WorldWideScience

Sample records for melanocytic tumor progression

  1. Conjunctival Melanocytic Tumors-New Developments

    Directory of Open Access Journals (Sweden)

    Hülya Gökmen Soysal

    2014-09-01

    Full Text Available Melanocytic lesions of the conjunctiva represent a wide spectrum of tumors that include benign, premalignant, and malignant tumors. There are many ongoing arguments about the definition, classification, and therapeutic options of the conjunctival melanocytic tumors with many different suggestions. Conjunctival nevi are the most common melanocytic tumors and their risk of malignant transformation is less than1%. Primary acquired melanosis (PAM histopathologically includes various types of lesions from increased melanin pigmentation without melanocyte proliferation to melanoma in situ and is accepted as a clinical definition, so that a new classification is recommended which is based on more objective criteria than before. Although conjunctival melanoma is seen rarely, it is associated with a high mortality rate. Management of these tumors mainly involves surgery and adjuvant topical chemotherapy, cryotherapy, and radiation therapy that help improving the survival, however, new options are being investigated related to genetic and molecular researches. (Turk J Ophthalmol 2014; 44: Supplement 15-21

  2. Loss of 5-hydroxymethylcytosine correlates with increasing morphologic dysplasia in melanocytic tumors.

    Science.gov (United States)

    Larson, Allison R; Dresser, Karen A; Zhan, Qian; Lezcano, Cecilia; Woda, Bruce A; Yosufi, Benafsha; Thompson, John F; Scolyer, Richard A; Mihm, Martin C; Shi, Yujiang G; Murphy, George F; Lian, Christine Guo

    2014-07-01

    DNA methylation is the most well-studied epigenetic modification in cancer biology. 5-hydroxymethylcytosine is an epigenetic mark that can be converted from 5-methylcytosine by the ten-eleven translocation gene family. We recently reported the loss of 5-hydroxymethylcytosine in melanoma compared with benign nevi and suggested that loss of this epigenetic marker is correlated with tumor virulence based on its association with a worse prognosis. In this study, we further characterize the immunoreactivity patterns of 5-hydroxymethylcytosine in the full spectrum of melanocytic lesions to further validate the potential practical application of this epigenetic marker. One hundred and seventy-five cases were evaluated: 18 benign nevi, 20 dysplastic nevi (10 low-grade and 10 high-grade lesions), 10 atypical Spitz nevi, 20 borderline tumors, 5 melanomas arising within nevi, and 102 primary melanomas. Progressive loss of 5-hydroxymethylcytosine from benign dermal nevi to high-grade dysplastic nevi to borderline melanocytic neoplasms to melanoma was observed. In addition, an analysis of the relationship of nuclear diameter with 5-hydroxymethylcytosine staining intensity within lesional cells revealed a significant correlation between larger nuclear diameter and decreased levels of 5-hydroxymethylcytosine. Furthermore, borderline lesions uniquely exhibited a diverse spectrum of staining of each individual case. This study further substantiates the association of 5-hydroxymethylcytosine loss with dysplastic cytomorphologic features and tumor progression and supports the classification of borderline lesions as a biologically distinct category of melanocytic lesions.

  3. Optical Coherence Tomography Angiography Characteristics of Iris Melanocytic Tumors

    Science.gov (United States)

    Skalet, Alison H.; Li, Yan; Lu, Chen D.; Jia, Yali; Lee, ByungKun; Husvogt, Lennart; Maier, Andreas; Fujimoto, James G.; Thomas, Charles R.; Huang, David

    2016-01-01

    -injection, cost-effective method for monitoring a variety of tumors including iris melanocytic lesions for growth and vascularity. This could be helpful in evaluating tumors for malignant transformation and response to treatment. Penetration of the OCT beam remains a limitation for highly pigmented tumors, as does the inability to image the entire iris in a single field. PMID:27856029

  4. Automated Estimation of Melanocytic Skin Tumor Thickness by Ultrasonic Radiofrequency Data.

    Science.gov (United States)

    Andrekute, Kristina; Valiukeviciene, Skaidra; Raisutis, Renaldas; Linkeviciute, Gintare; Makstiene, Jurgita; Kliunkiene, Renata

    2016-05-01

    High-frequency (>20-MHz) ultrasound (US) is a noninvasive preoperative tool for assessment of melanocytic skin tumor thickness. Ultrasonic melanocytic skin tumor thickness estimation is not always easy and is related to the experience of the clinician. In this article, we present an automated thickness measurement method based on time-frequency analysis of US radiofrequency signals. The study was performed on 52 thin (≤1-mm) melanocytic skin tumors (46 melanocytic nevi and 6 melanomas). Radiofrequency signals were obtained with a single-element focused transducer (fundamental frequency, 22 MHz; bandwidth, 12-28 MHz). The radiofrequency data were analyzed in the time-frequency domain to make the tumor boundaries more noticeable. The thicknesses of the tumors were evaluated by 3 different metrics: histologically measured Breslow thickness, manually measured US thickness, and automatically measured US thickness. The results showed a higher correlation coefficient between the automatically measured US thickness and Breslow thickness (r= 0.83; Pmeasured US thickness (r = 0.68; P measurement algorithm was 96.55%, and the specificity was 78.26% compared with histologic measurement. The sensitivity of the manually measured US thickness was 75.86%, and the specificity was 73.91%. The efficient automated tumor thickness measurement method developed could be used as a tool for preoperative assessment of melanocytic skin tumor thickness. © 2016 by the American Institute of Ultrasound in Medicine.

  5. Childhood malignant blue nevus of the ear associated with two intracranial melanocytic tumors-metastases or neurocutaneous melanosis?

    Science.gov (United States)

    Popović, Mara; Dolenc-Strazar, Zvezdana; Anzic, Jozica; Luzar, Bostjan

    2004-10-01

    Blue nevus is an uncommon pigmented tumor of dermal melanocytes that has traditionally been classified into common and cellular variant. It is usually a skin tumor in adults but can become apparent in early childhood or even be present at birth. Malignant blue nevus is a rare melanocytic tumor of the skin arising from a preexisting cellular blue nevus. We report a multinodular blue nevus of the left ear in an 11-year-old girl who also had 2 intracranial melanocytic lesions. Differential diagnosis between metastases from malignant blue nevus and neurocutaneous melanosis is discussed.

  6. Expression of monocarboxylate transporter 1 in oral and ocular canine melanocytic tumors.

    Science.gov (United States)

    Shimoyama, Y; Akihara, Y; Kirat, D; Iwano, H; Hirayama, K; Kagawa, Y; Ohmachi, T; Matsuda, K; Okamoto, M; Kadosawa, T; Yokota, H; Taniyama, H

    2007-07-01

    Solid tumors are composed of a heterogeneous population of cells surviving in various concentrations of oxygen. In a hypoxic environment, tumor cells generally up-regulate glycolysis and, therefore, generate more lactate that must be expelled from the cell through proton transporters to prevent intracellular acidosis. Monocarboxylate transporter 1 (MCT1) is a major proton transporter in mammalian cells that transports monocarboxylates, such as lactate and pyruvate, together with a proton across the plasma membrane. Melanocytic neoplasia occurs frequently in dogs, but the prognosis is highly site-dependent. In this study, 50 oral canine melanomas, which were subdivided into 3 histologic subtypes, and 17 ocular canine melanocytic neoplasms (14 melanocytomas and 3 melanomas) were used to examine and compare MCT1 expression. Immunohistochemistry using a polyclonal chicken anti-rat MCT1 antibody showed that most oral melanoma exhibited cell membrane staining, although there were no significant differences observed among the 3 histologic subtypes. In contrast, the majority of ocular melanocytic tumors were not immunoreactive. Additionally, we documented the presence of a 45-kDa band in cell membrane protein Western blots, and sequencing of a reverse transcriptase polymerase chain reaction band of expected size confirmed its identity as a partial canine MCT1 transcript in 3 oral tumors. Increased MCT1 expression in oral melanomas compared with ocular melanocytic tumors may reflect the very different biology between these tumors in dogs. These results are the first to document canine MCT1 expression in canine tumors and suggest that increased MCT1 expression may provide a potential therapeutic target for oral melanoma.

  7. Progressive Increase in Telomerase Activity From Benign Melanocytic Conditions to Malignant Melanoma

    Directory of Open Access Journals (Sweden)

    Ruben D. Ramirez

    1999-04-01

    Full Text Available The expression of telomerase activity and the in situ localization of the human telomerase RNA component (hTR in melanocytic skin lesions was evaluated in specimens from sixty-three patients. Specimens of melanocytic nevi, primary melanomas and subcutaneous metastases of melanoma were obtained from fifty-eight patients, whereas metastasized lymph nodes were obtained from five patients. Telomerase activity was determined in these specimens by using a Polymerase Chain Reaction—based assay (TRAP. High relative mean telomerase activity levels were detected in metastatic melanoma (subcutaneous metastasess = 54.5, lymph node metastasess = 56.5. Much lower levels were detected in primary melanomas, which increased with advancing levels of tumor cell penetration (Clark II = 0.02, Clark III = 1.1, and Clark IV = 1.9. Twenty-six formalin-fixed, paraffin-embedded melanocytic lesions were sectioned and analyzed for telomerase RNA with a radioactive in situ hybridization assay. In situ hybridization studies with a probe to the template RNA component of telomerase confirmed that expression was almost exclusively confined to tumor cells and not infiltrating lymphocytes. These results indicate that levels of telomerase activity and telomerase RNA in melanocytic lesions correlate well with clinical stage and could potentially assist in the diagnosis of borderline lesions.

  8. Altered expression of versican and hyaluronan in melanocytic tumors of dogs.

    Science.gov (United States)

    Docampo, María-José; Rabanal, Rosa M; Miquel-Serra, Laia; Hernández, Daniel; Domenzain, Clelia; Bassols, Anna

    2007-12-01

    To analyze the expression of versican and hyaluronan in melanocytomas and malignant melanomas of dogs, to correlate their expression with expression of the hyaluronan receptor CD44, and to identify enzymes responsible for the synthesis and degradation of hyaluronan in canine dermal fibroblasts and canine melanoma cell lines. 35 biopsy specimens from melanocytic tumors of dogs, canine primary dermal fibroblasts, and 3 canine melanoma cell lines. Versican, hyaluronan, and CD44 were detected in tumor samples by use of histochemical or immunohistochemical methods. Expression of hyaluronan-metabolizing enzymes was analyzed with a reverse transcriptase-PCR assay. Versican was found only in some hair follicles and around some blood vessels in normal canine skin, whereas hyaluronan was primarily found within the dermis. Hyaluronan was found in connective tissue of the oral mucosa. Versican and, to a lesser extent, hyaluronan were significantly overexpressed in malignant melanomas, compared with expression in melanocytomas. No significant difference was found between malignant tumors from oral or cutaneous origin. The expression of both molecules was correlated, but hyaluronan had a more extensive distribution than versican. Versican and hyaluronan were mainly associated with tumor stroma. Canine fibroblasts and melanoma cell lines expressed hyaluronan synthase 2 and 3 (but not 1) and hyaluronidase 1 and 2. Versican may be useful as a diagnostic marker for melanocytic tumors in dogs. Knowledge of the enzymes involved in hyaluronan metabolism could reveal new potential therapeutic targets.

  9. Malignant Tumor Derived from Skin Melanocytes of a Bovine of Unusual Presentation: A Case Study

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Chaves Velásquez

    2015-05-01

    Full Text Available Melanocytic tumors and melanomas in domestic animals include neoplasms composed of melanin-producing cells. In cattle, these tumors are rare and mostly benign, while malignant tumors are almost non-existent. The article reports the case of a female crossbred cow 38 months of age with a fluctuating mass located between the mandibular border and the left parotid region, about three months duration, with evident growth in the last thirty days. After surgical excision, a sample preserved in buffered formalin (10% was sent to the Laboratory of Pathology (University of Nariño—consisting of a fragment of 7.0 × 10.5 × 8.0 cm, ellipsoid, with skin and hair on one side, irregular surface, blackish brown, semi-soft consistency, and presence of shear translucent slimy content—for processing and inclusion in paraffin, cut to 5 μm thickness and stained with hematoxylin-eosin coloration. The forwarded tissue was classified as a neoplasm of malignant behavior derived from melanocytes, due to its cellular characteristics: growth pattern, pattern of distribution, severe cellular pleomorphism, anisocytosis, megalocytosis, nuclear pleomorphism, anisokaryosis, megalokaryosis, and involvement of blood vessel walls; additionally, the paraffin block was cut for immunohistochemical processing using monoclonal markers (S-100 DAKO® and Melan A DAKO®, contrasted with Mayer’s hematoxylin. Strong immunostaining of neoplastic cells is evident, and it constitutes the first reported case of this disease in Nariño (Colombia.

  10. Integrated genomic classification of melanocytic tumors of the central nervous system using mutation analysis, copy number alterations and DNA methylation profiling.

    Science.gov (United States)

    Griewank, Klaus; Koelsche, Christian; van de Nes, Johannes A P; Schrimpf, Daniel; Gessi, Marco; Möller, Inga; Sucker, Antje; Scolyer, Richard A; Buckland, Michael E; Murali, Rajmohan; Pietsch, Torsten; von Deimling, Andreas; Schadendorf, Dirk

    2018-06-11

    In the central nervous system, distinguishing primary leptomeningeal melanocytic tumors from melanoma metastases and predicting their biological behavior solely using histopathologic criteria can be challenging. We aimed to assess the diagnostic and prognostic value of integrated molecular analysis. Targeted next-generation-sequencing, array-based genome-wide methylation analysis and BAP1 immunohistochemistry was performed on the largest cohort of central nervous system melanocytic tumors analyzed to date, incl. 47 primary tumors of the central nervous system, 16 uveal melanomas. 13 cutaneous melanoma metastasis and 2 blue nevus-like melanomas. Gene mutation, DNA-methylation and copy-number profiles were correlated with clinicopathological features. Combining mutation, copy-number and DNA-methylation profiles clearly distinguished cutaneous melanoma metastases from other melanocytic tumors. Primary leptomeningeal melanocytic tumors, uveal melanomas and blue nevus-like melanoma showed common DNA-methylation, copy-number alteration and gene mutation signatures. Notably, tumors demonstrating chromosome 3 monosomy and BAP1 alterations formed a homogeneous subset within this group. Integrated molecular profiling aids in distinguishing primary from metastatic melanocytic tumors of the central nervous system. Primary leptomeningeal melanocytic tumors, uveal melanoma and blue nevus-like melanoma share molecular similarity with chromosome 3 and BAP1 alterations markers of poor prognosis. Copyright ©2018, American Association for Cancer Research.

  11. Melan-A/Mart-1- or HMB-45-positive melanocytes are not present in calcifying cystic odontogenic tumors (calcifying odontogenic cysts): a study in 13 Caucasian patients.

    Science.gov (United States)

    Tosios, Konstantinos I; Prountzos, Nikolaos; Katsoulas, Nikolaos; Koutlas, Ioannis G; Sklavounou-Andrikopoulou, Alexandra

    2012-03-01

    Melanin pigment and melanocytes may be found in odontogenic cysts and tumors, particularly calcifying cystic odontogenic tumor (CCOT). In the present study we investigated the immunohistochemical expression of the Melan-A/Mart-1 and HMB-45 antigens in 13 Caucasians patients with CCOT. Melan-A/Mart-1- and HMB-45-positive melanocytes were not seen in any of the cases. Our findings are in agreement with the assumption that pigmentation in odontogenic lesions may be a racial phenomenon.

  12. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment

    Science.gov (United States)

    Xiao, Deyi; Barry, Samantha; Kmetz, Daniel; Egger, Michael; Pan, Jianmin; Rai, Shesh N; Qu, Jifu; McMasters, Kelly M.; Hao, Hongying

    2016-01-01

    The tumor microenvironment is abundant with exosomes that are secreted by the cancer cells themselves. Exosomes are nanosized, organelle-like membranous structures that are increasingly being recognized as major contributors in the progression of malignant neoplasms. A critical element in melanoma progression is its propensity to metastasize, but little is known about how melanoma cell-derived exosomes modulate the microenvironment to optimize conditions for tumor progression and metastasis. Here, we provide evidence that melanoma cell-derived exosomes promote phenotype switching in primary melanocytes through paracrine/autocrine signaling. We found that the mitogen-activated protein kinase (MAPK) signaling pathway was activated during the exosome-mediated epithelial-to-mesenchymal transition (EMT)-resembling process, which promotes metastasis. Let-7i, an miRNA modulator of EMT, was also involved in this process. We further defined two other miRNA modulators of EMT (miR-191 and let-7a) in serum exosomes for differentiating stage I melanoma patients from non-melanoma subjects. These results provide the first strong molecular evidence that melanoma cell-derived exosomes promote the EMT-resembling process in the tumor microenvironment. Thus, novel strategies targeting EMT and modulating the tumor microenvironment may emerge as important approaches for the treatment of metastatic melanoma. PMID:27063098

  13. Genetic Background of Iris Melanomas and Iris Melanocytic Tumors of Uncertain Malignant Potential.

    Science.gov (United States)

    van Poppelen, Natasha M; Vaarwater, Jolanda; Mudhar, Hardeep S; Sisley, Karen; Rennie, Ian G; Rundle, Paul; Brands, Tom; van den Bosch, Quincy C C; Mensink, Hanneke W; de Klein, Annelies; Kiliç, Emine; Verdijk, Robert M

    2018-01-19

    BAP1 expression as seen in choroidal melanoma. Consequently, iris melanoma is a distinct molecular subgroup of UM. Histologic borderline malignant iris nevi can harbor BAP1 mutations and may be designated iris melanocytic tumors of uncertain malignant potential. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  14. Melanocytic lesions in a private pathology practice. Comparison of histologic features in different tumor types with particular reference to dysplastic nevi.

    Science.gov (United States)

    Hastrup, N; Hou-Jensen, K

    1993-11-01

    This study reviews a total of 1000 melanocytic lesions--two separate 500 consecutive sample groupings from 1980 and 1989, respectively--diagnosed in a private non-hospital-associated pathology practice. Lesions were classified as lentigo simplex, congenital nevus, "common" nevus, dysplastic nevus, blue nevus, Spitz's nevus or malignant melanoma. A comparison of the two periods reveals an increase in dysplastic nevi from one in 1980 to nine in 1989. The histologic changes in these nevi were compared to those of the other tumors. Pronounced cytologic atypia was seen in the melanocytes of a few "common" nevi, but more often in the dysplastic nevi and in all of the melanomas. Slight nuclear atypia was usual in "common" nevi and lentigines, and also fibroplasia, lymphocytic infiltration, vessel proliferation and pigment incontinence were seen in both "common" nevi and dysplastic nevi. It is concluded that no single histologic variable was specific for dysplastic nevi.

  15. A pilot study to image the vascular network of small melanocytic choroidal tumors with speckle noise-free 1050-nm swept source optical coherence tomography (OCT choroidal angiography).

    Science.gov (United States)

    Maloca, Peter; Gyger, Cyrill; Hasler, Pascal W

    2016-06-01

    To visualize and measure the vascular network of melanocytic choroidal tumors with speckle noise-free swept source optical coherence tomography (SS-OCT choroidal angiography). Melanocytic choroidal tumors from 24 eyes were imaged with 1050-nm optical coherence tomography (Topcon DRI OCT-1 Atlantis). A semi-automated algorithm was developed to remove speckle noise and to extract and measure the volume of the choroidal vessels from the obtained OCT data. In all cases, analysis of the choroidal vessels could be performed with SS-OCT without the need for pupillary dilation. The proposed method allows speckle noise-free, structure-guided visualization and measurement of the larger choroidal vessels in three dimensions. The obtained data suggest that speckle noise-free OCT may be more effective at identifying choroidal structures than traditional OCT methods. The measured volume of the extracted choroidal vessels of Haller's layer and Sattler's layer in the examined tumorous eyes was on average 0.982463955 mm(3) /982463956 μm(3) (range of 0.209764406 mm(3) /209764405.9 μm(3)to 1.78105544 mm(3) /1781055440 μm(3)). Full thickness obstruction of the choroidal vasculature by the tumor was found in 18 cases (72 %). In seven cases (18 %), choroidal vessel architecture did not show pronounced morphological abnormalities (18 %). Speckle noise-free OCT may serve as a new illustrative imaging technology and enhance visualization of the choroidal vessels without the need for dye injection. OCT can be used to identify and evaluate the choroidal vessels of melanocytic choroidal tumors, and may represent a potentially useful tool for imaging and monitoring of choroidal nevi and melanoma.

  16. Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression.

    Directory of Open Access Journals (Sweden)

    Byungwoo Ryu

    2007-07-01

    Full Text Available Gene expression profiling has revolutionized our ability to molecularly classify primary human tumors and significantly enhanced the development of novel tumor markers and therapies; however, progress in the diagnosis and treatment of melanoma over the past 3 decades has been limited, and there is currently no approved therapy that significantly extends lifespan in patients with advanced disease. Profiling studies of melanoma to date have been inconsistent due to the heterogeneous nature of this malignancy and the limited availability of informative tissue specimens from early stages of disease.In order to gain an improved understanding of the molecular basis of melanoma progression, we have compared gene expression profiles from a series of melanoma cell lines representing discrete stages of malignant progression that recapitulate critical characteristics of the primary lesions from which they were derived. Here we describe the unsupervised hierarchical clustering of profiling data from melanoma cell lines and melanocytes. This clustering identifies two distinctive molecular subclasses of melanoma segregating aggressive metastatic tumor cell lines from less-aggressive primary tumor cell lines. Further analysis of expression signatures associated with melanoma progression using functional annotations categorized these transcripts into three classes of genes: 1 Upregulation of activators of cell cycle progression, DNA replication and repair (CDCA2, NCAPH, NCAPG, NCAPG2, PBK, NUSAP1, BIRC5, ESCO2, HELLS, MELK, GINS1, GINS4, RAD54L, TYMS, and DHFR, 2 Loss of genes associated with cellular adhesion and melanocyte differentiation (CDH3, CDH1, c-KIT, PAX3, CITED1/MSG-1, TYR, MELANA, MC1R, and OCA2, 3 Upregulation of genes associated with resistance to apoptosis (BIRC5/survivin. While these broad classes of transcripts have previously been implicated in the progression of melanoma and other malignancies, the specific genes identified within each class

  17. Regulation of Tumor Progression by Programmed Necrosis

    Directory of Open Access Journals (Sweden)

    Su Yeon Lee

    2018-01-01

    Full Text Available Rapidly growing malignant tumors frequently encounter hypoxia and nutrient (e.g., glucose deprivation, which occurs because of insufficient blood supply. This results in necrotic cell death in the core region of solid tumors. Necrotic cells release their cellular cytoplasmic contents into the extracellular space, such as high mobility group box 1 (HMGB1, which is a nonhistone nuclear protein, but acts as a proinflammatory and tumor-promoting cytokine when released by necrotic cells. These released molecules recruit immune and inflammatory cells, which exert tumor-promoting activity by inducing angiogenesis, proliferation, and invasion. Development of a necrotic core in cancer patients is also associated with poor prognosis. Conventionally, necrosis has been thought of as an unregulated process, unlike programmed cell death processes like apoptosis and autophagy. Recently, necrosis has been recognized as a programmed cell death, encompassing processes such as oncosis, necroptosis, and others. Metabolic stress-induced necrosis and its regulatory mechanisms have been poorly investigated until recently. Snail and Dlx-2, EMT-inducing transcription factors, are responsible for metabolic stress-induced necrosis in tumors. Snail and Dlx-2 contribute to tumor progression by promoting necrosis and inducing EMT and oncogenic metabolism. Oncogenic metabolism has been shown to play a role(s in initiating necrosis. Here, we discuss the molecular mechanisms underlying metabolic stress-induced programmed necrosis that promote tumor progression and aggressiveness.

  18. Complex microcirculation patterns detected by confocal indocyanine green angiography predict time to growth of small choroidal melanocytic tumors: MuSIC Report II.

    Science.gov (United States)

    Mueller, Arthur J; Freeman, William R; Schaller, Ulrich C; Kampik, Anselm; Folberg, Robert

    2002-12-01

    Multiple independent laboratories have confirmed the histologic observation that some tumor microcirculation patterns (MCPs) in uveal melanomas are associated strongly with death resulting from metastatic disease. Because these patterns are imageable with confocal indocyanine green angiography (ICG), we designed a prospective study to evaluate whether these angiographically detectable MCPs predict time to tumor growth. Observational case series, prospective, non-randomized. Ninety-eight patients with unilateral, small, choroidal melanocytic tumors. The following information and tumor characteristics were recorded for each patient: demographic parameters, best-corrected visual acuity, intraocular pressure, related visual symptoms, location and dimension of tumor, pigmentation, orange pigment, drusen, tumor-associated hemorrhage, subretinal fluid, and confocal ICG angiographically determined microcirculation patterns-silent (avascularity), normal (preexisting normal choroidal vessels within the tumor), straight vessels, parallel without and with cross-linking, arcs without and with branching, loops, and networks. Time to growth of the tumor, with growth defined as an increase in the maximal apical tumor height of 0.5 mm measured by standardized A-scan ultrasonography, photographic documentation of an increase of the largest basal diameter of at least 1.5 mm, advancement of one tumor border of at least 0.75 mm, or a combination thereof. Twenty-eight of the 98 tumors in this study (29%) met the predetermined criteria for tumor growth. The median time to growth was 127 days (range, 51-625 days). The following tumor characteristics were significantly associated with time to tumor growth: flashes (P = 0.0224), orange pigment (P = 0.012), subretinal fluid (P < 0.001), maximum basal tumor diameter at initial examination (P = 0.015), maximum apical tumor height (P < 0.001), parallel with cross-linking MCP (P < 0.001), arcs with branching MCP (P = 0.006), loops (P < 0

  19. Sema4D, the ligand for Plexin B1, suppresses c-Met activation and migration and promotes melanocyte survival and growth.

    Science.gov (United States)

    Soong, Joanne; Chen, Yulin; Shustef, Elina M; Scott, Glynis A

    2012-04-01

    Semaphorins are secreted and membrane-bound proteins involved in neural pathfinding, organogenesis, and tumor progression, through Plexin and neuropilin receptors. We recently reported that Plexin B1, the Semaphorin 4D (Sema4D) receptor, is a tumor-suppressor protein for melanoma, which functions, in part, through inhibition of the oncogenic c-Met tyrosine kinase receptor. In this report, we show that Sema4D is a protective paracrine factor for normal human melanocyte survival in response to UV irradiation, and that it stimulates proliferation and regulates the activity of the c-Met receptor. c-Met receptor signaling stimulates melanocyte migration, partly through downregulation of the cell adhesion molecule E-cadherin. Sema4D suppressed activation of c-Met in response to its ligand, hepatocyte growth factor (HGF), and partially blocked the suppressive effects of HGF on E-cadherin expression in melanocytes and HGF-dependent migration. These data demonstrate a role for Plexin B1 in maintenance of melanocyte survival and proliferation in the skin, and suggest that Sema4D and Plexin B1 act cooperatively with HGF and c-Met to regulate c-Met-dependent effects in human melanocytes. Because our data show that Plexin B1 is profoundly downregulated by UVB in melanocytes, loss of Plexin B1 may accentuate HGF-dependent effects on melanocytes, including melanocyte migration.

  20. Overexpression of hepatoma-derived growth factor in melanocytes does not lead to oncogenic transformation

    International Nuclear Information System (INIS)

    Sedlmaier, Angela; Wernert, Nicolas; Gallitzendörfer, Rainer; Abouzied, Mekky M; Gieselmann, Volkmar; Franken, Sebastian

    2011-01-01

    HDGF is a growth factor which is overexpressed in a wide range of tumors. Importantly, expression levels were identified as a prognostic marker in some types of cancer such as melanoma. To investigate the presumed oncogenic/transforming capacity of HDGF, we generated transgenic mice overexpressing HDGF in melanocytes. These mice were bred with mice heterozygous for a defective copy of the Ink4a tumor suppressor gene and were exposed to UV light to increase the risk for tumor development both genetically and physiochemically. Mice were analyzed by immunohistochemistry and Western blotting. Furthermore, primary melanocytes were isolated from different strains created. Transgenic animals overexpressed HDGF in hair follicle melanocytes. Interestingly, primary melanocytes isolated from transgenic animals were not able to differentiate in vitro whereas cells isolated from wild type and HDGF-deficient animals were. Although, HDGF -/- /Ink4a +/- mice displayed an increased number of epidermoid cysts after exposure to UV light, no melanomas or premelanocytic alterations could be detected in this mouse model. The results therefore provide no evidence that HDGF has a transforming capacity in tumor development. Our results in combination with previous findings point to a possible role in cell differentiation and suggest that HDGF promotes tumor progression after secondary upregulation and may represent another protein fitting into the concept of non-oncogene addiction of tumor tissue

  1. Ionizing radiation in tumor promotion and progression

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.

    1990-08-01

    Chronic exposure to beta radiation has been tested as a tumor promoting or progressing agent. The dorsal skins of groups of 25 female SENCAR mice were chemically initiated with a single exposure to DMBA, and chronic exposure to strontium-90/yttrium-90 beta radiation was tested as a stage 1, stage 2 or complete skin tumor promoter. Exposure of initiated mice to 0.5 gray twice a week for 13 weeks produced no papillomas, indicating no action as a complete promoter. Another similar group of animals was chemically promoted through stage 1 (with TPA) followed by 0.5 gray of beta radiation twice a week for 13 weeks. Again no papillomas developed indicating no action of chronic radiation as a stage 2 tumor promoter. The same radiation exposure protocol in another DMBA initiated group receiving both stage 1 and 2 chemical promotion resulted in a decrease in papilloma frequency, compared to the control group receiving no beta irradiation, indicating a tumor preventing effect of radiation at stage 2 promotion, probably by killing initiated cells. Chronic beta radiation was tested three different ways as a stage 1 tumor promoter. When compared to the appropriate control, beta radiation given after initiation as a stage 1 promoter (0.5 gray twice a week for 13 weeks), after initiation and along with a known stage 1 chemical promoter (1.0 gray twice a week for 2 weeks), or prior to initiation as a stage 1 promoter (0.5 gray twice a week for 4 weeks), each time showed a weak (∼ 15% stimulation) but statistically significant (p<0.01) ability to act as a stage 1 promoter. When tested as a tumor progressing agent delivered to pre-existing papillomas, beta radiation (0.5 gray twice a week for 13 weeks) increased carcinoma frequency from 0.52 to 0.68 carcinoma/animal, but this increase was not statistically significant at the 95% confidence level. We conclude that in the addition to the known initiating, progressing and complete carcinogenic action of acute exposures to ionizing

  2. UVB-irradiated keratinocytes induce melanoma-associated ganglioside GD3 synthase gene in melanocytes via secretion of tumor necrosis factor α and interleukin 6

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Maiko [Department of Life and Medical Sciences, Chubu University Faculty of Life and Health Sciences, Matsumoto, Kasugai 487-8501 (Japan); Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Ichihara, Masatoshi; Tajima, Orie; Sobue, Sayaka; Kambe, Mariko [Department of Life and Medical Sciences, Chubu University Faculty of Life and Health Sciences, Matsumoto, Kasugai 487-8501 (Japan); Sugiura, Kazumitsu [Department of Dermatology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Furukawa, Koichi, E-mail: koichi@med.nagoya-u.ac.jp [Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Furukawa, Keiko [Department of Life and Medical Sciences, Chubu University Faculty of Life and Health Sciences, Matsumoto, Kasugai 487-8501 (Japan); Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan)

    2014-03-07

    Highlights: • Melanocytes showed low ST8SIA1 and high B3GALT4 levels in contrast with melanomas. • Direct UVB irradiation of melanocytes did not induce ganglioside synthase genes. • Culture supernatants of UVB-irradiated keratinocytes induced ST8SIA1 in melanocytes. • TNFα and IL-6 secreted from keratinocytes enhanced ST8SIA1 expression in melanocytes. • Inflammatory cytokines induced melanoma-related ST8SIA1 in melanocytes. - Abstract: Although expression of gangliosides and their synthetic enzyme genes in malignant melanomas has been well studied, that in normal melanocytes has been scarcely analyzed. In particular, changes in expression levels of glycosyltransferase genes responsible for ganglioside synthesis during evolution of melanomas from melanocytes are very important to understand roles of gangliosides in melanomas. Here, expression of glycosyltransferase genes related to the ganglioside synthesis was analyzed using RNAs from cultured melanocytes and melanoma cell lines. Quantitative RT-PCR revealed that melanomas expressed high levels of mRNA of GD3 synthase and GM2/GD2 synthase genes and low levels of GM1/GD1b synthase genes compared with melanocytes. As a representative exogenous stimulation, effects of ultraviolet B (UVB) on the expression levels of 3 major ganglioside synthase genes in melanocytes were analyzed. Although direct UVB irradiation of melanocytes caused no marked changes, culture supernatants of UVB-irradiated keratinocytes (HaCaT cells) induced definite up-regulation of GD3 synthase and GM2/GD2 synthase genes. Detailed examination of the supernatants revealed that inflammatory cytokines such as TNFα and IL-6 enhanced GD3 synthase gene expression. These results suggest that inflammatory cytokines secreted from UVB-irradiated keratinocytes induced melanoma-associated ganglioside synthase genes, proposing roles of skin microenvironment in the promotion of melanoma-like ganglioside profiles in melanocytes.

  3. UVB-irradiated keratinocytes induce melanoma-associated ganglioside GD3 synthase gene in melanocytes via secretion of tumor necrosis factor α and interleukin 6

    International Nuclear Information System (INIS)

    Miyata, Maiko; Ichihara, Masatoshi; Tajima, Orie; Sobue, Sayaka; Kambe, Mariko; Sugiura, Kazumitsu; Furukawa, Koichi; Furukawa, Keiko

    2014-01-01

    Highlights: • Melanocytes showed low ST8SIA1 and high B3GALT4 levels in contrast with melanomas. • Direct UVB irradiation of melanocytes did not induce ganglioside synthase genes. • Culture supernatants of UVB-irradiated keratinocytes induced ST8SIA1 in melanocytes. • TNFα and IL-6 secreted from keratinocytes enhanced ST8SIA1 expression in melanocytes. • Inflammatory cytokines induced melanoma-related ST8SIA1 in melanocytes. - Abstract: Although expression of gangliosides and their synthetic enzyme genes in malignant melanomas has been well studied, that in normal melanocytes has been scarcely analyzed. In particular, changes in expression levels of glycosyltransferase genes responsible for ganglioside synthesis during evolution of melanomas from melanocytes are very important to understand roles of gangliosides in melanomas. Here, expression of glycosyltransferase genes related to the ganglioside synthesis was analyzed using RNAs from cultured melanocytes and melanoma cell lines. Quantitative RT-PCR revealed that melanomas expressed high levels of mRNA of GD3 synthase and GM2/GD2 synthase genes and low levels of GM1/GD1b synthase genes compared with melanocytes. As a representative exogenous stimulation, effects of ultraviolet B (UVB) on the expression levels of 3 major ganglioside synthase genes in melanocytes were analyzed. Although direct UVB irradiation of melanocytes caused no marked changes, culture supernatants of UVB-irradiated keratinocytes (HaCaT cells) induced definite up-regulation of GD3 synthase and GM2/GD2 synthase genes. Detailed examination of the supernatants revealed that inflammatory cytokines such as TNFα and IL-6 enhanced GD3 synthase gene expression. These results suggest that inflammatory cytokines secreted from UVB-irradiated keratinocytes induced melanoma-associated ganglioside synthase genes, proposing roles of skin microenvironment in the promotion of melanoma-like ganglioside profiles in melanocytes

  4. Microenvironmental independence associated with tumor progression.

    Science.gov (United States)

    Anderson, Alexander R A; Hassanein, Mohamed; Branch, Kevin M; Lu, Jenny; Lobdell, Nichole A; Maier, Julie; Basanta, David; Weidow, Brandy; Narasanna, Archana; Arteaga, Carlos L; Reynolds, Albert B; Quaranta, Vito; Estrada, Lourdes; Weaver, Alissa M

    2009-11-15

    Tumor-microenvironment interactions are increasingly recognized to influence tumor progression. To understand the competitive dynamics of tumor cells in diverse microenvironments, we experimentally parameterized a hybrid discrete-continuum mathematical model with phenotypic trait data from a set of related mammary cell lines with normal, transformed, or tumorigenic properties. Surprisingly, in a resource-rich microenvironment, with few limitations on proliferation or migration, transformed (but not tumorigenic) cells were most successful and outcompeted other cell types in heterogeneous tumor simulations. Conversely, constrained microenvironments with limitations on space and/or growth factors gave a selective advantage to phenotypes derived from tumorigenic cell lines. Analysis of the relative performance of each phenotype in constrained versus unconstrained microenvironments revealed that, although all cell types grew more slowly in resource-constrained microenvironments, the most aggressive cells were least affected by microenvironmental constraints. A game theory model testing the relationship between microenvironment resource availability and competitive cellular dynamics supports the concept that microenvironmental independence is an advantageous cellular trait in resource-limited microenvironments.

  5. Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo.

    Science.gov (United States)

    Ingram, D A; Yang, F C; Travers, J B; Wenning, M J; Hiatt, K; New, S; Hood, A; Shannon, K; Williams, D A; Clapp, D W

    2000-01-03

    Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder characterized by cutaneous neurofibromas infiltrated with large numbers of mast cells, melanocyte hyperplasia, and a predisposition to develop malignant neoplasms. NF1 encodes a GTPase activating protein (GAP) for Ras. Consistent with Knudson's "two hit" model of tumor suppressor genes, leukemias and malignant solid tumors in NF1 patients frequently demonstrate somatic loss of the normal NF1 allele. However, the phenotypic and biochemical consequences of heterozygous inactivation of Nf1 are largely unknown. Recently neurofibromin, the protein encoded by NF1, was shown to negatively regulate Ras activity in Nf1-/- murine myeloid hematopoietic cells in vitro through the c-kit receptor tyrosine kinase (dominant white spotting, W). Since the W and Nf1 locus appear to function along a common developmental pathway, we generated mice with mutations at both loci to examine potential interactions in vivo. Here, we show that haploinsufficiency at Nf1 perturbs cell fates in mast cells in vivo, and partially rescues coat color and mast cell defects in W(41) mice. Haploinsufficiency at Nf1 also increased mast cell proliferation, survival, and colony formation in response to Steel factor, the ligand for c-kit. Furthermore, haploinsufficiency was associated with enhanced Ras-mitogen-activated protein kinase activity, a major downstream effector of Ras, via wild-type and mutant (W(41)) c-kit receptors. These observations identify a novel interaction between c-kit and neurofibromin in vivo, and offer experimental evidence that haploinsufficiency of Nf1 alters both cellular and biochemical phenotypes in two cell lineages that are affected in individuals with NF1. Collectively, these data support the emerging concept that heterozygous inactivation of tumor suppressor genes may have profound biological effects in multiple cell types.

  6. Melanocytic nevi and non-neoplastic hyperpigmentations.

    Science.gov (United States)

    Clemente, C

    2017-06-01

    This is the first of three chapters that will be progressively published on Pathologica as updating activity of the Italian Study Group of Dermatopathology (GISD), Italian Society of Pathology and Cytology (SIAPeC IAP). The first chapter concerns non-neoplastic hyperpigmented skin lesions and nevi, the second will address the topics of dysplastic nevus, borderline and low malignant potential melanocytic proliferations and the third melanoma in its variants and differential diagnoses with a supplement on the immunohistochemistry and molecular support to diagnostic and prognostic definition of nevi and melanomas. Although we believe that great advances were made in the application of ancillary genetic, immunohistochemical and molecular techniques, for the diagnosis and biological characterization of melanocytic tumors the morphology still remains the gold standard. These chapters are not intended as substitutes or even claim to be compared to the numerous and valuable texts that are also recently published, but they want to present, concisely and quickly available, all of those traits that we believe essential to the histopathological evaluation of a melanocytic lesion. No morphological parameter is exclusive and individually sufficient to make the correct diagnosis of nevus or melanoma but to reach a final conclusive and appropriate interpretation a set of morphological characters must be evaluated and compared. I was lucky enough to be able to examine several thousand cases and to draw lessons from each of these increasing my diagnostic experience. I had a great lesson by my teacher and good friend Prof. Martin C. Mihm Jr of Boston, dermato-pathologist with undisputed international reputation, who, with great passion, patience and friendship, transferred me much of his experience and knowledge and for which I always thank him. Special thanks I would like to address Dr. Agostino Crupi, dermatologist, skin-oncologist and brilliant dermatoscopist who taught me how the

  7. Melanoma targeting with alpha-melanocyte stimulating hormone analogs labeled with fac-[99mTc(CO)3]+: effect of cyclization on tumor-seeking properties.

    Science.gov (United States)

    Raposinho, Paula D; Xavier, Catarina; Correia, João D G; Falcão, Soraia; Gomes, Paula; Santos, Isabel

    2008-03-01

    Early detection of primary melanoma tumors is essential because there is no effective treatment for metastatic melanoma. Several linear and cyclic radiolabeled alpha-melanocyte stimulating hormone (alpha-MSH) analogs have been proposed to target the melanocortin type 1 receptor (MC1R) overexpressed in melanoma. The compact structure of a rhenium-cyclized alpha-MSH analog (Re-CCMSH) significantly enhanced its in vivo tumor uptake and retention. Melanotan II (MT-II), a cyclic lactam analog of alpha-MSH (Ac-Nle-cyclo[Asp-His-DPhe-Arg-Trp-Lys]-NH2]), is a very potent and stable agonist peptide largely used in the characterization of melanocortin receptors. Taking advantage of the superior biological features associated with the MT-II cyclic peptide, we assessed the effect of lactam-based cyclization on the tumor-seeking properties of alpha-MSH analogs by comparing the pharmacokinetics profile of the 99mTc-labeled cyclic peptide betaAla-Nle-cyclo[Asp-His-D-Phe-Arg-Trp-Lys]-NH2 with that of the linear analog betaAla-Nle-Asp-His-DPhe-Arg-Trp-Lys-NH2 in melanoma-bearing mice. We have synthesized and coupled the linear and cyclic peptides to a bifunctional chelator containing a pyrazolyl-diamine backbone (pz) through the amino group of betaAla, and the resulting pz-peptide conjugates were reacted with the fac-[99mTc(CO)3]+ moiety. The 99mTc(CO)3-labeled conjugates were obtained in high yield, high specific activity, and high radiochemical purity. The cyclic 99mTc(CO)3-labeled conjugate presents a remarkable internalization (87.1% of receptor-bound tracer and 50.5% of total applied activity, after 6 h at 37 degrees C) and cellular retention (only 24.7% released from the cells after 5 h) in murine melanoma B16F1 cells. A significant tumor uptake and retention was obtained in melanoma-bearing C57BL6 mice for the cyclic radioconjugate [9.26 +/- 0.83 and 11.31 +/- 1.83% ID/g at 1 and 4 h after injection, respectively]. The linear 99mTc(CO)3-pz-peptide presented lower values for

  8. Pathogenesis and progression of fibroepithelial breast tumors

    NARCIS (Netherlands)

    Kuijper, Arno

    2006-01-01

    Fibroadenoma and phyllodes tumor are fibroepithelial breast tumors. These tumors are biphasic, i.e. they are composed of stroma and epithelium. The behavior of fibroadenomas is benign, whereas phyllodes tumors can recur and even metastasize. Classification criteria for both tumors show considerable

  9. Up-regulation of hepatoma-derived growth factor facilitates tumor progression in malignant melanoma [corrected].

    Directory of Open Access Journals (Sweden)

    Han-En Tsai

    Full Text Available Cutaneous malignant melanoma is the fastest increasing malignancy in humans. Hepatoma-derived growth factor (HDGF is a novel growth factor identified from human hepatoma cell line. HDGF overexpression is correlated with poor prognosis in various types of cancer including melanoma. However, the underlying mechanism of HDGF overexpression in developing melanoma remains unclear. In this study, human melanoma cell lines (A375, A2058, MEL-RM and MM200 showed higher levels of HDGF gene expression, whereas human epidermal melanocytes (HEMn expressed less. Exogenous application of HDGF stimulated colony formation and invasion of human melanoma cells. Moreover, HDGF overexpression stimulated the degree of invasion and colony formation of B16-F10 melanoma cells whereas HDGF knockdown exerted opposite effects in vitro. To evaluate the effects of HDGF on tumour growth and metastasis in vivo, syngeneic mouse melanoma and metastatic melanoma models were performed by manipulating the gene expression of HDGF in melanoma cells. It was found that mice injected with HDGF-overexpressing melanoma cells had greater tumour growth and higher metastatic capability. In contrast, mice implanted with HDGF-depleted melanoma cells exhibited reduced tumor burden and lung metastasis. Histological analysis of excised tumors revealed higher degree of cell proliferation and neovascularization in HDGF-overexpressing melanoma. The present study provides evidence that HDGF promotes tumor progression of melanoma and targeting HDGF may constitute a novel strategy for the treatment of melanoma.

  10. Progress in radiotherapy of diencephalohypophyseal tumor

    Energy Technology Data Exchange (ETDEWEB)

    Takakura, Kintomo; Kubo, Osami [Tokyo Women`s Medical Coll. (Japan). Neurological Inst.

    1997-12-01

    The patients with hypophyseal adenoma (36 patients) were treated with peripheral irradiation (between 10 and 35 Gy) using gamma unit. The results are shown as follows: GH producing hypophyseal tumor (8 patients); tumor volume did not reduce rapidly. Growth hormone level fell, but it took more than 12 months to recover to normal level. PRL producing hypophyseal tumor (5 patients); five intractable patients were irradiated. Tumor contraction was not obvious, but the increase of tumor size was restrained. ACTH producing hypophyseal tumor (4 patients); ACTH level dropped gradually, and tumor size was reduced. However, there were 2 intractable cases. Non-functional hypophyseal tumor (19 patients); local tumor control rate was 100% in all patients and visual field was recovered. The size of craniopharyngioma was obviously reduced with peripheral irradiation of 10 Gy dimension about 10 months later. (K.H.)

  11. Tumor heterogeneity and progression: conceptual foundations for modeling.

    Science.gov (United States)

    Greller, L D; Tobin, F L; Poste, G

    1996-01-01

    A conceptual foundation for modeling tumor progression, growth, and heterogeneity is presented. The purpose of such models is to aid understanding, test ideas, formulate experiments, and to model cancer 'in machina' to address the dynamic features of tumor cell heterogeneity, progression, and growth. The descriptive capabilities of such an approach provides a consistent language for qualitatively reasoning about tumor behavior. This approach provides a schema for building conceptual models that combine three key phenomenological driving elements: growth, progression, and genetic instability. The growth element encompasses processes contributing to changes in tumor bulk and is distinct from progression per se. The progression element subsumes a broad collection of processes underlying phenotypic progression. The genetics elements represents heritable changes which potentially affect tumor character and behavior. Models, conceptual and mathematical, can be built for different tumor situations by drawing upon the interaction of these three distinct driving elements. These models can be used as tools to explore a diversity of hypotheses concerning dynamic changes in cellular populations during tumor progression, including the generation of intratumor heterogeneity. Such models can also serve to guide experimentation and to gain insight into dynamic aspects of complex tumor behavior.

  12. Progression of desmoid tumors in familial polyposis: a case report

    International Nuclear Information System (INIS)

    Lee, Yong Il; Lee, Hae Kyung; Hong, Hyung Sook; Kwon, Kui Hyang; Choi, Deuk Lin; Kim, Jae Joon

    2001-01-01

    Multiple large bowel polyps are the hallmark of familial adenomatous polyposis (FAP), and many progress to colorectal cancer. Desmoid tumors are more common in patients with FAP than in other people, occurring, particulary, in those who have previously undergone prophylatic total colectomy. In such patients, desmoid tumors are a common cause of death. In an FAP patient without extracolic menifestation, who has undergone prophylatic surgery, multifocal desmoid tumors occur periodically. We report the serial radiologic findings of progressive desmoid tumors in FAP, drawing attention to the related findings of previous research

  13. Progression of desmoid tumors in familial polyposis: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Il; Lee, Hae Kyung; Hong, Hyung Sook; Kwon, Kui Hyang; Choi, Deuk Lin; Kim, Jae Joon [Soonchunhyang Univ. College of Medicine, A-san (Korea, Republic of)

    2001-01-01

    Multiple large bowel polyps are the hallmark of familial adenomatous polyposis (FAP), and many progress to colorectal cancer. Desmoid tumors are more common in patients with FAP than in other people, occurring, particulary, in those who have previously undergone prophylatic total colectomy. In such patients, desmoid tumors are a common cause of death. In an FAP patient without extracolic menifestation, who has undergone prophylatic surgery, multifocal desmoid tumors occur periodically. We report the serial radiologic findings of progressive desmoid tumors in FAP, drawing attention to the related findings of previous research.

  14. Role of CD44 in Tumor Progression

    National Research Council Canada - National Science Library

    Underhill, Charles

    1999-01-01

    ...) that we isolated from cartilage by affinity chromatography. We found that the HAbc was able to block the growth of tumors cells in mice as well as in the chorioallantoic membrane (CAM) of chicken embryos...

  15. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression

    DEFF Research Database (Denmark)

    Frohlich, Camilla; Nehammer, Camilla; Albrechtsen, Reidar

    2011-01-01

    that ADAM12 deficiency reduces breast tumor progression in the PyMT model. However, the catalytic activity of ADAM12 appears to be dispensable for its tumor-promoting effect. Interestingly, we demonstrate that ADAM12 endogenously expressed in tumor-associated stroma in the PyMT model does not influence......Expression of ADAM12 is low in most normal tissues, but is markedly increased in numerous human cancers, including breast carcinomas. We have previously shown that overexpression of ADAM12 accelerates tumor progression in a mouse model of breast cancer (PyMT). In the present study, we found...... hypothesized, however, that the tumor-associated stroma may stimulate ADAM12 expression in tumor cells, based on the fact that TGF-ß1 stimulates ADAM12 expression and is a well-known growth factor released from tumor-associated stroma. TGF-ß1 stimulation of ADAM12-negative Lewis lung tumor cells induced ADAM12...

  16. Early diagnosis and successful treatment of paraneoplastic melanocytic proliferation.

    Science.gov (United States)

    Jansen, Joyce C G; Van Calster, Joachim; Pulido, Jose S; Miles, Sarah L; Vile, Richard G; Van Bergen, Tine; Cassiman, Catherine; Spielberg, Leigh H; Leys, Anita M

    2015-07-01

    Paraneoplastic melanocytic proliferation (bilateral diffuse uveal melanocytic proliferation, BDUMP) is a rare but devastating disease that causes progressive visual loss in patients who usually have an occult malignancy. Visual loss occurs as a result of paraneoplastic changes in the uveal tissue. In a masked fashion, the serum of two patients with BDUMP was evaluated for the presence of cultured melanocyte elongation and proliferation (CMEP) factor using cultured human melanocytes. We evaluated the efficacy of plasmapheresis as a treatment modality early in the disease in conjunction with radiation and chemotherapy. The serum of the first case patient was investigated after plasmapheresis and did not demonstrate proliferation of cultured human melanocytes. The serum of the second case was evaluated prior to treatment with plasmapheresis and did induce this proliferation. These findings are in accordance with the diminution of CMEP factor after plasmapheresis. Treatment with plasmapheresis managed to stabilise the ocular disease progression in both patients. In the past, visual loss due to paraneoplastic melanocytic proliferation was considered progressive and irreversible. We treated two patients successfully with plasmapheresis and demonstrated a relation between CMEP factor in the serum of these patients and proliferation of cultured melanocytes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Evolutionary Game Theory Analysis of Tumor Progression

    Science.gov (United States)

    Wu, Amy; Liao, David; Sturm, James; Austin, Robert

    2014-03-01

    Evolutionary game theory applied to two interacting cell populations can yield quantitative prediction of the future densities of the two cell populations based on the initial interaction terms. We will discuss how in a complex ecology that evolutionary game theory successfully predicts the future densities of strains of stromal and cancer cells (multiple myeloma), and discuss the possible clinical use of such analysis for predicting cancer progression. Supported by the National Science Foundation and the National Cancer Institute.

  18. Giant Congenital Melanocytic Nevus

    DEFF Research Database (Denmark)

    Rasmussen, Bo Sonnich; Henriksen, Trine Foged; Kølle, Stig-Frederik Trojahn

    2015-01-01

    Giant congenital melanocytic nevi (GCMN) occur in 1:20,000 livebirths and are associated with increased risk of malignant transformation. The treatment of GCMN from 1981 to 2010 in a tertiary referral center was reviewed evaluating the modalities used, cosmetic results, associated complications...

  19. Tumor-Derived Exosomes and Their Role in Cancer Progression.

    Science.gov (United States)

    Whiteside, Theresa L

    2016-01-01

    Tumor cells actively produce, release, and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis, and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as noninvasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation. © 2016 Elsevier Inc. All rights reserved.

  20. Second harmonic generation reveals matrix alterations during breast tumor progression

    Science.gov (United States)

    Burke, Kathleen; Tang, Ping; Brown, Edward

    2013-03-01

    Alteration of the extracellular matrix in tumor stroma influences efficiency of cell locomotion away from the primary tumor into surrounding tissues and vasculature, thereby affecting metastatic potential. We study matrix changes in breast cancer through the use of second harmonic generation (SHG) of collagen in order to improve the current understanding of breast tumor stromal development. Specifically, we utilize a quantitative analysis of the ratio of forward to backward propagating SHG signal (F/B ratio) to monitor collagen throughout ductal and lobular carcinoma development. After detection of a significant decrease in the F/B ratio of invasive but not in situ ductal carcinoma compared with healthy tissue, the collagen F/B ratio is investigated to determine the evolution of fibrillar collagen changes throughout tumor progression. Results are compared with the progression of lobular carcinoma, whose F/B signature also underwent significant evolution during progression, albeit in a different manner, which offers insight into varying methods of tissue penetration and collagen manipulation between the carcinomas. This research provides insights into trends of stromal reorganization throughout breast tumor development.

  1. The tumor macroenvironment and systemic regulation of breast cancer progression.

    Science.gov (United States)

    Castaño, Zafira; Tracy, Kristin; McAllister, Sandra S

    2011-01-01

    Breast cancer is the most common malignancy among women worldwide and is the most common cause of death for women between 35 and 50 years of age. Women with breast cancer are at risk of developing metastases for their entire lifetime and, despite local and systemic therapies, approximately 30% of breast cancer patients will relapse (Jemal et al., 2010). Nearly all breast cancer related deaths are due to metastatic disease, even though metastasis is considered to be an inefficient process. In some cases, tumor cells disseminate from primary sites at an early stage, but remain indolent for protracted periods of time before becoming overt, life-threatening tumors. Little is known about the mechanisms that cause these indolent tumors to grow into malignant disease. Because of this gap in our understanding, we are unable to predict which breast cancer patients are likely to experience disease relapse or develop metastases years after treatment of their primary tumor. A better understanding of the mechanisms and signals involved in the exit of tumor cells from dormancy would not only allow for more accurate selection of patients that would benefit from systemic therapy, but could also lead to the development of more targeted therapies to inhibit the signals that promote disease progression. In this review, we address the systemic, or "macroenvironmental", contribution to tumor initiation and progression and what is known about how a pro-tumorigenic systemic environment is established.

  2. Role of immune system in tumor progression and carcinogenesis.

    Science.gov (United States)

    Upadhyay, Shishir; Sharma, Nidhi; Gupta, Kunj Bihari; Dhiman, Monisha

    2018-01-12

    Tumor micro-environment has potential to customize the behavior of the immune cell according to their need. In immune-eliminating phase, immune cells eliminate transformed cells but after tumor establishment innate and adaptive immune cells synergistically provide shelter as well as fulfill their requirement that helps in progression. In between eliminating and establishment phase, equilibrium and escaping phase regulate the immune cells response. During immune-escaping, (1) the antigenic response generated is either inadequate, or focused entirely on tolerance, and (2) immune response generated is specific and effective, but the tumor skips immune recognition. In this review, we are discussing the critical role of immune cells and their cytokines before and after the establishment of tumor which might play a critical role during immunotherapy. © 2018 Wiley Periodicals, Inc.

  3. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress.

    Science.gov (United States)

    Lammers, Twan; Kiessling, Fabian; Hennink, Wim E; Storm, Gert

    2012-07-20

    Many different systems and strategies have been evaluated for drug targeting to tumors over the years. Routinely used systems include liposomes, polymers, micelles, nanoparticles and antibodies, and examples of strategies are passive drug targeting, active drug targeting to cancer cells, active drug targeting to endothelial cells and triggered drug delivery. Significant progress has been made in this area of research both at the preclinical and at the clinical level, and a number of (primarily passively tumor-targeted) nanomedicine formulations have been approved for clinical use. Significant progress has also been made with regard to better understanding the (patho-) physiological principles of drug targeting to tumors. This has led to the identification of several important pitfalls in tumor-targeted drug delivery, including I) overinterpretation of the EPR effect; II) poor tumor and tissue penetration of nanomedicines; III) misunderstanding of the potential usefulness of active drug targeting; IV) irrational formulation design, based on materials which are too complex and not broadly applicable; V) insufficient incorporation of nanomedicine formulations in clinically relevant combination regimens; VI) negligence of the notion that the highest medical need relates to metastasis, and not to solid tumor treatment; VII) insufficient integration of non-invasive imaging techniques and theranostics, which could be used to personalize nanomedicine-based therapeutic interventions; and VIII) lack of (efficacy analyses in) proper animal models, which are physiologically more relevant and more predictive for the clinical situation. These insights strongly suggest that besides making ever more nanomedicine formulations, future efforts should also address some of the conceptual drawbacks of drug targeting to tumors, and that strategies should be developed to overcome these shortcomings. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Understanding and Targeting Tumor Microenvironment in Prostate Cancer to Inhibit Tumor Progression and Castration Resistance

    Science.gov (United States)

    2016-10-01

    cancer-secreted chemokine to attract Cxcr2-expressing MDSCs and, correspondingly, pharmacological inhibition of Cxcr2 impeded tumor progression...impact of pharmacological inhibition of Cxcl5 and Cxcr2 on MDSCs using the transwell migration assay 26 . First, anti-Cxcl5 neutralizing antibody...and MRI . (B) Generation of the CPPSML chimera model. (C) Fluorescence microscopy and H&E image of snap frozen prostate tumor from chimera showing that

  5. Role of Melanin in Melanocyte Dysregulation of Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Noah C. Jenkins

    2013-01-01

    Full Text Available We have recently reported a potential alternative tumor suppressor function for p16 relating to its capacity to regulate oxidative stress and observed that oxidative dysregulation in p16-depleted cells was most profound in melanocytes, compared to keratinocytes or fibroblasts. Moreover, in the absence of p16 depletion or exogenous oxidative insult, melanocytes exhibited significantly higher basal levels of reactive oxygen species (ROS than these other epidermal cell types. Given the role of oxidative stress in melanoma development, we speculated that this increased susceptibility of melanocytes to oxidative stress (and greater reliance on p16 for suppression of ROS may explain why genetic compromise of p16 is more commonly associated with predisposition to melanoma rather than other cancers. Here we show that the presence of melanin accounts for this differential oxidative stress in normal and p16-depleted melanocytes. Thus the presence of melanin in the skin appears to be a double-edged sword: it protects melanocytes as well as neighboring keratinocytes in the skin through its capacity to absorb UV radiation, but its synthesis in melanocytes results in higher levels of intracellular ROS that may increase melanoma susceptibility.

  6. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression.

    Science.gov (United States)

    Ma, Ruihua; Ji, Tiantian; Chen, Degao; Dong, Wenqian; Zhang, Huafeng; Yin, Xiaonan; Ma, Jingwei; Liang, Xiaoyu; Zhang, Yi; Shen, Guanxin; Qin, Xiaofeng; Huang, Bo

    2016-04-01

    Despite identification of macrophages in tumors (tumor-associated macrophages, TAM) as potential targets for cancer therapy, the origin and function of TAM in the context of malignancy remain poorly characterized. Here, we show that microparticles (MPs), as a by-product, released by tumor cells act as a general mechanism to mediate M2 polarization of TAM. Taking up tumor MPs by macrophages is a very efficient process, which in turn results in the polarization of macrophages into M2 type, not only leading to promoting tumor growth and metastasis but also facilitating cancer stem cell development. Moreover, we demonstrate that the underlying mechanism involves the activation of the cGAS/STING/TBK1/STAT6 pathway by tumor MPs. Finally, in addition to murine tumor MPs, we show that human counterparts also possess consistent effect on human M2 polarization. These findings provide new insights into a critical role of tumor MPs in remodeling of tumor microenvironment and better understanding of the communications between tumors and macrophages.

  7. Technological progress in radiation therapy for brain tumors

    LENUS (Irish Health Repository)

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  8. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression.

    Science.gov (United States)

    Han, Yanmei; Liu, Qiuyan; Hou, Jin; Gu, Yan; Zhang, Yi; Chen, Zhubo; Fan, Jia; Zhou, Weiping; Qiu, Shuangjian; Zhang, Yonghong; Dong, Tao; Li, Ning; Jiang, Zhengping; Zhu, Ha; Zhang, Qian; Ma, Yuanwu; Zhang, Lianfeng; Wang, Qingqing; Yu, Yizhi; Li, Nan; Cao, Xuetao

    2018-04-19

    Identifying tumor-induced leukocyte subsets and their derived circulating factors has been instrumental in understanding cancer as a systemic disease. Nevertheless, how primary tumor-induced non-leukocyte populations in distal organs contribute to systemic spread remains poorly defined. Here, we report one population of tumor-inducible, erythroblast-like cells (Ter-cells) deriving from megakaryocyte-erythroid progenitor cells with a unique Ter-119 + CD45 - CD71 + phenotype. Ter-cells are enriched in the enlarged spleen of hosts bearing advanced tumors and facilitate tumor progression by secreting neurotrophic factor artemin into the blood. Transforming growth factor β (TGF-β) and Smad3 activation are important in Ter-cell generation. In vivo blockade of Ter-cell-derived artemin inhibits hepatocellular carcinoma (HCC) growth, and artemin deficiency abolishes Ter-cells' tumor-promoting ability. We confirm the presence of splenic artemin-positive Ter-cells in human HCC patients and show that significantly elevated serum artemin correlates with poor prognosis. We propose that Ter-cells and the secreted artemin play important roles in cancer progression with prognostic and therapeutic implications. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Integrated genomics of ovarian xenograft tumor progression and chemotherapy response

    International Nuclear Information System (INIS)

    Stuckey, Ashley; Brodsky, Alexander S; Fischer, Andrew; Miller, Daniel H; Hillenmeyer, Sara; Kim, Kyu K; Ritz, Anna; Singh, Rakesh K; Raphael, Benjamin J; Brard, Laurent

    2011-01-01

    Ovarian cancer is the most deadly gynecological cancer with a very poor prognosis. Xenograft mouse models have proven to be one very useful tool in testing candidate therapeutic agents and gene function in vivo. In this study we identify genes and gene networks important for the efficacy of a pre-clinical anti-tumor therapeutic, MT19c. In order to understand how ovarian xenograft tumors may be growing and responding to anti-tumor therapeutics, we used genome-wide mRNA expression and DNA copy number measurements to identify key genes and pathways that may be critical for SKOV-3 xenograft tumor progression. We compared SKOV-3 xenografts treated with the ergocalciferol derived, MT19c, to untreated tumors collected at multiple time points. Cell viability assays were used to test the function of the PPARγ agonist, Rosiglitazone, on SKOV-3 cell growth. These data indicate that a number of known survival and growth pathways including Notch signaling and general apoptosis factors are differentially expressed in treated vs. untreated xenografts. As tumors grow, cell cycle and DNA replication genes show increased expression, consistent with faster growth. The steroid nuclear receptor, PPARγ, was significantly up-regulated in MT19c treated xenografts. Surprisingly, stimulation of PPARγ with Rosiglitazone reduced the efficacy of MT19c and cisplatin suggesting that PPARγ is regulating a survival pathway in SKOV-3 cells. To identify which genes may be important for tumor growth and treatment response, we observed that MT19c down-regulates some high copy number genes and stimulates expression of some low copy number genes suggesting that these genes are particularly important for SKOV-3 xenograft growth and survival. We have characterized the time dependent responses of ovarian xenograft tumors to the vitamin D analog, MT19c. Our results suggest that PPARγ promotes survival for some ovarian tumor cells. We propose that a combination of regulated expression and copy number

  10. KITENIN is associated with tumor progression in human gastric cancer.

    Science.gov (United States)

    Ryu, Ho-Seong; Park, Young-Lan; Park, Su-Jin; Lee, Ji-Hee; Cho, Sung-Bum; Lee, Wan-Sik; Chung, Ik-Joo; Kim, Kyung-Keun; Lee, Kyung-Hwa; Kweon, Sun-Seog; Joo, Young-Eun

    2010-09-01

    KAI1 COOH-terminal interacting tetraspanin (KITENIN) promotes tumor cell migration, invasion and metastasis in colon, bladder, head and neck cancer. The aims of current study were to evaluate whether KITENIN affects tumor cell behavior in human gastric cancer cell line and to document the expression of KITENIN in a well-defined series of gastric tumors, including complete long-term follow-up, with special reference to patient prognosis. To evaluate the impact of KITENIN knockdown on behavior of a human gastric cancer cell line, AGS, migration, invasion and proliferation assays using small-interfering RNA were performed. The expression of activator protein-1 (AP-1) target genes and AP-1 transcriptional activity were evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and luciferase reporter assay. The expression of KITENIN and AP-1 target genes by RT-PCR and Western blotting or immunohistochemistry was also investigated in human gastric cancer tissues. The knockdown of KITENIN suppressed tumor cell migration, invasion and proliferation in AGS cells. The mRNA expression of matrix metalloproteinase-1 (MMP-1), MMP-3, cyclooxygenase-2 (COX-2), and CD44 was reduced by knockdown of KITENIN in AGS. AP-1 transcriptional activity was significantly decreased by knockdown of KITENIN in AGS cells. KITENIN expression was significantly increased in human cancer tissues at RNA and protein levels. Expression of MMP-1, MMP-3, COX-2 and CD44 were significantly increased in human gastric cancer tissues. Immunostaining of KITENIN was predominantly identified in the cytoplasm of cancer cells. Expression of KITENIN was significantly associated with tumor size, Lauren classification, depth of invasion, lymph node metastasis, tumor stage and poor survival. These results indicate that KITENIN plays an important role in human gastric cancer progression by AP-1 activation.

  11. Radiological features of progressive tumoral calcinosis in chronic renal failure.

    LENUS (Irish Health Repository)

    Hodnett, P

    2012-02-03

    We present the case of a young adult patient with chronic renal failure who developed painful subcutaneous nodules after failed renal transplant and recommencing dialysis. These nodules were juxta-articular in location and initially located over both shoulders. Radiological evaluation suggested tumoral calcinosis. The patient was placed on a strict dialysis and dietary regimen but was suboptimally compliant with same. The patient developed progressive disease with an increase in size and number of juxta-articular calcified soft-tissue masses. However, 6 months following a second renal transplant clinical and radiological follow up demonstrated marked resolution both in symptomatology and radiographic findings. We present the plain radiographic, CT and MRI findings which demonstrate the typical radiological features of tumoral calcinosis. We correlate these findings with clinical course and histological findings following surgical excision of one of these masses.

  12. APRIL is overexpressed in cancer: link with tumor progression

    International Nuclear Information System (INIS)

    Moreaux, Jérôme; Veyrune, Jean-Luc; De Vos, John; Klein, Bernard

    2009-01-01

    BAFF and APRIL share two receptors – TACI and BCMA – and BAFF binds to a third receptor, BAFF-R. Increased expression of BAFF and APRIL is noted in hematological malignancies. BAFF and APRIL are essential for the survival of normal and malignant B lymphocytes, and altered expression of BAFF or APRIL or of their receptors (BCMA, TACI, or BAFF-R) have been reported in various B-cell malignancies including B-cell non-Hodgkin's lymphoma, chronic lymphocytic leukemia, Hodgkin's lymphoma, multiple myeloma, and Waldenstrom's macroglobulinemia. We compared the expression of BAFF, APRIL, TACI and BAFF-R gene expression in 40 human tumor types – brain, epithelial, lymphoid, germ cells – to that of their normal tissue counterparts using publicly available gene expression data, including the Oncomine Cancer Microarray database. We found significant overexpression of TACI in multiple myeloma and thyroid carcinoma and an association between TACI expression and prognosis in lymphoma. Furthermore, BAFF and APRIL are overexpressed in many cancers and we show that APRIL expression is associated with tumor progression. We also found overexpression of at least one proteoglycan with heparan sulfate chains (HS), which are coreceptors for APRIL and TACI, in tumors where APRIL is either overexpressed or is a prognostic factor. APRIL could induce survival or proliferation directly through HS proteoglycans. Taken together, these data suggest that APRIL is a potential prognostic factor for a large array of malignancies

  13. Tumor-derived exosomes in cancer progression and treatment failure.

    Science.gov (United States)

    Yu, Shaorong; Cao, Haixia; Shen, Bo; Feng, Jifeng

    2015-11-10

    Exosomes have diameter within the range of 30-100 nm and spherical to cup-shaped nanoparticles with specific surface molecular characteristics, such as CD9 and CD63. These vesicles are present in nearly all human body fluids, including blood plasma/serum, saliva, breast milk, cerebrospinal fluid, urine, semen, and particularly enriched in tumor microenvironment. Exosomes contain multiple proteins, DNA, mRNA, miRNA, long non-coding RNA, and even genetic materials of viruses/prions. These materials are biochemically and functionally distinct and can be transferred to a recipient cell where they regulate protein expression and signaling pathways. Recently, exosomes are demonstrated to have a close relationship with tumor development and metastasis. Exosomes influence therapeutic effect in cancer patients. In this review, we describe the biogenesis, composition, and function of exosomes. The mechanism on how tumor-derived exosomes contribute to cancer progression and clinical treatment failure is also described, with special focus on their potential applications in cancer therapy.

  14. Tumor-derived exosomes in cancer progression and treatment failure

    Science.gov (United States)

    Shen, Bo; Feng, Jifeng

    2015-01-01

    Exosomes have diameter within the range of 30-100nm and spherical to cup-shaped nanoparticles with specific surface molecular characteristics, such as CD9 and CD63. These vesicles are present in nearly all human body fluids, including blood plasma/serum, saliva, breast milk, cerebrospinal fluid, urine, semen, and particularly enriched in tumor microenvironment. Exosomes contain multiple proteins, DNA, mRNA, miRNA, long non-coding RNA, and even genetic materials of viruses/prions. These materials are biochemically and functionally distinct and can be transferred to a recipient cell where they regulate protein expression and signaling pathways. Recently, exosomes are demonstrated to have a close relationship with tumor development and metastasis. Exosomes influence therapeutic effect in cancer patients. In this review, we describe the biogenesis, composition, and function of exosomes. The mechanism on how tumor-derived exosomes contribute to cancer progression and clinical treatment failure is also described, with special focus on their potential applications in cancer therapy. PMID:26452221

  15. Does Melanoma Begin in a Melanocyte Stem Cell

    International Nuclear Information System (INIS)

    Hoerter, J. D.; Bradley, P.; Casillas, A.; Chambers, D.; Weiswasser, B.; Clements, L.; Gilbert, S.; Jiao, A.

    2012-01-01

    What is the cellular origin of melanoma? What role do melanocyte stem cells (MSC) and other melanocyte precursors play in the development of melanoma? Are MSCs and other latent melanocyte precursors more susceptible to solar radiation? These and many other questions can be very effectively addressed using the zebra fish model. Zebra fish have a robust regenerative capability, permitting the study of how MSCs are regulated and recruited at specific times and places to generate the pigment pattern following fin amputation or melanocyte ablation. They can be used to determine the effects of environmental radiation on the proliferation, survival, repair, and differentiation of MSCs. Our lab is using zebra fish to investigate how UVA- (320-400nm) and UVB- (290-320nm) induced damage to MSCs may contribute to the development of melanoma. A review is given of MSCs in zebrafish as well as experimental techniques and drugs for manipulating MSC populations. These techniques can be used to design experiments to help answer many questions regarding the role of MSCs or melanocyte precursors in the formation of melanoma stem cells and tumors following exposure to UVA/UVB radiation.

  16. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells.

    Science.gov (United States)

    Testa, Ugo; Pelosi, Elvira; Castelli, Germana

    2018-04-13

    Colon cancer is the third most common cancer worldwide. Most colorectal cancer occurrences are sporadic, not related to genetic predisposition or family history; however, 20-30% of patients with colorectal cancer have a family history of colorectal cancer and 5% of these tumors arise in the setting of a Mendelian inheritance syndrome. In many patients, the development of a colorectal cancer is preceded by a benign neoplastic lesion: either an adenomatous polyp or a serrated polyp. Studies carried out in the last years have characterized the main molecular alterations occurring in colorectal cancers, showing that the tumor of each patient displays from two to eight driver mutations. The ensemble of molecular studies, including gene expression studies, has led to two proposed classifications of colorectal cancers, with the identification of four/five non-overlapping groups. The homeostasis of the rapidly renewing intestinal epithelium is ensured by few stem cells present at the level of the base of intestinal crypts. Various experimental evidence suggests that colorectal cancers may derive from the malignant transformation of intestinal stem cells or of intestinal cells that acquire stem cell properties following malignant transformation. Colon cancer stem cells seem to be involved in tumor chemoresistance, radioresistance and relapse.

  17. Mammalian melanocytes and radiations

    International Nuclear Information System (INIS)

    Hirobe, Tomohisa

    2008-01-01

    Melanocytes (M) decide the skin and hair color through the synthesis of melanine pigment, which is transported via their melanosome to keratinocytes (K) for body color expression in animals. This paper describes mainly author's studies of M concerning effects of ultraviolet (UV), ionizing radiation and heavy ion (carbon ion) beam on their development and differentiation together with its mechanism. In vitro, studies of UV effect on proliferation and differentiation of M and melanoblast (MB) have been greatly advanced since their culturing in serum-free media became possible using cells from author's black-mouse (C57BL/10JHir strain): Their mixed culture with K firstly revealed that their proliferation and differentiation were enhanced by UV irradiation. The important K's factor to regulate M/MB cells was identified to be GMCSF (granulocyte-macrophage colony-stimulating factor). In vivo studies of the skin color of the black-mouse before and after birth were performed using radiations like 60 Co gamma ray and high linear energy transfer (LET) carbon ion beam and have revealed that abnormal proliferation and differentiation of M/MB, which were expressed as white spot formation, death and mal-differentiation of M/MB, were induced dose-, LET- and developmental stage-dependently. (R.T.)

  18. Tumor-targeting properties of 90Y- and 177Lu-labeled α-melanocyte stimulating hormone peptide analogues in a murine melanoma model

    International Nuclear Information System (INIS)

    Miao Yubin; Hoffman, Timothy J.; Quinn, Thomas P.

    2005-01-01

    The purpose of this study was to compare the tumor-targeting properties of 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH in a murine melanoma mouse model. Methods: The in vitro properties of cellular internalization and retention of 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH were studied in B16/F1 murine melanoma cells. The pharmacokinetics of 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH were determined in B16/F1 melanoma-bearing C57 mice. Results: 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH exhibited fast cellular internalization and extended cellular retention in B16/F1 cells. High receptor-mediated tumor uptake and retention coupled with fast whole-body clearance of 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH were demonstrated in B16/F1 tumor-bearing C57 mice. The tumor uptakes of 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH were 25.70±4.64 and 14.48±0.85 %ID/g at 2 h, and 14.09±2.73 and 17.68±3.32 %ID/g at 4 h postinjection. There was little activity accumulated in normal organs except for kidney. Conclusions: High tumor-targeting properties of 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH highlighted their potential as radiopharmaceuticals for targeted radionuclide therapy of melanoma in further investigations

  19. Increased Tumor Necrosis Factor (TNF)-α and Its Promoter Polymorphisms Correlate with Disease Progression and Higher Susceptibility towards Vitiligo

    Science.gov (United States)

    Laddha, Naresh C.; Dwivedi, Mitesh; Begum, Rasheedunnisa

    2012-01-01

    Abstract Tumor Necrosis Factor (TNF)-α, is a paracrine inhibitor of melanocytes, which plays a critical role in the pathogenesis of several autoimmune diseases including vitiligo, as abnormal immune responses have frequently been observed in vitiligo patients. Moreover, vitiligo patients show higher lesion levels of TNF-α. Genetic polymorphisms in the promoter region of TNF-α are involved in the regulation of its expression. The present study explores TNF-α promoter polymorphisms and correlates them with TNF-α transcript and protein levels in vitiligo patients and controls of Gujarat along with its effect on disease onset and progression. PCR-RFLP technique was used for genotyping of these polymorphisms in 977 vitiligo patients and 990 controls. TNF-α transcript and protein levels were measured by Real time PCR and ELISA respectively. The genotype and allele frequencies for the investigated polymorphisms were significantly associated with vitiligo patients. The study revealed significant increase in TNF-α transcript and protein levels in vitiligo patients compared to controls. In particular, haplotypes: AATCC, AACCT, AGTCT, GATCT, GATCC and AGCCT were found to increase the TNF-α levels in vitiligo patients. Analysis of TNF-α levels based on the gender and disease progression suggests that female patients and patients with active vitiligo had higher levels of TNF-α. Also, the TNF-α levels were high in patients with generalized vitiligo as compared to localized vitiligo. Age of onset analysis of the disease suggests that the haplotypes: AACAT, AACCT, AATCC and AATCT had a profound effect in the early onset of the disease. Moreover, the analysis suggests that female patients had an early onset of vitiligo. Overall, our results suggest that TNF-α promoter polymorphisms may be genetic risk factors for susceptibility and progression of the disease. The up-regulation of TNF-α transcript and protein levels in individuals with susceptible haplotypes advocates

  20. Research progress in nanographene oxide with tumor imaging and therapy

    Directory of Open Access Journals (Sweden)

    YOU Peihong

    2015-04-01

    Full Text Available Nanographene oxide,one of graphene oxide derivatives and a novel two-dimensional carbon nanomaterial,has become a popular research topic in nanomedicine due to its unique properties such as ultra-high surface-to-volume ratio and great photo-thermal effect.It contains a large amount of reactive chemical groups,including carboxy group,carbonyl group,hydroxyl group and epoxy group,which enable its easy biological and chemical functionalization and excellent biocompatibility.Therefore,it has potential applications in biomedical field.This paper briefly describes the preparation and functionalization of nanographeme oxide,and then mainly focuses on its application studies in the biomedical field,including in vitro and in vivo toxicity tests and advanced research progress of tumor imaging and treatment.

