WorldWideScience

Sample records for melamine

  1. Melamine-formaldehyde aerogels

    Science.gov (United States)

    Pekala, Richard Walter

    1992-01-01

    Organic aerogels that are transparent and essentially colorless are prepa from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porsity, ultrafine cell/pore sizes, and optical clarity.

  2. Analysis of melamine migration from melamine food contact articles.

    Science.gov (United States)

    Chik, Z; Haron, D E Mohamad; Ahmad, E D; Taha, H; Mustafa, A M

    2011-01-01

    Migration of melamine has been determined for 41 types of retail melamine-ware products in Malaysia. This study was initiated by the Ministry of Health, Malaysia, in the midst of public anxiety on the possibility of melamine leaching into foods that come into contact with the melamine-ware. Thus, the objective of this study was to investigate the level of melamine migration in melamine utensils available on the market. Samples of melamine tableware, including cups and plates, forks and spoons, tumblers, bowls, etc., were collected from various retail outlets. Following the test guidelines for melamine migration set by the European Committee for Standardisation (CEN 2004) with some modifications, the samples were exposed to two types of food simulants (3% acetic acid and distilled water) at three test conditions (25°C (room temperature), 70 and 100°C) for 30 min. Melamine analysis was carried out using LC-MS/MS with a HILIC column and mobile phase consisting of ammonium acetate/formic acid (0.05%) in water and ammonium acetate/formic acid (0.05%) in acetonitrile (95 : 5, v/v). The limit of quantification (LOQ) was 5 ng/ml. Melamine migration was detected from all samples. For the articles tested with distilled water, melamine migration were [median (interquartile range)] 22.2 (32.6), 49.3 (50.9), 84.9 (89.9) ng/ml at room temperature (25°C), 70 and 100°C, respectively. In 3% acetic acid, melamine migration was 31.5 (35.7), 81.5 (76.2), 122.0 (126.7) ng/ml at room temperature (25°C), 70 and 100°C, respectively. This study suggests that excessive heat and acidity may directly affect melamine migration from melamine-ware products. However the results showed that melamine migration in the tested items were well below the specific migration limit (SML) of 30 mg/kg (30,000 ng/ml) set out in European Commission Directive 2002/72/EC.

  3. Melamine Induces Oxidative Stress in Mouse Ovary.

    Directory of Open Access Journals (Sweden)

    Xiao-Xin Dai

    Full Text Available Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD and glutathione peroxidase (GPX were analyzed, and the concentration of malondialdehyde (MDA were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway.

  4. Deposition of melamine in eggs from laying hens exposed to melamine contaminated feed.

    Science.gov (United States)

    Chen, Yiqiang; Yang, Wenjun; Wang, Zongyi; Peng, Yong; Li, Bin; Zhang, Liying; Gong, Limin

    2010-03-24

    The deposition profile of melamine was studied in eggs obtained from laying hens fed melamine contaminated feed. A total of 180 laying hens were divided into five groups and were fed diets spiked with 0, 5, 25, 50, or 100 mg of melamine per kg of feed. Eggs collected on days 1, 3, 5, 7, 9, 11, 13, and 15 were analyzed by a gas chromatography-mass spectrometry method, which was fully validated for melamine analysis prior to use. For each treatment group, the melamine level in the eggs was similar from day 1 to day 15 (P > 0.05), suggesting that laying hens did not accumulate melamine for later deposition in eggs. The average melamine concentrations in eggs were 0.00 (below limit of detection), 0.16, 0.47, 0.84, and 1.48 mg/kg for the 0, 5, 25, 50, and 100 mg/kg treatment groups, respectively, which demonstrated an apparent dose-response relationship, and a safety threshold of 164 mg/kg melamine in the feed of laying hen was estimated when a maximum tolerance level of 2.5 mg/kg melamine in egg was adopted. These results provide a scientific basis for the risk assessment of melamine in feeds fed to laying hens.

  5. Effects of different doses of melamine in the diet on melamine ...

    African Journals Online (AJOL)

    The objectives of this paper were to evaluate the effects of feeding diets containing different levels of melamine on melamine concentrations in milk, plasma, rumen fluid, urine and feces in Holstein dairy cows. Sixteen Chinese Holstein dairy cows fixed with permanent ruminal cannulas were assigned to 1 of 4 treatments ...

  6. Migration of formaldehyde and melamine monomers from kitchen- and tableware made of melamine plastic

    DEFF Research Database (Denmark)

    Lund, K.H.; Petersen, J.H.

    2006-01-01

    Migration of one or both formaldehyde and/or melamine monomers was found in seven of ten tested melamine samples bought on the Danish market. The samples were a bowl, a jug, a mug, a ladle, and different cups and plates. No violation of the European Union-specific migration limits for melamine (30...... mg kg(-1)) and formaldehyde (15 mg kg(-1)) was found after three successive exposures to the food stimulant 3% acetic acid after 2 h at 70 degrees C. To investigate the effects of long-term use, migration tests were performed with two types of cups from a day nursery. Furthermore, medium-term use...

  7. Synthesis of Melamine-d6 and the Feasibility of Deuterium Labeled Compounds as Internal Standard

    Directory of Open Access Journals (Sweden)

    GUO Yang-zhen

    2015-11-01

    Full Text Available S-triazine is an important chemical intermediate. Melamine belongs to s-triazine, which has been widely used as an additive in the food industry. To study the stable isotope labeling method of heterocyclic triazine compounds and its application, one step synthesis of melamine-d6 was achieved with a yield of 30% (calculate in ND4OD, which started from ND4OD by the reaction with cyanuric chloride. According to the exchange mechanism of H/D, the feasibility and the necessary conditions were discussed for applying deuterium labeled compounds in isotope dilution mass spectrometry method.

  8. Release rate of diazinon from microcapsule based on melamine formaldehyde

    Science.gov (United States)

    Noviana Utami C., S.; Rochmadi

    2018-04-01

    The microcapsule containing diazinon as the core material and melamine formaldehyde as the membrane material have been synthesized by in situ polymerization method. The microcapsule membrane in this research is melamine formaldehyde (MF). This research aims to study the effect of pH and temperature on the release rate of diazinon from microcapsule based on melamine formaldehyde in aqueous medium. The results showed that pH and temperature has little effect on the release rate of diazinon from microcapsule based on melamine formaldehyde. This is due to the diffusion through the microcapsule membrane is not influenced by the pH and temperature of the solution outside of microcapsule.

  9. Effect of Melamine Sponge on Tooth Stain Removal.

    Science.gov (United States)

    Otsuka, Takero; Kawata, Toshitsugu

    2015-01-01

    To investigate the stain removal ability of melamine sponge before aesthetic tooth whitening in extracted teeth. Melamine sponge of thickness 40 mm was compressed and the destruction of the partition wall structure during the compression process was examined under a stereoscopic microscope. An extracted human tooth was cleaned by normal polishing or with melamine sponge for 90 s. To evaluate the stain level, the tooth surfaces were photographed under a stereoscopic microscope at 0, 30, 60 and 90 s. The residual stained region was traced in a high-magnification photograph, and the stain intensity was presented as a change, relative to the intensity before the experiment (0 s). Mechanical cleaning by toothbrushing produced polishing scratches on the tooth surface, whereas use of the melamine sponge resulted in only minimal scratches. As the compression level increased, the stain-removing effect tended to become stronger. Melamine sponge can remove stains from the tooth surface more effectively and less invasively compared to a conventional toothbrush. As no new scratches are made on the tooth surface when using a melamine sponge brush, the risk of re-staining is reduced. Cleaning using a melamine sponge brush can be easily and effectively performed at home and in a dental office.

  10. Spectral and Thermal Degradation of Melamine Cyanurate

    Directory of Open Access Journals (Sweden)

    V. Sangeetha

    2013-01-01

    Full Text Available Melamine cyanurate, an organic crystalline complex was, synthesized by evaporation of an aqueous solution containing equimolar quantities of melamine and cyanuric acid. The synthesized compound has been subjected to various characterizations like Powder XRD, FT-IR, TG-DTG, SEM, and SHG. The presence of sharp diffraction peaks in the XRD confirms that the products are highly crystalline. The average particle size was calculated using the Debye-Scherrer formula, and it was found to be 3.067 μm. Thermal behavior of the grown crystal has been studied by TG-DTG analysis. From TG-DTG, it is found that the title crystal possesses good thermal stability. The activation energy was calculated using the Broido, Coats-Redfern, and Horowitz-Metzger methods. A sharp peak exothermic peak at 405.40°C was assigned as the melting point of the title material. SEM reveals the morphology of the synthesized salt. No detectable signal was observed during the Kurtz-Perry technique.

  11. Assessment of melamine and cyanuric acid toxicity in cats.

    Science.gov (United States)

    Puschner, Birgit; Poppenga, Robert H; Lowenstine, Linda J; Filigenzi, Michael S; Pesavento, Patricia A

    2007-11-01

    The major pet food recall associated with acute renal failure in dogs and cats focused initially on melamine as the suspect toxicant. In the course of the investigation, cyanuric acid was identified in addition to melamine in the offending food. The purpose of this study was to characterize the toxicity potential of melamine, cyanuric acid, and a combination of melamine and cyanuric acid in cats. In this pilot study, melamine was added to the diet of 2 cats at 0.5% and 1%, respectively. Cyanuric acid was added to the diet of 1 cat at increasing doses of 0.2%, 0.5%, and 1% over the course of 10 days. Melamine and cyanuric acid were administered together at 0%, 0.2%, 0.5%, and 1% to 1 cat per dose group. No effect on renal function was observed in cats fed with melamine or cyanuric acid alone. Cats dosed with a combination were euthanized at 48 hours after dosing because of acute renal failure. Urine and touch impressions of kidneys from all cats dosed with the combination revealed the presence of fan-shaped, birefringent crystals. Histopathologic findings were limited to the kidneys and included crystals primarily within tubules of the distal nephron, severe renal interstitial edema, and hemorrhage at the corticomedullary junction. The kidneys contained estimated melamine concentrations of 496 to 734 mg/kg wet weight and estimated cyanuric acid concentrations of 487 to 690 mg/kg wet weight. The results demonstrate that the combination of melamine and cyanuric acid is responsible for acute renal failure in cats.

  12. Melamine dependent fluorescence of glutathione protected gold nanoclusters and ratiometric quantification of melamine in commercial cow milk and infant formula

    Science.gov (United States)

    Kalaiyarasan, Gopi; K, Anusuya; Joseph, James

    2017-10-01

    Companies processing the milk for the further production of powdered infant formulation normally check the protein level through a test measuring nitrogen content. The addition of melamine which is a nitrogen-rich organic chemical in milk increases the nitrogen content and therefore enhances its apparent protein content. However, the melamine causes kidney failure and death owing to the formation of kidney stone. Thus the determination of melamine in humans and milk products have gained great significance in recent years. The gold nanoclusters (AuNCs) have attracting features due to its unique electronic and optical properties like fluorescence nature. Therefore one can use AuNCs in the field of biosensor, bio-imaging, nanobiotechnology, drug delivery, diagnosis etc. We report, a new ratiometric nanosensor established for the selective and sensitive detection of melamine based optical sensing using glutathione stabilized AuNCs. The AuNCs were characterized by high-resolution transmission electron microscopy (HR-TEM), UV-visible and Photoluminescence (PL) spectroscopic techniques. In the presence of melamine, the PL intensity at 430 nm increases owing to the (turn-on) enhancement in fluorescence, whereas PL intensity at 610 nm decreases due to the melamine-induced aggregation and subsequent aggregation-enhanced emission quenching. The observed changes were ascribed to the hydrogen bonding interaction between melamine and AuNCs, which led to the aggregation of the nanoclusters. This was confirmed by dynamic light scattering and HR-TEM measurements. The present probe showed an extreme selectivity towards the determination of 28.2 μM melamine in the presence of 100-fold excess of common interfering molecules such as Alanine, Glycine, Glucose, Cystine etc. The proposed method was successfully applied to determine melamine in cow milk.

  13. In vitro degradation of melamine by ruminal microorganisms

    African Journals Online (AJOL)

    Tanja&Jana

    2015-05-17

    May 17, 2015 ... intake and the inexplicable deaths of five sheep that were fed 10 g melamine per day. Newton & Utley ... ground with a laboratory hammer mill (Scientec, South Africa) through a 1 mm screen. ... The following model was used:.

  14. Melamine phosphomolybdate - a new ion selective compound for caesium

    International Nuclear Information System (INIS)

    Mehta, B.J.; Baxi, D.R.

    1976-01-01

    Preparation of melamine phosphomolybdate is described and its composition is determined. The compound is found to be granular having much higher selectivity for Cs + than that of ammonium phosphomolybdate. (orig.) [de

  15. Melamine nephrotoxicity: an emerging epidemic in an era of globalization.

    Science.gov (United States)

    Bhalla, Vivek; Grimm, Paul C; Chertow, Glenn M; Pao, Alan C

    2009-04-01

    Recent outbreaks of nephrolithiasis and acute kidney injury among children in China have been linked to ingestion of milk-based infant formula contaminated with melamine. These cases provide evidence in humans for the nephrotoxicity of melamine, which previously had been described only in animals. The consequences of this outbreak are already severe and will likely continue to worsen. Herein we summarize the global impact of the melamine milk contamination, the reemergence of melamine-tainted animal feed, and potential mechanisms of melamine nephrotoxicity. Large-scale epidemiologic studies are necessary to further characterize this disease and to assess its potential long-term sequelae. This epidemic of environmental kidney disease highlights the morbidity associated with adulterated food products available in today's global marketplace and reminds us of the unique vulnerability of the kidney to environmental insults. Melamine is the latest in a growing list of diverse potentially toxic compounds about which nephrologists and other health-care providers responsible for the diagnosis and management of kidney disease must now be aware.

  16. Using the Melamine Contamination of Foods to Enhance the Chemistry Classroom

    Science.gov (United States)

    Kimbrough, Doris Renate; Jensen, Anna Chick

    2010-01-01

    An introduction to the chemistry of the triazine compound, melamine, is presented as well as a brief discussion of the health impacts on humans and pets when melamine contaminates milk products and pet food. Melamine has repeatedly been in the news, and its topical nature provides an excellent springboard for applications of a variety of chemical…

  17. Research of radiation firmness of transparent melamine-formaldehyde polymers

    International Nuclear Information System (INIS)

    Lebedev, V.V.

    2007-01-01

    Radiation properties of the transparent melamine-formaldehyde polymers offered in quality polymeric basis for making of plastic scintillators are explored in this work. Plastic scintillator is composition, that consists of polymer (polymeric basis) and organic fluorescent addition. Scintillation efficiency and light output are basic properties of plastic scintillators. Firmness to influencing of ionizing radiation is important property of scintillators. From all types of scintillators the plastic are most radiation-proof. Cured melamine-formaldehyde resin and melamine-formaldehyde resin modified by different polyol modifiers was a research object. It is shown that radiation firmness for given types of polymeric material considerably depends on composition of polymer and from technology and temperature condition of its receipt. By the method IR-spectroscopy the structural changes in melamine-formaldehyde polymers under action of irradiation were explored. The maximal falling after the irradiation was marked in intensity of luminescence, which went down to 50% from an initial level. Like the coefficients of admission for all compositions got worse of a to 30-35% level from initial one. Mechanical properties went down on 20-30%. The radiation loss of mass made less than 1% for all polymers. With the increase of temperature of curing firmness rises. Thus, on the basis of the conducted researches radiation firmness for different melamine-formaldehyde polymers is determined and processes what is going on in material under action of radiation are studied. The limited doses of irradiation for each of explored polymers are determined. (authors)

  18. Carry-over of melamine from feed to eggs and body tissues of laying hens.

    Science.gov (United States)

    Dong, X F; Liu, S Y; Tong, J M; Zhang, Q

    2010-10-01

    The objective of this study was to assess the carry-over of melamine from feed into eggs and body tissues of laying hens. In the first experiment, laying hens were supplied with feed added at 0, 1, 2, 5, 25, 50, and 100 mg kg(-1) of melamine for 21 days followed by a depletion period to observe the residues of melamine in eggs. In a second experiment, laying hens were allocated 0, 50, and 100 mg kg(-1) melamine to determine levels of melamine in body tissues. Melamine and cyanuric acid were simultaneously analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the diet as well as in eggs and body tissue. In the first experiment, melamine appeared in the egg within 24 h after first ingestion of the melamine at 5, 25, 50, and 100 mg kg(-1). Melamine concentration in egg reached a maximum of 2.34 mg kg(-1) within 17 days after exposure of 100 mg kg(-1) melamine, and the carry-over rate for melamine from feed to the eggs was 1.21%. In the second experiment, melamine was detected in tissues within 3 days after exposure; the maximum concentration of melamine residues occurred in the 100 mg kg(-1) group and was as follows: egg (1.83) > kidney (1.21) > breast muscle (0.86) > liver (0.70) > serum (0.42). The melamine level in egg albumen was about twice that of egg yolk. Melamine levels in laying hens decreased rapidly with withdrawal from feed, but melamine only declined to undetectable levels in the egg at day 6 and in tissues at day 4 after last ingestion of 100 mg kg(-1). It can be concluded that a pathway exists for the transmission of melamine from feed to egg and body tissues and the carry-over rate of melamine is low, and that melamine is not metabolized into cyanuric acid in laying hens. A positive relationship exists between exposure levels and eggs or tissues, but no direct relationship between the exposure time and measured levels of melamine in eggs and tissues. The current Chinese limit for melamine in feed and feed material of 2.5 mg kg(-1

  19. The natural outcome of melamine-induced bladder stones with bladder epithelial hyperplasia after the withdrawal of melamine in mice.

    Science.gov (United States)

    Ren, Shu-Ting; Xu, Chang-Fu; Du, Yun-Xia; Gao, Xiao-Li; Sun, Ying; Jiang, Yi-Na

    2012-07-01

    The natural outcome of melamine-induced bladder stones (cystoliths) with bladder epithelial hyperplasia (BEH) after melamine withdrawn is unclear. Using an ideal dual-model system, three experiments were conducted in BALB/c mice. Each experiment included a control, model 1 and model 2 groups. The mice were fed a regular diet in controls or a 9373 ppm melamine diet in models, and the first day was designated as dosing day 1. The melamine diet was then replaced by the regular diet in the model 2 groups, and the first day was designated as post-dosing day 1. On dosing days 12, 35 and 49, the incidence of cystoliths and diffusely active BEH was 8/8 in the mice of three model 1 groups. On post-dosing days 1, 4 and 8, in the mice of three model 2 groups, the incidence of cystoliths was 2/8, 0/8 and 1/8, respectively, and the progressive regression of BEH was observed. In conclusion, both the stones and BEH have the natural property of rapid development and rapid regression, and melamine withdrawn plays a key role in the stone dissolution-discharge necessary for BEH regression. BEH may be reversible after the discharge of the stones. The conventionally conservative therapy is thus reasonable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Ultrasound promoted synthesis of arylmethylenemalonitriles catalyzed by melamine

    International Nuclear Information System (INIS)

    Lu, Q.; Ai, H.M.

    2016-01-01

    Arylmethylenemalonitriles were synthesized in the presence of melamine through the Knoevenagel condensation of aldehydes with malononitrile in ethanol. Two strategies such as the conventional stirring and ultrasound-assisted method were performed in this work, and improvements were observed by carrying out the reactions under ultrasound irradiation. The effect of frequency and power of ultrasound on the yields was investigated, and the optimum frequency and power was 45 kHz and 240 W, respectively. The Knoevenagel reaction was carried out smoothly under the optimum conditions with the yields of 80-99% within short time. The melamine catalyst showed high activity and reusability, and exhibited no substantial loss of activity over up to four reaction cycles. This work demonstrated that short reaction times and high yields of arylmethylenemalonitriles can be obtained with the facile operation in the presence of the low-toxic, cheap and reusable melamine catalyst. (author)

  1. Experimental Evaluation of Equivalent-Fluid Models for Melamine Foam

    Science.gov (United States)

    Allen, Albert R.; Schiller, Noah H.

