-oxoGua are therefore a measure of total overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were calculated for aMT6s/Cr, 8-oxodG, and 8-oxoGua. Regression analyses of 8-oxodG and 8-oxoGua on aMT6s/Cr were conducted for mothers, fathers, and daughters separately, adjusting for age and BMI (or weight. Results Among the mothers, age range 42-80, lower melatonin production (as measured by aMT6s/CR was associated with significantly higher levels of 8-oxodG (p Conclusion Low levels of endogenous melatonin production among older individuals may lead to

  19. Melatonin Reduces Angiogenesis in Serous Papillary Ovarian Carcinoma of Ethanol-Preferring Rats

    Science.gov (United States)

    Zonta, Yohan Ricci; Martinez, Marcelo; Camargo, Isabel Cristina C.; Domeniconi, Raquel F.; Lupi Júnior, Luiz Antonio; Pinheiro, Patricia Fernanda F.; Reiter, Russel J.; Martinez, Francisco Eduardo; Chuffa, Luiz Gustavo A.

    2017-01-01

    Angiogenesis is a hallmark of ovarian cancer (OC); the ingrowth of blood vessels promotes rapid cell growth and the associated metastasis. Melatonin is a well-characterized indoleamine that possesses important anti-angiogenic properties in a set of aggressive solid tumors. Herein, we evaluated the role of melatonin therapy on the angiogenic signaling pathway in OC of an ethanol-preferring rat model that mimics the same pathophysiological conditions occurring in women. OC was chemically induced with a single injection of 7,12-dimethylbenz(a)anthracene (DMBA) under the ovarian bursa. After the rats developed serous papillary OC, half of the animals received intraperitoneal injections of melatonin (200 µg/100 g body weight/day) for 60 days. Melatonin-treated animals showed a significant reduction in OC size and microvessel density. Serum levels of melatonin were higher following therapy, and the expression of its receptor MT1 was significantly increased in OC-bearing rats, regardless of ethanol intake. TGFβ1, a transforming growth factor-beta1, was reduced only after melatonin treatment. Importantly, vascular endothelial growth factor (VEGF) was severely reduced after melatonin therapy in animals given or not given ethanol. Conversely, the levels of VEGF receptor 1 (VEGFR1) was diminished after ethanol consumption, regardless of melatonin therapy, and VEGFR2 was only reduced following melatonin. Hypoxia-inducible factor (HIF)-1α was augmented with ethanol consumption, and, notably, melatonin significantly reduced their levels. Collectively, our results suggest that melatonin attenuates angiogenesis in OC in an animal model of ethanol consumption; this provides a possible complementary therapeutic opportunity for concurrent OC chemotherapy. PMID:28398226

  20. A systematic review of peri-operative melatonin

    DEFF Research Database (Denmark)

    Andersen, L P H; Werner, M U; Rosenberg, J

    2014-01-01

    We systematically reviewed randomised controlled trials of peri-operative melatonin. We included 24 studies of 1794 participants that reported eight peri-operative outcomes: anxiety; analgesia; sleep quality; oxidative stress; emergence behaviour; anaesthetic requirements; steal induction......%, respectively. Qualitative reviews suggested the melatonin improved sleep quality and emergence behaviour, and might be capable of reducing oxidative stress and anaesthetic requirements....

  1. Nickel exposure induces oxidative damage to mitochondrial DNA in Neuro2a cells: the neuroprotective roles of melatonin.

    Science.gov (United States)

    Xu, Shang-Cheng; He, Min-Di; Lu, Yong-Hui; Li, Li; Zhong, Min; Zhang, Yan-Wen; Wang, Yuan; Yu, Zheng-Ping; Zhou, Zhou

    2011-11-01

    Recent studies suggest that oxidative stress and mitochondrial dysfunction play important roles in the neurotoxicity of nickel. Because mitochondrial DNA (mtDNA) is highly vulnerable to oxidative stress and melatonin can efficiently protect mtDNA against oxidative damage in various pathological conditions, the aims of this study were to determine whether mtDNA oxidative damage was involved in the neurotoxicity of nickel and to assay the neuroprotective effects of melatonin in mtDNA. In this study, we exposed mouse neuroblastoma cell lines (Neuro2a) to different concentrations of nickel chloride (NiCl(2), 0.125, 0.25, and 0.5 mm) for 24 hr. We found that nickel significantly increased reactive oxygen species (ROS) production and mitochondrial superoxide levels. In addition, nickel exposure increased mitochondrial 8-hydroxyguanine (8-OHdG) content and reduced mtDNA content and mtDNA transcript levels. Consistent with this finding, nickel was found to destroy mtDNA nucleoid structure and decrease protein levels of Tfam, a key protein component for nucleoid organization. However, all the oxidative damage to mtDNA induced by nickel was efficiently attenuated by melatonin pretreatment. Our results suggest that oxidative damage to mtDNA may account for the neurotoxicity of nickel. Melatonin has great pharmacological potential in protecting mtDNA against the adverse effects of nickel in the nervous system. © 2011 John Wiley & Sons A/S.

  2. Protective Effects of Melatonin on Retinal Inflammation and Oxidative Stress in Experimental Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Tingting Jiang

    2016-01-01

    Full Text Available Oxidative stress and inflammation are important pathogenic factors contributing to the etiology of diabetic retinopathy (DR. Melatonin is an endogenous hormone that exhibits a variety of biological effects including antioxidant and anti-inflammatory functions. The goals of this study were to determine whether melatonin could ameliorate retinal injury and to explore the potential mechanisms. Diabetes was induced by a single intraperitoneal (i.p. injection of STZ (60 mg/kg in Sprague-Dawley rats. Melatonin (10 mg kg−1 daily, i.p. was administered from the induction of diabetes and continued for up to 12 weeks, after which the animals were sacrificed and retinal samples were collected. The retina of diabetic rats showed depletion of glutathione and downregulation of glutamate cysteine ligase (GCL. Melatonin significantly upregulated GCL by retaining Nrf2 in the nucleus and stimulating Akt phosphorylation. The production of proinflammatory cytokines and proteins, including interleukin 1β, TNF-α, and inducible nitric oxide synthase (iNOS, was inhibited by melatonin through the NF-κB pathway. At 12 weeks, melatonin prevented the significant decrease in the ERG a- and b-wave amplitudes under the diabetic condition. Our results suggest potent protective functions of melatonin in diabetic retinopathy. In addition to being a direct antioxidant, melatonin can exert receptor-mediated signaling effects to attenuate inflammation and oxidative stress of the retina.

  3. Long-term melatonin treatment reduces ovarian mass and enhances tissue antioxidant defenses during ovulation in the rat

    Directory of Open Access Journals (Sweden)

    L.G.A. Chuffa

    2011-03-01

    Full Text Available Melatonin regulates the reproductive cycle, energy metabolism and may also act as a potential antioxidant indoleamine. The present study was undertaken to investigate whether long-term melatonin treatment can induce reproductive alterations and if it can protect ovarian tissue against lipid peroxidation during ovulation. Twenty-four adult female Wistar rats, 60 days old (± 250-260 g, were randomly divided into two equal groups. The control group received 0.3 mL 0.9% NaCl + 0.04 mL 95% ethanol as vehicle, and the melatonin-treated group received vehicle + melatonin (100 µg·100 g body weight-1·day-1 both intraperitoneally daily for 60 days. All animals were killed by decapitation during the morning estrus at 4:00 am. Body weight gain and body mass index were reduced by melatonin after 10 days of treatment (P < 0.05. Also, a marked loss of appetite was observed with a fall in food intake, energy intake (melatonin 51.41 ± 1.28 vs control 57.35 ± 1.34 kcal/day and glucose levels (melatonin 80.3 ± 4.49 vs control 103.5 ± 5.47 mg/dL towards the end of treatment. Melatonin itself and changes in energy balance promoted reductions in ovarian mass (20.2% and estrous cycle remained extensive (26.7%, arresting at diestrus. Regarding the oxidative profile, lipid hydroperoxide levels decreased after melatonin treatment (6.9% and total antioxidant substances were enhanced within the ovaries (23.9%. Additionally, melatonin increased superoxide dismutase (21.3%, catalase (23.6% and glutathione-reductase (14.8% activities and the reducing power (10.2% GSH/GSSG ratio. We suggest that melatonin alters ovarian mass and estrous cyclicity and protects the ovaries by increasing superoxide dismutase, catalase and glutathione-reductase activities.

  4. Effect of Zinc and Melatonin on Oxidative Stress and Serum Inhibin-B Levels in a Rat Testicular Torsion-Detorsion Model.

    Science.gov (United States)

    Semercioz, Atilla; Baltaci, Abdulkerim Kasim; Mogulkoc, Rasim; Avunduk, Mustafa Cihat

    2017-12-01

    The present study was aimed to examine the effects of 3-week zinc and melatonin administration on testicular tissue injury and serum Inhibin-B levels caused by unilateral testicular torsion-detorsion in rats. The study was performed on 60 Wistar Albino-type adult male rats. The animals were allocated to 6 groups in equal numbers. 1. Control; 2. Sham; 3. Ischemia-reperfusion; 4. Zinc + ischemia-reperfusion; 5. Melatonin + ischemia-reperfusion; 6. Zinc + melatonin + ischemia-reperfusion. Zinc and melatonin were administered before ischemia-reperfusion at doses of 5 and 3 mg/kg respectively, by intraperitoneal route for a period of 3 weeks. Testicular torsion-detorsion procedures consisted of ischemia for 1 h and then reperfusion for another hour of the left testis. Blood and testicular tissue samples were collected to analyze erythrocyte and tissue GSH and plasma and tissue MDA, Inhibin-B levels. The highest erythrocyte and testis GSH values were found in zinc, melatonin, and zinc + melatonin groups (p zinc-, melatonin-, and melatonin + zinc-supplemented groups have higher inhibin-B and spermatogenetic activity (p zinc, melatonin, and melatonin + zinc administration partially restores the increased oxidative stress, as well as the reduced inhibin-B and spermatogenic activity levels in testes ischemia-reperfusion in rats. Suppressed inhibin-B levels in the testicular tissue may be a marker of oxidative stress.

  5. Evaluation of the melatonin and oxidative stress markers level in serum of fertile and infertile women

    Directory of Open Access Journals (Sweden)

    Sara Soleimani Rad

    2015-07-01

    Full Text Available Background: Infertility is defined as the inability to achieve the pregnancy within a year of unprotected intercourse. Infertility is a complex issue and different factors such as stress oxidative can be involved in this problem. So, any attempt to neutralize oxidative stress would be helpful in the treatment of infertility. Melatonin is a known scavenger of free radicals. Objective: The aim of our study was to evaluate the level of melatonin and its correlation with oxidative biomarkers in fertile and infertile women. Materials and Methods: The participants including fertile and infertile women were divided into two groups of 30 people. Blood sampling was performed and sera were collected. The level of Malondialdehyde (MDA, total antioxidant capacity (TAC and melatonin were detected. Data were analyzed using T-test and their correlation was assessed using Spearman test. Results: Serum melatonin from fertile women was higher than infertile women but the difference was not significant (p= 0.46. MDA level in fertile women was significantly lower than infertile women (p<0.001 and the level of TAC in fertile women was significantly higher than infertile women (p<0.001. Spearman test revealed a significant and direct correlation between melatonin and TAC in fertile and infertile women and a significant but reverse correlation between melatonin and MDA in infertile and fertile women. Conclusion: Differences in the level of oxidative stress biomarkers in fertile and infertile individuals have been reported. This study revealed a significant correlation between melatonin and oxidative stress biomarkers, concluding that melatonin level could be involved in infertility.

  6. Melatonin protect the development of preimplantation mouse embryos from sodium fluoride-induced oxidative injury.

    Science.gov (United States)

    Zhao, Jiamin; Fu, Beibei; Peng, Wei; Mao, Tingchao; Wu, Haibo; Zhang, Yong

    2017-09-01

    Recently study shows that melatonin can protect embryos from the culture environment oxidative stress. However, the protective effect of melatonin on the mouse development of preimplantation embryos under sodium fluoride (NaF) induced oxidative stress is still unclear. Here, we showed that exposure to NaF significantly increased the reactive oxygen species (ROS) level, decreased the blastocyst formation rates, and increased the fragmentation, apoptosis and retardation of blastocysts in the development of mouse preimplantation embryos. However, the protective of melatonin remarkable increased the of blastocyst formation rates, maintained mitochondrial function and total antioxidant capacity by clearing ROS. Importantly the data showed that melatonin improved the activity of enzymatic antioxidants, including glutathione(GSH), superoxide dismutase(SOD), and malonaldehyde (MDA), and increased the expression levels of antioxidative genes. Taken together, our results indicate that melatonin prevent NaF-induced oxidative damage to mouse preimplantation embryo through down regulation of ROS level, stabilization of mitochondrial function and modulation of the activity of antioxidases and antioxidant genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Possible involvement of GABAergic mechanism in protective effect of melatonin against sleep deprivation-induced behaviour modification and oxidative damage in mice.

    Science.gov (United States)

    Kumar, Anil; Singh, Anant

    2009-08-01

    Sleep is an important physiological process responsible for the maintenance of physical, mental and emotional health of a living being. Sleep deprivation is considered risky for several pathological diseases such as anxiety and motor and cognitive dysfunctions. Sleep deprivation has recently been reported to cause oxidative damage. This study has been designed to explore the possible involvement of the GABAergic mechanism in protective effects of melatonin against 72-h sleep deprivation-induced behaviour modification and oxidative damage in mice. Mice were sleep-deprived for a period of 72 h using the grid over water suspended method. Animals were divided into groups of 6-8 animals each. Melatonin (5 and 10 mg/kg), flumazenil (0.5 mg/kg), picrotoxin (0.5 mg/kg) and muscimol (0.05 mg/kg) were administered for 5 days starting 2 days before 72-h sleep deprivation. Various behavioural tests (plus maze, zero maze, mirror chamber, actophotometer) and body weight assessment followed by oxidative stress parameters (malondialdehyde level, glutathione, catalase, nitrite and protein) were carried out. The 72-h sleep deprivation caused significant anxiety-like behaviour, weight loss, impaired locomotor activity and oxidative damage as compared with naïve (without sleep deprivation). Treatment with melatonin (5 mg/kg and 10 mg/kg, ip) significantly improved locomotor activity, weight loss and antianxiety effect as compared with control (sleep-deprived). Biochemically, melatonin treatment significantly restored reduced glutathione, catalase activity, attenuated lipid peroxidation and nitrite level as compared with control animals (72-h sleep-deprived). Flumazenil (0.5 mg/kg) and picrotoxin (0.5 mg/kg) pretreatments with a lower dose of melatonin (5 mg/kg) significantly antagonized the protective effect of melatonin. However, muscimol (0.05 mg/kg) pretreatment with melatonin (5 mg/kg, ip) potentiated the protective effect of melatonin which was significant as compared with their

  8. Prophylactic administration of melatonin to the mother throughout pregnancy can protect against oxidative cerebral damage in neonatal rats.

    Science.gov (United States)

    Watanabe, Kazushi; Hamada, Fumiaki; Wakatsuki, Akihiko; Nagai, Ryuhei; Shinohara, Koichi; Hayashi, Yoshihiro; Imamura, Rina; Fukaya, Takao

    2012-08-01

    The purpose of this study was to investigate whether prophylactic administration of melatonin to the mother throughout pregnancy could protect against ischemia/reperfusion (I/R)-induced oxidative brain damage in neonatal rats. The utero-ovarian arteries were occluded bilaterally for 30 min in female Wistar rats on day 16 of pregnancy to induce fetal ischemia. Reperfusion was achieved by releasing the occlusion and restoring circulation. A sham operation was performed in control rats. Melatonin solution or vehicle alone was administrated orally throughout pregnancy. We collected brain mitochondria from neonatal rats, evaluated mitochondrial structure by electron microscopy, and measured the respiratory control index (RCI) as an indicator of mitochondrial respiratory activity as well as the concentration of thiobarbituric acid-reactive substances (TBARS), a marker of oxidative stress. Histological analysis was performed at the Cornu Ammonis 1 (CA1) and Cornu Ammonis 3 (CA3) regions of the hippocampus. I/R significantly reduced the RCI and significantly elevated the concentration of TBARS. Melatonin treatment reversed these effects, resulting in values similar to that in untreated, sham-ischemic animals. Electron microscopic evaluation showed that the number of intact mitochondria decreased in the I/R group, while melatonin treatment preserved them. Histological analysis revealed a decrease in the ratio of normal to whole pyramidal cell number in the CA1 and CA3 regions in the I/R group. While melatonin administration protected against degeneration. These results indicate that prophylactic administration of melatonin to the mother throughout pregnancy may prevent I/R-induced oxidative brain damage in neonatal rats.

  9. Folic acid and melatonin ameliorate carbon tetrachloride-induced hepatic injury, oxidative stress and inflammation in rats

    Directory of Open Access Journals (Sweden)

    Ebaid Hossam

    2013-02-01

    Full Text Available Abstract This study investigated the protective effects of melatonin and folic acid against carbon tetrachloride (CCl4-induced hepatic injury in rats. Oxidative stress, liver function, liver histopathology and serum lipid levels were evaluated. The levels of protein kinase B (Akt1, interferon gamma (IFN-γ, programmed cell death-receptor (Fas and Tumor necrosis factor-alpha (TNF-α mRNA expression were analyzed. CCl4 significantly elevated the levels of lipid peroxidation (MDA, cholesterol, LDL, triglycerides, bilirubin and urea. In addition, CCl4 was found to significantly suppress the activity of both catalase and glutathione (GSH and decrease the levels of serum total protein and HDL-cholesterol. All of these parameters were restored to their normal levels by treatment with melatonin, folic acid or their combination. An improvement of the general hepatic architecture was observed in rats that were treated with the combination of melatonin and folic acid along with CCl4. Furthermore, the CCl4-induced upregulation of TNF-α and Fas mRNA expression was significantly restored by the three treatments. Melatonin, folic acid or their combination also restored the baseline levels of IFN-γ and Akt1 mRNA expression. The combination of melatonin and folic acid exhibited ability to reduce the markers of liver injury induced by CCl4 and restore the oxidative stability, the level of inflammatory cytokines, the lipid profile and the cell survival Akt1 signals.

  10. Melatonin and the electron transport chain.

    Science.gov (United States)

    Hardeland, Rüdiger

    2017-11-01

    Melatonin protects the electron transport chain (ETC) in multiple ways. It reduces levels of ·NO by downregulating inducible and inhibiting neuronal nitric oxide synthases (iNOS, nNOS), thereby preventing excessive levels of peroxynitrite. Both ·NO and peroxynitrite-derived free radicals, such as ·NO 2 , hydroxyl (·OH) and carbonate radicals (CO 3 · - ) cause blockades or bottlenecks in the ETC, by ·NO binding to irons, protein nitrosation, nitration and oxidation, changes that lead to electron overflow or even backflow and, thus, increased formation of superoxide anions (O 2 · - ). Melatonin improves the intramitochondrial antioxidative defense by enhancing reduced glutathione levels and inducing glutathione peroxidase and Mn-superoxide dismutase (Mn-SOD) in the matrix and Cu,Zn-SOD in the intermembrane space. An additional action concerns the inhibition of cardiolipin peroxidation. This oxidative change in the membrane does not only initiate apoptosis or mitophagy, as usually considered, but also seems to occur at low rate, e.g., in aging, and impairs the structural integrity of Complexes III and IV. Moreover, elevated levels of melatonin inhibit the opening of the mitochondrial permeability transition pore and shorten its duration. Additionally, high-affinity binding sites in mitochondria have been described. The assumption of direct binding to the amphipathic ramp of Complex I would require further substantiation. The mitochondrial presence of the melatonin receptor MT 1 offers the possibility that melatonin acts via an inhibitory G protein, soluble adenylyl cyclase, decreased cAMP and lowered protein kinase A activity, a signaling pathway shown to reduce Complex I activity in the case of a mitochondrial cannabinoid receptor.

  11. Lanthanide ions (III) as sensitizers of melatonin oxidation in reaction mixtures providing reactive species of oxygen and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarek, Małgorzata, E-mail: mkaczmar@amu.edu.pl

    2015-06-15

    Chemiluminescence (CL) of the reactive systems providing strong oxidants (reactive species of oxygen and nitrogen) containing lanthanide ions (III) and melatonin, was studied. Kinetic curves of emission decay and spectral distributions of chemiluminescence were obtained. Analysis of differences in the intensity of chemiluminescence and CL spectra proved that excitation of Tb(III) and Dy(III) ions takes place with the energy transfer from the products of melatonin oxidation: N{sup 1}-acetyl-N{sup 2}-formyl-5-methoxykynuramine (AFMK) and N{sup 1}-acetyl-5-methoxykynuramine (AMK) to the lanthanide ions. In the system Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) a linear correlation was established between the integrated CL intensity and melatonin concent. - Highlights: • Chemiluminescence (CL) of melatonin (Mel) oxidation by reactive species of oxygen and nitrogen. • Tb(III) and Dy(III) ions as sensitizers of a melatonin oxidation process. • New CL method for determination of melatonin in pharmaceutical preparations based on CL of Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) system.

  12. Circadian Rhythms of Oxidative Stress Markers and Melatonin Metabolite in Patients with Xeroderma Pigmentosum Group A.

    Science.gov (United States)

    Miyata, Rie; Tanuma, Naoyuki; Sakuma, Hiroshi; Hayashi, Masaharu

    2016-01-01

    Xeroderma pigmentosum group A (XPA) is a genetic disorder in DNA nucleotide excision repair (NER) with severe neurological disorders, in which oxidative stress and disturbed melatonin metabolism may be involved. Herein we confirmed the diurnal variation of melatonin metabolites, oxidative stress markers, and antioxidant power in urine of patients with XPA and age-matched controls, using enzyme-linked immunosorbent assay (ELISA). The peak of 6-sulfatoxymelatonin, a metabolite of melatonin, was seen at 6:00 in both the XPA patients and controls, though the peak value is lower, specifically in the younger age group of XPA patients. The older XPA patients demonstrated an increase in the urinary levels of 8-hydroxy-2'-deoxyguanosine and hexanoyl-lysine, a marker of oxidative DNA damage and lipid peroxidation, having a robust peak at 6:00 and 18:00, respectively. In addition, the urinary level of total antioxidant power was decreased in the older XPA patients. Recently, it is speculated that oxidative stress and antioxidant properties may have a diurnal variation, and the circadian rhythm is likely to influence the NER itself. We believe that the administration of melatonin has the possibility of ameliorating the augmented oxidative stress in neurodegeneration, especially in the older XPA patients, modulating the melatonin metabolism and the circadian rhythm.

  13. Circadian Rhythms of Oxidative Stress Markers and Melatonin Metabolite in Patients with Xeroderma Pigmentosum Group A

    Directory of Open Access Journals (Sweden)

    Rie Miyata

    2016-01-01

    Full Text Available Xeroderma pigmentosum group A (XPA is a genetic disorder in DNA nucleotide excision repair (NER with severe neurological disorders, in which oxidative stress and disturbed melatonin metabolism may be involved. Herein we confirmed the diurnal variation of melatonin metabolites, oxidative stress markers, and antioxidant power in urine of patients with XPA and age-matched controls, using enzyme-linked immunosorbent assay (ELISA. The peak of 6-sulfatoxymelatonin, a metabolite of melatonin, was seen at 6:00 in both the XPA patients and controls, though the peak value is lower, specifically in the younger age group of XPA patients. The older XPA patients demonstrated an increase in the urinary levels of 8-hydroxy-2′-deoxyguanosine and hexanoyl-lysine, a marker of oxidative DNA damage and lipid peroxidation, having a robust peak at 6:00 and 18:00, respectively. In addition, the urinary level of total antioxidant power was decreased in the older XPA patients. Recently, it is speculated that oxidative stress and antioxidant properties may have a diurnal variation, and the circadian rhythm is likely to influence the NER itself. We believe that the administration of melatonin has the possibility of ameliorating the augmented oxidative stress in neurodegeneration, especially in the older XPA patients, modulating the melatonin metabolism and the circadian rhythm.

  14. The effects of melatonin on the oxidants and antioxidants in the pancreatic tissue during the aging process

    Directory of Open Access Journals (Sweden)

    Hakan Yüzüak

    2014-12-01

    Full Text Available Objective: To investigate the effect of melatonin on the levels of malondialdehyde (MDA, nitric oxide (NO and glutathione (GSH of pancreas tissues at young (4 months and middle-aged (14 months rats. Methods: Young and middle-age male Wistar albino rats were used in this experimental study. Rats were divided into two groups: melatonin applied; young rats , middle-aged rats and melatonin was not applied; young rats and middle-aged rats . Melatonin was administered at a dose of 10 mg/kg/day in 0.2 cc-% 1 ethanol-phosphate buffered saline (PBS solution via subcutan way for 7 days at 18:00 until surgery. In control group, 0.2 cc-%1 Ethanol-PBS was applied for 7 days at 18:00. At the end of seven days, MDA, NO levels which are indicators of oxidant stress and GSH were detected. Results: Although there were no significant difference between control and experiment group for the NO and MDA level of melatonin group of young rats, there were significantly difference in the GSH levels of pancreas tissues for melatonin levels. NO levels of the pancreas tissues were significantly reduced and GSH levels were significantly increased in the melatonin group of middle aged rats compared to the control group. The MDA levels of pancreas tissues were significantly increased in the middle aged control group compared to young control group. The MDA levels of pancreas tissues were not significantly different in melatonin group of middle-aged compared to control group. The NO and the GSH levels of the pancreas tissues were not significantly different between the control groups of young and middle aged rats. Conclusion: Aging may be related with an increase in free radicals and a reduction in the antioxidant capacity of the tissues and exogenous melatonin may play a protective role in aging by means of its action on free radicals. J Clin Exp Invest 2014; 5 (4: 583-588

  15. Oxidative stress in relation to surgery: is there a role for the antioxidant melatonin?

    DEFF Research Database (Denmark)

    Kücükakin, Bülent; Gögenur, Ismail; Reiter, Russel J

    2009-01-01

    During and after surgical procedures, there is a well defined physiological stress response that involves activation of inflammatory, endocrine, metabolic, and immunological mediators. Oxidative stress, which is defined to be a situation where the production of reactive oxygen/nitrogen species...... exceeds the mechanisms required to detoxify them, is believed to be an integrated part of the surgical stress response. Oxidative stress per se may be associated with complications such as myocardial injury, sepsis, pulmonary edema, kidney and liver failure, and increased mortality. Melatonin is a potent...... antioxidant and in many studies melatonin has been shown to be more effective than some "classical" antioxidants (e.g., vitamins E and C) in protecting against oxidative/nitrosative stress. There are numerous experimental studies in which the antioxidant properties of melatonin have been proven...

  16. Melatonin reduces motivation for cocaine self-administration and prevents relapse-like behavior in rats.

    Science.gov (United States)

    Takahashi, Tatiane T; Vengeliene, Valentina; Spanagel, Rainer

    2017-06-01

    Melatonin is a hormone involved in the entrainment of circadian rhythms, which appears dysregulated in drug users. Further, it has been demonstrated that melatonin can modulate the reinforcing effects of several drugs of abuse and may therefore play a role in drug addiction. Here, we investigated whether administration of melatonin reduces relapse-like behavior and the motivation to seek cocaine in rats. Male Sprague-Dawley rats were submitted to long-term cocaine self-administration training. Thereafter, melatonin effects were assessed on: (1) the motivation to work for cocaine in the break point test, (2) the relapse-like behavior in the cue-induced reinstatement test, (3) the distance traveled in the open field test, and (4) sucrose preference in a two-bottle choice paradigm. Melatonin, 25 or 50 mg/kg, was injected 3-4 h after the dark phase onset, 30 min prior to each test. Both doses of melatonin decreased the number of active pokes in both break point and cue-induced reinstatement tests, demonstrating that melatonin can reduce the cocaine-seeking behavior and the motivation to work for cocaine. Administration of the higher dose of this hormone, however, significantly reduced the number of inactive pokes during the cue-induced reinstatement test and tended to reduce animals' locomotor activity in the open field test. Sucrose preference was unchanged in both vehicle- and melatonin-treated animal groups. Our data suggest that melatonin administration may lower the risk of relapse triggered by cues in cocaine-experienced animals.

  17. Melatonin Therapy Prevents Programmed Hypertension and Nitric Oxide Deficiency in Offspring Exposed to Maternal Caloric Restriction

    Directory of Open Access Journals (Sweden)

    You-Lin Tain

    2014-01-01

    Full Text Available Nitric oxide (NO deficiency is involved in the development of hypertension, a condition that can originate early in life. We examined whether NO deficiency contributed to programmed hypertension in offspring from mothers with calorie-restricted diets and whether melatonin therapy prevented this process. We examined 3-month-old male rat offspring from four maternal groups: untreated controls, 50% calorie-restricted (CR rats, controls treated with melatonin (0.01% in drinking water, and CR rats treated with melatonin (CR + M. The effect of melatonin on nephrogenesis was analyzed using next-generation sequencing. The CR group developed hypertension associated with elevated plasma asymmetric dimethylarginine (ADMA, a nitric oxide synthase inhibitor, decreased L-arginine, decreased L-arginine-to-ADMA ratio (AAR, and decreased renal NO production. Maternal melatonin treatment prevented these effects. Melatonin prevented CR-induced renin and prorenin receptor expression. Renal angiotensin-converting enzyme 2 protein levels in the M and CR + M groups were also significantly increased by melatonin therapy. Maternal melatonin therapy had long-term epigenetic effects on global gene expression in the kidneys of offspring. Conclusively, we attributed these protective effects of melatonin on CR-induced programmed hypertension to the reduction of plasma ADMA, restoration of plasma AAR, increase of renal NO level, alteration of renin-angiotensin system, and epigenetic changes in numerous genes.

  18. Mechanism of melatonin protection against copper-ascorbate-induced oxidative damage in vitro through isothermal titration calorimetry.

    Science.gov (United States)

    Ghosh, Arnab K; Naaz, Shamreen; Bhattacharjee, Bharati; Ghosal, Nirajan; Chattopadhyay, Aindrila; Roy, Souvik; Reiter, Russel J; Bandyopadhyay, Debasish

    2017-07-01

    Involvement of oxidative stress in cardiovascular diseases is well established. Melatonin's role as an antioxidant and free radical scavenger via its receptor dependent and receptor independent pathways is well known. The aim of this study is to identify and elaborate upon a third mechanism by which melatonin is able to abrogate oxidative stress. Oxidative stress was induced in vitro, by copper (0.2mM)-ascorbate (1mM) in isolated goat heart mitochondria, cytosol and peroxisomes and they were co-incubated with graded doses of melatonin. Similar experiments in a cell-free chemical system involving two pure antioxidant enzymes, Cu-Zn superoxide dismutase and catalase was also carried out. Biochemical changes in activity of these antioxidant enzymes were analysed. Isothermal titration calorimetric studies with pure Cu-Zn superoxide dismutase and catalase were also carried out. Incubation with copper-ascorbate led to alteration in activity of Cu-Zn superoxide dismutase and catalase which were found to be protected upon co-incubation with melatonin (80μM for catalase and 1μM for others). Results of isothermal titration calorimetric studies with pure Cu-Zn superoxide dismutase and catalase along with different combinations of copper chloride, ascorbic acid and melatonin suggest that when melatonin is present in the reaction medium along with copper-ascorbate, it restrains the copper-ascorbate molecules by binding with them physically along with scavenging the free radicals generated by them. The present study suggests that possibly, binding of melatonin with antioxidant enzymes masks the vulnerable sites of these antioxidant enzymes, thus preventing oxidative damage by copper-ascorbate molecules. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Clinical Uses of Melatonin in Pediatrics

    Directory of Open Access Journals (Sweden)

    Emilio J. Sánchez-Barceló

    2011-01-01

    Full Text Available This study analyzes the results of clinical trials of treatments with melatonin conducted in children, mostly focused on sleep disorders of different origin. Melatonin is beneficial not only in the treatment of dyssomnias, especially delayed sleep phase syndrome, but also on sleep disorders present in children with attention-deficit hyperactivity, autism spectrum disorders, and, in general, in all sleep disturbances associated with mental, neurologic, or other medical disorders. Sedative properties of melatonin have been used in diagnostic situations requiring sedation or as a premedicant in children undergoing anesthetic procedures. Epilepsy and febrile seizures are also susceptible to treatment with melatonin, alone or associated with conventional antiepileptic drugs. Melatonin has been also used to prevent the progression in some cases of adolescent idiopathic scoliosis. In newborns, and particularly those delivered preterm, melatonin has been used to reduce oxidative stress associated with sepsis, asphyxia, respiratory distress, or surgical stress. Finally, the administration of melatonin, melatonin analogues, or melatonin precursors to the infants through the breast-feeding, or by milk formula adapted for day and night, improves their nocturnal sleep. Side effects of melatonin treatments in children have not been reported. Although the above-described results are promising, specific studies to resolve the problem of dosage, formulations, and length of treatment are necessary.

  20. Melatonin: Action as antioxidant and potential applications in human disease and aging

    International Nuclear Information System (INIS)

    Bonnefont-Rousselot, Dominique; Collin, Fabrice

    2010-01-01

    This review aims at describing the beneficial properties of melatonin related to its antioxidant effects. Oxidative stress, i.e., an imbalance between the production of reactive oxygen species and antioxidant defences, is involved in several pathological conditions such as cardiovascular or neurological disease, and in aging. Therefore, research for antioxidants has developed. However, classical antioxidants often failed to exhibit beneficial effects, especially in metabolic diseases. Melatonin has been shown as a specific antioxidant due to its amphiphilic feature that allows it to cross physiological barriers, thereby reducing oxidative damage in both lipid and aqueous cell environments. Studies on the antioxidant action of melatonin are reported, with a special mention to water gamma radiolysis as a method to produce oxygen-derived free radicals, and on structure-activity relationships of melatonin derivatives. Mass spectrometry-based techniques have been developed to identify melatonin oxidation products. Besides its ability to scavenge several radical species, melatonin regulates the activity of antioxidant enzymes (indirect antioxidant properties). Efficient detection methods confirmed the presence of melatonin in several plant products. Therapeutic potential of melatonin relies either on increasing melatonin dietary intake or on supplementation with supraphysiological dosages. Clinical trials showed that melatonin could be efficient in preventing cell damage, as well under acute (sepsis, asphyxia in newborns) as under chronic (metabolic and neurodegenerative diseases, cancer, inflammation, aging). Its global action on oxidative stress, together with its rhythmicity that plays a role in several metabolic functions, lead melatonin to be of great interest for future clinical research in order to improve public health.

  1. Melatonin protects against uric acid-induced mitochondrial dysfunction, oxidative stress, and triglyceride accumulation in C2C12 myotubes.

    Science.gov (United States)

    Maarman, Gerald J; Andrew, Brittany M; Blackhurst, Dee M; Ojuka, Edward O

    2017-04-01

    Excess uric acid has been shown to induce oxidative stress, triglyceride accumulation, and mitochondrial dysfunction in the liver and is an independent predictor of type-2 diabetes. Skeletal muscle plays a dominant role in type 2 diabetes and presents a large surface area to plasma uric acid. However, the effects of uric acid on skeletal muscle are underinvestigated. Our aim was therefore to characterize the effects of excessive uric acid on oxidative stress, triglyceride content, and mitochondrial function in skeletal muscle C 2 C 12 myotubes and assess how these are modulated by the antioxidant molecule melatonin. Differentiated C 2 C 12 myotubes were exposed to 750 µM uric acid or uric acid + 10 nM melatonin for 72 h. Compared with control, uric acid increased triglyceride content by ~237%, oxidative stress by 32%, and antioxidant capacity by 135%. Uric acid also reduced endogenous ROUTINE respiration, complex II-linked oxidative phosphorylation, and electron transfer system capacities. Melatonin counteracted the effects of uric acid without further altering antioxidant capacity. Our data demonstrate that excess uric acid has adverse effects on skeletal muscle similar to those previously reported in hepatocytes and suggest that melatonin at a low physiological concentration of 10 nM may be a possible therapy against some adverse effects of excess uric acid. NEW & NOTEWORTHY Few studies have investigated the effects of uric acid on skeletal muscle. This study shows that hyperuricemia induces mitochondrial dysfunction and triglyceride accumulation in skeletal muscle. The findings may explain why hyperuricemia is an independent predictor of diabetes. Copyright © 2017 the American Physiological Society.

  2. Hypertension and Cardiovascular Remodelling in Rats Exposed to Continuous Light: Protection by ACE-Inhibition and Melatonin

    Directory of Open Access Journals (Sweden)

    Fedor Simko

    2014-01-01

    Full Text Available Exposure of rats to continuous light attenuates melatonin production and results in hypertension development. This study investigated whether hypertension induced by continuous light (24 hours/day exposure induces heart and aorta remodelling and if these alterations are prevented by melatonin or angiotensin converting enzyme inhibitor captopril. Four groups of 3-month-old male Wistar rats (10 per group were treated as follows for six weeks: untreated controls, exposed to continuous light, light-exposed, and treated with either captopril (100 mg/kg/day or melatonin (10 mg/kg/day. Exposure to continuous light led to hypertension, left ventricular (LV hypertrophy and fibrosis, and enhancement of the oxidative load in the LV and aorta. Increase in systolic blood pressure by continuous light exposure was prevented completely by captopril and partially by melatonin. Both captopril and melatonin reduced the wall thickness and cross-sectional area of the aorta and reduced the level of oxidative stress. However, only captopril reduced LV hypertrophy development and only melatonin reduced LV hydroxyproline concentration in insoluble and total collagen in rats exposed to continuous light. In conclusion, captopril prevented LV hypertrophy development in the continuous light-induced hypertension model, while only melatonin significantly reduced fibrosis. This antifibrotic action of melatonin may be protective in hypertensive heart disease.

  3. Melatonin Protects the Heart, Lungs and Kidneys from Oxidative Stress under Intermittent Hypobaric Hypoxia in Rats

    Directory of Open Access Journals (Sweden)

    Jorge G Farías

    2012-01-01

    Full Text Available Melatonin (N-acetyl-5-methoxytryptamine is the main secretory product of the pineal gland in all mammals including humans, but it is also produced in other organs. It has been previously demonstrated to be a powerful organ-protective substance under oxidative stress conditions. The aim of this study was to evaluate the protective effect of melatonin in several organs such as heart, lung, kidney, and of the reproductive system, such as testis and epididymis in animals exposed to intermittent hypobaric hypoxia and therefore exposed to oxidative stress and analyzed by lipid peroxidation. Ten-week-old male Wistar rats were divided into 6 groups for 96 hours during 32 days under: 1 Normobaric conditions, 2 plus physiologic solution, 3 plus melatonin, 4 intermittent hypobaric hypoxia, 5 plus physiologic solution and 6 plus melatonin. The animals were injected with melatonin (10 mg/kg body weight at an interval of 96 hours during 32 days. Results indicated that melatonin decreased lipid peroxidation in heart, kidneys and lung under intermittent hypobaric hypoxia conditions. However, it did not exhibit any protective effect in liver, testis, epididymis and sperm count.

  4. Nitrosation of melatonin by nitric oxide: a computational study.

    Science.gov (United States)

    Turjanski, A G; Sáenz, D A; Doctorovich, F; Estrin, D A; Rosenstein, R E

    2001-09-01

    Melatonin is being increasingly promoted as a therapeutic agent for the treatment of jet lag and insomnia, and is an efficient free radical scavenger. We have recently characterized a product for the reaction of melatonin with nitric oxide (NO), N-nitrosomelatonin. In the present work, reaction pathways with N1, C2, C4, C6 and C7 as possible targets for its reaction with NO that yield the respective nitroso derivatives have been investigated using semiempirical AM1 computational tools, both in vacuo and aqueous solution. Specifically, two different pathways were studied: a radical mechanism involving the hydrogen atom abstraction to yield a neutral radical followed by NO addition, and an ionic mechanism involving addition of nitrosonium ion to the indolic moiety. Our results show that the indolic nitrogen is the most probable site for nitrosation by the radical mechanism, whereas different targets are probable considering the ionic pathway. These results are in good agreement with previous experimental findings and provide a coherent picture for the interaction of melatonin with NO.

  5. Melatonin prevents inflammation and oxidative stress caused by abdominopelvic and total body irradiation of rat small intestine.

    Science.gov (United States)

    Guney, Y; Hicsonmez, A; Uluoglu, C; Guney, H Z; Ozel Turkcu, U; Take, G; Yucel, B; Caglar, G; Bilgihan, A; Erdogan, D; Nalca Andrieu, M; Kurtman, C; Zengil, H

    2007-10-01

    We investigated the day-night differences in intestinal oxidative-injury and the inflammatory response following total body (TB) or abdominopelvic (AP) irradiation, and the influence of melatonin administration on tissue injury induced by radiation. Rats (male Wistar, weighing 220-280 g) in the irradiated groups were exposed to a dose of 8 Gy to the TB or AP region in the morning (resting period - 1 h after light onset) or evening (activity span - 13 h after light onset). Vehicle or melatonin was administered immediately before, immediately after and 24 h after irradiation (10, 2.0 and 10 mg/kg, ip, respectively) to the irradiated rats. AP (P < 0.05) and TB (P < 0.05) irradiation applied in the morning caused a significant increase in thiobarbituric acid reactive substance (TBARS) levels. Melatonin treatment in the morning (P < 0.05) or evening (P < 0.05) decreased TBARS levels after TB irradiation. After AP irradiation, melatonin treatment only in the morning caused a significant decrease in TBARS levels (P < 0.05). Although we have confirmed the development of inflammation after radiotherapy by histological findings, neither AP nor TB irradiation caused any marked changes in myeloperoxidase activity in the morning or evening. Our results indicate that oxidative damage is more prominent in rats receiving TB and AP irradiation in the morning and melatonin appears to have beneficial effects on oxidative damage irrespective of the time of administration. Increased neutrophil accumulation indicates that melatonin administration exerts a protective effect on AP irradiation-induced tissue oxidative injury, especially in the morning.

  6. Melatonin prevents inflammation and oxidative stress caused by abdominopelvic and total body irradiation of rat small intestine

    Directory of Open Access Journals (Sweden)

    Y. Guney

    2007-10-01

    Full Text Available We investigated the day-night differences in intestinal oxidative-injury and the inflammatory response following total body (TB or abdominopelvic (AP irradiation, and the influence of melatonin administration on tissue injury induced by radiation. Rats (male Wistar, weighing 220-280 g in the irradiated groups were exposed to a dose of 8 Gy to the TB or AP region in the morning (resting period - 1 h after light onset or evening (activity span - 13 h after light onset. Vehicle or melatonin was administered immediately before, immediately after and 24 h after irradiation (10, 2.0 and 10 mg/kg, ip, respectively to the irradiated rats. AP (P < 0.05 and TB (P < 0.05 irradiation applied in the morning caused a significant increase in thiobarbituric acid reactive substance (TBARS levels. Melatonin treatment in the morning (P < 0.05 or evening (P < 0.05 decreased TBARS levels after TB irradiation. After AP irradiation, melatonin treatment only in the morning caused a significant decrease in TBARS levels (P < 0.05. Although we have confirmed the development of inflammation after radiotherapy by histological findings, neither AP nor TB irradiation caused any marked changes in myeloperoxidase activity in the morning or evening. Our results indicate that oxidative damage is more prominent in rats receiving TB and AP irradiation in the morning and melatonin appears to have beneficial effects on oxidative damage irrespective of the time of administration. Increased neutrophil accumulation indicates that melatonin administration exerts a protective effect on AP irradiation-induced tissue oxidative injury, especially in the morning.

  7. Ascorbic acid and melatonin reduce heat-induced performance inhibition and oxidative stress in Japanese quails.

    Science.gov (United States)

    Sahin, N; Onderci, M; Sahin, K; Gursu, M F; Smith, M O

    2004-02-01

    1. The effects of ascorbic acid (L-ascorbic acid) and melatonin supplementation on performance, carcase characteristics, malondialdehyde (MDA) as lipid peroxidation indicator, ascorbic acid, retinol, tocopherol and mineral status in the Japanese quail (Coturnix coturnix japonica) exposed to high ambient temperature were evaluated. 2. Two hundred and forty Japanese quails (10 d old) were randomly assigned to 8 treatment groups consisting of 10 replicates of three birds each. The birds were kept in a temperature-controlled room at 22 degrees C (Thermoneutral, TN groups) or 34 degrees C (for 8 h/d; 09:00 to 17:00 h; Heat stress, HS groups). Birds in both TN and HS were fed either a basal (control) diet or the basal diet supplemented with 250 mg of L-ascorbic acid/kg of diet (Ascorbic acid group), 40 mg of melatonin/kg of diet (Melatonin group) or both (Ascorbic acid + Melatonin group). 3. Supplementing heat-stressed quails with ascorbic acid and melatonin improved performance compared with the control group. Effects generally were greatest in quails supplemented with both ascorbic acid and melatonin. 4. Although supplementation did not consistently restore the concentrations of serum ascorbic acid, retinol and tocopherol to those of TN groups, these concentrations increased significantly with supplementation. Furthermore, serum and liver MDA and serum cholesterol and glucose concentrations were lower in the supplemented groups than in the heat-stressed controls. 5. Within each environment, excretion of Ca, P, Mg, Zn, Fe and Cr were lowest in the combination group and, in all cases, highest in the HS group. Interactions between diet and temperature were detected for live weight gain, cold carcase weight, MDA, ascorbic acid, tocopherol concentrations and excretion of zinc. 6. The results of the study indicate that ascorbic acid and melatonin supplementation attenuate the decline in performance and antioxidant and mineral status caused by heat stress and such

  8. New Evidence for Cross Talk between Melatonin and Mitochondria Mediated by a Circadian-Compatible Interaction with Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Marzia Arese

    2013-05-01

    Full Text Available Extending our previous observations, we have shown on HaCat cells that melatonin, at ~10−9 M concentration, transiently raises not only the expression of the neuronal nitric oxide synthase (nNOS mRNA, but also the nNOS protein synthesis and the nitric oxide oxidation products, nitrite and nitrate. Interestingly, from the cell bioenergetic point of view, the activated NO-related chemistry induces a mild decrease of the oxidative phosphorylation (OXPHOS efficiency, paralleled by a depression of the mitochondrial membrane potential. The OXPHOS depression is apparently balanced by glycolysis. The mitochondrial effects described have been detected only at nanomolar concentration of melatonin and within a time window of a few hours’ incubation; both findings compatible with the melatonin circadian cycle.

  9. Antioxidative effects of melatonin on kinetics, microscopic and oxidative parameters of cryopreserved bull spermatozoa.

    Science.gov (United States)

    Ashrafi, Iraj; Kohram, Hamid; Ardabili, Farhad Farrokhi

    2013-06-01

    Reactive oxygen species generated during the freeze-thawing process may reduce sperm quality. This study evaluates the effects of melatonin supplementation as an antioxidant in the semen extender on post-thaw parameters of bull spermatozoa. Melatonin was added to the citrate-egg yolk extender to yield six different final concentrations: 0, 0.1, 1, 2, 3 and 4mM. Ejaculates were collected from six proven Holstein bulls. Semen was diluted in the extender packaged in straws, which was frozen with liquid nitrogen. The semen extender supplemented with various doses of melatonin increased (peffective concentration of melatonin in microscopic evaluations of the bull sperm freezing extender was 2mM. The highest (pconcentration of melatonin in the semen extender and the highest activity of catalase (0.7±0.1) was obtained by 2mM melatonin. Four millimolar concentration of melatonin were reduced (pconcentration of melatonin in the semen extender improved the quality of post-thawed semen, which may associate with a reduction in lipid peroxidation as well as an increase in the total antioxidant capacity and antioxidant enzyme activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Utility of melatonin to treat surgical stress after major vascular surgery--a safety study

    DEFF Research Database (Denmark)

    Kücükakin, Bülent; Lykkesfeldt, Jens; Nielsen, Hans Jørgen

    2008-01-01

    of reducing oxidative damage. The aim of this pilot study was to evaluate the safety of various doses of melatonin administered during or after surgery and to monitor the changes in biomarkers of oxidative stress and inflammation during the pre-, intra-, and postoperative period. Six patients undergoing......Surgery for abdominal aortic aneurysm is associated with elevated oxidative stress. As an antioxidant in animal and human studies, melatonin has the potential of ameliorating some of this oxidative stress, but melatonin has never been administered to adults during surgery for the purpose......-reactive protein (CRP) were also measured for 4 days after surgery. Melatonin administration did not change hemodynamic parameters (mean arterial pressure or pulse rate) during surgery (P = 0.499 and 0.149, respectively), but oxidative stress parameters (MDA and AA) decreased significantly (P = 0.014 and 0...

  11. Utility of melatonin to treat surgical stress after major vascular surgery - a safety study

    DEFF Research Database (Denmark)

    Kücükakin, Bülent; Lykkesfeldt, Jens; Nielsen, Hans Jørgen

    2008-01-01

    of reducing oxidative damage. The aim of this pilot study was to evaluate the safety of various doses of melatonin administered during or after surgery and to monitor the changes in biomarkers of oxidative stress and inflammation during the pre-, intra- and postoperative period. Six patients undergoing aortic......Surgery for abdominal aortic aneurysm is associated with elevated oxidative stress. As an antioxidant in animal and human studies, melatonin has the potential of ameliorating some of this oxidative stress, but melatonin has never been administered to adults during surgery for the purpose......) were also measured for four days after surgery. Melatonin administration did not change hemodynamic parameters (mean arterial pressure or pulse rate) during surgery (P=0.499 and 0.149, respectively), but oxidative stress parameters (MDA and AA) decreased significantly (P=0.014 and 0.001, respectively...

  12. DNA protective effects of melatonin on oxidative stress in streptozotocin - induced diabetic rats.

    Directory of Open Access Journals (Sweden)

    Selim Sekkin

    2015-05-01

    the antioxidant system, MEL regulates the expression of several genes such as those of superoxide dismutase (SOD and glutathione peroxidase (2-4. The aim of this study was to research the effects of MEL on oxidative stress and DNA protective effects in streptozotocin-induced diabetic rats. A total of 32 rats were equally divided into 4 experimental groups as Control, Melatonin, Diabetic, and Diabetic + Melatonin. A pancreatic beta-cell cytotoxic agent, single dose streptozotocin (60 mg/kg was given by intraperitoneal route to induce experimental diabetes in rats. Rats with ≥200mg/dL blood glucose level were established as Diabetic and Diabetic + Melatonin groups. MEL (10 mg/kg per day and sodium citrate solution were administrated to rats by intraperitoneal route for 6 weeks. With the termination of the experiment, tissue and blood samples were obtained for further analysis. SOD, catalase (CAT, reduced glutathione (GSH and malondialdehyde (MDA were evaluated in rat liver, renal, brain and pancreas tissues. Body weight, plasma glucose, and %HbA1c levels were studied. DNA damage was analyzed with the comet assay in rat lymphocytes; %Tail DNA and Mean Tail Moment parameters were evaluated (5. Antioxidant and oxidant enzyme levels were similar in the Control and Melatonin groups, although there were significant differences between the Diabetic and Diabetic + Melatonin groups. SOD levels in brain and liver tissues were higher (P<0,001, and CAT activities in renal tissue (P<0,001, GSH levels in pancreas tissue (P<0,01 as well as MDA levels in liver (P<0,001, renal (P<0,001 and brain (P<0,01 tissues were higher in the Diabetic + Melatonin group compared with the Diabetic group. Body weight changes and blood glucose levels of the rats were evaluated during the 6 weeks. The effect of MEL on the body weights of Control and Melatonin as well as Diabetic and Diabetic + Melatonin group rats were similar. MEL had no effect on body weight and the diabetic rats were lighter (P<0

  13. No effect of melatonin on oxidative stress after laparoscopic cholecystectomy

    DEFF Research Database (Denmark)

    Kücükakin, B.; Klein, M.; Lykkesfeldt, Jens

    2010-01-01

    melatonin and 21 patients received placebo during surgery. No significant differences were observed between the groups in the oxidative stress variables MDA, TAA, AA and DHA or in the inflammatory variable CRP (repeated-measures ANOVA, P > 0.05 for all variables). Conclusions Administration of 10 mg...

  14. Melatonin: a protective and detoxifying agent in paraquat toxicity

    International Nuclear Information System (INIS)

    Ghanem, M.; Gad, H.; Hanan; Aziz, A.; Nasr, M.

    2002-01-01

    The ability of melatonin as a protective and detoxifying agent against paraquat-induced oxidative damage in rat lungs and liver was examined. Changes in reduced glutathione (OSH) concentration and malonaldehyde (MDA) level were measured. Pathological examination to lungs and liver was done. Paraquat in 2 doses (20,70 mg/kg) was injected I.P. into rats with melatonin (10 mg/kg) I. P. either before and after paraquat intoxication or only after it. Melatonin proved its protective role when given before and after paraquat intoxication more than its detoxifying effect when given only after paraquat. The biochemical improvement following melatonin therapy was more evident than the histopathological one. (author)

  15. The benefit of a supplement with the antioxidant melatonin on redox status and muscle damage in resistance-trained athletes.

    Science.gov (United States)

    Leonardo-Mendonça, Roberto C; Ocaña-Wilhelmi, Javier; de Haro, Tomás; de Teresa-Galván, Carlos; Guerra-Hernández, Eduardo; Rusanova, Iryna; Fernández-Ortiz, Marisol; Sayed, Ramy K A; Escames, Germaine; Acuña-Castroviejo, Darío

    2017-07-01

    Previous data showed that the administration of high doses of melatonin improved the circadian system in athletes. Here, we investigated in the same experimental paradigm whether the antioxidant properties of melatonin has also beneficial effects against exercise-induced oxidative stress and muscle damage in athletes. Twenty-four athletes were treated with 100 mg·day -1 of melatonin or placebo 30 min before bedtime during 4 weeks in a randomized double-blind scheme. Exercise intensity was higher during the study that before starting it. Blood samples were collected before and after treatment, and plasma was used for oxygen radical absorption capacity (ORAC), lipid peroxidation (LPO), nitrite plus nitrate (NOx), and advanced oxidation protein products (AOPP) determinations. Glutathione (GSH), glutathione disulphide (GSSG) levels, and glutathione peroxidase (GPx) and reductase (GRd) activities, were measured in erythrocytes. Melatonin intake increased ORAC, reduced LPO and NOx levels, and prevented the increase of AOPP, compared to placebo group. Melatonin was also more efficient than placebo in reducing GSSG·GSH -1 and GPx·GRd -1 ratios. Melatonin, but not placebo, reduced creatine kinase, lactate dehydrogenase, creatinine, and total cholesterol levels. Overall, the data reflect a beneficial effect of melatonin treatment in resistance-training athletes, preventing extra- and intracellular oxidative stress induced by exercise, and yielding further skeletal muscle protection against exercise-induced oxidative damage.

  16. Melatonin reduces dimethylnitrosamine-induced liver fibrosis in rats.

    Science.gov (United States)

    Tahan, Veysel; Ozaras, Resat; Canbakan, Billur; Uzun, Hafize; Aydin, Seval; Yildirim, Beytullah; Aytekin, Huseyin; Ozbay, Gulsen; Mert, Ali; Senturk, Hakan

    2004-09-01

    Increased deposition of the extracellular matrix components, particularly collagen, is a central phenomenon in liver fibrosis. Stellate cells, the central mediators in the pathogenesis of fibrosis are activated by free radicals, and synthesize collagen. Melatonin is a potent physiological scavenger of hydroxyl radicals. Melatonin has also been shown to be involved in the inhibitory regulation of collagen content in tissues. At present, no effective treatment of liver fibrosis is available for clinical use. We aimed to test the effects of melatonin on dimethylnitrosamine (DMN)-induced liver damage in rats. Wistar albino rats were injected with DMN intraperitoneally. Following a single dose of 40 mg/kg DMN, either saline (DMN) or 100 mg/kg daily melatonin was administered for 14 days. In other rats, physiologic saline or melatonin were injected for 14 days, following a single injection of saline as control. Hepatic fibrotic changes were evaluated biochemically by measuring tissue hydroxyproline levels and histopathogical examination. Malondialdehyde (MDA), an end product of lipid peroxidation, and glutathione (GSH) and superoxide dismutase (SOD) levels were evaluated in blood and tissue homogenates. DMN caused hepatic fibrotic changes, whereas melatonin suppressed these changes in five of 14 rats (P < 0.05). DMN administration resulted in increased hydroxyproline and MDA levels, and decreased GSH and SOD levels, whereas melatonin reversed these effects. When melatonin was administered alone, no significant changes in biochemical parameters were noted. In conclusion, the present study suggests that melatonin functions as a potent fibrosuppressant and antioxidant, and may be a therapeutic choice.

  17. Local Actions of Melatonin in Somatic Cells of the Testis.

    Science.gov (United States)

    Frungieri, Mónica Beatriz; Calandra, Ricardo Saúl; Rossi, Soledad Paola

    2017-05-31

    The pineal hormone melatonin regulates testicular function through the hypothalamic-adenohypophyseal axis. In addition, direct actions of melatonin in somatic cells of the testis have been described. Melatonin acts as a local modulator of the endocrine activity in Leydig cells. In Sertoli cells, melatonin influences cellular growth, proliferation, energy metabolism and the oxidation state, and consequently may regulate spermatogenesis. These data pinpoint melatonin as a key player in the regulation of testicular physiology (i.e., steroidogenesis, spermatogenesis) mostly in seasonal breeders. In patients with idiopathic infertility, melatonin exerts anti-proliferative and anti-inflammatory effects on testicular macrophages, and provides protective effects against oxidative stress in testicular mast cells. Consequently, melatonin is also involved in the modulation of inflammatory and oxidant/anti-oxidant states in testicular pathology. Overall, the literature data indicate that melatonin has important effects on testicular function and male reproduction.

  18. Metabolic syndrome, its pathophysiology and the role of melatonin.

    Science.gov (United States)

    Srinivasan, Venkataramanujam; Ohta, Yoshiji; Espino, Javier; Pariente, Jose A; Rodriguez, Ana B; Mohamed, Mahaneem; Zakaria, Rahimah

    2013-01-01

    Metabolic syndrome (MetS) is characterised by symptoms of obesity, insulin resistance, hypertension, dyslipidemia and diabetes mellitus. The pathophysiological mechanisms involved in MetS are complex and involved dysregulation of many biochemical and physiological regulatory mechanisms of the body. Elevated levels of low density lipoproteins like VLDL, and LDL with reduction of HDL seen in patients with MetS contribute to atherogenic dyslipedemia. Melatonin has been suggested to be effective in improving MetS through its anti-hyperlipidemic action. Melatonin reduced both adiposity, and body weight in experimental animal studies and also attenuated weight gain and obesityinduced metabolic alterations and this effect of melatonin is attributed to its anti-oxidative effects. Melatonin administration has been shown to inhibit insulin release by acting through both MT1 and MT2 melatonin receptors present in pancreatic β-cells. Melatonin also increased insulin sensitivity and glucose tolerance in animals fed with either high fat or high sucrose diet. Melatonin exerts most of its beneficial actions by acting through MT1 and MT2 melatonin receptors present in various tissues of the body and some of the metabolic actions of melatonin have been blocked by melatonin antagonist like luzindole. Ramelteon, the newly available melatonin agonist will also have more promising role in the control of MetS. The numbers of patents are available with regard to treatment of MetS. Drug related to antidepressant fluoxetine is used for treatment of MetS (US Patent No. 2008001400450). Anti-oxidants like S-adenosyl-methionine, Vitamin E, and Vitamin C have been found beneficial in treating MetS (US Patent No. 8063024). Melatonin being a powerful Antioxidant will have a promising role in treating patients with metabolic syndrome.

  19. Exogenous Melatonin Improves Plant Iron Deficiency Tolerance via Increased Accumulation of Polyamine-Mediated Nitric Oxide.

    Science.gov (United States)

    Zhou, Cheng; Liu, Zhi; Zhu, Lin; Ma, Zhongyou; Wang, Jianfei; Zhu, Jian

    2016-10-25

    Melatonin has recently been demonstrated to play important roles in the regulation of plant growth, development, and abiotic and biotic stress responses. However, the possible involvement of melatonin in Fe deficiency responses and the underlying mechanisms remained elusive in Arabidopsis thaliana . In this study, Fe deficiency quickly induced melatonin synthesis in Arabidopsis plants. Exogenous melatonin significantly increased the soluble Fe content of shoots and roots, and decreased the levels of root cell wall Fe bound to pectin and hemicellulose, thus alleviating Fe deficiency-induced chlorosis. Intriguingly, melatonin treatments induced a significant increase of nitric oxide (NO) accumulation in roots of Fe-deficient plants, but not in those of polyamine-deficient ( adc2-1 and d-arginine-treated) plants. Moreover, the melatonin-alleviated leaf chlorosis was blocked in the polyamine- and NO-deficient ( nia1nia2noa1 and c-PTIO-treated) plants, and the melatonin-induced Fe remobilization was largely inhibited. In addition, the expression of some Fe acquisition-related genes, including FIT1 , FRO2 , and IRT1 were significantly up-regulated by melatonin treatments, whereas the enhanced expression of these genes was obviously suppressed in the polyamine- and NO-deficient plants. Collectively, our results provide evidence to support the view that melatonin can increase the tolerance of plants to Fe deficiency in a process dependent on the polyamine-induced NO production under Fe-deficient conditions.

  20. Study on the Antiradiation role of Melatonin: An investigation on Induced Oxidative Stress Mice by Radiomimetic Drug Cyclophosphamide

    Energy Technology Data Exchange (ETDEWEB)

    Manda, K.; Bhatia, A. L.

    2004-07-01

    Clinical studies have demonstrated an altered pineal function in cancer patients. Owing to the document antineoplastic activity of the pineal gland, these anomalies could have a prognostic significance. This study was carried out to monitor the effect of higher blood levels of melatonin, the most important pineal hormone, which could be applied in relation to the response to chemotherapy in human neoplasms. Cyclophosphamide is a commonly used chemotherapeutic drug and well-known mutagen and clastogen. It is an alkylating agent, producing highly active carbonium ion, which the extremely electron-rich area of the nucleic acids and proteins. The present study aimed to investigate the protective effect of melatonin against cyclophosphamide induced oxidative stress in mice tissues. Lipid perioxidation. Reduced glutathione (GSH), Glutathione disulphide (GSSG), Glutathione peroxidase (GSH-Px) and serum phosphatase level taken as endpoints. Twenty days oral administration with melatonin (0.25 mg/Kg body weight) followed by an acute treatment with cyclophosphamide (75 mg/kg b. w.) inhibited the radiomimetic drug-induced augmented level of lipid peroxidation, Blood GSSG and acid phosphatase. Cyclophosphamide induced depletion in the level of GSH, GSH-Px and alkaline phosphatase is ameliorated significantly by melatonin administration. The findings support the results showing melatonin as a free radical scavenger, and singlet oxygen quencher. Results clearly indicate the antioxidative properties of melatonin against the radiomimetic drug which could be effectively used selectively for the protection of normal tissue during chemotherapy. (Author) 34 refs.

  1. Study on the Antiradiation role of Melatonin: An investigation on Induced Oxidative Stress Mice by Radiomimetic Drug Cyclophosphamide

    International Nuclear Information System (INIS)

    Manda, K.; Bhatia, A. L.

    2004-01-01

    Clinical studies have demonstrated an altered pineal function in cancer patients. Owing to the document antineoplastic activity of the pineal gland, these anomalies could have a prognostic significance. This study was carried out to monitor the effect of higher blood levels of melatonin, the most important pineal hormone, which could be applied in relation to the response to chemotherapy in human neoplasms. Cyclophosphamide is a commonly used chemotherapeutic drug and well-known mutagen and clastogen. It is an alkylating agent, producing highly active carbonium ion, which the extremely electron-rich area of the nucleic acids and proteins. The present study aimed to investigate the protective effect of melatonin against cyclophosphamide induced oxidative stress in mice tissues. Lipid perioxidation. Reduced glutathione (GSH), Glutathione disulphide (GSSG), Glutathione peroxidase (GSH-Px) and serum phosphatase level taken as endpoints. Twenty days oral administration with melatonin (0.25 mg/Kg body weight) followed by an acute treatment with cyclophosphamide (75 mg/kg b. w.) inhibited the radiomimetic drug-induced augmented level of lipid peroxidation, Blood GSSG and acid phosphatase. Cyclophosphamide induced depletion in the level of GSH, GSH-Px and alkaline phosphatase is ameliorated significantly by melatonin administration. The findings support the results showing melatonin as a free radical scavenger, and singlet oxygen quencher. Results clearly indicate the antioxidative properties of melatonin against the radiomimetic drug which could be effectively used selectively for the protection of normal tissue during chemotherapy. (Author) 34 refs

  2. Melatonin ameliorates oxidative stress, modulates death receptor pathway proteins, and protects the rat cerebrum against bisphenol-A-induced apoptosis.

    Science.gov (United States)

    El-Missiry, Mohamed A; Othman, Azza I; Al-Abdan, Monera A; El-Sayed, Aml A

    2014-12-15

    Epidemiological reports have indicated a correlation between the increasing of bisphenol-A (BPA) levels in the environment and the incidence of neurodegenerative diseases. In the present study, the protective effect of melatonin on oxidative stress and the death receptor apoptotic proteins in the cerebrum of the bisphenol-A-treated rats were examined. Adult male rats were orally administered melatonin (10mg/kg bw) concurrently with BPA (50mg/kg bw) 3 days a week for 6 weeks. BPA exposure resulted in significant elevations of oxidative stress, as evidenced by the increased malondialdehyde level and the decreased glutathione level and superoxide dismutase activity in the cerebrum. BPA caused an upregulation of p53 and CD95-Fas and activation of capsases-3 and 8, resulting in cerebral cell apoptosis. Melatonin significantly attenuated the BPA-evoked brain oxidative stress, modulated apoptotic-regulating proteins and protected against apoptosis. These data suggest that melatonin modulated important steps in the death receptor apoptotic pathway which likely related to its redox control properties. Melatonin is a promising pharmacological agent for preventing the potential neurotoxicity of BPA following occupational or environmental exposures. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Can Melatonin Act as an Antioxidant in Hydrogen Peroxide-Induced Oxidative Stress Model in Human Peripheral Blood Mononuclear Cells?

    Directory of Open Access Journals (Sweden)

    Solaleh Emamgholipour

    2016-01-01

    Full Text Available Purpose. We aimed to investigate the possible effects of melatonin on gene expressions and activities of MnSOD and catalase under conditions of oxidative stress induced by hydrogen peroxide (H2O2 in peripheral blood mononuclear cells (PBMCs. Materials and Methods. PBMCs were isolated from healthy subjects and treated as follows: (1 control (only with 0.1% DMSO for 12 h; (2 melatonin (1 mM for 12 h; (3 H2O2 (250 μM for 2 h; (4 H2O2 (250 μM for 2 h following 10 h pretreatment with melatonin (1 mM. The gene expression was evaluated by real-time PCR. MnSOD and catalase activities in PBMCs were determined by colorimetric assays. Results. Pretreatment of PBMCs with melatonin significantly augmented expression and activity of MnSOD which were diminished by H2O2. Melatonin treatment of PBMCs caused a significant upregulation of catalase by almost 2-fold in comparison with untreated cells. However, activity and expression of catalase increased by 1.5-fold in PBMCs under H2O2-induced oxidative stress compared with untreated cell. Moreover, pretreatment of PBMCs with melatonin resulted in a significant 1.8-fold increase in catalase expression compared to PBMCs treated only with H2O2. Conclusion. It seems that melatonin could prevent from undesirable impacts of H2O2-induced oxidative stress on MnSOD downregulation. Moreover, melatonin could promote inductive effect of H2O2 on catalase mRNA expression.

  4. Potential Utility of Melatonin in Preeclampsia, Intrauterine Fetal Growth Retardation, and Perinatal Asphyxia.

    Science.gov (United States)

    Marseglia, Lucia; D'Angelo, Gabriella; Manti, Sara; Reiter, Russel J; Gitto, Eloisa

    2016-08-01

    Reactive oxygen species play an important role in the pathogenesis of several diseases during gestation and the perinatal period. During pregnancy, increased oxygen demand augments the rate of production of free radicals. Oxidative stress is involved in pregnancy disorders including preeclampsia and intrauterine fetal growth retardation (IUGR). Moreover, increased levels of oxidative stress and reduced antioxidative capacities may contribute to the pathogenesis of perinatal asphyxia. Melatonin, an efficient antioxidant agent, diffuses through biological membranes easily and exerts pleiotropic actions on every cell and appears to be essential for successful gestation. This narrative review summarizes current knowledge concerning the role of melatonin in reducing complications during human pregnancy and in the perinatal period. Melatonin levels are altered in women with abnormally functioning placentae during preeclampsia and IUGR. Short-term melatonin therapy is highly effective and safe in reducing complications during pregnancy and in the perinatal period. Because melatonin has been shown to be safe for both mother and fetus, it could be an attractive therapy in pregnancy and is considered a promising neuroprotective agent in perinatal asphyxia. We believe that the use of melatonin treatment during the late fetal and early neonatal period might result in a wide range of health benefits, improved quality of life, and may help limit complications during the critical periods prior to, and shortly after, delivery. © The Author(s) 2015.

  5. Effect of melatonin on serum glucose and body weights in streptozotocin induced diabetes in albino rats

    International Nuclear Information System (INIS)

    Hidayat, M.

    2015-01-01

    It has been demonstrated in experimental animal models that oxidative stress causes persistent and chronic hyperglycaemia, causing reduction in antioxidant defence system, ultimately leading to accumulation of free radicals.This study was performed to observe the effect of melatonin on serum glucose and body weights in streptozotocin induced diabetes in albino rats. Methods: Forty healthy adult male albino rats were included in the study and divided equally into 4 groups for 6 weeks. Group-A was taken as control. Group-B received streptozotocin I/P in a dose of 37 mg/kg body weight. Group-C received 10 mg/100 ml melatonin in drinking water and Group-D received only melatonin. Results: Streptozotocin significantly increased serum glucose and decreased weight in group B animals, whereas in group C, melatonin significantly restored serum glucose but could not restore the body weights reduced by streptozotocin. There was a significant reduction in body weight in melatonin treated group D animals. Conclusion: Melatonin decreases oxidative stress and hyperglycemia, but cannot restore the body weight reduced by streptozotocin. In fact, it further reduces body weight both in diabetic and normal state. (author)

  6. Melatonin as Protection Against Radiation Injury

    DEFF Research Database (Denmark)

    Zetner, D.; Andersen, L. P H; Rosenberg, J.

    2016-01-01

    Introduction: Radiation is widely used in the treatment of various cancers and in radiological imaging procedures. Ionizing radiation causes adverse effects, leading to decreased quality of life in patients, by releasing free radicals that cause oxidative stress and tissue damage. The sleep......-hormone melatonin is a free radical scavenger, and induces several anti-oxidative enzymes. This review investigates the scientific literature on the protective effects of melatonin against exposure to ionizing radiation, and discusses the clinical potential of melatonin as prophylactic treatment against ionizing...... and protected against radiation enteritis. These protective effects were only documented when melatonin was administered prior to exposure to ionizing radiation. Discussion: This review documents that melatonin effectively protects animals against injury to healthy tissues from ionizing radiation. However...

  7. Potential utility of melatonin as an antioxidant during pregnancy and in the perinatal period.

    Science.gov (United States)

    Aversa, Salvatore; Pellegrino, Salvatore; Barberi, Ignazio; Reiter, Russel J; Gitto, Eloisa

    2012-03-01

    Reactive oxygen species (ROS) play a critical role in the pathogenesis of various diseases during pregnancy and the perinatal period. Newborns are more prone to oxidative stress than individuals later in life. During pregnancy, increased oxygen demand augments the rate of production of ROS and women, even during normal pregnancies, experience elevated oxidative stress compared with non-pregnant women. ROS generation is also increased in the placenta during preeclampsia. Melatonin is a highly effective direct free-radical scavenger, indirect antioxidant, and cytoprotective agent in human pregnancy and it appears to be essential for successful pregnancy. This suggests a role for melatonin in human reproduction and in neonatal pathologies (asphyxia, respiratory distress syndrome, sepsis, etc.). This review summarizes current knowledge concerning the role for melatonin in human pregnancy and in the newborn. Numerous studies agree that short-term melatonin therapy is highly effective in reducing complications during pregnancy and in the neonatal period. No significant toxicity or treatment-related side effects with long-term melatonin therapy in children and adults have been reported. Treatment with melatonin might result in a wide range of health benefits, including improved quality of life and reduced healthcare costs.

  8. The Relationship between Autism Spectrum Disorder and Melatonin during Fetal Development

    Directory of Open Access Journals (Sweden)

    Yunho Jin

    2018-01-01

    Full Text Available The aim of this review is to clarify the interrelationship between melatonin and autism spectrum disorder (ASD during fetal development. ASD refers to a diverse range of neurodevelopmental disorders characterized by social deficits, impaired communication, and stereotyped or repetitive behaviors. Melatonin, which is secreted by the pineal gland, has well-established neuroprotective and circadian entraining effects. During pregnancy, the hormone crosses the placenta into the fetal circulation and transmits photoperiodic information to the fetus allowing the establishment of normal sleep patterns and circadian rhythms that are essential for normal neurodevelopment. Melatonin synthesis is frequently impaired in patients with ASD. The hormone reduces oxidative stress, which is harmful to the central nervous system. Therefore, the neuroprotective and circadian entraining roles of melatonin may reduce the risk of neurodevelopmental disorders such as ASD.

  9. Melatonin and human mitochondrial diseases

    Directory of Open Access Journals (Sweden)

    Reza Sharafati-Chaleshtori

    2017-01-01

    Full Text Available Mitochondrial dysfunction is one of the main causative factors in a wide variety of complications such as neurodegenerative disorders, ischemia/reperfusion, aging process, and septic shock. Decrease in respiratory complex activity, increase in free radical production, increase in mitochondrial synthase activity, increase in nitric oxide production, and impair in electron transport system and/or mitochondrial permeability are considered as the main factors responsible for mitochondrial dysfunction. Melatonin, the pineal gland hormone, is selectively taken up by mitochondria and acts as a powerful antioxidant, regulating the mitochondrial bioenergetic function. Melatonin increases the permeability of membranes and is the stimulator of antioxidant enzymes including superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase. It also acts as an inhibitor of lipoxygenase. Melatonin can cause resistance to oxidation damage by fixing the microsomal membranes. Melatonin has been shown to retard aging and inhibit neurodegenerative disorders, ischemia/reperfusion, septic shock, diabetes, cancer, and other complications related to oxidative stress. The purpose of the current study, other than introducing melatonin, was to present the recent findings on clinical effects in diseases related to mitochondrial dysfunction including diabetes, cancer, gastrointestinal diseases, and diseases related to brain function.

  10. Melatonin Protective Effects against Liver Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Abbas Khonakdar-Tarsi

    2016-02-01

    Full Text Available Hepatic ischemia-reperfusion (I/R is a common phenomenon during liver surgery, transplantation, infection and trauma which results in damage and necrosis of the hepatic tissue through different pathways. Mechanisms involved in I/R damage are very intricate and cover several aspects. Several factors are involved in I/R-induced damages; briefly, decrease in sinusoidal perfusion and ATP generation because of low or no O2 supply, increase in production of reactive oxygen species (ROS and inflammatory factors and destruction of parenchymal cells resulted by these molecules are of the main causes of liver tissue injury during reperfusion. Melatonin’s antioxidant effect, and regulatory roles in the expression of different genes in the I/R insulted liver have been investigated by several studies. Melatonin and its metabolites are of the powerful direct scavengers of free radicals and ROS, so it can directly protect liver cell impairment from oxidative stress following I/R. In addition, this bioactive molecule up-regulates anti-oxidant enzyme genes like superoxide dismutase (SOD, glutathione peroxidase (GSH-Px and catalase (CAT. Tumor necrosis factors (TNF-α and interleukin-1 (IL-1, as potent pro-inflammatory factors, are generated in huge amounts during reperfusion. Melatonin is able to alleviate TNF-α generation and has hepatoprotective effect during I/R. It reduces the production of pro-inflammatory cytokines and chemokines via reducing the binding of NF-κB to DNA. Imbalance between vasodilators (nitric oxide, NO and vasoconstrictors (endothelin, ET during I/R was shown to be the primary cause of liver microcirculation disturbance. Melatonin helps maintaining the stability of liver circulation and reduces hepatic injury during I/R through preventing alteration of the normal balance between ET and NO. The aim of this review was to explore the mechanisms of liver I/R injuries and the protective effects of melatonin against them.

  11. Melatonin labeled with hydrogen isotopes

    International Nuclear Information System (INIS)

    Dmitrevskaya, L.I.; Smushkevich, Yu.I.; Kurkovskaya, L.N.; Ponomarenko, N.K.; Suvorov, N.N.

    1989-01-01

    A study has been made of isotope exchange between melatonin and deuterium (D 2 O) or tritium (HTO) oxide under different conditions. The ease of isotope exchange for the indole ring hydrogens of melatonin in an acidic medium decreases over the series H 4 > H 2 H 6 >> H 7 , enabling the authors to process a route for production of melatonin labeled with hydrogen isotopes at positions 4,6, and 2 of the indole ring. A method has been suggested for producing melatonin labeled with hydrogen isotopes at position 2 by desulfurization of 2-(2,4-dinitro-phenylsulfenyl)melatonin at Ni(Re) (D)

  12. Melatonin labelled by hydrogen isotopes

    International Nuclear Information System (INIS)

    Dmitrevskaya, L.I.; Smushkevich, Yu.I.; Kurkovskaya, L.N.; Ponomarenko, N.K.; Suvorov, N.N.

    1988-01-01

    Isotope exchange of melatonin with deuterium (D 2 O) and tritium (HTO) oxides under different conditions is studied. Simplicity of isotope exchange of hydrogens of the indole ring of melatonin in the acidic medium decreases in series H 4 >H 2 >H 6 >>H 7 , that permits to suggest the way of melatonin preparation labelled by hydrogen isotopes in positions 4,6 and 2 of the indole ring. The way of melatonin preparation labelled by hydrogen isotopes in position 2 according to the reaction of desulfation 2-(2,4-dinitrophenylsulphenyl) melatonin at catalyst Ni(Re)(D) is suggested

  13. Radioprotective effects of melatonin on radiation-induced cataract

    International Nuclear Information System (INIS)

    Karslioglu, Ie.; Ertekin, M.V.; Taysi, S.; Kocer, Ie.; Sezen, O.; Koc, M.; Bakan, N.; Gepdiremen, A.

    2005-01-01

    One of the mechanisms proposed to explain lens opacification is the oxidation of crystallins, either by radiation or reactive oxygen species (ROS). It has been shown that melatonin has both an anti-peroxidative effect on several tissues and a scavenger effect on ROS. The purpose of this study was to determine the antioxidant role of melatonin (5 mg/kg/day) against radiation-induced cataract in the lens after total-cranium irradiation of rats with a single dose of 5 Gy. Sprague-Dawley rats were divided into four groups. Control group received neither melatonin nor irradiation. Irradiated rats (IR) and melatonin+irradiated rats (IR+Mel) groups were exposed to total cranium irradiation of 5 Gy in a single dose by using a cobalt-60 teletherapy unit. IR+Mel and melatonin (Mel) groups were administered 5 mg/kg melatonin daily by intraperitoneal injections during ten days. Chylack's cataract classification was used in this study. At the end of the 10 th day, the rats were killed and their eyes were enucleated to measure the antioxidant enzymes i.e. the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and lipid peroxidation level (malondialdehyde (MDA)). Irradiation significantly increased the MDA level, as an end product of lipid peroxidation, and also significantly decreased SOD and GSH-Px activity, emphasizing the generation of increased oxidative stress. Rats injected with melatonin only did not cause cataract formation. Melatonin supplementation with irradiation significantly increased the activity of SOD and GSH-Px enzymes and significantly decreased the MDA level. Total cranium irradiation of 5 Gy in a single dose enhanced cataract formation, and melatonin supplementation protected the lenses from radiation-induced cataract formation. Our results suggest that supplementing cancer patients with adjuvant therapy of melatonin may reduce patients suffering from toxic therapeutic regimens such as chemotherapy and/or radiotherapy and may provide

  14. Radioprotective Effect and Follow-up of Melatonin as Antifertility Drug in Male Adult Mice submitted to Whole-Body γ Irradiation

    International Nuclear Information System (INIS)

    Tawfik, S.S.; Mansour, H.H.; El-Shamy, E.; Sallam, M.H.

    2006-01-01

    Melatonin is universal antioxidant for both man and animals and a substance normally produced in the human body. Radioprotective and follow up of melatonin as anti-fertility drug in whole body γ-irradiated male adult mice were studied. The alterations occurred in reproductive system and biochemical aspects in mice were evaluated. Control group, melatonin treated (received 10 mg/kg body wt for 20 successive days), following up for melatonin treated (2 recovery periods; 60 and 120 days), irradiated (2 Gy-γ-rays), pre-treated (received melatonin before irradiation) and following up for pre-treated (2 recovery periods) groups were designed. Body and testes wt, micronucleus test (MN), chromosomal aberration (CA), seminal plasma melatonin, sperm quality (count, motility and abnormal forms) and hormonal assay in serum (melatonin, testosterone, FSH and prolactin) were recorded for fertility assessment. Oxidative parameters in testis tissue (malonaldehyde (MDA), superoxide dismutase (SOD), reduced glutathione (GSH) and nitric oxide (NO)) and biochemical assay (protein and lipid fractions in serum) were investigated for judgment melatonin radioprotective efficacy. Irradiation intensifies the processes of lipo peroxidation and oxidative modification of lipids and proteins with synchronized inhibition of the anti oxidative protection system. Melatonin administration against a background of radiation caused a distinctly expressed antioxidant effect

  15. Endogenous melatonin and oxidatively damaged guanine in DNA

    DEFF Research Database (Denmark)

    Davanipour, Zoreh; Poulsen, Henrik E; Weimann, Allan

    2009-01-01

    overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were...... attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. METHODS: Mother...

  16. Zinc oxide nanoparticles mediated cytotoxicity, mitochondrial membrane potential and level of antioxidants in presence of melatonin.

    Science.gov (United States)

    Sruthi, S; Millot, N; Mohanan, P V

    2017-10-01

    Zinc oxide nanoparticles (ZnO NPs) are widely used in a variety of products and are currently being investigated for biomedical applications. However, they have the potential to interact with macromolecules like proteins, lipids and DNA within the cells which makes the safe biomedical application difficult. The toxicity of the ZnO NP is mainly attributed reactive oxygen species (ROS) generation. Different strategies like iron doping, polymer coating and external supply of antioxidants have been evaluated to minimize the toxic potential of ZnO NPs. Melatonin is a hormone secreted by the pineal gland with great antioxidant properties. The melatonin is known to protect cells from ROS inducing external agents like lipopolysaccharides. In the present study, the protective effect of melatonin on ZnO NPs mediated toxicity was evaluated using C6 glial cells. The Cytotoxicity, mitochondrial membrane potential and free radical formation were measured to study the effect of melatonin. Antioxidant assays were done on mice brain slices, incubated with melatonin and ZnO NPs. The results of the study reveal that, instead of imparting a protective effect, the melatonin pre-treatment enhanced the toxicity of ZnO NPs. Melatonin increased antioxidant enzymes in brain slices. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The reduction in circulating levels of melatonin may be associated with the development of preeclampsia.

    Science.gov (United States)

    Zeng, K; Gao, Y; Wan, J; Tong, M; Lee, A C; Zhao, M; Chen, Q

    2016-11-01

    Placental dysfunction and oxidative stress contribute to the pathogenesis of preeclampsia, which is a pregnancy-specific disorder. It has been suggested that the incidence of preeclampsia has a seasonal variation. Melatonin, as a seasonal factor, has been suggested to be involved in a successful pregnancy. In this study, we investigated the association of circulating levels of melatonin with preeclampsia. Serum was collected from women with preeclampsia (n=113) and gestation-matched healthy pregnant women, and the levels of melatonin were measured. In addition, the expression of melatonin receptors was examined in preeclamptic placentae (n=27). The association of the incidence of preeclampsia and seasonal variation was also analysed from 1491 women with preeclampsia within 77 745 healthy pregnancies. The serum levels of melatonin were significantly reduced in women with preeclampsia at presentation and these reduced serum levels of melatonin were not associated with the severity or time onset of preeclampsia nor with seasonal variation. The expression of melatonin receptor, MT1 was reduced in preeclamptic placentae. The incidence of preeclampsia was did exhibit seasonal variation, but this was largely due to the increase in the incidence of mild or late-onset preeclampsia. Our results demonstrate that reduced melatonin levels are associated with the development of preeclampsia but that the circulating levels of melatonin do not appear to be subject to seasonal variation during pregnancy.