  1. Pigmentation, Melanocyte Colonization, and p53 Status in Basal Cell Carcinoma

    International Nuclear Information System (INIS)

    Frey, L. M.; Houben, R.; Brocker, E. B.

    2011-01-01

    Basal cell carcinoma (BCC) is the most common neoplasm in the Caucasian population. Only a fraction of BCC exhibits pigmentation. Lack of melanocyte colonization has been suggested to be due to p53-inactivating mutations in the BCC cells interfering with the p53-proopiomelanocortin pathway and the production of alpha melanocyte-stimulating hormone in the tumor. To evaluate this, we determined tumor pigmentation as well as expression of melan-A and of p53 in 49 BCC tissues by means of immunohistochemistry. As expected, we observed a positive relation between tumor pigmentation and melan-A positive intra-tumoral melanocytes. Melanocyte colonization and, to a lesser extent, p53 overexpression showed intraindividual heterogeneity in larger tumors. p53 overexpression, which is indicative of p53 mutations, was not correlated to melanocyte colonization of BCC. Sequencing of exon 5-8 of the p53 gene in selected BCC cases revealed that colonization by melanocytes and BCC pigmentation is neither ablated by p53 mutations nor generally present in BCCs with wild-type p53.

  2. Retinoblastoma loss modulates DNA damage response favoring tumor progression.

    Directory of Open Access Journals (Sweden)

    Marcos Seoane

    Full Text Available Senescence is one of the main barriers against tumor progression. Oncogenic signals in primary cells result in oncogene-induced senescence (OIS, crucial for protection against cancer development. It has been described in premalignant lesions that OIS requires DNA damage response (DDR activation, safeguard of the integrity of the genome. Here we demonstrate how the cellular mechanisms involved in oncogenic transformation in a model of glioma uncouple OIS and DDR. We use this tumor type as a paradigm of oncogenic transformation. In human gliomas most of the genetic alterations that have been previously identified result in abnormal activation of cell growth signaling pathways and deregulation of cell cycle, features recapitulated in our model by oncogenic Ras expression and retinoblastoma (Rb inactivation respectively. In this scenario, the absence of pRb confers a proliferative advantage and activates DDR to a greater extent in a DNA lesion-independent fashion than cells that express only HRas(V12. Moreover, Rb loss inactivates the stress kinase DDR-associated p38MAPK by specific Wip1-dependent dephosphorylation. Thus, Rb loss acts as a switch mediating the transition between premalignant lesions and cancer through DDR modulation. These findings may have important implications for the understanding the biology of gliomas and anticipate a new target, Wip1 phosphatase, for novel therapeutic strategies.

  3. Mena deficiency delays tumor progression and decreases metastasis in polyoma middle-T transgenic mouse mammary tumors.

    Science.gov (United States)

    Roussos, Evanthia T; Wang, Yarong; Wyckoff, Jeffrey B; Sellers, Rani S; Wang, Weigang; Li, Jiufeng; Pollard, Jeffrey W; Gertler, Frank B; Condeelis, John S

    2010-01-01

    The actin binding protein Mammalian enabled (Mena), has been implicated in the metastatic progression of solid tumors in humans. Mena expression level in primary tumors is correlated with metastasis in breast, cervical, colorectal and pancreatic cancers. Cells expressing high Mena levels are part of the tumor microenvironment for metastasis (TMEM), an anatomical structure that is predictive for risk of breast cancer metastasis. Previously we have shown that forced expression of Mena adenocarcinoma cells enhances invasion and metastasis in xenograft mice. Whether Mena is required for tumor progression is still unknown. Here we report the effects of Mena deficiency on tumor progression, metastasis and on normal mammary gland development. To investigate the role of Mena in tumor progression and metastasis, Mena deficient mice were intercrossed with mice carrying a transgene expressing the polyoma middle T oncoprotein, driven by the mouse mammary tumor virus. The progeny were investigated for the effects of Mena deficiency on tumor progression via staging of primary mammary tumors and by evaluation of morbidity. Stages of metastatic progression were investigated using an in vivo invasion assay, intravital multiphoton microscopy, circulating tumor cell burden, and lung metastases. Mammary gland development was studied in whole mount mammary glands of wild type and Mena deficient mice. Mena deficiency decreased morbidity and metastatic dissemination. Loss of Mena increased mammary tumor latency but had no affect on mammary tumor burden or histologic progression to carcinoma. Elimination of Mena also significantly decreased epidermal growth factor (EGF) induced in vivo invasion, in vivo motility, intravasation and metastasis. Non-tumor bearing mice deficient for Mena also showed defects in mammary gland terminal end bud formation and branching. Deficiency of Mena decreases metastasis by slowing tumor progression and reducing tumor cell invasion and intravasation. Mena

  4. Matrix metalloproteinase-10 promotes tumor progression through regulation of angiogenic and apoptotic pathways in cervical tumors

    International Nuclear Information System (INIS)

    Zhang, Ge; Miyake, Makito; Lawton, Adrienne; Goodison, Steve; Rosser, Charles J

    2014-01-01

    Cancer invasion and metastasis develops through a series of steps that involve the loss of cell to cell and cell to matrix adhesion, degradation of extracellular matrix and induction of angiogenesis. Different protease systems (e.g., matrix metalloproteinases, MMPs) are involved in these steps. MMP-10, one of the lesser studied MMPs, is limited to epithelial cells and can facilitate tumor cell invasion by targeting collagen, elastin and laminin. Enhanced MMP-10 expression has been linked to poor clinical prognosis in some cancers, however, mechanisms underlying a role for MMP-10 in tumorigenesis and progression remain largely unknown. Here, we report that MMP-10 expression is positively correlated with the invasiveness of human cervical and bladder cancers. Using commercial tissue microarray (TMA) of cervical and bladder tissues, MMP-10 immunohistochemical staining was performed. Furthermore using a panel of human cells (HeLa and UROtsa), in vitro and in vivo experiments were performed in which MMP-10 was overexpressed or silenced and we noted phenotypic and genotypic changes. Experimentally, we showed that MMP-10 can regulate tumor cell migration and invasion, and endothelial cell tube formation, and that MMP-10 effects are associated with a resistance to apoptosis. Further investigation revealed that increasing MMP-10 expression stimulates the expression of HIF-1α and MMP-2 (pro-angiogenic factors) and PAI-1 and CXCR2 (pro-metastatic factors), and accordingly, targeting MMP-10 with siRNA in vivo resulted in diminution of xenograft tumor growth with a concomitant reduction of angiogenesis and a stimulation of apoptosis. Taken together, our findings show that MMP-10 can play a significant role in tumor growth and progression, and that MMP-10 perturbation may represent a rational strategy for cancer treatment

  5. Which factors influence radiographic progression during treatment with tumor necrosis factor inhibitors in clinical practice?

    DEFF Research Database (Denmark)

    Ørnbjerg, Lykke Midtbøll; Østergaard, Mikkel; Bøyesen, Pernille

    2014-01-01

    OBJECTIVE: To investigate baseline characteristics associated with radiographic progression and the effect of disease activity, drug, switching, and withdrawal on radiographic progression in tumor necrosis factor (TNF) inhibitor-naive patients with rheumatoid arthritis (RA) followed for about 2...

  6. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidant response promotes melanocyte viability and reduces toxicity of the vitiligo-inducing phenol monobenzone.

    Science.gov (United States)

    Arowojolu, Omotayo A; Orlow, Seth J; Elbuluk, Nada; Manga, Prashiela

    2017-07-01

    Vitiligo, characterised by progressive melanocyte death, can be initiated by exposure to vitiligo-inducing phenols (VIPs). VIPs generate oxidative stress in melanocytes and activate the master antioxidant regulator NRF2. While NRF2-regulated antioxidants are reported to protect melanocytes from oxidative stress, the role of NRF2 in the melanocyte response to monobenzone, a clinically relevant VIP, has not been characterised. We hypothesised that activation of NRF2 may protect melanocytes from monobenzone-induced toxicity. We observed that knockdown of NRF2 or NRF2-regulated antioxidants NQO1 and PRDX6 reduced melanocyte viability, but not viability of keratinocytes and fibroblasts, suggesting that melanocytes were preferentially dependent upon NRF2 activity for growth compared to other cutaneous cells. Furthermore, melanocytes activated the NRF2 response following monobenzone exposure and constitutive NRF2 activation reduced monobenzone toxicity, supporting NRF2's role in the melanocyte stress response. In contrast, melanocytes from individuals with vitiligo (vitiligo melanocytes) did not activate the NRF2 response as efficiently. Dimethyl fumarate-mediated NRF2 activation protected normal and vitiligo melanocytes against monobenzone-induced toxicity. Given the contribution of oxidant-antioxidant imbalance in vitiligo, modulation of this pathway may be of therapeutic interest. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Bilateral diffuse uveal melanocytic proliferation

    DEFF Research Database (Denmark)

    Klemp, Kristian; Kiilgaard, Jens Folke; Heegaard, Steffen

    2017-01-01

    cataract formation and uveal melanocytic tumours. The awareness and documentation of BDUMP has increased during the past decade, and the increasing amount of data collected demonstrates the effect of treatment with plasmapheresis and the value of diagnostic tools in BDUMP such as genetic and immunologic...

  8. FISH analysis for diagnostic evaluation of challenging melanocytic lesions.

    Science.gov (United States)

    Zimmermann, A K; Hirschmann, A; Pfeiffer, D; Paredes, B E; Diebold, J

    2010-09-01

    The differential diagnosis of malignant melanomas and atypical melanocytic nevi is still a diagnostic challenge. The currently accepted morphologic criteria show substantial interobserver variability, likewise immunohistochemical studies are often not able to discriminate these lesions reliably. Techniques that support diagnostic accuracy are of the greatest importance considering the growing incidence of malignant melanomas and their increase in younger patients. In this study we analyzed the feasibility of fluorescence in situ hybridization (FISH) analysis for the discrimination of malignant and benign melanocytic tumors. A panel of DNA probes was used to detect chromosomal aberrations of chromosomes 6 and 11. On a series of 5 clearly malignant and benign melanocytic tumors we confirmed the applicability of the test. Then we focused on examination of ambiguous melanocytic lesions, where atypical cells are often difficult to relocalize in the 4',6-Diamidino-2-phenylindol (DAPI)-fluorescence stain. FISH analyses were conducted on destained H&E-stained slides. By comparison of the DAPI-image with photos taken from the H&E stain, unambiguous assignment of the FISH results to the conspicuous groups of cells was possible. The results of FISH analysis were consistent with the conventional diagnosis in 11 of 14 small ambiguous lesions. Of the remaining 3 cases, 2 showed FISH-results close to the cut-off level. Comparison of FISH results on thin and thick sections revealed that the cut-off values have to be adapted for 2 microm destained sections. In conclusion, FISH analysis is a useful and applicable tool for assessment of even smallest melanocytic neoplasms, although there will remain unclear cases that cannot be solved even after additional FISH evaluation.

  9. Autophagy-dependent secretion: contribution to tumor progression

    Directory of Open Access Journals (Sweden)

    Tom Keulers

    2016-11-01

    Full Text Available Autophagy is best known as a lysosomal degradation and recycling pathway to maintain cellular homeostasis. During autophagy, cytoplasmic content is recognized and packed in autophagic vacuoles, or autophagosomes, and targeted for degradation. However, during the last years, it has become evident that the role of autophagy is not restricted to degradation alone but also mediates unconventional forms of secretion. Furthermore, cells with defects in autophagy apparently are able to reroute their cargo, like mitochondria, to the extracellular environment; effects that contribute to an array of pathologies. In this review we discuss the current knowledge of the physiological roles of autophagy-dependent secretion, i.e. the effect on inflammation and insulin/ hormone secretion. Finally, we focus on the effects of autophagy-dependent secretion on the tumour microenvironment and tumour progression. The autophagy mediated secreted factors may stimulate cellular proliferation via auto- and paracrine signaling. The autophagy mediated release of immune modulating proteins change the immunosuppresive tumor microenvironment and may promote an invasive phenotype. These effects may be either direct or indirect through facilitating formation of the mobilized vesicle, aid in anterograde trafficking or alterations in homeostasis and/or autonomous cell signaling.

  10. TLR5 signaling, commensal microbiota and systemic tumor promoting inflammation: the three parcae of malignant progression.

    Science.gov (United States)

    Rutkowski, Melanie R; Conejo-Garcia, Jose R

    2015-08-01

    We have reported that TLR5-mediated recognition of commensal microbiota modulates systemic tumor-promoting inflammation and malignant progression of tumors at distal locations. Approximately 7-10% of the general population harbors a deleterious single nucleotide polymorphism in TLR5, implicating a novel role for genetic variation during the initiation and progression of cancer.

  11. Regulation of tumor progression and metastasis by bone marrow-derived microenvironments

    DEFF Research Database (Denmark)

    El Rayes, Tina; Gao, Dingcheng; Altorki, Nasser K.

    2017-01-01

    Activating mutations in driver oncogenes and loss-of-function mutations in tumor suppressor genes contribute to tumor progression and metastasis. Accordingly, therapies targeting key tumor cell-intrinsic signaling pathways are being used in clinical trials, and some have met FDA approval. However...

  12. Reduced glucocorticoid receptor expression predicts bladder tumor recurrence and progression.

    Science.gov (United States)

    Ishiguro, Hitoshi; Kawahara, Takashi; Zheng, Yichun; Netto, George J; Miyamoto, Hiroshi

    2014-08-01

    To assess the levels of glucocorticoid receptor (GR) expression in bladder tumors because the status and its prognostic value remain largely unknown. We immunohistochemically stained for GR in bladder tumor and matched non-neoplastic bladder tissue specimens. Overall, GR was positive in 129 (87%) of 149 urothelial tumors, which was significantly (P=.026) lower than in non-neoplastic urothelium (90 [96%] of 94). Forty-two (79%) of 53 low-grade tumors vs 45 (47%) of 96 high-grade carcinomas (Pcancer-specific survival of MI tumors (P=.067). Multivariate analysis identified low GR expression as a strong predictor for recurrence of NMI tumors (P=.034). GR expression was downregulated in bladder tumors compared with nonneoplastic bladder tumors and in high-grade/MI tumors compared with low-grade/NMI tumors. Decreased expression of GR, as an independent prognosticator, predicted recurrence of NMI tumors. These results support experimental evidence suggesting an inhibitory role of GR signals in bladder cancer outgrowth. Copyright© by the American Society for Clinical Pathology.

  13. Targeting Nanomedicine to Brain Tumors: Latest Progress and Achievements.

    Science.gov (United States)

    Van't Root, Moniek; Lowik, Clemens; Mezzanotte, Laura

    2017-01-01

    Targeting nanomedicine to brain tumors is hampered by the heterogeneity of brain tumors and the blood brain barrier. These represent the main reasons of unsuccessful treatments. Nanomedicine based approaches hold promise for improved brain tissue distribution of drugs and delivery of combination therapies. In this review, we describe the recent advancements and latest achievements in the use of nanocarriers, virus and cell-derived nanoparticles for targeted therapy of brain tumors. We provide successful examples of nanomedicine based approaches for direct targeting of receptors expressed in brain tumor cells or modulation of pathways involved in cell survival as well as approaches for indirect targeting of cells in the tumor stroma and immunotherapies. Although the field is at its infancy, clinical trials involving nanomedicine based approaches for brain tumors are ongoing and many others will start in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Coat-sleeve type giant congenital melanocytic nevus with intraoral blue nevus: A rare case report

    Directory of Open Access Journals (Sweden)

    Lata M Kale

    2017-01-01

    Full Text Available Congenital melanocytic nevi (CMN are visible hyperpigmented (melanocytic, benign, tumor like proliferations in the skin resulting from faulty development of pigment cell precursors in the embryo, and are composed of an abnormal mixture of skin elements. Giant congenital melanocytic nevus (GCMN is usually defined as a melanocytic lesion present at birth that will reach a larger size in adulthood. GCMN is a rare variety of CMN which is characterized by its size (diameter ≥20 cm and the potential for malignant transformation. It is infrequently associated with other findings, which makes the clinical picture complex. In this case, we report a rare association of GCMN with intraoral blue nevus in a 24-year-old male patient.

  15. Melanocyte colonization and pigmentation of breast carcinoma

    DEFF Research Database (Denmark)

    Mele, Marco; Laurberg, Tinne; Engberg Damsgaard, Tine

    2012-01-01

    . The pathogenesis by which melanocyte migration takes place is not known, but a breached basement membrane is considered essential. Conclusion. Histological examination and additional staining of skin are essential to differentiate breast cancer melanosis from malignant melanoma.......Introduction. Melanocyte colonization of breast carcinoma by nonneoplastic melanocytes of epidermal origin is a rare and serious condition first described in 1977. We report on the exceptional clinical and pathological features of this migration phenomenon in a 74-year-old patient. Discussion...

  16. Antioxidant Activity during Tumor Progression: A Necessity for the Survival of Cancer Cells?

    Science.gov (United States)

    Hawk, Mark A; McCallister, Chelsea; Schafer, Zachary T

    2016-10-13

    Antioxidant defenses encompass a variety of distinct compounds and enzymes that are linked together through their capacity to neutralize and scavenge reactive oxygen species (ROS). While the relationship between ROS and tumorigenesis is clearly complex and context dependent, a number of recent studies have suggested that neutralizing ROS can facilitate tumor progression and metastasis in multiple cancer types through distinct mechanisms. These studies therefore infer that antioxidant activity may be necessary to support the viability and/or the invasive capacity of cancer cells during tumor progression and metastasis. Here, we discuss some of the accumulating evidence suggesting a role for antioxidant activity in facilitating tumor progression.

  17. Antioxidant Activity during Tumor Progression: A Necessity for the Survival of Cancer Cells?

    Directory of Open Access Journals (Sweden)

    Mark A. Hawk

    2016-10-01

    Full Text Available Antioxidant defenses encompass a variety of distinct compounds and enzymes that are linked together through their capacity to neutralize and scavenge reactive oxygen species (ROS. While the relationship between ROS and tumorigenesis is clearly complex and context dependent, a number of recent studies have suggested that neutralizing ROS can facilitate tumor progression and metastasis in multiple cancer types through distinct mechanisms. These studies therefore infer that antioxidant activity may be necessary to support the viability and/or the invasive capacity of cancer cells during tumor progression and metastasis. Here, we discuss some of the accumulating evidence suggesting a role for antioxidant activity in facilitating tumor progression.

  18. Basic fibroblast growth factor in an animal model of spontaneous mammary tumor progression.

    Science.gov (United States)

    Kao, Steven; Mo, Jeffrey; Baird, Andrew; Eliceiri, Brian P

    2012-06-01

    Although basic fibroblast growth factor (FGF2) was the first pro-angiogenic molecule discovered, it has numerous activities on the growth and differentiation of non-vascular cell types. FGF2 is both stimulatory and inhibitory, depending on the cell type evaluated, the experimental design used and the context in which it is tested. Here, we investigated the effects of manipulating endogenous FGF2 on the development of mammary cancer to determine whether its endogenous contribution in vivo is pro- or anti-tumorigenic. Specifically, we examined the effects of FGF2 gene dosing in a cross between a spontaneous breast tumor model (PyVT+ mice) and FGF2-/- (FGF KO) mice. Using these mice, the onset and progression of mammary tumors was determined. As predicted, female FGF2 WT mice developed mammary tumors starting around 60 days after birth and by 80 days, 100% of FGF2 WT female mice had mammary tumors. In contrast, 80% of FGF2 KO female mice had no palpable tumors until nearly three weeks later (85 days) at times when 100% of the WT cohort was tumor positive. All FGF KO mice were tumor-bearing by 115 days. When we compared the onset of mammary tumor development and the tumor progression curves between FGF het and FGF KO mice, we observed a difference, which suggested a gene dosing effect. Analysis of the tumors demonstrated that there were significant differences in tumor size depending on FGF2 status. The delay in tumor onset supports a functional role for FGF2 in mammary tumor progression, but argues against an essential role for FGF2 in overall mammary tumor progression.

  19. Recent Progress in the Medical Therapy of Pituitary Tumors

    Directory of Open Access Journals (Sweden)

    Fabienne Langlois

    2017-05-01

    Full Text Available Management of pituitary tumors is multidisciplinary, with medical therapy playing an increasingly important role. With the exception of prolactin-secreting tumors, surgery is still considered the first-line treatment for the majority of pituitary adenomas. However, medical/pharmacological therapy plays an important role in controlling hormone-producing pituitary adenomas, especially for patients with acromegaly and Cushing disease (CD. In the case of non-functioning pituitary adenomas (NFAs, pharmacological therapy plays a minor role, the main objective of which is to reduce tumor growth, but this role requires further studies. For pituitary carcinomas and atypical adenomas, medical therapy, including chemotherapy, acts as an adjuvant to surgery and radiation therapy, which is often required to control these aggressive tumors. In the last decade, knowledge about the pathophysiological mechanisms of various pituitary adenomas has increased, thus novel medical therapies that target specific pathways implicated in tumor synthesis and hormonal over secretion are now available. Advancement in patient selection and determination of prognostic factors has also helped to individualize therapy for patients with pituitary tumors. Improvements in biochemical and “tumor mass” disease control can positively affect patient quality of life, comorbidities and overall survival. In this review, the medical armamentarium for treating CD, acromegaly, prolactinomas, NFA, and carcinomas/aggressive atypical adenomas will be presented. Pharmacological therapies, including doses, mode of administration, efficacy, adverse effects, and use in special circumstances are provided. Medical therapies currently under clinical investigation are also briefly discussed.

  20. Kidney cancer progression linked to shifts in tumor metabolism

    Science.gov (United States)

    Investigators in The Cancer Genome Atlas Research Network have uncovered a connection between how tumor cells use energy from metabolic processes and the aggressiveness of the most common form of kidney cancer, clear cell renal cell carcinoma.

  1. Association between time to disease progression end points and overall survival in patients with neuroendocrine tumors

    Directory of Open Access Journals (Sweden)

    Singh S

    2014-08-01

    Full Text Available Simron Singh,1 Xufang Wang,2 Calvin HL Law1 1Sunnybrook Odette Cancer Center, University of Toronto, Toronto, ON, Canada; 2Novartis Oncology, Florham Park, NJ, USA Abstract: Overall survival can be difficult to determine for slowly progressing malignancies, such as neuroendocrine tumors. We investigated whether time to disease progression is positively associated with overall survival in patients with such tumors. A literature review identified 22 clinical trials in patients with neuroendocrine tumors that reported survival probabilities for both time to disease progression (progression-free survival and time to progression and overall survival. Associations between median time to disease progression and median overall survival and between treatment effects on time to disease progression and treatment effects on overall survival were analyzed using weighted least-squares regression. Median time to disease progression was significantly associated with median overall survival (coefficient 0.595; P=0.022. In the seven randomized studies identified, the risk reduction for time to disease progression was positively associated with the risk reduction for overall survival (coefficient on −ln[HR] 0.151; 95% confidence interval −0.843, 1.145; P=0.713. The significant association between median time to disease progression and median overall survival supports the assertion that time to disease progression is an alternative end point to overall survival in patients with neuroendocrine tumors. An apparent albeit not significant trend correlates treatment effects on time to disease progression and treatment effects on overall survival. Informal surveys of physicians’ perceptions are consistent with these concepts, although additional randomized trials are needed. Keywords: neuroendocrine tumors, progression-free survival, disease progression, mortality

  2. Long-term exposure to hypoxia inhibits tumor progression of lung cancer in rats and mice

    International Nuclear Information System (INIS)

    Yu, Lunyin; Hales, Charles A

    2011-01-01

    Hypoxia has been identified as a major negative factor for tumor progression in clinical observations and in animal studies. However, the precise role of hypoxia in tumor progression has not been fully explained. In this study, we extensively investigated the effect of long-term exposure to hypoxia on tumor progression in vivo. Rats bearing transplanted tumors consisting of A549 human lung cancer cells (lung cancer tumor) were exposed to hypoxia for different durations and different levels of oxygen. The tumor growth and metastasis were evaluated. We also treated A549 lung cancer cells (A549 cells) with chronic hypoxia and then implanted the hypoxia-pretreated cancer cells into mice. The effect of exposure to hypoxia on metastasis of Lewis lung carcinoma in mice was also investigated. We found that long-term exposure to hypoxia a) significantly inhibited lung cancer tumor growth in xenograft and orthotopic models in rats, b) significantly reduced lymphatic metastasis of the lung cancer in rats and decreased lung metastasis of Lewis lung carcinoma in mice, c) reduced lung cancer cell proliferation and cell cycle progression in vitro, d) decreased growth of the tumors from hypoxia-pretreated A549 cells, e) decreased Na + -K + ATPase α1 expression in hypoxic lung cancer tumors, and f) increased expression of hypoxia inducible factors (HIF1α and HIF2α) but decreased microvessel density in the lung cancer tumors. In contrast to lung cancer, the growth of tumor from HCT116 human colon cancer cells (colon cancer tumor) was a) significantly enhanced in the same hypoxia conditions, accompanied by b) no significant change in expression of Na + -K + ATPase α1, c) increased HIF1α expression (no HIF2α was detected) and d) increased microvessel density in the tumor tissues. This study demonstrated that long-term exposure to hypoxia repressed tumor progression of the lung cancer from A549 cells and that decreased expression of Na + -K + ATPase was involved in hypoxic

  3. P18 tumor suppressor gene and progression of oligodendrogliomas to anaplasia.

    Science.gov (United States)

    He, J; Hoang-Xuan, K; Marie, Y; Leuraud, P; Mokhtari, K; Kujas, M; Delattre, J Y; Sanson, M

    2000-09-26

    P18INK4C is a good candidate to be the tumor suppressor gene involved in oligodendrogliomas on 1p32. Loss of heterozygosity on 1p, mutation(s), homozygous deletion(s), and expression of p18 in 30 oligodendroglial tumors were investigated. Loss of heterozygosity on 1p was found in 15 tumors. A p18 mutation was found at an recurrence of an anaplastic oligodendroglioma, but not in the primary, low-grade tumor. No homozygous deletions were found and p18 was expressed in all cases. These results show that p18 alteration is involved in tumor progression in a subset of oligodendrogliomas.

  4. Research Progress on the Relationship Between Oral Microbial Community and Tumor

    Directory of Open Access Journals (Sweden)

    Ma Shujun

    2016-03-01

    Full Text Available Significant progress was observed in studies of the relationship between oral Helicobacter pylori and gastric cancer and tumors. Based on three distinct and close relationships, namely, the relationship between oral H. pylori and gastric cancer, between oral microbial communities and oral squamous cell carcinoma, and between oral microbial communities of human immunodeficiency virus-infected patients and tumors, this work reviews the relationship between oral microbial communities and tumors. This research also provides reference for further analysis of the relationship between oral microorganisms and tumors to realize early diagnosis of tumor patients through detecting oral microorganisms under adjuvant therapy.

  5. Growth hormone treatment and risk of recurrence or progression of brain tumors in children: a review.

    Science.gov (United States)

    Bogarin, Roberto; Steinbok, Paul

    2009-03-01

    Brain tumors are one of the most common types of solid neoplasm in children. As life expectancy of these patients has increased with new and improved therapies, the morbidities associated with the treatments and the tumor itself have become more important. One of the most common morbidities is growth hormone deficiency, and since recombinant growth hormone (GH) became available, its use has increased exponentially. There is concern that in the population of children with brain tumors, GH treatment might increase the risk of tumor recurrence or progression or the appearance of a second neoplasm. In the light of this ongoing concern, the current literature has been reviewed to provide an update on the risk of tumor recurrence, tumor progression, or new intracranial tumor formation when GH is used to treat GH deficiency in children, who have had or have intracranial tumors. On the basis of this review, the authors conclude that the use of GH in patients with brain tumor is safe. GH therapy is not associated with an increased risk of central nervous system tumor progression or recurrence, leukemia (de novo or relapse), or extracranial non-leukemic neoplasms.

  6. New Approaches for Early Detection of Breast Tumor Invasion or Progression

    National Research Council Canada - National Science Library

    Man, Yan-Gao

    2003-01-01

    To assess interactions between epithelial (EP) and myoepithelial (ME) cells in association with breast tumor progression and invasion, a double immunostaining technique with antibodies to smooth muscle actin (SMA...

  7. A 3-D model of tumor progression based on complex automata driven by particle dynamics.

    Science.gov (United States)

    Wcisło, Rafał; Dzwinel, Witold; Yuen, David A; Dudek, Arkadiusz Z

    2009-12-01

    The dynamics of a growing tumor involving mechanical remodeling of healthy tissue and vasculature is neglected in most of the existing tumor models. This is due to the lack of efficient computational framework allowing for simulation of mechanical interactions. Meanwhile, just these interactions trigger critical changes in tumor growth dynamics and are responsible for its volumetric and directional progression. We describe here a novel 3-D model of tumor growth, which combines particle dynamics with cellular automata concept. The particles represent both tissue cells and fragments of the vascular network. They interact with their closest neighbors via semi-harmonic central forces simulating mechanical resistance of the cell walls. The particle dynamics is governed by both the Newtonian laws of motion and the cellular automata rules. These rules can represent cell life-cycle and other biological interactions involving smaller spatio-temporal scales. We show that our complex automata, particle based model can reproduce realistic 3-D dynamics of the entire system consisting of the tumor, normal tissue cells, blood vessels and blood flow. It can explain phenomena such as the inward cell motion in avascular tumor, stabilization of tumor growth by the external pressure, tumor vascularization due to the process of angiogenesis, trapping of healthy cells by invading tumor, and influence of external (boundary) conditions on the direction of tumor progression. We conclude that the particle model can serve as a general framework for designing advanced multiscale models of tumor dynamics and it is very competitive to the modeling approaches presented before.

  8. Accessing key steps of human tumor progression in vivo by using an avian embryo model

    Science.gov (United States)

    Hagedorn, Martin; Javerzat, Sophie; Gilges, Delphine; Meyre, Aurélie; de Lafarge, Benjamin; Eichmann, Anne; Bikfalvi, Andreas

    2005-02-01

    Experimental in vivo tumor models are essential for comprehending the dynamic process of human cancer progression, identifying therapeutic targets, and evaluating antitumor drugs. However, current rodent models are limited by high costs, long experimental duration, variability, restricted accessibility to the tumor, and major ethical concerns. To avoid these shortcomings, we investigated whether tumor growth on the chick chorio-allantoic membrane after human glioblastoma cell grafting would replicate characteristics of the human disease. Avascular tumors consistently formed within 2 days, then progressed through vascular endothelial growth factor receptor 2-dependent angiogenesis, associated with hemorrhage, necrosis, and peritumoral edema. Blocking of vascular endothelial growth factor receptor 2 and platelet-derived growth factor receptor signaling pathways by using small-molecule receptor tyrosine kinase inhibitors abrogated tumor development. Gene regulation during the angiogenic switch was analyzed by oligonucleotide microarrays. Defined sample selection for gene profiling permitted identification of regulated genes whose functions are associated mainly with tumor vascularization and growth. Furthermore, expression of known tumor progression genes identified in the screen (IL-6 and cysteine-rich angiogenic inducer 61) as well as potential regulators (lumican and F-box-only 6) follow similar patterns in patient glioma. The model reliably simulates key features of human glioma growth in a few days and thus could considerably increase the speed and efficacy of research on human tumor progression and preclinical drug screening. angiogenesis | animal model alternatives | glioblastoma

  9. Sequential Apparent Diffusion Coefficient for Assessment of Tumor Progression in Patients with Low-Grade Glioma.

    Science.gov (United States)

    Chen, I E; Swinburne, N; Tsankova, N M; Hefti, M M; Aggarwal, A; Doshi, A H; Hormigo, A; Delman, B N; Nael, K

    2018-04-19

    Early and accurate identification of tumor progression in patients with low-grade gliomas is challenging. We aimed to assess the role of quantitative ADC analysis in the sequential follow-up of patients with low-grade gliomas as a potential imaging marker of tumor stability or progression. In this retrospective study, patients with a diagnosis of low-grade glioma with at least 12 months of imaging follow-up were retrospectively reviewed. Two neuroradiologists independently reviewed sequential MR imaging in each patient to determine tumor progression using the Response Assessment in Neuro-Oncology criteria. Normalized mean ADC (ADC mean ) and 10th percentile ADC (ADC 10 ) values from FLAIR hyperintense tumor volume were calculated for each MR image and compared between patients with stable disease versus tumor progression using univariate analysis. The interval change of ADC values between sequential scans was used to differentiate stable disease from progression using the Fisher exact test. Twenty-eight of 69 patients who were evaluated met our inclusion criteria. Fifteen patients were classified as stable versus 13 patients as having progression based on consensus reads of MRIs and the Response Assessment in Neuro-Oncology criteria. The interval change of ADC values showed greater concordance with ultimate lesion disposition than quantitative ADC values at a single time point. The interval change in ADC 10 matched the expected pattern in 12/13 patients with tumor progression (overall diagnostic accuracy of 86%, P average, the ADC 10 interval change predicted progression 8 months before conventional MR imaging. The interval change of ADC 10 values can be used to identify progression versus stability of low-grade gliomas with a diagnostic accuracy of 86% and before apparent radiologic progression on conventional MR imaging. © 2018 by American Journal of Neuroradiology.

  10. Oncogenic mutations in melanomas and benign melanocytic nevi of the female genital tract.

    Science.gov (United States)

    Tseng, Diane; Kim, Julie; Warrick, Andrea; Nelson, Dylan; Pukay, Marina; Beadling, Carol; Heinrich, Michael; Selim, Maria Angelica; Corless, Christopher L; Nelson, Kelly

    2014-08-01

    The genetic heterogeneity of melanomas and melanocytic nevi of the female genital tract is poorly understood. We aim to characterize the frequency of mutations of the following genes: BRAF, NRAS, KIT, GNA11, and GNAQ in female genital tract melanomas. We also characterize the frequency of BRAF mutations in female genital tract melanomas compared with melanocytic nevi. Mutational screening was performed on the following female genital tract melanocytic neoplasms: 25 melanomas, 7 benign melanocytic nevi, and 4 atypical melanocytic nevi. Of the 25 female genital tract melanoma specimens queried, KIT mutations were detected in 4 (16.0%), NRAS mutations in 4 (16.0%), and BRAF mutations in 2 (8.0%) samples. Two of the tumors with KIT mutations harbored double mutations in the same exon. No GNAQ or GNA11 mutations were identified among 11 melanomas screened. BRAF V600E mutations were detected in 7 of 7 benign melanocytic genital nevi (100%) and 3 of 4 atypical genital nevi (75%). Our study is limited by the small sample size of this rare subset of melanomas. KIT, NRAS, and BRAF mutations are found in a subset of female genital tract melanomas. Screening for oncogenic mutations is important for developing and applying clinical therapies for melanomas of the female genital tract. Copyright © 2014 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  11. Mitochondrial DNA Mutations in Epithelial Ovarian Tumor Progression

    Science.gov (United States)

    2007-12-01

    Panici PL, Fazio VM: Mutations of D310 mitochondrial mononu- cleotide repeat in primary tumors and cytological speci- mens . Cancer Lett 2003, 190:73...BR: Detection of LOH and mitochondrial DNA alter- ations in ductal lavage and nipple aspirate fluids from high- risk patients. Breast Cancer Res

  12. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress

    NARCIS (Netherlands)

    Lammers, Twan Gerardus Gertudis Maria; Kiessling, F.; Hennink, W.E.; Storm, Gerrit

    2012-01-01

    Abstract Many different systems and strategies have been evaluated for drug targeting to tumors over the years. Routinely used systems include liposomes, polymers, micelles, nanoparticles and antibodies, and examples of strategies are passive drug targeting, active drug targeting to cancer cells,

  13. Effect of Curcuma zedoaria crude extract against tumor progression and immunomodulation

    Directory of Open Access Journals (Sweden)

    FR Carvalho

    2010-01-01

    Full Text Available The aim of the present work was to study the effect of the crude extract of Curcuma zedoaria on peripheral blood cells and tumor progression in C57Bl/6J mice injected with B16F10 murine melanoma cells. The intraperitoneal therapy showed a significant increase in total white and red blood cell counts, a decrease in peritoneal cell number and tumor volume reduction, whereas the oral administration revealed a noteworthy augmentation only in total leukocyte count. These results contribute to evaluate the importance of alternative treatments that employ phytotherapic compounds against tumor progression and its possible immunomodulation.

  14. Intracranial solitary fibrous tumors/hemangiopericytomas: first report of malignant progression.

    Science.gov (United States)

    Apra, Caroline; Mokhtari, Karima; Cornu, Philippe; Peyre, Matthieu; Kalamarides, Michel

    2018-06-01

    OBJECTIVE Meningeal solitary fibrous tumors/hemangiopericytomas (MSFTs/HPCs) are rare intracranial tumors resembling meningiomas. Their classification was redefined in 2016 by the World Health Organization (WHO) as benign Grade I fibrohyaline type, intermediate Grade II hypercellular type, and malignant highly mitotic Grade III. This grouping is based on common histological features and identification of a common NAB2-STAT6 fusion. METHODS The authors retrospectively identified 49 cases of MSFT/HPC. Clinical data were obtained from the medical records, and all cases were analyzed according to this new 2016 WHO grading classification in order to identify malignant transformations. RESULTS Recurrent surgery was performed in 18 (37%) of 49 patients. Malignant progression was identified in 5 (28%) of these 18 cases, with 3 Grade I and 2 Grade II tumors progressing to Grade III, 3-13 years after the initial surgery. Of 31 Grade III tumors treated in this case series, 16% (5/31) were proved to be malignant progressions from lower-grade tumors. CONCLUSIONS Low-grade MSFTs/HPCs can transform into higher grades as shown in this first report of such progression. This is a decisive argument in favor of a common identity for MSFT and meningeal HPC. High-grade MSFTs/HPCs tend to recur more often and be associated with reduced overall survival. Malignant progression could be one mechanism explaining some recurrences or metastases, and justifying long-term follow-up, even for patients with Grade I tumors.

  15. Exosomes in Tumor Microenvironment Influence Cancer Progression and Metastasis

    OpenAIRE

    Kahlert, Christoph; Kalluri, Raghu

    2013-01-01

    Exosomes are small membrane vesicles of endocytic origin with a size of 50 – 100 nm. They can contain microRNAs, mRNAs, DNA fragments and proteins, which are shuttled from a donar cell to recipient cells. Many different cell types including immune cells, mesenchymal cells and cancer cells release exosomes. There is emerging evidence that cancer-derived exosomes contribute to the recruitment and reprogramming of constituents associated with tumor environment. Here, we discuss different mechani...

  16. Composite implants coated with biodegradable polymers prevent stimulating tumor progression

    International Nuclear Information System (INIS)

    Litviakov, N. V.; Tsyganov, M. M.; Cherdyntseva, N. V.; Tverdokhlebov, S. I.; Bolbasov, E. N.; Perelmuter, V. M.; Kulbakin, D. E.; Zheravin, A. A.; Svetlichnyi, V. A.

    2016-01-01

    In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats’ iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant’s influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety.

  17. Composite implants coated with biodegradable polymers prevent stimulating tumor progression

    Energy Technology Data Exchange (ETDEWEB)

    Litviakov, N. V., E-mail: nvlitv72@yandex.ru; Tsyganov, M. M., E-mail: TsyganovMM@yandex.ru; Cherdyntseva, N. V., E-mail: nvch@oncology.tomsk.ru [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tverdokhlebov, S. I., E-mail: tverd@tpu.ru; Bolbasov, E. N., E-mail: ebolbasov@gmail.com [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Perelmuter, V. M., E-mail: pvm@ngs.ru; Kulbakin, D. E., E-mail: kulbakin2012@gmail.com [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Zheravin, A. A., E-mail: zheravin2010@yandex.ru [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Academician E.N. Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Novosibirsk (Russian Federation); Svetlichnyi, V. A., E-mail: v-svetlichnyi@bk.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2016-08-02

    In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats’ iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant’s influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety.

  18. Melanoma and melanocytic nevi in decorative tattoos: three case reports.

    Science.gov (United States)

    Varga, Erika; Korom, Irma; Varga, János; Kohán, József; Kemény, Lajos; Oláh, Judit

    2011-12-01

    In response to the demands of style and fashion, the number of decorative tattoos has been increasing worldwide. This has been paralleled by a rising incidence of melanocytic proliferations, including melanoma. The coincidence of various dermatological diseases and skin tumors with tattoos has been documented with some frequency, but reports of melanoma associated with tattoos are exceedingly rare. To date, only 13 cases have been documented in the English language literature. The possibility of an association between melanocytic proliferations and tattoos remains an area for further study. This report presents two cases of melanocytic nevi and one of melanoma occurring in association with a decorative tattoos. At present, the pathogenesis of melanoma developing in a tattoo is unknown. Mere coincidence cannot be ruled out. However, trauma, ultraviolet light exposure, a photoallergic effect, or an inflammatory reaction may promote malignant transformation. Clinicians and histopathologists should be aware of the clinical and pathological features if they are to make a correct diagnosis. Copyright © 2011 John Wiley & Sons A/S.

  19. Blockade of Notch Signaling in Tumor-Bearing Mice May Lead to Tumor Regression, Progression, or Metastasis, Depending on Tumor Cell Types

    Directory of Open Access Journals (Sweden)

    Xing-Bin Hu

    2009-01-01

    Full Text Available It has been reported that blocking Notch signaling in tumor-bearing mice results in abortive angiogenesis and tumor regression. However, given that Notch signaling influences numerous cellular processes in vivo, a comprehensive evaluation of the effect of Notch inactivation on tumor growth would be favorable. In this study, we inoculated four cancer cell lines in mice with the conditional inactivation of recombination signal-binding protein-Jκ (RBP-J, which mediates signaling from all four mammalian Notch receptors. We found that whereas three tumors including hepatocarcinoma, lung cancer, and osteogenic sarcoma grew slower in the RBP-J-deficient mice, at least a melanoma, B16, grew significantly faster in the RBP-J-deficient mice than in the controls, suggesting that the RBP-J-deficient hosts could provide permissive cues for tumor growth. All these tumors showed increased microvessels and up-regulated hypoxia-inducible factor 1α, suggesting that whereas defective angiogenesis resulted in hypoxia, different tumors might grow differentially in the RBP-J-deleted mice. Similarly, increased infiltration of Gr1+/Mac1+ cells were noticed in tumors grown in the RBP-J-inactivated mice. Moreover, we found that when inoculated in the RBP-J knockout hosts, the H22 hepatoma cells had a high frequency of metastasis and lethality, suggesting that at least for H22, deficiency of environmental Notch signaling favored tumor metastasis. Our findings suggested that the general blockade of Notch signaling in tumor-bearing mice could lead to defective angiogenesis in tumors, but depending on tumor cell types, general inhibition of Notch signaling might result in tumor regression, progression, or metastasis.

  20. A Ketogenic Formula Prevents Tumor Progression and Cancer Cachexia by Attenuating Systemic Inflammation in Colon 26 Tumor-Bearing Mice

    Directory of Open Access Journals (Sweden)

    Kentaro Nakamura

    2018-02-01

    Full Text Available Low-carbohydrate, high-fat diets (ketogenic diets might prevent tumor progression and could be used as supportive therapy; however, few studies have addressed the effect of such diets on colorectal cancer. An infant formula with a ketogenic composition (ketogenic formula; KF is used to treat patients with refractory epilepsy. We investigated the effect of KF on cancer and cancer cachexia in colon tumor-bearing mice. Mice were randomized into normal (NR, tumor-bearing (TB, and ketogenic formula (KF groups. Colon 26 cells were inoculated subcutaneously into TB and KF mice. The NR and TB groups received a standard diet, and the KF mice received KF ad libitum. KF mice preserved their body, muscle, and carcass weights. Tumor weight and plasma IL-6 levels were significantly lower in KF mice than in TB mice. In the KF group, energy intake was significantly higher than that in the other two groups. Blood ketone body concentrations in KF mice were significantly elevated, and there was a significant negative correlation between blood ketone body concentration and tumor weight. Therefore, KF may suppress the progression of cancer and the accompanying systemic inflammation without adverse effects on weight gain, or muscle mass, which might help to prevent cancer cachexia.

  1. Anti-angiogenic SPARC peptides inhibit progression of neuroblastoma tumors

    Directory of Open Access Journals (Sweden)

    Tian Yufeng

    2010-06-01

    Full Text Available Abstract Background New, more effective strategies are needed to treat highly aggressive neuroblastoma. Our laboratory has previously shown that full-length Secreted Protein Acidic and Rich in Cysteine (SPARC and a SPARC peptide corresponding to the follistatin domain of the protein (FS-E potently block angiogenesis and inhibit the growth of neuroblastoma tumors in preclinical models. Peptide FS-E is structurally complex and difficult to produce, limiting its potential as a therapeutic in the clinic. Results In this study, we synthesized two smaller and structurally more simple SPARC peptides, FSEN and FSEC, that respectively correspond to the N-and C-terminal loops of peptide FS-E. We show that both peptides FSEN and FSEC have anti-angiogenic activity in vitro and in vivo, although FSEC is more potent. Peptide FSEC also significantly inhibited the growth of neuroblastoma xenografts. Histologic examination demonstrated characteristic features of tumor angiogenesis with structurally abnormal, tortuous blood vessels in control neuroblastoma xenografts. In contrast, the blood vessels observed in tumors, treated with SPARC peptides, were thin walled and structurally more normal. Using a novel method to quantitatively assess blood vessel abnormality we demonstrated that both SPARC peptides induced changes in blood vessel architecture that are consistent with blood vessel normalization. Conclusion Our results demonstrate that SPARC peptide FSEC has potent anti-angiogenic and anti-tumorigenic effects in neuroblastoma. Its simple structure and ease of production indicate that it may have clinical utility in the treatment of high-risk neuroblastoma and other types of pediatric and adult cancers, which depend on angiogenesis.

  2. Bone marrow-derived CD13+ cells sustain tumor progression

    Science.gov (United States)

    Dondossola, Eleonora; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2014-01-01

    Non-malignant cells found within neoplastic lesions express alanyl (membrane) aminopeptidase (ANPEP, best known as CD13), and CD13-null mice exhibit limited tumor growth and angiogenesis. We have recently demonstrated that a subset of bone marrow-derived CD11b+CD13+ myeloid cells accumulate within neoplastic lesions in several murine models of transplantable cancer to promote angiogenesis. If these findings were confirmed in clinical settings, CD11b+CD13+ myeloid cells could become a non-malignant target for the development of novel anticancer regimens. PMID:25339996

  3. White Adipose Tissue Cells Are Recruited by Experimental Tumors and Promote Cancer Progression in Mouse Models

    Science.gov (United States)

    Zhang, Yan; Daquinag, Alexes; Traktuev, Dmitry O.; Amaya-Manzanares, Felipe; Simmons, Paul J.; March, Keith L.; Pasqualini, Renata; Arap, Wadih; Kolonin, Mikhail G.

    2010-01-01

    The connection between obesity and accelerated cancer progression has been established, but the mediating mechanisms are not well understood. We have shown that stromal cells from white adipose tissue (WAT) cooperate with the endothelium to promote blood vessel formation through the secretion of soluble trophic factors. Here, we hypothesize that WAT directly mediates cancer progression by serving as a source of cells that migrate to tumors and promote neovascularization. To test this hypothesis, we have evaluated the recruitment of WAT-derived cells by tumors and the effect of their engraftment on tumor growth by integrating a transgenic mouse strain engineered for expansion of traceable cells with established allograft and xenograft cancer models. Our studies show that entry of adipose stromal and endothelial cells into systemic circulation leads to their homing to and engraftment into tumor stroma and vasculature, respectively. We show that recruitment of adipose stromal cells by tumors is sufficient to promote tumor growth. Finally, we show that migration of stromal and vascular progenitor cells from WAT grafts to tumors is also associated with acceleration of cancer progression. These results provide a biological insight for the clinical association between obesity and cancer, thus outlining potential avenues for preventive and therapeutic strategies. PMID:19491274

  4. Estrogen receptor signaling in prostate cancer: Implications for carcinogenesis and tumor progression.

    Science.gov (United States)

    Bonkhoff, Helmut

    2018-01-01

    The androgen receptor (AR) is the classical target for prostate cancer prevention and treatment, but more recently estrogens and their receptors have also been implicated in prostate cancer development and tumor progression. Recent experimental and clinical data were reviewed to elucidate pathogenetic mechanisms how estrogens and their receptors may affect prostate carcinogenesis and tumor progression. The estrogen receptor beta (ERβ) is the most prevalent ER in the human prostate, while the estrogen receptor alpha (ERα) is restricted to basal cells of the prostatic epithelium and stromal cells. In high grade prostatic intraepithelial neoplasia (HGPIN), the ERα is up-regulated and most likely mediates carcinogenic effects of estradiol as demonstrated in animal models. The partial loss of the ERβ in HGPIN indicates that the ERβ acts as a tumor suppressor. The tumor promoting function of the TMPRSS2-ERG fusion, a major driver of prostate carcinogenesis, is triggered by the ERα and repressed by the ERβ. The ERβ is generally retained in hormone naïve and metastatic prostate cancer, but is partially lost in castration resistant disease. The progressive emergence of the ERα and ERα-regulated genes (eg, progesterone receptor (PR), PS2, TMPRSS2-ERG fusion, and NEAT1) during prostate cancer progression and hormone refractory disease suggests that these tumors can bypass the AR by using estrogens and progestins for their growth. In addition, nongenomic estrogen signaling pathways mediated by orphan receptors (eg, GPR30 and ERRα) has also been implicated in prostate cancer progression. Increasing evidences demonstrate that local estrogen signaling mechanisms are required for prostate carcinogenesis and tumor progression. Despite the recent progress in this research topic, the translation of the current information into potential therapeutic applications remains highly challenging and clearly warrants further investigation. © 2017 Wiley Periodicals, Inc.

  5. p53 regulates cytoskeleton remodeling to suppress tumor progression.

    Science.gov (United States)

    Araki, Keigo; Ebata, Takahiro; Guo, Alvin Kunyao; Tobiume, Kei; Wolf, Steven John; Kawauchi, Keiko

    2015-11-01

    Cancer cells possess unique characteristics such as invasiveness, the ability to undergo epithelial-mesenchymal transition, and an inherent stemness. Cell morphology is altered during these processes and this is highly dependent on actin cytoskeleton remodeling. Regulation of the actin cytoskeleton is, therefore, important for determination of cell fate. Mutations within the TP53 (tumor suppressor p53) gene leading to loss or gain of function (GOF) of the protein are often observed in aggressive cancer cells. Here, we highlight the roles of p53 and its GOF mutants in cancer cell invasion from the perspective of the actin cytoskeleton; in particular its reorganization and regulation by cell adhesion molecules such as integrins and cadherins. We emphasize the multiple functions of p53 in the regulation of actin cytoskeleton remodeling in response to the extracellular microenvironment, and oncogene activation. Such an approach provides a new perspective in the consideration of novel targets for anti-cancer therapy.

  6. Adipocytes and Macrophages Interplay in the Orchestration of Tumor Microenvironment: New Implications in Cancer Progression

    Directory of Open Access Journals (Sweden)

    Luís Henrique Corrêa

    2017-09-01

    Full Text Available Inflammation has been known as one of the main keys to the establishment and progression of cancers. Chronic low-grade inflammation is also a strategic condition that underlies the causes and development of metabolic syndrome and obesity. Moreover, obesity has been largely related to poor prognosis of tumors by modulating tumor microenvironment with secretion of several inflammatory mediators by tumor-associated adipocytes (TAAs, which can modulate and recruit tumor-associated macrophages. Thus, the understanding of cellular and molecular mechanisms that underlay and link inflammation, obesity, and cancer is crucial to identify potential targets that interfere with this important route. Knowledge about the exact role of each component of the tumor microenvironment is not yet fully understood, but the new insights in literature highlight the essential role of adipocytes and macrophages interplay as key factor to determine the fate of cancer progression. In this review article, we focus on the functions of adipocytes and macrophages orchestrating cellular and molecular mechanisms that lead to inflammatory modulation in tumor microenvironment, which will be crucial to cancer establishment. We also emphasized the mechanisms by which the tumor promotes itself by recruiting and polarizing macrophages, discussing the role of adipocytes in this process. In addition, we discuss here the newest possible anticancer therapeutic treatments aiming to retard the development of the tumor based on what is known about cancer, adipocyte, and macrophage polarization.

  7. Histogenesis and progression of ultraviolet light-induced tumors in hairless mice

    International Nuclear Information System (INIS)

    Kligman, L.H.; Kligman, A.M.

    1981-01-01

    Tumor histogenesis and progression were studied in UV-irradiated albino (Skh:hairless-1) and lightly pigmented (Skh:hairless-2) hairless mice. A strongly carcinogenic dose of UV light was used, producing 100% tumor incidence by 35 weeks. The light source emitted mainly UV radiation in the range of 280-320 nm and the less energetic UV radiation up to 400 nm. The resulting epidermal changes and neoplasms resembled those seen in the actinically damaged skin of humans. Microscopic lesions included benign hyperplasia, actinic keratoses, and squamous cell carcinoma in situ and with microinvasion. Clinical tumors were epithelial papillomas, fibropapillomas, keratoacanthomas, cystic keratomas, benign pigmented macules, cutaneous hornlike growths, exophytic and endophytic squamous cell carcinomas of several cytologic types, and fibrosarcomas. Even with this high dose of UV radiation, not all of the small tumors progressed to cancer. Many regressed, including some keratoacanthomas, whereas others remained small and benign for the lifetime of the mouse

  8. Anesthetic drugs accelerate the progression of postoperative metastases of mouse tumors.

    OpenAIRE

    Shapiro, J; Jersky, J; Katzav, S; Feldman, M; Segal, S

    1981-01-01

    Experiments were made to investigate the effect of four anesthetic drugs that are commonly used in surgical practice on the postoperative growth of mouse tumors in syngeneic recipients. These experiments revealed that some of the anesthetics when applied for surgical excision of the local tumor, strongly accelerated postoperative progression of spontaneous lung metastases produced by the 3LL Lewis lung carcinoma and by the B16 melanoma. Some of the drugs caused the appearance of metastases in...

  9. Extracellular Vesicles As Modulators of Tumor Microenvironment and Disease Progression in Glioma

    Directory of Open Access Journals (Sweden)

    Abir Mondal

    2017-07-01

    Full Text Available Diffuse gliomas are lethal tumors of the central nervous system (CNS characterized by infiltrative growth, aggressive nature, and therapeutic resistance. The recent 2016 WHO classification for CNS tumors categorizes diffuse glioma into two major types that include IDH wild-type glioblastoma, which is the predominant type and IDH-mutant glioblastoma, which is less common and displays better prognosis. Recent studies suggest presence of a distinct cell population with stem cell features termed as glioma stem cells (GSCs to be causal in driving tumor growth in glioblastoma. The presence of a stem and progenitor population possibly makes glioblastoma highly heterogeneous. Significantly, tumor growth is driven by interaction of cells residing within the tumor with the surrounding milieu termed as the tumor microenvironment. It comprises of various cell types such as endothelial cells, secreted factors, and the surrounding extracellular matrix, which altogether help perpetuate the proliferation of GSCs. One of the important mediators critical to the cross talk is extracellular vesicles (EVs. These nano-sized vesicles play important roles in intercellular communication by transporting bioactive molecules into the surrounding milieu, thereby altering cellular functions and/or reprogramming recipient cells. With the growing information on the contribution of EVs in modulation of the tumor microenvironment, it is important to determine their role in both supporting as well as promoting tumor growth in glioma. In this review, we provide a comprehensive overview of the role of EVs in tumor progression and glioma pathogenesis.

  10. M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis.

    Directory of Open Access Journals (Sweden)

    He Zhou

    Full Text Available Heparan sulfate proteoglycans (HSPGs play a key role in shaping the tumor microenvironment by presenting growth factors, cytokines, and other soluble factors that are critical for host cell recruitment and activation, as well as promoting tumor progression, metastasis, and survival. M402 is a rationally engineered, non-cytotoxic heparan sulfate (HS mimetic, designed to inhibit multiple factors implicated in tumor-host cell interactions, including VEGF, FGF2, SDF-1α, P-selectin, and heparanase. A single s.c. dose of M402 effectively inhibited seeding of B16F10 murine melanoma cells to the lung in an experimental metastasis model. Fluorescent-labeled M402 demonstrated selective accumulation in the primary tumor. Immunohistological analyses of the primary tumor revealed a decrease in microvessel density in M402 treated animals, suggesting anti-angiogenesis to be one of the mechanisms involved in-vivo. M402 treatment also normalized circulating levels of myeloid derived suppressor cells in tumor bearing mice. Chronic administration of M402, alone or in combination with cisplatin or docetaxel, inhibited spontaneous metastasis and prolonged survival in an orthotopic 4T1 murine mammary carcinoma model. These data demonstrate that modulating HSPG biology represents a novel approach to target multiple factors involved in tumor progression and metastasis.

  11. CD4+ and Perivascular Foxp3+ T Cells in Glioma Correlate with Angiogenesis and Tumor Progression

    Directory of Open Access Journals (Sweden)

    Luyan Mu

    2017-11-01

    Full Text Available BackgroundAngiogenesis and immune cell infiltration are key features of gliomas and their manipulation of the microenvironment, but their prognostic significance remains indeterminate. We evaluate the interconnection between tumor-infiltrating lymphocyte (TIL and tumor blood-vasculatures in the context of glioma progression.MethodsPaired tumor tissues of 44 patients from three tumor-recurrent groups: diffuse astrocytomas (DA recurred as DA, DA recurred as glioblastomas (GBM, and GBM recurred as GBM were evaluated by genetic analysis, immunohistochemistry for tumor blood vessel density, TIL subsets, and clinical outcomes. These cells were geographically divided into perivascular and intratumoral TILs. Associations were examined between these TILs, CD34+ tumor blood vessels, and clinical outcomes. To determine key changes in TIL subsets, microarray data of 15-paired tumors from patients who failed antiangiogenic therapy- bevacizumab, and 16-paired tumors from chemo-naïve recurrent GBM were also evaluated and compared.ResultsUpon recurrence in primary gliomas, similar kinetic changes were found between tumor blood vessels and each TIL subset in all groups, but only CD4+ including Foxp3+ TILs, positively correlated with the density of tumor blood vessels. CD4 was the predominant T cell population based on the expression of gene-transcripts in primary GBMs, and increased activated CD4+ T cells were revealed in Bevacizumab-resistant recurrent tumors (not in chemo-naïve recurrent tumors. Among these TILs, 2/3 of them were found in the perivascular niche; Foxp3+ T cells in these niches not only correlated with the tumor vessels but were also an independent predictor of shortened recurrence-free survival (RFS (HR = 4.199, 95% CI 1.522–11.584, p = 0.006.ConclusionThe minimal intratumoral T cell infiltration and low detection of CD8 transcripts expression in primary GBMs can potentially limit antitumor response. CD4+ and perivascular Foxp3

  12. Metastasis-inducing S100A4 and RANTES cooperate in promoting tumor progression in mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Forst

    2010-04-01

    Full Text Available The tumor microenvironment has been described as a critical milieu determining tumor growth and metastases. A pivotal role of metastasis-inducing S100A4 in the development of tumor stroma has been proven in animal models and verified in human breast cancer biopsies. Expression and release of S100A4 has been shown in various types of stroma composing cells, including fibroblasts and immune cells. However, the events implicated in upstream and downstream pathways regulating the activity of the extracellular S100A4 protein in the tumor milieu remain unsolved.We studied the interplay between the tumor cell-derived cytokine regulated-upon-activation, normal T-cell expressed and secreted (RANTES; CCL5 and S100A4 which were shown to be critical factors in tumor progression. We found that RANTES stimulates the externalization of S100A4 via microparticle shedding from the plasma membrane of tumor and stroma cells. Conversely, the released S100A4 protein induces the upregulation of fibronectin (FN in fibroblasts and a number of cytokines, including RANTES in tumor cells as well as stimulates cell motility in a wound healing assay. Importantly, using wild type and S100A4-deficient mouse models, we demonstrated a substantial influence of tumor cell-derived RANTES on S100A4 release into blood circulation which ultimately increases the metastatic burden in mice.Altogether, the data presented strongly validate the pro-metastatic function of S100A4 in the tumor microenvironment and define how the tumor cell-derived cytokine RANTES acts as a critical regulator of S100A4-dependent tumor cell dissemination. Additionally, for the first time we demonstrated the mechanism of S100A4 release associated with plasma membrane microparticle shedding from various cells types.

  13. High frequency of tumor cells with nuclear Egr-1 protein expression in human bladder cancer is associated with disease progression

    DEFF Research Database (Denmark)

    Egerod, Frederikke N S Lihme; Bartels, Annette; Fristrup, Niels

    2009-01-01

    bladder cancer. RESULTS: The frequency of tumor cells with nuclear Egr-1 immunolabelling correlated to bladder cancer stage, grade and to later progression to muscle-invasive bladder cancer (T2-4). Stage T1 tumors exhibited significantly higher frequencies of tumor cells with nuclear Egr-1 immunolabelling...... than Ta tumors (P = 0.001). Furthermore, Kaplan-Meier survival analysis showed that a high frequency of tumor cells with nuclear Egr-1 immunolabelling was significantly associated with a higher risk of progression to stage T2-4 (log-rank test, P = 0.035). Tumor cells with nuclear Egr-1 immunolabelling...

  14. Early impact of social isolation and breast tumor progression in mice.

    Science.gov (United States)

    Madden, Kelley S; Szpunar, Mercedes J; Brown, Edward B

    2013-03-01

    Evidence from cancer patients and animal models of cancer indicates that exposure to psychosocial stress can promote tumor growth and metastasis, but the pathways underlying stress-induced cancer pathogenesis are not fully understood. Social isolation has been shown to promote tumor progression. We examined the impact of social isolation on breast cancer pathogenesis in adult female severe combined immunodeficiency (SCID) mice using the human breast cancer cell line, MDA-MB-231, a high β-adrenergic receptor (AR) expressing line. When group-adapted mice were transferred into single housing (social isolation) one week prior to MB-231 tumor cell injection into a mammary fat pad (orthotopic), no alterations in tumor growth or metastasis were detected compared to group-housed mice. When social isolation was delayed until tumors were palpable, tumor growth was transiently increased in singly-housed mice. To determine if sympathetic nervous system activation was associated with increased tumor growth, spleen and tumor norepinephrine (NE) was measured after social isolation, in conjunction with tumor-promoting macrophage populations. Three days after transfer to single housing, spleen weight was transiently increased in tumor-bearing and non-tumor-bearing mice in conjunction with reduced splenic NE concentration and elevated CD11b+Gr-1+ macrophages. At day 10 after social isolation, no changes in spleen CD11b+ populations or NE were detected in singly-housed mice. In the tumors, social isolation increased CD11b+Gr-1+, CD11b+Gr-1-, and F4/80+ macrophage populations, with no change in tumor NE. The results indicate that a psychological stressor, social isolation, elicits dynamic but transient effects on macrophage populations that may facilitate tumor growth. The transiency of the changes in peripheral NE suggest that homeostatic mechanisms may mitigate the impact of social isolation over time. Studies are underway to define the neuroendocrine mechanisms underlying the

  15. Agreement Between Cytology and Histopathology for Regional Lymph Node Metastasis in Dogs With Melanocytic Neoplasms.

    Science.gov (United States)

    Grimes, Janet A; Matz, Brad M; Christopherson, Pete W; Koehler, Jey W; Cappelle, Kelsey K; Hlusko, Katelyn C; Smith, Annette

    2017-07-01

    Melanocytic neoplasms are common in dogs and frequently occur within the oral cavity or in haired skin. The behavior of melanocytic neoplasms is variable and depends on tumor location, size, and histopathologic features. This study compared cytopathology and histopathology of 32 lymph nodes from 27 dogs diagnosed with melanocytic neoplasms. Agreement between the original cytology report, cytology slide review, original histopathology report, and histopathology slide review was determined for each lymph node. A subset of lymph nodes was subjected to immunohistochemistry (Melan-A) and additional histochemical stains/techniques (Prussian blue, bleach) to assist in differentiation of melanocytes and melanophages. Agreement ranged from slight to fair for each of the variables evaluated with weighted kappa (κ w ) or kappa (κ) analysis (original cytology vs cytology review κ w = 0.24; original cytology vs original histopathology κ w = 0.007; original cytology vs histopathology review κ w = 0.23; cytology review vs original histopathology κ w = 0.008; cytology review vs histopathology review κ w = 0.006; and original histopathology vs histopathology review κ = 0.18). The diagnoses (metastatic, equivocal, or negative for metastasis) of the original report and slide review for both cytology and histopathology were not significantly correlated with survival in this population of patients. Overall, agreement between cytology and histopathology was poor even with a single clinical or anatomic pathologist performing slide review. Consensus between routine cytology and histopathology for staging of lymph nodes in patients with melanocytic neoplasms is poor and does not correlate with survival.

  16. AZU-1: A Candidate Breast Tumor Suppressor and Biomarker for Tumor Progression

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huei-Mei; Schmeichel, Karen L; Mian, I. Saira; Lelie`vre, Sophie; Petersen, Ole W; Bissell, Mina J

    2000-02-04

    To identify genes misregulated in the final stages of breast carcinogenesis, we performed differential display to compare the gene expression patterns of the human tumorigenic mammary epithelial cells, HMT-3522-T4-2, with those of their immediate premalignant progenitors, HMT-3522-S2. We identified a novel gene, called anti-zuai-1 (AZU-1), that was abundantly expressed in non- and premalignant cells and tissues but was appreciably reduced in breast tumor cell types and in primary tumors. The AZU-1 gene encodes an acidic 571-amino-acid protein containing at least two structurally distinct domains with potential protein-binding functions: an N-terminal serine and proline-rich domain with a predicted immunoglobulin-like fold and a C-terminal coiled-coil domain. In HMT-3522 cells, the bulk of AZU-1 protein resided in a detergent-extractable cytoplasmic pool and was present at much lower levels in tumorigenic T4-2 cells than in their nonmalignant counterparts. Reversion of the tumorigenic phenotype of T4-2 cells, by means described previously, was accompanied by the up-regulation of AZU-1. In addition, reexpression of AZU-1 in T4-2 cells, using viral vectors, was sufficient to reduce their malignant phenotype substantially, both in culture and in vivo. These results indicate that AZU-1 is a candidate breast tumor suppressor that may exert its effects by promoting correct tissue morphogenesis.

  17. Tumor progression: analysis of the instability of the metastatic phenotype, sensitivity to radiation and chemotherapy

    International Nuclear Information System (INIS)

    Welch, D.R.

    1984-01-01

    The major complications for tumor therapy are 1) tumor spread (metastasis); 2) the mixed nature of tumors (heterogeneity); and 3) the capacity of tumors to evolve (progress). To study these tumor characteristics, the rat 13762NF mammary adenocarcinoma was cloned and studied for metastatic properties and sensitivities to therapy (chemotherapy, radiation and hyperthermia). The cell clones were heterogeneous and no correlation between metastatic potential and therapeutic sensitivities was observed. Further, these phenotypes were unstable during pasage in vitro; yet, the changes were clone dependent and reproducible using different cryoprotected cell stocks. To understand the phenotypic instability, subclones were isolated from low and high passage cell clones. The results demonstrated that 1) tumor cells are heterogeneous for multiple phenotypes; 2) tumor cells are unstable for multiple phenotypes; 3) the magnitude, direction and time of occurrence of phenotypic drift is clone dependent; 4) the sensitivity of cell clones to ionizing radiation (γ or heat) and chemotherapy agents is independent of their metastatic potential; 5) shifts in metastatic potential and sensitivity to therapy may occur simultaneously but are not linked; and 6) tumor cells independently diverge to form several subpopulations with unique phenotypic profiles

  18. Male patients presenting with rapidly progressive puberty associated with malignant tumors

    Directory of Open Access Journals (Sweden)

    Soo Jung Kim

    2016-03-01

    Full Text Available In males, precocious puberty (PP is defined as the development of secondary sexual characteristics before age 9 years. PP is usually idiopathic; though, organic abnormalities including tumors are more frequently found in male patients with PP. However, advanced puberty in male also can be an important clinical manifestation in tumors. We report 2 cases of rapidly progressive puberty in males, each associated with a germ-cell tumor. First, an 11-year-old boy presented with mild fever and weight loss for 1 month. Physical examination revealed a pubertal stage of G3P3 with 10-mL testes. Investigations revealed advanced bone age (16 years with elevated basal luteinizing hormone and testosterone levels. An anterior mediastinal tumor was identified by chest radiography and computed tomography, and elevated α-fetoprotein (AFP and β-human chorionic gonadotropin (β-hCG levels were noted. Histopathologic analysis confirmed a yolk-sac tumor. Second, a 12-year-old boy presented with diplopia, polydipsia, and polyuria for 4 months. Physical examination revealed a pubertal stage of G3P3 with 8-mL testes. Bone age was advanced (16 years and laboratory tests indicated panhypopituitarism with elevated testosterone level. A mixed germ-cell tumor was diagnosed with elevated AFP and β-hCG levels. Of course, these patients also have other symptoms of suspecting tumors, however, rapidly progressive puberty can be the more earlier screening sign of tumors. Therefore, in male patients with accelerated or advanced puberty, malignancy should be considered, with evaluation of tumor markers. In addition, advanced puberty in male should be recognized more widely as a unique sign of neoplasm.

  19. Deletion of tumor progression locus 2 attenuates alcohol induced hepatic inflammation

    Science.gov (United States)

    BACKGROUND: The pathogenesis of alcoholic liver disease (ALD) involves the interaction of several inflammatory signaling pathways. Tumor progression locus 2 (TPL2), also known as Cancer Osaka Thyroid (COT) and MAP3K8, is a serine threonine kinase that functions as a critical regulator of inflammator...

  20. Epigenetic Modifications and Head and Neck Cancer: Implications for Tumor Progression and Resistance to Therapy

    Directory of Open Access Journals (Sweden)

    Rogerio M. Castilho

    2017-07-01

    Full Text Available Head and neck squamous carcinoma (HNSCC is the sixth most prevalent cancer and one of the most aggressive malignancies worldwide. Despite continuous efforts to identify molecular markers for early detection, and to develop efficient treatments, the overall survival and prognosis of HNSCC patients remain poor. Accumulated scientific evidences suggest that epigenetic alterations, including DNA methylation, histone covalent modifications, chromatin remodeling and non-coding RNAs, are frequently involved in oral carcinogenesis, tumor progression, and resistance to therapy. Epigenetic alterations occur in an unsystematic manner or as part of the aberrant transcriptional machinery, which promotes selective advantage to the tumor cells. Epigenetic modifications also contribute to cellular plasticity during tumor progression and to the formation of cancer stem cells (CSCs, a small subset of tumor cells with self-renewal ability. CSCs are involved in the development of intrinsic or acquired therapy resistance, and tumor recurrences or relapse. Therefore, the understanding and characterization of epigenetic modifications associated with head and neck carcinogenesis, and the prospective identification of epigenetic markers associated with CSCs, hold the promise for novel therapeutic strategies to fight tumors. In this review, we focus on the current knowledge on epigenetic modifications observed in HNSCC and emerging Epi-drugs capable of sensitizing HNSCC to therapy.

  1. Stereotactic body radiation therapy for liver oligo-recurrence and oligo-progression from various tumors

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Yu Jin; Kim, Mi Sook; Jang, Won Il; Seo, Young Seok; Cho, Chul Koo; Yoo, Hyung Jun; Paik, Eun Kyung [Dept. of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2017-06-15

    To evaluate the outcomes of stereotactic body radiation therapy (SBRT) for patients with liver oligo-recurrence and oligo-progression from various primary tumors. Between 2002 and 2013, 72 patients with liver oligo-recurrence (oligo-metastasis with a controlled primary tumor) and oligo-progression (contradictory progression of a few sites of disease despite an overall tumor burden response to therapy) underwent SBRT. Of these, 9 and 8 patients with uncontrollable distant metastases and patients immediate loss to follow-up, respectively, were excluded. The total planning target volume was used to select the SBRT dose (median, 48 Gy; range, 30 to 60 Gy, 3–4 fractions). Toxicity was evaluated using the Common Toxicity Criteria for Adverse Events v4.0. We evaluated 55 patients (77 lesions) treated with SBRT for liver metastases. All patients had controlled primary lesions, and 28 patients had stable lesions at another site (oligo-progression). The most common primary site was the colon (36 patients), followed by the stomach (6 patients) and other sites (13 patients). The 2-year local control and progression-free survival rates were 68% and 22%, respectively. The 2- and 5-year overall survival rates were 56% and 20%, respectively. The most common adverse events were grade 1–2 fatigue, nausea, and vomiting; no grade ≥3 toxicities were observed. Univariate analysis revealed that oligo-progression associated with poor survival. SBRT for liver oligo-recurrence and oligo-progression appears safe, with similar local control rates. For liver oligo-progression, criteria are needed to select patients in whom improved overall survival can be expected through SBRT.

  2. Human melanocytes form a PAX3-expressing melanocyte cluster on Matrigel by the cell migration process.

    Science.gov (United States)

    Choi, Hyunjung; Jin, Sun Hee; Han, Mi Hwa; Lee, Jinyoung; Ahn, Seyeon; Seong, Minjeong; Choi, Hyun; Han, Jiyeon; Cho, Eun-Gyung; Lee, Tae Ryong; Noh, Minsoo

    2014-10-01

    The interactions between human epidermal melanocytes and their cellular microenvironment are important in the regulation of human melanocyte functions or in their malignant transformation into melanoma. Although the basement membrane extracellular matrix (BM-ECM) is one of major melanocyte microenvironments, the effects of BM-ECM on the human melanocyte functions are not fully explained at a molecular level. This study was aimed to characterize the molecular and cellular interactions between normal human melanocytes (NHMs) and BM-ECM. We investigated cell culture models of normal human melanocytes or melanoma cells on three-dimensional (3D) Matrigel to understand the roles of the basement membrane microenvironment in human melanocyte functions. Melanogenesis and melanobast biomarker expression in both primary human melanocytes and melanoma cells on 3D Matrigel were evaluated. We found that NHMs migrated and formed reversible paired box 3 (PAX3) expressing cell clusters on three-dimensional (3D) Matrigel. The melanogenesis was significantly decreased in the PAX3 expressing cell cluster. The expression profile of PAX3, SOX10, and MITF in the melanocyte cluster on 3D Matrigel was similar to that of melanoblasts. Interestingly, PAX3 and SOX10 showed an inverse expression profile in NHMs, whereas the inverse expression pattern of PAX3 and SOX10 was disrupted in melanoma MNT1 and WM266-4 cells. The human melanocyte culture on 3D Matrigel provides an alternative model system to study functions of human melanoblasts. In addition, this system will contribute to the elucidation of PAX3-related tumorigenic mechanisms to understand human melanoma. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Calcium-Sensing Receptor Tumor Expression and Lethal Prostate Cancer Progression.

    Science.gov (United States)

    Ahearn, Thomas U; Tchrakian, Nairi; Wilson, Kathryn M; Lis, Rosina; Nuttall, Elizabeth; Sesso, Howard D; Loda, Massimo; Giovannucci, Edward; Mucci, Lorelei A; Finn, Stephen; Shui, Irene M

    2016-06-01

    Prostate cancer metastases preferentially target bone, and the calcium-sensing receptor (CaSR) may play a role in promoting this metastatic progression. We evaluated the association of prostate tumor CaSR expression with lethal prostate cancer. A validated CaSR immunohistochemistry assay was performed on tumor tissue microarrays. Vitamin D receptor (VDR) expression and phosphatase and tensin homolog tumor status were previously assessed in a subset of cases by immunohistochemistry. Cox proportional hazards models adjusting for age and body mass index at diagnosis, Gleason grade, and pathological tumor node metastasis stage were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association of CaSR expression with lethal prostate cancer. The investigation was conducted in the Health Professionals Follow-up Study and Physicians' Health Study. We studied 1241 incident prostate cancer cases diagnosed between 1983 and 2009. Participants were followed up or cancer-specific mortality or development of metastatic disease. On average, men were followed up 13.6 years, during which there were 83 lethal events. High CaSR expression was associated with lethal prostate cancer independent of clinical and pathological variables (HR 2.0; 95% CI 1.2-3.3). Additionally, there was evidence of effect modification by VDR expression; CaSR was associated with lethal progression among men with low tumor VDR expression (HR 3.2; 95% CI 1.4-7.3) but not in cases with high tumor VDR expression (HR 0.8; 95% CI 0.2-3.0). Tumor CaSR expression is associated with an increased risk of lethal prostate cancer, particularly in tumors with low VDR expression. These results support further investigating the mechanism linking CaSR with metastases.