    2016-01-01

    Melamine foam is a soft porous material commonly used in noise control applications. Many models exist to represent porous materials at various levels of fidelity. This work focuses on rigid frame equivalent fluid models, which represent the foam as a fluid with a complex speed of sound and density. There are several empirical models available to determine these frequency dependent parameters based on an estimate of the material flow resistivity. Alternatively, these properties can be experimentally educed using an impedance tube setup. Since vibroacoustic models are generally sensitive to these properties, this paper assesses the accuracy of several empirical models relative to impedance tube measurements collected with melamine foam samples. Diffuse field sound absorption measurements collected using large test articles in a laboratory are also compared with absorption predictions determined using model-based and measured foam properties. Melamine foam slabs of various thicknesses are considered.

  2. Curing kinetics of alkyd/melamine resin mixtures

    Directory of Open Access Journals (Sweden)

    Jovičić Mirjana C.

    2009-01-01

    Full Text Available Alkyd resins are the most popular and useful synthetic resins applied as the binder in protective coatings. Frequently they are not used alone but are modified with other synthetic resins in the manufacture of the coatings. An alkyd/melamine resin mixture is the usual composition for the preparation of coating called 'baking enamel' and it is cured through functional groups of resins at high temperatures. In this paper, curing kinetics of alkyd resins based on castor oil and dehydrated castor oil with melamine resin, has been studied by DSC method with programmed heating and in isothermal mode. The results determined from dynamic DSC curves were mathematically transformed using the Ozawa isoconversional method for obtaining the isothermal data. These results, degree of curing versus time, are in good agreement with those determined by the isothermal DSC experiments. By applying the Ozawa method it is possible to calculate the isothermal kinetic parameters for the alkyd/melamine resin mixtures curing using only calorimetric data obtained by dynamic DSC runs. Depending on the alkyd resin type and ratio in mixtures the values of activation energies of curing process of resin mixtures are from 51.3 to 114 kJ mol-1. The rate constant of curing increases with increasing the content of melamine resin in the mixture and with curing temperature. The reaction order varies from 1.12 to 1.37 for alkyd based on dehydrated castor oil/melamine resin mixtures and from 1.74 to 2.03 for mixtures with alkyd based on castor oil. Based on the results obtained, we propose that dehydrated castor oil alkyd/melamine resin mixtures can be used in practice (curing temperatures from 120 to 160°C.

  3. Corrosion Protection Performance of Polyester-Melamine Coating with Natural Wood Fiber Using EIS Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shin, PyongHwa; Shon, MinYoung [Pukyong National University, Busan (Korea, Republic of); Jo, DuHwan [POSCO, Gwangyang (Korea, Republic of)

    2016-04-15

    In the present study, polyester-melamine coating systems with natural wood fiber (NWF) were prepared and the effects of NWF on the corrosion protectiveness of the polyester-melamine coating were examined using EIS analysis. From the results, higher average surface roughness was observed with increase of NWF content. Water diffusivity and water uptake into the polyester-melamine coatings with NWF were much higher than that into the pure polyester-melamine coating. The decrease in the impedance modulus |Z| was associated with the localized corrosion on carbon steel, confirming that corrosion protection of the polyester-melamine coatings with NWF well agrees with its water transport behavior.

  4. Analytical methods for the evaluation of melamine contamination.

    Science.gov (United States)

    Cantor, Stuart L; Gupta, Abhay; Khan, Mansoor A

    2014-02-01

    There is an urgent need for the analysis of melamine in the global pharmaceutical supply chain to detect economically motivated adulteration or unintentional contamination using a simple, nondestructive analytical technique that confirms the extent of adulteration in a shorter time period. In this work, different analytical techniques (thermal analysis, X-ray diffraction, Fourier transform infrared (FT-IR), FT-Raman, and near-infrared (NIR) spectroscopy) were evaluated for their ability to detect a range of melamine levels in gelatin. While FT-IR and FT-Raman provided qualitative assessment of melamine contamination or adulteration, powder X-ray diffraction and NIR were able to detect and quantify the presence of melamine at levels as low as 1.0% w/w. Multivariate analysis of the NIR data yielded the most accurate model when three principal components were used. Data were pretreated using standard normal variate transformation to remove multiplicative interferences of scatter and particle size. The model had a root-mean-square error of calibration of 2.4 (R(2) = 0.99) and root-mean square error of prediction of 2.5 (R(2) = 0.96). The value of the paired t test for actual and predicted samples (1%-50% w/w) was 0.448 (p 5), further indicating the robustness of the model. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  5. [Investigation of typical melamine urinary stones using infrared spectra].

    Science.gov (United States)

    Si, Min-Zhen; Li, Qing-Yun; Liu, Ren-Ming; Kang, Yi-Pu; Wang, Kun-Hua; Zhang, Zhi-Guo

    2010-02-01

    A typical melamine kidney stone confirmed by some medicine expert was collected from the first people's hospital of Yunnan. The kidney stone was adequately determined by PE corporation spectra 100(with resolution of 1 cm(-1)). The stone samples for FTIR analysis were prepared using the KBr pellet technique, where 2 mg of the pretreated stone powder was mixed with 200 mg of analytical grade KBr using an agate pestle and mortar. The digital spectrum was then scanned in the mid-infrared region from 4 000 to 400 cm(-1) at room temperature. The appearing bands between 4 000 and 2 000 cm(-1) were 3 487, 3 325, 3 162 and 2 788 cm(-1), those between 1 700 and 1 000 cm(-1) were 1 694, 1 555, 1 383, 1 340, 1 189 and 1 122 cm(-1), and those between 1 000 and 400 cm(-1) were 993, 782, 748, 709, 624, 585, 565 and 476 cm(-1). It was found that the main constituent of calculi showed few comparability with cat kidney stone, which was from cats that died after consuming the contaminated food, and confirmed that these deposits were primarily composed of melamine and cyanuric acid compared to the IR spectra of calculi in literature. It was also found that the main constituent of calculi showed few comparability with popular kidney stone by comparison with the IR spectra of calculi in literature. The spectrum of calculi was 50% respectively similar with melamine and uric acid as compared with the IR spectrum. It was found that the main constituent of calculi was melamine itself and uric acid as compared with the IR spectra of calculi and melamine: (1 : 1), because the spectrum of calculi was 83. 3% similar to melamine and uric acid (1 : 1). The appearing bands of melamine and uric acid (1 : 1) between 4 000 and 2 000 cm(-1) were 3 469, 3 419, 3 333, 3 132, 3 026, 2 827 cm(-1), those between 1 700 and 1 000 cm(-1) were 1 696, 1 656, 1 555, 1 489, 1 439, 1 350, 1 311, 1 198, 1 124 and 1 028 cm(-1), and those between 1 000 and 400 cm(-1) were 993, 878, 814, 784, 745, 708, 619, 577 and

  6. Comparison of the migration of melamine from melamine-formaldehyde plastics ('melaware') into various food simulants and foods themselves

    NARCIS (Netherlands)

    Bradley, E.L.; Castle, L.; Day, J.S.; Ebner, I.; Ehlert, K.; Helling, R.; Koster, S.; Leak, J.; Pfaff, K.

    2010-01-01

    A variety of melaware articles were tested for the migration of melamine into the food simulant 3% w/v acetic acid as a benchmark, and into other food simulants, beverages and foods for comparison. The results indicate that the acidity of the food simulant plays a role in promoting migration, but

  7. Migration of melamine from can coatings cross-linked with melamine-based resins, into food simulants and foods.

    Science.gov (United States)

    Bradley, E L; Castle, L; Day, J S; Leak, J

    2011-02-01

    Resins based on melamine-formaldehyde and related analogues such as methylolated melamine are used to cross-link coatings used inside food cans and on the metal closures of glass jars. Thirteen commercially coated cans and closures representing 80% of the European market were tested using simulants under realistic industrial heat-processing conditions for canned and jarred foods. The food simulants and the retort conditions used were 3% acetic acid for 1 h at 100 °C and 10% ethanol for 1 h at 130 °C. The highest migration level seen for melamine into simulant was 332 µg kg⁻¹. There was no detectable migration of the melamine analogues cyanuric acid (food simulant and foods themselves were then conducted using two experimental coatings made using amino-based cross-linking resins. Coated metal panels were exposed to the food simulant 10% (v/v) aqueous ethanol and to three foodstuffs under a range of time and temperature conditions both in the laboratory and in a commercial food canning facility using proprietary time and temperature conditions. The highest migration into a food was 152 µg kg⁻¹ from the first coating processed for a long time at a moderate sterilisation temperature. The highest migration into simulant was also from this coating at 220 µg kg⁻¹ when processed at 134 °C for 60 min, dropping to 190 µg k⁻¹ when processed at 123 °C for 70 min. Migration from the second coating was quite uniformly two to three times lower under all tests. These migration results were significantly higher than the levels of melamine extractable using 95% ethanol at room temperature. The experiments show that commercial canning and retorting can be mimicked in an acceptable way using laboratory tests with an autoclave or a simple pressure cooker. The results overall show there is hydrolytic degradation of the melamine cross-linked resins to release additional melamine. There is a strong influence of the temperature of heat treatment applied with foods or

  8. Recent advances in the risk assessment of melamine and cyanuric acid in animal feed

    Energy Technology Data Exchange (ETDEWEB)

    Dorne, Jean Lou, E-mail: jean-lou.dorne@efsa.europa.eu [Unit on Contaminants, European Food Safety Authority, Largo N. Palli 5/A, 43121 Parma (Italy); Doerge, Daniel R. [NCTR, Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 (United States); Vandenbroeck, Marc [Unit on Contaminants, European Food Safety Authority, Largo N. Palli 5/A, 43121 Parma (Italy); Fink-Gremmels, Johanna [University of Utrecht (Netherlands); Mennes, Wim [RIVM, Bilthoven (Netherlands); Knutsen, Helle K. [Norwegian Institute of Public Health, Oslo (Norway); Vernazza, Francesco [Dietary and Chemical Monitoring, European Food Safety Authority, Largo N. Palli 5/A, 43121 Parma (Italy); Castle, Laurence [FERA, York (United Kingdom); Edler, Lutz [German Cancer Research Center, Heidelberg (Germany); Benford, Diane [Food Standard Agency, London (United Kingdom)

    2013-08-01

    Melamine can be present at low levels in food and feed mostly from its legal use as a food contact material in laminates and plastics, as a trace contaminant in nitrogen supplements used in animal feeds, and as a metabolite of the pesticide cyromazine. The mechanism of toxicity of melamine involves dose-dependent formation of crystals with either endogenous uric acid or a structural analogue of melamine, cyanuric acid, in renal tubules resulting in potential acute kidney failure. Co-exposure to melamine and cyanuric acid in livestock, fish, pets and laboratory animals shows higher toxicity compared with melamine or cyanuric acid alone. Evidence for crystal formation between melamine and other structural analogs i.e. ammelide and ammeline is limited. Illegal pet food adulterations with melamine and cyanuric acid and adulteration of milk with melamine resulted in melamine–cyanuric acid crystals, kidney damage and deaths of cats and dogs and melamine–uric acid stones, hospitalisation and deaths of children in China respectively. Following these incidents, the tolerable daily intake for melamine was re-evaluated by the U.S. Food and Drug Administration, the World Health Organisation, and the Scientific Panel on Contaminants in the Food Chain of the European Food Safety Authority (EFSA). This review provides an overview of toxicology, the adulteration incidents and risk assessments for melamine and its structural analogues. Particular focus is given to the recent EFSA risk assessment addressing impacts on animal and human health of background levels of melamine and structural analogues in animal feed. Recent research and future directions are discussed. - Highlights: ► Melamine in food and feed. ► Forms crystals in kidney with uric acid or cyanuric acid. ► Toxicity higher with cyanuric acid. ► Recent EFSA risk assessment. ► Animal and human health.

  9. Recent advances in the risk assessment of melamine and cyanuric acid in animal feed

    International Nuclear Information System (INIS)

    Dorne, Jean Lou; Doerge, Daniel R.; Vandenbroeck, Marc; Fink-Gremmels, Johanna; Mennes, Wim; Knutsen, Helle K.; Vernazza, Francesco; Castle, Laurence; Edler, Lutz; Benford, Diane

    2013-01-01

    Melamine can be present at low levels in food and feed mostly from its legal use as a food contact material in laminates and plastics, as a trace contaminant in nitrogen supplements used in animal feeds, and as a metabolite of the pesticide cyromazine. The mechanism of toxicity of melamine involves dose-dependent formation of crystals with either endogenous uric acid or a structural analogue of melamine, cyanuric acid, in renal tubules resulting in potential acute kidney failure. Co-exposure to melamine and cyanuric acid in livestock, fish, pets and laboratory animals shows higher toxicity compared with melamine or cyanuric acid alone. Evidence for crystal formation between melamine and other structural analogs i.e. ammelide and ammeline is limited. Illegal pet food adulterations with melamine and cyanuric acid and adulteration of milk with melamine resulted in melamine–cyanuric acid crystals, kidney damage and deaths of cats and dogs and melamine–uric acid stones, hospitalisation and deaths of children in China respectively. Following these incidents, the tolerable daily intake for melamine was re-evaluated by the U.S. Food and Drug Administration, the World Health Organisation, and the Scientific Panel on Contaminants in the Food Chain of the European Food Safety Authority (EFSA). This review provides an overview of toxicology, the adulteration incidents and risk assessments for melamine and its structural analogues. Particular focus is given to the recent EFSA risk assessment addressing impacts on animal and human health of background levels of melamine and structural analogues in animal feed. Recent research and future directions are discussed. - Highlights: ► Melamine in food and feed. ► Forms crystals in kidney with uric acid or cyanuric acid. ► Toxicity higher with cyanuric acid. ► Recent EFSA risk assessment. ► Animal and human health

  10. Effects of Wet-Blending on Detection of Melamine in Spray-Dried Lactose.

    Science.gov (United States)

    Yakes, Betsy Jean; Bergana, Marti M; Scholl, Peter F; Mossoba, Magdi M; Karunathilaka, Sanjeewa R; Ackerman, Luke K; Holton, Jason D; Gao, Boyan; Moore, Jeffrey C

    2017-07-19

    During the development of rapid screening methods to detect economic adulteration, spray-dried milk powders prepared by dissolving melamine in liquid milk exhibited an unexpected loss of characteristic melamine features in the near-infrared (NIR) and Raman spectra. To further characterize this "wet-blending" phenomenon, spray-dried melamine and lactose samples were produced as a simplified model and investigated by NIR spectroscopy, Raman spectroscopy, proton nuclear magnetic resonance ( 1 H NMR), and direct analysis in real time Fourier transform mass spectrometry (DART-FTMS). In contrast to dry-blended samples, characteristic melamine bands in NIR and Raman spectra disappeared or shifted in wet-blended lactose-melamine samples. Subtle shifts in melamine 1 H NMR spectra between wet- and dry-blended samples indicated differences in melamine hydrogen-bonding status. Qualitative DART-FTMS analysis of powders detected a greater relative abundance of lactose-melamine condensation product ions in the wet-blended samples, which supported a hypothesis that wet-blending facilitates early Maillard reactions in spray-dried samples. Collectively, these data indicated that the formation of weak, H bonded complexes and labile, early Maillard reaction products between lactose and melamine contribute to spectral differences observed between wet- and dry-blended milk powder samples. These results have implications for future evaluations of adulterated powders and emphasize the important role of sample preparation methods on adulterant detection.

  11. Effect of catalyst on melamine-formaldehyde organic aerogel

    International Nuclear Information System (INIS)

    Sun Zhipeng; Yang Xi; Fu Zhibing; Zhong Minglong; Wang Chaoyang; Ma Kangfu; Huang Xiaoli; Chang Lijuan

    2013-01-01

    A series of melamine-formaldehyde(MF) organic aerogel templates were prepared with different categories and concentration of catalyst. Their molecular structure, thermal stability and pore structure were tested by Fourier transform infrared spectroscopy, thermogravimetric analysis and nitrogen adsorption. It is indicated that the type and concentration of catalyst do not affect molecular structure and thermal stability of the MF organic aerogel template. The specific surface area and pore volume of the MF organic aerogel template using Na 2 CO 3 as catalyst are higher than those using NaOH, NaHCO 3 as catalyst. When the ratio of the concentration of melamine to that of catalyst is 500, the specific surface area is maximized. (authors)

  12. Rapid sensing of melamine in milk by interference green synthesis of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Varun, S.; Kiruba Daniel, S.C.G.; Gorthi, Sai Siva, E-mail: saisiva.gorthi@iap.iisc.ernet.in

    2017-05-01

    A highly sensitive, selective, and rapid interference green synthesis based determination of potential milk adulterant melamine has been reported here. Melamine is a nitrogenous compound added to milk for mimicking proteins, consumption of which leads to kidney stones and renal failures. Melamine interacts with ascorbic acid (AA) through strong hydrogen-bonding interactions, thus resulting in an interference/interruption in the formation of silver (Ag) nanoparticles which was confirmed by UV–Vis spectroscopy and Transmission Electron Microscopy (TEM). The corresponding benchmark validations for melamine spiked milk samples were performed using High Performance Liquid Chromatography (HPLC). This interference in the formation of Ag nanoparticles resulted in color change that varies with concentration of melamine, thereby enabling in-situ rapid sensing of melamine from milk to a lower limit of 0.1 ppm with a linear correlation coefficient of 0.9908. - Highlights: • Rapid detection of milk adulterant melamine based on interference green synthesis. • Green chemical ascorbic acid used as the reducing agent for interference sensing. • Enabling in-situ sensing of melamine from milk with a limit of detection of 0.1 ppm. • Presence of analyte inhibits the nanoparticle formation.

  13. Challenges About Determining The Amount Of Melamine In Dairy Products

    OpenAIRE

    Leandro Freire dos Santos; Hélio Hiroshi Suguimoto

    2014-01-01

    Melamine (IUPAC= 2,4,6-triamine-1,3,5-triazine); C3 H6 N6 ; pKa = 5.1; MW= 126.12 g/mol; Fig 1) is a synthetic compound widely used in the manufacture of resins and plastics to increase thermal resistance, as well it is applied in manufacture of flame retardants, fertilizer, coatings, laminates, adhesives, glues and commercial filters [1-3]. For the first time in 2008, the world was “appalled” by the news that Chinese babies have developed kidney stones caused by consumption of adulterated mi...

  14. Bacterial biodegradation of melamine-contaminated aged soil: influence of different pre-culture media or addition of activation material.

    Science.gov (United States)

    Hatakeyama, Takashi; Takagi, Kazuhiro

    2016-08-01

    This study aimed to investigate the biodegrading potential of Arthrobacter sp. MCO, Arthrobacter sp. CSP, and Nocardioides sp. ATD6 in melamine-contaminated upland soil (melamine: approx. 10.5 mg/kg dry weight) after 30 days of incubation. The soil sample used in this study had undergone annual treatment of lime nitrogen, which included melamine; it was aged for more than 10 years in field. When R2A broth was used as the pre-culture medium, Arthrobacter sp. MCO could degrade 55 % of melamine after 30 days of incubation, but the other strains could hardly degrade melamine (approximately 25 %). The addition of trimethylglycine (betaine) in soil as an activation material enhanced the degradation rate of melamine by each strain; more than 50 % of melamine was degraded by all strains after 30 days of incubation. In particular, strain MCO could degrade 72 % of melamine. When the strains were pre-cultured in R2A broth containing melamine, the degradation rate of melamine in soil increased remarkably. The highest (72 %) melamine degradation rate was noted when strain MCO was used with betaine addition.