  18. Melatonin Promotes the In Vitro Development of Microinjected Pronuclear Mouse Embryos via Its Anti-Oxidative and Anti-Apoptotic Effects.

    Science.gov (United States)

    Tian, Xiuzhi; Wang, Feng; Zhang, Lu; Ji, Pengyun; Wang, Jing; Lv, Dongying; Li, Guangdong; Chai, Menglong; Lian, Zhengxing; Liu, Guoshi

    2017-05-05

    CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats) combined with pronuclear microinjection has become the most effective method for producing transgenic animals. However, the relatively low embryo developmental rate limits its application. In the current study, it was observed that 10 -7 M melatonin is considered an optimum concentration and significantly promoted the in vitro development of murine microinjected pronuclear embryos, as indicated by the increased blastocyst rate, hatching blastocyst rate and blastocyst cell number. When these blastocysts were implanted into recipient mice, the pregnancy rate and birth rate were significantly higher than those of the microinjected control, respectively. Mechanistic studies revealed that melatonin treatment reduced reactive oxygen species (ROS) production and cellular apoptosis during in vitro embryo development and improved the quality of the blastocysts. The implantation of quality-improved blastocysts led to elevated pregnancy and birth rates. In conclusion, the results revealed that the anti-oxidative and anti-apoptotic activities of melatonin improved the quality of microinjected pronuclear embryos and subsequently increased both the efficiency of embryo implantation and the birth rate of the pups. Therefore, the melatonin supplementation may provide a novel alternative method for generating large numbers of transgenic mice and this method can probably be used in human-assisted reproduction and genome editing.

  19. Comparative study of natural antioxidants - curcumin, resveratrol and melatonin - in cadmium-induced oxidative damage in mice

    International Nuclear Information System (INIS)

    Eybl, Vladislav; Kotyzova, Dana; Koutensky, Jaroslav

    2006-01-01

    The present study was designed to examine the antioxidative effect of curcumin, resveratrol and melatonin pre-treatment on cadmium-induced oxidative damage and cadmium distribution in an experimental model in mice. Male CD mice were treated once daily for 3 days with curcumin (50 mg/kg b.w., p.o.), resveratrol (20 mg/kg b.w., p.o.) or melatonin (12 mg/kg, p.o.), dispersed in 0.5% methylcellulose. One hour after the last dose of antioxidants cadmium chloride was administered (7 mg/kg b.w., s.c.) to pre-treated animals and control animals receiving methylcellulose. At 24th h after Cd administration the lipid peroxidation (LP - expressed as malondialdehyde production), reduced glutathione (GSH), catalase (CAT) and glutathione peroxidase (GPx) were estimated in liver homogenates. Cadmium concentration was measured in the liver, kidneys, testes and brain by AAS. Cadmium chloride administration to mice induced hepatic lipid peroxidation (to 133%, p < 0.001), decreased GSH content (to 65%, p < 0.001) and inhibited catalase (to 68%, p < 0.001) and GPx activity (to 60%, p < 0.001) in the liver. Curcumin, resveratrol and melatonin oral pre-treatment completely prevented the Cd-induced lipid peroxidation and Cd-induced inhibition of GPx hepatic activity. Resveratrol was effective against Cd-induced inhibition of catalase activity (p < 0.001). The decrease in hepatic GSH level was not prevented by curcumin, resveratrol or melatonin pre-treatment. In mice treated with antioxidants alone the level of LP, GSH, GPx or CAT was not different from control levels. The pre-treatment with antioxidants did not affect cadmium distribution in the tissues of Cd-intoxicated mice. The results demonstrate that curcumin, resveratrol and melatonin pre-treatment effectively protect against cadmium-induced lipid peroxidation and ameliorate the adverse effect of cadmium on antioxidant status without any reduction in tissue Cd burden

  20. Circadian system functionality, hippocampal oxidative stress, and spatial memory in the APPswe/PS1dE9 transgenic model of Alzheimer disease: effects of melatonin or ramelteon.

    Science.gov (United States)

    Baño Otalora, Beatriz; Popovic, Natalija; Gambini, Juan; Popovic, Miroljub; Viña, José; Bonet-Costa, Vicent; Reiter, Russel J; Camello, Pedro Javier; Rol, Maria Ángeles; Madrid, Juan Antonio

    2012-08-01

    Alzheimer disease (AD) is a neurodegenerative disorder that primarily causes β-amyloid accumulation in the brain, resulting in cognitive and behavioral deficits. AD patients, however, also suffer from severe circadian rhythm disruptions, and the underlying causes are still not fully known. Patients with AD show reduced systemic melatonin levels. This may contribute to their symptoms, since melatonin is an effective chronobiotic and antioxidant with neuroprotective properties. Here, the authors critically assessed the effects of long-term melatonin treatment on circadian system function, hippocampal oxidative stress, and spatial memory performance in the APPswe/PS1 double transgenic (Tg) mouse model of AD. To test if melatonin MT1/MT2 receptor activation, alone, was involved, the authors chronically treated some mice with the selective MT1/MT2 receptor agonist ramelteon. The results indicate that many of the circadian and behavioral parameters measured, including oxidative stress markers, were not significantly affected in these AD mice. During the day, though, Tg controls (Tg-CON) showed significantly higher mean activity and body temperature (BT) than wild-type (WT) mice. Overall, BT rhythm amplitude was significantly lower in Tg than in WT mice. Although melatonin treatment had no effect, ramelteon significantly reduced the amplitude of the BT rhythm in Tg mice. Towards the end of the experiment, Tg mice treated with ramelteon (Tg-RAM) showed significantly higher circadian rhythm fragmentation than Tg-CON and reduced circadian BT rhythm strength. The free-running period (τ) for the BT and locomotor activity (LA) rhythms of Tg-CON was RAM compared with Tg-CON animals. These results suggest that not all aspects of the circadian system are affected in the APPswe/PS1 mice. Therefore, care should be taken when extending the results obtained in Tg mice to develop new therapies in humans. This study also revealed the complexity in the therapeutic actions of melatonin

  1. Melatonin reverses the enhanced oxidative damage to membrane lipids and improves skin biophysical characteristics in former-smokers - A study in postmenopausal women.

    Science.gov (United States)

    Sagan, Dorota; Stepniak, Jan; Gesing, Adam; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata

    2017-12-23

    Protective antioxidative effects of melatonin have been repeatedly documented in experimental and clinical studies. One of the most spectacular exogenous prooxidative agents is cigarette smoking. The aim of the study was to evaluate the level of oxidative damage to membrane lipids (lipid peroxidation; LPO) in blood serum, and in epidermis exfoliated during microdermabrasion collected from former-smokers who were treated with melatonin. The study was performed in postmenopausal women. Ninety (90) female volunteers, aged 46-67 years, were enrolled. Two major groups, i.e. never-smokers (n=44) and former-smokers (n=46), were divided into: Control, melatonin topical skin application, Restructurer (containing antioxidants) topical skin application, and melatonin oral treatment. Microdermabrasion was performed at point '0', after 2 weeks, and after 4 weeks of treatment. The following parameters were measured: LPO in blood serum, LPO in epidermis exfoliated during microdermabrasion, and skin biophysical characteristics, such as sebum, moisture, elasticity, and pigmentation. Malondialdehyde+4-hydroxyalkenals level (LPO index) was measured spectrophotometrically. Melatonin oral treatment significantly reversed the increased serum LPO level in former-smokers already after 2 weeks of treatment. In a univariate regression model, LPO blood level constituted the only independent factor negatively associated with melatonin oral treatment. After 4 weeks of treatment, melatonin given orally increased skin sebum, moisture and elasticity levels, and melatonin applied topically increased sebum level. Exogenous melatonin reverses the enhanced oxidative damage to membrane lipids and improves skin biophysical characteristics in former-smokers.

  2. Roles of Melatonin in Fetal Programming in Compromised Pregnancies

    Directory of Open Access Journals (Sweden)

    Yu-Chieh Chen

    2013-03-01

    Full Text Available Compromised pregnancies such as those associated with gestational diabetes mellitus, intrauterine growth retardation, preeclampsia, maternal undernutrition, and maternal stress may negatively affect fetal development. Such pregnancies may induce oxidative stress to the fetus and alter fetal development through the epigenetic process that may affect development at a later stage. Melatonin is an oxidant scavenger that reverses oxidative stress during the prenatal period. Moreover, the role of melatonin in epigenetic modifications in the field of developmental programming has been studied extensively. Here, we describe the physiological function of melatonin in pregnancy and discuss the roles of melatonin in fetal programming in compromised pregnancies, focusing on its involvement in redox and epigenetic mechanisms.

  3. Roles of Melatonin in Fetal Programming in Compromised Pregnancies

    Science.gov (United States)

    Chen, Yu-Chieh; Sheen, Jiunn-Ming; Tiao, Miao-Meng; Tain, You-Lin; Huang, Li-Tung

    2013-01-01

    Compromised pregnancies such as those associated with gestational diabetes mellitus, intrauterine growth retardation, preeclampsia, maternal undernutrition, and maternal stress may negatively affect fetal development. Such pregnancies may induce oxidative stress to the fetus and alter fetal development through the epigenetic process that may affect development at a later stage. Melatonin is an oxidant scavenger that reverses oxidative stress during the prenatal period. Moreover, the role of melatonin in epigenetic modifications in the field of developmental programming has been studied extensively. Here, we describe the physiological function of melatonin in pregnancy and discuss the roles of melatonin in fetal programming in compromised pregnancies, focusing on its involvement in redox and epigenetic mechanisms. PMID:23466884

  4. Mitochondrial bioenergetics decay in aging: beneficial effect of melatonin.

    Science.gov (United States)

    Paradies, Giuseppe; Paradies, Valeria; Ruggiero, Francesca M; Petrosillo, Giuseppe

    2017-11-01

    Aging is a biological process characterized by progressive decline in physiological functions, increased oxidative stress, reduced capacity to respond to stresses, and increased risk of contracting age-associated disorders. Mitochondria are referred to as the powerhouse of the cell through their role in the oxidative phosphorylation to generate ATP. These organelles contribute to the aging process, mainly through impairment of electron transport chain activity, opening of the mitochondrial permeability transition pore and increased oxidative stress. These events lead to damage to proteins, lipids and mitochondrial DNA. Cardiolipin, a phospholipid of the inner mitochondrial membrane, plays a pivotal role in several mitochondrial bioenergetic processes as well as in mitochondrial-dependent steps of apoptosis and in mitochondrial membrane stability and dynamics. Cardiolipin alterations are associated with mitochondrial bienergetics decline in multiple tissues in a variety of physiopathological conditions, as well as in the aging process. Melatonin, the major product of the pineal gland, is considered an effective protector of mitochondrial bioenergetic function. Melatonin preserves mitochondrial function by preventing cardiolipin oxidation and this may explain, at least in part, the protective role of this compound in mitochondrial physiopathology and aging. Here, mechanisms through which melatonin exerts its protective role against mitochondrial dysfunction associated with aging and age-associated disorders are discussed.

  5. Comparative physiological and proteomic analyses reveal the actions of melatonin in the reduction of oxidative stress in Bermuda grass (Cynodon dactylon (L). Pers.).

    Science.gov (United States)

    Shi, Haitao; Wang, Xin; Tan, Dun-Xian; Reiter, Russel J; Chan, Zhulong

    2015-08-01

    The fact of melatonin as an important antioxidant in animals led plant researchers to speculate that melatonin also acts in the similar manner in plants. Although melatonin has significant effects on alleviating stress-triggered reactive oxygen species (ROS), the involvement of melatonin in direct oxidative stress and the underlying physiological and molecular mechanisms remain unclear in plants. In this study, we found that exogenous melatonin significantly alleviated hydrogen peroxide (H2O2)-modulated plant growth, cell damage, and ROS accumulation in Bermuda grass. Additionally, 76 proteins significantly influenced by melatonin during mock or H2O2 treatment were identified by gel-free proteomics using iTRAQ (isobaric tags for relative and absolute quantitation). Metabolic pathway analysis showed that several pathways were markedly enhanced by melatonin and H2O2 treatments, including polyamine metabolism, ribosome pathway, major carbohydrate metabolism, photosynthesis, redox, and amino acid metabolism. Taken together, this study provides more comprehensive insights into the physiological and molecular mechanisms of melatonin in Bermuda grass responses to direct oxidative stress. This may relate to the activation of antioxidants, modulation of metabolic pathways, and extensive proteome reprograming. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Melatonin in Apples and Juice: Inhibition of Browning and Microorganism Growth in Apple Juice.

    Science.gov (United States)

    Zhang, Haixia; Liu, Xuan; Chen, Ting; Ji, Yazhen; Shi, Kun; Wang, Lin; Zheng, Xiaodong; Kong, Jin

    2018-02-27

    Synthetic melatonin ( N -acetyl-5-methoxytryptamine, MT) is popular in the US and Asian markets as a health supplement. Here, we identified a naturally occurring melatonin source in apple juice. Melatonin was present in all 18 apple cultivars tested. The highest melatonin level of the edible part of apple was detected in the apple peel. The melatonin content in 'Fuji' apple juice is comparable to the level of its flesh. Melatonin was consumed during the process of juicing due to its interaction with the oxidants. Melatonin addition significantly reduced the juice color change to brown (browning). The mechanism is that melatonin scavenges the free radicals, which was indicated by the ASBT analysis; therefore, inhibiting the conversion of o -diphenolic compounds into quinones. Most importantly, melatonin exhibited powerful anti-microorganism activity in juice. The exact mechanisms of this action are currently unknown. These effects of melatonin can preserve the quality and prolong the shelf life of apple juice. The results provide valuable information regarding commerciall apple juice processing and storage.

  7. Melatonin in Apples and Juice: Inhibition of Browning and Microorganism Growth in Apple Juice

    Directory of Open Access Journals (Sweden)

    Haixia Zhang

    2018-02-01

    Full Text Available Synthetic melatonin (N-acetyl-5-methoxytryptamine, MT is popular in the US and Asian markets as a health supplement. Here, we identified a naturally occurring melatonin source in apple juice. Melatonin was present in all 18 apple cultivars tested. The highest melatonin level of the edible part of apple was detected in the apple peel. The melatonin content in ‘Fuji’ apple juice is comparable to the level of its flesh. Melatonin was consumed during the process of juicing due to its interaction with the oxidants. Melatonin addition significantly reduced the juice color change to brown (browning. The mechanism is that melatonin scavenges the free radicals, which was indicated by the ASBT analysis; therefore, inhibiting the conversion of o-diphenolic compounds into quinones. Most importantly, melatonin exhibited powerful anti-microorganism activity in juice. The exact mechanisms of this action are currently unknown. These effects of melatonin can preserve the quality and prolong the shelf life of apple juice. The results provide valuable information regarding commerciall apple juice processing and storage.

  8. Melatonin and female reproduction.

    Science.gov (United States)

    Tamura, Hiroshi; Takasaki, Akihisa; Taketani, Toshiaki; Tanabe, Manabu; Lee, Lifa; Tamura, Isao; Maekawa, Ryo; Aasada, Hiromi; Yamagata, Yoshiaki; Sugino, Norihiro

    2014-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) is secreted during the dark hours at night by the pineal gland. After entering the circulation, melatonin acts as an endocrine factor and a chemical messenger of light and darkness. It regulates a variety of important central and peripheral actions related to circadian rhythms and reproduction. It also affects the brain, immune, gastrointestinal, cardiovascular, renal, bone and endocrine functions and acts as an oncostatic and anti-aging molecule. Many of melatonin's actions are mediated through interactions with specific membrane-bound receptors expressed not only in the central nervous system, but also in peripheral tissues. Melatonin also acts through non-receptor-mediated mechanisms, for example serving as a scavenger for reactive oxygen species and reactive nitrogen species. At both physiological and pharmacological concentrations, melatonin attenuates and counteracts oxidative stress and regulates cellular metabolism. Growing scientific evidence of reproductive physiology supports the role of melatonin in human reproduction. This review was conducted to investigate the effects of melatonin on female reproduction and to summarize our findings in this field. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.

  9. Melatonin Decreases Pulmonary Vascular Remodeling and Oxygen Sensitivity in Pulmonary Hypertensive Newborn Lambs

    Directory of Open Access Journals (Sweden)

    Cristian R. Astorga

    2018-03-01

    Full Text Available Background: Chronic hypoxia and oxidative stress during gestation lead to pulmonary hypertension of the neonate (PHN, a condition characterized by abnormal pulmonary arterial reactivity and remodeling. Melatonin has strong antioxidant properties and improves pulmonary vascular function. Here, we aimed to study the effects of melatonin on the function and structure of pulmonary arteries from PHN lambs.Methods: Twelve lambs (Ovis aries gestated and born at highlands (3,600 m were instrumented with systemic and pulmonary catheters. Six of them were assigned to the control group (CN, oral vehicle and 6 were treated with melatonin (MN, 1 mg.kg−1.d−1 during 10 days. At the end of treatment, we performed a graded oxygenation protocol to assess cardiopulmonary responses to inspired oxygen variations. Further, we obtained lung and pulmonary trunk samples for histology, molecular biology, and immunohistochemistry determinations.Results: Melatonin reduced the in vivo pulmonary pressor response to oxygenation changes. In addition, melatonin decreased cellular density of the media and diminished the proliferation marker KI67 in resistance vessels and pulmonary trunk (p < 0.05. This was associated with a decreased in the remodeling markers α-actin (CN 1.28 ± 0.18 vs. MN 0.77 ± 0.04, p < 0.05 and smoothelin-B (CN 2.13 ± 0.31 vs. MN 0.88 ± 0.27, p < 0.05. Further, melatonin increased vascular density by 134% and vascular luminal surface by 173% (p < 0.05. Finally, melatonin decreased nitrotyrosine, an oxidative stress marker, in small pulmonary vessels (CN 5.12 ± 0.84 vs. MN 1.14 ± 0.34, p < 0.05.Conclusion: Postnatal administration of melatonin blunts the cardiopulmonary response to hypoxia, reduces the pathological vascular remodeling, and increases angiogenesis in pulmonary hypertensive neonatal lambs.These effects improve the pulmonary vascular structure and function in the neonatal period under chronic hypoxia.

  10. Melatonin Decreases Pulmonary Vascular Remodeling and Oxygen Sensitivity in Pulmonary Hypertensive Newborn Lambs

    Science.gov (United States)

    Astorga, Cristian R.; González-Candia, Alejandro; Candia, Alejandro A.; Figueroa, Esteban G.; Cañas, Daniel; Ebensperger, Germán; Reyes, Roberto V.; Llanos, Aníbal J.; Herrera, Emilio A.

    2018-01-01

    Background: Chronic hypoxia and oxidative stress during gestation lead to pulmonary hypertension of the neonate (PHN), a condition characterized by abnormal pulmonary arterial reactivity and remodeling. Melatonin has strong antioxidant properties and improves pulmonary vascular function. Here, we aimed to study the effects of melatonin on the function and structure of pulmonary arteries from PHN lambs. Methods: Twelve lambs (Ovis aries) gestated and born at highlands (3,600 m) were instrumented with systemic and pulmonary catheters. Six of them were assigned to the control group (CN, oral vehicle) and 6 were treated with melatonin (MN, 1 mg.kg−1.d−1) during 10 days. At the end of treatment, we performed a graded oxygenation protocol to assess cardiopulmonary responses to inspired oxygen variations. Further, we obtained lung and pulmonary trunk samples for histology, molecular biology, and immunohistochemistry determinations. Results: Melatonin reduced the in vivo pulmonary pressor response to oxygenation changes. In addition, melatonin decreased cellular density of the media and diminished the proliferation marker KI67 in resistance vessels and pulmonary trunk (p < 0.05). This was associated with a decreased in the remodeling markers α-actin (CN 1.28 ± 0.18 vs. MN 0.77 ± 0.04, p < 0.05) and smoothelin-B (CN 2.13 ± 0.31 vs. MN 0.88 ± 0.27, p < 0.05). Further, melatonin increased vascular density by 134% and vascular luminal surface by 173% (p < 0.05). Finally, melatonin decreased nitrotyrosine, an oxidative stress marker, in small pulmonary vessels (CN 5.12 ± 0.84 vs. MN 1.14 ± 0.34, p < 0.05). Conclusion: Postnatal administration of melatonin blunts the cardiopulmonary response to hypoxia, reduces the pathological vascular remodeling, and increases angiogenesis in pulmonary hypertensive neonatal lambs.These effects improve the pulmonary vascular structure and function in the neonatal period under chronic hypoxia. PMID:29559926

  11. Exogenous melatonin entrains rhythm and reduces amplitude of endogenous melatonin : An in vivo microdialysis study

    NARCIS (Netherlands)

    Drijfhout, W.J; Homan, E.J; Brons, H.F; Oakley, M; Skingle, M; Grol, Cor; Westerink, B.H.C.

    The circadian rhythm of melatonin production was studied using on-line, in vivo microdialysis in the rat pineal gland. With this technique it was possible to record a pronounced melatonin rhythm with very high time resolution. Three phase-markers of the rhythm were calculated from the data,

  12. Chronic melatonin treatment rescues electrophysiological and neuromorphological deficits in a mouse model of Down syndrome.

    Science.gov (United States)

    Corrales, Andrea; Vidal, Rebeca; García, Susana; Vidal, Verónica; Martínez, Paula; García, Eva; Flórez, Jesús; Sanchez-Barceló, Emilio J; Martínez-Cué, Carmen; Rueda, Noemí

    2014-01-01

    The Ts65Dn mouse (TS), the most commonly used model of Down syndrome (DS), exhibits several key phenotypic characteristics of this condition. In particular, these animals present hypocellularity in different areas of their CNS due to impaired neurogenesis and have alterations in synaptic plasticity that compromise their cognitive performance. In addition, increases in oxidative stress during adulthood contribute to the age-related progression of cognitive and neuronal deterioration. We have previously demonstrated that chronic melatonin treatment improves learning and memory and reduces cholinergic neurodegeneration in TS mice. However, the molecular and physiological mechanisms that mediate these beneficial cognitive effects are not yet fully understood. In this study, we analyzed the effects of chronic melatonin treatment on different mechanisms that have been proposed to underlie the cognitive impairments observed in TS mice: reduced neurogenesis, altered synaptic plasticity, enhanced synaptic inhibition and oxidative damage. Chronic melatonin treatment rescued both impaired adult neurogenesis and the decreased density of hippocampal granule cells in trisomic mice. In addition, melatonin administration reduced synaptic inhibition in TS mice by increasing the density and/or activity of glutamatergic synapses in the hippocampus. These effects were accompanied by a full recovery of hippocampal LTP in trisomic animals. Finally, melatonin treatment decreased the levels of lipid peroxidation in the hippocampus of TS mice. These results indicate that the cognitive-enhancing effects of melatonin in adult TS mice could be mediated by the normalization of their electrophysiological and neuromorphological abnormalities and suggest that melatonin represents an effective treatment in retarding the progression of DS neuropathology. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress.

    Science.gov (United States)

    Dehdashtian, Ehsan; Mehrzadi, Saeed; Yousefi, Bahman; Hosseinzadeh, Azam; Reiter, Russel J; Safa, Majid; Ghaznavi, Habib; Naseripour, Masood

    2018-01-15

    Diabetic retinopathy (DR), a microvascular complication of diabetes mellitus (DM), remains as one of the major causes of vision loss worldwide. The release of pro-inflammatory cytokines and the adhesion of leukocytes to retinal capillaries are initial events in DR development. Inflammation, ER stress, oxidative stress and autophagy are major causative factors involved in the pathogenesis of DR. Diabetes associated hyperglycemia leads to mitochondrial electron transport chain dysfunction culminating in a rise in ROS generation. Since mitochondria are the major source of ROS production, oxidative stress induced by mitochondrial dysfunction also contributes to the development of diabetic retinopathy. Autophagy increases in the retina of diabetic patients and is regulated by ER stress, oxidative stress and inflammation-related pathways. Autophagy functions as a double-edged sword in DR. Under mild stress, autophagic activity can lead to cell survival while during severe stress, dysregulated autophagy results in massive cell death and may have a role in initiation and exacerbation of DR. Melatonin and its metabolites play protective roles against inflammation, ER stress and oxidative stress due to their direct free radical scavenger activities and indirect antioxidant activity via the stimulation antioxidant enzymes including glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase. Melatonin also acts as a cell survival agent by modulating autophagy in various cell types and under different conditions through amelioration of oxidative stress, ER stress and inflammation. Herein, we review the possible effects of melatonin on diabetic retinopathy, focusing on its ability to regulate autophagy processes. Copyright © 2017. Published by Elsevier Inc.

  14. The antidepressant effect of melatonin and fluoxetine in diabetic rats is associated with a reduction of the oxidative stress in the prefrontal and hippocampal cortices.

    Science.gov (United States)

    Rebai, Redouane; Jasmin, Luc; Boudah, Abdennacer

    2017-09-01

    In the past few years possible mechanisms that link diabetes and depression have been found. One of these mechanisms is the increase in lipid peroxidation and decrease in antioxidant activity in the hippocampal and prefrontal cortices, which are brain areas involved in mood. The goal of the present study was to evaluate the effect of an antidepressant and of an antioxidant on behavior and oxidative activity in brains of diabetic rats. Rats rendered diabetic after a treatment with streptozotocin (STZ) (60mg/kg) were treated with fluoxetine (15mg/kg), melatonin (10mg/kg), or vehicle for 4 weeks. All animals were tested for signs of depression and anxiety using the elevated plus maze (EPM), open field test (OFT) and the forced swim test (FST). Four groups were compared: (1) normoglycemic, (2) hyperglycemic vehicle treated, and hyperglycemic (3) fluoxetine or (4) melatonin treated rats. On the last day of the study, blood samples were obtained to determine the levels of hemoglobin A1c (HbA1c). Also, brain samples were collected to measure the oxidative stress in the hippocampal and prefrontal cortices using the thiobarbituric acid reactive substances (TBARS) assay. The activity of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx), and glutathione S-transferase (GST) were also measured on the brain samples. The results show that both fluoxetine and melatonin decrease the signs of depression and anxiety in all tests. Concomitantly, the levels of HbA1c were reduced in drug treated rats, and to a greater degree in the fluoxetine group. In the cerebral cortex of diabetic rats, TBARS was increased, while the activity of CAT, GPx and GST were decreased. Fluoxetine and melatonin treatments decreased TBARS in both cortices. In the prefrontal cortex, fluoxetine and melatonin restored the activity of CAT, while only melatonin improved the activity of GPx and GST. In the hippocampus, the activity of GPx alone was restored by melatonin, while fluoxetine had no

  15. Effect of the combination of metformin hydrochloride and melatonin on oxidative stress before and during pregnancy, and biochemical and histopathological analysis of the livers of rats after treatment for polycystic ovary syndrome

    International Nuclear Information System (INIS)

    Lemos, Ana Janaina Jeanine M.; Peixoto, Christina A.; Teixeira, Álvaro Aguiar C.; Luna, Rayana Leal A.; Rocha, Sura Wanessa S.; Santos, Hilda Michelly P.; Silva, Amanda Karolina S.; Nunes, Ana Karolina S.; Wanderley-Teixeira, Valéria

    2014-01-01

    The aim of the present study was to analyze the effect of a combination of metformin hydrochloride and melatonin on oxidative stress together with a biochemical and histopathological analysis of the livers of Wistar rats induced with PCOS. The results indicated that a combination of the drugs was more effective in the reduction of plasmatic levels of liver enzyme alanine aminotransferase, nitric oxide and total glutathione, and decreased the inflammatory response and histopathological damage, producing results that were significantly similar to animals from the control group. A mixture of the drugs produced more effective results against liver toxicity caused by PCOS, encouraging the normalization of biochemical parameters. During pregnancy, there was reduced oxidative stress compared to monotherapeutic use of these drugs. Interestingly, the combination of the drugs caused a physiological reaction similar to responses identified in healthy rats without induction of the PCOS control group. However, the clinical and physiological effectiveness of the combination should be further explored, especially with respect to the possible side effects on offspring. - Highlights: • Studies have documented increased oxidative stress in patients with PCOS. • It has been noted that women with PCOS have a high prevalence of liver alterations. • Liver disease in pregnancy may be pre-existing increasing the newborn mortality. • Metformin/melatonin associated reduced oxidative stress in liver in pregnant rats. • Association of metformin/melatonin normalizes hepatic biochemical parameters

  16. Effect of the combination of metformin hydrochloride and melatonin on oxidative stress before and during pregnancy, and biochemical and histopathological analysis of the livers of rats after treatment for polycystic ovary syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Ana Janaina Jeanine M. [Department of Animal Morphology and Physiology, Universidade Federal Rural de Pernambuco, Recife (Brazil); Unit of Medical and Health Sciences, Universidade Federal de Campina Grande (Brazil); Peixoto, Christina A. [Centro de Pesquisa Aggeu Magalhães-Fiocruz Recife (Brazil); Teixeira, Álvaro Aguiar C. [Department of Animal Morphology and Physiology, Universidade Federal Rural de Pernambuco, Recife (Brazil); Luna, Rayana Leal A.; Rocha, Sura Wanessa S. [Centro de Pesquisa Aggeu Magalhães-Fiocruz Recife (Brazil); Santos, Hilda Michelly P. [Department of Animal Morphology and Physiology, Universidade Federal Rural de Pernambuco, Recife (Brazil); Silva, Amanda Karolina S.; Nunes, Ana Karolina S. [Centro de Pesquisa Aggeu Magalhães-Fiocruz Recife (Brazil); Wanderley-Teixeira, Valéria, E-mail: valeria@dmfa.ufrpe.br [Department of Animal Morphology and Physiology, Universidade Federal Rural de Pernambuco, Recife (Brazil)

    2014-10-01

    The aim of the present study was to analyze the effect of a combination of metformin hydrochloride and melatonin on oxidative stress together with a biochemical and histopathological analysis of the livers of Wistar rats induced with PCOS. The results indicated that a combination of the drugs was more effective in the reduction of plasmatic levels of liver enzyme alanine aminotransferase, nitric oxide and total glutathione, and decreased the inflammatory response and histopathological damage, producing results that were significantly similar to animals from the control group. A mixture of the drugs produced more effective results against liver toxicity caused by PCOS, encouraging the normalization of biochemical parameters. During pregnancy, there was reduced oxidative stress compared to monotherapeutic use of these drugs. Interestingly, the combination of the drugs caused a physiological reaction similar to responses identified in healthy rats without induction of the PCOS control group. However, the clinical and physiological effectiveness of the combination should be further explored, especially with respect to the possible side effects on offspring. - Highlights: • Studies have documented increased oxidative stress in patients with PCOS. • It has been noted that women with PCOS have a high prevalence of liver alterations. • Liver disease in pregnancy may be pre-existing increasing the newborn mortality. • Metformin/melatonin associated reduced oxidative stress in liver in pregnant rats. • Association of metformin/melatonin normalizes hepatic biochemical parameters.

  17. Melatonin reduces the expression of chemokines in rat with trinitrobenzene sulfonic acid-induced colitis

    International Nuclear Information System (INIS)

    Li, Jun H.; Zhou, W.; Liu, K.; Li, Hong X.; Wang, L.

    2008-01-01

    Objective was to investigate the effect of melatonin on the colon inflammatory injury of rats with colitis and determine whether this effect is associated with inhibition of chemoattractant molecules interleukins (IL-8) and monocyte chemoattractant protein (MCP)-1.The study was designed and implemented in JingMen No.1 People's Hospital, HuBei Province, from May 2006 to April 2007. It involved 72 animals divided into 6 groups of 12 each: normal group, model group, 5-aminosalisalicylic acid group, and melatonin group (dose of 2.5, 5.0 and 10.0mg/kg). Rat colitis model was established by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) enema. Interleukin-8 and MCP-1 proteins in colon tissue were examined by immunohistochemistry and western blot. The messenger-RNA expressions of chemokines were determined by reverse transcription polymerase chain reaction analysis. Trinitrobenzene sulfonic acid enema resulted in pronounced pathological changes of colonic mucosa in model rats, which were in accordance with the significantly elevated Myeloperoxidase activity. Expressions of chemokines were up-regulated in colitis. Melatonin treatment reduced colonic lesions and improved colitis symptom, and decreased the protein and mRNA expressions of IL-8 and MCP-1 significantly in colon tissues of rats with colitis. Chemokines IL-8 and MCP-1 are elevated in mucosal tissues in colitis and play an important role in the perpetuation of tissue destructive inflammatory process; melatonin reduces colonic inflammatory injury of rats colitis through down-regulating the expressions of chemokines. Melatonin can be considered as a novel therapeutic alternative for the treatment of inflammatory bowel disease. (author)

  18. Melatonin successfully rescues hippocampal bioenergetics and improves cognitive function following drug intoxication by promoting Nrf2-ARE signaling activity.

    Science.gov (United States)

    Chen, Li-You; Renn, Ting-Yi; Liao, Wen-Chieh; Mai, Fu-Der; Ho, Ying-Jui; Hsiao, George; Lee, Ai-Wei; Chang, Hung-Ming

    2017-09-01

    Prolonged exposure to gamma-hydroxybutyric acid (GHB) would cause drug intoxication in which impaired cognitive function results from enhanced hippocampal oxidative stress may serve as a major symptom in this deficiency. Considering melatonin possesses significant anti-oxidative efficacy, this study aimed to determine whether melatonin would successfully promote the nuclear factor erythroid 2-related factor 2 and antioxidant responsive element (Nrf2-ARE) signaling, depress oxidative stress, and rescue hippocampal bioenergetics and cognitive function following drug intoxication injury. Adolescent rats subjected to 10 days of GHB were received melatonin at doses of either 10 or 100 mg/kg. Time-of-flight secondary ion mass spectrometry, biochemical assay, quantitative histochemistry, [ 14 C]-2-deoxyglucose analysis, together with Morris water maze were employed to detect the molecular signaling, oxidative status, bioenergetic level, as well as the cognitive performances, respectively. Results indicated that in GHB-intoxicated rats, enhanced oxidative stress, increased cholesterol level, and decreased anti-oxidative enzymes activities were detected in hippocampal regions. Intense oxidative stress paralleled well with reduced bioenergetics and poor performance in behavioral testing. However, in rats treated with melatonin following GHB intoxication, all above parameters and cognitive function were gradually returned to nearly normal levels. Melatonin also remarkably promoted the translocation of Nrf2 from cytoplasm to nucleus in a dose-dependent manner, thereby increased the Nrf2-ARE signaling-related downstream anti-oxidative enzymes activities. As melatonin effectively rescues hippocampal bioenergetics through depressing the oxidative stress by promoting Nrf2-ARE molecular machinery, this study thus highlights for the first time that clinical use of melatonin may serve as a therapeutic strategy to improve the cognitive function in unsuspecting victims suffered from

  19. Melatonin-mediated cytoprotection against hyperglycemic injury in Müller cells.

    Directory of Open Access Journals (Sweden)

    Tingting Jiang

    Full Text Available Oxidative stress is a contributing factor to the development and progression of diabetic retinopathy, a leading cause of blindness in people at working age worldwide. Recent studies showed that Müller cells play key roles in diabetic retinopathy and produce vascular endothelial growth factor (VEGF that regulates retinal vascular leakage and proliferation. Melatonin is a potent antioxidant capable of protecting variety of retinal cells from oxidative damage. In addition to the pineal gland, the retina produces melatonin. In the current study, we investigated whether melatonin protects against hyperglycemia-induced oxidative injury to Müller cells and explored the potential underlying mechanisms. Our results show that both melatonin membrane receptors, MT1 and MT2, are expressed in cultured primary Müller cells and are upregulated by elevated glucose levels. Both basal and high glucose-induced VEGF production was attenuated by melatonin treatment in a dose-dependent manner. Furthermore, we found that melatonin is a potent activator of Akt in Müller cells. Our findings suggest that in addition to functioning as a direct free radical scavenger, melatonin can elicit cellular signaling pathways that are protective against retinal injury during diabetic retinopathy.

  20. Antenatal antioxidant treatment with melatonin to decrease newborn neurodevelopmental deficits and brain injury caused by fetal growth restriction.

    Science.gov (United States)

    Miller, Suzanne L; Yawno, Tamara; Alers, Nicole O; Castillo-Melendez, Margie; Supramaniam, Veena G; VanZyl, Niel; Sabaretnam, Tharani; Loose, Jan M; Drummond, Grant R; Walker, David W; Jenkin, Graham; Wallace, Euan M

    2014-04-01

    Fetal intrauterine growth restriction (IUGR) is a serious pregnancy complication associated with increased rates of perinatal morbidity and mortality, and ultimately with long-term neurodevelopmental impairments. No intervention currently exists that can improve the structure and function of the IUGR brain before birth. Here, we investigated whether maternal antenatal melatonin administration reduced brain injury in ovine IUGR. IUGR was induced in pregnant sheep at 0.7 gestation and a subset of ewes received melatonin via intravenous infusion until term. IUGR, IUGR + melatonin (IUGR + MLT) and control lambs were born naturally, neonatal behavioral assessment was used to examine neurological function and at 24 hr after birth the brain was collected for the examination of neuropathology. Compared to control lambs, IUGR lambs took significantly longer to achieve normal neonatal lamb behaviors, such as standing and suckling. IUGR brains showed widespread cellular and axonal lipid peroxidation, and white matter hypomyelination and axonal damage. Maternal melatonin administration ameliorated oxidative stress, normalized myelination and rescued axonopathy within IUGR lamb brains, and IUGR + MLT lambs demonstrated significant functional improvements including a reduced time taken to attach to and suckle at the udder after birth. Based on these observations, we began a pilot clinical trial of oral melatonin administration to women with an IUGR fetus. Maternal melatonin was not associated with adverse maternal or fetal effects and it significantly reduced oxidative stress, as evidenced by reduced malondialdehyde levels, in the IUGR + MLT placenta compared to IUGR alone. Melatonin should be considered for antenatal neuroprotective therapy in human IUGR. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. The effect of melatonin on eye lens of rats exposed to ultraviolet radiation.

    Science.gov (United States)

    Anwar, M M; Moustafa, M A

    2001-05-01

    We investigated the influence of exogenously administered melatonin on adult rats eye lenses exposed to ultraviolet radiation (UV) A and B ranging from 356-254 nm irradiation at 8 microW/cm(2). Rats exposed to this range of UV for 15 min for one week showed a significant (PUV-radiation significantly (PUV irradiation, may be the main cause of lens opacification. Melatonin injection with radiation significantly reduced (Pradiation, SOD and GSH-Px enzyme activities increased significantly (PUV radiation was as effective as melatonin treatment concurrent with UV irradiation. We conclude that melatonin may protect the eye lens from the damaging effects of UV exposure, and its actions protect lens from oxidative stress, elevating Ca(2+) levels, which are considered as an important causes of cataractogenesis.

  2. Melatonin and Its Agonist Ramelteon in Alzheimer's Disease: Possible Therapeutic Value

    Directory of Open Access Journals (Sweden)

    Venkatramanujam Srinivasan

    2011-01-01

    Full Text Available Alzheimer's disease (AD is an age-associated neurodegenerative disease characterized by the progressive loss of cognitive function, loss of memory and insomnia, and abnormal behavioral signs and symptoms. Among the various theories that have been put forth to explain the pathophysiology of AD, the oxidative stress induced by amyloid β-protein (Aβ deposition has received great attention. Studies undertaken on postmortem brain samples of AD patients have consistently shown extensive lipid, protein, and DNA oxidation. Presence of abnormal tau protein, mitochondrial dysfunction, and protein hyperphosphorylation all have been demonstrated in neural tissues of AD patients. Moreover, AD patients exhibit severe sleep/wake disturbances and insomnia and these are associated with more rapid cognitive decline and memory impairment. On this basis, the successful management of AD patients requires an ideal drug that besides antagonizing Aβ-induced neurotoxicity could also correct the disturbed sleep-wake rhythm and improve sleep quality. Melatonin is an effective chronobiotic agent and has significant neuroprotective properties preventing Aβ-induced neurotoxic effects in a number of animal experimental models. Since melatonin levels in AD patients are greatly reduced, melatonin replacement has the potential value to be used as a therapeutic agent for treating AD, particularly at the early phases of the disease and especially in those in whom the relevant melatonin receptors are intact. As sleep deprivation has been shown to produce oxidative damage, impaired mitochondrial function, neurodegenerative inflammation, and altered proteosomal processing with abnormal activation of enzymes, treatment of sleep disturbances may be a priority for arresting the progression of AD. In this context the newly introduced melatonin agonist ramelteon can be of much therapeutic value because of its highly selective action on melatonin MT1/MT2 receptors in promoting sleep.

  3. Melatonin-Mediated Intracellular Insulin during 2-Deoxy-d-glucose Treatment Is Reduced through Autophagy and EDC3 Protein in Insulinoma INS-1E Cells

    Directory of Open Access Journals (Sweden)

    Han Sung Kim

    2016-01-01

    Full Text Available 2-DG triggers glucose deprivation without altering other nutrients or metabolic pathways and then activates autophagy via activation of AMPK and endoplasmic reticulum (ER stress. We investigated whether 2-DG reduced intracellular insulin increased by melatonin via autophagy/EDC3 in insulinoma INS-1E cells. p-AMPK and GRP78/BiP level were significantly increased by 2-DG in the presence/absence of melatonin, but IRE1α level was reduced in 2-DG treatment. Levels of p85α, p110, p-Akt (Ser473, Thr308, and p-mTOR (Ser2481 were also significantly reduced by 2-DG in the presence/absence of melatonin. Mn-SOD increased with 2-DG plus melatonin compared to groups treated with/without melatonin alone. Bcl-2 was decreased and Bax increased with 2-DG plus melatonin. LC3II level increased with 2-DG treatment in the presence/absence of melatonin. Intracellular insulin production increased in melatonin plus 2-DG but reduced in treatment with 2-DG with/without melatonin. EDC3 was increased by 2-DG in the presence/absence of melatonin. Rapamycin, an mTOR inhibitor, increased GRP78/BiP and EDC3 levels in a dose-dependent manner and subsequently resulted in a decrease in intracellular production of insulin. These results suggest that melatonin-mediated insulin synthesis during 2-DG treatment involves autophagy and EDC3 protein in rat insulinoma INS-1E cells and subsequently results in a decrease in intracellular production of insulin.

  4. Exogenous Melatonin Confers Cadmium Tolerance by Counterbalancing the Hydrogen Peroxide Homeostasis in Wheat Seedlings

    Directory of Open Access Journals (Sweden)

    Jun Ni

    2018-03-01

    Full Text Available Melatonin has emerged as a research highlight regarding its important role in regulating plant growth and the adaptation to the environmental stresses. In this study, we investigated how melatonin prevented the cadmium toxicity to wheat seedlings. The results demonstrated that cadmium induced the expression of melatonin biosynthesis-related genes and cause a significant increase of endogenous melatonin level. Melatonin treatment drastically alleviated the cadmium toxicity, resulting in increased plant height, biomass accumulation, and root growth. Cadmium and senescence treatment significantly increased the endogenous level of hydrogen peroxide, which was strictly counterbalanced by melatonin. Furthermore, melatonin treatment caused a significant increase of GSH (reduced glutathione content and the GSH/GSSG (oxidized glutathione ratio. The activities of two key antioxidant enzymes, ascorbate peroxidase (APX and superoxide dismutase (SOD, but not catalase (CAT and peroxidase (POD, were specifically improved by melatonin. Additionally, melatonin not only promoted the primary root growth, but also drastically enhanced the capacity of the seedling roots to degrade the exogenous hydrogen peroxide. These results suggested that melatonin played a key role in maintaining the hydrogen peroxide homeostasis, via regulation of the antioxidant systems. Conclusively, this study revealed a crucial protective role of melatonin in the regulation of cadmium resistance in wheat.

  5. Exogenous Melatonin Confers Cadmium Tolerance by Counterbalancing the Hydrogen Peroxide Homeostasis in Wheat Seedlings.

    Science.gov (United States)

    Ni, Jun; Wang, Qiaojian; Shah, Faheem Afzal; Liu, Wenbo; Wang, Dongdong; Huang, Shengwei; Fu, Songling; Wu, Lifang

    2018-03-30

    Melatonin has emerged as a research highlight regarding its important role in regulating plant growth and the adaptation to the environmental stresses. In this study, we investigated how melatonin prevented the cadmium toxicity to wheat seedlings. The results demonstrated that cadmium induced the expression of melatonin biosynthesis-related genes and cause a significant increase of endogenous melatonin level. Melatonin treatment drastically alleviated the cadmium toxicity, resulting in increased plant height, biomass accumulation, and root growth. Cadmium and senescence treatment significantly increased the endogenous level of hydrogen peroxide, which was strictly counterbalanced by melatonin. Furthermore, melatonin treatment caused a significant increase of GSH (reduced glutathione) content and the GSH/GSSG (oxidized glutathione) ratio. The activities of two key antioxidant enzymes, ascorbate peroxidase (APX) and superoxide dismutase (SOD), but not catalase (CAT) and peroxidase (POD), were specifically improved by melatonin. Additionally, melatonin not only promoted the primary root growth, but also drastically enhanced the capacity of the seedling roots to degrade the exogenous hydrogen peroxide. These results suggested that melatonin played a key role in maintaining the hydrogen peroxide homeostasis, via regulation of the antioxidant systems. Conclusively, this study revealed a crucial protective role of melatonin in the regulation of cadmium resistance in wheat.

  6. Melatonin protects against maternal obesity-associated oxidative stress and meiotic defects in oocytes via the SIRT3-SOD2-dependent pathway.

    Science.gov (United States)

    Han, Longsen; Wang, Haichao; Li, Ling; Li, Xiaoyan; Ge, Juan; Reiter, Russel J; Wang, Qiang

    2017-10-01

    Maternal obesity in humans is associated with poor outcomes across the reproductive spectrum. Emerging evidence indicates that these defects are likely attributed to factors within the oocyte. Although various molecules and pathways may contribute to impaired oocyte quality, prevention of fertility issues associated with maternal obesity is a challenge. Using mice fed a high-fat diet (HFD) as an obesity model, we document spindle disorganization, chromosome misalignment, and elevated reactive oxygen species (ROS) levels in oocytes from obese mice. Oral administration of melatonin to HFD mice not only reduces ROS generation, but also prevents spindle/chromosome anomalies in oocytes, consequently promoting the developmental potential of early embryos. Consistent with this finding, we find that melatonin supplement during in vitro maturation also markedly attenuates oxidative stress and meiotic defects in HFD oocytes. Finally, by performing morpholino knockdown and acetylation-mimetic mutant overexpression assays, we reveal that melatonin ameliorates maternal obesity-induced defective phenotypes in oocytes through the SIRT3-SOD2-dependent mechanism. In sum, our data uncover the marked beneficial effects of melatonin on oocyte quality from obese females; this opens a new area for optimizing culture system as well as fertility management. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism

    Directory of Open Access Journals (Sweden)

    Dun-Xian Tan

    2015-10-01

    Full Text Available Melatonin is a tryptophan-derived molecule with pleiotropic activities. It is present in almost all or all organisms. Its synthetic pathway depends on the species in which it is measured. For example, the tryptophan to melatonin pathway differs in plants and animals. It is speculated that the melatonin synthetic machinery in eukaryotes was inherited from bacteria as a result of endosymbiosis. However, melatonin’s synthetic mechanisms in microorganisms are currently unknown. Melatonin metabolism is highly complex with these enzymatic processes having evolved from cytochrome C. In addition to its enzymatic degradation, melatonin is metabolized via pseudoenzymatic and free radical interactive processes. The metabolic products of these processes overlap and it is often difficult to determine which process is dominant. However, under oxidative stress, the free radical interactive pathway may be featured over the others. Because of the complexity of the melatonin degradative processes, it is expected that additional novel melatonin metabolites will be identified in future investigations. The original and primary function of melatonin in early life forms such as in unicellular organisms was as a free radical scavenger and antioxidant. During evolution, melatonin was selected as a signaling molecule to transduce the environmental photoperiodic information into an endocrine message in multicellular organisms and for other purposes as well. As an antioxidant, melatonin exhibits several unique features which differ from the classic antioxidants. These include its cascade reaction with free radicals and its capacity to be induced under moderate oxidative stress. These features make melatonin a potent endogenously-occurring antioxidant that protects organisms from catastrophic oxidative stress.

  8. Maternal melatonin administration mitigates coronary stiffness and endothelial dysfunction, and improves heart resilience to insult in growth restricted lambs.

    Science.gov (United States)

    Tare, Marianne; Parkington, Helena C; Wallace, Euan M; Sutherland, Amy E; Lim, Rebecca; Yawno, Tamara; Coleman, Harold A; Jenkin, Graham; Miller, Suzanne L

    2014-06-15

    Intrauterine growth restriction (IUGR) is associated with impaired cardiac function in childhood and is linked to short- and long-term morbidities. Placental dysfunction underlies most IUGR, and causes fetal oxidative stress which may impact on cardiac development. Accordingly, we investigated whether antenatal melatonin treatment, which possesses antioxidant properties, may afford cardiovascular protection in these vulnerable fetuses. IUGR was induced in sheep fetuses using single umbilical artery ligation on day 105-110 of pregnancy (term 147). Study 1: melatonin (2 mg h(-1)) was administered i.v. to ewes on days 5 and 6 after surgery. On day 7 fetal heart function was assessed using a Langendorff apparatus. Study 2: a lower dose of melatonin (0.25 mg h(-1)) was administered continuously following IUGR induction and the ewes gave birth normally at term. Lambs were killed when 24 h old and coronary vessels studied. Melatonin significantly improved fetal oxygenation in vivo. Contractile function in the right ventricle and coronary flow were enhanced by melatonin. Ischaemia-reperfusion-induced infarct area was 3-fold greater in IUGR hearts than in controls and this increase was prevented by melatonin. In isolated neonatal coronary arteries, endothelium-dependent nitric oxide (NO) bioavailability was reduced in IUGR, and was rescued by modest melatonin treatment. Melatonin exposure also induced the emergence of an indomethacin-sensitive vasodilation. IUGR caused marked stiffening of the coronary artery and this was prevented by melatonin. Maternal melatonin treatment reduces fetal hypoxaemia, improves heart function and coronary blood flow and rescues cardio-coronary deficit induced by IUGR. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  9. Oral Supplementation of Melatonin Protects against Fibromyalgia-Related Skeletal Muscle Alterations in Reserpine-Induced Myalgia Rats.

    Science.gov (United States)

    Favero, Gaia; Trapletti, Valentina; Bonomini, Francesca; Stacchiotti, Alessandra; Lavazza, Antonio; Rodella, Luigi Fabrizio; Rezzani, Rita

    2017-06-29

    Fibromyalgia is a chronic syndrome characterized by widespread musculoskeletal pain and an extensive array of other symptoms including disordered sleep, fatigue, depression and anxiety. Important factors involved in the pathogenic process of fibromyalgia are inflammation and oxidative stress, suggesting that ant-inflammatory and/or antioxidant supplementation might be effective in the management and modulation of this syndrome. Recent evidence suggests that melatonin may be suitable for this purpose due to its well known ant-inflammatory, antioxidant and analgesic effects. Thus, in the current study, the effects of the oral supplementation of melatonin against fibromyalgia-related skeletal muscle alterations were evaluated. In detail, 90 Sprague Dawley rats were randomly treated with reserpine, to reproduce the pathogenic process of fibromyalgia and thereafter they received melatonin. The animals treated with reserpine showed moderate alterations at hind limb skeletal muscles level and had difficulty in moving, together with significant morphological and ultrastructural alterations and expression of inflammatory and oxidative stress markers in the gastrocnemius muscle. Interestingly, melatonin, dose and/or time dependently, reduced the difficulties in spontaneous motor activity and the musculoskeletal morphostructural, inflammatory, and oxidative stress alterations. This study suggests that melatonin in vivo may be an effective tool in the management of fibromyalgia-related musculoskeletal morphofunctional damage.

  10. Pre-treatment with melatonin decreases abamectin induced toxicity in a nocturnal insect Spodoptera litura (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Subala, Subramanian P; Zubero, Eduardo E; Alatorre-Jimenez, Moises A; Shivakumar, Muthugounder S

    2017-12-01

    Oxidative stress is an important component of the mechanism of pesticide toxicity. The aim of the present study was to investigate the time-dependent melatonin effects against abamectin-induced oxidative stress in a S.litura model. Larvae were divided into 5 different groups; (1) control group,(2) Melatonin group (4.3×10 -5 M/100ml diet), (3) Abamectin group 1.5ml/L, (4) Pre-melatonin treated group (PM) (4.3×10 -5 M/100ml diet) before abamectin exposure 1.5ml/L, (5) Post-melatonin treated group (TM) after abamectin exposure. Melatonin was supplemented via artificial diet in PM and TM animals during 24h. Midgut, fatbody, and hemolymph, were collected for the analysis of oxidative stress markers (Total ROS, GSH, nitrite, TBARS, LPO), antioxidant enzyme levels (SOD, GST, CAT, POX, APOX) in fifth instar larvae. Midgut damage was examined by using morphological analysis. Our results observed that ABA group showed significant changes (pmelatonin. Significant (pmelatonin treatment reduces this damage due to its antioxidant properties, especially POX levels in midgut, fatbody, and hemolymph. Therefore, indoleamine can play a vital role curtailing the abamectin toxicity in time dependent manner in S.litura. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Constant illumination reduces circulating melatonin and impairs immune function in the cricket Teleogryllus commodus

    Directory of Open Access Journals (Sweden)

    Joanna Durrant

    2015-07-01

    Full Text Available Exposure to constant light has a range of negative effects on behaviour and physiology, including reduced immune function in both vertebrates and invertebrates. It is proposed that the associated suppression of melatonin (a ubiquitous hormone and powerful antioxidant in response to the presence of light at night could be an underlying mechanistic link driving the changes to immune function. Here, we investigated the relationship between constant illumination, melatonin and immune function, using a model invertebrate species, the Australian black field cricket, Teleogryllus commodus. Crickets were reared under either a 12 h light: 12 h dark regimen or a constant 24 h light regimen. Circulating melatonin concentration and immune function (haemocyte concentration, lytic activity and phenoloxidase (PO activity were assessed in individual adult crickets through the analysis of haemolymph. Constant illumination reduced melatonin and had a negative impact on haemocyte concentrations and lytic activity, but its effect on PO activity was less apparent. Our data provide the first evidence, to our knowledge, of a link between exposure to constant illumination and variation in haemocyte concentration in an invertebrate model, while also highlighting the potential complexity of the immune response following exposure to constant illumination. This study provides insight into the possible negative effect of artificial night-time lighting on the physiology of invertebrates, but whether lower and potentially more ecologically relevant levels of light at night produce comparable results, as has been reported in several vertebrate taxa, remains to be tested.

  12. Melatonin reduces hypoxic-ischaemic (HI) induced autophagy and apoptosis: An in vivo and in vitro investigation in experimental models of neonatal HI brain injury.

    Science.gov (United States)

    Hu, Yingying; Wang, Zhouguang; Liu, Yanlong; Pan, Shulin; Zhang, Hao; Fang, Mingchu; Jiang, Huai; Yin, Jiayu; Zou, Shuangshuang; Li, Zhenmao; Zhang, Hongyu; Lin, Zhenlang; Xiao, Jian

    2017-07-13

    Melatonin has neuroprotective effects in many diseases, including neonatal hypoxic-ischaemic (HI) brain injury. The purpose of this study was to evaluate the neuroprotective effects of melatonin both in vivo and in vitro and associated molecular mechanisms behind these effects. Postnatal day 7 male and female rat pups were subjected to unilateral HI, melatonin was injected intraperitoneally 1h before HI and an additional six doses were administered at 24h intervals. The pups were sacrificed at 24h and 7 d after HI. Pre-treatment with melatonin significantly reduced brain damage at 7 d after HI, with 15mg/kg melatonin achieving over 30% recovery in tissue loss compared to vehicle-treated animals. Autophagy and apoptotic cell death as indicated by autophagy associated proteins, cleaved caspase 3 and Tunel staining, was significantly inhibited after melatonin treatment in vivo as well as in PC12 cells. Melatonin treatment also significantly increased the GAP43 in the cortex. In conclusion, melatonin treatment reduced neonatal rat brain injury after HI, and this appeared to be related to inhibiting autophagy as well as reducing apoptotic cell death. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Investigating Efficacy of Melatonin and Gabapentin in Reducing Anxiety and Pain of Lumbar Puncture in Children

    Directory of Open Access Journals (Sweden)

    R Fallah

    2013-10-01

    Full Text Available Introduction: The lumbar puncture is one of the most important diagnostic and therapeutic procedures within children which child’s non-cooperativeness and procedural sedation are regarded necessary to conduct it. This study aimed to compare efficacy and safety of melatonin and gabapentin in reducing anxiety and pain of lumbar puncture in children. Methods: In a parallel single-blinded randomized clinical trial, sixty children aged 6 months -7 years, were evaluated in Pediatric Ward of Shahid Sadoughi Hospital, in Yazd (Iran in 2012. The children were distributedrandomly into two groups (30 children in each group. In group one, they received 0.3 mg/kg/dose of melatonin and theother group received 15 mg/kg/dose of gabapentin. Primary endpoints were success rate in reducing anxiety (anxiety score of≥ four and reducing pain when the needle was inserted to skin for lumbarpuncture (pain score of less than four. The clinicalside effects were investigated as well. Results: Twenty two girls (36.7% and 38 boys (63.3% with mean age of 2.79 ± 1.92 years were evaluated. Anxiety reduction (achieving the anxiety score of ≥ four was obtained in 43.3% in melatonin and in 36.7% in gabapentin groups, respectively and both drugs were equally effective in anxiety reduction (p.value = 0.598.Pain reduction ( achieving the pain score of less than four was obtained in 23.3% in melatonin and in 50% in gabapentin groups, respectively and thus, gabapentin wasproved to be more effective in pain reduction (p.value = 0.032.Mild side effects were observed in 10% of melatonin group and in 16.7% of gabapentin group. No statistically significant differences were seen from viewpoint of safety between the two drugs (p.value=0.448. Conclusion: Melatonin and gabapentin were not effective drugs in anxiety reduction for lumbar puncture of children. However, gabapentin is a safe and effective drug in pain reduction in painful diagnostic therapeutic procedures.

  14. Effects of melatonin in experimental stroke models in acute, sub-acute, and chronic stages

    Directory of Open Access Journals (Sweden)

    Hsiao-Wen Lin

    2009-03-01

    Full Text Available Hsiao-Wen Lin, E-Jian LeeNeurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan, TaiwanAbstract: Melatonin (N-acetyl-5-methoxy-tryptamine, a naturally occurring indole produced mainly by the pineal gland, is a well known antioxidant. Stroke (cerebral ischemia is the second leading cause of death worldwide. To date, however, effective and safe treatment for stroke remains unavailable. Melatonin is both lipid- and water-soluble and readily crosses the blood–brain barrier (BBB. Increasing evidence has shown that, in animal stroke models, administering melatonin significantly reduces infarct volume, edema, and oxidative damage and improves electrophysiological and behavioral performance. Here, we reviewed studies that assess effects of melatonin on cerebral ischemia in acute, sub-acute, and chronic stages. In addition to its potent antioxidant properties, melatonin exerts antiapoptotic, antiexcitotoxic, anti-inflammatory effects and promotes mitochondrial functions in animals with cerebral ischemia. Given that melatonin shows almost no toxicity to humans and possesses multifaceted protective capacity against cerebral ischemia, it is valuable to consider using melatonin in clinical trials on patients suffering from stroke.Keywords: cerebral ischemia, melatonin, stroke, neuroprotection

  15. No effect of melatonin on oxidative stress after laparoscopic cholecystectomy: a randomized placebo-controlled trial

    DEFF Research Database (Denmark)

    Kucukakin, B.; Klein, M.; Lykkesfeldt, Jens

    2010-01-01

    melatonin and 21 patients received placebo during surgery. No significant differences were observed between the groups in the oxidative stress variables MDA, TAA, AA and DHA or in the inflammatory variable CRP (repeated-measures ANOVA, P > 0.05 for all variables). Conclusions Administration of 10 mg...

  16. Melatonin prevents possible radiotherapy-induced thyroid injury.

    Science.gov (United States)

    Arıcıgil, Mitat; Dündar, Mehmet Akif; Yücel, Abitter; Eryılmaz, Mehmet Akif; Aktan, Meryem; Alan, Mehmet Akif; Fındık, Sıdıka; Kılınç, İbrahim

    2017-12-01

    We aimed to investigate the protective effect of melatonin in radiotherapy-induced thyroid gland injury in an experimental rat model. Thirty-two rats were divided into four groups: the control group, melatonin treatment group, radiotherapy group and melatonin plus radiotherapy group. The neck region of each rat was defined by simulation and radiated with 2 Gray (Gy) per min with 6-MV photon beams, for a total dose of 18 Gy. Melatonin was administered at a dose of 50 mg/kg through intraperitoneal injection, 15 min prior to radiation exposure. Thirty days after the beginning of the study, rats were decapitated and analyses of blood and thyroid tissue were performed. Tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β), thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO) levels in the radiotherapy group were significantly higher than those in the melatonin plus radiotherapy group (p melatonin plus radiotherapy group (p melatonin plus radiotherapy group (p Melatonin helped protect thyroid gland structure against the undesired cytotoxic effects of radiotherapy in rats.

  17. Identification of genes for melatonin synthetic enzymes in 'Red Fuji' apple (Malus domestica Borkh.cv.Red) and their expression and melatonin production during fruit development.

    Science.gov (United States)

    Lei, Qiong; Wang, Lin; Tan, Dun-Xian; Zhao, Yu; Zheng, Xiao-Dong; Chen, Hao; Li, Qing-Tian; Zuo, Bi-Xiao; Kong, Jin

    2013-11-01

    Melatonin is present in many edible fruits; however, the presence of melatonin in apple has not previously been reported. In this study, the genes for melatonin synthetic enzymes including tryptophan decarboxylase, tryptamine 5-hydroxylase (T5H), arylalkylamine N-acetyltransferase, and N-acetylserotonin methyltransferase were identified in 'Red Fuji' apple. Each gene has several homologous genes. Sequence analysis shows that these genes have little homology with those of animals and they only have limited homology with known genes of rice melatonin synthetic enzymes. Multiple origins of melatonin synthetic genes during the evolution are expected. The expression of these genes is fully coordinated with melatonin production in apple development. Melatonin levels in apple exhibit an inverse relationship with the content of malondialdehyde, a product of lipid peroxidation. Two major melatonin synthetic peaks appeared on July 17 and on October 8 in both unbagged and bagged apple samples. At the periods mentioned above, apples experienced rapid expansion and increased respiration. These episodes significantly elevate reactive oxygen species production in the apple. Current data further confirmed that melatonin produced in apple was used to neutralize the toxic oxidants and protect the developing apple against oxidative stress. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Melatonin: a chemical photoperiodic signal with clinical significance in humans.

    Science.gov (United States)

    Pang, S F; Pang, C S; Poon, A M; Lee, P P; Liu, Z M; Shiu, S Y

    1998-03-01

    Secretion of pineal melatonin exhibits a diumal rhythm and a seasonal rhythm in humans. Night-time melatonin is high at 3-5 year-old and decreases with age. Many drugs and pathological conditions also change melatonin levels in the circulation. Melatonin has a mild sedative effect and has been used effectively in synchronizing the sleep-wake cycle of patients with sleep disorders. Immunoenhancing, anti-cancer, anti-aging and anti-oxidant effects of melatonin have been proposed. Recent studies suggest that melatonin receptors are present in central and peripheral tissues. The importance of melatonin receptors on the nervous, reproductive, immune and renal functions is implicated. Studies on the molecular biology, physiology and pathology of melatonin receptors in different tissues are progressing rapidly. The physiological and pathological changes in melatonin secretion, multifarious melatonin actions, and diverse melatonin receptors reported suggest that melatonin is a photoperiodic signal with clinical significance in humans.

  19. Placental melatonin production and melatonin receptor expression are altered in preeclampsia: new insights into the role of this hormone in pregnancy.

    Science.gov (United States)

    Lanoix, Dave; Guérin, Pascale; Vaillancourt, Cathy

    2012-11-01

    The melatonin system in preeclamptic pregnancies has been largely overlooked, especially in the placenta. We have previously documented melatonin production and expression of its receptors in normal human placentas. In addition, we and others have shown a beneficial role of melatonin in placental and fetal functions. In line with this, decreased maternal blood levels of melatonin are found in preeclamptic compared with normotensive pregnancies. However, melatonin production and expression of its receptors in preeclamptic compared with normotensive pregnancy placentas has never been examined. This study compares (i) melatonin-synthesizing enzyme expression and activity, (ii) melatonin and serotonin, melatonin's immediate precursor, levels and (iii) expression of MT1 and MT2 melatonin receptors in placentas from preeclamptic and normotensive pregnancies. Protein and mRNA expression of aralkylamine N-acetyltransferase (AANAT) and hydroxyindole O-methyltransferase (HIOMT), the melatonin-synthesizing enzymes, as well as MT1 and MT2 receptors were determined by RT-qPCR and Western blot, respectively. The activities of melatonin-synthesizing enzymes were assessed by radiometric assays while melatonin levels were determined by LC-MS/MS. There is a significant inhibition of AANAT, melatonin's rate-limiting enzyme, expression and activity in preeclamptic placentas, correlating with decreased melatonin levels. Likewise, MT1 and MT2 expression is significantly reduced in preeclamptic compared with normotensive pregnancy placentas. We propose that reduced maternal plasma melatonin levels may be an early diagnostic tool to identify pregnancies complicated by preeclampsia. This study indicates a clinical utility of melatonin as a potential treatment for preeclampsia in women where reduced maternal plasma levels have been identified. © 2012 John Wiley & Sons A/S.

  20. Effects of Melatonin and Its Analogues on Pancreatic Inflammation, Enzyme Secretion, and Tumorigenesis.

    Science.gov (United States)

    Jaworek, Jolanta; Leja-Szpak, Anna; Nawrot-Porąbka, Katarzyna; Szklarczyk, Joanna; Kot, Michalina; Pierzchalski, Piotr; Góralska, Marta; Ceranowicz, Piotr; Warzecha, Zygmunt; Dembinski, Artur; Bonior, Joanna

    2017-05-08

    Melatonin is an indoleamine produced from the amino acid l-tryptophan, whereas metabolites of melatonin are known as kynuramines. One of the best-known kynuramines is N ¹-acetyl- N ¹-formyl-5-methoxykynuramine (AFMK). Melatonin has attracted scientific attention as a potent antioxidant and protector of tissue against oxidative stress. l-Tryptophan and kynuramines share common beneficial features with melatonin. Melatonin was originally discovered as a pineal product, has been detected in the gastrointestinal tract, and its receptors have been identified in the pancreas. The role of melatonin in the pancreatic gland is not explained, however several arguments support the opinion that melatonin is probably implicated in the physiology and pathophysiology of the pancreas. (1) Melatonin stimulates pancreatic enzyme secretion through the activation of entero-pancreatic reflex and cholecystokinin (CCK) release. l-Tryptophan and AFMK are less effective than melatonin in the stimulation of pancreatic exocrine function; (2) Melatonin is a successful pancreatic protector, which prevents the pancreas from developing of acute pancreatitis and reduces pancreatic damage. This effect is related to its direct and indirect antioxidant action, to the strengthening of immune defense, and to the modulation of apoptosis. Like melatonin, its precursor and AFMK are able to mimic its protective effect, and it is commonly accepted that all these substances create an antioxidant cascade to intensify the pancreatic protection and acinar cells viability; (3) In pancreatic cancer cells, melatonin and AFMK activated a signal transduction pathway for apoptosis and stimulated heat shock proteins. The role of melatonin and AFMK in pancreatic tumorigenesis remains to be elucidated.

  1. Effects of Melatonin and Its Analogues on Pancreatic Inflammation, Enzyme Secretion, and Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jolanta Jaworek

    2017-05-01

    Full Text Available Melatonin is an indoleamine produced from the amino acid l-tryptophan, whereas metabolites of melatonin are known as kynuramines. One of the best-known kynuramines is N1-acetyl-N1-formyl-5-methoxykynuramine (AFMK. Melatonin has attracted scientific attention as a potent antioxidant and protector of tissue against oxidative stress. l-Tryptophan and kynuramines share common beneficial features with melatonin. Melatonin was originally discovered as a pineal product, has been detected in the gastrointestinal tract, and its receptors have been identified in the pancreas. The role of melatonin in the pancreatic gland is not explained, however several arguments support the opinion that melatonin is probably implicated in the physiology and pathophysiology of the pancreas. (1 Melatonin stimulates pancreatic enzyme secretion through the activation of entero-pancreatic reflex and cholecystokinin (CCK release. l-Tryptophan and AFMK are less effective than melatonin in the stimulation of pancreatic exocrine function; (2 Melatonin is a successful pancreatic protector, which prevents the pancreas from developing of acute pancreatitis and reduces pancreatic damage. This effect is related to its direct and indirect antioxidant action, to the strengthening of immune defense, and to the modulation of apoptosis. Like melatonin, its precursor and AFMK are able to mimic its protective effect, and it is commonly accepted that all these substances create an antioxidant cascade to intensify the pancreatic protection and acinar cells viability; (3 In pancreatic cancer cells, melatonin and AFMK activated a signal transduction pathway for apoptosis and stimulated heat shock proteins. The role of melatonin and AFMK in pancreatic tumorigenesis remains to be elucidated.

  2. Melatonin promotes Bax sequestration to mitochondria reducing cell susceptibility to apoptosis via the lipoxygenase metabolite 5-hydroxyeicosatetraenoic acid

    KAUST Repository

    Radogna, Flavia

    2015-03-01

    Extra-neurological functions of melatonin include control of the immune system and modulation of apoptosis. We previously showed that melatonin inhibits the intrinsic apoptotic pathway in leukocytes via stimulation of high affinity MT1/MT2 receptors, thereby promoting re-localization of the anti-apoptotic Bcl-2 protein to mitochondria. Here we show that Bcl-2 sequesters pro-apoptotic Bax into mitochondria in an inactive form after melatonin treatment, thus reducing cell propensity to apoptosis. Bax translocation and the anti-apoptotic effect of melatonin are strictly dependent on the presence of Bcl-2, and on the 5-lipoxygenase (5-LOX) metabolite 5-hydroxyeicosatetraenoic acid (5-HETE), which we have previously shown to be produced as a consequence of melatonin binding to its low affinity target calmodulin. Therefore, the anti-apoptotic effect of melatonin requires the simultaneous, independent interaction with high (MT1/MT2) and low (calmodulin) affinity targets, eliciting two independent signal transduction pathways converging into Bax sequestration and inactivation. MT1/MT2 vs. lipoxygenase pathways are activated by 10-9 vs. 10-5M melatonin, respectively; the anti-apoptotic effect of melatonin is achieved at 10-5M, but drops to 10-9M upon addition of exogenous 5-HETE, revealing that lipoxygenase activation is the rate-limiting pathway. Therefore, in areas of inflammation with increased 5-HETE levels, physiological nanomolar concentrations of melatonin may suffice to maintain leukocyte viability.

  3. Melatonin effect on hypertension and nitric oxide balance in the heart and aorta

    Czech Academy of Sciences Publication Activity Database

    Pecháňová, Olga; Paulis, L.; Zicha, Josef; Kuneš, Jaroslav; Šimko, F.

    2006-01-01

    Roč. 24, č. S6 (2006), s. 395-395 ISSN 0263-6352. [Scientific Meeting of the International Society of Hypertension /21./. 15.10.2006-19.10.2006, Fukuoka] Grant - others:VEGA(SK) 2/6148/26 Institutional research plan: CEZ:AV0Z50110509 Keywords : melatonin * nitric oxide balance * hypertension * SHR and WKY rat * heart and aorta Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  4. Melatonin rescues cardiovascular dysfunction during hypoxic development in the chick embryo.

    Science.gov (United States)

    Itani, Nozomi; Skeffington, Katie L; Beck, Christian; Niu, Youguo; Giussani, Dino A

    2016-01-01

    There is a search for rescue therapy against fetal origins of cardiovascular disease in pregnancy complicated by chronic fetal hypoxia, particularly following clinical diagnosis of fetal growth restriction (FGR). Melatonin protects the placenta in adverse pregnancy; however, whether melatonin protects the fetal heart and vasculature in hypoxic pregnancy independent of effects on the placenta is unknown. Whether melatonin can rescue fetal cardiovascular dysfunction when treatment commences following FGR diagnosis is also unknown. We isolated the effects of melatonin on the developing cardiovascular system of the chick embryo during hypoxic incubation. We tested the hypothesis that melatonin directly protects the fetal cardiovascular system in adverse development and that it can rescue dysfunction following FGR diagnosis. Chick embryos were incubated under normoxia or hypoxia (14% O2) from day 1 ± melatonin treatment (1 mg/kg/day) from day 13 of incubation (term ~21 days). Melatonin in hypoxic chick embryos rescued cardiac systolic dysfunction, impaired cardiac contractility and relaxability, increased cardiac sympathetic dominance, and endothelial dysfunction in peripheral circulations. The mechanisms involved included reduced oxidative stress, enhanced antioxidant capacity and restored vascular endothelial growth factor expression, and NO bioavailability. Melatonin treatment of the chick embryo starting at day 13 of incubation, equivalent to ca. 25 wk of gestation in human pregnancy, rescues early origins of cardiovascular dysfunction during hypoxic development. Melatonin may be a suitable antioxidant candidate for translation to human therapy to protect the fetal cardiovascular system in adverse pregnancy. © 2015 The Authors. Journal of Pineal Research. Published by John Wiley & Sons Ltd.

  5. Melatonin and diabetes: from pathophysiology to the treatment perspectives

    Directory of Open Access Journals (Sweden)

    Vladimir Iosifovich Konenkov

    2013-06-01

    Full Text Available Pineal hormone melatonin synchronizes insulin secretion and glucose homeostasis with solar periods. Misalliance between melatonin-mediated circadian rhythms and insulin secretion characterizes diabetes mellitus type 1 (T1DM and type 2 (T2DM. Insulin deficiency in T1DM is accompanied by increased melatonin production. Conversely, T2DM is characterized by diminished melatonin secretion. In genome-wide association studies the variants of melatonin receptor MT2 gene (rs1387153 and rs10830963 were associated with fasting glucose, beta-cell function and T2DM. In experimental models of diabetes melatonin enhanced beta-cell proliferation and neogenesis, improved insulin resistance and alleviated oxidative stress in retina and kidneys. However, further investigation is required to assess the therapeutic value of melatonin in diabetic patients.

  6. Effect of melatonin on kidney cold ischemic preservation injury

    Science.gov (United States)

    Aslaner, Arif; Gunal, Omer; Turgut, Hamdi Taner; Celik, Erdal; Yildirim, Umran; Demirci, Rojbin Karakoyun; Gunduz, Umut Riza; Calis, Hasan; Dogan, Sami

    2013-01-01

    Melatonin is a potent free radical scavenger of reactive oxygen species, nitric oxide synthase inhibitor and a well-known antioxidant secreted from pineal gland. This hormone has been reported to protect tissue from oxidative damage. In this study, we aim to investigate the effect of melatonin on kidney cold ischemia time when added to preservation solution. Thirty male Wistar albino rats were divided equally into three groups; Ringer Lactate (RL) solution, University of Wisconsin (UW) solution with and without melatonin. The serum Lactate Dehydrogenase (LDH) activities of the preservation solutions at 2nd, 24th, 36th, and 48th hours were determined. Tissue malondialdehyde (MDA) levels were also measured and a histological examination was performed at 48th hour. Melatonin that added to preservation solution prevented enzyme elevation and decreased lipid peroxidation in preservation solution when compared to the control group (p<0.05). The histological examination revealed that UW solution containing melatonin significantly prevented the kidney from pathological injury (p<0.05). Melatonin added to preservation solutions such as UW solution seemed to protect the tissue preserved effectively from cold ischemic injury for up to 48 hour. PMID:24179573

  7. Melatonin: Antioxidant and modulatory properties in age-related changes during Trypanosoma cruzi infection.

    Science.gov (United States)

    Brazão, Vânia; Santello, Fabricia H; Colato, Rafaela P; Mazotti, Tamires T; Tazinafo, Lucas F; Toldo, Míriam Paula A; do Vale, Gabriel T; Tirapelli, Carlos R; do Prado, José C

    2017-08-01

    The purpose of this study was to investigate the effects of melatonin on selected biomarkers of innate and humoral immune response as well as the antioxidant/oxidant status (superoxide dismutase-SOD and reduced glutathione levels (GSH) to understand whether age-related changes would influence the development of acute Trypanosoma cruzi (T. cruzi) infection. Young- (5 weeks) and middle-aged (18 months) Wistar rats were orally treated with melatonin (gavage) (05 mg/kg/day), 9 days after infection. A significant increase in both SOD activity and GSH levels was found in plasma from all middle-aged melatonin-treated animals. Melatonin triggered enhanced expression of major histocompatibility class II (MHC-II) antigens on antigen-presenting cell (APC) and peritoneal macrophages in all treated animals. High levels of CD4 + CD28-negative T cells (*PMelatonin induced a significant reduction (***PMelatonin also triggered an upregulation of CD80 and CD86 expression in all young-treated groups. Significant percentages of B and spleen dendritic cells in middle-aged infected and treated animals were observed. Our data reveal new features of melatonin action in inhibiting membrane lipid peroxidation, through the reduction in 8-isoprostane, upregulating the antioxidant defenses and triggering an effective balance in the antioxidant/oxidant status during acute infection. The ability of melatonin to counteract the immune alterations induced by aging added further support to its use as a potential therapeutic target not only for T. cruzi infection but also for other immunocompromised states. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Melatonin Efficacy in Obese Leptin-Deficient Mice Heart

    Directory of Open Access Journals (Sweden)

    Alessandra Stacchiotti

    2017-12-01

    Full Text Available Cardiomyocytes are particularly sensitive to oxidative damage due to the link between mitochondria and sarcoplasmic reticulum necessary for calcium flux and contraction. Melatonin, important indoleamine secreted by the pineal gland during darkness, also has important cardioprotective properties. We designed the present study to define morphological and ultrastructural changes in cardiomyocytes and mainly in mitochondria of an animal model of obesity (ob/ob mice, when treated orally or not with melatonin at 100 mg/kg/day for 8 weeks (from 5 up to 13 week of life. We observed that ob/ob mice mitochondria in sub-sarcolemmal and inter-myofibrillar compartments are often devoid of cristae with an abnormally large size, which are called mega-mitochondria. Moreover, in ob/ob mice the hypertrophic cardiomyocytes expressed high level of 4hydroxy-2-nonenal (4HNE, a marker of lipid peroxidation but scarce degree of mitofusin2, indicative of mitochondrial sufferance. Melatonin oral supplementation in ob/ob mice restores mitochondrial cristae, enhances mitofusin2 expression and minimizes 4HNE and p62/SQSTM1, an index of aberrant autophagic flux. At pericardial fat level, adipose tissue depot strictly associated with myocardium infarction, melatonin reduces adipocyte hypertrophy and inversely regulates 4HNE and adiponectin expressions. In summary, melatonin might represent a safe dietary adjuvant to hamper cardiac mitochondria remodeling and the hypoxic status that occur in pre-diabetic obese mice at 13 weeks of life.

  9. Melatonin against radiation induced free radicals: a study on tissues of Swiss albino mice

    International Nuclear Information System (INIS)

    Bhatia, A.L.; Manda, K.

    2003-01-01

    Full text: Antioxidant enzymes are part of the primary cellular defense against free radicals generated by radiation. Reports on low level chronic administration of melatonin with its antiradiation influence are scanty. Although compelling logic suggests that melatonin may be effective for a variety of disorders, the mode and optimal dose of melatonin is still not clear. Most studies have used doses of supraphysiological blood levels. Present investigation reports that melatonin in relatively lower concentrations increases the mRNA of both superoxide dismutases (SODs) and glutathione peroxidase (GSH-Px) and mediates possibly through receptors. The influence of low dose chronic administration (0.10 mg/Kg body weight/day for 15 days) of melatonin was studied against radiation-induced oxidative stress in 6 to 8 weeks old mice. Just after 24 hours of the last dose in various tissues viz. brain, liver, spleen and kidney were studied for lipid peroxidation, reduced glutathione (GSH), glutathione disulphide (GSSG), glutathione peroxidase (GSH-Px), protein, RNA, DNA and serum phosphatase activity. Radiation induced augmentation in the level of lipid peroxidation, glutathione disulphide (GSSG) and acid phosphatase was significantly ameliorated by pre-irradiation treatment with melatonin. Radiation induced depletion in the level of reduced glutathione (GSH), glutathione peroxidase (GSH-Px) and alkaline phosphatase is significantly averted by melatonin administration. Regression analysis of survival data yielded LD50/30 as 7.16 Gy and 11Gy for control (irradiation alone) and experimental (melatonin + irradiation), respectively. Animals produced a dose reduction factor (DRF) as 1.53. Radiation induced deficit in the body and organ weight was also significantly thwarted in the melatonin pre-treated mice. Results indicate the antioxidative properties of melatonin against the gamma radiation. The findings support the results showing melatonin as a free radical scavenger, and

  10. Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Abdolreza Babaee

    2015-09-01

    Full Text Available Objective(s:Melatonin is known as an anti-inflammatory agent, and it has been proven to exert neuroprotection through inhibition of cell death (apoptosis in several models of brain injury.Secondary injury following the primary traumatic brain injury (TBI results in glial cells activation, especially astrocytes. In fact, astrocyte activation causes the production of pro-inflammatory cytokines that may lead to secondary injury. Since most TBI research studies have focused on injured neurons and paid little attention to glial cells, the aim of current study was to investigate the effects of melatonin against astrocytes activation (astrogliosis, as well as inhibition of apoptosis in brain tissue of male rats after TBI. Materials and Methods: The animals were randomly allocated into five groups: sham group, TBI+ vehicle group (1% ethanol in saline and TBI+ melatonin groups (5 mg/kg, 10 mg/kg and 20 mg/kg. All rats were intubated and then exposed to diffuse TBI, except for the sham group. Immunohistochemical methods were conducted using glial fibrillary acidic protein (GFAP marker and TUNEL assay to evaluate astrocyte reactivity and cell death, respectively. Results: The results showed that based on the number of GFAP positive astrocytes in brain cortex, astrogliosis was reduced significantly (P

  11. Melatonin reduces lead levels in blood, brain and bone and increases lead excretion in rats subjected to subacute lead treatment.