  4. Hyaluronan, Cancer-Associated Fibroblasts and the Tumor Microenvironment in Malignant Progression

    Directory of Open Access Journals (Sweden)

    James B. McCarthy

    2018-05-01

    Full Text Available This review summarizes the roles of CAFs in forming a “cancerized” fibrotic stroma favorable to tumor initiation and dissemination, in particular highlighting the functions of the extracellular matrix component hyaluronan (HA in these processes. The structural complexity of the tumor and its host microenvironment is now well appreciated to be an important contributing factor to malignant progression and resistance-to-therapy. There are multiple components of this complexity, which include an extensive remodeling of the extracellular matrix (ECM and associated biomechanical changes in tumor stroma. Tumor stroma is often fibrotic and rich in fibrillar type I collagen and hyaluronan (HA. Cancer-associated fibroblasts (CAFs are a major source of this fibrotic ECM. CAFs organize collagen fibrils and these biomechanical alterations provide highways for invading carcinoma cells either under the guidance of CAFs or following their epithelial to mesenchymal transition (EMT. The increased HA metabolism of a tumor microenvironment instructs carcinoma initiation and dissemination by performing multiple functions. The key effects of HA reviewed here are its role in activating CAFs in pre-malignant and malignant stroma, and facilitating invasion by promoting motility of both CAFs and tumor cells, thus facilitating their invasion. Circulating CAFs (cCAFs also form heterotypic clusters with circulating tumor cells (CTC, which are considered to be pre-cursors of metastatic colonies. cCAFs are likely required for extravasation of tumors cells and to form a metastatic niche suitable for new tumor colony growth. Therapeutic interventions designed to target both HA and CAFs in order to limit tumor spread and increase response to current therapies are discussed.

  5. Growth and Progression of TRAMP Prostate Tumors in Relationship to Diet and Obesity

    Directory of Open Access Journals (Sweden)

    Melissa J. L. Bonorden

    2012-01-01

    Full Text Available To clarify effects of diet and body weight on prostate cancer development, three studies were undertaken using the TRAMP mouse model of this disease. In the first experiment, obesity was induced by injection of gold thioglucose (GTG. Age of prostate tumor detection (~33 wk and death (~43 wk was not significantly different among the groups. In the second study, TRAMP-C2 cells were injected into syngeneic C57BL6 mice and tumor progression was evaluated in mice fed either high-fat or low-fat diets. The high fat fed mice had larger tumors than did the low-fat fed mice. In the third study, tumor development was followed in TRAMP mice fed a high fat diet from 6 weeks of age. There were no significant effects of body weight status or diet on tumor development among the groups. When the tumors were examined for the neuroendocrine marker synaptophysin, there was no correlation with either body weight or diet. However, there was a significant correlation of the expression of synaptophysin with earlier age to tumor detection and death. In summary, TRAMP-C2 cells grew faster when the mice were fed a high-fat diet. Further synaptophysin may be a marker of poor prognosis independent of weight and diet.

  6. Glioblastoma progression is assisted by induction of immunosuppressive function of pericytes through interaction with tumor cells

    Science.gov (United States)

    Valdor, Rut; García-Bernal, David; Bueno, Carlos; Ródenas, Mónica; Moraleda, José M.; Macian, Fernando; Martínez, Salvador

    2017-01-01

    The establishment of immune tolerance during Glioblastoma Multiforme (GBM) progression, is characterized by high levels expression of anti-inflammatory cytokines, which suppress the function of tumor assocciated myeloid cells, and the activation and expansion of tumor antigen specific T cells. However, the mechanisms underlying the failed anti-tumor immune response around the blood vessels during GBM, are poorly understood. The consequences of possible interactions between cancer cells and the perivascular compartment might affect the tumor growth. In this work we show for the first time that GBM cells induce immunomodulatory changes in pericytes in a cell interaction-dependent manner, acquiring an immunosuppresive function that possibly assists the evasion of the anti-tumor immune response and consequently participates in tumor growth promotion. Expression of high levels of anti-inflammatory cytokines was detected in vitro and in vivo in brain pericytes that interacted with GBM cells (GBC-PC). Furthermore, reduction of surface expression of co-stimulatory molecules and major histocompatibility complex molecules in GBC-PC correlated with a failure of antigen presentation to T cells and the acquisition of the ability to supress T cell responses. In vivo, orthotopic xenotransplant of human glioblastoma in an immunocompetent mouse model showed significant GBM cell proliferation and tumor growth after the establishment of interspecific immunotolerance that followed GMB interaction with pericytes. PMID:28978142

  7. Androgen receptor status is highly conserved during tumor progression of breast cancer.

    Science.gov (United States)

    Grogg, André; Trippel, Mafalda; Pfaltz, Katrin; Lädrach, Claudia; Droeser, Raoul A; Cihoric, Nikola; Salhia, Bodour; Zweifel, Martin; Tapia, Coya

    2015-11-09

    With the advent of new and more efficient anti-androgen drugs targeting androgen receptor (AR) in breast cancer (BC) is becoming an increasingly important area of investigation. This would potentially be most useful in triple negative BC (TNBC), where better therapies are still needed. The assessment of AR status is generally performed on the primary tumor even if the tumor has already metastasized. Very little is known regarding discrepancies of AR status during tumor progression. To determine the prevalence of AR positivity, with emphasis on TNBCs, and to investigate AR status during tumor progression, we evaluated a large series of primary BCs and matching metastases and recurrences. AR status was performed on 356 primary BCs, 135 matching metastases, and 12 recurrences using a next-generation Tissue Microarray (ngTMA). A commercially available AR antibody was used to determine AR-status by immunohistochemistry. AR positivity was defined as any nuclear staining in tumor cells ≥1 %. AR expression was correlated with pathological tumor features of the primary tumor. Additionally, the concordance rate of AR expression between the different tumor sites was determined. AR status was positive in: 87 % (307/353) of primary tumors, 86.1 % (105/122) of metastases, and in 66.7 % (8/12) of recurrences. TNBC tested positive in 11.4 %, (4/35) of BCs. A discrepant result was seen in 4.3 % (5/117) of primary BC and matching lymph node (LN) metastases. Three AR negative primary BCs were positive in the matching LN metastasis, representing 17.6 % of all negative BCs with lymph node metastases (3/17). Two AR positive primary BCs were negative in the matching LN metastasis, representing 2.0 % of all AR positive BCs with LN metastases (2/100). No discrepancies were seen between primary BC and distant metastases or recurrence (n = 17). Most primary (87 %) and metastasized (86.1 %) BCs are AR positive including a significant fraction of TNBCs (11.4 %). Further, AR status is

  8. Androgen receptor status is highly conserved during tumor progression of breast cancer

    International Nuclear Information System (INIS)

    Grogg, André; Trippel, Mafalda; Pfaltz, Katrin; Lädrach, Claudia; Droeser, Raoul A.; Cihoric, Nikola; Salhia, Bodour; Zweifel, Martin; Tapia, Coya

    2015-01-01

    With the advent of new and more efficient anti-androgen drugs targeting androgen receptor (AR) in breast cancer (BC) is becoming an increasingly important area of investigation. This would potentially be most useful in triple negative BC (TNBC), where better therapies are still needed. The assessment of AR status is generally performed on the primary tumor even if the tumor has already metastasized. Very little is known regarding discrepancies of AR status during tumor progression. To determine the prevalence of AR positivity, with emphasis on TNBCs, and to investigate AR status during tumor progression, we evaluated a large series of primary BCs and matching metastases and recurrences. AR status was performed on 356 primary BCs, 135 matching metastases, and 12 recurrences using a next-generation Tissue Microarray (ngTMA). A commercially available AR antibody was used to determine AR-status by immunohistochemistry. AR positivity was defined as any nuclear staining in tumor cells ≥1 %. AR expression was correlated with pathological tumor features of the primary tumor. Additionally, the concordance rate of AR expression between the different tumor sites was determined. AR status was positive in: 87 % (307/353) of primary tumors, 86.1 % (105/122) of metastases, and in 66.7 % (8/12) of recurrences. TNBC tested positive in 11.4 %, (4/35) of BCs. A discrepant result was seen in 4.3 % (5/117) of primary BC and matching lymph node (LN) metastases. Three AR negative primary BCs were positive in the matching LN metastasis, representing 17.6 % of all negative BCs with lymph node metastases (3/17). Two AR positive primary BCs were negative in the matching LN metastasis, representing 2.0 % of all AR positive BCs with LN metastases (2/100). No discrepancies were seen between primary BC and distant metastases or recurrence (n = 17). Most primary (87 %) and metastasized (86.1 %) BCs are AR positive including a significant fraction of TNBCs (11.4 %). Further, AR status is highly

  9. Loss of TRPV2 Homeostatic Control of Cell Proliferation Drives Tumor Progression

    Directory of Open Access Journals (Sweden)

    Sonia Liberati

    2014-02-01

    Full Text Available Herein we evaluate the involvement of the TRPV2 channel, belonging to the Transient Receptor Potential Vanilloid channel family (TRPVs, in development and progression of different tumor types. In normal cells, the activation of TRPV2 channels by growth factors, hormones, and endocannabinoids induces a translocation of the receptor from the endosomal compartment to the plasma membrane, which results in abrogation of cell proliferation and induction of cell death. Consequently, loss or inactivation of TRPV2 signaling (e.g., glioblastomas, induces unchecked proliferation, resistance to apoptotic signals and increased resistance to CD95-induced apoptotic cell death. On the other hand, in prostate cancer cells, Ca2+-dependent activation of TRPV2 induced by lysophospholipids increases the invasion of tumor cells. In addition, the progression of prostate cancer to the castration-resistant phenotype is characterized by de novo TRPV2 expression, with higher TRPV2 transcript levels in patients with metastatic cancer. Finally, TRPV2 functional expression in tumor cells can also depend on the presence of alternative splice variants of TRPV2 mRNA that act as dominant-negative mutant of wild-type TRPV2 channels, by inhibiting its trafficking and translocation to the plasma membrane. In conclusion, as TRP channels are altered in human cancers, and their blockage impair tumor progression, they appear to be a very promising targets for early diagnosis and chemotherapy.

  10. Metronomic Chemotherapy vs Best Supportive Care in Progressive Pediatric Solid Malignant Tumors: A Randomized Clinical Trial.

    Science.gov (United States)

    Pramanik, Raja; Agarwala, Sandeep; Gupta, Yogendra Kumar; Thulkar, Sanjay; Vishnubhatla, Sreenivas; Batra, Atul; Dhawan, Deepa; Bakhshi, Sameer

    2017-09-01

    Although oral metronomic chemotherapy is often used in progressive pediatric solid malignant tumors, a literature review reveals that only small single-arm retrospective or phase 1 and 2 studies have been performed. Skepticism abounds because of the lack of level 1 evidence. To compare the effect of metronomic chemotherapy on progression-free survival (PFS) with that of placebo in pediatric patients with primary extracranial, nonhematopoietic solid malignant tumors that progress after at least 2 lines of chemotherapy. A double-blinded, placebo-controlled randomized clinical trial was conducted from October 1, 2013, through December 31, 2015, at the cancer center at All India Institute of Medical Sciences in children aged 5 to 18 years with primary extracranial, nonhematopoietic solid malignant tumors that progressed after at least 2 lines of chemotherapy and had no further curative options. One arm received a 4-drug oral metronomic regimen of daily celecoxib and thalidomide with alternating periods of etoposide and cyclophosphamide, whereas the other arm received placebo. Disease status was assessed at baseline, 9 weeks, 18 weeks, and 27 weeks or at clinical progression. The primary end point was PFS as defined by the proportion of patients without disease progression at 6 months, and PFS duration and overall survival (OS) were secondary end points. A total of 108 of the 123 patients screened were enrolled, with 52 randomized to the placebo group (median age, 15 years; 40 male [76.9%]) and 56 to the metronomic chemotherapy group (median age, 13 years; 42 male [75.0%]). At a median follow-up of 2.9 months, 100% of the patients had disease progression by 6 months in the placebo group vs 96.4% in the metronomic chemotherapy group (P = .24). Median PFS and OS in the 2 groups was similar (hazard ratio [HR], 0.69; 95% CI, 0.47-1.03 [P = .07] for PFS; and HR, 0.74; 95% CI, 0.50-1.09 [P = .13] for OS). In post hoc subgroup analysis, cohorts receiving more than

  11. PTPRZ1 regulates calmodulin phosphorylation and tumor progression in small-cell lung carcinoma

    International Nuclear Information System (INIS)

    Makinoshima, Hideki; Ishii, Genichiro; Kojima, Motohiro; Fujii, Satoshi; Higuchi, Youichi; Kuwata, Takeshi; Ochiai, Atsushi

    2012-01-01

    Small-cell lung carcinoma (SCLC) is a neuroendocrine tumor subtype and comprises approximately 15% of lung cancers. Because SCLC is still a disease with a poor prognosis and limited treatment options, there is an urgent need to develop targeted molecular agents for this disease. We screened 20 cell lines from a variety of pathological phenotypes established from different organs by RT-PCR. Paraffin-embedded tissue from 252 primary tumors was examined for PTPRZ1 expression using immunohistochemistry. shRNA mediated PTPRZ1 down-regulation was used to study impact on tyrosine phosphorylation and in vivo tumor progression in SCLC cell lines. Here we show that PTPRZ1, a member of the protein tyrosine- phosphatase receptor (PTPR) family, is highly expressed in SCLC cell lines and specifically exists in human neuroendocrine tumor (NET) tissues. We also demonstrate that binding of the ligand of PTPRZ1, pleiotrophin (PTN), activates the PTN/PTPRZ1 signaling pathway to induce tyrosine phosphorylation of calmodulin (CaM) in SCLC cells, suggesting that PTPRZ1 is a regulator of tyrosine phosphorylation in SCLC cells. Furthermore, we found that PTPRZ1 actually has an important oncogenic role in tumor progression in the murine xenograft model. PTPRZ1 was highly expressed in human NET tissues and PTPRZ1 is an oncogenic tyrosine phosphatase in SCLCs. These results imply that a new signaling pathway involving PTPRZ1 could be a feasible target for treatment of NETs

  12. Limited utility of tissue micro-arrays in detecting intra-tumoral heterogeneity in stem cell characteristics and tumor progression markers in breast cancer.

    Science.gov (United States)

    Kündig, Pascale; Giesen, Charlotte; Jackson, Hartland; Bodenmiller, Bernd; Papassotirolopus, Bärbel; Freiberger, Sandra Nicole; Aquino, Catharine; Opitz, Lennart; Varga, Zsuzsanna

    2018-05-08

    Intra-tumoral heterogeneity has been recently addressed in different types of cancer, including breast cancer. A concept describing the origin of intra-tumoral heterogeneity is the cancer stem-cell hypothesis, proposing the existence of cancer stem cells that can self-renew limitlessly and therefore lead to tumor progression. Clonal evolution in accumulated single cell genomic alterations is a further possible explanation in carcinogenesis. In this study, we addressed the question whether intra-tumoral heterogeneity can be reliably detected in tissue-micro-arrays in breast cancer by comparing expression levels of conventional predictive/prognostic tumor markers, tumor progression markers and stem cell markers between central and peripheral tumor areas. We analyzed immunohistochemical expression and/or gene amplification status of conventional prognostic tumor markers (ER, PR, HER2, CK5/6), tumor progression markers (PTEN, PIK3CA, p53, Ki-67) and stem cell markers (mTOR, SOX2, SOX9, SOX10, SLUG, CD44, CD24, TWIST) in 372 tissue-micro-array samples from 72 breast cancer patients. Expression levels were compared between central and peripheral tumor tissue areas and were correlated to histopathological grading. 15 selected cases additionally underwent RNA sequencing for transcriptome analysis. No significant difference in any of the analyzed between central and peripheral tumor areas was seen with any of the analyzed methods/or results that showed difference. Except mTOR, PIK3CA and SOX9 (nuclear) protein expression, all markers correlated significantly (p < 0.05) with histopathological grading both in central and peripheral areas. Our results suggest that intra-tumoral heterogeneity of stem-cell and tumor-progression markers cannot be reliably addressed in tissue-micro-array samples in breast cancer. However, most markers correlated strongly with histopathological grading confirming prognostic information as expression profiles were independent on the site of the

  13. Histomorphologic spectrum of BAP1 negative melanocytic neoplasms in a family with BAP1-associated cancer susceptibility syndrome.

    Science.gov (United States)

    Marušić, Zlatko; Buljan, Marija; Busam, Klaus J

    2015-06-01

    Multiple BAP1 negative melanocytic neoplasms are a hallmark of familial cancer susceptibility syndrome caused by BAP1 germline mutation. The syndrome is characterized by increased incidence of renal cell carcinoma, mesothelioma, cholangiocarcinoma, cutaneous and uveal melanoma and some other neoplasms. We report histomorphologic characteristics of six cutaneous melanocytic neoplasms with loss of BAP1 expression in two members of a family with BAP1-associated cancer susceptibility syndrome. The neoplasms were dermal melanocytic nevi characterized by a proliferation of large epithelioid (spitzoid) melanocytes, and adipocytic metaplasia. Nuclear pseudoinclusions and multinucleated melanocytes were present in most neoplasms. In two of the cases, a nodular melanoma was found associated with a dermal nevus. None of the melanomas recurred or metastasized after 6 and 3 years of follow up. We report two new cases of melanoma arising in a BAP1-deficient melanocytic nevus in the setting of familial tumor predisposition syndrome. Adipocytic metaplasia and nuclear pseudoinclusions may be additional morphologic clues to a BAP1-deficient nevus. It remains to be seen whether these features are more common in familial than sporadic lesions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Analysis of factors affecting local tumor progression of colorectal cancer liver metastasis after radiofrequency ablation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong Hee; Cho, Yun Ku; Choi, Seung A; Kim, Mi Young; Lee, Ho Suk [Veterans Health Service Medical Center, Seoul (Korea, Republic of)

    2017-03-15

    The purpose of this study was to evaluate the independent predictive factors for local tumor progression (LTP) of colorectal liver metastasis (CRLM) after radiofrequency ablation (RFA). Patients with CRLM were included in the analysis if nodules were up to five in number, each nodule was ≤ 5 cm, and RFA was performed in our center from January 2006 to December 2015. Univariate and multivariate analyses to identify the predictors of LTP were performed by using a Cox proportional hazard model. Overall, 58 tumors from 38 patients were included in this study. LTP occurred in 14 tumors from 9 patients. The overall 1- and 3-year LTP rates were 23.5% and 29.4%, respectively. Multivariate analysis showed that tumor size > 2 cm and insufficient ablative margin were two independently significant adverse prognostic factors for LTP (p = 0.045 and 0.022, respectively). The 3-year LTP rates for 33 and 25 tumors with and without sufficient ablative margin were 4.5% and 61.2%, respectively. The difference was statistically significant (p < 0.001). The difference in the 3-year LTP rates according to the tumor size was not statistically significant (p = 0.791). Insufficient ablative margin seems to be the most potent predictor of LTP after RFA of CRLM.

  15. Progress of Shenqi Fuzheng Injection as Adjuvant Therapy for Malignant Tumors

    Directory of Open Access Journals (Sweden)

    Jing WANG

    2017-09-01

    Full Text Available Tumor is a kind of common and frequently-occurring disease that severely impaires human lives and health. As is proposed in Required Readings for Medical Professions, “Accumulation of virus causes insuffcient healthy qi, and then results in invasion of evil qi into the body”. Tumor is caused by interaction of exogenous evil qi and pathogenic products in the body such as phlegm and blood stasis on the basis of healthy qi defciency and disharmony of viscera. Therefore, the condition of healthy qi is not only the key of the occurrence of tumor, but a decisive factor of the development and prognosis of the disease. At present, the main therapeutic approaches for malignant tumors are radiotherapy and chemotherapy. However, during the disease process, the healthy qi gradually decreases due to the consumption of malignant tumors and the injury caused by radiotherapy and chemotherapy. In recent years, taking advantages of traditional Chinese drugs such as Shenqi Fuzheng Injection in combination with radiotherapy or chemotherapy is an important approach for many clinical physicians to improve therapeutic effects and alleviate toxic and side effects induced by radiotherapy and chemotherapy. This study mainly reviewed the progress of mechanisms and application of Shenqi Fuzhen Injection in malignant tumors in recent years.

  16. Podoplanin as Key Player of Tumor Progression and Lymph Vessel Proliferation in Ovarian Cancer.

    Science.gov (United States)

    Cobec, Ionut Marcel; Sas, Ioan; Pirtea, Laurențiu; Cimpean, Anca Maria; Moatar, Aurica Elisabeta; Ceaușu, Raluca Amalia; Raica, Marius

    2016-10-01

    Podoplanin plays a key role in tumor progression and metastasis. We evaluated lymphatics proliferation rate and podoplanin expression in tumor cells of ovarian carcinoma. Seventy-five paraffin-embedded specimens of ovarian cancer were immunohistochemically assessed in order to quantify peritumoral (LMVDP) and intratumoral (LMVDT) lymphatic microvessel density of proliferating lymphatics and for podoplanin variability in tumor cells. LMVDT correlated with proliferating tumor vessels located in the peritumoral area (p=0.024) and with the number of mature vessels located in the intratumoral area (p<0.0001), while LMVDP correlated with peritumoral mature vessels (p<0.000l). Proliferating tumor cells at the invasive front were highly positive for podoplanin. To the best of our knowledge, this study represents the first assessment of lymphatic endothelial cell proliferation correlated with podoplanin expression in tumor cells from ovarian cancer. Our data support podoplanin as a potential target that may help reduce ovarian cancer dissemination and lymphatic metastasis. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. [A review of progress of real-time tumor tracking radiotherapy technology based on dynamic multi-leaf collimator].

    Science.gov (United States)

    Liu, Fubo; Li, Guangjun; Shen, Jiuling; Li, Ligin; Bai, Sen

    2017-02-01

    While radiation treatment to patients with tumors in thorax and abdomen is being performed, further improvement of radiation accuracy is restricted by the tumor intra-fractional motion due to respiration. Real-time tumor tracking radiation is an optimal solution to tumor intra-fractional motion. A review of the progress of real-time dynamic multi-leaf collimator(DMLC) tracking is provided in the present review, including DMLC tracking method, time lag of DMLC tracking system, and dosimetric verification.

  18. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression

    DEFF Research Database (Denmark)

    Laklai, Hanane; Miroshnikova, Yekaterina A.; Pickup, Michael W.

    2016-01-01

    by increasing matricellular fibrosis and tissue tension. In contrast, epithelial STAT3 ablation attenuated tumor progression by reducing the stromal stiffening and epithelial contractility induced by loss of TGF-β signaling. In PDAC patient biopsies, higher matricellular protein and activated STAT3 were......Fibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality, yet antistromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor-β (TGF-β) signaling have high epithelial STAT3 activity and develop...... stiff, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several KRAS-driven mouse models, both the loss of TGF-β signaling and elevated β1-integrin mechanosignaling engaged a positive feedback loop whereby STAT3 signaling promotes tumor progression...

  19. Current Research of the Roles of IL-35 in Tumor Progression

    Directory of Open Access Journals (Sweden)

    Chongbiao HUANG

    2016-04-01

    Full Text Available Interleukin(IL-35 is a new member of the interleukin-12 superfamily. Since its first report in 2007, IL-35 rapidly became a research highlight in the field of immunology. Like other IL-12 superfamily members, IL-35 was a heterodimer which was composed of an α chain P35 and a β chain Epstein-Barr virus induced gene 3 (EBI3. Recent research work revealed two distinct roles of IL-35. Firstly, IL-35 is highly expressed in some kinds of inflammatory diseases and autoimmune diseases and plays import roles in the pathogenesis. Secondly, IL-35 is positively expressed in some cancers and plays some roles in the process of tumor progression. Here we demonstrate the structure and the signalling of IL-35. We reviewed the the roles of IL-35 in promoting tumor progression.

  20. Perioperative blood transfusion: does it influence survival and cancer progression in metastatic spine tumor surgery?

    Science.gov (United States)

    Zaw, Aye Sandar; Kantharajanna, Shashidhar B; Maharajan, Karthikeyan; Tan, Barry; Vellayappan, Balamurugan; Kumar, Naresh

    2017-02-01

    Despite advances in surgical techniques for spinal metastases, there is often substantial blood loss, resulting in patients requiring blood transfusion during the perioperative period. Allogeneic blood transfusion (ABT) has been the main replenishment method for lost blood. However, the impact of ABT on cancer-related outcomes has been controversial in various studies. We aimed to evaluate the influence of perioperative ABT on disease progression and survival in patients undergoing metastatic spinal tumor surgery (MSTS). We conducted a retrospective study that included 247 patients who underwent MSTS at a single tertiary institution between 2005 and 2014. The impact of using perioperative ABT (either exposure to or quantities of transfusion) on disease progression and survival was assessed using Cox regression analyses while adjusting for potential confounding variables. Of 247 patients, 133 (54%) received ABT. The overall median number of blood units transfused was 2 (range, 0-10 units). Neither blood transfusion exposure nor quantities of transfusion were associated with overall survival (hazard ratio [HR], 1.15 [p = 0.35] and 1.10 [p = 0.11], respectively) and progression-free survival (HR, 0.87 [p = 0.18] and 0.98 [p = 0.11], respectively). The factors that influenced overall survival were primary tumor type and preoperative Eastern Cooperative Oncology Group performance status, whereas primary tumor type was the only factor that had an impact on progression-free survival. This is the first study providing evidence that disease progression and survival in patients who undergo MSTS are less likely to be influenced by perioperative ABT. The worst oncologic outcomes are more likely to be caused by the clinical circumstances necessitating blood transfusion, but not transfusion itself. However, because ABT can have a propensity toward developing postoperative infections, including surgical site infection, the use of patient blood management

  1. Melanoma Therapy with Rhenium-Cyclized Alpha Melanocyte Stimulating Hormone Peptide Analogs

    Energy Technology Data Exchange (ETDEWEB)

    Thomas P Quinn

    2005-11-22

    Malignant melanoma is the 6th most commonly diagnosed cancer with increasing incidence in the United States. It is estimated that 54,200 cases of malignant melanoma will be newly diagnosed and 7,600 cases of death will occur in the United States in the year 2003 (1). At the present time, more than 1.3% of Americans will develop malignant melanoma during their lifetime (2). The average survival for patients with metastatic melanoma is about 6-9 months (3). Moreover, metastatic melanoma deposits are resistant to conventional chemotherapy and external beam radiation therapy (3). Systematic chemotherapy is the primary therapeutic approach to treat patients with metastatic melanoma. Dacarbazine is the only single chemotherapy agent approved by FDA for metastatic melanoma treatment (5). However, the response rate to Dacarbazine is only approximately 20% (6). Therefore, there is a great need to develop novel treatment approaches for metastatic melanoma. The global goal of this research program is the rational design, characterization and validation of melanoma imaging and therapeutic radiopharmaceuticals. Significant progress has been made in the design and characterization of metal-cyclized radiolabeled alpha-melanocyte stimulating hormone peptides. Therapy studies with {sup 188}Re-CCMSH demonstrated the therapeutic efficacy of the receptor-targeted treatment in murine and human melanoma bearing mice (previous progress report). Dosimetry calculations, based on biodistribution data, indicated that a significant dose was delivered to the tumor. However, {sup 188}Re is a very energetic beta-particle emitter. The longer-range beta-particles theoretically would be better for larger tumors. In the treatment of melanoma, the larger primary tumor is usually surgically removed leaving metastatic disease as the focus of targeted radiotherapy. Isotopes with lower beta-energies and/or shorter particle lengths should be better suited for targeting metastases. The {sup 177}Lu

  2. Melanome Therapy with Rhenium Cyclized Alpha Melanocyte Stimulating Hormone Peptide Analogs. Final report

    International Nuclear Information System (INIS)

    Quinn, Thomas P.

    2005-01-01

    Malignant melanoma is the 6th most commonly diagnosed cancer with increasing incidence in the United States. It is estimated that 54,200 cases of malignant melanoma will be newly diagnosed and 7,600 cases of death will occur in the United States in the year 2003 (1). At the present time, more than 1.3% of Americans will develop malignant melanoma during their lifetime (2). The average survival for patients with metastatic melanoma is about 6-9 months (3). Moreover, metastatic melanoma deposits are resistant to conventional chemotherapy and external beam radiation therapy (3). Systematic chemotherapy is the primary therapeutic approach to treat patients with metastatic melanoma. Dacarbazine is the only single chemotherapy agent approved by FDA for metastatic melanoma treatment (5). However, the response rate to Dacarbazine is only approximately 20% (6). Therefore, there is a great need to develop novel treatment approaches for metastatic melanoma. The global goal of this research program is the rational design, characterization and validation of melanoma imaging and therapeutic radiopharmaceuticals. Significant progress has been made in the design and characterization of metal-cyclized radiolabeled alpha-melanocyte stimulating hormone peptides. Therapy studies with 188 Re-CCMSH demonstrated the therapeutic efficacy of the receptor-targeted treatment in murine and human melanoma bearing mice (previous progress report). Dosimetry calculations, based on biodistribution data, indicated that a significant dose was delivered to the tumor. However, 188 Re is a very energetic beta-particle emitter. The longer-range beta-particles theoretically would be better for larger tumors. In the treatment of melanoma, the larger primary tumor is usually surgically removed leaving metastatic disease as the focus of targeted radiotherapy. Isotopes with lower beta-energies and/or shorter particle lengths should be better suited for targeting metastases. The 177 Lu-DOTA-Re(Arg11)CCMSH and

  3. Effects of low dose radiation on tumor apoptosis, cell cycle progression and changes of apoptosis-related protein bcl-2 in tumor-bearing mice

    International Nuclear Information System (INIS)

    Yu Hongsheng; Fei Conghe; Shen Fangzhen; Liang Jun

    2003-01-01

    Objective: To study the effect of low dose radiation (LDR) on tumor apoptosis, cell cycle progression and changes of apoptosis-related protein bcl-2 in tumor-bearing mice. Methods: Kunming stain male mice were implanted with S180 sarcoma cells in the left inguen subcutaneously as an in situ experimental animal model. Seven days after implantation, the mice were given 75 mGy whole-body γ-irradiation. At 24 and 48 h after irradiation, all mice were sacrificed to measure the tumor volume, and tumor cell apoptosis, cell cycle progression were analyzed by flow cytometry. The expression of apoptosis-related protein bcl-2 and the apoptotic rate of tumor cells were observed by immunohistochemistry and electron microscopy. Results: Tumor growth was significantly slowed down after LDR (P 1 phase and the expression of bcl-2 protein decreased at 24 h. Apoptotic rate of tumor cells increased significantly at 48 h after LDR. Conclusion: LDR could cause a G 1 -phase arrest and increase the apoptosis of tumor cells through the low level of apoptosis-related protein bcl-2 in the tumor-bearing mice. The organized immune function and anti-tumor ability are markedly increased after LDR. The study provides practical evidence of clinical application to cancer treatment

  4. Overexpression of prostate tumor overexpressed 1 correlates with tumor progression and predicts poor prognosis in breast cancer

    International Nuclear Information System (INIS)

    Lei, Fangyong; Zhang, Longjuan; Li, Xinghua; Lin, Xi; Wu, Shu; Li, Fengyan; Liu, Junling

    2014-01-01

    Prostate tumor overexpressed 1 (PTOV1) was demonstrated to play an important role in cancer progression and was correlated with unfavorable clinical outcome. However, the clinical role of PTOV1 in cancer remains largely unknown. This study aimed to investigate the expression and clinicopathological significance of PTOV1 in breast cancer. The mRNA and protein expression levels of PTOV1 were analyzed in 12 breast cancer cell lines and eight paired breast cancer tumors by semi-quantitative real time-PCR and western blotting, respectively. Immunohistochemistry was performed to assess PTOV1 protein expression in 169 paraffin-embedded, archived breast cancer samples. Survival analysis and Cox regression analysis were performed to investigate the clinicopathological significance of PTOV1 expression. Our data revealed that PTOV1 was frequently overexpressed in breast cancer cell lines compared to normal human breast epithelial cells and in primary breast cancer samples compared to adjacent noncancerous breast tissues, at both the mRNA and protein levels. Moreover, high expression of PTOV1 in breast cancer is strongly associated with clinicopathological characteristics and estrogen receptor expression status (P = 0.003). Breast cancer patients with higher PTOV1 expression had substantially shorter survival times than patients with lower PTOV1 expression (P < 0.001). Univariate and multivariate analysis revealed that PTOV1 might be an independent prognostic factor for breast cancer patients (P = 0.005). Our study showed that PTOV1 is upregulated in breast cancer cell lines and clinical samples, and its expression was positively associated with progression and aggressiveness of breast cancer, suggesting that PTOV1 could serve as an independent prognostic marker

  5. SU-F-J-89: Assessment of Delivered Dose in Understanding HCC Tumor Progression Following SBRT

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, M; Cazoulat, G; Polan, D; Schipper, M; Lawrence, T; Feng, M; Brock, K [University of Michigan, Ann Arbor, MI (United States)

    2016-06-15

    Purpose: It is well documented that the delivered dose to patients undergoing radiotherapy (RT) is often different from the planned dose due to geometric variability and uncertainties in patient positioning. Recent work suggests that accumulated dose to the GTV is a better predictor of progression compared to the minimum planned dose to the PTV. The purpose of this study is to evaluate if deviations from the planned dose can contributed to tumor progression. Methods: From 2010 to 2014 an in-house Phase II clinical trial of adaptive stereotactic body RT was completed. Of the 90 patients enrolled, 7 patients had a local recurrence defined on contrast enhanced CT or MR imaging 3–21 months after completion of RT. Retrospective dose accumulation was performed using a biomechanical model-based deformable image registration algorithm (DIR) to accumulate the dose based on the kV CBCT acquired prior to each fraction for soft tissue alignment of the patient. The DIR algorithm was previously validated for geometric accuracy in the liver (target registration error = 2.0 mm) and dose accumulation in a homogeneous image, similar to a liver CBCT (gamma index = 91%). Following dose accumulation, the minimum dose to 0.5 cc of the GTV was compared between the planned and accumulated dose. Work is ongoing to evaluate the tumor control probability based on the planned and accumulated dose. Results: DIR and dose accumulation was performed on all fractions for 6 patients with local recurrence. The difference in minimum dose to 0.5 cc of the GTV ranged from −0.3–2.3 Gy over 3–5 fractions. One patient had a potentially significant difference in minimum dose of 2.3 Gy. Conclusion: Dose accumulation can reveal tumor underdosage, improving our ability to understand recurrence and tumor progression patterns, and could aid in adaptive re-planning during therapy to correct for this. This work was supported in part by NIH P01CA059827.

  6. Locoregional Tumor Progression After Radiation Therapy Influences Overall Survival in Pediatric Patients With Neuroblastoma

    International Nuclear Information System (INIS)

    Pai Panandiker, Atmaram S.; McGregor, Lisa; Krasin, Matthew J.; Wu Shengjie; Xiong Xiaoping; Merchant, Thomas E.

    2010-01-01

    Purpose: There is renewed attention to primary site irradiation and local control for patients with high-risk neuroblastoma (NB). We conducted a retrospective review to identify factors that might predict for locoregional tumor control and its impact on overall survival. Methods and Materials: Between July 2000 through August 2006, a total of 44 pediatric patients with NB received radiation therapy (RT) with curative intent using computed tomography (CT)-based treatment planning. The median age was 3.4 years and the median cumulative dose was 23.4 Gy. Overall survival and locoregional tumor control were measured from the start of RT to the date of death or event as determined by CT/magnetic resonance imaging/meta-iodobenzylguanidine. The influence of age at irradiation, gender, race, cumulative radiation dose, International Neuroblastoma Staging System stage, treatment protocol and resection status was determined with respect to locoregional tumor control. Results: With a median follow-up of 34 months ± 21 months, locoregional tumor progression was observed in 11 (25%) and was evenly divided between primary site and adjacent nodal/visceral site failure. The influence of locoregional control reached borderline statistical significance (p = 0.06). Age (p = 0.5), dose (p = 0.6), resection status (p = 0.7), and International Neuroblastoma Staging System stage (p = 0.08) did not influence overall survival. Conclusions: Overall survival in high-risk neuroblastoma is influenced by locoregional tumor control. Despite CT-based planning, progression in adjacent nodal/visceral sites appears to be common; this requires further investigation regarding target volume definitions, dose, and the effects of systemic therapy.

  7. High frequency of tumor cells with nuclear Egr-1 protein expression in human bladder cancer is associated with disease progression

    International Nuclear Information System (INIS)

    Egerod, Frederikke Lihme; Bartels, Annette; Fristrup, Niels; Borre, Michael; Ørntoft, Torben F; Oleksiewicz, Martin B; Brünner, Nils; Dyrskjøt, Lars

    2009-01-01

    Egr-1 (early growth response-1 transcription factor) has been proposed to be involved in invasion and metastasis processes of human bladder cancer, but Egr-1 protein expression levels in human bladder cancer have not been investigated. In the present study we investigated the expression levels of Egr-1 protein in early stages of human bladder cancer and correlated it to later progression. Expression of Egr-1 protein in human bladder cancer was examined by immunohistochemistry, on a tissue microarray constructed from tumors from 289 patients with non-muscle invasive urothelial bladder cancer. The frequency of tumor cells with nuclear Egr-1 immunolabelling correlated to bladder cancer stage, grade and to later progression to muscle-invasive bladder cancer (T2-4). Stage T1 tumors exhibited significantly higher frequencies of tumor cells with nuclear Egr-1 immunolabelling than Ta tumors (P = 0.001). Furthermore, Kaplan-Meier survival analysis showed that a high frequency of tumor cells with nuclear Egr-1 immunolabelling was significantly associated with a higher risk of progression to stage T2-4 (log-rank test, P = 0.035). Tumor cells with nuclear Egr-1 immunolabelling were found to localize at the tumor front in some of the tumor biopsies. The results from this study support a potential involvement of Egr-1 in the progression from non-muscle invasive bladder cancers to muscle invasive bladder cancer

  8. Creatine supplementation prevents hyperhomocysteinemia, oxidative stress and cancer-induced cachexia progression in Walker-256 tumor-bearing rats.

    Science.gov (United States)

    Deminice, Rafael; Cella, Paola Sanches; Padilha, Camila S; Borges, Fernando H; da Silva, Lilian Eslaine Costa Mendes; Campos-Ferraz, Patrícia L; Jordao, Alceu Afonso; Robinson, Jason Lorne; Bertolo, Robert F; Cecchini, Rubens; Guarnier, Flávia Alessandra

    2016-08-01

    The purpose of this study was to investigate (1) the impact of tumor growth on homocysteine (Hcy) metabolism, liver oxidative stress and cancer cachexia and, (2) the potential benefits of creatine supplementation in Walker-256 tumor-bearing rats. Three experiments were conducted. First, rats were killed on days 5 (D5), 10 (D10) and 14 (D14) after tumor implantation. In experiment 2, rats were randomly assigned to three groups designated as control (C), tumor-bearing (T) and tumor-bearing supplemented with creatine (TCr). A life span experiment was conducted as the third experiment. Creatine was supplied in drinking water for 21 days (8 g/L) in all cases. Tumor implantation consisted of a suspension of Walker-256 cells (8.0 × 10(7) cells in 0.5 mL of PBS). The progressive increase (P creatine supplementation promoted a 28 % reduction of tumor weight (P Creatine supplementation was unable to decrease Hcy concentration and to increase SAM/SAH ratio in tumor tissue. These data suggest that creatine effects on hepatic impaired Hcy metabolism promoted by tumor cell inoculation are responsible to decrease plasma Hcy in tumor-bearing rats. In conclusion, Walker-256 tumor growth is associated with progressive hyperhomocysteinemia, body weight loss and liver oxidative stress in rats. Creatine supplementation, however, prevented these tumor-associated perturbations.

  9. Ultraviolet Radiation and the Slug Transcription Factor Induce Proinflammatory and Immunomodulatory Mediator Expression in Melanocytes

    Directory of Open Access Journals (Sweden)

    Stephanie H. Shirley

    2012-01-01

    Full Text Available Despite extensive investigation, the precise contribution of the ultraviolet radiation (UVR component of sunlight to melanoma etiology remains unclear. UVR induces keratinocytes to secrete proinflammatory and immunomodulatory mediators that promote inflammation and skin tumor development; expression of the slug transcription factor in keratinocytes is required for maximal production of these mediators. In the present studies we examined the possibility that UVR-exposed melanocytes also produce proinflammatory mediators and that Slug is important in this process. Microarray studies revealed that both UVR exposure and Slug overexpression altered transcription of a variety of proinflammatory mediators by normal human melanocytes; some of these mediators are also known to stimulate melanocyte growth and migration. There was little overlap in the spectra of cytokines produced by the two stimuli. However IL-20 was similarly induced by both stimuli and the NFκB pathway appeared to be important in both circumstances. Further exploration of UVR-induced and Slug-dependent pathways of cytokine induction in melanocytes may reveal novel targets for melanoma therapy.

  10. Ultraviolet Radiation and the Slug Transcription Factor Induce Pro inflammatory and Immunomodulatory Mediator Expression in Melanocytes

    International Nuclear Information System (INIS)

    Shirley, S. H.; Kusewitt, D. F.; Grimm, E. A.

    2012-01-01

    Despite extensive investigation, the precise contribution of the ultraviolet radiation (UVR) component of sunlight to melanoma etiology remains unclear. UVR induces keratinocytes to secrete pro inflammatory and immunomodulatory mediators that promote inflammation and skin tumor development; expression of the slug transcription factor in keratinocytes is required for maximal production of these mediators. In the present studies we examined the possibility that UVR-exposed melanocytes also produce pro inflammatory mediators and that Slug is important in this process. Micro array studies revealed that both UVR exposure and Slug overexpression altered transcription of a variety of pro inflammatory mediators by normal human melanocytes; some of these mediators are also known to stimulate melanocyte growth and migration. There was little overlap in the spectra of cytokines produced by the two stimuli. However IL-20 was similarly induced by both stimuli and the NFκB pathway appeared to be important in both circumstances. Further exploration of UVR-induced and Slug-dependent pathways of cytokine induction in melanocytes may reveal novel targets for melanoma therapy.

  11. A versatile mathematical work-flow to explore how Cancer Stem Cell fate influences tumor progression.

    Science.gov (United States)

    Fornari, Chiara; Balbo, Gianfranco; Halawani, Sami M; Ba-Rukab, Omar; Ahmad, Ab Rahman; Calogero, Raffaele A; Cordero, Francesca; Beccuti, Marco

    2015-01-01

    Nowadays multidisciplinary approaches combining mathematical models with experimental assays are becoming relevant for the study of biological systems. Indeed, in cancer research multidisciplinary approaches are successfully used to understand the crucial aspects implicated in tumor growth. In particular, the Cancer Stem Cell (CSC) biology represents an area particularly suited to be studied through multidisciplinary approaches, and modeling has significantly contributed to pinpoint the crucial aspects implicated in this theory. More generally, to acquire new insights on a biological system it is necessary to have an accurate description of the phenomenon, such that making accurate predictions on its future behaviors becomes more likely. In this context, the identification of the parameters influencing model dynamics can be advantageous to increase model accuracy and to provide hints in designing wet experiments. Different techniques, ranging from statistical methods to analytical studies, have been developed. Their applications depend on case-specific aspects, such as the availability and quality of experimental data, and the dimension of the parameter space. The study of a new model on the CSC-based tumor progression has been the motivation to design a new work-flow that helps to characterize possible system dynamics and to identify those parameters influencing such behaviors. In detail, we extended our recent model on CSC-dynamics creating a new system capable of describing tumor growth during the different stages of cancer progression. Indeed, tumor cells appear to progress through lineage stages like those of normal tissues, being their division auto-regulated by internal feedback mechanisms. These new features have introduced some non-linearities in the model, making it more difficult to be studied by solely analytical techniques. Our new work-flow, based on statistical methods, was used to identify the parameters which influence the tumor growth. The

  12. CXCL17 expression by tumor cells recruits CD11b+Gr1 high F4/80- cells and promotes tumor progression.

    Directory of Open Access Journals (Sweden)

    Aya Matsui

    Full Text Available BACKGROUND: Chemokines are involved in multiple aspects of pathogenesis and cellular trafficking in tumorigenesis. In this study, we report that the latest member of the C-X-C-type chemokines, CXCL17 (DMC/VCC-1, recruits immature myeloid-derived cells and enhances early tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: CXCL17 was preferentially expressed in some aggressive types of gastrointestinal, breast, and lung cancer cells. CXCL17 expression did not impart NIH3T3 cells with oncogenic potential in vitro, but CXCL17-expressing NIH3T3 cells could form vasculature-rich tumors in immunodeficient mice. Our data showed that CXCL17-expressing tumor cells increased immature CD11b(+Gr1(+ myeloid-derived cells at tumor sites in mice and promoted CD31(+ tumor angiogenesis. Extensive chemotactic assays proved that CXCL17-responding cells were CD11b(+Gr1(highF4/80(- cells (≈ 90% with a neutrophil-like morphology in vitro. Although CXCL17 expression could not increase the number of CD11b(+Gr1(+ cells in tumor-burdened SCID mice or promote metastases of low metastatic colon cancer cells, the existence of CXCL17-responding myeloid-derived cells caused a striking enhancement of xenograft tumor formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that aberrant expression of CXCL17 in tumor cells recruits immature myeloid-derived cells and promotes tumor progression through angiogenesis.

  13. Mechanisms of Altered Control of Proliferation by Cyclic Amp/Protein Kinase A During Mammary Tumor Progression

    National Research Council Canada - National Science Library

    Imagawa, Walter

    1999-01-01

    We hypothesize that alterations in the regulation of growth by growth factors and cAMP during mammary tumor progression are related to MAP kinase signaling pathways known to be affected by cAMP and pertussis toxin (PT...

  14. Implications of Rho GTPase signaling in glioma cell invasion and tumor progression

    Directory of Open Access Journals (Sweden)

    Shannon Patricia Fortin Ensign

    2013-10-01

    Full Text Available Glioblastoma (GB is the most malignant of primary adult brain tumors, characterized by a highly locally-invasive cell population, as well as abundant proliferative cells, neoangiogenesis, and necrosis. Clinical intervention with chemotherapy or radiation may either promote or establish an environment for manifestation of invasive behavior. Understanding the molecular drivers of invasion in the context of glioma progression may be insightful in directing new treatments for patients with GB. Here, we review current knowledge on Rho family GTPases, their aberrant regulation in GB, and their effect on GB cell invasion and tumor progression. Rho GTPases are modulators of cell migration through effects on actin cytoskeleton rearrangement; in non-neoplastic tissue, expression and activation of Rho GTPases are normally under tight regulation. In GB, Rho GTPases are deregulated, often via hyperactivity or overexpression of their activators, Rho GEFs. Downstream effectors of Rho GTPases have been shown to promote invasiveness and, importantly, glioma cell survival. The study of aberrant Rho GTPase signaling in GB is thus an important investigation of cell invasion as well as treatment resistance and disease progression.

  15. Characterizing and Targeting Bone Marrow-Derived Inflammatory Cells in Driving the Malignancy and Progression of Childhood Astrocytic Brain Tumors

    Science.gov (United States)

    2015-09-01

    described previously (21). Bioluminesence IVIS -100 (Xenogen) and MRI (Bruker Biospin) were performed to monitor the progression of tumor. Tumor margins in...Cancer Cell 2006;9:157–73. 16. Tang Z, Arjunan P, Lee C, Li Y, Kumar A, Hou X, et al. Survival effect of PDGF-CC rescues neurons from apoptosis in both

  16. Thermal ablation of intrahepatic cholangiocarcinoma: Safety, efficacy, and factors affecting local tumor progression.

    Science.gov (United States)

    Takahashi, Edwin A; Kinsman, Kristin A; Schmit, Grant D; Atwell, Thomas D; Schmitz, John J; Welch, Brian T; Callstrom, Matthew R; Geske, Jennifer R; Kurup, A Nicholas

    2018-06-04

    To evaluate the safety and oncologic efficacy of percutaneous thermal ablation of intrahepatic cholangiocarcinoma (ICC) and identify risk factors for local tumor progression (LTP). Retrospective review of an institutional tumor ablation registry demonstrated that 20 patients (9 males, 11 females; mean age 62.5 ± 15.8 years) with 50 ICCs (mean size 1.8 ± 1.3 cm) were treated with percutaneous radiofrequency ablation (RFA) or microwave ablation (MWA) between 2006 and 2015. Thirty-eight of the treated ICCs (76%) were metastases that developed after surgical resection of the primary tumor. Patient demographics, procedure technical parameters, and clinical outcomes were reviewed. A Cox proportional hazards model was used to examine the risk of LTP by ablation modality. Survival analyses were performed using the Kaplan-Meier method. Mean imaging follow-up time was 41.5 ± 42.7 months. Forty-four (88%) ICCs were treated with RFA, and 6 (12%) with MWA. Eleven (22%) cases of LTP developed in 5 (25%) patients. The median time to LTP among these 11 tumors was 7.1 months (range, 2.3-22.9 months). Risk of LTP was not significantly different for ICCs treated with MWA compared to RFA (HR 2.72; 95% CI 0.58-12.84; p = 03.21). Median disease-free survival was 8.2 months (1.1-70.4 months), and median overall survival was 23.6 months (7.4-122.5 months). No major complication occurred. Percutaneous thermal ablation is a safe and effective treatment for patients with ICCs and may be particularly valuable in unresectable patients, or those who have already undergone hepatic surgery. Tumor size and ablation modality were not associated with LTP, whereas primary tumors and superficially located tumors were more likely to subsequently recur.

  17. [Initiation, promotion, initiation experiments with radon and cigarette smoke: Lung tumors in rats]. Progress report

    International Nuclear Information System (INIS)

    Moolgavkar, S.H.

    1994-01-01

    During the past several years, the authors have made considerable progress in modeling carcinogenesis in general, and in modeling radiation carcinogenesis, in particular. They present an overview of their progress in developing stochastic carcinogenesis models and applying them to experimental and epidemiologic data sets. Traditionally, cancer models have been used for the analysis of incidence (or prevalence) data in epidemiology and time to tumor data in experimental studies. The relevant quantities for the analysis of these data are the hazard function and the probability of tumor. The derivation of these quantities is briefly described here. More recently, the authors began to use these models for the analysis of data on intermediate lesions on the pathway to cancer. Such data are available in experimental carcinogenesis studies, in particular in initiation and promotion studies on the mouse skin and the rat liver. If however, quantitative information on intermediate lesions on the pathway to lung cancer were to be come available at some future date, the methods that they have developed for the analysis of initiation-promotion experiments could easily be applied to the analysis of these lesions. The mathematical derivations here are couched in terms of a particular two-mutation model of carcinogenesis. Extension to models postulating more than two mutations is not always straightforward

  18. Loss of ERβ expression as a common step in estrogen-dependent tumor progression

    Science.gov (United States)

    Bardin, Allison; Boulle, Nathalie; Lazennec, Gwendal; Vignon, Françoise; Pujol, Pascal

    2004-01-01

    The characterization of estrogen receptor beta (ERβ) brought new insight into the mechanisms underlying estrogen signaling. Estrogen induction of cell proliferation is a crucial step in carcinogenesis of gynecologic target tissues and the mitogenic effects of estrogen in these tissues (e.g. breast, endometrium and ovary) are well documented both in vitro and in vivo. There is also an emerging body of evidence that colon and prostate cancer growth is influenced by estrogens. In all of these tissues, most studies have shown decreased ERβ expression in cancer as compared to benign tumors or normal tissues, whereas ERα expression persists. The loss of ERβ expression in cancer cells could reflect tumor cell dedifferentiation but may also represent a critical stage in estrogen-dependent tumor progression. Modulation of the expression of ERα target genes by ERβ, or ERβ specific gene induction could indicate that ERβ has a differential effect on proliferation as compared to ERα. ERβ may exert a protective effect and thus constitute a new target for hormone therapy, e.g. via ligand specific activation. The potential distinct roles of ERα and ERβ expression in carcinogenesis, as suggested by experimental and clinical data, are discussed in this review. PMID:15369453

  19. The importance of melanoma inhibitory activity gene family in the tumor progression of oral cancer.

    Science.gov (United States)

    Sasahira, Tomonori; Bosserhoff, Anja Katrin; Kirita, Tadaaki

    2018-05-01

    Oral squamous cell carcinoma has a high potential for locoregional invasion and nodal metastasis. Consequently, early detection of such malignancies is of immense importance. The melanoma inhibitory activity (MIA) gene family comprises MIA, MIA2, transport and Golgi organization protein 1 (TANGO), and otoraplin (OTOR). These members of the MIA gene family have a highly conserved Src homology 3 (SH3)-like structure. Although the molecules of this family share 34-45% amino acid homology and 47-59% cDNA sequence homology, those members, excluding OTOR, play different tumor-associated functions. MIA has a pivotal role in the progression and metastasis of melanoma; MIA2 and TANGO have been suggested to possess tumor-suppressive functions; and OTOR is uniquely expressed in cochlea of the inner ear. Therefore, the definite functions of the MIA gene family in cancer cells remain unclear. Since the members of the MIA gene family are secreted proteins, these molecules might be useful tumor markers that can be detected in the body fluids, including serum and saliva. In this review, we described the molecular biological functions of the MIA gene family in oral cancer. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  20. PTHrP drives breast tumor initiation, progression, and metastasis in mice and is a potential therapy target

    Science.gov (United States)

    Li, Jiarong; Karaplis, Andrew C.; Huang, Dao C.; Siegel, Peter M.; Camirand, Anne; Yang, Xian Fang; Muller, William J.; Kremer, Richard

    2011-01-01

    Parathyroid hormone–related protein (PTHrP) is a secreted factor expressed in almost all normal fetal and adult tissues. It is involved in a wide range of developmental and physiological processes, including serum calcium regulation. PTHrP is also associated with the progression of skeletal metastases, and its dysregulated expression in advanced cancers causes malignancy-associated hypercalcemia. Although PTHrP is frequently expressed by breast tumors and other solid cancers, its effects on tumor progression are unclear. Here, we demonstrate in mice pleiotropic involvement of PTHrP in key steps of breast cancer — it influences the initiation and progression of primary tumors and metastases. Pthrp ablation in the mammary epithelium of the PyMT-MMTV breast cancer mouse model caused a delay in primary tumor initiation, inhibited tumor progression, and reduced metastasis to distal sites. Mechanistically, it reduced expression of molecular markers of cell proliferation (Ki67) and angiogenesis (factor VIII), antiapoptotic factor Bcl-2, cell-cycle progression regulator cyclin D1, and survival factor AKT1. PTHrP also influenced expression of the adhesion factor CXCR4, and coexpression of PTHrP and CXCR4 was crucial for metastatic spread. Importantly, PTHrP-specific neutralizing antibodies slowed the progression and metastasis of human breast cancer xenografts. Our data identify what we believe to be new functions for PTHrP in several key steps of breast cancer and suggest that PTHrP may constitute a novel target for therapeutic intervention. PMID:22056386

  1. Prostaglandin production by melanocytic cells and the effect of alpha-melanocyte stimulating hormone.

    Science.gov (United States)

    Nicolaou, Anna; Estdale, Sian E; Tsatmali, Marina; Herrero, Daniel Pascual; Thody, Anthony J

    2004-07-16

    Prostaglandins are potent mediators of the inflammatory response and are also involved in cancer development. In this study, we show that human melanocytes and FM55 melanoma cells express cyclooxygenase-1 and -2 (COX-1 and -2) and thus have the capability to produce prostaglandins. The FM55 cells produced predominantly PGE2 and PGF2alpha, whereas the HaCaT keratinocyte cell line produced mainly PGE2. The anti-inflammatory peptide, alpha-melanocyte stimulating hormone (alpha-MSH), reduced prostaglandin production in FM55 and HaCaT cells and reversed the effect of the pro-inflammatory cytokine TNF-alpha in the former. These results indicate that melanocytes produce prostaglandins and that alpha-MSH, by inhibiting this response, may play an important role in regulating inflammatory responses in the skin.

  2. Postmenopausal obesity promotes tumor angiogenesis and breast cancer progression in mice.

    Science.gov (United States)

    Gu, Jian-Wei; Young, Emily; Patterson, Sharla G; Makey, Kristina L; Wells, Jeremy; Huang, Min; Tucker, Kevan B; Miele, Lucio

    2011-05-15

    Obese postmenopausal women have a 50% higher risk of breast cancer than non-obese women. There is not an animal model that mimics postmenopausal obesity related to breast cancer progression. Using age-relevant C57BL/6 mice, this study determined whether postmenopausal obesity increases VEGF expression, tumor angiogenesis, and breast tumor growth. Ovariectomy (OVX) was performed in 12 sixty week-old female mice, then followed by a low-fat (5%, LF, n=6) or a high-fat (60%, HF, n=6) diet for 12 weeks. In the eighth week of the dietary program, 10(6) E0771 (mouse breast cancer) cells were injected in the left fourth mammary gland. Tumor size was monitored for 4 weeks. Body weights were monitored weekly. At the end of the experiment, blood samples, visceral fat and tumors were collected for measuring VEGF expression using ELISA and intratumoral microvessel density (IMD) using CD31 immunochemistry. Body weight was significantly increased in OVX/HF mice, compared to OVX/LF group (55.3±1.7 vs. 41.5±1.5 g; p < 0.01). There was a two-fold increase in the ratio of visceral fat/BW in OVX/HF mice, compared to those in OVX/LF group (0.062±0.005 vs. 0.032±0.003; p < 0.01). Postmenopausal obesity significantly increased breast tumor weight over the control (4.62±0.63 vs. 1.98±0.27 g; p < 0.01) and IMD (173±3.7 vs. 139±4.3 IM#/mm^2; p < 0.01). Tumor VEGF levels were higher in OVX/HF mice, compared to OVX/LF group (73.3±3.8 vs. 49.5±4.3 pg/mg protein; p < 0.01). Plasma VEGF levels (69±7.1 vs. 48±3.5 pg/ml) and visceral fat VEGF levels (424.4±39.5 vs. 208.5±22.4 pg/mg protein) were significantly increased in OVX/HF mice, compared to OVX/LF group, respectively (n=6; p < 0.01). Interestingly, adipose tissue primary culture showed that subcutaneous fat released more VEGF, compared to visceral fat (6.77±1.14 vs. 0.94±0.16 pg/mg tissue; n=6; p < 0.01). These findings support the hypothesis that postmenopausal obesity promotes tumor angiogenesis and breast cancer

  3. Influence of tumor grade on time to progression after irradiation for localized ependymoma in children

    International Nuclear Information System (INIS)

    Merchant, Thomas E.; Jenkins, Jesse J.; Burger, Peter C.; Sanford, Robert A.; Sherwood, Scot H.; Jones-Wallace, Dana; Heideman, Richard L.; Thompson, Stephen J.; Helton, Kathleen J.; Kun, Larry E.

    2002-01-01

    Purpose: To investigate the influence of histologic grade on progression-free survival (PFS) after irradiation (RT) for pediatric patients with localized ependymoma. Methods and Materials: Fifty patients with localized ependymoma (median age 3.6 years, range 1-18 years at the time of RT) were treated with RT between December 1982 and June 1999. Anaplastic features were identified in 14 of 50 patients. The extent of resection was characterized as gross-total in 36 patients, near-total in 5, and subtotal in 9. The median dose to the primary site was 54 Gy. Of the 50 patients, 23 received pre-RT chemotherapy. Results: Thirty-nine patients were alive at a median follow-up of 46 months (range 21-214) from diagnosis. Thirty-four patients remained progression free at a median follow-up of 35 months (range 13-183) after the initiation of RT. Progression occurred in 16 patients (12 local and 4 local and distant), with a median time to failure of 21.2 months (range 4.6-65.0). The tumor grade significantly influenced the PFS after RT (p<0.0005). The estimated 3-year PFS rate was 28%±14% for patients with anaplastic ependymoma compared with 84% ± 8% for patients with differentiated ependymoma. These results remained significant when corrected for age at diagnosis (<3 years), pre-RT chemotherapy, and extent of resection. Patients who received pre-RT chemotherapy had an inferior 3-year PFS estimate after RT (49±12%) compared with those who did not (84%±10%; p=0.056). Anaplastic ependymoma was found more frequently in the supratentorial brain (p=0.002). Six of 12 patients with supratentorial tumor developed recurrence; recurrence was restricted to patients with anaplastic ependymoma. Conclusion: Tumor grade influences outcome for patients with ependymoma independent of other factors and should be considered in the design and analysis of prospective trials involving pediatric patients treated with RT. Chemotherapy before RT influences the PFS and overall survival after RT. The

  4. A PAUF-neutralizing antibody targets both carcinoma and endothelial cells to impede pancreatic tumor progression and metastasis

    International Nuclear Information System (INIS)

    Kim, Su Jin; Chang, Suhwan; Lee, Yangsoon; Kim, Na Young; Hwang, Yeonsil; Min, Hye Jin; Yoo, Kyung-Sook; Park, Eun Hye; Kim, Seokho; Chung, Young-Hwa; Park, Young Woo; Koh, Sang Seok

    2014-01-01

    Highlights: • PMAb83, a human monoclonal antibody against PAUF, impaired tumor progression in vivo. • PMAb83 attenuated aggressiveness of tumor cells and suppressed angiogenesis. • PMAb83 in combination with gemcitabine conferred improved survival of mouse model. - Abstract: Pancreatic adenocarcinoma up-regulated factor (PAUF) is expressed in pancreatic ductal adenocarcinoma (PDAC) and plays an important role in tumor progression and metastasis. Here we evaluate the anti-tumor efficacy of a human monoclonal antibody against PAUF, PMAb83, to provide a therapeutic intervention to treat the disease. PMAb83 reduced tumor growth and distant metastasis in orthotopically xenografted mice of human PDAC cells. PMAb83 treatment retarded proliferation along with weakened aggressiveness traits of the carcinoma cells. AKT/β-catenin signaling played a role in the carcinoma cell proliferation and the treated xenograft tumors exhibited reduced levels of β-catenin and cyclin D1. Moreover PMAb83 abrogated the PAUF-induced angiogenic responses of endothelial cells, reducing the density of CD31 + vessels in the treated tumors. In combination with gemcitabine, PMAb83 conferred enhanced survival of xenografted mice by about twofold compared to gemcitabine alone. Taken together, our findings show that PMAb83 treatment decreases the aggressiveness of carcinoma cells and suppresses tumor vascularization, which culminates in mitigated tumor growth and metastasis with improved survival in PDAC mouse models

  5. A PAUF-neutralizing antibody targets both carcinoma and endothelial cells to impede pancreatic tumor progression and metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Jin [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); New Drug Development Center, Osong Medical Innovation Foundation, Cheongwon, Chungbuk (Korea, Republic of); Chang, Suhwan [Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Lee, Yangsoon; Kim, Na Young; Hwang, Yeonsil; Min, Hye Jin; Yoo, Kyung-Sook; Park, Eun Hye; Kim, Seokho [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Chung, Young-Hwa [BK21-plus, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan (Korea, Republic of); Park, Young Woo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Koh, Sang Seok, E-mail: sskoh@dau.ac.kr [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Department of Biological Sciences, Dong-A University, Busan (Korea, Republic of)

    2014-11-07

    Highlights: • PMAb83, a human monoclonal antibody against PAUF, impaired tumor progression in vivo. • PMAb83 attenuated aggressiveness of tumor cells and suppressed angiogenesis. • PMAb83 in combination with gemcitabine conferred improved survival of mouse model. - Abstract: Pancreatic adenocarcinoma up-regulated factor (PAUF) is expressed in pancreatic ductal adenocarcinoma (PDAC) and plays an important role in tumor progression and metastasis. Here we evaluate the anti-tumor efficacy of a human monoclonal antibody against PAUF, PMAb83, to provide a therapeutic intervention to treat the disease. PMAb83 reduced tumor growth and distant metastasis in orthotopically xenografted mice of human PDAC cells. PMAb83 treatment retarded proliferation along with weakened aggressiveness traits of the carcinoma cells. AKT/β-catenin signaling played a role in the carcinoma cell proliferation and the treated xenograft tumors exhibited reduced levels of β-catenin and cyclin D1. Moreover PMAb83 abrogated the PAUF-induced angiogenic responses of endothelial cells, reducing the density of CD31{sup +} vessels in the treated tumors. In combination with gemcitabine, PMAb83 conferred enhanced survival of xenografted mice by about twofold compared to gemcitabine alone. Taken together, our findings show that PMAb83 treatment decreases the aggressiveness of carcinoma cells and suppresses tumor vascularization, which culminates in mitigated tumor growth and metastasis with improved survival in PDAC mouse models.

  6. Growth of melanocytes in human epidermal cell cultures

    International Nuclear Information System (INIS)

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C.

    1990-01-01

    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient

  7. Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression

    International Nuclear Information System (INIS)

    Sanità, Patrizia; Capulli, Mattia; Teti, Anna; Galatioto, Giuseppe Paradiso; Vicentini, Carlo; Chiarugi, Paola; Bologna, Mauro; Angelucci, Adriano

    2014-01-01

    correlation between stromal MCT4 and tumor MCT1 expression. Our data demonstrated that PCa progression may benefit of MCT1 expression in tumor cells and of MCT4 in tumor-associated stromal cells. Therefore, MCTs may result promising therapeutic targets in different phases of neoplastic transformation according to a strategy aimed to contrast the energy metabolic adaptation of PCa cells to stressful environments

  8. A case of melanocytic cervical adenosquamous carcinoma complicated with Cushing's syndrome.

    Science.gov (United States)

    Chen, Y; Zhang, Y; Wang, L; Yang, X

    2017-01-01

    To date, cervical carcinoma complicated with Cushing's syndrome were all diagnosed as small cell carcinoma histo- logically, but not adenosquamous carcinoma. Here the authors present the diagnosis, management, and prognosis of a case of melanocytic cervical adenosquamous carcinoma complicated with Cushing's syndrome. A 28-year-old woman was admitted with the chief complaint of post-coital bleeding for one month. Gynecological examination revealed a nodular yellowish-pigmented vegetation (6x5 cm) on the cervix. Laboratory findings proved the diagnosis of Cushing's syndrome. Histopathological diagnosis showed the adenosquamous carcinoma with melanoma differentiation. Immunohistochemical stainings for melanoma A and anti- adrenocorticotropic hormone (ACTH) were positive in the majority of the tumor cells, which indicated that this melanocytic cervical carcinoma lesion was the source of ectopic ACTH production resulting in Cushing's syndrome. This is a unique case of a rare type of cervical carcinoma.

  9. Vitiligo inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8

    Science.gov (United States)

    Toosi, Siavash; Orlow, Seth J.; Manga, Prashiela

    2012-01-01

    Vitiligo is characterized by depigmented skin patches due to loss of epidermal melanocytes. Oxidative stress may play a role in vitiligo onset, while autoimmunity contributes to disease progression. In this study we sought to identify mechanisms that link disease triggers and spreading of lesions. A hallmark of melanocytes at the periphery of vitiligo lesions is dilation of the endoplasmic reticulum (ER). We hypothesized that oxidative stress results in redox disruptions that extend to the ER, causing accumulation of misfolded peptides, which activates the unfolded protein response (UPR). We used 4-tertiary butyl phenol (4-TBP) and monobenzyl ether of hydroquinone (MBEH), known triggers of vitiligo. We show that expression of key UPR components, including the transcription factor X-box binding protein 1 (XBP1), are increased following exposure of melanocytes to phenols. XBP1 activation increases production of immune mediators interleukin-6 (IL6) and IL8. Co-treatment with XBP1 inhibitors reduced IL6 and IL8 production induced by phenols, while over-expression of XBP1 alone increased their expression. Thus, melanocytes themselves produce cytokines associated with activation of an immune response following exposure to chemical triggers of vitiligo. These results expand our understanding of the mechanisms underlying melanocyte loss in vitiligo and pathways linking environmental stressors and autoimmunity. PMID:22696056

  10. Vitiligo-inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8.

    Science.gov (United States)

    Toosi, Siavash; Orlow, Seth J; Manga, Prashiela

    2012-11-01

    Vitiligo is characterized by depigmented skin patches caused by loss of epidermal melanocytes. Oxidative stress may have a role in vitiligo onset, while autoimmunity contributes to disease progression. In this study, we sought to identify mechanisms that link disease triggers and spreading of lesions. A hallmark of melanocytes at the periphery of vitiligo lesions is dilation of the endoplasmic reticulum (ER). We hypothesized that oxidative stress results in redox disruptions that extend to the ER, causing accumulation of misfolded peptides, which activates the unfolded protein response (UPR). We used 4-tertiary butyl phenol and monobenzyl ether of hydroquinone, known triggers of vitiligo. We show that expression of key UPR components, including the transcription factor X-box-binding protein 1 (XBP1), is increased following exposure of melanocytes to phenols. XBP1 activation increases production of immune mediators IL6 and IL8. Co-treatment with XBP1 inhibitors reduced IL6 and IL8 production induced by phenols, while overexpression of XBP1 alone increased their expression. Thus, melanocytes themselves produce cytokines associated with activation of an immune response following exposure to chemical triggers of vitiligo. These results expand our understanding of the mechanisms underlying melanocyte loss in vitiligo and pathways linking environmental stressors and autoimmunity.

  11. Characterization of the expression of the pro-metastatic Mena(INV) isoform during breast tumor progression.

    Science.gov (United States)

    Oudin, Madeleine J; Hughes, Shannon K; Rohani, Nazanin; Moufarrej, Mira N; Jones, Joan G; Condeelis, John S; Lauffenburger, Douglas A; Gertler, Frank B

    2016-03-01

    Several functionally distinct isoforms of the actin regulatory Mena are produced by alternative splicing during tumor progression. Forced expression of the Mena(INV) isoform drives invasion, intravasation and metastasis. However, the abundance and distribution of endogenously expressed Mena(INV) within primary tumors during progression remain unknown, as most studies to date have only assessed relative mRNA levels from dissociated tumor samples. We have developed a Mena(INV) isoform-specific monoclonal antibody and used it to examine Mena(INV) expression patterns in mouse mammary and human breast tumors. Mena(INV) expression increases during tumor progression and to examine the relationship between Mena(INV) expression and markers for epithelial or mesenchymal status, stemness, stromal cell types and hypoxic regions. Further, while Mena(INV) robustly expressed in vascularized areas of the tumor, it is not confined to cells adjacent to blood vessels. Altogether, these data demonstrate the specificity and utility of the anti-Mena(INV)-isoform specific antibody, and provide the first description of endogenous Mena(INV) protein expression in mouse and human tumors.

  12. Regorafenib inhibits tumor progression through suppression of ERK/NF-κB activation in hepatocellular carcinoma bearing mice.

    Science.gov (United States)

    Weng, Mao-Chi; Wang, Mei-Hui; Tsai, Jai-Jen; Kuo, Yu-Cheng; Liu, Yu-Chang; Hsu, Fei-Ting; Wang, Hsin-Ell

    2018-03-13

    Regorafenib has been demonstrated in our previous study to trigger apoptosis through suppression of extracellular signal-regulated kinase (ERK)/nuclear factor-κB (NF-κB) activation in hepatocellular carcinoma (HCC) SK-Hep1 cells in vitro However, the effect of regorafenib on NF-κB-modulated tumor progression in HCC in vivo is ambiguous. The aim of the present study is to investigate the effect of regorafenib on NF-κB-modulated tumor progression in HCC bearing mouse model. pGL4.50 luciferase reporter vector transfected SK-Hep1 (SK-Hep1/ luc2 ) and Hep3B 2.1-7 tumor bearing mice were established and used for this study. Mice were treated with vehicle or regorafenib (20 mg/kg/day by gavage) for 14 days. Effects of regorafenib on tumor growth and protein expression together with toxicity of regorafenib were evaluated with digital caliper and bioluminescence imaging (BLI), ex vivo Western blotting immunohistochemistry (IHC) staining, and measurement of body weight and pathological examination of liver tissue, respectively, in SK-Hep1/ luc2 and Hep3B 2.1-7 tumor bearing mice. The results indicated regorafenib significantly reduced tumor growth and expression of phosphorylated ERK, NF-κB p65 (Ser536), phosphorylated AKT and tumor progression-associated proteins. In addition, we found regorafenib induced both extrinsic and intrinsic apoptotic pathways. Body weight and liver morphology were not affected by regorafenib treatment. Our findings present the mechanism of tumor progression inhibition by regorafenib is linked to suppression of ERK/NF-κB signaling in SK-Hep1/ luc2 and Hep3B 2.1-7 tumor-bearing mice. ©2018 The Author(s).

  13. Ethanol stimulates tumor progression and expression of vascular endothelial growth factor in chick embryos.

    Science.gov (United States)

    Gu, Jian-Wei; Bailey, Amelia Purser; Sartin, Amanda; Makey, Ian; Brady, Ann L

    2005-01-15

    The mechanisms by which alcohol consumption causes cancer have not been established due to a lack of experimental studies. A chick embryo chorioallantoic membrane (CAM) model that bore human fibrosarcoma (HT1080) was used to determine whether the administration of physiologically relevant doses of ethanol could stimulate tumor growth, angiogenesis, metastasis, and vascular endothelial growth factor (VEGF) expression in tumors. HT1080 cells were inoculated onto the "upper CAM" on Day 8, saline or ethanol was administrated at a dose of 0.25 g/kg per day on the CAM, and the tumors were harvested on Day 17. VEGF mRNA and protein were determined by Northern blot analysis and enzyme-linked immunosorbent assay. Intratumoral vascular volume density (IVVD) was determined by point counting on periodic acid-Schiff-stained sections. Intravasation of HT1080 cells was determined using human-Alu polymerase chain reaction analysis. The effects of ethanol on VEGF expression and cell proliferation were examined in cultured HT1080 cells. Ethanol treatment for 9 days caused a 2.2-fold increase in tumor volume (867 +/- 138 mm(3) vs. 402 +/- 28 mm(3)), a 2.1-fold increase in IVVD (0.021 +/- 0.004 mm(3)/mm(3) vs. 0.010 mm(3)/mm(3) +/- 0.002 mm(3)/mm(3)), and a significant increase in VEGF mRNA or protein expression in tumors compared with a group of control embryos (n = 6 embryos; P 8-fold in the intravasated HT1080 cells in the CAM group compared with the control group (n = 6 embryos; P < 0.01). Physiologically relevant levels of ethanol (10 mM and 20 mM) caused a dose-related increase in VEGF mRNA and protein expression in cultured HT1080 cells. The ethanol-HT1080-conditioned media increased the proliferation of endothelial cells, but not of HT1080 cells. The findings suggest that the induction of angiogenesis and VEGF expression by ethanol represents an important mechanism of cancer progression associated with alcoholic beverage consumption. (c) 2004 American Cancer Society.

  14. The Progress of Mitophagy and Related Pathogenic Mechanisms of the Neurodegenerative Diseases and Tumor

    Directory of Open Access Journals (Sweden)

    Ying Song

    2015-01-01

    Full Text Available Mitochondrion, an organelle with two layers of membrane, is extremely vital to eukaryotic cell. Its major functions are energy center and apoptosis censor inside cell. The intactness of mitochondrial membrane is important to maintain its structure and function. Mitophagy is one kind of autophagy. In recent years, studies of mitochondria have shown that mitophagy is regulated by various factors and is an important regulation mechanism for organisms to maintain their normal state. In addition, abnormal mitophagy is closely related to several neurodegenerative diseases and tumor. However, the related signal pathway and its regulation mechanism still remain unclear. As a result, summarizing the progress of mitophagy and its related pathogenic mechanism not only helps to reveal the complicated molecular mechanism, but also helps to find a new target to treat the related diseases.