  15. The recovery of bladder epithelial hyperplasia caused by a melamine diet-induced bladder calculus in mice.

    Science.gov (United States)

    Sun, Ying; Jiang, Yi-Na; Xu, Chang-Fu; Du, Yun-Xia; Zhang, Jiao-Jiao; Yan, Yang; Gao, Xiao-Li

    2014-02-01

    Applying a model of bladder epithelial hyperplasia (BEH) caused by melamine-induced bladder calculus (BC), the recovery of BEH after melamine withdrawal was investigated. One experiment, comprising untreated, melamine and recovery groups, was conducted in Balb/c mice. Each group included 4 subgroups. Mice were fed normal-diet in untreated or a melamine-diet in other groups. The melamine-diet was then substituted with normal-diet in recovery group. Both of BC and BEH were observed after 14 and 56 days of melamine-diet. The BC is relatively uniform at the same melamine-diet durations. The BEH was diffuse with many mitotic figures, 4-7 rows of nuclei, and well-defined umbrella/intermediate cells. No marked differences in BEH degree were observed in the two different melamine-diet durations. On 4-42 days after melamine withdrawal, BC was not found, as the progressive regression with complete regression of BEH was observed, along with well-defined ageing/apoptotic cells in the superficial regions of BEH regression tissue. Conclusion, the melamine-induced BEH is relatively uniform, may be self-limiting in rows of nuclei, and can return to normal. Melamine withdrawal duration is critical for the BEH regression. Tissue of the BEH and its regression is ideal for exploring the renewal as well as growth biology of mammalian urothelium. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  16. Voltamperometric Discrimination of Urea and Melamine Adulterated Skimmed Milk Powder

    Directory of Open Access Journals (Sweden)

    Eduardo Cortón

    2012-09-01

    Full Text Available Nitrogen compounds like urea and melamine are known to be commonly used for milk adulteration resulting in undesired intoxication; a well-known example is the Chinese episode occurred in 2008. The development of a rapid, reliable and economic test is of relevance in order to improve adulterated milk identification. Cyclic voltammetry studies using an Au working electrode were performed on adulterated and non-adulterated milk samples from different independent manufacturers. Voltammetric data and their first derivative were subjected to functional principal component analysis (f-PCA and correctly classified by the KNN classifier. The adulterated and non-adulterated milk samples showed significant differences. Best results of prediction were obtained with first derivative data. Detection limits in milk samples adulterated with 1% of its total nitrogen derived from melamine or urea were as low as 85.0 mg·L−1 and 121.4 mg·L−1, respectively. We present this method as a fast and robust screening method for milk adulteration analysis and prevention of food intoxication.

  17. Colorimetric determination of neomycin using melamine modified gold nanoparticles

    International Nuclear Information System (INIS)

    Xiao, Can; Liu, Junfeng; Yang, Ankang; Zhao, Hong; He, Yujian; Li, Xiangjun; Yuan, Zhuobin

    2015-01-01

    The colorimetric assay for neomycin presented here is based on melamine-modified gold nanoparticles (mel-AuNPs) and the finding that hydrogen bonding between melamine and neomycin results in the aggregation of mel-AuNPs. This results in a change in the color of the solution from wine red to blue and in a red-shift of the absorption maximum of the mel-AuNPs. The concentration of neomycin can be determined by spectrophotometry. The ratio of absorptions at 680 nm and 520 nm is linearly related to the logarithm of the concentration of neomycin in the 0.1 to 5.0 nM range and in the 5 to 100 nM range, with regression coefficients of 0.997 and 0.999, respectively. The detection limit (at an S/N ratio of 3) is 30 pM. This is far below the usual safety limit. The method was applied to the detection of trace levels of neomycin in milk samples and gave recoveries between 98 and 105 %. (author)

  18. Preparation and oil absorption properties of magnetic melamine sponge

    Science.gov (United States)

    Lei, LUO; Jia-qi, HU; Na, LV

    2017-12-01

    The magnetic melamine sponge (MS-Fe3O4) with magnetic response and high hydrophobicity was fabricated by two-step method. First, the magnetic nano-particles were fixed on the skeleton of melamine sponge (MS) using 3-hydroxytyramine hydrochloride and 1-dodecanethiol, then hydrophobicity modified with octadecyltrichlorosilane (OTS). The structures and chemical compositions of MS and MS-Fe3O4 were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The wettability of the sample was obtained by using contact angle analysis system. MS-Fe3O4 endowed with outstanding selectivity and excellent oil absorption capacities, which can be widely used in absorbing various sorts of oil. The oil absorption capacities for crude oil, diesel oil, lubricating oil, soybean oil and peanut oil were 71g/g, 51g/g, 62g/g, 54g/g, 57g/g. In addition, MS-Fe3O4 showed excellent recyclability which can be forecasted as an ideal candidate for oil-water separation.

  19. Melamine and Cyanuric Acid do not interfere with Bradford and Ninhydrin assays for protein determination

    OpenAIRE

    Field, Anjalie; Field, Jeffrey

    2010-01-01

    In the fall of 2007 pet food contaminated with melamine and cyanuric acid caused kidney stones in thousands of animals. In the summer of 2008, a more serious outbreak of adulterated dairy food caused the deaths of six infants and sickened about 290,000 children in China. In all cases, melamine was likely added to inflate the apparent protein content of the foods. To determine if we could measure protein without interference from melamine and cyanuric acid we tested these compounds in the Brad...

  20. Detection and determination of Melamine in infant formula by ELISA method

    Directory of Open Access Journals (Sweden)

    A Shakerian

    2012-05-01

    Full Text Available Thirty-six samples of infant formula with different production dates and various brands were purchased from Isfahan city during 2012. The samples were assayed for the presence and quantity of melamine by ELISA screening method. According to the results, in any infant formula melamine contamination was observed above the detection limit of the kit (10 µg/L. Therefore, it was concluded that the infant formula at Isfahan retail is not considered a health hazard from the melamine contamination point of view.

  1. Composting of waste paint sludge containing melamine resin as affected by nutrients and gypsum addition and microbial inoculation

    International Nuclear Information System (INIS)

    Tian Yongqiang; Chen Liming; Gao Lihong; Michel, Frederick C.; Wan Caixia; Li Yebo; Dick, Warren A.

    2012-01-01

    Melamine formaldehyde resins have hard and durable properties and are found in many products, including automobile paints. These resins contain high concentrations of nitrogen and, if properly composted, can yield valuable products. We evaluated the effects of starter compost, nutrients, gypsum and microbial inoculation on composting of paint sludge containing melamine resin. A bench-scale composting experiment was conducted at 55 °C for 91 days and then at 30 °C for an additional 56 days. After 91 days, the composts were inoculated with a mixed population of melamine-degrading microorganisms. Melamine resin degradation after the entire 147 days of composting varied between 73 and 95% for the treatments with inoculation of microorganisms compared to 55–74% for the treatments without inoculation. Degradation was also enhanced by nutrients and gypsum additions. Our results infer that large scale composting of melamine resins in paint sludge is possible. - Highlights: ► Melamine resin in waste paint sludges could be efficiently composted at bench scale. ► Melamine resin degradation after 147 days of composting was 73–95% complete. ► Nutrients, gypsum and melamine-degrading microorganisms increased composting rate. ► Melamine degradation products first increased and then decreased in the compost. ► Final compost was enriched in nitrogen and other essential plant nutrients. - Melamine resin in waste paint sludges was efficiently composted at bench scale, with finished composts having low levels of heavy metals and enriched in plant nutrients.

  2. Microwave Assisted Solvent Free Synthesis of Azomethines from Aryl Aldehydes on Melamin Formaldehyde as Solid Support

    Directory of Open Access Journals (Sweden)

    Ramin Rezaei

    2011-01-01

    Full Text Available Various aryl aldehydes underwent prompt one pot conversion into the corresponding azomethines in high yields by reacting with hydroxylamine hydrochloride supported on melamine formaldehyde under microwave irradiation.

  3. Effect of Coversheet Materials on the Acoustic Performance of Melamine Foam

    Science.gov (United States)

    McNelis, Anne M.; Hughes, William O.

    2015-01-01

    Melamine foam is a highly absorptive material that is often used inside the payload fairing walls of a launch vehicle. This foam reduces the acoustic excitation environment that the spacecraft experiences during launch. Often, the melamine foam is enclosed by thin coversheet materials for contamination protection, thermal protection, and electrostatic discharge control. Previous limited acoustic testing by NASA Glenn Research Center has shown that the presence of a coversheet material on the melamine foam can have a significant impact on the absorption coefficient and the transmission loss. As a result of this preliminary finding a more extensive acoustic test program using several different coversheet materials on melamine foam was performed. Those test results are summarized in this paper. Additionally, a method is provided to use the acoustic absorption and transmission loss data obtained from panel level testing to predict their combined effect for the noise reduction of a launch vehicle payload fairing.

  4. NASA Engineering and Safety Center (NESC) Enhanced Melamine (ML) Foam Acoustic Test (NEMFAT)

    Science.gov (United States)

    McNelis, Anne M.; Hughes, William O.; McNelis, Mark E.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) funded a proposal to achieve initial basic acoustic characterization of ML (melamine) foam, which could serve as a starting point for a future, more comprehensive acoustic test program for ML foam. A project plan was developed and implemented to obtain acoustic test data for both normal and enhanced ML foam. This project became known as the NESC Enhanced Melamine Foam Acoustic Test (NEMFAT). This document contains the outcome of the NEMFAT project.

  5. Quantitative detection of melamine based on terahertz time-domain spectroscopy

    Science.gov (United States)

    Zhao, Xiaojing; Wang, Cuicui; Liu, Shangjian; Zuo, Jian; Zhou, Zihan; Zhang, Cunlin

    2018-01-01

    Melamine is an organic base and a trimer of cyanamide, with a 1, 3, 5-triazine skeleton. It is usually used for the production of plastics, glue and flame retardants. Melamine combines with acid and related compounds to form melamine cyanurate and related crystal structures, which have been implicated as contaminants or biomarkers in protein adulterations by lawbreakers, especially in milk powder. This paper is focused on developing an available method for quantitative detection of melamine in the fields of security inspection and nondestructive testing based on THz-TDS. Terahertz (THz) technology has promising applications for the detection and identification of materials because it exhibits the properties of spectroscopy, good penetration and safety. Terahertz time-domain spectroscopy (THz-TDS) is a key technique that is applied to spectroscopic measurement of materials based on ultrafast femtosecond laser. In this study, the melamine and its mixture with polyethylene powder in different consistence are measured using the transmission THz-TDS. And we obtained the refractive index spectra and the absorption spectrum of different concentrations of melamine on 0.2-2.8THz. In the refractive index spectra, it is obvious to see that decline trend with the decrease of concentration; and in the absorption spectrum, two peaks of melamine at 1.98THz and 2.28THz can be obtained. Based on the experimental result, the absorption coefficient and the consistence of the melamine in the mixture are determined. Finally, methods for quantitative detection of materials in the fields of nondestructive testing and quality control based on THz-TDS have been studied.

  6. Melamine-bridged alkyl resorcinol modified urea - formaldehyde resin for bonding hardwood plywood

    Science.gov (United States)

    Chung-Yun Hse; Mitsuo Higuchi

    2010-01-01

    A powdery product was obtained by the reaction of methylolated melamine with alkyl resorcinols to form melamine-bridged alkyl resorcinols (MARs). The effects of the addition of this powder on the bonding strength and formaldehyde emission of urea–formaldehyde (UF) resins were investigated. Three types of UF resins with a formaldehyde/urea molar ratio of 1.3 synthesized...

  7. Visual test for melamine using silver nanoparticles modified with chromotropic acid

    International Nuclear Information System (INIS)

    Song, Juan; Wu, Fangying; Wan, Yiqun; Ma, Li-Hua

    2014-01-01

    A simple and low-cost assay for melamine is introduced that is making use of silver nanoparticles (AgNPs) functionalized with chromotropic acid (CTA). The surface of the AgNPs was capped with chromotropic acid which warrants the NPs to remain in stable and dispersed form. The presence of melamine induces the aggregation of the CTA-AgNPs due to the hydrogen bond interaction between CTA and melamine. This is accompanied by a color change from yellow to orange which can be observed with bare eyes. The method allows melamine to be quantified by absorptiometry with a linear response in the concentration range from 0.10 to 1.5 μM (R = 0.9996) and a detection limit of 36 nM which was much lower than the safe limits (20 μM in both the USA and EU, 8 μM for infant formula in China, 1.2 μM in the CAC review for melamine in liquid infant formula). The assay displays high selectivity to melamine over its structural analogs such as cyanuric acid, 2,4,6-trimethyl-1,3,5-triazine, and phloro glucinol owing to the fact that only melamine can act as the hydrogen donor to form hydrogen bonds with the sulfo groups of the CTA-capped AgNPs. The method was successfully applied to the determination of melamine in spiked liquid milk and the average recovery was 99 %. Most amino acids and a high content of calcium do not interfere in this assay. (author)

  8. Modulation of the Singlet Oxygen Generation from the Double Strand DNA-SYBR Green I Complex Mediated by T-Melamine-T Mismatch for Visual Detection of Melamine.

    Science.gov (United States)

    Hu, Hao; Zhang, Jinyi; Ding, Yu; Zhang, Xinfeng; Xu, Kailai; Hou, Xiandeng; Wu, Peng

    2017-05-02

    Singlet oxygen ( 1 O 2 ), generated via photosensitization, has been proved to oxidize chromogenic substrates with neither H 2 O 2 oxidation nor enzyme (horseradish peroxidase, HRP) catalysis. Of the various methods for modulation of the 1 O 2 generation, DNA-controlled photosensitization received great attention. Therefore, integration of the formation/deformation DNA structures with DNA-controlled photosensitization will be extremely appealing in visual biosensor developments. Here, the stable melamine-thymine complex was explored in combination with DNA-controlled photosensitization for visual detection of melamine. A T-rich single stand DNA was utilized as the recognition unit. Upon the formation of the T-M-T complex, double stand DNA was formed, which was ready for the binding of SYBR Green I and activated the photosensitization. Subsequent oxidation of TMB allowed visual detection of melamine in dairy products, with spike-recoveries ranging from 94% to 106%.

  9. Decomposition mechanism of melamine borate in pyrolytic and thermo-oxidative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hoffendahl, Carmen; Duquesne, Sophie; Fontaine, Gaëlle; Bourbigot, Serge, E-mail: serge.bourbigot@ensc-lille.fr

    2014-08-20

    Highlights: • Decomposition of melamine borate in pyrolytic and thermo-oxidative conditions was investigated. • With increasing temperature, orthoboric acid forms boron oxide releasing water. • Melamine decomposes evolving melamine, ammonia and other fragments. • Boron oxide is transformed into boron nitride and boron nitride-oxide structures through presence of ammonia. - Abstract: Decomposition mechanism of melamine borate (MB) in pyrolytic and thermo-oxidative conditions is investigated in the condensed and gas phases using solid state NMR ({sup 13}C and {sup 11}B), X-ray photoelectron spectroscopy (XPS), pyrolysis-gas chromatography–mass spectrometry (py-GCMS) and thermogravimetric analysis coupled with a Fourier transform infrared spectrometer (TGA–FTIR). It is evidenced that orthoboric acid dehydrates to metaboric and then to boron oxide. The melamine is partially sublimated. At the same time, melamine condensates, i.e., melem and melon are formed. Melon is only formed in thermo-oxidative conditions. At higher temperature, melem and melon decompose releasing ammonia which reacts with the boron oxide to form boron nitride (BN) and BNO structures.

  10. Melamine and Cyanuric Acid do not interfere with Bradford and Ninhydrin assays for protein determination.

    Science.gov (United States)

    Field, Anjalie; Field, Jeffrey

    2010-08-01

    In the fall of 2007 pet food contaminated with melamine and cyanuric acid caused kidney stones in thousands of animals. In the summer of 2008, a more serious outbreak of adulterated dairy food caused the deaths of six infants and sickened about 290,000 children in China. In all cases, melamine was likely added to inflate the apparent protein content of the foods. To determine if we could measure protein without interference from melamine and cyanuric acid we tested these compounds in the Bradford and Ninhydrin assays, two common dye-based assays for protein, as well as by ammonia release, the most common assay used in the food industry. Neither compound was detected in the Ninhydrin and Bradford assays at concentrations of >100 μg/ml. The ammonia assay detected melamine but was inconclusive with respect to cyanuric acid. To develop an accurate test for food that would not detect either chemical as a protein, assays were run on cat food and reconstituted milk powder. The Bradford assay readily measured the protein content of each food, and importantly, the addition of melamine or cyanuric acid to reconstituted milk did not affect the readings. The protein concentrations obtained for reconstituted milk powder were as expected, but those for the cat food were 10 to 30-fold lower, due to its low solubility. We conclude that dye-binding assays can be employed to detect protein in food without interference from melamine and cyanuric acid, thus reducing the incentive to use them as additives.

  11. Supramolecular intermediates in the synthesis of polymeric carbon nitride from melamine cyanurate

    International Nuclear Information System (INIS)

    Dante, Roberto C.; Sánchez-Arévalo, Francisco M.; Chamorro-Posada, Pedro; Vázquez-Cabo, José; Huerta, Lazaro; Lartundo-Rojas, Luis; Santoyo-Salazar, Jaime

    2015-01-01

    The adduct of melamine and cyanuric acid (MCA) was used in past research to produce polymeric carbon nitride and precursors. The reaction yield was considerably incremented by the addition of sulfuric acid. The polymeric carbon nitride formation occurs around 450 °C at temperatures above the sublimation of the adduct components, which occurs around 400 °C. In this report the effect of sulfuric acid on MCA was investigated. It was found that the MCA rosette supramolecular channel structures behave as a solid solvent able to host small molecules, such as sulfuric acid, inside these channels and interact with them. Therefore, the sulfuric acid effect was found to be close to that of a solute that causes a temperature increment of the “solvent sublimation” enough to allowing the formation of polymeric carbon nitride to occur. Sulfate ions are presumably hosted in the rosette channels of MCA as shown by simulations. - Graphical abstract: The blend of melamine cyanurate and sulfuric acid behaves like a solution so that melamine cyanurate decomposition is shifted to temperatures high enough to react and form polymeric carbon nitride. - Highlights: • The adduct of melamine and cyanuric acid behaves as a solid solvent. • The blend of sulfuric acid and melamine cyanurate behaves like a solution. • Melamine cyanurate decomposition is shifted to higher temperatures by sulfuric acid. • The formation of polymeric carbon nitride occurs for these higher temperatures

  12. Supramolecular intermediates in the synthesis of polymeric carbon nitride from melamine cyanurate

    Energy Technology Data Exchange (ETDEWEB)

    Dante, Roberto C., E-mail: rcdante@yahoo.com [Facultad de Mecánica, Escuela Politécnica Nacional (EPN), Ladrón de Guevara E11-253, Quito (Ecuador); Sánchez-Arévalo, Francisco M. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de Mexico, Apdo. Postal 70-360, Cd. Universitaria, Mexico D.F. 04510 (Mexico); Chamorro-Posada, Pedro [Dpto. de Teoría de la Señal y Comunicaciones e IT, Universidad de Valladolid, ETSI Telecomunicación, Paseo Belén 15, 47011 Valladolid (Spain); Vázquez-Cabo, José [Dpto. de Teoría de la Señal y Comunicaciones, Universidad de Vigo, ETSI Telecomunicación, Lagoas Marcosende s/n, Vigo (Spain); Huerta, Lazaro [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de Mexico, Apdo. Postal 70-360, Cd. Universitaria, Mexico D.F. 04510 (Mexico); Lartundo-Rojas, Luis [Centro de Nanociencias y Micro y Nanotecnologías—IPN, Luis Enrique Erro s/n, U. Prof. Adolfo López Mateos, 07738 Ciudad de Mexico, Distrito Federal (Mexico); Santoyo-Salazar, Jaime [Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Apdo. Postal 14-740, Mexico D.F. 07360 (Mexico); and others

    2015-03-15

    The adduct of melamine and cyanuric acid (MCA) was used in past research to produce polymeric carbon nitride and precursors. The reaction yield was considerably incremented by the addition of sulfuric acid. The polymeric carbon nitride formation occurs around 450 °C at temperatures above the sublimation of the adduct components, which occurs around 400 °C. In this report the effect of sulfuric acid on MCA was investigated. It was found that the MCA rosette supramolecular channel structures behave as a solid solvent able to host small molecules, such as sulfuric acid, inside these channels and interact with them. Therefore, the sulfuric acid effect was found to be close to that of a solute that causes a temperature increment of the “solvent sublimation” enough to allowing the formation of polymeric carbon nitride to occur. Sulfate ions are presumably hosted in the rosette channels of MCA as shown by simulations. - Graphical abstract: The blend of melamine cyanurate and sulfuric acid behaves like a solution so that melamine cyanurate decomposition is shifted to temperatures high enough to react and form polymeric carbon nitride. - Highlights: • The adduct of melamine and cyanuric acid behaves as a solid solvent. • The blend of sulfuric acid and melamine cyanurate behaves like a solution. • Melamine cyanurate decomposition is shifted to higher temperatures by sulfuric acid. • The formation of polymeric carbon nitride occurs for these higher temperatures.