    Science.gov (United States)

    Hernández-Plata, Everardo; Quiroz-Compeán, Fátima; Ramírez-Garcia, Gonzalo; Barrientos, Eunice Yáñez; Rodríguez-Morales, Nadia M; Flores, Alberto; Wrobel, Katarzina; Wrobel, Kazimierz; Méndez, Isabel; Díaz-Muñoz, Mauricio; Robles, Juvencio; Martínez-Alfaro, Minerva

    2015-03-04

    Melatonin, a hormone known for its effects on free radical scavenging and antioxidant activity, can reduce lead toxicity in vivo and in vitro.We examined the effects of melatonin on lead bio-distribution. Rats were intraperitoneally injected with lead acetate (10, 15 or 20mg/kg/day) with or without melatonin (10mg/kg/day) daily for 10 days. In rats intoxicated with the highest lead doses, those treated with melatonin had lower lead levels in blood and higher levels in urine and feces than those treated with lead alone, suggesting that melatonin increases lead excretion. To explore the mechanism underlying this effect, we first assessed whether lead/melatonin complexes were formed directly. Electronic density functional (DFT) calculations showed that a lead/melatonin complex is energetically feasible; however, UV spectroscopy and NMR analysis showed no evidence of such complexes. Next, we examined the liver mRNA levels of metallothioneins (MT) 1 and 2. Melatonin cotreatment increased the MT2 mRNA expression in the liver of rats that received the highest doses of lead. The potential effects of MTs on the tissue distribution and excretion of lead are not well understood. This is the first report to suggest that melatonin directly affects lead levels in organisms exposed to subacute lead intoxication. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Protective mechanisms of melatonin against hydrogen-peroxide-induced toxicity in human bone-marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Mehrzadi, Saeed; Safa, Majid; Kamrava, Seyed Kamran; Darabi, Radbod; Hayat, Parisa; Motevalian, Manijeh

    2017-07-01

    Many obstacles compromise the efficacy of bone marrow mesenchymal stem cells (BM-MSCs) by inducing apoptosis in the grafted BM-MSCs. The current study investigates the effect of melatonin on important mediators involved in survival of BM-MSCs in hydrogen peroxide (H 2 O 2 ) apoptosis model. In brief, BM-MSCs were isolated, treated with melatonin, and then exposed to H 2 O 2 . Their viability was assessed by MTT assay and apoptotic fractions were evaluated through Annexin V, Hoechst staining, and ADP/ATP ratio. Oxidative stress biomarkers including ROS, total antioxidant power (TAP), superoxide dismutase (SOD) and catalase (CAT) activity, glutathione (GSH), thiol molecules, and lipid peroxidation (LPO) levels were determined. Secretion of inflammatory cytokines (TNF-α and IL-6) were measured by ELISA assay. The protein expression of caspase-3, Bax, and Bcl-2, was also evaluated by Western blotting. Melatonin pretreatment significantly increased viability and decreased apoptotic fraction of H 2 O 2 -exposed BM-MSCs. Melatonin also decreased ROS generation, as well as increasing the activity of SOD and CAT enzymes and GSH content. Secretion of inflammatory cytokines in H 2 O 2 -exposed cells was also reduced by melatonin. Expression of caspase-3 and Bax proteins in H 2 O 2 -exposed cells was diminished by melatonin pretreatment. The findings suggest that melatonin may be an effective protective agent against H 2 O 2 -induced oxidative stress and apoptosis in MSC.

  13. Melatonin prevents maternal fructose intake-induced programmed hypertension in the offspring: roles of nitric oxide and arachidonic acid metabolites.

    Science.gov (United States)

    Tain, You-Lin; Leu, Steve; Wu, Kay L H; Lee, Wei-Chia; Chan, Julie Y H

    2014-08-01

    Fructose intake has increased globally and is linked to hypertension. Melatonin was reported to prevent hypertension development. In this study, we examined whether maternal high fructose (HF) intake causes programmed hypertension and whether melatonin therapy confers protection against the process, with a focus on the link to epigenetic changes in the kidney using next-generation RNA sequencing (NGS) technology. Pregnant Sprague-Dawley rats received regular chow or chow supplemented with HF (60% diet by weight) alone or with additional 0.01% melatonin in drinking water during the whole period of pregnancy and lactation. Male offspring were assigned to four groups: control, HF, control + melatonin (M), and HF + M. Maternal HF caused increases in blood pressure (BP) in the 12-wk-old offspring. Melatonin therapy blunted the HF-induced programmed hypertension and increased nitric oxide (NO) level in the kidney. The identified differential expressed gene (DEGs) that are related to regulation of BP included Ephx2, Col1a2, Gucy1a3, Npr3, Aqp2, Hba-a2, and Ptgs1. Of which, melatonin therapy inhibited expression and activity of soluble epoxide hydrolase (SEH, Ephx2 gene encoding protein). In addition, we found genes in arachidonic acid metabolism were potentially involved in the HF-induced programmed hypertension and were affected by melatonin therapy. Together, our data suggest that the beneficial effects of melatonin are attributed to its ability to increase NO level in the kidney, epigenetic regulation of genes related to BP control, and inhibition of SEH expression. The roles of DEGs by the NGS in long-term epigenetic changes in the adult offspring kidney require further clarification. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Fundamental Issues Related to the Origin of Melatonin and Melatonin Isomers during Evolution: Relation to Their Biological Functions

    Directory of Open Access Journals (Sweden)

    Dun-Xian Tan

    2014-09-01

    Full Text Available Melatonin and melatonin isomers exist and/or coexist in living organisms including yeasts, bacteria and plants. The levels of melatonin isomers are significantly higher than that of melatonin in some plants and in several fermented products such as in wine and bread. Currently, there are no reports documenting the presence of melatonin isomers in vertebrates. From an evolutionary point of view, it is unlikely that melatonin isomers do not exist in vertebrates. On the other hand, large quantities of the microbial flora exist in the gut of the vertebrates. These microorganisms frequently exchange materials with the host. Melatonin isomers, which are produced by these organisms inevitably enter the host’s system. The origins of melatonin and its isomers can be traced back to photosynthetic bacteria and other primitive unicellular organisms. Since some of these bacteria are believed to be the precursors of mitochondria and chloroplasts these cellular organelles may be the primary sites of melatonin production in animals or in plants, respectively. Phylogenic analysis based on its rate-limiting synthetic enzyme, serotonin N-acetyltransferase (SNAT, indicates its multiple origins during evolution. Therefore, it is likely that melatonin and its isomer are also present in the domain of archaea, which perhaps require these molecules to protect them against hostile environments including extremely high or low temperature. Evidence indicates that the initial and primary function of melatonin and its isomers was to serve as the first-line of defence against oxidative stress and all other functions were acquired during evolution either by the process of adoption or by the extension of its antioxidative capacity.

  15. The role of melatonin in the light of current knowledge

    Directory of Open Access Journals (Sweden)

    Barbara Algiert

    2016-02-01

    Full Text Available Recent studies have shed new light on the role of melatonin. Local tissue synthesis has been investigated. A special system responsible for the synthesis and metabolism of melatonin has developed in the human skin. The primary role of melatonin is the regulation of circadian rhythms, but studies have demonstrated the diversity of its activities. Potent antioxidant action of melatonin in the skin is emphasized. The skin has developed a specific antioxidant melatoninergic system which protects against oxidative stress. Presence of melatonin metabolites in the skin confirms its strong antioxidant properties. Melatonin has the ability to restore the physiological balance between synthesis and degradation of extracellular matrix proteins by induction of heme oxygenase in murine fibroblasts irradiated with UVR. There is a hypothesis concerning the participation of melatonin in etiology of vitiligo. Disturbances of melatonin skin synthesis and dysregulation of its receptors may explain the pathogenesis of disease.

  16. Melatonin sensitizes human cervical cancer HeLa cells to cisplatin-induced cytotoxicity and apoptosis: effects on oxidative stress and DNA fragmentation.

    Science.gov (United States)

    Pariente, Roberto; Pariente, José A; Rodríguez, Ana B; Espino, Javier

    2016-01-01

    Melatonin has antitumor activity via several mechanisms including its antiproliferative and pro-apoptotic effects as well as its potent antioxidant actions, although recent evidence has indicated that melatonin may perform pro-oxidant actions in tumor cells. Therefore, melatonin may be useful in the treatment of tumors in association with chemotherapy drugs. This study was intended to evaluate the in vitro effect of melatonin on the cytotoxic and pro-apoptotic actions of various chemotherapeutic agents in cervical cancer HeLa cells. Herein, we found that both melatonin and three of the chemotherapeutic drugs tested, namely cisplatin (CIS), 5-fluorouracil (5-FU), and doxorubicin, induced a decrease in HeLa cell viability. Furthermore, melatonin significantly increased the cytotoxic effect of such chemotherapeutic agents. Consistently, costimulation of HeLa cells with any chemotherapeutic agent in the presence of melatonin further increased caspase-3 activation, particularly in CIS- and 5-FU-challenged cells. Likewise, concomitant treatments with melatonin and CIS significantly enhanced the ratio of cells entering mitochondrial apoptosis due to reactive oxygen species (ROS) overproduction, substantially augmented the population of apoptotic cells, and markedly enlarged DNA fragmentation compared to the treatments with CIS alone. Nonetheless, melatonin only displayed moderate chemosensitizing effects in 5-FU-stimulated HeLa cells, as suggested by slight increments in the percentage of cells stimulated for ROS production and in the proportion of early apoptotic cells compared to the treatments with 5-FU alone. In summary, our findings provided evidence that in vitro melatonin strongly enhances CIS-induced cytotoxicity and apoptosis in HeLa cells and, hence, the indoleamine could be potentially applied to cervical cancer treatment as a powerful synergistic agent. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Radical-trapping and preventive antioxidant effects of 2-hydroxymelatonin and 4-hydroxymelatonin: Contributions to the melatonin protection against oxidative stress.

    Science.gov (United States)

    Pérez-González, Adriana; Galano, Annia; Alvarez-Idaboy, J Raúl; Tan, Dun Xian; Reiter, Russel J

    2017-09-01

    Melatonin is well known for its antioxidant capacity, which has been attributed to the combined protective effects of the parent molecule and its metabolites. However, the potential role of 2-hydroxymelatonin (2OHM) and 4-hydroxymelatonin (4OHM) in such protection has not been previously investigated. The calculations were performed using the Density Functional Theory, with the M05-2X and M05 functionals, the 6-311+G(d,p) basis set and the solvation model based on density (SMD). 4OHM shows excellent antioxidant activity via radical-trapping, reacting with peroxyl radicals faster than Trolox and melatonin. 4OHM can be moderately efficient as a preventing antioxidant by inhibiting Cu(II). This effect would lower the Cu(I) availability, which is the redox state required for the OH to be formed, via Fenton-like reactions. 4OHM turns off the oxidant effects of copper-ascorbate mixtures. The presence of a phenolic group was identified as the key structural feature in the antioxidant activity of 4OHM. On the other hand, 2OHM does not present a phenolic group, despite its formal name. Its keto tautomer was identified as the most abundant one (~100%). This may explain the relative low antioxidant protection of 2OHM. 4OHM significantly contributes to the overall antioxidant activity exhibited by melatonin, while the effects of 2OHM in this context are predicted to be only minor. This low reactivity might justify the relatively large abundance of 2OHM in biological systems. Hydroxylated melatonin metabolites, such as 4OHM, may play an important role in the protective effects of melatonin against oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Melatonin attenuates lung injury in a hind limb ischemia–reperfusion rat model

    Directory of Open Access Journals (Sweden)

    Hamed Takhtfooladi

    2015-01-01

    Full Text Available Objective: This study evaluated the protective antioxidant effect of melatonin on lung injury as a remote organ after skeletal muscle ischemia–reperfusion in rats. Methods: Thirty male Wistar rats were allocated randomly into three experimental groups: operated with no ischemia (Sham group, ischemia–reperfusion group and ischemia–reperfusion + melatonin group. Hind limb ischemia was induced by clamping the femoral artery. After 2 h ischemia, the clamp was removed and the animal underwent 24 h reperfusion. Rats in the ischemia–reperfusion + melatonin group received melatonin (10 mg/kg i.v., immediately before the clamp was removed. At the end of the trial, animals were euthanized and the lungs were removed for water content determination, histopathological and biochemical studies. Results: In the ischemia–reperfusion + melatonin group, tissues showed less intense histological abnormalities such as neutrophilic infiltration, intra-alveolar hemorrhage and edema compared with the ischemia–reperfusion group. Histopathologically, there was a significant difference (P < 0.05 between the two groups. The lung water content in the ischemia–reperfusion + melatonin group was significantly lower than the ischemia–reperfusion group (P < 0.05. Lung tissue myeloperoxidase (MPO activity and nitric oxide (NO level were significantly (P < 0.05 increased by ischemia–reperfusion. The increase in these parameters was reduced by melatonin.Comparing the ischemia–reperfusion + melatonin group with the sham group, no significant increase in all analyzed aspects of the research was observed. Conclusions: These findings suggest that melatonin has preventive effects in lung tissue injury after transient femoral artery occlusion. Keywords: Melatonin, Ischemia–reperfusion, Lung remote injury, Histopathology, Myeloperoxidase, Nitric oxide

  19. Melatonin: the dark force.

    Science.gov (United States)

    Bergstrom, W H; Hakanson, D O

    1998-01-01

    Although the pineal gland was described 2,300 years ago, its functions remained obscure and productive research was limited until 1958, when Lerner and associates defined melatonin. In 1965 Wurtman and Axelrod advanced the "melatonin hypothesis," according to which the pineal gland acts as a transducer responding to changes in circumambient light by changing its rates of melatonin output. Sites and mechanisms of melatonin action are still poorly understood. Two consistent effects are the induction of sleep and an antigonadotropic influence on reproductive structure and behavior. The former is demonstrable and clinically useful in human subjects; the latter has been shown in birds, rodents, and sheep. Alteration of skin color by the contraction of melanophores was effected by pineal extracts before the discovery of melatonin. This phenomenon, seen in reptiles, amphibians, and fish, has received little recent attention. Areas of greater interest and potential importance include the antimitotic effects of melatonin on some types of tumor cells in culture and the apparent in vivo protection of immunocompetent lymphocytes during chronic stress, which reduces the functional capacity of lymphocytes in control rodents. Clinical application of the antimitotic and immunosupportive properties of melatonin seems likely in the near future. Unfortunately, this innocent molecule has been touted in two recent books and many advertisements as an aphrodisiac, rejuvenator, protector against disease, and general wonder-worker. Because interest in melatonin is high, all physicians can expect questions and may have use for the information provided in this review.

  20. Effect of melatonin on kidney cold ischemic preservation injury

    OpenAIRE

    Aslaner, Arif; Gunal, Omer; Turgut, Hamdi Taner; Celik, Erdal; Yildirim, Umran; Demirci, Rojbin Karakoyun; Gunduz, Umut Riza; Calis, Hasan; Dogan, Sami

    2013-01-01

    Melatonin is a potent free radical scavenger of reactive oxygen species, nitric oxide synthase inhibitor and a well-known antioxidant secreted from pineal gland. This hormone has been reported to protect tissue from oxidative damage. In this study, we aim to investigate the effect of melatonin on kidney cold ischemia time when added to preservation solution. Thirty male Wistar albino rats were divided equally into three groups; Ringer Lactate (RL) solution, University of Wisconsin (UW) soluti...

  1. Melatonin in perioperative medicine: Current perspective

    Directory of Open Access Journals (Sweden)

    Souvik Maitra

    2013-01-01

    Full Text Available Melatonin, a new addition to the armamentarium of anesthesiologist, has some unique properties that are highly desirable in routine peri-operative care. Available clinical data show that preoperative melatonin is as effective as benzodiazepines in reducing preoperative anxiety with minimal action on psychomotor performance and sleep wake cycle. It may be considered as a safe and effective alternative of benzodiazepines as preoperative anxiolytic. It may have opioid sparing effect, may reduce intraocular pressure, and have role in prevention of postoperative delirium. The short-term administration of melatonin is free from significant adverse effects also.

  2. Melatonin attenuates thiocyanate-induced vasoconstriction in aortic rings

    Directory of Open Access Journals (Sweden)

    Alexander M. Prusa

    2017-11-01

    Full Text Available Cigarette smoking not only has a carcinogenic effect but also leads to an increase in arterial blood pressure. Besides its main components, i.e. nicotine, tar, and carbon monoxide, cigarette smoke also contains thiocyanate. Thiocyanate anions (SCN− arise from the detoxification of hydrogen cyanide and its plasma concentrations were found to correlate significantly with cigarette consumption. There is also evidence that atherosclerotic disease progression is much more rapid when serum SCN− levels are increased. Melatonin, a non-toxic indolamine with various physiologic functions, is believed to protect against inflammatory processes and oxidative stress. It has been demonstrated that melatonin serves as free radical scavenger and represents a potent antioxidant. Therefore, it is believed that melatonin with its atheroprotective effects may be useful either as a sole therapy or in conjunction with others. The aim of this study was to quantify the thiocyanate-induced vasomotor response in aortic tissue and further to examine the potential of melatonin in affecting the generated vasoreactivity. Aortic rings of adult male normotensive Wistar rats were cut into 4-mm rings. Following the administration of thiocyanate in various concentrations, vasomotor response of aortic vessel segments was measured. To assess the effect of melatonin on vasomotor activity, organ bath concentrations were modulated from 60 to 360 pM, which corresponds to physiologic plasma up to the levels of patients with regular oral intake of 3 mg of melatonin as a supplement. Thirty-six rat aortic rings were studied. When exposed to thiocyanate, vessel segments revealed vasoconstriction in a concentration-dependent manner. In rings which were preincubated with melatonin at a concentration of 360 pM, a 56.5% reduction of effect size could be achieved (4.09 ± 1.22 mN versus 9.41 ± 1.74 mN, P < 0.0001. Additionally, administration of 360 pM melatonin at a

  3. Melatonin Decreases Glucose Metabolism in Prostate Cancer Cells: A 13C Stable Isotope-Resolved Metabolomic Study.

    Science.gov (United States)

    Hevia, David; Gonzalez-Menendez, Pedro; Fernandez-Fernandez, Mario; Cueto, Sergio; Rodriguez-Gonzalez, Pablo; Garcia-Alonso, Jose I; Mayo, Juan C; Sainz, Rosa M

    2017-07-26

    The pineal neuroindole melatonin exerts an exceptional variety of systemic functions. Some of them are exerted through its specific membrane receptors type 1 and type 2 (MT1 and MT2) while others are mediated by receptor-independent mechanisms. A potential transport of melatonin through facilitative glucose transporters (GLUT/ SLC2A ) was proposed in prostate cancer cells. The prostate cells have a particular metabolism that changes during tumor progression. During the first steps of carcinogenesis, oxidative phosphorylation is reactivated while the switch to the "Warburg effect" only occurs in advanced tumors and in the metastatic stage. Here, we investigated whether melatonin might change prostate cancer cell metabolism. To do so, 13 C stable isotope-resolved metabolomics in androgen sensitive LNCaP and insensitive PC-3 prostate cancer cells were employed. In addition to metabolite 13 C-labeling, ATP/AMP levels, and lactate dehydrogenase or pentose phosphate pathway activity were measured. Melatonin reduces lactate labeling in androgen-sensitive cells and it also lowers 13 C-labeling of tricarboxylic acid cycle metabolites and ATP production. In addition, melatonin reduces lactate 13 C-labeling in androgen insensitive prostate cancer cells. Results demonstrated that melatonin limits glycolysis as well as the tricarboxylic acid cycle and pentose phosphate pathway in prostate cancer cells, suggesting that the reduction of glucose uptake is a major target of the indole in this tumor type.

  4. Melatonin Decreases Glucose Metabolism in Prostate Cancer Cells: A 13C Stable Isotope-Resolved Metabolomic Study

    Science.gov (United States)

    Hevia, David; Gonzalez-Menendez, Pedro; Fernandez-Fernandez, Mario; Cueto, Sergio; Mayo, Juan C.

    2017-01-01

    The pineal neuroindole melatonin exerts an exceptional variety of systemic functions. Some of them are exerted through its specific membrane receptors type 1 and type 2 (MT1 and MT2) while others are mediated by receptor-independent mechanisms. A potential transport of melatonin through facilitative glucose transporters (GLUT/SLC2A) was proposed in prostate cancer cells. The prostate cells have a particular metabolism that changes during tumor progression. During the first steps of carcinogenesis, oxidative phosphorylation is reactivated while the switch to the “Warburg effect” only occurs in advanced tumors and in the metastatic stage. Here, we investigated whether melatonin might change prostate cancer cell metabolism. To do so, 13C stable isotope-resolved metabolomics in androgen sensitive LNCaP and insensitive PC-3 prostate cancer cells were employed. In addition to metabolite 13C-labeling, ATP/AMP levels, and lactate dehydrogenase or pentose phosphate pathway activity were measured. Melatonin reduces lactate labeling in androgen-sensitive cells and it also lowers 13C-labeling of tricarboxylic acid cycle metabolites and ATP production. In addition, melatonin reduces lactate 13C-labeling in androgen insensitive prostate cancer cells. Results demonstrated that melatonin limits glycolysis as well as the tricarboxylic acid cycle and pentose phosphate pathway in prostate cancer cells, suggesting that the reduction of glucose uptake is a major target of the indole in this tumor type. PMID:28933733

  5. Melatonin uses in oncology: breast cancer prevention and reduction of the side effects of chemotherapy and radiation.

    Science.gov (United States)

    Sanchez-Barcelo, Emilio J; Mediavilla, Maria D; Alonso-Gonzalez, Carolina; Reiter, Russel J

    2012-06-01

    The possible oncostatic properties of melatonin on different types of neoplasias have been studied especially in hormone-dependent adenocarcinomas. Despite the promising results of these experimental investigations, the use of melatonin in breast cancer treatment in humans is still uncommon. This article reviews the usefulness of this indoleamine for specific aspects of breast cancer management, particularly in reference to melatonin's antiestrogenic and antioxidant properties: i) treatments oriented to breast cancer prevention, especially when the risk factors are obesity, steroid hormone treatment or chronodisruption by exposure to light at night (LAN); ii) treatment of the side effects associated with chemo- or radiotherapy. The clinical utility of melatonin depends on the appropriate identification of its actions. Because of its SERM (selective estrogen receptor modulators) and SEEM (selective estrogen enzyme modulators) properties, and its virtual absence of contraindications, melatonin could be an excellent adjuvant with the drugs currently used for breast cancer prevention (antiestrogens and antiaromatases). The antioxidant actions also make melatonin a suitable treatment to reduce oxidative stress associated with chemotherapy, especially with anthracyclines, and radiotherapy.

  6. Melatonin Cytotoxicity Is Associated to Warburg Effect Inhibition in Ewing Sarcoma Cells.

    Directory of Open Access Journals (Sweden)

    Ana M Sanchez-Sanchez

    Full Text Available Melatonin kills or inhibits the proliferation of different cancer cell types, and this is associated with an increase or a decrease in reactive oxygen species, respectively. Intracellular oxidants originate mainly from oxidative metabolism, and cancer cells frequently show alterations in this metabolic pathway, such as the Warburg effect (aerobic glycolysis. Thus, we hypothesized that melatonin could also regulate differentially oxidative metabolism in cells where it is cytotoxic (Ewing sarcoma cells and in cells where it inhibits proliferation (chondrosarcoma cells. Ewing sarcoma cells but not chondrosarcoma cells showed a metabolic profile consistent with aerobic glycolysis, i.e. increased glucose uptake, LDH activity, lactate production and HIF-1α activation. Melatonin reversed Ewing sarcoma metabolic profile and this effect was associated with its cytotoxicity. The differential regulation of metabolism by melatonin could explain why the hormone is harmless for a wide spectrum of normal and only a few tumoral cells, while it kills specific tumor cell types.

  7. Pre- and post-natal melatonin administration partially regulates brain oxidative stress but does not improve cognitive or histological alterations in the Ts65Dn mouse model of Down syndrome.

    Science.gov (United States)

    Corrales, Andrea; Parisotto, Eduardo B; Vidal, Verónica; García-Cerro, Susana; Lantigua, Sara; Diego, Marian; Wilhem Filho, Danilo; Sanchez-Barceló, Emilio J; Martínez-Cué, Carmen; Rueda, Noemí

    2017-09-15

    Melatonin administered during adulthood induces beneficial effects on cognition and neuroprotection in the Ts65Dn (TS) mouse model of Down syndrome. Here, we investigated the effects of pre- and post-natal melatonin treatment on behavioral and cognitive abnormalities and on several neuromorphological alterations (hypocellularity, neurogenesis impairment and increased oxidative stress) that appear during the early developmental stages in TS mice. Pregnant TS females were orally treated with melatonin or vehicle from the time of conception until the weaning of the offspring, and the pups continued to receive the treatment from weaning until the age of 5 months. Melatonin administered during the pre- and post-natal periods did not improve the cognitive impairment of TS mice as measured by the Morris Water maze or fear conditioning tests. Histological alterations, such as decreased proliferation (Ki67+ cells) and hippocampal hypocellularity (DAPI+ cells), which are typical in TS mice, were not prevented by melatonin. However, melatonin partially regulated brain oxidative stress by modulating the activity of the primary antioxidant enzymes (superoxide dismutase in the cortex and catalase in the cortex and hippocampus) and slightly decreasing the levels of lipid peroxidation in the hippocampus of TS mice. These results show the inability of melatonin to prevent cognitive impairment in TS mice when it is administered at pre- and post-natal stages. Additionally, our findings suggest that to induce pro-cognitive effects in TS mice during the early stages of development, in addition to attenuating oxidative stress, therapies should aim to improve other altered processes, such as hippocampal neurogenesis and/or hypocellularity. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Melatonin reduces neuronal loss and cytoskeletal deterioration: implications for Psychiatry

    OpenAIRE

    Reiter, Russel J.; Benitez-King, Gloria

    2009-01-01

    This review article summarizes the potential role of circadian rhythmicity and melatonin in psychiatric disorders. The melatonin rhythm, with high blood levels at night and low values during the day, is a reflection of the biological clock, i.e., the suprachiasmatic nucleus (SCN). The SCN receive information about the prevailing light: dark conditions from specialized ganglion cells (only 1-2% of the total ganglion cells) in the retina. These unique cells contain a newly-discovered photopigme...

  9. Sustained delivery of exogenous melatonin influences biomarkers of oxidative stress and total antioxidant capacity in summer-stressed anestrous water buffalo (Bubalus bubalis).

    Science.gov (United States)

    Kumar, Ashok; Mehrotra, S; Singh, G; Narayanan, K; Das, G K; Soni, Y K; Singh, Mahak; Mahla, A S; Srivastava, N; Verma, M R

    2015-06-01

    High ambient temperature during summer in tropical and subtropical countries predisposes water buffaloes (Bubalus bubalis) to develop oxidative stress having antigonadotropic and antisteroidogenic actions. Melatonin is a regulator of seasonal reproduction in photoperiodic species and highly effective antioxidant and free radical scavenger. Therefore, a study was designed to evaluate the effect of sustained-release melatonin on biomarkers of oxidative stress i.e., the serum malondialdehyde (MDA) and nitric oxide (NO), and the total antioxidant capacity (TAC). For the study, postpartum buffaloes diagnosed as summer anestrus (absence of overt signs of estrus, concurrent rectal examination, and RIA for serum progesterone) were grouped as treated (single subcutaneous injection of melatonin at 18 mg/50 kg body weight dissolved in sterilized corn oil as vehicle, n = 20) and untreated (subcutaneous sterilized corn oil, n = 8). Blood sampling for estimation of serum TAC and MDA (mmol/L) and NO (μmol/L) was carried out at 4 days of interval from 8 days before treatment till 28 days after treatment or for the ensuing entire cycle length. Results showed serum TAC concentration was higher in the treatment group with a significant (P stress resulting in the induction of cyclicity in summer-stressed anestrous buffaloes. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes

    International Nuclear Information System (INIS)

    Radogna, Flavia; Paternoster, Laura; De Nicola, Milena; Cerella, Claudia; Ammendola, Sergio; Bedini, Annalida; Tarzia, Giorgio; Aquilano, Katia; Ciriolo, Maria; Ghibelli, Lina

    2009-01-01

    Melatonin is a modified tryptophan with potent biological activity, exerted by stimulation of specific plasma membrane (MT1/MT2) receptors, by lower affinity intracellular enzymatic targets (quinone reductase, calmodulin), or through its strong anti-oxidant ability. Scattered studies also report a perplexing pro-oxidant activity, showing that melatonin is able to stimulate production of intracellular reactive oxygen species (ROS). Here we show that on U937 human monocytes melatonin promotes intracellular ROS in a fast (< 1 min) and transient (up to 5-6 h) way. Melatonin equally elicits its pro-radical effect on a set of normal or tumor leukocytes; intriguingly, ROS production does not lead to oxidative stress, as shown by absence of protein carbonylation, maintenance of free thiols, preservation of viability and regular proliferation rate. ROS production is independent from MT1/MT2 receptor interaction, since a) requires micromolar (as opposed to nanomolar) doses of melatonin; b) is not contrasted by the specific MT1/MT2 antagonist luzindole; c) is not mimicked by a set of MT1/MT2 high affinity melatonin analogues. Instead, chlorpromazine, the calmodulin inhibitor shown to prevent melatonin-calmodulin interaction, also prevents melatonin pro-radical effect, suggesting that the low affinity binding to calmodulin (in the micromolar range) may promote ROS production.

  11. Melatonin has dose-dependent effects on folliculogenesis, oocyte maturation capacity and steroidogenesis

    International Nuclear Information System (INIS)

    Adriaens, I.; Jacquet, P.; Cortvrindt, R.; Janssen, K.; Smitz, J.

    2006-01-01

    Chemo and/or radiotherapy applied to young cancer patients most often have severe effects upon female fertility. Today, few options are available to protect ovarian function in females. However, these options are either ineffective, belong to the field of experimental research or/and are not applicable to all patients. Drugs that could protect the oocyte and its surrounding feeder cells from damage can be of great importance. Melatonin, being an important indirect antioxidant and a powerful direct free radical scavenger could be such a reagent. This paper reports the direct effects of different melatonin concentrations (range: 1 nM to 2 mM) on folliculogenesis and oogenesis of in vitro cultured mouse ovarian follicles. Early secondary mouse follicles were cultured in vitro for 12 days under different melatonin regimes. Every fourth day, survival rates were scored, follicles were morphologically evaluated and medium was collected for steroid analyses. On day 12, in vitro ovulation was induced by hCG/EGF. Eighteen hours later, oocytes were measured, oocyte maturation was evaluated and normality of spindle and chromosomes ascertained. Results obtained in this study indicated that 2 mM melatonin is toxic. One mM negatively influenced oocyte maturation capacity. In the presence of 100 μM melatonin, androstenedione and progesterone were increased whereas estradiol was not influenced. Lower melatonin concentrations had no effect on the evaluated parameters. These data indicate an effect of melatonin on theca cell steroidogenesis. For prophylactic use, a dose of 10 μM could be suitable to reduce oxidative stress in cultured follicles

  12. A review of sleep disorders and melatonin.

    Science.gov (United States)

    Xie, Zizhen; Chen, Fei; Li, William A; Geng, Xiaokun; Li, Changhong; Meng, Xiaomei; Feng, Yan; Liu, Wei; Yu, Fengchun

    2017-06-01

    Sleep disorders are a group of conditions that affect the ability to sleep well on a regular basis and cause significant impairments in social and occupational functions. Although currently approved medications are efficacious, they are far from satisfactory. Benzodiazepines, antidepressants, antihistamines and anxiolytics have the potential for dependence and addiction. Moreover, some of these medications can gradually impair cognition. Melatonin (N-acetyl-5-methoxytryptamine) is an endogenous hormone produced by the pineal gland and released exclusively at night. Exogenous melatonin supplementation is well tolerated and has no obvious short- or long-term adverse effects. Melatonin has been shown to synchronize the circadian rhythms, and improve the onset, duration and quality of sleep. It is centrally involved in anti-oxidation, circadian rhythmicity maintenance, sleep regulation and neuronal survival. This narrative review aims to provide a comprehensive overview of various therapeutic functions of melatonin in insomnia, sleep-related breathing disorders, hypersomnolence, circadian rhythm sleep-wake disorders and parasomnias. Melatonin offers an alternative treatment to the currently available pharmaceutical therapies for sleep disorders with significantly less side effects.

  13. Melatonin reduces cardiac morbidity and markers of myocardial ischemia after elective abdominal aortic aneurism repair

    DEFF Research Database (Denmark)

    Gögenür, Ismail; Kücükakin, Bülent; Panduro Jensen, Leif

    2014-01-01

    The aim was to examine the effect of perioperative melatonin treatment on clinical cardiac morbidity and markers of myocardial ischemia in patients undergoing elective surgery for abdominal aortic aneurism. Reperfusion injury results in increased cardiac morbidity in patients undergoing surgery...... for abdominal aortic aneurisms (AAA). A randomized, placebo-controlled, clinical trial including patients undergoing surgery for AAA was performed. The patients received by infusion over a 2-hr period either, 50 mg melatonin or placebo intra-operatively, and 10 mg melatonin or placebo orally, the first three...... by Holter monitoring. A total of 26 patients received melatonin, while 24 received placebo. A significant reduction in cardiac morbidity was seen in the melatonin-treated patients compared with those given placebo [4% versus 29% (P = 0.02)]. Five patients (19%) who received melatonin had increased Tp...

  14. Melatonin antiproliferative effects require active mitochondrial function in embryonal carcinoma cells

    Science.gov (United States)

    Loureiro, Rute; Magalhães-Novais, Silvia; Mesquita, Katia A.; Baldeiras, Ines; Sousa, Isabel S.; Tavares, Ludgero C.; Barbosa, Ines A.; Oliveira, Paulo J.; Vega-Naredo, Ignacio

    2015-01-01

    Although melatonin oncostatic and cytotoxic effects have been described in different types of cancer cells, the specific mechanisms leading to its antitumoral effects and their metabolic context specificity are still not completely understood. Here, we evaluated the effects of melatonin in P19 embryonal carcinoma stem cells (CSCs) and in their differentiated counterparts, cultured in either high glucose medium or in a galactose (glucose-free) medium which leads to glycolytic suppression and increased mitochondrial metabolism. We found that highly glycolytic P19 CSCs were less susceptible to melatonin antitumoral effects while cell populations relying on oxidative metabolism for ATP production were more affected. The observed antiproliferative action of melatonin was associated with an arrest at S-phase, decreased oxygen consumption, down-regulation of BCL-2 expression and an increase in oxidative stress culminating with caspase-3-independent cell death. Interestingly, the combined treatment of melatonin and dichloroacetate had a synergistic effect in cells grown in the galactose medium and resulted in an inhibitory effect in the highly resistant P19 CSCs. Melatonin appears to exert its antiproliferative activity in P19 carcinoma cells through a mitochondrially-mediated action which in turn allows the amplification of the effects of dichloroacetate, even in cells with a more glycolytic phenotype. PMID:26025920

  15. Melatonin membrane receptor (MT1R) expression and nitro-oxidative stress in testis of golden hamster, Mesocricetus auratus: An age-dependent study.

    Science.gov (United States)

    Mukherjee, Arun; Haldar, Chandana

    2015-09-01

    Age-dependent decline in melatonin level induces nitro-oxidative stress that compromises physiological homeostasis including reproduction. However, less information exist regarding the age-dependent variation in local melatonin (lMel) concentration and MT1R expression in testis and its interaction with testicular steroidogenesis and nitro-oxidative stress in golden hamster, Mesocricetus auratus. Therefore, we evaluated lMel level along with MT1R expression and its possible interaction with steroidogenesis and nitro-oxidative stress in testes of young (6weeks), adult (15weeks) and old (2years) aged hamsters. Further, we injected the old hamsters with melatonin to address whether age-related decline in lMel and MT1R is responsible for the reduction in testicular steroidogenesis and antioxidant status. Increased expression of steroidogenic markers suggests increased testicular steroidogenesis in adult hamsters that declined in old hamsters. An age-dependent elevation in the level of NOX, TBARS, corticosterone and the expression of iNOS and GR with a concomitant decrease in enzyme activities for SOD, CAT, GSH-PX indicate increased nitro-oxidative stress in testes. Data suggest that reproductive senescence in male hamsters might be a consequence of declined lMel concentration with MT1R expression inducing nitro-oxidative stress resulting in diminished testicular steroidogenesis. However, administration of Mel in old-aged hamsters significantly increased steroidogenesis and antioxidant status without a significant variation in lMel concentration and MT1R expression in testes. Therefore, decreased lMel and MT1R might not be the causative factor underlying the age-associated decrease in antioxidant defence and steroidogenesis in testes. In conclusion, Mel induced amelioration of testicular oxidative insult and elevation of steroidogenic activity suggests a potential role of increased nitro-oxidative stress underlying the age-dependent decrease in steroidogenesis. Copyright

  16. Effects of melatonin injection or green-wavelength LED light on the antioxidant system in goldfish (Carassius auratus) during thermal stress.

    Science.gov (United States)

    Jung, Seo Jin; Choi, Young Jae; Kim, Na Na; Choi, Ji Yong; Kim, Bong-Seok; Choi, Cheol Young

    2016-05-01

    We tested the mitigating effects of melatonin injections or irradiation from green-wavelength light-emitting diodes (LEDs) on goldfish (Carassius auratus) exposed to thermal stress (high water temperature, 30 °C). The effects of the two treatments were assessed by measuring the expression and activity levels of the antioxidant enzymes, superoxide dismutase and catalase, plasma hydrogen peroxide, lipid hydroperoxide, and lysozyme. In addition, a comet assay was conducted to confirm that high water temperature damaged nuclear DNA. The expression and activity of the antioxidant enzymes, plasma hydrogen peroxide, and lipid hydroperoxide were significantly higher after exposure to high temperature and were significantly lower in fish that received melatonin or LED light than in those that received no mitigating treatment. Plasma lysozyme was significantly lower after exposure to high temperature and was significantly higher after exposure to melatonin or LED light. The comet assay revealed that thermal stress caused a great deal of damage to nuclear DNA; however, treatment with melatonin or green-wavelength LED light prevented a significant portion of this damage from occurring. These results indicate that, although high temperatures induce oxidative stress and reduce immune system strength in goldfish, both melatonin and green-wavelength LED light inhibit oxidative stress and boost the immune system. LED treatment increased the antioxidant and immune system activity more significantly than did melatonin treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Melatonin and vitamin C exacerbate Cannabis sativa-induced testicular damage when administered separately but ameliorate it when combined in rats.

    Science.gov (United States)

    Alagbonsi, Isiaka A; Olayaki, Luqman A; Salman, Toyin M

    2016-05-01

    The mechanisms involved in the spermatotoxic effect of Cannabis sativa are inconclusive. The involvement of oxidative stress in male factor infertility has been well documented, and the antioxidative potential of melatonin and vitamin C in many oxidative stress conditions has been well reported. This study sought to investigate whether melatonin and vitamin C will ameliorate C. sativa-induced spermatotoxicity or not. Fifty-five (55) male albino rats (250-300 g) were randomly divided in a blinded fashion into five oral treatment groups as follows: group I (control, n=5) received 1 mL/kg of 10% ethanol for 30 days; groups IIa, IIb, and IIc (n=5 each) received 2 mg/kg C. sativa for 20, 30, and 40 days, respectively; groups IIIa, IIIb, and IIIc (n=5 each) received a combination of 2 mg/kg C. sativa and 4 mg/kg melatonin for 20, 30, and 40 days, respectively; groups IVa, IVb, and IVc (n=5 each) received a combination of 2 mg/kg C. sativa and 1.25 g/kg vitamin C for 20, 30, and 40 days, respectively; group V (n=5) received a combination of 2 mg/kg C. sativa, 4 mg/kg melatonin, and 1.25 g/kg vitamin C for 30 days. Cannabis treatments reduced the Johnsen score, sperm count, motility, morphology, paired testicular/body weight ratio, and total antioxidant capacity, but increased lactate dehydrogenase activity. In addition, supplementation of cannabis-treated rats with either melatonin or vitamin C exacerbates the effect of cannabis on those parameters, whereas combination of melatonin and vitamin C reversed the trend to the level comparable to control. This study further showed the gonadotoxic effect of C. sativa, which could be mediated by oxidative stress. It also showed that melatonin and vitamin C exacerbate C. sativa-induced testicular damage when administered separately but ameliorate it when combined in rats.

  18. Melatonin

    DEFF Research Database (Denmark)

    Manchester, Lucien C; Coto-Montes, Ana; Boga, Jose Antonio

    2015-01-01

    Melatonin is remarkably functionally diverse with actions as a free radical scavenger and antioxidant, circadian rhythm regulator, anti-inflammatory and immunoregulating molecule, and as an oncostatic agent. We hypothesize that the initial and primary function of melatonin in photosynthetic...... cyanobacteria, which appeared on Earth 3.5-3.2 billion years ago, was as an antioxidant. The evolution of melatonin as an antioxidant by this organism was necessary as photosynthesis is associated with the generation of toxic-free radicals. The other secondary functions of melatonin came about much later...... in evolution. We also surmise that mitochondria and chloroplasts may be primary sites of melatonin synthesis in all eukaryotic cells that possess these organelles. This prediction is made on the basis that mitochondria and chloroplasts of eukaryotes developed from purple nonsulfur bacteria (which also produce...

  19. Peripheral Reproductive Organ Health and Melatonin: Ready for Prime Time

    Directory of Open Access Journals (Sweden)

    Russel J. Reiter

    2013-04-01

    Full Text Available Melatonin has a wide variety of beneficial actions at the level of the gonads and their adnexa. Some actions are mediated via its classic membrane melatonin receptors while others seem to be receptor-independent. This review summarizes many of the published reports which confirm that melatonin, which is produced in the ovary, aids in advancing follicular maturation and preserving the integrity of the ovum prior to and at the time of ovulation. Likewise, when ova are collected for in vitro fertilization-embryo transfer, treating them with melatonin improves implantation and pregnancy rates. Melatonin synthesis as well as its receptors have also been identified in the placenta. In this organ, melatonin seems to be of particular importance for the maintenance of the optimal turnover of cells in the villous trophoblast via its ability to regulate apoptosis. For male gametes, melatonin has also proven useful in protecting them from oxidative damage and preserving their viability. Incubation of ejaculated animal sperm improves their motility and prolongs their viability. For human sperm as well, melatonin is also a valuable agent for protecting them from free radical damage. In general, the direct actions of melatonin on the gonads and adnexa of mammals indicate it is an important agent for maintaining optimal reproductive physiology.

  20. Peripheral Reproductive Organ Health and Melatonin: Ready for Prime Time

    Science.gov (United States)

    Reiter, Russel J.; Rosales-Corral, Sergio A.; Manchester, Lucien C.; Tan, Dun-Xian

    2013-01-01

    Melatonin has a wide variety of beneficial actions at the level of the gonads and their adnexa. Some actions are mediated via its classic membrane melatonin receptors while others seem to be receptor-independent. This review summarizes many of the published reports which confirm that melatonin, which is produced in the ovary, aids in advancing follicular maturation and preserving the integrity of the ovum prior to and at the time of ovulation. Likewise, when ova are collected for in vitro fertilization-embryo transfer, treating them with melatonin improves implantation and pregnancy rates. Melatonin synthesis as well as its receptors have also been identified in the placenta. In this organ, melatonin seems to be of particular importance for the maintenance of the optimal turnover of cells in the villous trophoblast via its ability to regulate apoptosis. For male gametes, melatonin has also proven useful in protecting them from oxidative damage and preserving their viability. Incubation of ejaculated animal sperm improves their motility and prolongs their viability. For human sperm as well, melatonin is also a valuable agent for protecting them from free radical damage. In general, the direct actions of melatonin on the gonads and adnexa of mammals indicate it is an important agent for maintaining optimal reproductive physiology. PMID:23549263

  1. Maternal and placental melatonin: actions and implication for successful pregnancies.

    Science.gov (United States)

    Sagrillo-Fagundes, L; Soliman, A; Vaillancourt, C

    2014-06-01

    Melatonin is one of the main sources of mitochondrial protection and its protective effects are equal or even better if compared with several consecrated antioxidants. Furthermore, the activation of specific melatonin receptors triggers several cellular pathways that improve the oxidoreduction and inflammatory cellular state. The discovery of the melatoninergic machinery in placental cells was the first step to understand the effects of this indoleamine during pregnancy. In critical points of pregnancy, melatonin has been pointed as a protagonist and its beneficial effects have been shown as essential for the control of trophoblastic function and development. On the contrary of the plasmatic melatonin (produced in pineal gland), placental melatonin does not vary according to the circadian cycle and acts as an autocrine, paracrine, intracrine, and endocrine hormone. The important effects of melatonin in placenta have been demonstrated in the physiopathology of pre-eclampsia with alterations in the levels of melatonin and in the expression of its receptors and synthetizing enzymes. Some authors suggested melatonin as a biomarker of pre-eclampsia and as a possible treatment for this disease and other obstetric pathologies associated with placental defect and increases in oxidative stress. This review will approach the beneficial effects of melatonin on placenta homeostasis and consequently on pregnancy and fetal health.

  2. Melatonin in Pregnancy: Effects on Brain Development and CNS Programming Disorders.

    Science.gov (United States)

    Sagrillo-Fagundes, Lucas; Assunção Salustiano, Eugênia Maria; Yen, Philippe Wong; Soliman, Ahmed; Vaillancourt, Cathy

    2016-01-01

    Melatonin is an important neuroprotective factor and its receptors are expressed in the fetal brain. During normal pregnancy, maternal melatonin level increases progressively until term and is highly transferred to the fetus, with an important role in brain formation and differentiation. Maternal melatonin provides the first circadian signal to the fetus. This indolamine is also produced de novo and plays a protective role in the human placenta. In pregnancy disorders, both maternal and placental melatonin levels are decreased. Alteration in maternal melatonin level has been associated with disrupted brain programming with long-term effects. Melatonin has strong antioxidant protective effects directly and indirectly via the activation of its receptors. The fetal brain is highly susceptible to oxygenation variation and oxidative stress that can lead to neuronal development disruption. Based on that, several approaches have been tested as a treatment in case of pregnancy disorders and melatonin, through its neuroprotective effect, has been recently accepted against fetal brain injury. This review provides an overview about the protective effects of melatonin during pregnancy and on fetal brain development.

  3. Melatonin Secretion Is Increased in Children with Severe Traumatic Brain Injury.

    Science.gov (United States)

    Marseglia, Lucia; D'Angelo, Gabriella; Manti, Sara; Rulli, Immacolata; Salvo, Vincenzo; Buonocore, Giuseppe; Reiter, Russel J; Gitto, Eloisa

    2017-05-13

    Traumatic brain injury (TBI) is a leading cause of death and disability in children. Oxidative stress plays a significant role in brain damage and melatonin exhibits both direct and indirect antioxidant effects. The primary aim of the present study was to evaluate serum melatonin levels in children with severe TBI in comparison to critically ill children admitted to the Pediatric Intensive Care Unit for conditions other than TBI. Twenty-four children were evaluated, equally divided into severe TBI and no-TBI. Blood samples for serum melatonin analysis were collected at 22:00, 01:00, 03:00, 05:00, 08:00, and 12:00. Mean serum melatonin peaks in children of the TBI group were higher compared to the values of no-TBI critically ill children (495 ± 102 vs. 294 ± 119 pg/mL, p = 0.0002). Furthermore, the difference was even more significant in comparison to values reported in literature for healthy age-matched children (495 ± 102 vs. 197 ± 71 pg/mL, p melatonin levels dramatically increase in children after severe TBI. This elevation is likely to represent a response to oxidative stress and/or inflammation due to severe head injury.

  4. Exogenous daytime melatonin modulates response of adolescent mice in a repeated unpredictable stress paradigm.

    Science.gov (United States)

    Onaolapo, Adejoke Yetunde; Adebayo, Ajibola Nurudeen; Onaolapo, Olakunle James

    2017-02-01

    The immediate and short-term behavioural and physiological implications of exposure to stressful scenarios in the adolescent period are largely unknown; however, increases in occurrence of stress-related physiological and psychological disorders during puberty highlight the need to study substances that may modulate stress reactivity during a crucial stage of maturation. Seven groups of mice (12-15 g each) were administered distilled water (DW) (non-stressed and stressed controls), sertraline (10 mg/kg), diazepam (2 mg/kg) or one of three doses of melatonin (5, 10 and 15 mg/kg). Mice were exposed to 30 min of chronic mild stress (25 min of cage shaking, cage tilting, handling and 5 min of forced swimming in tepid warm water at 25 °C, in a random order) after administration of DW or drugs, daily for 21 days. Behavioural assessments were conducted on day 1 and day 21 (after which mice were sacrificed, blood taken for estimation of corticosterone levels and brain homogenates used for estimation of antioxidant activities). Administration of melatonin resulted in an increase in horizontal locomotion and self-grooming, while rearing showed a time-dependent increase, compared to non-stress and stress controls. Working memory improved with increasing doses of melatonin (compared to controls and diazepam); in comparison to setraline however, working memory decreased. A dose-related anxiolytic effect is seen when melatonin is compared to non-stressed and stressed controls. Melatonin administration reduced the systemic/oxidant response to repeated stress. Administration of melatonin in repeatedly stressed adolescent mice was associated with improved central excitation, enhancement of working memory, anxiolysis and reduced systemic response to stress.

  5. Relationships between Salivary Melatonin Levels, Quality of Sleep, and Stress in Young Japanese Females

    Directory of Open Access Journals (Sweden)

    Yasuhiro Ito

    2013-01-01

    Full Text Available A decrease in the quality of sleep is believed to cause anxiety and worsen depression. Comparisons of salivary melatonin levels with different factors including quality of sleep, state and trait anxieties, and depression, were conducted to examine whether there is a relationship between melatonin, presumably associated with sleep, and psychological stress. The saliva of healthy young females was collected during the daytime and before they went to bed at night (when they were awake and resting in a sitting position, and salivary melatonin levels were measured. The quality of sleep was scored using the Pittsburgh Sleep Quality Index (PSQI–-a questionnaire method. State and trait anxieties, and depression were scored using other questionnaire methods: the State-Trait Anxiety Inventory (STAI and Self-Rating Depression Scale (SDS, respectively. The following findings were obtained: (1 Salivary melatonin levels measured during the daytime and before going to bed were higher in females with a high depression score, compared to those with a low score, and there was a correlation between the depression scores and salivary melatonin levels measured at night; and (2 salivary melatonin levels measured before going to bed at night (in a sitting position were higher in females with a high state anxiety score, suggesting a correlation between state anxiety scores and salivary melatonin levels during the night. Both depression and a sense of anxiety are forms of psychological stress. Therefore, it is assumed that, when a person is under psychological stress, the action of melatonin as a ligand on its receptor is reduced. Meaning psychological stress may induce oxidative stress in the body. On the other hand, no correlation was noted between the quality of sleep and salivary melatonin levels during the night, presumably because saliva was collected when the subjects were awake and sitting, rather than sleeping.

  6. Endophytic Bacterium Pseudomonas fluorescens RG11 May Transform Tryptophan to Melatonin and Promote Endogenous Melatonin Levels in the Roots of Four Grape Cultivars.

    Science.gov (United States)

    Ma, Yaner; Jiao, Jian; Fan, Xiucai; Sun, Haisheng; Zhang, Ying; Jiang, Jianfu; Liu, Chonghuai

    2016-01-01

    Endophytes have been verified to synthesize melatonin in vitro and promote abiotic stress-induced production of endogenous melatonin in grape ( Vitis vinifera L.) roots. This study aimed to further characterize the biotransformation of tryptophan to melatonin in the endophytic bacterium Pseudomonas fluorescens RG11 and to investigate its capacity for enhancing endogenous melatonin levels in the roots of different grape cultivars. Using ultra performance liquid chromatography-tandem mass spectrometry combined with 15N double-labeled L -tryptophan as the precursor for melatonin, we detected isotope-labeled 5-hydroxytryptophan, serotonin, N -acetylserotonin, and melatonin, but tryptamine was not detected during the in vitro incubation of P. fluorescens RG11. Furthermore, the production capacity of these four compounds peaked during the exponential growth phase. RG11 colonization increased the endogenous levels of 5-hydroxytryptophan, N -acetylserotonin, and melatonin, but reduced those of tryptamine and serotonin, in the roots of the Red Globe grape cultivar under salt stress conditions. Quantitative real-time PCR revealed that RG11 reduced the transcription of grapevine tryptophan decarboxylase and serotonin N -acetyltransferase genes when compared to the un-inoculated control. These results correlated with decreased reactive oxygen species bursts and cell damage, which were alleviated by RG11 colonization under salt stress conditions. Additionally, RG11 promoted plant growth and enhanced the levels of endogenous melatonin in different grape cultivars. Intraspecific variation in the levels of melatonin precursors was found among four grape cultivars, and the associated root crude extracts appeared to significantly induce RG11 melatonin biosynthesis in vitro . Overall, this study provides useful information that enhances the existing knowledge of a potential melatonin synthesis pathway in rhizobacteria, and it reveals plant-rhizobacterium interactions that affect

  7. Evaluating the Oxidative Stress in Inflammation: Role of Melatonin

    Directory of Open Access Journals (Sweden)

    Aroha Sánchez

    2015-07-01

    Full Text Available Oxygen is used by eukaryotic cells for metabolic transformations and energy production in mitochondria. Under physiological conditions, there is a constant endogenous production of intermediates of reactive oxygen (ROI and nitrogen species (RNI that interact as signaling molecules in physiological mechanisms. When these species are not eliminated by antioxidants or are produced in excess, oxidative stress arises. Oxidative stress can damage proteins, lipids, DNA, and organelles. It is a process directly linked to inflammation; in fact, inflammatory cells secrete a large number of cytokines and chemokines responsible for the production of ROI and RNI in phagocytic and nonphagocytic cells through the activation of protein kinases signaling. Currently, there is a wide variety of diseases capable of producing inflammatory manifestations. While, in the short term, most of these diseases are not fatal they have a major impact on life quality. Since there is a direct relationship between chronic inflammation and many emerging disorders like cancer, oral diseases, kidney diseases, fibromyalgia, gastrointestinal chronic diseases or rheumatics diseases, the aim of this review is to describe the use and role of melatonin, a hormone secreted by the pineal gland, that works directly and indirectly as a free radical scavenger, like a potent antioxidant.

  8. Melatonin, mitochondria, and the metabolic syndrome.

    Science.gov (United States)

    Cardinali, Daniel P; Vigo, Daniel E

    2017-11-01

    A number of risk factors for cardiovascular disease including hyperinsulinemia, glucose intolerance, dyslipidemia, obesity, and elevated blood pressure are collectively known as metabolic syndrome (MS). Since mitochondrial activity is modulated by the availability of energy in cells, the disruption of key regulators of metabolism in MS not only affects the activity of mitochondria but also their dynamics and turnover. Therefore, a link of MS with mitochondrial dysfunction has been suspected since long. As a chronobiotic/cytoprotective agent, melatonin has a special place in prevention and treatment of MS. Melatonin levels are reduced in diseases associated with insulin resistance like MS. Melatonin improves sleep efficiency and has antioxidant and anti-inflammatory properties, partly for its role as a metabolic regulator and mitochondrial protector. We discuss in the present review the several cytoprotective melatonin actions that attenuate inflammatory responses in MS. The clinical data that support the potential therapeutical value of melatonin in human MS are reviewed.

  9. Protective role of melatonin on oxidative stress status and RNA expression in cerebral cortex and cerebellum of AbetaPP transgenic mice after chronic exposure to aluminum.

    Science.gov (United States)

    García, Tania; Esparza, José L; Giralt, Montserrat; Romeu, Marta; Domingo, José L; Gómez, Mercedes

    2010-06-01

    Aluminum (Al) has been associated with pro-oxidant effects, as well as with various serious neurodegenerative diseases such as Alzheimer's disease (AD). On the other hand, melatonin (Mel) is a known antioxidant, which can directly act as free radical scavenger, or indirectly by inducing the expression of some genes linked to the antioxidant defense. In this study, 5-month-old AssPP female transgenic (Tg2576) (Tg) and wild-type mice were fed with Al lactate supplemented in the diet (1 mg Al/g diet). Concurrently, animals received oral Mel (10 mg/kg) until the end of the study at 11 months of age. Four treatment groups were included for both Tg and wild-type mice: control, Al only, Mel only, and Al + Mel. At the end of the treatment period, cortex and cerebellum were removed and processed to examine the following oxidative stress markers: reduced glutathione, oxidized glutathione, cytosolic Cu-Zn superoxide dismutase (SOD1), glutathione reductase (GR), glutathione peroxidase, catalase (CAT), and thiobarbituric acid reactive substances. Moreover, the gene expression of SOD1, GR, and CAT was evaluated by real-time RT-PCR. The biochemical changes observed in cortex and cerebellum suggest that Al acted as a pro-oxidant agent. Melatonin exerted an antioxidant action by increasing the mRNA levels of the enzymes SOD1, CAT, and GR evaluated in presence of Al and Mel, independently on the animal model.

  10. MELATONIN: POTENTIAL UTILITY FOR IMPROVING PUBLIC HEALTH

    Directory of Open Access Journals (Sweden)

    Russel J REITER; Fatih GULTEKIN; Luis J FLORES; Ma Pilar TERRON; Dun-Xian TAN

    2006-04-01

    Full Text Available This review summarizes the beneficial actions of melatonin in various experimental conditions/diseases and identifies where the use of melatonin may be helpful in improving public health. The nightly use of melatonin supplements by humans often improves their sleep and helps correct the circadian dyssynchronization associated with “jet lag”. Additionally, melatonin has been found effective in curtailing the growth of a variety of experimental cancers. Mechanistically, this is achieved by melatonin’s ability to limit fatty acid uptake, especially linoleic acid, by tumor cells. Fatty acids are growth factors for many tumors. Additionally, melatonin inhibits the elevated telomerase activity of tumor cells thus making them more fragile and vulnerable to chemotherapies. Melatonin also may inhibit angiogenesis in tumors by suppressing endothelin-1 production and the indole interferes with the stimulatory action of steroids on hormone-responsive tumors. As an ubiquitously-acting antioxidant, melatonin reduces cardiac damage during ischemia/reperfusion (I/R injury (heart attack and during I/R to the brain (stroke. Melatonin also limits the toxicity of amyloid  peptide and of neurofibrillary tangles, two of the cardinal signs of Alzheimer’s disease. Collectively, these data suggest supplementation with melatonin, whose endogenous levels decrease with age, may improve the quality of life in the aged and, as a consequence, be beneficial for public health generally. [TAF Prev Med Bull 2006; 5(2.000: 131-158

  11. Dietary melatonin alters uterine artery hemodynamics in pregnant Holstein heifers.

    Science.gov (United States)

    Brockus, K E; Hart, C G; Gilfeather, C L; Fleming, B O; Lemley, C O

    2016-04-01

    The objective was to examine uterine artery hemodynamics and maternal serum profiles in pregnant heifers supplemented with dietary melatonin (MEL) or no supplementation (CON). In addition, melatonin receptor-mediated responses in steroid metabolism were examined using a bovine endometrial epithelial culture system. Twenty singleton pregnant Holstein heifers were supplemented with 20 mg of melatonin (n = 10) or no melatonin supplementation (control; n = 10) from days 190 to 262 of gestation. Maternal measurements were recorded on days 180 (baseline), 210, 240, and 262 of gestation. Total uterine blood flow was increased by 25% in the MEL-treated heifers compared with the CON. Concentrations of progesterone were decreased in MEL vs CON heifers. Total serum antioxidant capacity was increased by 43% in MEL-treated heifers when compared with CON. Activity of cytochrome P450 1A, 2C, and superoxide dismutase was increased in bovine endometrial epithelial cells treated with melatonin, whereas the melatonin receptor antagonist, luzindole, negated the increase in cytochrome P450 2C activity. Moreover, estradiol or progesterone treatment altered bovine uterine melatonin receptor expression, which could potentiate the melatonin-mediated responses during late gestation. The observed increase in total uterine blood flow during melatonin supplementation could be related to its antioxidant properties. Compromised pregnancies are typically accompanied by increased oxidative stress; therefore, melatonin could serve as a therapeutic supplementation strategy. This could lead to further fetal programming implications in conjunction with offspring growth and development postnatally. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics

    Science.gov (United States)

    Tan, Dun-Xian; Manchester, Lucien C.; Qin, Lilan; Reiter, Russel J.

    2016-01-01

    Melatonin has been speculated to be mainly synthesized by mitochondria. This speculation is supported by the recent discovery that aralkylamine N-acetyltransferase/serotonin N-acetyltransferase (AANAT/SNAT) is localized in mitochondria of oocytes and the isolated mitochondria generate melatonin. We have also speculated that melatonin is a mitochondria-targeted antioxidant. It accumulates in mitochondria with high concentration against a concentration gradient. This is probably achieved by an active transportation via mitochondrial melatonin transporter(s). Melatonin protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting the mitochondrial permeability transition pore (MPTP), and activating uncoupling proteins (UCPs). Thus, melatonin maintains the optimal mitochondrial membrane potential and preserves mitochondrial functions. In addition, mitochondrial biogenesis and dynamics is also regulated by melatonin. In most cases, melatonin reduces mitochondrial fission and elevates their fusion. Mitochondrial dynamics exhibit an oscillatory pattern which matches the melatonin circadian secretory rhythm in pinealeocytes and probably in other cells. Recently, melatonin has been found to promote mitophagy and improve homeostasis of mitochondria. PMID:27999288

  13. Melatonin modulates inflammatory response and suppresses burn-induced apoptotic injury

    Directory of Open Access Journals (Sweden)

    Ganka Bekyarova

    2017-04-01

    Full Text Available Introduction: Melatonin, the principal secretory product of the pineal gland, has antioxidant functions as a potent antioxidant and free radical scavenger. Objectives of the present study were to investigate the effect of melatonin against inflammatory response, burn-induced oxidative damage and apoptotic changes of rat liver. Methods: Melatonin (10 mg /kg, i.p. was applied immediately after 30% of total body surface area (TBSA burns on male Wistar rats. The level of malondialdehyde (MDA as a marker of an oxidative stress was quantified by thiobarbituric method. Hepatic TNFα and IL-10 as inflammatory markers were assayed by ELISA. Using light immunоchistochemistry the expression Ki67 proliferative marker was investigated. Results: Hepatic MDA and TNF-α levels increased significantly following burns without any change in IL-10 level. Intracellular vacuolization, hepatic cell degeneration and apoptosis occurred in rats after burns. The number of apoptotic cells was increased whereas no significant increase in Ki67 proliferative marker. Melatonin decreased the MDA and TNF-α content and increased the IL-10 level. It also limited the degenerative changes and formation of apoptotic cells in rat liver but did not increase expression of the marker of proliferation. In conclusion, our data show that melatonin relieves burn-induced hepatic damage associated with modulation of the proinflammatory/anti-inflammatory balance, mitigation of lipid peroxidation and hepatic apoptosis.

  14. Photoperiodic modulation of local melatonin synthesis and its role in regulation of thymic homeostasis in Funambulus pennanti.

    Science.gov (United States)

    Gupta, Sameer; Haldar, Chandana

    2016-12-01

    The effect of photo-neuroendocrine system on the thymic (immune) functions is mediated by gonadal steroid and the pineal hormone melatonin. The present study explored the effect of photoperiod on the thymic melatonergic system and its role in protection of thymic T-cells from the testosterone induced seasonal oxidative stress and apoptosis. Exposure to long day-length (LD) was noted to decrease local (thymic) melatonin content and induce oxidative stress and apoptosis in the thymus. Increased peripheral level of testosterone upregulated the androgen receptor expression and, consequently reduced proliferation response of the thymocytes. Short day conditions (SD) however, reversed the effect of LD on the thymic physiology. Low level of testosterone was concomitant with diminished nitro-oxidative stress and decreased expression of redox sensitive factors (NF-κB, p53 and Bax/Bcl-2 ratio) in the thymus. SD retarded activation of caspase-3 resulting in procaspase-3 accumulation. Further, in vitro treatment of thymocytes with AR antagonist flutamide impaired the sensitivity of thymocytes to androgen and reversed the deleterious effects of testosterone on the proliferative and apoptotic responses of thymocytes. Therefore, it can be suggested that thymus derived melatonin protects thymic T-cells from testosterone induced seasonal oxidative stress, apoptosis and also acts as a potent paracrine factor for maintenance of redox status to ensure thymocyte survival. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Melatonin Attenuates Memory Impairment Induced by Klotho Gene Deficiency Via Interactive Signaling Between MT2 Receptor, ERK, and Nrf2-Related Antioxidant Potential

    Science.gov (United States)

    Shin, Eun-Joo; Chung, Yoon Hee; Le, Hoang-Lan Thi; Jeong, Ji Hoon; Dang, Duy-Khanh; Nam, Yunsung; Wie, Myung Bok; Nah, Seung-Yeol; Nabeshima, Yo-Ichi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2015-01-01

    Background: We demonstrated that oxidative stress plays a crucial role in cognitive impairment in klotho mutant mice, a genetic model of aging. Since down-regulation of melatonin due to aging is well documented, we used this genetic model to determine whether the antioxidant property of melatonin affects memory impairment. Methods: First, we examined the effects of melatonin on hippocampal oxidative parameters and the glutathione/oxidized glutathione (GSH/GSSG) ratio and memory dysfunction of klotho mutant mice. Second, we investigated whether a specific melatonin receptor is involved in the melatonin-mediated pharmacological response by application with melatonin receptor antagonists. Third, we examined phospho-extracellular-signal-regulated kinase (ERK) expression, nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, Nrf2 DNA binding activity, and glutamate-cysteine ligase (GCL) mRNA expression. Finally, we examined effects of the ERK inhibitor SL327 in response to antioxidant efficacy and memory enhancement mediated by melatonin. Results: Treatment with melatonin resulted in significant attenuations of oxidative damage, a decrease in the GSH/GSSG ratio, and a significant amelioration of memory impairment in this aging model. These effects of melatonin were significantly counteracted by the selective MT2 receptor antagonist 4-P-PDOT. Importantly, 4-P-PDOT or SL327 also counteracted melatonin-mediated attenuation in response to the decreases in phospho-ERK expression, Nrf2 nuclear translocation, Nrf2 DNA-binding activity, and GCL mRNA expression in the hippocampi of klotho mutant mice. SL327 also counteracted the up-regulation of the GSH/GSSG ratio and the memory enhancement mediated by melatonin in klotho mutant mice. Conclusions: Melatonin attenuates oxidative stress and the associated memory impairment induced by klotho deficiency via signaling interaction between the MT2 receptor and ERK- and Nrf2-related antioxidant potential. PMID

  16. Potential adverse effects of antenatal melatonin as a treatment for intrauterine growth restriction: findings in pregnant sheep.

    Science.gov (United States)

    González-Candia, Alejandro; Veliz, Marcelino; Araya, Claudio; Quezada, Sebastian; Ebensperger, Germán; Serón-Ferré, María; Reyes, Roberto V; Llanos, Aníbal J; Herrera, Emilio A

    2016-08-01

    Intrauterine growth restriction is a condition in which the fetus has a birthweight and/or length Intrauterine growth restriction can be associated with various causes, among which is low uteroplacental perfusion and chronic hypoxia during gestation. Often, intrauterine growth-restricted fetuses have increased oxidative stress; therefore, agents that decrease oxidative stress and increase utero, placental, and umbilical perfusion have been proposed as a beneficial therapeutic strategy. In this scenario, melatonin acts as an umbilical vasodilator and a potent antioxidant that has not been evaluated in pregnancies under chronic hypoxia that induce fetal growth restriction. However, this neurohormone has been proposed as a pharmacologic therapy for complicated pregnancies. The aim of this study was to determine the effects of prenatal administration of melatonin during the last trimester of pregnancy on the biometry of the growth-restricted lambs because of developmental hypoxia. Further, we aimed to determine melatonin and cortisol levels and oxidative stress markers in plasma of pregnant ewes during the treatment. High-altitude pregnant sheep received either vehicle (n = 5; 5 mL 1.4% ethanol) or melatonin (n = 7; 10 mg/kg(-1)day(-1) in 5 mL 1.4% ethanol) daily during the last one-third of gestation. Maternal plasma levels of melatonin, cortisol, antioxidant capacity, and oxidative stress were determined along treatment. At birth, neonates were examined, weighed, and measured (biparietal diameter, abdominal diameter, and crown-rump length). Antenatal treatment with melatonin markedly decreased neonatal biometry and weight at birth. Additionally, melatonin treatment increased the length of gestation by 7.5% and shifted the time of delivery. Furthermore, the prenatal treatment doubled plasma levels of melatonin and cortisol and significantly improved the antioxidant capacity of the pregnant ewes. Our findings indicate that antenatal melatonin induces further

  17. A radiobiological review on melatonin. A novel radioprotector

    International Nuclear Information System (INIS)

    Shirazi Hosseinidokht, A.

    2007-01-01

    Complete text of publication follows. For the sake of improvement in radiation therapy, radiobiology plays a crucial role through explaining observed phenomena, and suggesting improvements to existing therapies. Due to the damaging effects of ionizing radiation, radiobiologists have long been interested in identifying novel, nontoxic, effective, and convenient compounds to protect humans against radiation induced normal tissue injuries. Melatonin (N-acetyl-5-methoxytryptamine), the chief secretory product of the pineal gland in the brain, has been documented to ameliorate the oxidative injuries due to ionizing radiation. This article reviews different features that make melatonin a potentially useful radioprotector. Moreover, based on radiobiological models we hypothesize that melatonin may postpone the saturation of repair enzymes which leads to repairing more induced damage by repair system and more importantly allows the use of higher doses of radiation during radiotherapy to get a better therapeutic ratio. The implications of the accumulated observations suggest by virtue of melatonin's radioprotective and anticancer effects; it is time to use it as a radioprotector both for radiation workers and patients suffering from cancer either alone for cancer inhibition or in combination with traditional radiotherapy for getting a favorable efficacy/toxicity ratio during the treatment. Although compelling evidence suggests that melatonin may be effective for a variety of disorders, the optimum dose of melatonin for human radioprotection is yet to be determined by further research. We propose that, in the future melatonin improve therapeutic ratio in radiation oncology.

  18. Melatonin and schistosomal antigens ameliorate the anti-oxidative and biochemical response to Schistosoma mansoni infection in hamster

    Directory of Open Access Journals (Sweden)

    Omema SALAH

    2009-04-01

    Full Text Available The present study was designed to investigate the potential protective effect of melatonin as an antioxidant separately or in combination with antigens (cercarial; CAP or soluble worm; SWAP against Schistosoma mansoni infection in hamsters. Each hamster was sensitized with an initial immunization of 0.6 ml of the extracted antigen (30 μg protein/mL. After four days, a second injection of 0.4 mL was given (20 μg protein/mL. Then, each hamster was exposed to 260 ± 20 S.mansoni cercariae followed with melatonin treatment (3.5 mg/kg for thirty days from the 1st day of post infection. Levels of lipid peroxidation (LPO products, catalase (CAT activity, hepatic glutathione (GSH and biochemical changes in the liver and kidneys functions were investigated. The results revealed a high significant increasing of LPO and decreasing of CAT and GSH in liver of infected hamsters. Biochemical observations showed severe damage in the liver enzyme activities and increasing cholesterol level in infected animals. Melatonin co-treatment with antigen to the infected-hamster attenuated the increase of LPO and restored the activity of CAT and levels of hepatic GSH. Also, the biochemical damages in the liver and kidneys functions were reduced. The present study suggests that melatonin may be useful in combating free radical-induced damage due to infection toxicity. The immunization with previous antigens resulted in a remarkable improvement on the liver enzyme activities, which were increased after infection. Thus, vaccination of hamsters with antigens (both CAP and SWAP and melatonin treatment has more potent effect on the enhancement of antioxidant and biochemical of S. mansoni infected-hamster than each treatment separately. Immunization of the hamster with SWAP followed by melatonin was the best way among the other regime treatments to improve the biochemical and antioxidant parameters of the infected-hamsters

  19. Melatonin and Ischemic Stroke: Mechanistic Roles and Action

    Directory of Open Access Journals (Sweden)

    Syed Suhail Andrabi

    2015-01-01

    Full Text Available Stroke is one of the most devastating neurological disabilities and brain’s vulnerability towards it proves to be fatal and socio-economic loss of millions of people worldwide. Ischemic stroke remains at the center stage of it, because of its prevalence amongst the several other types attacking the brain. The various cascades of events that have been associated with stroke involve oxidative stress, excitotoxicity, mitochondrial dysfunction, upregulation of Ca2+ level, and so forth. Melatonin is a neurohormone secreted by pineal and extra pineal tissues responsible for various physiological processes like sleep and mood behaviour. Melatonin has been implicated in various neurological diseases because of its antioxidative, antiapoptotic, and anti-inflammatory properties. We have previously reviewed the neuroprotective effect of melatonin in various models of brain injury like traumatic brain injury and spinal cord injury. In this review, we have put together the various causes and consequence of stroke and protective role of melatonin in ischemic stroke.

  20. Melatonin and Ischemic Stroke: Mechanistic Roles and Action.

    Science.gov (United States)

    Andrabi, Syed Suhail; Parvez, Suhel; Tabassum, Heena

    2015-01-01

    Stroke is one of the most devastating neurological disabilities and brain's vulnerability towards it proves to be fatal and socio-economic loss of millions of people worldwide. Ischemic stroke remains at the center stage of it, because of its prevalence amongst the several other types attacking the brain. The various cascades of events that have been associated with stroke involve oxidative stress, excitotoxicity, mitochondrial dysfunction, upregulation of Ca(2+) level, and so forth. Melatonin is a neurohormone secreted by pineal and extra pineal tissues responsible for various physiological processes like sleep and mood behaviour. Melatonin has been implicated in various neurological diseases because of its antioxidative, antiapoptotic, and anti-inflammatory properties. We have previously reviewed the neuroprotective effect of melatonin in various models of brain injury like traumatic brain injury and spinal cord injury. In this review, we have put together the various causes and consequence of stroke and protective role of melatonin in ischemic stroke.

  1. Melatonin improves spatial navigation memory in male diabetic rats

    Directory of Open Access Journals (Sweden)

    Farrin Babaei-Balderlou

    2012-09-01

    Full Text Available The aim of the present study was to evaluate the effect of melatonin as an antioxidant on spatial navigation memory in male diabetic rats. Thirty-two male white Wistar rats weighing 200 ± 20 g were divided into four groups, randomly: control, melatonin, diabetic and melatonin-treated diabetic. Experimental diabetes was induced by intraperitoneal injection of 50 mg kg-1 streptozotocin. Melatonin was injected (10 mg kg-1 day-1, ip for 2 weeks after 21 days of diabetes induction. At the end of administration period, the spatial navigation memory of rats was evaluated by cross-arm maze. In this study lipid peroxidation levels, glutathione-peroxidase and catalase activities were measured in hippocampus. Diabetes caused to significant decrease in alternation percent in the cross-arm maze, as a spatial memory index, compared to the control group (p < 0.05, whereas administration of melatonin prevented the spatial memory deficit in diabetic rats. Also melatonin injection significantly increased the spatial memory in intact animals compared to the control group (p < 0.05. Assessment of hippocampus homogenates indicated an increase in lipid peroxidation levels and a decrease in GSH-Px and CAT activities in the diabetic group compared to the control animals, while melatonin administration ameliorated these indices in diabetic rats. In conclusion, diabetes induction leads to debilitation of spatial navigation memory in rats, and the melatonin treatment improves the memory presumably through the reduction of oxidative stress in hippocampus of diabetic rats.

  2. MELATONIN DAN MELATONIN RECEPTOR AGONIST SEBAGAI PENANGANAN INSOMNIA PRIMER KRONIS

    Directory of Open Access Journals (Sweden)

    Ni Luh Putu Ayu Maha Iswari

    2013-04-01

    Full Text Available Melatonin is a hormone that has an important role in the mechanism of sleep. Hypnotic effects of melatonin and melatonin receptor agonist are mediated via MT1 and MT2 receptors, especially in circadian rhythm pacemaker, suprachiasmatic nucleus, which is worked on the hypothalamic sleep switch. This mechanism is quite different with the GABAergic drugs such as benzodiazepine. Agonist melatonin triggers the initiation of sleep and normalize circadian rhythms so that makes it easier to maintain sleep. The main disadvantage of melatonin in helping sleep maintenance on primary insomnia is that the half life is very short. The solution to this problem is the use of prolonged-release melatonin and melatonin receptor agonist agents such as ramelteon. Melatoninergic agonist does not cause withdrawal effects, dependence, as well as cognitive and psychomotor disorders as often happens on the use of benzodiazepine.  

  3. Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas.

    Science.gov (United States)

    Reiter, Russel J; Rosales-Corral, Sergio; Tan, Dun Xian; Jou, Mei Jie; Galano, Annia; Xu, Bing

    2017-11-01

    Melatonin is an ancient antioxidant. After its initial development in bacteria, it has been retained throughout evolution such that it may be or may have been present in every species that have existed. Even though it has been maintained throughout evolution during the diversification of species, melatonin's chemical structure has never changed; thus, the melatonin present in currently living humans is identical to that present in cyanobacteria that have existed on Earth for billions of years. Melatonin in the systemic circulation of mammals quickly disappears from the blood presumably due to its uptake by cells, particularly when they are under high oxidative stress conditions. The measurement of the subcellular distribution of melatonin has shown that the concentration of this indole in the mitochondria greatly exceeds that in the blood. Melatonin presumably enters mitochondria through oligopeptide transporters, PEPT1, and PEPT2. Thus, melatonin is specifically targeted to the mitochondria where it seems to function as an apex antioxidant. In addition to being taken up from the circulation, melatonin may be produced in the mitochondria as well. During evolution, mitochondria likely originated when melatonin-forming bacteria were engulfed as food by ancestral prokaryotes. Over time, engulfed bacteria evolved into mitochondria; this is known as the endosymbiotic theory of the origin of mitochondria. When they did so, the mitochondria retained the ability to synthesize melatonin. Thus, melatonin is not only taken up by mitochondria but these organelles, in addition to many other functions, also probably produce melatonin as well. Melatonin's high concentrations and multiple actions as an antioxidant provide potent antioxidant protection to these organelles which are exposed to abundant free radicals.

  4. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function.

    Science.gov (United States)

    Mendivil-Perez, Miguel; Soto-Mercado, Viviana; Guerra-Librero, Ana; Fernandez-Gil, Beatriz I; Florido, Javier; Shen, Ying-Qiang; Tejada, Miguel A; Capilla-Gonzalez, Vivian; Rusanova, Iryna; Garcia-Verdugo, José M; Acuña-Castroviejo, Darío; López, Luis Carlos; Velez-Pardo, Carlos; Jimenez-Del-Rio, Marlene; Ferrer, José M; Escames, Germaine

    2017-09-01

    Neural stem cells (NSCs) are regarded as a promising therapeutic approach to protecting and restoring damaged neurons in neurodegenerative diseases (NDs) such as Parkinson's disease and Alzheimer's disease (PD and AD, respectively). However, new research suggests that NSC differentiation is required to make this strategy effective. Several studies have demonstrated that melatonin increases mature neuronal markers, which reflects NSC differentiation into neurons. Nevertheless, the possible involvement of mitochondria in the effects of melatonin during NSC differentiation has not yet been fully established. We therefore tested the impact of melatonin on NSC proliferation and differentiation in an attempt to determine whether these actions depend on modulating mitochondrial activity. We measured proliferation and differentiation markers, mitochondrial structural and functional parameters as well as oxidative stress indicators and also evaluated cell transplant engraftment. This enabled us to show that melatonin (25 μM) induces NSC differentiation into oligodendrocytes and neurons. These effects depend on increased mitochondrial mass/DNA/complexes, mitochondrial respiration, and membrane potential as well as ATP synthesis in NSCs. It is also interesting to note that melatonin prevented oxidative stress caused by high levels of mitochondrial activity. Finally, we found that melatonin enriches NSC engraftment in the ND mouse model following transplantation. We concluded that a combined therapy involving transplantation of NSCs pretreated with pharmacological doses of melatonin could efficiently restore neuronal cell populations in PD and AD mouse models depending on mitochondrial activity promotion. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Melatonin-producing endophytic bacteria from grapevine roots promote the abiotic stress-induced production of endogenous melatonin in their hosts

    Directory of Open Access Journals (Sweden)

    Jian Jiao

    2016-09-01

    Full Text Available Endophytes form symbiotic relationships with plants and constitute an important source of phytohormones and bioactive secondary metabolites for their hosts. To date, most studies of endophytes have focused on the influence of these microorganisms on plant growth and physiology and their role in plant defenses against biotic and abiotic stressors; however, to the best of our knowledge, the ability of endophytes to produce melatonin has not been reported. In the present study, we isolated and identified root-dwelling bacteria from three grapevine varieties and found that, when cultured under laboratory conditions, some of the bacteria strains secreted melatonin and tryptophan-ethyl ester. The endophytic bacterium Bacillus amyloliquefaciens SB-9 exhibited the highest level of in vitro melatonin secretion and also produced three intermediates of the melatonin biosynthesis pathway: 5-hydroxytryptophan, serotonin, and N-acetylserotonin. After B. amyloliquefaciens SB-9 colonization, the plantlets exhibited increased plant growth. Additionally, we found that, in grapevine plantlets exposed to salt or drought stress, colonization by B. amyloliquefaciens SB-9 increased the upregulation of melatonin synthesis, as well as that of its intermediates, but reduced the upregulation of grapevine tryptophan decaboxylase genes (VvTDCs and a serotonin N-acetyltransferase gene (VvSNAT transcription, when compared to the un-inoculated control. Colonization by B. amyloliquefaciens SB-9 was also able to counteract the adverse effects of salt- and drought-induced stress by reducing the production of malondialdehyde and reactive oxygen species (H2O2 and O2− in roots. Therefore, our findings demonstrate the occurrence of melatonin biosynthesis in endophytic bacteria and provide evidence for a novel form of communication between beneficial endophytes and host plants via melatonin.

  6. Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy.

    Science.gov (United States)

    Richter, Hans G; Hansell, Jeremy A; Raut, Shruti; Giussani, Dino A

    2009-05-01

    Melatonin participates in circadian, seasonal and reproductive physiology. Melatonin also acts as a potent endogenous antioxidant by scavenging free radicals and upregulating antioxidant pathways. The placenta expresses melatonin receptors and melatonin protects against oxidative damage induced in rat placenta by ischemia-reperfusion. One of the most common complications in pregnancy is a reduction in fetal nutrient delivery, which is known to promote oxidative stress. However, whether melatonin protects placental function and fetal development in undernourished pregnancy is unknown. Here, we investigated the effects of maternal treatment with melatonin on placental efficiency, fetal growth, birth weight and protein expression of placental oxidative stress markers in undernourished pregnancy. On day 15 of pregnancy, rats were divided into control and undernourished pregnancy (35% reduction in food intake), with and without melatonin treatment (5 microg/mL drinking water). On day 20 of gestation, fetal biometry was carried out, the placenta was weighed and subsequently analyzed by Western blot for xanthine oxidase, heat shock protein (HSP) 27 and 70, catalase, manganese superoxide dismutase (Mn-SOD) and glutathione peroxidase 1 (GPx-1). A separate cohort was allowed to deliver to assess effects on birth weight. Maternal undernutrition led to a fall in placental efficiency, disproportionate intrauterine growth retardation and a reduction in birth weight. Maternal treatment with melatonin in undernourished pregnancy improved placental efficiency and restored birth weight, and it increased the expression of placental Mn-SOD and catalase. The data show that in pregnancy complicated by undernutrition, melatonin may improve placental efficiency and birth weight by upregulating placental antioxidant enzymes.

  7. Melatonin mitigates thioacetamide-induced hepatic fibrosis via antioxidant activity and modulation of proinflammatory cytokines and fibrogenic genes.

    Science.gov (United States)

    Lebda, Mohamed A; Sadek, Kadry M; Abouzed, Tarek K; Tohamy, Hossam G; El-Sayed, Yasser S

    2018-01-01

    The potential antifibrotic effects of melatonin against induced hepatic fibrosis were explored. Rats were allocated into four groups: placebo; thioacetamide (TAA) (200mg/kg bwt, i.p twice weekly for two months); melatonin (5mg/kgbwt, i.p daily for a week before TAA and continued for an additional two months); and melatonin plus TAA. Hepatic fibrotic changes were evaluated biochemically and histopathologically. Hepatic oxidative/antioxidative indices were assessed. The expression of hepatic proinflammatory cytokines (tumor necrosis factor-α, and interleukin-1β), fibrogenic-related genes (transforming growth factor-1β, collagen I, collagen, III, laminin, and autotaxin) and an antioxidant-related gene (thioredoxin-1) were detected by qRT-PCR. In fibrotic rats, melatonin lowered serum aspartate aminotransferase, alanine aminotransferase, and autotaxin activities, bilirubin, hepatic hydroxyproline and plasma ammonia levels. Melatonin displayed hepatoprotective and antifibrotic potential as indicated by mild hydropic degeneration of some hepatocytes and mild fibroplasia. In addition, TAA induced the depletion of glutathione, glutathione s-transferase, glutathione peroxidase, superoxide dismutase, catalase, and paraoxonase-1 (PON-1), while inducing the accumulation of malondialdehyde, protein carbonyl (C=O) and nitric oxide (NO), and DNA fragmentation. These effects were restored by melatonin pretreatment. Furthermore, melatonin markedly attenuated the expression of proinflammatory cytokines and fibrogenic genes via the upregulation of thioredoxin-1 mRNA transcripts. Melatonin exhibits potent anti-inflammatory, antioxidant and fibrosuppressive activities against TAA-induced hepatic fibrogenesis via the suppression of oxidative stress, DNA damage, proinflammatory cytokines and fibrogenic gene transcripts. In addition, we demonstrate that the antifibrotic activity of melatonin is mediated by the induction of thioredoxin-1 with attenuation of autotaxin expressions

  8. Melatonin improve the sperm quality in forced swimming test induced oxidative stress in nandrolone treated Wistar rats.