  15. Plasma level of LDL-cholesterol at diagnosis is a predictor factor of breast tumor progression

    International Nuclear Information System (INIS)

    Rodrigues dos Santos, Catarina; Fonseca, Isabel; Dias, Sérgio; Mendes de Almeida, JC

    2014-01-01

    Among women, breast cancer (BC) is the leading cancer and the most common cause of cancer-related death between 30 and 69 years. Although lifestyle and diet are considered to have a role in global BC incidence pattern, the specific influence of dyslipidemia in BC onset and progression is not yet completely understood. Fasting lipid profile (total cholesterol, LDL-C, HDL-C, and triglycerides) was prospectively assessed in 244 women with BC who were enrolled according to pre-set inclusion criteria: diagnosis of non-hereditary invasive ductal carcinoma; selection for surgery as first treatment, and no history of treatment with lipid-lowering or anti-diabetic drugs in the previous year. Pathological and clinical follow-up data were recorded for further inclusion in the statistical analysis. Univariate associations show that BC patients with higher levels of LDL-C at diagnosis have tumors that are larger, with higher differentiation grade, higher proliferative rate (assessed by Ki67 immunostaining), are more frequently Her2-neu positive and are diagnosed in more advanced stages. Cox regression model for disease-free survival (DFS), adjusted to tumor T and N stages of TNM classification, and immunohistochemical subtypes, revealed that high LDL-C at diagnosis is associated with poor DFS. At 25 months of follow up, DFS is 12% higher in BC patients within the third LDL-C tertile compared to those in the first tertile. This is a prospective study where LDL-C levels, at diagnosis, emerge as a prognostic factor; and this parameter can be useful in the identification and follow-up of high-risk groups. Our results further support a possible role for systemic cholesterol in BC progression and show that cholesterol metabolism may be an important therapeutic target in BC patients

  16. Plasma level of LDL-cholesterol at diagnosis is a predictor factor of breast tumor progression

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues dos Santos, Catarina [Gulbenkian Programme for Advanced Medical Education, Lisbon (Portugal); Department of Surgical Oncology, Instituto Português de Oncologia de Lisboa, Francisco Gentil, Lisbon (Portugal); Faculdade de Medicina de Lisboa, Lisbon (Portugal); Fonseca, Isabel [Department of Pathology, Instituto Português de Oncologia de Lisboa, Francisco Gentil, Lisbon (Portugal); Faculdade de Medicina de Lisboa, Lisbon (Portugal); Dias, Sérgio [Instituto de Medicina Molecular, Lisbon (Portugal); Faculdade de Medicina de Lisboa, Lisbon (Portugal); Mendes de Almeida, JC [Department of Surgical Oncology, Instituto Português de Oncologia de Lisboa, Francisco Gentil, Lisbon (Portugal); Faculdade de Medicina de Lisboa, Lisbon (Portugal)

    2014-02-26

    Among women, breast cancer (BC) is the leading cancer and the most common cause of cancer-related death between 30 and 69 years. Although lifestyle and diet are considered to have a role in global BC incidence pattern, the specific influence of dyslipidemia in BC onset and progression is not yet completely understood. Fasting lipid profile (total cholesterol, LDL-C, HDL-C, and triglycerides) was prospectively assessed in 244 women with BC who were enrolled according to pre-set inclusion criteria: diagnosis of non-hereditary invasive ductal carcinoma; selection for surgery as first treatment, and no history of treatment with lipid-lowering or anti-diabetic drugs in the previous year. Pathological and clinical follow-up data were recorded for further inclusion in the statistical analysis. Univariate associations show that BC patients with higher levels of LDL-C at diagnosis have tumors that are larger, with higher differentiation grade, higher proliferative rate (assessed by Ki67 immunostaining), are more frequently Her2-neu positive and are diagnosed in more advanced stages. Cox regression model for disease-free survival (DFS), adjusted to tumor T and N stages of TNM classification, and immunohistochemical subtypes, revealed that high LDL-C at diagnosis is associated with poor DFS. At 25 months of follow up, DFS is 12% higher in BC patients within the third LDL-C tertile compared to those in the first tertile. This is a prospective study where LDL-C levels, at diagnosis, emerge as a prognostic factor; and this parameter can be useful in the identification and follow-up of high-risk groups. Our results further support a possible role for systemic cholesterol in BC progression and show that cholesterol metabolism may be an important therapeutic target in BC patients.

  17. Duct- and Acinar-Derived Pancreatic Ductal Adenocarcinomas Show Distinct Tumor Progression and Marker Expression

    Directory of Open Access Journals (Sweden)

    Rute M.M. Ferreira

    2017-10-01

    Full Text Available The cell of origin of pancreatic ductal adenocarcinoma (PDAC has been controversial. Here, we show that identical oncogenic drivers trigger PDAC originating from both ductal and acinar cells with similar histology but with distinct pathophysiology and marker expression dependent on cell of origin. Whereas acinar-derived tumors exhibited low AGR2 expression and were preceded by pancreatic intraepithelial neoplasias (PanINs, duct-derived tumors displayed high AGR2 and developed independently of a PanIN stage via non-mucinous lesions. Using orthotopic transplantation and chimera experiments, we demonstrate that PanIN-like lesions can be induced by PDAC as bystanders in adjacent healthy tissues, explaining the co-existence of mucinous and non-mucinous lesions and highlighting the need to distinguish between true precursor PanINs and PanIN-like bystander lesions. Our results suggest AGR2 as a tool to stratify PDAC according to cell of origin, highlight that not all PanIN-like lesions are precursors of PDAC, and add an alternative progression route to the current model of PDAC development.

  18. Spontaneous regression of a congenital melanocytic nevus

    Directory of Open Access Journals (Sweden)

    Amiya Kumar Nath

    2011-01-01

    Full Text Available Congenital melanocytic nevus (CMN may rarely regress which may also be associated with a halo or vitiligo. We describe a 10-year-old girl who presented with CMN on the left leg since birth, which recently started to regress spontaneously with associated depigmentation in the lesion and at a distant site. Dermoscopy performed at different sites of the regressing lesion demonstrated loss of epidermal pigments first followed by loss of dermal pigments. Histopathology and Masson-Fontana stain demonstrated lymphocytic infiltration and loss of pigment production in the regressing area. Immunohistochemistry staining (S100 and HMB-45, however, showed that nevus cells were present in the regressing areas.

  19. Neurotized congenital melanocytic nevus resembling a pigmented neurofibroma

    Directory of Open Access Journals (Sweden)

    Nidhi Singh

    2015-01-01

    Full Text Available Neurotized congenital melanocytic nevus and pigmented neurofibroma (PNF are close mimics and pose a clinicopathological challenge. We present a case of pigmented hypertrichotic plaque over lumbosacral region and discuss the differential diagnosis and its clinical, histopathological and immunohistochemistry features which may aid in differentiation. We highlight the difficulties faced in differentiating neurotized congenital melanocytic nevus from pigmented neurofibroma.

  20. Pharmacological or genetic inhibition of LDHA reverses tumor progression of pediatric osteosarcoma.

    Science.gov (United States)

    Gao, Shan; Tu, Dan-Na; Li, Heng; Jiang, Jian-Xin; Cao, Xin; You, Jin-Bin; Zhou, Xiao-Qin

    2016-07-01

    Reprogrammed energy metabolism is an emerging hallmark of cancer. Lactate dehydrogenase A (LDHA), a key enzyme involved in anaerobic glycolysis, is frequently deregulated in human malignancies. However, limited knowledge is known about its roles in the progression of osteosarcoma (OS). In this study, we found that LDHA is commonly upregulated in four OS cell lines compared with the normal osteoblast cells (hFOB1.19). Treatment with FX11, a specific inhibitor of LDHA, significantly reduced LDHA activity, and inhibited cell proliferation and invasive potential in a dose dependent manner. Genetic silencing of LDHA resulted in a decreased lactate level in the culture medium, reduced cell viability and decreased cell invasion ability. Meanwhile, silencing of LDHA also compromised tumorigenesis in vivo. Furthermore, knockdown of LDHA remarkably reduced extracellular acidification rate (ECAR) as well as glucose consumption. In the presence of 2-DG, a glycolysis inhibitor, LDHA-mediated cell proliferation and invasion were completely blocked, indicating the oncogenic activities of LDHA may dependent on Warburg effect. Finally, pharmacological inhibition of c-Myc or HIF1α significantly attenuated LDHA expression. Taken together, upregulated LDHA facilitates tumor progression of OS and might be a potential target for OS treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Secretory IgM Exacerbates Tumor Progression by Inducing Accumulations of MDSCs in Mice.

    Science.gov (United States)

    Tang, Chih-Hang Anthony; Chang, Shiun; Hashimoto, Ayumi; Chen, Yi-Ju; Kang, Chang Won; Mato, Anthony R; Del Valle, Juan R; Gabrilovich, Dmitry I; Hu, Chih-Chi Andrew

    2018-06-01

    Chronic lymphocytic leukemia (CLL) cells can secrete immunoglobulin M. However, it is not clear whether secretory IgM (sIgM) plays a role in disease progression. We crossed the Eμ-TCL1 mouse model of CLL, in which the expression of human TCL1 oncogene was driven by the V(H) promoter-Ig(H)-Eμ enhancer, with MD4 mice whose B cells produced B-cell receptor (membrane-bound IgM) and sIgM with specificity for hen egg lysozyme (HEL). CLL cells that developed in these MD4/Eμ-TCL1 mice reactivated a parental Ig gene allele and secreted IgM, and did not recognize HEL. The MD4/Eμ-TCL1 mice had reduced survival, increased myeloid-derived suppressor cells (MDSC), and decreased numbers of T cells. We tested whether sIgM could contribute to the accumulation of MDSCs by crossing μS -/- mice, which could not produce sIgM, with Eμ-TCL1 mice. The μS -/- /Eμ-TCL1 mice survived longer than Eμ-TCL1 mice and developed decreased numbers of MDSCs which were less able to suppress proliferation of T cells. We targeted the synthesis of sIgM by deleting the function of XBP-1s and showed that targeting XBP-1s genetically or pharmacologically could lead to decreased sIgM, accompanied by decreased numbers and reduced functions of MDSCs in MD4/Eμ-TCL1 mice. Additionally, MDSCs from μS -/- mice grafted with Lewis lung carcinoma were inefficient suppressors of T cells, resulting in slower tumor growth. These results demonstrate that sIgM produced by B cells can upregulate the functions of MDSCs in tumor-bearing mice to aggravate cancer progression. In a mouse model of CLL, production of secretory IgM led to more MDSCs, fewer T cells, and shorter survival times for the mice. Thus, secretory IgM may aggravate the progression of this cancer. Cancer Immunol Res; 6(6); 696-710. ©2018 AACR . ©2018 American Association for Cancer Research.

  2. Gain-of-function mutant p53 activates small GTPase Rac1 through SUMOylation to promote tumor progression.

    Science.gov (United States)

    Yue, Xuetian; Zhang, Cen; Zhao, Yuhan; Liu, Juan; Lin, Alan W; Tan, Victor M; Drake, Justin M; Liu, Lianxin; Boateng, Michael N; Li, Jun; Feng, Zhaohui; Hu, Wenwei

    2017-08-15

    Tumor suppressor p53 is frequently mutated in human cancer. Mutant p53 often promotes tumor progression through gain-of-function (GOF) mechanisms. However, the mechanisms underlying mutant p53 GOF are not well understood. In this study, we found that mutant p53 activates small GTPase Rac1 as a critical mechanism for mutant p53 GOF to promote tumor progression. Mechanistically, mutant p53 interacts with Rac1 and inhibits its interaction with SUMO-specific protease 1 (SENP1), which in turn inhibits SENP1-mediated de-SUMOylation of Rac1 to activate Rac1. Targeting Rac1 signaling by RNAi, expression of the dominant-negative Rac1 (Rac1 DN), or the specific Rac1 inhibitor NSC23766 greatly inhibits mutant p53 GOF in promoting tumor growth and metastasis. Furthermore, mutant p53 expression is associated with enhanced Rac1 activity in clinical tumor samples. These results uncover a new mechanism for Rac1 activation in tumors and, most importantly, reveal that activation of Rac1 is an unidentified and critical mechanism for mutant p53 GOF in tumorigenesis, which could be targeted for therapy in tumors containing mutant p53. © 2017 Yue et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Hypoxia-inducible factor 1 alpha expression increases during colorectal carcinogenesis and tumor progression

    International Nuclear Information System (INIS)

    Simiantonaki, Nektaria; Taxeidis, Marios; Jayasinghe, Caren; Kurzik-Dumke, Ursula; Kirkpatrick, Charles James

    2008-01-01

    Hypoxia-inducible factor 1 alpha (HIF-1α) is involved in processes promoting carcinogenesis of many tumors. However, its role in the development of colorectal cancer is unknown. To investigate the significance of HIF-1α during colorectal carcinogenesis and progression we examined its expression in precursor lesions constituting the conventional and serrated pathways, as well as in non-metastatic and metastatic adenocarcinomas. Immunohistochemistry and Western blot is used to analyse HIF-1α expression in normal colonic mucosa, hyperplastic polyps (HPP), sessile serrated adenomas (SSA), low-grade (TA-LGD) and high-grade (TA-HGD) traditional adenomas as well as in non-metastatic and metastatic colorectal adenocarcinomas. Eight colorectal carcinoma cell lines are tested for their HIF-1α inducibility after lipopolysaccharide (LPS) stimulation using western blot and immunocytochemistry. In normal mucosa, HPP and TA-LGD HIF-1α was not expressed. In contast, perinuclear protein accumulation and nuclear expression of HIF-1α were shown in half of the examined SSA and TA-HGD. In all investigated colorectal carcinomas a significant nuclear HIF-1α overexpression compared to the premalignant lesions was observed but a significant correlation with the metastatic status was not found. Nuclear HIF-1α expression was strongly accumulated in perinecrotic regions. In these cases HIF-1α activation was seen in viable cohesive tumor epithelia surrounding necrosis and in dissociated tumor cells, which subsequently die. Enhanced distribution of HIF-1α was also seen in periiflammatory regions. In additional in vitro studies, treatment of diverse colorectal carcinoma cell lines with the potent pro-inflammatory factor lipopolysaccharide (LPS) led to HIF-1α expression and nuclear translocation. We conclude that HIF-1α expression occurs in early stages of colorectal carcinogenesis and achieves a maximum in the invasive stage independent of the metastatic status. Perinecrotic

  4. Progression-free survival, post-progression survival, and tumor response as surrogate markers for overall survival in patients with extensive small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Hisao Imai

    2015-01-01

    Full Text Available Objectives: The effects of first-line chemotherapy on overall survival (OS might be confounded by subsequent therapies in patients with small cell lung cancer (SCLC. We examined whether progression-free survival (PFS, post-progression survival (PPS, and tumor response could be valid surrogate endpoints for OS after first-line chemotherapies for patients with extensive SCLC using individual-level data. Methods: Between September 2002 and November 2012, we analyzed 49 cases of patients with extensive SCLC who were treated with cisplatin and irinotecan as first-line chemotherapy. The relationships of PFS, PPS, and tumor response with OS were analyzed at the individual level. Results: Spearman rank correlation analysis and linear regression analysis showed that PPS was strongly correlated with OS (r = 0.97, p < 0.05, R 2 = 0.94, PFS was moderately correlated with OS (r = 0.58, p < 0.05, R 2 = 0.24, and tumor shrinkage was weakly correlated with OS (r = 0.37, p < 0.05, R 2 = 0.13. The best response to second-line treatment, and the number of regimens employed after progression beyond first-line chemotherapy were both significantly associated with PPS ( p ≤ 0.05. Conclusion: PPS is a potential surrogate for OS in patients with extensive SCLC. Our findings also suggest that subsequent treatment after disease progression following first-line chemotherapy may greatly influence OS.

  5. Premalignant quiescent melanocytic nevi do not express the MHC class I chain-related protein A

    Directory of Open Access Journals (Sweden)

    Mercedes B. Fuertes

    2011-08-01

    Full Text Available The MHC class I chain-related protein A (MICA is an inducible molecule almost not expressed by normal cells but strongly up-regulated in tumor cells. MICA-expressing cells are recognized by natural killer (NK cells, CD8+ aßTCR and ?dTCR T lymphocytes through the NKG2D receptor. Engagement of NKG2D by MICA triggers IFN-? secretion and cytotoxicity against malignant cells. Although most solid tumors express MICA and this molecule is a target during immune surveillance against tumors, it has been observed that high grade tumors from different histotypes express low amounts of cell surface MICA due to a metalloprotease- induced shedding. Also, melanomas develop after a complex process of neotransformation of normal melanocytes. However, the expression of MICA in premalignant stages (primary human quiescent melanocytic nevi remains unknown. Here, we assessed expression of MICA by flow cytometry using cell suspensions from 15 primary nevi isolated from 11 patients. When collected material was abundant, cell lysates were prepared and MICA expression was also analyzed by Western blot. We observed that MICA was undetectable in the 15 primary nevi (intradermic, junction, mixed, lentigo and congenital samples as well as in normal skin, benign lesions (seborrheic keratosis, premalignant lesions (actinic keratosis and benign basocellular cancer. Conversely, a primary recently diagnosed melanoma showed intense cell surface MICA. We conclude that the onset of MICA expression is a tightly regulated process that occurs after melanocytes trespass the stage of malignant transformation. Thus, analysis of MICA expression in tissue sections of skin samples may constitute a useful marker to differentiate between benign and malignant nevi.

  6. The significance of crystalline/chrysalis structures in the diagnosis of melanocytic and nonmelanocytic lesions.

    Science.gov (United States)

    Balagula, Yevgeniy; Braun, Ralph P; Rabinovitz, Harold S; Dusza, Stephen W; Scope, Alon; Liebman, Tracey N; Mordente, Ines; Siamas, Katherine; Marghoob, Ashfaq A

    2012-08-01

    Crystalline/chrysalis structures (CS) are white shiny streaks that can only be seen with polarized dermatoscopy. We sought to estimate the prevalence and assess the clinical significance of CS in melanocytic and nonmelanocytic lesions. This was a prospective observational study in which dermatoscopic assessment of lesions was recorded in consecutive patients examined during a 6-month period. In addition, a data set of biopsy-proven melanomas was retrospectively analyzed. In all, 11,225 lesions in 881 patients were prospectively examined. Retrospectively, 229 melanomas imaged with polarized dermatoscopy were analyzed. In the prospective data set, a median of 12.7 lesions (range, 1-54) were evaluated per patient. None of clinically diagnosed Clark nevi (n = 9750, 86.8%) demonstrated CS. Overall, CS were observed in 206 (1.8%) lesions, most commonly dermatofibromas and scars among nonbiopsied lesions. A total of 265 (2.4%) lesions were biopsied, including 20 melanomas and 36 nevi. Among biopsied malignant lesions, CS were most commonly observed in basal cell carcinoma (47.6%) and invasive melanomas (84.6%). Melanomas were more likely to have CS than biopsied nevi (odds ratio = 9.7, 95% confidence interval 2.7-34.1). In the retrospective data set, CS were more commonly observed among invasive melanomas (41%) compared with in situ melanomas (17%) (odds ratio = 3.4, 95% confidence interval 1.9-6.3, P < .001). The prevalence of CS correlated with increased melanoma thickness (P = .001). Biopsied lesions represent a small percentage of the total number of lesions evaluated. Among biopsied malignant lesions, CS are most commonly observed in basal cell carcinoma and invasive melanomas and rarely seen in nevi. In melanoma, CS may reflect increased tumor thickness and progression. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  7. The axon guidance molecule semaphorin 3F is a negative regulator of tumor progression and proliferation in ileal neuroendocrine tumors

    Science.gov (United States)

    Vercherat, Cécile; Blanc, Martine; Lepinasse, Florian; Gadot, Nicolas; Couderc, Christophe; Poncet, Gilles; Walter, Thomas; Joly, Marie-Odile; Hervieu, Valérie; Scoazec, Jean-Yves; Roche, Colette

    2015-01-01

    Gastro-intestinal neuroendocrine tumors (GI-NETs) are rare neoplasms, frequently metastatic, raising difficult clinical and therapeutic challenges due to a poor knowledge of their biology. As neuroendocrine cells express both epithelial and neural cell markers, we studied the possible involvement in GI-NETs of axon guidance molecules, which have been shown to decrease tumor cell proliferation and metastatic dissemination in several tumor types. We focused on the role of Semaphorin 3F (SEMA3F) in ileal NETs, one of the most frequent subtypes of GI-NETs. SEMA3F expression was detected in normal neuroendocrine cells but was lost in most of human primary tumors and all their metastases. SEMA3F loss of expression was associated with promoter gene methylation. After increasing endogenous SEMA3F levels through stable transfection, enteroendocrine cell lines STC-1 and GluTag showed a reduced proliferation rate in vitro. In two different xenograft mouse models, SEMA3F-overexpressing cells exhibited a reduced ability to form tumors and a hampered liver dissemination potential in vivo. This resulted, at least in part, from the inhibition of mTOR and MAPK signaling pathways. This study demonstrates an anti-tumoral role of SEMA3F in ileal NETs. We thus suggest that SEMA3F and/or its cellular signaling pathway could represent a target for ileal NET therapy. PMID:26447612

  8. Differentiating Tumor Progression from Pseudoprogression in Patients with Glioblastomas Using Diffusion Tensor Imaging and Dynamic Susceptibility Contrast MRI.

    Science.gov (United States)

    Wang, S; Martinez-Lage, M; Sakai, Y; Chawla, S; Kim, S G; Alonso-Basanta, M; Lustig, R A; Brem, S; Mohan, S; Wolf, R L; Desai, A; Poptani, H

    2016-01-01

    Early assessment of treatment response is critical in patients with glioblastomas. A combination of DTI and DSC perfusion imaging parameters was evaluated to distinguish glioblastomas with true progression from mixed response and pseudoprogression. Forty-one patients with glioblastomas exhibiting enhancing lesions within 6 months after completion of chemoradiation therapy were retrospectively studied. All patients underwent surgery after MR imaging and were histologically classified as having true progression (>75% tumor), mixed response (25%-75% tumor), or pseudoprogression (<25% tumor). Mean diffusivity, fractional anisotropy, linear anisotropy coefficient, planar anisotropy coefficient, spheric anisotropy coefficient, and maximum relative cerebral blood volume values were measured from the enhancing tissue. A multivariate logistic regression analysis was used to determine the best model for classification of true progression from mixed response or pseudoprogression. Significantly elevated maximum relative cerebral blood volume, fractional anisotropy, linear anisotropy coefficient, and planar anisotropy coefficient and decreased spheric anisotropy coefficient were observed in true progression compared with pseudoprogression (P < .05). There were also significant differences in maximum relative cerebral blood volume, fractional anisotropy, planar anisotropy coefficient, and spheric anisotropy coefficient measurements between mixed response and true progression groups. The best model to distinguish true progression from non-true progression (pseudoprogression and mixed) consisted of fractional anisotropy, linear anisotropy coefficient, and maximum relative cerebral blood volume, resulting in an area under the curve of 0.905. This model also differentiated true progression from mixed response with an area under the curve of 0.901. A combination of fractional anisotropy and maximum relative cerebral blood volume differentiated pseudoprogression from

  9. v-Ha-ras oncogene insertion: A model for tumor progression of human small cell lung cancer

    International Nuclear Information System (INIS)

    Mabry, M.; Nakagawa, Toshitaro; Nelkin, B.D.; McDowell, E.; Gesell, M.; Eggleston, J.C.; Casero, R.A. Jr.; Baylin, S.B.

    1988-01-01

    Small cell lung cancer (SCLC) manifests a range of phenotypes in culture that may be important in understanding its relationship to non-SCLCs and to tumor progression events in patients. Most SCLC-derived cell lines, termed classic SCLC lines, have properties similar to SCLC tumors in patients. To delineate further the relationships between these phenotypes and the molecular events involved, the authors inserted the v-Ha-ras gene in SCLC cell lines with (biochemical variant) and without (classic) an amplified c-myc gene. These two SCLC subtypes had markedly different phenotypic responses to similar levels of expression of v-Ha-ras RNA. No biochemical or morphologic changes were observed in classic SCLC cells. In contrast, in biochemical variant SCLC cells, v-Ha-ras expression induced features typical of large cell undifferentiated lung carcinoma. Expression of v-Ha-ras in biochemical variant SCLC cells directly demonstrates that important transitions can occur between phenotypes of human lung cancer cells and that these may play a critical role in tumor progression events in patients. The finding provide a model system to study molecular events involved in tumor progression steps within a series of related tumor types

  10. MUC1 enhances tumor progression and contributes toward immunosuppression in a mouse model of spontaneous pancreatic adenocarcinoma.

    Science.gov (United States)

    Tinder, Teresa L; Subramani, Durai B; Basu, Gargi D; Bradley, Judy M; Schettini, Jorge; Million, Arefayene; Skaar, Todd; Mukherjee, Pinku

    2008-09-01

    MUC1, a membrane tethered mucin glycoprotein, is overexpressed and aberrantly glycosylated in >80% of human ductal pancreatic adenocarcinoma. However, the role of MUC1 in pancreatic cancer has been elusive, partly due to the lack of an appropriate model. We report the characterization of a novel mouse model that expresses human MUC1 as a self molecule (PDA.MUC1 mice). Pancreatic tumors arise in an appropriate MUC1-tolerant background within an immune-competent host. Significant enhancement in the development of pancreatic intraepithelial preneoplastic lesions and progression to adenocarcinoma is observed in PDA.MUC1 mice, possibly due to increased proliferation. Tumors from PDA.MUC1 mice express higher levels of cyclooxygenase-2 and IDO compared with PDA mice lacking MUC1, especially during early stages of tumor development. The increased proinflammatory milieu correlates with an increased percentage of regulatory T cells and myeloid suppressor cells in the pancreatic tumor and tumor draining lymph nodes. Data shows that during pancreatic cancer progression, MUC1-mediated mechanisms enhance the onset and progression of the disease, which in turn regulate the immune responses. Thus, the mouse model is ideally suited for testing novel chemopreventive and therapeutic strategies against pancreatic cancer.

  11. MUC1 enhances tumor progression and contributes towards immunosuppression in a mouse model of spontaneous pancreatic adenocarcinoma

    Science.gov (United States)

    Tinder, Teresa L.; Subramani, Durai B.; Basu, Gargi D.; Bradley, Judy M.; Schettini, Jorge; Million, Arefayene; Skaar, Todd

    2008-01-01

    MUC1, a membrane tethered mucin glycoprotein, is overexpressed and aberrantly glycosylated in >80% of human ductal pancreatic adenocarcinoma. However, the role of MUC1 in pancreatic cancer has been elusive, partly due to the lack of an appropriate model. We report the characterization of a novel mouse model that expresses human MUC1 as a self molecule (PDA.MUC1 mice). Pancreatic tumors arise in an appropriate MUC1-tolerant background within an immune competent host. Significant enhancement in the development of pancreatic intraepithelial pre-neoplastic lesions (PanINs) and progression to adenocarcinoma is observed in PDA.MUC1 mice, possibly due to increased proliferation. Tumors from PDA.MUC1 mice express higher levels of cyclooxygenase-2 and indoleamine 2,3, dioxygenase compared to PDA mice lacking MUC1, especially during early stages of tumor development. The increased pro-inflammatory milieu correlates with an increased percentage of regulatory T cells and myeloid suppressor cells in the pancreatic tumor and tumor draining lymph nodes. Data shows that during pancreatic cancer progression, MUC1-mediated mechanisms enhance the onset and progression of the disease which in turn regulate the immune responses. Thus, the mouse model is ideally-suited for testing novel chemopreventive and therapeutic strategies against pancreatic cancer. PMID:18713982

  12. Circulating tumor cells in melanoma patients.

    Directory of Open Access Journals (Sweden)

    Gary A Clawson

    Full Text Available Circulating tumor cells (CTCs are of recognized importance for diagnosis and prognosis of cancer patients. With melanoma, most studies do not show any clear relationship between CTC levels and stage of disease. Here, CTCs were enriched (∼400X from blood of melanoma patients using a simple centrifugation device (OncoQuick, and 4 melanocyte target RNAs (TYR, MLANA, MITF, and MIF were quantified using QPCR. Approximately one-third of melanoma patients had elevated MIF and MLANA transcripts (p<0.0001 and p<0.001, respectively compared with healthy controls. In contrast, healthy controls had uniformly higher levels of TYR and MITF than melanoma patients (p<0.0001. There was a marked shift of leukocytes into the CTC-enriched fractions (a 430% increase in RNA recovery, p<0.001, and no relationship between CTC levels and stage of disease was found. CTCs were captured on microfabricated filters and cultured. Captured melanoma CTCs were large cells, and consisted of 2 subpopulations, based on immunoreactivity. One subpopulation (∼50% stained for both pan-cytokeratin (KRT markers and the common leukocyte marker CD-45, whereas the second subpopulation stained for only KRT. Since similar cells are described in many cancers, we also examined blood from colorectal and pancreatic cancer patients. We observed analogous results, with most captured CTCs staining for both CD-45/KRT markers (and for the monocyte differentiation marker CD-14. Our results suggest that immature melanocyte-related cells (expressing TYR and MITF RNA may circulate in healthy controls, although they are not readily detectable without considerable enrichment. Further, as early-stage melanomas develop, immature melanocyte migration into the blood is somehow curtailed, whereas a significant proportion of patients develop elevated CTC levels (based on MIF and MLANA RNAs. The nature of the captured CTCs is consistent with literature describing leukocyte/macrophage-tumor cell fusion hybrids

  13. A phase II trial with bevacizumab and irinotecan for patients with primary brain tumors and progression after standard therapy

    DEFF Research Database (Denmark)

    Møller, Søren; Grunnet, Kirsten; Hansen, Steinbjørn

    2012-01-01

    The combination of irinotecan and bevacizumab has shown efficacy in the treatment of recurrent glioblastoma multiforme (GBM). A prospective, phase II study of 85 patients with various recurrent brain tumors was carried out. Primary endpoints were progression free survival (PFS) and response rate....

  14. Hsp90 inhibitor 17-AAG inhibits progression of LuCaP35 xenograft prostate tumors to castration resistance.

    Science.gov (United States)

    O'Malley, Katherine J; Langmann, Gabrielle; Ai, Junkui; Ramos-Garcia, Raquel; Vessella, Robert L; Wang, Zhou

    2012-07-01

    Advanced prostate cancer is currently treated with androgen deprivation therapy (ADT). ADT initially results in tumor regression; however, all patients eventually relapse with castration-resistant prostate cancer. New approaches to delay the progression of prostate cancer to castration resistance are in desperate need. This study addresses whether targeting Heat shock protein 90 (HSP90) regulation of androgen receptor (AR) can inhibit prostate cancer progression to castration resistance. The HSP90 inhibitor 17-AAG was injected intraperitoneally into nude mice bearing LuCaP35 xenograft tumors to determine the effect of HSP90 inhibition on prostate cancer progression to castration resistance and host survival. Administration of 17-AAG maintained androgen-sensitivity, delayed the progression of LuCaP35 xenograft tumors to castration resistance, and prolonged the survival of host. In addition, 17-AAG prevented nuclear localization of endogenous AR in LuCaP35 xenograft tumors in castrated nude mice. Targeting Hsp90 or the mechanism by which HSP90 regulates androgen-independent AR nuclear localization and activation may lead to new approaches to prevent and/or treat castration-resistant prostate cancer. Copyright © 2011 Wiley Periodicals, Inc.

  15. Modeling freedom from progression for standard-risk medulloblastoma: a mathematical tumor control model with multiple modes of failure

    DEFF Research Database (Denmark)

    Brodin, Nils Patrik; Vogelius, Ivan R.; Bjørk-Eriksson, Thomas

    2013-01-01

    As pediatric medulloblastoma (MB) is a relatively rare disease, it is important to extract the maximum information from trials and cohort studies. Here, a framework was developed for modeling tumor control with multiple modes of failure and time-to-progression for standard-risk MB, using published...

  16. Transformation of a Silent Adrencorticotrophic Pituitary Tumor Into Central Nervous System Melanoma

    Directory of Open Access Journals (Sweden)

    Brandon A. Miller MD, PhD

    2013-06-01

    Full Text Available Silent adrenocorticotrophic pituitary adenomas are nonfunctioning pituitary adenomas that express adrenocorticotrophic hormone (ACTH but do not cause the clinical or laboratory features of hypercortisolemia. Primary central nervous system (CNS melanoma is well documented, but rarely originates in the sellar region or pituitary gland. Here we report transformation of an aggressive silent adrenocorticotrophic pituitary adenoma that transformed into CNS melanoma and review other presentations of pituitary melanoma. A 37-year-old woman initially presented with apoplexy and an invasive nonfunctioning pituitary macroadenoma for which she underwent transphenoidal surgery. The patient underwent 3 subsequent surgeries as the tumor continued to progress. Pathology from the first 3 operations showed pituitary adenoma or carcinoma. Pathology from the final surgery showed melanoma and the magnetic resonance imaging characteristics of the tumor had changed to become consistent with CNS melanoma. Dermatologic and ophthalmologic examinations did not identify cutaneous or ocular melanoma. The patient’s disease progressed despite aggressive surgical, medical and radiologic treatment. To our knowledge, this is the first report demonstrating transformation of a primary pituitary tumor into melanoma. The mechanism of tumor transformation is unclear, but it is possible that a mutation in the original ACTH-producing tumor lead to increased cleavage of pro-opiomelanocortin or ACTH into α-melanocyte-stimulating hormone, which in turn stimulated the expression of microopthalmia transcription factor, leading to melanocytic phenotype transformation.

  17. High CD49f expression is associated with osteosarcoma tumor progression: a study using patient-derived primary cell cultures.

    Science.gov (United States)

    Penfornis, Patrice; Cai, David Z; Harris, Michael R; Walker, Ryan; Licini, David; Fernandes, Joseph D A; Orr, Griffin; Koganti, Tejaswi; Hicks, Chindo; Induru, Spandana; Meyer, Mark S; Khokha, Rama; Barr, Jennifer; Pochampally, Radhika R

    2014-08-01

    Overall prognosis for osteosarcoma (OS) is poor despite aggressive treatment options. Limited access to primary tumors, technical challenges in processing OS tissues, and the lack of well-characterized primary cell cultures has hindered our ability to fully understand the properties of OS tumor initiation and progression. In this study, we have isolated and characterized cell cultures derived from four central high-grade human OS samples. Furthermore, we used the cell cultures to study the role of CD49f in OS progression. Recent studies have implicated CD49f in stemness and multipotency of both cancer stem cells and mesenchymal stem cells. Therefore, we investigated the role of CD49f in osteosarcomagenesis. First, single cell suspensions of tumor biopsies were subcultured and characterized for cell surface marker expression. Next, we characterized the growth and differentiation properties, sensitivity to chemotherapy drugs, and anchorage-independent growth. Xenograft assays showed that cell populations expressing CD49f(hi) /CD90(lo) cell phenotype produced an aggressive tumor. Multiple lines of evidence demonstrated that inhibiting CD49f decreased the tumor-forming ability. Furthermore, the CD49f(hi) /CD90(lo) cell population is generating more aggressive OS tumor growth and indicating this cell surface marker could be a potential candidate for the isolation of an aggressive cell type in OSs. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  18. Determinants of Local Progression After Computed Tomography-Guided Percutaneous Radiofrequency Ablation for Unresectable Lung Tumors: 9-Year Experience in a Single Institution

    International Nuclear Information System (INIS)

    Okuma, Tomohisa; Matsuoka, Toshiyuki; Yamamoto, Akira; Oyama, Yoshimasa; Hamamoto, Shinichi; Toyoshima, Masami; Nakamura, Kenji; Miki, Yukio

    2010-01-01

    The purpose of this study was to retrospectively determine the local control rate and contributing factors to local progression after computed tomography (CT)-guided radiofrequency ablation (RFA) for unresectable lung tumor. This study included 138 lung tumors in 72 patients (56 men and 16 women; age 70.0 ± 11.6 years (range 31-94); mean tumor size 2.1 ± 1.2 cm [range 0.2-9]) who underwent lung RFA between June 2000 and May 2009. Mean follow-up periods for patients and tumors were 14 and 12 months, respectively. The local progression-free rate and survival rate were calculated to determine the contributing factors to local progression. During follow-up, 44 of 138 (32%) lung tumors showed local progression. The 1-, 2-, 3-, and 5-year overall local control rates were 61, 57, 57, and 38%, respectively. The risk factors for local progression were age (≥70 years), tumor size (≥2 cm), sex (male), and no achievement of roll-off during RFA (P < 0.05). Multivariate analysis identified tumor size ≥2 cm as the only independent factor for local progression (P = 0.003). For tumors <2 cm, 17 of 68 (25%) showed local progression, and the 1-, 2-, and 3-year overall local control rates were 77, 73, and 73%, respectively. Multivariate analysis identified that age ≥70 years was an independent determinant of local progression for tumors <2 cm in diameter (P = 0.011). The present study showed that 32% of lung tumors developed local progression after CT-guided RFA. The significant risk factor for local progression after RFA for lung tumors was tumor size ≥2 cm.

  19. [Angiotensin converting enzyme: the antigenic properties of the domain, role in Alzheimer's disease and tumor progression].

    Science.gov (United States)

    Kugaevskaya, E V; Timoshenko, O S; Solovyeva, N I

    2015-01-01

    Angiotensin converting enzyme (ACE, EC 3.4.15.1) was discovered and characterized in the Laboratory of biochemistry and chemical pathology of proteins under the direction of academician V.N. Orekhovich, where its physiological function, associated with a key role in the regulation of the renin-angiotensin (RAS) and the kallikrein-kinin systems that control blood flow in the body and homeostasis was first deciphered. We carried out a search for structural differences between the two highly homologous domains (N- and C-domains) of somatic ACE (sACE); it was based on a comparative analysis of antigenic determinants (or B-epitopes) of both domains. The revealed epitopes were classified with variable and conserved regions and functionally important sites of the molecule ACE. Essential difference was demonstrated between locations of the epitopes in the N- and C-domains. These data indicate the existence of structural differences between the domains of sACE. We studied the role of the domains of ACE in the metabolism of human amyloid beta peptide (Ab) - the main component of senile plaques, found in the brains of patients with Alzheimer's disease (AD). Our results demonstrated that only N-domain ACE cleaved the Ab between residues R5-H6, while, the C-domain of ACE failed to hydrolyze this region. In addition, the effect of post-translational modifications of Ab on its hydrolysis by the ACE was investigated. We show that isomerization of residue D7, a common non-enzymatic age-related modification found in AD-associated species, does not reduce the affinity of the peptide to the N-domain of ACE, and conversely, it increases. According to our data, the role of ACE in the metabolism of Ab becomes more significant in the development of AD. RAS is involved in malignant transformation and tumor progression. RAS components, including ACE and angiotensin II receptors type 1 (AT1R) are expressed in various human tumors. We found a significant increase in the level of ACE activity

  20. Attenuated expression of HRH4 in colorectal carcinomas: a potential influence on tumor growth and progression

    International Nuclear Information System (INIS)

    Fang, Zhengyu; Wan, Jun; Yao, Wantong; Xiong, Yi; Li, Jiana; Liu, Li; Shi, Lei; Zhang, Wei; Zhang, Chao; Nie, Liping

    2011-01-01

    Earlier studies have reported the production of histamine in colorectal cancers (CRCs). The effect of histamine is largely determined locally by the histamine receptor expression pattern. Recent evidence suggests that the expression level of histamine receptor H4 (HRH4) is abnormal in colorectal cancer tissues. However, the role of HRH4 in CRC progression and its clinical relevance is not well understood. The aim of this study is to evaluate the clinical and molecular phenotypes of colorectal tumors with abnormal HRH4 expression. Immunoblotting, real-time PCR, immunofluorescence and immunohistochemistry assays were adopted to examine HRH4 expression in case-matched CRC samples (n = 107) and adjacent normal tissues (ANTs). To assess the functions of HRH4 in CRC cells, we established stable HRH4-transfected colorectal cells and examined cell proliferation, colony formation, cell cycle and apoptosis in these cells. The protein levels of HRH4 were reduced in most of the human CRC samples regardless of grade or Dukes classification. mRNA levels of HRH4 were also reduced in both early-stage and advanced CRC samples. In vitro studies showed that HRH4 over-expression caused growth arrest and induced expression of cell cycle proteins in CRC cells upon exposure to histamine through a cAMP -dependent pathway. Furthermore, HRH4 stimulation promoted the 5-Fu-induced cell apoptosis in HRH4-positive colorectal cells. The results from the current study supported previous findings of HRH4 abnormalities in CRCs. Expression levels of HRH4 could influence the histamine-mediated growth regulation in CRC cells. These findings suggested a potential role of abnormal HRH4 expression in the progression of CRCs and provided some new clues for the application of HRH4-specific agonist or antagonist in the molecular therapy of CRCs

  1. Attenuated expression of HRH4 in colorectal carcinomas: a potential influence on tumor growth and progression

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2011-05-01

    Full Text Available Abstract Background Earlier studies have reported the production of histamine in colorectal cancers (CRCs. The effect of histamine is largely determined locally by the histamine receptor expression pattern. Recent evidence suggests that the expression level of histamine receptor H4 (HRH4 is abnormal in colorectal cancer tissues. However, the role of HRH4 in CRC progression and its clinical relevance is not well understood. The aim of this study is to evaluate the clinical and molecular phenotypes of colorectal tumors with abnormal HRH4 expression. Methods Immunoblotting, real-time PCR, immunofluorescence and immunohistochemistry assays were adopted to examine HRH4 expression in case-matched CRC samples (n = 107 and adjacent normal tissues (ANTs. To assess the functions of HRH4 in CRC cells, we established stable HRH4-transfected colorectal cells and examined cell proliferation, colony formation, cell cycle and apoptosis in these cells. Results The protein levels of HRH4 were reduced in most of the human CRC samples regardless of grade or Dukes classification. mRNA levels of HRH4 were also reduced in both early-stage and advanced CRC samples. In vitro studies showed that HRH4 over-expression caused growth arrest and induced expression of cell cycle proteins in CRC cells upon exposure to histamine through a cAMP -dependent pathway. Furthermore, HRH4 stimulation promoted the 5-Fu-induced cell apoptosis in HRH4-positive colorectal cells. Conclusion The results from the current study supported previous findings of HRH4 abnormalities in CRCs. Expression levels of HRH4 could influence the histamine-mediated growth regulation in CRC cells. These findings suggested a potential role of abnormal HRH4 expression in the progression of CRCs and provided some new clues for the application of HRH4-specific agonist or antagonist in the molecular therapy of CRCs.

  2. Tumor progression: chance and necessity in Darwinian and Lamarckian somatic (mutationless) evolution.

    Science.gov (United States)

    Huang, Sui

    2012-09-01

    Current investigation of cancer progression towards increasing malignancy focuses on the molecular pathways that produce the various cancerous traits of cells. Their acquisition is explained by the somatic mutation theory: tumor progression is the result of a neo-Darwinian evolution in the tissue. Herein cells are the units of selection. Random genetic mutations permanently affecting these pathways create malignant cell phenotypes that are selected for in the disturbed tissue. However, could it be that the capacity of the genome and its gene regulatory network to generate the vast diversity of cell types during development, i.e., to produce inheritable phenotypic changes without mutations, is harnessed by tumorigenesis to propel a directional change towards malignancy? Here we take an encompassing perspective, transcending the orthodoxy of molecular carcinogenesis and review mechanisms of somatic evolution beyond the Neo-Darwinian scheme. We discuss the central concept of "cancer attractors" - the hidden stable states of gene regulatory networks normally not occupied by cells. Noise-induced transitions into such attractors provide a source for randomness (chance) and regulatory constraints (necessity) in the acquisition of novel expression profiles that can be inherited across cell divisions, and hence, can be selected for. But attractors can also be reached in response to environmental signals - thus offering the possibility for inheriting acquired traits that can also be selected for. Therefore, we face the possibility of non-genetic (mutation-independent) equivalents to both Darwinian and Lamarckian evolution which may jointly explain the arrow of change pointing toward increasing malignancy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Hemochromatosis enhances tumor progression via upregulation of intracellular iron in head and neck cancer.

    Directory of Open Access Journals (Sweden)

    Michelle Lenarduzzi

    Full Text Available Despite improvements in treatment strategies for head and neck squamous cell carcinoma (HNSCC, outcomes have not significantly improved; highlighting the importance of identifying novel therapeutic approaches to target this disease. To address this challenge, we proceeded to evaluate the role of iron in HNSCC.Expression levels of iron-related genes were evaluated in HNSCC cell lines using quantitative RT-PCR. Cellular phenotypic effects were assessed using viability (MTS, clonogenic survival, BrdU, and tumor formation assays. The prognostic significance of iron-related proteins was determined using immunohistochemistry.In a panel of HNSCC cell lines, hemochromatosis (HFE was one of the most overexpressed genes involved in iron regulation. In vitro knockdown of HFE in HNSCC cell lines significantly decreased hepcidin (HAMP expression and intracellular iron level. This in turn, resulted in a significant decrease in HNSCC cell viability, clonogenicity, DNA synthesis, and Wnt signalling. These cellular changes were reversed by re-introducing iron back into HNSCC cells after HFE knockdown, indicating that iron was mediating this phenotype. Concordantly, treating HNSCC cells with an iron chelator, ciclopirox olamine (CPX, significantly reduced viability and clonogenic survival. Finally, patients with high HFE expression experienced a reduced survival compared to patients with low HFE expression.Our data identify HFE as potentially novel prognostic marker in HNSCC that promotes tumour progression via HAMP and elevated intracellular iron levels, leading to increased cellular proliferation and tumour formation. Hence, these findings suggest that iron chelators might have a therapeutic role in HNSCC management.

  4. Expression of Axl in Lung Adenocarcinoma and Correlation with Tumor Progression

    Directory of Open Access Journals (Sweden)

    Yi-Shing Shinh

    2005-12-01

    Full Text Available We used the Transwell system to select highly invasive cell lines from minimally invasive parent cells, and we compared gene expression in paired cell lines with high and low invasive potentials. Axl was relatively overexpressed in the highly invasive cell lines when compared with their minimally invasive counterparts. However, there is only limited information about the role of Axl in cancer invasion. The biologic function of Axl in tumor invasion was investigated by overexpression of full-length Axl in minimally invasive cells and by siRNA knockdown of Axl expression in highly invasive cells. Overexpression of Axl in minimally invasive cells increased their invasiveness. siRNA reduced cell invasiveness as Axl was downregulated in highly invasive cells. We further investigated the protein expression of Axl by immunohistochemistry and its correlation with clinicopathologic features. Data from a study of 58 patient specimens showed that Axl immunoreactivity was statistically significant with respect to lymph node status (P < .0001 and the patient's clinical stage (P < .0001. Our results demonstrate that Axl protein kinase seems to play an important role in the invasion and progression of lung cancer.

  5. Imbalance of tumor necrosis factor receptors during progression in bovine leukemia virus infection

    International Nuclear Information System (INIS)

    Konnai, Satoru; Usui, Tatsufumi; Ikeda, Manabu; Kohara, Junko; Hirata, Toh-ichi; Okada, Kosuke; Ohashi, Kazuhiko; Onuma, Misao

    2005-01-01

    Previously, we found an up-regulation of tumor necrosis factor alpha (TNF)-α and an imbalance of TNF receptors in sheep experimentally infected with bovine leukemia virus (BLV). In order to investigate the different TNF-α-induced responses, in this study we examined the TNF-α-induced proliferative response and the expression levels of two distinct TNF receptors on peripheral blood mononuclear cells (PBMC) derived from BLV-uninfected cattle and BLV-infected cattle that were aleukemic (AL) or had persistent lymphocytosis (PL). The proliferative response of PBMC isolated from those cattle with PL in the presence of recombinant bovine TNF-α (rTNF-α) was significantly higher than those from AL cattle and uninfected cattle and the cells from PL cattle expressed significantly higher mRNA levels of TNF receptor type II (TNF-RII) than those from AL and BLV-uninfected cattle. No difference was found in TNF-RI mRNA levels. Most cells expressing TNF-RII in PL cattle were CD5 + or sIgM + cells and these cells showed resistance to TNF-α-induced apoptosis. Additionally, there were significant positive correlations between the changes in provirus load and TNF-RII mRNA levels, and TNF-α-induced proliferation and TNF-RII mRNA levels. These data suggest that imbalance in the expression of TNF receptors could at least in part contribute to the progression of lymphocytosis in BLV infection

  6. Intracranial melanocytic meningeal tumours and melanosis oculi: case report and literature review

    International Nuclear Information System (INIS)

    Doglietto, Francesco; Colosimo, Cesare; Lauriola, Libero; Balducci, Mario; De Bonis, Pasquale; Montano, Nicola; Zadeh, Gelareh; Maira, Giulio; Pallini, Roberto

    2012-01-01

    Melanocytic meningeal tumours are rare extra-axial neoplasms of the nervous system, with only three reported cases in the cavernous sinus. Herein we describe for the first time the association of ocular melanosis and multiple intracranial melanocytic meningeal tumours, with the presenting lesion being in the cavernous sinus. The importance of this association is discussed together with the diagnostic and therapeutic challenges of the case. A 20-year-old man presented with a left sixth cranial nerve deficit; general examination documented only congenital melanosis of the homolateral eye. MRI examination showed a space occupying lesion in the left cavernous sinus, which was followed conservatively for 2 years, until a new space occupying lesion was evident at the level of the right frontal convexity: both lesions presented with neuroradiological characteristics suggestive of melanin content. The frontal convexity lesion was removed: intraoperatively the dura was markedly and diffusely melanotic. Histological examination documented a melanocytic meningeal tumour, with a proliferative index of 3 %. The patient underwent 3D-Conformal Radiation Therapy on the lesion of the cavernous sinus (total dose 5040 cGy), with initial tumour reduction. Three years later, due to a symptomatic growth, he underwent partial removal of the lesion in the cavernous sinus. Histological examination was unchanged. He then received adjuvant Temozolomide with Low Dose Fractionated Radiation Therapy (LD-FRT). Due to further disease progression cisplatin plus fotemustine were administered, concomitant with LD-FRT: after two cycles MRI documented significant disease regression. After a period of apparent disease control, the patient presented with persistent cough and evidence of multiple thoracic metastases, which lead to his death, seven years after presentation. Intracranial melanocytic meningeal tumours are challenging lesions, both from a diagnostic and therapeutic point of view; though rare

  7. Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression.

    Science.gov (United States)

    Bae, Woom-Yee; Choi, Jae-Sun; Kim, Ja-Eun; Jeong, Joo-Won

    2015-11-01

    During tumor progression, hypoxia-inducible factor 1 (HIF-1) plays a critical role in tumor angiogenesis and tumor growth by regulating the transcription of several genes in response to a hypoxic environment and changes in growth factors. This study was designed to investigate the effects of cinnamic aldehyde (CA) on tumor growth and angiogenesis and the mechanisms underlying CA's anti-angiogenic activities. We found that CA administration inhibits tumor growth and blocks tumor angiogenesis in BALB/c mice. In addition, CA treatment decreased HIF-1α protein expression and vascular endothelial growth factor (VEGF) expression in mouse tumors and Renca cells exposed to hypoxia in vitro. Interestingly, CA treatment did not affect the stability of von Hippel-Lindau protein (pVHL)-associated HIF-1α and CA attenuated the activation of mammalian target of rapamycin (mTOR) pathway. Collectively, these findings strongly indicate that the anti-angiogenic activity of CA is, at least in part, regulated by the mTOR pathway-mediated suppression of HIF-1α protein expression and these findings suggest that CA may be a potential drug for human cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Investigation of Metastatic Breast Tumor Heterogeneity and Progression Using Dual Optical/SPECT Imaging

    National Research Council Canada - National Science Library

    Antich, Peter P; Constantinescu, Anca; Lewis, Matthew; Mason, Ralph; Richer, Edmond

    2005-01-01

    The goal of our project is to image tumor growth, metastatic development and vascular changes, both to characterize tumor dynamics during growth for application in diagnostic and prognostic imaging...

  9. Homocysteine Is an Oncometabolite in Breast Cancer, Which Promotes Tumor Progression and Metastasis

    Science.gov (United States)

    2014-09-01

    increase in breast cancer, which results in changes in gene expression in tumor cells helping the tumors to grow and metastasize. The molecular basis...in changes in gene expression in tumor cells helping the tumors to grow and metastasize. The molecular basis for the increase in the levels of this...diseases and also a pregnancy disorder known as preeclampsia . Polymorphisms in MTHFR that decrease the catalytic activity of the enzyme are common in the

  10. MicroRNA-202 inhibits tumor progression by targeting LAMA1 in esophageal squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangrui, E-mail: xiangruimengzz@163.com [Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450000, Henan Province (China); Chen, Xiaoqi [Department of Digestion and Oncology, The First Affiliated Hospital of Henan Uninversity of TCM, 19 Renmin Road, Zhengzhou 450000, Henan Province (China); Lu, Peng [Department of Gastrointestinal Surgery, The People' s Hospital of Zhengzhou, 33 Huanghe Road, Zhengzhou 450000, Henan Province (China); Ma, Wang; Yue, Dongli; Song, Lijie; Fan, Qingxia [Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450000, Henan Province (China)

    2016-05-13

    Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignancies in the gastrointestinal tract. Emerging studies have indicated that microRNAs (miRNAs) are strongly implicated in the development and progression of ESCC. Here, we focused on the function and the underlying molecular mechanism of miR-202 in ESCC. The results showed that miR-202 was significantly down-regulated in ESCC tissues and cell lines. Overexpression of miR-202 in ECa-109 and KYSE-510 cells markedly suppressed cell proliferation and cell migration, and induced cell apoptosis. Furthermore, laminin α1 (LAMA1) expression was frequently positive in ESCC tissues and inversely correlated with miR-202 expression. Then we demonstrated that miR-202 targeted 3'-untranslated region (UTR) of LAMA1 and inhibited its protein expression. Additionally, LAMA1 overexpression rescued the proliferation inhibition and cell apoptosis elevation induced by miR-202. MiR-202 also inhibited the protein expression of p-FAK and p-Akt, which were all reversed by LAMA1 overexpression. Taken together, these findings suggest that miR-202 may function as a novel tumor suppressor in ESCC by repressing cell proliferation and migration, and its biological effects may attribute the inhibition of LAMA1-mediated FAK-PI3K-Akt signaling. - Highlights: • Expression of miR-202 was decreased in ESCC tissues and cell lines. • MiR-202 overexpression inhibited ESCC cell growth and induced apoptosis. • MiR-202 directly targeted LAMA1 in ESCC. • The LAMA1-FAK-PI3K signaling mediated the suppressive role of miR-202.

  11. Hemochromatosis Enhances Tumor Progression via Upregulation of Intracellular Iron in Head and Neck Cancer

    Science.gov (United States)

    Lenarduzzi, Michelle; Hui, Angela B. Y.; Yue, Shijun; Ito, Emma; Shi, Wei; Williams, Justin; Bruce, Jeff; Sakemura-Nakatsugawa, Noriko; Xu, Wei; Schimmer, Aaron; Liu, Fei-Fei

    2013-01-01

    Introduction Despite improvements in treatment strategies for head and neck squamous cell carcinoma (HNSCC), outcomes have not significantly improved; highlighting the importance of identifying novel therapeutic approaches to target this disease. To address this challenge, we proceeded to evaluate the role of iron in HNSCC. Experimental Design Expression levels of iron-related genes were evaluated in HNSCC cell lines using quantitative RT-PCR. Cellular phenotypic effects were assessed using viability (MTS), clonogenic survival, BrdU, and tumor formation assays. The prognostic significance of iron-related proteins was determined using immunohistochemistry. Results In a panel of HNSCC cell lines, hemochromatosis (HFE) was one of the most overexpressed genes involved in iron regulation. In vitro knockdown of HFE in HNSCC cell lines significantly decreased hepcidin (HAMP) expression and intracellular iron level. This in turn, resulted in a significant decrease in HNSCC cell viability, clonogenicity, DNA synthesis, and Wnt signalling. These cellular changes were reversed by re-introducing iron back into HNSCC cells after HFE knockdown, indicating that iron was mediating this phenotype. Concordantly, treating HNSCC cells with an iron chelator, ciclopirox olamine (CPX), significantly reduced viability and clonogenic survival. Finally, patients with high HFE expression experienced a reduced survival compared to patients with low HFE expression. Conclusions Our data identify HFE as potentially novel prognostic marker in HNSCC that promotes tumour progression via HAMP and elevated intracellular iron levels, leading to increased cellular proliferation and tumour formation. Hence, these findings suggest that iron chelators might have a therapeutic role in HNSCC management. PMID:23991213

  12. Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression

    Science.gov (United States)

    2009-01-01

    Background Pulmonary metastasis continues to be the most common cause of death in osteosarcoma. Indeed, the 5-year survival for newly diagnosed osteosarcoma patients has not significantly changed in over 20 years. Further understanding of the mechanisms of metastasis and resistance for this aggressive pediatric cancer is necessary. Pet dogs naturally develop osteosarcoma providing a novel opportunity to model metastasis development and progression. Given the accelerated biology of canine osteosarcoma, we hypothesized that a direct comparison of canine and pediatric osteosarcoma expression profiles may help identify novel metastasis-associated tumor targets that have been missed through the study of the human cancer alone. Results Using parallel oligonucleotide array platforms, shared orthologues between species were identified and normalized. The osteosarcoma expression signatures could not distinguish the canine and human diseases by hierarchical clustering. Cross-species target mining identified two genes, interleukin-8 (IL-8) and solute carrier family 1 (glial high affinity glutamate transporter), member 3 (SLC1A3), which were uniformly expressed in dog but not in all pediatric osteosarcoma patient samples. Expression of these genes in an independent population of pediatric osteosarcoma patients was associated with poor outcome (p = 0.020 and p = 0.026, respectively). Validation of IL-8 and SLC1A3 protein expression in pediatric osteosarcoma tissues further supported the potential value of these novel targets. Ongoing evaluation will validate the biological significance of these targets and their associated pathways. Conclusions Collectively, these data support the strong similarities between human and canine osteosarcoma and underline the opportunities provided by a comparative oncology approach as a means to improve our understanding of cancer biology and therapies. PMID:20028558

  13. Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression

    Directory of Open Access Journals (Sweden)

    Triche Timothy

    2009-12-01

    Full Text Available Abstract Background Pulmonary metastasis continues to be the most common cause of death in osteosarcoma. Indeed, the 5-year survival for newly diagnosed osteosarcoma patients has not significantly changed in over 20 years. Further understanding of the mechanisms of metastasis and resistance for this aggressive pediatric cancer is necessary. Pet dogs naturally develop osteosarcoma providing a novel opportunity to model metastasis development and progression. Given the accelerated biology of canine osteosarcoma, we hypothesized that a direct comparison of canine and pediatric osteosarcoma expression profiles may help identify novel metastasis-associated tumor targets that have been missed through the study of the human cancer alone. Results Using parallel oligonucleotide array platforms, shared orthologues between species were identified and normalized. The osteosarcoma expression signatures could not distinguish the canine and human diseases by hierarchical clustering. Cross-species target mining identified two genes, interleukin-8 (IL-8 and solute carrier family 1 (glial high affinity glutamate transporter, member 3 (SLC1A3, which were uniformly expressed in dog but not in all pediatric osteosarcoma patient samples. Expression of these genes in an independent population of pediatric osteosarcoma patients was associated with poor outcome (p = 0.020 and p = 0.026, respectively. Validation of IL-8 and SLC1A3 protein expression in pediatric osteosarcoma tissues further supported the potential value of these novel targets. Ongoing evaluation will validate the biological significance of these targets and their associated pathways. Conclusions Collectively, these data support the strong similarities between human and canine osteosarcoma and underline the opportunities provided by a comparative oncology approach as a means to improve our understanding of cancer biology and therapies.

  14. Radiation and chemical effects on viral transformation and tumor antigen expression. Annual progress report, August 1, 1978--May 1, 1979

    International Nuclear Information System (INIS)

    Coggin, J.H. Jr.

    1979-01-01

    Studies aimed at the biological, biochemical, and immunologic characterization of fetal antigens (EA) in hamsters and mice and locating and determining the distribution of fetal antigens in tumor tissues and in developing fetuses have been underway for several months. Progress has been made in isolating embryonic or fetal antigens from fetuses and from tumor cells. We have developed and reported a reliable lymphocyte transformation assay (LTA) which meets our needs in routinely assaying cell free tumor associated antigen (TAA) preparations from fetal and tumor cells. The assay correlated with transplantation resistance assays and has appropriate specificity. We have also developed the staph-A protein binding assay utilizing anti-serum derived against embryonic antigens present on SV40 tumor cells. In other studies, we have reported increases and perturbations in thymocytes during viral and chemical oncogenesis in hamsters, have developed a simple technique for preserving functional lymphocytes sensitized against TAA by freezing for use in our model system work, have reported the cross-reactivity of tranplantation resistance antigen on a spectrum of chemically induced tumors previously believed to only contain individually specific TSTAs and have recently reported the cross-reactivity of papovavirus induced transplantation resistance antigen in sarcoma cells induced by different viruses. We have concluded our studies of glycosyltransferases in the membranes of developing fetuses and noted no differences in their levels with advancing days of gestation using whold embryo cell populations

  15. The frequency of tumor-infiltrating Tie-2-expressing monocytes in renal cell carcinoma: its relationship to angiogenesis and progression.

    Science.gov (United States)

    Ji, Jindong; Zhang, Guangbo; Sun, Bo; Yuan, Hexing; Huang, Yuhua; Zhang, Jianglei; Wei, Xuedong; Zhang, Xuefeng; Hou, Jianquan

    2013-10-01

    To examine the frequency of tumor-infiltrating Tie-2-expressing monocytes (TEMs) in renal cell carcinoma (RCC) and its association with microvessel density (MVD) and other clinical-pathologic features. This study enrolled 65 consecutive patients with RCC treated with radical nephrectomy. The frequency of tumor-infiltrating TEMs, which was defined as CD14(+) Tie-2(+) cells, was assessed using flow cytometry. MVD was measured by immunohistochemistry using anti-CD34 antibody. The association between clinicopathologic parameters, MVD, and the frequency of tumor-infiltrating TEMs in RCC was assessed. High frequency of tumor-infiltrating TEMs was significantly associated with advanced stage (P = .018), positive lymph nodes (P = .013), high grade (P = .019), and metastases (P = .006). Correlation analysis revealed that the frequency of TEMs was positively correlated with MVD. Our findings revealed a significant association between prognostic tumor features, MVD, and the frequency of tumor-infiltrating TEMs in RCC and indicated that TEMs may play an important role in angiogenesis and progression of RCC. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Myristoylation of Src kinase mediates Src-induced and high-fat diet-accelerated prostate tumor progression in mice.

    Science.gov (United States)

    Kim, Sungjin; Yang, Xiangkun; Li, Qianjin; Wu, Meng; Costyn, Leah; Beharry, Zanna; Bartlett, Michael G; Cai, Houjian

    2017-11-10

    Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Expression of neurotensin and NT1 receptor in human breast cancer: a potential role in tumor progression.

    Science.gov (United States)

    Souazé, Frédérique; Dupouy, Sandra; Viardot-Foucault, Véronique; Bruyneel, Erik; Attoub, Samir; Gespach, Christian; Gompel, Anne; Forgez, Patricia

    2006-06-15

    Emerging evidence supports neurotensin as a trophic and antiapoptotic factor, mediating its control via the high-affinity neurotensin receptor (NT1 receptor) in several human solid tumors. In a series of 51 patients with invasive ductal breast cancers, 34% of all tumors were positive for neurotensin and 91% positive for NT1 receptor. We found a coexpression of neurotensin and NT1 receptor in a large proportion (30%) of ductal breast tumors, suggesting a contribution of the neurotensinergic signaling cascade within breast cancer progression. Functionally expressed NT1 receptor, in the highly malignant MDA-MB-231 human breast cancer cell line, coordinated a series of transforming functions, including cellular migration, invasion, induction of the matrix metalloproteinase (MMP)-9 transcripts, and MMP-9 gelatinase activity. Disruption of NT1 receptor signaling by silencing RNA or use of a specific NT1 receptor antagonist, SR48692, caused the reversion of these transforming functions and tumor growth of MDA-MB-231 cells xenografted in nude mice. Our findings support the contribution of neurotensin in human breast cancer progression and point out the utility to develop therapeutic molecules targeting neurotensin or NT1 receptor signaling cascade. These strategies would increase the range of therapeutic approaches and be beneficial for specific patients.

  18. Activated Hepatic Stellate Cells Induce Tumor Progression of Neoplastic Hepatocytes in a TGF-β Dependent Fashion

    Science.gov (United States)

    MIKULA, M.; PROELL, V.; FISCHER, A.N.M.; MIKULITS, W.

    2010-01-01

    The development of hepatocellular carcinomas from malignant hepatocytes is frequently associated with intra- and peritumoral accumulation of connective tissue arising from activated hepatic stellate cells. For both tumorigenesis and hepatic fibrogenesis, transforming growth factor (TGF)-β signaling executes key roles and therefore is considered as a hallmark of these pathological events. By employing cellular transplantation we show that the interaction of neoplastic MIM-R hepatocytes with the tumor microenvironment, containing either activated hepatic stellate cells (M1-4HSCs) or myofibroblasts derived thereof (M-HTs), induces progression in malignancy. Cotransplantation of MIM-R hepatocytes with M-HTs yielded strongest MIM-R generated tumor formation accompanied by nuclear localization of Smad2/3 as well as of β-catenin. Genetic interference with TGF-β signaling by gain of antagonistic Smad7 in MIM-R hepatocytes diminished epithelial dedifferentiation and tumor progression upon interaction with M1-4HSCs or M-HTs. Further analysis showed that tumors harboring disrupted Smad signaling are devoid of nuclear β-catenin accumulation, indicating a crosstalk between TGF-β and β-catenin signaling. Together, these data demonstrate that activated HSCs and myofibroblasts directly govern hepatocarcinogenesis in a TGF-β dependent fashion by inducing autocrine TGF-β signaling and nuclear β-catenin accumulation in neoplastic hepatocytes. These results indicate that intervention with TGF-β signaling is highly promising in liver cancer therapy. PMID:16883581

  19. Global Expression Profiling and Pathway Analysis of Mouse Mammary Tumor Reveals Strain and Stage Specific Dysregulated Pathways in Breast Cancer Progression.

    Science.gov (United States)

    Mei, Yan; Yang, Jun-Ping; Lang, Yan-Hong; Peng, Li-Xia; Yang, Ming-Ming; Liu, Qin; Meng, Dong-Fang; Zheng, Li-Sheng; Qiang, Yuan-Yuan; Xu, Liang; Li, Chang-Zhi; Wei, Wen-Wen; Niu, Ting; Peng, Xing-Si; Yang, Qin; Lin, Fen; Hu, Hao; Xu, Hong-Fa; Huang, Bi-Jun; Wang, Li-Jing; Qian, Chao-Nan

    2018-05-01

    It is believed that the alteration of tissue microenvironment would affect cancer initiation and progression. However, little is known in terms of the underlying molecular mechanisms that would affect the initiation and progression of breast cancer. In the present study, we use two murine mammary tumor models with different speeds of tumor initiation and progression for whole genome expression profiling to reveal the involved genes and signaling pathways. The pathways regulating PI3K-Akt signaling and Ras signaling were activated in Fvb mice and promoted tumor progression. Contrastingly, the pathways regulating apoptosis and cellular senescence were activated in Fvb.B6 mice and suppressed tumor progression. We identified distinct patterns of oncogenic pathways activation at different stages of breast cancer, and uncovered five oncogenic pathways that were activated in both human and mouse breast cancers. The genes and pathways discovered in our study would be useful information for other researchers and drug development.

  20. Repression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL but not its receptors during oral cancer progression

    Directory of Open Access Journals (Sweden)

    Muller Susan

    2007-06-01

    Full Text Available Abstract Background TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5 and two decoy (DcR1, and DcR2 receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM, oral premalignancies (OPM, and primary and metastatic oral squamous cell carcinomas (OSCC in order to characterize the changes in their expression patterns during OSCC initiation and progression. Methods DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. Results Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. Conclusion Loss of TRAIL expression is an early event during oral

  1. Repression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not its receptors during oral cancer progression

    International Nuclear Information System (INIS)

    Vigneswaran, Nadarajah; Baucum, Darryl C; Wu, Jean; Lou, Yahuan; Bouquot, Jerry; Muller, Susan; Zacharias, Wolfgang

    2007-01-01

    TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5) and two decoy (DcR1, and DcR2) receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM), oral premalignancies (OPM), and primary and metastatic oral squamous cell carcinomas (OSCC) in order to characterize the changes in their expression patterns during OSCC initiation and progression. DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL) in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. Loss of TRAIL expression is an early event during oral carcinogenesis and may be involved in dysregulation of apoptosis and

  2. Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Kun Li

    Full Text Available The development of natural product agents with targeted strategies holds promise for enhanced anticancer therapy with reduced drug-associated side effects. Resveratrol found in red wine, has anticancer activity in various tumor types. We reported earlier on a new molecular target of resveratrol, the metastasis-associated protein 1 (MTA1, which is a part of nucleosome remodeling and deacetylation (NuRD co-repressor complex that mediates gene silencing. We identified resveratrol as a regulator of MTA1/NuRD complex and re-activator of p53 acetylation in prostate cancer (PCa. In the current study, we addressed whether resveratrol analogues also possess the ability to inhibit MTA1 and to reverse p53 deacetylation. We demonstrated that pterostilbene (PTER, found in blueberries, had greater increase in MTA1-mediated p53 acetylation, confirming superior potency over resveratrol as dietary epigenetic agent. In orthotopic PCa xenografts, resveratrol and PTER significantly inhibited tumor growth, progression, local invasion and spontaneous metastasis. Furthermore, MTA1-knockdown sensitized cells to these agents resulting in additional reduction of tumor progression and metastasis. The reduction was dependent on MTA1 signaling showing increased p53 acetylation, higher apoptotic index and less angiogenesis in vivo in all xenografts treated with the compounds, and particularly with PTER. Altogether, our results indicate MTA1 as a major contributor in prostate tumor malignant progression, and support the use of strategies targeting MTA1. Our strong pre-clinical data indicate PTER as a potent, selective and pharmacologically safe natural product that may be tested in advanced PCa.

  3. Usefulness of confocal microscopy in distinguishing between basal cell carcinoma and intradermal melanocytic nevus on the face.

    Science.gov (United States)

    Gamo, R; Floristan, U; Pampín, A; Caro, D; Pinedo, F; López-Estebaranz, J L

    2015-10-01

    The clinical distinction between basal cell carcinoma (BCC) and intradermal melanocytic nevus lesions on the face can be difficult, particularly in young patients or patients with multiple nevi. Dermoscopy is a useful tool for analyzing characteristic dermoscopic features of BCC, such as cartwheel structures, maple leaf-like areas, blue-gray nests and dots, and ulceration. It also reveals arborizing telangiectatic vessels and prominent curved vessels, which are typical of BCC, and comma vessels, which are typical of intradermal melanocytic nevi. It is, however, not always easy to distinguish between these 2 conditions, even when dermoscopy is used. We describe 2 facial lesions that posed a clinical and dermoscopic challenge in two 38-year-old patients; confocal microscopy showed separation between tumor nests and stroma and polarized nuclei, which are confocal microscopy features of basal cell carcinoma. Copyright © 2014 Elsevier España, S.L.U. y AEDV. All rights reserved.

  4. Modeling Freedom From Progression for Standard-Risk Medulloblastoma: A Mathematical Tumor Control Model With Multiple Modes of Failure

    International Nuclear Information System (INIS)

    Brodin, N. Patrik; Vogelius, Ivan R.; Björk-Eriksson, Thomas; Munck af Rosenschöld, Per; Bentzen, Søren M.

    2013-01-01

    Purpose: As pediatric medulloblastoma (MB) is a relatively rare disease, it is important to extract the maximum information from trials and cohort studies. Here, a framework was developed for modeling tumor control with multiple modes of failure and time-to-progression for standard-risk MB, using published pattern of failure data. Methods and Materials: Outcome data for standard-risk MB published after 1990 with pattern of relapse information were used to fit a tumor control dose-response model addressing failures in both the high-dose boost volume and the elective craniospinal volume. Estimates of 5-year event-free survival from 2 large randomized MB trials were used to model the time-to-progression distribution. Uncertainty in freedom from progression (FFP) was estimated by Monte Carlo sampling over the statistical uncertainty in input data. Results: The estimated 5-year FFP (95% confidence intervals [CI]) for craniospinal doses of 15, 18, 24, and 36 Gy while maintaining 54 Gy to the posterior fossa was 77% (95% CI, 70%-81%), 78% (95% CI, 73%-81%), 79% (95% CI, 76%-82%), and 80% (95% CI, 77%-84%) respectively. The uncertainty in FFP was considerably larger for craniospinal doses below 18 Gy, reflecting the lack of data in the lower dose range. Conclusions: Estimates of tumor control and time-to-progression for standard-risk MB provides a data-driven setting for hypothesis generation or power calculations for prospective trials, taking the uncertainties into account. The presented methods can also be applied to incorporate further risk-stratification for example based on molecular biomarkers, when the necessary data become available

  5. Proton irradiation augments the reduction in tumor progression observed with advanced age

    Data.gov (United States)

    National Aeronautics and Space Administration — Proton irradiation is touted for its improved tumor targeting due to the physical advantages of ion beams for radiotherapy. Recent studies from our laboratory have...

  6. Age and Space Irradiation Modulate Tumor Progression: Implications for Carcinogenesis Risk

    Data.gov (United States)

    National Aeronautics and Space Administration — Age plays a major role in tumor incidence and is an important consideration when modeling the carcinogenesis process or estimating cancer risks. Epidemiological data...

  7. Palbociclib Isethionate in Treating Younger Patients With Recurrent, Progressive, or Refractory Central Nervous System Tumors

    Science.gov (United States)

    2017-09-27

    Childhood Choroid Plexus Tumor; Childhood Ependymoblastoma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Recurrent Childhood Anaplastic Astrocytoma; Recurrent Childhood Anaplastic Oligoastrocytoma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Giant Cell Glioblastoma; Recurrent Childhood Glioblastoma; Recurrent Childhood Gliomatosis Cerebri; Recurrent Childhood Gliosarcoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor

  8. Melanogenesis in dermal melanocytes of Japanese Silky chicken embryos.

    Science.gov (United States)

    Ortolani-Machado, C F; Freitas, P F; Faraco, C D

    2009-08-01

    The Japanese Silky chicken (SK) shows dermal and visceral hyperpigmentation. This study characterizes ultrastructurally the melanin granules developing in dermal melanocytes of the dorsal skin of SK, in an attempt to better understand the processes of melanogenesis in these permanently ectopic cells. The steps of melanogenesis are similar to those described for epidermal melanocytes, with melanosomes going from stage I to IV but, in SK, the maturation occurs in the cell body, as well as in the cytoplasmic processes. At stage III, the deposition of melanin is cumulative and can aggregate in rounded structures, which combine to turn into the mature granule. The final destiny of mature melanosomes is still unclear, although it was observed that dermal macrophages can accumulate melanin granules in their phagosomes. Even with the close proximity between melanocytes and other dermal cells, the transference of melanosomes was not observed. Our findings indicate that melanogenesis in dermal melanocytes in SK has the same morphological characteristics found in epidermal melanocytes, but the functional aspect still remains to be elucidated.

  9. Hesperetin induces melanin production in adult human epidermal melanocytes.

    Science.gov (United States)

    Usach, Iris; Taléns-Visconti, Raquel; Magraner-Pardo, Lorena; Peris, José-Esteban

    2015-06-01

    One of the major sources of flavonoids for humans are citrus fruits, hesperidin being the predominant flavonoid. Hesperetin (HSP), the aglycon of hesperidin, has been reported to provide health benefits such as antioxidant, anti-inflammatory and anticarcinogenic effects. However, the effect of HSP on skin pigmentation is not clear. Some authors have found that HSP induces melanogenesis in murine B16-F10 melanoma cells, which, if extrapolated to in vivo conditions, might protect skin against photodamage. Since the effect of HSP on normal melanocytes could be different to that observed on melanoma cells, the described effect of HSP on murine melanoma cells has been compared to the effect obtained using normal human melanocytes. HSP concentrations of 25 and 50 µM induced melanin synthesis and tyrosinase activity in human melanocytes in a concentration-dependent manner. Compared to control melanocytes, 25 µM HSP increased melanin production and tyrosinase activity 1.4-fold (p melanin production in human melanocyte cultures could be reproduced on human skin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Macroscopy predicts tumor progression in gastric cancer: A retrospective patho-historical analysis based on Napoleon Bonaparte's autopsy report.

    Science.gov (United States)

    Dawson, Heather; Novotny, Alexander; Becker, Karen; Reim, Daniel; Langer, Rupert; Gullo, Irene; Svrcek, Magali; Niess, Jan H; Tutuian, Radu; Truninger, Kaspar; Diamantis, Ioannis; Blank, Annika; Zlobec, Inti; Riddell, Robert H; Carneiro, Fatima; Fléjou, Jean-François; Genta, Robert M; Lugli, Alessandro

    2016-11-01

    The cause of Napoleon Bonaparte's death remains controversial. Originally suggested to be gastric cancer, whether this was truly neoplastic or a benign lesion has been recently debated. To interpret findings of original autopsy reports in light of the current knowledge of gastric cancer and to highlight the significance of accurate macroscopy in modern-day medicine. Using original autopsy documents, endoscopic images and data from current literature, Napoleon's gastric situation was reconstructed. In a multicenter collection of 2071 gastric cancer specimens, the relationship between tumor size and features of tumor progression was assessed. Greater tumor size was associated with advanced pT, nodal metastases and Borrmann types 3-4 (pNapoleon's autopsy with present-day knowledge to support gastric cancer as his terminal illness and emphasizes the role of macroscopy, which may provide valuable information on gastric cancer progression and aid patient management. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  11. Comparative cytogenetic characterization of primary canine melanocytic lesions using array CGH and fluorescence in situ hybridization.

    Science.gov (United States)

    Poorman, Kelsey; Borst, Luke; Moroff, Scott; Roy, Siddharth; Labelle, Philippe; Motsinger-Reif, Alison; Breen, Matthew

    2015-06-01

    Melanocytic lesions originating from the oral mucosa or cutaneous epithelium are common in the general dog population, with up to 100,000 diagnoses each year in the USA. Oral melanoma is the most frequent canine neoplasm of the oral cavity, exhibiting a highly aggressive course. Cutaneous melanocytomas occur frequently, but rarely develop into a malignant form. Despite the differential prognosis, it has been assumed that subtypes of melanocytic lesions represent the same disease. To address the relative paucity of information about their genomic status, molecular cytogenetic analysis was performed on the three recognized subtypes of canine melanocytic lesions. Using array comparative genomic hybridization (aCGH) analysis, highly aberrant distinct copy number status across the tumor genome for both of the malignant melanoma subtypes was revealed. The most frequent aberrations included gain of dog chromosome (CFA) 13 and 17 and loss of CFA 22. Melanocytomas possessed fewer genome wide aberrations, yet showed a recurrent gain of CFA 20q15.3-17. A distinctive copy number profile, evident only in oral melanomas, displayed a sigmoidal pattern of copy number loss followed immediately by a gain, around CFA 30q14. Moreover, when assessed by fluorescence in situ hybridization (FISH), copy number aberrations of targeted genes, such as gain of c-MYC (80 % of cases) and loss of CDKN2A (68 % of cases), were observed. This study suggests that in concordance with what is known for human melanomas, canine melanomas of the oral mucosa and cutaneous epithelium are discrete and initiated by different molecular pathways.