  13. Colorimetric detection of melamine based on p-chlorobenzenesulfonic acid-modified AuNPs

    Science.gov (United States)

    Li, Jianfang; Huang, Pengcheng; Wu, Fangying

    2016-06-01

    A highly selective and sensitive method is developed for colorimetric detection of melamine using gold nanoparticles (AuNPs) functionalized with p-chlorobenzenesulfonic acid. The addition of melamine induced the aggregation of AuNPs, as evidenced from the morphological characterizations and the color changed from red wine to blue, which could also be monitored by the UV-visible spectrometer and even naked eyes. This process caused a significant increase in the absorbance ratio (A650nm/A520nm) of p-chlorobenzenesulfonic acid-AuNPs. Under optimized conditions, the system exhibited a linear response to melamine in the range of 6.0 × 10-7-1.5 × 10-6 mol L-1 with a correlation coefficient of 0.997, and the limit of detection can even be 2.3 nM, which was much lower than some other methods and the safe limits (20 μM in both the USA and EU, 8.0 μM for infant formula in China, 1.2 μM in the CAC (Codex Alimentarius Commission) review for melamine in liquid infant formula). More importantly, the developed method presented excellent tolerance to coexisting common metal ions such as Ca2+, Zn2+, whose concentration is 1000 times of melamine, so that it had been applied to the analysis of melamine in liquid milk and milk powder with the recovery of 97.0-101 % and 100-103 %, respectively, indicating that the proposed method is quite a highly effective means to determine melamine in milk products.

  14. Colorimetric detection of melamine based on p-chlorobenzenesulfonic acid-modified AuNPs

    International Nuclear Information System (INIS)

    Li, Jianfang; Huang, Pengcheng; Wu, Fangying

    2016-01-01

    A highly selective and sensitive method is developed for colorimetric detection of melamine using gold nanoparticles (AuNPs) functionalized with p-chlorobenzenesulfonic acid. The addition of melamine induced the aggregation of AuNPs, as evidenced from the morphological characterizations and the color changed from red wine to blue, which could also be monitored by the UV–visible spectrometer and even naked eyes. This process caused a significant increase in the absorbance ratio (A_6_5_0_n_m/A_5_2_0_n_m) of p-chlorobenzenesulfonic acid–AuNPs. Under optimized conditions, the system exhibited a linear response to melamine in the range of 6.0 × 10"−"7–1.5 × 10"−"6 mol L"−"1 with a correlation coefficient of 0.997, and the limit of detection can even be 2.3 nM, which was much lower than some other methods and the safe limits (20 μM in both the USA and EU, 8.0 μM for infant formula in China, 1.2 μM in the CAC (Codex Alimentarius Commission) review for melamine in liquid infant formula). More importantly, the developed method presented excellent tolerance to coexisting common metal ions such as Ca"2"+, Zn"2"+, whose concentration is 1000 times of melamine, so that it had been applied to the analysis of melamine in liquid milk and milk powder with the recovery of 97.0–101 % and 100–103 %, respectively, indicating that the proposed method is quite a highly effective means to determine melamine in milk products.

  15. Colorimetric detection of melamine based on p-chlorobenzenesulfonic acid-modified AuNPs

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianfang; Huang, Pengcheng; Wu, Fangying, E-mail: fywu@ncu.edu.cn [Nanchang University, College of Chemistry (China)

    2016-06-15

    A highly selective and sensitive method is developed for colorimetric detection of melamine using gold nanoparticles (AuNPs) functionalized with p-chlorobenzenesulfonic acid. The addition of melamine induced the aggregation of AuNPs, as evidenced from the morphological characterizations and the color changed from red wine to blue, which could also be monitored by the UV–visible spectrometer and even naked eyes. This process caused a significant increase in the absorbance ratio (A{sub 650nm}/A{sub 520nm}) of p-chlorobenzenesulfonic acid–AuNPs. Under optimized conditions, the system exhibited a linear response to melamine in the range of 6.0 × 10{sup −7}–1.5 × 10{sup −6} mol L{sup −1} with a correlation coefficient of 0.997, and the limit of detection can even be 2.3 nM, which was much lower than some other methods and the safe limits (20 μM in both the USA and EU, 8.0 μM for infant formula in China, 1.2 μM in the CAC (Codex Alimentarius Commission) review for melamine in liquid infant formula). More importantly, the developed method presented excellent tolerance to coexisting common metal ions such as Ca{sup 2+}, Zn{sup 2+}, whose concentration is 1000 times of melamine, so that it had been applied to the analysis of melamine in liquid milk and milk powder with the recovery of 97.0–101 % and 100–103 %, respectively, indicating that the proposed method is quite a highly effective means to determine melamine in milk products.

  16. The detection of melamine base on a turn-on fluorescence of DNA-Ag nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Peisi [Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou 350002 (China); State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong (China); Zhan, Yuanjin; Wu, Mei; Guo, Longhua; Lin, Zhenyu [Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou 350002 (China); Qiu, Bin, E-mail: summer328cn@163.com [Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou 350002 (China); Chen, Guonan [Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou 350002 (China); Cai, Zongwei [State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong (China)

    2017-06-15

    A label-free, ultra-sensitive and turn-on fluorescence method to detect melamine has been developed. The strategy uses the DNA-Ag nanoclusters (DNA-AgNCs) as the fluorescence probe. The fluorescence of DNA-AgNCs can be quenched in presence of Hg{sup 2+}. However, When Hg{sup 2+} and melamine were reacted for 15 min at 1000 rmp then introduced into DNA-AgNCs solution, a strong fluorescence recovery could be found. Based on this methodology, the changing fluorescent intensity has a linear relationship with melamine in the range of 0.2 μM to 4 μM (R{sup 2}=0.997). The detection limit down to 0.1 μM was obtained, which is 200 times lower than the melamine safety limit of 20 μM estimated by the US Food and Drug Administration. In addition, we had been successfully applied this method to detect melamine in milk powder and raw milk.

  17. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yuyuan Zhang

    2016-11-01

    Full Text Available Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase and its lysine derivative (a proto-nucleoside using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps, but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.

  18. Formation of Si-C-N ceramics from melamine-carbosilazane single source precursors

    International Nuclear Information System (INIS)

    Shatnawi, Mazin; Al-Mansi, Wafaa; Arafa, Isam

    2008-01-01

    A series of melamine-carbosilazane pre-ceramic macromolecules (Mel-CSZs) were prepared by the condensation of melamine with different organochlorosilanes (R x SiCl 4-x where R is CH 3 /C 6 H 5 and x is 1, 2 or 3) using pyridine as a solvent under nitrogen atmosphere. These melamine-based carbosilazane macromolecules (Mel-CSZs) were characterized by infrared spectroscopy (FT-IR), mass spectrometry (MS), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The backbone of the resulting Mel-CSZs consists of melamine and carbosilazane building blocks. Pyrolysis of these Mel-CSZs at 600 deg. C under nitrogen and vacuum afforded the corresponding silicon-based nonoxide carbonitride ceramics (Si-C-N). The microstructure and textural morphology of the resulting fine ceramic materials were examined using FT-IR, powder X-ray diffraction (XRD), and scanning electron microscopy (SEM). - Graphical abstract: Pyrolysis of the prepared melamine-organosilane macromolecules afforded Si-C-N ceramics with different textural morphology

  19. Determination of melamine in food contact materials using an electrode modified with gold nanoparticles and reduced graphene oxide

    International Nuclear Information System (INIS)

    Chen, Ningning; Zhang, Cuiling; Zhao, Kai; Xian, Yuezhong; Cheng, Yuxiao; Li, Chen

    2015-01-01

    We describe an electrochemical sensor for melamine based on a glassy carbon electrode (GCE) modified with reduced graphene oxide that was decorated with gold nanoparticles (AuNP/rGO). The AuNPs/rGO nanocomposite was synthesized by co-reduction of Au(III) and graphene oxide and characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The response of the modified GCE to melamine was investigated by using hexacyanoferrate as an electrochemical reporter. It is found that the electrochemical response to hexacyanoferrate is increasingly suppressed by increasing concentration of melamine. This is attributed to competitive adsorption of melamine at the AuNP/rGO composite through the interaction between the amino groups of melamine and the AuNPs. The presence of rGO, in turn, provides a platform for a more uniform distribution of the AuNPs and enhances the electron transfer rate of the redox reaction. The findings were used to develop a sensitive method for the determination of melamine. Under optimized conditions, the redox peak current of hexacyanoferrate at a working voltage of 171 mV (vs. SCE) is linearly related to the concentration of melamine in 5.0 to 50 nM range. The method was successfully applied to the determination of melamine in food contact materials. (author)

  20. Contact allergic dermatitis from melamine formaldehyde resins in a patient with a negative patch-test reaction to formaldehyde.

    Science.gov (United States)

    García Gavin, Juan; Loureiro Martinez, Manuel; Fernandez-Redondo, Virginia; Seoane, Maria-José; Toribio, Jaime

    2008-01-01

    Melamine paper is a basic material used in the furniture industry for home and office interiors. Contact allergic dermatitis from melamine formaldehyde resins (MFRs) should be considered in patients who work on melamine paper impregnation lines. We report a case of a 28-year-old female plywood worker who developed eczema on the dorsal side of her hands and wrists after 2 years of working on the melamine paper impregnation line. She had a relevant positive patch-test reaction to MFR, with a negative reaction to formaldehyde. Contact dermatitis due to MFR is not common, and it is usually related to products that are not fully cured or to close contact with intermediate products on the assembly line. Formaldehyde release from MFR can explain most of the positive responses. To our knowledge, this is the first report of MFR contact allergic dermatitis in a worker on a melamine paper impregnation line.

  1. PRODUCTION OF HIGH DENSITY PARTICLEBOARD USING MELAMINE-UREA-FORMALDEHYDE RESIN

    Directory of Open Access Journals (Sweden)

    Setsuo Iwakiri

    2005-12-01

    Full Text Available This research was developed aiming to evaluate the effects of board density and melamine-urea-formaldehyde resin onthe properties of particleboard for semi-structural applications. The boards were manufactured with nominal density of 0.65 g/cm³and 0.90 g/cm³ using urea-formaldehyde resin as control and melamine-urea-formaldehyde. The results showed a better dimensionallystability and mechanical properties of the boards manufactured with higher density and MUF resin content. The fine furnish usedfor external layer of particleboard in the industrial process, could be used for high density homogeneous board to semi-strucuturaluses, such as flooring applications.

  2. The protective role of bee honey against the toxic effect of melamine in the male rat kidney.

    Science.gov (United States)

    Al-Seeni, Madeha N; El Rabey, Haddad A; Al-Solamy, Suad M

    2015-06-01

    This study aimed to test the protective role of natural bee honey against melamine toxicity in the kidney of male albino rats. The dietary supplementation of melamine at a dose of 20,000 ppm for 28 days induced renal dysfunction, as reflected by a significant increase in kidney function parameters (urea, creatinine, and uric acid) and an increase in potassium levels. In addition, a decrease in catalase and glutathione-S-transferase and an increase in lipid peroxide in the kidney tissue homogenate were also observed. Histological changes in the melamine-treated group revealed hyperplasia and damage in kidney cells and the accumulation of melamine crystals in kidney tissues. Honey treatment for 28 days in rats concurrently administered melamine at a dose of 2.5 g/kg body weight for 28 days improved the kidney function, increased antioxidant enzymes, and decreased lipid peroxide levels. The morphology of the kidney cells of the melamine-fed rats was also improved as a result of honey treatment. In conclusion, this study revealed that natural bee honey protects the kidney against the adverse effects induced by melamine toxicity in male albino rats. © The Author(s) 2014.

  3. Colorimetric method for the detection of melamine using in-situ formed silver nanoparticles via tannic acid

    Science.gov (United States)

    Alam, Md. Fazle; Laskar, Amaj Ahmed; Ahmed, Shahbaz; Shaida, Mohd. Azfar; Younus, Hina

    2017-08-01

    Melamine toxicity has recently attracted worldwide attention as it causes renal failure and the death of humans and animals. Therefore, developing a simple, fast and sensitive method for the routine detection of melamine is the need of the hour. Herein, we have developed a selective colorimetric method for the detection of melamine in milk samples based upon in-situ formation of silver nanoparticles (AgNPs) via tannic acid. The AgNPs thus formed were characterized by UV-Visible spectrophotometer, transmission electron microscope (TEM), zetasizer and dynamic light scattering (DLS). The AgNPs were used to detect melamine under in vitro condition and in raw milk spiked with melamine. Under optimal conditions, melamine could be selectively detected in vitro within the concentration range of 0.05-1.4 μM with a limit of detection (LOD) of 0.01 μM, which is lower than the strictest melamine safety requirement of 1 ppm. In spiked raw milk, the recovery percentage range was 99.5-106.5% for liquid milk and 98.5-105.5% for powdered milk. The present method shows extreme selectivity with no significant interference with other substances like urea, glucose, glycine, ascorbic acid etc. This assay method does not utilize organic cosolvents, enzymatic reactions, light sensitive dye molecules and sophisticated instrumentation, thereby overcoming some of the limitations of the other conventional methods.

  4. Different Types of Waste Melamine Impregnated Paper (MIP in Particleboard Manufacturing

    Directory of Open Access Journals (Sweden)

    Ibrahim Halil BASBOGA

    2017-03-01

    Full Text Available Two different types of waste melamine impregnated paper (WMIP were generated in the manufactured coated board product plants. First one is obtained when the neat décor papers were impregnated (in the impregnation line with melamine urea formaldehyde and other chemicals (WMIP1. The second one is generated during the coating of the melamine impregnated papers on the board surfaces (WMIP2. In this study, the utilization of both WMIPs in the production of particleboard as an adhesivereplacement was investigated. First, waste melamine impregnated papers (WMIPs granulated into flour form using Pulverizator with cooling capabilities. Then, they were dry-mixed with surface and core layer particles at 10% or 15% loadings. Three different WMIPs (WMIP1, WMIP2 or their mixtures - 70% WMIP1+30% WMIP2 were used as adhesive-replacement. Mechanical properties including bending strength, modulus of elasticity, internal bond strength and surface stability of the samples were determined according to EN 310, EN 319 and EN 317 standards, respectively. Based on the results, the type of WMIP had significant effect on all mechanical properties investigated. Particleboards produced with both 10% and 15% of WMIP1 loading provided adequate results for the related standards. The best result was obtained when 15% of WMIP1 was used. It is concluded that WMIP1 might be used as an adhesive-replacement in particleboard manufacturing and may provide economic and environmental benefits.

  5. Interfacially enhancement of PBO/epoxy composites by grafting MWCNTs onto PBO surface through melamine as molecular bridge

    Science.gov (United States)

    Lv, Junwei; Wang, Bin; Ma, Qi; Wang, Wenjing; Xiang, Dong; Li, Mengyao; Zeng, Lan; Li, Hui; Li, Yuntao; Zhao, Chunxia

    2018-06-01

    Melamine and multi-walled carbon nanotubes (MWCNTs) were grafted onto Poly-p-phenylene benzobisoxazole (PBO) fiber surface effectively via layer-by-layer method. Both of them have been chemically bonded as fourier transform infrared spectroscopy (FTIR) confirmed. Grafting melamine overcame the inertness of PBO surface. Ammoniation was processed on PBO surface through grafting melamine so that the MWCNTs could be grafted onto PBO surface. Scanning electron microscopy (SEM) images indicated that melamine used as molecular bridge could increase MWCNTs’ quantity on PBO surface. X-ray photoelectron spectroscopy (XPS) results revealed the variation of chemical composition of PBO surface. Test of interfacial shear strength (IFSS) and tensile strength indicated the great mechanical properties of modified PBO fibers when combining with epoxy resin. Furthermore, whole reaction was processed under a simple condition. Results in this research also promised a potential method to modify PBO surface.

  6. Development of Self Fire Retardant Melamine-Animal Glue Formaldehyde (MGF) Resin for the Manufacture of BWR Ply Board

    Science.gov (United States)

    Khatua, Pijus Kanti; Dubey, Rajib Kumar; Roymahapatra, Gourisankar; Mishra, Anjan; Shahoo, Shadhu Charan; Kalawate, Aparna

    2017-10-01

    Wood is one of the most sustainable, naturally growing materials that consist mainly of combustible organic carbon compounds. Since plywood are widely used nowadays especially in buildings, furniture and cabinets. Too often the fire behavior of ply-board may be viewed as a drawback. Amino-plastic based thermosetting resin adhesives are the important and most widely used in the plywood panel industries. The fire retardant property of wood panel products by adding animal glue as an additive in the form of MGF resin and used as substitute of melamine for manufacture of plywood. Environment concerns and higher cost of petroleum based resins have resulted in the development of technologies to replace melamine partially by biomaterials for the manufacturing of resin adhesive. Natural bio-based materials such as tannin, CNSL (cardanol), lignin, soya etc. are used as partial substitution of melamine. This article presents the development of melamine-animal glue formaldehyde resin as plywood binder. About 30 % melamine was substituted by animal glue and optimized. The different physico-mechanical and fire retardant property properties tested as per IS: 1734-1983 and IS: 5509-2000 respectively are quite satisfactory. The production of adhesive from melamine with compatible natural proteinous material is cost effective, eco-friendly and enhance the fire retardant property.

  7. [Determination of melamine and ammeline in eggs and meat using hydrophilic interaction liquid chromatography].

    Science.gov (United States)

    Li, Yanzhao; Hao, Weiqiang; Wang, Yubo; Chen, Qiang; Li, Jinchun; Sun, Xiaoli

    2012-07-01

    A hydrophilic interaction liquid chromatographic (HILIC) method for the determination of melamine and its degradation product ammeline in eggs and meat has been developed. The separation was carried out on a ZIC-HILIC column with 3 mmol/L NH4H2PO4 (pH 6.9)-acetonitrile (20: 80, v/v) as mobile phase at the flow rate of 0.8 mL/min, and detected at 220 nm. Compared with the reversed-phase liquid chromatography, this method can avoid the use of ion pair reagents and thus simplify the composition of mobile phase. Under the above chromatographic conditions, melamine and ammeline had good peak shapes and moderate retention times. Good separation between these compounds and the substances that were naturally contained in the samples can be achieved. For the sample preparation, the analytes were first extracted with 0.1% phosphoric acid due to the basicity of melamine and ammeline. Then, metaphosphoric acid and acetonitrile were used to remove proteins and saccharides by precipitation. After the filtration and removal of acetonitrile by rotary evaporation under vacuum, the filtrate was cleaned-up by solid-phase extraction (SPE) technique in which a cation exchange column was used. The SPE column was activated by using methanol and 0.1% phosphoric acid. A solution of 5% ammonia methanol was chosen as eluent. The residues obtained from the eluant by evaporating the solvent were resolved in the mobile phase. It was found that there was a good linear relationship between concentration and detector response within the range of 0.4-40 mg/L. The limits of detection were 2 mg/kg for both melamine and ammeline. The average recoveries were between 80% and 105% in the spiked range of 2-10 mg/kg. The relative standard deviations were not more than 10%. The solutions of melamine and ammeline were stable in a month. The established method can be used in practice to determine melamine and ammeline simultaneously in egg and meat samples.