    Science.gov (United States)

    Minaii, Bagher; Moayeri, Ardeshir; Shokri, Saeed; Habibi Roudkenar, Mehryar; Golmohammadi, Taghi; Malek, Fatemeh; Barbarestani, Mohammad

    2014-01-01

    This study investigates the effects of melatonin on the sperm quality and testis weight after the combination of swimming exercise and nandrolone decanoate (DECA). Two groups of male Wistar rats were treated for eight weeks as follows; group A consist of CO (control), Sham, N (DECA), S (swimming) and NS (DECA plus swimming); and group B: Sham M (sham melatonin), M (melatonin), MN (melatonin plus DECA), MS (melatonin plus swimming), MNS (melatonin, DECA plus swimming). The motility of sperm was significantly improved in melatonin groups in comparison to N, S and NS groups (P≤0.05).  The left testes weight was decreased in N, NS and MNS groups, and the right testes weight was decreased in N,S,NS, MS and MNS groups in compare with the control group. This study concluded that melatonin probably could improve the sperm motility and sex organs weight after the combination of DECA and exercise.

  9. The analgesic effects of exogenous melatonin in humans.

    Science.gov (United States)

    Andersen, Lars Peter Holst

    2016-10-01

    The hormone, melatonin is produced with circadian rhythm by the pineal gland in humans. The melatonin rhythm provides an endogenous synchronizer, modulating e.g. blood pressure, body temperature, cortisol rhythm, sleep-awake-cycle, immune function and anti-oxidative defence. Interestingly, a number of experimental animal studies demonstrate significant dose-dependent anti-nociceptive effects of exogenous melatonin. Similarly, recent experimental- and clinical studies in humans indicate significant analgesic effects. In study I, we systematically reviewed all randomized studies investigating clinical effects of perioperative melatonin. Meta-analyses demonstrated significant analgesic and anxiolytic effects of melatonin in surgical patients, equating reductions of 20 mm and 19 mm, respectively on a VAS, compared with placebo. Profound heterogeneity between the included studies was, however, present. In study II, we aimed to investigate the analgesic, anti-hyperalgesic and anti-inflammatory effects of exogenous melatonin in a validated human inflammatory pain model, the human burn model. The study was performed as a randomized, double blind placebo-controlled crossover study. Primary outcomes were pain during the burn injury and areas of secondary hyperalgesia. No significant effects of exogenous melatonin were observed with respect to primary or secondary outcomes, compared to placebo. Study III and IV estimated the pharmacokinetic variables of exogenous melatonin. Oral melatonin demonstrated a t max value of 41 minutes. Bioavailability of oral melatonin was only 3%. Elimination t 1/2 were approximately 45 minutes following both oral and intravenous administration, respectively. High-dose intravenous melatonin was not associated with increased sedation, in terms of simple reaction times, compared to placebo. Similarly, no other adverse effects were reported. In Study V, we aimed to re-analyse data obtained from a randomized analgesic drug trial by a selection of

  10. Melatonin prevents postovulatory oocyte aging and promotes subsequent embryonic development in the pig.

    Science.gov (United States)

    Wang, Tao; Gao, Ying-Ying; Chen, Li; Nie, Zheng-Wen; Cheng, Wei; Liu, Xiaoyan; Schatten, Heide; Zhang, Xia; Miao, Yi-Liang

    2017-06-26

    Oxidative stress is known as a major contributing factor involved in oocyte aging, which negatively affects oocyte quality and development after fertilization. Melatonin is an effective free radical scavenger and its metabolites AFMK and AMK are powerful detoxifiers that eliminate free radicals. In this study, we used porcine oocytes to test the hypothesis that melatonin could scavenge free radicals produced during oocyte aging, thereby maintaining oocyte quality. We compared reactive oxygen species levels, apoptosis levels, mitochondrial membrane potential ratios, total glutathione contents and expression levels in fresh, aged and melatonin-treated aged porcine oocytes and observed the percentage of blastocyst formation following parthenogenetic activation. We found that melatonin could effectively maintain the morphology of oocytes observed in control oocytes, alleviate oxidative stress, markedly decrease early apoptosis levels, retard the decline of mitochondrial membrane potential and significantly promote subsequent embryonic development in oocytes aged for 24 hr in vitro . These results strongly suggest that melatonin can prevent postovulatory oocyte aging and promote subsequent embryonic development in the pig, which might find practical applications to control oocyte aging in other mammalian species including humans to maintain the quality of human oocytes when performing clinical assisted reproductive technology.

  11. Nanomolar simultaneous determination of tryptophan and melatonin by a new ionic liquid carbon paste electrode modified with SnO2-Co3O4@rGO nanocomposite.

    Science.gov (United States)

    Zeinali, Homa; Bagheri, Hasan; Monsef-Khoshhesab, Zahra; Khoshsafar, Hosein; Hajian, Ali

    2017-02-01

    This work describes the development of a new sensor for simultaneous determination of tryptophan and melatonin. The proposed sensor was an ionic liquid carbon paste electrode modified with reduced graphene oxides decorated with SnO 2 -Co 3 O 4 nanoparticles. The voltammetric oxidation of the analytes by the proposed sensor confirmed that the electrooxidation process undergoes a two-electron/one-proton reaction for melatonin and a two-electron/two-proton reaction for tryptophan in diffusion-controlled processes. Moreover, based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for individual and simultaneous determination of melatonin and tryptophan in the aqueous solutions. Under the optimized experimental conditions, a linear response obtained in the range of 0.02 to 6.00μmolL -1 with detection limits of 4.1 and 3.2nmolL -1 for melatonin and tryptophan, respectively. The prepared sensor possessed accurate and rapid response toward melatonin and tryptophan with a good sensitivity, selectivity, stability, and repeatability. Finally, the applicability of the proposed sensor was verified by evaluation of melatonin and tryptophan in various real samples including human serum and tablet samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Protective effects of melatonin on long-term administration of fluoxetine in rats.

    Science.gov (United States)

    Khaksar, Majid; Oryan, Ahmad; Sayyari, Mansour; Rezabakhsh, Aysa; Rahbarghazi, Reza

    2017-10-02

    The degree and consequence of tissue injury are highly regarded during long-term exposure to selective antidepressant fluoxetine. Melatonin has been shown to palliate different lesions by scavenging free radicals, but its role in the reduction of the fluoxetine-induced injuries has been little known. Thirty-six mature male Wistar rats were randomly assigned into control and experimental groups. The experimental rats were included as following; 24mg/kg/bw fluoxetine for 4 weeks; 1mg/kg/bw melatonin for 4 weeks; fluoxetine+1-week melatonin, fluoxetine+2-week melatonin and fluoxetine+4-week melatonin. In the current experiment, we investigated weight gain, hematological and biochemical parameters, pathological injuries and oxidative status. We noted the positive effect of melatonin in weight loss of fluoxetine-treated rats (pfluoxetine were reversed by melatonin (pfluoxetine (pfluoxetine in inducing leukopenia, thrombocytopenia and hypochromic and macrocytic anemia which was blunted by melatonin. Both RBCs and platelets indices were also corrected. Rats received melatonin in combination with fluoxetine showed a reduction in the severity of degeneration and inflammatory changes in different tissues, brain, heart, liver, lungs, testes and kidneys as compared to the fluoxetine group. Therefore, melatonin fundamentally reversed the side effects of fluoxetine in the rat model which is comparable to human medicine. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Melatonin modulates rat myotube-acetylcholine receptors by inhibiting calmodulin.

    Science.gov (United States)

    de Almeida-Paula, Lidiana Duarte; Costa-Lotufo, Leticia V; Silva Ferreira, Zulma; Monteiro, Amanda Elisa G; Isoldi, Mauro Cesar; Godinho, Rosely O; Markus, Regina P

    2005-11-21

    Melatonin, the pineal gland hormone, modulates alpha-bungarotoxin sensitive nicotinic acetylcholine receptors in sympathetic nerve terminals, cerebellum and chick retina imposing a diurnal variation in functional responses [Markus, R.P., Zago, W.M., Carneiro, R.C., 1996. Melatonin modulation of presynaptic nicotinic acetylcholine receptors in the rat vas deferens. J. Pharmacol. Exp. Ther. 279, 18-22; Markus, R.P., Santos, J.M., Zago, W., Reno, L.A., 2003. Melatonin nocturnal surge modulates nicotinic receptors and nicotine-induced [3HI] glutamate release in rat cerebellum slices. J. Pharmacol. Exp. Ther. 305, 525-530; Sampaio, L.F.S., Hamassaki-Britto, D.E., Markus, R.P., 2005. Influence of melatonin on the development of functional nicotinic acetylcholine receptors in cultured chick retinal cells. Braz. J. Med. Biol. Res. 38, 603-613]. Here we show that in rat myotubes forskolin and melatonin reduced the number of nicotinic acetylcholine receptors expressed in plasma membrane. In addition, these cells expressed melatonin MT1 receptors, which are known to be coupled to G(i)-protein. However, the pharmacological profile of melatonin analogs regarding the reduction in cyclic AMP accumulation and number of nicotinic acetylcholine receptors did not point to a mechanism mediated by activation of G(i)-protein coupled receptors. On the other hand, calmidazolium, a classical inhibitor of calmodulin, reduced in a similar manner both effects. Considering that one isoform of adenylyl cyclase present in rat myotubes is regulated by Ca2+/calmodulin, we propose that melatonin modulates the number of nicotinic acetylcholine receptors via reduction in cyclic AMP accumulation.

  14. [Melatonin secretion in women of advanced reproductive age].

    Science.gov (United States)

    Ermolenko, K S; Rapoport, S I; Solov'eva, A V

    2013-01-01

    The patient's age is a key factor determining success of in vitro fertilization. The ovarian reserve and oocyte quality are known to decrease with age. Much attention has been given recently to the role of epiphysis and its hormone, melatonin, in synchronization of daily and seasonal biorhythms in anti-stress protection and neuroregulation of reproductive processes. The aim of our work was to study melatonin levels in infertile women of reproductive age. We also measured sex hormones, anti-Mullerian hormone, FSH, and LH in blood and melatonin sulfate in urine at 8 points (RIA). Women of advanced reproductive age showed markedly reduced melatonin secretion due to functional disorders in the hypothalamic-pituitary-gonadal axis. Results of the study suggest the necessity of prescription of exogenous melatonin to the patients included in assisted reproduction programs for the improvement of their efficacy.

  15. Evaluation of radio-protective effect of melatonin on whole body irradiation induced liver tissue damage.

    Science.gov (United States)

    Shirazi, Alireza; Mihandoost, Ehsan; Ghobadi, Ghazale; Mohseni, Mehran; Ghazi-Khansari, Mahmoud

    2013-01-01

    Ionizing radiation interacts with biological systems to induce excessive fluxes of free radicals that attack various cellular components. Melatonin has been shown to be a direct free radical scavenger and indirect antioxidant via its stimulatory actions on the antioxidant system.The aim of this study was to evaluate the antioxidant role of melatonin against radiation-induced oxidative injury to the rat liver after whole body irradiation. In this experimental study,thirty-two rats were divided into four groups. Group 1 was the control group, group 2 only received melatonin (30 mg/kg on the first day and 30 mg/kg on the following days), group 3 only received whole body gamma irradiation of 10 Gy, and group 4 received 30 mg/kg melatonin 30 minutes prior to radiation plus whole body irradiation of 10 Gy plus 30 mg/kg melatonin daily through intraperitoneal (IP) injection for three days after irradiation. Three days after irradiation, all rats were sacrificed and their livers were excised to measure the biochemical parameters malondialdehyde (MDA) and glutathione (GSH). Each data point represents mean ± standard error on the mean (SEM) of at least eight animals per group. A one-way analysis of variance (ANOVA) was performed to compare different groups, followed by Tukey's multiple comparison tests (p<0.05). The results demonstrated that whole body irradiation induced liver tissue damage by increasing MDA levels and decreasing GSH levels. Hepatic MDA levels in irradiated rats that were treated with melatonin (30 mg/kg) were significantly decreased, while GSH levels were significantly increased, when compared to either of the control groups or the melatonin only group. The data suggest that administration of melatonin before and after irradiation may reduce liver damage caused by gamma irradiation.

  16. Melatonin suppresses markers of inflammation and oxidative damage in a human daytime endotoxemia model

    DEFF Research Database (Denmark)

    Alamili, Mahdi; Bendtzen, Klaus; Lykkesfeldt, Jens

    2014-01-01

    Melatonin used as an exogenous drug has been documented to have potent antioxidant and anti-inflammatory effects in animal model. We aimed to examine the effect of melatonin in an experimental human sepsis model....

  17. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Dubbels, R.; Klenke, E.; Schnakenberg, E.; Ehlers, C.; Schloot, W.; Reiter, R.J.; Goebel, A.; Schiware, H.W.

    1995-01-01

    Melatonin, the chief hormone of the pineal gland in vertebrates, is widely distributed in the animal kingdom. Among many functions, melatonin synchronizes circadian and circannual rhythms, stimulates immune function, may increase life span, inhibits growth of cancer cells in vitro and cancer progression and promotion in vivo, and was recently shown to be a potent hydroxyl radical scavenger and antioxidant. Hydroxyl radicals are highly toxic by-products of oxygen metabolism that damage cellular DNA and other macromolecules. Herein we report that melatonin, in varying concentrations, is also found in a variety of plants. Melatonin concentrations, measured in nine different plants by radioimmunoassay, ranged from 0 to 862 pg melatonin/mg protein. The presence of melatonin was verified by gas chromatography/mass spectrometry. Our findings suggest that the consumption of plant materials that contain high levels of melatonin could alter blood melatonin levels of the indole as well as provide protection of macromolecules against oxidative damage. (au) 30 refs

  18. Melatonin redirects carbohydrates metabolism during sugar starvation in plant cells.

    Science.gov (United States)

    Kobylińska, Agnieszka; Borek, Sławomir; Posmyk, Małgorzata M

    2018-05-01

    Recent studies have shown that melatonin is an important molecule in plant physiology. It seems that the most important is that melatonin efficacy eliminates oxidative stress (direct and indirect antioxidant) and moreover induce plant stress reaction and switch on different defence strategies (preventively and interventively actions). In this report, the impact of exogenous melatonin on carbohydrate metabolism in Nicotiana tabacum L. line Bright Yellow 2 (BY-2) suspension cells during sugar starvation was examined. We analysed starch concentration, α-amylase and PEPCK activity as well as proteolytic activity in culture media. It has been shown that BY-2 cell treatment with 200 nM of melatonin improved viability of sugar-starved cells. It was correlated with higher starch content and phosphoenolpyruvate carboxykinase (PEPCK) activity. The obtained results revealed that exogenous melatonin under specific conditions (stress) can play regulatory role in sugar metabolism, and it may modulate carbohydrate concentration in etiolated BY-2 cells. Moreover, our results confirmed the hypothesis that if the starch is synthesised even in sugar-starved cells, it is highly probable that melatonin shifts the BY-2 cell metabolism on gluconeogenesis pathway and allows for synthesis of carbohydrates from nonsugar precursors, that is amino acids. These points to another defence strategy that was induced by exogenous melatonin applied in plants to overcome adverse environmental conditions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Changes in plasma melatonin levels and pineal organ melatonin synthesis following acclimation of rainbow trout (Oncorhynchus mykiss) to different water salinities.

    Science.gov (United States)

    López-Patiño, Marcos A; Rodríguez-Illamola, Arnau; Gesto, Manuel; Soengas, José L; Míguez, Jesús M

    2011-03-15

    Melatonin has been suggested to play a role in fish osmoregulation, and in salmonids has been related to the timing of adaptive mechanisms during smolting. It has been described that acclimation to different environmental salinities alters levels of circulating melatonin in a number of fish species, including rainbow trout. However, nothing is known regarding salinity effects on melatonin synthesis in the pineal organ, which is the main source of rhythmically produced and secreted melatonin in blood. In the present study we have evaluated, in rainbow trout, the effects of acclimation to different salinities on day and night plasma melatonin values and pineal organ melatonin synthesis. Groups of freshwater (FW)-adapted rainbow trout were placed in tanks with four different levels of water salinity (FW, 6, 12, 18 p.p.t.; parts per thousand) and maintained for 6 h or 5 days. Melatonin content in plasma and pineal organs, as well as the pineal content of serotonin (5-HT) and its main oxidative metabolite (5-hydroxyindole-3-acetic acid; 5-HIAA) were measured by high performance liquid chromatography. In addition, day-night changes in pineal organ arylalkylamine N-acetyltransferase (AANAT2) activity and aanat2 gene expression were studied. Plasma osmolalities were found to be higher in rainbow trout exposed to all salinity levels compared with the control FW groups. A salinity-dependent increase in melatonin content was found in both plasma and pineal organs. This effect was observed during the night, and was related to an increase in aanat2 mRNA abundance and AANAT2 enzyme activity, both of which also occurred during the day. Also, the levels of indoles (5-HT, 5-HIAA) in the pineal organ were negatively affected by increasing water salinity, which seems to be related to the higher recruitment of 5-HT as a substrate for the increased melatonin synthesis. A stimulatory effect of salinity on pineal aanat2 mRNA expression was also identified. These results indicate that

  20. Melatonin prevents experimental preterm labor and increases offspring survival.

    Science.gov (United States)

    Domínguez Rubio, Ana P; Sordelli, Micaela S; Salazar, Ana I; Aisemberg, Julieta; Bariani, María V; Cella, Maximiliano; Rosenstein, Ruth E; Franchi, Ana M

    2014-03-01

    Preterm delivery is the leading cause of neonatal mortality and contributes to delayed physical and cognitive development in children. At present, there is no efficient therapy to prevent preterm labor. A large body of evidence suggests that intra-amniotic infections may be a significant and potentially preventable cause of preterm birth. This work assessed the effect of melatonin in a murine model of inflammation-associated preterm delivery which mimics central features of preterm infection in humans. For this purpose, preterm labor was induced in BALB/c mice by intraperitoneal injections of bacterial lipopolysaccharide (LPS) at 10.00 hr (10 μg LPS) and 13.00 hr (20 μg LPS) on day 15 of pregnancy. On day 14 of pregnancy, a pellet of melatonin (25 mg) had been subcutaneously implanted into a group of animals. In the absence of melatonin, a 100% incidence of preterm birth was observed in LPS-treated animals, and the fetuses showed widespread damage. By comparison, treatment with melatonin prevented preterm birth in 50% of the cases, and all pups from melatonin-treated females were born alive and their body weight did not differ from control animals. Melatonin significantly prevented the LPS-induced rises in uterine prostaglandin (PG) E2 , PGF2α, and cyclooxygenase-2 protein levels. In addition, melatonin prevented the LPS-induced increase in uterine nitric oxide (NO) production, inducible NO synthase protein, and tumor necrosis factor-alpha (TNFα) levels. Collectively, our results suggest that melatonin could be a new therapeutic tool to prevent preterm labor and to increase offspring survival. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Study on the influence of Sempervivum tectorum and Melatonin on Glutathion protective effects in rats blood exposed to Aluminum sulphate

    Directory of Open Access Journals (Sweden)

    Corina Gravila

    2014-05-01

    Full Text Available The present study was carried out to investigate the influence of Sempervivum tectorum aqueous extract and melatonin on reduced glutathione (GSH protective effect in Wistar albino rat blood exposed to aluminium sulphate- Al2(SO43. The rats were divided in one control group (C and 7 experimental groups (E. The control group received tap water. The experimental rats were feed the following way: E1 group – aluminum sulphate, daily, for 3 months; : E2 group – Sempervivum tectorum, daily, for 3 months; : E3 group – melatonin, daily, for 3 months; : E4 group – aluminum sulphate with Sempervivum tectorum, daily, for 3 months; : E5 group – aluminum sulphate with melatonin, daily, for 3 months; E6 group – aluminum sulphate, daily, for 3 months, and thereafter with Sempervivum tectorum for 1 month; E7 group – aluminum sulphate, daily, for 3 month, and thereafter with melatonin for 1 month. This study showed that Aluminum toxicity induced lower GSH. The oxidative stress caused by aluminum, given individual, is more pronounced than in the case in which aluminum is administered simultaneously with Sempervivum tectorum or melatonin. Decreasing GSH value is very small if Sempervivum tectorum or melatonin is given for one month, three months after the administration of aluminum. Effect induced by melatonin is more favorable than that of Sempervivum tectorum.

  2. Correlation among cytokines, bronchopulmonary dysplasia and modality of ventilation in preterm newborns: improvement with melatonin treatment.

    Science.gov (United States)

    Gitto, Eloisa; Reiter, Russel J; Sabatino, Giuseppe; Buonocore, Giuseppe; Romeo, Carmelo; Gitto, Placido; Buggé, Concetta; Trimarchi, Giuseppe; Barberi, Ignazio

    2005-10-01

    Improved survival because of advances in neonatal care has resulted in an increased number of infants at risk for chronic lung disease. Even though the etiology of lung injury is multifactorial, recent animal and clinical data indicate that pulmonary damage depends in large part on the ventilatory strategies used. Ventilator-associated lung injury was believed to result from the use of high pressure, thus, the term barotraumas. This trauma is believed to involve free-radical damage. Oxidant injury is a serious cause of lung injury. In the present study, 110 newborns with respiratory distress syndrome were studied; 55 were treated with melatonin and the other 55 with placebo. All the subjects were mechanically ventilated with or without guaranteed volume. Proinflammatory cytokines [interleukin (IL)-6, IL-8 and tumor necrosis factor (TNF)-alpha] were measured in tracheobronchial aspirate and the clinical outcome was evaluated. Melatonin treatment reduced the proinflammatory cytokines and improved the clinical outcome. The beneficial action of melatonin presumably related to its antioxidative actions.

  3. Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology.

    Science.gov (United States)

    Reiter, Russel J; Tan, Dun Xian; Korkmaz, Ahmet; Rosales-Corral, Sergio A

    2014-01-01

    Research within the last decade has shown melatonin to have previously-unsuspected beneficial actions on the peripheral reproductive organs. Likewise, numerous investigations have documented that stable circadian rhythms are also helpful in maintaining reproductive health. The relationship of melatonin and circadian rhythmicity to maternal and fetal health is summarized in this review. Databases were searched for the related published English literature up to 15 May 2013. The search terms used in various combinations included melatonin, circadian rhythms, biological clock, suprachiasmatic nucleus, ovary, pregnancy, uterus, placenta, fetus, pre-eclampsia, intrauterine growth restriction, ischemia-reperfusion, chronodisruption, antioxidants, oxidative stress and free radicals. The results of the studies uncovered are summarized herein. Both melatonin and circadian rhythms impact reproduction, especially during pregnancy. Melatonin is a multifaceted molecule with direct free radical scavenging and indirect antioxidant activities. Melatonin is produced in both the ovary and in the placenta where it protects against molecular mutilation and cellular dysfunction arising from oxidative/nitrosative stress. The placenta, in particular, is often a site of excessive free radical generation due to less than optimal adhesion to the uterine wall, which leads to either persistent hypoxia or intermittent hypoxia and reoxygenation, processes that cause massive free radical generation and organ dysfunction. This may contribute to pre-eclampsia and other disorders which often complicate pregnancy. Melatonin has ameliorated free radical damage to the placenta and to the fetus in experiments using non-human mammals. Likewise, the maintenance of a regular maternal light/dark and sleep/wake cycle is important to stabilize circadian rhythms generated by the maternal central circadian pacemaker, the suprachiasmatic nuclei. Optimal circadian rhythmicity in the mother is important since her

  4. Vesicular melatonin efficiently downregulates sodium fluoride-induced rat hepato- and broncho- TNF-α, TGF-β expressions, and associated oxidative injury: a comparative study of liposomal and nanoencapsulated forms

    Directory of Open Access Journals (Sweden)

    Sana S

    2017-05-01

    Full Text Available Suvomoy Sana, Swarupa Ghosh, Nirmalendu Das, Sibani Sarkar, Ardhendu Kumar Mandal Drug Development, Diagnostics and Biotechnology, CSIR-Indian Institute of Chemical Biology, West Bengal, India Abstract: The importance of fluoride as a natural and industrial toxicant is recognized worldwide. We evaluated the regulating role and biological effect of vesicular (liposomal and nanoencapsulated melatonin (N-acetyl-5-methoxytryptamine for drug delivery and controlled release on the depletion of inflammatory mediators, as well as oxidative damage in sodium fluoride (NaF-treated lungs and liver. Hepatic and bronchial damage was induced in Swiss albino rats with a single acute ingestion of NaF (48 mg/kg body weight, oral gavage. NaF exposure caused the generation of reactive oxygen species (ROS; upregulation of TNF-α and TGF-β; decreased activities of antioxidant systems (glutathione, glutathione-S-transferase, superoxide dismutase, catalase, succinate dehydrogenase, membrane microviscosity, and membrane potential; increased activity of lipid peroxidation and nicotinamide adenine dinucleotide hydride oxidase; and increased hepatic and nephrite toxicities (P<0.001 compared to those in normal animals. Charge (–ve/+ve-specific single liposomal (dicetyl phosphate/stearylamine and nanoencapsulated melatonin (4.46 mg/kg body weight, intravenous treatments (2 hours after NaF exposure significantly (P<0.01/0.001 and maximally (P<0.001 inhibited all alterations developed in NaF-mediated oxidative injuries in rat liver (+ve and lungs (–ve, demonstrating their strong free radical scavenging, antioxidant and antigenotoxic properties, and vesicular efficiencies of targeting. Overall, these results suggest that nanoencapsulated melatonin might be considered as a more powerful remedial therapy in comparison to liposomes, in terms of its efficacy in regulating NaF-intoxicated oxidative injury. Keywords: sodium fluoride, reactive oxygen species, inflammatory

  5. Melatonin and its analogs in insomnia and depression.

    Science.gov (United States)

    Cardinali, Daniel P; Srinivasan, Venkataramanujan; Brzezinski, Amnon; Brown, Gregory M

    2012-05-01

    Benzodiazepine sedative-hypnotic drugs are widely used for the treatment of insomnia. Nevertheless, their adverse effects, such as next-day hangover, dependence and impairment of memory, make them unsuitable for long-term treatment. Melatonin has been used for improving sleep in patients with insomnia mainly because it does not cause hangover or show any addictive potential. However, there is a lack of consistency on its therapeutic value (partly because of its short half-life and the small quantities of melatonin employed). Thus, attention has been focused either on the development of more potent melatonin analogs with prolonged effects or on the design of slow release melatonin preparations. The MT(1) and MT(2) melatonergic receptor ramelteon was effective in increasing total sleep time and sleep efficiency, as well as in reducing sleep latency, in insomnia patients. The melatonergic antidepressant agomelatine, displaying potent MT(1) and MT(2) melatonergic agonism and relatively weak serotonin 5HT(2C) receptor antagonism, was found effective in the treatment of depressed patients. However, long-term safety studies are lacking for both melatonin agonists, particularly considering the pharmacological activity of their metabolites. In view of the higher binding affinities, longest half-life and relative higher potencies of the different melatonin agonists, studies using 2 or 3mg/day of melatonin are probably unsuitable to give appropriate comparison of the effects of the natural compound. Hence, clinical trials employing melatonin doses in the range of 50-100mg/day are warranted before the relative merits of the melatonin analogs versus melatonin can be settled. © 2011 John Wiley & Sons A/S.

  6. Melatonin modulates the fetal cardiovascular defense response to acute hypoxia.

    Science.gov (United States)

    Thakor, Avnesh S; Allison, Beth J; Niu, Youguo; Botting, Kimberley J; Serón-Ferré, Maria; Herrera, Emilio A; Giussani, Dino A

    2015-08-01

    Experimental studies in animal models supporting protective effects on the fetus of melatonin in adverse pregnancy have prompted clinical trials in human pregnancy complicated by fetal growth restriction. However, the effects of melatonin on the fetal defense to acute hypoxia, such as that which may occur during labor, remain unknown. This translational study tested the hypothesis, in vivo, that melatonin modulates the fetal cardiometabolic defense responses to acute hypoxia in chronically instrumented late gestation fetal sheep via alterations in fetal nitric oxide (NO) bioavailability. Under anesthesia, 6 fetal sheep at 0.85 gestation were instrumented with vascular catheters and a Transonic flow probe around a femoral artery. Five days later, fetuses were exposed to acute hypoxia with or without melatonin treatment. Fetal blood was taken to determine blood gas and metabolic status and plasma catecholamine concentrations. Hypoxia during melatonin treatment was repeated during in vivo NO blockade with the NO clamp. This technique permits blockade of de novo synthesis of NO while compensating for the tonic production of the gas, thereby maintaining basal cardiovascular function. Melatonin suppressed the redistribution of blood flow away from peripheral circulations and the glycemic and plasma catecholamine responses to acute hypoxia. These are important components of the fetal brain sparing response to acute hypoxia. The effects of melatonin involved NO-dependent mechanisms as the responses were reverted by fetal treatment with the NO clamp. Melatonin modulates the in vivo fetal cardiometabolic responses to acute hypoxia by increasing NO bioavailability. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis.

    Science.gov (United States)

    Zhou, Hao; Zhang, Ying; Hu, Shunying; Shi, Chen; Zhu, Pingjun; Ma, Qiang; Jin, Qinhua; Cao, Feng; Tian, Feng; Chen, Yundai

    2017-08-01

    The cardiac microvascular system, which is primarily composed of monolayer endothelial cells, is the site of blood supply and nutrient exchange to cardiomyocytes. However, microvascular ischemia/reperfusion injury (IRI) following percutaneous coronary intervention is a woefully neglected topic, and few strategies are available to reverse such pathologies. Here, we studied the effects of melatonin on microcirculation IRI and elucidated the underlying mechanism. Melatonin markedly reduced infarcted area, improved cardiac function, restored blood flow, and lower microcirculation perfusion defects. Histological analysis showed that cardiac microcirculation endothelial cells (CMEC) in melatonin-treated mice had an unbroken endothelial barrier, increased endothelial nitric oxide synthase expression, unobstructed lumen, reduced inflammatory cell infiltration, and less endothelial damage. In contrast, AMP-activated protein kinase α (AMPKα) deficiency abolished the beneficial effects of melatonin on microvasculature. In vitro, IRI activated dynamin-related protein 1 (Drp1)-dependent mitochondrial fission, which subsequently induced voltage-dependent anion channel 1 (VDAC1) oligomerization, hexokinase 2 (HK2) liberation, mitochondrial permeability transition pore (mPTP) opening, PINK1/Parkin upregulation, and ultimately mitophagy-mediated CMEC death. However, melatonin strengthened CMEC survival via activation of AMPKα, followed by p-Drp1 S616 downregulation and p-Drp1 S37 upregulation, which blunted Drp1-dependent mitochondrial fission. Suppression of mitochondrial fission by melatonin recovered VDAC1-HK2 interaction that prevented mPTP opening and PINK1/Parkin activation, eventually blocking mitophagy-mediated cellular death. In summary, this study confirmed that melatonin protects cardiac microvasculature against IRI. The underlying mechanism may be attributed to the inhibitory effects of melatonin on mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis via activation

  8. No effect of melatonin to modify surgical-stress response after major vascular surgery

    DEFF Research Database (Denmark)

    Kücükakin, B.; Wilhelmsen, M.; Lykkesfeldt, Jens

    2010-01-01

    A possible mechanism underlying cardiovascular morbidity after major vascular surgery may be the perioperative ischaemia-reperfusion with excessive oxygen-derived free-radical production and increased levels of circulating inflammatory mediators. We examined the effect of melatonin infusion during...... surgery and oral melatonin treatment for 3 days after surgery on biochemical markers of oxidative and inflammatory stress....

  9. Melatonin mitigates neomycin-induced hair cell injury in zebrafish.

    Science.gov (United States)

    Oh, Kyoung Ho; Rah, Yoon Chan; Hwang, Kyu Ho; Lee, Seung Hoon; Kwon, Soon Young; Cha, Jae Hyung; Choi, June

    2017-10-01

    Ototoxicity due to medications, such as aminoglycosides, is irreversible, and free radicals in the inner ear are assumed to play a major role. Because melatonin has an antioxidant property, we hypothesize that it might mitigate hair cell injury by aminoglycosides. The objective of this study was to evaluate whether melatonin has an alleviative effect on neomycin-induced hair cell injury in zebrafish (Danio rerio). Various concentrations of melatonin were administered to 5-day post-fertilization zebrafish treated with 125 μM neomycin for 1 h. Surviving hair cells within four neuromasts were compared with that of a control group. Apoptosis was assessed via terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. The changes of ultrastructure were confirmed using a scanning electron microscope. Melatonin alleviated neomycin-induced hair cell injury in neuromasts (neomycin + melatonin 100 μM: 13.88 ± 0.91 cells, neomycin only: 7.85 ± 0.90 cells; n = 10, p melatonin for 1 h in SEM findings. Melatonin is effective in alleviating aminoglycoside-induced hair cell injury in zebrafish. The results of this study demonstrated that melatonin has the potential to reduce apoptosis induced by aminoglycosides in zebrafish.

  10. Role of Melatonin in Traumatic Brain Injury and Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Mehar Naseem

    2014-01-01

    Full Text Available Brain and spinal cord are implicated in incidences of two of the most severe injuries of central nervous system (CNS. Traumatic brain injury (TBI is a devastating neurological deficit involving primary and secondary injury cascades. The primary and secondary mechanisms include complex consequences of activation of proinflammatory cytokines, cerebral edema, upregulation of NF-κβ, disruption of blood-brain barrier (BBB, and oxidative stress. Spinal cord injury (SCI includes primary and secondary injury cascades. Primary injury leads to secondary injury in which generation of free radicals and oxidative or nitrative damage play an important pathophysiological role. The indoleamine melatonin is a hormone secreted or synthesized by pineal gland in the brain which helps to regulate sleep and wake cycle. Melatonin has been shown to be a versatile hormone having antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. It has a special characteristic of crossing BBB. Melatonin has neuroprotective role in the injured part of the CNS after TBI and SCI. A number of studies have successfully shown its therapeutic value as a neuroprotective agent in the treatment of neurodegenerative diseases. Here in this review we have compiled the literature supporting consequences of CNS injuries, TBI and SCI, and the protective role of melatonin in it.

  11. Melatonin in Plants - Diversity of Levels and Multiplicity of Functions.

    Science.gov (United States)

    Hardeland, Rüdiger

    2016-01-01

    Melatonin has been detected in numerous plant species. A particularly surprising finding concerns the highly divergent levels of melatonin that vary between species, organs and environmental conditions, from a few pg/g to over 20 μg/g, reportedly up to 200 μg/g. Highest values have been determined in oily seeds and in plant organs exposed to high UV radiation. The divergency of melatonin concentrations is discussed under various functional aspects and focused on several open questions. This comprises differences in precursor availability, catabolism, the relative contribution of isoenzymes of the melatonin biosynthetic pathway, and differences in rate limitation by either serotonin N-acetyltransferase or N-acetylserotonin O-methyltransferase. Other differences are related to the remarkable pleiotropy of melatonin, which exhibits properties as a growth regulator and morphogenetic factor, actually debated in terms of auxin-like effects, and as a signaling molecule that modulates pathways of ethylene, abscisic, jasmonic and salicylic acids and is involved in stress tolerance, pathogen defense and delay of senescence. In the context of high light/UV intensities, elevated melatonin levels exceed those required for signaling via stress-related phytohormones and may comprise direct antioxidant and photoprotectant properties, perhaps with a contribution of its oxidatively formed metabolites, such as N (1)-acetyl-N (2)-formyl-5-methoxykynuramine and its secondary products. High melatonin levels in seeds may also serve antioxidative protection and have been shown to promote seed viability and germination capacity.

  12. Melatonin modulates drug-induced acute porphyria

    Directory of Open Access Journals (Sweden)

    Sandra M. Lelli

    Full Text Available This work investigated the modulation by melatonin (Mel of the effects of the porphyrinogenic drugs 2-allyl-2-isopropylacetamide (AIA and 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-collidine (DDC on oxidative environment, glucose biosynthesis and heme pathway parameters. Administration of Mel before rat intoxication with AIA/DDC showed a clear beneficial effect in all cases. Mel induced decreases of 42% and 35% in the excretion of the hemeprecursors 5-aminolevulinic acid (ALA and porphobilinogen (PBG, respectively, and a 33% decrease in the induction of the heme regulatory enzyme 5-aminolevulinic acid-synthase (ALA-S. The activity of the glucose metabolism enzyme phosphoenolpyruvate carboxykinase (PEPCK, which had been diminished by the porphyrinogenic treatment, was restored by 45% when animals were pre-treated with Mel. Mel abolished the modest decrease in glucose 6-phospatase (G6Pase activity caused by AIA/DDC treatment. The oxidative status of lipids was attenuated by Mel treatment in homogenates by 47%, whereas no statistically significant AIA/DDC-induced increase in thiobarbituric acid reactive substances (TBARS was observed in microsomes after Mel pre-treatment. We hypothesize that Mel may be scavenging reactive species of oxygen (ROS that could be damaging lipids, PEPCK, G6Pase and ferrochelatase (FQ. Additionally, Mel administration resulted in the repression of the key enzyme ALA-S, and this could be due to an increase in glucose levels, which is known to inhibit ALA-S induction. The consequent decrease in levels of the heme precursors ALA and PBG had a beneficial effect on the drug-induced porphyria. The results obtained open the possibility of further research on the use of melatonin as a co-treatment option in acute porphyria. Keywords: Melatonin, Glucose synthesis, Heme pathway, Acute porphyria, Oxidative stress

  13. Mood Disorders, Circadian Rhythms, Melatonin and Melatonin Agonists

    Directory of Open Access Journals (Sweden)

    M.A. Quera Salva

    2012-04-01

    Full Text Available Recent advances in the understanding of circadian rhythms have led to an interest in the treatment of major depressive disorder with chronobiotic agents. Many tissues have autonomous circadian rhythms, which are orchestrated by the master clock, situated in the suprachiasmatic nucleus (SNC. Melatonin (N-acetyl-5-hydroxytryptamine is secreted from the pineal gland during darkness. Melatonin acts mainly on MT1 and MT2 receptors, which are present in the SNC, regulating physiological and neuroendocrine functions, including circadian entrainment, referred to as the chronobiotic effet. Circadian rhythms has been shown to be either misaligned or phase shifted or decreased in amplitude in both acute episodes and relapse of major depressive disorder (MDD and bipolar disorder. Manipulation of circadian rhythms either using physical treatments (such as high intensity light or behavioral therapy has shown promise in improving symptoms. Pharmacotherapy using melatonin and pure melatonin receptor agonists, while improving sleep, has not been shown to improve symptoms of depression. A novel antidepressant, agomelatine, combines 5HT2c antagonist and melatonin agonist action, and has shown promise in both acute treatment of MDD and in preventing relapse.

  14. A radiobiological review on melatonin. A novel radioprotector

    International Nuclear Information System (INIS)

    Shirazi, A.; Ghobadi, G.; Ghazi-Khansari, M.

    2007-01-01

    In spite of the fact that radiotherapy is a common and effective tool for cancer treatment; the radio sensitivity of normal tissues adjacent to the tumor which are unavoidably exposed to radiation limits therapeutic gain. For the sake of improvement in radiation therapy, radiobiology- the study of the action of ionizing radiation on living things- plays a crucial role through explaining observed phenomena, and suggesting improvements to existing therapies. Due to the damaging effects of ionizing radiation, radiobiologists have long been interested in identifying novel, nontoxic, effective, and convenient compounds to protect humans against radiation induced normal tissue injuries. In hundreds of investigations, melatonin (N-acetyl-5-methoxytryptamine), the chief secretory product of the pineal gland in the brain, has been documented to ameliorate the oxidative injuries due to ionizing radiation. This article reviews different features that make melatonin a potentially useful radioprotector. Moreover, based on radiobiological models we can hypothesize that melatonin may postpone the saturation of repair enzymes which leads to repairing more induced damage by repair system and more importantly allows the use of higher doses of radiation during radiotherapy to get a better therapeutic ratio. The implications of the accumulated observations suggest by virtue of melatonin's radioprotective and anticancer effects; it is time to use it as a radioprotector both for radiation workers and patients suffering from cancer either alone for cancer inhibition or in combination with traditional radiotherapy for getting a favorable efficacy/toxicity ratio during the treatment. Although compelling evidence suggests that melatonin may be effective for a variety of disorders, the optimum dose of melatonin for human radioprotection is yet to be determined. We propose that, in the future, melatonin improve the therapeutic ratio in radiation oncology. (author)

  15. Solubilization and purification of melatonin receptors from lizard brain

    International Nuclear Information System (INIS)

    Rivkees, S.A.; Conron, R.W. Jr.; Reppert, S.M.

    1990-01-01

    Melatonin receptors in lizard brain were identified and characterized using 125 I-labeled melatonin ([ 125 I]MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resulted in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography

  16. Solubilization and purification of melatonin receptors from lizard brain.

    Science.gov (United States)

    Rivkees, S A; Conron, R W; Reppert, S M

    1990-09-01

    Melatonin receptors in lizard brain were identified and characterized using 125I-labeled melatonin ([125I]MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resulted in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.

  17. Biological functions of melatonin in relation to pathogenesis of oral lichen planus.

    Science.gov (United States)

    Chaiyarit, Ponlatham; Luengtrakoon, Kirawut; Wannakasemsuk, Worraned; Vichitrananda, Vilasinee; Klanrit, Poramaporn; Hormdee, Doosadee; Noisombut, Rajda

    2017-07-01

    Oral lichen planus (OLP) is considered as a chronic inflammatory immune-mediated disease causing oral mucosal damage and ulcerations. Accumulated data support the involvement of cell-mediated immune dysfunction in the development of OLP. However, the connection between neuroendocrine system and oral immune response in OLP patients has never been clarified. Melatonin is considered as a major chronobiotic hormone produced mainly by the pineal gland. This gland is recognized as a regulator of circadian rhythm and a sensor in the immune response through the NF-kB transduction pathway. It was suggested that pineal-derived melatonin and extra-pineal melatonin synthesized at the site of inflamed lesion might play a role in inflammatory response. According to our immunohistochemical study, expression of melatonin could be detected in human oral mucosa. In addition, increased levels of melatonin were observed in inflamed oral mucosa of OLP patients. We hypothesize that chronic inflammation possibly induces the local biosynthesis of melatonin in inflamed oral mucosa. We also speculate that melatonin in oral mucosa may play a cytoprotective role through its anti-oxidative and anti-inflammatory properties. Moreover, melatonin may play an immunomodulatory role in relation to pathogenesis of OLP. Our hypothesis provides a new implication for upcoming research on the connection between circadian neuroendocrine network and immune response in oral mucosal compartments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Dose finding of melatonin for chronic idiopathic childhood sleep onset insomnia: an RCT

    NARCIS (Netherlands)

    Geijlswijk, I.M. van; Heijden, K.B. van der; Egberts, A.C.G.; Korzilius, H.P.L.M.; Smits, M.G.

    2010-01-01

    Rationale Pharmacokinetics of melatonin in children might differ from that in adults. Objectives This study aims to establish a dose–response relationship for melatonin in advancing dim light melatonin onset (DLMO), sleep onset (SO), and reducing sleep onset latency (SOL) in children between 6 and

  19. Dose finding of melatonin for chronic idiopathic childhood sleep onset insomnia: an RCT.

    NARCIS (Netherlands)

    van Geijlswijk, I.M.; van der Heijden, K.B.; Egberts, A.C.G.; Korzilius, H.P.; Smits, M.G.

    2010-01-01

    RATIONALE: Pharmacokinetics of melatonin in children might differ from that in adults. OBJECTIVES: This study aims to establish a dose-response relationship for melatonin in advancing dim light melatonin onset (DLMO), sleep onset (SO), and reducing sleep onset latency (SOL) in children between 6 and

  20. Melatonin.

    Science.gov (United States)

    Hardeland, Rüdiger; Pandi-Perumal, S R; Cardinali, Daniel P

    2006-03-01

    Melatonin, originally discovered as a hormone of the pineal gland, is produced by bacteria, protozoa, plants, fungi, invertebrates, and various extrapineal sites of vertebrates, including gut, skin, Harderian gland, and leukocytes. Biosynthetic pathways seem to be identical. Actions are pleiotropic, mediated by membrane and nuclear receptors, other binding sites or chemical interactions. Melatonin regulates the sleep/wake cycle, other circadian and seasonal rhythms, and acts as an immunostimulator and cytoprotective agent. Circulating melatonin is mostly 6-hydroxylated by hepatic P450 monooxygenases and excreted as 6-sulfatoxymelatonin. Pyrrole-ring cleavage is of higher importance in other tissues, especially the brain. The product, N1-acetyl-N2-formyl-5-methoxykynuramine, is formed by enzymatic, pseudoenzymatic, photocatalytic, and numerous free-radical reactions. Additional metabolites result from hydroxylation and nitrosation. The secondary metabolite, N1-acetyl-5-methoxykynuramine, supports mitochondrial function and downregulates cyclooxygenase 2. Antioxidative protection, safeguarding of mitochondrial electron flux, and in particular, neuroprotection, have been demonstrated in many experimental systems. Findings are encouraging to use melatonin as a sleep promoter and in preventing progression of neurodegenerative diseases.

  1. Analgesic effects of melatonin

    DEFF Research Database (Denmark)

    Wilhelmsen, Michael; Amirian, Ilda; Reiter, Russel J

    2011-01-01

    studies, melatonin shows potent analgesic effects in a dose-dependent manner. In clinical studies, melatonin has been shown to have analgesic benefits in patients with chronic pain (fibromyalgia, irritable bowel syndrome, migraine). The physiologic mechanism underlying the analgesic actions of melatonin...... has not been clarified. The effects may be linked to G(i) -coupled melatonin receptors, to G(i) -coupled opioid µ-receptors or GABA-B receptors with unknown downstream changes with a consequential reduction in anxiety and pain. Also, the repeated administration of melatonin improves sleep and thereby...

  2. Analgesic effects of melatonin

    DEFF Research Database (Denmark)

    Wilhelmsen, Michael; Amirian, Ilda; Reiter, Russel J

    2011-01-01

    studies, melatonin shows potent analgesic effects in a dose-dependent manner. In clinical studies, melatonin has been shown to have analgesic benefits in patients with chronic pain (fibromyalgia, irritable bowel syndrome, migraine). The physiologic mechanism underlying the analgesic actions of melatonin...... has not been clarified. The effects may be linked to G(i) -coupled melatonin receptors, to G(i) -coupled opioid μ-receptors or GABA-B receptors with unknown downstream changes with a consequential reduction in anxiety and pain. Also, the repeated administration of melatonin improves sleep and thereby...

  3. MT1 melatonin receptors and their role in the oncostatic action of melatonin

    Directory of Open Access Journals (Sweden)

    Karolina Danielczyk

    2009-09-01

    Full Text Available Melatonin, the main hormone produced by the pineal gland, strongly inhibits the growth of cancer cells [i]in vitro[/i] and [i]in vivo[/i]. Some publications indicate that the addition of melatonin to culture medium slows the proliferation of some cancer cell lines. It is also suggested that melatonin used as an adjuvant benefits the effectiveness and tolerance of chemotherapy. The mechanisms of this are not fully understood, but melatonin receptors might be one of the most important elements. Two distinct types of membrane-bound melatonin receptors have been identified in humans: MT1 (Mel1a and MT2 (Mel1b receptors. These subtypes are 60�0homologous at the amino-acid level. MT1 receptors are G-protein-coupled receptors. Through the α subunit of G protein, melatonin receptors stimulate an adenylate cyclase and decrease the level of cAMP. This has a significant influence on cell proliferation and has been confirmed in many tests on different cell lines, such as S-19, B-16 murine melanoma cells, and breast cancer cells. It seems that expression of the MT1 melatonin receptors benefits the efficacy of melatonin treatment. Melatonin and its receptors may provide a promising way to establish new alternative therapeutic approaches in human cancer prevention.

  4. Combined treatment with melatonin and insulin improves glycemic control, white adipose tissue metabolism and reproductive axis of diabetic male rats.

    Science.gov (United States)

    Oliveira, Ariclecio Cunha de; Andreotti, Sandra; Sertie, Rogério António Laurato; Campana, Amanda Baron; de Proença, André Ricardo Gomes; Vasconcelos, Renata Prado; Oliveira, Keciany Alves de; Coelho-de-Souza, Andrelina Noronha; Donato-Junior, José; Lima, Fábio Bessa

    2018-04-15

    Melatonin treatment has been reported to be capable of ameliorating metabolic diabetes-related abnormalities but also to cause hypogonadism in rats. We investigated whether the combined treatment with melatonin and insulin can improve insulin resistance and other metabolic disorders in rats with streptozotocin-induced diabetes during neonatal period and the repercussion of this treatment on the hypothalamic-pituitary-gonadal axis. At the fourth week of age, diabetic animals started an 8-wk treatment with only melatonin (0.2 mg/kg body weight) added to drinking water at night or associated with insulin (NHP, 1.5 U/100 g/day) or only insulin. Animals were then euthanized, and the subcutaneous (SC), epididymal (EP), and retroperitoneal (RP) fat pads were excised, weighed and processed for adipocyte isolation for morphometric analysis as well as for measuring glucose uptake, oxidation, and incorporation of glucose into lipids. Hypothalamus was collected for gene expression and blood samples were collected for biochemical assays. The treatment with melatonin plus insulin (MI) was capable of maintaining glycemic control. In epididymal (EP) and subcutaneous (SC) adipocytes, the melatonin plus insulin (MI) treatment group recovered the insulin responsiveness. In the hypothalamus, melatonin treatment alone promoted a significant reduction in kisspeptin-1, neurokinin B and androgen receptor mRNA levels, in relation to control group. Combined treatment with melatonin and insulin promoted a better glycemic control, improving insulin sensitivity in white adipose tissue (WAT). Indeed, melatonin treatment reduced hypothalamic genes related to reproductive function. Copyright © 2017. Published by Elsevier Inc.

  5. Effect of mobile usage on serum melatonin levels among medical students.

    Science.gov (United States)

    Shrivastava, Abha; Saxena, Yogesh

    2014-01-01

    Exposure to extremely low frequency (ELF) electromagnetic radiations from mobile phones may affect the circadian rhythm of melatonin in mobile users. The study was designed with objective to evaluate the influence of mobile phone on circadian rhythm of melatonin and to find the association if any between the hours of mobile usage with serum melatonin levels. All the volunteers medical students using mobiles for > 2 hrs/day were included in high users group and volunteers who used mobile for ≤ 2 hrs where included in low users group. Both high and low users volunteers were sampled three times in the same day (Morning-3-4 am, Noon 1-2 pm, Evening-5-6 pm) for estimation of serum melatonin levels: Comparsion of sernum melatonin levels in high users and low users were done by Mann Whitney "U" Test. Reduced morning melatonin levels (3-4 am) was observed in high users (> 2 hrs/day) i.e high users had a disturbed melatonin circadian rhythm.There was a negative correlation between melatonin secretion and hours of mobile usages.

  6. The role of melatonin in anaesthesia and critical care

    Directory of Open Access Journals (Sweden)

    Madhuri S Kurdi

    2013-01-01

    Full Text Available Melatonin is a neurohormone secreted by the pineal gland. It is widely present in both plant and animal sources. In several countries, it is sold over the counter as tablets and as food supplement or additive. Currently, it is most often used to prevent jet lag and to induce sleep. It has been and is being used in several clinical trials with different therapeutic approaches. It has sedative, analgesic, anti-inflammatory, anti-oxidative and chronobiotic effects. In the present review, the potential therapeutic benefits of melatonin in anaesthesia and critical care are presented. This article aims to review the physiological properties of melatonin and how these could prove useful for several clinical applications in perioperative management, critical care and pain medicine. The topic was handsearched from textbooks and journals and electronically from PubMed, and Google scholar using text words.

  7. The role of melatonin in anaesthesia and critical care.

    Science.gov (United States)

    Kurdi, Madhuri S; Patel, Tushar

    2013-03-01

    Melatonin is a neurohormone secreted by the pineal gland. It is widely present in both plant and animal sources. In several countries, it is sold over the counter as tablets and as food supplement or additive. Currently, it is most often used to prevent jet lag and to induce sleep. It has been and is being used in several clinical trials with different therapeutic approaches. It has sedative, analgesic, anti-inflammatory, anti-oxidative and chronobiotic effects. In the present review, the potential therapeutic benefits of melatonin in anaesthesia and critical care are presented. This article aims to review the physiological properties of melatonin and how these could prove useful for several clinical applications in perioperative management, critical care and pain medicine. The topic was handsearched from textbooks and journals and electronically from PubMed, and Google scholar using text words.

  8. Effects of melatonin and prolactin in reproduction: review of literature

    OpenAIRE

    Tenorio, Fernanda das Chagas Angelo Mendes; Simões, Manuel de Jesus; Teixeira, Valéria Wanderley; Teixeira, Álvaro Aguiar Coelho

    2015-01-01

    Summary The pineal gland is responsible for producing a hormone called melatonin (MEL), and is accepted as the gland that regulates reproduction in mammals. Prolactin (PRL) also exhibits reproductive activity in animals in response to photoperiod. It is known that the concentrations of PRL are high in the summer and reduced during winter, the opposite of what is seen with melatonin in these seasons. In placental mammals, both prolactin and melatonin affect implantation, which is considered a ...

  9. Radioimmunoassay for Melatonin

    International Nuclear Information System (INIS)

    Tapp, E.; Skinner, R.G.; Phillips, V.

    1980-01-01

    A radioimmunoassay for melatonin has been developed and used to measure the level of melatonin of male and post-menopausal female patients coming to operation for benign and malignant conditions. The amount of melatonin in the serum of the females was considerably lower than that in males. No difference could be found between patients suffering from benign and malignant conditions. A patient with a non-parenchymatous pineal tumour had considerably lower levels in the serum at three months after surgery and radiotherapy. A further month later melatonin could not be found in samples of serum taken over a 24-hour period. (author)

  10. Placental melatonin system is present throughout pregnancy and regulates villous trophoblast differentiation.

    Science.gov (United States)

    Soliman, Ahmed; Lacasse, Andrée-Anne; Lanoix, Dave; Sagrillo-Fagundes, Lucas; Boulard, Véronique; Vaillancourt, Cathy

    2015-08-01

    Melatonin is highly produced in the placenta where it protects against molecular damage and cellular dysfunction arising from hypoxia/re-oxygenation-induced oxidative stress as observed in primary cultures of syncytiotrophoblast. However, little is known about melatonin and its receptors in the human placenta throughout pregnancy and their role in villous trophoblast development. The purpose of this study was to determine melatonin-synthesizing enzymes, arylalkylamine N-acetyltransferase (AANAT) and hydroxyindole O-methyltransferase (HIOMT), and melatonin receptors (MT1 and MT2) expression throughout pregnancy as well as the role of melatonin and its receptors in villous trophoblast syncytialization. Our data show that the melatonin generating system is expressed throughout pregnancy (from week 7 to term) in placental tissues. AANAT and HIOMT show maximal expression at the 3rd trimester of pregnancy. MT1 receptor expression is maximal at the 1st trimester compared to the 2nd and 3rd trimesters, while MT2 receptor expression does not change significantly during pregnancy. Moreover, during primary villous cytotrophoblast syncytialization, MT1 receptor expression increases, while MT2 receptor expression decreases. Treatment of primary villous cytotrophoblast with an increasing concentration of melatonin (10 pM-1 mM) increases the fusion index (syncytium formation; 21% augmentation at 1 mM melatonin vs. vehicle) and β-hCG secretion (121% augmentation at 1 mM melatonin vs. vehicle). This effect of melatonin appears to be mediated via its MT1 and MT2 receptors. In sum, melatonin machinery (synthetizing enzymes and receptors) is expressed in human placenta throughout pregnancy and promotes syncytium formation, suggesting an essential role of this indolamine in placental function and pregnancy well-being. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Nanomolar simultaneous determination of tryptophan and melatonin by a new ionic liquid carbon paste electrode modified with SnO{sub 2}-Co{sub 3}O{sub 4}@rGO nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Zeinali, Homa [Department of Chemistry, Payame Noor University, Qazvin (Iran, Islamic Republic of); Bagheri, Hasan, E-mail: h.bagheri82@gmail.com [Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran (Iran, Islamic Republic of); Monsef-Khoshhesab, Zahra [Department of Chemistry, Payame Noor University, Qazvin (Iran, Islamic Republic of); Khoshsafar, Hosein [Department of Internal Medicine, Zabol University of Medical Sciences, Zabol (Iran, Islamic Republic of); Hajian, Ali [Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges Köhler Allee 103, 79110 Freiburg (Germany)

    2017-02-01

    This work describes the development of a new sensor for simultaneous determination of tryptophan and melatonin. The proposed sensor was an ionic liquid carbon paste electrode modified with reduced graphene oxides decorated with SnO{sub 2}-Co{sub 3}O{sub 4} nanoparticles. The voltammetric oxidation of the analytes by the proposed sensor confirmed that the electrooxidation process undergoes a two-electron/one-proton reaction for melatonin and a two-electron/two-proton reaction for tryptophan in diffusion-controlled processes. Moreover, based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for individual and simultaneous determination of melatonin and tryptophan in the aqueous solutions. Under the optimized experimental conditions, a linear response obtained in the range of 0.02 to 6.00 μmol L{sup −1} with detection limits of 4.1 and 3.2 nmol L{sup −1} for melatonin and tryptophan, respectively. The prepared sensor possessed accurate and rapid response toward melatonin and tryptophan with a good sensitivity, selectivity, stability, and repeatability. Finally, the applicability of the proposed sensor was verified by evaluation of melatonin and tryptophan in various real samples including human serum and tablet samples. - Highlights: • Ionic liquid-SnO{sub 2}-Co{sub 3}O{sub 4}@rGO nanocomposite as electrode material • This modifier can promote the electrochemical properties of carbon paste electrode. • Determination of tryptophan and melatonin was investigated.

  12. Melatonin: functions and ligands.

    Science.gov (United States)

    Singh, Mahaveer; Jadhav, Hemant R

    2014-09-01

    Melatonin is a chronobiotic substance that acts as synchronizer by stabilizing bodily rhythms. Its synthesis occurs in various locations throughout the body, including the pineal gland, skin, lymphocytes and gastrointestinal tract (GIT). Its synthesis and secretion is controlled by light and dark conditions, whereby light decreases and darkness increases its production. Thus, melatonin is also known as the 'hormone of darkness'. Melatonin and analogs that bind to the melatonin receptors are important because of their role in the management of depression, insomnia, epilepsy, Alzheimer's disease (AD), diabetes, obesity, alopecia, migraine, cancer, and immune and cardiac disorders. In this review, we discuss the mechanism of action of melatonin in these disorders, which could aid in the design of novel melatonin receptor ligands. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science.

    Science.gov (United States)

    Tan, Dun-Xian; Hardeland, Rudiger; Manchester, Lucien C; Korkmaz, Ahmet; Ma, Shuran; Rosales-Corral, Sergio; Reiter, Russel J

    2012-01-01

    The presence of melatonin in plants is universal. Evidence has confirmed that a major portion of the melatonin is synthesized by plants themselves even though a homologue of the classic arylalkylamine N-acetyltransferase (AANAT) has not been identified as yet in plants. Thus, the serotonin N-acetylating enzyme in plants may differ greatly from the animal AANAT with regard to sequence and structure. This would imply multiple evolutionary origins of enzymes with these catalytic properties. A primary function of melatonin in plants is to serve as the first line of defence against internal and environmental oxidative stressors. The much higher melatonin levels in plants compared with those found in animals are thought to be a compensatory response by plants which lack means of mobility, unlike animals, as a means of coping with harsh environments. Importantly, remarkably high melatonin concentrations have been measured in popular beverages (coffee, tea, wine, and beer) and crops (corn, rice, wheat, barley, and oats). Billions of people worldwide consume these products daily. The beneficial effects of melatonin on human health derived from the consumption of these products must be considered. Evidence also indicates that melatonin has an ability to increase the production of crops. The mechanisms may involve the roles of melatonin in preservation of chlorophyll, promotion of photosynthesis, and stimulation of root development. Transgenic plants with enhanced melatonin content could probably lead to breakthroughs to increase crop production in agriculture and to improve the general health of humans.

  14. Effectiveness of Melatonin, as a Radiation Damage-Mitigating Drug in Modulating Liver Biochemical disorders in γ-Irradiated Rats

    International Nuclear Information System (INIS)

    El-Fatih, N.M.; Elshamy, E.

    2011-01-01

    Melatonin has an anti per oxidative effect on several tissues as well as a scavenger effect on reactive oxygen species (ROS). Whilst radiation-hazards due to free radical generation, present enormous challenges for biological and medical safety. Therefore, rats were classified into four groups; control (n= 8), (received 0.5 ml of alcoholic saline as a vehicle for 5 days). Melatonin-treated rats received 10 mg/ kg body wt, for 5 days (given to the animals in the morning via stomach tube). gamma-irradiated rats received 0.5 ml of the melatonin vehicle followed by one shot dose of 3 Gy gamma-rays. Each of these groups was compared with a further group, which-received melatonin for 5 days after 3 Gy gamma-irradiation exposure. The results revealed that all considered biochemical parameters were not changed significantly in melatonin-treated group as compared with control one. In the liver tissue of the gamma-irradiated animals (3 Gy), the oxidative stress markers malondialdehyde (MDA) and protein carbonyl (PC) were significantly increased, while a marked decrease occurred in the contents of deoxy- and ribo-nucleic acids (DNA and RNA) and glutathione (GSH) as well as activity of glutathione-S-transferase (GST). In addition, catalase (CAT) and myeloperoxidase (MPO) activities were increased. Activities of aspartate transaminase (AST), alkaline phosphatase (ALP) and gamma-glutamyltransferase (GGT) were significantly increased in sera of the irradiated rats. Treatment with melatonin for 5 days after gamma-rays exposure significantly modulated the radiation-induced elevations in MDA and PC levels in the liver tissue and significantly restored hepatic GSH content, GST, CAT and MPO activities. Post-irradiation treatment with melatonin showed significant higher hepatic DNA and RNA contents than irradiated rats. The activities of AST, ALP, and GGT in serum were significantly ameliorated when melatonin was administrated after irradiation. Conclusion: Melatonin has effective

  15. The Protective Effect of Melatonin on Neural Stem Cell against LPS-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Juhyun Song

    2015-01-01

    Full Text Available Stem cell therapy for tissue regeneration has several limitations in the fact that transplanted cells could not survive for a long time. For solving these limitations, many studies have focused on the antioxidants to increase survival rate of neural stem cells (NSCs. Melatonin, an antioxidant synthesized in the pineal gland, plays multiple roles in various physiological mechanisms. Melatonin exerts neuroprotective effects in the central nervous system. To determine the effect of melatonin on NSCs which is in LPS-induced inflammatory stress state, we first investigated nitric oxide (NO production and cytotoxicity using Griess reagent assays, LDH assay, and neurosphere counting. Also, we investigated the effect of melatonin on NSCs by measuring the mRNA levels of SOX2, TLX, and FGFR-2. In addition, western blot analyses were performed to examine the activation of PI3K/Akt/Nrf2 signaling in LPS-treated NSCs. In the present study, we suggested that melatonin inhibits NO production and protects NSCs against LPS-induced inflammatory stress. In addition, melatonin promoted the expression of SOX2 and activated the PI3K/Akt/Nrf2 signaling under LPS-induced inflammation condition. Based on our results, we conclude that melatonin may be an important factor for the survival and proliferation of NSCs in neuroinflammatory diseases.

  16. Novel non-indolic melatonin receptor agonists differentially entrain endogenous melatonin rhythm and increase its amplitude

    NARCIS (Netherlands)

    Drijfhout, W.J; de Vries, J.B; Homan, E.J; Brons, H.F; Copinga, S; Gruppen, G; Beresford, I.J M; Hagan, R.M; Grol, Cor; Westerink, B.H.C.

    1999-01-01

    In this study we have examined the ability of melatonin and four synthetic melatonin receptor agonists to entrain endogenous melatonin secretion in rats, free running in constant darkness. The circadian melatonin profile was measured by trans-pineal microdialysis, which not only reveals the time of

  17. Oxidative DNA damage during sleep periods among nightshift workers.

    Science.gov (United States)

    Bhatti, Parveen; Mirick, Dana K; Randolph, Timothy W; Gong, Jicheng; Buchanan, Diana Taibi; Zhang, Junfeng Jim; Davis, Scott

    2016-08-01

    Oxidative DNA damage may be increased among nightshift workers because of suppression of melatonin, a cellular antioxidant, and/or inflammation related to sleep disruption. However, oxidative DNA damage has received limited attention in previous studies of nightshift work. From two previous cross-sectional studies, urine samples collected during a night sleep period for 217 dayshift workers and during day and night sleep (on their first day off) periods for 223 nightshift workers were assayed for 8-hydroxydeoxyguanosine (8-OH-dG), a marker of oxidative DNA damage, using high-performance liquid chromatography with electrochemical detection. Urinary measures of 6-sulfatoxymelatonin (aMT6s), a marker of circulating melatonin levels, and actigraphy-based sleep quality data were also available. Nightshift workers during their day sleep periods excreted 83% (p=0.2) and 77% (p=0.03) of the 8-OH-dG that dayshift workers and they themselves, respectively, excreted during their night sleep periods. Among nightshift workers, higher aMT6s levels were associated with higher urinary 8-OH-dG levels, and an inverse U-shaped trend was observed between 8-OH-dG levels and sleep efficiency and sleep duration. Reduced excretion of 8-OH-dG among nightshift workers during day sleep may reflect reduced functioning of DNA repair machinery, which could potentially lead to increased cellular levels of oxidative DNA damage. Melatonin disruption among nightshift workers may be responsible for the observed effect, as melatonin is known to enhance repair of oxidative DNA damage. Quality of sleep may similarly impact DNA repair. Cellular levels of DNA damage will need to be evaluated in future studies to help interpret these findings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Melatonin mediates vasodilation through both direct and indirect activation of BKCa channels.

    Science.gov (United States)

    Zhao, T; Zhang, H; Jin, C; Qiu, F; Wu, Y; Shi, L

    2017-10-01

    Melatonin, synthesized primarily by the pineal gland, is a neuroendocrine hormone with high membrane permeability. The vascular effects of melatonin, including vasoconstriction and vasodilation, have been demonstrated in numerous studies. However, the mechanisms underlying these effects are not fully understood. Large-conductance Ca 2+ -activated K + (BK Ca ) channels are expressed broadly on smooth muscle cells and play an important role in vascular tone regulation. This study explored the mechanisms of myocyte BK Ca channels and endothelial factors underlying the action of melatonin on the mesenteric arteries (MAs). Vascular contractility and patch-clamp studies were performed on myocytes of MAs from Wistar rats. Melatonin induced significant vasodilation on MAs. In the presence of N ω -nitro-l-arginine methyl ester (l-NAME), a potent endothelial oxide synthase (eNOS) inhibitor, melatonin elicited concentration-dependent relaxation, with lowered pIC 50 The effect of melatonin was significantly attenuated in the presence of BK Ca channel blocker iberiotoxin or MT1/MT2 receptor antagonist luzindole in both (+) l-NAME and (-) l-NAME groups. In the (+) l-NAME group, iberiotoxin caused a parallel rightward shift of the melatonin concentration-relaxation curve, with pIC 50 lower than that of luzindole. Both inside-out and cell-attached patch-clamp recordings showed that melatonin significantly increased the open probability, mean open time and voltage sensitivity of BK Ca channels. In a cell-attached patch-clamp configuration, the melatonin-induced enhancement of BK Ca channel activity was significantly suppressed by luzindole. These findings indicate that in addition to the activation of eNOS, melatonin-induced vasorelaxation of MAs is partially attributable to its direct (passing through the cell membrane) and indirect (via MT1/MT2 receptors) activation of the BK Ca channels on mesenteric arterial myocytes. © 2017 Society for Endocrinology.

  19. Preliminary study: Evaluation of melatonin secretion in children and adolescents with type 1 diabetes mellitus.

    Science.gov (United States)

    Kor, Yilmaz; Geyikli, Iclal; Keskin, Mehmet; Akan, Muslum

    2014-07-01

    Melatonin is an indolamine hormone, synthesized from tryptophan in the pineal gland primarily. Melatonin exerts both antioxidative and immunoregulatory roles but little is known about melatonin secretion in patients with type 1 diabetes mellitus (T1DM). The aim of this study was to measure serum melatonin levels in patients with T1DM and investigates their relationship with type 1 diabetes mellitus. Forty children and adolescents with T1DM (18 boys and 22 girls) and 30 healthy control subjects (17 boys and 13 girls) participated in the study. All patients followed in Pediatric Endocrinology and Metabolism Unit of Gaziantep University Faculty of Medicine and also control subjects had no hypertension, obesity, hyperlipidemia, anemia, and infection. Blood samples were collected during routine analysis, after overnight fasting. Serum melatonin levels were analyzed with ELISA. There were no statistically significant differences related with age, sex, BMI distribution between diabetic group and control group. Mean diabetic duration was 2.89 ± 2.69 years. The variables were in the equation. Mean melatonin level in diabetic group was 6.75 ± 3.52 pg/ml and mean melatonin level in control group was 11.51 ± 4.74 pg/ml. Melatonin levels were significantly lower in diabetic group compared to controls (P 1). Melatonin was associated with type 1 diabetes mellitus significantly. Because of the varied roles of melatonin in human metabolic rhythms, these results suggest a role of melatonin in maintaining normal rhythmicity. Melatonin may play role in preventing process of inflammation and oxidative stress.

  20. Preliminary study: Evaluation of melatonin secretion in children and adolescents with type 1 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Yilmaz Kor

    2014-01-01

    Full Text Available Objective: Melatonin is an indolamine hormone, synthesized from tryptophan in the pineal gland primarily. Melatonin exerts both antioxidative and immunoregulatory roles but little is known about melatonin secretion in patients with type 1 diabetes mellitus (T1DM. The aim of this study was to measure serum melatonin levels in patients with T1DM and investigates their relationship with type 1 diabetes mellitus. Materials and Methods: Forty children and adolescents with T1DM (18 boys and 22 girls and 30 healthy control subjects (17 boys and 13 girls participated in the study. All patients followed in Pediatric Endocrinology and Metabolism Unit of Gaziantep University Faculty of Medicine and also control subjects had no hypertension, obesity, hyperlipidemia, anemia, and infection. Blood samples were collected during routine analysis, after overnight fasting. Serum melatonin levels were analyzed with ELISA. Results: There were no statistically significant differences related with age, sex, BMI distribution between diabetic group and control group. Mean diabetic duration was 2.89 ± 2.69 years. The variables were in the equation. Mean melatonin level in diabetic group was 6.75 ± 3.52 pg/ml and mean melatonin level in control group was 11.51 ± 4.74 pg/ml. Melatonin levels were significantly lower in diabetic group compared to controls (P < 0.01. Conclusions: Melatonin was associated with type 1 diabetes mellitus significantly. Because of the varied roles of melatonin in human metabolic rhythms, these results suggest a role of melatonin in maintaining normal rhythmicity. Melatonin may play role in preventing process of inflammation and oxidative stress.

  1. Melatonin for women in pregnancy for neuroprotection of the fetus.

    Science.gov (United States)

    Wilkinson, Dominic; Shepherd, Emily; Wallace, Euan M

    2016-03-29

    Melatonin is an antioxidant with anti-inflammatory and anti-apoptotic effects. Animal studies have supported a fetal neuroprotective role for melatonin when administered maternally. It is important to assess whether melatonin, given to the mother, can reduce the risk of neurosensory disabilities (including cerebral palsy) and death, associated with fetal brain injury, for the preterm or term compromised fetus. To assess the effects of melatonin when used for neuroprotection of the fetus. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 January 2016). We planned to include randomised controlled trials and quasi-randomised controlled trials comparing melatonin given to women in pregnancy (regardless of the route, timing, dose and duration of administration) for fetal neuroprotection with placebo, no treatment, or with an alternative agent aimed at providing fetal neuroprotection. We also planned to include comparisons of different regimens for administration of melatonin. Two review authors planned to independently assess trial eligibility, trial quality and extract the data. We found no randomised trials for inclusion in this review. One study is ongoing. As we did not identify any randomised trials for inclusion in this review, we are unable to comment on implications for practice at this stage.Although evidence from animals studies has supported a fetal neuroprotective role for melatonin when administered to the mother during pregnancy, no trials assessing melatonin for fetal neuroprotection in pregnant women have been completed to date. However, there is currently one ongoing randomised controlled trial (with an estimated enrolment target of 60 pregnant women) which examines the dose of melatonin, administered to women at risk of imminent very preterm birth (less than 28 weeks' gestation) required to reduce brain damage in the white matter of the babies that were born very preterm.Further high-quality research is needed and research

  2. Modulation of immunity in young-adult and aged squirrel, Funambulus pennanti by melatonin and p-chlorophenylalanine

    Directory of Open Access Journals (Sweden)

    Singh Rajesh

    2009-04-01

    Full Text Available Abstract Background Our interest was to find out whether pineal gland and their by melatonin act as modulator of immunosenescence. Parachlorophenylalanine (PCPA – a β adrenergic blocker, is known to perform chemical pinealectomy (Px by suppressing indirectly the substrate 5-hydroxytryptamine (5-HT for melatonin synthesis and thereby melatonin itself. The role of PCPA, alone and in combination with melatonin was recorded in immunomodulation and free radical load in spleen of young adult and aged seasonal breeder Indian palm squirrel Funambulus pennanti. Results Aged squirrel presented reduced immune parameters (i.e. total leukocyte count (TLC, Lymphocytes Count (LC, % stimulation ratio of splenocytes (% SR against T cell mitogen concanavalin A (Con A, delayed type hypersensitivity (DTH to oxazolone when compared to young adult group. Melatonin administration (25 μg/100 g body mass/day significantly increased the immune parameters in aged more than the young adult squirrel while PCPA administration (4.5 mg/100 g body mass/day reduced all the immune parameters more significantly in young than aged. Combination of PCPA and melatonin significantly increased the immune parameters to the normal control level of both the age groups. TBARS level was significantly high in aged than the young group. PCPA treatment increased TBARS level of young and aged squirrels both while melatonin treatment decreased it even than the controls. Nighttime peripheral melatonin level was low in control aged group than the young group. Melatonin injection at evening hours significantly increased the peripheral level of nighttime melatonin, while combined injection of PCPA and melatonin brought it to control level in both aged and young adult squirrels. Conclusion PCPA suppressed immune status more in aged than in adult by reducing melatonin level as it did chemical Px. Melatonin level decreased in control aged squirrels and so there was a decrease in immune parameters

  3. Melatonin for chronic whiplash syndrome with delayed melatonin onset randomised, placebo-controlled trial

    NARCIS (Netherlands)

    Wieringen, S. van; Jansen, T.; Smits, M.G.; Nagtegaal, J.E.; Coenen, A.M.L.

    2001-01-01

    Objective: To assess the influence of melatonin in patients with chronic whiplash syndrome and delayed melatonin onset. Design: Randomised, double-blind, placebo-controlled, parallel-group trial. One-week baseline was followed by a 4-week treatment period with either melatonin or placebo. In the

  4. Effects of melatonin and its receptor antagonist on retinal pigment epithelial cells against hydrogen peroxide damage

    Science.gov (United States)

    Rosen, Richard B.; Hu, Dan-Ning; Chen, Min; McCormick, Steven A.; Walsh, Joseph

    2012-01-01

    Purpose Recently, we reported finding that circulating melatonin levels in age-related macular degeneration patients were significantly lower than those in age-matched controls. The purpose of this study was to investigate the hypothesis that melatonin deficiency may play a role in the oxidative damage of the retinal pigment epithelium (RPE) by testing the protective effect of melatonin and its receptor antagonist on RPE cells exposed to H2O2 damage. Methods Cultured human RPE cells were subjected to oxidative stress induced by 0.5 mM H2O2. Cell viability was measured using the microculture tetrazoline test (MTT) assay. Cells were pretreated with or without melatonin for 24 h. Luzindole (50 μM), a melatonin membrane-receptor antagonist, was added to the culture 1 h before melatonin to distinguish direct antioxidant effects from indirect receptor-dependent effects. All tests were performed in triplicate. Results H2O2 at 0.5 mM decreased cell viability to 20% of control levels. Melatonin showed dose-dependent protective effects on RPE cells against H2O2. Cell viability of RPE cells pretreated with 10−10, 10−8, 10−6, and 10−4 M melatonin for 24 h was 130%, 160%, 187%, and 230% of cells treated with H2O2 alone (all p<0.05). Using cells cultured without H2O2 as the control, cell viability of cells treated with H2O2 after pretreatment with 10−10-10−4 M melatonin was still significantly lower than that of the controls, suggesting that melatonin significantly decreased but did not completely abolish the in vitro cytotoxic effects of H2O2. Luzindole completely blocked melatonin’s protective effects at low concentrations of melatonin (10−10-10−8 M) but not at high concentrations (10−6-10−4 M). Conclusions Melatonin has a partial protective effect on RPE cells against H2O2 damage across a wide range of concentrations (10−10-10−4 M). This protective effect occurs through the activation of melatonin membrane receptors at low concentrations (10−10

  5. ROLE OF MELATONIN IN EXPRESSION OF MALONDIALDEHYDE ON MICROGLIA CELLS OF RAT INDUCED HEAD INJURY

    Directory of Open Access Journals (Sweden)

    K. I. Nasution

    2015-08-01

    Full Text Available Background: brain injury is condition that harm human life. This study examines the application of melatonin in reducing oxidant status and barriers to the formation of cerebral edema in a rat brain injury model. The main purpose of this study is to prove the role of melatonin on the expression of Malondialdehyde (MDA and histological injury in a rat head injury model. Methods: This study was a randomized experimental posttest only control group design. This experimental was carried out on male Sprague Dawley strain Rattus novergicus, aged of 10-12 weeks, and weight of 300 g. Rat brain injury model was performed based on Marmarou (1994.1 Histology were observed using hematoxilen-eosin staining and immunohistochemistry, MDA was assessed using antibodies specific to each MDA protein. Observation and calculation of immunohistochemistry studies were also performed. Results: In this study, histological observation area covers an area of bleeding, number of immune-competent cells and the diameter of the arteries. Histology observation results showed that there is a significant reduction in diameter of arterial blood vessels of the brain injury tissue. Immunohisto-chemistry results showed that there is a significant reduction of MDA expression amount microglia cells of brain injury tissue. Conclusion: From this study, it can be concluded that Melatonin is a potent hydrogen peroxide scavenger that reduce the production of MDA. 

  6. Melatonin: Buffering the Immune System

    Directory of Open Access Journals (Sweden)

    Juan M. Guerrero

    2013-04-01

    Full Text Available Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed.

  7. Melatonin: Buffering the Immune System

    Science.gov (United States)

    Carrillo-Vico, Antonio; Lardone, Patricia J.; Álvarez-Sánchez, Nuria; Rodríguez-Rodríguez, Ana; Guerrero, Juan M.

    2013-01-01

    Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed. PMID:23609496

  8. Melatonin, mitochondria, and the skin.

    Science.gov (United States)

    Slominski, Andrzej T; Zmijewski, Michal A; Semak, Igor; Kim, Tae-Kang; Janjetovic, Zorica; Slominski, Radomir M; Zmijewski, Jaroslaw W

    2017-11-01

    The skin being a protective barrier between external and internal (body) environments has the sensory and adaptive capacity to maintain local and global body homeostasis in response to noxious factors. An important part of the skin response to stress is its ability for melatonin synthesis and subsequent metabolism through the indolic and kynuric pathways. Indeed, melatonin and its metabolites have emerged as indispensable for physiological skin functions and for effective protection of a cutaneous homeostasis from hostile environmental factors. Moreover, they attenuate the pathological processes including carcinogenesis and other hyperproliferative/inflammatory conditions. Interestingly, mitochondria appear to be a central hub of melatonin metabolism in the skin cells. Furthermore, substantial evidence has accumulated on the protective role of the melatonin against ultraviolet radiation and the attendant mitochondrial dysfunction. Melatonin and its metabolites appear to have a modulatory impact on mitochondrion redox and bioenergetic homeostasis, as well as the anti-apoptotic effects. Of note, some metabolites exhibit even greater impact than melatonin alone. Herein, we emphasize that melatonin-mitochondria axis would control integumental functions designed to protect local and perhaps global homeostasis. Given the phylogenetic origin and primordial actions of melatonin, we propose that the melatonin-related mitochondrial functions represent an evolutionary conserved mechanism involved in cellular adaptive response to skin injury and repair.

  9. Effects of melatonin on DNA damage induced by cyclophosphamide in rats

    International Nuclear Information System (INIS)

    Ferreira, S.G.; Peliciari-Garcia, R.A.; Takahashi-Hyodo, S.A.; Rodrigues, A.C.; Amaral, F.G.; Berra, C.M.; Bordin, S.; Curi, R.; Cipolla-Neto, J.

    2013-01-01

    The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and of Xpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy

  10. Effects of melatonin on DNA damage induced by cyclophosphamide in rats

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, S.G.; Peliciari-Garcia, R.A. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas I, Universidade de São Paulo, São Paulo, SP (Brazil); Takahashi-Hyodo, S.A. [Área de Ciências da Saúde, Universidade Braz Cubas, Mogi das Cruzes, SP (Brazil); Rodrigues, A.C. [Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Amaral, F.G. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas I, Universidade de São Paulo, São Paulo, SP (Brazil); Berra, C.M. [Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP (Brazil); Bordin, S.; Curi, R.; Cipolla-Neto, J. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas I, Universidade de São Paulo, São Paulo, SP (Brazil)

    2013-03-08

    The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and of Xpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy.

  11. Melatonin limits paclitaxel‐induced mitochondrial dysfunction in vitro and protects against paclitaxel‐induced neuropathic pain in the rat

    OpenAIRE

    Galley, Helen F.; McCormick, Barry; Wilson, Kirsten L.; Lowes, Damon A.; Colvin, Lesley; Torsney, Carole

    2017-01-01

    Chemotherapy-induced neuropathic pain is a debilitating and common side effect of cancer treatment. Mitochondrial dysfunction associated with oxidative stress in peripheral nerves has been implicated in the underlying mechanism. We investigated the potential of melatonin, a potent antioxidant that preferentially acts within mitochondria, to reduce mitochondrial damage and neuropathic pain resulting from the chemotherapeutic drug paclitaxel. In vitro, paclitaxel caused a 50% reduction of mitoc...

  12. Melatonin treatment of pediatric residents for adaptation to night shift work.

    Science.gov (United States)

    Cavallo, Anita; Ris, M Douglas; Succop, Paul; Jaskiewicz, Julie

    2005-01-01

    Night float rotations are used in residency training programs to reduce residents' sleep deprivation. Night shift work, however, is accompanied by deleterious effects on sleep, mood, and attention. To test whether melatonin reduces the deleterious effects of night shift work on sleep, mood, and attention in pediatric residents during night float rotation. Double-blind, randomized, placebo-controlled crossover. Participants took melatonin (3 mg) or a placebo before bedtime in the morning after night shift; completed a sleep diary and an adverse-effects questionnaire daily; and completed the Profile of Mood States and the Conners Continuous Performance Test 3 times in each study week to test mood and attention, respectively. A university-affiliated, tertiary-care pediatric hospital. Healthy second-year pediatric residents working 2 night float rotations. Standardized measures of sleep, mood, and attention. Twenty-eight residents completed both treatments; 17 completed 1 treatment (10 placebo, 7 melatonin). There was not a statistically significant difference in measures of sleep, mood, and 5 of 6 measures of attention during melatonin and placebo treatment. One measure of attention, the number of omission errors, was significantly lower on melatonin (3.0 +/- 9.6) than on placebo (4.5 +/- 17.5) (z = -2.12, P = .03). The isolated finding of improvement of 1 single measure of attention in a test situation during melatonin treatment was not sufficiently robust to demonstrate a beneficial effect of melatonin in the dose used. Other strategies need to be considered to help residents in adaptation to night shift work.