  12. The homeoprotein DLX3 and tumor suppressor p53 co-regulate cell cycle progression and squamous tumor growth.

    Science.gov (United States)

    Palazzo, E; Kellett, M; Cataisson, C; Gormley, A; Bible, P W; Pietroni, V; Radoja, N; Hwang, J; Blumenberg, M; Yuspa, S H; Morasso, M I

    2016-06-16

    Epidermal homeostasis depends on the coordinated control of keratinocyte cell cycle. Differentiation and the alteration of this balance can result in neoplastic development. Here we report on a novel DLX3-dependent network that constrains epidermal hyperplasia and squamous tumorigenesis. By integrating genetic and transcriptomic approaches, we demonstrate that DLX3 operates through a p53-regulated network. DLX3 and p53 physically interact on the p21 promoter to enhance p21 expression. Elevating DLX3 in keratinocytes produces a G1-S blockade associated with p53 signature transcriptional profiles. In contrast, DLX3 loss promotes a mitogenic phenotype associated with constitutive activation of ERK. DLX3 expression is lost in human skin cancers and is extinguished during progression of experimentally induced mouse squamous cell carcinoma (SCC). Reinstatement of DLX3 function is sufficient to attenuate the migration of SCC cells, leading to decreased wound closure. Our data establish the DLX3-p53 interplay as a major regulatory axis in epidermal differentiation and suggest that DLX3 is a modulator of skin carcinogenesis.

  13. Hypoxia-Induced Signaling Promotes Prostate Cancer Progression: Exosomes Role as Messenger of Hypoxic Response in Tumor Microenvironment

    Science.gov (United States)

    Deep, Gagan; Panigrahi, Gati K.

    2017-01-01

    Prostate cancer (PCA) is the leading malignancy in men and the second leading cause of cancer-related deaths. Hypoxia (low O2 condition) is considered an early event in prostate carcinogenesis associated with an aggressive phenotype. In fact, clinically, hypoxia and hypoxia-related biomarkers are associated with treatment failure and disease progression. Hypoxia-inducible factor 1 (HIF-1) is the key factor that is activated under hypoxia, and mediates adaptation of cells to hypoxic conditions through regulating the expression of genes associated with angiogenesis, epithelial-to-mesenchymal transition (EMT), metastasis, survival, proliferation, metabolism, stemness, hormone-refractory progression, and therapeutic resistance. Besides HIF-1, several other signaling pathways including PI3K/Akt/mTOR, NADPH oxidase (NOX), Wnt/β-catenin, and Hedgehog are activated in cancer cells under hypoxic conditions, and also contribute in hypoxia-induced biological effects in HIF-1-dependent and -independent manners. Hypoxic cancer cells cause extensive changes in the tumor microenvironment both local and distant, and recent studies have provided ample evidence supporting the crucial role of nanosized vesicles “exosomes” in mediating hypoxia-induced tumor microenvironment remodeling. Exosomes’ role has been reported in hypoxia-induced angiogenesis, stemness, activation of cancer-associated fibroblasts (CAFs), and EMT. Together, existing literature suggests that hypoxia plays a predominant role in PCA growth and progression, and PCA could be effectively prevented and treated via targeting hypoxia/hypoxia-related signaling pathways. PMID:27279239

  14. Molecular cytogenetics of cutaneous melanocytic lesions - diagnostic, prognostic and therapeutic aspects.

    NARCIS (Netherlands)

    Blokx, W.A.M.; Dijk, M.C.R.F. van; Ruiter, D.J.

    2010-01-01

    This review intends to update current knowledge regarding molecular cytogenetics in melanocytic tumours with a focus on cutaneous melanocytic lesions. Advantages and limitations of diverse, already established methods, such as (fluorescence) in situ hybridization and mutation analysis, to detect

  15. Molecular cytogenetics of cutaneous melanocytic lesions - diagnostic, prognostic and therapeutic aspects

    NARCIS (Netherlands)

    Blokx, Willeke Am M.; van Dijk, Marcory C. R. F.; Ruiter, Dirk J.

    This review intends to update current knowledge regarding molecular cytogenetics in melanocytic tumours with a focus on cutaneous melanocytic lesions. Advantages and limitations of diverse, already established methods, such as (fluorescence) in situ hybridization and mutation analysis, to detect

  16. Autocrine IL-6 mediates pituitary tumor senescence

    Science.gov (United States)

    Fuertes, Mariana; Ajler, Pablo; Carrizo, Guillermo; Cervio, Andrés; Sevlever, Gustavo; Stalla, Günter K.; Arzt, Eduardo

    2017-01-01

    Cellular senescence is a stable proliferative arrest state. Pituitary adenomas are frequent and mostly benign, but the mechanism for this remains unknown. IL-6 is involved in pituitary tumor progression and is produced by the tumoral cells. In a cell autonomous fashion, IL-6 participates in oncogene-induced senescence in transduced human melanocytes. Here we prove that autocrine IL-6 participates in pituitary tumor senescence. Endogenous IL-6 inhibition in somatotroph MtT/S shRNA stable clones results in decreased SA-β-gal activity and p16INK4a but increased pRb, proliferation and invasion. Nude mice injected with IL-6 silenced clones develop tumors contrary to MtT/S wild type that do not, demonstrating that clones that escape senescence are capable of becoming tumorigenic. When endogenous IL-6 is silenced, cell cultures derived from positive SA-β-gal human tumor samples decrease the expression of the senescence marker. Our results establish that IL-6 contributes to maintain senescence by its autocrine action, providing a natural model of IL-6 mediated benign adenoma senescence. PMID:27902467

  17. Mutations in TGFbeta-RII and BAX mediate tumor progression in the later stages of colorectal cancer with microsatellite instability

    International Nuclear Information System (INIS)

    Yashiro, Masakazu; Hirakawa, Kosei; Boland, C Richard

    2010-01-01

    Microsatellite instability (MSI) occurs in 15% of colorectal cancers (CRC). The genetic targets for mutation in the MSI phenotype include somatic mutations in the transforming growth factor beta receptor typeII (TGFbetaRII), BAX, hMSH3 and hMSH6. It is not clear how mutations of these genes mediate tumor progression in the MSI pathway, and the temporal sequence of these mutations remains uncertain. In this study, early stage CRCs were examined for frameshift mutations in these target genes, and compared with late stage tumors and CRC cell lines. We investigated 6 CRC cell lines and 71 sporadic CRCs, including 61 early stage cancers and 10 late stage cancers. Mutations of repetitive mononucleotide tracts in the coding regions of TGFbetaRII, BAX, hMSH3, hMSH6, IGFIIR and Fas antigen were identified by direct sequencing. Thirteen (18.3%) of 71 CRC, including 9/61 (14.7%) early stage cancers and 4/10 (40%) late stage cancers, were identified as MSI and analyzed for frameshift mutations. No mutation in the target genes was observed in any of the 9 early stage MSI CRCs. In contrast, frameshift mutations of TGFbetaRII, BAX, hMSH3 and hMSH6 were present in 3/4 late stage MSI tumors. There is a statistical association (p = 0.014) between mutation in any one gene and tumor stage. TGFbetaRII, BAX, hMSH3 and hMSH6 mutations are relatively late events in the genesis of MSI CRCs. The frameshift mutations in these target genes might mediate progression from early to late stage cancer, rather than mediating the adenoma to carcinoma transition

  18. Kinetic and biochemical studies on tumor growth. Comprehensive progress report, October 1, 1967--April 1, 1975

    International Nuclear Information System (INIS)

    Dethlefsen, L.A.

    1975-01-01

    The growth kinetics of four lines of the C3H mammary tumor have been studied by standard autoradiographic procedures in combination with volumetric growth curve analysis. Thus, such parameters as volumetric doubling time, mean cell generation time, growth fraction, and cell loss have been measured. Two of these lines (Slow and S102F) are currently being used for studying hormone responsiveness both in vivo and in vitro and the perturbed kinetics following insults with therapeutic agents. The respective values for the above parameters are: Slow; 21.0 days, 34 hours, 0.20, 9 percent per day, and S102F; 2.5 days, 17 hours, 0.60, 27 percent per day. A direct method ( 125 I-IUdR Method) for measuring cell loss has also been developed. This method consists of injecting mice with 125 I-IUdR and then measuring the loss of 125 I-activity from the tumor. The antigenic status of these tumors has been studied as one possible factor underlying the different growth kinetics. The mouse's immunological system was either suppressed (thymectomy and whole-body x-irradiation) or stimulated (previous exposure to tumor cells) and the percent takes, latent period, and growth rates measured. There was no evidence for a strong antigenic factor in any of these tumors. Hydroxyurea is being used as a tool for studying the perturbed cellular kinetics of the duodenum and the Slow and S102F tumors. The methods used are autoradiography, volumetric growth curve analysis, and measurements of the rates of DNA synthesis. Hormone effects on growth have been studied. Insulin had no effect but large doses of corticosterone (20 μg/ml and greater) were inhibitory and prolactin appeared to partially reverse these effects in the Slow line. (U.S.)

  19. Neuroblastoma cells undergo transcriptomic alterations upon dissemination into the bone marrow and subsequent tumor progression.

    Science.gov (United States)

    Rifatbegovic, Fikret; Frech, Christian; Abbasi, M Reza; Taschner-Mandl, Sabine; Weiss, Tamara; Schmidt, Wolfgang M; Schmidt, Iris; Ladenstein, Ruth; Ambros, Inge M; Ambros, Peter F

    2018-01-15

    Neuroblastoma is the most common extracranial solid tumor in childhood. The vast majority of metastatic (M) stage patients present with disseminated tumor cells (DTCs) in the bone marrow (BM) at diagnosis and relapse. Although these cells represent a major obstacle in the treatment of neuroblastoma patients, insights into their expression profile remained elusive. The present RNA-Seq study of stage 4/M primary tumors, enriched BM-derived diagnostic and relapse DTCs, as well as the corresponding BM-derived mononuclear cells (MNCs) from 53 patients revealed 322 differentially expressed genes in DTCs as compared to the tumors (q 2). Particularly, the levels of transcripts encoded by mitochondrial DNA were elevated in DTCs, whereas, for example, genes involved in angiogenesis were downregulated. Furthermore, 224 genes were highly expressed in DTCs and only slightly, if at all, in MNCs (q  6). Interestingly, we found the transcriptome of relapse DTCs largely resembling those of diagnostic DTCs with only 113 differentially expressed genes under relaxed cut-offs (q 0.5). Notably, relapse DTCs showed a positional enrichment of 31 downregulated genes on chromosome 19, including five tumor suppressor genes: SIRT6, BBC3/PUMA, STK11, CADM4 and GLTSCR2. This first RNA-Seq analysis of neuroblastoma DTCs revealed their unique expression profile in comparison to the tumors and MNCs, and less pronounced differences between diagnostic and relapse DTCs. The latter preferentially affected downregulation of genes encoded by chromosome 19. As these alterations might be associated with treatment failure and disease relapse, further functional studies on DTCs should be considered. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  20. The progress of tumor gene-radiotherapy induced by Egr-1 promoter

    International Nuclear Information System (INIS)

    Guo Rui; Li Biao

    2010-01-01

    The promoter of early growth response gene-1 (Egr-1) is a cis-acting element of Egr-1, and its activity is regulated by inducers such as ionizing radiation, free radical. In designated gene-radiotherapy system, radiation combined with therapeutic gene (such as tumor necrosis factor-α gene, suicide gene) can spatially and temporally regulate therapeutic gene expression in the irradiated field, produced a marked effect, while little systemic toxicities were observed. The combination of radiotherapy and gene therapy is promising in tumor therapy. (authors)

  1. Progress toward overcoming hypoxia-induced resistance to solid tumor therapy

    International Nuclear Information System (INIS)

    Karakashev, Sergey V; Reginato, Mauricio J

    2015-01-01

    Hypoxic tumors are associated with poor clinical outcome for multiple types of human cancer. This may be due, in part, to hypoxic cancer cells being resistant to anticancer therapy, including radiation therapy, chemotherapy, and targeted therapy. Hypoxia inducible factor 1, a major regulator of cellular response to hypoxia, regulates the expression of genes that are involved in multiple aspects of cancer biology, including cell survival, proliferation, metabolism, invasion, and angiogenesis. Here, we review multiple pathways regulated by hypoxia/hypoxia inducible factor 1 in cancer cells and discuss the latest advancements in overcoming hypoxia-mediated tumor resistance

  2. Progress and problems of diagnostic imaging, (1). Computed tomography of mediastinal tumor

    Energy Technology Data Exchange (ETDEWEB)

    Narimatsu, A.; Hachiya, J. (Tokyo Women' s Medical Coll. (Japan))

    1982-02-01

    The advantages and problems of CT in the diagnosis of mediastinal lesions were described. CT is very effective for the diagnosis of these lesions. It is sensitive in visualization of the mediastinal lymph nodes which are difficult to detect by roentgenography. It is also most suitable for the screening of myasthenia gravis. CT values of tumors permit the qualitative diagnosis of lipoma and mediastinal lipoidosis to some extent. However, histological diagnoses cannot be made on the basis of the difference in the CT values of the soft tissue, nor is differentiation between benign and malignant tumors possible.

  3. Rapid progression of mediastinal tumor within a few days: A case report of T cell lymphoblastic lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Tae Ran; Lee, Young Kyung; Jun, Hyun Jung; Jung, Eun Ah; Son, Jin Sung [Seoul Medical Center, Seoul (Korea, Republic of)

    2016-05-15

    T-cell lymphoblastic lymphoma is a highly aggressive tumor derived from lymphocyte of the thymus, which accounts for 2% of non-Hodgkin's lymphoma. The disease occurs most commonly in adolescent and young adult males. It often results in respiratory emergency because of high proliferation rate. In this case, we confirmed the rapid progression of T-cell lymphoblastic lymphoma through the chest CT scan with one week interval. Three days of empirical chemotherapy resulted in substantial reduction of mediastinal mass, pleural thickening and pleural effusion.

  4. High-definition optical coherence tomography imaging of melanocytic lesions

    DEFF Research Database (Denmark)

    Boone, Marc A L M; Norrenberg, Sarah; Jemec, Gregor B E

    2014-01-01

    and cytologic features of melanocytic lesions. All lesions were examined by one observer clinically and using dermoscopy. Cross-sectional HD-OCT images were compared with histopathology. En face HD-OCT images were compared with reflectance confocal microscopy (RCM). Twenty-six melanocytic lesions of 26 patients...... with sufficient resolution and penetration depth to discriminate architectural patterns and cytologic features of pigmented cells in epidermis and dermis. The method appears to offer the possibility of additional three-dimensional structural information complementary to that of RCM, albeit at a slightly lower...

  5. Linc00210 drives Wnt/β-catenin signaling activation and liver tumor progression through CTNNBIP1-dependent manner.

    Science.gov (United States)

    Fu, Xiaomin; Zhu, Xiaoyan; Qin, Fujun; Zhang, Yong; Lin, Jizhen; Ding, Yuechao; Yang, Zihe; Shang, Yiman; Wang, Li; Zhang, Qinxian; Gao, Quanli

    2018-03-14

    Liver tumor initiating cells (TICs) have self-renewal and differentiation properties, accounting for tumor initiation, metastasis and drug resistance. Long noncoding RNAs are involved in many physiological and pathological processes, including tumorigenesis. DNA copy number alterations (CNA) participate in tumor formation and progression, while the CNA of lncRNAs and their roles are largely unknown. LncRNA CNA was determined by microarray analyses, realtime PCR and DNA FISH. Liver TICs were enriched by surface marker CD133 and oncosphere formation. TIC self-renewal was analyzed by oncosphere formation, tumor initiation and propagation. CRISPRi and ASO were used for lncRNA loss of function. RNA pulldown, western blot and double FISH were used to identify the interaction between lncRNA and CTNNBIP1. Using transcriptome microarray analysis, we identified a frequently amplified long noncoding RNA in liver cancer termed linc00210, which was highly expressed in liver cancer and liver TICs. Linc00210 copy number gain is associated with its high expression in liver cancer and liver TICs. Linc00210 promoted self-renewal and tumor initiating capacity of liver TICs through Wnt/β-catenin signaling. Linc00210 interacted with CTNNBIP1 and blocked its inhibitory role in Wnt/β-catenin activation. Linc00210 silencing cells showed enhanced interaction of β-catenin and CTNNBIP1, and impaired interaction of β-catenin and TCF/LEF components. We also confirmed linc00210 copy number gain using primary hepatocellular carcinoma (HCC) samples, and found the correlation between linc00210 CNA and Wnt/β-catenin activation. Of interest, linc00210, CTNNBIP1 and Wnt/β-catenin signaling targeting can efficiently inhibit tumor growth and progression, and liver TIC propagation. With copy-number gain in liver TICs, linc00210 is highly expressed along with liver tumorigenesis. Linc00210 drives the self-renewal and propagation of liver TICs through activating Wnt/β-catenin signaling. Linc00210

  6. The epidermal melanocyte system in individuals of Scandinavian origin, determined by DOPA-staining and TEM

    DEFF Research Database (Denmark)

    Drzewiecki, K T; Piltz-Drzewiecka, J

    1979-01-01

    The quantitative evaluation of DOPA-positive epidermal melanocytes in 16 patients of Scandinavian origin showed both individual and regional differences in the melanocyte count. Our data is in agreement with other published studies. The distribution in the number of melanocytes varies significant...

  7. A Tissue Engineering Approach to Study the Progression of Breast Tumor Metastasis in Bone

    National Research Council Canada - National Science Library

    Che, Mingxin; Nie, Daotai

    2005-01-01

    Most patients dying of breast cancer suffer painful bone metastasis. It is our hypothesis that the invasive growth and progression of breast metastatic lesions in bone requires the participation of various constituents from "soil...

  8. A Tissue Engineering Approach to Study the Progression of Breast Tumor Metastasis in Bone

    National Research Council Canada - National Science Library

    Che, Mingxin; Nie, Daotai

    2006-01-01

    Most patients dying of breast cancer suffer painful bone metastasis. It is our hypothesis that the invasive growth and progression of breast metastatic lesions in bone requires the participation of various constituents from "soil...

  9. Focal degeneration of basal cells and the resultant auto-immunoreactions: a novel mechanism for prostate tumor progression and invasion.

    Science.gov (United States)

    Man, Yan-Gao; Gardner, William A

    2008-01-01

    The development of human prostate cancer is believed to be a multistep process, progressing sequentially from normal, to hyperplasia, to prostatic intraepithelial neoplasia (PIN), and to invasive and metastatic lesions. High grade PIN has been generally considered as the direct precursor of invasive lesions, and the progression of PIN is believed to be triggered primarily, if not solely, by the overproduction of proteolytic enzymes predominately by cancer cells, which result in the degradation of the basement membrane. These theories, however, are hard to reconcile with two main facts: (1) only about 30% untreated PIN progress to invasive stage, while none of the current approaches could accurately identify the specific PIN or individuals at greater risk for progression, and (2) results from recent world-wide clinical trials with a wide variety of proteolytic enzyme inhibitors have been very disappointing, casting doubt on the validity of the proteolytic enzyme theory. Since over 90% of prostate cancer-related deaths result from invasion-related illness and the incidence of PIN could be up to 16.5-25% in routine or ultrasound guided prostate biopsy, there is an urgent need to uncover the intrinsic mechanism of prostate tumor invasion. Promoted by the facts that the basal cell population is the source of several tumor suppressors and the absence of the basal cell layer is the most distinct feature of invasive lesions, our recent studies have intended to identify the early alterations of basal cell layers and their impact on tumor invasion using multidisciplinary approaches. Our studies revealed that a subset of pre-invasive tumors contained focal disruptions (the absence of basal cells resulting in a gap greater than the combined size of at least three epithelial cells) in surrounding basal cell layers. Compared to their non-disrupted counterparts, focally disrupted basal cell layers had several unique features: (1) significantly lower proliferation; (2

  10. A pesquisa com a fosfoetanolamina sintética como inibidor da progressão de tumores

    Directory of Open Access Journals (Sweden)

    Natália Aparecida Oliveira Caetano

    2017-11-01

    Full Text Available Introdução: A fosfoetanolamina sintética (FS, conhecida como pílula do câncer, foi apresentada como promissora do tratamento de tumores. Essa substância tem seu mecanismo de ação voltado para as membranas celulares pela transdução de sinais e metabolismo de lipídeos que resultam na indução da apoptose. Objetivo: O presente trabalho avaliou os artigos da literatura que relacionam o uso da substância fosfoetanolamina sintética (FS como inibidor da progressão e disseminação de células tumorais no Brasil. Buscou-se também descrever os possíveis mecanismos associados com a ação da molécula para tratamento de tumores. Método: O trabalho é uma revisão bibliográfica, narrativa, exploratória e integrativa, nas bases de dados Biblioteca Virtual de Saúde, Google acadêmico, Pubmed e Scientific Electronic Library Online (SciELO. Critérios de inclusão: artigos completos disponíveis na literatura nacional e internacional, com palavras FS e tumores. Resultados: A partir de resultados de busca com 65 artigos, foram selecionados 19 artigos. Após análises das fontes de informações acima, foram selecionados os artigos que descreveram os efeitos da fosfoetanolamina sintética e os possíveis mecanismos associados com a ação da FS para tratamento de tumores. Conclusão: A fosfoetanolamina é um composto lipídico em elevada concentração em tumores, associada com elevada taxa de apoptose. Pesquisas préclínicas buscam validar a utilização da FS para tratamento tumoral. Até o presente não há dados que comprovem a eficácia da FS em neoplasias. Estudos clínicos relacionados ao uso da FS em tumores são essenciais para validação do uso da FS. Em abril de 2017, A FS não mostrou eficácia clínica em ensaios preliminares e os testes clínicos foram suspensos pela ANVISA.

  11. FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castration-resistant prostate cancer.

    Science.gov (United States)

    Gerhardt, Josefine; Montani, Matteo; Wild, Peter; Beer, Marc; Huber, Fabian; Hermanns, Thomas; Müntener, Michael; Kristiansen, Glen

    2012-02-01

    Forkhead box protein A1 (FOXA1) modulates the transactivation of steroid hormone receptors and thus may influence tumor growth and hormone responsiveness in prostate cancer. We therefore investigated the correlation of FOXA1 expression with clinical parameters, prostate-specific antigen (PSA) relapse-free survival, and hormone receptor expression in a large cohort of prostate cancer patients at different disease stages. FOXA1 expression did not differ significantly between benign glands from the peripheral zone and primary peripheral zone prostate carcinomas. However, FOXA1 was overexpressed in metastases and particularly in castration-resistant cases, but was expressed at lower levels in both normal and neoplastic transitional zone tissues. FOXA1 levels correlated with higher pT stages and Gleason scores, as well as with androgen (AR) and estrogen receptor expression. Moreover, FOXA1 overexpression was associated with faster biochemical disease progression, which was pronounced in patients with low AR levels. Finally, siRNA-based knockdown of FOXA1 induced decreased cell proliferation and migration. Moreover, in vitro tumorigenicity was inducible by ARs only in the presence of FOXA1, substantiating a functional cooperation between FOXA1 and AR. In conclusion, FOXA1 expression is associated with tumor progression, dedifferentiation of prostate cancer cells, and poorer prognosis, as well as with cellular proliferation and migration and with AR signaling. These findings suggest FOXA1 overexpression as a novel mechanism inducing castration resistance in prostate cancer. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Verapamil inhibits tumor progression of chemotherapy-resistant pancreatic cancer side population cells

    Science.gov (United States)

    ZHAO, LU; ZHAO, YUE; SCHWARZ, BETTINA; MYSLIWIETZ, JOSEF; HARTIG, ROLAND; CAMAJ, PETER; BAO, QI; JAUCH, KARL-WALTER; GUBA, MAKUS; ELLWART, JOACHIM WALTER; NELSON, PETER JON; BRUNS, CHRISTIANE JOSEPHINE

    2016-01-01

    Tumor side population (SP) cells display stem-like properties that can be modulated by treatment with the calcium channel blocker verapamil. Verapamil can enhance the cytotoxic effects of chemotherapeutic drugs and multi-drug resistance by targeting the transport function of the P-glycoprotein (P-gp). This study focused on the therapeutic potential of verapamil on stem-like SP tumor cells, and further investigated its chemosensitizing effects using L3.6pl and AsPC-1 pancreatic carcinoma models. As compared to parental L3.6pl cells (0.9±0.22%), L3.6pl gemcitabine-resistant cells (L3.6plGres) showed a significantly higher percentage of SP cells (5.38±0.99%) as detected by Hoechst 33342/FACS assays. The L3.6plGres SP cells showed stable gemcitabine resistance, enhanced colony formation ability and increased tumorigenicity. Verapamil effectively inhibited L3.6plGres and AsPC-1 SP cell proliferation in vitro. A pro-apoptotic effect of verapamil was observed in L3.6pl cells, but not in L3.6plGres cells, which was linked to their differential expression of P-gp and equilibrative nucleoside transporter-1 (ENT-1). In an orthotopic pancreatic cancer mouse model, both low and high dose verapamil was shown to substantially reduce L3.6plGres-SP cell tumor growth and metastasis, enhance tumor apoptosis, and reduce microvascular density. PMID:27177126

  13. Homocysteine Is an Oncometabolite in Breast Cancer, Which Promotes Tumor Progression and Metastasis

    Science.gov (United States)

    2017-01-01

    is silenced through DNA methylation and as a result the levels of the oncometabolite homocysteine are elevated in tumors; (2) Investigate whether...NUMBER (include area code) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 7 Table of Contents Page 1. Introduction ... Introduction There were five tasks proposed for this reporting period in the approved Statement of Work. TASK 1: Generation of MMTV-HRAS/Mthfr

  14. Advances in Wilms Tumor Treatment and Biology: Progress Through International Collaboration.

    Science.gov (United States)

    Dome, Jeffrey S; Graf, Norbert; Geller, James I; Fernandez, Conrad V; Mullen, Elizabeth A; Spreafico, Filippo; Van den Heuvel-Eibrink, Marry; Pritchard-Jones, Kathy

    2015-09-20

    Clinical trials in Wilms tumor (WT) have resulted in overall survival rates of greater than 90%. This achievement is especially remarkable because improvements in disease-specific survival have occurred concurrently with a reduction of therapy for large patient subgroups. However, the outcomes for certain patient subgroups, including those with unfavorable histologic and molecular features, bilateral disease, and recurrent disease, remain well below the benchmark survival rate of 90%. Therapy for WT has been advanced in part by an increasingly complex risk-stratification system based on patient age; tumor stage, histology, and volume; response to chemotherapy; and loss of heterozygosity at chromosomes 1p and 16q. A consequence of this system has been the apportionment of patients into such small subgroups that only collaboration between large international WT study groups will support clinical trials that are sufficiently powered to answer challenging questions that move the field forward. This article gives an overview of the Children's Oncology Group and International Society of Pediatric Oncology approaches to WT and focuses on four subgroups (stage IV, initially inoperable, bilateral, and relapsed WT) for which international collaboration is pressing. In addition, biologic insights resulting from collaborative laboratory research are discussed. A coordinated expansion of international collaboration in both clinical trials and laboratory science will provide real opportunity to improve the treatment and outcomes for children with renal tumors on a global level. © 2015 by American Society of Clinical Oncology.

  15. Receptor for activated protein kinase C 1 suppresses gastric tumor progression through nuclear factor-kB pathway.

    Science.gov (United States)

    Yong-Zheng, X; Wan-Li, M; Ji-Ming, M; Xue-Qun, R

    2015-12-01

    Nuclear factor-kB (NF-kB) activity is crucial for survival and proliferation of many kinds of malignancies, including gastric cancer (GC). The receptor for activated protein kinase C 1 (RACK1) is known to regulate tumor development, whereas the underlined mechanism has not been described clearly. We analyzed expression of RACK1 in paired human GC samples by both real-time polymerase chain reaction (PCR) and western blot. Effects of RACK inhibition with small interfering RNA or its overexpression in cultured GC cell lines were evaluated in cell viabilities. NF-kB signaling was investigated using luciferase reporter assay and real-time PCR. RACK1 was significantly decreased in GC samples. Knockdown of RACK elevated GC cell viabilities, whereas overexpression of RACK1 suppressed tumorigenesis of GC cells. Importantly, NF-kB signaling was enhanced after RACK1 expression was inhibited, suggesting the negative regulation of the pro-oncogenic NF-kB activity by RACK1 might contribute to its tumor suppressor role in GC cells. Our results support that RACK1 suppresses gastric tumor progression through the NF-kB signaling pathway.

  16. IB-11PSEUDO-PROGRESSION (PsdPg) IS A HARBINGER OF A MORE EFFECTIVE ANTI-TUMOR RESPONSE

    Science.gov (United States)

    Sturla, Lisa; Donahue, John; Machan, Jason; Delamonte, Suzanne; Jeyapalan, Suriya

    2014-01-01

    BACKGROUND: PsdPg is the increased contrast enhancement, high choline/creatine ratio and increased perfusion observed in the residual tumor bed of high-grade glioma patients after completion of temozolomide/radiation. It resolves within 3-6 months and incidence ranges from 10 - 31%. Though correlated with longer patient survival, its pathological basis is unclear. We used a cytokine/chemokine focused approach to compare the tumor microenvironment in pre- and post-treatment tumor tissue from patients with PsdPg to patients with true progression (TP). METHODS: We obtained pre-treatment formalin fixed paraffin embedded (FFPE) tissue from 35 GBM patients and post-treatment FFPE tissue from five patients with PsdPg and TP. A quantitative PCR array and custom Quantigene 2.0 multiplex was used to quantify gene expression corresponding to major cytokines/chemokines. An 18-gene signature was used to determine the macrophage polarization score (cumulative M2-associated cytokine expression - cumulative M1-associated cytokine expression). Immunohistochemistry (IHC) was used to confirm significantly different targets at the protein level. RESULTS: IHC revealed 7-fold higher B-cell infiltration in TP patients as compared to patients with PsdPg (p = 0.003). Macrophage and T-cell infiltration were not significantly different between the two groups. Nevertheless, the cytokines associated with macrophage polarization indicated pro-tumorigenic (M2) polarization in TP patients while PsdPg patients exhibited classical anti-tumorigenic (M1) polarization. TP patients had a 10-fold higher M2 score (p = 0.03) compared to PsdPg patients. The M1 score of tissue from PsdPg patients post-treatment was 25-fold higher than their pre-treatment tissue (p = 0.01). Analysis of a 7-gene signature associated with natural killer (NK) cell recruitment and activation showed a 8-fold higher expression in pre-treatment tissue from PsdPg patients compared to TP patients (p = 0.009) suggesting that NK cells

  17. Inhibition of prostate cancer osteoblastic progression with VEGF121/rGel, a single agent targeting osteoblasts, osteoclasts, and tumor neovasculature

    Science.gov (United States)

    Mohamedali, Khalid A.; Li, Zhi Gang; Starbuck, Michael W.; Wan, Xinhai; Yang, Jun; Kim, Sehoon; Zhang, Wendy; Rosenblum, Michael G.; Navone, Nora M.

    2011-01-01

    Purpose A hallmark of prostate cancer (PCa) progression is the development of osteoblastic bone metastases, which respond poorly to available therapies. We previously reported that VEGF121/rGel targets osteoclast precursors and tumor neovasculature. Here we tested the hypothesis that targeting non-tumor cells expressing these receptors can inhibit tumor progression in a clinically relevant model of osteoblastic PCa. Experimental Design Cells from MDA PCa 118b, a PCa xenograft obtained from a bone metastasis in a patient with castrate-resistant PCa, were injected into the femurs of mice. Osteoblastic progression was monitored following systemic administration of VEGF121/rGel. Results VEGF121/rGel was cytotoxic in vitro to osteoblast precursor cells. This cytotoxicity was specific as VEGF121/rGel internalization into osteoblasts was VEGF121 receptor driven. Furthermore, VEGF121/rGel significantly inhibited PCa-induced bone formation in a mouse calvaria culture assay. In vivo, VEGF121/rGel significantly inhibited the osteoblastic progression of PCa cells in the femurs of nude mice. Microcomputed tomography analysis revealed that VEGF121/rGel restored the bone volume fraction of tumor-bearing femurs to values similar to those of the contralateral (non–tumor bearing) femurs. VEGF121/rGel significantly reduced the number of tumor-associated osteoclasts but did not change the numbers of peritumoral osteoblasts. Importantly, VEGF121/rGel-treated mice had significantly less tumor burden than control mice. Our results thus indicate that VEGF121/rGel inhibits osteoblastic tumor progression by targeting angiogenesis, osteoclastogenesis, and bone formation. Conclusions Targeting VEGFR-1 – or VEGFR-2–expressing cells is effective in controlling the osteoblastic progression of PCa in bone. These findings provide the basis for an effective multitargeted approach for metastatic PCa. PMID:21343372

  18. Comprehensive modulation of tumor progression and regression with periodic fasting and refeeding circles via boosting IGFBP-3 loops and NK responses.

    Science.gov (United States)

    Chen, Xiancheng; Lin, Xiaojuan; Li, Meng

    2012-10-01

    Progressive tumor-bearing patients deserve to benefit from more realistic approaches. Here, a study revealed the impact of modified periodic fasting and refeeding regimen on tumor progression or regression with little or no loss of food intake and body weight. Human A549 lung, HepG-2 liver, and SKOV-3 ovary progressive tumor-bearing mice were established and subjected to 4 wk of periodic fasting/refeeding cycles (PFRC), including periodic 1-d fasting/6-d refeeding weekly (protocol 1) and periodic 2-d fasting/5-d refeeding weekly (P2DF/5DR, protocol 2), with ad libitum (AL)-fed hosts as controls. Afterwards, PFRC groups exhibited tumor growth arrest with some tendency towards regression; especially, complete regression of progressive tumors and metastases comprised between 43.75 and 56.25% of tumor-challenged hosts in P2DF/5DR group (P fasting/6-d refeeding weekly groups survived a 4-month study period vs. only 31.25-37.5% in AL control group. Immunological assays and Luminex microarray revealed that tumor growth remission is mainly via natural killer cell (NK) reactivity and cross-regulation of IGF-binding protein-3, IGF/IGF-receptor, and megakaryocyte growth and development factor autocrine and paracrine loops. In vivo cellular and humoral assays indicated that tumor-regressive induction by PFRC protocols could be partly terminated by NK cell and IGF-binding protein-3 blockade or replenishment of IGF-I/-II and megakaryocyte growth and development factor. These findings offer a better understanding of comprehensive modulation of periodic fasting/refeeding strategy on the balance between tumor progression and regression.

  19. Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization.

    Science.gov (United States)

    Tsunoda, Satoshi; Nakamura, Toshiyuki; Sakurai, Hiroaki; Saiki, Ikuo

    2007-04-01

    Fibroblast growth factor (FGF)-2 has been considered to play a critical role in neovascularization in several tumors; however, its precise role in tumor progression is not fully understood. In the present study, we have characterized the role of FGF-2 in B16-BL6 mouse melanoma cells, focusing on effects during the initial phase of tumor growth. FGF-2 was injected at the tumor inoculation site of dorsal skin during the initial phase. FGF-2 induced marked tumor growth and lymph node metastasis. This was well correlated with an increase in neovascularization in the host stroma. FGF-2 also recruited inflammatory and mesenchymal cells in host stroma. Marked tumor growth, pulmonary metastasis and intensive neovascularization in tumor parenchyma were also observed after a single injection of FGF-2 into the footpad inoculation site. In contrast, repeated injections of FGF-2 at a site remote from the footpad tumor were ineffective in promoting tumor growth and metastasis. These promoting activities of FGF-2 were blocked by local injections of a glucocorticoid hormone, suggesting that host inflammatory responses induced by FGF-2 are associated with FGF-2-induced tumor progression. In addition, although FGF-2 did not promote cellular proliferation and vascular endothelial growth factor A (VEGFA) mRNA expression in B16-BL6 cells in vitro, FGF-2 induced VEGFA expression in host stroma rather than tumor tissue, and local injections of a neutralizing antibody against VEGFA inhibited these activities of FGF-2 in vivo. These results indicate that abundant FGF-2 during the initial phase of tumor growth induces VEGFA-dependent intensive neovascularization in host stroma, and supports marked tumor growth and metastasis.

  20. Everolimus in advanced, progressive, well-differentiated, non-functional neuroendocrine tumors: RADIANT-4 lung subgroup analysis.

    Science.gov (United States)

    Fazio, Nicola; Buzzoni, Roberto; Delle Fave, Gianfranco; Tesselaar, Margot E; Wolin, Edward; Van Cutsem, Eric; Tomassetti, Paola; Strosberg, Jonathan; Voi, Maurizio; Bubuteishvili-Pacaud, Lida; Ridolfi, Antonia; Herbst, Fabian; Tomasek, Jiri; Singh, Simron; Pavel, Marianne; Kulke, Matthew H; Valle, Juan W; Yao, James C

    2018-01-01

    In the phase III RADIANT-4 study, everolimus improved median progression-free survival (PFS) by 7.1 months in patients with advanced, progressive, well-differentiated (grade 1 or grade 2), non-functional lung or gastrointestinal neuroendocrine tumors (NETs) vs placebo (hazard ratio, 0.48; 95% confidence interval [CI], 0.35-0.67; P < .00001). This exploratory analysis reports the outcomes of the subgroup of patients with lung NETs. In RADIANT-4, patients were randomized (2:1) to everolimus 10 mg/d or placebo, both with best supportive care. This is a post hoc analysis of the lung subgroup with PFS, by central radiology review, as the primary endpoint; secondary endpoints included objective response rate and safety measures. Ninety of the 302 patients enrolled in the study had primary lung NET (everolimus, n = 63; placebo, n = 27). Median PFS (95% CI) by central review was 9.2 (6.8-10.9) months in the everolimus arm vs 3.6 (1.9-5.1) months in the placebo arm (hazard ratio, 0.50; 95% CI, 0.28-0.88). More patients who received everolimus (58%) experienced tumor shrinkage compared with placebo (13%). Most frequently reported (≥5% incidence) grade 3-4 drug-related adverse events (everolimus vs. placebo) included stomatitis (11% vs. 0%), hyperglycemia (10% vs. 0%), and any infections (8% vs. 0%). In patients with advanced, progressive, well-differentiated, non-functional lung NET, treatment with everolimus was associated with a median PFS improvement of 5.6 months, with a safety profile similar to that of the overall RADIANT-4 cohort. These results support the use of everolimus in patients with advanced, non-functional lung NET. The trial is registered with ClinicalTrials.gov (no. NCT01524783). © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  1. Ultraviolet B irradiation induces expansion of intraepithelial tumor cells in a tissue model of early cancer progression.

    Science.gov (United States)

    Mudgil, Adarsh V; Segal, Nadav; Andriani, Frank; Wang, Youai; Fusenig, Norbert E; Garlick, Jonathan A

    2003-07-01

    Ultraviolet B irradiation is thought to enable skin cancer progression as clones of genetically damaged keratinocytes escape apoptosis and expand at the expense of adjacent normal cells. Mechanisms through which potentially malignant cells in human skin undergo clonal expansion, however, are not well understood. The goal of this study was to characterize the role of ultraviolet B irradiation on the intraepithelial expansion of early stage human tumor cells in organotypic skin cultures. To accomplish this, we have studied the effect of ultraviolet B irradiation on organotypic cultures that were fabricated by mixing normal human keratinocytes with beta-galactosidase-marked, intraepithelial tumor cells (HaCaT-ras, clone II-4), which bear mutations in both p53 alleles and harbor an activated H-ras oncogene. We found that when organotypic mixtures were exposed to an ultraviolet B dose of 50 mJ per cm2, intraepithelial tumor cells underwent a significant degree of proliferative expansion compared to nonirradiated cultures. To understand this response, organotypic cultures of nor-mal keratinocytes were exposed to ultraviolet B and showed a dose-dependent increase in numbers of sunburn cells and TUNEL-positive cells although their proliferation was suppressed. In contrast, neither the apoptotic nor the proliferative response of II-4 cells was altered by ultraviolet B in organotypic cultures. The differential response of these cell types suggested that II-4 cells were resistant to ultraviolet-B-induced alterations, which allowed these intraepithelial tumor cells to gain a selective growth and survival advantage relative to neighboring normal cells. These findings demonstrate that ultraviolet B exposure can induce the intraepithelial expansion of apoptosis-resistant, p53-mutant, and ras-activated keratinocytes, suggesting that this agent can act to promote the early stages of epithelial carcinogenesis.

  2. EMMPRIN/CD147 up-regulates urokinase-type plasminogen activator: implications in oral tumor progression

    Directory of Open Access Journals (Sweden)

    Lescaille Géraldine

    2012-03-01

    Full Text Available Abstract Backgrounds An elevated level of EMMPRIN in cancer tissues have been correlated with tumor invasion in numerous cancers including oral cavity and larynx. Although EMMPRIN's effect has been generally attributed to its MMP inducing activity, we have previously demonstrated in breast cancer model that EMMPRIN can also enhance invasion by upregulating uPA. In this study, the role of EMMPRIN in regulating uPA and invasion was investigated in oral squamous cell carcinoma (OSCC progression. Methods Precancerous and invasive oral tumoral tissues were used as well as the corresponding cell lines, DOK and SCC-9 respectively. The paracrine regulation of uPA by EMMPRIN was investigated by treating culture cells with EMMPRIN-enriched membrane vesicles. UPA expression was analyzed by qPCR and immunostaining and the consequence on the invasion capacity was studied using modified Boyden chamber assay, in the presence or absence of EMMPRIN blocking antibody, the uPA inhibitor amiloride or the MMP inhibitor marimastat. Results OSCC tumors were shown to express more EMMPRIN and uPA compared to dysplastic lesions. The corresponding cell models, SCC-9 and DOK cells, displayed similar expression pattern. In both cell types EMMPRIN upregulated the expression of uPA as well as that of MMP-2 and MMP-9. EMMPRIN treatment led to a significant increase in cell invasion both in the invasive SCC-9 and in the less invasive dysplastic DOK cells, in an MMP and uPA dependent manner. Conclusions Our results suggest that the upregulation of uPA contributes to EMMPRIN's effect in promoting oral tumor invasion.

  3. EMMPRIN/CD147 up-regulates urokinase-type plasminogen activator: implications in oral tumor progression.

    Science.gov (United States)

    Lescaille, Géraldine; Menashi, Suzanne; Cavelier-Balloy, Bénédicte; Khayati, Farah; Quemener, Cathy; Podgorniak, Marie Pierre; Naïmi, Benyoussef; Calvo, Fabien; Lebbe, Céleste; Mourah, Samia

    2012-03-23

    An elevated level of EMMPRIN in cancer tissues have been correlated with tumor invasion in numerous cancers including oral cavity and larynx. Although EMMPRIN's effect has been generally attributed to its MMP inducing activity, we have previously demonstrated in breast cancer model that EMMPRIN can also enhance invasion by upregulating uPA. In this study, the role of EMMPRIN in regulating uPA and invasion was investigated in oral squamous cell carcinoma (OSCC) progression. Precancerous and invasive oral tumoral tissues were used as well as the corresponding cell lines, DOK and SCC-9 respectively. The paracrine regulation of uPA by EMMPRIN was investigated by treating culture cells with EMMPRIN-enriched membrane vesicles. UPA expression was analyzed by qPCR and immunostaining and the consequence on the invasion capacity was studied using modified Boyden chamber assay, in the presence or absence of EMMPRIN blocking antibody, the uPA inhibitor amiloride or the MMP inhibitor marimastat. OSCC tumors were shown to express more EMMPRIN and uPA compared to dysplastic lesions. The corresponding cell models, SCC-9 and DOK cells, displayed similar expression pattern. In both cell types EMMPRIN upregulated the expression of uPA as well as that of MMP-2 and MMP-9. EMMPRIN treatment led to a significant increase in cell invasion both in the invasive SCC-9 and in the less invasive dysplastic DOK cells, in an MMP and uPA dependent manner. Our results suggest that the upregulation of uPA contributes to EMMPRIN's effect in promoting oral tumor invasion.

  4. Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment.

    Science.gov (United States)

    Ségaliny, Aude I; Mohamadi, Amel; Dizier, Blandine; Lokajczyk, Anna; Brion, Régis; Lanel, Rachel; Amiaud, Jérôme; Charrier, Céline; Boisson-Vidal, Catherine; Heymann, Dominique

    2015-07-01

    Interleukin-34 (IL-34) was recently characterized as the M-CSF "twin" cytokine, regulating the proliferation/differentiation/survival of myeloid cells. The implication of M-CSF in oncology was initially suspected by the reduced metastatic dissemination in knock-out mice, due to angiogenesis impairment. Based on this observation, our work studied the involvement of IL-34 in the pathogenesis of osteosarcoma. The in vivo effects of IL-34 were assessed on tissue vasculature and macrophage infiltration in a murine preclinical model based on a paratibial inoculation of human osteosarcoma cells overexpressing or not IL-34 or M-CSF. In vitro investigations using endothelial cell precursors and mature HUVEC cells were performed to analyse the involvement of IL-34 in angiogenesis and myeloid cell adhesion. The data revealed that IL-34 overexpression was associated with the progression of osteosarcoma (tumor growth, lung metastases) and an increase of neo-angiogenesis. In vitro analyses demonstrated that IL-34 stimulated endothelial cell proliferation and vascular cord formation. Pre-treatment of endothelial cells by chondroitinases/heparinases reduced the formation of vascular tubes and abolished the associated cell signalling. In addition, IL-34 increased the in vivo recruitment of M2 tumor-associated macrophages into the tumor tissue. IL-34 increased in vitro monocyte/CD34(+) cell adhesion to activated HUVEC monolayers under physiological shear stress conditions. This work also demonstrates that IL-34 is expressed by osteosarcoma cells, is regulated by TNF-α, IL-1β, and contributes to osteosarcoma growth by increasing the neo-angiogenesis and the recruitment of M2 macrophages. By promoting new vessel formation and extravasation of immune cells, IL-34 may play a key role in tumor development and inflammatory diseases. © 2014 UICC.

  5. EMMPRIN/CD147 up-regulates urokinase-type plasminogen activator: implications in oral tumor progression

    International Nuclear Information System (INIS)

    Lescaille, Géraldine; Mourah, Samia; Menashi, Suzanne; Cavelier-Balloy, Bénédicte; Khayati, Farah; Quemener, Cathy; Podgorniak, Marie Pierre; Naïmi, Benyoussef; Calvo, Fabien; Lebbe, Céleste

    2012-01-01

    An elevated level of EMMPRIN in cancer tissues have been correlated with tumor invasion in numerous cancers including oral cavity and larynx. Although EMMPRIN's effect has been generally attributed to its MMP inducing activity, we have previously demonstrated in breast cancer model that EMMPRIN can also enhance invasion by upregulating uPA. In this study, the role of EMMPRIN in regulating uPA and invasion was investigated in oral squamous cell carcinoma (OSCC) progression. Precancerous and invasive oral tumoral tissues were used as well as the corresponding cell lines, DOK and SCC-9 respectively. The paracrine regulation of uPA by EMMPRIN was investigated by treating culture cells with EMMPRIN-enriched membrane vesicles. UPA expression was analyzed by qPCR and immunostaining and the consequence on the invasion capacity was studied using modified Boyden chamber assay, in the presence or absence of EMMPRIN blocking antibody, the uPA inhibitor amiloride or the MMP inhibitor marimastat. OSCC tumors were shown to express more EMMPRIN and uPA compared to dysplastic lesions. The corresponding cell models, SCC-9 and DOK cells, displayed similar expression pattern. In both cell types EMMPRIN upregulated the expression of uPA as well as that of MMP-2 and MMP-9. EMMPRIN treatment led to a significant increase in cell invasion both in the invasive SCC-9 and in the less invasive dysplastic DOK cells, in an MMP and uPA dependent manner. Our results suggest that the upregulation of uPA contributes to EMMPRIN's effect in promoting oral tumor invasion

  6. Embolotherapy for Neuroendocrine Tumor Liver Metastases: Prognostic Factors for Hepatic Progression-Free Survival and Overall Survival

    Energy Technology Data Exchange (ETDEWEB)

    Chen, James X. [Hospital of the University of Pennsylvania, Division of Interventional Radiology, Department of Radiology (United States); Rose, Steven [University of San Diego Medical Center, Division of Interventional Radiology, Department of Radiology (United States); White, Sarah B. [Medical College of Wisconsin, Division of Interventional Radiology, Department of Radiology (United States); El-Haddad, Ghassan [Moffitt Cancer Center, Division of Interventional Radiology, Department of Radiology (United States); Fidelman, Nicholas [University of San Francisco Medical Center, Division of Interventional Radiology, Department of Radiology (United States); Yarmohammadi, Hooman [Memorial Sloan Kettering Cancer Center, Division of Interventional Radiology, Department of Radiology (United States); Hwang, Winifred; Sze, Daniel Y.; Kothary, Nishita [Stanford University Medical Center, Division of Interventional Radiology, Department of Radiology (United States); Stashek, Kristen [Hospital of the University of Pennsylvania, Department of Pathology (United States); Wileyto, E. Paul [University of Pennsylvania, Department of Biostatistics and Epidemiology (United States); Salem, Riad [Northwestern Memorial Hospital, Division of Interventional Radiology, Department of Radiology (United States); Metz, David C. [Hospital of the University of Pennsylvania, Division of Gastroenterology, Department of Medicine (United States); Soulen, Michael C., E-mail: michael.soulen@uphs.upenn.edu [Hospital of the University of Pennsylvania, Division of Interventional Radiology, Department of Radiology (United States)

    2017-01-15

    PurposeThe purpose of the study was to evaluate prognostic factors for survival outcomes following embolotherapy for neuroendocrine tumor (NET) liver metastases.Materials and MethodsThis was a multicenter retrospective study of 155 patients (60 years mean age, 57 % male) with NET liver metastases from pancreas (n = 71), gut (n = 68), lung (n = 8), or other/unknown (n = 8) primary sites treated with conventional transarterial chemoembolization (TACE, n = 50), transarterial radioembolization (TARE, n = 64), or transarterial embolization (TAE, n = 41) between 2004 and 2015. Patient-, tumor-, and treatment-related factors were evaluated for prognostic effect on hepatic progression-free survival (HPFS) and overall survival (OS) using unadjusted and propensity score-weighted univariate and multivariate Cox proportional hazards models.ResultsMedian HPFS and OS were 18.5 and 125.1 months for G1 (n = 75), 12.2 and 33.9 months for G2 (n = 60), and 4.9 and 9.3 months for G3 tumors (n = 20), respectively (p < 0.05). Tumor burden >50 % hepatic volume demonstrated 5.5- and 26.8-month shorter median HPFS and OS, respectively, versus burden ≤50 % (p < 0.05). There were no significant differences in HPFS or OS between gut or pancreas primaries. In multivariate HPFS analysis, there were no significant differences among embolotherapy modalities. In multivariate OS analysis, TARE had a higher hazard ratio than TACE (unadjusted Cox model: HR 2.1, p = 0.02; propensity score adjusted model: HR 1.8, p = 0.11), while TAE did not differ significantly from TACE.ConclusionHigher tumor grade and tumor burden prognosticated shorter HPFS and OS. TARE had a higher hazard ratio for OS than TACE. There were no significant differences in HPFS among embolotherapy modalities.

  7. Aberrant expression of HMB-45 in traumatized melanocytic nevi.

    Science.gov (United States)

    Leleux, Todd M; Prieto, Victor G; Diwan, A Hafeez

    2012-09-01

    Assessment of histologic and immunohistochemical maturation (with HMB-45 and anti-Ki-67) may be helpful in differentiating benign melanocytic nevi (BMN) from malignant melanoma. Recently, we reported loss of maturation and aberrant immunohistochemical findings in melanocytic nevi after liquid nitrogen cryotherapy (Adeniran et al, J Am Acad Dermatol 2009;61:341-5). Herein we report a similar phenomenon identified in traumatized melanocytic nevi (TMN). We sought to evaluate the histologic and immunohistochemical findings in early and late stages of traumatized nevi. Twenty-four cases of TMN were retrieved from the pathology archives. These were then assessed by two pathologists (T.L. and A.H.D.) using HMB-45 and MIB-1 (for Ki-67) antibodies. TMN showed some of the following findings: epidermal changes (parakeratosis, ulceration, serum crust, flattening of the epidermis) and dermal changes including fibrosis and the presence of melanophages. In some cases, there was architectural disorder of the overlying melanocytes, with crowding in the basal layer, but without significant pagetoid spread. Occasionally, the dermal scar contained larger, more epithelioid-appearing melanocytes than those beneath the scar. Fifty-four percent of TMN lacked obvious immunohistochemical maturation with HMB-45, since nevus cells within the scar or directly beneath it were strongly labeled. None of the TMN showed appreciable labeling for Ki-67. The exact clinical duration between trauma and biopsy could not be determined. Loss of maturation with HMB-45 in TMN can be a diagnostic pitfall in challenging cases. Concurrent evaluation of MIB-1 expression, along with the characteristic histologic features of trauma, should allow the correct diagnosis to be reached. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  8. Generation of a double binary transgenic zebrafish model to study myeloid gene regulation in response to oncogene activation in melanocytes.

    Science.gov (United States)

    Kenyon, Amy; Gavriouchkina, Daria; Zorman, Jernej; Chong-Morrison, Vanessa; Napolitani, Giorgio; Cerundolo, Vincenzo; Sauka-Spengler, Tatjana

    2018-04-06

    A complex network of inflammatory genes is closely linked to somatic cell transformation and malignant disease. Immune cells and their associated molecules are responsible for detecting and eliminating cancer cells as they establish themselves as the precursors of a tumour. By the time a patient has a detectable solid tumour, cancer cells have escaped the initial immune response mechanisms. Here, we describe the development of a double binary zebrafish model that enables regulatory programming of the myeloid cells as they respond to oncogene-activated melanocytes to be explored, focussing on the initial phase when cells become the precursors of cancer. A hormone-inducible binary system allows for temporal control of expression of different Ras oncogenes ( NRas Q61K , HRas G12V and KRas G12V ) in melanocytes, leading to proliferation and changes in morphology of the melanocytes. This model was coupled to binary cell-specific biotagging models allowing in vivo biotinylation and subsequent isolation of macrophage or neutrophil nuclei for regulatory profiling of their active transcriptomes. Nuclear transcriptional profiling of neutrophils, performed as they respond to the earliest precursors of melanoma in vivo , revealed an intricate landscape of regulatory factors that may promote progression to melanoma, including Serpinb1l4, Fgf1, Fgf6, Cathepsin H, Galectin 1 and Galectin 3. The model presented here provides a powerful platform to study the myeloid response to the earliest precursors of melanoma. © 2018. Published by The Company of Biologists Ltd.

  9. Inhibition of progression of androgen-dependent prostate LNCaP tumors to androgen independence in SCID mice by oral caffeine and voluntary exercise.

    Science.gov (United States)

    Zheng, Xi; Cui, Xiao-Xing; Huang, Mou-Tuan; Liu, Yue; Wagner, George C; Lin, Yong; Shih, Weichung Joe; Lee, Mao-Jung; Yang, Chung S; Conney, Allan H

    2012-01-01

    The effect of oral caffeine or voluntary running wheel exercise (RW) alone or in combination on the progression of human androgen-dependent LNCaP prostate tumors to androgen independence in male severe combined immunodeficiency mice was determined. The mice were injected subcutaneously with LNCaP cells, and when the tumors reached a moderate size, the mice were surgically castrated and treated with caffeine (0.40 mg/ml drinking water) or RW alone or in combination for 42 days. We found that caffeine administration or RW inhibited the progression and growth of androgen-dependent LNCaP tumors to androgen independence, and a combination of the 2 regimens was more effective than the individual regimens alone. The ratios of the percent mitotic cells/caspase-3 positive cells in tumors from the caffeine-treated, RW-treated, or combination-treated mice were decreased by 34%, 38%, and 52%, respectively. Caffeine treatment increased the percentage of mitotic tumor cells undergoing apoptosis (lethal mitosis) whereas RW inhibited the increase in interleukin-6 that occurred during the progression of LNCaP tumors from androgen dependence to androgen independence. Our results indicate that oral administration of caffeine in combination with voluntary exercise may be an effective strategy for the prevention of prostate cancer progression from androgen dependence to androgen independence.

  10. MicroRNA expression in melanocytic nevi: the usefulness of formalin-fixed, paraffin-embedded material for miRNA microarray profiling.

    Science.gov (United States)

    Glud, Martin; Klausen, Mikkel; Gniadecki, Robert; Rossing, Maria; Hastrup, Nina; Nielsen, Finn C; Drzewiecki, Krzysztof T

    2009-05-01

    MicroRNAs (miRNAs) are small, noncoding RNA molecules that regulate cellular differentiation, proliferation, and apoptosis. MiRNAs are expressed in a developmentally regulated and tissue-specific manner. Aberrant expression may contribute to pathological processes such as cancer, and miRNA may therefore serve as biomarkers that may be useful in a clinical environment for diagnosis of various diseases. Most miRNA profiling studies have used fresh tissue samples. However, in some types of cancer, including malignant melanoma, fresh material is difficult to obtain from primary tumors, and most surgical specimens are formalin fixed and paraffin embedded (FFPE). To explore whether FFPE material would be suitable for miRNA profiling in melanocytic lesions, we compared miRNA expression patterns in FFPE versus fresh frozen samples, obtained from 15 human melanocytic nevi. Out of microarray data, we identified 84 miRNAs that were expressed in both types of samples and represented an miRNA profile of melanocytic nevi. Our results showed a high correlation in miRNA expression (Spearman r-value of 0.80) between paired FFPE and fresh frozen material. The data were further validated by quantitative RT-PCR. In conclusion, FFPE specimens of melanocytic lesions are suitable as a source for miRNA microarray profiling.

  11. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer.

    Directory of Open Access Journals (Sweden)

    Nina P Connolly

    Full Text Available Previously rodent preclinical research in gliomas frequently involved implantation of cell lines such as C6 and 9L into the rat brain. More recently, mouse models have taken over, the genetic manipulability of the mouse allowing the creation of genetically accurate models outweighed the disadvantage of its smaller brain size that limited time allowed for tumor progression. Here we illustrate a method that allows glioma formation in the rat using the replication competent avian-like sarcoma (RCAS virus / tumor virus receptor-A (tv-a transgenic system of post-natal cell type-specific gene transfer. The RCAS/tv-a model has emerged as a particularly versatile and accurate modeling technology by enabling spatial, temporal, and cell type-specific control of individual gene transformations and providing de novo formed glial tumors with distinct molecular subtypes mirroring human GBM. Nestin promoter-driven tv-a (Ntv-a transgenic Sprague-Dawley rat founder lines were created and RCAS PDGFA and p53 shRNA constructs were used to initiate intracranial brain tumor formation. Tumor formation and progression were confirmed and visualized by magnetic resonance imaging (MRI and spectroscopy. The tumors were analyzed using histopathological and immunofluorescent techniques. All experimental animals developed large, heterogeneous brain tumors that closely resembled human GBM. Median survival was 92 days from tumor initiation and 62 days from the first point of tumor visualization on MRI. Each tumor-bearing animal showed time dependent evidence of malignant progression to high-grade glioma by MRI and neurological examination. Post-mortem tumor analysis demonstrated the presence of several key characteristics of human GBM, including high levels of tumor cell proliferation, pseudopalisading necrosis, microvascular proliferation, invasion of tumor cells into surrounding tissues, peri-tumoral reactive astrogliosis, lymphocyte infiltration, presence of numerous tumor

  12. Inhibition of prostate cancer osteoblastic progression with VEGF121/rGel, a single agent targeting osteoblasts, osteoclasts, and tumor neovasculature.

    Science.gov (United States)

    Mohamedali, Khalid A; Li, Zhi Gang; Starbuck, Michael W; Wan, Xinhai; Yang, Jun; Kim, Sehoon; Zhang, Wendy; Rosenblum, Michael G; Navone, Nora M

    2011-04-15

    A hallmark of prostate cancer (PCa) progression is the development of osteoblastic bone metastases, which respond poorly to available therapies. We previously reported that VEGF(121)/rGel targets osteoclast precursors and tumor neovasculature. Here we tested the hypothesis that targeting nontumor cells expressing these receptors can inhibit tumor progression in a clinically relevant model of osteoblastic PCa. Cells from MDA PCa 118b, a PCa xenograft obtained from a bone metastasis in a patient with castrate-resistant PCa, were injected into the femurs of mice. Osteoblastic progression was monitored following systemic administration of VEGF(121)/rGel. VEGF(121)/rGel was cytotoxic in vitro to osteoblast precursor cells. This cytotoxicity was specific as VEGF(121)/rGel internalization into osteoblasts was VEGF(121) receptor driven. Furthermore, VEGF(121)/rGel significantly inhibited PCa-induced bone formation in a mouse calvaria culture assay. In vivo, VEGF(121)/rGel significantly inhibited the osteoblastic progression of PCa cells in the femurs of nude mice. Microcomputed tomographic analysis revealed that VEGF(121)/rGel restored the bone volume fraction of tumor-bearing femurs to values similar to those of the contralateral (non-tumor-bearing) femurs. VEGF(121)/rGel significantly reduced the number of tumor-associated osteoclasts but did not change the numbers of peritumoral osteoblasts. Importantly, VEGF(121)/rGel-treated mice had significantly less tumor burden than control mice. Our results thus indicate that VEGF(121)/rGel inhibits osteoblastic tumor progression by targeting angiogenesis, osteoclastogenesis, and bone formation. Targeting VEGF receptor (VEGFR)-1- or VEGFR-2-expressing cells is effective in controlling the osteoblastic progression of PCa in bone. These findings provide the basis for an effective multitargeted approach for metastatic PCa. ©2011 AACR.

  13. Lysophosphatidic acid signaling via LPA_1 and LPA_3 regulates cellular functions during tumor progression in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Fukushima, Kaori; Takahashi, Kaede; Yamasaki, Eri; Onishi, Yuka; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2017-01-01

    Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors exhibits a variety of biological effects, such as cell proliferation, motility and differentiation. The aim of this study was to evaluate the roles of LPA_1 and LPA_3 in cellular functions during tumor progression in pancreatic cancer cells. LPA_1 and LPA_3 knockdown cells were generated from PANC-1 cells. The cell motile and invasive activities of PANC-1 cells were inhibited by LPA_1 and LPA_3 knockdown. In gelatin zymography, LPA_1 and LPA_3 knockdown cells indicated the low activation of matrix metalloproteinase-2 (MMP-2) in the presence of LPA. Next, to assess whether LPA_1 and LPA_3 regulate cellular functions induced by anticancer drug, PANC-1 cells were treated with cisplatin (CDDP) for approximately 6 months. The cell motile and invasive activities of long-term CDDP treated cells were markedly higher than those of PANC-1 cells, correlating with the expression levels of LPAR1 and LPAR3 genes. In soft agar assay, the long-term CDDP treated cells formed markedly large sized colonies. In addition, the cell motile and invasive activities enhanced by CDDP were significantly suppressed by LPA_1 and LPA_3 knockdown as well as colony formation. These results suggest that LPA signaling via LPA_1 and LPA_3 play an important role in the regulation of cellular functions during tumor progression in PANC-1 cells. - Highlights: • The cell motile and invasive activities of PANC-1 cells were stimulated by LPA_1 and LPA_3. • LPA_1 and LPA_3 enhanced MMP-2 activation in PANC-1 cells. • The expressions of LPAR1 and LPAR3 genes were elevated in PANC-1 cells treated with cisplatin. • The cell motile and invasive activities of PANC-1 cells treated with cisplatin were suppressed by LPA_1 and LPA_3 knockdown. • LPA_1 and LPA_3 are involved in the regulation of cellular functions during tumor progression in PANC-1 cells.

  14. A Case of Iris Melanocytoma Demonstrating Diffuse Melanocytic Proliferation with Uncontrolled Intraocular Pressure

    Directory of Open Access Journals (Sweden)

    Mami Kusunose

    2017-03-01

    Full Text Available We report a rare case with histologically proven melanocytoma of the iris that demonstrated diffuse melanocytic proliferation with uncontrolled secondary glaucoma and investigate the etiology of the intraocular pressure elevation. The patient was a 78-year-old man with a history of darkened iris of his left eye. The intraocular pressure was 39 mm Hg. A slit-lamp examination showed a diffuse darkened iris, and a gonioscopic examination revealed open angle with circumferential heavy pigmentation. There was no pigment dispersion of the anterior chamber and no pigment deposition of the cornea. We suspected malignant ring melanoma in the left eye and enucleated it. The globe was examined with light and electron microscopy. Light microscopy revealed the presence of heavily pigmented tumor cells in the iris, ciliary body, trabecular meshwork, and Schlemm’s canal. A bleached preparation showed large tumor cells with central and paracentral nuclei without mitosis. Electron microscopy of the trabecular meshwork revealed melanin-bearing tumor cells invading the intertrabecular spaces, and the melanin granules were not phagocytosed in the trabecular cells. The mechanical obstruction of the aqueous flow by the tumor cells may be a major cause of secondary glaucoma in eyes with iris melanocytoma presenting diffuse proliferation.

  15. Expression of arf tumor suppressor in spermatogonia facilitates meiotic progression in male germ cells.

    Directory of Open Access Journals (Sweden)

    Michelle L Churchman

    2011-07-01

    Full Text Available The mammalian Cdkn2a (Ink4a-Arf locus encodes two tumor suppressor proteins (p16(Ink4a and p19(Arf that respectively enforce the anti-proliferative functions of the retinoblastoma protein (Rb and the p53 transcription factor in response to oncogenic stress. Although p19(Arf is not normally detected in tissues of young adult mice, a notable exception occurs in the male germ line, where Arf is expressed in spermatogonia, but not in meiotic spermatocytes arising from them. Unlike other contexts in which the induction of Arf potently inhibits cell proliferation, expression of p19(Arf in spermatogonia does not interfere with mitotic cell division. Instead, inactivation of Arf triggers germ cell-autonomous, p53-dependent apoptosis of primary spermatocytes in late meiotic prophase, resulting in reduced sperm production. Arf deficiency also causes premature, elevated, and persistent accumulation of the phosphorylated histone variant H2AX, reduces numbers of chromosome-associated complexes of Rad51 and Dmc1 recombinases during meiotic prophase, and yields incompletely synapsed autosomes during pachynema. Inactivation of Ink4a increases the fraction of spermatogonia in S-phase and restores sperm numbers in Ink4a-Arf doubly deficient mice but does not abrogate γ-H2AX accumulation in spermatocytes or p53-dependent apoptosis resulting from Arf inactivation. Thus, as opposed to its canonical role as a tumor suppressor in inducing p53-dependent senescence or apoptosis, Arf expression in spermatogonia instead initiates a salutary feed-forward program that prevents p53-dependent apoptosis, contributing to the survival of meiotic male germ cells.

  16. Embolotherapy for Neuroendocrine Tumor Liver Metastases: Prognostic Factors for Hepatic Progression-Free Survival and Overall Survival

    International Nuclear Information System (INIS)

    Chen, James X.; Rose, Steven; White, Sarah B.; El-Haddad, Ghassan; Fidelman, Nicholas; Yarmohammadi, Hooman; Hwang, Winifred; Sze, Daniel Y.; Kothary, Nishita; Stashek, Kristen; Wileyto, E. Paul; Salem, Riad; Metz, David C.; Soulen, Michael C.

    2017-01-01

    PurposeThe purpose of the study was to evaluate prognostic factors for survival outcomes following embolotherapy for neuroendocrine tumor (NET) liver metastases.Materials and MethodsThis was a multicenter retrospective study of 155 patients (60 years mean age, 57 % male) with NET liver metastases from pancreas (n = 71), gut (n = 68), lung (n = 8), or other/unknown (n = 8) primary sites treated with conventional transarterial chemoembolization (TACE, n = 50), transarterial radioembolization (TARE, n = 64), or transarterial embolization (TAE, n = 41) between 2004 and 2015. Patient-, tumor-, and treatment-related factors were evaluated for prognostic effect on hepatic progression-free survival (HPFS) and overall survival (OS) using unadjusted and propensity score-weighted univariate and multivariate Cox proportional hazards models.ResultsMedian HPFS and OS were 18.5 and 125.1 months for G1 (n = 75), 12.2 and 33.9 months for G2 (n = 60), and 4.9 and 9.3 months for G3 tumors (n = 20), respectively (p  50 % hepatic volume demonstrated 5.5- and 26.8-month shorter median HPFS and OS, respectively, versus burden ≤50 % (p < 0.05). There were no significant differences in HPFS or OS between gut or pancreas primaries. In multivariate HPFS analysis, there were no significant differences among embolotherapy modalities. In multivariate OS analysis, TARE had a higher hazard ratio than TACE (unadjusted Cox model: HR 2.1, p = 0.02; propensity score adjusted model: HR 1.8, p = 0.11), while TAE did not differ significantly from TACE.ConclusionHigher tumor grade and tumor burden prognosticated shorter HPFS and OS. TARE had a higher hazard ratio for OS than TACE. There were no significant differences in HPFS among embolotherapy modalities.

  17. A case of collision tumor or transdifferentiation between malignant melanoma and leiomyosarcoma

    DEFF Research Database (Denmark)

    Ul-Mulk, Jamshaid; Rasmussen, Helle; Breiting, Line

    2012-01-01

    with a seborrheic keratosis. There have also been occasional reports of rhabdomyosarcomatous differentiation. However, mesenchymal differentiation, and in this case leiomysarcoma, with formation of heterologous elements in melanocytic tumor is very rare. Another plausible explanation may be that malignant melanoma...

  18. High NUCB2 expression level is associated with metastasis and may promote tumor progression in colorectal cancer.

    Science.gov (United States)

    Xie, Jun; Chen, Lina; Chen, Wenbin

    2018-06-01

    Nucleobindin 2 (NUCB2) is mainly expressed in the hypothalamic nuclei and has a proven role in energy homeostasis. It has also been recently reported to have a key role in tumor progression. However, the clinical significance of NUCB2 in colorectal cancer (CRC) remains unknown. In the present study, the level of NUCB2 mRNA was quantified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in 34 paired fresh tissues from patients with CRC. RT-qPCR was followed by immunohistochemical (IHC) staining of NUCB2 protein in tissue microarrays of 251 samples to evaluate the clinical significance of NUCB2 in CRC. The RT-qPCR indicated an upregulation of NUCB2 mRNA in CRC tissues compared with normal tissues (P=0.027). IHC staining indicated a positive association between elevated NUCB2 expression and lymph node metastasis or tumor-node-metastasis (TNM) stage. Patients with CRC and lymph node metastasis demonstrated a higher expression of NUCB2 (49.5%, 50/101) compared with those without lymph node metastasis (36.7%, 55/150; P=0.043). Furthermore, NUCB2 expression was also higher in patients with CRC and TNM stage III-IV compared with those with TNM stage I-II (50.9% vs. 35.0%; P=0.011). However, Kaplan-Meier analysis indicated no significant association between NUCB2 expression and disease-free survival of patients. Additionally, multivariate analysis did not identify the upregulation of NUCB2 as an independent prognostic predictor in patients with CRC (P=0.755). In conclusion, the present study demonstrated that upregulation of NUCB2 is significantly associated with CRC metastasis, indicating that NUCB2 may be a cancer-associated oncogene associated with the aggressive progression of CRC.

  19. Involvement of FFA1 and FFA4 in the regulation of cellular functions during tumor progression in colon cancer cells.

    Science.gov (United States)

    Takahashi, Kaede; Fukushima, Kaori; Onishi, Yuka; Minami, Kanako; Otagaki, Shiho; Ishimoto, Kaichi; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2018-08-01

    Free fatty acid receptor 1 (FFA1) and FFA4 mediate a variety of biological responses through binding of medium- and long-chain free fatty acids. The aim of this study was to investigate an involvement of FFA1 and FFA4 in the regulation of cellular functions during tumor progression in colon cancer cells. The long-term fluorouracil (5-FU) and cisplatin (CDDP) treated cells were generated from DLD1 cells (DLD-5FU and DLD-CDDP cells, respectively). FFAR1 expressions were lower in DLD-5FU and DLD-CDDP cells than in DLD1 cells. In contrast, DLD-5FU and DLD-CDDP cells showed the high FFAR4 expressions, compared with DLD1 cells. The cell motile activities of DLD-5FU and DLD-CDDP cells were reduced by GW9508 which is an agonist of FFA1 and FFA4. Moreover, GW1100, an antagonist of FFA1, inhibited the cell motile activities of DLD-5FU and DLD-CDDP cells. To evaluate whether FFA1 and FFA4 regulate the enhancement of cell motility, invasion and colony formation, highly migratory (hmDLD1) cells were established from DLD1 cells. FFAR1 expression was significantly higher in hmDLD1 cells than in DLD1 cells, but no change of FFAR4 expression was observed. The elevated cell motile and invasive activities and colony formation of hmDLD1 cells were suppressed by FFA1 inhibition. These results suggest that FFA1 and FFA4 are involved in the regulation of cellular functions during tumor progression in colon cancer DLD1 cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Aqueous humor tyrosinase activity is indicative of iris melanocyte toxicity.

    Science.gov (United States)

    Mahanty, Sarmistha; Kawali, Ankush A; Dakappa, Shruthi Shirur; Mahendradas, Padmamalini; Kurian, Mathew; Kharbanda, Varun; Shetty, Rohit; Setty, Subba Rao Gangi

    2017-09-01

    Antibiotics such as fluoroquinolones (FQLs) are commonly used to treat ocular infections but are also known to cause dermal melanocyte toxicity. The release of dispersed pigments from the iris into the aqueous humor has been considered a possible ocular side effect of the systemic administration of FQLs such as Moxifloxacin, and this condition is known as bilateral acute iris transillumination (BAIT). Bilateral acute depigmentation of iris (BADI) is a similar condition, with iris pigment released into the aqueous, but it has not been reported as a side effect of FQL. Iris pigments are synthesized by the melanogenic enzyme tyrosinase (TYR) and can be detected but not quantified by using slit-lamp biomicroscopy. The correlation between dispersed pigments in the aqueous and the extent of melanocyte toxicity due to topical antibiotics in vivo is not well studied. Here, we aimed to study the effect of topical FQLs on iris tissue, the pigment release in the aqueous humor and the development of clinically evident iris atrophic changes. We evaluated this process by measuring the activity of TYR in the aqueous humor of 82 healthy eyes undergoing cataract surgery following topical application of FQLs such as Moxifloxacin (27 eyes, preservative-free) or Ciprofloxacin (29 eyes, with preservative) or the application of non-FQL Tobramycin (26 eyes, with preservative) as a control. In addition, the patients were questioned and examined for ocular side effects in pre- and post-operative periods. Our data showed a significantly higher mean TYR activity in the aqueous humor of Ciprofloxacin-treated eyes compared to Moxifloxacin- (preservative free, p iris melanocytes. However, the reduced TYR activity in the aqueous of Moxifloxacin-treated eyes was possibly due to the presence of a higher drug concentration, which inhibits TYR activity. Consistently, immunoblotting analysis of the aqueous humor from both Ciprofloxacin- and Moxifloxacin-treated eyes showed the presence of soluble

  1. Intersection of FOXO- and RUNX1-mediated gene expression programs in single breast epithelial cells during morphogenesis and tumor progression.

    Science.gov (United States)

    Wang, Lixin; Brugge, Joan S; Janes, Kevin A

    2011-10-04

    Gene expression networks are complicated by the assortment of regulatory factors that bind DNA and modulate transcription combinatorially. Single-cell measurements can reveal biological mechanisms hidden by population averages, but their value has not been fully explored in the context of mRNA regulation. Here, we adapted a single-cell expression profiling technique to examine the gene expression program downstream of Forkhead box O (FOXO) transcription factors during 3D breast epithelial acinar morphogenesis. By analyzing patterns of mRNA fluctuations among individual matrix-attached epithelial cells, we found that a subset of FOXO target genes was jointly regulated by the transcription factor Runt-related transcription factor 1 (RUNX1). Knockdown of RUNX1 causes hyperproliferation and abnormal morphogenesis, both of which require normal FOXO function. Down-regulating RUNX1 and FOXOs simultaneously causes widespread oxidative stress, which arrests proliferation and restores normal acinar morphology. In hormone-negative breast cancers lacking human epidermal growth factor receptor 2 (HER2) amplification, we find that RUNX1 down-regulation is strongly associated with up-regulation of FOXO1, which may be required to support growth of RUNX1-negative tumors. The coordinate function of these two tumor suppressors may provide a failsafe mechanism that inhibits cancer progression.

  2. HER family kinase domain mutations promote tumor progression and can predict response to treatment in human breast cancer

    KAUST Repository

    Boulbes, Delphine R.