  8. Efficient adsorption of Hg (II) ions in water by activated carbon modified with melamine

    Science.gov (United States)

    Qin, Hangdao; Meng, Jingling; Chen, Jing

    2018-04-01

    Removal of Hg (II) ions from industrial wastewater is important for the water treatment, and adsorption is an efficient treatment process. Activated carbon (AC) was modified with melamine, which introduced nitrogen-containing functional groups onto AC surface. Original AC and melamine modified activated carbon (ACM) were characterized by elemental analysis, N2 adsorption-desorption, determination of the pH of the point of zero charge (pHpzc) and X-ray photoelectron spectroscopy (XPS) and their performance in the adsorption of Hg(II) ions was investigated. Langmuir model fitted the experimental data of equilibrium isotherms well. ACM showed the higher Hg (II) ions adsorption capacity, increasing more than more than 1.8 times compared to the original one. Moreover, ACM showed a wider pH range for the maximum adsorption than the parent AC.

  9. The effect of α-cellulose fiber on the properties of melamine-formaldehyde molding compounds

    International Nuclear Information System (INIS)

    Khatibi, M. A.; Beheshti, M. A.; Morshedian, J.

    2001-01-01

    Melamine-formaldehyde molding compounds have found different industrial applications. This is due to their good mechanical properties such as hardness, gloss and high modulus and strength. One of the major components of these compounds is α-cellulose fiber and has a major effect on the mechanical properties. Although this fiber is being used in these compounds for a long time, there is not much data available of α-cellulose fibers on the physical and mechanical properties of melamine-formaldehyde molding compounds being investigated. Results show that although the microstructures of these two fibers are quite different from each other, but they do not have any effect on the mechanical properties of the molding. Whereas, it has a significant effect on the wettability (processing condition) and glossiness of the mol dings. Since this latter property is very important in house wares applications, the darker mol dings can not be used in domestic applications

  10. Synthesis of graphitic carbon nitride by reaction of melamine and uric acid

    International Nuclear Information System (INIS)

    Dante, Roberto C.; Martin-Ramos, Pablo; Correa-Guimaraes, Adriana; Martin-Gil, Jesus

    2011-01-01

    Highlights: → Graphitic carbon nitrides by CVD of melamine and uric acid on alumina. → The building blocks of carbon nitrides are heptazine nuclei. → Composite particles with alumina core and carbon nitride coating. - Abstract: Graphitic carbon nitrides were synthesized starting from melamine and uric acid. Uric acid was chosen because it thermally decomposes, and reacts with melamine by condensation at temperatures in the range of 400-600 deg. C. The reagents were mixed with alumina and subsequently the samples were treated in an oven under nitrogen flux. Alumina favored the deposition of the graphitic carbon nitrides layers on the exposed surface. This method can be assimilated to an in situ chemical vapor deposition (CVD). Infrared (IR) spectra, as well as X-ray diffraction (XRD) patterns, are in accordance with the formation of a graphitic carbon nitride with a structure based on heptazine blocks. These carbon nitrides exhibit poor crystallinity and a nanometric texture, as shown by transmission electron microscopy (TEM) analysis. The thermal degradation of the graphitic carbon nitride occurs through cyano group formation, and involves the bridging tertiary nitrogen and the bonded carbon, which belongs to the heptazine ring, causing the ring opening and the consequent network destruction as inferred by connecting the IR and X-ray photoelectron spectroscopy (XPS) results. This seems to be an easy and promising route to synthesize graphitic carbon nitrides. Our final material is a composite made of an alumina core covered by carbon nitride layers.

  11. Acoustic Test Results of Melamine Foam with Application to Payload Fairing Acoustic Attenuation Systems

    Science.gov (United States)

    Hughes, William O.; McNelis, Anne M.

    2014-01-01

    A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.

  12. Broccoli-like porous carbon nitride from ZIF-8 and melamine for high performance supercapacitors

    Science.gov (United States)

    Cai, Chenglong; Zou, Yongjin; Xiang, Cuili; Chu, Hailiang; Qiu, Shujun; Sui, Qingli; Xu, Fen; Sun, Lixian; Shah, Afzal

    2018-05-01

    Broccoli-like porous carbon nitride is synthesized by simple one-step carbonization of a composite comprising a Zn-based zeolitic imidazolate framework (ZIF-8) and melamine. The introduction of melamine into the ZIF-8 framework not only increases the N content of the composite and the surface area of the carbonization product, but also induces the formation of a flower-like structure. The carbon obtained from the ZIF-8/melamine composite by the proposed carbonization process at a temperature of 800 °C (ZM-C-800) is found to have a unique three-dimensional broccoli-like shape, a nanoscale size, and an extremely high doping N content (28.3 at.%). These properties substantially improve the electrochemical performance of ZM-C-800, as represented by a high specific capacitance of 359.1 F g-1 at a current density of 1 A g-1, much higher than that of ZIF-8. Furthermore, a symmetric supercapacitor fabricated with two ZM-C-800 electrodes exhibits a power density of 498.5 W kg-1 for an energy density of 11.4 Wh kg-1. This indicates the strong potential of ZM-C-800 for use in the fabrication of energy storage devices.

  13. [A cohort study of longer-term impact of melamine contaminated formula on infant health].

    Science.gov (United States)

    Wang, Pei-xin; Li, Hong-tian; Wang, Lin-lin; Zhang, Long; Zhou, Yu-bo; Liu, Jian-meng

    2013-10-15

    To prospectively evaluate the health status of infants with exposure to melamine-contaminated milk formula prior to September 2008. The cohort study was conducted in an area close to the manufacturer of Sanlu dairy products. There were three groups (n = 47 each). In September 2008, the exposure group I included infants with exposure to melamine and a diagnosis of renal abnormalities, the exposure group IIhad exposure to melamine but there was no diagnosis of renal abnormalities and the non-exposure group had no exposure to melamine. The exposure II and non-exposure groups were matched with those of exposure group I by birthplaces, gender and date of birth ( ± 3 months). Kidney function tests (urea nitrogen, serum creatinine, uric acid, serum albumin, β2-microglobulin and cystatin C), liver function tests (alanine aminotransferase and aspartate aminotransferase), growth and development assessment and urinary system ultrasonography were implemented between November 2011 and June 2012. The analysis of covariance (least significant difference method) was performed to compare the differences of relevant variables among three groups. The urinary system ultrasonography showed that all abnormalities disappeared in exposure group I and all infants of another two groups had normal ultrasonography. There were statistically significant differences in serum uric acid and albumin of kidney function in exposure group I, exposure group II and non-exposure group ((344 ± 75) and (338 ± 98) and (282 ± 69) µmol/L , (47 ± 5) and (47 ± 6) and (43 ± 5) g/L, all P groups. However the differences in the remaining markers of kidney function, markers of liver function and Z scores of weight-for-age and height-for age were all statistically insignificant (all P > 0.05). Further pair-wise comparisons showed that the levels of serum uric acid and albumin in exposure group I were higher than those in non-exposure group (P = 0.001 and 0.010). And the levels of serum uric acid and albumin

  14. Comparison of three methods for detection of melamine in compost and soil

    International Nuclear Information System (INIS)

    Tian, Yongqiang; Chen, Liming; Gao, Lihong; Wu, Manli; Dick, Warren A.

    2012-01-01

    Recent product recalls and food safety incidents due to melamine (MM) adulteration or contamination have caused a worldwide food security concern. This has led to many methods being developed to detect MM in foods, but few methods haves been reported that can rapidly and reliably measure MM in environmental samples. To meet this need, a high performance liquid chromatography (HPLC) with UV detection method, an enzyme-linked immunosorbent assay (ELISA) test kit, and an enzyme-linked rapid colorimetric assay (RCA) test kit were evaluated for their ability to accurately measure MM concentrations in compost and soil samples. All three methods accurately detected MM concentrations if no MM degradation products, such as ammeline (AMN), ammelide (AMD) and cyanuric acid (CA), were present in an aqueous sample. In the presence of these MM degradation products, the HPLC yielded more accurate concentrations than the ELISA method and there was no significant (P > 0.05) difference between the HPLC and RCA methods. However, if samples were purified by SPE or prepared with blocking buffer, the ELISA method accurately measured MM concentrations, even in the presence of the MM degradation products. The HPLC method generally outperformed the RCA method for measuring MM in soil extracts but gave similar results for compost extracts. The number of samples that can be analyzed by the ELISA and RCA methods in a 24-hour time period is much greater than by the HPLC method. Thus the RCA method would seem to be a good screening method for measuring MM in compost and soil samples and the results obtained could then be confirmed by the HPLC method. The HPLC method, however, also allows simultaneous measurement of MM and its degradation products of AMD, AMN and CA. - Highlights: ► We detected melamine in environmental samples by three methods. ► ELISA can measures melamine in an environmental sample if a blocking buffer is used. ► A rapid colorimetric assay (RCA) rapidly screens

  15. Comparison of three methods for detection of melamine in compost and soil

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yongqiang [Depatment of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, 2 Yuanmingyuan Xilu, Beijing 100193 (China); School of Environment and Natural Resources, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 (United States); Chen, Liming [School of Environment and Natural Resources, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 (United States); Gao, Lihong [Depatment of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, 2 Yuanmingyuan Xilu, Beijing 100193 (China); Wu, Manli [School of Environment and Natural Resources, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 (United States); School of Environmental and Municipal Engineering, Xi' an University of Architecture and Technology, No.13 Yanta Road, Xi' an, Shaanxi Province 710055 (China); Dick, Warren A., E-mail: dick.5@osu.edu [School of Environment and Natural Resources, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 (United States)

    2012-02-15

    Recent product recalls and food safety incidents due to melamine (MM) adulteration or contamination have caused a worldwide food security concern. This has led to many methods being developed to detect MM in foods, but few methods haves been reported that can rapidly and reliably measure MM in environmental samples. To meet this need, a high performance liquid chromatography (HPLC) with UV detection method, an enzyme-linked immunosorbent assay (ELISA) test kit, and an enzyme-linked rapid colorimetric assay (RCA) test kit were evaluated for their ability to accurately measure MM concentrations in compost and soil samples. All three methods accurately detected MM concentrations if no MM degradation products, such as ammeline (AMN), ammelide (AMD) and cyanuric acid (CA), were present in an aqueous sample. In the presence of these MM degradation products, the HPLC yielded more accurate concentrations than the ELISA method and there was no significant (P > 0.05) difference between the HPLC and RCA methods. However, if samples were purified by SPE or prepared with blocking buffer, the ELISA method accurately measured MM concentrations, even in the presence of the MM degradation products. The HPLC method generally outperformed the RCA method for measuring MM in soil extracts but gave similar results for compost extracts. The number of samples that can be analyzed by the ELISA and RCA methods in a 24-hour time period is much greater than by the HPLC method. Thus the RCA method would seem to be a good screening method for measuring MM in compost and soil samples and the results obtained could then be confirmed by the HPLC method. The HPLC method, however, also allows simultaneous measurement of MM and its degradation products of AMD, AMN and CA. - Highlights: Black-Right-Pointing-Pointer We detected melamine in environmental samples by three methods. Black-Right-Pointing-Pointer ELISA can measures melamine in an environmental sample if a blocking buffer is used. Black

  16. Preparation of [13C3]-melamine and [13C3]-cyanuric acid and their application to the analysis of melamine and cyanuric acid in meat and pet food using liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Varelis, P; Jeskelis, R

    2008-10-01

    For the determination of melamine and cyanuric acid the labelled internal standards [(13)C(3)]-melamine and [(13)C(3)]-cyanuric acid were synthesized using the common substrate [(13)C(3)]-cyanuric chloride by reaction with ammonia and acidified water, respectively. Standards with excellent isotopic and chemical purities were obtained in acceptable yields. These compounds were used to develop an isotope dilution liquid chromatography/mass spectrometry (LC/MS) method to determine melamine and cyanuric acid in catfish, pork, chicken, and pet food. The method involved extraction into aqueous methanol, liquid-liquid extraction and ion exchange solid phase clean-up, with normal phase high-performance liquid chromatography (HPLC) in the so-called hydrophilic interaction mode. The method had a limit of detection (LOD) of 10 microg kg(-1) for both melamine and cyanuric acid in the four foods with a percentage coefficient of variation (CV) of less than 10%. The recovery of the method at this level was in the range of 87-110% and 96-110% for melamine and cyanuric acid, respectively.

  17. A Rapid, Onsite, Ultrasensitive Melamine Quantitation Method for Protein Beverages Using Time-Resolved Fluorescence Detection Paper.

    Science.gov (United States)

    Li, Guanghua; Wang, Du; Zhou, Aijun; Sun, Yimin; Zhang, Qi; Poapolathep, Amnart; Zhang, Li; Fan, Zhiyong; Zhang, Zhaowei; Li, Peiwu

    2018-05-02

    To ensure protein beverage safety and prevent illegal melamine use to artificially increase protein content, a rapid, onsite, ultrasensitive detection method for melamine must be developed because melamine is detrimental to human health and life. Herein, an ultrasensitive time-resolved fluorescence detection paper (TFDP) was developed to detect melamine in protein beverages within 15 min using a one-step sample preparation. The lower limits of detection were 0.89, 0.94, and 1.05 ng/mL, and the linear ranges were 2.67-150, 2.82-150, and 3.15-150 ng/mL (R2>0.982) for peanut, walnut, and coconut beverages, respectively. The recovery rates were 85.86-110.60% with a coefficient of variation beverage samples, the TFDP and ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS) results were consistent. This method is a promising alternative for rapid, onsite detection of melamine in beverages.

  18. Adsorptive Removal of Artificial Sweeteners from Water Using Metal-Organic Frameworks Functionalized with Urea or Melamine.

    Science.gov (United States)

    Seo, Pill Won; Khan, Nazmul Abedin; Hasan, Zubair; Jhung, Sung Hwa

    2016-11-02

    A highly porous metal-organic framework (MOF), MIL-101, was modified to introduce urea or melamine via grafting on open metal sites of the MOF. Adsorptive removal of three artificial sweeteners (ASWs) was studied using the MOFs, with or without modifications (including nitration), and activated carbon (AC). The adsorbed quantities (based on the weight of the adsorbent) of saccharin (SAC) under various conditions decreased in the order urea-MIL-101 > melamine-MIL-101 > MIL-101 > AC > O 2 N-MIL-101; however, the quantities based on unit surface area are in the order melamine-MIL-101 > urea-MIL-101 > MIL-101 > O 2 N-MIL-101. Similar ASWs [acesulfame (ACE) and cyclamate (CYC)] showed the same tendency. The mechanism for very favorable adsorption of SAC, ACE, and CYC over urea- and melamine-MIL-101 could be explained by H-bonding on the basis of the contents of -NH 2 groups on the MOFs and the adsorption results under a wide range of pH values. Moreover, the direction of H-bonding could be clearly defined (H acceptor: ASWs; H donor: MOFs). Urea-MIL-101 and melamine-MIL-101 could be suggested as competitive adsorbents for organic contaminants (such as ASWs) with electronegative atoms, considering their high adsorption capacity (for example, urea-MIL-101 had 2.3 times the SAC adsorption of AC) and ready regeneration.

  19. Hydrogen-bonding recognition-induced aggregation of gold nanoparticles for the determination of the migration of melamine monomers using dynamic light scattering.

    Science.gov (United States)

    Wu, Long; Chen, Kun; Lu, Zhicheng; Li, Tingting; Shao, Kang; Shao, Feng; Han, Heyou

    2014-10-03

    The migration of melamine monomers from food contact materials has aroused particular attention since the 2008 melamine-tainted milk scandal in China. However, the determination of melamine monomer's migratory quantity (MMMQ) has remained an open question because of the complex sample pretreatment and the low sensitivity. Based on the hydrogen bonding interaction between DNA thymine and melamine, this paper described a simple and rapid method focusing on the measurement of MMMQ from melamine tableware by gold nanoparticles (GNPs) and dynamic light scattering (DLS). With the presence of probe DNA (p-DNA), the GNPs were stable in NaCl solution (0.06 M), whereas they became aggregated when the p-DNA hybridized with melamine. The change in the hydrodynamic diameter of GNPs could be detected by DLS technology. Under the optimal conditions, the average diameter increased linearly with the concentration of melamine over the range from 5.0 to 320.0 μg L(-1), and showed a detection limit of 2.0 μg L(-1) (3σ/slope). The MMMQ was investigated within a range from 6.00×10(-4) to 2.58×10(-1) mg dm(-2) (n≥3) in four different food simulants at different temperatures and time points. The results suggest that the DLS method has great potential in the analysis of the migration of melamine monomers. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Interaction of melamine and di-(2-ethylhexyl) phthalate exposure on markers of early renal damage in children: The 2011 Taiwan food scandal.

    Science.gov (United States)

    Wu, Chia-Fang; Hsiung, Chao A; Tsai, Hui-Ju; Tsai, Yi-Chun; Hsieh, Hui-Min; Chen, Bai-Hsiun; Wu, Ming-Tsang

    2018-04-01

    Melamine and phthalate, mainly di-(2-ethylhexyl) phthalate (DEHP), are ubiquitously present in the general environment. We investigated whether urine melamine levels can modify the relationship between DEHP exposure and markers of early renal damage in children. A nationwide health survey for Children aged ≤12 years possibly exposed to phthalates were enrolled between August 2012 and January 2013. They were administered questionnaires to collect details regarding past DEHP exposure to phthalate-tainted foodstuffs. Urine samples were measured melamine levels, phthalate metabolites and biomarkers of renal damage, including urine microalbumin/creatinine ratio (ACR), N-acetyl-beta-d-glucosaminidase (NAG), and β2-microglobulin. The study included 224 children who had a median urine melamine level (μg/mmol creatinine) of 1.61 ranging 0.18-47.42. Positive correlations were found between urine melamine levels and urine ACR as well as urine NAG levels (both Spearman correlation coefficients r = 0.24, n = 224, p < .001). The higher the past DEHP exposure or urine melamine levels, the higher the prevalence of microalbuminuria. An interaction effect was also found between urine melamine levels and past DEHP exposure on urine ACR. Melamine levels may further modify the effect of past DEHP exposure on urine ACR in children. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Label-free turn-on fluorescent detection of melamine based on the anti-quenching ability of Hg 2+ to gold nanoclusters.

    Science.gov (United States)

    Dai, Haichao; Shi, Yan; Wang, Yilin; Sun, Yujing; Hu, Jingting; Ni, Pengjuan; Li, Zhuang

    2014-03-15

    In this work, we proposed a facile, environmentally friendly and cost-effective assay for melamine with BSA-stabilized gold nanoclusters (AuNCs) as a fluorescence reader. Melamine, which has a multi-nitrogen heterocyclic ring, is prone to coordinate with Hg(2+). This property causes the anti-quenching ability of Hg(2+) to AuNCs through decreasing the metallophilic interaction between Hg(2+) and Au(+). By this method, detection limit down to 0.15 µM is obtained, which is approximately 130 times lower than that of the US food and Drug Administration estimated melamine safety limit of 20 µM. Furthermore, several real samples spiked with melamine, including raw milk and milk powder, are analyzed using the sensing system with excellent recoveries. This gold-nanocluster-based fluorescent method could find applications in highly sensitive detection of melamine in real samples. © 2013 Elsevier B.V. All rights reserved.