  13. Melatonin and its correlation with testosterone in polycystic ovarian syndrome

    Directory of Open Access Journals (Sweden)

    Priyanka Jain

    2013-01-01

    Full Text Available Context: Polycystic ovarian syndrome (PCOS is considered to be the most common endocrine disorder affecting women. Melatonin, a small lipophilic indoleamine, and reproductive hormones may be interrelated. Melatonin influences sex steroid production at different stages of ovarian follicular maturation as melatonin receptors have been demonstrated at multiple sites in ovary and in intrafollicular fluid. It plays role as an antioxidant and free radical scavanger which protects follicles from oxidative stress, rescuing them from atresia, leading to complete follicular maturation and ovulation. Aims: To study the role of melatonin in PCOS and to investigate its correlation with testosterone in patients suffering from PCOS. Settings and Design: A total of 50 women with PCOS (Rotterdam criteria, 2003 and 50 age and weight matched healthy controls were selected and serum melatonin estimation was done in both the groups and correlated with serum total testosterone levels. Materials and Methods: In a case-control study, detailed history, clinical examination and hormonal evaluation [basal levels of leutinizing hormone, follicle-stimulating hormone, thyroid-stimulating hormone, prolactin, insulin, total testosterone, progesterone and melatonin] were carried out in all the participants including both cases and controls. For melatonin estimation, blood samples were collected between 12:00 am and 04:00 am on day 2 nd of menstrual cycle and analyzed by using commercially available enzyme-linked immunosorbent assay kit. Statistical Analysis: Student′s t-test was used to compare the significant difference in mean values between cases and control groups. Chi-square test was used to test the significant association between the qualitative variables. Linear correlation coefficient and regression analysis were done to see the amount and direction of relationship between quantitative variables. Results: The mean melatonin level was observed to be significantly

  14. Comparison of Melatonin Profile and Alertness of Firefighters with Different Work Schedules

    Science.gov (United States)

    Kazemi, Reza; Zare, Sajad

    2018-01-01

    Introduction: A two-shift work schedule with different rotations is common among firefighters in Iranian petrochemical companies. This study compared salivary melatonin and sleepiness on the last night before turning to day shift at 19:00, 23:00, 3:00, and 7:00 among petrochemical firefighters (PFFs) working seven and four consecutive night shifts. Methods: Sixty four PFFs working in the petrochemical industry were selected. To measure melatonin, saliva samples were taken, whereas the KSS index was used to assess sleepiness. Chi-square and independent samples t-test were carried out to analyze the data, and generalized linear model (GLM) was employed to determine the effect of confounding factors such as lighting and caffeine. Results: The levels of melatonin at 3:00 and 7:00, and the overall changes during the shift in the two shift patterns under the study were different (P shift patterns, while the effects of lighting and caffeine on melatonin changes were not significant (P > 0.05). Conclusion: It seems that a slow shift rotation is better because it reduces the secretion of melatonin (hence reducing sleepiness during the night) and changes the peak of melatonin secretion to the daytime, which is a sign of adaptation.

  15. Protective Effect of Melatonin Against Mitomycin C-Induced Genotoxic Damage in Peripheral Blood of Rats

    Directory of Open Access Journals (Sweden)

    S. Ortega-Gutiérrez

    2009-01-01

    Full Text Available Mitomycin C (MMC generates free radicals when metabolized. We investigated the effect of melatonin against MMC-induced genotoxicity in polychromatic erythrocytes and MMC-induced lipid peroxidation in brain and liver homogenates. Rats (N = 36 were classified into 4 groups: control, melatonin, MMC, and MMC + melatonin. Melatonin and MMC doses of 10 mg/kg and 2 mg/kg, respectively, were injected intraperitoneally. Peripheral blood samples were collected at 0, 24, 48, 72, and 96 hours posttreatment and homogenates were obtained at 96 hours posttreatment. The number of micronucleated polychromatic erythrocytes (MN-PCE per 1000 PCE was used as a genotoxic marker. Malondialdehyde (MDA plus 4-hydroxyalkenal (4-HDA levels were used as an index of lipid peroxidation. The MMC group showed a significant increase in MN-PCE at 24, 48, 72, and 96 hours that was significantly reduced with melatonin begin coadministrated. No significant differences were found in lipid peroxidation. Our results indicate that MMC-induced genotoxicity can be reduced by melatonin.

  16. Daily Socs1 rhythms alter with aging differentially in peripheral clocks in male Wistar rats: therapeutic effects of melatonin.

    Science.gov (United States)

    Vinod, Ch; Jagota, Anita

    2017-06-01

    Suprachiasmatic nucleus (SCN) in synchronization with the peripheral clocks regulates the temporal oscillations leading to overt rhythms. Aging leads to attenuation of such circadian regulation, accompanied by increased inflammatory mediators prevalently the cytokines. Suppressors of cytokine signaling (SOCS) family of proteins such as SOCS 1, 3 and cytokine-inducible SH2-containing protein (CIS) negatively regulate the cytokine signaling pathway. The role of SOCS1 in aging and circadian system is obscure. We therefore studied the daily rhythms of rSocs1 mRNA expression at Zeitgeber time (ZT) -0, 6, 12 and 18 in peripheral clocks such as liver, kidney, intestine and heart of 3, 12 and 24 months (m) old male Wistar rats. Interestingly the peripheral clocks studied displayed a rhythmic rSocs1 gene expression in 3 months. In 12 months group, 12 h phase advance in liver and 12 h phase delay in kidney and heart was observed with abolition of rhythms in intestine. Aging (24 months group) resulted in a phase advance by 6 h in liver and heart with abolition of rhythms in intestine in 24 months group. Kidney was also significantly affected upon aging with significant decrease in the rSocs1 levels and abolition of rhythms. The decrease in melatonin levels with aging is associated with decreased immunity and increased oxidative stress. The exogenous administration of melatonin has been linked to play a role in re-synchronization of circadian rhythms, reducing oxidative stress and enhancing immune properties. We therefore had studied the effect of exogenous melatonin upon age induced changes in daily rSocs1 gene expression patterns. Melatonin treatment partially restored the rhythms and daily pulse (ratio of maximum:minimum levels) in liver and intestine in 12 months group. Melatonin administration resulted in a significant increase in mean 24 h rSocs1 expression in intestine and heart of 24 months group compared to that of 3 months. The melatonin administration

  17. Melatonin Receptor Genes in Vertebrates

    Directory of Open Access Journals (Sweden)

    Hua Dong Yin

    2013-05-01

    Full Text Available Melatonin receptors are members of the G protein-coupled receptor (GPCR family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A and MT2 (or Mel1b or MTNR1B receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C, has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor.

  18. A COMBINED EFFECT OF DEXTROMETHORPHAN AND MELATONIN ON NEUROPATHIC PAIN BEHAVIOR IN RATS

    Science.gov (United States)

    Wang, Shuxing; Zhang, Lin; Lim, Grewo; Sung, Backil; Tian, Yinghong; Chou, Chiu-Wen; Hernstadt, Hayley; Rusanescu, Gabriel; Ma, Yuxin; Mao, Jianren

    2009-01-01

    Previous study has shown that administration of melatonin into the anterior cingulate cortex contralateral to peripheral nerve injury prevented exacerbation of mechanical allodynia with a concurrent improvement of depression-like behavior in Wistar-Kyoto (WKY) rats, a genetic variation of Wistar rats. In the present study, we examined the effect of the individual versus combined treatment of melatonin and/or dextromethorphan (DM), a clinically available N-methyl-D-aspartate (NMDA) receptor antagonist, on pain behaviors in WKY rats with chronic constriction sciatic nerve injury (CCI). Pain behaviors (thermal hyperalgesia and mechanical allodynia) were established at one week after CCI. WKY rats were then treated intraperitoneally with various doses of melatonin, DM or their combination once daily for the following week. At the end of this one-week treatment, behavioral tests were repeated in these same rats. While DM alone was effective in reducing thermal hyperalgesia at three tested doses (15, 30 or 60 mg/kg), it reduced mechanical allodynia only at high doses (30 or 60 mg/kg). By comparison, administration of melatonin alone was effective in reducing thermal hyperalgesia only at the highest dose (120 mg/kg, but not 30 or 60 mg/kg) tested in this experiment. Melatonin alone failed to reverse allodynia at all three tested doses (30, 60 and 120 mg/kg). However, the combined intraperitoneal administration of melatonin (30 mg/kg) and DM (15 mg/kg) effectively reversed both thermal hyperalgesia and mechanical allodynia although each individual dose alone did not reduce pain behaviors. These results suggest that a combination of melatonin with a clinically available NMDA receptor antagonist might be more effective than either drug alone for the treatment of neuropathic pain. PMID:19595681

  19. Melatonin Improves the Photosynthetic Carbon Assimilation and Antioxidant Capacity in Wheat Exposed to Nano-ZnO Stress

    Directory of Open Access Journals (Sweden)

    Zhiyu Zuo

    2017-10-01

    Full Text Available The release of nanoparticles into the environment is inevitable, which has raised global environmental concern. Melatonin is involved in various stress responses in plants. The present study investigated the effects of melatonin on photosynthetic carbon (C assimilation and plant growth in nano-ZnO stressed plants. It was found that melatonin improved the photosynthetic C assimilation in nano-ZnO stressed wheat plants, mainly due to the enhanced photosynthetic energy transport efficiency, higher chlorophyll concentration and higher activities of Rubisco and ATPases. In addition, melatonin enhanced the activities of antioxidant enzymes to protect the photosynthetic electron transport system in wheat leaves against the oxidative burst caused by nano-ZnO stress. These results suggest that melatonin could improve the tolerance of wheat plants to nano-ZnO stress.

  20. Melatonin, a potent agent in antioxidative defense: Actions as a natural food constituent, gastrointestinal factor, drug and prodrug

    Directory of Open Access Journals (Sweden)

    Pandi-Perumal SR

    2005-09-01

    Full Text Available Abstract Melatonin, originally discovered as a hormone of the pineal gland, is also produced in other organs and represents, additionally, a normal food constituent found in yeast and plant material, which can influence the level in the circulation. Compared to the pineal, the gastrointestinal tract contains several hundred times more melatonin, which can be released into the blood in response to food intake and stimuli by nutrients, especially tryptophan. Apart from its use as a commercial food additive, supraphysiological doses have been applied in medical trials and pure preparations are well tolerated by patients. Owing to its amphiphilicity, melatonin can enter any body fluid, cell or cell compartment. Its properties as an antioxidant agent are based on several, highly diverse effects. Apart from direct radical scavenging, it plays a role in upregulation of antioxidant and downregulation of prooxidant enzymes, and damage by free radicals can be reduced by its antiexcitatory actions, and presumably by contributions to appropriate internal circadian phasing, and by its improvement of mitochondrial metabolism, in terms of avoiding electron leakage and enhancing complex I and complex IV activities. Melatonin was shown to potentiate effects of other antioxidants, such as ascorbate and Trolox. Under physiological conditions, direct radical scavenging may only contribute to a minor extent to overall radical detoxification, although melatonin can eliminate several of them in scavenger cascades and potentiates the efficacy of antioxidant vitamins. Melatonin oxidation seems rather important for the production of other biologically active metabolites such as N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK and N1-acetyl-5-methoxykynuramine (AMK, which have been shown to also dispose of protective properties. Thus, melatonin may be regarded as a prodrug, too. AMK interacts with reactive oxygen and nitrogen species, conveys protection to mitochondria

  1. Effects of long-term light, darkness and oral administration of melatonin on serum levels of melatonin

    OpenAIRE

    Naser Farhadi; Majid Gharghani; Zahra Farhadi

    2016-01-01

    Background: Continuous light or darkness has various effects on different systems. In the present research work, the effects of constant light and darkness exposure of male rats and oral administration of exogenous melatonin on the serum levels of melatonin have been studied. Methods: Thirty adult male Wistar rats were divided into six groups of: (1) Control, (2) melatonin, (3) light, (4) light and melatonin, (5) darkness, and (6) darkness and melatonin. All groups were placed according to...

  2. Optimized microbial cells for production of melatonin and other compounds

    DEFF Research Database (Denmark)

    2017-01-01

    Described herein are recombinant microbial host cells comprising biosynthetic pathways and their use in producing oxidation products and downstream products, e.g., melatonin and related compounds, as well as enzyme variants, nucleic acids, vectors and methods useful for preparing and using...

  3. Oxidative Stress Induced by Epileptic Seizure and Its Attenuation by Melatonin

    Czech Academy of Sciences Publication Activity Database

    Mareš, J.; Stopka, Pavel; Nohejlová, K.; Rokyta, R.

    2013-01-01

    Roč. 62, Suppl.1 (2013), S67-S74 ISSN 0862-8408 Institutional support: RVO:61388980 Keywords : free radicals * seizure * melatonin * EPR Subject RIV: CA - Inorganic Chemistry Impact factor: 1.487, year: 2013

  4. Pharmacology and function of melatonin receptors

    International Nuclear Information System (INIS)

    Dubocovich, M.L.

    1988-01-01

    The hormone melatonin is secreted primarily from the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone, through an action in the brain, appears to be involved in the regulation of various neural and endocrine processes that are cued by the daily change in photoperiod. This article reviews the pharmacological characteristics and function of melatonin receptors in the central nervous system, and the role of melatonin in mediating physiological functions in mammals. Melatonin and melatonin agonists, at picomolar concentrations, inhibit the release of dopamine from retina through activation of a site that is pharmacologically different from a serotonin receptor. These inhibitory effects are antagonized by the novel melatonin receptor antagonist luzindole (N-0774), which suggests that melatonin activates a presynaptic melatonin receptor. In chicken and rabbit retina, the pharmacological characteristics of the presynaptic melatonin receptor and the site labeled by 2-[125I]iodomelatonin are identical. It is proposed that 2-[125I]iodomelatonin binding sites (e.g., chicken brain) that possess the pharmacological characteristics of the retinal melatonin receptor site (order of affinities: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-di-chloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin greater than N-acetyltryptamine greater than or equal to luzindole greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine much greater than 5-hydroxytryptamine) be classified as ML-1 (melatonin 1). The 2-[125I]iodomelatonin binding site of hamster brain membranes possesses different binding and pharmacological characteristics from the retinal melatonin receptor site and should be classified as ML-2. 64 references

  5. Melatonin, Noncoding RNAs, Messenger RNA Stability and Epigenetics—Evidence, Hints, Gaps and Perspectives

    Science.gov (United States)

    Hardeland, Rüdiger

    2014-01-01

    Melatonin is a highly pleiotropic regulator molecule, which influences numerous functions in almost every organ and, thus, up- or down-regulates many genes, frequently in a circadian manner. Our understanding of the mechanisms controlling gene expression is actually now expanding to a previously unforeseen extent. In addition to classic actions of transcription factors, gene expression is induced, suppressed or modulated by a number of RNAs and proteins, such as miRNAs, lncRNAs, piRNAs, antisense transcripts, deadenylases, DNA methyltransferases, histone methylation complexes, histone demethylases, histone acetyltransferases and histone deacetylases. Direct or indirect evidence for involvement of melatonin in this network of players has originated in different fields, including studies on central and peripheral circadian oscillators, shift work, cancer, inflammation, oxidative stress, aging, energy expenditure/obesity, diabetes type 2, neuropsychiatric disorders, and neurogenesis. Some of the novel modulators have also been shown to participate in the control of melatonin biosynthesis and melatonin receptor expression. Future work will need to augment the body of evidence on direct epigenetic actions of melatonin and to systematically investigate its role within the network of oscillating epigenetic factors. Moreover, it will be necessary to discriminate between effects observed under conditions of well-operating and deregulated circadian clocks, and to explore the possibilities of correcting epigenetic malprogramming by melatonin. PMID:25310649

  6. Biological Studies On The Radioprotective Role Of Melatonin On The Medfly Ceratitis Capitata (WIED.), Sterile Males

    International Nuclear Information System (INIS)

    SHOMAN, A.A.; MAHMOUD, E.A.

    2010-01-01

    The sterile insect technique (SIT) has been used successfully against the medfly. The use of gamma irradiation for sterilizing insects has some adverse effects on their competitiveness which in turn reduces the efficiency of the technique. This study was carried out to evaluate the radioprotective effects of melatonin (N-acetyl-5-methoxytyrptamine) on egg hatchability, larval duration, pupal recovery, pupal weight, adult recovery, sex ratio, adult survival, flight ability and mating competitiveness of the medfly, Ceratitis capitata (Wied.), sterile males against the oxidative stress induced by gamma radiation. The results showed that the use of melatonin before the application of radiation doses did not affect the percentages of egg hatchability, larval duration and pupal weight while the addition of melatonin to the larval diet led to a significant increase in the percent of the pupal recovery as compared with the control group. The results also showed significant increases in adult recovery, adult survival and flight ability of males reared on larval diet containing melatonin before irradiation as compared to those treated with radiation alone. The competitiveness values were drastically decreased (0.30, 0.17 and 0.19) with the increase of gamma irradiation (90, 100 and 110 Gy, respectively). However, the results showed that the competitiveness values were increased in males previously reared on a larval diet containing 1 g melatonin/kg larval media (0.1%) and the produced full grown pupae were irradiated with 90, 100 and 110 Gy. The highest male mating competitiveness was recorded when melatonin was added to the larval diet then irradiated the produced pupae with the sterilizing dose (90 Gy). The results showed that the competitiveness values were 0.67, 0.47 and 0.46 for the doses 90, 100 and 110 Gy, respectively. The results refer to availability of using melatonin as a simple and effective means to improve the quality and the male mating competitiveness of the

  7. Melatonin promotes Bax sequestration to mitochondria reducing cell susceptibility to apoptosis via the lipoxygenase metabolite 5-hydroxyeicosatetraenoic acid

    KAUST Repository

    Radogna, Flavia; Albertini, M. C.; De Nicola, Milena D.; Diederich, Marc; Bejarano, Ignacio; Ghibelli, Lina

    2015-01-01

    of melatonin binding to its low affinity target calmodulin. Therefore, the anti-apoptotic effect of melatonin requires the simultaneous, independent interaction with high (MT1/MT2) and low (calmodulin) affinity targets, eliciting two independent signal

  8. Melatonin: new applications in clinical and veterinary medicine, plant physiology and industry.

    Science.gov (United States)

    Reiter, Russel J; Coto-Montes, Ana; Boga, Jose Antonio; Fuentes-Broto, Lorena; Rosales-Corral, Sergio; Tan, Duan-Xian

    2011-01-01

    Novel functions of melatonin continue to be uncovered. Those summarized in this report include actions at the level of the peripheral reproductive organs and include functions as an antioxidant to protect the maturing oocyte in the vesicular follicle and during ovulation, melatonin actions on the developing fetus particularly in relation to organizing the circadian system, its potential utility in combating the consequences of pre-eclampsia, reducing intrauterine growth restriction, suppressing endometriotic growths and improving the outcomes of in vitro fertilization/embryo transfer. The inhibitory effects of melatonin on many cancer types have been known for decades. Until recently, however, melatonin had not been tested as a protective agent against exocrine pancreatic tumors. This cancer type is highly aggressive and 5 year survival rate in individuals with pancreatic cancer is very low. Recent studies with melatonin indicate it may have utility in the treatment of these otherwise almost untreatable pancreatic cancers. The discovery of melatonin in plants has also opened a vast new field of research which is rapidly being exploited although the specific functions(s) of melatonin in plant organs remains enigmatic. Finally, the described application of melatonin's use as a chemical reductant in industry could well serve as a stimulus to further define the utility of this versatile molecule in new industrial applications.

  9. The Safety of Melatonin in Humans

    DEFF Research Database (Denmark)

    Andersen, Lars Peter Holst; Gögenür, Ismayil; Rosenberg, Jacob

    2016-01-01

    Exogenous melatonin has been investigated as treatment for a number of medical and surgical diseases, demonstrating encouraging results. The aim of this review was to present and evaluate the literature concerning the possible adverse effects and safety of exogenous melatonin in humans. Furthermore...... been reported. No studies have indicated that exogenous melatonin should induce any serious adverse effects. Similarly, randomized clinical studies indicate that long-term melatonin treatment causes only mild adverse effects comparable to placebo. Long-term safety of melatonin in children...

  10. Premedication with melatonin vs midazolam: efficacy on anxiety and compliance in paediatric surgical patients.

    Science.gov (United States)

    Impellizzeri, Pietro; Vinci, Enrica; Gugliandolo, Maria Cristina; Cuzzocrea, Francesca; Larcan, Rosalba; Russo, Tiziana; Gravina, Maria Rosaria; Arena, Salvatore; D'Angelo, Gabriella; Gitto, Eloisa; Montalto, Angela Simona; Alibrandi, Angela; Marseglia, Lucia; Romeo, Carmelo

    2017-07-01

    Preoperative anxiety is a major problem in paediatric surgical patients. Melatonin has been used as a premedicant agent and data regarding effectiveness are controversial. The primary outcome of this randomized clinical trial was to evaluate the effectiveness of oral melatonin premedication, in comparison to midazolam, in reducing preoperative anxiety in children undergoing elective surgery. As secondary outcome, compliance to intravenous induction anaesthesia was assessed. There were 80 children undergoing surgery randomly assigned, 40 per group, to receive oral midazolam (0.5 mg/kg, max 20 mg) or oral melatonin (0.5 mg/kg, max 20 mg). Trait anxiety of children and their mothers (State-Trait Anxiety Inventory) at admission, preoperative anxiety and during anaesthesia induction (Modified Yale Pre-operative Anxiety Scale), and children's compliance with anaesthesia induction (Induction Compliance Checklist) were all assessed. Children premedicated with melatonin and midazolam did not show significant differences in preoperative anxiety levels, either in the preoperative room or during anaesthesia induction. Moreover, compliance during anaesthesia induction was similar in both groups. This study adds new encouraging data, further supporting the potential use of melatonin premedication in reducing anxiety and improving compliance to induction of anaesthesia in children undergoing surgery. Nevertheless, further larger controlled clinical trials are needed to confirm the real effectiveness of melatonin as a premedicant agent in paediatric population. What is Known: • Although midazolam represents the preferred treatment as a premedication for children before induction of anaesthesia, it has several side effects. • Melatonin has been successfully used as a premedicant agent in adults, while data regarding effectiveness in children are controversial. What is New: • In this study, melatonin was as effective as midazolam in reducing children's anxiety in both

  11. Impact of melatonin supplementation in the rat spermatogenesis subjected to forced swimming exercise.

    Science.gov (United States)

    Moayeri, A; Mokhtari, T; Hedayatpour, A; Abbaszadeh, H-A; Mohammadpour, S; Ramezanikhah, H; Shokri, S

    2018-04-01

    Oxygen consumption increases many times during exercise, which can increase reactive oxygen species. It negatively affects fertility in male athletes. Melatonin is exerting a regulatory role at different levels of the hypothalamic-pituitary-gonadal axis. However, there is no evidence that the protective effects of melatonin persist after long duration exercise on the spermatogenesis. Therefore, this study was conducted to examine the impacts of melatonin on the testis following the administration of swimming exercise. Rats were separated into five different groups, including Control, sham M: received the solvent of melatonin, M: received melatonin, S: the exercise protocol, MS: received melatonin and the exercise protocol. After 8 weeks, animals were scarified and antioxidant enzymes levels of testes, spermatogenic cells apoptosis and sperm quality were measured. Swimming decreased all parameters of spermatozoa. Nevertheless, melatonin could significantly improve the progressive motility of spermatozoa in MS rats. Swimming caused an increased apoptosis of S group and decreased all antioxidant enzymes. Melatonin could drastically reduce apoptosis and increased these enzymes. Therefore, melatonin seems to induce the production of antioxidant enzymes of testicular tissues and diminish the extent of apoptotic changes caused by forced exercise on the testis, which can, in turn, ameliorate the sperm parameters. © 2017 Blackwell Verlag GmbH.

  12. Melatonin-Based Therapeutics for Neuroprotection in Stroke

    Directory of Open Access Journals (Sweden)

    Cesar V. Borlongan

    2013-04-01

    Full Text Available The present review paper supports the approach to deliver melatonin and to target melatonin receptors for neuroprotection in stroke. We discuss laboratory evidence demonstrating neuroprotective effects of exogenous melatonin treatment and transplantation of melatonin-secreting cells in stroke. In addition, we describe a novel mechanism of action underlying the therapeutic benefits of stem cell therapy in stroke, implicating the role of melatonin receptors. As we envision the clinical entry of melatonin-based therapeutics, we discuss translational experiments that warrant consideration to reveal an optimal melatonin treatment strategy that is safe and effective for human application.

  13. Melatonin and Fertoprotective Adjuvants: Prevention against Premature Ovarian Failure during Chemotherapy.

    Science.gov (United States)

    Jang, Hoon; Hong, Kwonho; Choi, Youngsok

    2017-06-07

    Premature ovarian failure is one of the side effects of chemotherapy in pre-menopausal cancer patients. Preservation of fertility has become increasingly important in improving the quality of life of completely recovered cancer patients. Among the possible strategies for preserving fertility such as ovarian tissue cryopreservation, co-treatment with a pharmacological adjuvant is highly effective and poses less of a burden on the human body. Melatonin is generally produced in various tissues and acts as a universally acting antioxidant in cells. Melatonin is now more widely used in various biological processes including treating insomnia and an adjuvant during chemotherapy. In this review, we summarize the information indicating that melatonin may be useful for reducing and preventing premature ovarian failure in chemotherapy-treated female patients. We also mention that many adjuvants other than melatonin are developed and used to inhibit chemotherapy-induced infertility. This information will give us novel insights on the clinical use of melatonin and other agents as fertoprotective adjuvants for female cancer patients.

  14. Natural Variation in Banana Varieties Highlights the Role of Melatonin in Postharvest Ripening and Quality.

    Science.gov (United States)

    Hu, Wei; Yang, Hai; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Yang; Wu, Chunlai; Wang, Jiashui; Reiter, Russel J; Tan, Dun-Xian; Shi, Haitao; Xu, Biyu; Jin, Zhiqiang

    2017-11-22

    This study aimed to investigate the role of melatonin in postharvest ripening and quality in various banana varieties with contrasting ripening periods. During the postharvest life, endogenous melatonin showed similar performance with ethylene in connection to ripening. In comparison to ethylene, melatonin was more correlated with postharvest banana ripening. Exogenous application of melatonin resulted in a delay of postharvest banana ripening. Moreover, this effect is concentration-dependent, with 200 and 500 μM treatments more effective than the 50 μM treatment. Exogenous melatonin also led to elevated endogenous melatonin content, reduced ethylene production through regulation of the expression of MaACO1 and MaACS1, and delayed sharp changes of quality indices. Taken together, this study highlights that melatonin is an indicator for banana fruit ripening in various varieties, and the repression of ethylene biosynthesis and postharvest ripening by melatonin can be used for biological control of postharvest fruit ripening and quality.

  15. High Concentration of Melatonin Regulates Leaf Development by Suppressing Cell Proliferation and Endoreduplication in Arabidopsis.

    Science.gov (United States)

    Wang, Qiannan; An, Bang; Shi, Haitao; Luo, Hongli; He, Chaozu

    2017-05-05

    N -acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still unclear. In this study, we found that high concentration of melatonin suppressed leaf growth in Arabidopsis by reducing both cell size and cell number. Further kinetic analysis of the fifth leaves showed that melatonin remarkably inhibited cell division rate. Additionally, flow cytometic analysis indicated that melatonin negatively regulated endoreduplication during leaf development. Consistently, the expression analysis revealed that melatonin regulated the transcriptional levels of key genes of cell cycle and ribosome. Taken together, this study suggests that high concentration of melatonin negatively regulated the leaf growth and development in Arabidopsis , through modulation of endoreduplication and the transcripts of cell cycle and ribosomal key genes.

  16. Melatonin attenuates prenatal dexamethasone-induced blood pressure increase in a rat model.

    Science.gov (United States)

    Tain, You-Lin; Chen, Chih-Cheng; Sheen, Jiunn-Ming; Yu, Hong-Ren; Tiao, Mao-Meng; Kuo, Ho-Chang; Huang, Li-Tung

    2014-04-01

    Although antenatal corticosteroid is recommended to accelerate fetal lung maturation, prenatal dexamethasone exposure results in hypertension in the adult offspring. Since melatonin is a potent antioxidant and has been known to regulate blood pressure, we examined the beneficial effects of melatonin therapy in preventing prenatal dexamethasone-induced programmed hypertension. Male offspring of Sprague-Dawley rats were assigned to four groups (n = 12/group): control, dexamethasone (DEX), control + melatonin, and DEX + melatonin. Pregnant rats received intraperitoneal dexamethasone (0.1 mg/kg) from gestational day 16 to 22. In the melatonin-treatment groups, rats received 0.01% melatonin in drinking water during their entire pregnancy and lactation. Blood pressure was measured by an indirect tail-cuff method. Gene expression and protein levels were analyzed by real-time quantitative polymerase chain reaction and Western blotting, respectively. At 16 weeks of age, the DEX group developed hypertension, which was partly reversed by maternal melatonin therapy. Reduced nephron numbers due to prenatal dexamethasone exposure were prevented by melatonin therapy. Renal superoxide and NO levels were similar in all groups. Prenatal dexamethasone exposure led to increased mRNA expression of renin and prorenin receptor and up-regulated histone deacetylase (HDAC)-1 expression in the kidneys of 4-month-old offspring. Maternal melatonin therapy augmented renal Mas protein levels in DEX + melatonin group, and increased renal mRNA expression of HDAC-1, HDAC-2, and HDAC-8 in control and DEX offspring. Melatonin attenuated prenatal DEX-induced hypertension by restoring nephron numbers, altering RAS components, and modulating HDACs. Copyright © 2014 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  17. Identification of melatonin in Trichoderma spp. and detection of melatonin content under controlled-stress growth conditions from T. asperellum.

    Science.gov (United States)

    Liu, Tong; Zhao, Fengzhou; Liu, Zhen; Zuo, Yuhu; Hou, Jumei; Wang, Yanjie

    2016-07-01

    T. koningii, T. harzianum, T. asperellum, T. longibrachiatum, and T. viride were analyzed using liquid chromatography-tandem mass spectrometry to determine whether melatonin is present. Results showed that there were abundant amounts of endogenous melatonin in five Trichoderma species, but no melatonin was found in any of the culture filtrates. T. asperellum had the highest amount of melatonin (27.588 ± 0.326 μg g(-1) dry mass), followed by T. koningii, T. harzianum, T. longibrachiatum, and T. viride. The endogenous melatonin content of T. asperellum in controlled-stress growth conditions was also detected. The data showed that chemical stressors (CdCl2 , CuSO4 , and H2 O2 ) provoked an increase in endogenous melatonin levels. CdCl2 had the highest stimulatory effect on melatonin production, as the product reached reaching up to three times the melatonin content of the control. NaCl stimulated a decrease of melatonin. Acidic conditions (pH 3 and pH 5) as well as slightly alkaline conditions (pH 9) resulted in an increase in the melatonin content, whereas pH11 resulted in a significant decrease in the melatonin content, only 12.276 ± 0.205 μg g(-1) dry mass. The current study is first to report melatonin content and the change of melatonin content under different stress situations in Trichoderma spp. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Melatonin, Noncoding RNAs, Messenger RNA Stability and Epigenetics—Evidence, Hints, Gaps and Perspectives

    Directory of Open Access Journals (Sweden)

    Rüdiger Hardeland

    2014-10-01

    Full Text Available Melatonin is a highly pleiotropic regulator molecule, which influences numerous functions in almost every organ and, thus, up- or down-regulates many genes, frequently in a circadian manner. Our understanding of the mechanisms controlling gene expression is actually now expanding to a previously unforeseen extent. In addition to classic actions of transcription factors, gene expression is induced, suppressed or modulated by a number of RNAs and proteins, such as miRNAs, lncRNAs, piRNAs, antisense transcripts, deadenylases, DNA methyltransferases, histone methylation complexes, histone demethylases, histone acetyltransferases and histone deacetylases. Direct or indirect evidence for involvement of melatonin in this network of players has originated in different fields, including studies on central and peripheral circadian oscillators, shift work, cancer, inflammation, oxidative stress, aging, energy expenditure/obesity, diabetes type 2, neuropsychiatric disorders, and neurogenesis. Some of the novel modulators have also been shown to participate in the control of melatonin biosynthesis and melatonin receptor expression. Future work will need to augment the body of evidence on direct epigenetic actions of melatonin and to systematically investigate its role within the network of oscillating epigenetic factors. Moreover, it will be necessary to discriminate between effects observed under conditions of well-operating and deregulated circadian clocks, and to explore the possibilities of correcting epigenetic malprogramming by melatonin.

  19. Does the use of melatonin overcome drug resistance in cancer chemotherapy?

    Science.gov (United States)

    Asghari, Mohammad Hossein; Ghobadi, Emad; Moloudizargari, Milad; Fallah, Marjan; Abdollahi, Mohammad

    2018-03-01

    Our knowledge regarding the implications of melatonin in the therapy of numerous medical conditions, including cancer is constantly expanding. Melatonin can variably affect cancer pathology via targeting several key aspects of any neoplastic condition, including the very onset of carcinogenesis as well as tumor growth, differentiation, and dissemination. Numerous studies have examined the effects of melatonin in the context of various cancers reporting the enhanced efficacy of chemo/radiotherapy in combination with this compound. Reduced sensitivity and also resistance of cancer cells to antineoplastic agents are common events which might arise as a result of genomic instability of the malignant cells. Genetic mutations provide numerous mechanisms for these cells to resist cytotoxic therapies. Melatonin, due to its pleitropic effects, is able to correct these alterations in favour of sensitization to antineoplastic agents as evident by increased response to treatment via modulating the expression and phosphorylation status of drug targets, the reduced clearance of drugs by affecting their metabolism and transport within the body, decreased survival of malignant cells via altering DNA repair and telomerase activity, and enhanced responsiveness to cell death-associated mechanisms such as apoptosis and autophagy. These effects are presumably governed by melatonin's interventions in the main signal transduction pathways such as Akt and MAPK, independent of its antioxidant properties. Possessing such a signaling altering nature, melatonin can considerably affect the drug-resistance mechanisms employed by the malignant cells in breast, lung, hepatic, and colon cancers as well as different types of leukemia which are the subject of the current review. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Development of a melatonin RIA and observation on the plasma melatonin contents in rat models of chronic hyperirritable-depression

    International Nuclear Information System (INIS)

    Rong Yang; Sun Acheng; Ma Cong; Zhao Zhong; Gui Yuning; Li Jianjun; Wang Guangkai; Guo Xiazhen

    2005-01-01

    Objective: To establish a new melatonin assay and to investigate the changes of plasma melatonin content in rat models of chronic hyperirritable-depression. Methods: Quality melatonin antiserum was obtained from immunization of Newzealand white rabbit with melatonin immunogen derived from conjugation of melatonin to bovine thyroglobulin using formaldehyde. Radioiodinated melatonin was used as tracer and a melatonin assay was developed through non-equilibrium competition. Twenty rat models of chronic hyperirritable-depression were prepared with multiple randomly-combined stimuli as previously reported. Plasma and pineal body tissue contents of melatonin in the models were examined in midsummer (n=10) and mid-winter (n=10) with the newly developed melatonin RIA. Contents of melatonin were also determined in 20 control rats. Results: The antiserum possessed very low cross-reaction rate with several melatonin analogous tested (0.09%-2.3%). At the titer of 1:1800, the maximal combination rate was 41%. The affinity constant was 1.7 x 10 9 L/M. The specific radioactivity of the tracer 125 I-melatonin was 55 μCi/μg, with radio-chemical purity of 93% and the tracer was stable at 4 degree C for 65 days. The assay was of high sensitivity (lower detection limit 5pg/ml), intra-CV, 6.5 %; inter-CV, 11%. The plasma and pineal body tissue contents of melatonin in the rat models were consistently significantly lower than those in control rats both during summer and winter, while the contents of melatonin during winter were always significantly higher than those during summer in both groups of animals. Conclusion: The newly developed assay was of good specificity and sensitivity with stable agents (65 days). The experimental results demonstrated definite correlationship between the depression disorder and melatonin contents in the rat models, however, the disorder was not seasonally affective. The seasonal variation of the melatonin contents in the animals was due to different

  1. Dose finding of melatonin for chronic idiopathic childhood sleep onset insomnia: an RCT

    OpenAIRE

    van Geijlswijk, Ingeborg M.; van der Heijden, Kristiaan B.; Egberts, A. C. G.; Korzilius, Hubert P. L. M.; Smits, Marcel G.

    2010-01-01

    RATIONALE: Pharmacokinetics of melatonin in children might differ from that in adults. OBJECTIVES: This study aims to establish a dose-response relationship for melatonin in advancing dim light melatonin onset (DLMO), sleep onset (SO), and reducing sleep onset latency (SOL) in children between 6 and 12 years with chronic sleep onset insomnia (CSOI). METHODS: The method used for this study is the randomized, placebo-controlled double-blind trial. Children with CSOI (n = 72) received either mel...

  2. Melatonin in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Jian-Zhi Wang

    2013-07-01

    Full Text Available Alzheimer’s disease (AD, an age-related neurodegenerative disorder with progressive cognition deficit, is characterized by extracellular senile plaques (SP of aggregated β-amyloid (Aβ and intracellular neurofibrillary tangles, mainly containing the hyperphosphorylated microtubule-associated protein tau. Multiple factors contribute to the etiology of AD in terms of initiation and progression. Melatonin is an endogenously produced hormone in the brain and decreases during aging and in patients with AD. Data from clinical trials indicate that melatonin supplementation improves sleep, ameliorates sundowning and slows down the progression of cognitive impairment in AD patients. Melatonin efficiently protects neuronal cells from Aβ-mediated toxicity via antioxidant and anti-amyloid properties. It not only inhibits Aβ generation, but also arrests the formation of amyloid fibrils by a structure-dependent interaction with Aβ. Our studies have demonstrated that melatonin efficiently attenuates Alzheimer-like tau hyperphosphorylation. Although the exact mechanism is still not fully understood, a direct regulatory influence of melatonin on the activities of protein kinases and protein phosphatases is proposed. Additionally, melatonin also plays a role in protecting the cholinergic system and in anti-inflammation. The aim of this review is to stimulate interest in melatonin as a potentially useful agent in the prevention and treatment of AD.

  3. Alleviation of cold damage to photosystem II and metabolisms by melatonin in Bermudagrass

    Directory of Open Access Journals (Sweden)

    Jibiao eFan

    2015-11-01

    Full Text Available As a typical warm-season grass, Bermudagrass [Cynodon dactylon (L.Pers.] is widely applied in turf systems and animal husbandry. However, cold temperature is a key factor limiting resource utilization for Bermudagrass. Therefore, it is relevant to study the mechanisms by which Burmudagrass responds to cold. Melatonin is a crucial animal and plant hormone that is responsible for plant abiotic stress responses. The objective of this study was to investigate the role of melatonin in cold stress response of Bermudagrass. Wild Bermudagrass pre-treated with 100 μM melatonin was subjected to different cold stress treatments (-5 °C for 8 h with or without cold acclimation. The results showed lower malondialdehyde (MDA and electrolyte leakage (EL values, higher levels of chlorophyll, and greater superoxide dismutase and peroxidase activities after melatonin treatment than those in non-melatonin treatment under cold stress. Analysis of chlorophyll a revealed that the chlorophyll fluorescence transient (OJIP curves were higher after treatment with melatonin than that of non-melatonin treated plants under cold stress. The values of photosynthetic fluorescence parameters increased after treatment with melatonin under cold stress. The analysis of metabolism showed alterations in 46 metabolites in cold-stressed plants after melatonin treatment. Among the measured metabolites, five sugars (arabinose, mannose, glucopyranose, maltose, turanose and one organic acid (propanoic acid were significantly increased. However, valine and threonic acid contents were reduced in melatonin-treated plants. In summary, melatonin maintained cell membrane stability, increased antioxidant enzymes activities, improved the process of photosystem II, and induced alterations in Bermudagrass metabolism under cold stress.

  4. No effect of melatonin to modify surgical-stress response after major vascular surgery: a randomised placebo-controlled trial

    DEFF Research Database (Denmark)

    Kücükakin, B; Wilhelmsen, M; Lykkesfeldt, Jens

    2010-01-01

    A possible mechanism underlying cardiovascular morbidity after major vascular surgery may be the perioperative ischaemia-reperfusion with excessive oxygen-derived free-radical production and increased levels of circulating inflammatory mediators. We examined the effect of melatonin infusion during...... surgery and oral melatonin treatment for 3 days after surgery on biochemical markers of oxidative and inflammatory stress....

  5. Solid oxide fuel cells fueled with reducible oxides

    Science.gov (United States)

    Chuang, Steven S.; Fan, Liang Shih

    2018-01-09

    A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing the solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.

  6. Melatonin, mitochondria and hypertension.

    Science.gov (United States)

    Baltatu, Ovidiu C; Amaral, Fernanda G; Campos, Luciana A; Cipolla-Neto, Jose

    2017-11-01

    Melatonin, due to its multiple means and mechanisms of action, plays a fundamental role in the regulation of the organismal physiology by fine tunning several functions. The cardiovascular system is an important site of action as melatonin regulates blood pressure both by central and peripheral interventions, in addition to its relation with the renin-angiotensin system. Besides, the systemic management of several processes, melatonin acts on mitochondria regulation to maintain a healthy cardiovascular system. Hypertension affects target organs in different ways and cellular energy metabolism is frequently involved due to mitochondrial alterations that include a rise in reactive oxygen species production and an ATP synthesis decrease. The discussion that follows shows the role played by melatonin in the regulation of mitochondrial physiology in several levels of the cardiovascular system, including brain, heart, kidney, blood vessels and, particularly, regulating the renin-angiotensin system. This discussion shows the putative importance of using melatonin as a therapeutic tool involving its antioxidant potential and its action on mitochondrial physiology in the cardiovascular system.

  7. Effects of intracoronary melatonin on ischemia-reperfusion injury in ST-elevation myocardial infarction

    DEFF Research Database (Denmark)

    Ekeløf, Sarah V; Halladin, Natalie L; Jensen, Svend E

    2016-01-01

    Acute coronary occlusion is effectively treated by primary percutaneous coronary intervention. However, myocardial ischemia-reperfusion injury is at the moment an unavoidable consequence of the procedure. Oxidative stress is central in the development of ischemia-reperfusion injury. Melatonin......, an endogenous hormone, acts through antioxidant mechanisms and could potentially minimize the myocardial injury. The aim of the experimental study was to examine the cardioprotective effects of melatonin in a porcine closed-chest reperfused infarction model. A total of 20 landrace pigs were randomized...... to a dosage of 200 mg (0.4 mg/mL) melatonin or placebo (saline). The intervention was administered intracoronary and intravenous. Infarct size, area at risk and microvascular obstruction were determined ex vivo by cardiovascular magnetic resonance imaging. Myocardial salvage index was calculated. The plasma...

  8. A pilot double-blind randomised placebo-controlled dose-response trial assessing the effects of melatonin on infertility treatment (MIART): study protocol.

    Science.gov (United States)

    Fernando, Shavi; Osianlis, Tiki; Vollenhoven, Beverley; Wallace, Euan; Rombauts, Luk

    2014-09-01

    High levels of oxidative stress can have considerable impact on the outcomes of in vitro fertilisation (IVF). Recent studies have reported that melatonin, a neurohormone secreted from the pineal gland in response to darkness, has significant antioxidative capabilities which may protect against the oxidative stress of infertility treatment on gametes and embryos. Early studies of oral melatonin (3-4 mg/day) in IVF have suggested favourable outcomes. However, most trials were poorly designed and none have addressed the optimum dose of melatonin. We present a proposal for a pilot double-blind randomised placebo-controlled dose-response trial aimed to determine whether oral melatonin supplementation during ovarian stimulation can improve the outcomes of assisted reproductive technology. We will recruit 160 infertile women into one of four groups: placebo (n=40); melatonin 2 mg twice per day (n=40); melatonin 4 mg twice per day (n=40) and melatonin 8 mg twice per day (n=40). The primary outcome will be clinical pregnancy rate. Secondary clinical outcomes include oocyte number/quality, embryo number/quality and fertilisation rate. We will also measure serum melatonin and the oxidative stress marker, 8-hydroxy-2'-deoxyguanosine at baseline and after treatment and levels of these in follicular fluid at egg pick-up. We will investigate follicular blood flow with Doppler ultrasound, patient sleepiness scores and pregnancy complications, comparing outcomes between groups. This protocol has been designed in accordance with the SPIRIT 2013 Guidelines. Ethical approval has been obtained from Monash Health HREC (Ref: 13402B), Monash University HREC (Ref: CF14/523-2014000181) and Monash Surgical Private Hospital HREC (Ref: 14107). Data analysis, interpretation and conclusions will be presented at national and international conferences and published in peer-reviewed journals. ACTRN12613001317785. Published by the BMJ Publishing Group Limited. For permission to use (where

  9. Melatonin inhibits proliferation and invasion via repression of miRNA-155 in glioma cells.

    Science.gov (United States)

    Gu, Junyi; Lu, Zhongsheng; Ji, Chenghong; Chen, Yuchao; Liu, Yuzhao; Lei, Zhe; Wang, Longqiang; Zhang, Hong-Tao; Li, Xiangdong

    2017-09-01

    Melatonin, an indolamine mostly synthesized in the pineal gland, exerts the anti-cancer effect by various mechanisms in glioma cells. Our previous study showed that miR-155 promoted glioma cell proliferation and invasion. However, the question of whether melatonin may inhibit glioma by regulating miRNAs has not yet been addressed. In this study, we found that melatonin (100μM, 1μM and 1nM) significantly inhibited the expression of miR-155 in human glioma cell lines U87, U373 and U251. Especially, the lowest expression of miR-155 was detected in 1μM melatonin-treated glioma cells. Melatonin (1μM) inhibits cell proliferation of U87 by promoting cell apoptosis. Nevertheless, melatonin had no effect on cell cycle distribution of U87 cells. Moreover, U87 cells treated with 1μM melatonin presented significantly lower migration and invasion ability when compared with control cells. Importantly, melatonin inhibited c-MYB expression, and c-MYB knockdown reduced miR-155 expression and migration and invasion in U87 cells. Taken together, for the first time, our findings show that melatonin inhibits miR-155 expression and thereby represses glioma cell proliferation, migration and invasion, and suggest that melatonin may downregulate the expression of miR-155 via repression of c-MYB. This will provide a theoretical basis for revealing the anti-glioma mechanisms of melatonin. Copyright © 2017. Published by Elsevier Masson SAS.

  10. Early prophylactic and treatment role of melatonin against certain biochemical disorders in irradiated rats

    International Nuclear Information System (INIS)

    El-Massry, F.S.

    2005-01-01

    The aim of the present study is to evaluate the possible early prophylactic and therapeutic role of melatonin on irradiated rats. The experimental animals were divided into five groups: control, injected intraperitoneally with melatonin (10 mg/ kg b.wt.), irradiated at 6 Gy, injected with melatonin before irradiation and injected with melatonin after gamma irradiation. Blood, liver and brain samples from rats were collected at three time intervals of 7, 10, 14 days after terminating all treatments. Protein content and glutathione were estimated in blood and tissues, whereas testosterone and cortisol were assayed in blood of rats after whole body gamma irradiation at 6 Gy. Administration of melatonin (10 mg/kg) before whole body gamma irradiation markedly reduced the radiation injury and controlled the changes in most of the studied parameters, but following the administration of melatonin after irradiation, there were no changes in these parameters

  11. [Potential of melatonin for prevention of age-related macular degeneration: experimental study].

    Science.gov (United States)

    Stefanova, N A; Zhdankina, A A; Fursova, A Zh; Kolosova, N G

    2013-01-01

    Decline with age of the content of melatonin is considered as one of the leading mechanisms of aging and development of associated diseases, including age-related macular degeneration (AMD)--the disease, which becomes the most common cause of blindness and acuity of vision deterioration in elderly. The prospects of the use of melatonin in the prevention of AMD is being actively discussed, but as a rule on the basis of the results of the experiments on cells in retinal pigment epithelium (RPE). We showed previously that the senescence-accelerated OXYS rat is an adequate animal model of AMD, already used for identifying the relevant therapeutic targets. Here we have investigated the effect of Melatonin (Melaksen, 0,004 mg per kg--a dose equivalent to the recommended one for people) on the development of retinopathy similar to AMD in OXYS rats. Ophthalmoscopic examinations show that Melatonin supplementation decreased the incidence and severity of retinopathy and improved some (but not all) histological abnormalities associated with retinopathy. Thus, melatonin prevented the structural and functional changes in RPE cells, reduced the severity of microcirculatory disorders. Importantly, Melatonin prevented destruction of neurosensory cells, associative and gangliolar neurons in the retina. Taken together, our data suggest the therapeutic potential of Melatonin for treatment and prevention of AMD.

  12. Effects of melatonin and prolactin in reproduction: review of literature.

    Science.gov (United States)

    Tenorio, Fernanda das Chagas Angelo Mendes; Simões, Manuel de Jesus; Teixeira, Valéria Wanderley; Teixeira, Álvaro Aguiar Coelho

    2015-01-01

    The pineal gland is responsible for producing a hormone called melatonin (MEL), and is accepted as the gland that regulates reproduction in mammals. Prolactin (PRL) also exhibits reproductive activity in animals in response to photoperiod. It is known that the concentrations of PRL are high in the summer and reduced during winter, the opposite of what is seen with melatonin in these seasons. In placental mammals, both prolactin and melatonin affect implantation, which is considered a critical point of pregnancy, since a successful pregnancy requires the development of a synchronous interaction between the endometrium and blastocyst for placental development. It is also known that PRL levels during pregnancy are essential for the maintenance of pregnancy, because this hormone induces the corpus luteum to produce progesterone, in addition to stimulating blastocyst implantation to maintain pregnancy and form the placenta. However, melatonin levels in plasma have also been shown to increase during pregnancy, peaking at the end of this period, which suggests that this hormone plays an important role in the maintenance of pregnancy. Thus, it is clear that treatment with prolactin or melatonin interferes with the processes responsible for the development and maintenance of pregnancy.

  13. Effects of melatonin and prolactin in reproduction: review of literature

    Directory of Open Access Journals (Sweden)

    Fernanda das Chagas Angelo Mendes Tenorio

    2015-06-01

    Full Text Available Summary The pineal gland is responsible for producing a hormone called melatonin (MEL, and is accepted as the gland that regulates reproduction in mammals. Prolactin (PRL also exhibits reproductive activity in animals in response to photoperiod. It is known that the concentrations of PRL are high in the summer and reduced during winter, the opposite of what is seen with melatonin in these seasons. In placental mammals, both prolactin and melatonin affect implantation, which is considered a critical point of pregnancy, since a successful pregnancy requires the development of a synchronous interaction between the endometrium and blastocyst for placental development. It is also known that PRL levels during pregnancy are essential for the maintenance of pregnancy, because this hormone induces the corpus luteum to produce progesterone, in addition to stimulating blastocyst implantation to maintain pregnancy and form the placenta. However, melatonin levels in plasma have also been shown to increase during pregnancy, peaking at the end of this period, which suggests that this hormone plays an important role in the maintenance of pregnancy. Thus, it is clear that treatment with prolactin or melatonin interferes with the processes responsible for the development and maintenance of pregnancy.

  14. Melatonin in antinociception: its therapeutic applications.

    Science.gov (United States)

    Srinivasan, Venkatramanujam; Lauterbach, Edward C; Ho, Khek Yu; Acuña-Castroviejo, Dario; Zakaria, Rahimah; Brzezinski, Amnon

    2012-06-01

    The intensity of pain sensation exhibits marked day and night variations. Since the intensity of pain perception is low during dark hours of the night when melatonin levels are high, this hormone has been implicated as one of the prime antinociceptive substances. A number of studies have examined the antinociceptive role of melatonin in acute, inflammatory and neuropathic pain animal models. It has been demonstrated that melatonin exerts antinociceptive actions by acting at both spinal cord and supraspinal levels. The mechanism of antinociceptive actions of melatonin involves opioid, benzodiazepine, α(1)- and α(2)-adrenergic, serotonergic and cholinergic receptors. Most importantly however, the involvement of MT(1)/MT(2) melatonergic receptors in the spinal cord has been well documented as an antinociceptive mechanism in a number of animal models of pain perception. Exogenous melatonin has been used effectively in the management of pain in medical conditions such as fibromyalgia, irritable bowel syndrome and migraine and cluster headache. Melatonin has been tried during surgical operating conditions and has been shown to enhance both preoperative and post-operative analgesia. The present review discusses the available evidence indicating that melatonin, acting through MT(1)/MT(2) melatonin receptors, plays an important role in the pathophysiological mechanism of pain.

  15. Progressive decrease of melatonin production over consecutive days of simulated night work.

    Science.gov (United States)

    Dumont, Marie; Paquet, Jean

    2014-12-01

    Decreased melatonin production, due to nighttime exposure to light, has been proposed as one of the physiological mechanisms increasing cancer risk in night workers. However, few studies measured melatonin production in night workers, and most of these studies did not measure melatonin over 24 h. One study compared total melatonin production between day and night shifts in rotating night workers and did not find significant differences. However, without baseline measures, it was not possible to exclude that melatonin production was reduced during both day and night work. Here, we used data collected in a simulation study of night work to determine the effect of night work on both nighttime and 24-h melatonin production, during three consecutive days of simulated night work. Thirty-eight healthy subjects (15 men, 23 women; 26.6 ± 4.2 years) participated in a 6-d laboratory study. Circadian phase assessments were made with salivary dim light melatonin onset (DLMO) on the first and last days. Simulated day work (09:00-17:00 h) occurred on the second day, followed by three consecutive days of simulated night work (00:00-08:00 h). Light intensity at eye level was set at 50 lux during both simulated day and night work. The subjects were divided into three matched groups exposed to specific daytime light profiles that produced various degrees of circadian phase delays and phase advances. Melatonin production was estimated with the excretion of urinary 6-sulfatoxymelatonin (aMT6s). For the entire protocol, urine was collected every 2 h, except for the sleep episodes when the interval was 8 h. The aMT6s concentration in each sample was multiplied by the urine volume and then added to obtain total aMT6s excretion during nighttime (00:00-08:00 h) and during each 24-h day (00:00-00:00 h). The results showed that melatonin production progressively decreased over consecutive days of simulated night work, both during nighttime and over the 24 h. This

  16. Melatonin regulates CRE-dependent gene transcription underlying osteoblast proliferation by activating Src and PKA in parallel.

    Science.gov (United States)

    Tao, Lin; Zhu, Yue

    2018-01-01

    Several studies have indicated a relationship between melatonin and idiopathic scoliosis, including our previous work which demonstrated that melatonin can inhibit osteoblast proliferation; however, the mechanism remains unclear. Here, we utilized a MTT assay to show that melatonin significantly reduces osteoblast proliferation in a concentration-and time-dependent manner. Through a combination of techniques, including real-time PCR, MTT assays, immunofluorescence, and luciferase assays, we confirmed that melatonin-induced changes in phosphorylated cAMP response element-binding protein (CREB) reduced transcriptional activity in a melatonin receptor-dependent manner. Surprisingly, treatment of osteoblasts with the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) inhibitor PD98059 up-regulated other cascades upstream of CREB. We next treated cells with PKA and Src inhibitors and observed that melatonin can also activate the protein kinase A (PKA) and Src pathways. To examine whether Src is upstream from the cAMP-PKA pathway, we measured cAMP levels in response to melatonin with and without a Src inhibitor (PP2) and found that PP2 had no additional effect. Therefore, the transcription-dependent mechanisms involved in CREB phosphorylation, along with melatonin, activated Src via a parallel signaling pathway that was separate from that of PKA. Finally, we transfected osteoblasts with lentiviral CREB short hairpin (sh) RNAs and found a decrease in the expression of proliferating cell nuclear antigen (PCNA) and osteoblast proliferation. These results suggest that CREB and PCNA are downstream targets of melatonin signaling, and that the down-regulation of CREB, which is regulated via PKA and Src pathways, contributes to the melatonin-induced inhibition of osteoblast proliferation.

  17. Effect of melatonin on nocturnal blood pressure: meta-analysis of randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Laudon M

    2011-09-01

    Full Text Available Ehud Grossman1,4, Moshe Laudon2, Nava Zisapel2,31Department of Internal Medicine D and Hypertension Unit, The Chaim Sheba Medical Center, Tel-Hashomer, Israel; 2Neurim Pharmaceuticals Ltd, Tel Aviv, Israel and 3Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; 4Sackler School of Medicine, Tel Aviv University, Tel Aviv, IsraelBackground: Patients with nocturnal hypertension are at higher risk for cardiovascular complications such as myocardial infarction and cerebrovascular insult. Published studies inconsistently reported decreases in nocturnal blood pressure with melatonin.Methods: A meta-analysis of the efficacy and safety of exogenous melatonin in ameliorating nocturnal blood pressure was performed using a random effects model of all studies fitting the inclusion criteria, with subgroup analysis of fast-release versus controlled-release preparations.Results: Seven trials (three of controlled-release and four of fast-release melatonin with 221 participants were included. Meta-analysis of all seven studies did not reveal significant effects of melatonin versus placebo on nocturnal blood pressure. However, subgroup analysis revealed that controlled-release melatonin significantly reduced nocturnal blood pressure whereas fast-release melatonin had no effect. Systolic blood pressure decreased significantly with controlled-release melatonin (-6.1 mmHg; 95% confidence interval [CI] -10.7 to -1.5; P = 0.009 but not fast-release melatonin (-0.3 mmHg; 95% CI -5.9 to 5.30; P = 0.92. Diastolic blood pressure also decreased significantly with controlled-release melatonin (-3.5 mmHg; 95% CI -6.1 to -0.9; P = 0.009 but not fast-release melatonin (-0.2 mmHg; 95% CI -3.8 to 3.3; P = 0.89. No safety concerns were raised.Conclusion: Add-on controlled-release melatonin to antihypertensive therapy is effective and safe in ameliorating nocturnal hypertension, whereas fast-release melatonin is ineffective. It is necessary

  18. Melatonin Role in Ameliorating Radiation-induced Skin Damage: From Theory to Practice (A Review of Literature

    Directory of Open Access Journals (Sweden)

    Abbaszadeh A.

    2017-06-01

    Full Text Available Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation therapy. Generally, any chemical/ biological agent given before or at the time of irradiation to prevent or ameliorate damage to normal tissues is called a radioprotector. Melatonin is a highly lipophilic substance that easily penetrates organic membranes and therefore is able to protect important intracellular structures including mitochondria and DNA against oxidative damage directly at the sites where such a kind of damage would occur. Melatonin leads to an increase in the molecular level of some important antioxidative enzymes such as superoxide, dismotase and glutation-peroxidase, and also a reduction in synthetic activity of nitric oxide. There is a large body of evidence which proves the efficacy of Melatonin in ameliorating UV and X ray-induced skin damage. We propose that, in the future, Melatonin would improve the therapeutic ratio in radiation oncology and ameliorate skin damage more effectively when administered in optimal and non-toxic doses

  19. The Effects of Melatonin with Memantin on MPTP-Induced Parkinson Model in Male Mice

    Directory of Open Access Journals (Sweden)

    Reza Talebi

    2015-09-01

    Full Text Available Abstract Background: Oxidative stress and severe neuro-excitation have significant effects on pathogenesis of Parkinson’s disease and agents with antioxidant property can potentially prevent these effects. Herein we examined potential protective effects of melatonin as an antioxidant agent and memantine as an uncompetitive receptor of NMDA, on a model of Parkinson’s disease induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP. Materials and Methods: Male mice were divided into 8 groups with 7 mice in each group: saline, ethanol, melatonin, memantin, MPTP, melatonin+MPTP, memantin+ MPTP, melatonin+ memantin+ MPTP. All of agents were injected intraperitoneally once a day for 14 days before beam traversal test. Dopaminergic neurons of the Substantia Nigra Pars compacta (SNPC were determined by immunohistochemical and were counted. Results: Melatonin improved notably movement dysfunction resulted of MPTP such as the number of errors, paces and the time of movement during behavioral test and also the counting of neurons of Substantia Nigra Pars Compacta. Memantin had a synergic effect on the most of improvements. However, the level of improvement and retrieval of signs was not as in saline and ethanol groups. Conclusion: Melatonin especially together with memantine is able to prevent some of the MPTP-induced dysfunctions. However, the protective effects were not enogh, probably because of the amount of dose and the time of injection.

  20. Chronomedicine and type 2 diabetes: shining some light on melatonin.

    Science.gov (United States)

    Forrestel, Andrew C; Miedlich, Susanne U; Yurcheshen, Michael; Wittlin, Steven D; Sellix, Michael T

    2017-05-01

    In mammals, the circadian timing system drives rhythms of physiology and behaviour, including the daily rhythms of feeding and activity. The timing system coordinates temporal variation in the biochemical landscape with changes in nutrient intake in order to optimise energy balance and maintain metabolic homeostasis. Circadian disruption (e.g. as a result of shift work or jet lag) can disturb this continuity and increase the risk of cardiometabolic disease. Obesity and metabolic disease can also disturb the timing and amplitude of the clock in multiple organ systems, further exacerbating disease progression. As our understanding of the synergy between the timing system and metabolism has grown, an interest has emerged in the development of novel clock-targeting pharmaceuticals or nutraceuticals for the treatment of metabolic dysfunction. Recently, the pineal hormone melatonin has received some attention as a potential chronotherapeutic drug for metabolic disease. Melatonin is well known for its sleep-promoting effects and putative activity as a chronobiotic drug, stimulating coordination of biochemical oscillations through targeting the internal timing system. Melatonin affects the insulin secretory activity of the pancreatic beta cell, hepatic glucose metabolism and insulin sensitivity. Individuals with type 2 diabetes mellitus have lower night-time serum melatonin levels and increased risk of comorbid sleep disturbances compared with healthy individuals. Further, reduced melatonin levels, and mutations and/or genetic polymorphisms of the melatonin receptors are associated with an increased risk of developing type 2 diabetes. Herein we review our understanding of molecular clock control of glucose homeostasis, detail the influence of circadian disruption on glucose metabolism in critical peripheral tissues, explore the contribution of melatonin signalling to the aetiology of type 2 diabetes, and discuss the pros and cons of melatonin chronopharmacotherapy in

  1. Exogenous melatonin suppresses dark-induced leaf senescence by activating the superoxide dismutase-catalase antioxidant pathway and down-regulating chlorophyll degradation in excised leaves of perennial ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2016-10-01

    Full Text Available Leaf senescence is a typical symptom in plants exposed to dark and may be regulated by plant growth regulators. The objective of this study was to determine whether exogenous application of melatonin (N-acetyl-5-methoxytryptamine suppresses dark-induced leaf senescence and the effects of melatonin on reactive oxygen species (ROS scavenging system and chlorophyll degradation pathway in perennial grass species. Mature perennial ryegrass (Lolium perenne L. cv. ‘Pinnacle’ leaves were excised and incubated in 3 mM 2-(N-morpholino ethanesulfonic buffer (pH 5.8 supplemented with melatonin or water (control and exposed to dark treatment for 8 d. Leaves treated with melatonin maintained significantly higher endogenous melatonin level, chlorophyll content, photochemical efficiency, and cell membrane stability expressed by lower electrolyte leakage and malondialdehyde (MDA content compared to the control. Exogenous melatonin treatment also reduced the transcript level of chlorophyll degradation-associated genes and senescence marker genes (LpSAG12.1, Lph36, and Lpl69 during the dark treatment. The endogenous O2- production rate and H2O2 content were significantly lower in these excised leaves treated with melatonin compared to the water control. Exogenous melatonin treatment caused increases in enzymatic activity and transcript levels of superoxide dismutase and catalase but had no significant effects on ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monohydroascorbate reductase. The content of non-enzymatic antioxidants, such as ascorbate and dehydroascorbate, were decreased by melatonin treatment, while the content of glutathione and oxidized glutathione was not affected by melatonin. These results suggest that the suppression of dark-induced leaf senescence by exogenous melatonin may be associated with its roles in regulating ROS scavenging through activating the superoxide dismutase-catalase enzymatic antioxidant

  2. Renal deterioration caused by carcinogens as a consequence of free radical mediated tissue damage: a review of the protective action of melatonin

    Energy Technology Data Exchange (ETDEWEB)

    Gultekin, Fatih; Hicyilmaz, Hicran [Suleyman Demirel University, School of Medicine, Department of Biochemistry, Isparta (Turkey)

    2007-10-15

    This brief review summarizes some of the publications that document the preventive role of melatonin in kidney damage caused by carcinogens such as 2-nitropropane, arsenic, carbon tetrachloride, nitrilotriacetic acid and potassium bromate. Numerous chemicals generate excessive free radicals that eventually induce renal worsening. Melatonin partially or totally prevents free radical mediated tissue damages induced by many carcinogens. Protective actions of melatonin against the harmful effects of carcinogens are believed to stem from its direct free radical scavenging and indirect antioxidant activities. Dietary or pharmacologically given melatonin may attenuate the oxidative stress, thereby mitigating the subsequent renal damage. (orig.)

  3. Melatonin and pregnancy in the human.

    Science.gov (United States)

    Tamura, Hiroshi; Nakamura, Yasuhiko; Terron, M Pilar; Flores, Luis J; Manchester, Lucien C; Tan, Dun-Xian; Sugino, Norihiro; Reiter, Russel J

    2008-04-01

    The purpose of this systematic review is to access the current state of knowledge concerning the role for melatonin in human pregnancy. Melatonin is a neuroendocrine hormone secreted nightly by pineal gland and regulates biological rhythms. The nighttime serum concentration of melatonin shows an incremental change toward the end of pregnancy. This small lipophilic indoleamine crosses the placenta freely without being altered. Maternal melatonin enters the fetal circulation with ease providing photoperiodic information to the fetus. Melatonin works in a variety of ways as a circadian rhythm modulator, endocrine modulator, immunomodulator, direct free radical scavenger and indirect antioxidant and cytoprotective agent in human pregnancy, and it appears to be essential for successful pregnancy. It also seems to be involved in correcting the pathophysiology of complications during pregnancy including those due to abortion, pre-eclampsia and fetal brain damage. The scientific evidence supporting a role for melatonin in human pregnancy is summarized.

  4. Melatonin for Reducing Weight Gain Following Administration of Atypical Antipsychotic Olanzapine for Adolescents with Bipolar Disorder: A Randomized, Double-Blind, Placebo-Controlled Trial.

    Science.gov (United States)

    Mostafavi, Seyed-Ali; Solhi, Mahmoud; Mohammadi, Mohammad-Reza; Akhondzadeh, Shahin

    2017-06-01

    We aimed to evaluate melatonin effectiveness in weight gain reduction following olanzapine use for 11-17-year-old bipolar disorder patients. Seventy-seven adolescent outpatients, subsequent to their initial diagnosis of bipolar I disorder by a psychiatrist, entered this study. After assessing inclusion and exclusion criteria, 48 patients consented to participate. Twenty-four patients were allocated to receive olanzapine, lithium carbonate, and melatonin, and 24 patients were allocated to receive olanzapine, lithium carbonate, and placebo by simple randomization. The Young Mania Rating Scale (YMRS) was performed at baseline. Before treatment and after 6 and 12 weeks of treatment, weight, height, and body mass index (BMI) were measured. Analysis of variance (ANOVA) with repeated measure and t-test were used to analyze data. Nineteen patients in each group finished the study and their data were entered for analysis. Mean rise in BMI in the melatonin group compared with placebo (2.45 vs. 3.25 respectively) was marginally significant (t = 1.936; df = 36; p = 0.061). ANOVA with repeated measure also showed a marginally significant difference (F = 3.74; df = 1; p = 0.061) between groups and across time in regard to BMI. Mean body weight rise in the melatonin group compared with the placebo group (5.8 kg vs. 8.2 kg respectively) was marginally significant (t = 1.923; df = 28; p = 0.065). ANOVA with repeated measure also showed a marginally significant difference (F = 3.73; df = 1.1; p = 0.056) between groups and across time for body weight. Coadministration of melatonin with olanzapine and lithium carbonate in adolescents with bipolar disorder could reduce the sharp weight gain side effect of these drugs to near significance.

  5. Melatonin: an Inhibitor of Breast Cancer

    Science.gov (United States)

    Hill, Steven M.; Belancio, Victoria P.; Dauchy, Robert T.; Xiang, Shulin; Brimer, Samantha; Mao, Lulu; Hauch, Adam; Lundberg, Peter W.; Summers, Whitney; Yuan, Lin; Frasch, Tripp; Blask, David E.

    2015-01-01

    This review discusses recent work on melatonin-mediated circadian regulation and metabolic and molecular signaling mechanisms involved in human breast cancer growth and associated consequences of circadian disruption by exposure to light at night (LEN). The anti-cancer actions of the circadian melatonin signal in human breast cancer cell lines and xenografts heavily involve MT1 receptor-mediated mechanisms. In estrogen receptor alpha (ERα)-positive human breast cancer, melatonin, via the MT1 receptor, suppresses ERα mRNA expression and ERα transcriptional activity. As well, melatonin regulates the transactivation of other members of the nuclear receptor super-family, estrogen metabolizing enzymes, and the expression of core clock and clock-related genes. Furthermore, melatonin also suppresses tumor aerobic metabolism (Warburg effect), and, subsequently, cell-signaling pathways critical to cell proliferation, cell survival, metastasis, and drug resistance. Melatonin demonstrates both cytostatic and cytotoxic activity in breast cancer cells that appears to be cell type specific. Melatonin also possesses anti-invasive/anti-metastatic actions that involve multiple pathways including inhibition of p38 MAPK and repression of epithelial-to-mesenchymal transition. Studies demonstrate that melatonin promotes genomic stability by inhibiting the expression of LINE-1 retrotransposons. Finally, research in animal and human models indicate that LEN induced disruption of the circadian nocturnal melatonin signal promotes the growth, metabolism, and signaling of human breast cancer to drive breast tumors to endocrine and chemotherapeutic resistance. These data provide the strongest understanding and support of the mechanisms underpinning the epidemiologic demonstration of elevated breast cancer risk in night shift workers and other individuals increasingly exposed to LEN. PMID:25876649

  6. Oxidative DNA damage during night shift work.

    Science.gov (United States)

    Bhatti, Parveen; Mirick, Dana K; Randolph, Timothy W; Gong, Jicheng; Buchanan, Diana Taibi; Zhang, Junfeng Jim; Davis, Scott

    2017-09-01

    We previously reported that compared with night sleep, day sleep among shift workers was associated with reduced urinary excretion of 8-hydroxydeoxyguanosine (8-OH-dG), potentially reflecting a reduced ability to repair 8-OH-dG lesions in DNA. We identified the absence of melatonin during day sleep as the likely causative factor. We now investigate whether night work is also associated with reduced urinary excretion of 8-OH-dG. For this cross-sectional study, 50 shift workers with the largest negative differences in night work versus night sleep circulating melatonin levels (measured as 6-sulfatoxymelatonin in urine) were selected from among the 223 shift workers included in our previous study. 8-OH-dG concentrations were measured in stored urine samples using high performance liquid chromatography with electrochemical detection. Mixed effects models were used to compare night work versus night sleep 8-OH-dG levels. Circulating melatonin levels during night work (mean=17.1 ng/mg creatinine/mg creatinine) were much lower than during night sleep (mean=51.7 ng/mg creatinine). In adjusted analyses, average urinary 8-OH-dG levels during the night work period were only 20% of those observed during the night sleep period (95% CI 10% to 30%; psleep, is associated with reduced repair of 8-OH-dG lesions in DNA and that the effect is likely driven by melatonin suppression occurring during night work relative to night sleep. If confirmed, future studies should evaluate melatonin supplementation as a means to restore oxidative DNA damage repair capacity among shift workers. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Role of melatonin in embryo fetal development.

    Science.gov (United States)

    Voiculescu, S E; Zygouropoulos, N; Zahiu, C D; Zagrean, A M

    2014-01-01

    Melatonin is an indoleamine produced by the pineal gland and secreted in a circadian manner. In the past few decades, research over this topic has been enhanced. Melatonin has many important roles in the human physiology: regulator of the circadian rhythms, sleep inducer, antioxidant, anticarcinogenic. This paper reviews the involvement of melatonin in embryo fetal development. The pineal gland develops completely postpartum, so both the embryo and the fetus are dependent on the maternal melatonin provided transplacentally. Melatonin appears to be involved in the normal outcome of pregnancy beginning with the oocyte quality and finishing with the parturition. Its pregnancy night-time concentrations increase after 24 weeks of gestation, with significantly high levels after 32 weeks. Melatonin receptors are widespread in the embryo and fetus since early stages. There is solid evidence that melatonin is neuroprotective and has a positive effect on the outcome of the compromised pregnancies. In addition, chronodisruption leads to a reproductive dysfunction. Thus, the influence of melatonin on the developing human fetus may not be limited to the entertaining of circadian rhythmicity, but further studies are needed.

  8. Circadian System and Melatonin Hormone: Risk Factors for Complications during Pregnancy

    Directory of Open Access Journals (Sweden)

    F. J. Valenzuela

    2015-01-01

    Full Text Available Pregnancy is a complex and well-regulated temporal event in which several steps are finely orchestrated including implantation, decidualization, placentation, and partum and any temporary alteration has serious effects on fetal and maternal health. Interestingly, alterations of circadian rhythms (i.e., shiftwork have been correlated with increased risk of preterm delivery, intrauterine growth restriction, and preeclampsia. In the last few years evidence is accumulating that the placenta may have a functional circadian system and express the clock genes Bmal1, Per1-2, and Clock. On the other hand, there is evidence that the human placenta synthesizes melatonin, hormone involved in the regulation of the circadian system in other tissues. Moreover, is unknown the role of this local production of melatonin and whether this production have a circadian pattern. Available information indicates that melatonin induces in placenta the expression of antioxidant enzymes catalase and superoxide dismutase, prevents the injury produced by oxidative stress, and inhibits the expression of vascular endothelial growth factor (VEGF a gene that in other tissues is controlled by clock genes. In this review we aim to analyze available information regarding clock genes and clock genes controlled genes such as VEGF and the possible role of melatonin synthesis in the placenta.

  9. Prolonged-release melatonin versus placebo for benzodiazepine discontinuation in patients with schizophrenia or bipolar disorder

    DEFF Research Database (Denmark)

    Baandrup, Lone; Lindschou, Jane; Winkel, Per

    2016-01-01

    OBJECTIVES: We assessed if prolonged-release melatonin can facilitate withdrawal of long-term benzodiazepine usage in patients with schizophrenia or bipolar disorder. METHODS: Randomised, placebo-controlled, blinded, parallel superiority trial of 24 weeks duration. Participants were randomised...... to prolonged-release melatonin 2 mg daily versus matching placebo and were continuously guided to gradually reduce their usual benzodiazepine dosage. The primary outcome was mean benzodiazepine daily dosage at 24 weeks. Secondary outcomes included pattern of benzodiazepine dosage over time, benzodiazepine...... cessation proportion, and benzodiazepine withdrawal symptoms. RESULTS: In total, 86 patients (21-74 years) were enrolled: 42 were randomised to melatonin versus 44 to placebo. We found no significant effect of melatonin on mean benzodiazepine dosage at 24 weeks (melatonin group 8.01 mg versus placebo group...

  10. Melatonin receptors: Current status, facts, and hypothesis

    International Nuclear Information System (INIS)

    Stankov, B.; Reiter, R.J.

    1990-01-01

    Great progress has been made in the identification of melatonin binding sites, commonly identified as melatonin receptors by many authors, in recent years. The bulk of these studies have investigated the sites using either autoradiographic and biochemical techniques with the majority of the experiments being done on the rat, Djungarian and Syrian hamster, and sheep, although human tissue has also been employed. Many of the studies have identified melatonin binding in the central nervous system with either tritium- or iodine-labelled ligands. The latter ligand seems to provide the most reproducible and consistent data. Of the central neural tissues examined, the suprachiasmatic nuclei are most frequently mentioned as a location for melatonin binding sites although binding seems to be widespread in the brain. The other tissue that has been prominently mentioned as a site for melatonin binding is the pars tuberalis of the anterior pituitary gland. There may be time-dependent variations in melatonin binding densities in both neural and pituitary gland tissue. Very few attempts have been made to identify melatonin binding outside of the central nervous system despite the widespread actions of melatonin. Preliminary experiments have been carried out on the intracellular second messengers which mediate the actions of melatonin

  11. Pharmacokinetics of Alternative Administration Routes of Melatonin

    DEFF Research Database (Denmark)

    Zetner, D.; Andersen, L. P.H.; Rosenberg, J.

    2016-01-01

    Background: Melatonin is traditionally administered orally but has a poor and variable bioavailability. This study aims to present an overview of studies investigating the pharmacokinetics of alternative administration routes of melatonin. Methods: A systematic literature search was performed...... and included experimental or clinical studies, investigating pharmacokinetics of alternative administration routes of melatonin in vivo. Alternative administration routes were defined as all administration routes except oral and intravenous. Results: 10 studies were included in the review. Intranasal....... Subcutaneous injection of melatonin displayed a rapid absorption rate compared to oral administration. Conclusion: Intranasal administration of melatonin has a large potential, and more research in humans is warranted. Transdermal application of melatonin has a possible use in a local application, due to slow...

  12. Direct oxide reducing method

    International Nuclear Information System (INIS)

    Tokiwai, Moriyasu.

    1995-01-01

    Calcium oxides and magnetic oxides as wastes generated upon direct reduction are subjected to molten salt electrolysis, and reduced metallic calcium and magnesium are separated and recovered. Then calcium and magnesium are used recyclically as the reducing agent upon conducting direct oxide reduction. Even calcium oxides and magnesium oxides, which have high melting points and difficult to be melted usually, can be melted in molten salts of mixed fluorides or chlorides by molten-salt electrolysis. Oxides are decomposed by electrolysis, and oxygen is removed in the form of carbon monoxide, while the reduced metallic calcium and magnesium rise above the molten salts on the side of a cathode, and then separated. Since only carbon monoxide is generated as radioactive wastes upon molten salt electrolysis, the amount of radioactive wastes can be greatly reduced, and the amount of the reducing agent used can also be decreased remarkably. (N.H.)

  13. Alcoholic fermentation induces melatonin synthesis in orange juice.

    Science.gov (United States)

    Fernández-Pachón, M S; Medina, S; Herrero-Martín, G; Cerrillo, I; Berná, G; Escudero-López, B; Ferreres, F; Martín, F; García-Parrilla, M C; Gil-Izquierdo, A

    2014-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) is a molecule implicated in multiple biological functions. Its level decreases with age, and the intake of foods rich in melatonin has been considered an exogenous source of this important agent. Orange is a natural source of melatonin. Melatonin synthesis occurs during alcoholic fermentation of grapes, malt and pomegranate. The amino acid tryptophan is the precursor of all 5-methoxytryptamines. Indeed, melatonin appears in a shorter time in wines when tryptophan is added before fermentation. The aim of the study was to measure melatonin content during alcoholic fermentation of orange juice and to evaluate the role of the precursor tryptophan. Identification and quantification of melatonin during the alcoholic fermentation of orange juice was carried out by UHPLC-QqQ-MS/MS. Melatonin significantly increased throughout fermentation from day 0 (3.15 ng/mL) until day 15 (21.80 ng/mL) reaching larger amounts with respect to other foods. Melatonin isomer was also analysed, but its content remained stable ranging from 11.59 to 14.18 ng/mL. The enhancement of melatonin occurred mainly in the soluble fraction. Tryptophan levels significantly dropped from 13.80 mg/L (day 0) up to 3.19 mg/L (day 15) during fermentation. Melatonin was inversely and significantly correlated with tryptophan (r = 0.907). Therefore, the enhancement in melatonin could be due to both the occurrence of tryptophan and the new synthesis by yeast. In summary, the enhancement of melatonin in novel fermented orange beverage would improve the health benefits of orange juice by increasing this bioactive compound. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Does melatonin influence the apoptosis in rat uterus of animals exposed to continuous light?

    Science.gov (United States)

    Ferreira, Cecília S; Carvalho, Kátia C; Maganhin, Carla C; Paiotti, Ana P R; Oshima, Celina T F; Simões, Manuel J; Baracat, Edmund C; Soares, José M

    2016-02-01

    Melatonin has been described as a protective agent against cell death and oxidative stress in different tissues, including in the reproductive system. However, the information on the action of this hormone in rat uterine apoptosis is low. Our objective was to evaluate the effects of melatonin on mechanisms of cell death in uterus of rats exposed to continuous light stress. Twenty adult Wistar rats were divided into two groups: GContr (vehicle control) and GExp which were treated with melatonin (0.4 mg/mL), both were exposed to continuous light for 90 days. The uterus was removed and processed for quantitative real time PCR (qRT-PCR), using PCR-array plates of the apoptosis pathway; for immunohistochemistry and TUNEL. The results of qRT-PCR of GEXP group showed up-regulation of 13 and 7, pro-apoptotic and anti-apoptotic genes, respectively, compared to GContr group. No difference in pro-apoptotic proteins (Bax, Fas and Faslg) expression was observed by immunohistochemistry, although the number of TUNEL-positive cells was lower in the group treated with melatonin compared to the group not treated with this hormone. Our data suggest that melatonin influences the mechanism and decreases the apoptosis in uterus of rats exposed to continuous light.

  15. Melatonin regulates delayed embryonic development in the short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Banerjee, Arnab; Meenakumari, K J; Udin, S; Krishna, A

    2009-12-01

    The aim of the present study was to evaluate the seasonal variation in serum melatonin levels and their relationship to the changes in the serum progesterone level, ovarian steroidogenesis, and embryonic development during two successive pregnancies of Cynopterus sphinx. Circulating melatonin concentrations showed two peaks; one coincided with the period of low progesterone synthesis and delayed embryonic development, whereas the second peak coincided with regressing corpus luteum. This finding suggests that increased serum melatonin level during November-December may be responsible for delayed embryonic development by suppressing progesterone synthesis. The study showed increased melatonin receptors (MTNR1A and MTNR1B) in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. The in vitro study showed that a high dose of melatonin suppressed progesterone synthesis, whereas a lower dose of melatonin increased progesterone synthesis by the ovary. The effects of melatonin on ovarian steroidogenesis are mediated through changes in the expression of peripheral-type benzodiazepine receptor, P450 side chain cleavage enzyme, and LH receptor proteins. This study further showed a suppressive impact of melatonin on the progesterone receptor (PGR) in the utero-embryonic unit; this effect might contribute to delayed embryonic development in C. sphinx. The results of the present study thus suggest that a high circulating melatonin level has a dual contribution in retarding embryonic development in C. sphinx by impairing progesterone synthesis as well as by inhibiting progesterone action by reducing expression of PGR in the utero-embryonic unit.

  16. Loss of Response to Melatonin Treatment Is Associated with Slow Melatonin Metabolism

    Science.gov (United States)

    Braam, W.; van Geijlswijk, I.; Keijzer, Henry; Smits, Marcel G.; Didden, Robert; Curfs, Leopold M. G.