    2014-11-11

    Resistance to HER2-targeted therapies remains a major obstacle in the treatment of HER2-overexpressing breast cancer. Understanding the molecular pathways that contribute to the development of drug resistance is needed to improve the clinical utility of novel agents, and to predict the success of targeted personalized therapy based on tumor-specific mutations. Little is known about the clinical significance of HER family mutations in breast cancer. Because mutations within HER1/EGFR are predictive of response to tyrosine kinase inhibitors (TKI) in lung cancer, we investigated whether mutations in HER family kinase domains are predictive of response to targeted therapy in HER2-overexpressing breast cancer. We sequenced the HER family kinase domains from 76 HER2-overexpressing invasive carcinomas and identified 12 missense variants. Patients whose tumors carried any of these mutations did not respond to HER2 directed therapy in the metastatic setting. We developed mutant cell lines and used structural analyses to determine whether changes in protein conformation could explain the lack of response to therapy. We also functionally studied all HER2 mutants and showed that they conferred an aggressive phenotype and altered effects of the TKI lapatinib. Our data demonstrate that mutations in the finely tuned HER kinase domains play a critical function in breast cancer progression and may serve as prognostic and predictive markers.

  3. HER family kinase domain mutations promote tumor progression and can predict response to treatment in human breast cancer

    KAUST Repository

    Boulbes, Delphine R.; Arold, Stefan T.; Chauhan, Gaurav B.; Blachno, Korina V.; Deng, Nanfu; Chang, Wei-Chao; Jin, Quanri; Huang, Tzu-Hsuan; Hsu, Jung-Mao; Brady, Samuel W.; Bartholomeusz, Chandra; Ladbury, John E.; Stone, Steve; Yu, Dihua; Hung, Mien-Chie; Esteva, Francisco J.

    2014-01-01

    Resistance to HER2-targeted therapies remains a major obstacle in the treatment of HER2-overexpressing breast cancer. Understanding the molecular pathways that contribute to the development of drug resistance is needed to improve the clinical utility of novel agents, and to predict the success of targeted personalized therapy based on tumor-specific mutations. Little is known about the clinical significance of HER family mutations in breast cancer. Because mutations within HER1/EGFR are predictive of response to tyrosine kinase inhibitors (TKI) in lung cancer, we investigated whether mutations in HER family kinase domains are predictive of response to targeted therapy in HER2-overexpressing breast cancer. We sequenced the HER family kinase domains from 76 HER2-overexpressing invasive carcinomas and identified 12 missense variants. Patients whose tumors carried any of these mutations did not respond to HER2 directed therapy in the metastatic setting. We developed mutant cell lines and used structural analyses to determine whether changes in protein conformation could explain the lack of response to therapy. We also functionally studied all HER2 mutants and showed that they conferred an aggressive phenotype and altered effects of the TKI lapatinib. Our data demonstrate that mutations in the finely tuned HER kinase domains play a critical function in breast cancer progression and may serve as prognostic and predictive markers.

  4. CD133 expression in well-differentiated pancreatic neuroendocrine tumors: a potential predictor of progressive clinical courses.

    Science.gov (United States)

    Sakai, Yasuhiro; Hong, Seung-Mo; An, Soyeon; Kim, Joo Young; Corbeil, Denis; Karbanová, Jana; Otani, Kyoko; Fujikura, Kohei; Song, Ki-Byung; Kim, Song Cheol; Akita, Masayuki; Nanno, Yoshihide; Toyama, Hirochika; Fukumoto, Takumi; Ku, Yonson; Hirose, Takanori; Itoh, Tomoo; Zen, Yoh

    2017-03-01

    The present study aimed to elucidate whether the stemness molecule, CD133, is expressed in well-differentiated pancreatic neuroendocrine tumors (PanNETs; World Health Organization grades 1 and 2) and establish its clinical relevance using 2 separate cohorts. In the first series (n = 178) in which tissue microarrays were available, immunohistochemistry revealed that CD133 was expressed in 14 cases (8%). CD133+ PanNETs had higher TNM stages (P < .01), more frequent lymphovascular invasion (P = .01), and higher recurrence rates (P = .01). In the second cohort (n = 56), the expression of CD133 and CK19 was examined in whole tissue sections. CD133 and CK19 were positive in 10 (18%) and 36 (64%) cases, respectively. CD133 expression correlated with higher pT scores (P < .01), the presence of microscopic venous infiltration (P = .03), and shorter disease-free periods (P < .01). When cases were divided into grade 1 and 2 neoplasms, patients with CD133+ PanNET continued to have shorter disease-free periods than did those with CD133- tumors in both groups (P < .01 and P = .02, respectively). Although CK19+ cases had shorter disease-free periods than did CK19- cases in the whole cohort (P = .02), this difference was less apparent in subanalyses of grade 1 and 2 cases. CD133 expression also appeared to be an independent predictive factor for tumor recurrence in a multivariate analysis (P = .018). The CD133 phenotype was identical between primary and metastatic foci in 17 of 18 cases from which tissues of metastatic deposits were available. In conclusion, the combination of CD133 phenotyping and World Health Organization grading may assist in stratifying patients in terms of the risk of progressive clinical courses. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Novel levamisole derivative induces extrinsic pathway of apoptosis in cancer cells and inhibits tumor progression in mice.

    Directory of Open Access Journals (Sweden)

    Mahesh Hegde

    Full Text Available BACKGROUND: Levamisole, an imidazo(2,1-bthiazole derivative, has been reported to be a potential antitumor agent. In the present study, we have investigated the mechanism of action of one of the recently identified analogues, 4a (2-benzyl-6-(4'-fluorophenyl-5-thiocyanato-imidazo[2,1-b][1], [3], [4]thiadiazole. MATERIALS AND METHODS: ROS production and expression of various apoptotic proteins were measured following 4a treatment in leukemia cell lines. Tumor animal models were used to evaluate the effect of 4a in comparison with Levamisole on progression of breast adenocarcinoma and survival. Immunohistochemistry and western blotting studies were performed to understand the mechanism of 4a action both ex vivo and in vivo. RESULTS: We have determined the IC(50 value of 4a in many leukemic and breast cancer cell lines and found CEM cells most sensitive (IC(50 5 µM. Results showed that 4a treatment leads to the accumulation of ROS. Western blot analysis showed upregulation of pro-apoptotic proteins t-BID and BAX, upon treatment with 4a. Besides, dose-dependent activation of p53 along with FAS, FAS-L, and cleavage of CASPASE-8 suggest that it induces death receptor mediated apoptotic pathway in CEM cells. More importantly, we observed a reduction in tumor growth and significant increase in survival upon oral administration of 4a (20 mg/kg, six doses in mice. In comparison, 4a was found to be more potent than its parental analogue Levamisole based on both ex vivo and in vivo studies. Further, immunohistochemistry and western blotting studies indicate that 4a treatment led to abrogation of tumor cell proliferation and activation of apoptosis by the extrinsic pathway even in animal models. CONCLUSION: Thus, our results suggest that 4a could be used as a potent chemotherapeutic agent.

  6. Activin pathway enhances colorectal cancer stem cell self-renew and tumor progression.

    Science.gov (United States)

    Liu, Rui; Wang, Jun-Hua; Xu, Chengxiong; Sun, Bo; Kang, Sa-Ouk

    2016-10-28

    Activin belongs to transforming growth factor (TGF)-β super family of growth and differentiation factors and activin pathway participated in broad range of cell process. Studies elaborated activin pathway maintain pluripotency in human stem cells and suggest that the function of activin/nodal signaling in self-renew would be conserved across embryonic and adult stem cells. In this study, we tried to determine the effect of activin signaling pathway in regulation of cancer stem cells as a potential target for cancer therapy in clinical trials. A population of colorectal cancer cells was selected by the treatment of activin A. This population of cell possessed stem cell character with sphere formation ability. We demonstrated activin pathway enhanced the colorectal cancer stem cells self-renew and contribute to colorectal cancer progression in vivo. Targeting activin pathway potentially provide effective strategy for colorectal cancer therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A male patient with acromegaly and breast cancer: treating acromegaly to control tumor progression

    International Nuclear Information System (INIS)

    Leporati, Paola; Fonte, Rodolfo; Martinis, Luca de; Zambelli, Alberto; Magri, Flavia; Pavesi, Lorenzo; Rotondi, Mario; Chiovato, Luca

    2015-01-01

    Acromegaly is a rare disease associated with an increased risk of developing cancer. We report the case of a 72-year-old man who was diagnosed with acromegaly (IGF-1 770 ng/ml) and breast cancer. Four years before he suffered from a colon-rectal cancer. Pituitary surgery and octreotide-LAR treatment failed to control acromegaly. Normalization of IGF-1 (97 ng/ml) was obtained with pegvisomant therapy. Four years after breast cancer surgery, 2 pulmonary metastases were detected at chest CT. The patient was started on anastrozole, but, contrary to medical advice, he stopped pegvisomant treatment (IGF-I 453 ng/ml). Four months later, chest CT revealed an increase in size of the metastatic lesion of the left lung. The patient was shifted from anastrozole to tamoxifen and was restarted on pegvisomant, with normalization of serum IGF-1 levels (90 ng/ml). Four months later, a reduction in size of the metastatic lesion of the left lung was detected by CT. Subsequent CT scans throughout a 24-month follow-up showed a further reduction in size and then a stabilization of the metastasis. This is the first report of a male patient with acromegaly and breast cancer. The clinical course of breast cancer was closely related to the metabolic control of acromegaly. The rapid progression of metastatic lesion was temporally related to stopping pegvisomant treatment and paralleled a rise in serum IGF-1 levels. Normalization of IGF-1 after re-starting pegvisomant impressively reduced the progression of metastatic breast lesions. Control of acromegaly is mandatory in acromegalic patients with cancer. The online version of this article (doi:10.1186/s12885-015-1400-0) contains supplementary material, which is available to authorized users

  8. Consistency of parametric registration in serial MRI studies of brain tumor progression

    International Nuclear Information System (INIS)

    Mang, Andreas; Buzug, Thorsten M.; Schnabel, Julia A.; Crum, William R.; Modat, Marc; Ourselin, Sebastien; Hawkes, David J.; Camara-Rey, Oscar; Palm, Christoph; Caseiras, Gisele Brasil; Jaeger, H.R.

    2008-01-01

    The consistency of parametric registration in multi-temporal magnetic resonance (MR) imaging studies was evaluated. Serial MRI scans of adult patients with a brain tumor (glioma) were aligned by parametric registration. The performance of low-order spatial alignment (6/9/12 degrees of freedom) of different 3D serial MR-weighted images is evaluated. A registration protocol for the alignment of all images to one reference coordinate system at baseline is presented. Registration results were evaluated for both, multimodal intra-timepoint and mono-modal multi-temporal registration. The latter case might present a challenge to automatic intensity-based registration algorithms due to ill-defined correspondences. The performance of our algorithm was assessed by testing the inverse registration consistency. Four different similarity measures were evaluated to assess consistency. Careful visual inspection suggests that images are well aligned, but their consistency may be imperfect. Sub-voxel inconsistency within the brain was found for allsimilarity measures used for parametric multi-temporal registration. T1-weighted images were most reliable for establishing spatial correspondence between different timepoints. The parametric registration algorithm is feasible for use in this application. The sub-voxel resolution mean displacement error of registration transformations demonstrates that the algorithm converges to an almost identical solution for forward and reverse registration. (orig.)

  9. Cell fusion in tumor progression: the isolation of cell fusion products by physical methods

    Directory of Open Access Journals (Sweden)

    Vincitorio Massimo

    2011-09-01

    Full Text Available Abstract Background Cell fusion induced by polyethylene glycol (PEG is an efficient but poorly controlled procedure for obtaining somatic cell hybrids used in gene mapping, monoclonal antibody production, and tumour immunotherapy. Genetic selection techniques and fluorescent cell sorting are usually employed to isolate cell fusion products, but both procedures have several drawbacks. Results Here we describe a simple improvement in PEG-mediated cell fusion that was obtained by modifying the standard single-step procedure. We found that the use of two PEG undertreatments obtains a better yield of cell fusion products than the standard method, and most of these products are bi- or trinucleated polykaryocytes. Fusion rate was quantified using fluorescent cell staining microscopy. We used this improved cell fusion and cell isolation method to compare giant cells obtained in vitro and giant cells obtained in vivo from patients with Hodgkin's disease and erythroleukemia. Conclusions In the present study we show how to improve PEG-mediated cell fusion and that cell separation by velocity sedimentation offers a simple alternative for the efficient purification of cell fusion products and to investigate giant cell formation in tumor development.

  10. Increased cytosine DNA-methyltransferase activity in A/J mouse lung cells following carcinogen exposure and during tumor progression

    International Nuclear Information System (INIS)

    Belinsky, S.A.; Issa, J.-P.J.; Baylin, S.B.

    1994-01-01

    Considerable evidence has accumulated that 5-methylcytosine modification of mammalian DNA, both in exons and CpG rich islands located in promoter regions, is important in gene regulation. For example, a decrease of 5-methylcytosine in 5' flanking regions or exons of genes has been associated with increased gene transcription. In addition, hypermethylation at specific regions of chromosomes 17p and 3p have also been observed in lung and colon cancer. During colon cancer development, these hypermethylation changes precede allelic loss. In addition, the activity of the enzyme which maintains the methylation status at CpG dinucleotides, DNA methyltransferase (MT), has been shown to increase during colon cancer progression. These observations suggest changes in methylation patterns within specific genes could result in either inappropriate gene expression or gene deletion, both of which would contribute to the establishment of the malignant phenotype. The purpose of this investigation was to determine if DNA MT activity is elevated in target (alveolar type II), but not in nontarget (Clara, endothelial, macrophage) lung cells isolated from the A/J mouse following exposure to nitrosamine 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK). In addition, the activity of this enzyme during tumor progression was examined

  11. Asymmetry and irregularity border as discrimination factor between melanocytic lesions

    Science.gov (United States)

    Sbrissa, David; Pratavieira, Sebastião.; Salvio, Ana Gabriela; Kurachi, Cristina; Bagnato, Vanderlei Salvadori; Costa, Luciano Da Fontoura; Travieso, Gonzalo

    2015-06-01

    Image processing tools have been widely used in systems supporting medical diagnosis. The use of mobile devices for the diagnosis of melanoma can assist doctors and improve their diagnosis of a melanocytic lesion. This study proposes a method of image analysis for melanoma discrimination from other types of melanocytic lesions, such as regular and atypical nevi. The process is based on extracting features related with asymmetry and border irregularity. It were collected 104 images, from medical database of two years. The images were obtained with standard digital cameras without lighting and scale control. Metrics relating to the characteristics of shape, asymmetry and curvature of the contour were extracted from segmented images. Linear Discriminant Analysis was performed for dimensionality reduction and data visualization. Segmentation results showed good efficiency in the process, with approximately 88:5% accuracy. Validation results presents sensibility and specificity 85% and 70% for melanoma detection, respectively.

  12. Loss of Hfe Leads to Progression of Tumor Phenotype in Primary Retinal Pigment Epithelial Cells

    Science.gov (United States)

    Gnana-Prakasam, Jaya P.; Veeranan-Karmegam, Rajalakshmi; Coothankandaswamy, Veena; Reddy, Sushma K.; Martin, Pamela M.; Thangaraju, Muthusamy; Smith, Sylvia B.; Ganapathy, Vadivel

    2013-01-01

    Purpose. Hemochromatosis is a disorder of iron overload arising mostly from mutations in HFE. HFE is expressed in retinal pigment epithelium (RPE), and Hfe−/− mice develop age-related iron accumulation and retinal degeneration associated with RPE hyperproliferation. Here, the mechanism underlying the hyperproliferative phenotype in RPE was investigated. Methods. Cellular senescence was monitored by β-galactosidase activity. Gene expression was monitored by real-time PCR. Survivin was analyzed by Western blot and immunofluorescence. Migration and invasion were monitored using appropriate kits. Glucose transporters (GLUTs) were monitored by 3-O-methyl-D-glucose uptake. Histone deacetylases (HDACs) were studied by monitoring catalytic activity and acetylation status of histones H3/H4. Results. Hfe−/− RPE cells exhibited slower senescence rate and higher survivin expression than wild type cells. Hfe−/− cells migrated faster and showed greater glucose uptake and increased expression of GLUTs. The expression of HDACs and DNA methyltransferase (DNMTs) also was increased. Similarly, RPE cells from hemojuvelin (Hjv)-knockout mice, another model of hemochromatosis, also had increased expression of GLUTs, HDACs, and DNMTs. The expression of Slc5a8 was decreased in Hfe−/− RPE cells, but treatment with a DNA methylation inhibitor restored the transporter expression, indicating involvement of DNA methylation in the silencing of Slc5a8 in Hfe−/− cells. Conclusions. RPE cells from iron-overloaded mice exhibit several features of tumor cells: decreased senescence, enhanced migration, increased glucose uptake, and elevated levels of HDACs and DNMTs. These features are seen in Hfe−/− RPE cells as well as in Hjv−/− RPE cells, providing a molecular basis for the hyperproliferative phenotype of Hfe−/− and Hjv−/− RPE cells. PMID:23169885

  13. Different Serotonergic Expression in Nevomelanocytic Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Naimi-Akbar, Clara; Ritter, Markus; Demel, Sasika; El-Nour, Husameldin; Hedblad, Mari-Anne [Dermatology and Venereology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Solna (Sweden); Azmitia, Efrain C. [Department of Biology and Psychiatry, New York University, NY (United States); Nordlind, Klas, E-mail: klas.nordlind@karolinska.se [Dermatology and Venereology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Solna (Sweden)

    2010-06-07

    The neuromediator serotonin (5-hydroxytryptamine; 5-HT) has been proposed to play a role in tumor progression. Thus, the aim of the present investigation was to determine whether alterations in the serotonergic system occur in nevomelanocytic tumors. For this purpose, paraffin-embedded biopsies of superficial spreading malignant melanoma (SSM), dysplastic compound nevi (DN) and benign compound nevi (BCN) were characterized with regard to their expression of 5-HT, the 5-HT1A and 5-HT2A receptors, and the serotonin transporter protein (SERT), by immunohistochemical analysis. Melanocytes in the region surrounding the tumor were found to express both the 5-HT1A and 5-HT2A receptors. Tumor cells that immunostained positively for the different serotonergic markers were observed in the suprabasal epidermis of DN tissue and, to an even greater extent, in the case of SSM. Furthermore, some of these latter cells expressed both 5-HT1AR and 5-HT2AR. The level of expression of 5-HT1AR at the junctional area was lower for SSM than for DN or BCN. As the degree of atypia increased, the intensity of tumor cell staining in the dermis for 5-HT1AR and SERT declined. Vessel immunoreactivity for 5-HT2A was more intense in SSM than in BCN tissue. Round-to-dendritic cells that expressed both SERT and 5-HT1AR were seen to infiltrate into the dermal region of the tumor, this infiltration being more evident in the case of DN and SSM. These latter cells were also tryptase-positive, indicating that they are mast cells. Thus, alterations in serotonergic system may be involved in nevomelanocytic tumors and mast cells may play an important role in this connection.

  14. Ultraviolet radiation directly induces pigment production by cultured human melanocytes

    International Nuclear Information System (INIS)

    Friedmann, P.S.; Gilchrest, B.A.

    1987-01-01

    In humans the major stimulus for cutaneous pigmentation is ultraviolet radiation (UVR). Little is known about the mechanism underlying this response, in part because of the complexity of interactions in whole epidermis. Using a recently developed culture system, human melanocytes were exposed daily to a physiologic range of UVR doses from a solar simulator. Responses were determined 24 hours after the last exposure. There was a dose-related increase in melanin content per cell and uptake of 14 C-DOPA, accompanied by growth inhibition. Cells from donors of different racial origin gave proportionately similar increases in melanin, although there were approximately tenfold differences in basal values. Light and electron microscopy revealed UVR-stimulated increases in dendricity as well as melanosome number and degree of melanization, analogous to the well-recognized melanocyte changes following sun exposure of intact skin. Similar responses were seen with Cloudman S91 melanoma cells, although this murine cell line required lower UVR dosages and fewer exposures for maximal stimulation. These data establish that UVR is capable of directly stimulating melanogenesis. Because cyclic AMP elevation has been associated in some settings with increased pigment production by cultured melanocytes, preliminary experiments were conducted to see if the effects of UVR were mediated by cAMP. Both alpha-MSH and isobutylmethylxanthine (IBMX), as positive controls, caused a fourfold increase in cAMP level in human melanocytes and/or S91 cells, but following a dose of UVR sufficient to stimulate pigment production there was no change in cAMP level up to 4 hours after exposure. Thus, it appears that the UVR-induced melanogenesis is mediated by cAMP-independent mechanisms

  15. Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Joanna Jaworek-Korjakowska

    2016-01-01

    Full Text Available Background. Given its propensity to metastasize, and lack of effective therapies for most patients with advanced disease, early detection of melanoma is a clinical imperative. Different computer-aided diagnosis (CAD systems have been proposed to increase the specificity and sensitivity of melanoma detection. Although such computer programs are developed for different diagnostic algorithms, to the best of our knowledge, a system to classify different melanocytic lesions has not been proposed yet. Method. In this research we present a new approach to the classification of melanocytic lesions. This work is focused not only on categorization of skin lesions as benign or malignant but also on specifying the exact type of a skin lesion including melanoma, Clark nevus, Spitz/Reed nevus, and blue nevus. The proposed automatic algorithm contains the following steps: image enhancement, lesion segmentation, feature extraction, and selection as well as classification. Results. The algorithm has been tested on 300 dermoscopic images and achieved accuracy of 92% indicating that the proposed approach classified most of the melanocytic lesions correctly. Conclusions. A proposed system can not only help to precisely diagnose the type of the skin mole but also decrease the amount of biopsies and reduce the morbidity related to skin lesion excision.

  16. Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence.

    Science.gov (United States)

    Jaworek-Korjakowska, Joanna; Kłeczek, Paweł

    2016-01-01

    Given its propensity to metastasize, and lack of effective therapies for most patients with advanced disease, early detection of melanoma is a clinical imperative. Different computer-aided diagnosis (CAD) systems have been proposed to increase the specificity and sensitivity of melanoma detection. Although such computer programs are developed for different diagnostic algorithms, to the best of our knowledge, a system to classify different melanocytic lesions has not been proposed yet. In this research we present a new approach to the classification of melanocytic lesions. This work is focused not only on categorization of skin lesions as benign or malignant but also on specifying the exact type of a skin lesion including melanoma, Clark nevus, Spitz/Reed nevus, and blue nevus. The proposed automatic algorithm contains the following steps: image enhancement, lesion segmentation, feature extraction, and selection as well as classification. The algorithm has been tested on 300 dermoscopic images and achieved accuracy of 92% indicating that the proposed approach classified most of the melanocytic lesions correctly. A proposed system can not only help to precisely diagnose the type of the skin mole but also decrease the amount of biopsies and reduce the morbidity related to skin lesion excision.

  17. UVA phototransduction drives early melanin synthesis in human melanocytes.

    Science.gov (United States)

    Wicks, Nadine L; Chan, Jason W; Najera, Julia A; Ciriello, Jonathan M; Oancea, Elena

    2011-11-22

    Exposure of human skin to solar ultraviolet radiation (UVR), a powerful carcinogen [1] comprising ~95% ultraviolet A (UVA) and ~5% ultraviolet B (UVB) at the Earth's surface, promotes melanin synthesis in epidermal melanocytes [2, 3], which protects skin from DNA damage [4, 5]. UVB causes DNA lesions [6] that lead to transcriptional activation of melanin-producing enzymes, resulting in delayed skin pigmentation within days [7]. In contrast, UVA causes primarily oxidative damage [8] and leads to immediate pigment darkening (IPD) within minutes, via an unknown mechanism [9, 10]. No receptor protein directly mediating phototransduction in skin has been identified. Here we demonstrate that exposure of primary human epidermal melanocytes (HEMs) to UVA causes calcium mobilization and early melanin synthesis. Calcium responses were abolished by treatment with G protein or phospholipase C (PLC) inhibitors or by depletion of intracellular calcium stores. We show that the visual photopigment rhodopsin [11] is expressed in HEMs and contributes to UVR phototransduction. Upon UVR exposure, significant melanin production was measured within one hour; cellular melanin continued to increase in a retinal- and calcium-dependent manner up to 5-fold after 24 hr. Our findings identify a novel UVA-sensitive signaling pathway in melanocytes that leads to calcium mobilization and melanin synthesis and may underlie the mechanism of IPD in human skin. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. [Effect of Tribulus terrestris extract on melanocyte-stimulating hormone expression in mouse hair follicles].

    Science.gov (United States)

    Yang, Liu; Lu, Jian-wei; An, Jing; Jiang, Xuan

    2006-12-01

    To observe the effect of Tribulus terrestris extract on melanocyte stimulating hormone (MSH) expression in C57BL/6J mouse hair follicles, and investigate the role of Tribulus terrestris extract in activation, proliferation, epidermal migration of dormant hair follicle melanocytes. The aqueous extract of Tribulus terrestris was administered orally in specific pathogen-free C57BL/6J mouse at the daily dose equivalent to 1 g/1 kg in adult human, and the expression and distribution of MSH in the mouse hair follicles was observed with immunohistochemistry. The positivity rate of MSH expression in the hair follicle melanocytes was 75% in mice treated with the extract, significantly higher than the rate of only 18.75% in the control group (PTribulus terrestris can significantly increase MSH expression in the hair follicle melanocytes by activating tyrosinase activity and promoting melanocyte proliferation, melanine synthesis, and epidermal migration of dormant melanocytes.

  19. A case of chronic progressive radiation myelopathy with a CT myelogram simulating intramedullary tumor

    International Nuclear Information System (INIS)

    Kanemaru, Kazutomi; Kamo, Hisaki; Yamao, Satoshi; Akiguchi, Ichiro; Kameyama, Masakuni

    1985-01-01

    A 58-year-old man underwent a right middle lobectomy in June, 1975, for poorly differentiated adenocarcinoma of the lung. Postoperative irradiation was given to the hilus (6100 rads), and to the right supraclavicular area (6000 rads). In 1980, 60 months after completion of irradiation, the patient noticed weakness of his legs particularly on the left side. In 1982, he noticed the girdle sensation in the upper thoracic region, and paresthesia in the lateral side of the right thigh. In Dec 1983, micturition disturbance appeared, and gait disturbance progressed, he was admitted to the Kyoto University Hospital. Neurological examination revealed an incomplete left Brown-Sequard syndrome with diminution of pain and thermal sensation on the right lower limb, and weakness and spasticity particularly on the left lower limb. Conventional myelogram with CT myelogram showed spinal cord swelling from T-2 through T-5. No extramedullary lesion was found. Laminectomy was performed through T-1 to T-6. When the dura was opened, the cord was swollen and necrotic with a cyst formation. Microscopic examination of the thickened part of the cord showed necrosis and gliosis. The lesion was correspond to the cord segments exposed to the radiation, and a diagnosis of radiation myelopathy was made. Several cases of radiation myelopathy with definite swelling of the cord at myelography were reported, but myelography in these cases was performed at most within 11 months after the onset. In this case, myelography was performed three years after the onset, and revealed difinite swelling of the cord due to a cyst formation. (author)

  20. Case of chronic progressive radiation myelopathy with a CT myelogram simulating intramedullary tumor

    Energy Technology Data Exchange (ETDEWEB)

    Kanemaru, Kazutomi; Kamo, Hisaki; Yamao, Satoshi; Akiguchi, Ichiro; Kameyama, Masakuni

    1985-05-01

    A 58-year-old man underwent a right middle lobectomy in June, 1975, for poorly differentiated adenocarcinoma of the lung. Postoperative irradiation was given to the hilus (6100 rads), and to the right supraclavicular area (6000 rads). In 1980, 60 months after completion of irradiation, the patient noticed weakness of his legs particularly on the left side. In 1982, he noticed the girdle sensation in the upper thoracic region, and paresthesia in the lateral side of the right thigh. In Dec 1983, micturition disturbance appeared, and gait disturbance progressed, he was admitted to the Kyoto University Hospital. Neurological examination revealed an incomplete left Brown-Sequard syndrome with diminution of pain and thermal sensation on the right lower limb, and weakness and spasticity particularly on the left lower limb. Conventional myelogram with CT myelogram showed spinal cord swelling from T-2 through T-5. No extramedullary lesion was found. Laminectomy was performed through T-1 to T-6. When the dura was opened, the cord was swollen and necrotic with a cyst formation. Microscopic examination of the thickened part of the cord showed necrosis and gliosis. The lesion was correspond to the cord segments exposed to the radiation, and a diagnosis of radiation myelopathy was made. Several cases of radiation myelopathy with definite swelling of the cord at myelography were reported, but myelography in these cases was performed at most within 11 months after the onset. In this case, myelography was performed three years after the onset, and revealed difinite swelling of the cord due to a cyst formation. (author).

  1. Bimodal CD40/Fas-Dependent Crosstalk between iNKT Cells and Tumor-Associated Macrophages Impairs Prostate Cancer Progression.

    Science.gov (United States)

    Cortesi, Filippo; Delfanti, Gloria; Grilli, Andrea; Calcinotto, Arianna; Gorini, Francesca; Pucci, Ferdinando; Lucianò, Roberta; Grioni, Matteo; Recchia, Alessandra; Benigni, Fabio; Briganti, Alberto; Salonia, Andrea; De Palma, Michele; Bicciato, Silvio; Doglioni, Claudio; Bellone, Matteo; Casorati, Giulia; Dellabona, Paolo

    2018-03-13

    Heterotypic cellular and molecular interactions in the tumor microenvironment (TME) control cancer progression. Here, we show that CD1d-restricted invariant natural killer (iNKT) cells control prostate cancer (PCa) progression by sculpting the TME. In a mouse PCa model, iNKT cells restrained the pro-angiogenic and immunosuppressive capabilities of tumor-infiltrating immune cells by reducing pro-angiogenic TIE2 + , M2-like macrophages (TEMs), and sustaining pro-inflammatory M1-like macrophages. iNKT cells directly contacted macrophages in the PCa stroma, and iNKT cell transfer into tumor-bearing mice abated TEMs, delaying tumor progression. iNKT cells modulated macrophages through the cooperative engagement of CD1d, Fas, and CD40, which promoted selective killing of M2-like and survival of M1-like macrophages. Human PCa aggressiveness associate with reduced intra-tumoral iNKT cells, increased TEMs, and expression of pro-angiogenic genes, underscoring the clinical significance of this crosstalk. Therefore, iNKT cells may control PCa through mechanisms involving differential macrophage modulation, which may be harnessed for therapeutically reprogramming the TME. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Tumor Progression Locus 2 (Tpl2 Kinase as a Novel Therapeutic Target for Cancer: Double-Sided Effects of Tpl2 on Cancer

    Directory of Open Access Journals (Sweden)

    Hye Won Lee

    2015-02-01

    Full Text Available Tumor progression locus 2 (Tpl2 is a mitogen-activated protein kinase (MAPK kinase kinase (MAP3K that conveys various intra- and extra-cellular stimuli to effector proteins of cells provoking adequate adoptive responses. Recent studies have elucidated that Tpl2 is an indispensable signal transducer as an MAP3K family member in diverse signaling pathways that regulate cell proliferation, survival, and death. Since tumorigenesis results from dysregulation of cellular proliferation, differentiation, and apoptosis, Tpl2 participates in many decisive molecular processes of tumor development and progression. Moreover, Tpl2 is closely associated with cytokine release of inflammatory cells, which has crucial effects on not only tumor cells but also tumor microenvironments. These critical roles of Tpl2 in human cancers make it an attractive anti-cancer therapeutic target. However, Tpl2 contradictorily works as a tumor suppressor in some cancers. The double-sided effects of Tpl2 originate from the specific upstream and downstream signaling environment of each tumor, since Tpl2 interacts with various signaling components. This review summarizes recent studies concerning the possible roles of Tpl2 in human cancers and considers its possibility as a therapeutic target, against which novel anti-cancer agents could be developed.

  3. Ezrin and E-cadherin expression profile in cervical cytology: a prognostic marker for tumor progression in cervical cancer.

    Science.gov (United States)

    Zacapala-Gómez, Ana E; Navarro-Tito, Napoleón; Alarcón-Romero, Luz Del C; Ortuño-Pineda, Carlos; Illades-Aguiar, Berenice; Castañeda-Saucedo, Eduardo; Ortiz-Ortiz, Julio; Garibay-Cerdenares, Olga L; Jiménez-López, Marco A; Mendoza-Catalán, Miguel A

    2018-03-27

    Cervical cancer (CC) is the fourth cause of mortality by neoplasia in women worldwide. The use of immunomarkers is an alternative tool to complement currently used algorithms for detection of cancer, and to improve selection of therapeutic schemes. Aberrant expression of Ezrin and E-cadherin play an important role in tumor invasion. In this study we analyzed Ezrin and E-cadherin expression in liquid-based cervical cytology samples, and evaluated their potential use as prognostic immunomarkers. Immunocytochemical staining of Ezrin and E-cadherin was performed in cervical samples of 125 patients. The cytological or histological diagnostic was performed by Papanicolaou staining or H&E staining, respectively. HPV genotyping was determined using INNO-LIPA Genotyping Extra kit and the HPV physical status by in situ hybridization. Ezrin expression in HaCaT, HeLa and SiHa cell lines was determined by immunocytochemistry, immunofluorescence and Western blot. High Ezrin expression was observed in cervical cancer samples (70%), samples with multiple infection by HR-HPV (43%), and samples with integrated viral genome (47%). High Ezrin expression was associated with degree of SIL, viral genotype and physical status. In contrast, low E-cadherin expression was found in cervical cancer samples (95%), samples with multiple infection by HR-HPV/LR-HPV (87%) and integrated viral genome (72%). Low E-cadherin expression was associated with degree of SIL and viral genotype. Interestingly, Ezrin nuclear staining was associated with degree of SIL and viral genotype. High Ezrin expression, high percent of nuclear Ezrin and low E-cadherin expression behaved as risk factors for progression to HSIL and cervical cancer. Ezrin and E-cadherin expression profile in cervical cytology samples could be a potential prognostic marker, useful for identifying cervical lesions with a high-risk of progression to cervical cancer.

  4. Gene expression disorders of innate antibacterial signaling pathway in pancreatic cancer patients: implications for leukocyte dysfunction and tumor progression

    Science.gov (United States)

    Dąbrowska, Aleksandra; Lech, Gustaw; Słodkowski, Maciej; Słotwińska, Sylwia M.

    2014-01-01

    The study was carried out to investigate changes in gene expression of innate antibacterial signaling pathways in patients with pancreatic cancer. Expression of the following genes was measured in peripheral blood leukocytes of 55 patients with pancreatic adenocarcinoma using real-time polymerase chain reaction (RT-PCR): TLR4, NOD1, MyD88, TRAF6 and HMGB1. The levels of expression of TLR4, NOD1 and TRAF6 genes were significantly elevated (p = 0.007; p = 0.001 and p = 0.01, respectively), while MyD88 expression was markedly reduced (p = 0.0002), as compared to controls. Expression of TLR4 and NOD1 exceeded the normal level more than 3.5-fold and there was a significant correlation found between the expression of these genes (r = 0.558, p < 0.001). TLR4, NOD1 and MyD88 genes were expressed at a similar level both before and after surgery. No significant changes in the expression of HMGB1 gene were observed. The results of the study clearly indicate abnormal expression of genes belonging to innate antibacterial signaling pathways in peripheral blood leukocytes of patients with pancreatic cancer, which may lead to leukocyte dysfunction. Overexpression of TLR4, NOD1 and TRAF6 genes, and decreased MyD88 gene expression may contribute to chronic inflammation and tumor progression by up-regulation of the innate antibacterial response. The parameters tested are useful for monitoring innate immunity gene disorders and pancreatic cancer progression. PMID:26155170

  5. DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression.

    Science.gov (United States)

    Hampp, Stephanie; Kiessling, Tina; Buechle, Kerstin; Mansilla, Sabrina F; Thomale, Jürgen; Rall, Melanie; Ahn, Jinwoo; Pospiech, Helmut; Gottifredi, Vanesa; Wiesmüller, Lisa

    2016-07-26

    DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker-induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress.

  6. Canolol inhibits gastric tumors initiation and progression through COX-2/PGE2 pathway in K19-C2mE transgenic mice.

    Directory of Open Access Journals (Sweden)

    Donghui Cao

    Full Text Available 4-Vinyl-2, 6-dimethoxyphenol (canolol is an antioxidant phenolic compound extracted from crude canola oil. In current research, K19-C2mE transgenic mice, developing hyperplastic tumors spontaneously in the glandular stomach, were used to study the mechanisms involved in the anti-inflammation and anti-tumor effects of canolol. Tg mice receiving canolol diet had a reduced tumor incidence, to 41.2%, compared with Non-treatment Tg mice, 77.8% of which had gastric tumor (P=0.002. Besides that, the mean tumor diameter was decreased from 6.5 mm to 4.5 mm (P<0.001 after canolol administration. COX-2/PGE2 pathway is known to play pivotal role in inflammation-induced gastric tumorigenesis. The neutrophils and lymphocytes infiltration was suppressed significantly, and the mRNA levels of the proinflammatory cytokines COX-2, IL-1β and IL-12b were also downregulated in gastric mucosa. Additionally, immunohistochemical analysis showed that COX-2, EP2, Gαs and β-catenin, key factors involving in PGE2 signal transduction, were positive staining with higher H scores in Non-treatment Tg mice, while the expressions were suppressed significantly by 0.1% canolol (P<0.001. In addition, tumor-suppressor miR-7 was reactivated after canolol administration, and COX-2 was showed to be a functional target of miR-7 to suppress the tumor progression. In conclusion, canolol could inhibit the gastritis-related tumor initiation and progression, and the suppression effect was correlated with the blocking up of canonical COX-2/PGE2 signaling pathway and might be regulated by miR-7.

  7. Intake of high-fat diet stimulates the risk of ultraviolet radiation-induced skin tumors and malignant progression of papillomas to carcinoma in SKH-1 hairless mice

    Energy Technology Data Exchange (ETDEWEB)

    Vaid, Mudit; Singh, Tripti; Prasad, Ram [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Katiyar, Santosh K., E-mail: skatiyar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294 (United States)

    2014-01-01

    Previously, we showed that administration of a high-fat diet (HF-diet) to C57BL/6 mice exacerbates their response to short-term UVB radiation-induced inflammation in the skin. To explore the effects of an HF-diet on UVB-induced tumorigenesis, we have used the SKH-1 hairless mouse model in which the mice are exposed to UVB radiation (180 mJ/cm{sup 2}) three times a week for 24 weeks. The development of UVB-induced skin tumors was rapid and the tumor multiplicity and tumor size were significantly higher (P < 0.01–0.005) in the mice fed an HF-diet than the mice fed a control-diet (C-diet). Moreover, the malignant progression of UVB-induced papillomas to carcinomas was higher in HF-diet-fed mice. On analysis of tumors and tumor-uninvolved skin samples from the tumor-bearing mice, we found that administration of an HF-diet significantly enhanced the levels of UVB-induced expression of cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (P < 0.01), and PGE{sub 2} receptors, and activation of NF-κB in the UVB-exposed skin as well as in tumors. In addition the HF-diet enhanced the expression of proinflammatory cytokines, including tumor necrosis factor-α (P < 0.01), interleukin (IL)-1β (P < 0.01) and IL-6 (P < 0.05) in the UVB-exposed skin as well as in tumors. Western blot analysis revealed that HF-diet enhanced the levels of epidermal cell proliferation, phosphatidylinositol 3-kinase and phosphorylation of Akt at Ser{sup 473} in UVB-exposed skin and skin tumors. Collectively, these data demonstrate that the regular consumption of an HF-diet increases the risk of photocarcinogenesis in mice and that this is associated with enhanced expression of inflammatory mediators in the UVB-exposed skin and tumors. - Highlights: • Consumption of high-fat diet increases UVB-induced skin tumor development in mice. • Intake of high-fat diet stimulates progression of UV-induced papilloma to carcinoma. • Intake of high-fat diet enhances inflammation in UV-exposed skin • Regular

  8. A Unique Model System for Tumor Progression in GBM Comprising Two Developed Human Neuro-Epithelial Cell Lines with Differential Transforming Potential and Coexpressing Neuronal and Glial Markers

    Directory of Open Access Journals (Sweden)

    Anjali Shiras

    2003-11-01

    Full Text Available The molecular mechanisms involved in tumor progression from a low-grade astrocytoma to the most malignant glioblastoma multiforme (GBM have been hampered due to lack of suitable experimental models. We have established a model of tumor progression comprising of two cell lines derived from the same astrocytoma tumor with a set of features corresponding to low-grade glioma (as in HNGC-1 and high-grade GBM (as in HNGC-2. The HNGC-1 cell line is slowgrowing, contact-inhibited, nontumorigenic, and noninvasive, whereas HNGC-2 is a rapidly proliferating, anchorage-independent, highly tumorigenic, and invasive cell line. The proliferation of cell lines is independent of the addition of exogenous growth factors. Interestingly, the HNGC-2 cell line displays a near-haploid karyotype except for a disomy of chromosome 2. The two cell lines express the neuronal precursor and progenitor markers vimentin, nestin, MAP-2, and NFP160, as well as glial differentiation protein S100μ. The HNGC-1 cell line also expresses markers of mature neurons like Tuj1 and GFAP, an astrocytic differentiation marker, hence contributing toward a more morphologically differentiated phenotype with a propensity for neural differentiation in vitro. Additionally, overexpression of epidermal growth factor receptor and c-erbB2, and loss of fibronectin were observed only in the HNGC-2 cell line, implicating the significance of these pathways in tumor progression. This in vitro model system assumes importance in unraveling the cellular and molecular mechanisms in differentiation, transformation, and gliomagenesis.

  9. Integrin-Targeted Hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography for Imaging Tumor Progression and Early Response in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Xiaopeng Ma

    2017-01-01

    Full Text Available Integrins play an important role in tumor progression, invasion and metastasis. Therefore we aimed to evaluate a preclinical imaging approach applying ανβ3 integrin targeted hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography (FMT-XCT for monitoring tumor progression as well as early therapy response in a syngeneic murine Non-Small Cell Lung Cancer (NSCLC model. Lewis Lung Carcinomas were grown orthotopically in C57BL/6 J mice and imaged in-vivo using a ανβ3 targeted near-infrared fluorescence (NIRF probe. ανβ3-targeted FMT-XCT was able to track tumor progression. Cilengitide was able to substantially block the binding of the NIRF probe and suppress the imaging signal. Additionally mice were treated with an established chemotherapy regimen of Cisplatin and Bevacizumab or with a novel MEK inhibitor (Refametinib for 2 weeks. While μCT revealed only a moderate slowdown of tumor growth, ανβ3 dependent signal decreased significantly compared to non-treated mice already at one week post treatment. ανβ3 targeted imaging might therefore become a promising tool for assessment of early therapy response in the future.

  10. BRD7 inhibits the Warburg effect and tumor progression through inactivation of HIF1α/LDHA axis in breast cancer.

    Science.gov (United States)

    Niu, Weihong; Luo, Yanwei; Wang, Xinye; Zhou, Yao; Li, Hui; Wang, Heran; Fu, Yaojie; Liu, Shanshan; Yin, Shanghelin; Li, Jianglei; Zhao, Ran; Liu, Yukun; Fan, Songqing; Li, Zheng; Xiong, Wei; Li, Xiaoling; Li, Guiyuan; Ren, Caiping; Tan, Ming; Zhou, Ming

    2018-05-03

    The bromodomain-containing protein 7 (BRD7) was first identified as a tumor suppressor in nasopharyngeal carcinoma and has critical roles in cancer development and progression. However, the regulatory roles and mechanisms of BRD7 in cancer metabolism are still unknown. In this study, we demonstrated that BRD7 was lowly expressed in breast cancer tissues and was identified as a poor prognostic factor in breast cancer. Meanwhile, BRD7 could suppress cell proliferation, initiate cell apoptosis and reduce aerobic glycolysis, suggesting that BRD7 plays a tumor suppressive roles in breast cancer. Mechanistically, BRD7 could negatively regulate a critical glycolytic enzyme LDHA through directly interaction with its upstream transcription factor, HIF1α, facilitating degradation of HIF1α mediated by ubiquitin-proteasome pathway. Moreover, restoring the expression of LDHA in breast cancer cells could reverse the effect of BRD7 on aerobic glycolysis, cell proliferation, and tumor formation, as well as the expression of cell cycle and apopotosis related molecules such as cyclin D1, CDK4, P21, and c-PARP both in vitro and in vivo. Taken together, these results indicate that BRD7 acts as a tumor suppressor in breast cancer and represses the glycolysis and tumor progression through inactivation of HIF1α/LDHA transcription axis.

  11. A rare case of unilateral diffuse melanocytic proliferation

    Directory of Open Access Journals (Sweden)

    Guruprasad Ayachit

    2018-01-01

    Full Text Available A 67-year-old woman presented with metamorphopsia in the right eye. Leopard mottling was seen temporal to the fovea oculus dexter with corresponding hyper- and hypo-autofluorescent lesions on fundus autofluorescence. Spectral domain-optical coherence tomography revealed hyperreflective dots in the retinal pigment epithelium and choroid with subretinal fluid (SRF. Intravitreal bevacizumab was administered with which SRF resolved, albeit with increase in the areas of mottling. The patient was diagnosed to have metastatic ductal carcinoma of the right breast. It is important to bear in mind that the well-known entity of bilateral diffuse uveal melanocytic proliferation can rarely present unilaterally.

  12. The slaty mutation affects the morphology and maturation of melanosomes in the mouse melanocytes.

    Science.gov (United States)

    Hirobe, Tomohisa; Abe, Hiroyuki

    2006-10-01

    The slaty (Dct(slt)) mutation is known to reduce the activity of dopachrome tautomerase in melanocytes and to reduce the melanin content in skin, hairs and eyes. Although the melanosomes in slaty melanocytes are reported to be eumelanosome-like, detailed melanosome biogenesis is not well studied. To address this point, melanosomes in neonatal epidermal melanocytes from wild-type (Dct+/Dct+) mice at the slaty locus as well as its congenic mouse mutant (Dct(slt)/Dct(slt)) in serum-free primary culture were observed under the electron microscope. Wild-type melanocytes possessed exclusively elliptical melanosomes with internal longitudinal structures, whereas in mutant melanocytes, numerous spherical melanosomes with globular depositions of pigment and elliptical melanosomes as well as mixed type of the two melanosomes were observed. Mature stage IV melanosomes were greatly decreased in mutant melanocytes, whereas immature stage III melanosomes were more numerous than in wild-type melanocytes. These results suggest that the slaty mutation affects the morphology and maturation of melanosomes in mouse melanocytes.

  13. Heme oxygenase-1 expression protects melanocytes from stress-induced cell death: implications for vitiligo

    NARCIS (Netherlands)

    Elassiuty, Yasser E.; Klarquist, Jared; Speiser, Jodi; Yousef, Randa M.; El Refaee, Abdelaziz A.; Hunter, Nahla S.; Shaker, Olfat G.; Gundeti, Mohan; Nieuweboer-Krobotova, Ludmila; Caroline Le Poole, I.

    2011-01-01

    To study protection of melanocytes from stress-induced cell death by heme oxygenases during depigmentation and repigmentation in vitiligo, expression of isoforms 1 and 2 was studied in cultured control and patient melanocytes and normal skin explants exposed to UV or bleaching agent 4-TBP.

  14. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma.

    Science.gov (United States)

    Mazzocca, Antonio; Fransvea, Emilia; Dituri, Francesco; Lupo, Luigi; Antonaci, Salvatore; Giannelli, Gianluigi

    2010-02-01

    Tumor-stroma interactions in hepatocellular carcinoma (HCC) are of key importance to tumor progression. In this study, we show that HCC invasive cells produce high levels of connective tissue growth factor (CTGF) and generate tumors with a high stromal component in a xenograft model. A transforming growth factor beta (TGF-beta) receptor inhibitor, LY2109761, inhibited the synthesis and release of CTGF, as well as reducing the stromal component of the tumors. In addition, the TGF-beta-dependent down-regulation of CTGF diminished tumor growth, intravasation, and metastatic dissemination of HCC cells by inhibiting cancer-associated fibroblast proliferation. By contrast, noninvasive HCC cells were found to produce low levels of CTGF. Upon TGF-beta1 stimulation, noninvasive HCC cells form tumors with a high stromal content and CTGF expression, which is inhibited by treatment with LY2109761. In addition, the acquired intravasation and metastatic spread of noninvasive HCC cells after TGF-beta1 stimulation was blocked by LY2109761. LY2109761 interrupts the cross-talk between cancer cells and cancer-associated fibroblasts, leading to a significant reduction of HCC growth and dissemination. Interestingly, patients with high CTGF expression had poor prognosis, suggesting that treatment aimed at reducing TGF-beta-dependent CTGF expression may offer clinical benefits. Taken together, our preclinical results indicate that LY2109761 targets the cross-talk between HCC and the stroma and provide a rationale for future clinical trials.

  15. Oral melanocytic nevi: Report of two cases with immunohistochemical elaboration of their probable origin and maturation

    Directory of Open Access Journals (Sweden)

    Dipti Dutta

    2015-01-01

    Full Text Available Oral melanocytic nevi are localized developmental tissue malformations of nevus cells in the oral mucosa. Relatively rare in occurrence compared to their dermal counterparts, considerable debate exists in the literature related to their origin, development and maturation, and their relationship to oral melanocytes.We report two cases of oral melanocytic nevi with classical clinical presentation. The histopathology was consistent with the known patterns of oral melanocytic nevi. Special stains such as Masson Fontana, further substantiated the observation. S-100 and HMB-45 were applied to immunohistochemically elaborate the cell population. Interestingly two distinct cell populations were detected in the lesions. "Type A" cells in the center of the lesion were S-100 positive, indicating a neural origin and immaturity in development, while peripheral "type B" cells stained positive with HMB-45, indicating melanocytic origin and mature development.

  16. Denosumab treatment for progressive skull base giant cell tumor of bone in a 14 year old female - a case report and literature review.

    Science.gov (United States)

    Bardakhchyan, Samvel; Kager, Leo; Danielyan, Samvel; Avagyan, Armen; Karamyan, Nerses; Vardevanyan, Hovhannes; Mkhitaryan, Sergey; Papyan, Ruzanna; Zohrabyan, Davit; Safaryan, Liana; Sargsyan, Lilit; Harutyunyan, Lilit; Hakobyan, Lusine; Iskanyan, Samvel; Tamamyan, Gevorg

    2017-03-29

    Giant cell tumor of bone (GCT) is a rare primary bone tumor, which can metastasize and undergo malignant transformation. The standard treatment of GCT is surgery. In patients with unresectable or metastatic disease, additional therapeutic options are available. These include blocking of the receptor activator of NF-kappa B ligand (RANKL) signaling pathway, which plays a role in the pathogenesis of GCT of bone, via the anti-RANKL monoclonal antibody denosumab. Herein we report on a female teenager who presented in a very poor clinical condition (cachexia, diplopia, strabismus, dysphonia with palsy of cranial nerves V, VI, VIII, IX, X, XI and XII) due to progressive disease, after incomplete resection and adjuvant radiotherapy, of a GCT which affected the cervical spine (C1 and C2) as well as the skull base; and who had an impressive clinical response to denosumab therapy. To the best of our knowledge, this is the youngest patient ever reported with a skull base tumor treated with denosumab. In situations when surgery can be postponed and local aggressiveness of the tumor does not urge for acute surgical intervention, upfront use of denosumab in order to reduce the tumor size might be considered. Principally, the goal of denosumab therapy is to reduce tumor size as much as possible, with the ultimate goal to make local surgery (or as in our case re-surgery) amenable. However, improvement in quality of life, as demonstrated in our patient, is also an important aspect of such targeted therapies.

  17. TU-D-207B-01: A Prediction Model for Distinguishing Radiation Necrosis From Tumor Progression After Gamma Knife Radiosurgery Based On Radiomics Features From MR Images

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z [Central South University Xiangya Hospital, Changsha, Hunan (China); MD Anderson Cancer Center, Houston, TX (United States); Ho, A [University of Houston, Houston, TX (United States); Wang, X; Brown, P; Guha-Thakurta, N; Ferguson, S; Fave, X; Zhang, L; Mackin, D; Court, L; Li, J; Yang, J [MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To develop and validate a prediction model using radiomics features extracted from MR images to distinguish radiation necrosis from tumor progression for brain metastases treated with Gamma knife radiosurgery. Methods: The images used to develop the model were T1 post-contrast MR scans from 71 patients who had had pathologic confirmation of necrosis or progression; 1 lesion was identified per patient (17 necrosis and 54 progression). Radiomics features were extracted from 2 images at 2 time points per patient, both obtained prior to resection. Each lesion was manually contoured on each image, and 282 radiomics features were calculated for each lesion. The correlation for each radiomics feature between two time points was calculated within each group to identify a subset of features with distinct values between two groups. The delta of this subset of radiomics features, characterizing changes from the earlier time to the later one, was included as a covariate to build a prediction model using support vector machines with a cubic polynomial kernel function. The model was evaluated with a 10-fold cross-validation. Results: Forty radiomics features were selected based on consistent correlation values of approximately 0 for the necrosis group and >0.2 for the progression group. In performing the 10-fold cross-validation, we narrowed this number down to 11 delta radiomics features for the model. This 11-delta-feature model showed an overall prediction accuracy of 83.1%, with a true positive rate of 58.8% in predicting necrosis and 90.7% for predicting tumor progression. The area under the curve for the prediction model was 0.79. Conclusion: These delta radiomics features extracted from MR scans showed potential for distinguishing radiation necrosis from tumor progression. This tool may be a useful, noninvasive means of determining the status of an enlarging lesion after radiosurgery, aiding decision-making regarding surgical resection versus conservative medical

  18. TU-D-207B-01: A Prediction Model for Distinguishing Radiation Necrosis From Tumor Progression After Gamma Knife Radiosurgery Based On Radiomics Features From MR Images

    International Nuclear Information System (INIS)

    Zhang, Z; Ho, A; Wang, X; Brown, P; Guha-Thakurta, N; Ferguson, S; Fave, X; Zhang, L; Mackin, D; Court, L; Li, J; Yang, J

    2016-01-01

    Purpose: To develop and validate a prediction model using radiomics features extracted from MR images to distinguish radiation necrosis from tumor progression for brain metastases treated with Gamma knife radiosurgery. Methods: The images used to develop the model were T1 post-contrast MR scans from 71 patients who had had pathologic confirmation of necrosis or progression; 1 lesion was identified per patient (17 necrosis and 54 progression). Radiomics features were extracted from 2 images at 2 time points per patient, both obtained prior to resection. Each lesion was manually contoured on each image, and 282 radiomics features were calculated for each lesion. The correlation for each radiomics feature between two time points was calculated within each group to identify a subset of features with distinct values between two groups. The delta of this subset of radiomics features, characterizing changes from the earlier time to the later one, was included as a covariate to build a prediction model using support vector machines with a cubic polynomial kernel function. The model was evaluated with a 10-fold cross-validation. Results: Forty radiomics features were selected based on consistent correlation values of approximately 0 for the necrosis group and >0.2 for the progression group. In performing the 10-fold cross-validation, we narrowed this number down to 11 delta radiomics features for the model. This 11-delta-feature model showed an overall prediction accuracy of 83.1%, with a true positive rate of 58.8% in predicting necrosis and 90.7% for predicting tumor progression. The area under the curve for the prediction model was 0.79. Conclusion: These delta radiomics features extracted from MR scans showed potential for distinguishing radiation necrosis from tumor progression. This tool may be a useful, noninvasive means of determining the status of an enlarging lesion after radiosurgery, aiding decision-making regarding surgical resection versus conservative medical

  19. Melanoma transition is frequently accompanied by a loss of cytoglobin expression in melanocytes: a novel expression site of cytoglobin.

    Directory of Open Access Journals (Sweden)

    Yoshihiko Fujita

    Full Text Available The tissue distribution and function of hemoglobin or myoglobin are well known; however, a newly found cytoglobin (CYGB, which also belongs to the globin family, remains to be characterized. To assess its expression in human malignancies, we sought to screen a number of cell lines originated from many tissues using northern blotting and real time PCR techniques. Unexpectedly, we found that several, but not all, melanoma cell lines expressed CYGB mRNA and protein at much higher levels than cells of other origins. Melanocytes, the primary origin of melanoma, also expressed CYGB at a high level. To verify these observations, immunostaining and immunoblotting using anti-CYGB antibody were also performed. Bisulfite-modified genomic sequencing revealed that several melanoma cell lines that abrogated CYGB expression were found to be epigenetically regulated by hypermethylation in the promoter region of CYGB gene. The RNA interference-mediated knockdown of the CYGB transcript in CYGB expression-positive melanoma cell lines resulted in increased proliferation in vitro and in vivo. Flow cytometric analysis using 2'-, 7'-dichlorofluorescein diacetate (DCFH-DA, an indicator of reactive oxygen species (ROS, revealed that the cellular ROS level may be involved in the proliferative effect of CYGB. Thus, CYGB appears to play a tumor suppressive role as a ROS regulator, and its epigenetic silencing, as observed in CYGB expression-negative melanoma cell lines, might function as an alternative pathway in the melanocyte-to-melanoma transition.

  20. Melanocyte-secreted fibromodulin promotes an angiogenic microenvironment.

    Science.gov (United States)

    Adini, Irit; Ghosh, Kaustabh; Adini, Avner; Chi, Zai-Long; Yoshimura, Takeru; Benny, Ofra; Connor, Kip M; Rogers, Michael S; Bazinet, Lauren; Birsner, Amy E; Bielenberg, Diane R; D'Amato, Robert J

    2014-01-01

    Studies have established that pigmentation can provide strong, protective effects against certain human diseases. For example, angiogenesis-dependent diseases such as wet age-related macular degeneration and infantile hemangioma are more common in light-skinned individuals of mixed European descent than in African-Americans. Here we found that melanocytes from light-skinned humans and albino mice secrete high levels of fibromodulin (FMOD), which we determined to be a potent angiogenic factor. FMOD treatment stimulated angiogenesis in numerous in vivo systems, including laser-induced choroidal neovascularization, growth factor-induced corneal neovascularization, wound healing, and Matrigel plug assays. Additionally, FMOD enhanced vascular sprouting during normal retinal development. Deletion of Fmod in albino mice resulted in a marked reduction in the amount of neovascularization induced by retinal vein occlusion, corneal growth factor pellets, and Matrigel plugs. Our data implicate the melanocyte-secreted factor FMOD as a key regulator of angiogenesis and suggest an underlying mechanism for epidemiological differences between light-skinned individuals of mixed European descent and African-Americans. Furthermore, inhibition of FMOD in humans has potential as a therapeutic strategy for treating angiogenesis-dependent diseases.

  1. [Alpha-melanocyte-stimulating hormone. From bench to bedside].

    Science.gov (United States)

    Böhm, M; Luger, T A

    2010-06-01

    Alpha-melanocyte-stimulating hormone (alpha-MSH) is a tridecapeptide that is produced by the skin itself from the precursor proopiomelanocortin. It crucially mediates ultraviolet light-induced tanning after binding to melanocortin-1 receptors (MC-1R) expressed on the surface of epidermal melanocytes. The potent pigment-inducing and also cytoprotective actions of alpha-MSH are the rationale for the performance of first phase II clinical trials with Nle4-D-Phe7-alpha-MSH (NDP-alpha-MSH), a subcutaneously administered synthetic and superpotent alpha-MSH analogue, in patients with photodermatoses such as erythropoietic protoporphyria. Since alpha-MSH has shown promising anti-inflammatory and antifibrotic properties in numerous preclinical studies, it will be most interesting to evaluate these effects in further clinical pilot studies with NDP-alpha-MSH. In addition to alpha-MSH analogues, truncated tripeptides such as KDPT which do not bind to MC-1R but have sustained anti-inflammatory properties are currently emerging as another novel therapeutic strategy in dermatology.

  2. Characterizing and Targeting Bone Marrow-Derived Inflammatory Cells in Driving the Malignancy and Progression of Childhood Astrocytic Brain Tumors

    Science.gov (United States)

    2016-11-01

    tumors were monitored by bioluminescence. The quantification of bioluminescence based tumor growth. Figure 2-4. Immuno-staining of vascular ...marrow developed high-grade tumors, which had typical malignant features, including robust gadolinium enhancement on MRI, pseudopalisading necrosis , and...perfused with Rhodamine-Dextran. Upper scale bar, 50 µm. Lower panels are magnified views to highlight vascular permeability, scale bar, 20 µm

  3. . Modern concepts on carcinogenesis: the value of insufficiency of malignant cell elimination mechanisms in the tumor progression in case of neoplasia at different localizations

    Directory of Open Access Journals (Sweden)

    Chesnokova N.P.

    2016-03-01

    Full Text Available The article presents the review of contemporary concepts of tumor induction mechanisms applicable for neoplastic transformation, promotion and proliferation. The paper also contains an in-depth analysis of results of authors' own observations and study of immunological protection mechanisms of a significant number of patients diagnosed with oncopathologies of mammary and thyroid glands as well as adenocarcinoma of ascending colon. We have established common development patterns of T-cell and B-cell immunodeficiencies that are not influenced by location and proliferation of neoplastic tumors; the progress of such immunodeficincies, however, depends on regional metastasis development. Thus, we can conclude that insufficiency of immunological defense mechanisms leading to disruption of maligned cell elimination process is the primary pathogenic factor for metastatic tumor development.

  4. Contribution of Interstitial Deletion of 21q22.2-3 per se to Prostate Cancer Progression in Tumors Harboring TMPRSS2-ERG Translocations

    Science.gov (United States)

    2015-12-01

    harboring TMPRSS2- ERG translocations PRINCIPAL INVESTIGATOR: Yan Dong CONTRACTING ORGANIZATION: Tulane University New Orleans, LA 70112...0485 to prostate cancer progression in tumors harboring TMPRSS2- ERG translocations 5b. GRANT NUMBER W81XWH-14-1-0485 5c. PROGRAM ELEMENT NUMBER...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT TMPRSS2- ERG gene fusions are present in close to 50% of human prostate cancers. Approximately half of the

  5. Enhancement in blood-tumor barrier permeability and delivery of liposomal doxorubicin using focused ultrasound and microbubbles: evaluation during tumor progression in a rat glioma model

    Science.gov (United States)

    Aryal, Muna; Park, Juyoung; Vykhodtseva, Natalia; Zhang, Yong-Zhi; McDannold, Nathan

    2015-03-01

    Effective drug delivery to brain tumors is often challenging because of the heterogeneous permeability of the ‘blood tumor barrier’ (BTB) along with other factors such as increased interstitial pressure and drug efflux pumps. Focused ultrasound (FUS) combined with microbubbles can enhance the permeability of the BTB in brain tumors, as well as the blood-brain barrier in the surrounding tissue. In this study, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to characterize the FUS-induced permeability changes of the BTB in a rat glioma model at different times after implantation. 9L gliosarcoma cells were implanted in both hemispheres in male rats. At day 9, 14, or 17 days after implantation, FUS-induced BTB disruption using 690 kHz ultrasound and definity microbubbles was performed in one tumor in each animal. Before FUS, liposomal doxorubicin was administered at a dose of 5.67 mg kg-1. This chemotherapy agent was previously shown to improve survival in animal glioma models. The transfer coefficient Ktrans describing extravasation of the MRI contrast agent Gd-DTPA was measured via DCE-MRI before and after sonication. We found that tumor doxorubicin concentrations increased monotonically (823  ±  600, 1817  ±  732 and 2432  ±  448 ng g-1) in the control tumors at 9, 14 and 17 d. With FUS-induced BTB disruption, the doxorubicin concentrations were enhanced significantly (P benefit from FUS-induced drug enhancement. Corresponding enhancements in Ktrans were found to be variable in large/late-stage tumors and not significantly different than controls, perhaps reflecting the size mismatch between the liposomal drug (~100 nm) and Gd-DTPA (molecular weight: 938 Da; hydrodynamic diameter: ≃2 nm). It may be necessary to use a larger MRI contrast agent to effectively evaluate the sonication-induced enhanced permeabilization in large/late-stage tumors when a large drug carrier such as a liposome is used.

  6. LACTB, a novel epigenetic silenced tumor suppressor, inhibits colorectal cancer progression by attenuating MDM2-mediated p53 ubiquitination and degradation.

    Science.gov (United States)

    Zeng, Kaixuan; Chen, Xiaoxiang; Hu, Xiuxiu; Liu, Xiangxiang; Xu, Tao; Sun, Huiling; Pan, Yuqin; He, Bangshun; Wang, Shukui

    2018-06-13

    Colorectal cancer (CRC) is one of the most common aggressive malignancies. Like other solid tumors, inactivation of tumor suppressor genes and activation of oncogenes occur during CRC development and progression. Recently, a novel tumor suppressor, LACTB, was proposed to inhibit tumor progression, but the functional and clinical significance of this tumor suppressor in CRC remains unexplored. Herein, we found LACTB was significantly downregulated in CRC due to promoter methylation and histone deacetylation, which was associated with metastasis and advanced clinical stage. CRC patients with low LACTB expression had poorer overall survival and LACTB also determined to be an independent prognostic factor for poorer outcome. Ectopic expression of LACTB suppressed CRC cells proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and inhibited CRC growth and metastasis in vivo, while knockout of LACTB by CRISPR/Cas9 gene editing technique resulted in an opposite phenotype. Interestingly, LACTB could exert antitumorigenic effect only in HCT116 and HCT8 cells harboring wild-type TP53, but not in HT29 and SW480 cells harboring mutant TP53 or HCT116 p53 -/- cells. Mechanistic studies demonstrated that LACTB could directly bind to the C terminus of p53 to inhibit p53 degradation by preventing MDM2 from interacting with p53. Moreover, ablation of p53 attenuated the antitumorigenic effects of LACTB overexpression in CRC. Collectively, our findings successfully demonstrate for the first time that LACTB is a novel epigenetic silenced tumor suppressor through modulating the stability of p53, supporting the pursuit of LACTB as a potential therapeutic target for CRC.

  7. Research in radiobiology: Final report of work in progress in immunobiology of experimental host-tumor relationships

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-15

    Our work on the immunobiology of tumors induced in normal mice by non-ionizing radiation and chemical carcinogens has previously demonstrated a correlation between MHC molecule expression and the immunogenicity of tumors in a transplanted syngeneic host. Such that immunogenic or regressive tumors were found to demonstrate higher constitutive or inducible levels of MHC expression, while most virulent, aggressive tumors exhibited a low level of MHC Class I expression. We attributed much of the control of MHC molecule expression by antigen-bearing tumors and normal cells to the immunological status of the host since the host must provide the appropriate stimulus to enhance MHC antigen expression by the invading tumor. Our results with UVR-induced tumors suggested that a significant role is played by the T-cell lymphokine, {gamma}-interferon ({gamma}IFN), in the modulation of MHC molecule expression in vivo. Virulent tumors, induced by boneseeking radionuclides, may be refractory to {gamma}IFN stimulation of MHC molecule expression. It is also possible that certain tumors might be fully responsive to the Class I modulatory influences by {gamma}IFN, but exhibit a reduced capacity to stimulate the synthesis of this lymphokine by host T cells. We present experiments designed to : Describe the virulence, latency period, and transplantation characteristics of {sup 238}PU, {sup 24l}Am, and {sup 228}Th tumors arising as osteogenic sarcomas and hepatic carcinomas, to determine the relationship between inducible expression of MHC Class I molecules by {gamma}IFN and in vivo immunogenicity of these radioisotype-induced tumors, and to elucidate any molecular mechanisms responsible for a lack of responsiveness to a {gamma}IFN failure by the host to induce host {gamma}IFN production.

  8. Research in radiobiology: Final report of work in progress in immunobiology of experimental host-tumor relationships

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-15

    Our work on the immunobiology of tumors induced in normal mice by non-ionizing radiation and chemical carcinogens has previously demonstrated a correlation between MHC molecule expression and the immunogenicity of tumors in a transplanted syngeneic host. Such that immunogenic or regressive tumors were found to demonstrate higher constitutive or inducible levels of MHC expression, while most virulent, aggressive tumors exhibited a low level of MHC Class I expression. We attributed much of the control of MHC molecule expression by antigen-bearing tumors and normal cells to the immunological status of the host since the host must provide the appropriate stimulus to enhance MHC antigen expression by the invading tumor. Our results with UVR-induced tumors suggested that a significant role is played by the T-cell lymphokine, [gamma]-interferon ([gamma]IFN), in the modulation of MHC molecule expression in vivo. Virulent tumors, induced by boneseeking radionuclides, may be refractory to [gamma]IFN stimulation of MHC molecule expression. It is also possible that certain tumors might be fully responsive to the Class I modulatory influences by [gamma]IFN, but exhibit a reduced capacity to stimulate the synthesis of this lymphokine by host T cells. We present experiments designed to : Describe the virulence, latency period, and transplantation characteristics of [sup 238]PU, [sup 24l]Am, and [sup 228]Th tumors arising as osteogenic sarcomas and hepatic carcinomas, to determine the relationship between inducible expression of MHC Class I molecules by [gamma]IFN and in vivo immunogenicity of these radioisotype-induced tumors, and to elucidate any molecular mechanisms responsible for a lack of responsiveness to a [gamma]IFN failure by the host to induce host [gamma]IFN production.

  9. Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway

    Directory of Open Access Journals (Sweden)

    Douglas Blackiston

    2011-01-01

    Understanding the mechanisms that coordinate stem cell behavior within the host is a high priority for developmental biology, regenerative medicine and oncology. Endogenous ion currents and voltage gradients function alongside biochemical cues during pattern formation and tumor suppression, but it is not known whether bioelectrical signals are involved in the control of stem cell progeny in vivo. We studied Xenopus laevis neural crest, an embryonic stem cell population that gives rise to many cell types, including melanocytes, and contributes to the morphogenesis of the face, heart and other complex structures. To investigate how depolarization of transmembrane potential of cells in the neural crest’s environment influences its function in vivo, we manipulated the activity of the native glycine receptor chloride channel (GlyCl. Molecular-genetic depolarization of a sparse, widely distributed set of GlyCl-expressing cells non-cell-autonomously induces a neoplastic-like phenotype in melanocytes: they overproliferate, acquire an arborized cell shape and migrate inappropriately, colonizing numerous tissues in a metalloprotease-dependent fashion. A similar effect was observed in human melanocytes in culture. Depolarization of GlyCl-expressing cells induces these drastic changes in melanocyte behavior via a serotonin-transporter-dependent increase of extracellular serotonin (5-HT. These data reveal GlyCl as a molecular marker of a sparse and heretofore unknown cell population with the ability to specifically instruct neural crest derivatives, suggest transmembrane potential as a tractable signaling modality by which somatic cells can control stem cell behavior at considerable distance, identify a new biophysical aspect of the environment that confers a neoplastic-like phenotype upon stem cell progeny, reveal a pre-neural role for serotonin and its transporter, and suggest a novel strategy for manipulating stem cell behavior.

  10. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer

    NARCIS (Netherlands)

    Cohen, Steven J.; Punt, Cornelis J. A.; Iannotti, Nicholas; Saidman, Bruce H.; Sabbath, Kert D.; Gabrail, Nashat Y.; Picus, Joel; Morse, Michael; Mitchell, Edith; Miller, M. Craig; Doyle, Gerald V.; Tissing, Henk; Terstappen, Leon W. M. M.; Meropol, Neal J.

    2008-01-01

    As treatment options expand for metastatic colorectal cancer (mCRC), a blood marker with a prognostic and predictive role could guide treatment. We tested the hypothesis that circulating tumor cells (CTCs) could predict clinical outcome in patients with mCRC. In a prospective multicenter study, CTCs

  11. YY1 regulates melanocyte development and function by cooperating with MITF.

    Directory of Open Access Journals (Sweden)

    Juying Li

    Full Text Available Studies of coat color mutants have greatly contributed to the discovery of genes that regulate melanocyte development and function. Here, we generated Yy1 conditional knockout mice in the melanocyte-lineage and observed profound melanocyte deficiency and premature gray hair, similar to the loss of melanocytes in human piebaldism and Waardenburg syndrome. Although YY1 is a ubiquitous transcription factor, YY1 interacts with M-MITF, the Waardenburg Syndrome IIA gene and a master transcriptional regulator of melanocytes. YY1 cooperates with M-MITF in regulating the expression of piebaldism gene KIT and multiple additional pigmentation genes. Moreover, ChIP-seq identified genome-wide YY1 targets in the melanocyte lineage. These studies mechanistically link genes implicated in human conditions of melanocyte deficiency and reveal how a ubiquitous factor (YY1 gains lineage-specific functions by co-regulating gene expression with a lineage-restricted factor (M-MITF-a general mechanism which may confer tissue-specific gene expression in multiple lineages.

  12. Protective Effect of HemoHIM on Epidermal Melanocytes in Ultraviolet-B irradiated Mice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae June [Korea Institute of Radiological and Medical Science, Seoul (Korea, Republic of); Kim, Jong Choon; Moon, Chang Jong; Kim, Sung Ho [Chonnam National University, Gwangju (Korea, Republic of); Jung, U Hee; Park, Hae Ran; Jo, Sung Kee [Jeongeup Campus of Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Jang, Jong Sik; Kim, Tae Hwan [Kyungpook National University, Daegu (Korea, Republic of)

    2011-06-15

    We induced the activation of melanocytes in the epidermis of C57BL/6 mice by ultraviolet-B (UV-B) irradiation, and observed the effect of an herbal preparation (HemoHIM, HH) on the formation, and decrease of UV-B-induced epidermal melanocytes. C57BL/6 mice were irradiated by UV-B 80 mJ:cm{sup -2} (0.5 mW:sec{sup -1}) daily for 7 days, and HH was intraperitoneally, orally or topically applied pre- or post-irradiation. For the estimation of change of epidermal melanocytes, light microscopic observation with dihydroxyphenylalanine (DOPA) stain was performed. Split epidermal sheets prepared from the ear of untreated mice exhibited 13∼15 melanocytes:mm{sup -2}, and one week after UV irradiation, the applied areas showed an increased number of strongly DOPA-positive melanocytes with stout dendrites. But intraperitoneal, oral or topical treatment with HH before each irradiation interrupted UV-B-induced pigmentation and resulted in a marked reduction in the number of epidermal melanocytes as compared to the number found in UV-B-irradiated, untreated control skin. The number and size of DOPA-positive epidermal melanocytes were also significantly decreased in intraperitoneally injected or topically applicated group after irradiation with HH at 3rd and 6th weeks after irradiation. The present study suggests the HH as inhibitor of UV-B-induced pigmentation, and depigmenting agent.

  13. Melanocyte pigmentation inversely correlates with MCP-1 production and angiogenesis-inducing potential.

    Science.gov (United States)

    Adini, Irit; Adini, Avner; Bazinet, Lauren; Watnick, Randolph S; Bielenberg, Diane R; D'Amato, Robert J

    2015-02-01

    The incidence of certain angiogenesis-dependent diseases is higher in Caucasians than in African Americans. Angiogenesis is amplified in wound healing and cornea models in albino C57 mice compared with black C57 mice. Moreover, mouse and human melanocytes with low pigmentation stimulate endothelial cell (EC) proliferation and migration in vitro more than melanocytes with high pigmentation. This effect is due, in part, to the secretion of an angiogenic protein called fibromodulin (FMOD) from lowly pigmented melanocytes. Herein, we expand upon the mechanism contributing to increased angiogenesis in lighter skin and report that monocyte chemotactic protein-1 (MCP-1) is secreted by nonpigmented mouse melanocytes by 5- to 10-fold more than pigmented melanocytes. MCP-1 protein stimulates EC proliferation and migration in vitro and angiogenesis in vivo. Mechanistic studies determine that FMOD is upstream of MCP-1 and promotes its secretion from both melanocytes and activated ECs via stimulation of NF-κB activity. Mice injected with FMOD-neutralizing antibodies show 2.3-fold decreased levels of circulating MCP-1. Human studies confirmed that, on average, Caucasians have 2-fold higher serum levels of MCP-1 than African Americans. Taken together, this study implicates the FMOD/MCP-1 pathway in the regulation of angiogenesis by local melanocytes and suggests that melanogenic activity may protect against aberrant angiogenic diseases. © FASEB.