  2. The effects of alkyd/melamine resin ratio and curing temperature on the properties of the coatings

    Directory of Open Access Journals (Sweden)

    RADMILA Z. RADICEVIC

    2005-04-01

    Full Text Available Synthetic resins are used as binders in protective coatings. An alkyd/melamine resin mixture is the usual composition for the preparation of a coating called “baking enamel” cured through functional groups of resins. The effects of the alkyd/butylated melamine resin ratio (from 85/15 to 70/30 and curing temperature (from 100°C to 160°C on the crosslinking and properties of the coating are presented in this paper. The degree of curing was determined by differential scanning calorimetry. These data were used for the estimation of the degree of crosslinking. The hardness, elasticity, impact resistance, degree of adherence and gloss were also determined. Optimal coating properties could be achieved with an alkyd/melamine resin ratio of 75/25, a curing temperature of 130 °C and a curing time of 30 min.

  3. FTIR analysis and the effects of alkyd/melamine resin ratio on the properties of the coatings

    Directory of Open Access Journals (Sweden)

    Cakić Suzana M.

    2009-01-01

    Full Text Available Alkyd/melamine resin mixtures are mainly used in industrial baking enamels. The effects of the alkyd/butylated melamine resin ratio (from 90/10 to 50/50 and curing temperature (from 110 to 180°C on the crosslinking and properties of the coating are presented in this paper. The curing reactions through functional groups of resins were monitored by FT-IR spectroscopy. The hardness, elasticity, degree of adherence and gloss were also determined. Optimal coating properties could be achieved with an alkyd/melamine resin ratio of 80/20, a curing temperature of 150°C and a curing time of 20 min.

  4. Melamine modified P25 with heating method and enhanced the photocatalytic activity on degradation of ciprofloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqin [School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013 (China); Li, Jinze; Ma, Changchang [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Guan, Qingfeng [School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013 (China); Lu, Ziyang [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Huo, Pengwei, E-mail: huopw1@163.com [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yan, Yongsheng [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-02-28

    Highlights: • We demonstrated the as-prepared photocatalyst of g-C{sub 3}N{sub 4}-TiO{sub 2} with the commercial TiO{sub 2} (P25) composited melamine under ball milling and calcined. • The enhanced photocatalytic performance could be mainly attributed to the suitable band gap structure with heterojunction of CN-P25. • The possible photocatalytic mechanism of g-C{sub 3}N{sub 4}/P25 under visible light irradiation is proposed. - Abstract: The graphitic carbon nitride (g-C{sub 3}N{sub 4}), as one photocatalyst which possess the suitable band gap, is better for modified TiO{sub 2} and enhanced photocatalytic degradation of organic pollutants. In this work, the g-C{sub 3}N{sub 4}/TiO{sub 2} were successfully prepared via directly calcined the mixture of melamine and P25. The as-prepared g-C{sub 3}N{sub 4}/TiO{sub 2} photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and high resolution electron microscopy (HRTEM), Raman and Fourier transform-infrared spectroscopy (FT-IR). The photocatalytic performances of g-C{sub 3}N{sub 4}/TiO{sub 2} composites were investigated by degradation of ciprofloxacin. The results showed that the g-C{sub 3}N{sub 4} and P25 were successfully composited, and the bond of C–N was well formed, the calcined temperature for as-prepared photocatalysts and the ratio of melamine and P25 were important to the degradation rate of ciprofloxacin. When the mixture of melamine and P25 with 1:2, and calcined temperature at 600 °C, the degradation rate of ciprofloxacin could reach 95% in 60 min. The enhanced photocatalytic performances could be mainly attributed to the suitable band gap structure with heterojunction of CN-P25. Finally, the possible transferred processes of photoelectrons and photoholes were proposed.

  5. Nitrogen-doped graphene by ball-milling graphite with melamine for energy conversion and storage

    International Nuclear Information System (INIS)

    Xue, Yuhua; Chen, Hao; Qu, Jia; Dai, Liming

    2015-01-01

    N-doped graphene was prepared by ball milling of graphite with melamine. It was found that ball-milling reduced the size of graphite particles from 30 to 1 μm and facilitated the exfoliation of the resultant small particles into few-layer N-doped graphene nanosheets under ultrasonication. The as-prepared N-doped graphene nanoplatelets (NGnPs) exhibited a nitrogen content as high as 11.4 at.%, making them attractive as efficient electrode materials in supercapacitors for energy storage and as highly-active metal-free catalysts for oxygen reduction in fuel cells for energy conversion. (paper)

  6. An activated microporous carbon prepared from phenol-melamine-formaldehyde resin for lithium ion battery anode

    International Nuclear Information System (INIS)

    Zhu, Yinhai; Xiang, Xiaoxia; Liu, Enhui; Wu, Yuhu; Xie, Hui; Wu, Zhilian; Tian, Yingying

    2012-01-01

    Highlights: ► Microporous carbon was prepared by chemical activation of phenol-melamine-formaldehyde resin. ► Activation leads to high surface area, well-developed micropores. ► Micropores lead to strong intercalation between carbon and lithium ion. ► Large surface area promotes to improve the lithium storage capacity. -- Abstract: Microporous carbon anode materials were prepared from phenol-melamine-formaldehyde resin by ZnCl 2 and KOH activation. The physicochemical properties of the obtained carbon materials were characterized by scanning electron microscope, X-ray diffraction, Brunauer–Emmett–Teller, and elemental analysis. The electrochemical properties of the microporous carbon as anode materials in lithium ion secondary batteries were evaluated. At a current density of 100 mA g −1 , the carbon without activation shows a first discharge capacity of 515 mAh g −1 . After activation, the capacity improved obviously. The first discharge capacity of the carbon prepared by ZnCl 2 and KOH activation was 1010 and 2085 mAh g −1 , respectively. The reversible capacity of the carbon prepared by KOH activation was still as high as 717 mAh g −1 after 20 cycles, which was much better than that activated by ZnCl 2 . These results demonstrated that it may be a promising candidate as an anode material for lithium ion secondary batteries.

  7. Bulky melamine-based Zn-porphyrin tweezer as a CD probe of molecular chirality.

    Science.gov (United States)

    Petrovic, Ana G; Vantomme, Ghislaine; Negrón-Abril, Yashira L; Lubian, Elisa; Saielli, Giacomo; Menegazzo, Ileana; Cordero, Roselynn; Proni, Gloria; Nakanishi, Koji; Carofiglio, Tommaso; Berova, Nina

    2011-10-01

    The transfer of chirality from a guest molecule to an achiral host is the subject of significant interest especially when, upon chiral induction, the chiroptical response of the host/guest complex can effectively report the absolute configuration (AC) of the guest. For more than a decade, dimeric metalloporphyrin hosts (tweezers) have been successfully applied as chirality probes for determination of the AC for a wide variety of chiral synthetic compounds and natural products. The objective of this study is to investigate the utility of a new class of melamine-bridged Zn-porphyrin tweezers as sensitive AC reporters. A combined approach based on an experimental CD analysis and a theoretical prediction of the prevailing interporphyrin helicity demonstrates that these tweezers display favorable properties for chiral recognition. Herein, we discuss the application of the melamine-bridged tweezer to the chiral recognition of a diverse set of chiral guests, such as 1,2-diamines, α-amino-esters and amides, secondary alcohols, and 1,2-amino-alcohols. The bulky periphery and the presence of a rigid porphyrin linkage lead, in some cases, to a more enhanced CD sensitivity than that reported earlier with other tweezers. Copyright © 2011 Wiley-Liss, Inc.

  8. Effect of melamine phosphate on the thermal stability and flammability of bio-based polyurethanes

    International Nuclear Information System (INIS)

    Yakushin, Vladimir; Sevastyanova, Irina; Vilsone, Dzintra; Avots, Andris

    2016-01-01

    The effect of melamine phosphate (MP) on the thermal stability of bio-based polyurethane and the flammability parameters of wood samples with polyurethane coatings was studied. Thermogravimetric analysis and cone calorimeter test at a heat flux of 35 kW/m 2 were used for this purpose. The main characteristics of the thermal stability and flammability of the coating with addition of MP were compared with the characteristics of analogous coatings with addition of ammonium polyphosphate (APP), as well as APP in combination with melamine. It was found that the use of MP as an intumescent additive allows a considerable decrease of most of the flammability parameters of the polyurethane based on tall oil fatty acids, like APP. To reach the maximum effect, it is enough to load in the polyurethane 20% of MP. In contrast to APP, MP reduces also the smoke release of the samples. Using MP in combination with APP at definite weight ratios, it is possible to essentially reduce the flammability parameters of polyurethane coatings, such as PHRR, THR and MARHE. (paper)

  9. Melamine-formaldehyde microcapsules filled sappan dye modified polypropylene composites: encapsulation and thermal properties

    Science.gov (United States)

    Phanyawong, Suphitcha; Siengchin, Suchart; Parameswaranpillai, Jyotishkumar; Asawapirom, Udom; Polpanich, Duangporn

    2018-01-01

    Sappan dye, a natural dye extracted from sappan wood is widely used in cosmetics, textile dyeing and as food additives. However, it was recognized that natural dyes cannot withstand high temperature. In this study, a protective coating of melamine-formaldehyde shell material was applied over the sappan dye to improve its thermal stability. The percentage of sappan dye used in the microencapsulation was 30, 40, 50, 60 and 70 wt%. The color, shape, size, and thermal stability of sappan dye microcapsules were investigated. It was found that increasing amount of sappan dye content in the microcapsules decreased the particle size. Thermal analysis reveals that the melamine-formaldehyde resin served as an efficient protective shell for sappan dye. Besides, 30 wt% sappan dye microcapsules with different weight percent (1, 3 and 5 wt%) of sappan dye was used as modifier for polypropylene (PP). All the prepared composites are red in color which supports the thermal stability of the microcapsules. The changes in crystallinity and melting behavior of PP by the addition of microcapsules were studied in detail by differential scanning calorimetry. Thermogravimetric studies showed that the thermal stability of PP composites increased by the addition of microcapsules.

  10. Thermodynamic stabilities of linear and crinkled tapes and cyclic rosettes in melamine-cyanurate assemblies: a model description

    NARCIS (Netherlands)

    Bielejewska, A.G.; Marjo, Christopher E.; Prins, L.J.; Timmerman, P.; de Jong, Feike; Reinhoudt, David

    2001-01-01

    In this paper we describe model calculations for the self-assembly of N,N-disubstituted melamines 1 and N-substituted cyanuric acid or 5,5-disubstituted barbituric acid derivatives 2 into linear or crinkled tapes and cyclic rosettes via cooperative hydrogen bond formation. The model description

  11. Nephrolithiasis screening for people with self-perceived exposure to melamine-contaminated milk products in Taipei County, Taiwan

    Directory of Open Access Journals (Sweden)

    Jeng-Cheng Wu

    2017-06-01

    Conclusion: These results suggested that governments can carry out a good risk communication program in relation to melamine-contaminated milk product events, and thus reassure the public as well as allay fears over perceived health risks stemming from such events.

  12. Baseline levels of melamine in food items sold in Canada. II. Egg, soy, vegetable, fish and shrimp products.

    Science.gov (United States)

    Tittlemier, Sheryl A; Lau, Benjamin P-Y; Ménard, Cathie; Corrigan, Catherine; Sparling, Melissa; Gaertner, Dean; Cao, Xu-Liang; Dabeka, Bob; Hilts, Carla

    2010-01-01

    A variety of egg-containing, soy-based, fish, shrimp and vegetable products sold in Canada were analysed for melamine (MEL) using a sensitive solid-phase extraction LC-MS/MS analytical method. MEL was detected above the method quantification limit of 0.004 mg/kg in 98 of the 378 samples analysed. Concentrations in the various food product groups ranged 0.00507-0.247 mg/kg (egg-containing items), 0.00408-0.0479 mg/kg (soy-based meat substitutes), 0.00409-1.10 mg/kg (fish and shrimp products), and 0.00464-0.688 mg/kg (vegetable products). MEL was detected less frequently in egg- and soy-containing products. The presence of MEL in most of the Canadian Total Diet Study shrimp composites collected after 2001 suggested the residues in shrimp were caused by a relatively recent exposure to MEL. All concentrations of MEL reported were lower than the 2.5 mg/kg interim standard established for MEL in items containing milk and milk-derived ingredients and the respective maximum residue limits for cyromazine and its metabolite, melamine, in vegetables set by the Canadian Government (2009; http://www.hc-sc.gc.ca/fn-an/securit/chem-chim/melamine/qa-melamine-qr-eng.php#8 ). The consumption of foods containing these low levels of MEL does not constitute a health risk for consumers.

  13. Development of melamine modified urea formaldehyde resins based o nstrong acidic pH catalyzed urea formaldehyde polymer

    Science.gov (United States)

    Chung-Yun Hse

    2009-01-01

    To upgrade the performance of urea-formaldehyde (UF) resin bonded particleboards, melamine modified urea-formaldehyde (MUF) resins based on strong acidic pH catalyzed UF polymers were investigated. The study was conducted in a series of two experiments: 1) formulation of MUF resins based on a UF polymer catalyzed with strong acidic pH and 2) determination of the...

  14. Detection of Cyanuric Acid and Melamine in Infant Formula Powders by Mid-FTIR Spectroscopy and Multivariate Analysis

    Directory of Open Access Journals (Sweden)

    Edwin García-Miguel

    2018-01-01

    Full Text Available Chemometric methods using mid-FTIR spectroscopy were developed in order to reduce the time of study of melamine and cyanuric acid in infant formulas. Chemometric models were constructed using the algorithms Partial Least Squares (PLS1, PLS2 and Principal Component Regression (PCR in order to correlate the IR signal with the levels of melamine or cyanuric acid in the infant formula samples. Results showed that the best correlations were obtained using PLS1 (R2: 0.9998, SEC: 0.0793, and SEP: 0.5545 for melamine and R2: 0.9997, SEC: 0.1074, and SEP: 0.5021 for cyanuric acid. Also, the SIMCA model was studied to distinguish between adulterated formulas and nonadulterated samples, giving optimum discrimination and good interclass distances between samples. Results showed that chemometric models demonstrated a good predictive ability of melamine and cyanuric acid concentrations in infant formulas, showing that this is a rapid and accurate technique to be used in the identification and quantification of these adulterants in infant formulas.

  15. Visual and light scattering spectrometric method for the detection of melamine using uracil 5‧-triphosphate sodium modified gold nanoparticles

    Science.gov (United States)

    Liang, Lijiao; Zhen, Shujun; Huang, Chengzhi

    2017-02-01

    A highly selective method was presented for colorimetric determination of melamine using uracil 5‧-triphosphate sodium modified gold nanoparticles (UTP-Au NPs) in this paper. Specific hydrogen-bonding interaction between uracil base (U) and melamine resulted in the aggregation of AuNPs, displaying variations of localized surface plasmon resonance (LSPR) features such as color change from red to blue and enhanced localized surface plasmon resonance light scattering (LSPR-LS) signals. Accordingly, the concentration of melamine could be quantified based on naked eye or a spectrometric method. This method was simple, inexpensive, environmental friendly and highly selective, which has been successfully used for the detection of melamine in pretreated liquid milk products with high recoveries.

  16. Aqueous sulfomethylated melamine gel-forming compositions and methods of use

    Energy Technology Data Exchange (ETDEWEB)

    Meltz, C.N.; Guetzmacher, G.D.; Chang, P.W.

    1989-04-18

    A method is described for the selective modification of the permeability of the strata of a subterranean bydrocarbon-containing reservoir consisting of introducing into a well in, communication with the reservoir; an aqueous gel-forming composition, comprising a 1.0-60.0 weight percent sulfomethylated melamine polymer solution. The solution is prepared with a 1.0 molar equivalent of a malemine, reacted with 3.0-6.7 molar equivalents of formaldehyde or a 2-6 carbon atom containing dialdehyde; 0.25-1.25 molar equivalents of an alkali metal or ammonium salt of surfurous acid; and 0.01-1.5 molar equivalents of a gel-modifying agent.

  17. High-Throughput Platform for Synthesis of Melamine-Formaldehyde Microcapsules.

    Science.gov (United States)

    Çakir, Seda; Bauters, Erwin; Rivero, Guadalupe; Parasote, Tom; Paul, Johan; Du Prez, Filip E

    2017-07-10

    The synthesis of microcapsules via in situ polymerization is a labor-intensive and time-consuming process, where many composition and process factors affect the microcapsule formation and its morphology. Herein, we report a novel combinatorial technique for the preparation of melamine-formaldehyde microcapsules, using a custom-made and automated high-throughput platform (HTP). After performing validation experiments for ensuring the accuracy and reproducibility of the novel platform, a design of experiment study was performed. The influence of different encapsulation parameters was investigated, such as the effect of the surfactant, surfactant type, surfactant concentration and core/shell ratio. As a result, this HTP-platform is suitable to be used for the synthesis of different types of microcapsules in an automated and controlled way, allowing the screening of different reaction parameters in a shorter time compared to the manual synthetic techniques.

  18. Ab initio theory for current-induced molecular switching: Melamine on Cu(001)

    KAUST Repository

    Ohto, Tatsuhiko

    2013-05-28

    Melamine on Cu(001) is mechanically unstable under the current of a scanning tunneling microscope tip and can switch among configurations. However, these are not equally accessible, and the switching critical current depends on the bias polarity. In order to explain such rich phenomenology, we have developed a scheme to evaluate the evolution of the reaction paths and activation barriers as a function of bias, which is rooted in the nonequilibrium Green\\'s function method implemented within density functional theory. This, combined with the calculation of the inelastic electron tunneling spectroscopy signal, allows us to identify the vibrational modes promoting the observed molecular conformational changes. Finally, once our ab initio results are used within a resonance model, we are able to explain the details of the switching behavior, such as its dependence on the bias polarity, and the noninteger power relation between the reaction rate constants and both the bias voltage and the electric current. © 2013 American Physical Society.

  19. Study on Flexural Creep Parameters of Overlayed Particleboard by Natural and Melaminated Veneers

    Directory of Open Access Journals (Sweden)

    Abdollah Najafi

    2012-06-01

    Full Text Available In this study, effects of natural and artificial veneer on flexural creep behavior of particleboard was investigated. Particleboard panels were prepared from Pars Neopan industries with 660 kg/m3 density and then overlaid by natural and melamine veneers. Their creep behavior was compared to control particleboard. For evaluating maximum bending load in static flexural test, specimens were cut from panels according to ASTM D 1037 with dimensions of 370×50×16 mm. Then, The flexural creep tests at 20% and 40% of failure bending load was applied to test specimens. Results of flexural tests indicated that the MOR and MOE values of veneered particleboard were highest. Results of creep showed that levels of stresses are effective on all creep parameters, but showed less effect on relative creep. Also, creep parameters less effective on specimens overlaid by natural veneer.

  20. Ab initio theory for current-induced molecular switching: Melamine on Cu(001)

    KAUST Repository

    Ohto, Tatsuhiko; Rungger, Ivan; Yamashita, Koichi; Nakamura, Hisao; Sanvito, Stefano

    2013-01-01

    Melamine on Cu(001) is mechanically unstable under the current of a scanning tunneling microscope tip and can switch among configurations. However, these are not equally accessible, and the switching critical current depends on the bias polarity. In order to explain such rich phenomenology, we have developed a scheme to evaluate the evolution of the reaction paths and activation barriers as a function of bias, which is rooted in the nonequilibrium Green's function method implemented within density functional theory. This, combined with the calculation of the inelastic electron tunneling spectroscopy signal, allows us to identify the vibrational modes promoting the observed molecular conformational changes. Finally, once our ab initio results are used within a resonance model, we are able to explain the details of the switching behavior, such as its dependence on the bias polarity, and the noninteger power relation between the reaction rate constants and both the bias voltage and the electric current. © 2013 American Physical Society.