    2010-01-01

    Background: In some of our patients with intellectual disability (ID) and sleep problems, the initial good response to melatonin disappeared within a few weeks after starting treatment, while the good response returned only after considerable dose reduction. The cause for this loss of response to melatonin is yet unknown. We hypothesise that this…

  17. Melatonin as a multifunctional anti-cancer molecule: Implications in gastric cancer.

    Science.gov (United States)

    Asghari, Mohammad Hossein; Moloudizargari, Milad; Ghobadi, Emad; Fallah, Marjan; Abdollahi, Mohammad

    2017-09-15

    Gastric cancer (GC) is a predominant malignancy with a high mortality rate affecting a large population worldwide. The etiology of GC is multifactorial spanning from various genetic determinants to different environmental causes. Current tretaments of GC are not efficient enough and require improvements to minimize the adverse effects. Melatonin, a naturally occurring compound with known potent inhibitory effects on cancer cells is one of the major candidates which can be recruited herein. Here we reviewed the articles conducted on the therapeutic effects of melatonin in gastric cancer in various models. The results are classified according to different aspects of cancer pathogenesis and the molecular mechanisms by which melatonin exerts its effects. Melatonin could be used to combat GC exploiting its effects on multiple aspects of its pathogenesis, including formation of cancer cells, tumor growth and angiogenesis, differentiation and metastasis as well as enhancing the anti-tumor immunity. Melatonin is a pleiotropic anti-cancer molecule that affects malignant cells via multiple mechanisms. It has been shown to benefit cancer patients indirectly by reducing side effects of current therapies which have been discussed in this review. This field of research is still underdeveloped and may serve as an interesting subject for further studies aiming at the molecular mechanisms of melatonin and novel treatments. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effects of Melatonin and Bright Light Treatment in Childhood Chronic Sleep Onset Insomnia With Late Melatonin Onset: A Randomized Controlled Study.

    Science.gov (United States)

    van Maanen, Annette; Meijer, Anne Marie; Smits, Marcel G; van der Heijden, Kristiaan B; Oort, Frans J

    2017-02-01

    Chronic sleep onset insomnia with late melatonin onset is prevalent in childhood, and has negative daytime consequences. Melatonin treatment is known to be effective in treating these sleep problems. Bright light therapy might be an alternative treatment, with potential advantages over melatonin treatment. In this study, we compare the effects of melatonin and bright light treatment with a placebo condition in children with chronic sleep onset insomnia and late melatonin onset. Eighty-four children (mean age 10.0 years, 61% boys) first entered a baseline week, after which they received melatonin (N = 26), light (N = 30), or placebo pills (N = 28) for 3 to 4 weeks. Sleep was measured daily with sleep diaries and actigraphy. Before and after treatment children completed a questionnaire on chronic sleep reduction, and Dim Light Melatonin Onset (DLMO) was measured. Results were analyzed with linear mixed model analyses. Melatonin treatment and light therapy decreased sleep latency (sleep diary) and advanced sleep onset (sleep diary and actigraphy), although for sleep onset the effects of melatonin were stronger. In addition, melatonin treatment advanced DLMO and had positive effects on sleep latency and sleep efficiency (actigraphy data), and sleep time (sleep diary and actigraphy data). However, wake after sleep onset (actigraphy) increased with melatonin treatment. No effects on chronic sleep reduction were found. We found positive effects of both melatonin and light treatment on various sleep outcomes, but more and stronger effects were found for melatonin treatment. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  19. Melatonin inhibits the migration of human lung adenocarcinoma A549 cell lines involving JNK/MAPK pathway.

    Directory of Open Access Journals (Sweden)

    Qiaoyun Zhou

    Full Text Available OBJECTIVE: Melatonin, an indolamine produced and secreted predominately by the pineal gland, exhibits a variety of physiological functions, possesses antioxidant and antitumor properties. But, the mechanisms for the anti-cancer effects are unknown. The present study explored the effects of melatonin on the migration of human lung adenocarcinoma A549 cells and its mechanism. METHODS: MTT assay was employed to measure the viability of A549 cells treated with different concentrations of melatonin. The effect of melatonin on the migration of A549 cells was analyzed by wound healing assay. Occludin location was observed by immunofluorescence. The expression of occludin, osteopontin (OPN, myosin light chain kinase (MLCK and phosphorylation of myosin light chain (MLC, JNK were detected by western blots. RESULTS: After A549 cells were treated with melatonin, the viability and migration of the cells were inhibited significantly. The relative migration rate of A549 cells treated with melatonin was only about 20% at 24 h. The expression level of OPN, MLCK and phosphorylation of MLC of A549 cells were reduced, while the expression of occludin was conversely elevated, and occludin located on the cell surface was obviously increased. The phosphorylation status of JNK in A549 cells was also reduced when cells were treated by melatonin. CONCLUSIONS: Melatonin significantly inhibits the migration of A549 cells, and this may be associated with the down-regulation of the expression of OPN, MLCK, phosphorylation of MLC, and up-regulation of the expression of occludin involving JNK/MAPK pathway.

  20. Participation of MT3 melatonin receptors in the synergistic effect of melatonin on cytotoxic and apoptotic actions evoked by chemotherapeutics.

    Science.gov (United States)

    Pariente, Roberto; Bejarano, Ignacio; Espino, Javier; Rodríguez, Ana B; Pariente, José A

    2017-11-01

    Melatonin has antitumor activity via several mechanisms including its antiproliferative and proapoptotic effects in addition to its potent antioxidant actions. Therefore, melatonin may be useful in the treatment of tumors in association with chemotherapy drugs. This study was performed to study the role of melatonin receptors on the cytotoxicity and apoptosis induced by the chemotherapeutic agents cisplatin and 5-fluorouracil in two tumor cell lines, such as human colorectal cancer HT-29 cells and cervical cancer HeLa cells. We found that both melatonin and the two chemotherapeutic agents tested induced a decrease in HT-29 and HeLa cell viability. Furthermore, melatonin significantly increased the cytotoxic effect of chemotherapeutic agents, particularly, in 5-fluorouracil-challenged cells. Stimulation of cells with either of the two chemotherapeutic agents in the presence of melatonin further increased caspase-3 activation. Concomitant treatments with melatonin and chemotherapeutic agents augmented the population of apoptotic cells compared to the treatments with chemotherapeutics alone. Blockade of MT1 and/or MT2 receptors with luzindole or 4-P-PDOT was unable to reverse the enhancing effects of melatonin on both cytotoxicity, caspase-3 activation and the amount of apoptotic cells evoked by the chemotherapeutic agents, whereas when MT3 receptors were blocked with prazosin, the synergistic effect of melatonin with chemotherapy on cytotoxicity and apoptosis was reversed. Our findings provided evidence that in vitro melatonin strongly enhances chemotherapeutic-induced cytotoxicity and apoptosis in two tumor cell lines, namely HT-29 and HeLa cells and, this potentiating effect of melatonin is mediated by MT3 receptor stimulation.

  1. Effect of melatonin on sleep disorders in a monkey model of Parkinson's disease.

    Science.gov (United States)

    Belaid, Hayat; Adrien, Joelle; Karachi, Carine; Hirsch, Etienne C; François, Chantal

    2015-10-01

    To evaluate and compare the effects of melatonin and levodopa (L-dopa) on sleep disorders in a monkey model of Parkinson's disease. The daytime and nighttime sleep patterns of four macaques that were rendered parkinsonian by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were recorded using polysomnography in four conditions: at baseline, during the parkinsonian condition; after administration of L-dopa, and after administration of a combination of melatonin with L-dopa. It was confirmed that MPTP intoxication induces sleep disorders, with sleep episodes during daytime and sleep fragmentation at nighttime. L-dopa treatment significantly reduced the awake time during the night and tended to improve all other sleep parameters, albeit not significantly. In comparison to the parkinsonian condition, combined treatment with melatonin and L-dopa significantly increased total sleep time and sleep efficiency, and reduced the time spent awake during the night in all animals. A significant decrease in sleep latencies was also observed in three out of four animals. Compared with L-dopa alone, combined treatment with melatonin and L-dopa significantly improved all these sleep parameters in two animals. On the other hand, combined treatment had no effect on sleep architecture and daytime sleep. These data demonstrated, for the first time, objective improvement on sleep parameters of melatonin treatment in MPTP-intoxicated monkeys, showing that melatonin treatment has a real therapeutic potential to treat sleep disturbances in people with Parkinson's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Melatonin exerts anti-oral cancer effect via suppressing LSD1 in patient-derived tumor xenograft models

    Science.gov (United States)

    Yang, Cheng-Yu; Lin, Chih-Kung; Tsao, Chang-Huei; Hsieh, Cheng-Chih; Lin, Gu-Jiun; Ma, Kuo-Hsing; Shieh, Yi-Shing; Sytwu, Huey-Kang; Chen, Yuan-Wu

    2017-01-01

    Aberrant activation of histone lysine-specific demethylase (LSD1) increases tumorigenicity; hence, LSD1 is considered a therapeutic target for various human cancers. Although melatonin, an endogenously produced molecule, may defend against various cancers, the precise mechanism involved in its anti-oral cancer effect remains unclear. Patient-derived tumor xenograft (PDTX) models are preclinical models that can more accurately reflect human tumor biology compared with cell line xenograft models. Here, we evaluated the anticancer activity of melatonin by using LSD1-overexpressing oral cancer PDTX models. By assessing oral squamous cell carcinoma (OSCC) tissue arrays through immunohistochemistry, we examined whether aberrant LSD1 overexpression in OSCC is associated with poor prognosis. We also evaluated the action mechanism of melatonin against OSCC with lymphatic metastases by using the PDTX models. Our results indicated that melatonin, at pharmacological concentrations, significantly suppresses cell proliferation in a dose- and time-dependent manner. The observed suppression of proliferation was accompanied by the melatonin-mediated inhibition of LSD1 in oral cancer PDTXs and oral cancer cell lines. In conclusion, we determined that the beneficial effects of melatonin in reducing oral cancer cell proliferation are associated with reduced LSD1 expression in vivo and in vitro. PMID:28422711

  3. Melatonin-induced increase of lipid droplets accumulation and in vitro maturation in porcine oocytes is mediated by mitochondrial quiescence.

    Science.gov (United States)

    He, Bin; Yin, Chao; Gong, Yabin; Liu, Jie; Guo, Huiduo; Zhao, Ruqian

    2018-01-01

    Melatonin, the major pineal secretory product, has a significant impact on the female reproductive system. Recently, the beneficial effects of melatonin on mammalian oocyte maturation and embryonic development have drawn increased attention. However, the exact underlying mechanisms remain to be fully elucidated. This study demonstrates that supplementing melatonin to in vitro maturation (IVM) medium enhances IVM rate, lipid droplets (LDs) accumulation as well as triglyceride content in porcine oocytes. Decrease of mitochondrial membrane potential, mitochondrial respiratory chain complex IV activity as well as mitochondrial reactive oxygen species (mROS) content indicated that melatonin induced a decrease of mitochondrial activity. The copy number of mitochondrial DNA (mtDNA) which encodes essential subunits of oxidative phosphorylation (OXPHOS), was not affected by melatonin. However, the expression of mtDNA-encoded genes was significantly down-regulated after melatonin treatment. The DNA methyltransferase DNMT1, which regulates methylation and expression of mtDNA, was increased and translocated into the mitochondria in melatonin-treated oocytes. The inhibitory effect of melatonin on the expression of mtDNA was significantly prevented by simultaneous addition of DNMT1 inhibitor, which suggests that melatonin regulates the transcription of mtDNA through up-regulation of DNMT1 and mtDNA methylation. Increase of triglyceride contents after inhibition of OXPHOS indicated that mitochondrial quiescence is crucial for LDs accumulation in oocytes. Taken together, our results suggest that melatonin-induced reduction in mROS production and increase in IVM, and LDs accumulation in porcine oocytes is mediated by mitochondrial quiescence. © 2017 Wiley Periodicals, Inc.

  4. Melatonin Secretion Pattern in Critically Ill Patients

    DEFF Research Database (Denmark)

    Boyko, Yuliya; Holst, René; Jennum, Poul

    2017-01-01

    effect of remifentanil on melatonin secretion. We found that the risk of atypical sleep compared to normal sleep was significantly lower (p REM) sleep was only observed during the nonsedation period. We found preserved diurnal pattern of melatonin...... secretion in these patients. Remifentanil did not affect melatonin secretion but was associated with lower risk of atypical sleep pattern. REM sleep was only registered during the period of nonsedation.......Critically ill patients have abnormal circadian and sleep homeostasis. This may be associated with higher morbidity and mortality. The aims of this pilot study were (1) to describe melatonin secretion in conscious critically ill mechanically ventilated patients and (2) to describe whether melatonin...

  5. Melatonin Attenuates Potato Late Blight by Disrupting Cell Growth, Stress Tolerance, Fungicide Susceptibility and Homeostasis of Gene Expression in Phytophthora infestans

    Directory of Open Access Journals (Sweden)

    Shumin Zhang

    2017-11-01

    Full Text Available Phytophthora infestans (P. infestans is the causal agent of potato late blight, which caused the devastating Irish Potato Famine during 1845-1852. Until now, potato late blight is still the most serious threat to potato growth and has caused significant economic losses worldwide. Melatonin can induce plant innate immunity against pathogen infection, but the direct effects of melatonin on plant pathogens are poorly understood. In this study, we investigated the direct effects of melatonin on P. infestans. Exogenous melatonin significantly attenuated the potato late blight by inhibiting mycelial growth, changing cell ultrastructure, and reducing stress tolerance of P. infestans. Notably, synergistic anti-fungal effects of melatonin with fungicides on P. infestans suggest that melatonin could reduce the dose levels and enhance the efficacy of fungicide against potato late blight. A transcriptome analysis was carried out to mine downstream genes whose expression levels were affected by melatonin. The analysis of the transcriptome suggests that 66 differentially expressed genes involved in amino acid metabolic processes were significantly affected by melatonin. Moreover, the differentially expressed genes associated with stress tolerance, fungicide resistance, and virulence were also affected. These findings contribute to a new understanding of the direct functions of the melatonin on P. infestans and provide a potential ecofriendly biocontrol approach using a melatonin-based paradigm and application to prevent potato late blight.

  6. Toxicity induced by chemical warfare agents: insights on the protective role of melatonin.

    Science.gov (United States)

    Pita, René; Marco-Contelles, José; Ramos, Eva; Del Pino, Javier; Romero, Alejandro

    2013-11-25

    Chemical Warfare Agents (CWAs) are substances that can be used to kill, injure or incapacitate an enemy in warfare, but also against civilian population in terrorist attacks. Many chemical agents are able to generate free radicals and derived reactants, excitotoxicity process, or inflammation, and as consequence they can cause neurological symptoms and damage in different organs. Nowadays, taking into account that total immediate decontamination after exposure is difficult to achieve and there are not completely effective antidotes and treatments against all CWAs, we advance and propose that medical countermeasures against CWAs poisoning would benefit from a broad-spectrum multipotent molecule. Melatonin, a versatile and ubiquitous antioxidant molecule, originally discovered as a hormone synthesized mainly in the pineal gland, has low toxicity and high efficacy in reducing oxidative damage, anti-inflammatory effects by regulation of multiple cellular pathways and properties to prevent excitotoxicity, among others. The purpose of this review is to show the multiple and diverse properties of melatonin, as a pleiotropic indole derivative, and its marked potential for improving human health against the most widely used chemical weapons. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. [Melatonin, synthetic analogs, and the sleep/wake rhythm].

    Science.gov (United States)

    Escames, G; Acuña-Castroviejo, D

    Melatonin, a widespread hormone in the animal kingdom, is produced by several organs and tissues besides the pineal gland. Whilst extrapineal melatonin behaves as a cytoprotective molecule, the pineal produces the hormone in a rhythmic manner. The discovery of melatonin in 1958, and the characterization of its synthesis somewhat later, let to the description of its photoperiodic regulation and its relationship with the biological rhythms such as the sleep/wake rhythm. The suprachiasmatic nuclei are the anatomical seat of the biological clock, represented by the clock genes, which code for the period and frequency of the rhythms. The photoperiod synchronizes the activity of the auprachiasmatic biological clock, which in turn induces the melatonin's rhythm. The rhythm of melatonin, peaking at 2-3 am, acts as an endogenous synchronizer that translates the environmental photoperiodic signal in chemical information for the cells. The sleep/wake cycle is a typical biological rhythm synchronized by melatonin, and the sleep/wake cycle alterations of chronobiological origin, are very sensitive to melatonin treatment. Taking advantage of the chronobiotic and antidepressive properties of melatonin, a series of synthetic analogs of this hormone, with high interest in insomnia, are now available. Melatonin is a highly effective chronobiotic in the treatment of chronobiological alterations of the sleep/wake cycle. From a pharmacokinetic point of view, the synthetic drugs derived from melatonin are interesting tools in the therapy of these alterations.

  8. The research of melatonin in hypoxic-ischemic encephalopathy

    International Nuclear Information System (INIS)

    Sun Bin; Feng Xing; Qian Zhihong; Shi Ming

    2006-01-01

    Objective: To elucidate the function of melatonin in the pathogenesis and the prognosis of hypoxic-ischemic encephalopathy (HIE) and provide the pathophysiology basis for therapying HIE with melatonin. Methods: The level of plasma melatonin of twenty normal term infants and twenty modest HIE and twenty middle-severity HIE in their acute phase and recovery phase were assayed respectively with radioimmunoassay (RIA). Then compare the difference of the melatonin level among these neonates. Results: (1) For modest HIE, the melatonin level was higher than that in the normal in the acute phase and there was no difference to the normal in the recovery phase. (2) There was no difference between the melatonin level in middle-severity HIE in the acute phase and that in the normal, but in the recovery phase it was higher than that in the normal. (3) For modest HIE, the melatonin level in acute phase was higher than that in the recovery phase, but for middle-severity HIE, it was adverse. (4) In the acute phase, the level in modest HIE was higher than that in the middle-severity HIE, but on the contrary in the recovery phase. Conclusion: Melatonin have protection action on HIE. The prognosis of modest HIE neonates with rising melatonin level in the acute phase is better than that with lower melatonin level of middle-severity HIE. (authors)

  9. Adaptations of the aging animal to exercise: role of daily supplementation with melatonin.

    Science.gov (United States)

    Mendes, Caroline; Lopes, Ana Maria de Souza; do Amaral, Fernanda Gaspar; Peliciari-Garcia, Rodrigo A; Turati, Ariane de Oliveira; Hirabara, Sandro M; Scialfa Falcão, Julieta H; Cipolla-Neto, José

    2013-10-01

    The pineal gland, through melatonin, seems to be of fundamental importance in determining the metabolic adaptations of adipose and muscle tissues to physical training. Evidence shows that pinealectomized animals fail to develop adaptive metabolic changes in response to aerobic exercise and therefore do not exhibit the same performance as control-trained animals. The known prominent reduction in melatonin synthesis in aging animals led us to investigate the metabolic adaptations to physical training in aged animals with and without daily melatonin replacement. Male Wistar rats were assigned to four groups: sedentary control (SC), trained control (TC), sedentary treated with melatonin (SM), and trained treated with melatonin (TM). Melatonin supplementation lasted 16 wk, and the animals were subjected to exercise during the last 8 wk of the experiment. After euthanasia, samples of liver, muscle, and adipose tissues were collected for analysis. Trained animals treated with melatonin presented better results in the following parameters: glucose tolerance, physical capacity, citrate synthase activity, hepatic and muscular glycogen content, body weight, protein expression of phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), and protein kinase activated by adenosine monophosphate (AMPK) in the liver, as well as the protein expression of the glucose transporter type 4 (GLUT4) and AMPK in the muscle. In conclusion, these results demonstrate that melatonin supplementation in aging animals is of great importance for the required metabolic adaptations induced by aerobic exercise. Adequate levels of circulating melatonin are, therefore, necessary to improve energetic metabolism efficiency, reducing body weight and increasing insulin sensitivity. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Melatonin antagonizes interleukin-18-mediated inhibition on neural stem cell proliferation and differentiation.

    Science.gov (United States)

    Li, Zheng; Li, Xingye; Chan, Matthew T V; Wu, William Ka Kei; Tan, DunXian; Shen, Jianxiong

    2017-09-01

    Neural stem cells (NSCs) are self-renewing, pluripotent and undifferentiated cells which have the potential to differentiate into neurons, oligodendrocytes and astrocytes. NSC therapy for tissue regeneration, thus, gains popularity. However, the low survivals rate of the transplanted cell impedes its utilities. In this study, we tested whether melatonin, a potent antioxidant, could promote the NSC proliferation and neuronal differentiation, especially, in the presence of the pro-inflammatory cytokine interleukin-18 (IL-18). Our results showed that melatonin per se indeed exhibited beneficial effects on NSCs and IL-18 inhibited NSC proliferation, neurosphere formation and their differentiation into neurons. All inhibitory effects of IL-18 on NSCs were significantly reduced by melatonin treatment. Moreover, melatonin application increased the production of both brain-derived and glial cell-derived neurotrophic factors (BDNF, GDNF) in IL-18-stimulated NSCs. It was observed that inhibition of BDNF or GDNF hindered the protective effects of melatonin on NSCs. A potentially protective mechanism of melatonin on the inhibition of NSC's differentiation caused IL-18 may attribute to the up-regulation of these two major neurotrophic factors, BNDF and GNDF. The findings indicate that melatonin may play an important role promoting the survival of NSCs in neuroinflammatory diseases. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. The effects of exogenous melatonin on the morphology of thyrocytes in pinealectomized and irradiated rats

    International Nuclear Information System (INIS)

    Kundurovic, Z.; Sofic, E.

    2006-01-01

    We investigated the effects of exogenous melatonin on the thyrocytes morphology in gamma-irradiated rats under condition where the pineal gland, as a main physiological source of endogenous melatonin, was removed. Three months after pinealectomy animals were divided into two groups: one group of animals was treated with 0.5 ml of vehicle (ethanol diluted in water) and other group was injected intraperitoneally 2 mg/kg of melatonin dissolved in 0.5 ml of vehicle daily during the period of fourteen days. After this treatment all the animals were irradiated with a single dose of 8 Gy gamma rays. Ionising radiation induced apoptosis, hydropic swelling or/and necrosis in both groups of animals, however these changes were less discerned in the thyrocytes of melatonin-treated animals. Our findings demonstrate that administration of exogenous melatonin prior to irradiation reduces radiation-induced thyrocytes damage. (author)

  12. Melatonin attenuates inflammation of acute pulpitis subjected to dental pulp injury

    Science.gov (United States)

    Li, Ji-Guo; Lin, Jia-Ji; Wang, Zhao-Ling; Cai, Wen-Ke; Wang, Pei-Na; Jia, Qian; Zhang, An-Sheng; Wu, Gao-Yi; Zhu, Guo-Xiong; Ni, Long-Xing

    2015-01-01

    Acute pulpitis (AP), one of the most common diseases in the endodontics, usually causes severe pain to the patients, which makes the search for therapeutic target of AP essential in clinic. Toll-like receptor 4 (TLR4) signaling is widely involved in the mechanism of pulp inflammation, while melatonin has been reported to have an inhibition for a various kinds of inflammation. We hereby studied whether melatonin can regulate the expression of TLR4/NF-ĸB signaling in the pulp tissue of AP and in human dental pulp cells (HDPCs). Two left dental pulps of the adult rat were drilled open to establish the AP model, and the serum levels of melatonin and pro-inflammatory cytokines, including interleukin 1β (IL-1β), interleukin 18 (IL-18) and tumor necrosis factor α (TNF-α), were assessed at 1, 3 and 5 d post injury. At the same time points, the expression of TLR4 signaling in the pulp was explored by quantitative real-time PCR and immunohistochemistry. The AP rats were administered an abdominal injection of melatonin to assess whether melatonin rescued AP and TLR4/NF-ĸB signaling. Dental pulp injury led to an approximately five-day period acute pulp inflammation and necrosis in the pulp and a significant up-regulation of IL-1β, IL-18 and TNF-α in the serum. ELISA results showed that the level of melatonin in the serum decreased due to AP, while an abdominal injection of melatonin suppressed the increase in serum cytokines and the percentage of necrosis at the 5 d of the injured pulp. Consistent with the inflammation in AP rats, TLR4, NF-ĸB, TNF-α and IL-1β in the pulp were increased post AP compared with the baseline expression. And melatonin showed an inhibition on TLR4/NF-ĸB signaling as well as IL-1β and TNF-α production in the pulp of AP rats. Furthermore, melatonin could also regulate the expression of TLR4/NF-ĸB signaling in LPS-stimulated HDPCs. These data suggested that dental pulp injury induced AP and reduced the serum level of melatonin and that

  13. Melatonin protects uterus and oviduct exposed to nicotine in mice

    Directory of Open Access Journals (Sweden)

    Seyed Saadat Seyedeh Nazanin

    2014-03-01

    Full Text Available Smoking is associated with higher infertility risk. The aim of this study was to evaluate protective effects of melatonin on the uterus and oviduct in mice exposed to nicotine. Adult female mice (n=32 were divided into four groups. Group A: control animals received normal saline, Group B: injected with nicotine 40 μg/kg, Group C: injected with melatonin 10 μg, Group D: injected with nicotine 40 μg/kg and melatonin 10 μg. All animals were treated over 15 days intraperitoneally. On the 16th day, animals in the estrus phase were dissected and their uterus and oviducts were removed. Immunohistochemistry was recruited for studying apoptosis and for detection of estrogen receptor (ER alpha in luminal epithelium of the uterus and oviduct. Enzyme-linked immunosorbent assay was used for serum estradiol level determination. Nicotine in group B decreased estradiol level and ERalpha numbers both in the uterus and oviduct (p<0.05. Co-administration of melatonin-nicotine in Group D ameliorated the histology of the uterus and oviduct, increased ERalpha numbers and reduced apoptosis in the uterus and oviduct compared with the nicotine Group B (p<0.05. This study indicates that nicotine impairs the histology of the uterus and oviduct and co-administration of melatonin-nicotine ameliorates these findings, partly through alteration in ERalpha numbers and reduction of apoptosis

  14. Antepartum depression severity is increased during seasonally longer nights: relationship to melatonin and cortisol timing and quantity.

    Science.gov (United States)

    Meliska, Charles J; Martínez, Luis F; López, Ana M; Sorenson, Diane L; Nowakowski, Sara; Kripke, Daniel F; Elliott, Jeffrey; Parry, Barbara L

    2013-11-01

    Current research suggests that mood varies from season to season in some individuals, in conjunction with light-modulated alterations in chronobiologic indices such as melatonin and cortisol. The primary aim of this study was to evaluate the effects of seasonal variations in darkness on mood in depressed antepartum women, and to determine the relationship of seasonal mood variations to contemporaneous blood melatonin and cortisol measures; a secondary aim was to evaluate the influence of seasonal factors on measures of melancholic versus atypical depressive symptoms. We obtained measures of mood and overnight concentrations of plasma melatonin and serum cortisol in 19 depressed patients (DP) and 12 healthy control (HC) antepartum women, during on-going seasonal variations in daylight/darkness, in a cross-sectional design. Analyses of variance showed that in DP, but not HC, Hamilton Depression Rating Scale (HRSD) scores were significantly higher in women tested during seasonally longer versus shorter nights. This exacerbation of depressive symptoms occurred when the dim light melatonin onset, the melatonin synthesis offset, and the time of maximum cortisol secretion (acrophase) were phase-advanced (temporally shifted earlier), and melatonin quantity was reduced, in DP but not HC. Serum cortisol increased across gestational weeks in both the HC and DP groups, which did not differ significantly in cortisol concentration. Nevertheless, serum cortisol concentration correlated positively with HRSD score in DP but not HC; notably, HC showed neither significant mood changes nor altered melatonin and cortisol timing or quantity in association with seasonal variations. These findings suggest that depression severity during pregnancy may become elevated in association with seasonally related phase advances in melatonin and cortisol timing and reduced melatonin quantity that occur in DP, but not HC. Thus, women who experience antepartum depression may be more susceptible than

  15. Protective Role of Intracellular Melatonin Against Oxidative Stress and UV Radiation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Bisquert, Ricardo; Muñiz-Calvo, Sara; Guillamón, José M

    2018-01-01

    Melatonin (Mel) is considered a potent natural antioxidant molecule given its free-radical scavenging ability. Its origin is traced back to the origin of aerobic life as early defense against oxidative stress and radiation. More complex signaling functions have been attributed to Mel as a result of evolution in different biological kingdoms, which comprise gene expression modulation, enzyme activity, and mitochondrial homeostasis regulation processes, among others. Since Mel production has been recently reported in wine yeast, we tested the protective effect of Mel on Saccharomyces cerevisiae against oxidative stress and UV light. As the optimal conditions for S. cerevisiae to synthesize Mel are still unknown, we developed an intracellular Mel-charging method to test its effect against stresses. To assess Mel's ability to protect S. cerevisiae from both stresses, we ran growth tests in liquid media and viability assays by colony count after Mel treatment, followed by stress. We also analyzed gene expression by qPCR on a selection of genes involved in stress protection in response to Mel treatment under oxidative stress and UV radiation. The viability in the Mel-treated cells after H 2 O 2 stress was up to 35% greater than for the untreated controls, while stress amelioration reached 40% for UVC light (254 nm). Mel-treated cells showed a significant shortened lag phase compared to the control cells under the stress and normal growth conditions. The gene expression analysis showed that Mel significantly modulated gene expression in the unstressed cells in the exponential growth phase, and also during various stress treatments.

  16. Protective Role of Intracellular Melatonin Against Oxidative Stress and UV Radiation in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ricardo Bisquert

    2018-02-01

    Full Text Available Melatonin (Mel is considered a potent natural antioxidant molecule given its free-radical scavenging ability. Its origin is traced back to the origin of aerobic life as early defense against oxidative stress and radiation. More complex signaling functions have been attributed to Mel as a result of evolution in different biological kingdoms, which comprise gene expression modulation, enzyme activity, and mitochondrial homeostasis regulation processes, among others. Since Mel production has been recently reported in wine yeast, we tested the protective effect of Mel on Saccharomyces cerevisiae against oxidative stress and UV light. As the optimal conditions for S. cerevisiae to synthesize Mel are still unknown, we developed an intracellular Mel-charging method to test its effect against stresses. To assess Mel’s ability to protect S. cerevisiae from both stresses, we ran growth tests in liquid media and viability assays by colony count after Mel treatment, followed by stress. We also analyzed gene expression by qPCR on a selection of genes involved in stress protection in response to Mel treatment under oxidative stress and UV radiation. The viability in the Mel-treated cells after H2O2 stress was up to 35% greater than for the untreated controls, while stress amelioration reached 40% for UVC light (254 nm. Mel-treated cells showed a significant shortened lag phase compared to the control cells under the stress and normal growth conditions. The gene expression analysis showed that Mel significantly modulated gene expression in the unstressed cells in the exponential growth phase, and also during various stress treatments.

  17. Protective Role of Intracellular Melatonin Against Oxidative Stress and UV Radiation in Saccharomyces cerevisiae

    Science.gov (United States)

    Bisquert, Ricardo; Muñiz-Calvo, Sara; Guillamón, José M.

    2018-01-01

    Melatonin (Mel) is considered a potent natural antioxidant molecule given its free-radical scavenging ability. Its origin is traced back to the origin of aerobic life as early defense against oxidative stress and radiation. More complex signaling functions have been attributed to Mel as a result of evolution in different biological kingdoms, which comprise gene expression modulation, enzyme activity, and mitochondrial homeostasis regulation processes, among others. Since Mel production has been recently reported in wine yeast, we tested the protective effect of Mel on Saccharomyces cerevisiae against oxidative stress and UV light. As the optimal conditions for S. cerevisiae to synthesize Mel are still unknown, we developed an intracellular Mel-charging method to test its effect against stresses. To assess Mel’s ability to protect S. cerevisiae from both stresses, we ran growth tests in liquid media and viability assays by colony count after Mel treatment, followed by stress. We also analyzed gene expression by qPCR on a selection of genes involved in stress protection in response to Mel treatment under oxidative stress and UV radiation. The viability in the Mel-treated cells after H2O2 stress was up to 35% greater than for the untreated controls, while stress amelioration reached 40% for UVC light (254 nm). Mel-treated cells showed a significant shortened lag phase compared to the control cells under the stress and normal growth conditions. The gene expression analysis showed that Mel significantly modulated gene expression in the unstressed cells in the exponential growth phase, and also during various stress treatments. PMID:29541065

  18. [MELATONIN CONCENTRATION IN THE BLOOD OF VITILIGO PATIENTS WITH STRESS IN ANAMNESIS].

    Science.gov (United States)

    Tsiskarishvili, N I; Katsitadze, A; Tsiskarishvili, N V; Tsiskarishvil, Ts; Chitanava, L

    2016-05-01

    In recent years, despite some progress in the study of vitiligo many aspects of pathogenesis and treatment of this dermatosis remain unsolved or are highly controversial. It is believed that progression of disease is associated with a genetic predisposition, autoimmune processes and oxidative stress, but the concrete role of stress on the processes having place in the organism of vitiligo patients so far is not investigated. As we know, epiphysis is the main regulator of adaptation of the individual to the environment. An important product of secretion of the pineal gland is the hormone melatonin - a universal regulator of vital functions and biorhythms of the body. Psychoses, neuroses, depression, immunopathology are aspects of disturbances in circadian, seasonal and annual rhythms of the synthesis of this hormone. Clinical and experimental studies indicate that the hormone melatonin, which is one of the links in a stress defense mechanism of the body, has antioxidant and immunomodulatory properties. The purpose of this study was to determine plasma level of melatonin in the blood of vitiligo patients (with stress in anamnesis), depending on the clinical form and duration of the disease. 41 patients with vitiligo (16 with segmental and 25 with non-segmental form) with stress in anamnesis and duration of disease from several months to 20 years were under observation. The level of melatonin in the blood plasma was determined by ELISA (IBL - international - reagent), the results were expressed in units of pg/ml. According to the results of our study, 8 patients with segmental vitiligo had the normal level of plasma melatonin concentration (in the range of 20.2-31.1 pg/ml), in 2 cases - the level was near the norm (19.2 pg/ml). In the group of patients with non-segmental vitiligo, the level of melatonin was below the norm (12.5 pg/ml) and in 2 cases, the content of melatonin was very low - 4.05 pg / ml. Correlation analysis of melatonin levels with duration of disease

  19. THE MODULATION EFFECT OF MELATONIN AGAINST GAMMA IRRADIATION IN BIOCHEMICAL AND HISTOPATHOLOGICAL STUDIES ON MALE RATS

    International Nuclear Information System (INIS)

    ABDOU, M.I.; OSMAN, H.F.

    2008-01-01

    The objective of this study is to illustrate the radiomodulatory role of melatonin in the regulation of some biochemical and histopathological damage in case of total body irradiated rats.Male albino rats weighing 120-150 g were divided into four groups, group (I) control animals, group (II) animals received melatonin daily by gavages (3 mg/kg body weight) for two weeks, group (III) animals irradiated with 4 Gy Gamma rays and group (IV) animals irradiated with 4 Gy Gamma rays followed by daily administration with melatonin (3 mg/kg body weight) for two weeks. Rats were sacrificed on the 1st and 2nd week post-irradiation. Blood samples were collected for biochemical investigations. The activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP), were determined as biomarkers of liver functions, urea and creatinine contents were measured as markers of kidney functions, creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) activities were selected to evaluate heart damage. Alteration in the level of serum glucose was also determined. Tissue specimens from liver, kidney, heart and spleen were collected for the pathological studies.The results indicated that, the levels of liver enzymes, kidney functions and glucose were increased after irradiation of rats and reduced by the treatment with melatonin. These reductions were more noticed during the second weeks except in case of glucose which increased during the second week compared to the first week. On the other hand, heart enzymes levels were reduced by the effect melatonin which may be important for cardiopathological patients.Histopathological results showed that irradiation of rats induced tissue injuries in liver, kidney, heart and spleen.Melatonin treatment reduced these injuries to minimum.It could be concluded that, melatonin could be used as antioxidant to protect vital organs and their functions against irradiation since it works as free radicals

  20. Melatonin: An Underappreciated Player in Retinal Physiology and Pathophysiology

    Science.gov (United States)

    Tosini, Gianluca; Baba, Kenkichi; Hwang, Christopher K.; Iuvone, P. Michael

    2012-01-01

    In the vertebrate retina, melatonin is synthesized by the photoreceptors with high levels of melatonin at night and lower levels during the day. Melatonin exerts its influence by interacting with a family of G-protein-coupled receptors that are negatively coupled with adenylyl cyclase. Melatonin receptors belonging to the subtypes MT1 and MT2 have been identified in the mammalian retina. MT1 and MT2 receptors are found in all layers of the neural retina and in the retinal pigmented epithelium. Melatonin in the eye is believed to be involved in the modulation of many important retinal functions; it can modulate the electroretinogram (ERG), and administration of exogenous melatonin increases light-induced photoreceptor degeneration. Melatonin may also have protective effects on retinal pigment epithelial cells, photoreceptors and ganglion cells. A series of studies have implicated melatonin in the pathogenesis of age-related macular degeneration, and melatonin administration may represent a useful approach to prevent and treat glaucoma. Melatonin is used by millions of people around the world to retard aging, improve sleep performance, mitigate jet lag symptoms, and treat depression. Administration of exogenous melatonin at night may also be beneficial for ocular health, but additional investigation is needed to establish its potential. PMID:22960156

  1. Sleep-wake and melatonin pattern in craniopharyngioma patients.

    Science.gov (United States)

    Pickering, Line; Jennum, Poul; Gammeltoft, Steen; Poulsgaard, Lars; Feldt-Rasmussen, Ulla; Klose, Marianne

    2014-06-01

    To assess the influence of craniopharyngioma or consequent surgery on melatonin secretion, and the association with fatigue, sleepiness, sleep pattern and sleep quality. Cross-sectional study. A total of 15 craniopharyngioma patients were individually matched to healthy controls. In this study, 24-h salivary melatonin and cortisol were measured. Sleep-wake patterns were characterised by actigraphy and sleep diaries recorded for 2 weeks. Sleepiness, fatigue, sleep quality and general health were assessed by Multidimensional Fatigue Inventory, Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale and Short-Form 36. Patients had increased mental fatigue, daytime dysfunction, sleep latency and lower general health (all, P≤0.05), and they tended to have increased daytime sleepiness, general fatigue and impaired sleep quality compared with controls. The degree of hypothalamic injury was associated with an increased BMI and lower mental health (P=0.01). High BMI was associated with increased daytime sleepiness, daytime dysfunction, mental fatigue and lower mental health (all, P≤0.01). Low midnight melatonin was associated with reduced sleep time and efficiency (P≤0.03) and a tendency for increased sleepiness, impaired sleep quality and physical health. Midnight melatonin remained independently related to sleep time after adjustment for cortisol. Three different patterns of melatonin profiles were observed; normal (n=6), absent midnight peak (n=6) and phase-shifted peak (n=2). Only patients with absent midnight peak had impaired sleep quality, increased daytime sleepiness and general and mental fatigue. Craniopharyngioma patients present with changes in circadian pattern and daytime symptoms, which may be due to the influence of the craniopharyngioma or its treatment on the hypothalamic circadian and sleep regulatory nuclei. © 2014 European Society of Endocrinology.

  2. Melatonin induction and its role in high light stress tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Lee, Hyoung Yool; Back, Kyoungwhan

    2018-05-16

    In plants, melatonin is a potent bioactive molecule involved in the response against various biotic and abiotic stresses. However, little is known of its defensive role against high light (HL) stress. In this study, we found that melatonin was transiently induced in response to HL stress in Arabidopsis thaliana with a simultaneous increase in the expression of melatonin biosynthetic genes, including serotonin N-acetyltransferase1 (SNAT1). Transient induction of melatonin was also observed in the flu mutant, a singlet oxygen ( 1 O 2 )-producing mutant, upon light exposure, suggestive of melatonin induction by chloroplastidic 1 O 2 against HL stress. An Arabidopsis snat1 mutant was devoid of melatonin induction upon HL stress, resulting in high susceptibility to HL stress. Exogenous melatonin treatment mitigated damage caused by HL stress in the snat1 mutant by reducing O 2 - production and increasing the expression of various ROS-responsive genes. In analogy, an Arabidopsis SNAT1-overexpressing line showed increased tolerance of HL stress concomitant with a reduction in malondialdehyde and ion leakage. A complementation line expressing an Arabidopsis SNAT1 genomic fragment in the snat1 mutant completely restored HL stress susceptibility in the snat1 mutant to levels comparable to that of wild-type Col-0 plants. The results of the analysis of several Arabidopsis genetic lines reveal for the first time at the genetic level that melatonin is involved in conferring HL stress tolerance in plants. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Fas/Fas ligand regulation mediates cell death in human Ewing's sarcoma cells treated with melatonin

    Science.gov (United States)

    García-Santos, G; Martin, V; Rodríguez-Blanco, J; Herrera, F; Casado-Zapico, S; Sánchez-Sánchez, A M; Antolín, I; Rodríguez, C

    2012-01-01

    Background: Despite recent advances in cancer therapy, the 5-year survival rate for Ewing's sarcoma is still very low, and new therapeutic approaches are necessary. It was found previously that melatonin induces cell death in the Ewing's sarcoma cell line, SK-N-MC, by activating the extrinsic apoptotic pathway. Methods: Melatonin actions were analysed by metabolic viability/survival cell assays, flow cytometry, quantitative PCR for mRNA expression, western blot for protein activation/expression and electrophoretic mobility shift assay for transcription factor activation. Results: Melatonin increases the expression of Fas and its ligand Fas L, this increase being responsible for cell death induced by the indolamine. Melatonin also produces a transient increase in intracellular oxidants and activation of the redox-regulated transcription factor Nuclear factor-kappaB. Inhibition of such activation prevents cell death and Fas/Fas L upregulation. Cytotoxic effect and Fas/Fas L regulation occur in all Ewing's cell lines studied, and do not occur in the other tumour cell lines studied where melatonin does not induce cell death. Conclusion: Our data offers new insights in the study of alternative therapeutic strategies in the treatment of Ewing's sarcoma. Further attention deserves to be given to the differences in the cellular biology of sensitive tumours that could explain the cytotoxic effect of melatonin and the increase in the level of free radicals caused by this molecule, in particular cancer types. PMID:22382690

  4. Does exogenous melatonin influence the free radicals metabolism and pain sensation in rat?

    Czech Academy of Sciences Publication Activity Database

    Pekárková, I.; Parara, S.; Holeček, V.; Stopka, Pavel; Trefil, L.; Racek, J.; Rokyta, R.

    2001-01-01

    Roč. 50, č. 6 (2001), s. 595-602 ISSN 0862-8408 R&D Projects: GA MZd NF4665 Institutional research plan: CEZ:AV0Z4032918 Keywords : melatonin * oxidative stress * pain stress Subject RIV: CA - Inorganic Chemistry Impact factor: 1.027, year: 2001

  5. Distribution of melatonin receptor in human fetal brain

    Institute of Scientific and Technical Information of China (English)

    WANG Guo-quan; SHAO Fu-yuan; ZHAO Ying; LIU Zhi-min

    2001-01-01

    Objective: To study the distribution of 2 kinds of melatonin receptor subtypes (mtl and MT2) in human fetal brain. Methods: The fetal brain tissues were sliced and the distribution ofmelatonin receptors in human fetal brain were detected using immunohistochemistry and in situ hybridization. Results: Melatonin receptor mtl existed in the cerebellun and hypothalamus, melatonin receptor MT2 exists in hypothalamus, occipital and medulla. Conclusion: Two kinds of melatonin receptors, mtl and MT2 exist in the membrane and cytosol of brain cells, indicating that human fetal brain is a target organ of melatonin.

  6. Prophylactic role of melatonin against radiation induced damage in mouse cerebellum with special reference to Purkinje cells

    Energy Technology Data Exchange (ETDEWEB)

    Sisodia, Rashmi; Kumari, Seema; Verma, Rajesh Kumar; Bhatia, A L [Neurobiology Laboratory, Department of Zoology, University of Rajasthan, Jaipur 302004 (India)

    2006-06-15

    Melatonin, a hormone with a proven antioxidative efficacy, crosses all morphophysiological barriers, including the blood-brain barrier, and distributes throughout the cell. The present study is an attempt to investigate the prophylactic influence of a chronic low level of melatonin against an acute radiation induced oxidative stress in the cerebellum of Swiss albino mice, with special reference to Purkinje cells. After 15 days of treatment the mice were sacrificed at various intervals from 1 to 30 days. Biochemical parameters included lipid peroxidation (LPO) and glutathione (GSH) levels as the endpoints. The quantitative study included alterations in number and volume of Purkinje cells. Swiss albino mice were orally administered a very low dose of melatonin (0.25 mg/mouse/day) for 15 consecutive days before single exposure to 4 Gy gamma radiation. Melatonin checked the augmented levels of LPO, by approximately 55%, by day 30 day post-exposure. Radiation induced depleted levels of GSH could be raised by 68.9% by day 30 post-exposure. Radiation exposure resulted in a reduction of the volume of Purkinje cells and their total number. The administration of melatonin significantly protected against the radiation induced decreases in Purkinje cell volume and number. Results indicate the antioxidative properties of melatonin resulting in its prophylactic property against radiation induced biochemical and cellular alterations in the cerebellum. The findings support the idea that melatonin may be used as an anti-irradiation drug due to its potent free radical scavenging and antioxidative efficacy.

  7. Melatonin protects bone marrow mesenchymal stem cells against iron overload-induced aberrant differentiation and senescence.

    Science.gov (United States)

    Yang, Fan; Yang, Lei; Li, Yuan; Yan, Gege; Feng, Chao; Liu, Tianyi; Gong, Rui; Yuan, Ye; Wang, Ning; Idiiatullina, Elina; Bikkuzin, Timur; Pavlov, Valentin; Li, Yang; Dong, Chaorun; Wang, Dawei; Cao, Yang; Han, Zhenbo; Zhang, Lai; Huang, Qi; Ding, Fengzhi; Bi, Zhengang; Cai, Benzhi

    2017-10-01

    Bone marrow mesenchymal stem cells (BMSCs) are an expandable population of stem cells which can differentiate into osteoblasts, chondrocytes and adipocytes. Dysfunction of BMSCs in response to pathological stimuli contributes to bone diseases. Melatonin, a hormone secreted from pineal gland, has been proved to be an important mediator in bone formation and mineralization. The aim of this study was to investigate whether melatonin protected against iron overload-induced dysfunction of BMSCs and its underlying mechanisms. Here, we found that iron overload induced by ferric ammonium citrate (FAC) caused irregularly morphological changes and markedly reduced the viability in BMSCs. Consistently, osteogenic differentiation of BMSCs was significantly inhibited by iron overload, but melatonin treatment rescued osteogenic differentiation of BMSCs. Furthermore, exposure to FAC led to the senescence in BMSCs, which was attenuated by melatonin as well. Meanwhile, melatonin was able to counter the reduction in cell proliferation by iron overload in BMSCs. In addition, protective effects of melatonin on iron overload-induced dysfunction of BMSCs were abolished by its inhibitor luzindole. Also, melatonin protected BMSCs against iron overload-induced ROS accumulation and membrane potential depolarization. Further study uncovered that melatonin inhibited the upregulation of p53, ERK and p38 protein expressions in BMSCs with iron overload. Collectively, melatonin plays a protective role in iron overload-induced osteogenic differentiation dysfunction and senescence through blocking ROS accumulation and p53/ERK/p38 activation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. POTENTIAL USE OF MELATONIN IN PROCEDURAL ANXIETY AND PAIN IN CHILDREN UNDERGOING BLOOD WITHDRAWAL.

    Science.gov (United States)

    Marseglia, L; Manti, S; D'Angelo, G; Arrigo, T; Cuppari, C; Salpietro, C; Gitto, E

    2015-01-01

    The recognition of the value of pain, especially in the pediatric population, has increased over the last decade. It is known that pain-related anxiety can increase perceived pain intensity. There are several different approaches to the treatment of pre-procedural anxiety and procedural pain in children. Melatonin, a neurohormone with the profile of a novel hypnotic-anaesthetic agent, plays an important role in anxiolysis and analgesia. This study investigated the effects of oral melatonin premedication to reduce anxiety and pain in children having blood samples taken. The investigations were carried out on 60 children, aged 1-14 years, divided into 2 equal groups. Using a computer-generated randomization schedule, patients were given either melatonin orally (0.5 mg/kg BW, max 5 mg) or placebo 30 min before blood draw. Pre-procedural anxiety was assessed using the scale from the Children’s Anxiety and Pain Scales, while procedural pain used the Face, Legs, Activity, Cry and Consolability assessment tool for children under the age of 3 years, Faces Pain Scale-Revised for children aged 3-8 years and Numeric Rating Scale for children over the age of 8 years. Oral administration of melatonin before the blood withdrawal procedure significantly reduced both anxiety (pchildren under 3 years and pchildren over 3 years). These data support the use of melatonin for taking blood samples due to its anxiolytic and analgesic properties. Further studies are needed to support the routine use of melatonin to alleviate anxiety and pain in pediatric patients having blood samples taken.

  9. Melatonin prevents hyperglycemia in a model of sleep apnea

    OpenAIRE

    Kaminski,Renata Schenkel Rivera; Martinez,Denis; Fagundes,Micheli; Martins,Emerson Ferreira; Montanari,Carolina Caruccio; Rosa,Darlan Pase; Fiori,Cintia Zappe; Marroni,Norma Possa

    2015-01-01

    Objective Obstructive sleep apnea is a common disorder associated with aging and obesity. Apneas cause repeated arousals, intermittent hypoxia, and oxidative stress. Changes in glucolipidic profile occur in apnea patients, independently of obesity. Animal models of sleep apnea induce hyperglycemia. This study aims to evaluate the effect of the antioxidants melatonin and N-acetylcysteine on glucose, triglyceride, and cholesterol levels in animals exposed to intermittent hypoxia. Materials and ...

  10. Low Melatonin Production During Adulthood - Phase 2: Association with Levels of Hydroxyl Radical Scavenging and DNA Damage

    National Research Council Canada - National Science Library

    Sobel, Eugene L; Davanipour, Zoreh; Poulsen, Henrik

    2004-01-01

    The primary purpose of the proposed study is to develop cross-sectional evidence concerning whether or not lower melatonin production levels are associated with increased oxidative DNA guanine damage...

  11. Leptin, neuropeptide Y (NPY), melatonin and zinc levels in experimental hypothyroidism and hyperthyroidism: relation with melatonin and the pineal gland.

    Science.gov (United States)

    Baltaci, Abdulkerim Kasım; Mogulkoc, Rasim

    2018-03-02

    Background Melatonin, an important neurohormone released from the pineal gland, is generally accepted to exercise an inhibitor effect on the thyroid gland. Zinc mediates the effects of many hormones and is found in the structure of numerous hormone receptors. Aim The present study aims to examine the effect of melatonin supplementation and pinealectomy on leptin, neuropeptide Y (NPY), melatonin and zinc levels in rats with hypothyroidism and hyperthyroidism. Methods This study was performed on the 70 male rats. Experimental animals in the study were grouped as follows: control (C); hypothyroidism (PTU); hypothyroidism + melatonin (PTU + M); hypothyroidism + pinealectomy (PTU + Pnx); hyperthyroidism (H); hyperthyroidism + melatonin (H + M) and hyperthyroidism + pinealectomy (H + Pnx). Blood samples collected at the end of 4-week procedures were analyzed to determine melatonin, leptin, NPY and zinc levels. Results It was found that thyroid parameters thyroid stimulating hormone (TSH), free triiodthyronine (FT3), free thyroxine (FT4), total T3 (TT3) and total T4 (TT4) decreased in hypothyroidism groups and increased in the groups with hyperthyroidism. The changes in these hormones remained unaffected by melatonin supplementation and pinealectomy. Melatonin levels rose in hyperthyroidism and fell in hypothyroidism. Leptin and NPY levels increased in both hypothyroidism and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and pinealectomy, but increased in hyperthyroidism. Conclusion The results of the study demonstrate that hypothyroidism and hyperthyroidism affect leptin, NPY, melatonin and zinc values in different ways in rats. However, melatonin supplementation and pinealectomy do not have any significant influence on the changes occurring in leptin, NPY and zinc levels in thyroid dysfunction.

  12. Potency of melatonin in living beings.

    Science.gov (United States)

    Choi, Donchan

    2013-09-01

    Living beings are surrounded by various changes exhibiting periodical rhythms in environment. The environmental changes are imprinted in organisms in various pattern. The phenomena are believed to match the external signal with organisms in order to increase their survival rate. The signals are categorized into circadian, seasonal, and annual cycles. Among the cycles, the circadian rhythm is regarded as the most important factor because its periodicity is in harmony with the levels of melatonin secreted from pineal gland. Melatonin is produced by the absence of light and its presence displays darkness. Melatonin plays various roles in creatures. Therefore, this review is to introduce the diverse potential ability of melatonin in manifold aspects in living organism.

  13. Melatonin plays a protective role in postburn rodent gut pathophysiology.

    Science.gov (United States)

    Al-Ghoul, Walid M; Abu-Shaqra, Steven; Park, Byeong Gyu; Fazal, Nadeem

    2010-05-17

    Melatonin is a possible protective agent in postburn gut pathophysiological dynamics. We investigated the role of endogenously-produced versus exogenously-administered melatonin in a major thermal injury rat model with well-characterized gut inflammatory complications. Our rationale is that understanding in vivo melatonin mechanisms in control and inflamed tissues will improve our understanding of its potential as a safe anti-inflammatory/antioxidant therapeutic alternative. Towards this end, we tested the hypothesis that the gut is both a source and a target for melatonin and that mesenteric melatonin plays an anti-inflammatory role following major thermal injury in rats with 3rd degree hot water scald over 30% TBSA. Our methods for assessing the gut as a source of melatonin included plasma melatonin ELISA measurements in systemic and mesenteric circulation as well as rtPCR measurement of jejunum and terminal ileum expression of the melatonin synthesizing enzymes arylalkylamine N-acetyltransferase (AA-NAT) and 5-hydroxyindole-O-methyltransferase (HIOMT) in sham versus day-3 postburn rats. Our melatonin ELISA results revealed that mesenteric circulation has much higher melatonin than systemic circulation and that both mesenteric and systemic melatonin levels are increased three days following major thermal injury. Our rtPCR results complemented the ELISA data in showing that the melatonin synthesizing enzymes AA-NAT and HIOMT are expressed in the ileum and jejunum and that this expression is increased three days following major thermal injury. Interestingly, the rtPCR data also revealed negative feedback by melatonin as exogenous melatonin supplementation at a dose of 7.43 mg (32 micromole/kg), but not 1.86 mg/kg (8 micromole/kg) drastically suppressed AA-NAT mRNA expression. Our methods also included an assessment of the gut as a target for melatonin utilizing computerized immunohistochemical measurements to quantify the effects of exogenous melatonin

  14. Melatonin for the treatment of irritable bowel syndrome.

    Science.gov (United States)

    Siah, Kewin Tien Ho; Wong, Reuben Kong Min; Ho, Khek Yu

    2014-03-14

    Irritable bowel syndrome (IBS) is a common disorder characterized by recurrent abdominal pain or discomfort, in combination with disturbed bowel habits in the absence of identifiable organic cause. Melatonin (N-acetyl-5-methoxytryptamine) is a hormone produced by the pineal gland and also large number by enterochromaffin cells of the digestive mucosa. Melatonin plays an important part in gastrointestinal physiology which includes regulation of gastrointestinal motility, local anti-inflammatory reaction as well as moderation of visceral sensation. Melatonin is commonly given orally. It is categorized by the United States Food and Drug Administration as a dietary supplement. Melatonin treatment has an extremely wide margin of safety though it may cause minor adverse effects, such as headache, rash and nightmares. Melatonin was touted as a potential effective candidate for IBS treatment. Putative role of melatonin in IBS treatment include analgesic effects, regulator of gastrointestinal motility and sensation to sleep promoter. Placebo-controlled studies in melatonin suffered from heterogeneity in methodology. Most studies utilized 3 mg at bedtime as the standard dose of trial. However, all studies had consistently showed improvement in abdominal pain, some showed improvement in quality of life of IBS patients. Melatonin is a relatively safe drug that possesses potential in treating IBS. Future studies should focus on melatonin effect on gut mobility as well as its central nervous system effect to elucidate its role in IBS patients.

  15. Synthesis of 2-iodo- and 2-phenyl-[11C]melatonin: potential PET tracers for melatonin binding sites

    International Nuclear Information System (INIS)

    Chen Jiajun; Fiehn-Schulze, Brita; Firnau, Guenter; Brough, Paul A.; Snieckus, Victor

    1998-01-01

    Two 11 C-labelled melatonin derivatives, 2-iodo-[ 11 C]melatonin (2-iodo-5-methoxy-N[ 11 C-acetyl]-tryptamine, an agonist) and 2-phenyl-[ 11 C]melatonin (2-phenyl-5-methoxy-N[ 11 C-acetyl]tryptamine, a putative antagonist) were synthesized from [ 11 C]carbon dioxide. The reaction sequence was common to both compounds and consisted of three steps: (i) carbonylation of methyl magnesium bromide with [ 11 C]carbon dioxide, (ii) conversion of the adduct to [ 11 C]acetyl chloride, (iii) acetylation of the amine precursors (2-iodo-5-methoxy-tryptamine or 2-phenyl-5-methoxy-tryptamine) with [ 11 C]acetyl chloride. The precursors were especially prepared. The radiochemical yield was 19% for 2-iodomelatonin and 32% for 2-phenymelatonin, based on [ 11 C]carbon dioxide; the specific activity ranged from 300 to 600 mCi/μmol. Both labelled 2-substituted-melatonins are intended to be used as radiotracers to study melatonin binding sites in man with positron emission tomography

  16. Melatonin in grapes and grape-related foodstuffs: A review.

    Science.gov (United States)

    Meng, Jiang-Fei; Shi, Tian-Ci; Song, Shuo; Zhang, Zhen-Wen; Fang, Yu-Lin

    2017-09-15

    A decade has passed since melatonin was first reported in grapes in 2006. During this time, melatonin has not only been found in the berries of most wine grape (Vitis vinifera L.) cultivars, but also in most grape-related foodstuffs, e.g. wine, grape juice and grape vinegar. In this review, we discuss the melatonin content in grapes and grape-related foodstuffs (especially wine) from previous studies, the physiological function of melatonin in grapes, and the factors contributing to the production of melatonin in grapes and wines. In addition, we identify future research needed to clarify the mechanisms of grape melatonin biosynthesis and regulation, and establish more accurate analysis methods for melatonin in grapes and wines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Current role of melatonin in pediatric neurology: clinical recommendations.

    Science.gov (United States)

    Bruni, Oliviero; Alonso-Alconada, Daniel; Besag, Frank; Biran, Valerie; Braam, Wiebe; Cortese, Samuele; Moavero, Romina; Parisi, Pasquale; Smits, Marcel; Van der Heijden, Kristiaan; Curatolo, Paolo

    2015-03-01

    Melatonin, an indoleamine secreted by the pineal gland, plays a key role in regulating circadian rhythm. It has chronobiotic, antioxidant, anti-inflammatory and free radical scavenging properties. A conference in Rome in 2014 aimed to establish consensus on the roles of melatonin in children and on treatment guidelines. The best evidence for efficacy is in sleep onset insomnia and delayed sleep phase syndrome. It is most effective when administered 3-5 h before physiological dim light melatonin onset. There is no evidence that extended-release melatonin confers advantage over immediate release. Many children with developmental disorders, such as autism spectrum disorder, attention-deficit/hyperactivity disorder and intellectual disability have sleep disturbance and can benefit from melatonin treatment. Melatonin decreases sleep onset latency and increases total sleep time but does not decrease night awakenings. Decreased CYP 1A2 activity, genetically determined or from concomitant medication, can slow metabolism, with loss of variation in melatonin level and loss of effect. Decreasing the dose can remedy this. Animal work and limited human data suggest that melatonin does not exacerbate seizures and might decrease them. Melatonin has been used successfully in treating headache. Animal work has confirmed a neuroprotective effect of melatonin, suggesting a role in minimising neuronal damage from birth asphyxia; results from human studies are awaited. Melatonin can also be of value in the performance of sleep EEGs and as sedation for brainstem auditory evoked potential assessments. No serious adverse effects of melatonin in humans have been identified. Copyright © 2014 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  18. Different Intensities of Treadmill Running Exercise do Not Alter Melatonin Levels in Rats

    Directory of Open Access Journals (Sweden)

    Ionara Rodrigues Siqueira

    2011-04-01

    Full Text Available Background: Regular and moderate exercise has been considered an interesting neuroprotective strategy. Our research group demonstrated that a protocol of moderate exercise on a treadmill reduced, while a protocol of high-intensity exercise increased in vitro ischemic cell damage in Wistar rats. The molecular mechanisms by which physical exercise exerts neuroprotective effects remain unclear. Accumulating evidence suggests that exercise may have short- and long-term effects on melatonin secretion in humans. Melatonin, the main product of the pineal gland, has been shown to have neuroprotective effects in models of brain and spinal cord injury and cerebral ischemia. A dual modulation of melatonin secretion by physical activity has also been demonstrated. This study aimed to investigate the effect of different exercise intensities, moderate- and high-intensity exercise, on serum melatonin levels in rats. Methods: Thirty-five adult male Wistar rats were divided into non-exercised (sedentary and exercised (20- or 60-min sessions groups. The exercise protocols consisted of two weeks of daily treadmill training. Blood samples were collected approximately 16 hours after the last training session (8:00-10:00 and melatonin levels were assayed by ELISA. Results: The exercise protocols, two weeks of 20 min/day or 60 min/day of treadmill running, did not affect serum melatonin levels. Conclusion: Our data demonstrated that melatonin levels may not be directly involved in the exercise-induced, intensity-dependent dual effect on in vitro ischemia.

  19. Involvement of Melatonin in Changing Depression-Like and Aggressive Behaviour in Rats Under Moderate Electromagnetic Shielding

    Science.gov (United States)

    Temuryants, N. A.; Tumanyants, K. N.; Khusainov, D. R.; Cheretaev, I. V.; Tumanyants, E. N.

    2017-12-01

    It was found that moderate electromagnetic shielding, which attenuates constant and variable components of the geomagnetic field (19 h per day for 10 days), induces in male rats the development of depression-like behavior. This behavior is diagnosed on the basis of increased passive swimming time and a decreased duration of active swimming in the Porsolt test. These behaviors reach their peak on days 3-4 of the experiment. The daily administration of 1 mg/kg exogenous melatonin reduces these depression-like behaviors as soon as day 1 of the experiment, and this effect persists throughout all stages of the experiment. Electromagnetic shielding and the administration of 1 mg/kg exogenous melatonin do not change the levels of intraspecies aggressiveness. An increase in melatonin dosage to 5 mg/kg even further reduces depression-like symptoms and stops the increase in intraspecies aggressiveness during the experiment. The conclusion is made that melatonin plays an important role in the mechanisms of physiological effects of a weakened electromagnetic geomagnetic field.

  20. Particular phosphorylation of PI3K/Akt on Thr308 via PDK-1 and PTEN mediates melatonin's neuroprotective activity after focal cerebral ischemia in mice

    Directory of Open Access Journals (Sweden)

    Ulkan Kilic

    2017-08-01

    Full Text Available Apart from its potent antioxidant property, recent studies have revealed that melatonin promotes PI3K/Akt phosphorylation following focal cerebral ischemia (FCI in mice. However, it is not clear (i whether increased PI3K/Akt phosphorylation is a concomitant event or it directly contributes to melatonin's neuroprotective effect, and (ii how melatonin regulates PI3K/Akt signaling pathway after FCI. In this study, we showed that Akt was intensively phosphorylated at the Thr308 activation loop as compared with Ser473 by melatonin after FCI. Melatonin treatment reduced infarct volume, which was reversed by PI3K/Akt inhibition. However, PI3K/Akt inhibition did not inhibit melatonin's positive effect on brain swelling and IgG extravasation. Additionally, phosphorylation of mTOR, PTEN, AMPKα, PDK1 and RSK1 were increased, while phosphorylation of 4E-BP1, GSK-3α/β, S6 ribosomal protein were decreased in melatonin treated animals. In addition, melatonin decreased apoptosis through reduced p53 phosphorylation by the PI3K/Akt pathway. In conclusion, we demonstrated the activation profiles of PI3K/Akt signaling pathway components in the pathophysiological aspect of ischemic stroke and melatonin's neuroprotective activity. Our data suggest that Akt phosphorylation, preferably at the Thr308 site of the activation loop via PDK1 and PTEN, mediates melatonin's neuroprotective activity and increased Akt phosphorylation leads to reduced apoptosis. Keywords: PI3K/Akt signaling pathway, PI3K inhibition, Melatonin, Brain injury

  1. Melatonin effects on Plasmodium life cycle: new avenues for therapeutic approach.

    Science.gov (United States)

    Srinivasan, Venkataramanujam; Ahmad, Asma H; Mohamed, Mahaneem; Zakaria, Rahimah

    2012-05-01

    Malaria remains a global health problem affecting more than 515 million people all over the world including Malaysia. It is on the rise, even within unknown regions that previous to this were free of malaria. Although malaria eradication programs carried out by vector control programs are still effective, anti-malarial drugs are also used extensively for curtailing this disease. But resistance to the use of anti-malarial drugs is also increasing on a daily basis. With an increased understanding of mechanisms that cause growth, differentiation and development of malarial parasites in rodents and humans, new avenues of therapeutic approaches for controlling the growth, synchronization and development of malarial parasites are essential. Within this context, the recent discoveries related to IP3 interconnected signalling pathways, the release of Ca2+ from intracellular stores of Plasmodium, ubiquitin protease systems as a signalling pathway, and melatonin influencing the growth and differentiation of malarial parasites by its effects on these signalling pathways have opened new therapeutic avenues for arresting the growth and differentiation of malarial parasites. Indeed, the use of melatonin antagonist, luzindole, has inhibited the melatonin's effect on these signalling pathways and thereby has effectively reduced the growth and differentiation of malarial parasites. As Plasmodium has effective sensors which detect the nocturnal plasma melatonin concentrations, suppression of plasma melatonin levels with the use of bright light during the night or by anti-melatonergic drugs and by using anti-kinase drugs will help in eradicating malaria on a global level. A number of patients have been admitted with regards to the control and management of malarial growth. Patents related to the discovery of serpentine receptors on Plasmodium, essential for modulating intra parasitic melatonin levels, procedures for effective delivery of bright light to suppress plasma melatonin

  2. Expression of melatonin receptors in arteries involved in thermoregulation

    International Nuclear Information System (INIS)

    Viswanathan, M.; Laitinen, J.T.; Saavedra, J.M.

    1990-01-01

    Melatonin binding sites were localized and characterized in the vasculature of the rat by using the melatonin analogue 2-[125I]iodomelatonin (125I-melatonin) and quantitative in vitro autoradiography. The expression of these sites was restricted to the caudal artery and to the arteries that form the circle of Willis at the base of the brain. The arterial 125I-melatonin binding was stable, saturable, and reversible. Saturation studies revealed that the binding represented a single class of high-affinity binding sites with a dissociation constant (Kd) of 3.4 x 10(-11) M in the anterior cerebral artery and 1.05 x 10(-10) M in the caudal artery. The binding capacities (Bmax) in these arteries were 19 and 15 fmol/mg of protein, respectively. The relative order of potency of indoles for inhibition of 125I-melatonin binding at these sites was typical of a melatonin receptor: 2-iodomelatonin greater than melatonin greater than N-acetylserotonin much much greater than 5-hydroxytryptamine. Norepinephrine-induced contraction of the caudal artery in vitro was significantly prolonged and potentiated by melatonin in a concentration-dependent manner, suggesting that these arterial binding sites are functional melatonin receptors. Neither primary steps in smooth muscle contraction (inositol phospholipid hydrolysis) nor relaxation (adenylate cyclase activation) were affected by melatonin. Melatonin, through its action on the tone of these arteries, may cause circulatory adjustments in these arteries, which are believed to be involved in thermoregulation

  3. Melatonin as a radioprotective agent: a review

    International Nuclear Information System (INIS)

    Vijayalaxmi; Reiter, Russel J.; Tan, D.-X.; Herman, Terence S.; Thomas, Charles R.

    2004-01-01

    Melatonin (N-acetyl-5-methoxytryptamine), the chief secretory product of the pineal gland in the brain, is well known for its functional versatility. In hundreds of investigations, melatonin has been documented as a direct free radical scavenger and an indirect antioxidant, as well as an important immunomodulatory agent. The radical scavenging ability of melatonin is believed to work via electron donation to detoxify a variety of reactive oxygen and nitrogen species, including the highly toxic hydroxyl radical. It has long been recognized that the damaging effects of ionizing radiation are brought about by both direct and indirect mechanisms. The direct action produces disruption of sensitive molecules in the cells, whereas the indirect effects (∼70%) result from its interaction with water molecules, which results in the production of highly reactive free radicals such as · OH, · H, and e aq - and their subsequent action on subcellular structures. The hydroxyl radical scavenging ability of melatonin was used as a rationale to determine its radioprotective efficiency. Indeed, the results from many in vitro and in vivo investigations have confirmed that melatonin protects mammalian cells from the toxic effects of ionizing radiation. Furthermore, several clinical reports indicate that melatonin administration, either alone or in combination with traditional radiotherapy, results in a favorable efficacy:toxicity ratio during the treatment of human cancers. This article reviews the literature from laboratory investigations that document the ability of melatonin to scavenge a variety of free radicals (including the hydroxyl radical induced by ionizing radiation) and summarizes the evidence that should be used to design larger translational research-based clinical trials using melatonin as a radioprotector and also in cancer radiotherapy. The potential use of melatonin for protecting individuals from radiation terrorism is also considered

  4. Effects of melatonin on prepulse inhibition, habituation and sensitization of the human startle reflex in healthy volunteers

    DEFF Research Database (Denmark)

    Lehtinen, Emilia K; Ucar, Ebru; Glenthøj, Birte Y

    2014-01-01

    Prepulse inhibition of the startle reflex (PPI) is an operational measure of sensorimotor gating, which is demonstrated to be impaired in patients with schizophrenia. In addition, a disruption of the circadian rhythm together with blunted melatonin secretion is regularly found in patients...... with schizophrenia and it is theorized that these may contribute to their attentional deficits. The aim of this study was to assess the effects of acute melatonin on healthy human sensorimotor gating. Twenty-one healthy male volunteers were administered melatonin or placebo after which their levels of PPI were...... assessed. Melatonin significantly reduced startle magnitude and ratings of alertness, but did not influence PPI, nor sensitization and habituation. However, when taking baseline scores in consideration, melatonin significantly increased PPI in low scoring individuals while significantly decreasing...

  5. Effect of the combination of metformin hydrochloride and melatonin on oxidative stress before and during pregnancy, and biochemical and histopathological analysis of the livers of rats after treatment for polycystic ovary syndrome.

    Science.gov (United States)

    Lemos, Ana Janaina Jeanine M; Peixoto, Christina A; Teixeira, Alvaro Aguiar C; Luna, Rayana Leal A; Rocha, Sura Wanessa S; Santos, Hilda Michelly P; Silva, Amanda Karolina S; Nunes, Ana Karolina S; Wanderley-Teixeira, Valéria

    2014-10-01

    The aim of the present study was to analyze the effect of a combination of metformin hydrochloride and melatonin on oxidative stress together with a biochemical and histopathological analysis of the livers of Wistar rats induced with PCOS. The results indicated that a combination of the drugs was more effective in the reduction of plasmatic levels of liver enzyme alanine aminotransferase, nitric oxide and total glutathione, and decreased the inflammatory response and histopathological damage, producing results that were significantly similar to animals from the control group. A mixture of the drugs produced more effective results against liver toxicity caused by PCOS, encouraging the normalization of biochemical parameters. During pregnancy, there was reduced oxidative stress compared to monotherapeutic use of these drugs. Interestingly, the combination of the drugs caused a physiological reaction similar to responses identified in healthy rats without induction of the PCOS control group. However, the clinical and physiological effectiveness of the combination should be further explored, especially with respect to the possible side effects on offspring. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Melatonin and diabetes: from pathophysiology to the treatment perspectives

    OpenAIRE

    V I Konenkov; V V Klimontov; S V Michurina; M A Prudnikova; I Ju Ishenko

    2013-01-01

    Pineal hormone melatonin synchronizes insulin secretion and glucose homeostasis with solar periods. Misalliance between melatonin- mediated circadian rhythms and insulin secretion characterizes diabetes mellitus type 1 (T1DM) and type 2 (T2DM). Insulin defi- ciency in T1DM is accompanied by increased melatonin production. Conversely, T2DM is characterized by diminished melatonin secretion. In genome-wide association studies the variants of melatonin receptor MT2 gene (rs1387153 and rs10830963...

  7. Melatonin in Antinociception: Its Therapeutic Applications

    OpenAIRE

    Srinivasan, Venkatramanujam; Lauterbach, Edward C; Ho, Khek Yu; Acuña-Castroviejo, Dario; Zakaria, Rahimah; Brzezinski, Amnon

    2012-01-01

    The intensity of pain sensation exhibits marked day and night variations. Since the intensity of pain perception is low during dark hours of the night when melatonin levels are high, this hormone has been implicated as one of the prime antinociceptive substances. A number of studies have examined the antinociceptive role of melatonin in acute, inflammatory and neuropathic pain animal models. It has been demonstrated that melatonin exerts antinociceptive actions by acting at both spinal cord a...

  8. Melatonin Distribution Reveals Clues to Its Biological Significance in Basal Metazoans

    Science.gov (United States)

    Roopin, Modi; Levy, Oren

    2012-01-01

    Although nearly ubiquitous in nature, the precise biological significance of endogenous melatonin is poorly understood in phylogenetically basal taxa. In the present work, we describe insights into the functional role of melatonin at the most “basal” level of metazoan evolution. Hitherto unknown morphological determinants of melatonin distribution were evaluated in Nematostella vectensis by detecting melatonin immunoreactivity and examining the spatial gene expression patterns of putative melatonin biosynthetic and receptor elements that are located at opposing ends of the melatonin signaling pathway. Immuno-melatonin profiling indicated an elaborate interaction with reproductive tissues, reinforcing previous conjectures of a melatonin-responsive component in anthozoan reproduction. In situ hybridization (ISH) to putative melatonin receptor elements highlighted the possibility that the bioregulatory effects of melatonin in anthozoan reproduction may be mediated by interactions with membrane receptors, as in higher vertebrates. Another intriguing finding of the present study pertains to the prevalence of melatonin in centralized nervous structures. This pattern may be of great significance given that it 1) identifies an ancestral association between melatonin and key neuronal components and 2) potentially implies that certain effects of melatonin in basal species may be spread widely by regionalized nerve centers. PMID:23300630

  9. Pharmacokinetics of oral and intravenous melatonin in healthy volunteers

    DEFF Research Database (Denmark)

    Andersen, Lars Peter Holst; Werner, Mads Utke; Rosenkilde, Mette Marie

    2016-01-01

    BACKGROUND: The aim was to investigate the pharmacokinetics of oral and iv melatonin in healthy volunteers. METHODS: The study was performed as a cohort crossover study. The volunteers received either 10 mg oral melatonin or 10 mg intravenous melatonin on two separate study days. Blood samples were...... collected at different time points following oral administration and short iv infusion, respectively. Plasma melatonin concentrations were determined by RIA technique. Pharmacokinetic analyses were performed by "the method of residuals" and compartmental analysis. The pharmacokinetic variables: k a, t 1....../2 absorption, t max, C max, t 1/2 elimination, AUC 0-∞, and bioavailability were determined for oral melatonin. C max, t 1/2 elimination, V d, CL and AUC 0-∞ were determined for intravenous melatonin. RESULTS: Twelve male volunteers completed the study. Baseline melatonin plasma levels did not differ...

  10. Taxon- and Site-Specific Melatonin Catabolism

    Directory of Open Access Journals (Sweden)

    Rüdiger Hardeland

    2017-11-01

    Full Text Available Melatonin is catabolized both enzymatically and nonenzymatically. Nonenzymatic processes mediated by free radicals, singlet oxygen, other reactive intermediates such as HOCl and peroxynitrite, or pseudoenzymatic mechanisms are not species- or tissue-specific, but vary considerably in their extent. Higher rates of nonenzymatic melatonin metabolism can be expected upon UV exposure, e.g., in plants and in the human skin. Additionally, melatonin is more strongly nonenzymatically degraded at sites of inflammation. Typical products are several hydroxylated derivatives of melatonin and N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK. Most of these products are also formed by enzymatic catalysis. Considerable taxon- and site-specific differences are observed in the main enzymatic routes of catabolism. Formation of 6-hydroxymelatonin by cytochrome P450 subforms are prevailing in vertebrates, predominantly in the liver, but also in the brain. In pineal gland and non-mammalian retina, deacetylation to 5-methoxytryptamine (5-MT plays a certain role. This pathway is quantitatively prevalent in dinoflagellates, in which 5-MT induces cyst formation and is further converted to 5-methoxyindole-3-acetic acid, an end product released to the water. In plants, the major route is catalyzed by melatonin 2-hydroxylase, whose product is tautomerized to 3-acetamidoethyl-3-hydroxy-5-methoxyindolin-2-one (AMIO, which exceeds the levels of melatonin. Formation and properties of various secondary products are discussed.

  11. Reducible oxide based catalysts

    Science.gov (United States)

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  12. Melatonin Inhibits Embryonic Salivary Gland Branching Morphogenesis by Regulating Both Epithelial Cell Adhesion and Morphology

    Science.gov (United States)

    Miura, Jiro; Sakai, Manabu; Uchida, Hitoshi; Nakamura, Wataru; Nohara, Kanji; Maruyama, Yusuke; Hattori, Atsuhiko; Sakai, Takayoshi

    2015-01-01

    Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or “brake” of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development. PMID:25876057

  13. Clinical significance of melatonin receptors in the human myometrium.

    Science.gov (United States)

    Olcese, James; Beesley, Stephen

    2014-08-01

    To review and update the research on melatonin receptor expression in the human myometrium, in particular as it pertains to uterine contractility at labor. Summary of previous studies with the addition of new data on the transcriptional regulation of melatonin receptor expression in human myometrial cells. Not applicable. Late-term pregnant volunteers. Biopsy collection for in vitro analyses provided the original data. More recently, uterine contractions in late-term pregnant volunteers were assessed before, during, and after acute white-light exposure. Melatonin receptor signaling in myometrial cells and uterine contractions in late-term pregnant volunteers. Melatonin acts through the MTNR1B melatonin receptor that is expressed in the myometrium at late term to synergistically enhance oxytocin-dependent signaling and contractions. Acute inhibition of endogenous melatonin levels with light reversibly suppresses uterine contractions. These results point to a significant role for circulating melatonin in the timing and degree of uterine contractions in late-term pregnancy. Understanding the regulation of melatonin receptors remains a future objective. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Melatonin acts through MT1/MT2 receptors to activate hypothalamic Akt and suppress hepatic gluconeogenesis in rats.

    Science.gov (United States)

    Faria, Juliana A; Kinote, Andrezza; Ignacio-Souza, Letícia M; de Araújo, Thiago M; Razolli, Daniela S; Doneda, Diego L; Paschoal, Lívia B; Lellis-Santos, Camilo; Bertolini, Gisele L; Velloso, Lício A; Bordin, Silvana; Anhê, Gabriel F

    2013-07-15

    Melatonin can contribute to glucose homeostasis either by decreasing gluconeogenesis or by counteracting insulin resistance in distinct models of obesity. However, the precise mechanism through which melatonin controls glucose homeostasis is not completely understood. Male Wistar rats were administered an intracerebroventricular (icv) injection of melatonin and one of following: an icv injection of a phosphatidylinositol 3-kinase (PI3K) inhibitor, an icv injection of a melatonin receptor (MT) antagonist, or an intraperitoneal (ip) injection of a muscarinic receptor antagonist. Anesthetized rats were subjected to pyruvate tolerance test to estimate in vivo glucose clearance after pyruvate load and in situ liver perfusion to assess hepatic gluconeogenesis. The hypothalamus was removed to determine Akt phosphorylation. Melatonin injections in the central nervous system suppressed hepatic gluconeogenesis and increased hypothalamic Akt phosphorylation. These effects of melatonin were suppressed either by icv injections of PI3K inhibitors and MT antagonists and by ip injection of a muscarinic receptor antagonist. We conclude that melatonin activates hypothalamus-liver communication that may contribute to circadian adjustments of gluconeogenesis. These data further suggest a physiopathological relationship between the circadian disruptions in metabolism and reduced levels of melatonin found in type 2 diabetes patients.

  15. Melatonin Activates Endoplasmic Reticulum Stress and Apoptosis in Rats with Diethylnitrosamine-Induced Hepatocarcinogenesis.

    Directory of Open Access Journals (Sweden)

    Andrea Janz Moreira

    Full Text Available Hepatocellular carcinoma (HCC is one of the most lethal human cancers worldwide because of its high incidence, its metastatic potential and the low efficacy of conventional treatment. Inactivation of apoptosis is implicated in tumour progression and chemotherapy resistance, and has been linked to the presence of endoplasmic reticulum stress. Melatonin, the main product of the pineal gland, exerts anti-proliferative, pro-apoptotic and anti-angiogenic effects in HCC cells, but these effects still need to be confirmed in animal models. Male Wistar rats in treatment groups received diethylnitrosamine (DEN 50 mg/kg intraperitoneally twice/once a week for 18 weeks. Melatonin was given in drinking water at 1 mg/kg/d, beginning 5 or 12 weeks after the start of DEN administration. Melatonin improved survival rates and successfully attenuated liver injury, as shown by histopathology, decreased levels of serum transaminases and reduced expression of placental glutathione S-transferase. Furthermore, melatonin treatment resulted in a significant increase of caspase 3, 8 and 9 activities, polyadenosine diphosphate (ADP ribose polymerase (PARP cleavage, and Bcl-associated X protein (Bax/Bcl-2 ratio. Cytochrome c, p53 and Fas-L protein concentration were also significantly enhanced by melatonin. Melatonin induced an increased expression of activating transcription factor 6 (ATF6, C/EBP-homologous protein (CHOP and immunoglobulin heavy chain-binding protein (BiP, while cyclooxygenase (COX-2 expression decreased. Data obtained suggest that induction of apoptosis and ER stress contribute to the beneficial effects of melatonin in rats with DEN-induced HCC.

  16. Melatonin, Light and Circadian Cycles

    Science.gov (United States)

    1989-12-25

    Neurosci Abstr 14:848. Fanget, F., Claustrat, B., Dalery, J., Brun, J., Terra , J-L, Marie-Cardine, M., and Guyotot, J. (1989) Nocturnal plasma melatonin...5- methoxytryptamine, a novel melatonin antagonist: effects on sexual matura - tion of the male and female rat and on uestrous cycles of the female rat

  17. Treatment of porcine donor cells and reconstructed embryos with the antioxidant melatonin enhances cloning efficiency.

    Science.gov (United States)

    Pang, Yun-Wei; An, Lei; Wang, Peng; Yu, Yong; Yin, Qiu-Dan; Wang, Xiao-Hong; Xin-Zhang; Qian-Zhang; Yang, Mei-Ling; Min-Guo; Wu, Zhong-Hong; Tian, Jian-Hui

    2013-05-01

    This study was conducted to investigate the effect of melatonin during the culture of donor cells and cloned embryos on the in vitro developmental competence and quality of cloned porcine embryos. At concentrations of 10(-6 )M or 10(-8) M, melatonin significantly enhanced the proliferation of porcine fetal fibroblasts (PFFs), and the blastocyst rate was significantly increased in the 10(-10) M melatonin-treated donor cell group. Cloned embryo development was also improved in embryo culture medium that was supplemented with 10(-9) M or 10(-12) M melatonin. When both donor cells and cloned embryos were treated with melatonin, the cleavage rate and total cell number of blastocysts were not significantly affected; however, the blastocyst rate was increased significantly (20.0% versus 11.7%). TUNEL assays showed that combined melatonin treatment reduced the rate of apoptotic nuclei (3.6% versus 6.1%). Gene expression analysis of the apoptosis-related genes BAX, BCL2L1, and p53 showed that the expression of BCL2L1 was significantly elevated 2.7-fold relative to the control group, while the expression of BAX and p53 was significantly decreased by 3.7-fold and 23.2-fold, respectively. In addition, we detected the expression of two melatonin receptors (MT1 and MT2) in PFFs but not in porcine cloned embryos. We conclude that exogenous melatonin enhances the development of porcine cloned embryos and improves embryo quality by inhibiting p53-mediated apoptotic pathway. The proliferation of PFFs may be mediated by receptor binding, but the beneficial effects of melatonin on embryonic development may be receptor-independent, possibly through melatonin's ability to directly scavenge free radicals. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  18. Developmental Programming of Adult Disease: Reprogramming by Melatonin?