  14. PREFERENTIAL SECRETION OF INDUCIBLE HSP70 BY VITILIGO MELANOCYTES UNDER STRESS

    Science.gov (United States)

    Mosenson, Jeffrey A.; Flood, Kelsey; Klarquist, Jared; Eby, Jonathan M.; Koshoffer, Amy; Boissy, Raymond E.; Overbeck, Andreas; C.Tung, Rebecca; Poole, I. Caroline Le

    2014-01-01

    SUMMARY Inducible HSP70 (HSP70i) chaperones peptides from stressed cells, protecting them from apoptosis. Upon extracellular release, HSP70i serves an adjuvant function, enhancing immune responses to bound peptides. We questioned whether HSP70i differentially protects control and vitiligo melanocytes from stress and subsequent immune responses. We compared expression of HSP70i in skin samples, evaluated the viability of primary vitiligo and control melanocytes exposed to bleaching phenols, and measured secreted HSP70i. We determined whether HSP70i traffics to melanosomes to contact immunogenic proteins by cell fractionation, western blotting, electron microscopy and confocal microscopy. Viability of vitiligo and control melanocytes was equally affected under stress. However, vitiligo melanocytes secreted increased amounts of HSP70i in response to MBEH, corroborating with aberrant HSP70i expression in patient skin. Intracellular HSP70i colocalized with melanosomes, and more so in response to MBEH in vitiligo melanocytes. Thus whereas either agent is cytotoxic to melanocytes, MBEH preferentially induces immune responses to melanocytes. PMID:24354861

  15. Ocular Albinism Type 1 Regulates Melanogenesis in Mouse Melanocytes

    Directory of Open Access Journals (Sweden)

    Tianzhi Chen

    2016-09-01

    Full Text Available To investigate whether ocular albinism type 1 (OA1 is differentially expressed in the skin of mice with different coat colors and to determine its correlation with coat color establishment in mouse, the expression patterns and tissue distribution characterization of OA1 in the skin of mice with different coat colors were qualitatively and quantitatively analyzed by real-time quantitative PCR (qRT-PCR, immunofluorescence staining and Western blot. The qRT-PCR analysis revealed that OA1 mRNA was expressed in all mice skin samples tested, with the highest expression level in brown skin, a moderate expression level in black skin and the lowest expression level in gray skin. Positive OA1 protein bands were also detected in all skin samples by Western blot analysis. The relative expression levels of OA1 protein in both black and brown skin were significantly higher than that in gray skin, but there was no significant difference between black and brown mice. Immunofluorescence assays revealed that OA1 was mainly expressed in the hair follicle matrix, the inner and outer root sheath in the skin tissues with different coat colors. To get further insight into the important role of OA1 in the melanocytes’ pigmentation, we transfected the OA1 into mouse melanocytes and then detected the relative expression levels of pigmentation-related gene. Simultaneously, we tested the melanin content of melanocytes. As a result, the overexpression of OA1 significantly increased the expression levels of microphthalmia-associated transcription factor (MITF, tyrosinase (TYR, tyrosinase-related protein 1 (TRP1 and premelanosome protein (PMEL. However, the tyrosinase-related protein 2 (TRP2 level was attenuated. By contrast, the level of glycoprotein non-metastatic melanoma protein b (GPNMB was unaffected by OA1 overexpression. Furthermore, we observed a significant increase in melanin content in mouse melanocyte transfected OA1. Therefore, we propose that OA1 may

  16. Microphthalmia-associated transcription factor as the molecular target of cadmium toxicity in human melanocytes

    International Nuclear Information System (INIS)

    Chantarawong, Wipa; Takeda, Kazuhisa; Sangartit, Weerapon; Yoshizawa, Miki; Pradermwong, Kantimanee; Shibahara, Shigeki

    2014-01-01

    Highlights: • In human melanocytes, cadmium decreases the expression of MITF-M and tyrosinase and their mRNAs. • In human melanoma cells, cadmium decreases the expression of MITF-M protein and tyrosinase mRNA. • Expression of MITF-H is less sensitive to cadmium toxicity in melanocyte-linage cells. • Cadmium does not decrease the expression of MITF-H in retinal pigment epithelial cells. • MITF-M is the molecular target of cadmium toxicity in melanocytes. - Abstract: Dietary intake of cadmium is inevitable, causing age-related increase in cadmium accumulation in many organs, including hair, choroid and retinal pigment epithelium (RPE). Cadmium has been implicated in the pathogenesis of hearing loss and macular degeneration. The functions of cochlea and retina are maintained by melanocytes and RPE, respectively, and the differentiation of these pigment cells is regulated by microphthalmia-associated transcription factor (MITF). In the present study, we explored the potential toxicity of cadmium in the cochlea and retina by using cultured human melanocytes and human RPE cell lines. MITF consists of multiple isoforms, including melanocyte-specific MITF-M and widely expressed MITF-H. Levels of MITF-M protein and its mRNA in human epidermal melanocytes and HMV-II melanoma cells were decreased significantly by cadmium. In parallel with the MITF reduction, mRNA levels of tyrosinase, the key enzyme of melanin biosynthesis that is regulated by MITF-M, were also decreased. In RPE cells, however, the levels of total MITF protein, constituting mainly MITF-H, were not decreased by cadmium. We thus identify MITF-M as the molecular target of cadmium toxicity in melanocytes, thereby accounting for the increased risk of disability from melanocyte malfunction, such as hearing and vision loss among people with elevated cadmium exposure

  17. Population-Based Analysis of Histologically Confirmed Melanocytic Proliferations Using Natural Language Processing.

    Science.gov (United States)

    Lott, Jason P; Boudreau, Denise M; Barnhill, Ray L; Weinstock, Martin A; Knopp, Eleanor; Piepkorn, Michael W; Elder, David E; Knezevich, Steven R; Baer, Andrew; Tosteson, Anna N A; Elmore, Joann G

    2018-01-01

    Population-based information on the distribution of histologic diagnoses associated with skin biopsies is unknown. Electronic medical records (EMRs) enable automated extraction of pathology report data to improve our epidemiologic understanding of skin biopsy outcomes, specifically those of melanocytic origin. To determine population-based frequencies and distribution of histologically confirmed melanocytic lesions. A natural language processing (NLP)-based analysis of EMR pathology reports of adult patients who underwent skin biopsies at a large integrated health care delivery system in the US Pacific Northwest from January 1, 2007, through December 31, 2012. Skin biopsy procedure. The primary outcome was histopathologic diagnosis, obtained using an NLP-based system to process EMR pathology reports. We determined the percentage of diagnoses classified as melanocytic vs nonmelanocytic lesions. Diagnoses classified as melanocytic were further subclassified using the Melanocytic Pathology Assessment Tool and Hierarchy for Diagnosis (MPATH-Dx) reporting schema into the following categories: class I (nevi and other benign proliferations such as mildly dysplastic lesions typically requiring no further treatment), class II (moderately dysplastic and other low-risk lesions that may merit narrow reexcision with skin biopsies, performed on 47 529 patients, were examined. Nearly 1 in 4 skin biopsies were of melanocytic lesions (23%; n = 18 715), which were distributed according to MPATH-Dx categories as follows: class I, 83.1% (n = 15 558); class II, 8.3% (n = 1548); class III, 4.5% (n = 842); class IV, 2.2% (n = 405); and class V, 1.9% (n = 362). Approximately one-quarter of skin biopsies resulted in diagnoses of melanocytic proliferations. These data provide the first population-based estimates across the spectrum of melanocytic lesions ranging from benign through dysplastic to malignant. These results may serve as a foundation for future

  18. Microphthalmia-associated transcription factor as the molecular target of cadmium toxicity in human melanocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chantarawong, Wipa [Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai (Japan); Inter Departmental Multidisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok (Thailand); Takeda, Kazuhisa; Sangartit, Weerapon; Yoshizawa, Miki [Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai (Japan); Pradermwong, Kantimanee [Department of Zoology, Faculty of Science, Kasetsart University, Bangkok (Thailand); Shibahara, Shigeki, E-mail: shibahar@med.tohoku.ac.jp [Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai (Japan)

    2014-11-28

    Highlights: • In human melanocytes, cadmium decreases the expression of MITF-M and tyrosinase and their mRNAs. • In human melanoma cells, cadmium decreases the expression of MITF-M protein and tyrosinase mRNA. • Expression of MITF-H is less sensitive to cadmium toxicity in melanocyte-linage cells. • Cadmium does not decrease the expression of MITF-H in retinal pigment epithelial cells. • MITF-M is the molecular target of cadmium toxicity in melanocytes. - Abstract: Dietary intake of cadmium is inevitable, causing age-related increase in cadmium accumulation in many organs, including hair, choroid and retinal pigment epithelium (RPE). Cadmium has been implicated in the pathogenesis of hearing loss and macular degeneration. The functions of cochlea and retina are maintained by melanocytes and RPE, respectively, and the differentiation of these pigment cells is regulated by microphthalmia-associated transcription factor (MITF). In the present study, we explored the potential toxicity of cadmium in the cochlea and retina by using cultured human melanocytes and human RPE cell lines. MITF consists of multiple isoforms, including melanocyte-specific MITF-M and widely expressed MITF-H. Levels of MITF-M protein and its mRNA in human epidermal melanocytes and HMV-II melanoma cells were decreased significantly by cadmium. In parallel with the MITF reduction, mRNA levels of tyrosinase, the key enzyme of melanin biosynthesis that is regulated by MITF-M, were also decreased. In RPE cells, however, the levels of total MITF protein, constituting mainly MITF-H, were not decreased by cadmium. We thus identify MITF-M as the molecular target of cadmium toxicity in melanocytes, thereby accounting for the increased risk of disability from melanocyte malfunction, such as hearing and vision loss among people with elevated cadmium exposure.

  19. The relationship between Na+/H+ exchanger expression and tyrosinase activity in human melanocytes

    International Nuclear Information System (INIS)

    Smith, Dustin R.; Spaulding, Deborah T.; Glenn, Hayden M.; Fuller, Bryan B.

    2004-01-01

    The activity of melanosome-associated tyrosinase in human melanocytes differs based on racial skin type. In melanocytes from Black skin, tyrosinase activity is high while in White melanocytes the activity of the enzyme is low. Recent studies suggest that low tyrosinase activity in White melanocytes may be due to an acidic pH environment within the melanosome. Because sodium/hydrogen (Na + /H + ) exchangers (NHEs) are known to regulate intracellular pH, melanocytes were treated with NHE inhibitors to determine what effect this inhibition might have on tyrosinase activity. Treatment of Black melanocytes with ethyl-isopropyl amiloride (EIPA) caused a rapid dose-dependent inhibition of tyrosinase activity. This inhibition was not due to either direct enzyme inhibition or to a decrease in tyrosinase abundance. In contrast, treatment of White melanocytes with EIPA, cimetidine, or clonidine resulted in little inhibition of tyrosinase activity. Reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis showed that both Black and White melanocytes expressed mRNA and protein for NHE-1, NHE-3, NHE-5, NHE-6, and NHE-7. Immunohistochemical analysis showed that NHE-7 and NHE-3 co-localized with the melanosomal protein, Tyrosinase Related Protein-1 (TRP-1). In addition, the vesicular proton pump, vesicular ATPase (V-ATPase), was found to be present in both White and Black melanosomes, indicating that organelles from both racial skin types are capable of being acidified. The results suggest that one or more NHEs may help regulate melanosome pH and tyrosinase activity in human melanocytes

  20. Expression of cytosolic NADP(+)-dependent isocitrate dehydrogenase in melanocytes and its role as an antioxidant.

    Science.gov (United States)

    Kim, Ji Young; Shin, Jae Yong; Kim, Miri; Hann, Seung-Kyung; Oh, Sang Ho

    2012-02-01

    Cytosolic NADP(+)-dependent ICDH (IDPc) has an antioxidant effect as a supplier of NADPH to the cytosol, which is needed for the production of glutathione. To evaluate the expression of IDPc in melanocytes and to elucidate its role as an antioxidant. The knock-down of IDPc expression in immortalized mouse melanocyte cell lines (melan-a) was performed using the short interfering RNA (siRNA)-targeted gene silencing method. After confirming the silencing of IDPc expression with mRNA and protein levels, viability, apoptosis and necrosis, as well as ROS production in IDPc-silenced melanocytes were monitored under conditions of oxidative stress and non-stress. Also, the ratio of oxidized glutathione to total glutathione was examined, and whether the addition of glutathione recovered cell viability, decreased by oxidant stress, was checked. The expression of IDPc in both primary human melanocytes and melan-a cells was confirmed by Western blot and RT-PCR. The silencing of IDPc expression by transfecting IDPc siRNA in melan-a cells was observed by Western blotting and real-time RT-PCR. IDPc knock-down cells showed significantly decreased cell viability and an increased number of cells under apoptosis and necrosis. IDPc siRNA-treated melanocytes demonstrated a higher intensity of DCFDA after the addition of H(2)O(2) compared with scrambled siRNA-treated melanocytes, and a lower ratio of reduced glutathione to oxidized glutathione were observed in IDPc siRNA transfected melanocytes. In addition, the addition of glutathione recovered cell viability, which was previously decreased after incubation with H(2)O(2). This study suggests that decreased IDPc expression renders melanocytes more vulnerable to oxidative stress, and IDPc plays an important antioxidant function in melanocytes. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Inhibition of systemic inflammation by central action of the neuropeptide alpha-melanocyte- stimulating hormone.

    Science.gov (United States)

    Delgado Hernàndez, R; Demitri, M T; Carlin, A; Meazza, C; Villa, P; Ghezzi, P; Lipton, J M; Catania, A

    1999-01-01

    The neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) reduces fever and acute inflammation in the skin when administered centrally. The aim of the present research was to determine whether central alpha-MSH can also reduce signs of systemic inflammation in mice with endotoxemia. Increases in serum tumor necrosis factor-alpha and nitric oxide, induced by intraperitoneal administration of endotoxin, were modulated by central injection of a small concentration of alpha-MSH. Inducible nitric oxide synthase (iNOS) activity and iNOS mRNA in lungs and liver were likewise modulated by central alpha-MSH. Lung myeloperoxidase activity, a marker of neutrophil infiltration, was increased in endotoxemic mice; the increase was significantly less in lungs of mice treated with central alpha-MSH. Intraperitoneal administration of the small dose of alpha-MSH that was effective centrally did not alter any of the markers of inflammation. In experiments using immunoneutralization of central alpha-MSH, we tested the idea that endogenous peptide induced within the brain during systemic inflammation modulates host responses to endotoxic challenge in peripheral tissues. The data showed that proinflammatory agents induced by endotoxin in the circulation, lungs, and liver were significantly greater after blockade of central alpha-MSH. The results suggest that anti-inflammatory influences of neural origin that are triggered by alpha-MSH could be used to treat systemic inflammation.

  2. Tumors initiated by constitutive Cdk2 activation exhibit transforming growth factor beta resistance and acquire paracrine mitogenic stimulation during progression

    DEFF Research Database (Denmark)

    Corsino, P.; Davis, B.; Law, M.

    2007-01-01

    ) promoter results in mammary gland hyperplasia and fibrosis, and mammary tumors. Cell lines isolated from MMTV-cyclin D1-Cdk2 (MMTV-D1K2) tumors exhibit Rb and p130 hyperphosphorylation and up-regulation of the protein products of E2F-dependent genes. These results suggest that cyclin D1/Cdk2 complexes may...... sites. Together, these results suggest that deregulation of the Cdk/Rb/E2F axis reprograms mammary epithelial cells to initiate a paracrine loop with tumor-associated fibroblasts involving TGF beta and HGF, resulting in desmoplasia. The MMTV-DIK2 mice should provide a useful model system...

  3. Association between melanocytic neoplasms and seborrheic keratosis: more than a coincidental collision?

    Science.gov (United States)

    DeFazio, Jennifer; Zalaudek, Iris; Busam, Klaus J.; Cota, Carlo; Marghoob, Ashfaq

    2012-01-01

    Clinical observations and an expanding knowledge of cell-to-cell communication have led us to speculate that the finding of a melanocytic nevus in conjunction with a seborrheic keratosis is more than a coincidental collision of two lesions. Here we present five cases demonstrating dermoscopic features of both melanocytic lesions and seborrheic keratoses with corresponding histology. Four cases demonstrate dermoscopic features of a melanocytic nevus and seborrheic keratosis, and the final case a melanoma arising in association with a seborrheic keratosis. PMID:23785597

  4. Isolation, Culture, and Motility Measurements of Epidermal Melanocytes from GFP-Expressing Reporter Mice.

    Science.gov (United States)

    Dagnino, Lina; Crawford, Melissa

    2018-03-27

    In this article, we provide a method to isolate primary epidermal melanocytes from reporter mice, which also allow targeted gene inactivation. The mice from which these cells are isolated are bred into a Rosa26 mT/mG reporter background, which results in GFP expression in the targeted melanocytic cell population. These cells are isolated and cultured to >95% purity. The cells can be used for gene expression studies, clonogenic experiments, and biological assays, such as capacity for migration. Melanocytes are slow moving cells, and we also provide a method to measure motility using individual cell tracking and data analysis.

  5. alpha-Melanocyte-stimulating-hormone precursors in the pig pituitary

    DEFF Research Database (Denmark)

    Fenger, M

    1986-01-01

    The occurrence of intermediates from the processing of ACTH-(1-39) [adrenocorticotropic hormone-(1-39)] to alpha-melanocyte-stimulating hormone was investigated in normal pig pituitaries by the use of sensitive and specific radioimmunoassays for ACTH-(1-13), ACTH-(1-14), ACTH-(1-13)-NH2 and ACTH-(1......) were detected in lower amounts in both the intermediate lobe and the anterior lobe. ACTH-(1-17), ACTH-(1-13) and their acetylated analogues could not be detected in the anterior lobe or the intermediate lobe. The results suggest that an endopeptidase initially cleaves ACTH-(1-39) at the Lys-16-Arg-17...... bond. ACTH-(1-16) is then processed by a pituitary carboxypeptidase to ACTH-(1-14) and ACTH-(17-39) by the aminopeptidase to ACTH-(18-39)....

  6. Recent progress on the effects of microRNAs and natural products on tumor epithelial–mesenchymal transition

    Directory of Open Access Journals (Sweden)

    He SJ

    2017-07-01

    Full Text Available Shu-Jin He,1,2,* Chu-Qi Xiang,1,3,* Yu Zhang,3 Xiang-Tong Lu,1 Hou-Wen Chen,1,4 Li-Xia Xiong1,4 1Department of Pathophysiology, Medical College, Nanchang University, 2Second Clinical Medical College, Nanchang University, 3First Clinical Medical College, Nanchang University, 4Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, People’s Republic of China *These authors contributed equally to this work Abstract: Epithelial–mesenchymal transition (EMT is a biological process of phenotypic transition of epithelial cells that can promote physiological development as well as tissue healing and repair. In recent years, cancer researchers have noted that EMT is closely related to the occurrence and development of tumors. When tumor cells undergo EMT, they can develop enhanced migration and local tissue invasion abilities, which can lead to metastatic growth. Nevertheless, two researches in NATURE deny its necessity in specific tumors and that is discussed in this review. The degree of EMT and the detection of EMT-associated marker molecules can also be used to judge the risk of metastasis and to evaluate patients’ prognosis. MicroRNAs (miRNAs are noncoding small RNAs, which can inhibit gene expression and protein translation through specific binding with the 3' untranslated region of mRNA. In this review, we summarize the miRNAs that are reported to influence EMT through transcription factors such as ZEB, SNAIL, and TWIST, as well as some natural products that regulate EMT in tumors. Moreover, mutual inhibition occurs between some transcription factors and miRNAs, and these effects appear to occur in a complex regulatory network. Thus, understanding the role of miRNAs in EMT and tumor growth may lead to new treatments for malignancies. Natural products can also be combined with conventional chemotherapy to enhance curative effects. Keywords: epithelial–mesenchymal transition, miRNA, tumor, natural products

  7. Isolation and culture of melanocytes from the arctic fox (Alopex lagopus

    Directory of Open Access Journals (Sweden)

    Jiarong Bao

    2015-09-01

    Full Text Available Coat colour is a phenotypic marker of fur animal species, which was determined by the pigment generated from melanocytes. In this study, we developed and validated a method for isolation, purification and passage culture of melanocytes from the arctic fox (Alopex lagopus. Skin biopsies were harvested from the dorsal region of adult foxes and enzyme digestion by Dispase II. The primary culture of melanocytes from arctic fox skin was obtained by using keratinocyte serum-free medium supplemented with epidermal growth factor and bovine pituitary extract with/without phorbol- 12-myristate-13-acetate, and by carrying out a medium change strategy. After serial passages, it yielded pure population of melanocytes, which become efficient tools for investigating the function of colour genes and unraveling the process of melanin synthesis.

  8. Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes

    Directory of Open Access Journals (Sweden)

    F Paino

    2010-10-01

    Full Text Available Dental pulp stem cells (DPSCs are multipotent stem cells derived from neural crest and mesenchyme and have the capacity to differentiate into multiple cell lineages. It has already been demonstrated that DPSCs differentiate into melanocyte-like cells but only when cultivated in a specific melanocyte differentiating medium. In this study we have shown, for the first time, that DPSCs are capable of spontaneously differentiating into mature melanocytes, which display molecular and ultrastructural features of full development, including the expression of melanocyte specific markers and the presence of melanosomes up to the terminal stage of maturation. We have also compared the differentiating features of DPSCs grown in different culture conditions, following the timing of differentiation at molecular and cytochemical levels and found that in all culture conditions full development of these cells was obtained, although at different times. The spontaneous differentiating potential of these cells strongly suggests their possible applications in regenerative medicine.

  9. Blood Supply--Susceptible Formation of Melanin Pigment in Hair Bulb Melanocytes of Mice

    Directory of Open Access Journals (Sweden)

    Shogo Maeda, MD

    2015-03-01

    Conclusions: Melanin pigment formation in the hair bulb melanocytes appeared to be susceptible to the blood supply, and melanocytosis was promoted in the follicles and in the epidermis of Kitl-Tg C57BL/6 mice.

  10. The Research Progress of SiRNA Targeting Notch1 on Tumor Cells: A Mini Review of the State of the Art

    Directory of Open Access Journals (Sweden)

    Lanfen Huo

    2016-09-01

    Full Text Available Notch signaling is a highly conserved signaling pathway, playing an important role in a variety of cell differentiation, development and regulation. Notch signaling includes Notch1-4; Notch1 gene encodes Notch1 signaling that can shorten cell cycle, enhance cell proliferation, inhibit cell differentiation, and promote apoptosis. Mutation and overexpression of the Notch1 gene may induce tumorigenesis, which plays an important role in the development of tumors across a variety of signaling pathways. Currently, using RNA interference technology (RNAi synthesizing small interference RNA (siRNA targeting Notch1 gene(siNotch1)has become a hot topic, and clinical application of gene silencing has also obtained a certain therapeutic effect. In this paper, the application of Notch1 gene silencing in tumor progress was reviewed.

  11. Radiographic progression is associated with resolution of systemic inflammation in patients with axial spondylarthritis treated with tumor necrosis factor α inhibitors: A study of radiographic progression, inflammation on magnetic resonance imaging, and circulating biomarkers of inflammation

    DEFF Research Database (Denmark)

    Pedersen, Susanne Juhl; Sørensen, Inge Juul; Lambert, Robert G W

    2011-01-01

    To investigate the relationship of circulating biomarkers of inflammation (C-reactive protein [CRP], interleukin-6 [IL-6], and YKL-40), angiogenesis (vascular endothelial growth factor), cartilage turnover (C-terminal crosslinking telopeptide of type II collagen [CTX-II], total aggrecan, matrix...... metalloproteinase 3 [MMP-3], and cartilage oligomeric matrix protein [COMP]), and bone turnover (CTX-I and osteocalcin) to inflammation on magnetic resonance imaging (MRI) and radiographic progression in patients with axial spondylarthritis (SpA) beginning tumor necrosis factor a (TNFa) inhibitor therapy....

  12. Comparative cytogenetic characterization of primary canine melanocytic lesions using array CGH and fluorescence in situ hybridization

    OpenAIRE

    Poorman, Kelsey; Borst, Luke; Moroff, Scott; Roy, Siddharth; Labelle, Philippe; Motsinger-Reif, Alison; Breen, Matthew

    2014-01-01

    Melanocytic lesions originating from the oral mucosa or cutaneous epithelium are common in the general dog population, with up to 100,000 diagnoses each year in the USA. Oral melanoma is the most frequent canine neoplasm of the oral cavity, exhibiting a highly aggressive course. Cutaneous melanocytomas occur frequently, but rarely develop into a malignant form. Despite the differential prognosis, it has been assumed that subtypes of melanocytic lesions represent the same disease. To address t...

  13. Image enhancement of optical images for binary system of melanocytes and keratinocytes

    Science.gov (United States)

    Takanezawa, S.; Baba, A.; Sako, Y.; Ozaki, Y.; Date, A.; Toyama, K.; Morita, S.

    2013-05-01

    Automatic determination of the cell shapes of large numbers of melanocytes based on optical images of human skin models have been largely unsuccessful (the complexities introduced by dendrites and the melanin pigmentation over the keratinocytes to give unclear outlines). Here, we present an image enhancement procedure for enhancing the contrast of images with removing the non-uniformity of background. The brightness is normalized also for the non-uniform population density of melanocytes.

  14. Substantial Effect of Melanin Influencing Factors on Melanogenesis in Muzzle Melanocytes of Differently Colored Hanwoo

    Directory of Open Access Journals (Sweden)

    Touseef Amna

    2012-07-01

    Full Text Available The present study was designed to investigate the effect of α-melanocyte-stimulating hormone (α-MSH, nitric oxide (NO and L-cysteine on melanin production and expression of related genes MC1R, Tyr, Tyrp-1 and Tyrp-2 in muzzle melanocytes of differently colored three native Hanwoo cattle. Muzzle samples were taken from black, brindle and brown Hanwoo and purified melanocytes were cultured with α-MSH, nitric oxide and L-cysteine at 100 nM, 50 µM and 0.07 mg/ml of media respectively. The amounts of total melanin, eumelanin and mRNA expression at Tyr, Tyrp-1, Tyrp-2 and MC1R levels were quantified. α-MSH and nitric oxide significantly increased (p<0.05 the amount of total melanin in black and brindle whereas eumelanin production in brown Hanwoo muzzle melanocytes. On the contrary, L-cysteine greatly (p<0.05 depressed the eumelanin production in black color but increased in brown. Simultaneously, up regulation of Tyr by nitric oxide and α-MSH and down regulation of Tyr, Tyrp-2 and MC1R genes by L-cysteine were observed in muzzle melanocytes of all three phenotypes. The results of this study revealed nitric oxide and α-MSH contribute hyper-pigmentation by enhancing eumelanogenesis whereas L-cysteine contributes to pheomelanin production in different colored Hanwoo muzzle melanocytes.

  15. Melanocyte biology and function with reference to oral melanin hyperpigmentation in HIV-seropositive subjects.

    Science.gov (United States)

    Feller, Liviu; Chandran, Rakesh; Kramer, Beverley; Khammissa, Razia A G; Altini, Mario; Lemmer, Johan

    2014-09-01

    The color of normal skin and of oral mucosa is not determined by the number of melanocytes in the epithelium but rather by their melanogenic activity. Pigmented biopolymers or melanins are synthesized in melanosomes. Tyrosinase is the critical enzyme in the biosynthesis of both brown/black eumelanin and yellow/red pheomelanin. The number of the melanosomes within the melanocytes, the type of melanin within the melanosomes, and the efficacy of the transfer of melanosomes from the melanocytes to the neighboring keratinocytes all play an important role in tissue pigmentation. Melanin production is regulated by locally produced factors including proopiomelanocortin and its derivative peptides, particularly alpha-melanocyte-stimulating hormone (α-MSH), melanocortin 1 receptor (MC1R), adrenergic and cholinergic agents, growth factors, cytokines, and nitric oxide. Both eumelanin and pheomelanin can be produced by the same melanocytes, and the proportion of the two melanin types is influenced by the degree of functional activity of the α-MSH/MC1R intracellular pathway. The cause of HIV oral melanosis is not fully understood but may be associated with HIV-induced cytokine dysregulation, with the medications commonly prescribed to HIV-seropositive persons, and with adrenocortical dysfunction, which is not uncommon in HIV-seropositive subjects with AIDS. The purpose of this article is to discuss some aspects of melanocyte biology and HIV-associated oral melanin hyperpigmentation.

  16. Effect of nicotine on melanogenesis and antioxidant status in HEMn-LP melanocytes

    International Nuclear Information System (INIS)

    Delijewski, Marcin; Beberok, Artur; Otręba, Michał; Wrześniok, Dorota; Rok, Jakub; Buszman, Ewa

    2014-01-01

    Nicotine is a natural ingredient of tobacco plants and is responsible for the addictive properties of tobacco. Nowadays nicotine is also commonly used as a form of smoking cessation therapy. It is suggested that nicotine may be accumulated in human tissues containing melanin. This may in turn affect biochemical processes in human cells producing melanin. The aim of this study was to examine the effect of nicotine on melanogenesis and antioxidant status in cultured normal human melanocytes HEMn-LP. Nicotine induced concentration-dependent loss in melanocytes viability. The value of EC 50 was determined to be 7.43 mM. Nicotine inhibited a melanization process in human light pigmented melanocytes and caused alterations of antioxidant defense system. Significant changes in cellular antioxidant enzymes: superoxide dismutase and catalase activities and in hydrogen peroxide content were stated. The obtained results may explain a potential influence of nicotine on biochemical processes in melanocytes in vivo during long term exposition to nicotine. - Graphical abstract: Nicotine inhibits melanogenesis and induces oxidative stress in HEMn-LP melanocytes. - Highlights: • Nicotine induces concentration-dependent loss in melanocytes viability. • Nicotine in non-cytotoxic concentrations inhibits melanogenesis. • Nicotine in higher concentrations induces oxidative stress

  17. PPARalpha/gamma expression and activity in mouse and human melanocytes and melanoma cells.

    Science.gov (United States)

    Eastham, Linda L; Mills, Caroline N; Niles, Richard M

    2008-06-01

    We examined the expression of PPARs and the effects of PPARalpha and PPARgamma agonists on growth of mouse and human melanocytes and melanoma cells. PPARalpha,beta, and PPARgamma mRNA qualitative expression in melan-a mouse melanocytes, B16 mouse melanoma, human melanocytes, and A375 and SK-mel28 human melanoma cells was determined by RT-PCR, while quantitative PPARalpha mRNA levels were determined by QuantiGene assay. PPARalpha and PPARgamma protein was assessed by Western blotting. The effect of natural and synthetic PPAR ligands on cell growth was determined by either hemocytometer counting or crystal violet assay. PPAR transcriptional activity was determined by a PPRE-reporter gene assay, while knockdown of PPARalpha expression was achieved by transient transfection of siRNA. Both mouse and human melanoma cells produced more PPARalpha and PPARgamma protein compared to melanocytes. PPARalpha mRNA levels were elevated in human melanoma cells, but not in mouse melanoma cells relative to melanocytes. Silencing of PPARalpha in human melanoma cells did not alter cell proliferation or morphology. PPARgamma-selective agonists inhibited the growth of both mouse and human melanoma cells, while PPARalpha-selective agonists had limited effects. Increased expression of PPARalpha in melanoma relative to melanocytes may be a common occurrence, however its biologic significance remains to be determined. PPARgamma agonists may be useful for arresting the growth of some melanomas.

  18. Effect of norfloxacin and moxifloxacin on melanin synthesis and antioxidant enzymes activity in normal human melanocytes.

    Science.gov (United States)

    Beberok, Artur; Wrześniok, Dorota; Otręba, Michał; Miliński, Maciej; Rok, Jakub; Buszman, Ewa

    2015-03-01

    Fluoroquinolone antibiotics provide broad-spectrum coverage for a number of infectious diseases, including respiratory as well as urinary tract infections. One of the important adverse effects of these drugs is phototoxicity which introduces a serious limitation to their use. To gain insight the molecular mechanisms underlying the fluoroquinolones-induced phototoxic side effects, the impact of two fluoroquinolone derivatives with different phototoxic potential, norfloxacin and moxifloxacin, on melanogenesis and antioxidant enzymes activity in normal human melanocytes HEMa-LP was determined. Both drugs induced concentration-dependent loss in melanocytes viability. The value of EC50 for these drugs was found to be 0.5 mM. Norfloxacin and moxifloxacin suppressed melanin biosynthesis; antibiotics were shown to inhibit cellular tyrosinase activity and to reduce melanin content in melanocytes. When comparing the both analyzed fluoroquinolones, it was observed that norfloxacin possesses greater inhibitory effect on tyrosinase activity in melanocytes than moxifloxacin. The extent of oxidative stress in cells was assessed by measuring the activity of antioxidant enzymes: SOD, CAT, and GPx. It was observed that norfloxacin caused higher depletion of antioxidant status in melanocytes when compared with moxifloxacin. The obtained results give a new insight into the mechanisms of fluoroquinolones toxicity directed to pigmented tissues. Moreover, the presented differences in modulation of biochemical processes in melanocytes may be an explanation for various phototoxic activities of the analyzed fluoroquinolone derivatives in vivo.

  19. Effect of nicotine on melanogenesis and antioxidant status in HEMn-LP melanocytes

    Energy Technology Data Exchange (ETDEWEB)

    Delijewski, Marcin; Beberok, Artur; Otręba, Michał; Wrześniok, Dorota; Rok, Jakub; Buszman, Ewa, E-mail: ebuszman@sum.edu.pl

    2014-10-15

    Nicotine is a natural ingredient of tobacco plants and is responsible for the addictive properties of tobacco. Nowadays nicotine is also commonly used as a form of smoking cessation therapy. It is suggested that nicotine may be accumulated in human tissues containing melanin. This may in turn affect biochemical processes in human cells producing melanin. The aim of this study was to examine the effect of nicotine on melanogenesis and antioxidant status in cultured normal human melanocytes HEMn-LP. Nicotine induced concentration-dependent loss in melanocytes viability. The value of EC{sub 50} was determined to be 7.43 mM. Nicotine inhibited a melanization process in human light pigmented melanocytes and caused alterations of antioxidant defense system. Significant changes in cellular antioxidant enzymes: superoxide dismutase and catalase activities and in hydrogen peroxide content were stated. The obtained results may explain a potential influence of nicotine on biochemical processes in melanocytes in vivo during long term exposition to nicotine. - Graphical abstract: Nicotine inhibits melanogenesis and induces oxidative stress in HEMn-LP melanocytes. - Highlights: • Nicotine induces concentration-dependent loss in melanocytes viability. • Nicotine in non-cytotoxic concentrations inhibits melanogenesis. • Nicotine in higher concentrations induces oxidative stress.

  20. The four and a half LIM domains 2 (FHL2) regulates ovarian granulosa cell tumor progression via controlling AKT1 transcription

    OpenAIRE

    Hua, G; He, C; Lv, X; Fan, L; Wang, C; Remmenga, S W; Rodabaugh, K J; Yang, L; Lele, S M; Yang, P; Karpf, A R; Davis, J S; Wang, C

    2016-01-01

    The four and a half LIM domains 2 (FHL2) has been shown to play important roles in the regulation of cell proliferation, survival, adhesion, motility and signal transduction in a cell type and tissue-dependent manner. However, the function of FHL2 in ovarian physiology and pathology is unclear. The aim of this study was to determine the role and functional mechanism of FHL2 in the progression of ovarian granulosa cell tumors (GCTs). Immunohistochemical analysis indicated that FHL2 was overexp...

  1. Radiographic progression is associated with resolution of systemic inflammation in patients with axial spondylarthritis treated with tumor necrosis factor α inhibitors

    DEFF Research Database (Denmark)

    Pedersen, Susanne Juhl; Sørensen, Inge Juul; Lambert, Robert G W

    2011-01-01

    To investigate the relationship of circulating biomarkers of inflammation (C-reactive protein [CRP], interleukin-6 [IL-6], and YKL-40), angiogenesis (vascular endothelial growth factor), cartilage turnover (C-terminal crosslinking telopeptide of type II collagen [CTX-II], total aggrecan, matrix...... metalloproteinase 3 [MMP-3], and cartilage oligomeric matrix protein [COMP]), and bone turnover (CTX-I and osteocalcin) to inflammation on magnetic resonance imaging (MRI) and radiographic progression in patients with axial spondylarthritis (SpA) beginning tumor necrosis factor α (TNFα) inhibitor therapy....

  2. Evidence for the Influence of the Iron Regulatory MHC Class I Molecule HFE on Tumor Progression in Experimental Models and Clinical Populations

    Science.gov (United States)

    Weston, Cody; Connor, James

    2014-01-01

    Proteins involved in iron regulation are modifiers of cancer risk and progression. Of these, the HFE protein (high iron gene and its protein product) is of particular interest because of its interaction with both iron handling and immune function and the high rate of genetic polymorphisms resulting in a mutant protein. Clinical studies suggest that HFE polymorphisms increase the risk of certain cancers, but the inconsistent outcomes suggest a more nuanced effect, possibly interacting with other genetic or environmental factors. Some basic science research has been conducted to begin to understand the implications of variant HFE genotype on cancer, but the story is far from complete. In particular, putative mechanisms exist for HFE to affect tumor progression through its role in iron handling and its major histocompatibility complex class I structural features. In this review, the current understanding of the role of HFE in cancer is described and models for future directions are identified. PMID:25520556

  3. Tumors initiated by constitutive Cdk2 activation exhibit transforming growth factor beta resistance and acquire paracrine mitogenic stimulation during progression

    DEFF Research Database (Denmark)

    Corsino, P.; Davis, B.; Law, M.

    2007-01-01

    Cyclin D1/cyclin-dependent kinase 2 (Cdk2) complexes are present at high frequency in human breast cancer cell lines, but the significance of this observation is unknown. This report shows that expression of a cyclin D1-Cdk2 fusion protein under the control of the mouse mammary tumor virus (MMITV...

  4. Investigations of relevance of the tumor marker neopterine for therapeutic decision and control of progress in mammary carcinoma

    International Nuclear Information System (INIS)

    Hacker, I; Lauterbach, H.; Kob, D.

    1989-01-01

    The value of serum neopterin as tumor marker was verified in 104 breast cancer patients. Based on the results the evaluation of neopterin cannot be recommended, neither for the decision of treatment after primary therapy nor for monitoring of the breast cancer. (author)

  5. Synchronous clear cell renal cell carcinoma and tubulocystic carcinoma: genetic evidence of independent ontogenesis and implications of chromosomal imbalances in tumor progression

    Directory of Open Access Journals (Sweden)

    Quiroga-Garza Gabriela

    2012-02-01

    Full Text Available Abstract Seven percent of renal cell carcinoma (RCC cases are diagnosed as "unclassified" RCC by morphology. Genetic profiling of RCCs helps define renal tumor subtypes, especially in cases where morphologic diagnosis is inconclusive. This report describes a patient with synchronous clear cell RCC (ccRCC and a tubulocystic renal carcinoma (TCRC in the same kidney, and discusses the pathologic features and genetic profile of both tumors. A 67 year-old male underwent CT scans for an unrelated medical event. Two incidental renal lesions were found and ultimately removed by radical nephrectomy. The smaller lesion had multiple small cystic spaces lined by hobnail cells with high nuclear grade separated by fibrous stroma. This morphology and the expression of proximal (CD10, AMACR and distal tubule cell (CK19 markers by immunohistochemistry supported the diagnosis of TCRC. The larger lesion was a typical ccRCC, with Fuhrman's nuclear grade 3 and confined to the kidney. Molecular characterization of both neoplasms using virtual karyotyping was performed to assess relatedness of these tumors. Low grade areas (Fuhrman grade 2 of the ccRCC showed loss of 3p and gains in chromosomes 5 and 7, whereas oncocytic areas displayed additional gain of 2p and loss of 10q; the high grade areas (Fuhrman grade 3 showed several additional imbalances. In contrast, the TCRC demonstrated a distinct profile with gains of chromosomes 8 and 17 and loss of 9. In conclusion, ccRCC and TCRC show distinct genomic copy number profiles and chromosomal imbalances in TCRC might be implicated in the pathogenesis of this tumor. Second, the presence of a ccRCC with varying degrees of differentiation exemplifies the sequence of chromosomal imbalances acquired during tumor progression. Virtual Slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1790525735655283

  6. Ultrasound-guided direct delivery of 3-bromopyruvate blocks tumor progression in an orthotopic mouse model of human pancreatic cancer.

    Science.gov (United States)

    Ota, Shinichi; Geschwind, Jean-Francois H; Buijs, Manon; Wijlemans, Joost W; Kwak, Byung Kook; Ganapathy-Kanniappan, Shanmugasundaram

    2013-06-01

    Studies in animal models of cancer have demonstrated that targeting tumor metabolism can be an effective anticancer strategy. Previously, we showed that inhibition of glucose metabolism by the pyruvate analog, 3-bromopyruvate (3-BrPA), induces anticancer effects both in vitro and in vivo. We have also documented that intratumoral delivery of 3-BrPA affects tumor growth in a subcutaneous tumor model of human liver cancer. However, the efficacy of such an approach in a clinically relevant orthotopic tumor model has not been reported. Here, we investigated the feasibility of ultrasound (US) image-guided delivery of 3-BrPA in an orthotopic mouse model of human pancreatic cancer and evaluated its therapeutic efficacy. In vitro, treatment of Panc-1 cells with 3-BrPA resulted in a dose-dependent decrease in cell viability. The loss of viability correlated with a dose-dependent decrease in the intracellular ATP level and lactate production confirming that disruption of energy metabolism underlies these 3-BrPA-mediated effects. In vivo, US-guided delivery of 3-BrPA was feasible and effective as demonstrated by a marked decrease in tumor size on imaging. Further, the antitumor effect was confirmed by (1) a decrease in the proliferative potential by Ki-67 immunohistochemical staining and (2) the induction of apoptosis by terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphospate nick end labeling staining. We therefore demonstrate the technical feasibility of US-guided intratumoral injection of 3-BrPA in a mouse model of human pancreatic cancer as well as its therapeutic efficacy. Our data suggest that this new therapeutic approach consisting of a direct intratumoral injection of antiglycolytic agents may represent an exciting opportunity to treat patients with pancreas cancer.

  7. Malignant progressive tumor cell clone exhibits significant up-regulation of cofilin-2 and 27-kDa modified form of cofilin-1 compared to regressive clone.

    Science.gov (United States)

    Kuramitsu, Yasuhiro; Wang, Yufeng; Okada, Futoshi; Baron, Byron; Tokuda, Kazuhiro; Kitagawa, Takao; Akada, Junko; Nakamura, Kazuyuki

    2013-09-01

    QR-32 is a regressive murine fibrosarcoma cell clone which cannot grow when they are transplanted in mice; QRsP-11 is a progressive malignant tumor cell clone derived from QR-32 which shows strong tumorigenicity. A recent study showed there to be differentially expressed up-regulated and down-regulated proteins in these cells, which were identified by proteomic differential display analyses by using two-dimensional gel electrophoresis and mass spectrometry. Cofilins are small proteins of less than 20 kDa. Their function is the regulation of actin assembly. Cofilin-1 is a small ubiquitous protein, and regulates actin dynamics by means of binding to actin filaments. Cofilin-1 plays roles in cell migration, proliferation and phagocytosis. Cofilin-2 is also a small protein, but it is mainly expressed in skeletal and cardiac muscles. There are many reports showing the positive correlation between the level of cofilin-1 and cancer progression. We have also reported an increased expression of cofilin-1 in pancreatic cancer tissues compared to adjacent paired normal tissues. On the other hand, cofilin-2 was significantly less expressed in pancreatic cancer tissues. Therefore, the present study investigated the comparison of the levels of cofilin-1 and cofilin-2 in regressive QR-32 and progressive QRsP-11cells by western blotting. Cofilin-2 was significantly up-regulated in QRsP-11 compared to QR-32 cells (p<0.001). On the other hand, the difference of the intensities of the bands of cofilin-1 (18 kDa) in QR-32 and QRsP-11 was not significant. However, bands of 27 kDa showed a quite different intensity between QR-32 and QRsP-11, with much higher intensities in QRsP-11 compared to QR-32 (p<0.001). These results suggested that the 27-kDa protein recognized by the antibody against cofilin-1 is a possible biomarker for progressive tumor cells.

  8. Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression.

    Directory of Open Access Journals (Sweden)

    Danilo Marimpietri

    Full Text Available Neuroblastoma (NB is the most common extracranial solid tumor in childhood, with grim prognosis in a half of patients. Exosomes are nanometer-sized membrane vesicles derived from the multivesicular bodies (MVBs of the endocytic pathway and released by normal and neoplastic cells. Tumor-derived exosomes have been shown in different model systems to carry molecules that promote cancer growth and dissemination. In this respect, we have here performed the first characterization and proteomic analysis of exosomes isolated from human NB cell lines by filtration and ultracentrifugation. Electron microscopy demonstrated that NB-derived exosomes exhibited the characteristic cup-shaped morphology. Dynamic light scattering studies showed a bell-shaped curve and a polydispersity factor consistent with those of exosomes. Zeta potential values suggested a good nanoparticle stability. We performed proteomic analysis of NB-derived exosomes by two dimension liquid chromatography separation and mass spectrometry analyses using the multidimensional protein identification technology strategy. We found that the large majority of the proteins identified in NB derived exosomes are present in Exocarta database including tetraspanins, fibronectin, heat shock proteins, MVB proteins, cytoskeleton-related proteins, prominin-1 (CD133, basigin (CD147 and B7-H3 (CD276. Expression of the CD9, CD63 and CD81 tetraspanins, fibronectin, CD133, CD147 and CD276 was validated by flow cytometry. Noteworthy, flow cytometric analysis showed that NB-derived exosomes expressed the GD2 disialoganglioside, the most specific marker of NB. In conclusion, this study shows that NB-derived exosomes express a discrete set of molecules involved in defense response, cell differentiation, cell proliferation and regulation of other important biological process. Thus, NB-derived exosomes may play an important role in the modulation of tumor microenvironment and represent potential tumor biomarkers.

  9. Recent progress in radiotherapy, as shown by the example of the bronchial carcinoma and the brain tumor

    International Nuclear Information System (INIS)

    Schnabel, K.; Trendelenburg, F.

    1986-01-01

    This volume presents reports of selected novel radiotherapeutical methods for treatment of the bronchial carcinoma and the brain tumor, and an evaluation of first results obtained. The reports also are intended to show that advances in modern radiotherapy very much rely on basic research activities in the physical and radiobiological field, and on close cooperation between the various clinical disciplines. This is why opinions of other clinics are presented as well. (orig.) [de

  10. Inhibition of TC-1 tumor progression by cotransfection of Saxatilin and IL-12 genes mediated by lipofection or electroporation.

    Science.gov (United States)

    Park, Y S; Kim, K S; Lee, Y K; Kim, J S; Baek, J Y; Huang, L

    2009-01-01

    Recently, a number of reports have demonstrated that coexpression of therapeutic genes having different anticancer mechanisms is a more effective strategy for anticancer gene therapy than single gene expression. Saxatilin, a novel disintegrin from snake venom, has recently been shown to have potent antiangiogenic functions, such as inhibition of platelet aggregation, bFGF-induced proliferation of HUVEC, and vitronectin-induced smooth muscle cell migration. IL-12 is a well-known immune modulator that promotes Thl-type antitumor immune responses and inhibits angiogenesis as well. The saxatilin and/or IL-12 genes were transfected intratumorally into C57BL/6 mice carrying TC-1 transformed mouse lung endothelial cells by either lipofection or electroporation. The plasmids encoding saxatilin and IL-12 were administered to tumor tissues via novel cationic liposomes consisting of dimyristyl-glutamyl-lysine (DMKE). On the other hand, expression of the genes was also induced by electroporation after naked pDNA injection to the tumor tissues. Lipofection of saxatilin and/or IL-12 genes appeared to be slightly more effective in inhibition of tumor growth than electroporation of the same genes. Cotransfection of saxatilin and IL-12 genes was clearly more effective than individual administration of either gene. This result implies that cotransfection of saxatilin and IL-12 genes represents an innovative modality for anticancer gene therapy.

  11. Extracts of strawberry fruits induce intrinsic pathway of apoptosis in breast cancer cells and inhibits tumor progression in mice.

    Directory of Open Access Journals (Sweden)

    Ranganatha R Somasagara

    Full Text Available The consumption of berry fruits, including strawberries, has been suggested to have beneficial effects against oxidative stress mediated diseases. Berries contain multiple phenolic compounds and secondary metabolites that contribute to their biological properties.Current study investigates the anticancer activity of the methanolic extract of strawberry (MESB fruits in leukaemia (CEM and breast cancer (T47D cell lines ex vivo, and its cancer therapeutic and chemopreventive potential in mice models. Results of MTT, trypan blue and LDH assays suggested that MESB can induce cytotoxicity in cancer cells, irrespective of origin, in a concentration- and time-dependent manner. Treatment of mice bearing breast adenocarcinoma with MESB blocked the proliferation of tumor cells in a time-dependent manner and resulted in extended life span. Histological and immunohistochemical studies suggest that MESB treatment affected tumor cell proliferation by activating apoptosis and did not result in any side effects. Finally, we show that MESB can induce intrinsic pathway of apoptosis by activating p73 in breast cancer cells, when tumor suppressor gene p53 is mutated.The present study reveals that strawberry fruits possess both cancer preventive and therapeutic values and we discuss the mechanism by which it is achieved.

  12. G-protein inwardly rectifying potassium channel 1 (GIRK 1) gene expression correlates with tumor progression in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Takanami, Iwao; Inoue, Yoshimasa; Gika, Masatoshi

    2004-01-01

    G-protein inwardly rectifying potassium channel 1 (GIRK1) is thought to play a role in cell proliferation in cancer, and GIRK1 gene expression level may define a more aggressive phenotype. We detected GIRK1 expression in tissue specimens from patients with non-small cell lung cancers (NSCLCs) and assessed their clinical characteristics. Using reverse transcription-polymerase chain reaction (RT-PCR) analyses, we quantified the expression of GIRK1 in 72 patients with NSCLCs to investigate the relationship between GIRK1 expression and clinicopathologic factors and prognosis. In 72 NSCLC patients, 50 (69%) samples were evaluated as having high GIRK1 gene expression, and 22 (31%) were evaluated as having low GIRK1 gene expression. GIRK1 gene expression was significantly associated with lymph node metastasis, stage (p = 0.0194 for lymph node metastasis; p = 0.0207 for stage). The overall and stage I survival rates for patients with high GIRK1 gene expressed tumors was significantly worse than for those individuals whose tumors had low GIRK1 expression (p = 0.0004 for the overall group; p = 0.0376 for stage I). These data indicate that GIRK1 may contribute to tumor progression and GIRK1 gene expression can serve as a useful prognostic marker in the overall and stage I NSCLCs

  13. Overexpression of long non-coding RNA colon cancer-associated transcript 2 is associated with advanced tumor progression and poor prognosis in patients with colorectal cancer.

    Science.gov (United States)

    Zhang, Junling; Jiang, Yong; Zhu, Jing; Wu, Tao; Ma, Ju; Du, Chuang; Chen, Shanwen; Li, Tengyu; Han, Jinsheng; Wang, Xin

    2017-12-01

    The aim of the present study was to explore the clinicopathological and prognostic significance of long non-coding RNA (lncRNA) colon cancer-associated transcript 2 (CCAT2) expression in human colorectal cancer (CRC). Expression levels of lncRNA CCAT2 in CRC, adjacent non-tumor and healthy colon mucosa tissues were detected by quantitative polymerase chain reaction. The disease-free survival and overall survival rates were evaluated using the Kaplan-Meier method, and multivariate analysis was performed using Cox proportional hazard analysis. The expression level of lncRNA CCAT2 in CRC tissues was increased significantly compared with adjacent normal tissues or non-cancerous tissues. CCAT2 expression was observed to be progressively increased between tumor-node-metastasis (TNM) stages I and IV. A high level of CCAT2 expression was revealed to be associated with poor cell differentiation, deeper tumor infiltration, lymph node metastasis, distance metastasis, vascular invasion and advanced TNM stage. Compared with patients with low levels of CCAT2 expression, patients with high levels of CCAT2 expression had shorter disease-free survival and overall survival times. Multivariate analyses indicated that high CCAT2 expression was an independent poor prognostic factor. Therefore, increased lncRNA CCAT2 expression maybe a potential diagnostic biomarker for CRC, and an independent predictor of prognosis in patients with CRC.

  14. Tranexamic acid suppresses ultraviolet B eye irradiation-induced melanocyte activation by decreasing the levels of prohormone convertase 2 and alpha-melanocyte-stimulating hormone.

    Science.gov (United States)

    Hiramoto, Keiichi; Yamate, Yurika; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi

    2014-12-01

    Tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) is a medicinal amino acid used in skin whitening care. This study examined the effects of tranexamic acid on the melanocyte activation of the skin induced by an ultraviolet (UV) B eye irradiation. The eye or ear was locally exposed to UVB at a dose of 1.0 kJ/m(2) using a 20SE sunlamp after covering the remaining body surface with aluminum foil. UVB eye irradiation induced melanocyte activation of the skin, similar to that observed following UVB ear irradiation, which was suppressed by the administration of tranexamic acid treatment. The plasma α-melanocyte-stimulating hormone (α-MSH) content was increased by UVB irradiation of the eye; however, the increase in α-MSH was suppressed by tranexamic acid treatment. In addition, UVB eye irradiation induced the up-regulation of prohormone convertase (PC) 2 in the pituitary gland. Meanwhile, the increase in PC2 induced by UVB eye irradiation was suppressed by tranexamic acid treatment. These results clearly indicate that tranexamic acid decreases the expression of PC2, which cleavages from proopiomelanocortin to α-MSH in the pituitary gland, thereby suppressing melanocyte activation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. [Multi-channel promotion of lung cancer progress by bone marrow derived mesenchymal stem cells in tumor microenvironment].

    Science.gov (United States)

    Luo, D; Hu, S Y; Liu, G X

    2018-02-23

    Objective: To observe the growth and metastasis of lung cancer promoted by bone marrow derived mesenchymal stem cells (BMSCs) in tumor microenvironment and investigate the underlined mechanisms. Methods: Specific chemotaxis of BMSCs towards lung cancer was observed, and the tumor growth and metastasis were assessed in vivo . Furthermore, CD34 expression determined by immunohistochemistry was used to assess the microvessel density (MVD), and the expressions of GFP and α-SMA determined by immunofluorescence were used to detect the BMSCs derived mesenchymal cells. We investigated the effect of BMSCs on migration, invasion of lung cancer cells including A549 and H446 cells by using scratch assays and Transwell Assay in vitro. We also explored the effect of BMSCs on epithelial mesenchymal transition of A549 and H446 cells by observing the phenotype transition and E-Cadherin protein expression detected by Western blot. At last, we screened the potentially key soluble factors by enzyme linked immunosorbent assay (ELISA). Results: In NOD mice, labeled BMSCs injected via tail vein were special chemotaxis to tumor cells, and promoted the tumor growth [the time of tumor formation in A549+ BMSCs and A549 alone was (5.0±1.5) days and (10.0±3.6) days, respectively, P cell carcinoma and promoted the migration and invasion of lung cancer cells (the A of cells in the migrated lower chambers of A549+ BMSCs and A549 alone was 1.9±0.2 and 1.1±0.1, respectively, P cells in the migrated lower chambers of H446+ BMSCs and H446 alone was 1.9±0.3 and 0.9±0.2, respectively, P cell shape was longer and sharper, the intercellular junctions were reduced and the relative expression level of E-Cadherin protein in A549 co-cultured with BMDCs was 0.36, significantly down-regulated when compared to 0.55 of A549 alone ( P cells alone ( P <0.05). The concentration of IL-6 in the conditional medium of BMSCs, A549 co-cultured with BMSCs and H446 co-cultured with BMSCs was 910.5, 957.2, and 963

  16. A subpopulation of smooth muscle cells, derived from melanocyte-competent precursors, prevents patent ductus arteriosus.

    Directory of Open Access Journals (Sweden)

    Ichiro Yajima

    Full Text Available BACKGROUND: Patent ductus arteriosus is a life-threatening condition frequent in premature newborns but also present in some term infants. Current mouse models of this malformation generally lead to perinatal death, not reproducing the full phenotypic spectrum in humans, in whom genetic inheritance appears complex. The ductus arteriosus (DA, a temporary fetal vessel that bypasses the lungs by shunting the aortic arch to the pulmonary artery, is constituted by smooth muscle cells of distinct origins (SMC1 and SMC2 and many fewer melanocytes. To understand novel mechanisms preventing DA closure at birth, we evaluated the importance of cell fate specification in SMC that form the DA during embryonic development. Upon specific Tyr::Cre-driven activation of Wnt/β-catenin signaling at the time of cell fate specification, melanocytes replaced the SMC2 population of the DA, suggesting that SMC2 and melanocytes have a common precursor. The number of SMC1 in the DA remained similar to that in controls, but insufficient to allow full DA closure at birth. Thus, there was no cellular compensation by SMC1 for the loss of SMC2. Mice in which only melanocytes were genetically ablated after specification from their potential common precursor with SMC2, demonstrated that differentiated melanocytes themselves do not affect DA closure. Loss of the SMC2 population, independent of the presence of melanocytes, is therefore a cause of patent ductus arteriosus and premature death in the first months of life. Our results indicate that patent ductus arteriosus can result from the insufficient differentiation, proliferation, or contractility of a specific smooth muscle subpopulation that shares a common neural crest precursor with cardiovascular melanocytes.

  17. A Subpopulation of Smooth Muscle Cells, Derived from Melanocyte-Competent Precursors, Prevents Patent Ductus Arteriosus

    Science.gov (United States)

    Puig, Isabel; Champeval, Delphine; Kumasaka, Mayuko; Belloir, Elodie; Bonaventure, Jacky; Mark, Manuel; Yamamoto, Hiroaki; Taketo, Mark M.; Choquet, Philippe; Etchevers, Heather C.; Beermann, Friedrich; Delmas, Véronique; Monassier, Laurent; Larue, Lionel

    2013-01-01

    Background Patent ductus arteriosus is a life-threatening condition frequent in premature newborns but also present in some term infants. Current mouse models of this malformation generally lead to perinatal death, not reproducing the full phenotypic spectrum in humans, in whom genetic inheritance appears complex. The ductus arteriosus (DA), a temporary fetal vessel that bypasses the lungs by shunting the aortic arch to the pulmonary artery, is constituted by smooth muscle cells of distinct origins (SMC1 and SMC2) and many fewer melanocytes. To understand novel mechanisms preventing DA closure at birth, we evaluated the importance of cell fate specification in SMC that form the DA during embryonic development. Upon specific Tyr::Cre-driven activation of Wnt/β-catenin signaling at the time of cell fate specification, melanocytes replaced the SMC2 population of the DA, suggesting that SMC2 and melanocytes have a common precursor. The number of SMC1 in the DA remained similar to that in controls, but insufficient to allow full DA closure at birth. Thus, there was no cellular compensation by SMC1 for the loss of SMC2. Mice in which only melanocytes were genetically ablated after specification from their potential common precursor with SMC2, demonstrated that differentiated melanocytes themselves do not affect DA closure. Loss of the SMC2 population, independent of the presence of melanocytes, is therefore a cause of patent ductus arteriosus and premature death in the first months of life. Our results indicate that patent ductus arteriosus can result from the insufficient differentiation, proliferation, or contractility of a specific smooth muscle subpopulation that shares a common neural crest precursor with cardiovascular melanocytes. PMID:23382837

  18. Dual PI3K/mTOR inhibitors, GSK2126458 and PKI-587, suppress tumor progression and increase radiosensitivity in nasopharyngeal carcinoma.

    Science.gov (United States)

    Liu, Tongxin; Sun, Quanquan; Li, Qi; Yang, Hua; Zhang, Yuqin; Wang, Rong; Lin, Xiaoshan; Xiao, Dong; Yuan, Yawei; Chen, Longhua; Wang, Wei

    2015-02-01

    Although combined chemoradiotherapy has provided considerable improvements for nasopharyngeal carcinoma (NPC), recurrence and metastasis are still frequent. The PI3K/Akt/mTOR pathway plays a critical role in tumor formation and tumor cell survival after radiation-induced DNA damage. In the present study, we evaluated whether inhibition of PI3K/mTOR by two novel dual inhibitors, GSK2126458 and PKI-587, could suppress tumor progression and sensitize NPC cells to radiation. Four NPC cell lines (CNE-1, CNE-2, 5-8F, and 6-10B) were used to analyze the effects of GSK216458 and PKI-587 on cell proliferation, migration, invasion, clonogenic survival, amount of residual γ-H2AX foci, cell cycle, and apoptosis after radiation. A 5-8F xenograft model was used to evaluate the in vivo effects of the two compounds in combination with ionizing radiation (IR). Both GSK216458 and PKI-587 effectively inhibited cell proliferation and motility in NPC cells and suppressed phosphorylation of Akt, mTOR, S6, and 4EBP1 proteins in a concentration- and time-dependent manner. Moreover, both compounds sensitized NPC cells to IR by increasing DNA damage, enhancing G2-M cell-cycle delay, and inducing apoptosis. In vivo, the combination of IR with GSK2126458 or PKI-587 significantly inhibited tumor growth. Antitumor effect was correlated with induction of apoptosis and suppression of the phosphorylation of mTOR, Akt, and 4EBP1. These new findings suggest the usefulness of PI3K/mTOR dual inhibition for antitumor and radiosensitizing. The combination of IR with a dual PI3K/mTOR inhibitor, GSK2126458 or PKI-587, might be a promising therapeutic strategy for NPC. ©2014 American Association for Cancer Research.

  19. Epigenome-Wide Tumor DNA Methylation Profiling Identifies Novel Prognostic Biomarkers of Metastatic-Lethal Progression in Men Diagnosed with Clinically Localized Prostate Cancer.

    Science.gov (United States)

    Zhao, Shanshan; Geybels, Milan S; Leonardson, Amy; Rubicz, Rohina; Kolb, Suzanne; Yan, Qingxiang; Klotzle, Brandy; Bibikova, Marina; Hurtado-Coll, Antonio; Troyer, Dean; Lance, Raymond; Lin, Daniel W; Wright, Jonathan L; Ostrander, Elaine A; Fan, Jian-Bing; Feng, Ziding; Stanford, Janet L

    2017-01-01

    Aside from Gleason sum, few factors accurately identify the subset of prostate cancer patients at high risk for metastatic progression. We hypothesized that epigenetic alterations could distinguish prostate tumors with life-threatening potential. Epigenome-wide DNA methylation profiling was performed in surgically resected primary tumor tissues from a population-based (n = 430) and a replication (n = 80) cohort of prostate cancer patients followed prospectively for at least 5 years. Metastasis was confirmed by positive bone scan, MRI, CT, or biopsy, and death certificates confirmed cause of death. AUC, partial AUC (pAUC, 95% specificity), and P value criteria were used to select differentially methylated CpG sites that robustly stratify patients with metastatic-lethal from nonrecurrent tumors, and which were complementary to Gleason sum. Forty-two CpG biomarkers stratified patients with metastatic-lethal versus nonrecurrent prostate cancer in the discovery cohort, and eight of these CpGs replicated in the validation cohort based on a significant (P prostate cancer include CpGs in five genes (ALKBH5, ATP11A, FHAD1, KLHL8, and PI15) and three intergenic regions. In the validation dataset, the AUC for Gleason sum alone (0.82) significantly increased with the addition of four individual CpGs (range, 0.86-0.89; all P epigenetic biomarkers warrant further investigation as they may improve prognostic classification of patients with clinically localized prostate cancer and provide new insights on tumor aggressiveness. Clin Cancer Res; 23(1); 311-9. ©2016 AACR. ©2016 American Association for Cancer Research.

  20. Surgical management of a progressive iris melanocytoma in a Mustang.

    Science.gov (United States)

    Scotty, Nicole C; Barrie, Kathleen B; Brooks, Dennis E; Taylor, David

    2008-01-01

    A 7-year-old gray Mustang gelding weighing 454 kg was presented for evaluation of a brown mass within the left eye (OS) of 1 year's duration with recent enlargement. A nonpainful, 8 mm diameter, brown, vascularized mass was identified in the anterior chamber of the OS. Ocular B-scan ultrasound confirmed iris involvement and corneal endothelial contact. Histopathology confirmed the presumptive diagnosis of a uveal melanocytic neoplasm, and revealed 1-3 mitotic figures per high power (400x) field. The mass was removed via sector iridectomy without complications, but without complete margins. Three cutaneous melanocytomas noted 1.5 months postoperatively were completely excised. No tumor regrowth was noted 15 months postoperatively, supporting a diagnosis of melanocytoma for the iridal mass. Sector iridectomy is a reasonable treatment option for uncomplicated iridal melanocytomas in horses. Mitotic index and presence of cutaneous melanocytic neoplasms may be irrelevant to the prognosis of equine iridal melanocytic neoplasms.

  1. Dose-dependent effects of calorie restriction on gene expression, metabolism, and tumor progression are partially mediated by insulin-like growth factor-1

    International Nuclear Information System (INIS)

    Nogueira, Leticia M; Lavigne, Jackie A; Chandramouli, Gadisetti V R; Lui, Huaitian; Barrett, J Carl; Hursting, Stephen D

    2012-01-01

    The prevalence of obesity, an established risk and progression factor for breast and many other cancer types, remains very high in the United States and throughout the world. Calorie restriction (CR), a reduced-calorie dietary regimen typically involving a 20–40% reduction in calorie consumption, prevents or reverses obesity, and inhibits mammary and other types of cancer in multiple tumor model systems. Unfortunately, the mechanisms underlying the tumor inhibitory effects of CR are poorly understood, and a better understanding of these mechanisms may lead to new intervention targets and strategies for preventing or controlling cancer. We have previously shown that the anticancer effects of CR are associated with decreased systemic levels of insulin-like growth factor-1 (IGF-1), the primary source of which is liver. We have also reported that CR strongly suppresses tumor development and growth in multiple mammary cancer models. To identify CR-responsive genes and pathways, and to further characterize the role of IGF-1 as a mediator of the anticancer effects of CR, we assessed hepatic and mammary gland gene expression, hormone levels and growth of orthotopically transplanted mammary tumors in control and CR mice with and without exogenous IGF-1. C57BL/6 mice were fed either control AIN-76A diet ad libitum (AL), subjected to 20%, 30%, or 40% CR plus placebo timed-release pellets, or subjected to 30% or 40% CR plus timed-release pellets delivering murine IGF-1 (mIGF-1, 20 μg/day). Compared with AL-fed controls, body weights were decreased 14.3% in the 20% CR group, 18.5% in the 30% CR group, and 38% in the 40% CR group; IGF-1 infusion had no effect on body weight. Hepatic transcriptome analyses indicated that compared with 20% CR, 30% CR significantly modulated more than twice the number of genes and 40% CR more than seven times the number of genes. Many of the genes specific to the 40% CR regimen were hepatic stress-related and/or DNA damage-related genes

  2. Bone marrow-derived CD13+ cells sustain tumor progression: A potential non-malignant target for anticancer therapy.

    Science.gov (United States)

    Dondossola, Eleonora; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2014-01-01

    Non-malignant cells found within neoplastic lesions express alanyl (membrane) aminopeptidase (ANPEP, best known as CD13), and CD13-null mice exhibit limited tumor growth and angiogenesis. We have recently demonstrated that a subset of bone marrow-derived CD11b + CD13 + myeloid cells accumulate within neoplastic lesions in several murine models of transplantable cancer to promote angiogenesis. If these findings were confirmed in clinical settings, CD11b + CD13 + myeloid cells could become a non-malignant target for the development of novel anticancer regimens.

  3. Potential of confocal laser scanning microscopy for non-invasive diagnostics of malignant epithelial skin tumors in the course of dermatoheliosis progression

    Directory of Open Access Journals (Sweden)

    E. S. Snarskaya

    2016-01-01

    Full Text Available Most cases of malignant epithelial skin neoplasms including actinic keratosis and basal cell carcinoma, which are characterized by the most complicated course and numerous clinical and morphological options, involve dermatoheliosis progression. The risk of actinic keratosis transformation into basal cell carcinoma varies from 0.1% to 20% and up to 80% in cases of multiple AK lesion foci. A non-invasive method known as reflectance confocal laser scanning microscopy is the most promising one for the purposes of early diagnostics of signs pointing at epithelial skin neoplasm development and makes it possible to monitor the tumor in progress in vivo to diagnose the presence of a pool of squamous cells on a timely basis. The confocal laser scanning microscopy method provides high-contrast images of for any horizontal-oriented morphologic structures in the epidermis and upper dermis with a resolution comparable to those characteristic of traditional optical microscopy of skin tissue samples. According to our data obtained as a result of studying dynamic changes and morphologic structures in actinic keratosis foci (50 cases using the confocal laser scanning microscopy method, we discovered a number of morphologic features, and their further analysis will distinguish the signs of progressing carcinogenesis in case of dermatoheliosis.

  4. Deletion and down-regulation of HRH4 gene in gastric carcinomas: a potential correlation with tumor progression.

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    Full Text Available BACKGROUND: Histamine is an established growth factor for gastrointestinal malignancies. The effect of histamine is largely determined locally by the histamine receptor expression pattern. Histamine receptor H4 (HRH4, the newest member of the histamine receptor family, is positively expressed on the epithelium of the gastrointestinal tract, and its function remains to be elucidated. Previously, we reported the decreased expression of HRH4 in colorectal cancers and revealed its correlation with tumor proliferation. In the current study, we aimed to investigate the abnormalities of HRH4 gene in gastric carcinomas (GCs. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed H4R expression in collected GC samples by quantitative PCR, Western blot analysis, and immunostaining. Our results showed that the protein and mRNA levels of HRH4 were reduced in some GC samples, especially in advanced GC samples. Copy number decrease of HRH4 gene was observed (17.6%, 23 out of 131, which was closely correlated with the attenuated expression of H4R. In vitro studies, using gastric cancer cell lines, showed that the alteration of HRH4 expression on gastric cancer cells influences tumor growth upon exposure to histamine. CONCLUSIONS/SIGNIFICANCE: We show for the first time that deletion of HRH4 gene is present in GC cases and is closely correlated with attenuated gene expression. Down-regulation of HRH4 in gastric carcinomas plays a role in histamine-mediated growth control of GC cells.

  5. Topography of Protein Kinase C βII in Benign and Malignant Melanocytic Lesions.

    Science.gov (United States)

    Krasagakis, Konstanin; Tsentelierou, Eleftheria; Chlouverakis, Gregory; Stathopoulos, Efstathios N

    2017-09-01

    Protein kinase C βII promotes melanogenesis and affects proliferation of melanocytic cells but is frequently absent or decreased in melanoma cells in vitro. To investigate PKC-βII expression and spatial distribution within a lesion in various benign and malignant melanocytic proliferations. Expression of PKC-βII was semiquantitatively assessed in the various existing compartments (intraepidermal [not nested], junctional [nested], and dermal) of benign (n = 43) and malignant (n = 28) melanocytic lesions by immunohistochemistry. Melanocytes in the basal layer of normal skin or in lentigo simplex stained strongly for PKC-βII. Common nevi lacked completely PKC-βII. All other lesions expressed variably PKC-βII, with cutaneous melanoma metastases displaying the lowest rate of positivity (14%). In the topographical analysis within a lesion, PKC-βII expression was largely retained in the intraepidermal and junctional part of all other lesions (dysplastic nevus, lentigo maligna, and melanoma). Reduced expression of PKC-βII was found in the dermal component of benign and malignant lesions ( P = .041 vs intraepidermal). PKC-βII expression in the various compartments did not differ significantly between benign and malignant lesions. The current study revealed a significant correlation between PKC-βII expression and spatial localization of melanocytes, with the lowest expression found in the dermal compartment and the highest in the epidermal compartment.

  6. Oxidative stress-induced overexpression of miR-25: the mechanism underlying the degeneration of melanocytes in vitiligo

    Science.gov (United States)

    Shi, Q; Zhang, W; Guo, S; Jian, Z; Li, S; Li, K; Ge, R; Dai, W; Wang, G; Gao, T; Li, C

    2016-01-01

    Oxidative stress has a critical role in the pathogenesis of vitiligo. However, the specific molecular mechanism involved in oxidative stress-induced melanocyte death is not well characterized. Given the powerful role of microRNAs (miRNAs) in the regulation of cell survival as well as the fact that the generation of miRNAs can be affected by oxidative stress, we hypothesized that miRNAs may participate in vitiligo pathogenesis by modulating the expression of vital genes in melanocytes. In the present study, we initially found that miR-25 was increased in both serum and lesion samples from vitiligo patients, and its serum level was correlated with the activity of vitiligo. Moreover, restoration of miR-25 promoted the H2O2-induced melanocyte destruction and led to the dysfunction of melanocytes. Further experiments proved that MITF, a master regulator in melanocyte survival and function, accounted for the miR-25-caused damaging impact on melanocytes. Notably, other than the direct role on melanocytes, we observed that miR-25 inhibited the production and secretion of SCF and bFGF from keratinocytes, thus impairing their paracrine protective effect on the survival of melanocytes under oxidative stress. At last, we verified that oxidative stress could induce the overexpression of miR-25 in both melanocytes and keratinocytes possibly by demethylating the promoter region of miR-25. Taken together, our study demonstrates that oxidative stress-induced overexpression of miR-25 in vitiligo has a crucial role in promoting the degeneration of melanocytes by not only suppressing MITF in melanocytes but also impairing the paracrine protective effect of keratinocytes. Therefore, it is worthy to investigate the possibility of miR-25 as a potential drug target for anti-oxidative therapy in vitiligo. PMID:26315342

  7. A reporter mouse model for in vivo tracing and in vitro molecular studies of melanocytic lineage cells and their diseases.

    Science.gov (United States)

    Crawford, Melissa; Leclerc, Valerie; Dagnino, Lina

    2017-08-15

    Alterations in melanocytic lineage cells give rise to a plethora of distinct human diseases, including neurocristopathies, cutaneous pigmentation disorders, loss of vision and hearing, and melanoma. Understanding the ontogeny and biology of melanocytic cells, as well as how they interact with their surrounding environment, are key steps in the development of therapies for diseases that involve this cell lineage. Efforts to culture and characterize primary melanocytes from normal or genetically engineered mouse models have at times yielded contrasting observations. This is due, in part, to differences in the conditions used to isolate, purify and culture these cells in individual studies. By breeding ROSA mT/mG and Tyr::CreER T2 mice, we generated animals in which melanocytic lineage cells are identified through expression of green fluorescent protein. We also used defined conditions to systematically investigate the proliferation and migration responses of primary melanocytes on various extracellular matrix (ECM) substrates. Under our culture conditions, mouse melanocytes exhibit doubling times in the range of 10 days, and retain exponential proliferative capacity for 50-60 days. In culture, these melanocytes showed distinct responses to different ECM substrates. Specifically, laminin-332 promoted cell spreading, formation of dendrites, random motility and directional migration. In contrast, low or intermediate concentrations of collagen I promoted adhesion and acquisition of a bipolar morphology, and interfered with melanocyte forward movements. Our systematic evaluation of primary melanocyte responses emphasizes the importance of clearly defining culture conditions for these cells. This, in turn, is essential for the interpretation of melanocyte responses to extracellular cues and to understand the molecular basis of disorders involving the melanocytic cell lineage. © 2017. Published by The Company of Biologists Ltd.

  8. A reporter mouse model for in vivo tracing and in vitro molecular studies of melanocytic lineage cells and their diseases

    Directory of Open Access Journals (Sweden)

    Melissa Crawford

    2017-08-01

    Full Text Available Alterations in melanocytic lineage cells give rise to a plethora of distinct human diseases, including neurocristopathies, cutaneous pigmentation disorders, loss of vision and hearing, and melanoma. Understanding the ontogeny and biology of melanocytic cells, as well as how they interact with their surrounding environment, are key steps in the development of therapies for diseases that involve this cell lineage. Efforts to culture and characterize primary melanocytes from normal or genetically engineered mouse models have at times yielded contrasting observations. This is due, in part, to differences in the conditions used to isolate, purify and culture these cells in individual studies. By breeding ROSAmT/mG and Tyr::CreERT2 mice, we generated animals in which melanocytic lineage cells are identified through expression of green fluorescent protein. We also used defined conditions to systematically investigate the proliferation and migration responses of primary melanocytes on various extracellular matrix (ECM substrates. Under our culture conditions, mouse melanocytes exhibit doubling times in the range of 10 days, and retain exponential proliferative capacity for 50-60 days. In culture, these melanocytes showed distinct responses to different ECM substrates. Specifically, laminin-332 promoted cell spreading, formation of dendrites, random motility and directional migration. In contrast, low or intermediate concentrations of collagen I promoted adhesion and acquisition of a bipolar morphology, and interfered with melanocyte forward movements. Our systematic evaluation of primary melanocyte responses emphasizes the importance of clearly defining culture conditions for these cells. This, in turn, is essential for the interpretation of melanocyte responses to extracellular cues and to understand the molecular basis of disorders involving the melanocytic cell lineage.