  1. Spectroscopic analyses and studies on respective interaction of cyanuric acid and uric acid with bovine serum albumin and melamine

    Science.gov (United States)

    Chen, Dandan; Wu, Qiong; Wang, Jun; Wang, Qi; Qiao, Heng

    2015-01-01

    In this work, the fluorescence quenching was used to study the interaction of cyanuric acid (CYA) and uric acid (UA) with bovine serum albumin (BSA) at two different temperatures (283 K and 310 K). The bimolecular quenching constant (Kq), apparent quenching constant (Ksv), effective binding constant (KA) and corresponding dissociation constant (KD), binding site number (n) and binding distance (r) were calculated by adopting Stern-Volmer, Lineweaver-Burk, Double logarithm and overlap integral equations. The results show that CYA and UA are both able to obviously bind to BSA, but the binding strength order is BSA + CYA < BSA + UA. And then, the interactions of CYA and UA with melamine (MEL) under the same conditions were also studied by using similar methods. The results indicates that both CYA and UA can bind together closely with melamine (MEL). It is wished that these research results would facilitate the understanding the formation of kidney stones and gout in the body after ingesting excess MEL.

  2. Analytical method for the determination of cyromazine and melamine residues in soil using LC-UV and GC-MSD.

    Science.gov (United States)

    Yokley, R A; Mayer, L C; Rezaaiyan, R; Manuli, M E; Cheung, M W

    2000-08-01

    A method is reported for the determination of cyromazine and melamine residues in soil. Soil samples are extracted twice via mechanical shaking, each time with 70% acetonitrile/30% 0.050 M ammomium carbonate for 30 min. An aliquot portion of the pooled extracts is subjected to strong cation exchange (SCX) purification on AG 50W-X4 resin. Final analysis is accomplished using liquid chromatography-ultraviolet (LC-UV) detection at a wavelength of 214 nm. Confirmatory analyses can be performed using gas chromatography-mass selective detection (GC-MSD) in the selected ion monitoring (SIM) mode. The limit of detection (LOD) is 2.5 ng injected and the limit of quantification (LOQ) is 10 ppb when using LC-UV for the analysis of N-cyclopropyl-1,3,5-triazine-2,4, 6-triamine (cyromazine) and 1,3,5-triazine-2,4,6-triamine (melamine). The LOD is 0.050 ng injected and the LOQ is 10 ppb when using GC-MSD for confirmatory analyses. The mean procedural recoveries were 97 and 95% and the standard deviations were 16 and 11% for cyromazine and melamine, respectively (n = 24), when using LC-UV. The mean procedural recoveries were 107 and 92% and the standard deviations were 9.9 and 16% for cyromazine and melamine, respectively (n = 29), when using GC-MSD. The method validation study was conducted under U.S. EPA FIFRA Good Laboratory Practice Guidelines 40 CFR 160. The method also passed an Independent Laboratory Validation (ILV) as per U.S. EPA FIFRA Subdivision N.

  3. Chirality Transfer and Modulation in LB Films Derived From the Diacetylene/Melamine Hydrogen-Bonded Complex.

    Science.gov (United States)

    Zhu, Yu; Xu, Yangyang; Zou, Gang; Zhang, Qijin

    2015-08-01

    Introduction of hydrogen-bonding interaction into π-conjugated systems is a promising strategy, since the highly selective and directional hydrogen-bonding can increase the binding strength, provide enhanced stability to the assemblies, and position the π-conjugated molecules in a desired arrangement. The helical packing of the rigid melamine cores seems to play a dominating role in the subsequent formation of the peripheral helical PDA backbone. The polymerized Langmuir-Blodgett (LB) films exhibited reversible colorimetric and chiroptical changes during repeated heating-cooling cycles, which should be ascribed to the strong hydrogen-bonding interaction between the carboxylic acid and the melamine core. Further, the closely helical packing of the melamine cores could be destroyed upon exposure to HCl or NH(3) gas, whereas the peripheral helical polyaniline and polydiacetylene (PDA) backbone exhibited excellent stability. Although similar absorption changes could be observed for the films upon exposure to HCl or NH(3) gas, their distinct circular dichroism (CD) responses enabled us to distinguish the above two stimuli. © 2015 Wiley Periodicals, Inc.

  4. Detection of Melamine in Soybean Meal Using Near-Infrared Microscopy Imaging with Pure Component Spectra as the Evaluation Criteria

    Directory of Open Access Journals (Sweden)

    Zengling Yang

    2016-01-01

    Full Text Available Soybean meal was adulterated with melamine with the purpose of boosting the protein content for unlawful interests. In recent years, the near-infrared (NIR spectroscopy technique has been widely used for guaranteeing food and feed security for its fast, nondestructive, and pollution-free characteristics. However, there are problems with using near-infrared (NIR spectroscopy for detecting samples with low contaminant concentration because of instrument noise and sampling issues. In addition, methods based on NIR are indirect and depend on calibration models. NIR microscopy imaging offers the opportunity to investigate the chemical species present in food and feed at the microscale level (the minimum spot size is a few micrometers, thus avoiding the problem of the spectral features of contaminants being diluted by scanning. The aim of this work was to investigate the feasibility of using NIR microscopy imaging to identify melamine particles in soybean meal using only the pure component spectrum. The results presented indicate that using the classical least squares (CLS algorithm with the nonnegative least squares (NNLS algorithm, without needing first to develop a calibration model, could identify soybean meal that is both uncontaminated and contaminated with melamine particles at as low a level as 50 mg kg−1.

  5. Three dimensional nitrogen-doped graphene aerogels functionalized with melamine for multifunctional applications in supercapacitors and adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Ling-Bao; Hou, Shu-Fen; Zhou, Jin; Zhang, Jing-Li; Si, Weijiang; Dong, Yunhui, E-mail: hgxydyh@sdut.edu.cn; Zhuo, Shuping, E-mail: zhuosp_academic@yahoo.com

    2015-10-15

    In present work, we demonstrate an efficient and facile strategy to fabricate three-dimensional (3D) nitrogen-doped graphene aerogels (NGAs) based on melamine, which serves as reducing and functionalizing agent of graphene oxide (GO) in an aqueous medium with ammonia. Benefiting from well-defined and cross-linked 3D porous network architectures, the supercapacitor based on the NGAs exhibited a high specific capacitance of 170.5 F g{sup −1} at 0.2 A g{sup −1}, and this capacitance also showed good electrochemical stability and a high degree of reversibility in the repetitive charge/discharge cycling test. More interestingly, the prepared NGAs further exhibited high adsorption capacities and high recycling performance toward several metal ions such as Pb{sup 2+}, Cu{sup 2+} and Cd{sup 2+}. Moreover, the hydrophobic carbonized nitrogen-doped graphene aerogels (CNGAs) showed outstanding adsorption and recycling performance for the removal of various oils and organic solvents. - Graphical abstract: Three-dimensional nitrogen-doped graphene aerogels were prepared by using melamine as reducing and functionalizing agent in an aqueous medium with ammonia, which showed multifunctional applications in supercapacitors and adsorption. - Highlights: • Three-dimensional nitrogen-doped graphene aerogels (NGAs) were prepared. • Melamine was used as reducing and functionalizing agent. • NGAs exhibited relatively good electrochemical properties in supercapacitor. • NGAs exhibited high adsorption performance toward several metal ions. • CNGAs showed outstanding adsorption capacities for various oils and solvents.

  6. Enhanced electrochemiluminescence based on Ru(bpy)₃²⁺-doped silica nanoparticles and graphene composite for analysis of melamine in milk

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Limin [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China); University of the Chinese Academy of Sciences (China); Huang, Jianshe [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China); Yang, Lu; Li, Libo [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China); University of the Chinese Academy of Sciences (China); You, Tianyan, E-mail: youty@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China)

    2014-05-01

    Highlights: • A sensitive ECL sensor was developed by combining Ru(bpy)₃²⁺-doped silica (Ru(bpy)₃²⁺@SiO₂) nanoparticles with graphene. • The proposed sensor exhibited high sensitivity (~10⁻¹³ M) and wide linear range for melamine. • This method was successfully applied to the detection of melamine in milk. Abstract: A sensitive electrochemiluminescence (ECL) sensor for melamine analysis was fabricated based on Ru(bpy)₃²⁺-doped silica (Ru(bpy)₃²⁺@SiO₂) nanoparticles and graphene composite. Spherical Ru(bpy)₃²⁺@SiO₂ nanoparticles with uniform size about 55 nm were prepared by the reverse microemulsion method. Since per Ru(bpy)₃²⁺@SiO₂ nanoparticle encapsulated a great deal of Ru(bpy)₃²⁺, the ECL intensity has been greatly enhanced, which resulted in high sensitivity. Due to its extraordinary electric conductivity, graphene improved the conductivity and accelerated the electron transfer rate. In addition, graphene could work as electronic channel improving the efficient luminophor amount participating in the ECL reaction, which further enhanced the ECL signal. This proposed sensor was used to melamine analysis and the ECL intensity was proportional to logarithmic melamine concentration range from 1 × 10⁻¹³ M to 1 × 10⁻⁸ M with the detect limit as low as 1 × 10⁻¹³ M. In application to detect melamine in milk, satisfactory recoveries could be obtained, which indicated this sensor having potential application in melamine analysis in real samples.

  7. Study of stone composition changes in melamine-related urinary calculi and its clinical significance.

    Science.gov (United States)

    Li, Yuan; Chen, YiRong; Zhang, Wei; Huang, XiaoGang; Li, WenHui; Ru, XiaoRui; Meng, Min; Xi, Xinsheng; Huang, Gang; Shi, BaoGuang; Liu, Gang; Li, WeiHua; Xu, Hui

    2011-08-01

    To investigate the composition changes in melamine-related urinary calculi and their clinical significance. A total of 49 melamine-related urinary calculi were included from 49 children (age 4-82 months, mean 22). The qualitative analysis of stone composition was determined using Fourier transform infrared. The quantitative analysis of the stone computed tomography (CT) attenuation value, stone uric acid level, and stone calcium level were measured using spiral CT, high-performance liquid chromatography, and flame atomic absorption spectrum, respectively. Fourier transform infrared showed that 41 (84%) of the 49 stones contained uric acid and 25 (51%) contained calcium compounds. The data from the qualitative and quantitative analysis were available for 15 stones because of sample consumption in the detection process (Fourier transform infrared, atomic absorption spectrum, and high-performance liquid chromatography). A negative correlation was observed between stone uric acid level and stone calcium level (n = 15, r = -0.629, P = .009). A positive correlation was observed between the stone calcium level and stone CT attenuation value (n = 25, r = 0.855, P = .000). Compared with the ≤1-year-age group and the 1-2-year-age group, the stone calcium level in the >2-year-age group was significantly greater (27.51% ± 12.65% vs 1.60% ± 1.68% or 10.12% ± 8.69%, P = .000 and P = .003, respectively). Compared with the alkalization-alone group, the stone calcium level in the nonalkalization-alone group was significant greater (19.83% ± 7.48% vs 1.25% ± 1.43%, n = 19, P = .000). The stones from children >2 years old were not amenable to medical treatment because they contained greater levels of calcium, which can be demonstrated by the radiologic "positive stone image" or stone CT attenuation value. We believe that surgical invention will be the best choice for such patients if extracorporeal shock wave lithotripsy has failed. Copyright © 2011 Elsevier Inc. All rights

  8. Validation of a confirmatory method for the determination of melamine in egg by gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry

    International Nuclear Information System (INIS)

    Xia Xi; Ding Shuangyang; Li Xiaowei; Gong Xiao; Zhang Suxia; Jiang Haiyang; Li Jiancheng; Shen Jianzhong

    2009-01-01

    A sensitive and reliable method was developed and validated for detection and confirmation of melamine in egg based on gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Trichloroacetic acid solution was used for sample extraction and precipitation of proteins. The aqueous extracts were subjected to solid-phase extraction by mixed-mode reversed-phase/strong cation-exchange cartridges. Using ultra-performance liquid chromatography and electrospray ionization in the positive ion mode, melamine was determined by LC-MS/MS, which was completed in 5 min for each injection. For the GC-MS analysis, extracted melamine was derivatized with N,O-bis(trimethylsilyl)trifluoracetamide prior to selected ion monitoring detection in electron impact mode. The average recovery of melamine from fortified samples ranged from 85.2% to 103.2%, with coefficients of variation lower than 12%. The limit of detection obtained by GC-MS and UPLC-MS/MS was 10 and 5 μg kg -1 , respectively. This validated method was successfully applied to the determination of melamine in real samples from market.

  9. Rapid and selective screening of melamine in bovine milk using molecularly imprinted matrix solid-phase dispersion coupled with liquid chromatography-ultraviolet detection.

    Science.gov (United States)

    Yan, Hongyuan; Cheng, Xiaoling; Sun, Ning; Cai, Tianyu; Wu, Ruijun; Han, Kun

    2012-11-01

    A simple, convenient and high selective molecularly imprinted matrix solid-phase dispersion (MI-MSPD) using water-compatible cyromazine-imprinted polymer as adsorbent was proposed for the rapid screening of melamine from bovine milk coupled with liquid chromatography-ultraviolet detection. The molecularly imprinted polymers (MIPs) synthesized by cyromazine as dummy template and reformative methanol-water system as reaction medium showed higher affinity and selectivity to melamine, and so they were applied as the specific dispersant of MSPD to extraction of melamine and simultaneously eliminate the effect of template leakage on quantitative analysis. Under the optimized conditions, good linearity was obtained in a range of 0.24-60.0μgg(-1) with the correlation coefficient of 0.9994. The recoveries of melamine at three spiked levels were ranged from 86.0 to 96.2% with the relative standard deviation (RSD)≤4.0%. This proposed MI-MSPD method combined the advantages of MSPD and MIPs, and could be used as an alternative tool for analyzing the residues of melamine in complex milk samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Directional growth of Ag nanorod from polymeric silver cyanide: A potential substrate for concentration dependent SERS signal enhancement leading to melamine detection

    Science.gov (United States)

    Roy, Anindita; Sahoo, Ramkrishna; Chowdhury, Joydeep; Bhattacharya, Tara Shankar; Agarwal, Ratnesh; Pal, Tarasankar

    2017-08-01

    Attention has been directed to prepare exclusive one-dimensional silver nanostructure from the linear inorganic polymer AgCN. Successive color change from yellow to orange, to red and finally to green reflects the evolution of high yielding Ag nanorods (NRs) from well-known -[Ag-CN]- chains of polymeric AgCN at room temperature. The parental 1D morphology of AgCN is retained within the as-synthesized Ag NRs. So we could successfully exploit the Ag NR for surface-enhanced Raman scattering (SERS) studies for sensing a popular milk adulterant melamine down to picomolar level. We observed interesting concentration dependent selective SERS band enhancement of melamine. The enhanced 1327 cm- 1 SERS signal intensity at lower concentration (10- 9 and 10- 12 M) of melamine speaks for the preferential participation of -C-N of melamine molecule with Ag surface. On the other hand, '-NH2' group together with ring 'N' participation of melamine molecule onto Ag surface suggested an adsorptive stance at higher (10- 3-10- 7 M) concentration range. Thus the binding modes of the molecule at the Ag surface justify its fluxional behavior.

  11. Migration of formaldehyde from melamine-ware: UK 2008 survey results.

    Science.gov (United States)

    Potter, E L J; Bradley, E L; Davies, C R; Barnes, K A; Castle, L

    2010-06-01

    Fifty melamine-ware articles were tested for the migration of formaldehyde - with hexamethylenetetramine (HMTA) expressed as formaldehyde - to see whether the total specific migration limit (SML(T)) was being observed. The SML(T), given in European Commission Directive 2002/72/EC as amended, is 15 mg kg(-1). Fourier transform-infrared (FT-IR) spectroscopy was carried out on the articles to confirm the plastic type. Articles were exposed to the food simulant 3% (w/v) aqueous acetic acid under conditions representing their worst foreseeable use. Formaldehyde and HMTA in food simulants were determined by a spectrophotometric derivatization procedure. Positive samples were confirmed by a second spectrophotometric procedure using an alternative derivatization agent. As all products purchased were intended for repeat use, three sequential exposures to the simulant were carried out. Formaldehyde was detected in the simulant exposed to 43 samples. Most of the levels found were well below the limits set in law such that 84% of the samples tested were compliant. However, eight samples had formaldehyde levels that were clearly above the legal maximum at six to 65 times the SML(T).

  12. Synergistic Flame Retardancy of Aluminium Dipropylphosphinate and Melamine in Polyamide 6

    Directory of Open Access Journals (Sweden)

    Linsheng Tang

    2013-01-01

    Full Text Available The synergistic flame retardancy of aluminium dipropylphosphinate (ADPP and melamine (ME in polyamide 6 (PA6 was studied by the limiting oxygen index (LOI measurement, the vertical burning test, and the cone calorimeter test, and the mechanism was also discussed by thermogravimetric and residual analyses. The experimental results indicated that there was obvious synergistic flame retardancy between ADPP and ME under their appropriate weight ratios. The thermogravimetric results and the analysis of the residues obtained in cone calorimeter test showed that ADPP and ADPP/ME played the role of flame retardance by gaseous- and condensed-phase mechanisms, where, on one hand, they were decomposed into nonvolatile aluminum phosphate and promoted the carbonization of PA6, and the formed intumescent layer resulted in flame retardancy by the barrier effect on heat, air, and decomposition products, and on the other hand, they were decomposed into volatile phosphorus compounds which bring about flame retardancy by flame inhibition. Using a combination of ADPP and ME improved charring of PA6 and raised the residual rate of P and Al, thus, improving the barrier effect in the condensed phase.

  13. Food and pharmaceuticals. Lessons learned from global contaminations with melamine/cyanuric acid and diethylene glycol.

    Science.gov (United States)

    Brown, C A; Brown, S A

    2010-01-01

    Recently, contamination of pharmaceuticals with diethylene glycol (DEG) and food with melamine and cyanuric acid has demonstrated the impact of globalization on drug and food safety. By examining the details of these outbreaks, some important lessons can be learned. Toxicoses from contaminated food and drugs are often identified only when large numbers of people or animals are affected and numerous deaths result. Populations most at risk are those repeatedly exposed to a single product. Toxicoses may be complex, involving synergism among relatively nontoxic co-contaminants. Although some contamination may occur inadvertently, practices of deliberate contamination of food and drug ingredients may be widespread but escape detection in poorly regulated markets. If this deliberate contamination is motivated by personal financial gain, it is likely to recur and be concealed. The contaminated raw material produced in a poorly regulated market may cross national boundaries and be used in manufacturing processes for numerous products, sometimes in more well-regulated markets. Once in the production chain, contaminated raw materials may be widely disseminated. It is not clear that regulatory organizations have the capacity to identify significant contaminations despite their best efforts. The veterinary and medical communities, in cooperation with regulatory agencies, should develop cooperative programs designed to detect and limit these global outbreaks. Although addressing regional or national outbreaks remains an important role for regulatory agencies, the veterinary and medical communities must develop proactive global approaches to this global problem.

  14. Preparation of CMC-modified melamine resin spherical nano-phase change energy storage materials.

    Science.gov (United States)

    Hu, Xiaofeng; Huang, Zhanhua; Zhang, Yanhua

    2014-01-30

    A novel carboxymethyl cellulose (CMC)-modified melamine-formaldehyde (MF) phase change capsule with excellent encapsulation was prepared by in situ polymerization. Effects of CMC on the properties of the capsules were studied by Fourier transformation infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electronic microscopy (SEM), X-ray diffractometry (XRD), and thermogravimetric analysis (TGA). The results showed that the CMC-modified capsules had an average diameter of about 50nm and good uniformity. The phase change enthalpy of the capsules was increased and the cracking ratio decreased by incorporating a suitable amount of CMC. The optimum phase change enthalpy of the nanocapsules was 83.46J/g, and their paraffin content was 63.1%. The heat resistance of the capsule shells decreased after CMC modification. In addition, the nanocapsule cracking ratio of the nanocapsules was 11.0%, which is highly attractive for their application as nano phase change materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine

    Directory of Open Access Journals (Sweden)

    Tae-Hee Kim

    2016-02-01

    Full Text Available Gallium nitride (GaN nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO33∙xH2O was used as a raw material and NH3 gas was used as a nitridation source. Additionally, melamine (C3H6N6 powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga2O3. Argon thermal plasma was applied to synthesize GaN nanopowder. The synthesized GaN nanopowder by thermal plasma has low crystallinity and purity. It was improved to relatively high crystallinity and purity by annealing. The crystallinity is enhanced by the thermal treatment and the purity was increased by the elimination of residual C3H6N6. The combined process of thermal plasma and annealing was appropriate for synthesizing crystalline GaN nanopowder. The annealing process after the plasma synthesis of GaN nanopowder eliminated residual contamination and enhanced the crystallinity of GaN nanopowder. As a result, crystalline GaN nanopowder which has an average particle size of 30 nm was synthesized by the combination of thermal plasma treatment and annealing.