    Directory of Open Access Journals (Sweden)

    You-Lin Tain

    2017-02-01

    Full Text Available Adult-onset chronic non-communicable diseases (NCDs can originate from early life through so-called the “developmental origins of health and disease” (DOHaD or “developmental programming”. The DOHaD concept offers the “reprogramming” strategy to shift the treatment from adulthood to early life, before clinical disease is apparent. Melatonin, an endogenous indoleamine produced by the pineal gland, has pleiotropic bioactivities those are beneficial in a variety of human diseases. Emerging evidence support that melatonin is closely inter-related to other proposed mechanisms contributing to the developmental programming of a variety of chronic NCDs. Recent animal studies have begun to unravel the multifunctional roles of melatonin in many experimental models of developmental programming. Even though some progress has been made in research on melatonin as a reprogramming strategy to prevent DOHaD-related NCDs, future human studies should aim at filling the translational gap between animal models and clinical trials. Here, we review several key themes on the reprogramming effects of melatonin in DOHaD research. We have particularly focused on the following areas: mechanisms of developmental programming; the interrelationship between melatonin and mechanisms underlying developmental programming; pathophysiological roles of melatonin in pregnancy and fetal development; and insight provided by animal models to support melatonin as a reprogramming therapy. Rates of NCDs are increasing faster than anticipated all over the world. Hence, there is an urgent need to understand reprogramming mechanisms of melatonin and to translate experimental research into clinical practice for halting a growing list of DOHaD-related NCDs.

  19. Developmental Programming of Adult Disease: Reprogramming by Melatonin?

    Science.gov (United States)

    Tain, You-Lin; Huang, Li-Tung; Hsu, Chien-Ning

    2017-02-16

    Adult-onset chronic non-communicable diseases (NCDs) can originate from early life through so-called the "developmental origins of health and disease" (DOHaD) or "developmental programming". The DOHaD concept offers the "reprogramming" strategy to shift the treatment from adulthood to early life, before clinical disease is apparent. Melatonin, an endogenous indoleamine produced by the pineal gland, has pleiotropic bioactivities those are beneficial in a variety of human diseases. Emerging evidence support that melatonin is closely inter-related to other proposed mechanisms contributing to the developmental programming of a variety of chronic NCDs. Recent animal studies have begun to unravel the multifunctional roles of melatonin in many experimental models of developmental programming. Even though some progress has been made in research on melatonin as a reprogramming strategy to prevent DOHaD-related NCDs, future human studies should aim at filling the translational gap between animal models and clinical trials. Here, we review several key themes on the reprogramming effects of melatonin in DOHaD research. We have particularly focused on the following areas: mechanisms of developmental programming; the interrelationship between melatonin and mechanisms underlying developmental programming; pathophysiological roles of melatonin in pregnancy and fetal development; and insight provided by animal models to support melatonin as a reprogramming therapy. Rates of NCDs are increasing faster than anticipated all over the world. Hence, there is an urgent need to understand reprogramming mechanisms of melatonin and to translate experimental research into clinical practice for halting a growing list of DOHaD-related NCDs.

  20. Melatonin Promotes Superovulation in Sika Deer (Cervus nippon

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2014-07-01

    Full Text Available In this study, the effects of melatonin (MT on superovulation and reproductive hormones (melatonin, follicle-stimulating hormone (FSH, luteinizing hormone (LH and PRL were investigated in female sika deer. Different doses (40 or 80 mg/animal of melatonin were subcutaneously implanted into deer before the breeding season. Exogenous melatonin administration significantly elevated the serum FSH levels at the time of insemination compared with levels in control animals. During superovulation, the serum LH levels in donor sika deer reached their highest values (7.1 ± 2.04 ng/mL at the point of insemination, compared with the baseline levels (4.98 ± 0.07 ng/mL in control animals. This high level of LH was sustained until the day of embryo recovery. In contrast, the serum levels of PRL in the 80 mg of melatonin-treated group were significantly lower than those of control deer. The average number of corpora lutea in melatonin-treated deer was significantly higher than that of the control (p < 0.05. The average number of embryos in the deer treated with 40 mg of melatonin was higher than that of the control; however, this increase did not reach significant difference (p > 0.05, which may be related to the relatively small sample size. In addition, embryonic development in melatonin-treated groups was delayed.

  1. Melatonin and LH secretion patterns in pubertal boys

    International Nuclear Information System (INIS)

    Fevre, M.; Boyar, R.M.; Rollag, M.D.

    1979-01-01

    Plasma melatonin and LH were measured at 20 minute intervals for 24 hours in four normal pubertal boys. All four subjects showed a significant augmentation of LH and melatonin during nocturnal sleep. There was also a significant correlation between the LH and melatonin levels (p [fr

  2. Melatonin delays clutch initiation in a wild songbird

    Science.gov (United States)

    Greives, Timothy J.; Kingma, Sjouke A.; Beltrami, Giulia; Hau, Michaela

    2012-01-01

    The hormone melatonin is known to play an important role in regulating many seasonal changes in physiology, morphology and behaviour. In birds, unlike in mammals, melatonin has thus far been thought to play little role in timing seasonal reproductive processes. This view is mainly derived from laboratory experiments on male birds. This study tests whether melatonin is capable of influencing the timing of clutch initiation in wild female songbirds. Free-living female great tits (Parus major) treated with melatonin-filled implants prior to the breeding season initiated their first clutch of the season significantly later than females carrying an empty implant. Melatonin treatment did not affect clutch size. Further, melatonin treatment did not delay the onset of daily activity in the wild nor adversely affect body mass in captivity compared with controls. These data suggest a previously unknown role for this hormone in regulating the timing of clutch initiation in the wild. PMID:22171024

  3. Melatonin and mitochondrial function during ischemia/reperfusion injury.

    Science.gov (United States)

    Ma, Zhiqiang; Xin, Zhenlong; Di, Wencheng; Yan, Xiaolong; Li, Xiaofei; Reiter, Russel J; Yang, Yang

    2017-11-01

    Ischemia/reperfusion (IR) injury occurs in many organs and tissues, and contributes to morbidity and mortality worldwide. Melatonin, an endogenously produced indolamine, provides a strong defense against IR injury. Mitochondrion, an organelle for ATP production and a decider for cell fate, has been validated to be a crucial target for melatonin to exert its protection against IR injury. In this review, we first clarify the mechanisms underlying mitochondrial dysfunction during IR and melatonin's protection of mitochondria under this condition. Thereafter, special focus is placed on the protective actions of melatonin against IR injury in brain, heart, liver, and others. Finally, we explore several potential future directions of research in this area. Collectively, the information compiled here will serve as a comprehensive reference for the actions of melatonin in IR injury identified to date and will hopefully aid in the design of future research and increase the potential of melatonin as a therapeutic agent.

  4. Melatonin membrane receptors in peripheral tissues: Distribution and functions

    Science.gov (United States)

    Slominski, Radomir M.; Reiter, Russel J.; Schlabritz-Loutsevitch, Natalia; Ostrom, Rennolds S.; Slominski, Andrzej T.

    2012-01-01

    Many of melatonin’s actions are mediated through interaction with the G-protein coupled membrane bound melatonin receptors type 1 and type 2 (MT1 and MT2, respectively) or, indirectly with nuclear orphan receptors from the RORα/RZR family. Melatonin also binds to the quinone reductase II enzyme, previously defined the MT3 receptor. Melatonin receptors are widely distributed in the body; herein we summarize their expression and actions in non-neural tissues. Several controversies still exist regarding, for example, whether melatonin binds the RORα/RZR family. Studies of the peripheral distribution of melatonin receptors are important since they are attractive targets for immunomodulation, regulation of endocrine, reproductive and cardiovascular functions, modulation of skin pigmentation, hair growth, cancerogenesis, and aging. Melatonin receptor agonists and antagonists have an exciting future since they could define multiple mechanisms by which melatonin modulates the complexity of such a wide variety of physiological and pathological processes. PMID:22245784

  5. Clinical uses of melatonin: evaluation of human trials.

    Science.gov (United States)

    Sánchez-Barceló, E J; Mediavilla, M D; Tan, D X; Reiter, R J

    2010-01-01

    During the last 20 years, numerous clinical trials have examined the therapeutic usefulness of melatonin in different fields of medicine. The objective of this article is to review, in depth, the science regarding clinical trials performed to date. The efficacy of melatonin has been assessed as a treatment of ocular diseases, blood diseases, gastrointestinal tract diseases, cardiovascular diseases, diabetes, rheumatoid arthritis, fibromyalgia, chronic fatigue syndrome, infectious diseases, neurological diseases, sleep disturbances, aging and depression. Melatonin has been also used as a complementary treatment in anaesthesia, hemodialysis, in vitro fertilization and neonatal care. The conclusion of the current review is that the use of melatonin as an adjuvant therapy seems to be well funded for macular degeneration, glaucoma, protection of the gastric mucosa, irritable bowel syndrome, arterial hypertension, diabetes, side effects of chemotherapy and radiation in cancer patients or hemodialysis in patients with renal insufficiency and, especially, for sleep disorders of circadian etiology (jet lag, delayed sleep phase syndrome, sleep deterioration associated with aging, etc.) as well as in those related with neurological degenerative diseases (Alzheimer, etc.,) or Smith-Magenis syndrome. The utility of melatonin in anesthetic procedures has been also confirmed. More clinical studies are required to clarify whether, as the preliminary data suggest, melatonin is useful for treatment of fibromyalgia, chronic fatigue syndrome, infectious diseases, neoplasias or neonatal care. Preliminary data regarding the utility of melatonin in the treatment of ulcerative colitis, Crohn's disease, rheumatoid arthritis are either ambiguous or negative. Although in a few cases melatonin seems to aggravate some conditions, the vast majority of studies document the very low toxicity of melatonin over a wide range of doses.

  6. Enhanced electrogenerated chemiluminescence of Ru(bpy){sub 3}{sup 2+}/TPrA (bpy=2,2'-bipyridine; TPrA=tri-n-propylamine) via oxygen quenching using melatonin

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Maria D.; Roughton, Sarah; Isakson, Timothy J.; Richter, Mark M., E-mail: markrichter@missouristate.edu

    2016-03-15

    The effect on the electrogenerated chemiluminescence (ECL) of the Ru(bpy){sub 3}{sup 2+}/TPrA (bpy=2,2'-bipyridine; TPra=tri-n-propylamine) system when melatonin (N-acetyl-5-methoxytryptamine; MLT) and structurally related compounds (e.g., D- and L-Tryptophan (TRY), 7-Azatryptophan (7-AZA) and Serotonin (SER)) are present in aqueous buffered solution is reported. MLT, D- and L-TRY, SER and 7-AZA display weak intrinsic ECL when TPrA is used as an oxidative–reductive coreactant. However, micromolar concentrations of melatonin result in up to 2.5-fold enhancement of Ru(bpy){sub 3}{sup 2+}/TPrA ECL while the other analytes attenuate ECL between 2- and 1000-fold. Photoluminescence (PL) emission efficiencies do not change in the presence of melatonin unless the melatonin solution has undergone electrochemical bulk oxidation, at which point PL and ECL are nearly indistinguishable. Spectroscopic, electrochemical and spectroelectrochemical studies indicate that the mechanism involves oxygen scavenging by melatonin oxidation products. This scavenging prevents the quenching of the {sup *}Ru(bpy){sub 3}{sup 2+} excited states by dissolved oxygen in solution. Melatonin can be coupled with 30% by volume 2,2,2-trifluorethanol (TFE) or with the nonionic surfactant Triton X-100 (polyethylene glycol tert-octylphenyl ether) for even greater enhancement of Ru(bpy){sub 3}{sup 2+}/TPrA ECL.

  7. Melatonin and Pancreatic Islets: Interrelationships between Melatonin, Insulin and Glucagon

    Science.gov (United States)

    Peschke, Elmar; Bähr, Ina; Mühlbauer, Eckhard

    2013-01-01

    The pineal hormone melatonin exerts its influence in the periphery through activation of two specific trans-membrane receptors: MT1 and MT2. Both isoforms are expressed in the islet of Langerhans and are involved in the modulation of insulin secretion from β-cells and in glucagon secretion from α-cells. De-synchrony of receptor signaling may lead to the development of type 2 diabetes. This notion has recently been supported by genome-wide association studies identifying particularly the MT2 as a risk factor for this rapidly spreading metabolic disturbance. Since melatonin is secreted in a clearly diurnal fashion, it is safe to assume that it also has a diurnal impact on the blood-glucose-regulating function of the islet. This factor has hitherto been underestimated; the disruption of diurnal signaling within the islet may be one of the most important mechanisms leading to metabolic disturbances. The study of melatonin–insulin interactions in diabetic rat models has revealed an inverse relationship: an increase in melatonin levels leads to a down-regulation of insulin secretion and vice versa. Elucidation of the possible inverse interrelationship in man may open new avenues in the therapy of diabetes. PMID:23535335

  8. Increased melatonin in oral mucosal tissue of oral lichen planus (OLP) patients: A possible link between melatonin and its role in oral mucosal inflammation.

    Science.gov (United States)

    Luengtrakoon, Kirawut; Wannakasemsuk, Worraned; Vichitrananda, Vilasinee; Klanrit, Poramaporn; Hormdee, Doosadee; Noisombut, Rajda; Chaiyarit, Ponlatham

    2017-06-01

    The existence of extra-pineal melatonin has been observed in various tissues. No prior studies of melatonin in human oral mucosal tissue under the condition of chronic inflammation have been reported. The aim of this study was to investigate the presence of melatonin in oral mucosal tissue of patients with oral lichen planus (OLP) which was considered as a chronic inflammatory immune-mediated disease causing oral mucosal damage and ulcerations. Sections from formalin-fixed and paraffin-embedded oral mucosal tissue of OLP patients (n=30), and control subjects (n=30) were used in this study. Immunohistochemical staining was performed and the semiquantitative scoring system was used to assess the levels of arylalkylamine-N-acetyltransferase (AANAT: a rate-limiting enzyme in the biosynthesis pathway of melatonin), melatonin, and melatonin receptor 1 (MT1) in oral mucosa of OLP patients and normal oral mucosa of control subjects. AANAT, melatonin, and MT1were detected in oral mucosal tissue of OLP patients and control subjects. Immunostaining scores of AANAT, melatonin, and MT1 in oral mucosal tissue of OLP patients were significantly higher than those in control subjects (p=0.002, poral mucosal tissue of OLP patients imply that chronic inflammation may induce the local biosynthesis of melatonin via AANAT, and may enhance the action of melatonin via MT1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Melatonin ve Klinik Önemi

    OpenAIRE

    Fehmi, Özgüner; Özcankaya, Ramazan; Delibaş, Namık; Koyu, Ahmet; Çalışkan, Sadettin

    2009-01-01

    SüleymanDemirel Üniversitesi TIP FAKÜLTESİ DERGİSİ: 1995 Aralık; 2(4) Melatonin ve Klinik Önemi Fehmi Özgüner Ramazan Özcankaya Namık Delibaş Ahmet Koyu Sadettin Çalışkan . Özet Melatonin karanlık periyotta sentezlenir ve salınır, ayrıca karanlığın süresi hakkındaki bilginin değerlendirilmesine aracılık eder. Melatonin sirkadiyan ritmi, gençlerde oldukça düzenlidir, yaşlılıkta sıklıkla siklus bozulma gösterir ve bir hipomelatoninemi sendromu ola...

  10. Topical melatonin for treatment of androgenetic alopecia.

    Science.gov (United States)

    Fischer, Tobias W; Trüeb, Ralph M; Hänggi, Gabriella; Innocenti, Marcello; Elsner, Peter

    2012-10-01

    In the search for alternative agents to oral finasteride and topical minoxidil for the treatment of androgenetic alopecia (AGA), melatonin, a potent antioxidant and growth modulator, was identified as a promising candidate based on in vitro and in vivo studies. One pharmacodynamic study on topical application of melatonin and four clinical pre-post studies were performed in patients with androgenetic alopecia or general hair loss and evaluated by standardised questionnaires, TrichoScan, 60-second hair count test and hair pull test. FIVE CLINICAL STUDIES SHOWED POSITIVE EFFECTS OF A TOPICAL MELATONIN SOLUTION IN THE TREATMENT OF AGA IN MEN AND WOMEN WHILE SHOWING GOOD TOLERABILITY: (1) Pharmacodynamics under once-daily topical application in the evening showed no significant influence on endogenous serum melatonin levels. (2) An observational study involving 30 men and women showed a significant reduction in the degree of severity of alopecia after 30 and 90 days (P melatonin solution can be considered as a treatment option in androgenetic alopecia.

  11. Protective effect of melatonin on thrombocytopoiesis in irratiated mice

    International Nuclear Information System (INIS)

    Liu Aiguo; Hu Qun; Yang Mo; Li Zhiguang; Huang Weizhe; Pang Yaxuan; Li Guixia; Wu Baixiang; Huo Taihui

    2005-01-01

    Objective: To study the protective effect of melatonin on thrombocytopoiesis (T) and its mechanism in total-bodily irradiated mice. Methods: Altogether 18 female BALB/c mice were randomly divided into three experimental groups (6 each): Group 1(normal control, N) received neither irradiation nor melatonin; Group 2 (model control, C); received total body-irradiation for 4 Gy gamma-rays and Group 3 (melatonin, M), received melatonin after irradiation at the dosage of 10 mg·kg -1 ·d -1 via i. p. injection in consecutive 21 days. In Group C normal saline instead of melatonin was administered in the same way as above. Peripheral blood platelets and white blood cells (WBC) were analyzed for the three groups on day 0, day 7, day 14, and day 21. All the mice were sacrificed to collect bone marrow cells for the assays of colony-forming unit-megakaryocyte (CFU-MK) and of colony-forming unit-fibroblast (CFU-F). The effects of melatonin of different concentrations (0-500 nmol/L) on CFU-MK formation were observed in vitro. Results: The results showed that melatonin enhanced the recovery of T. Moreover, melatonin also promoted the increase of CFU-F (28 ± 10.4 vs 14.6 ± 2.8) and CFU-MK (19.63 ± 3.28 vs 11 ± 2.24) in vivo. The amount of CFU-MK in vitro was dependent on the concentration of melatonin. Compared with the control group, the size of CFU-MK in Group M was much larger and MK cells were more mature, especially when the melatonin concentration was 200 nmol/L. Conclusion: Melatonin provides protective effect on T in irradiated mice. It enhances T in vivo and promotes the growth of bone marrow stromal cells as well as megakaryocytes in vitro. Therefore, we speculate that the T-protective activity of melatonin may be mediated via promoting growth of the progenitors of platelet, megakaryocytes, and bone marrow stromal cells. (authors)

  12. Effects of melatonin on prenatal dexamethasone-induced epigenetic alterations in hippocampal morphology and reelin and glutamic acid decarboxylase 67 levels.

    Science.gov (United States)

    Lui, Chun-Chung; Hsu, Mei-Hsin; Kuo, Ho-Chang; Chen, Chih-Cheng; Sheen, Jiunn-Ming; Yu, Hong-Ren; Tiao, Mao-Meng; Tain, You-Lin; Chang, Kow-Aung; Huang, Li-Tung

    2015-01-01

    Prenatal glucocorticoid exposure causes brain damage in adult offspring; however, the underlying mechanisms remain unclear. Melatonin has been shown to have beneficial effects in compromised pregnancies. Pregnant Sprague-Dawley rats were administered vehicle (VEH) or dexamethasone between gestation days 14 and 21. The programming effects of prenatal dexamethasone exposure on the brain were assessed at postnatal days (PND) 7, 42, and ∼120. Melatonin was administered from PND21 to the rats exposed to dexamethasone, and the outcome was assessed at ∼PND120. In total, there were four groups: VEH, vehicle plus melatonin (VEHM), prenatal dexamethasone-exposure (DEX), and prenatal dexamethasone exposure plus melatonin (DEXM). Spatial memory, gross hippocampal morphology, and hippocampal biochemistry were examined. Spatial memory assessed by the Morris water maze showed no significant differences among the four groups. Brain magnetic resonance imaging showed that all rats with prenatal dexamethasone exposure (DEX + DEXM) exhibited increased T2-weighted signals in the hippocampus. There were no significant differences in the levels of mRNA expression of hippocampal reln, which encodes reelin, and GAD1, which encodes glutamic acid decarboxylase 67, at PND7. At both PND42 and ∼PND120, reln and GAD1 mRNA expression levels were decreased. At ∼PND120, melatonin restored the reduced levels of hippocampal reln and GAD1 mRNA expression in the DEXM group. In addition, melatonin restored the reln mRNA expression levels by (1) reducing DNA methyltransferase 1 (DNMT1) mRNA expression and (2) reducing the binding of DNMT1 and the methyl-CpG binding protein 2 (MeCP2) to the reln promoter. The present study showed that prenatal dexamethasone exposure induced gross alterations in hippocampal morphology and reduced the levels of hippocampal mRNA expression of reln and GAD1. Spatial memory was unimpaired. Thus, melatonin had a beneficial effect in restoring hippocampal reln m

  13. High-fat diet-induced plasma protein and liver changes in obese rats can be attenuated by melatonin supplementation.

    Science.gov (United States)

    Wongchitrat, Prapimpun; Klosen, Paul; Pannengpetch, Supitcha; Kitidee, Kuntida; Govitrapong, Piyarat; Isarankura-Na-Ayudhya, Chartchalerm

    2017-06-01

    Obesity triggers changes in protein expression in various organs that might participate in the pathogenesis of obesity. Melatonin has been reported to prevent or attenuate such pathological protein changes in several chronic diseases. However, such melatonin effects on plasma proteins have not yet been studied in an obesity model. Using a proteomic approach, we investigated the effect of melatonin on plasma protein profiles after rats were fed a high-fat diet (HFD) to induce obesity. We hypothesized that melatonin would attenuate abnormal protein expression in obese rats. After 10weeks of the HFD, animals displayed increased body weight and fat accumulation as well as increased glucose levels, indicating an obesity-induced prediabetes mellitus-like state. Two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry revealed 12 proteins whose expression was altered in response to the HFD and the melatonin treatment. The altered proteins are related to the development of liver pathology, such as cirrhosis (α1-antiproteinase), thrombosis (fibrinogen, plasminogen), and inflammation (mannose-binding protein A, complement C4, complement factor B), contributing to liver steatosis or hepatic cell death. Melatonin treatment most probably reduced the severity of the HFD-induced obesity by reducing the amplitude of HFD-induced plasma protein changes. In conclusion, we identified several potential biomarkers associated with the progression of obesity and its complications, such as liver damage. Furthermore, our findings reveal melatonin's beneficial effect of attenuating plasma protein changes and liver pathogenesis in obese rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Pharmacokinetics of high-dose intravenous melatonin in humans

    DEFF Research Database (Denmark)

    Andersen, Lars P H; Werner, Mads U; Rosenkilde, Mette Marie

    2016-01-01

    This crossover study investigated the pharmacokinetics and adverse effects of high-dose intravenous melatonin. Volunteers participated in 3 identical study sessions, receiving an intravenous bolus of 10 mg melatonin, 100 mg melatonin, and placebo. Blood samples were collected at baseline and 0, 60......, 120, 180, 240, 300, 360, and 420 minutes after the bolus. Quantitative determination of plasma melatonin concentrations was performed using a radioimmunoassay technique. Pharmacokinetic parameters were estimated by a compartmental pharmacokinetic analysis. Adverse effects included assessments...... of sedation and registration of other symptoms. Sedation, evaluated as simple reaction times, was measured at baseline and 120, 180, 300, and 420 minutes after the bolus. Twelve male volunteers completed the study. Median (IQR) Cmax after the bolus injections of 10 mg and 100 mg of melatonin were 221...

  15. Protective effects of melatonin against metabolic and reproductive disturbances in polycystic ovary syndrome in rats.

    Science.gov (United States)

    Pai, Sarayu A; Majumdar, Anuradha S

    2014-12-01

    This study was undertaken to study the effects of melatonin on metabolic and reproductive aspects of polycystic ovary syndrome (PCOS) in rats. PCOS was induced by daily subcutaneous administration of testosterone (20 mg/kg) to 21-day-old female rats for 35 days. Rats were given metformin (500 mg/kg), melatonin (1 mg/kg) or melatonin (2 mg/kg) along with testosterone. One group served as vehicle control. On the 36th day, the animals were euthanised, and anthropometrical, biochemical (glucose, insulin, lipids, testosterone, C reactive protein (CRP)), oral glucose tolerance test, and histopathological evaluation of ovaries, uterus and intraabdominal fat (IAF), were carried out. Daily colpocytological examination was carried out from 14(th) day of study until termination. Both the doses of melatonin significantly reduced body weight, body mass index, IAF, insulin and CRP. A favourable lipid profile, normal glucose tolerance and a decrease in the percentage of estrus smears were observed. Histopathological examination of ovary, uterus and IAF revealed a decrease in the number of cystic follicles, decrease in neoplastic endometrial glands, and decrease in adipocyte hypertrophy, respectively. The effects observed with melatonin were comparable to that with metformin. The study provides evidence of the potential beneficial effects of melatonin in PCOS. © 2014 Royal Pharmaceutical Society.

  16. Role of melatonin in embryo fetal development

    OpenAIRE

    Voiculescu, SE; Zygouropoulos, N; Zahiu, CD; Zagrean, AM

    2014-01-01

    Melatonin is an indoleamine produced by the pineal gland and secreted in a circadian manner. In the past few decades, research over this topic has been enhanced. Melatonin has many important roles in the human physiology: regulator of the circadian rhythms, sleep inducer, antioxidant, anticarcinogenic. This paper reviews the involvement of melatonin in embryo fetal development. The pineal gland develops completely postpartum, so both the embryo and the fetus are dependent on the maternal mela...

  17. Afternoon serum-melatonin in sleep disordered breathing.

    Science.gov (United States)

    Ulfberg, J; Micic, S; Strøm, J

    1998-08-01

    To study afternoon serum-melatonin values in patients with sleep disordered breathing. Melatonin has a strong circadian rhythm with high values during the night-time and low values in the afternoon. Sleep disordered breathing may change the circadian rhythm of melatonin which may have diagnostic implications. The Sleep Laboratory, The Department of Internal Medicine, Avesta Hospital, Sweden, and the Department of Anaesthesiology, Glostrup University Hospital, Copenhagen, Denmark. We examined 60 consecutive patients admitted for sleep disordered breathing and 10 healthy non snoring controls. The patients underwent a sleep apnoea screening test having a specificity of 100% for the obstructive sleep apnoea syndrome (OSAS) using a combination of static charge sensitive bed and oximetry. Obstructive sleep apnoea syndrome was found in 49 patients, eight patients had borderline sleep disordered breathing (BSDB) and three patients were excluded due to interfering disease. Patients and controls had an afternoon determination of serum-melatonin. The Epworth Sleepiness Scale was used to score day-time sleepiness. In comparison with normal controls patients suffering from OSAS had significantly higher serum-melatonin levels in the afternoon. However, as a diagnostic test for OSAS in patients with sleep disordered breathing serum-melatonin showed a low sensitivity but a high specificity. The results indicate that breathing disorders during sleep in general affect pineal function. Sleep disordered breathing seems to disturb pineal function. Determination of afternoon serum-melatonin alone or together with a scoring of daytime sleepiness does not identify OSAS-patients in a heterogeneous population of patients complaining of heavy snoring and excessive daytime sleepiness.

  18. Exogenous melatonin administration modifies cutaneous vasoconstrictor response to whole body skin cooling in humans.

    Science.gov (United States)

    Aoki, Ken; Zhao, Kun; Yamazaki, Fumio; Sone, Ryoko; Alvarez, Guy E; Kosiba, Wojciech A; Johnson, John M

    2008-03-01

    Humans and other diurnal species experience a fall in internal temperature (T(int)) at night, accompanied by increased melatonin and altered thermoregulatory control of skin blood flow (SkBF). Also, exogenous melatonin induces a fall in T(int), an increase in distal skin temperatures and altered control of the cutaneous active vasodilator system, suggesting an effect of melatonin on the control of SkBF. To test whether exogenous melatonin also affects the more tonically active vasoconstrictor system in glabrous and nonglabrous skin during cooling, healthy males (n = 9) underwent afternoon sessions of whole body skin temperature (T(sk)) cooling (water-perfused suits) after oral melatonin (Mel; 3 mg) or placebo (Cont). Cutaneous vascular conductance (CVC) was calculated from SkBF (laser Doppler flowmetry) and non-invasive blood pressure. Baseline T(int) was lower in Mel than in Cont (P forearm CVC was first significantly reduced at T(sk) of 34.33 +/- 0.01 degrees C (P forearm CVC in Mel was significantly less than in Cont at T(sk) of 32.66 +/- 0.01 degrees C and lower (P < 0.05). In Mel, palmar CVC was significantly higher than in Cont above T(sk) of 33.33 +/- 0.01 degrees C, but not below. Thus exogenous melatonin blunts reflex vasoconstriction in nonglabrous skin and shifts vasoconstrictor system control to lower T(int). It provokes vasodilation in glabrous skin but does not suppress the sensitivity to falling T(sk). These findings suggest that by affecting the vasoconstrictor system, melatonin has a causal role in the nocturnal changes in body temperature and its control.

  19. The Effect of Antioxidant Melatonin on Mice Sensorimotor Gyri Following Induction of Brain Edema

    Directory of Open Access Journals (Sweden)

    Narges Jan-Zadeh

    2007-04-01

    Full Text Available Objective: Many factors can have a neuroprotective role after brain damage. The neuroprotective Effect of melatonin as a highly potent antioxidant and a free radical scavenger is well known. The purpose of this study was to investigate the effect of such melatonin on mice sensorimotorcortex after cold injury. Materials & Methods: In order to test such this objective, melatonin was injected intraperitoneally in 1,5,50 and 100 mg/kg to the mice (prepared by cortical cold injury induced brain lesion at the parietal lobe within three intervals (0.5 h before injury, 12 h and 48 h after injury. Brains were removed 72 hours after injury. Appropriate brain sections were stained with cresyl fast violet for histological assessment of cerebral cortex structures by using light microscope (LM. Results: After cell count of alive cells in the cerebral cortex the results showed that the cold injury caused significantly reduction in living cells. Melatonin administration in the experimental groups increased such living cells in compare to model group. Alive cells in cerebral cortex of animals which received melatonin at lower doses (1 and 5 mg/kg were lower than the control group, melatonin at optimum dose (50 mg/kg did not show any significant change in the number of alive cells in comparing with the control group (P>0/05. The highest dose (100mg/kg was toxic. Conclusion: Melatonin with optimum dose can reduce cerebral cortex damage due to cold injury in mouse model and overcome cell damages fallowing injury.

  20. Melatonin disturbs SUMOylation mediated crosstalk between c-Myc and Nestin via MT1 activation and promotes the sensitivity of Paclitaxel in brain cancer stem cells.

    Science.gov (United States)

    Lee, Hyemin; Lee, Hyo-Jung; Jung, Ji Hoon; Shin, Eun Ah; Kim, Sung-Hoon

    2018-04-14

    Here the underlying antitumor mechanism of melatonin and its potency as a sensitizer of Paclitaxel was investigated in X02 cancer stem cells. Melatonin suppressed sphere formation and induced G2/M arrest in X02 cells expressing Nestin, CD133, CXCR4 and SOX-2 as biomarkers of stemness. Furthermore, melatonin reduced the expression of CDK2, CDK4, cyclin D1, cyclin E, and c-Myc and upregulated cyclin B1 in X02 cells. Notably, genes of c-Myc related mRNAs were differentially expressed in melatonin treated X02 cells by microarray analysis. Consistently, melatonin reduced the expression of c-Myc at mRNA and protein levels, which was blocked by MG132. Of note, overexpression of c-Myc increased the expression of Nestin, while overexpression of Nestin enhanced c-Myc through crosstalk despite different locations, nucleus and cytoplasm. Interestingly, melatonin attenuated small ubiquitin-related modifier-1 (SUMO-1) more than SUMO-2 or SUMO-3 and disturbed nuclear translocation of Nestin for direct binding to c-Myc by SUMOylation of SUMO-1 protein by immunofluorescence and immunoprecipitation. Also, melatonin reduced trimethylated histone H3K4me3 and H3K36me3 more than dimethylation in X02 cells by Western blotting and Chromatin immunoprecipitation assay. Notably, melatonin upregulated MT1, not MT2, in X02 cells and melatonin receptor inhibitor Luzindole blocked the ability of melatonin to decrease the expression of Nestin, p-c-Myc(S62) and c-Myc. Furthermore, melatonin promoted cytotoxicity, sub G1 accumulation and apoptotic body formation by Paclitaxcel in X02 cells. Taken together, these findings suggest that melatonin inhibits stemness via suppression of c-Myc, Nestin, and histone methylation via MT1 activation and promotes anticancer effect of Paclitaxcel in brain cancer stem cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Salivary melatonin levels and sleep-wake rhythms in pregnant women with hypertensive and glucose metabolic disorders: A prospective analysis.

    Science.gov (United States)

    Shimada, Mieko; Seki, Hiroyuki; Samejima, Michikazu; Hayase, Mako; Shirai, Fumie

    2016-02-01

    In preeclampsia and gestational diabetes, the sympathetic nerves are activated, leading to disrupted sleep. Melatonin, which transmits information to regulate the sleep-wake rhythm and other such biorhythms, has been implicated in insulin resistance, antioxidant behaviors, and metabolic syndrome. In addition, its reduced secretion increases the risk of hypertension and diabetes. The aim of this study was to elucidate the features of melatonin secretion, sleep quality, and sleep-wake rhythms in pregnant women with complications. Fifty-eight pregnant women with pregnancy complications (hypertensive or glucose metabolic disorders) and 40 healthy pregnant women completed questionnaires, including sleep logs and the Pittsburgh Sleep Quality Index (PSQI), during the second to third trimesters. Their salivary melatonin levels were also measured. Pregnant women with complications had significantly lower morning (p melatonin values than healthy pregnant women. Pregnant women with complications also had significantly smaller melatonin amplitudes than healthy pregnant women (p melatonin secretion, and their values were lower throughout the day than healthy pregnant women.

  2. The role of melatonin in anaesthesia and critical care

    OpenAIRE

    Kurdi, Madhuri S; Patel, Tushar

    2013-01-01

    Melatonin is a neurohormone secreted by the pineal gland. It is widely present in both plant and animal sources. In several countries, it is sold over the counter as tablets and as food supplement or additive. Currently, it is most often used to prevent jet lag and to induce sleep. It has been and is being used in several clinical trials with different therapeutic approaches. It has sedative, analgesic, anti-inflammatory, anti-oxidative and chronobiotic effects. In the present review, the pot...

  3. Melatonin - a key to the evaluation of the effects of electric; Melatonin - Schluessel fuer die Bewertung der Wirkung elektrischer und magnetischer Felder?

    Energy Technology Data Exchange (ETDEWEB)

    Wunstorf, B.; Lichtenberg, W. [Fachhochschule Hamburg (Germany). Fachbereich Oekotrophologie; Boikat, U. [BAGS, Amt fuer Gesundheit, Hamburg (Germany)

    2000-09-01

    The human pineal gland produces melatonin in a circadian rhythm. The substance has different functions - as a hormone, as an antioxidant and as a neurotransmitter. The secretion of melatonin and its tumor inhibition function can be influenced by electric and magnetic fields. Investigations have been carried out with rodents which have a melatonin rhythm similar to humans; nevertheless, they show a high variability between the species. The present state of knowledge only allows limited use of melatonin as an indicator for the impact of electric and magnetic fields. (orig.) [German] In der Epiphyse des Menschen wird in circadianem Rhythmus Melatonin produziert und ausgeschuettet. Die Substanz hat unterschiedliche Funktionen - als Hormon, Antioxidans und Neurotransmitter. Seine Ausschuettung und seine tumorhemmende Funktion koennen durch elektrische und magnetische Felder beeinflusst werden. Anhand von Nagern, die einen dem Menschen aehnlichen Melatoninrhythmus haben, allerdings eine hohe Speziesvarianz aufweisen, wurden diese Funktionen untersucht. Nach dem jetzigen Kenntnisstand eignet sich Melatonin nur bedingt als Indikator fuer die Wirkungen elektrischer und magnetischer Felder. (orig.)

  4. A simplified radioimmunoassay for melatonin and its application to biological fluids. Preliminary observations on the half-life of plasma melatonin in man

    International Nuclear Information System (INIS)

    Wetterberg, L.; Friberg, Y.; Eriksson, O.; Vangbo, B.

    1978-01-01

    A simplified and rapid radioimmunoassay (RIA) for melatonin is presented. Melatonin is extracted from serum, plasma or urine and RIA is performed by using [ 3 H]melatonin as the tracers. The standard curve covers the range 0.2-4.3 nmol/l. By increasing the sample volume the range can be extended to 0.06 nmol/l. The intra-assay variability is 7% (relative standard deviation=rsd) and the inter-assay variability is 10% (rsd). The recovery of melatonin added to calf serum is 96%. The long term variability of the assay (43 assays on aliquots of one serum sample during 6 months) is 13.5% (rsd). The serum levels in man after one oral dose of 430 μmol melatonin have been measured. The peak value, 620 nmol/l, was noted after 0.5 h and the melatonin concentration was still above the normal range at 24 h (2.1 nmol/l). (Auth.)

  5. Melatonin and serotonin effects on gastrointestinal motility.

    Science.gov (United States)

    Thor, P J; Krolczyk, G; Gil, K; Zurowski, D; Nowak, L

    2007-12-01

    The gastrointestinal tract represents the most important extra pineal source of melatonin. Presence of melatonin (M) suggests that this hormone is somehow involved in digestive pathophysiology. Release of GI melatonin from serotonin-rich enterochromaffin EC cells of the GI mucosa suggest close antagonistic relationship with serotonin (S) and seem to be related to periodicity of food intake. Food deprivation resulted in an increase of tissue and plasma concentrations of M. Its also act as an autocrine and paracrine hormone affecting not only epithelium and immune system but also smooth muscle of the digestive tract. Low doses M improve gastrointestinal transit and affect MMC. M reinforce MMCs cyclic pattern but inhibits spiking bowel activity. Pharmacological doses of M delay gastric emptying via mechanisms that involve CCK2 and 5HT3 receptors. M released in response to lipid infusion exerts a modulatory influence that decreases the inhibitory effects of the ileal brake on gastric emptying. On isolated bowel S induces dose dependent increase in tone and reduction in amplitude of contraction which is affected by M. M reduced the tone but not amplitude or frequency of contraction. M is a promising therapeutic agent for IBS with activities independent of its effects on sleep, anxiety or depression. Since of its unique properties M could be considered for prevention or treatment of colorectal cancer, ulcerative colitis, gastric ulcers and irritable bowel syndrome.

  6. Beneficial effects of endogenous and exogenous melatonin on neural reconstruction and functional recovery in an animal model of spinal cord injury.

    Science.gov (United States)

    Park, Sookyoung; Lee, Sang-Kil; Park, Kanghui; Lee, Youngjeon; Hong, Yunkyung; Lee, Seunghoon; Jeon, Je-Cheol; Kim, Joo-Heon; Lee, Sang-Rae; Chang, Kyu-Tae; Hong, Yonggeun

    2012-01-01

    The purpose of this study was to investigate the beneficial effects of endogenous and exogenous melatonin on functional recovery in an animal model of spinal cord injury (SCI). Eight-week-old male Sprague-Dawley (SD, 250-260 g) rats were used for contusion SCI surgery. All experimental groups were maintained under one of the following conditions: 12/12-hr light/dark (L/D) or 24:0-hr constant light (LL). Melatonin (10 mg/kg) was injected subcutaneously for 4 wk, twice daily (07:00, 19:00). Locomotor recovery, inducible nitric oxide synthase (iNOS), glial fibrillary acidic protein gene expression, and muscle atrophy-related genes, including muscle atrophy F-box (MAFbx) and muscle-specific ring-finger protein 1 (MuRF1) gene expression were evaluated. Furthermore, autophagic signaling such as Beclin-1 and LC3 protein expression was examined in the spinal cord and in skeletal muscle. The melatonin treatment resulted in increased hind-limb motor function and decreased iNOS mRNA expression in the L/D condition compared with the LL condition (P endogenous melatonin had neuroprotective effects. Furthermore, the MAFbx, MuRF1 mRNA level, and converted LC3 II protein expression were decreased in the melatonin-treated SCI groups under the LL (P exogenous melatonin treatment. Therefore, it seems that both endogenous and exogenous melatonin contribute to neural recovery and to the prevention of skeletal muscle atrophy, promoting functional recovery after SCI. Finally, this study supports the benefit of endogenous melatonin and use of exogenous melatonin as a therapeutic intervention for SCI. © 2011 John Wiley & Sons A/S.

  7. Melatonin Receptor Agonists as the "Perioceutics" Agents for Periodontal Disease through Modulation of Porphyromonas gingivalis Virulence and Inflammatory Response.

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    Full Text Available "Perioceutics" including antimicrobial therapy and host modulatory therapy has emerged as a vital adjunctive treatment of periodontal disease. Melatonin level was significantly reduced in patients with periodontal diseases suggesting melatonin could be applied as a potential "perioceutics" treatment of periodontal diseases. This study aims to investigate the effects of melatonin receptor agonists (melatonin and ramelteon on Porphyromonas gingivalis virulence and Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS-induced inflammation.Effects of melatonin receptor agonists on Porphyromonas gingivalis planktonic cultures were determined by microplate dilution assays. Formation, reduction, and viability of Porphyromonas gingivalis biofilms were detected by crystal violet staining and MTT assays, respectively. Meanwhile, biofilms formation was also observed by confocal laser scanning microscopy (CLSM. The effects on gingipains and hemolytic activities of Porphyromonas gingivalis were evaluated using chromogenic peptides and sheep erythrocytes. The mRNA expression of virulence and iron/heme utilization was assessed using RT-PCR. In addition, cell viability of melatonin receptor agonists on human gingival fibroblasts (HGFs was evaluated by MTT assays. After pretreatment of melatonin receptor agonists, HGFs were stimulated with Pg-LPS and then release of cytokines (IL-6 and lL-8 was measured by enzyme-linked immunosorbent assay (ELISA.Melatonin and ramelteon did exhibit antimicrobial effects against planktonic culture. Importantly, they inhibited biofilm formation, reduced the established biofilms, and decreased biofilm viability of Porphyromonas gingivalis. Furthermore, they at sub-minimum inhibitory concentration (sub-MIC concentrations markedly inhibited the proteinase activities of gingipains and hemolysis in a dose-dependent manner. They at sub-MIC concentrations significantly inhibited the mRNA expression of virulence factors (kgp, rgp

  8. Melatonin Receptor Agonists as the "Perioceutics" Agents for Periodontal Disease through Modulation of Porphyromonas gingivalis Virulence and Inflammatory Response.

    Science.gov (United States)

    Zhou, Wei; Zhang, Xuan; Zhu, Cai-Lian; He, Zhi-Yan; Liang, Jing-Ping; Song, Zhong-Chen

    2016-01-01

    "Perioceutics" including antimicrobial therapy and host modulatory therapy has emerged as a vital adjunctive treatment of periodontal disease. Melatonin level was significantly reduced in patients with periodontal diseases suggesting melatonin could be applied as a potential "perioceutics" treatment of periodontal diseases. This study aims to investigate the effects of melatonin receptor agonists (melatonin and ramelteon) on Porphyromonas gingivalis virulence and Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS)-induced inflammation. Effects of melatonin receptor agonists on Porphyromonas gingivalis planktonic cultures were determined by microplate dilution assays. Formation, reduction, and viability of Porphyromonas gingivalis biofilms were detected by crystal violet staining and MTT assays, respectively. Meanwhile, biofilms formation was also observed by confocal laser scanning microscopy (CLSM). The effects on gingipains and hemolytic activities of Porphyromonas gingivalis were evaluated using chromogenic peptides and sheep erythrocytes. The mRNA expression of virulence and iron/heme utilization was assessed using RT-PCR. In addition, cell viability of melatonin receptor agonists on human gingival fibroblasts (HGFs) was evaluated by MTT assays. After pretreatment of melatonin receptor agonists, HGFs were stimulated with Pg-LPS and then release of cytokines (IL-6 and lL-8) was measured by enzyme-linked immunosorbent assay (ELISA). Melatonin and ramelteon did exhibit antimicrobial effects against planktonic culture. Importantly, they inhibited biofilm formation, reduced the established biofilms, and decreased biofilm viability of Porphyromonas gingivalis. Furthermore, they at sub-minimum inhibitory concentration (sub-MIC) concentrations markedly inhibited the proteinase activities of gingipains and hemolysis in a dose-dependent manner. They at sub-MIC concentrations significantly inhibited the mRNA expression of virulence factors (kgp, rgpA, rgpB, hag

  9. Preliminary evidence that light through the eyelids can suppress melatonin and phase shift dim light melatonin onset.

    Science.gov (United States)

    Figueiro, Mariana G; Rea, Mark S

    2012-05-07

    A previous study reported a method for measuring the spectral transmittance of individual human eyelids. A prototype light mask using narrow-band "green" light (λmax = 527 nm) was used to deliver light through closed eyelids in two within-subjects studies. The first study investigated whether an individual-specific light dose could suppress melatonin by 40% through the closed eyelid without disrupting sleep. The light doses were delivered at three times during the night: 1) beginning (while subjects were awake), 2) middle (during rapid eye movement (REM) sleep), and 3) end (during non-REM sleep). The second study investigated whether two individual-specific light doses expected to suppress melatonin by 30% and 60% and delivered through subjects' closed eyelids before the time of their predicted minimum core body temperature would phase delay the timing of their dim light melatonin onset (DLMO). Compared to a dark control night, light delivered through eyelids suppressed melatonin by 36% (p = 0.01) after 60-minute light exposure at the beginning, 45% (p = 0.01) at the middle, and 56% (p light levels 1 and 2, respectively. These studies demonstrate that individual-specific doses of light delivered through closed eyelids can suppress melatonin and phase shift DLMO and may be used to treat circadian sleep disorders.

  10. Bright-light exposure during daytime sleeping affects nocturnal melatonin secretion after simulated night work.

    Science.gov (United States)

    Nagashima, Shunsuke; Osawa, Madoka; Matsuyama, Hiroto; Ohoka, Wataru; Ahn, Aemi; Wakamura, Tomoko

    2018-02-01

    The guidelines for night and shift workers recommend that after night work, they should sleep in a dark environment during the daytime. However, staying in a dark environment during the daytime reduces nocturnal melatonin secretion and delays its onset. Daytime bright-light exposure after night work is important for melatonin synthesis the subsequent night and for maintaining the circadian rhythms. However, it is not clear whether daytime sleeping after night work should be in a dim- or a bright-light environment for maintaining melatonin secretion. The aim of this study, therefore, was to evaluate the effect of bright-light exposure during daytime sleeping on nocturnal melatonin secretion after simulated night work. Twelve healthy male subjects, aged 24.8 ± 4.6 (mean ± SD), participated in 3-day sessions under two experimental conditions, bright light or dim light, in a random order. On the first day, the subjects entered the experimental room at 16:00 and saliva samples were collected every hour between 18:00 and 00:00 under dim-light conditions. Between 00:00 and 08:00, they participated in tasks that simulated night work. At 10:00 the next morning, they slept for 6 hours under either a bright-light condition (>3000 lx) or a dim-light condition (night work were compared between the light conditions using paired t-tests. The ANOVA results indicated a significant interaction (light condition and3 day) (p = .006). Post hoc tests indicated that in the dim-light condition, the melatonin concentration was significantly lower on the second day than on the first day (p = .046); however, in the bright-light condition, there was no significant difference in the melatonin concentration between the days (p = .560). There was a significant difference in ΔDLMO between the conditions (p = .015): DLMO after sleeping was advanced by 11.1 ± 17.4 min under bright-light conditions but delayed for 7.2 ± 13.6 min after sleeping under dim-light conditions. No

  11. The therapeutic potential of melatonin on neuronal function during ...

    African Journals Online (AJOL)

    (i.e. arms) in the Elevated plus Maze (EPM) task is shown in fig. 2a, 2b, 2c, and 2d. Melatonin ... Early melatonin intervention before rats reach old age is therefore .... Melanogaster by long-term supplementation with melatonin. Exp Gerontol;37 ...

  12. Ethanol consumption and pineal melatonin daily profile in rats.

    Science.gov (United States)

    Peres, Rafael; do Amaral, Fernanda Gaspar; Madrigrano, Thiago Cardoso; Scialfa, Julieta Helena; Bordin, Silvana; Afeche, Solange Castro; Cipolla-Neto, José

    2011-10-01

    It is well known that melatonin participates in the regulation of many important physiological functions such as sleep-wakefulness cycle, motor coordination and neural plasticity, and cognition. However, as there are contradictory results regarding the melatonin production diurnal profile under alcohol consumption, the aim of this paper was to study the phenomenology and mechanisms of the putative modifications on the daily profile of melatonin production in rats submitted to chronic alcohol intake. The present results show that rats receiving 10% ethanol in drinking water for 35 days display an altered daily profile of melatonin production, with a phase delay and a reduction in the nocturnal peak. This can be partially explained by a loss of the daily rhythm and the 25% reduction in tryptophan hydroxylase activity and, mainly, by a phase delay in arylalkylamine N-acetyltransferase gene expression and a 70% reduction in its peak activity. Upstream in the melatonin synthesis pathway, the results showed that noradrenergic signaling is impaired as well, with a decrease in β1 and α1 adrenergic receptors' mRNA contents and in vitro sustained loss of noradrenergic-stimulated melatonin production by glands from alcohol-treated rats. Together, these results confirm the alterations in the daily melatonin profile of alcoholic rats and suggest the possible mechanisms for the observed melatonin synthesis modification. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  13. How to Achieve High-Quality Oocytes? The Key Role of Myo-Inositol and Melatonin

    Directory of Open Access Journals (Sweden)

    Salvatore Giovanni Vitale

    2016-01-01

    Full Text Available Assisted reproductive technologies (ART have experienced growing interest from infertile patients seeking to become pregnant. The quality of oocytes plays a pivotal role in determining ART outcomes. Although many authors have studied how supplementation therapy may affect this important parameter for both in vivo and in vitro models, data are not yet robust enough to support firm conclusions. Regarding this last point, in this review our objective has been to evaluate the state of the art regarding supplementation with melatonin and myo-inositol in order to improve oocyte quality during ART. On the one hand, the antioxidant effect of melatonin is well known as being useful during ovulation and oocyte incubation, two occasions with a high level of oxidative stress. On the other hand, myo-inositol is important in cellular structure and in cellular signaling pathways. Our analysis suggests that the use of these two molecules may significantly improve the quality of oocytes and the quality of embryos: melatonin seems to raise the fertilization rate, and myo-inositol improves the pregnancy rate, although all published studies do not fully agree with these conclusions. However, previous studies have demonstrated that cotreatment improves these results compared with melatonin alone or myo-inositol alone. We recommend that further studies be performed in order to confirm these positive outcomes in routine ART treatment.

  14. Melatonin and Angelman Syndrome: Implications and Mathematical Model of Diurnal Secretion

    Directory of Open Access Journals (Sweden)

    Justyna Paprocka

    2017-01-01

    Full Text Available The main aim of the study was to compare the melatonin rhythms in subjects with Angelman syndrome (n=9 and in children with (n=80 and without (n=40 epilepsy (nonepileptic patients diagnosed with peripheral nerve palsies, myopathy, and back pain using our mathematical model of melatonin circadian secretion. The characteristics describing the diurnal hormone secretion such as minimum melatonin concentration, release amplitude, phase shift of melatonin release, and sleep duration as well as the dim light melatonin onset (DLMO of melatonin secretion and the γ shape parameter allow analyzing the fit and deducing about how much the measured melatonin profile differs from a physiological bell-shaped secretion. The estimated sleep duration and phase shift of melatonin release as well as the DMLO offsets at 25% and 50% relative thresholds are the key characteristic of Angelman syndrome children. As revealed from the γ shape parameter, the melatonin secretion profiles are disturbed in majority of the AG subjects revealing rather a triangular course instead of the bell-like one.

  15. Detection of melatonin receptor mRNA in human muscle

    International Nuclear Information System (INIS)

    Li Lei

    2004-01-01

    To verify the expression of melatonin receptor mRNA in human, muscle, muscle beside vertebrae was collected to obtain total RNA and the mRNA of melatonin receptor was detected by RT-PCR method. The electrophoretic results of RT-PCR products by mt 1 and MT 2 primer were all positive and the sequence is corresponding with human melatonin receptor cDNA. It suggests that melatonin may act on the muscle beside vertebrae directly and regulate its growth and development. (authors)

  16. Guanine nucleotide-binding protein regulation of melatonin receptors in lizard brain

    International Nuclear Information System (INIS)

    Rivkees, S.A.; Carlson, L.L.; Reppert, S.M.

    1989-01-01

    Melatonin receptors were identified and characterized in crude membrane preparations from lizard brain by using 125 I-labeled melatonin ( 125 I-Mel), a potent melatonin agonist. 125 I-Mel binding sites were saturable; Scatchard analysis revealed high-affinity and lower affinity binding sites, with apparent K d of 2.3 ± 1.0 x 10 -11 M and 2.06 ± 0.43 x 10 -10 M, respectively. Binding was reversible and inhibited by melatonin and closely related analogs but not by serotonin or norepinephrine. Treatment of crude membranes with the nonhydrolyzable GTP analog guanosine 5'-[γ-thio]triphosphate (GTP[γS]), significantly reduced the number of high-affinity receptors and increased the dissociation rate of 125 I-Mel from its receptor. Furthermore, GTP[γS] treatment of ligand-receptor complexes solubilized by Triton X-100 also led to a rapid dissociation of 125 I-Mel from solubilized ligand-receptor complexes. Gel filtration chromatography of solubilized ligand-receptor complexes revealed two major peaks of radioactivity corresponding to M r > 400,000 and M r ca. 110,000. This elution profile was markedly altered by pretreatment with GTP[γS] before solubilization; only the M r 110,000 peak was present in GTP[γS]-pretreated membranes. The results strongly suggest that 125 I-mel binding sites in lizard brain are melatonin receptors, with agonist-promoted guanine nucleotide-binding protein (G protein) coupling and that the apparent molecular size of receptors uncoupled from G proteins is about 110,000

  17. Melatonin Alleviates Liver Apoptosis in Bile Duct Ligation Young Rats.

    Science.gov (United States)

    Sheen, Jiunn-Ming; Chen, Yu-Chieh; Hsu, Mei-Hsin; Tain, You-Lin; Huang, Ying-Hsien; Tiao, Mao-Meng; Li, Shih-Wen; Huang, Li-Tung

    2016-08-20

    Bile duct ligation (BDL)-treated rats display cholestasis and liver damages. The potential protective activity of melatonin in young BDL rats in terms of apoptosis, mitochondrial function, and endoplasmic reticulum (ER) homeostasis has not yet been evaluated. Three groups of young male Sprague-Dawley rats were used: one group received laparotomy (Sham), a second group received BDL for two weeks (BDL), and a third group received BDL and intraperitoneal melatonin (100 mg/day) for two weeks (BDL + M). BDL group rats showed liver apoptosis, increased pro-inflamamtory mediators, caspases alterations, anti-apoptotic factors changes, and dysfunction of ER homeostasis. Melatonin effectively reversed apoptosis, mainly through intrinsic pathway and reversed ER stress. In addition, in vitro study showed melatonin exerted its effect mainly through the melatonin 2 receptor (MT2) in HepG2 cells. In conclusion, BDL in young rats caused liver apoptosis. Melatonin rescued the apoptotic changes via the intrinsic pathway, and possibly through the MT2 receptor. Melatonin also reversed ER stress induced by BDL.

  18. Classical conditioning for preserving the effects of short melatonin treatment in children with delayed sleep: a pilot study

    Directory of Open Access Journals (Sweden)

    van Maanen A

    2017-03-01

    Full Text Available Annette van Maanen,1 Anne Marie Meijer,1 Marcel G Smits,2 Frans J Oort1 1Research Institute Child Development and Education, University of Amsterdam, Amsterdam, 2Centre for Sleep-Wake Disorders and Chronobiology, Hospital Gelderse Vallei, Ede, the Netherlands Abstract: Melatonin treatment is effective in treating sleep onset problems in children with delayed melatonin onset, but effects usually disappear when treatment is discontinued. In this pilot study, we investigated whether classical conditioning might help in preserving treatment effects of melatonin in children with sleep onset problems, with and without comorbid attention deficit hyperactivity disorder (ADHD or autism. After a baseline week, 16 children (mean age: 9.92 years, 31% ADHD/autism received melatonin treatment for 3 weeks and then gradually discontinued the treatment. Classical conditioning was applied by having children drink organic lemonade while taking melatonin and by using a dim red light lamp that was turned on when children went to bed. Results were compared with a group of 41 children (mean age: 9.43 years, 34% ADHD/autism who received melatonin without classical conditioning. Melatonin treatment was effective in advancing dim light melatonin onset and reducing sleep onset problems, and positive effects were found on health and behavior problems. After stopping melatonin, sleep returned to baseline levels. We found that for children without comorbidity in the experimental group, sleep latency and sleep start delayed less in the stop week, which suggests an effect of classical conditioning. However, classical conditioning seems counterproductive in children with ADHD or autism. Further research is needed to establish these results and to examine other ways to preserve melatonin treatment effects, for example, by applying morning light. Keywords: melatonin, classical conditioning, children, delayed sleep

  19. Termination of short term melatonin treatment in children with delayed Dim Light Melatonin Onset: effects on sleep, health, behavior problems, and parenting stress

    NARCIS (Netherlands)

    van Maanen, Annette; Meijer, Anne Marie; Smits, Marcel G.; Oort, Frans J.

    2011-01-01

    To investigate the effects of termination of short term melatonin treatment on sleep, health, behavior, and parenting stress in children with delayed Dim Light Melatonin Onset. Forty-one children (24 boys, 17 girls; mean age=9.43 years) entered melatonin treatment for 3 weeks and then discontinued

  20. Melatonin Secretion during a Short Nap Fosters Subsequent Feedback Learning

    Directory of Open Access Journals (Sweden)

    Christian D. Wiesner

    2018-01-01

    Full Text Available Sleep helps to protect and renew hippocampus-dependent declarative learning. Less is known about forms of learning that mainly engage the dopaminergic reward system. Animal studies showed that exogenous melatonin modulates the responses of the dopaminergic reward system and acts as a neuroprotectant promoting memory. In humans, melatonin is mainly secreted in darkness during evening hours supporting sleep. In this study, we investigate the effects of a short period of daytime sleep (nap and endogenous melatonin on reward learning. Twenty-seven healthy, adult students took part in an experiment, either taking a 90-min afternoon nap or watching videos (within-subject design. Before and after the sleep vs. wake interval, saliva melatonin levels and reward learning were measured, and in the nap condition, a polysomnogram was obtained. Reward learning was assessed using a two-alternative probabilistic reinforcement-learning task. Sleep itself and subjective arousal or valence had no significant effects on reward learning. However, this study showed for the first time that an afternoon nap can elicit a small but significant melatonin response in about 41% of the participants and that the magnitude of the melatonin response predicts subsequent reward learning. Only in melatonin responders did a short nap improve reward learning. The difference between melatonin-responders and non-responders occurred very early during learning indicating that melatonin might have improved working memory rather than reward learning. Future studies should use paradigms differentiating working memory and reward learning to clarify which aspect of human feedback learning might profit from melatonin.

  1. High levels of melatonin generated during the brewing process.

    Science.gov (United States)

    Garcia-Moreno, H; Calvo, J R; Maldonado, M D

    2013-08-01

    Beer is a beverage consumed worldwide. It is produced from cereals (barley or wheat) and contains a wide array of bioactive phytochemicals and nutraceutical compounds. Specifically, high melatonin concentrations have been found in beer. Beers with high alcohol content are those that present the greatest concentrations of melatonin and vice versa. In this study, gel filtration chromatography and ELISA were combined for melatonin determination. We brewed beer to determine, for the first time, the beer production steps in which melatonin appears. We conclude that the barley, which is malted and ground in the early process, and the yeast, during the second fermentation, are the largest contributors to the enrichment of the beer with melatonin. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Melatonin pre-treatment mitigates SHSY-5Y cells against oxaliplatin induced mitochondrial stress and apoptotic cell death.

    Directory of Open Access Journals (Sweden)

    Mohammad Waseem

    Full Text Available Oxaliplatin (Oxa treatment to SH-SY5Y human neuroblastoma cells has been shown by previous studies to induce oxidative stress, which in turn modulates intracellular signaling cascades resulting in cell death. While this phenomenon of Oxa-induced neurotoxicity is known, the underlying mechanisms involved in this cell death cascade must be clarified. Moreover, there is still little known regarding the roles of neuronal mitochondria and cytosolic compartments in mediating Oxa-induced neurotoxicity. With a better grasp of the mechanisms driving neurotoxicity in Oxa-treated SH-SY5Y cells, we can then identify certain pathways to target in protecting against neurotoxic cell damage. Therefore, the purpose of this study was to determine whether one such agent, melatonin (Mel, could confer protection against Oxa-induced neurotoxicity in SH-SY5Y cells. Results from the present study found Oxa to significantly reduce SH-SY5Y cell viability in a dose-dependent manner. Alternatively, we found Mel pre-treatment to SH-SY5Y cells to attenuate Oxa-induced toxicity, resulting in a markedly increased cell viability. Mel exerted its protective effects by regulating reactive oxygen species (ROS production and reducing superoxide radicals inside Oxa-exposed. In addition, we observed pre-treatment with Mel to rescue Oxa-treated cells by protecting mitochondria. As Oxa-treatment alone decreases mitochondrial membrane potential (Δψm, resulting in an altered Bcl-2/Bax ratio and release of sequestered cytochrome c, so Mel was shown to inhibit these pathways. Mel was also found to inhibit proteolytic activation of caspase 3, inactivation of Poly (ADP Ribose polymerase, and DNA damage, thereby allowing SH-SY5Y cells to resist apoptotic cell death. Collectively, our results suggest a role for melatonin in reducing Oxa induced neurotoxicity. Further studies exploring melatonin's protective effects may prove successful in eliciting pathways to further alter the neurotoxic

  3. Melatonin as a potential anticarcinogen for non-small-cell lung cancer

    Science.gov (United States)

    Han, Jing; Wang, Dongjin; Di, Shouyin; Hu, Wei; Liu, Dong; Li, Xiaofei; Reiter, Russel J.; Yan, Xiaolong

    2016-01-01

    Non-small-cell lung cancer (NSCLC) is a leading cause of death from cancer worldwide. Melatonin, an indoleamine discovered in the pineal gland, exerts pleiotropic anticancer effects against a variety of cancer types. In particular, melatonin may be an important anticancer drug in the treatment of NSCLC. Herein, we review the correlation between the disruption of the melatonin rhythm and NSCLC incidence; we also evaluate the evidence related to the effects of melatonin in inhibiting lung carcinogenesis. Special focus is placed on the oncostatic effects of melatonin, including anti-proliferation, induction of apoptosis, inhibition of invasion and metastasis, and enhancement of immunomodulation. We suggest the drug synergy of melatonin with radio- or chemotherapy for NSCLC could prove to be useful. Taken together, the information complied herein may serve as a comprehensive reference for the anticancer mechanisms of melatonin against NSCLC, and may be helpful for the design of future experimental research and for advancing melatonin as a therapeutic agent for NSCLC. PMID:27102150

  4. Melatonin identified in meats and other food stuffs: potentially nutritional impact.

    Science.gov (United States)

    Tan, Dun-Xian; Zanghi, Brian M; Manchester, Lucien C; Reiter, Russel J

    2014-09-01

    Melatonin has been identified in primitive photosynthetic bacteria, fungi, plants, and animals including humans. Vegetables, fruits, cereals, wine, and beers all contain melatonin. However, the melatonin content in meats has not been reported previously. Here, for the first time, we report melatonin in meats, eggs, colostrum, and in other edible food products. The levels of melatonin measured by HPLC, in lamb, beef, pork, chicken, and fish, are comparable to other food stuffs (in the range of ng/g). These levels are significantly higher than melatonin concentrations in the blood of vertebrates. As melatonin is a potent antioxidant, its presence in the meat could contribute to shelf life duration as well as preserve their quality and taste. In addition, the consumption of these foods by humans or animals could have health benefits considering the important functions of melatonin as a potent free radical scavenger and antioxidant. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Maternal melatonin or N-acetylcysteine therapy regulates hydrogen sulfide-generating pathway and renal transcriptome to prevent prenatal NG-Nitro-L-arginine-methyl ester (L-NAME)-induced fetal programming of hypertension in adult male offspring.

    Science.gov (United States)

    Tain, You-Lin; Lee, Chien-Te; Chan, Julie Y H; Hsu, Chien-Ning

    2016-11-01

    differentially. Our results indicated that antioxidant therapy, by melatonin or N-acetylcysteine, in pregnant rats with nitric oxide deficiency can prevent programmed hypertension in male adult offspring. Early intervention with specific antioxidants that target redox imbalance in pregnancy to reprogram hypertension may well allow us to reduce the future burden of hypertension. The roles of transcriptome changes that are induced by N G -nitro-L-arginine-methyl ester in the offspring kidney require further clarification. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Beneficial Effects of Adjuvant Melatonin in Minimizing Oral Mucositis Complications in Head and Neck Cancer Patients Receiving Concurrent Chemoradiation.

    Science.gov (United States)

    Onseng, Kittipong; Johns, Nutjaree Pratheepawanit; Khuayjarernpanishk, Thanut; Subongkot, Suphat; Priprem, Aroonsri; Hurst, Cameron; Johns, Jeffrey

    2017-12-01

    Oral mucositis is a major cause of pain and delayed cancer treatment leading to poor survival in head and neck cancer patients receiving concurrent chemoradiation. The study evaluated the effect of adjuvant melatonin on minimizing oral mucositis complications to reduce these treatment delays and interruptions. A randomized, double-blind, double dummy, placebo-controlled clinical trial. Ubon Ratchathani Cancer Hospital, Thailand. Thirty-nine head and neck cancer patients receiving concurrent chemoradiation (5 days/week of radiation plus chemotherapy three or six cycles). Patients were randomized to receive 20 mg melatonin gargle (or matched placebo) before each irradiation, and 20 mg melatonin capsules (or matched placebo) taken nightly during 7 weeks of concurrent chemoradiation. Endpoints were oral mucositis events (incidence and time to grade 3 mucositis or grade 2 xerostomia), pain medication consumption and quality of life (QOL). Melatonin group reported lower incidence of grade 3 oral mucositis (42% vs. 55%) and grade 2 xerostomia (20% vs. 21%); no statistical significance was detected. Melatonin regimen delayed onset of grade 3 mucositis (median 34 days vs. 50 days; p = 0.0318), allowing median time of 16 more patient visits before its onset and fewer interrupted treatments due to oral mucositis were reported (n = 1 vs. n = 5). There was no difference of grade 2 xerostomia (median 32 days vs. 50 days; p = 0.624). Morphine consumption was also reduced (median 57 mg vs. 0 mg; p = 0.0342), while QOL was comparable during the study period. Adjuvant melatonin delayed the onset of oral mucositis, which enables uninterrupted cancer treatment and reduced the amount of morphine used for pain treatment.

  7. (Revised The role of melatonin as a hormone and an antioxidant in the control of fish reproduction

    Directory of Open Access Journals (Sweden)

    Dr. Saumen Kumar Maitra

    2016-05-01

    Full Text Available Reproduction in most fish is seasonal or periodic and the spawning occurs in an appropriate season to ensure maximum survival of the offspring. The sequence of reproductive events in an annual cycle is largely under the control of a species-specific endogenous timing system, which essentially relies on a well-equipped physiological response mechanism to changing environmental cues. The duration of solar light or photoperiod is one of the most predictable environmental signals used by a large number of animals including fish to coordinate their seasonal breeding. In vertebrates, the pineal gland is the major photo-neuroendocrine part of the brain that rhythmically synthesizes and releases melatonin (N-acetyl-5-methoxytryptamine into the circulation in synchronization with the environmental light-dark cycle. Past few decades witnessed an enormous progress in understanding the mechanisms by which melatonin regulates seasonal reproduction in fish and in other vertebrates. Most studies emphasized hormonal actions of melatonin through its high-affinity, pertussis toxin-sensitive G-protein (guanine nucleotide binding protein coupled receptors on the hypothalamus-pituitary-gonad (HPG axis of fish. However, the discovery that melatonin due to its lipophilic nature can easily cross the plasma membrane of all cells and may act as a potent scavenger of free radicals and stimulant of different antioxidants added a new dimension to the idea explaining mechanisms of melatonin actions in the regulation of ovarian functions. The basic concept on the actions of melatonin as an antioxidant emerged from mammalian studies. Recently, however, some new studies clearly suggested that melatonin, apart from playing the role of a hormone, may also be associated with the reduction in oxidative stress to augment ovarian functions during spawning. This review thus aims to bring together the current knowledge on the role of melatonin as a hormone as well as an antioxidant in

  8. Melatonin Receptor Agonists as the “Perioceutics” Agents for Periodontal Disease through Modulation of Porphyromonas gingivalis Virulence and Inflammatory Response

    Science.gov (United States)

    Zhu, Cai-Lian; He, Zhi-Yan; Liang, Jing-Ping; Song, Zhong-Chen

    2016-01-01

    Aim “Perioceutics” including antimicrobial therapy and host modulatory therapy has emerged as a vital adjunctive treatment of periodontal disease. Melatonin level was significantly reduced in patients with periodontal diseases suggesting melatonin could be applied as a potential “perioceutics” treatment of periodontal diseases. This study aims to investigate the effects of melatonin receptor agonists (melatonin and ramelteon) on Porphyromonas gingivalis virulence and Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS)-induced inflammation. Methods Effects of melatonin receptor agonists on Porphyromonas gingivalis planktonic cultures were determined by microplate dilution assays. Formation, reduction, and viability of Porphyromonas gingivalis biofilms were detected by crystal violet staining and MTT assays, respectively. Meanwhile, biofilms formation was also observed by confocal laser scanning microscopy (CLSM). The effects on gingipains and hemolytic activities of Porphyromonas gingivalis were evaluated using chromogenic peptides and sheep erythrocytes. The mRNA expression of virulence and iron/heme utilization was assessed using RT-PCR. In addition, cell viability of melatonin receptor agonists on human gingival fibroblasts (HGFs) was evaluated by MTT assays. After pretreatment of melatonin receptor agonists, HGFs were stimulated with Pg-LPS and then release of cytokines (IL-6 and lL-8) was measured by enzyme-linked immunosorbent assay (ELISA). Results Melatonin and ramelteon did exhibit antimicrobial effects against planktonic culture. Importantly, they inhibited biofilm formation, reduced the established biofilms, and decreased biofilm viability of Porphyromonas gingivalis. Furthermore, they at sub-minimum inhibitory concentration (sub-MIC) concentrations markedly inhibited the proteinase activities of gingipains and hemolysis in a dose-dependent manner. They at sub-MIC concentrations significantly inhibited the mRNA expression of virulence

  9. Gut Melatonin in Vertebrates: Chronobiology and Physiology

    Directory of Open Access Journals (Sweden)

    Dr. Saumen Kumar Maitra

    2015-07-01

    Full Text Available Melatonin, following discovery in the bovine pineal gland, has been detected in several extra-pineal sources including gastrointestinal tract or gut. Arylalkylamine N-acetyltransferase (AANAT is the key regulator of its biosynthesis. Melatonin in pineal is rhythmically produced with a nocturnal peak in synchronization with environmental light-dark cycle. A recent study on carp reported first that melatonin levels and intensity of a ~23kDa AANAT protein in each gut segment also exhibit significant daily variations but, unlike pineal, show a peak at midday in all seasons. Extensive experimental studies ruled out direct role of light-dark conditions in determining temporal pattern of gut melatoninergic system in carp, and opened up possible role of environmental non-photic cue(s as its synchronizer. Based on mammalian findings, physiological significance of gut derived melatonin also appears unique because its actions at local levels sharing paracrine and/or autocrine functions have been emphasized. The purpose of this mini-review is to summarize existing data on the chronobiology and physiology of gut melatonin and to emphasize their relation with the same hormone derived in the pineal in vertebrates including fish.

  10. The Role of Melatonin in the Treatment of Primary Headache Disorders

    Science.gov (United States)

    Gelfand, Amy A.; Goadsby, Peter J.

    2016-01-01

    Objective To provide a summary of knowledge about the use of melatonin in the treatment of primary headache disorders. Background Melatonin is secreted by the pineal gland; its production is regulated by the hypothalamus and increases during periods of darkness. Methods We undertook a narrative review of the literature on the role of melatonin in the treatment of primary headache disorders. Results There are randomized placebo-controlled trials examining melatonin for preventive treatment of migraine and cluster headache. For cluster headache, melatonin 10 mg was superior to placebo. For migraine, a randomized placebo-controlled trial of melatonin 3 mg (immediate release) was positive, though an underpowered trial of melatonin 2 mg (sustained release) was negative. Uncontrolled studies, case series, and case reports cover melatonin’s role in treating tension-type headache, hypnic headache, hemicrania continua, SUNCT/SUNA and primary stabbing headache. Conclusions Melatonin may be effective in treating several primary headache disorders, particularly cluster headache and migraine. Future research should focus on elucidating the underlying mechanisms of benefit of melatonin in different headache disorders, as well as clarifying optimal dosing and formulation. PMID:27316772

  11. Activation of melatonin receptor (MT1/2) promotes P-gp transporter in methamphetamine-induced toxicity on primary rat brain microvascular endothelial cells.

    Science.gov (United States)

    Jumnongprakhon, Pichaya; Sivasinprasasn, Sivanan; Govitrapong, Piyarat; Tocharus, Chainarong; Tocharus, Jiraporn

    2017-06-01

    Melatonin has been known as a neuroprotective agent for the central nervous system (CNS) and the blood-brain barrier (BBB), which is the primary structure that comes into contact with several neurotoxins including methamphetamine (METH). Previous studies have reported that the activation of melatonin receptors (MT1/2) by melatonin could protect against METH-induced toxicity in brain endothelial cells via several mechanisms. However, its effects on the P-glycoprotein (P-gp) transporter, the active efflux pump involved in cell homeostasis, are still unclear. Thus, this study investigated the role of melatonin and its receptors on the METH-impaired P-gp transporter in primary rat brain microvascular endothelial cells (BMVECs). The results showed that METH impaired the function of the P-gp transporter, significantly decreasing the efflux of Rho123 and P-gp expression, which caused a significant increase in the intracellular accumulation of Rho123, and these responses were reversed by the interaction of melatonin with its receptors. Blockade of the P-gp transporter by verapamil caused oxidative stress, apoptosis, and cell integrity impairment after METH treatment, and these effects could be reversed by melatonin. Our results, together with previous findings, suggest that the interaction of melatonin with its receptors protects against the effects of the METH-impaired P-gp transporter and that the protective role in METH-induced toxicity was at least partially mediated by the regulation of the P-gp transporter. Thus, melatonin and its receptors (MT1/2) are essential for protecting against BBB impairment caused by METH. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Melatonin as potential inducer of Th17 cell differentiation.

    Science.gov (United States)

    Kuklina, Elena M

    2014-09-01

    The subset of T lymphocytes producing IL-17 (Th17) plays a key role in the immune system. It has been implicated in host defense, inflammatory diseases, tumorigenesis, autoimmune diseases, and transplant rejection. Careful analysis of the data available holds that Th17 cell subpopulation should be under the direct control of pineal hormone melatonin: the key Th17 differentiation factor RORα serves in the meantime as a high-affinity melatonin receptor. Since the levels of melatonin have diurnal and seasonal variation, as well as substantial deviations in some physiological or pathological conditions, melatonin-dependent regulation of Th17 cells should implicate multiform manifestation, such as influencing the outcome of infectious challenge or determining predisposition, etiology and progression of immune-related morbidities. Another important reason to raise a point of the new melatonin effects is current considering the possibilities of its clinical trials. Especially, the differentiation of Th17 upon melatonin treatment must aggravate the current recession in autoimmune diseases or induce serious complications in pregnancy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effects of melatonin in rats in the initial third stage of pregnancy exposed to sub-lethal doses of herbicides.

    Science.gov (United States)

    Almeida, Lécio Leone de; Teixeira, Álvaro Aguiar Coelho; Soares, Anísio Francisco; Cunha, Franklin Magliano da; Silva, Valdemiro Amaro da; Vieira Filho, Leucio Duarte; Wanderley-Teixeira, Valéria

    2017-04-01

    Exposure to the herbicides Paraquat (PQ) and Roundup ® may cause cell lesions due to an increase in oxidative stress levels in different biological systems, even in the reproductive system. Evaluate the possible changes in reproductive parameters and hepatic, as well as its prevention by simultaneous application of melatonin. Thirty-five female rats at the age of 3 months were divided into seven groups: three groups exposed to sub-lethal doses of the herbicides PQ (50mg/kg) and Roundup ® (500mg/kg) (n=5, G2, G3 and G4); three groups exposed to herbicides and simultaneous treatment with 10mg/kg of Melatonin (n=5, G5, G6 and G7) and control group (n=5, G1) from the first to the seventh day of pregnancy. On the seventh day of pregnancy, the rats were anesthetized and euthanized, followed by laparotomy to remove their reproductive tissues and liver. Body and ovary weights were taken and the number of implantation sites, corpora lutea, preimplantation losses, implantation rates were counted and histopathology of the implantation sites, morphometry of the surface and glandular epithelia of endometrium and hepatic oxidative stress were undertaken. The present study shows the decrease in body and ovary weight, decrease in the number of implantation sites, implantation rate, in the total number of corpora lutea and increase of preimplantation percentages were observed when compared to the G1: Fig. 1 and Table 1, (p>0.001 ANOVA/Tukey). The histopathological analysis of the implantation sites showed a disorder of the cytotrophoblast and cell degeneration within the blastocyst cavity in Fig. 4. Morphometry revealed a reduction in surface and glandular epithelia and in the diameter of the endometrial glands (Table 2; p>0.05 ANOVA/Tukey), whereas in liver, serum levels of thiobarbituric acid reactive substances (TBARS) were found to be significantly elevated (Fig. 2; p>0.001; p>0.05 ANOVA/Tukey), and serum level of reduced glutathione (GSH) was significantly lower (Fig. 3; p>0

  14. Can melatonin prevent or improve metabolic side effects during antipsychotic treatments?

    Directory of Open Access Journals (Sweden)

    Porfirio MC

    2017-08-01

    Full Text Available Maria-Cristina Porfirio,1 Juliana Paula Gomes de Almeida,2 Maddalena Stornelli,1 Silvia Giovinazzo,1 Diane Purper-Ouakil,3 Gabriele Masi4 1Unit of Child Neurology and Psychiatry, “Tor Vergata” University of Rome, Italy; 2Unit of Child Neurology, Irmandade Santa Casa de Misericordia Hospital São Paulo, Brazil; 3Unit of Child and Adolescent Psychiatry, Saint Eloi Hospital, Montpellier, France; 4IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Pisa, Italy Abstract: In the last two decades, second-generation antipsychotics (SGAs were more frequently used than typical antipsychotics for treating both psychotic and nonpsychotic psychiatric disorders in both children and adolescents, because of their lower risk of adverse neurological effects, that is, extrapyramidal symptoms. Recent studies have pointed out their effect on weight gain and increased visceral adiposity as they induce metabolic syndrome. Patients receiving SGAs often need to be treated with other substances to counteract metabolic side effects. In this paper, we point out the possible protective effect of add-on melatonin treatment in preventing, mitigating, or even reversing SGAs metabolic effects, improving quality of life and providing safer long-term treatments in pediatric patients. Melatonin is an endogenous indolamine secreted during darkness by the pineal gland; it plays a key role in regulating the circadian rhythm, generated by the suprachiasmatic nuclei (SCN of the hypothalamus, and has many other biological functions, including chronobiotic, antioxidant and neuroprotective properties, anti-inflammatory and free radical scavenging effects, and diminishing oxidative injury and fat distribution. It has been hypothesized that SGAs cause adverse metabolic effects that may be restored by nightly administration of melatonin because of its influence on autonomic and hormonal outputs. Interestingly, atypical anti-psychotics (AAPs can cause

  15. Melatonin protects against myocardial hypertrophy induced by lipopolysaccharide.

    Science.gov (United States)

    Lu, Qi; Yi, Xin; Cheng, Xiang; Sun, Xiaohui; Yang, Xiangjun

    2015-04-01

    Melatonin is thought to have the ability of antiatherogenic, antioxidant, and vasodilatory. It is not only a promising protective in acute myocardial infarction but is also a useful tool in the treatment of pathological remodeling. However, its role in myocardial hypertrophy remains unclear. In this study, we investigated the protective effects of melatonin on myocardial hypertrophy induced by lipopolysaccharide (LPS) and to identify their precise mechanisms. The cultured myocardial cell was divided into six groups: control group, LPS group, LPS + ethanol (4%), LPS + melatonin (1.5 mg/ml) group, LPS + melatonin (3 mg/ml) group, and LPS + melatonin (6 mg/ml) group. The morphologic change of myocardial cell was observed by inverted phase contrast microscope. The protein level of myocardial cell was measured by Coomassie brilliant blue protein kit. The secretion level of tumor necrosis factor-α (TNF-α) was evaluated by enzyme-linked immunosorbent assay (ELISA). Ca(2+) transient in Fura-2/AM-loaded cells was measured by Till image system. The expression of Ca(2+)/calmodulin-dependent kinase II (CaMKII) and calcineurin (CaN) was measured by Western blot analysis. Our data demonstrated that LPS induced myocardial hypertrophy, promoted the secretion levels of TNF-α, and increased Ca(2+) transient level and the expression of CaMKII and CaN. Administration of melatonin 30 min prior to LPS stimulation dose-dependently attenuated myocardial hypertrophy. In conclusion, the results revealed that melatonin had the potential to protect against myocardial hypertrophy induced by LPS in vitro through downregulation of the TNF-α expression and retains the intracellular Ca(2+) homeostasis.

  16. Measurement of serum melatonin in intensive care unit patients: changes in traumatic brain injury, trauma and medical conditions

    Directory of Open Access Journals (Sweden)

    Marc A Seifman

    2014-11-01

    Full Text Available Melatonin is an endogenous hormone mainly produced by the pineal gland whose dysfunction leads to abnormal sleeping patterns. Changes in melatonin have been reported in acute traumatic brain injury (TBI, however the impact of environmental conditions typical of the intensive care unit (ICU has not been assessed. The aim of this study was to compare daily melatonin production in three patient populations treated at the ICU to differentiate the role of TBI versus ICU conditions. Forty-five patients were recruited and divided into severe TBI, trauma without TBI, medical conditions without trauma and compared to healthy volunteers. Serum melatonin levels were measured at four daily intervals at 0400h, 1000h, 1600h and 2200h for 7 days post-ICU admission by commercial ELISA. The geometric mean concentrations (95% confidence intervals of melatonin in these groups showed no difference being 8.3 (6.3-11.0, 9.3 (7.0-12.3 and 8.9 (6.6-11.9 pg/mL, respectively in TBI, trauma and intensive care cohorts. All of these patient groups demonstrated decreased melatonin concentrations when compared to control patients.This study suggests that TBI as well as ICU conditions, may have a role in the dysfunction of melatonin. Monitoring and possibly substituting melatonin acutely in these settings may assist in ameliorating longterm sleep dysfunction in all of these groups, and possibly contribute to reducing secondary brain injury in severe TBI.