  9. Lysophosphatidic acid signaling via LPA{sub 1} and LPA{sub 3} regulates cellular functions during tumor progression in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Kaori; Takahashi, Kaede; Yamasaki, Eri; Onishi, Yuka [Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Honoki, Kanya [Department of Orthopedic Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2017-03-01

    Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors exhibits a variety of biological effects, such as cell proliferation, motility and differentiation. The aim of this study was to evaluate the roles of LPA{sub 1} and LPA{sub 3} in cellular functions during tumor progression in pancreatic cancer cells. LPA{sub 1} and LPA{sub 3} knockdown cells were generated from PANC-1 cells. The cell motile and invasive activities of PANC-1 cells were inhibited by LPA{sub 1} and LPA{sub 3} knockdown. In gelatin zymography, LPA{sub 1} and LPA{sub 3} knockdown cells indicated the low activation of matrix metalloproteinase-2 (MMP-2) in the presence of LPA. Next, to assess whether LPA{sub 1} and LPA{sub 3} regulate cellular functions induced by anticancer drug, PANC-1 cells were treated with cisplatin (CDDP) for approximately 6 months. The cell motile and invasive activities of long-term CDDP treated cells were markedly higher than those of PANC-1 cells, correlating with the expression levels of LPAR1 and LPAR3 genes. In soft agar assay, the long-term CDDP treated cells formed markedly large sized colonies. In addition, the cell motile and invasive activities enhanced by CDDP were significantly suppressed by LPA{sub 1} and LPA{sub 3} knockdown as well as colony formation. These results suggest that LPA signaling via LPA{sub 1} and LPA{sub 3} play an important role in the regulation of cellular functions during tumor progression in PANC-1 cells. - Highlights: • The cell motile and invasive activities of PANC-1 cells were stimulated by LPA{sub 1} and LPA{sub 3}. • LPA{sub 1} and LPA{sub 3} enhanced MMP-2 activation in PANC-1 cells. • The expressions of LPAR1 and LPAR3 genes were elevated in PANC-1 cells treated with cisplatin. • The cell motile and invasive activities of PANC-1 cells treated with cisplatin were suppressed by LPA{sub 1} and LPA{sub 3} knockdown. • LPA{sub 1} and LPA{sub 3} are involved in the regulation of cellular functions during tumor

  10. Immunohistochemical expression of tenascin in melanocytic tumours of dogs.

    Science.gov (United States)

    Sevastre, B; van Ederen, A M; Terlou, M; Gruys, E; Nederbragt, H

    2007-01-01

    The aim of this study was to investigate tenascin-C (TN) immunolabelling and labelling for endothelium by von Willebrand Factor (vWF) in melanocytic tumours of dogs as compared with normal tissues, to evaluate the TN distribution in these types of tumours and to investigate whether a relation could be established between TN and angiogenesis in different types of tumour. Samples of normal dog skin (n=8), benign skin melanocytomas (n=10), malignant oral melanomas (n=9) and malignant toe melanomas (n=5) were studied. The percentages of TN and vWF immunolabelling per total microscopical area were analysed by morphometric methods. In normal skin, TN was found at dermo-epidermal junctions, around hair follicles, in the smooth muscles of hair follicles, and in the walls of blood vessels. TN immunolabelling (distribution and intensity) in melanocytomas was comparable with that found in normal skin. In melanomas, TN expression was considerably increased, its intensity in toe melanomas being twice that observed in oral melanomas. The degree of TN immunolabelling was not related to the histological malignancy of the melanomas. In melanomas, TN was found in the connective tissue surrounding the tumour cell nests and in narrow stromal strands inside the tumour. Regions infiltrated with lymphocytes were devoid of TN. The presence of TN around capillaries in melanocytomas and melanomas was investigated by double-immunolabelling (for TN and vWF). The intensity of vWF and TN immunolabelling was higher in melanomas than in melanocytomas, and higher in toe melanomas than in oral melanomas; however, no clear relation between TN expression and immunolabelling for vWF was found.

  11. Positron tomographic imaging of tumors using monoclonal antibodies. Final progress report, April 15, 1989--October 31, 1995

    International Nuclear Information System (INIS)

    Zalutsky, M.R.

    1997-02-01

    The overall objective of this research is to develop methods for utilizing positron emission tomography (PET) to increase the clinical potential of radiolabeled monoclonal antibodies (MAbs). Enhancement of MAb tumor localization by hyperthermia also was proposed. Studies were to have been performed with both 18 F and 124 I; however, the lack of its availability (until quite recently) prevented experiments with 124 I. Instead, two additional lines of inquiry were initiated in which they utilized aspects of the radiofluorination chemistries originally developed for MAbs for labeling chemotactic peptides and meta-iodobenzylguanidine (MIBG) analogues with 18 F. This final report summarizes the original specific aims and the main research accomplishments in studies of mouse, dog and human models

  12. Positron tomographic imaging of tumors using monoclonal antibodies. Final progress report, April 15, 1989--October 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Zalutsky, M.R.

    1997-02-01

    The overall objective of this research is to develop methods for utilizing positron emission tomography (PET) to increase the clinical potential of radiolabeled monoclonal antibodies (MAbs). Enhancement of MAb tumor localization by hyperthermia also was proposed. Studies were to have been performed with both {sup 18}F and {sup 124}I; however, the lack of its availability (until quite recently) prevented experiments with {sup 124}I. Instead, two additional lines of inquiry were initiated in which they utilized aspects of the radiofluorination chemistries originally developed for MAbs for labeling chemotactic peptides and meta-iodobenzylguanidine (MIBG) analogues with {sup 18}F. This final report summarizes the original specific aims and the main research accomplishments in studies of mouse, dog and human models.

  13. High expression of WWP1 predicts poor prognosis and associates with tumor progression in human colorectal cancer

    Science.gov (United States)

    Chen, Jian-Jun; Zhang, Wei

    2018-01-01

    WWP1 (WW domain-containing E3 ubiquitin protein ligase 1), which is frequently up-regulated in multiple human malignancies, has been demonstrated to play a critical function in cell proliferation, apoptosis and invasion. However, limited knowledge is known about the expression pattern and prognostic value of WWP1 in colorectal cancer (CRC). In this study, we firstly observed that WWP1 mRNA and protein is commonly up-regulated in CRC tissues compared with normal counterparts. Furthermore, by immunohistochemical analysis in 348 cases of CRC specimens, we demonstrated that the WWP1 protein expression is up-regulated in 58.91% (205/348) samples and detected increasing WWP1 expression is closely correlated with enhanced tumor size (P=0.022), CEA level (P=0.021), T classification (P=0.010), distant metastasis (P=0.021) and TNM stage (P=0.005). Meanwhile, Kaplan-Meier survival analysis showed CRC patients with a high WWP1 expression have a poorer overall survival (P<0.001) and disease-free survival (P=0.001) than those with a low WWP1 expression. Multivariate Cox regression analysis revealed WWP1 is the independent prognostic factors for overall survival rate of CRC patients. What’s more, by CCK-8 assays and Transwell assays, we found WWP1 depletion markedly inhibited tumor proliferation and invasion in CRC cells, and cells with WWP1 overexpression had a prominently higher proliferative and invasive capacity. Most notably, we illuminated WWP1 downregulation inactivated PTEN/Akt pathway in CRC cells. Taken together, our studies revealed the prognostic value of WWP1 in CRC and support that WWP1 may act as a molecular target for CRC treatment. PMID:29511596

  14. Melanoma targeting with [99mTc(N)(PNP3)]-labeled α-melanocyte stimulating hormone peptide analogs: Effects of cyclization on the radiopharmaceutical properties

    International Nuclear Information System (INIS)

    Carta, Davide; Salvarese, Nicola; Morellato, Nicolò; Gao, Feng; Sihver, Wiebke; Pietzsch, Hans Jurgen; Biondi, Barbara; Ruzza, Paolo; Refosco, Fiorenzo; Carpanese, Debora; Rosato, Antonio; Bolzati, Cristina

    2016-01-01

    The purpose of this study was to evaluate the effect of cyclization on the biological profile of a [ 99m Tc(N)(PNP3)]-labeled α-melanocyte stimulating hormone peptide analog. A lactam bridge-cyclized H-Cys-Ahx-βAla 3 -c[Lys 4 -Glu-His-D-Phe-Arg-Trp-Glu 10 ]-Arg 11 -Pro-Val-NH 2 (NAP―NS2) and the corresponding linear H-Cys-Ahx-βAla-Nle-Asp-His-D-Phe-Arg-Trp-Gly-NH 2 (NAP―NS1) peptide were synthetized, characterized by ESI-MS spectroscopy and their melanocortin-1 receptor (MC1R) binding affinity was determined in B16/F10 melanoma cells. The consistent [ 99m Tc(N)(PNP3)]-labeled compounds were readily obtained in high specific activity and their stability and biological properties were assessed. As an example, the chemical identity of [ 99m Tc(N)(NAP–NS1)(PNP3)] + was confirmed by carrier added experiments supported by radio/UV HPLC analysis combined with ESI(+)-MS. Compared with the linear peptide, cyclization negatively affected the biological properties of NAP–NS2 peptide by reducing its binding affinity for MC1R and by decreasing the overall excretion rate of the corresponding [ 99m Tc(N)(PNP3)]-labeled peptide from the body as well as its in vivo stability. [ 99m Tc(N)(NAP–NS1)(PNP3)] + was evaluated for its potential as melanoma imaging probe in murine melanoma model. Data from in vitro and in vivo studies on B16/F10 melanoma model of [ 99m Tc(N)(NAP–NS1)(PNP3)] + clearly evidenced that the radiolabeled linear peptide keeps its biological properties up on the conjugation to the [ 99m Tc(N)(PNP3)]-building block. The progressive increase of the tumor-to-nontarget ratios over the time indicates a quite stable interaction between the radio-complex and the MC1R.

  15. The Role of Wnt Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the Therapy of This Tumor.

    Science.gov (United States)

    Zuccarini, Mariachiara; Giuliani, Patricia; Ziberi, Sihana; Carluccio, Marzia; Iorio, Patrizia Di; Caciagli, Francesco; Ciccarelli, Renata

    2018-02-17

    Wnt is a complex signaling pathway involved in the regulation of crucial biological functions such as development, proliferation, differentiation and migration of cells, mainly stem cells, which are virtually present in all embryonic and adult tissues. Conversely, dysregulation of Wnt signal is implicated in development/progression/invasiveness of different kinds of tumors, wherein a certain number of multipotent cells, namely "cancer stem cells", are characterized by high self-renewal and aggressiveness. Hence, the pharmacological modulation of Wnt pathway could be of particular interest, especially in tumors for which the current standard therapy results to be unsuccessful. This might be the case of glioblastoma multiforme (GBM), one of the most lethal, aggressive and recurrent brain cancers, probably due to the presence of highly malignant GBM stem cells (GSCs) as well as to a dysregulation of Wnt system. By examining the most recent literature, here we point out several factors in the Wnt pathway that are altered in human GBM and derived GSCs, as well as new molecular strategies or experimental drugs able to modulate/inhibit aberrant Wnt signal. Altogether, these aspects serve to emphasize the existence of alternative pharmacological targets that may be useful to develop novel therapies for GBM.

  16. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression.

    Science.gov (United States)

    Coke, Christopher J; Scarlett, Kisha A; Chetram, Mahandranauth A; Jones, Kia J; Sandifer, Brittney J; Davis, Ahriea S; Marcus, Adam I; Hinton, Cimona V

    2016-05-06

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression*

    Science.gov (United States)

    Coke, Christopher J.; Scarlett, Kisha A.; Chetram, Mahandranauth A.; Jones, Kia J.; Sandifer, Brittney J.; Davis, Ahriea S.; Marcus, Adam I.

    2016-01-01

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. PMID:26841863

  18. miR-192, miR-194 and miR-215: a convergent microRNA network suppressing tumor progression in renal cell carcinoma.

    Science.gov (United States)

    Khella, H W Z; Bakhet, M; Allo, G; Jewett, M A S; Girgis, A H; Latif, A; Girgis, H; Von Both, I; Bjarnason, G A; Yousef, G M

    2013-10-01

    MicroRNAs (miRNAs) play a crucial role in tumor progression and metastasis. We, and others, recently identified a number of miRNAs that are dysregulated in metastatic renal cell carcinoma compared with primary renal cell carcinoma. Here, we investigated three miRNAs that are significantly downregulated in metastatic tumors: miR-192, miR-194 and miR-215. Gain-of-function analyses showed that restoration of their expression decreases cell migration and invasion in renal cell carcinoma cell line models, whereas knockdown of these miRNAs resulted in enhancing cellular migration and invasion abilities. We identified three targets of these miRNAs with potential role in tumor aggressiveness: murine double minute 2, thymidylate synthase, and Smad Interacting protein 1/zinc finger E-box binding homeobox 2. We observed a convergent effect (the same molecule can be targeted by all three miRNAs) and a divergent effect (the same miRNA can control multiple targets) for these miRNAs. We experimentally validated these miRNA-target interactions using three independent approaches. First, we observed that miRNA overexpression significantly reduces the mRNA and protein levels of their targets. In the second, we observed significant reduction of the luciferase signal of a vector containing the 3'UTR of the target upon miRNA overexpression. Finally, we show the presence of inverse correlation between miRNA changes and the expression levels of their targets in patient specimens. We also examined the prognostic significance of miR-215 in renal cell carcinoma. Lower expression of miR-215 is associated with significantly reduced disease-free survival time. These findings were validated on an independent data set from The Cancer Genome Atlas. These results can pave the way to the clinical use of miRNAs as prognostic markers and therapeutic targets.

  19. Over-expression of eukaryotic translation initiation factor 4 gamma 1 correlates with tumor progression and poor prognosis in nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Li Xin

    2010-04-01

    Full Text Available Abstract Background The aim of the present study was to analyze the expression of eukaryotic translation initiation factor 4 gamma 1 (EIF4G1 in nasopharyngeal carcinoma (NPC and its correlation with clinicopathologic features, including patients' survival time. Methods Using real-time PCR, we detected the expression of EIF4G1 in normal nasopharyngeal tissues, immortalized nasopharyngeal epithelial cell lines NP69, NPC tissues and cell lines. EIF4G1 protein expression in NPC tissues was examined using immunohistochemistry. Survival analysis was performed using Kaplan-Meier method. The effect of EIF4G1 on cell invasion and tumorigenesis were investigated. Results The expression levels of EIF4G1 mRNA were significantly greater in NPC tissues and cell lines than those in the normal nasopharyngeal tissues and NP69 cells (P EIF4G1 protein was higher in NPC tissues than that in the nasopharyngeal tissues (P EIF4G1 protein in tumors were positively correlated with tumor T classification (P = 0.039, lymph node involvement (N classification, P = 0.008, and the clinical stages (P = 0.003 of NPC patients. Patients with higher EIF4G1 expression had shorter overall survival time (P = 0.019. Multivariate analysis showed that EIF4G1 expression was an independent prognostic indicator for the overall survival of NPC patients. Using shRNA to knock down the expression of EIF4G1 not only markedly inhibited cell cycle progression, proliferation, migration, invasion, and colony formation, but also dramatically suppressed in vivo xenograft tumor growth. Conclusion Our data suggest that EIF4G1 can serve as a biomarker for the prognosis of NPC patients.

  20. Model-based prediction of progression-free survival in patients with first-line renal cell carcinoma using week 8 tumor size change from baseline.

    Science.gov (United States)

    Claret, Laurent; Zheng, Jenny; Mercier, Francois; Chanu, Pascal; Chen, Ying; Rosbrook, Brad; Yazdi, Pithavala; Milligan, Peter A; Bruno, Rene

    2016-09-01

    To assess the link between early tumor shrinkage (ETS) and progression-free survival (PFS) based on historical first-line metastatic renal cell carcinoma (mRCC) data. Tumor size data from 921 patients with first-line mRCC who received interferon-alpha, sunitinib, sorafenib or axitinib in two Phase III studies were modeled. The relationship between model-based estimates of ETS at week 8 as well as the baseline prognostic factors and PFS was tested in multivariate log-logistic models. Model performance was evaluated using simulations of PFS distributions and hazard ratio (HR) across treatments for the two studies. In addition, an external validation was conducted using data from an independent Phase II RCC study. The relationship between expected HR of an investigational treatment vs. sunitinib and the differences in ETS was simulated. A model with a nonlinear ETS-PFS link was qualified to predict PFS distribution by ETS quartiles as well as to predict HRs of sunitinib vs. interferon-alpha and axitinib vs. sorafenib. The model also performed well in simulations of an independent study of axitinib (external validation). The simulations suggested that if a new investigational treatment could further reduce the week 8 ETS by 30 % compared with sunitinib, an expected HR [95 % predictive interval] of the new treatment vs. sunitinib would be 0.59 [0.46, 0.79]. A model has been developed that uses early changes in tumor size to predict the HR for PFS differences between treatment arms for first-line mRCC. Such a model may have utility in predicting the outcome of ongoing studies (e.g., as part of interim futility analyses), supporting early decision making and future study design for investigational agents in development for this indication.

  1. Development and validation of a simple method for the extraction of human skin melanocytes.

    Science.gov (United States)

    Wang, Yinjuan; Tissot, Marion; Rolin, Gwenaël; Muret, Patrice; Robin, Sophie; Berthon, Jean-Yves; He, Li; Humbert, Philippe; Viennet, Céline

    2018-03-21

    Primary melanocytes in culture are useful models for studying epidermal pigmentation and efficacy of melanogenic compounds, or developing advanced therapy medicinal products. Cell extraction is an inevitable and critical step in the establishment of cell cultures. Many enzymatic methods for extracting and growing cells derived from human skin, such as melanocytes, are described in literature. They are usually based on two enzymatic steps, Trypsin in combination with Dispase, in order to separate dermis from epidermis and subsequently to provide a suspension of epidermal cells. The objective of this work was to develop and validate an extraction method of human skin melanocytes being simple, effective and applicable to smaller skin samples, and avoiding animal reagents. TrypLE™ product was tested on very limited size of human skin, equivalent of multiple 3-mm punch biopsies, and was compared to Trypsin/Dispase enzymes. Functionality of extracted cells was evaluated by analysis of viability, morphology and melanin production. In comparison with Trypsin/Dispase incubation method, the main advantages of TrypLE™ incubation method were the easier of separation between dermis and epidermis and the higher population of melanocytes after extraction. Both protocols preserved morphological and biological characteristics of melanocytes. The minimum size of skin sample that allowed the extraction of functional cells was 6 × 3-mm punch biopsies (e.g., 42 mm 2 ) whatever the method used. In conclusion, this new procedure based on TrypLE™ incubation would be suitable for establishment of optimal primary melanocytes cultures for clinical applications and research.

  2. Melanocytes and melanin represent a first line of innate immunity against Candida albicans.

    Science.gov (United States)

    Tapia, Cecilia V; Falconer, Maryanne; Tempio, Fabián; Falcón, Felipe; López, Mercedes; Fuentes, Marisol; Alburquenque, Claudio; Amaro, José; Bucarey, Sergio A; Di Nardo, Anna

    2014-07-01

    Melanocytes are dendritic cells located in the skin and mucosae that synthesize melanin. Some infections induce hypo- or hyperpigmentation, which is associated with the activation of Toll-like receptors (TLRs), especially TLR4. Candida albicans is an opportunist pathogen that can switch between blastoconidia and hyphae forms; the latter is associated with invasion. Our objectives in this study were to ascertain whether C. albicans induces pigmentation in melanocytes and whether this process is dependent on TLR activation, as well as relating this with the antifungal activity of melanin as a first line of innate immunity against fungal infections. Normal human melanocytes were stimulated with C. albicans supernatants or with crude extracts of the blastoconidia or hyphae forms, and pigmentation and TLR2/TLR4 expression were measured. Expression of the melanosomal antigens Melan-A and gp100 was examined for any correlation with increased melanin levels or antifungal activity in melanocyte lysates. Melanosomal antigens were induced earlier than cell pigmentation, and hyphae induced stronger melanization than blastoconidia. Notably, when melanocytes were stimulated with crude extracts of C. albicans, the cell surface expression of TLR2/TLR4 began at 48 h post-stimulation and peaked at 72 h. At this time, blastoconidia induced both TLR2 and TLR4 expression, whereas hyphae only induced TLR4 expression. Taken together, these results suggest that melanocytes play a key role in innate immune responses against C. albicans infections by recognizing pathogenic forms of C. albicans via TLR4, resulting in increased melanin content and inhibition of infection. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Hepatocyte growth factor/scatter factor-MET signaling in neural crest-derived melanocyte development.

    Science.gov (United States)

    Kos, L; Aronzon, A; Takayama, H; Maina, F; Ponzetto, C; Merlino, G; Pavan, W

    1999-02-01

    The mechanisms governing development of neural crest-derived melanocytes, and how alterations in these pathways lead to hypopigmentation disorders, are not completely understood. Hepatocyte growth factor/scatter factor (HGF/SF) signaling through the tyrosine-kinase receptor, MET, is capable of promoting the proliferation, increasing the motility, and maintaining high tyrosinase activity and melanin synthesis of melanocytes in vitro. In addition, transgenic mice that ubiquitously overexpress HGF/SF demonstrate hyperpigmentation in the skin and leptomenigenes and develop melanomas. To investigate whether HGF/ SF-MET signaling is involved in the development of neural crest-derived melanocytes, transgenic embryos, ubiquitously overexpressing HGF/SF, were analyzed. In HGF/SF transgenic embryos, the distribution of melanoblasts along the characteristic migratory pathway was not affected. However, additional ectopically localized melanoblasts were also observed in the dorsal root ganglia and neural tube, as early as 11.5 days post coitus (p.c.). We utilized an in vitro neural crest culture assay to further explore the role of HGF/SF-MET signaling in neural crest development. HGF/SF added to neural crest cultures increased melanoblast number, permitted differentiation into pigmented melanocytes, promoted melanoblast survival, and could replace mast-cell growth factor/Steel factor (MGF) in explant cultures. To examine whether HGF/SF-MET signaling is required for the proper development of melanocytes, embryos with a targeted Met null mutation (Met-/-) were analysed. In Met-/- embryos, melanoblast number and location were not overtly affected up to 14 days p.c. These results demonstrate that HGF/SF-MET signaling influences, but is not required for, the initial development of neural crest-derived melanocytes in vivo and in vitro.

  4. Giant melanocytic nevus with malignant melanoma: a rare disorder in a black African child.

    Science.gov (United States)

    Katibi, Oludolapo Sherifat; Ogunbiyi, Adebola; Brown, Biobele Jotham; Adeyemi, Oyedeji Oladele

    2014-10-01

    Giant congenital melanocytic nevus (GCMN) is rare in babies of African descent. Unfortunately, it has an increased potential for malignant transformation. A 3-year-old female child presented with a 6-month history of multiple nodules on an existing giant congenital melanocytic nevus and swelling in the right axilla of four weeks duration. Skin biopsy of the nodular skin lesions was in keeping with a metastatic malignant melanoma (Clark stage 4). She completed a full course of chemotherapy but subsequently died four months after presentation. Patients with large GCMN should be counseled and followed up appropriately to improve and prolong life. © 2014 The International Society of Dermatology.

  5. Investigation of cellular signalling responses to non-ionising radiation in melanocytes by microarray analysis

    International Nuclear Information System (INIS)

    Boyle, G.M.; Pedley, J.; Martyn, A.C.; Fraser, L.M.; Banducci, K.J.; Parsons, P.G.; Breit, S.N.

    2003-01-01

    Melanoma is a highly aggressive cancer resulting from the abnormal proliferation and spread of specialised pigment cells in the skin, known as melanocytes. Extensive epidemiological and molecular evidence suggests that a major risk factor for melanoma formation is exposure to non-ionising radiation in the form of solar ultra-violet (UV) light. However, the exact role of solar UV in the development of melanoma is unclear. To elucidate the molecular events that occur in melanocytes following solar UV exposure and determine how they lead to melanoma development, cDNA microarray analysis was used to analyse the gene expression profile of normal melanocytes, melanocytes exposed to simulated solar UV and melanoma cells. The development of cDNA microarray technology has allowed gene expression profiling at the mRNA level to be conducted for many thousands of genes simultaneously by hybridising an array of known sequences with labelled cDNA reverse transcribed form the sample RNA. Gene expression analysis was performed for over 13,000 genes. More than 500 genes were identified as differentially expressed in melanocytes following a single UV exposure, although overall there was a general suppression of transcription. Genes that were up-regulated included oncogenes and cytoskeletal genes; in contrast, genes encoding protein tyrosine kinases and apoptosis effectors were down-regulated. Many of the genes identified as being differentially expressed represent novel UV-regulated targets. Repeated exposure to solar UV resulted in the elevation in expression of a novel member of the transforming growth factor-b (TGF-b) superfamily, the Macrophage Inhibitory Cytokine-1 (MIC-1). Our results have shown that MIC-1 is up-regulated by solar UV in melanocytes, and is highly expressed (>3 fold) in a number of metastatic melanoma cell lines (31/61) in comparison to primary melanocytes. Furthermore functional, dimerised MIC-1 was found to be secreted by melanocytes, and secreted levels were

  6. Confocal laser scanning microscopy in vivo for diagnosing melanocytic skin neoplasms

    Directory of Open Access Journals (Sweden)

    A. A. Kubanova

    2014-01-01

    Full Text Available The authors discuss the use of confocal laser scanning microscopy in vivo (CLSM for diagnosing melanocytic skin neoplasms and its value for early diagnostics of melanoma. CLSM is an innovation noninvasive visual examination method for real-time multiple and painless examinations of the patient’s skin without injuring the skin integument. The method ensures early diagnostics of skin melanomas with high sensitivity and specificity, which makes it possible to use CLSM for screening melanocytic skin neoplasms for the sake of the early onset of treatment to save patient life and health.

  7. Immunopolarization of CD4(+) and CD8(+) T cells to type-1-like is associated with melanocyte loss in human vitiligo

    NARCIS (Netherlands)

    Wańkowicz-Kalińska, Anna; van den Wijngaard, René M. J. G. J.; Tigges, Bert J.; Westerhof, Wiete; Ogg, Graham S.; Cerundolo, Vincenzo; Storkus, Walter J.; Das, Pranab K.

    2003-01-01

    Vitiligo is an autoimmune condition characterized by loss of epidermal melanocytes. High frequencies of melanocyte-reactive cytotoxic T cells in the peripheral blood of vitiligo patients and the observed correlation between perilesional T-cell infiltration and melanocyte loss in situ suggest the

  8. Circulating Tumor Cell Count Correlates with Colorectal Neoplasm Progression and Is a Prognostic Marker for Distant Metastasis in Non-Metastatic Patients

    Science.gov (United States)

    Tsai, Wen-Sy; Chen, Jinn-Shiun; Shao, Hung-Jen; Wu, Jen-Chia; Lai-Ming, Jr.; Lu, Si-Hong; Hung, Tsung-Fu; Chiu, Yen-Chi; You, Jeng-Fu; Hsieh, Pao-Shiu; Yeh, Chien-Yuh; Hung, Hsin-Yuan; Chiang, Sum-Fu; Lin, Geng-Ping; Tang, Reiping; Chang, Ying-Chih

    2016-04-01

    Enumeration of circulating tumor cells (CTCs) has been proven as a prognostic marker for metastatic colorectal cancer (m-CRC) patients. However, the currently available techniques for capturing and enumerating CTCs lack of required sensitivity to be applicable as a prognostic marker for non-metastatic patients as CTCs are even more rare. We have developed a microfluidic device utilizing antibody-conjugated non-fouling coating to eliminate nonspecific binding and to promote the multivalent binding of target cells. We then established the correlation of CTC counts and neoplasm progression through applying this platform to capture and enumerate CTCs in 2 mL of peripheral blood from healthy (n = 27), benign (n = 21), non-metastatic (n = 95), and m-CRC (n = 15) patients. The results showed that the CTC counts progressed from 0, 1, 5, to 36. Importantly, after 2-year follow-up on the non-metastatic CRC patients, we found that those who had ≥5 CTCs were 8 times more likely to develop distant metastasis within one year after curable surgery than those who had marker for the non-metastatic CRC patients who are at high risk of early recurrence.

  9. Interleukins 1alpha and 1beta secreted by some melanoma cell lines strongly reduce expression of MITF-M and melanocyte differentiation antigens.

    Science.gov (United States)

    Kholmanskikh, Olga; van Baren, Nicolas; Brasseur, Francis; Ottaviani, Sabrina; Vanacker, Julie; Arts, Nathalie; van der Bruggen, Pierre; Coulie, Pierre; De Plaen, Etienne

    2010-10-01

    We report that melanoma cell lines expressing the interleukin-1 receptor exhibit 4- to 10-fold lower levels of mRNA of microphthalmia-associated transcription factor (MITF-M) when treated with interleukin-1beta. This effect is NF-kappaB and JNK-dependent. MITF-M regulates the expression of melanocyte differentiation genes such as MLANA, tyrosinase and gp100, which encode antigens recognized on melanoma cells by autologous cytolytic T lymphocytes. Accordingly, treating some melanoma cells with IL-1beta reduced by 40-100% their ability to activate such antimelanoma cytolytic T lymphocytes. Finally, we observed large amounts of biologically active IL-1alpha or IL-1beta secreted by two melanoma cell lines that did not express MITF-M, suggesting an autocrine MITF-M downregulation. We estimate that approximately 13% of melanoma cell lines are MITF-M-negative and secrete IL-1 cytokines. These results indicate that the repression of melanocyte-differentiation genes by IL-1 produced by stromal cells or by tumor cells themselves may represent an additional mechanism of melanoma immune escape.

  10. Monitoring mammary tumor progression and effect of tamoxifen treatment in MMTV-PymT using MRI and magnetic resonance spectroscopy with hyperpolarized [1-13C]pyruvate

    DEFF Research Database (Denmark)

    Asghar Butt, Sadia; Søgaard, Lise V.; Ardenkjær-Larsen, Jan Henrik

    2015-01-01

    Purpose: To use dynamic magnetic resonance spectroscopy (MRS) of hyperpolarized 13C-pyruvate to follow the progress over time in vivo of breast cancer metabolism in the MMTV-PymT model, and to follow the response to the anti-estrogen drug tamoxifen. Methods: Tumor growth was monitored by anatomical...... significantly in the treated group. Conclusion: These hyperpolarized 13C MRS findings indicate that tumor metabolic changes affects kP. The measured kp did not relate to treatment response to the same extent as did tumor growth, histological evaluation, and in vitro determination of LDH activity. © 2014 Wiley...

  11. Inflammatory cascades driven by tumor necrosis factor-alpha play a major role in the progression of acute liver failure and its neurological complications.

    Directory of Open Access Journals (Sweden)

    Anne Chastre

    Full Text Available Acute liver failure (ALF due to ischemic or toxic liver injury is a clinical condition that results from massive loss of hepatocytes and may lead to hepatic encephalopathy (HE, a serious neuropsychiatric complication. Although increased expression of tumor necrosis factor-alpha (TNF-α in liver, plasma and brain has been observed, conflicting results exist concerning its roles in drug-induced liver injury and on the progression of HE. The present study aimed to investigate the therapeutic value of etanercept, a TNF-α neutralizing molecule, on the progression of liver injury and HE in mice with ALF resulting from azoxymethane (AOM hepatotoxicity.Mice were administered saline or etanercept (10 mg/kg; i.p. 30 minutes prior to, or up to 6 h after AOM. Etanercept-treated ALF mice were sacrificed in parallel with vehicle-treated comatose ALF mice and controls. AOM induced severe hepatic necrosis, leading to HE, and etanercept administered prior or up to 3 h after AOM significantly delayed the onset of coma stages of HE. Etanercept pretreatment attenuated AOM-induced liver injury, as assessed by histological examination, plasma ammonia and transaminase levels, and by hepatic glutathione content. Peripheral inflammation was significantly reduced by etanercept as shown by decreased plasma IL-6 (4.1-fold; p<0.001 and CD40L levels (3.7-fold; p<0.001 compared to saline-treated ALF mice. Etanercept also decreased IL-6 levels in brain (1.2-fold; p<0.05, attenuated microglial activation (assessed by OX-42 immunoreactivity, and increased brain glutathione concentrations.These results indicate that systemic sequestration of TNF-α attenuates both peripheral and cerebral inflammation leading to delayed progression of liver disease and HE in mice with ALF due to toxic liver injury. These results suggest that etanercept may provide a novel therapeutic approach for the management of ALF patients awaiting liver transplantation.

  12. Constitutive transgene expression of Stem Cell Antigen-1 in the hair follicle alters the sensitivity to tumor formation and progression

    Directory of Open Access Journals (Sweden)

    Rikke Christensen

    2017-08-01

    Full Text Available The cell surface protein Stem Cell Antigen-1 (Sca-1 marks stem or progenitor cells in several murine tissues and is normally upregulated during cancer development. Although the specific function of Sca-1 remains unknown, Sca-1 seems to play a role in proliferation, differentiation and cell migration in a number of tissues. In the skin epithelium, Sca-1 is highly expressed in the interfollicular epidermis but is absent in most compartments of the hair follicle; however, the function of Sca-1 in the skin has not been investigated. To explore the role of Sca-1 in normal and malignant skin development we generated transgenic mice that express Sca-1 in the hair follicle stem cells that are normally Sca-1 negative. Development of hair follicles and interfollicular epidermis appeared normal in Sca-1 mutant mice; however, follicular induction of Sca-1 expression in bulge region and isthmus stem cells reduced the overall yield of papillomas in a chemical carcinogenesis protocol. Despite that fewer papillomas developed in transgenic mice a higher proportion of the papillomas underwent malignant conversion. These findings suggest that overexpression of Sca-1 in the hair follicle stem cells contributes at different stages of tumour development. In early stages, overexpression of Sca-1 decreases tumour formation while at later stages overexpression of Sca-1 seems to drive tumours towards malignant progression.

  13. MFAP5 promotes tumor progression and bone metastasis by regulating ERK/MMP signaling pathways in breast cancer.

    Science.gov (United States)

    Wu, Zhiqiang; Wang, Ting; Fang, Meng; Huang, Wending; Sun, Zhengwang; Xiao, Jianru; Yan, Wangjun

    2018-04-06

    Breast cancer accounts for about 30% of all cancers in women, while approximately 70% breast cancer patients developed bone metastases throughout the course of their disease, highlighting the importance of exploring new therapeutic targets. Microfibrillar-associated protein 5 (MFAP5) is a component of extracellular elastic microfibril which has been confirmed to function in tissue development and cancer progression. But the role of MFAP5 in breast cancer remains unclear. The present study demonstrated that MFAP5 was up-regulated in breast cancers compared with that in normal breast tissues, and further increased in breast cancer bone metastasis. Functionally, MFAP5 overexpression accelerated breast cancer cell proliferation and migration, while an opposite effect was observed when MFAP5 was knocked down. In addition, up-regulation of MFAP5 increased the expression of MMP2 and MMP9 and activated the ERK signaling pathway. Conversely, inhibition of MFAP5 suppressed the expression of MMP2, MMP9, p-FAK, p-Erk1/2 and p-cJun. These findings may provide a better understanding about the mechanism of breast cancer and suggest that MFAP5 may be a potential prognostic biomarker and therapeutic target for breast cancer, especially for bone metastasis of breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Noscapine alters microtubule dynamics in living cells and inhibits the progression of melanoma.

    Science.gov (United States)

    Landen, Jaren W; Lang, Roland; McMahon, Steve J; Rusan, Nasser M; Yvon, Anne-Marie; Adams, Ashley W; Sorcinelli, Mia D; Campbell, Ross; Bonaccorsi, Paola; Ansel, John C; Archer, David R; Wadsworth, Patricia; Armstrong, Cheryl A; Joshi, Harish C

    2002-07-15

    Cellular microtubules, polymers of tubulin, alternate relentlessly between phases of growth and shortening. We now show that noscapine, a tubulin-binding agent, increases the time that cellular microtubules spend idle in a paused state. As a result, most mammalian cell types observed arrest in mitosis in the presence of noscapine. We demonstrate that noscapine-treated murine melanoma B16LS9 cells do not arrest in mitosis but rather become polyploid followed by cell death, whereas primary melanocytes reversibly arrest in mitosis and resume a normal cell cycle after noscapine removal. Furthermore, in a syngeneic murine model of established s.c. melanoma, noscapine treatment resulted in an 85% inhibition of tumor volume on day 17 when delivered by gavage compared with untreated animals (P tumor volume observed when noscapine was combined with paclitaxel. Importantly, noscapine also demonstrated the ability to significantly inhibit melanoma progression by 83% on day 18 when delivered in drinking water (P progression of melanoma cells through alterations in microtubule dynamics, with no detected toxicity to the host. Consequently, noscapine could be a valuable chemotherapeutic agent, alone or in combination, for the treatment of advanced melanoma.

  15. Ultraviolet B, melanin and mitochondrial DNA: Photo-damage in human epidermal keratinocytes and melanocytes modulated by alpha-melanocyte-stimulating hormone [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Markus Böhm

    2016-05-01

    Full Text Available Alpha-melanocyte-stimulating hormone (alpha-MSH increases melanogenesis and protects from UV-induced DNA damage. However, its effect on mitochondrial DNA (mtDNA damage is unknown. We have addressed this issue in a pilot study using human epidermal keratinocytes and melanocytes incubated with alpha-MSH and irradiated with UVB. Real-time touchdown PCR was used to quantify total and deleted mtDNA. The deletion detected encompassed the common deletion but was more sensitive to detection. There were 4.4 times more mtDNA copies in keratinocytes than in melanocytes. Irradiation alone did not affect copy numbers. Alpha-MSH slightly increased copy numbers in both cell types in the absence of UVB and caused a similar small decrease in copy number with dose in both cell types. Deleted copies were nearly twice as frequent in keratinocytes as in melanocytes. Alpha-MSH reduced the frequency of deleted copies by half in keratinocytes but not in melanocytes. UVB dose dependently led to an increase in the deleted copy number in alpha-MSH-treated melanocytes. UVB irradiation had little effect on deleted copy number in alpha-MSH-treated keratinocytes. In summary, alpha-MSH enhances mtDNA damage in melanocytes presumably by increased melanogenesis, while α-MSH is protective in keratinocytes, the more so in the absence of irradiation.

  16. Melanocortin 1 receptor genotype: an important determinant of the damage response of melanocytes to ultraviolet radiation

    Science.gov (United States)

    Kadekaro, Ana Luisa; Leachman, Sancy; Kavanagh, Renny J.; Swope, Viki; Cassidy, Pamela; Supp, Dorothy; Sartor, Maureen; Schwemberger, Sandy; Babcock, George; Wakamatsu, Kazumasa; Ito, Shosuke; Koshoffer, Amy; Boissy, Raymond E.; Manga, Prashiela; Sturm, Richard A.; Abdel-Malek, Zalfa A.

    2010-01-01

    The melanocortin 1 receptor gene is a main determinant of human pigmentation, and a melanoma susceptibility gene, because its variants that are strongly associated with red hair color increase melanoma risk. To test experimentally the association between melanocortin 1 receptor genotype and melanoma susceptibility, we compared the responses of primary human melanocyte cultures naturally expressing different melanocortin 1 receptor variants to α-melanocortin and ultraviolet radiation. We found that expression of 2 red hair variants abolished the response to α-melanocortin and its photoprotective effects, evidenced by lack of functional coupling of the receptor, and absence of reduction in ultraviolet radiation-induced hydrogen peroxide generation or enhancement of repair of DNA photoproducts, respectively. These variants had different heterozygous effects on receptor function. Microarray data confirmed the observed differences in responses of melanocytes with functional vs. nonfunctional receptor to α-melanocortin and ultraviolet radiation, and identified DNA repair and antioxidant genes that are modulated by α-melanocortin. Our findings highlight the molecular mechanisms by which the melanocortin 1 receptor genotype controls genomic stability of and the mutagenic effect of ultraviolet radiation on human melanocytes.—Kadekaro, A. L., Leachman, S., Kavanagh, R. J., Swope, V., Cassidy, P., Supp, D., Sartor, M., Schwemberger, S., Babcock, G., Wakamatsu, K., Ito, S., Koshoffer, A., Boissy, R. E., Manga, P., Sturm, R. A., Abdel-Malek, Z. A. Melanocortin 1 receptor genotype: an important determinant of the damage response of melanocytes to ultraviolet radiation. PMID:20519635

  17. Molecular effects of 1-naphthyl-methylcarbamate and solar radiation exposures on human melanocytes.

    Science.gov (United States)

    Ferrucio, Bianca; Tiago, Manoela; Fannin, Richard D; Liu, Liwen; Gerrish, Kevin; Maria-Engler, Silvya Stuchi; Paules, Richard S; Barros, Silvia Berlanga de Moraes

    2017-02-01

    Carbaryl (1-naphthyl-methylcarbamate), a broad-spectrum insecticide, has recently been associated with the development of cutaneous melanoma in an epidemiological cohort study with U.S. farm workers also exposed to ultraviolet radiation, the main etiologic factor for skin carcinogenesis. We hypothesized that carbaryl exposure may increase deleterious effects of UV solar radiation on skin melanocytes. This study aimed to characterize human melanocytes after individual or combined exposure to carbaryl (100μM) and solar radiation (375mJ/cm 2 ). In a microarray analysis, carbaryl, but not solar radiation, induced an oxidative stress response, evidenced by the upregulation of antioxidant genes, such as Hemeoxygenase-1 (HMOX1), and downregulation of Microphtalmia-associated Transcription Factor (MITF), the main regulator of melanocytic activity; results were confirmed by qRT-PCR. Carbaryl and solar radiation induced a gene response suggestive of DNA damage and cell cycle alteration. The expression of CDKN1A, BRCA1/2 and MDM2 genes was notably more intense in the combined treatment group, in a synergistic manner. Flow cytometry assays demonstrated S-phase cell cycle arrest, reduced apoptosis levels and faster induction of cyclobutane pyrimidine dimers (CPD) lesions in carbaryl treated groups. Our data suggests that carbaryl is genotoxic to human melanocytes, especially when associated with solar radiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Mutations in c10orf11, a melanocyte-differentiation gene, cause autosomal-recessive albinism

    DEFF Research Database (Denmark)

    Grønskov, Karen; Dooley, Christopher M; Østergaard, Elsebet

    2013-01-01

    in an individual originating from Lithuania. Immunohistochemistry showed localization of C10orf11 in melanoblasts and melanocytes in human fetal tissue, but no localization was seen in retinal pigment epithelial cells. Knockdown of the zebrafish (Danio rerio) homolog with the use of morpholinos resulted...

  19. Stimulation of cyclic GMP efflux in human melanocytes by hypergravity generated by centrifugal acceleration

    NARCIS (Netherlands)

    Ivanova, Krassimira; Zadeh, Nahid Hamidi; Block, Ingrid; Das, Pranab K.; Gerzer, Rupert

    2004-01-01

    Gravity alteration (micro- and hypergravity) is known to influence cell functions. As guanosine 3',5'-cyclic monophosphate (cGMP) plays an important role in human melanocyte functions and different guanylyl cyclase isoforms are responsible for cGMP synthesis in human non-metastatic and metastatic

  20. (Pheo)melanin photosensitizes UVA-induced DNA damage in cultured human melanocytes

    NARCIS (Netherlands)

    Wenczl, E.; Schans, G.P. van der; Roza, L.; Kolb, R.M.; Timmerman, A.J.; Smit, N.P.M.; Pavel, S.; Schothorst, A.A.

    1998-01-01

    The question of whether melanins are photoprotecting and/or photosensitizing in human skin cells continues to be debated. To evaluate the role of melanin upon UVA irradiation, DNA single-strand breaks (ssb) were measured in human melanocytes differing only in the amount of pigment produced by

  1. Clinical and histological responses of congenital melanocytic nevi after single treatment with Q-switched lasers

    NARCIS (Netherlands)

    Grevelink, JM; vanLeeuwen, RL; Anderson, RR; Byers, HR

    Background: Laser irradiation of congenital melanocytic nevi is a controversial treatment. Recurrence of lesions after laser treatment appears to be the rule, and the effects of laser irradiation on cellular biological behavior and the possible mutagenic responses of nevomelanocytes that have

  2. G2 accumulation and melanin overproduction in malignant melanocytes treated with a new nitrosourea.

    Science.gov (United States)

    Buchdahl, C; Papon, J; Communal, Y; Bourges, M; Madelmont, J C

    1998-12-01

    Cystemustine (N'-(2-chloroethyl)-N-(2-(methylsulphonyl)ethyl)-N'-nitrosourea), a new anticancer chloroethylnitrosourea (CENU) is being tested in a phase II clinical trial of disseminated melanoma. The antitumour effect of this drug is mainly due to DNA damage in malignant melanocytes. Recently, we have shown that this damage can induce apoptosis in some melanoma cell lines. In others, apoptosis is not clearly observed, although there is a strong cytostatic effect. In this paper, we have characterized the cytological effect of cystemustine on murine malignant melanocytes (B16 cell line) which are resistant to apoptosis induced by this CENU. The results show that 3 days after cystemustine treatment, these melanocytes had accumulated in phase G2 of the cell cycle. There was then a strong morphological modification during a long cytostatic phase up to 30 days after treatment. During this cytostatic phase, there was uncontrolled DNA synthesis and marked swelling. Also, tyrosinase activity, melanin content and the number of mature melanosomes were greatly increased. These results suggest that when malignant melanocytes are not able to undergo apoptosis after treatment with CENU, they accumulate in G2 and this is followed by enhancement of melanogenesis.

  3. Behandling og håndtering af kongenitte melanocytære naevi

    DEFF Research Database (Denmark)

    Bahn, Kamille-Amalie; Hædersdal, Merete; Schmidt, Grethe

    2016-01-01

    Congenital melanocytic naevi (CMN) appear in approximately 2.6% of Caucasians. There is a major demand for treatment but no vital indication. Laser therapy, curettage and excision are available treatment modalities, but there is no ideal treatment with documented long-term effect and without side...

  4. Circulating Tumor Cells with Aberrant ALK Copy Number Predict Progression-Free Survival during Crizotinib Treatment in ALK-Rearranged Non-Small Cell Lung Cancer Patients.

    Science.gov (United States)

    Pailler, Emma; Oulhen, Marianne; Borget, Isabelle; Remon, Jordi; Ross, Kirsty; Auger, Nathalie; Billiot, Fanny; Ngo Camus, Maud; Commo, Frédéric; Lindsay, Colin R; Planchard, David; Soria, Jean-Charles; Besse, Benjamin; Farace, Françoise

    2017-05-01

    The duration and magnitude of clinical response are unpredictable in ALK -rearranged non-small cell lung cancer (NSCLC) patients treated with crizotinib, although all patients invariably develop resistance. Here, we evaluated whether circulating tumor cells (CTC) with aberrant ALK -FISH patterns [ ALK -rearrangement, ALK -copy number gain ( ALK -CNG)] monitored on crizotinib could predict progression-free survival (PFS) in a cohort of ALK -rearranged patients. Thirty-nine ALK -rearranged NSCLC patients treated with crizotinib as first ALK inhibitor were recruited prospectively. Blood samples were collected at baseline and at an early time-point (2 months) on crizotinib. Aberrant ALK -FISH patterns were examined in CTCs using immunofluorescence staining combined with filter-adapted FISH after filtration enrichment. CTCs were classified into distinct subsets according to the presence of ALK -rearrangement and/or ALK -CNG signals. No significant association between baseline numbers of ALK -rearranged or ALK -CNG CTCs and PFS was observed. However, we observed a significant association between the decrease in CTC number with ALK -CNG on crizotinib and a longer PFS (likelihood ratio test, P = 0.025). In multivariate analysis, the dynamic change of CTC with ALK -CNG was the strongest factor associated with PFS (HR, 4.485; 95% confidence interval, 1.543-13.030, P = 0.006). Although not dominant, ALK -CNG has been reported to be one of the mechanisms of acquired resistance to crizotinib in tumor biopsies. Our results suggest that the dynamic change in the numbers of CTCs with ALK -CNG may be a predictive biomarker for crizotinib efficacy in ALK -rearranged NSCLC patients. Serial molecular analysis of CTC shows promise for real-time patient monitoring and clinical outcome prediction in this population. Cancer Res; 77(9); 2222-30. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. Dendrobium chrysanthum ethanolic extract induces apoptosis via p53 up-regulation in HeLa cells and inhibits tumor progression in mice.

    Science.gov (United States)

    Prasad, Ritika; Rana, Nishant Kumar; Koch, Biplob

    2017-06-01

    Background Dendrobium is one of the diverse genus of orchid plants. It possesses a number of pharmacological activities and has long been used in traditional system of medicine. The goal of this study was to investigate the apoptosis inducing property of the ethanolic extract from the leaves of Dendrobium chrysanthum, a species of Dendrobium whose anticancer role has not been ascertained yet. Methods To evaluate the anticancer activity of the ethanolic extract of D. chrysanthum in vitro in HeLa (human cervical cancer) cells, cytotoxic activity, generation of reactive oxygen species (ROS), induction of apoptosis and effect on cell cycle were determined. The in vivo study was carried out in Dalton's lymphoma (DL) bearing mice to assess the tumor growth delay. Results Our study demonstrated that the ethanolic extract showed dose-dependent cytotoxicity against HeLa cells. The extract exhibited dose-dependent increase in ROS production as well as apoptotic cell death which was further confirmed through presence of DNA fragmentation. Cell cycle analysis by flow cytometry suggests that the ethanolic extract perturbed cell cycle progression and leads to the delay of the cells in S phase. Further, the real-time PCR studies also showed up-regulation of apoptotic genes p53 and Bax. The in vivo antitumor activity exhibited significant increase in the life span of DL bearing mice as compared to control with significant decrease in abdominal size along with reduced tumor ascites. Conclusions These observations demonstrate the anticancer potential of the D. chrysanthum ethanolic extract mediated through p53-dependent apoptosis.

  6. The unfolded protein response in melanocytes: activation in response to chemical stressors of the endoplasmic reticulum and tyrosinase misfolding.

    Science.gov (United States)

    Manga, Prashiela; Bis, Sabina; Knoll, Kristen; Perez, Beremis; Orlow, Seth J

    2010-10-01

    Accumulation of proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), comprising three signaling pathways initiated by Ire1, Perk and Atf6 respectively. Unfolded protein response activation was compared in chemically stressed murine wildtype melanocytes and mutant melanocytes that retain tyrosinase in the ER. Thapsigargin, an ER stressor, activated all pathways in wildtype melanocytes, triggering Caspase 12-mediated apoptosis at toxic doses. Albino melanocytes expressing mutant tyrosinase showed evidence of ER stress with increased Ire1 expression, but the downstream effector, Xbp1, was not activated even following thapsigargin treatment. Attenuation of Ire1 signaling was recapitulated in wildtype melanocytes treated with thapsigargin for 8 days, with diminished Xbp1 activation observed after 4 days. Atf6 was also activated in albino melanocytes, with no response to thapsigargin, while the Perk pathway was not activated and thapsigargin treatment elicited robust expression of the downstream effector CCAAT-enhancer-binding protein homologous protein. Thus, melanocytes adapt to ER stress by attenuating two UPR pathways.

  7. Diagnosis and staging of female genital tract melanocytic lesions using pump-probe microscopy (Conference Presentation)

    Science.gov (United States)

    Robles, Francisco E.; Selim, Maria A.; Warren, Warren S.

    2016-02-01

    Melanoma of the vulva is the second most common type of malignancy afflicting that organ. This disease caries poor prognosis, and shows tendencies to recur locally and develop distant metastases through hematogenous dissemination. Further, there exists significant clinical overlap between early-stage melanomas and melanotic macules, benign lesions that are believed to develop in about 10% of the general female population. In this work we apply a novel nonlinear optical method, pump-probe microscopy, to quantitatively analyze female genitalia tract melanocytic lesions. Pump-probe microscopy provides chemical information of endogenous pigments by probing their electronic excited state dynamics, with subcellular resolution. Using unstained biopsy sections from 31 patients, we find significant differences between melanin type and structure in tissue regions with invasive melanoma, melanoma in-situ and non-malignant melanocytic proliferations (e.g., nevi, melanocytic macules). The molecular images of non-malignant lesion have a well-organized structure, with relatively homogenous pigment chemistry, most often consistent with that of eumelanin with large aggregate size or void of metals, such as iron. On the other hand, pigment type and structure observed in melanomas in-situ and invasive melanomas is typically much more heterogeneous, with larger contributions from pheomelanin, melanins with larger metal content, and/or melanins with smaller aggregate size. Of most significance, clear differences can be observed between melanocytic macules and vulvar melanoma in-situ, which, as discussed above, can be difficult to clinically distinguish. This initial study demonstrates pump-probe microscopy's potential as an adjuvant diagnostic tool by revealing systematic chemical and morphological differences in melanin pigmentation among invasive melanoma, melanoma in-situ and non-malignant melanocytic lesions.

  8. Z-505 hydrochloride, an orally active ghrelin agonist, attenuates the progression of cancer cachexia via anabolic hormones in Colon 26 tumor-bearing mice.

    Science.gov (United States)

    Yoshimura, Makoto; Shiomi, Yoshihiro; Ohira, Yuta; Takei, Mineo; Tanaka, Takao

    2017-09-15

    Cancer cachexia is a progressive wasting syndrome characterized by anorexia and weight loss, specifically muscle wasting and fat depletion. There is no therapeutic agent for treatment of this syndrome. We investigated the anti-cachexia effects of Z-505 hydrochloride (Z-505), a new oral growth hormone secretagogue receptor 1a (GHSR1a) agonist, using a mouse model of cancer cachexia. We performed a calcium flux assay in Chinese hamster ovary (CHO-K1) cells stably expressing human GHSR1a to quantify the agonistic activity of Z-505. In Colon 26 tumor-bearing mice, Z-505 (300mg/kg, p.o., twice daily) was administered for 7 days to assess its anti-cachexia effects. Body weight and food intake were monitored during the period, and the skeletal muscle and epididymal fat weights were measured. Serum levels of insulin, insulin-like growth factor 1 (IGF-1), interleukin-6 (IL-6), and corticosterone were measured to confirm the mechanism of the anti-cachexia action of Z-505. Z-505 showed strong agonistic activity similar to that of human ghrelin, with a half maximal effective concentration (EC 50 ) value of 0.45nM. Z-505 treatment significantly increased food intake and inhibited the progression of weight loss. Z-505 also significantly attenuated muscle wasting and fat loss, and increased circulating levels of anabolic factors such as insulin and IGF-1, but not catabolic factors such as IL-6 and corticosterone. These findings suggest that Z-505 might be effective in the treatment of cachexia via the increased anabolic hormone levels stimulated by the activation of the ghrelin receptor, GHSR1a. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The Tumor Macroenvironment: Cancer-Promoting Networks Beyond Tumor Beds.

    Science.gov (United States)

    Rutkowski, Melanie R; Svoronos, Nikolaos; Perales-Puchalt, Alfredo; Conejo-Garcia, Jose R

    2015-01-01

    During tumor progression, alterations within the systemic tumor environment, or macroenvironment, result in the promotion of tumor growth, tumor invasion to distal organs, and eventual metastatic disease. Distally produced hormones, commensal microbiota residing within mucosal surfaces, myeloid cells and even the bone marrow impact the systemic immune system, tumor growth, and metastatic spread. Understanding the reciprocal interactions between the cells and soluble factors within the macroenvironment and the primary tumor will enable the design of specific therapies that have the potential to prevent dissemination and metastatic spread. This chapter will summarize recent findings detailing how the primary tumor and systemic tumor macroenvironment coordinate malignant progression. © 2015 Elsevier Inc. All rights reserved.

  10. Alpha-Melanocyte Stimulating Hormone Protects against Cytokine-Induced Barrier Damage in Caco-2 Intestinal Epithelial Monolayers.

    Directory of Open Access Journals (Sweden)

    Judit Váradi

    Full Text Available Alpha-melanocyte-stimulating hormone (α-MSH is a potent anti-inflammatory peptide with cytoprotective effect in various tissues. The present investigation demonstrates the ability of α-MSH to interact with intestinal epithelial cell monolayers and mitigate inflammatory processes of the epithelial barrier. The protective effect of α-MSH was studied on Caco-2 human intestinal epithelial monolayers, which were disrupted by exposure to tumor necrosis factor-α and interleukin-1β. The barrier integrity was assessed by measuring transepithelial electric resistance (TEER and permeability for marker molecules. Caco-2 monolayers were evaluated by immunohistochemistry for expression of melanocortin-1 receptor and tight junction proteins ZO-1 and claudin-4. The activation of nuclear factor kappa beta (NF-κB was detected by fluorescence microscopy and inflammatory cytokine expression was assessed by flow cytometric bead array cytokine assay. Exposure of Caco-2 monolayers to proinflammatory cytokines lowered TEER and increased permeability for fluorescein and albumin, which was accompanied by changes in ZO-1 and claudin-4 immunostaining. α-MSH was able to prevent inflammation-associated decrease of TEER in a dose-dependent manner and reduce the increased permeability for paracellular marker fluorescein. Further immunohistochemistry analysis revealed proinflammatory cytokine induced translocation of the NF-κB p65 subunit into Caco-2 cell nuclei, which was inhibited by α-MSH. As a result the IL-6 and IL-8 production of Caco-2 monolayers were also decreased with different patterns by the addition of α-MSH to the culture medium. In conclusion, Caco-2 cells showed a positive immunostaining for melanocortin-1 receptor and α-MSH protected Caco-2 cells against inflammatory barrier dysfunction and inflammatory activation induced by tumor necrosis factor-α and interleukin-1β cytokines.

  11. Cell clusters overlying focally disrupted mammary myoepithelial cell layers and adjacent cells within the same duct display different immunohistochemical and genetic features: implications for tumor progression and invasion

    International Nuclear Information System (INIS)

    Man, Yan-gao; Vinh, Tuyethoa N; Strauss, Brian L; Tai, Lisa; Barner, Ross; Vang, Russell; Saenger, Jeffrey S; Shekitka, Kris M; Bratthauer, Gary L; Wheeler, Darren T; Liang, Chang Y

    2003-01-01

    of a biologically more aggressive cell clone and the myoepithelial cell layer breakdown possibly associated with tumor progression or invasion

  12. Tumor-infiltrating CD8+ lymphocytes effect on clinical outcome of muco-cutaneous melanoma

    Directory of Open Access Journals (Sweden)

    Mahtab Rahbar

    2015-01-01

    Full Text Available Background: Recent data have changed our views of prognostic factors in cutaneous melanoma, while some newer methods have yielded better prognostic information. Tumor-infiltrating lymphocytes are believed to represent the immune reaction/response to melanoma cells which is often found in melanocytic cancer. Aim and Objective: We carried out an analysis, aiming to establish pooled estimates for clinical outcomes based on the presence of CD8+ T cell in melanocytic cancer. Materials and Methods: We have included 42 patients with primary cutaneous melanocytic cancer without preoperative treatments in our study. We next analyzed the proliferative activity of CD8+ T cells that infiltrated in tumor cell nests. The intratumoral and adjacent to invasive margin of tumor CD+ T-cell infiltration were analyzed which could also reflect antitumor immunity. Results: The total number of CD8+ cells especially adjacent to invasive margin of tumor was positively correlated with anatomical tumor thickness (P < .001 and not correlated with patient′s age and sex. The stage of tumor which is related to vascular-neural invasion, regional lymph nodes involvement and tumor thickness shows positive correlation with CD8+ infiltration in tumor (P < .004, P < .005, P < .001, respectively. Acral melanoma shows more CD8 lymphocytes infiltration and also recurrence rate of tumor (P < .005. Conclusion: We believe that CD8+ T-cell infiltration in primary cutaneous melanocytic cancer represents the immune reaction/response to melanoma which could be an important new therapy for melanoma although more research is needed on this treatment modality.

  13. The gender differences in the inhibitory action of UVB-induced melanocyte activation by the administration of tranexamic acid.

    Science.gov (United States)

    Hiramoto, Keiichi; Yamate, Yurika; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi

    2016-05-01

    Tranexamic acid has an inhibitory action on ultraviolet (UV) B-induced melanocyte activation. This study examined the sex differences in the inhibitory action of tranexamic acid on UVB-induced melanocyte activation. We irradiated the eye and ear of male and female mice with UVB at a dose of 1.0 kJ/m(2) using a 20SE sunlamp. We orally administered tranexamic acid (750 mg/kg/day) at 30 min before UVB exposure. Tranexamic acid inhibited the UVB-induced epidermal melanocyte activation, and the effect was more remarkable under UVB eye irradiation than under UVB ear irradiation. Furthermore, the melanocyte activity suppression effect was stronger in female mice than in male mice. Following the administration of tranexamic acid, the female displayed increased blood levels of β-endorphin and μ-opioid receptor and estradiol receptor β expression in comparison with the male. Furthermore, the effect of melanocyte activity suppression in the female mice was decreased by the administration of tamoxifen (antagonist of estrogen receptor) or naltrexone (antagonist of μ-opioid receptor). These results suggest that the suppression by tranexamic acid of the UVB-induced melanocyte activation (UVB sensitivity) is stronger in female mice than in male mice and that female hormones and β-endorphin play an important role in this sex difference. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Substantial Effect of Melanin Influencing Factors on In vitro Melanogenesis in Muzzle Melanocytes of Differently Colored Hanwoo.

    Science.gov (United States)

    Amna, Touseef; Park, Kyoung Mi; Cho, In-Kyung; Choi, Tae Jeong; Lee, Seung Soo; Seo, Kang-Seok; Hwang, Inho

    2012-07-01

    The present study was designed to investigate the effect of α-melanocyte-stimulating hormone (α-MSH), nitric oxide (NO) and L-cysteine on melanin production and expression of related genes MC1R, Tyr, Tyrp-1 and Tyrp-2 in muzzle melanocytes of differently colored three native Hanwoo cattle. Muzzle samples were taken from black, brindle and brown Hanwoo and purified melanocytes were cultured with α-MSH, nitric oxide and L-cysteine at 100 nM, 50 µM and 0.07 mg/ml of media respectively. The amounts of total melanin, eumelanin and mRNA expression at Tyr, Tyrp-1, Tyrp-2 and MC1R levels were quantified. α-MSH and nitric oxide significantly increased (pmuzzle melanocytes. On the contrary, L-cysteine greatly (pmuzzle melanocytes of all three phenotypes. The results of this study revealed nitric oxide and α-MSH contribute hyper-pigmentation by enhancing eumelanogenesis whereas L-cysteine contributes to pheomelanin production in different colored Hanwoo muzzle melanocytes.

  15. Antimelanogenic Efficacy of Melasolv (3,4,5-Trimethoxycinnamate Thymol Ester) in Melanocytes and Three-Dimensional Human Skin Equivalent.

    Science.gov (United States)

    Lee, John Hwan; Lee, Eun-Soo; Bae, Il-Hong; Hwang, Jeong-Ah; Kim, Se-Hwa; Kim, Dae-Yong; Park, Nok-Hyun; Rho, Ho Sik; Kim, Yong Jin; Oh, Seong-Geun; Lee, Chang Seok

    2017-01-01

    Excessive melanogenesis often causes unaesthetic hyperpigmentation. In a previous report, our group introduced a newly synthesized depigmentary agent, Melasolv™ (3,4,5-trimethoxycinnamate thymol ester). In this study, we demonstrated the significant whitening efficacy of Melasolv using various melanocytes and human skin equivalents as in vitro experimental systems. The depigmentary effect of Melasolv was tested in melan-a cells (immortalized normal murine melanocytes), α-melanocyte-stimulating hormone (α-MSH)-stimulated B16 murine melanoma cells, primary normal human melanocytes (NHMs), and human skin equivalent (MelanoDerm). The whitening efficacy of Melasolv was further demonstrated by photography, time-lapse microscopy, Fontana-Masson (F&M) staining, and 2-photon microscopy. Melasolv significantly inhibited melanogenesis in the melan-a and α-MSH-stimulated B16 cells. In human systems, Melasolv also clearly showed a whitening effect in NHMs and human skin equivalent, reflecting a decrease in melanin content. F&M staining and 2-photon microscopy revealed that Melasolv suppressed melanin transfer into multiple epidermal layers from melanocytes as well as melanin synthesis in human skin equivalent. Our study showed that Melasolv clearly exerts a whitening effect on various melanocytes and human skin equivalent. These results suggest the possibility that Melasolv can be used as a depigmentary agent to treat pigmentary disorders as well as an active ingredient in cosmetics to increase whitening efficacy. © 2017 S. Karger AG, Basel.

  16. Pseudomelanocytic nests mimicking atypical melanocytic proliferations: first reported cases in the oral cavity.

    Science.gov (United States)

    Boros, Audrey L; Handlers, Janice P; Melrose, Raymond J

    2014-10-01

    The concept of pseudomelanocytic nests has been recently described in the dermatology literature. To our knowledge, this entity has yet to be published in the oral pathology literature. We report 2 cases with features of pseudomelanocytic nests. In both instances, nests of cells suspicious for melanocytes were observed. Interpretation of melan-A was negative. Both cases showed strong and diffuse immunoreactivity of the nested cells to CD68. This immunohistochemical staining pattern is most consistent with a melanophage identity. Pseudomelanocytic nests are a recently described entity that represents a potential diagnostic pitfall. Distinguishing pseudomelanocytic nests from an authentic atypical melanocytic proliferation can be challenging and is important for appropriate patient management. Clinicopathologic correlation with cautious interpretation of immunohistochemistry may be necessary to arrive at the correct diagnosis. These cases represent the first reports of pseudomelanocytic nests in the oral pathology literature. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Malignant melanoma arising in congenital melanocytic nevi: clinical and dermoscopic challenges

    Directory of Open Access Journals (Sweden)

    Fatma Pelin Cengiz

    2017-01-01

    Full Text Available Congenital melanocytic nevi (CMN are visible pigmented lesions in the skin that are present at birth. CMN are benign malformations resulting from defective development of melanocyte precursors in the embryo. Six MMs from six patients were analyzed by clinical and dermoscopic examination. Of the patients, 33.3% were female (N = 2 and 66.6% were male (N = 4. Of the MMs, four (66.6% were superficial spreading MM and two (33.3 % were in situ MM. A reticular pattern was present in the MMs of three patients (50%, a homogeneous pattern was present in the other patients (50% at the base of the MMs. Superficial spreading melanomas and in situ melanomas with atypical dots and globules and a blue-white veil were the most common dermoscopic features of MMs found in CMN.

  18. Giant Congenital Melanocytic Nevus (GCMN - A New Hope for Targeted Therapy?

    Directory of Open Access Journals (Sweden)

    Georgi Tchernev

    2017-07-01

    Full Text Available We present a 6-month-old male patient, who was consulted with dermatologist by his parents, because of a pigmented lesion, present since birth, covering almost the all skin of the back and buttocks.  A sharply bordered, unequally coloured congenital pigmented nevus, measuring approximately 21 cm in diameter was observed in the whole body skin examination. The lesion was affecting the lower 2/3 of the skin of the back and the top half of the gluteus area, extending to the lateral part of the tors, forward the abdomen and the upper lateral part of the hips, composed by multiple darker-pigmented nests and several lighter areas, with single depigmented zones, hairy surface, irregularly infiltrated on palpation. Congenital melanocytic nevi are presented in approximately 1% of newborns, while giant congenital melanocytic nevi (GCMN are the most uncommon subtype of them; with occurrence rate 1 in 50,000 births. They affect 2% of a total body surface or presenting in a diameter larger than 20 cm in older children. Although not common, the possible malignant transformation remains one of the most important considerations related to them, as the related lifetime risk of melanoma is 4% to 10%. Treatment recommendations include non-surgical methods as dermabrasion only within the first two weeks of life, for prevention the possible melanocytic deeper migration, while serial surgical excisions or tissue expanders could be useful treatment tool even in later stages. Nevertheless, cosmetic result is not always satisfactory, and the risk of malignant changes remains, in cases of previous melanocytic migration in deeper layer. Recent article suggests the potential role in the treatment of GCMN with NRAS inhibitor trametinib, approved for treatment of advanced melanoma, associated with underlying NRAS mutations. Although promising, the drug could be useful in paediatric patients, only with associated NRAS gene mutation. It is still unclear whether it could be

  19. Resolution of vitiligo following excision of halo congenital melanocytic nevus: a rare case report.

    Science.gov (United States)

    Wang, Kai; Wang, Zhi; Huang, Weiqing

    2016-05-01

    Halo congenital melanocytic nevus (CMN) associated with vitiligo is rare, especially with regard to CMN excision. Only two reports of excision of halo CMN following repigmentation of vitiligo are found in the literature. We present a case of a girl with halo CMN and periorbital vitiligo. The halo CMN was excised and followed by spontaneous improvement of vitiligo. The result suggests excision of the inciting lesion may be a promising way to control vitiligo. © 2015 Wiley Periodicals, Inc.

  20. Reducing renal uptake of 9Y- and 177Lu-labeled alpha-melanocyte stimulating hormone peptide analogues

    International Nuclear Information System (INIS)

    Miao Yubin; Fisher, Darrell R.; Quinn, Thomas P.

    2006-01-01

    Objective: The purpose of this study was to improve the tumor-to-kidney uptake ratios of 9 Y- and 177 Lu-[1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-Re-Cys 3,4,1 , D-Phe 7 , Arg 11 ]α-melanocyte stimulating hormone 3-13 {DOTA-Re(Arg 11 )CCMSH} through coupling a negatively charged glutamic acid (Glu) to the peptide sequence. Methods: A new peptide of DOTA-Re(Glu 2 , Arg 11 )CCMSH was designed, synthesized and labeled with 9 Y and 177 Lu. Pharmacokinetics of 9 Y- and 177 Lu-DOTA-Re(Glu 2 , Arg 11 )CCMSH was determined in B16/F1 murine melanoma-bearing C57 mice. Results: 9 Y- and 177 Lu-DOTA-Re(Glu 2 , Arg 11 )CCMSH exhibited significantly (P 9 Y- and 177 Lu-DOTA-Re(Arg 11 )CCMSH at 30 min and at 2, 4 and 24 h after dose administration. The renal uptake values of 9 Y- and 177 Lu-DOTA-Re(Glu 2 , Arg 11 )CCMSH were 28.16% and 28.81% of those of 9 Y- and 177 Lu-DOTA-Re(Arg 11 )CCMSH, respectively, at 4 h postinjection. 9 Y- and 177 Lu-DOTA-Re(Glu 2 , Arg 11 )CCMSH displayed higher tumor-to-kidney uptake ratios than 9 Y- and 177 Lu-DOTA-Re(Arg 11 )CCMSH at 30 min and at 2, 4 and 24 h after dose administration. The tumor-to-kidney uptake ratio of 9 Y- and 177 Lu-DOTA-Re(Glu 2 , Arg 11 )CCMSH was 2.28 and 1.69 times of 9 Y- and 177 Lu-DOTA-Re(Arg 11 )CCMSH, respectively, at 4 h postinjection. The 9 Y- and 177 Lu-DOTA-Re(Glu 2 , Arg 11 )CCMSH activity accumulation was low in normal organs except for kidney. Conclusions: Coupling a negatively charged amino acid (Glu) to the CCMSH peptide sequence dramatically reduced the renal uptake values and increased the tumor-to-kidney uptake ratios of 9 Y- and 177 Lu-DOTA-Re(Glu 2 , Arg 11 )CCMSH, facilitating their potential applications as radiopharmaceuticals for targeted radionuclide therapy of melanoma

  1. Perivascular Epithelioid Cell Tumor in the Stomach

    Directory of Open Access Journals (Sweden)

    Sun Ah Shin

    2017-07-01

    Full Text Available Perivascular epithelioid cell tumors or PEComas can arise in any location in the body. However, a limited number of cases of gastric PEComa have been reported. We present two cases of gastric PEComas. The first case involved a 62-year-old woman who presented with a 4.2 cm gastric subepithelial mass in the prepyloric antrum, and the second case involved a 67-year-old man with a 5.0 cm mass slightly below the gastroesophageal junction. Microscopic examination revealed that both tumors were composed of perivascular epithelioid cells that were immunoreactive for melanocytic and smooth muscle markers. Prior to surgery, the clinical impression of both tumors was gastrointestinal stromal tumor (GIST, and the second case was erroneously diagnosed as GIST even after microscopic examination. Although gastric PEComa is a very rare neoplasm, it should be considered in the differential diagnosis of gastric submucosal lesions.

  2. Primary Cilia Negatively Regulate Melanogenesis in Melanocytes and Pigmentation in a Human Skin Model.

    Science.gov (United States)

    Choi, Hyunjung; Shin, Ji Hyun; Kim, Eun Sung; Park, So Jung; Bae, Il-Hong; Jo, Yoon Kyung; Jeong, In Young; Kim, Hyoung-June; Lee, Youngjin; Park, Hea Chul; Jeon, Hong Bae; Kim, Ki Woo; Lee, Tae Ryong; Cho, Dong-Hyung

    2016-01-01

    The primary cilium is an organelle protruding from the cell body that senses external stimuli including chemical, mechanical, light, osmotic, fluid flow, and gravitational signals. Skin is always exposed to the external environment and responds to external stimuli. Therefore, it is possible that primary cilia have an important role in skin. Ciliogenesis was reported to be involved in developmental processes in skin, such as keratinocyte differentiation and hair formation. However, the relation between skin pigmentation and primary cilia is largely unknown. Here, we observed that increased melanogenesis in melanocytes treated with a melanogenic inducer was inhibited by a ciliogenesis inducer, cytochalasin D, and serum-free culture. However, these inhibitory effects disappeared in GLI2 knockdown cells. In addition, activation of sonic hedgehog (SHH)-smoothened (Smo) signaling pathway by a Smo agonist, SAG inhibited melanin synthesis in melanocytes and pigmentation in a human skin model. On the contrary, an inhibitor of primary cilium formation, ciliobrevin A1, activated melanogenesis in melanocytes. These results suggest that skin pigmentation may be regulated partly by the induction of ciliogenesis through Smo-GLI2 signaling.

  3. DMEM enhances tyrosinase activity in B16 mouse melanoma cells and human melanocytes

    Directory of Open Access Journals (Sweden)

    Panpen Diawpanich

    2008-07-01

    Full Text Available Media components may affect the activities of cultured cells. In this study, tyrosinase activity was evaluated by using B16-F10 mouse melanoma cell lines (B16-F10 and primary human melanocytes cultured in different media. An optical density measurement and a L-dopa reaction assay were used as the determination of the tyrosinase activity. The study of B16-F10 found the optical density to be 2010, 2246 and 2961 in cells cultured in RPMI Medium 1640 (RPMI1640,Minimum Essential Medium (MEM and Dulbecco’s Modified Eagle Medium (DMEM, respectively. Moreover, compared to RPMI 1640 and MEM, DMEM showed the darkest color of melanin formation in culture media and in cells after the L-dopa reaction assay. Addition of kojic acid showed a significant inhibitory effect on tyrosinase activity in all media.Whereas MCDB153 showed no significant effect on human melanocytes, DMEM caused a dramatic increase in tyrosinase activity after 4 days of cultivation. Addition of kojic acid showed a significant tyrosinase inhibitory effect in DMEM only. Furthermore, an active ingredient in green tea, epigallocathechin gallate (EGCG could inhibit tyrosinase activity in both B16-F10 and human melanocytes cultured in DMEM. In summary, these results suggest that DMEM is a suitable medium that provides high detection sensitivity in a tyrosinase inhibition assay.

  4. Primary Cilia Negatively Regulate Melanogenesis in Melanocytes and Pigmentation in a Human Skin Model.

    Directory of Open Access Journals (Sweden)

    Hyunjung Choi

    Full Text Available The primary cilium is an organelle protruding from the cell body that senses external stimuli including chemical, mechanical, light, osmotic, fluid flow, and gravitational signals. Skin is always exposed to the external environment and responds to external stimuli. Therefore, it is possible that primary cilia have an important role in skin. Ciliogenesis was reported to be involved in developmental processes in skin, such as keratinocyte differentiation and hair formation. However, the relation between skin pigmentation and primary cilia is largely unknown. Here, we observed that increased melanogenesis in melanocytes treated with a melanogenic inducer was inhibited by a ciliogenesis inducer, cytochalasin D, and serum-free culture. However, these inhibitory effects disappeared in GLI2 knockdown cells. In addition, activation of sonic hedgehog (SHH-smoothened (Smo signaling pathway by a Smo agonist, SAG inhibited melanin synthesis in melanocytes and pigmentation in a human skin model. On the contrary, an inhibitor of primary cilium formation, ciliobrevin A1, activated melanogenesis in melanocytes. These results suggest that skin pigmentation may be regulated partly by the induction of ciliogenesis through Smo-GLI2 signaling.

  5. Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion.

    Science.gov (United States)

    Ando, Hideya; Niki, Yoko; Ito, Masaaki; Akiyama, Kaoru; Matsui, Mary S; Yarosh, Daniel B; Ichihashi, Masamitsu

    2012-04-01

    Recent studies have described the role of shedding vesicles as physiological conveyers of intracellular components between neighboring cells. Here we report that melanosomes are one example of shedding vesicle cargo, but are processed by a previously unreported mechanism. Pigment globules were observed to be connected to the filopodia of melanocyte dendrites, which have previously been shown to be conduits for melanosomes. Pigment globules containing multiple melanosomes were released from various areas of the dendrites of normal human melanocytes derived from darkly pigmented skin. The globules were then captured by the microvilli of normal human keratinocytes, also derived from darkly pigmented skin, which incorporated them in a protease-activated receptor-2 (PAR-2)-dependent manner. After the pigment globules were ingested by the keratinocytes, the membrane that surrounded each melanosome cluster was gradually degraded, and the individual melanosomes then spread into the cytosol and were distributed primarily in the perinuclear area of each keratinocyte. These results suggest a melanosome transfer pathway wherein melanosomes are transferred from melanocytes to keratinocytes via the shedding vesicle system. This packaging system generates pigment globules containing multiple melanosomes in a unique manner.

  6. Infrared A radiation promotes survival of human melanocytes carrying ultraviolet radiation-induced DNA damage.

    Science.gov (United States)

    Kimeswenger, Susanne; Schwarz, Agatha; Födinger, Dagmar; Müller, Susanne; Pehamberger, Hubert; Schwarz, Thomas; Jantschitsch, Christian

    2016-06-01

    The link between solar radiation and melanoma is still elusive. Although infrared radiation (IR) accounts for over 50% of terrestrial solar energy, its influence on human skin is not well explored. There is increasing evidence that IR influences the expression patterns of several molecules independently of heat. A previous in vivo study revealed that pretreatment with IR might promote the development of UVR-induced non-epithelial skin cancer and possibly of melanoma in mice. To expand on this, the aim of the present study was to evaluate the impact of IR on UVR-induced apoptosis and DNA repair in normal human epidermal melanocytes. The balance between these two effects is a key factor of malignant transformation. Human melanocytes were exposed to physiologic doses of IR and UVR. Compared to cells irradiated with UVR only, simultaneous exposure to IR significantly reduced the apoptotic rate. However, IR did not influence the repair of UVR-induced DNA damage. IR partly reversed the pro-apoptotic effects of UVR via modification of the expression and activity of proteins mainly of the extrinsic apoptotic pathway. In conclusion, IR enhances the survival of melanocytes carrying UVR-induced DNA damage and thereby might contribute to melanomagenesis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Encouraging Early Clinical Outcomes With Helical Tomotherapy–Based Image-Guided Intensity-Modulated Radiation Therapy for Residual,