  17. Melatonin releasing PLGA micro/nanoparticles and their effect on osteosarcoma cells.

    Science.gov (United States)

    Altındal, Damla Çetin; Gümüşderelioğlu, Menemşe

    2016-02-01

    Melatonin loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles and microparticles in the diameter of ∼200 nm and 3.5 μm, respectively, were prepared by emulsion-diffusion-evaporation method. Melatonin entrapment into the particles was significantly improved with the addition of 0.2% (w/v) melatonin into the aqueous phase and encapsulation efficiencies were found as 14 and 27% for nanoparticles and microparticles, respectively. At the end of 40 days, ∼70% of melatonin was released from both of particles, with high burst release. Both blank and melatonin loaded PLGA nanoparticles caused toxic effect on the MG-63 cells due to their uptake by the cells. However, when 0.05 mg microparticle that is carrying ∼1.7 μg melatonin was added to the cm(2) of culture, inhibitory effect of melatonin on the cells were obviously observed. The results would provide an expectation about the usage of melatonin as an adjunct to the routine chemotherapy of osteosarcoma by encapsulating it into a polymeric carrier system.

  18. Melatonin Effects in Methylphenidate Treated Children with Attention Deficit Hyperactivity Disorder: A Randomized Double Blind Clinical Trial

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mohammadi

    2012-06-01

    Full Text Available Objective: The aim of this study was to determine melatonin effects on sleep patterns, symptoms of hyperactivity and attention deficiency in children with attention-deficit hyperactivity disorder (ADHD.Methods: Children with age range of 7-12 years who had a combined form of ADHD were randomly divided in to 2 groups according to gender blocks. One group took melatonin (3 or 6mg combined with methylphenidate (Ritalin (1mg/kg, and the other group took placebo combined with methylphenidate (1mg/kg. ADHD rating scale and sleep patterns questionnaires were completed. Research hypotheses were assessed at the baseline, the second, fourth and eighth weeks after the treatment.Results: The mean sleep latency and total sleep disturbance scores were reduced in melatonin group, while the scores increased in the placebo group (p≥0.05. Data analysis, using ANOVA with repeated measures, did not show any statistically significant differences between the two groups in ADHD scores.Conclusion: Administration of melatonin along with methylphenidate can partially improve symptoms of sleep disturbance. However, it does not seem to reduce attention deficiency and hyperactivity behavior of children with ADHD.

  19. Melatonin suppresses acrolein-induced IL-8 production in human pulmonary fibroblasts.

    Science.gov (United States)

    Kim, Gun-Dong; Lee, Seung Eun; Kim, Tae-Ho; Jin, Young-Ho; Park, Yong Seek; Park, Cheung-Seog

    2012-04-01

    Cigarette smoke (CS) causes harmful alterations in the lungs and airway structures and functions that characterize chronic obstructive pulmonary disease (COPD). In addition to COPD, active cigarette smoking causes other respiratory diseases and diminishes health status. Furthermore, recent studies show that, α, β-unsaturated aldehyde acrolein in CS induces the production of interleukin (IL)-8, which is known to be related to bronchitis, rhinitis, pulmonary fibrosis, and asthma. In addition, lung and pulmonary fibroblasts secrete IL-8, which has a chemotactic effect on leukocytes, and which in turn, play a critical role in lung inflammation. On the other hand, melatonin regulates circadian rhythm homeostasis in humans and has many other effects, which include antioxidant and anti-inflammatory effects, as demonstrated by the reduced expressions of iNOS, IL-1β, and IL-6 and increased glutathione (GSH) and superoxide dismutase activities. In this study, we investigated whether melatonin suppresses acrolein-induced IL-8 secretion in human pulmonary fibroblasts (HPFs). It was found that acrolein-induced IL-8 production was accompanied by increased levels of phosphorylation of Akt and extracellular signal-regulated kinases (ERK1/2) in HPFs, and that melatonin suppressed IL-8 production in HPFs. These results suggest that melatonin suppresses acrolein-induced IL-8 production via ERK1/2 and phosphatidylinositol 3-kinase (PI3K)/Akt signal inhibition in HPFs. © 2011 John Wiley & Sons A/S.

  20. Melatonin protects against lead-induced hepatic and renal toxicity in male rats

    International Nuclear Information System (INIS)

    El-Sokkary, Gamal H.; Abdel-Rahman, Gamal H.; Kamel, Esam S.

    2005-01-01

    The present study was designed to investigate the potential protective effect of melatonin against the hepatic and renal toxicity of lead in male rats. Three groups of animals were used in this study (control, lead acetate-treated (100 mg/kg), and lead acetate plus melatonin (10 mg/kg) for 30 days. Levels of lipid peroxidation (LPO) products, superoxide dismutase (SOD) activity, total glutathione (GSH), histopathological changes in the liver and kidneys were investigated. In addition, nuclear area (NA), nuclear volume (NV) and the ratio of nuclear volume/cellular volume (N/C) were measured in the liver. The results revealed increased LPO and decreased SOD, GSH, NA, NV and N/C in the studied organs of lead-treated rats. Histopathological observations showed severe damage in the liver and kidneys. Melatonin co-treatment to the lead-administered rats attenuated the increase of LPO and restored the activity of SOD and levels of GSH as well as the mean values of NA, NV and N/C. Also, the morphological damage in the liver and kidneys was reduced and the tissues appeared like those of controls. The present study suggests that melatonin may be useful in combating free radical-induced damage due to lead toxicity

  1. Melatonin Inhibits Neural Cell Apoptosis and Promotes Locomotor Recovery via Activation of the Wnt/β-Catenin Signaling Pathway After Spinal Cord Injury.

    Science.gov (United States)

    Shen, Zhaoliang; Zhou, Zipeng; Gao, Shuang; Guo, Yue; Gao, Kai; Wang, Haoyu; Dang, Xiaoqian

    2017-08-01

    The spinal cord is highly sensitive to spinal cord injury (SCI) by external mechanical damage, resulting in irreversible neurological damage. Activation of the Wnt/β-catenin signaling pathway can effectively reduce apoptosis and protect against SCI. Melatonin, an indoleamine originally isolated from bovine pineal tissue, exerts neuroprotective effects after SCI through activation of the Wnt/β-catenin signaling pathway. In this study, we demonstrated that melatonin exhibited neuroprotective effects on neuronal apoptosis and supported functional recovery in a rat SCI model by activating the Wnt/β-catenin signaling pathway. We found that melatonin administration after SCI significantly upregulated the expression of low-density lipoprotein receptor related protein 6 phosphorylation (p-LRP-6), lymphoid enhancer factor-1 (LEF-1) and β-catenin protein in the spinal cord. Melatonin enhanced motor neuronal survival in the spinal cord ventral horn and improved the locomotor functions of rats after SCI. Melatonin administration after SCI also reduced the expression levels of Bax and cleaved caspase-3 in the spinal cord and the proportion of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) positive cells, but increased the expression level of Bcl-2. These results suggest that melatonin attenuated SCI by activating the Wnt/β-catenin signaling pathway.

  2. Effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells.

    Science.gov (United States)

    Shu, Tao; Wu, Tao; Pang, Mao; Liu, Chang; Wang, Xuan; Wang, Juan; Liu, Bin; Rong, Limin

    2016-06-03

    Melatonin, a lipophilic molecule mainly synthesized in the pineal gland, has properties of antioxidation, anti-inflammation, and antiapoptosis to improve neuroprotective functions. Here, we investigate effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells (iPSCs). iPSCs were induced into neural stem cells (NSCs), then further differentiated into neurons in medium with or without melatonin, melatonin receptor antagonist (Luzindole) or Phosphatidylinositide 3 kinase (PI3K) inhibitor (LY294002). Melatonin significantly promoted the number of neurospheres and cell viability. In addition, Melatonin markedly up-regulated gene and protein expression of Nestin and MAP2. However, Luzindole or LY294002 attenuated these increase. The expression of pAKT/AKT were increased by Melatonin, while Luzindole or LY294002 declined these melatonin-induced increase. These results suggest that melatonin significantly increased neural differentiation of iPSCs via activating PI3K/AKT signaling pathway through melatonin receptor. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. RNAi-mediated knockdown of MTNR1B without disrupting the effects of melatonin on apoptosis and cell cycle in bovine granulose cells

    Directory of Open Access Journals (Sweden)

    Wenju Liu

    2018-04-01

    Full Text Available Melatonin is well known as a powerful free radical scavenger and exhibits the ability to prevent cell apoptosis. In the present study, we investigated the role of melatonin and its receptor MTNR1B in regulating the function of bovine granulosa cells (GCs and hypothesized the involvement of MTNR1B in mediating the effect of melatonin on GCs. Our results showed that MTNR1B knockdown significantly promoted GCs apoptosis but did not affect the cell cycle. These results were further verified by increasing the expression of pro-apoptosis genes (BAX and CASP3, decreasing expression of the anti-apoptosis genes (BCL2 and BCL-XL and anti-oxidant genes (SOD1 and GPX4 without affecting cell cycle factors (CCND1, CCNE1 and CDKN1A and TP53. In addition, MTNR1B knockdown did not disrupt the effects of melatonin in suppressing the GCs apoptosis or blocking the cell cycle. Moreover, MTNR1B knockdown did not affect the role of melatonin in increasing BCL2, BCL-XL, and CDKN1A expression, or decreasing BAX, CASP3, TP53, CCND1 and CCNE1 expression. The expression of MTNR1A was upregulated after MTNR1B knockdown, and melatonin promoted MTNR1A expression with or without MTNR1B knockdown. However, despite melatonin supplementation, the expression of SOD1 and GPX4 was still suppressed after MTNR1B knockdown. In conclusion, these findings indicate that melatonin and MTNR1B are involved in BCL2 family and CASP3-dependent apoptotic pathways in bovine GCs. MTNR1A and MTNR1B may coordinate the work of medicating the appropriate melatonin responses to GCs.

  4. Effects of saliva collection using cotton swabs on melatonin enzyme immunoassay

    Directory of Open Access Journals (Sweden)

    Katsuura Tetsuo

    2011-01-01

    Full Text Available Abstract Background Although various acceptable and easy-to-use devices have been used for saliva collection, cotton swabs are among the most common ones. Previous studies reported that cotton swabs yield a lower level of melatonin detection. However, this statistical method is not adequate for detecting an agreement between cotton saliva collection and passive saliva collection, and a test for bias is needed. Furthermore, the effects of cotton swabs have not been examined at lower melatonin level, a level at which melatonin is used for assessment of circadian rhythms, namely dim light melatonin onset (DLMO. In the present study, we estimated the effect of cotton swabs on the results of salivary melatonin assay using the Bland-Altman plot at lower level. Methods Nine healthy males were recruited and each provided four saliva samples on a single day to yield a total of 36 samples. Saliva samples were directly collected in plastic tubes using plastic straws, and subsequently pipetted onto cotton swabs (cotton saliva collection and into clear sterile tubes (passive saliva collection. The melatonin levels were analyzed in duplicate using commercially available ELISA kits. Results The mean melatonin concentration in cotton saliva collection samples was significantly lower than that in passive saliva collection samples at higher melatonin level (>6 pg/mL. The Bland-Altman plot indicated that cotton swabs causes relative and proportional biases in the assay results. For lower melatonin level ( Conclusion Our findings indicate an interference effect of cotton swabs on the assay result of salivary melatonin at lower melatonin level. Cotton-based collection devices might, thus, not be suitable for assessment of DLMO.

  5. Efficacy and hypnotic effects of melatonin in shift-work nurses: double-blind, placebo-controlled crossover trial

    Directory of Open Access Journals (Sweden)

    Pouryaghoub Gholamreza

    2008-10-01

    Full Text Available Abstract Background Night work is associated with disturbed sleep and wakefulness, particularly in relation to the night shift. Circadian rhythm sleep disorders are characterized by complaints of insomnia and excessive daytime sleepiness that are primarily due to alterations in the internal circadian timing system or a misalignment between the timing of sleep and the 24-h social and physical environment. Methods We evaluated the effect of oral intake of 5 mg melatonin taken 30 minutes before night time sleep on insomnia parameters as well as subjective sleep onset latency, number of awakenings, and duration of sleep. A double-blind, randomized, placebo-controlled crossover study with periods of 1 night and washouts of 4 days comparing melatonin with placebo tablets was conducted. We tried to improve night-time sleep during recovery from night work. Participants were 86 shift-worker nurses aged 24 to 46 years. Each participant completed a questionnaire immediately after awakening. Results Sleep onset latency was significantly reduced while subjects were taking melatonin as compared with both placebo and baseline. There was no evidence that melatonin altered total sleep time (as compared with baseline total sleep time. No adverse effects of melatonin were noted during the treatment period. Conclusion Melatonin may be an effective treatment for shift workers with difficulty falling asleep.

  6. Melatonin may play a role in modulation of bax and bcl-2 expression levels to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis

    International Nuclear Information System (INIS)

    Mohseni, Mehran; Mihandoost, Ehsan; Shirazi, Alireza; Sepehrizadeh, Zargham; Bazzaz, Javad Tavakkoly; Ghazi-khansari, Mahmoud

    2012-01-01

    The close relationship between free radicals effects and apoptosis process has been proved. Melatonin has been reported as a direct free radical scavenger. We investigated the capability of melatonin in the modification of radiation-induced apoptosis and apoptosis-associated upstream regulators expression in rat peripheral blood lymphocytes. Rats were irradiated with a single whole body Cobalt 60-gamma radiation dose of 8 Gy at a dose rate of 101 cGy/min with or without melatonin pretreatments at different concentrations of 10 and 100 mg/kg body weight. The rats were divided into eight groups of control, irradiation-only, vehicle-only, vehicle plus irradiation, 10 mg/kg melatonin alone, 10 mg/kg melatonin plus irradiation, 100 mg/kg melatonin alone and 100 mg/kg melatonin plus irradiation. Rats were given an intraperitoneal (IP) injection of melatonin or the same volume of vehicle alone 1 h prior to irradiation. Blood samples were taken 4, 24, 48 and 72 h after irradiation for evaluation of flow cytometric analysis of apoptotic lymphocytes using Annexin V/PI assay and measurement of bax and bcl-2 expression using quantitative real-time PCR (RT 2 qPCR). Irradiation-only and vehicle plus irradiation showed an increase in the percentage of apoptotic lymphocytes significantly different from control group (P < 0.01), while melatonin pretreatments in a dose-dependent manner reduced it as compared with the irradiation-only and vehicle plus irradiation groups (P < 0.01) in all time points. This reduced apoptosis by melatonin was related to the downregulation of bax, upregulation of bcl-2, and therefore reduction of bax/bcl-2 ratio. Our results suggest that melatonin in these doses may provide modulation of bax and bcl-2 expression as well as bax/bcl-2 ratio to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis.

  7. Melatonin may play a role in modulation of bax and bcl-2 expression levels to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni, Mehran [Department of Radiology and Medical Physics, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan (Iran, Islamic Republic of); Mihandoost, Ehsan, E-mail: mihandoost.e@gmail.com [Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Shirazi, Alireza [Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sepehrizadeh, Zargham [Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Bazzaz, Javad Tavakkoly [Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ghazi-khansari, Mahmoud [Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2012-10-15

    The close relationship between free radicals effects and apoptosis process has been proved. Melatonin has been reported as a direct free radical scavenger. We investigated the capability of melatonin in the modification of radiation-induced apoptosis and apoptosis-associated upstream regulators expression in rat peripheral blood lymphocytes. Rats were irradiated with a single whole body Cobalt 60-gamma radiation dose of 8 Gy at a dose rate of 101 cGy/min with or without melatonin pretreatments at different concentrations of 10 and 100 mg/kg body weight. The rats were divided into eight groups of control, irradiation-only, vehicle-only, vehicle plus irradiation, 10 mg/kg melatonin alone, 10 mg/kg melatonin plus irradiation, 100 mg/kg melatonin alone and 100 mg/kg melatonin plus irradiation. Rats were given an intraperitoneal (IP) injection of melatonin or the same volume of vehicle alone 1 h prior to irradiation. Blood samples were taken 4, 24, 48 and 72 h after irradiation for evaluation of flow cytometric analysis of apoptotic lymphocytes using Annexin V/PI assay and measurement of bax and bcl-2 expression using quantitative real-time PCR (RT{sup 2}qPCR). Irradiation-only and vehicle plus irradiation showed an increase in the percentage of apoptotic lymphocytes significantly different from control group (P < 0.01), while melatonin pretreatments in a dose-dependent manner reduced it as compared with the irradiation-only and vehicle plus irradiation groups (P < 0.01) in all time points. This reduced apoptosis by melatonin was related to the downregulation of bax, upregulation of bcl-2, and therefore reduction of bax/bcl-2 ratio. Our results suggest that melatonin in these doses may provide modulation of bax and bcl-2 expression as well as bax/bcl-2 ratio to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis.

  8. Melatonin as an angiogenesis inhibitor to combat cancer: Mechanistic evidence.

    Science.gov (United States)

    Goradel, Nasser Hashemi; Asghari, Mohammad Hossein; Moloudizargari, Milad; Negahdari, Babak; Haghi-Aminjan, Hamed; Abdollahi, Mohammad

    2017-11-15

    Melatonin, a pineal indolamine, participates in different body functions and is shown to possess diverse biological activities such as anti-tumor action. Angiogenesis inhibition is one of the mechanisms by which melatonin exerts its oncostatic effects. Increased angiogenesis is a major feature of tumor progression, thus angiogenesis inhibition is a critical step in cancer therapy. Melatonin employs a variety of mechanisms to target nutrients and oxygen supply to cancer cells. At the transcriptional level, hypoxia induced factor-1α (HIF-1α) and the genes under its control, such as vascular endothelial growth factor (VEGF) are the main targets of melatonin for inhibition of angiogenesis. Melatonin prevents translocation of HIF-1α into the nucleus thereby hindering VEGF expression and also prevents the formation of HIF-1α, phospho-STAT3 and CBP/p300 complex which is involved in the expression of angiogenesis-related genes. Angiostatic properties of melatonin could be also due to its ability to inhibit VEGFR2's activation and expression. Other angiostatic mechanisms of melatonin include the inhibition of endothelial cell migration, invasion, and tube formation. In the present study, we have reviewed the molecular anti-angiogenesis pathways mediated by melatonin and the responsible mechanisms in various types of cancers both in vitro and in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis.

    Science.gov (United States)

    Gu, Quan; Chen, Ziping; Yu, Xiuli; Cui, Weiti; Pan, Jincheng; Zhao, Gan; Xu, Sheng; Wang, Ren; Shen, Wenbiao

    2017-08-01

    Although melatonin-alleviated cadmium (Cd) toxicity both in animals and plants have been well studied, little is known about its regulatory mechanisms in plants. Here, we discovered that Cd stress stimulated the production of endogenous melatonin in alfalfa seedling root tissues. The pretreatment with exogenous melatonin not only increased melatonin content, but also alleviated Cd-induced seedling growth inhibition. The melatonin-rich transgenic Arabidopsis plants overexpressing alfalfa SNAT (a melatonin synthetic gene) exhibited more tolerance than wild-type plants under Cd conditions. Cd content was also reduced in root tissues. In comparison with Cd stress alone, ABC transporter and PCR2 transcripts in alfalfa seedlings, PDR8 and HMA4 in Arabidopsis, were up-regulated by melatonin. By contrast, Nramp6 transcripts were down-regulated. Changes in above transporters were correlated with the less accumulation of Cd. Additionally Cd-triggered redox imbalance was improved by melatonin. These could be supported by the changes of the Cu/Zn Superoxide Dismutase gene regulated by miR398a and miR398b. Histochemical staining, laser scanning confocal microscope, and H 2 O 2 contents analyses showed the similar tendencies. Taking together, we clearly suggested that melatonin enhanced Cd tolerance via decreasing cadmium accumulation and reestablishing the microRNAs-mediated redox homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Protecting the Melatonin Rhythm through Circadian Healthy Light Exposure

    Directory of Open Access Journals (Sweden)

    Maria Angeles Bonmati-Carrion

    2014-12-01

    Full Text Available Currently, in developed countries, nights are excessively illuminated (light at night, whereas daytime is mainly spent indoors, and thus people are exposed to much lower light intensities than under natural conditions. In spite of the positive impact of artificial light, we pay a price for the easy access to light during the night: disorganization of our circadian system or chronodisruption (CD, including perturbations in melatonin rhythm. Epidemiological studies show that CD is associated with an increased incidence of diabetes, obesity, heart disease, cognitive and affective impairment, premature aging and some types of cancer. Knowledge of retinal photoreceptors and the discovery of melanopsin in some ganglion cells demonstrate that light intensity, timing and spectrum must be considered to keep the biological clock properly entrained. Importantly, not all wavelengths of light are equally chronodisrupting. Blue light, which is particularly beneficial during the daytime, seems to be more disruptive at night, and induces the strongest melatonin inhibition. Nocturnal blue light exposure is currently increasing, due to the proliferation of energy-efficient lighting (LEDs and electronic devices. Thus, the development of lighting systems that preserve the melatonin rhythm could reduce the health risks induced by chronodisruption. This review addresses the state of the art regarding the crosstalk between light and the circadian system.

  11. Exogenous melatonin administration is beneficial for male ...

    African Journals Online (AJOL)

    ABSTRACT. Background: A concern in the use of exogenous melatonin as a therapeutic intervention is that it may interfere with reproductive function. Herein, we report that chronic exogenous melatonin administration does not impair male reproductive function during ageing and at old age in male Sprague Dawley rats.

  12. Melatonin potentiates the anticonvulsant action of phenobarbital in neonatal rats.

    Science.gov (United States)

    Forcelli, Patrick A; Soper, Colin; Duckles, Anne; Gale, Karen; Kondratyev, Alexei

    2013-12-01

    Phenobarbital is the most commonly utilized drug for neonatal seizures. However, questions regarding safety and efficacy of this drug make it particularly compelling to identify adjunct therapies that could boost therapeutic benefit. One potential adjunct therapy is melatonin. Melatonin is used clinically in neonatal and pediatric populations, and moreover, it exerts anticonvulsant actions in adult rats. However, it has not been previously evaluated for anticonvulsant effects in neonatal rats. Here, we tested the hypothesis that melatonin would exert anticonvulsant effects, either alone, or in combination with phenobarbital. Postnatal day (P)7 rats were treated with phenobarbital (0-40mg/kg) and/or melatonin (0-80mg/kg) prior to chemoconvulsant challenge with pentylenetetrazole (100mg/kg). We found that melatonin significantly potentiated the anticonvulsant efficacy of phenobarbital, but did not exert anticonvulsant effects on its own. These data provide additional evidence for the further examination of melatonin as an adjunct therapy in neonatal/pediatric epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Melatonin Protects Cultured Tobacco Cells against Lead-Induced Cell Death via Inhibition of Cytochrome c Translocation

    Directory of Open Access Journals (Sweden)

    Agnieszka Kobylińska

    2017-09-01

    Full Text Available Melatonin was discovered in plants more than two decades ago and, especially in the last decade, it has captured the interests of plant biologists. Beyond its possible participation in photoperiod processes and its role as a direct free radical scavenger as well as an indirect antioxidant, melatonin is also involved in plant defense strategies/reactions. However, the mechanisms that this indoleamine activates to improve plant stress tolerance still require identification and clarification. In the present report, the ability of exogenous melatonin to protect Nicotiana tabacum L. line Bright Yellow 2 (BY-2 suspension cells against the toxic exposure to lead was examined. Studies related to cell proliferation and viability, DNA fragmentation, possible translocation of cytochrome c from mitochondria to cytosol, cell morphology after fluorescence staining and also the in situ accumulation of superoxide radicals measured via the nitro blue tetrazolium reducing test, were conducted. This work establishes a novel finding by correcting the inhibition of release of mitochondrial ctytocrome c in to the cytoplasm with the high accumulation of superoxide radicals. The results show that pretreatment with 200 nm of melatonin protected tobacco cells from DNA damage caused by lead. Melatonin, as an efficacious antioxidant, limited superoxide radical accumulation as well as cytochrome c release thereby, it likely prevents the activation of the cascade of processes leading to cell death. Fluorescence staining with acridine orange and ethidium bromide documented that lead-stressed cells additionally treated with melatonin displayed intact nuclei. The results revealed that melatonin at proper dosage could significantly increase BY-2 cell proliferation and protected them against death. It was proved that melatonin could function as an effective priming agent to promote survival of tobacco cells under harmful lead-induced stress conditions.

  14. Melatonin Protects Cultured Tobacco Cells against Lead-Induced Cell Death via Inhibition of Cytochrome c Translocation

    Science.gov (United States)

    Kobylińska, Agnieszka; Reiter, Russel J.; Posmyk, Malgorzata M.

    2017-01-01

    Melatonin was discovered in plants more than two decades ago and, especially in the last decade, it has captured the interests of plant biologists. Beyond its possible participation in photoperiod processes and its role as a direct free radical scavenger as well as an indirect antioxidant, melatonin is also involved in plant defense strategies/reactions. However, the mechanisms that this indoleamine activates to improve plant stress tolerance still require identification and clarification. In the present report, the ability of exogenous melatonin to protect Nicotiana tabacum L. line Bright Yellow 2 (BY-2) suspension cells against the toxic exposure to lead was examined. Studies related to cell proliferation and viability, DNA fragmentation, possible translocation of cytochrome c from mitochondria to cytosol, cell morphology after fluorescence staining and also the in situ accumulation of superoxide radicals measured via the nitro blue tetrazolium reducing test, were conducted. This work establishes a novel finding by correcting the inhibition of release of mitochondrial ctytocrome c in to the cytoplasm with the high accumulation of superoxide radicals. The results show that pretreatment with 200 nm of melatonin protected tobacco cells from DNA damage caused by lead. Melatonin, as an efficacious antioxidant, limited superoxide radical accumulation as well as cytochrome c release thereby, it likely prevents the activation of the cascade of processes leading to cell death. Fluorescence staining with acridine orange and ethidium bromide documented that lead-stressed cells additionally treated with melatonin displayed intact nuclei. The results revealed that melatonin at proper dosage could significantly increase BY-2 cell proliferation and protected them against death. It was proved that melatonin could function as an effective priming agent to promote survival of tobacco cells under harmful lead-induced stress conditions. PMID:28959267

  15. Endotoxin-Induced Inflammation Suppresses the Effect of Melatonin on the Release of LH from the Ovine Pars Tuberalis Explants—Ex Vivo Study

    Directory of Open Access Journals (Sweden)

    Karolina Wojtulewicz

    2017-11-01

    Full Text Available The secretion of the hormone melatonin reliably reflects environmental light conditions. Among numerous actions, in seasonal breeders, melatonin may regulate the secretion of the gonadotropins acting via its corresponding receptors occurring in the Pars Tuberalis (PT. However, it was previously found that the secretory activity of the pituitary may be dependent on the immune status of the animal. Therefore, this study was designed to determine the role of melatonin in the modulation of luteinizing hormone (LH secretion from the PT explants collected from saline- and endotoxin-treated ewes in the follicular phase of the oestrous cycle. Twelve Blackhead ewes were sacrificed 3 h after injection with lipopolysaccharide (LPS; 400 ng/kg or saline, and the PTs were collected. Each PT was cut into 4 explants, which were then divided into 4 groups: I, incubated with ‘pure’ medium 199; II, treated with gonadotropin-releasing hormone (GnRH (100 pg/mL; III, treated with melatonin (10 nmol/mL; and IV, incubated with GnRH and melatonin. Melatonin reduced (p < 0.05 GnRH-induced secretion of LH only in the PT from saline-treated ewes. Explants collected from LPS-treated ewes were characterized by lower (p < 0.05 GnRH-dependent response in LH release. It was also found that inflammation reduced the gene expression of the GnRH receptor and the MT1 melatonin receptors in the PT. Therefore, it was shown that inflammation affects the melatonin action on LH secretion from the PT, which may be one of the mechanisms via which immune/inflammatory challenges disturb reproduction processes in animals.

  16. Effects of saliva collection using cotton swabs on melatonin enzyme immunoassay.

    Science.gov (United States)

    Kozaki, Tomoaki; Lee, Soomin; Nishimura, Takayuki; Katsuura, Tetsuo; Yasukouchi, Akira

    2011-01-10

    Although various acceptable and easy-to-use devices have been used for saliva collection, cotton swabs are among the most common ones. Previous studies reported that cotton swabs yield a lower level of melatonin detection. However, this statistical method is not adequate for detecting an agreement between cotton saliva collection and passive saliva collection, and a test for bias is needed. Furthermore, the effects of cotton swabs have not been examined at lower melatonin level, a level at which melatonin is used for assessment of circadian rhythms, namely dim light melatonin onset (DLMO). In the present study, we estimated the effect of cotton swabs on the results of salivary melatonin assay using the Bland-Altman plot at lower level. Nine healthy males were recruited and each provided four saliva samples on a single day to yield a total of 36 samples. Saliva samples were directly collected in plastic tubes using plastic straws, and subsequently pipetted onto cotton swabs (cotton saliva collection) and into clear sterile tubes (passive saliva collection). The melatonin levels were analyzed in duplicate using commercially available ELISA kits. The mean melatonin concentration in cotton saliva collection samples was significantly lower than that in passive saliva collection samples at higher melatonin level (>6 pg/mL). The Bland-Altman plot indicated that cotton swabs causes relative and proportional biases in the assay results. For lower melatonin level (<6 pg/mL), although the BA plots didn't show proportional and relative biases, there was no significant correlation between passive and cotton saliva collection samples. Our findings indicate an interference effect of cotton swabs on the assay result of salivary melatonin at lower melatonin level. Cotton-based collection devices might, thus, not be suitable for assessment of DLMO.

  17. Effect of melatonin on in vitro maturation of bovine oocytes ...

    African Journals Online (AJOL)

    ... Vs 17.67, 15.68, 16.53). In conclusion in this experiment, melatonin cannot improve cumulus cell expansion and nuclear maturation of bovine oocytes. When concentrations is high, melatonin may affect bovine oocytes meiotic maturation at metaphase-1 stage, but it is improbable melatonin be toxic for bovine oocytes.

  18. Exogenous melatonin administration is beneficial for male ...

    African Journals Online (AJOL)

    Background: A concern in the use of exogenous melatonin as a therapeutic intervention is that it may interfere with reproductive function. Herein, we report that chronic exogenous melatonin administration does not impair male reproductive function during ageing and at old age in male Sprague Dawley rats. Methods: ...

  19. Presence of melatonin in various cat brainstem nuclei determined by radioimmunoassay

    International Nuclear Information System (INIS)

    Sallanon, M.; Touret, M.; Claustrat, B.

    1982-01-01

    Microdissected samples of juvenile cat brain tissue were assayed for melatonin content using a double antibody radioimmunoassay. Immunoreactive melatonin was consistently detected, albeit in variable amounts, in pineal, habenula, the region of the nucleus gracilis, gigantocellular reticular formation of the pons and medulla oblongata. Among the negative areas were raphe nuclei, substantia nigra dn locus caeruleus. These findings suggest that melatonin may play a role in some structures of the central nervous system outside the pineal-hypothalamo-pituitary axis. This immunoreactive melatonin could reflect a local synthesis, or a tissular uptake of melatonin from blood or cerebrospinal fluid. (author)

  20. MECHANISMS OF MELATONIN EFFECTS UPON IMMUNE STATE IN EXPERIMENTAL DESYNCHRONOSES PRODUCED UNDER THE LED ILLUMINATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    M. V. Osikov

    2015-01-01

    Full Text Available Disorders of immune state in desynchronosis may be associated with reduced concentrations of melatonin in blood, thus being a prerequisite for pharmacological correction of appropriate homeostatic changes. The purpose of this work was to explore some mechanisms of exogenous melatonin actions upon parameters of innate and adaptive immunity in experimental model of desynchronosis under the conditions of LED illumination. The study was performed with 196 adult guinea pigs. Light desynchronosis was produced by day-and-night illumination of the animals having been continued for 30 days. Melatonin was administered applied per os daily at the total dose of 30 mg/kg. A solution of melatonin in isotonic NaCl solution was prepared from the Melaxen drug (INN: melatonin, “Unipharm Inc.,” USA ex tempore. To study innate immunity of blood cells, we determined leukocyte numbers, WBC differential counts, and functional activity of phagocytes, as spontaneous and induced NBT test, as well as engulfment of polystyrene latex particles. Th1-specific immune response was studied according to degree of delayed type hypersensitivity reaction; Th2-dependent response was assessed as the numbers of antibody-forming cells in the spleen of the animals after immunization with allogeneic erythrocytes. Serum concentrations of interleukin 4 (IL-4, interferon-gamma (IFNγ, melatonin, and cortisol were measured by enzyme immunoassay, using the “Immulayt 2000” (USA with guinea pigspecific test systems. It was found that experimental desynchronosis was associated with leukocytosis, lymphoand monocytopenia, activation of oxygen-dependent metabolism of blood phagocytes, suppression of Th1-and Th2-dependent immune response. Desynchronosis was also accompanied by decreased concentrations of serum melatonin, IFNγ and IL-4, along with increased cortisol concentrations. Reduced IFNγ and IL-4 amounts was associated with decreased melatonin concentrations

  1. Impaired endogenous nighttime melatonin secretion relates to intrarenal renin-angiotensin system activation and renal damage in patients with chronic kidney disease.

    Science.gov (United States)

    Ishigaki, Sayaka; Ohashi, Naro; Isobe, Shinsuke; Tsuji, Naoko; Iwakura, Takamasa; Ono, Masafumi; Sakao, Yukitoshi; Tsuji, Takayuki; Kato, Akihiko; Miyajima, Hiroaki; Yasuda, Hideo

    2016-12-01

    Activation of the intrarenal renin-angiotensin system (RAS) plays a critical role in the pathophysiology of chronic kidney disease (CKD) and hypertension. The circadian rhythm of intrarenal RAS activation leads to renal damage and hypertension, which are associated with diurnal blood pressure (BP) variation. The activation of intrarenal RAS following reactive oxygen species (ROS) activation, sympathetic hyperactivity and nitric oxide (NO) inhibition leads to the development of renal damage. Melatonin is a hormone regulating the circadian rhythm, and has multiple functions such as anti-oxidant and anti-adrenergic effects and enhancement of NO bioavailability. Nocturnal melatonin concentrations are lower in CKD patients. However, it is not known if impaired endogenous melatonin secretion is related to BP, intrarenal RAS, or renal damage in CKD patients. We recruited 53 CKD patients and conducted 24-h ambulatory BP monitoring. urine was collected during the daytime and nighttime. We investigated the relationship among the melatonin metabolite urinary 6-sulphatoxymelatonin (U-aMT6s), BP, renal function, urinary angiotensinogen (U-AGT), and urinary albumin (U-Alb). Patients' U-aMT6s levels were significantly and negatively correlated with clinical parameters such as renal function, systolic BP, U-AGT, and U-Alb, during both day and night. Multiple regression analyses for U-aMT6s levels were performed using age, gender, renal function, and each parameter (BPs, U-AGT or U-Alb), at daytime and nighttime. U-aMT6s levels were significantly associated with U-AGT (β = -0.31, p = 0.044) and U-Alb (β = -0.25, p = 0.025) only at night. Impaired nighttime melatonin secretion may be associated with nighttime intrarenal RAS activation and renal damage in CKD patients.

  2. Melatonin and breast cancer: Evidences from preclinical and human studies.

    Science.gov (United States)

    Kubatka, Peter; Zubor, Pavol; Busselberg, Dietrich; Kwon, Taeg Kyu; Adamek, Mariusz; Petrovic, Daniel; Opatrilova, Radka; Gazdikova, Katarina; Caprnda, Martin; Rodrigo, Luis; Danko, Jan; Kruzliak, Peter

    2018-02-01

    The breast cancer affects women with high mortality and morbidity worldwide. The risk is highest in the most developed world but also is markedly rising in the developing countries. It is well documented that melatonin has a significant anti-tumor activities demonstrated on various cancer types in a plethora of preclinical studies. In breast cancer, melatonin is capable to disrupt estrogen-dependent cell signaling, resulting in a reduction of estrogen-stimulated cells, moreover, it's obvious neuro-immunomodulatory effect in organism was described. Several prospective studies have demonstrated the inverse correlation between melatonin metabolites and the risk of breast cancer. This correlation was confirmed by observational studies that found lower melatonin levels in breast cancer patients. Moreover, clinical studies have showed that circadian disruption of melatonin synthesis, specifically night shift work, is linked to increased breast cancer risk. In this regard, proper light/dark exposure with more selective use of light at night along with oral supplementation of melatonin may have benefits for high-risk women. The results of current preclinical studies, the mechanism of action, and clinical efficacy of melatonin in breast cancer are reviewed in this paper. Melatonin alone or in combined administration seems to be appropriate drug for the treatment of early stages of breast cancer with documented low toxicity over a wide range of doses. These and other issues are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Thermal properties of graphite oxide, thermally reduced graphene and chemically reduced graphene

    Science.gov (United States)

    Jankovský, Ondřej; Sedmidubský, David; Lojka, Michal; Sofer, Zdeněk

    2017-07-01

    We compared thermal behavior and other properties of graphite oxide, thermally reduced graphene and chemically reduced graphene. Graphite was oxidized according to the Hofmann method using potassium chlorate as oxidizing agent in strongly acidic environment. In the next step, the formed graphite oxide was chemically or thermally reduced yielding graphene. The mechanism of thermal reduction was studied using STA-MS. Graphite oxide and both thermally and chemically reduced graphenes were analysed by SEM, EDS, elemental combustion analysis, XPS, Raman spectroscopy, XRD and BET. These findings will help for the large scale production of graphene with appropriate chemical composition.

  4. Effects of Melatonin and Epiphyseal Proteins on Fluoride-Induced Adverse Changes in Antioxidant Status of Heart, Liver, and Kidney of Rats

    Directory of Open Access Journals (Sweden)

    Vijay K. Bharti

    2014-01-01

    Full Text Available Several experimental and clinical reports indicated the oxidative stress-mediated adverse changes in vital organs of human and animal in fluoride (F toxicity. Therefore, the present study was undertaken to evaluate the therapeutic effect of buffalo (Bubalus bubalis epiphyseal (pineal proteins (BEP and melatonin (MEL against F-induced oxidative stress in heart, liver, and kidney of experimental adult female rats. To accomplish this experimental objective, twenty-four adult female Wistar rats (123–143 g body weights were divided into four groups, namely, control, F, F + BEP, and F + MEL and were administered sodium fluoride (NaF, 150 ppm elemental F in drinking water, MEL (10 mg/kg BW, i.p., and BEP (100 µg/kg BW, i.p. for 28 days. There were significantly P<0.05 high levels of lipid peroxidation and catalase and low levels of reduced glutathione, superoxide dismutase, glutathione reductase, and glutathione peroxidase in cardiac, hepatic, and renal tissues of F-treated rats. Administration of BEP and MEL in F-treated rats, however, significantly P<0.05 attenuated these adverse changes in all the target components of antioxidant defense system of cardiac, hepatic, and renal tissues. The present data suggest that F can induce oxidative stress in liver, heart, and kidney of female rats which may be a mechanism in F toxicity and these adverse effects can be ameliorated by buffalo (Bubalus bubalis epiphyseal proteins and melatonin by upregulation of antioxidant defense system of heart, liver, and kidney of rats.

  5. The effect of the melatonin on cryopreserved mouse testicular cells

    Directory of Open Access Journals (Sweden)

    Ghasem Saki

    2016-01-01

    Full Text Available Background: After improvements in various cancer treatments, life expectancy has been raised, but success in treatment causes loss of fertility in many of the survived young men. Cryopreservation of immature testicular tissues or cells introduced as the only way to preserve fertility. However, freezing has some harmful effects. Melatonin, a pineal gland hormone, has receptors in reproductive systems of different species. It is assumed that melatonin has free radical scavenger properties. Objective: The aim of this study was to evaluate the effects of melatonin on the cryopreserved testicular cells in mouse. Materials and Methods: Cells from 7- 10 days old NMRI mice testes were isolated using two step enzymatic digestion. The testicular cells were divided into two groups randomly and cryopreserved in two different freezing media with and without the addition of 100 μm melatonin. Finally, apoptosis of the cells was assayed by flow cytometry. Also, lactate dehydrogenase activity test was performed to assess the cytotoxicity. Results: The results of lactate dehydrogenase showed the nearly cytotoxic effect of melatonin. The results of flow cytometry showed increase in apoptosis in the cryopreserved cells in the media containing melatonin compared to the control group. Conclusion: The present study shows that melatonin has an apoptotic effect on cryopreserved mouse testicular cells.

  6. Melatonin prevents neural tube defects in the offspring of diabetic pregnancy.

    Science.gov (United States)

    Liu, Shangming; Guo, Yuji; Yuan, Qiuhuan; Pan, Yan; Wang, Liyan; Liu, Qian; Wang, Fuwu; Wang, Jingjing; Hao, Aijun

    2015-11-01

    Melatonin, an endogenous neurohormone secreted by the pineal gland, has a variety of physiological functions and neuroprotective effects. However, its protective role on the neural tube defects (NTDs) was not very clear. The aim of this study was to investigate the effects of melatonin on the incidence of NTDs (including anencephaly, encephalocele, and spina bifida) of offspring from diabetic pregnant mice as well as its underlying mechanisms. Pregnant mice were given 10 mg/kg melatonin by daily i.p. injection from embryonic day (E) 0.5 until being killed on E11.5. Here, we showed that melatonin decreased the NTDs (especially exencephaly) rate of embryos exposed to maternal diabetes. Melatonin stimulated proliferation of neural stem cells (NSCs) under hyperglycemic condition through the extracellular regulated protein kinases (ERK) pathway. Furthermore, as a direct free radical scavenger, melatonin decreased apoptosis of NSCs exposed to hyperglycemia. In the light of these findings, it suggests that melatonin supplementation may play an important role in the prevention of neural malformations in diabetic pregnancy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Melatonin in sleepless children : everything has a rhythm?

    NARCIS (Netherlands)

    van Geijlswijk, I.M.

    2011-01-01

    Every living organism has an biological clock regulating endogenous melatonin production, synchronized by exogenous impulses like daylight, temperature and feeding. Inappropriately applied bright light disturbs this melatonin rhythm. Some large swine producers apply artificial light three times a

  8. Melatonin Improves the Photosynthetic Apparatus in Pea Leaves Stressed by Paraquat via Chlorophyll Breakdown Regulation and Its Accelerated de novo Synthesis

    Directory of Open Access Journals (Sweden)

    Katarzyna Szafrańska

    2017-05-01

    Full Text Available The positive effect of melatonin on the function of the photosynthetic apparatus is known, but little is known about the specific mechanisms of melatonin's action in plants. The influence of melatonin on chlorophyll metabolism of 24-day-old Pisum sativum L. seedlings during paraquat (PQ-induced oxidative stress was investigated in this study. Seeds were hydro-primed with water (H, 50 and 200 μM melatonin/water solutions (H-MEL50, H-MEL200, while non-primed seeds were used as controls (C. Increases in chlorophyllase activity (key enzyme in chlorophyll degradation and 5-aminolevulinic acid contents (the first compound in the porphyrin synthesis pathway were observed in H-MEL50 and H-MEL200 leaf disks. This suggests that melatonin may accelerate damaged chlorophyll breakdown and its de novo synthesis during the first hours of PQ treatment. Elevated level of pheophytin in control leaf disks following 24 h of PQ incubation probably was associated with an enhanced rate of chlorophyll degradation through formation of pheophytin as a chlorophyll derivative. This validates the hypothesis that chlorophyllide, considered for many years, as a first intermediate of chlorophyll breakdown is not. This is indicated by the almost unchanged chlorophyll to chlorophyllide ratio after 24 h of PQ treatment. However, prolonged effects of PQ-induced stress (48 h revealed extensive discolouration of control and water-treated leaf disks, while melatonin treatment alleviated PQ-induced photobleaching. Also the ratio of chlorophyll to chlorophyllide and porphyrin contents were significantly higher in plants treated with melatonin, which may indicate that this indoleamine both retards chlorophyll breakdown and stimulates its de novo synthesis during extended stress. We concluded that melatonin added into the seeds enhances the ability of pea seedlings to accelerate chlorophyll breakdown and its de novo synthesis before stress appeared and for several hours after, while

  9. Role of Melatonin in Cell-Wall Disassembly and Chilling Tolerance in Cold-Stored Peach Fruit.

    Science.gov (United States)

    Cao, Shifeng; Bian, Kun; Shi, Liyu; Chung, Hsiao-Hang; Chen, Wei; Yang, Zhenfeng

    2018-06-06

    Melatonin reportedly increases chilling tolerance in postharvest peach fruit during cold storage, but information on its effects on cell-wall disassembly in chilling-injured peaches is limited. In this study, we investigated the role of cell-wall depolymerization in chilling-tolerance induction in melatonin-treated peaches. Treatment with 100 μM melatonin alleviated chilling symptoms (mealiness) characterized by a decrease in fruit firmness and increase in juice extractability in treated peaches during storage. The loss of neutral sugars, such as arabinose and galactose, in both the 1,2-cyclohexylenedinitrilotetraacetic acid (CDTA)- and Na 2 CO 3 -soluble fractions was observed at 7 days in treated peaches, but the contents increased after 28 days of storage. Atomic-force-microscopy (AFM) analysis revealed that the polysaccharide widths in the CDTA- and Na 2 CO 3 -soluble fractions in the treated fruit were mainly distributed in a shorter range, as compared with those in the control fruit. In addition, the expression profiles of a series of cell-wall-related genes showed that melatonin treatment maintained the balance between transcripts of PpPME and PpPG, which accompany the up-regulation of several other genes involved in cell-wall disassembly. Taken together, our results suggested that the reduced mealiness by melatonin was probably associated with its positive regulation of numerous cell-wall-modifying enzymes and proteins; thus, the depolymerization of the cell-wall polysaccharides in the peaches treated with melatonin was maintained, and the treated fruit could soften gradually during cold storage.

  10. The effect of melatonin on sleep quality after laparoscopic cholecystectomy: a randomized, placebo-controlled trial

    DEFF Research Database (Denmark)

    Gögenur, Ismail; Kücükakin, Bülent; Bisgaard, Thue

    2009-01-01

    = 60) or placebo (n = 61) for 3 nights after surgery. Subjective sleep quality, sleep duration, sleep timing, and subjective discomfort (fatigue, general well-being, and pain) were measured. RESULTS: Sleep latency was significantly reduced in the melatonin group (mean [sd] 14 min [18]) compared...... with placebo (28 min [41]) on the first postoperative night (P = 0.015). The rest of the measured outcome variables did not differ between groups. CONCLUSIONS: Melatonin did not improve subjective sleep quality or discomfort compared with placebo after laparoscopic cholecystectomy....

  11. Effects of melatonin administration on embryo implantation and offspring growth in mice under different schedules of photoperiodic exposure.

    Science.gov (United States)

    Zhang, Lu; Zhang, Zhenzhen; Wang, Feng; Tian, Xiuzhi; Ji, Pengyun; Liu, Guoshi

    2017-10-02

    Embryo implantation is crucial for animal reproduction. Unsuccessful embryo implantation leads to pregnancy failure, especially in human-assisted conception. Environmental factors have a profound impact on embryo implantation. Because people are being exposed to more light at night, the influence of long-term light exposure on embryo implantation should be explored. The effects of long photoperiodic exposure and melatonin on embryo implantation and offspring growth were examined. Long photoperiodic exposure (18:6 h light:dark) was selected to resemble light pollution. Melatonin (10 -2 , 10 -3 , 10 -4 , 10 -5  M) was added to the drinking water of mice starting at Day 1 (vaginal plugs) until delivery. Melatonin treatment (10 -4 ,10 -5  M) significantly increased litter sizes compared to untreated controls (12.9 ± 0.40 and 12.2 ± 1.01 vs. 11.5 ± 0.43; P melatonin (10 -4  M) was selected for further investigation. No remarkable differences were found between melatonin-treated mice and controls in terms of the pups' birth weights, weaning survival rates, and weaning weights. Long photoperiodic exposure significantly reduced the number of implantation sites in treated mice compared to controls (light/dark, 12/12 h), and melatonin rescued this negative effect. Mechanistic studies revealed that melatonin enhanced the serum 17β-estradiol (E 2 ) levels in the pregnant mice and upregulated the expression of the receptors MT1 and MT2 and p53 in uterine tissue. All of these factors may contribute to the beneficial effects of melatonin on embryo implantation in mice. Melatonin treatment was associated with beneficial effects in pregnant mice, especially those subjected to long photoperiodic exposure. This was achieved by enhanced embryo implantation. At the molecular level, melatonin administration probably increases the E 2 level during pregnancy and upregulates p53 expression by activating MT1/2 in the uterus. All of the changes may improve the

  12. Vibrational and electronic spectroscopic studies of melatonin

    Science.gov (United States)

    Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.

    2014-01-01

    We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.

  13. Melatonin and male reproductive health: relevance of darkness and antioxidant properties.

    Science.gov (United States)

    Rocha, C S; Rato, L; Martins, A D; Alves, M G; Oliveira, P F

    2015-01-01

    The pineal hormone melatonin controls several physiological functions that reach far beyond the regulation of the circadian rhythm. Moreover, it can be produced in extra-pineal organs such as reproductive organs. The role of melatonin in the mammalian seasonal and circadian rhythm is well known. Nevertheless, its overall effect in male reproductive physiology remains largely unknown. Melatonin is a very powerful endogenous antioxidant that can also be exogenously taken safely. Interestingly, its antioxidant properties have been consistently reported to improve the male reproductive dysfunctions associated with pathological conditions and also with the exposure to toxicants. Nevertheless, the exact molecular mechanisms by which melatonin exerts its action in the male reproductive system remain a matter of debate. Herein, we propose to present an up-to-date overview of the melatonin effects in the male reproductive health and debate future directions to disclose possible sites of melatonin action in male reproductive system. We will discuss not only the role of melatonin during darkness and sleep but also the importance of the antioxidant properties of this hormone to male fertility. Since melatonin readily crosses the physiological barriers, such as the blood-testis barrier, and has a very low toxicity, it appears as an excellent candidate in the prevention and/or treatment of the multiple male reproductive dysfunctions associated with various pathologies.

  14. Melatonin as a treatment for mood disorders: a systematic review.

    Science.gov (United States)

    De Crescenzo, F; Lennox, A; Gibson, J C; Cordey, J H; Stockton, S; Cowen, P J; Quested, D J

    2017-12-01

    Melatonin has been widely studied in the treatment of sleep disorders and evidence is accumulating on a possible role for melatonin influencing mood. Our aim was to determine the efficacy and acceptability of melatonin for mood disorders. We conducted a comprehensive systematic review of randomized clinical trials on patients with mood disorders, comparing melatonin to placebo. Eight clinical trials were included; one study in bipolar, three in unipolar depression and four in seasonal affective disorder. We have only a small study on patients with bipolar disorder, while we have more studies testing melatonin as an augmentation strategy for depressive episodes in major depressive disorder and seasonal affective disorder. The acceptability and tolerability were good. We analyzed data from three trials on depressive episodes and found that the evidence for an effect of melatonin in improving mood symptoms is not significant (SMD = 0.37; 95% CI [-0.05, 0.37]; P = 0.09). The small sample size and the differences in methodology of the trials suggest that our results are based on data deriving from investigations occurring early in this field of study. There is no evidence for an effect of melatonin on mood disorders, but the results are not conclusive and justify further research. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. To estimate effective antiamyloidogenic property of melatonin and fisetin and their actions to destabilize amyloid fibrils.

    Science.gov (United States)

    Aarabi, Mohammad Hossein; Mirhashemi, Seyyed Mehdi

    2017-09-01

    Aggregating of amylin as pancreatic deposition is connected with pancreas degeneration in type 2 diabetes mellitus. Suppression of the amylin accumulation and so instability of the pre-formed pancreatic β-amyloid, may be attractive curative goal for mediation of diabetes mellitus. Fluorimetric assay by Thioflavin-T was utilized for investigating the properties of melatonin and fisetin on the generation and instability of β-amyloid near to physiological conditions. The results showed that after 168 hours incubation by shaker incubator in 37oC, melatonin at 10μM and 40 µM repressed amylin amyloid formation by 20.1% and 27.5% respectively (p<0.05) and the similar values of fisetin inhibited the formation of β-sheet structure by 16.5% and 23.2% respectively (p<0.05).The obtained data also confirmed that amyloidal sheet opening was induced by melatonin and fisetin significantly (p<0.05). It may be concluded that islet amyloid cytotoxicity to β-cells may be reduced by melatonin and fisetin, and they should be important constituents of new drugs for diabetes mellitus treatment.

  16. Effects of melatonin and bright light treatment in childhood chronic sleep onset insomnia with late melatonin onset: A randomised controlled study

    NARCIS (Netherlands)

    van Maanen, A.; Meijer, A.M.; Smits, M.G.; van der Heijden, K.B.; Oort, F.J.

    2017-01-01

    STUDY OBJECTIVES: Chronic sleep onset insomnia with late melatonin onset is prevalent in childhood, and has negative daytime consequences. Melatonin treatment is known to be effective in treating these sleep problems. Bright light therapy might be an alternative treatment, with potential advantages

  17. Accumulation of Exogenous Amyloid-Beta Peptide in Hippocampal Mitochondria Causes Their Dysfunction: A Protective Role for Melatonin

    Directory of Open Access Journals (Sweden)

    Sergio Rosales-Corral

    2012-01-01

    Full Text Available Amyloid-beta (Aβ pathology is related to mitochondrial dysfunction accompanied by energy reduction and an elevated production of reactive oxygen species (ROS. Monomers and oligomers of Aβ have been found inside mitochondria where they accumulate in a time-dependent manner as demonstrated in transgenic mice and in Alzheimer’s disease (AD brain. We hypothesize that the internalization of extracellular Aβ aggregates is the major cause of mitochondrial damage and here we report that following the injection of fibrillar Aβ into the hippocampus, there is severe axonal damage which is accompanied by the entrance of Aβ into the cell. Thereafter, Aβ appears in mitochondria where it is linked to alterations in the ionic gradient across the inner mitochondrial membrane. This effect is accompanied by disruption of subcellular structure, oxidative stress, and a significant reduction in both the respiratory control ratio and in the hydrolytic activity of ATPase. Orally administrated melatonin reduced oxidative stress, improved the mitochondrial respiratory control ratio, and ameliorated the energy imbalance.

  18. Glutamatergic clock output stimulates melatonin synthesis at night

    NARCIS (Netherlands)

    Perreau-Lenz, Stéphanie; Kalsbeek, Andries; Pévet, Paul; Buijs, Ruud M.

    2004-01-01

    The rhythm of melatonin synthesis in the rat pineal gland is under the control of the biological clock, which is located in the suprachiasmatic nucleus of the hypothalamus (SCN). Previous studies demonstrated a daytime inhibitory influence of the SCN on melatonin synthesis, by using

  19. Eye and heart morphogenesis are dependent on melatonin signaling in chick embryos.

    Science.gov (United States)

    Nogueira, Renato C; Sampaio, Lucia de Fatima S

    2017-10-15

    Calmodulin is vital for chick embryos morphogenesis in the incubation time 48-66 h when the rudimentary C-shaped heart attains an S-shaped pattern and the optic vesicles develop into optic cups. Melatonin is in the extraembryonic yolk sac of the avian egg; melatonin binds calmodulin. The aim of this study was to investigate the function of melatonin in the formation of the chick embryo optic cups and S-shaped heart, by pharmacological methods and immunoassays. Mel1a melatonin receptor immunofluorescence was distributed in the optic cups and rudimentary hearts. We separated embryonated chicken eggs at 48 h of incubation into basal, control and drug-treated groups, with treatment applied in the egg air sac. At 66 h of incubation, embryos were excised from the eggs and analyzed. Embryos from the basal, control (distilled water), melatonin and 6-chloromelatonin (melatonin receptor agonist) groups had regular optic cups and an S-shaped heart, while those from the calmidazolium (calmodulin inhibitor) group did not. Embryos from the luzindole (melatonin receptor antagonist) and prazosin (Mel1c melatonin receptor antagonist) groups did not have regular optic cups. Embryos from the 4-P-PDOT (Mel1b melatonin receptor antagonist) group did not have an S-shaped heart. Previous application of the melatonin, 6-chloromelatonin or forskolin (adenylate cyclase enhancer) prevented the abnormal appearance of chick embryos from the calmidazolium, luzindole, prazosin and 4-P-PDOT groups. However, 6-chloromelatonin and forskolin only partially prevented the development of defective eye cups in embryos from the calmidazolium group. The results suggested that melatonin modulates chick embryo morphogenesis via calmodulin and membrane receptors. © 2017. Published by The Company of Biologists Ltd.

  20. Adverse effects of melatonin on rat pups of Wistar-Kyoto dams receiving melatonin supplementation during pregnancy.

    Science.gov (United States)

    Singh, Harbindar Jeet; Keah, Lee Siew; Kumar, Arun; Sirajudeen, K N S

    2012-11-01

    This report documents an incidental finding during a study investigating the effects of melatonin supplementation on the development of blood pressure in SHR. Administration of 10 mg/kg/day of melatonin in drinking water during pregnancy to Wistar-Kyoto (WKY) dams caused a loss of more than 50% of the pups by the age of three weeks and 95% by the age of 6 weeks. There was no maternal morbidity or mortality in the two strains or death of any of the SHR pups. No obvious physical defects were present but mean body weight was lower in the surviving WKY rats when compared to that of melatonin supplemented SHR or non-supplemented WKY pups. The reason for the high mortality in WKY pups is uncertain and appears to be strain if not batch specific. There is a need for caution in its use, particularly during pregnancy, and clearly necessitates more detailed studies. Copyright © 2011 Elsevier GmbH. All rights reserved.

  1. Exogenous Melatonin for Sleep Problems in Individuals with Intellectual Disability: A Meta-Analysis

    Science.gov (United States)

    Braam, Wiebe; Smits, Marcel G.; Didden, Robert; Korzilius, Hubert; van Geijlswijk, Ingeborg M.; Curfs, Leopold M. G.

    2009-01-01

    Recent meta-analyses on melatonin has raised doubts as to whether melatonin is effective in treating sleep problems in people without intellectual disabilities. This is in contrast to results of several trials on melatonin in treating sleep problems in individuals with intellectual disabilities. To investigate the efficacy of melatonin in treating…

  2. Pharmacokinetics of Repeated Melatonin Drug Administrations Prior to and After Surgery

    DEFF Research Database (Denmark)

    Harpsøe, Nathja Groth; Andersen, Lars Peter Kloster; Mielke, Louise Vennegaard

    2016-01-01

    BACKGROUND: Recent clinical studies have documented the analgesic, anti-inflammatory, antioxidative and anxiolytic effects of exogenous melatonin. The pharmacokinetic properties of melatonin have primarily been investigated in experimental studies. OBJECTIVE: The aim of this study was to estimate...... the pharmacokinetics of melatonin in patients undergoing surgery and general anesthesia. METHODS: The study was designed as a prospective, two-phase cohort study. Patients were candidates for subpectoral breast augmentation surgery, and surgical procedures were performed by a single surgeon. The perioperative...... treatment protocol was standardized between patients. During the study, each patient received two separate oral administrations of melatonin 10 mg. Melatonin was administered 60 min before surgery, and at 9:00 p.m. the evening after surgery. The pharmacokinetic variables absorption half-life (t ½ absorption...

  3. Melatonin interactions with blood pressure and vascular function during l-NAME-induced hypertension

    Czech Academy of Sciences Publication Activity Database

    Paulis, L.; Pecháňová, Olga; Zicha, Josef; Barta, A.; Gardlik, R.; Celec, P.; Kuneš, Jaroslav; Šimko, F.

    2010-01-01

    Roč. 48, č. 2 (2010), s. 102-108 ISSN 0742-3098 R&D Projects: GA AV ČR(CZ) IAA500110902 Grant - others:VEGA(SK) 1/0187/09; VEGA(SK) 2/0178/09; APVV(SK) 0538-07; EC(XE) 2009-237834 Institutional research plan: CEZ:AV0Z50110509 Keywords : endothelium-derived constricting factor * melatonin * nitric oxide Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 5.855, year: 2010

  4. Shift Work, Chronotype, and Melatonin Patterns among Female Hospital Employees on Day and Night Shifts.

    Science.gov (United States)

    Leung, Michael; Tranmer, Joan; Hung, Eleanor; Korsiak, Jill; Day, Andrew G; Aronson, Kristan J

    2016-05-01

    Shift work-related carcinogenesis is hypothesized to be mediated by melatonin; however, few studies have considered the potential effect modification of this underlying pathway by chronotype or specific aspects of shift work such as the number of consecutive nights in a rotation. In this study, we examined melatonin patterns in relation to shift status, stratified by chronotype and number of consecutive night shifts, and cumulative lifetime exposure to shift work. Melatonin patterns of 261 female personnel (147 fixed-day and 114 on rotations, including nights) at Kingston General Hospital were analyzed using cosinor analysis. Urine samples were collected from all voids over a 48-hour specimen collection period for measurement of 6-sulfatoxymelatonin concentrations using the Buhlmann ELISA Kit. Chronotypes were assessed using mid-sleep time (MSF) derived from the Munich Chronotype Questionnaire (MCTQ). Sociodemographic, health, and occupational information were collected by questionnaire. Rotational shift nurses working nights had a lower mesor and an earlier time of peak melatonin production compared to day-only workers. More pronounced differences in mesor and acrophase were seen among later chronotypes, and shift workers working ≥3 consecutive nights. Among nurses, cumulative shift work was associated with a reduction in mesor. These results suggest that evening-types and/or shift workers working ≥3 consecutive nights are more susceptible to adverse light-at-night effects, whereas long-term shift work may also chronically reduce melatonin levels. Cumulative and current exposure to shift work, including nights, affects level and timing of melatonin production, which may be related to carcinogenesis and cancer risk. Cancer Epidemiol Biomarkers Prev; 25(5); 830-8. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease.

    Science.gov (United States)

    Videnovic, Aleksandar; Noble, Charleston; Reid, Kathryn J; Peng, Jie; Turek, Fred W; Marconi, Angelica; Rademaker, Alfred W; Simuni, Tanya; Zadikoff, Cindy; Zee, Phyllis C

    2014-04-01

    Diurnal fluctuations of motor and nonmotor symptoms and a high prevalence of sleep-wake disturbances in Parkinson disease (PD) suggest a role of the circadian system in the modulation of these symptoms. However, surprisingly little is known regarding circadian function in PD and whether circadian dysfunction is involved in the development of sleep-wake disturbances in PD. To determine the relationship between the timing and amplitude of the 24-hour melatonin rhythm, a marker of endogenous circadian rhythmicity, with self-reported sleep quality, the severity of daytime sleepiness, and disease metrics. A cross-sectional study from January 1, 2009, through December 31, 2012, of 20 patients with PD receiving stable dopaminergic therapy and 15 age-matched control participants. Both groups underwent blood sampling for the measurement of serum melatonin levels at 30-minute intervals for 24 hours under modified constant routine conditions at the Parkinson's Disease and Movement Disorders Center of Northwestern University. Twenty-four hour monitoring of serum melatonin secretion. Clinical and demographic data, self-reported measures of sleep quality (Pittsburgh Sleep Quality Index) and daytime sleepiness (Epworth Sleepiness Scale), and circadian markers of the melatonin rhythm, including the amplitude, area under the curve (AUC), and phase of the 24-hour rhythm. Patients with PD had blunted circadian rhythms of melatonin secretion compared with controls; the amplitude of the melatonin rhythm and the 24-hour AUC for circulating melatonin levels were significantly lower in PD patients (P hour melatonin AUC (P = .001). Disease duration, Unified Parkinson's Disease Rating Scale scores, levodopa equivalent dose, and global Pittsburgh Sleep Quality Index score in the PD group were not significantly related to measures of the melatonin circadian rhythm. Circadian dysfunction may underlie excessive sleepiness in PD. The nature of this association needs to be explored further

  6. Does supplementation of in-vitro culture medium with melatonin improve IVF outcome in PCOS?

    Science.gov (United States)

    Kim, Mi Kyoung; Park, Eun A; Kim, Hyung Joon; Choi, Won Yun; Cho, Jung Hyun; Lee, Woo Sik; Cha, Kwang Yul; Kim, You Shin; Lee, Dong Ryul; Yoon, Tae Ki

    2013-01-01

    Human pre-ovulatory follicular fluid (FF) contains a higher concentration of melatonin than serum. The aim of this study was to evaluate the effect of melatonin supplementation of culture medium on the clinical outcomes of an in-vitro maturation (IVM) IVF-embryo transfer programme for patients with polycystic ovarian syndrome (PCOS). Melatonin concentrations in the culture media of granulosa cells (GC) or cumulus-oocyte-complexes (COC) were measured and the clinical outcomes after using IVM media with or without melatonin were analysed. In the culture media of GC or COC, melatonin concentrations gradually increased. When human chorionic gonadotrophin priming protocols were used, implantation rates in the melatonin-supplemented group were higher than those of the non-supplemented control group (PPregnancy rates were also higher, although not significantly. The findings suggest that the addition of melatonin to IVM media may improve the cytoplasmic maturation of human immature oocytes and subsequent clinical outcomes. It is speculated that follicular melatonin may be released from luteinizing GC during late folliculogenesis and that melatonin supplementation may be used to improve the clinical outcomes of IVM IVF-embryo transfer. Melatonin is primarily produced by the pineal gland and regulates a variety of important central and peripheral actions related to circadian rhythms and reproduction. Interestingly, human pre-ovulatory follicular fluid contains a higher concentration of melatonin than serum. However, in contrast to animal studies, the direct role of melatonin on oocyte maturation in the human system has not yet been investigated. So, the aim of the study was to evaluate the effect of melatonin supplementation of culture medium on the clinical outcome of an in-vitro maturation (IVM) IVF-embryo transfer programme for PCOS patients. The melatonin concentrations in culture medium of granulosa cells (GC) or cumulus-oocyte-complexes (COC) were measured and the

  7. Melatonin, a potential effective protector in whole body γ-irradiated rats

    International Nuclear Information System (INIS)

    Tawfik, S.S; El-Nashar, D.E; Ahmed, M.M; Hanafy, Z.E

    2010-01-01

    Melatonin (N-acetyl-5-methoxytryptamine), the chief hormone of pineal gland, is widely distributed in animal kingdom. It is claimed for its antioxidant and free radical properties. The present study aimed to examine the radio protective potentiality and efficacy of melatonin against damages induced in whole body γ-irradiated rats. Animals received melatonin (10 mg/ kg body wt/ day) for 10 successive days pre-exposure to 3 Gy of γ-radiation (acute dose). Rats sacrificed at 10 and 20 days post the irradiation time. The results revealed that the prolonged administration of melatonin has ameliorated the radiation- induced depletion in brain, testis and serum glutathione (GSH) level and a decrease in serum glutathione peroxidase (GPX) activity when compared with their matched values in irradiated rats. In addition, remarkable decreases in the concentration of lipid peroxidation (LPO) product; malondialdhyde (MDA) was observed in brain, testis and serum of rats received melatonin pre-radiation exposure. As well as, significant decreases in disulphide glutathione (GSSG) were observed in serum.Histopathological examination of brain and testis showed that administration of melatonin pre-irradiation according to the present regimen has attenuated radiation induced tissue damages and improved tissue architecture. Cytogenetically, the chromosomal aberration (CA) assay in bone marrow pointed out a significant difference between rats received melatonin pre-irradiation and γ-irradiated rats in most CA types. Accordingly, it could be postulated the tissue diversity and cytogenetic impact of the administrated melatonin against acute ion syndrome in rat model.

  8. Anxiolytisk, analgetisk og sedativ effekt af melatonin i den perioperative fase

    DEFF Research Database (Denmark)

    Wilhelmsen, Michael; Rosenberg, Jacob; Gögenur, Ismail

    2011-01-01

    Melatonin is a hormone mainly produced in the pineal gland. The most well known effect is a modulation of the circadian rhythm. Patients undergoing surgery often get a disruption of this rhythm. Effects of melatonin have been examined in several randomised clinical studies. In this report we...... briefly review evidence regarding anxiolytical, analgesic and sedative effects of melatonin in relation to surgery. Studies show an effect in favour of medication with melatonin with regards to sedation and anxiety but the effect on analgesia has yet to be clarified with further clinical studies....

  9. Independence of circadian entrainment state and responses to melatonin in male Siberian hamsters

    Directory of Open Access Journals (Sweden)

    Gorman Michael R

    2003-10-01

    Full Text Available Abstract Background Seasonal fluctuations in physiology and behavior depend on the duration of nocturnal melatonin secretion programmed by the circadian system. A melatonin signal of a given duration, however, can elicit different responses depending on whether an animal was previously exposed to longer or shorter photoperiod signals (i.e., its photoperiodic history. This report examined in male Siberian hamsters which of two aspects of photoperiod history – prior melatonin exposure or entrainment state of the circadian system – is critical for generating contingent responses to a common photoperiodic signal. Results In Experiment #1, daily melatonin infusions of 5 or 10 h duration stimulated or inhibited gonadal growth, respectively, but had no effect on entrainment of the locomotor activity rhythm to long or short daylengths, thereby demonstrating that melatonin history and entrainment status could be experimentally dissociated. These manipulations were repeated in Experiment #2, and animals were subsequently exposed to a 12 week regimen of naturalistic melatonin signals shown in previous experiments to reveal photoperiodic history effects. Gonadal responses differed as a function of prior melatonin exposure but were unaffected by the circadian entrainment state. Experiment #3 demonstrated that a new photoperiodic history could be imparted during four weeks of exposure to long photoperiods. This effect, moreover, was blocked in animals treated concurrently with constant release melatonin capsules that obscured the endogenous melatonin signal: Following removal of the implants, the gonadal response depended not on the immediately antecedent circadian entrainment state, but on the more remote photoperiodic conditions prior to the melatonin implant. Conclusions The interpretation of photoperiodic signals as a function of prior conditions depends specifically on the history of melatonin exposure. The photoperiodic regulation of circadian

  10. Melatonin treatment at dry-off improves reproductive performance postpartum in high-producing dairy cows under heat stress conditions.

    Science.gov (United States)

    Garcia-Ispierto, I; Abdelfatah, A; López-Gatius, F

    2013-08-01

    The aim of this study was to determine the effect of melatonin treatment during the early dry-off period on subsequent reproductive performance and milk production in high-producing dairy cows under heat stress conditions. In experiment I, addressing the pharmacokinetics of melatonin treatment in lactating dairy cows, doses of untreated, 3, 6, 9 or 12 implants/animal (18-mg melatonin each implant) were given as subcutaneous implants on gestation day 120-20 multiparous lactating dairy cows (four cows/dose group). Experiment II was performed during the warm season on 25 heifers and 114 high milk-producing Holstein-Friesian cows. Animals were randomly assigned to a control (C) or melatonin group (M). Animals in the M group received nine implants (heifers) or 12 (cows) of melatonin on day 220 of gestation. In experiment I, cows in the 12 implants group showed a higher maximum melatonin concentration (Cmax ) and area under the concentration curve from treatment day 0 to day 49 (AUC0-49d ) than those in the remaining groups, among which there were no significant differences in this variable. In experiment II, the likelihood of repeat breeding syndrome (pregnancy loss (first trimester) were 0.36 and 0.19 times lower in treated than control animals, respectively. Plasma prolactin levels decreased significantly (p = 0.01) after melatonin treatment and recovered during the postpartum compared to control cows. No significant effects on milk production were observed in the subsequent lactation. Significant differences in days open between groups (means 123 ± 71.9 and 103 ± 43, respectively, for C and M; p = 0.02) were registered. In conclusion, melatonin treatment in the early dry-off period improves the reproductive performance of dairy cattle, reducing the number of days open, repeat breeding syndrome and pregnancy loss. © 2012 Blackwell Verlag GmbH.

  11. Nocturnal serum melatonin levels in sulfur mustard exposed patients with sleep disorders.

    Science.gov (United States)

    Mousavi, Seyyedeh Soghra; Vahedi, E; Shohrati, M; Panahi, Y; Parvin, S

    2017-12-01

    Sulfur mustard (SM) exposure causes respiratory disorders, progressive deterioration in lung function and mortality in injured victims and poor sleep quality is one of the most common problems among SM-exposed patients. Since melatonin has a critical role in regulation of sleep and awareness, this study aimed to evaluate the serum melatonin levels in SM-injured subjects. A total of 30 SM-exposed male patients and 10 controls was evaluated. Sleep quality was evaluated by the Pittsburgh Sleep Quality Index (PSQI); daytime sleepiness was measured by the Epworth Sleepiness Scale (ESS), and the risk of obstructive sleep apnoea was determined by the STOP-Bang questionnaire. Polysomnography (PSG) and pulmonary function tests (PFTs) were also available. Nocturnal serum melatonin levels were measured using an ELISA kit. The mean of PSQI, ESS and STOP-Bang scores in patients (11.76±3.56, 12.6±3.03 and 5.03±1.09, respectively) were significantly (pmelatonin levels in patients (29.78±19.31 pg/mL) was significantly (p=0.005) lower than that in the controls (78.53±34.41 pg/mL). Reduced nocturnal serum melatonin and respiratory disorders can be the reasons for poor sleep quality among these patients. IRCT2015092924267N1, Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Neuroprotective Effect of Melatonin Against PCBs Induced Behavioural, Molecular and Histological Changes in Cerebral Cortex of Adult Male Wistar Rats.

    Science.gov (United States)

    Bavithra, S; Selvakumar, K; Sundareswaran, L; Arunakaran, J

    2017-02-01

    There is ample evidence stating Polychlorinated biphenyls (PCBs) as neurotoxins. In the current study, we have analyzed the behavioural impact of PCBs exposure in adult rats and assessed the simultaneous effect of antioxidant melatonin against the PCBs action. The rats were grouped into four and treated intraperitoneally with vehicle, PCBs, PCBs + melatonin and melatonin alone for 30 days, respectively. After the treatment period the rats were tested for locomotor activity and anxiety behaviour analysis. We confirmed the neuronal damage in the cerebral cortex by molecular and histological analysis. Our data indicates that there is impairment in locomotor activity and behaviour of PCBs treated rats compared to control. The simultaneous melatonin treated rat shows increased motor coordination and less anxiety like behaviour compared to PCBs treated rats. Molecular and histological analysis supports that, the impaired motor coordination in PCBs treated rats is due to neurodegeneration in motor cortex region. The results proved that melatonin treatment improved the motor co-ordination and reduced anxiety behaviour, prevented neurodegeneration in the cerebral cortex of PCBs-exposed adult male rats.

  13. Dose dependent sun protective effect of topical melatonin

    DEFF Research Database (Denmark)

    Scheuer, Cecilie; Pommergaard, Hans-Christian; Rosenberg, Jacob

    2016-01-01

    BACKGROUND: Ultraviolet radiation (UVR) by sunlight results in an increasing number of skin conditions. Earlier studies have suggested a protective effect of topical treatment with the pineal hormone melatonin. However, this protective effect has never been evaluated in natural sunlight......-blind study in healthy volunteers. Twenty-three healthy volunteers, 8 male and 15 female, were enrolled. The protective effect of three different doses of melatonin cream (0.5%, 2.5%, 12.5%) against erythema induced by natural sunlight was tested. All participants had their backs exposed to sun from 1:22 PM.......5% concentrations. CONCLUSION: Application of melatonin cream 12.5% protects against natural sunlight induced erythema....

  14. Color indirect effects on melatonin regulation

    Science.gov (United States)

    Mian, Tian; Liu, Timon C.; Li, Yan

    2002-04-01

    Color indirect effect (CIE) is referred to as the physiological and psychological effects of color resulting from color vision. In previous papers, we have studied CIE from the viewpoints of the integrated western and Chinese traditional medicine, put forward the color-autonomic- nervous-subsystem model (CAM), and provided its time-theory foundation. In this paper, we applied it to study light effects on melatonin regulation in humans, and suggested that it is CIE that mediates light effects on melatonin suppression.

  15. Melatonin and Structurally-Related Compounds Protect Synaptosomal Membranes from Free Radical Damage

    Directory of Open Access Journals (Sweden)

    María A. Sáenz

    2010-01-01

    Full Text Available Since biological membranes are composed of lipids and proteins we tested the in vitro antioxidant properties of several indoleamines from the tryptophan metabolic pathway in the pineal gland against oxidative damage to lipids and proteins of synaptosomes isolated from the rat brain. Free radicals were generated by incubation with 0.1 mM FeCl3, and 0.1 mM ascorbic acid. Levels of malondialdehyde (MDA plus 4-hydroxyalkenal (4-HDA, and carbonyl content in the proteins were measured as indices of oxidative damage to lipids and proteins, respectively. Pinoline was the most powerful antioxidant evaluated, with melatonin, N-acetylserotonin, 5-hydroxytryptophan, 5-methoxytryptamine, 5-methoxytryptophol, and tryptoline also acting as antioxidants.

  16. Analysis of the informativeness of melatonin evaluation in polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    Elena Andreeva

    2016-12-01

    Full Text Available Background. Polycystic ovary syndrome (PCOS is one of the most common endocrine disorders in women of reproductive age. Recently, the role of melatonin in the pathogenesis of this syndrome became widely discussed among the scientists, because there is an evidence of its impact on the reproductive function and maturation of oocytes. Aim. To study a informativeness of melatonin determination and its relationship with sleep disorders in PCOS. Materials and methods. The study involved 120 women aged 17–35 years: 60 patients with PCOS and 60 women without this disorder as controls. The level of melatonin in the blood, saliva and its metabolite in urine – 6 sulfatoximelatonin were analyzed. To identify sleep disorders survey was conducted using a questionnaire scoring subjective sleep characteristics. Results. Sleep disorders based on subjective scoring profiles sleep characteristics were identified in PCOS group (up to 70% of patients regardless of BMI. The level of 6-sulfatoximelatonin in urine, nocturnal melatonin levels in saliva (at 3:00 AM and melatonin in the blood were significantly higher in patients with PCOS compared with the control group regardless of BMI. The level of melatonin in follicular fluid was lower in patients with PCOS. There was a significant correlation of melatonin levels in the blood and the degree of sleep disorders according to the questionnaire scoring subjective sleep characteristics, the level of melatonin in saliva at 3:00 AM and a 6-sulfatoximelatonin in daily urine (p = 0.046. Conclusions. PCOS is polyetiology disease, and an important role in the formation and progression in which plays melatonin. Correlation of levels of this hormone in different body fluids suggests its systemic action and direct involvement in the regulation of reproductive function.

  17. Serum melatonin levels in survivor and non-survivor patients with traumatic brain injury.

    Science.gov (United States)

    Lorente, Leonardo; Martín, María M; Abreu-González, Pedro; Pérez-Cejas, Antonia; Ramos, Luis; Argueso, Mónica; Solé-Violán, Jordi; Cáceres, Juan J; Jiménez, Alejandro; García-Marín, Victor

    2017-07-19

    Circulating levels of melatonin in patients with traumatic brain injury (TBI) have been determined in a little number of studies with small sample size (highest sample size of 37 patients) and only were reported the comparison of serum melatonin levels between TBI patients and healthy controls. As to we know, the possible association between circulating levels of melatonin levels and mortality of patients with TBI have not been explored; thus, the objective of our current study was to determine whether this association actually exists. This multicenter study included 118 severe TBI (Glasgow Coma Scale melatonin, malondialdehyde (to assess lipid peroxidation) and total antioxidant capacity (TAC) at day 1 of severe TBI. We used mortality at 30 days as endpoint. We found that non-survivor (n = 33) compared to survivor (n = 85) TBI patients showed higher circulating levels of melatonin (p melatonin levels predicted 30-day mortality (Odds ratio = 1.334; 95% confidence interval = 1.094-1.627; p = 0.004), after to control for GCS, CT findings and age. We found a correlation between serum levels of melatonin levels and serum levels of TAC (rho = 0.37; p melatonin levels in patients with severe TBI. The main findings were that non-survivors had higher serum melatonin levels than survivors, and the association between serum levels of melatonin levels and mortality, peroxidation state and antioxidant state.

  18. The effect of melatonin on bacterial translocation following ischemia/reperfusion injury in a rat model of superior mesenteric artery occlusion.

    Science.gov (United States)

    Ozban, Murat; Aydin, Cagatay; Cevahir, Nural; Yenisey, Cigdem; Birsen, Onur; Gumrukcu, Gulistan; Aydin, Berrin; Berber, Ibrahim

    2015-03-08

    Acute mesenteric ischemia is a life-threatening vascular emergency resulting in tissue destruction due to ischemia-reperfusion injury. Melatonin, the primary hormone of the pineal gland, is a powerful scavenger of reactive oxygen species (ROS), including the hydroxyl and peroxyl radicals, as well as singlet oxygen, and nitric oxide. In this study, we aimed to investigate whether melatonin prevents harmful effects of superior mesenteric ischemia-reperfusion on intestinal tissues in rats. Rats were randomly divided into three groups, each having 10 animals. In group I, the superior mesenteric artery (SMA) was isolated but not occluded. In group II and group III, the SMA was occluded immediately distal to the aorta for 60 minutes. After that, the clamp was removed and the reperfusion period began. In group III, 30 minutes before the start of reperfusion, 10 mg/kg melatonin was administered intraperitonally. All animals were sacrified 24 hours after reperfusion. Tissue samples were collected to evaluate the I/R-induced intestinal injury and bacterial translocation (BT). There was a statistically significant increase in myeloperoxidase activity, malondialdehyde levels and in the incidence of bacterial translocation in group II, along with a decrease in glutathione levels. These investigated parameters were found to be normalized in melatonin treated animals (group III). We conclude that melatonin prevents bacterial translocation while precluding the harmful effects of ischemia/reperfusion injury on intestinal tissues in a rat model of superior mesenteric artery occlusion.

  19. Melatonin: current status and future perspectives in plant science

    Directory of Open Access Journals (Sweden)

    Muhammad Azher Nawaz

    2016-01-01

    Full Text Available Melatonin (N-acetyl-5-methoxytryptamine is a ubiquitous molecule with pleiotropic actions in different organisms. It performs many important functions in human, animals and plants; these range from regulating circadian rhythms in animals to controlling senescence in plants. In this review, we summarize the available information regarding the presence of melatonin in different plant species, along with highlighting its biosynthesis and mechanisms of action. We also collected the available information on the effects of melatonin application on commercially important crops to improve their growth and development. Additionally, we have identified many new aspects where melatonin may have possible roles in plants, for example, its function in improving the storage life and quality of fruits and vegetables, its role in vascular reconnection during the grafting process and nutrient uptake from roots by modifying root architecture. Another potentially important aspect is the production of melatonin-rich food crops (cereals, fruits and vegetables through combination of conventional and modern breeding approaches, to increase plant resistance against biotic and abiotic stress, leading to improved crop yields and the nutraceutical value of produce to solve food security issues.

  20. The Healthy Heart-Mind trial: melatonin for prevention of delirium following cardiac surgery: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Ford, Andrew H; Flicker, Leon; Passage, Jurgen; Wibrow, Bradley; Anstey, Matthew; Edwards, Mark; Almeida, Osvaldo P

    2016-01-28

    Delirium is a common occurrence in patients undergoing major cardiac surgery and is associated with a number of adverse consequences for the individual, their family and the health system. Current approaches to the prevention of delirium include identifying those at risk together with various non-pharmacological and pharmacological strategies, although the efficacy of these is often modest. Emerging evidence suggests that melatonin may be biologically implicated in the development of delirium and that melatonin supplementation may be beneficial in reducing the incidence of delirium in medical and surgical patients. We designed this trial to determine whether melatonin reduces the incidence of delirium following cardiac surgery compared with placebo. The Healthy Heart-Mind trial is a randomized, double-blind, placebo-controlled clinical trial of 3 mg melatonin or matching placebo administered on seven consecutive days for the prevention of delirium following cardiac surgery. We will recruit 210 adult participants, aged 50 and older, undergoing elective or semi-elective cardiac surgery with the primary outcome of interest for this study being the difference in the incidence of delirium between the groups within 7 days of surgery. Secondary outcomes of interest include the difference between groups in the severity and duration of delirious episodes, hospital length of stay and referrals to mental health services during admission. In addition, we will assess differences in depressive and anxiety symptoms, as well as cognitive performance, at discharge and 3 months after surgery. The results of this trial will clarify whether melatonin reduces the incidence of delirium following cardiac surgery. The trial is registered with the Australian Clinical Trials Registry, trial number ACTRN12615000819527 (10 August 2015).