  16. Impairment of cognitive function and synaptic plasticity associated with alteration of information flow in theta and gamma oscillations in melamine-treated rats.

    Directory of Open Access Journals (Sweden)

    Xiaxia Xu

    Full Text Available Changes of neural oscillations at a variety of physiological rhythms are effectively associated with cognitive performance. The present study investigated whether the directional indices of neural information flow (NIF could be used to symbolize the synaptic plasticity impairment in hippocampal CA3-CA1 network in a rat model of melamine. Male Wistar rats were employed while melamine was administered at a dose of 300 mg/kg/day for 4 weeks. Behavior was measured by the Morris water maze(MWMtest. Local field potentials (LFPs were recorded before long-term potentiation (LTP induction. Generalized partial directed coherence (gPDC and phase-amplitude coupling conditional mutual information (PAC_CMI were used to measure the unidirectional indices in both theta and low gamma oscillations (LG, ~ 30-50 Hz. Our results showed that melamine induced the cognition deficits consistent with the reduced LTP in CA1 area. Phase locking values (PLVs showed that the synchronization between CA3 and CA1 in both theta and LG rhythms was reduced by melamine. In both theta and LG rhythms, unidirectional indices were significantly decreased in melamine treated rats while a similar variation trend was observed in LTP reduction, implying that the effects of melamine on cognitive impairment were possibly mediated via profound alterations of NIF on CA3-CA1 pathway in hippocampus. The results suggested that LFPs activities at these rhythms were most likely involved in determining the alterations of information flow in the hippocampal CA3-CA1 network, which might be associated with the alteration of synaptic transmission to some extent.

  17. Dose–response assessment of nephrotoxicity from a twenty-eight-day combined-exposure to melamine and cyanuric acid in F344 rats

    International Nuclear Information System (INIS)

    Gamboa da Costa, Gonçalo; Jacob, Cristina C.; Von Tungeln, Linda S.; Hasbrouck, Nicholas R.; Olson, Greg R.; Hattan, David G.; Reimschuessel, Renate; Beland, Frederick A.

    2012-01-01

    The adulteration of pet food with melamine and derivatives, including cyanuric acid, has been implicated in the kidney failure and death of cats and dogs in the USA and other countries. In a previous 7-day dietary study in F344 rats, we established a no-observed-adverse-effect level (NOAEL) for a co-exposure to melamine and cyanuric acid of 8.6 mg/kg bw/day of each compound, and a benchmark dose lower confidence limit (BMDL) of 8.4–10.9 mg/kg bw/day of each compound. To ascertain the role played by the duration of exposure, we treated F344 rats for 28 days. Groups of male and female rats were fed diet containing 0 (control), 30, 60, 120, 180, 240, or 360 ppm of both melamine and cyanuric acid. The lowest dose that produced histopathological alterations in the kidney was 120 ppm, versus 229 ppm in the 7-day study. Wet-mount analysis of kidney sections demonstrated the formation of melamine cyanurate spherulites in one male and two female rats at the 60 ppm dose and in one female rat at the 30 ppm dose, establishing a NOAEL of 2.1 mg/kg bw/day for males and < 2.6 mg/kg bw/day for females, and BMDL values as low as 1.6 mg/kg bw/day for both sexes. These data demonstrate that the length of exposure is an important component in the threshold of toxicity from a co-exposure to these compounds and suggest that the current risk assessments based on exposures to melamine alone may not reflect sufficiently the risk of a co-exposure to melamine and cyanuric acid. -- Highlights: ► A 28-day dietary co-exposure to melamine and cyanuric acid was conducted in F344 rats. ► The NOAELs were 2.1 mg/kg bw/day for males and < 2.6 mg/kg bw/day for females. ► BMDL values as low as 1.6 mg/kg bw/day for both sexes were determined. ► The length of exposure plays an important role in the threshold of toxicity. ► Current assessments may underestimate the risk of melamine and cyanuric acid.

  18. Dose–response assessment of nephrotoxicity from a twenty-eight-day combined-exposure to melamine and cyanuric acid in F344 rats

    Energy Technology Data Exchange (ETDEWEB)

    Gamboa da Costa, Gonçalo, E-mail: goncalo.gamboa@fda.hhs.gov [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Jacob, Cristina C.; Von Tungeln, Linda S. [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Hasbrouck, Nicholas R. [Center for Veterinary Medicine, Laurel, MD 20708 (United States); Olson, Greg R. [Toxicologic Pathology Associates, Jefferson, AR 72079 (United States); Hattan, David G. [Center for Food Safety and Applied Nutrition, College Park, MD 20740 (United States); Reimschuessel, Renate [Center for Veterinary Medicine, Laurel, MD 20708 (United States); Beland, Frederick A. [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States)

    2012-07-15

    The adulteration of pet food with melamine and derivatives, including cyanuric acid, has been implicated in the kidney failure and death of cats and dogs in the USA and other countries. In a previous 7-day dietary study in F344 rats, we established a no-observed-adverse-effect level (NOAEL) for a co-exposure to melamine and cyanuric acid of 8.6 mg/kg bw/day of each compound, and a benchmark dose lower confidence limit (BMDL) of 8.4–10.9 mg/kg bw/day of each compound. To ascertain the role played by the duration of exposure, we treated F344 rats for 28 days. Groups of male and female rats were fed diet containing 0 (control), 30, 60, 120, 180, 240, or 360 ppm of both melamine and cyanuric acid. The lowest dose that produced histopathological alterations in the kidney was 120 ppm, versus 229 ppm in the 7-day study. Wet-mount analysis of kidney sections demonstrated the formation of melamine cyanurate spherulites in one male and two female rats at the 60 ppm dose and in one female rat at the 30 ppm dose, establishing a NOAEL of 2.1 mg/kg bw/day for males and < 2.6 mg/kg bw/day for females, and BMDL values as low as 1.6 mg/kg bw/day for both sexes. These data demonstrate that the length of exposure is an important component in the threshold of toxicity from a co-exposure to these compounds and suggest that the current risk assessments based on exposures to melamine alone may not reflect sufficiently the risk of a co-exposure to melamine and cyanuric acid. -- Highlights: ► A 28-day dietary co-exposure to melamine and cyanuric acid was conducted in F344 rats. ► The NOAELs were 2.1 mg/kg bw/day for males and < 2.6 mg/kg bw/day for females. ► BMDL values as low as 1.6 mg/kg bw/day for both sexes were determined. ► The length of exposure plays an important role in the threshold of toxicity. ► Current assessments may underestimate the risk of melamine and cyanuric acid.

  19. Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly(vinyl alcohol)

    International Nuclear Information System (INIS)

    Huang Guobo; Liang Huading; Wang Yong; Wang Xu; Gao Jianrong; Fei Zhengdong

    2012-01-01

    Highlights: ► PVA/graphene/MPP composites were prepared by solvent blending. ► PVA/graphene systems improved the flame retardancy of the nanocomposites. ► Flame retardation mechanism was explained by SEM, FT-IR and XPS. - Abstract: A novel flame retardant poly(vinyl alcohol) (PVA)/melamine polyphosphate (MPP)–graphene nanocomposite has been prepared by solvent blending. Results from X-ray diffraction (XRD) and transmission electron microscopy (TEM) suggest that an excellent dispersion of exfoliated graphene and MPP in the PVA matrix was achieved. The thermal and flammability properties of the nanocomposite were investigated using thermogravimetry, cone calorimetry, and flammability tests (UL 94 and LOI). The presence of both MPP and graphene in the polymer matrix led to an enhanced thermal stability and significantly reduced flammability for the nanocomposite. PVA composites filled with 10 wt% MPP and 1 wt% graphene (PVA/G1/MPP10) achieved the LOI value of 29.6 and UL-94 V0 grade. Compared to pure PVA, the peak heat release rate (PHRR) of PVA/G1/MPP10 is reduced by about 60%. Meanwhile, the mechanical properties of PVA/G1/MPP10 composites exhibit almost no deterioration compared with pure PVA. The morphology and composition of residues generated after cone calorimeter tests were investigated by scanning electronic microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The SEM images showed the compact and dense intumescent char jammed with graphene sheets was formed for PVA/G1/MPP10 during combustion. The results of XPS confirmed that carbon content of the char for PVA/G1/MPP10 is increased obviously by the combination effect of the flame retardant MPP and graphene.

  20. Relationship Between Milk Adulterated With Melamine and the Appearance of Renal Stones in a Childhood Population: A Review of the Literature of the Cases That Occurred in the People’s Republic of China

    Directory of Open Access Journals (Sweden)

    Jasmina Bordón-González

    2014-05-01

    Full Text Available Introduction: Melamine is a chemical substance used in the production of resins. When melamine is added to milk, nitrogen concentration increases, which suggest an increase the amount of false proteins and consequently causing kidney diseases in some population subgroups. The objective of this study is to document the possible connection in between adulterated industrial milk with melamine and the appearance of kidney stones in children under 12 years old by reviewing cases occurred in the People’s Republic of China.Material and methods: A literature review was carried out on articles published on dated between 2005-2010, and an extensive analysis was made on the results found.Results: A total of 20 articles were reviewed, of which 11 met the criteria for inclusion, There were 9 cross-sectional studies, one follow-up study and a case-control study. Four studies calculated odds ratio (OR in their analysis to evaluate the relative risk of having stones in those children exposed to melamine formula. In the case-control study, children exposed to melamine formula were 5.17 times as likely to have kidney stones as children exposed to a non-melamine formula (95% confidence interval, 3.28-8.14; P<.001.Conclusions: Melamine adulteration in milk is a preventable public health issue which suggests the establishing of greater control measures and the implementation of food regulations by the food industry and Health and Food Institutions.

  1. The application of Near-Infrared Reflectance Spectroscopy (NIRS) to detect melamine adulteration of soya bean meal.

    Science.gov (United States)

    Haughey, Simon A; Graham, Stewart F; Cancouët, Emmanuelle; Elliott, Christopher T

    2013-02-15

    Soya bean products are used widely in the animal feed industry as a protein based feed ingredient and have been found to be adulterated with melamine. This was highlighted in the Chinese scandal of 2008. Dehulled soya (GM and non-GM), soya hulls and toasted soya were contaminated with melamine and spectra were generated using Near Infrared Reflectance Spectroscopy (NIRS). By applying chemometrics to the spectral data, excellent calibration models and prediction statistics were obtained. The coefficients of determination (R(2)) were found to be 0.89-0.99 depending on the mathematical algorithm used, the data pre-processing applied and the sample type used. The corresponding values for the root mean square error of calibration and prediction were found to be 0.081-0.276% and 0.134-0.368%, respectively, again depending on the chemometric treatment applied to the data and sample type. In addition, adopting a qualitative approach with the spectral data and applying PCA, it was possible to discriminate between the four samples types and also, by generation of Cooman's plots, possible to distinguish between adulterated and non-adulterated samples. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Stacking and Analysis of Melamine in Milk Products with Acetonitrile-Salt Stacking Technique in Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Yu Kong

    2014-01-01

    Full Text Available Melamine was measured in real milk products with capillary electrophoresis (CE based on acetonitrile-salt stacking (ASS method. Real milk samples were deproteinized with acetonitrile at a final concentration of 60% (v/v and then injected hydrodynamically at 50 mBar for 40.0 s. The optimized buffer contains 80.0 mmol/L pH 2.8 phosphates. Melamine could be detected within 20.0 min at +10 kV with a low limit of detection (LOD of 0.03 μmol/L. Satisfactory reproducibility (inter- and intraday RSD% both for migration time and peak area was lower than 5.0% and a wide linearity range of 0.05 μmol/L ~ 10.0 μmol/L were achieved. The proposed method was suitable for routine assay of MEL in real milk samples that was subjected to a simple treatment step.

  3. Modification and evaluation of thermal properties of melamine-formaldehyde/n-eicosane microcapsules for thermo-regulation applications

    International Nuclear Information System (INIS)

    Mohaddes, F.; Islam, S.; Shanks, R.; Fergusson, M.; Wang, L.; Padhye, R.

    2014-01-01

    A modified process to enhance the latent heat of fusion of n-eicosane microcapsules in melamine-formaldehyde shells is suggested for application in textiles. Deviations in melt enthalpy and phase change temperatures were determined for produced microcapsules by differential scanning calorimetry. Thermo-regulation efficiency of eicosane-microcapsule-treated fabrics was evaluated via fitting the Newton cooling law to the experimental data, and a new constant, α, was defined as the thermal delay factor. Scanning electron microscopy images and particle size distribution analysis were consistent and the particle size was found to be between 0.5 and 2.7 μm. Melamine-formaldehyde/n-eicosane microcapsule composition was confirmed using a Fourier transform infrared spectrophotometry. The microcapsules developed showed excellent heat storage capacities, over 162.4 J/g, over melting and crystallisation ranges compared with previous studies undertaken in this field. - Highlights: • Modified eicosane microcapsules with the highest phase change enthalpies were made. • Newton cooling law was fitted to determine thermal delay in PCM-substrates. • Fine microcapsule units with diameters less than 0.5 μm were prepared. • All pliable PCM-substrates can be thermally assessed using thermal logging method

  4. Therapeutic-Ultrasound-Triggered Shape Memory of a Melamine-Enhanced Poly(vinyl alcohol) Physical Hydrogel.

    Science.gov (United States)

    Li, Guo; Yan, Qiang; Xia, Hesheng; Zhao, Yue

    2015-06-10

    Therapeutic-ultrasound-triggered shape memory was demonstrated for the first time with a melamine-enhanced poly(vinyl alcohol) (PVA) physical hydrogel. The addition of a small amount of melamine (up to 1.5 wt %) in PVA results in a strong hydrogel due to the multiple H-bonding between the two constituents. A temporary shape of the hydrogel can be obtained by deformation of the hydrogel (∼65 wt % water) at room temperature, followed by fixation of the deformation by freezing/thawing the hydrogel under strain, which induces crystallization of PVA. We show that the ultrasound delivered by a commercially available device designed for the patient's pain relief could trigger the shape recovery process as a result of ultrasound-induced local heating in the hydrogel that melts the crystallized PVA cross-linking. This hydrogel is thus interesting for potential applications because it combines many desirable properties, being mechanically strong, biocompatible, and self-healable and displaying the shape memory capability triggered by a physiological stimulus.

  5. Highly Sensitive Detection of Melamine Using a One-Step Sample Treatment Combined with a Portable Ag Nanostructure Array SERS Sensor.

    Directory of Open Access Journals (Sweden)

    Jie Cheng

    Full Text Available There is an urgent need for rapid and reliable methods able to detect melamine in animal feed. In this study, a quick, simple, and sensitive method for the determination of melamine content in animal feed was developed using surface-enhanced Raman spectroscopy on fabricated Ag nanorod (AgNR array substrates with a one-step sample extraction procedure. The AgNR array substrates washed by HNO3 solvent (10-7 M and methanol and showed the good stability within 6 months. The Raman shift at △ν = 682 cm-1 was used as the characteristic melamine peak in the calculations. Sufficient linearity was obtained in the 2-200 μg·g-1 range (R2 = 0.926. The limits of detection and quantification were 0.9 and 2 μg·g-1, respectively. The recovery rates were 89.7-93.3%, with coefficients of variation below 2.02%. The method showed good accuracy compared with the tradition GC-MS analysis. This new protocol only need 2 min to fininsh the detection which could be developed for rapid onsite screening of melamine contamination in quality control and market surveillance applications.

  6. Highly Sensitive Detection of Melamine Using a One-Step Sample Treatment Combined with a Portable Ag Nanostructure Array SERS Sensor.

    Science.gov (United States)

    Cheng, Jie; Su, Xiao-Ou; Yao, Yue; Han, Caiqin; Wang, Shi; Zhao, Yiping

    2016-01-01

    There is an urgent need for rapid and reliable methods able to detect melamine in animal feed. In this study, a quick, simple, and sensitive method for the determination of melamine content in animal feed was developed using surface-enhanced Raman spectroscopy on fabricated Ag nanorod (AgNR) array substrates with a one-step sample extraction procedure. The AgNR array substrates washed by HNO3 solvent (10-7 M) and methanol and showed the good stability within 6 months. The Raman shift at △ν = 682 cm-1 was used as the characteristic melamine peak in the calculations. Sufficient linearity was obtained in the 2-200 μg·g-1 range (R2 = 0.926). The limits of detection and quantification were 0.9 and 2 μg·g-1, respectively. The recovery rates were 89.7-93.3%, with coefficients of variation below 2.02%. The method showed good accuracy compared with the tradition GC-MS analysis. This new protocol only need 2 min to fininsh the detection which could be developed for rapid onsite screening of melamine contamination in quality control and market surveillance applications.

  7. Dual protection of wood surface treated with melamine-modified urea-formaldehyde resin mixed with ammonium polyphosphate against both fire and decay

    Science.gov (United States)

    Xing-xia Ma; Grant T. Kirker; Ming-liang Jiang; Yu-zhang Wu

    2016-01-01

    Surface coatings of melamine-modified urea-formaldehyde resins (MUFs) containing ammonium polyphosphate (APP) have been shown to significantly improve the fire retardancy of wood by prolonging the ignition time and reducing the heat release rate, total heat released, and mass loss rate. Dual protection of wood against both decay and fire has been proposed for remedial...

  8. Risk factors for acute kidney injury (AKI) in infants with melamine-associated urolithiasis and follow-up: a multi-center retrospective analysis.

    Science.gov (United States)

    He, Qiqi; Yue, Zhongjin; Tang, XiaoShuang; Chang, Hong; Wang, Wei; Shi, Wei; Wang, Zhiping; Shang, Panfeng

    2014-10-01

    Abstract An epidemic of urinary tract stones was noted among infants in China, 2008. This event was believed to be associated with consumption melamine-contaminated powdered formula. The patients with symptoms and clinical manifests had already been analyzed in our previous studies. In this study, our aim is to investigate the risk factors of melamine-associated acute kidney injury (AKI) and the potential relationship toward children growth in our five years follow-up. A total of 619 infants with melamine-associated urolithiasis were admitted into 20 different hospitals in the Gansu province, China. All clinical data were divided into AKI and control groups according to the occurrence of AKI. Univariate and multivariate analyses were performed with a logistic regression model to assess the independent risk factors of AKI. Logistic regression analysis revealed that the odds ratio (OR) of AKI was 19.62 in the group of infants who consumed Sanlu® milk powdered infant milk formula. A higher prevalence of AKI was observed in infants age of 6-11 months (OR: 9.59, p Sanlu® milk powdered infant formula), age (6-17 months) and symptoms of URTI, diarrhea, dehydration or fever were risk factors of AKI in infants with melamine-associated urolithiasis.

  9. Calibration model maintenance in melamine resin production: Integrating drift detection, smart sample selection and model adaptation.

    Science.gov (United States)

    Nikzad-Langerodi, Ramin; Lughofer, Edwin; Cernuda, Carlos; Reischer, Thomas; Kantner, Wolfgang; Pawliczek, Marcin; Brandstetter, Markus

    2018-07-12

    The physico-chemical properties of Melamine Formaldehyde (MF) based thermosets are largely influenced by the degree of polymerization (DP) in the underlying resin. On-line supervision of the turbidity point by means of vibrational spectroscopy has recently emerged as a promising technique to monitor the DP of MF resins. However, spectroscopic determination of the DP relies on chemometric models, which are usually sensitive to drifts caused by instrumental and/or sample-associated changes occurring over time. In order to detect the time point when drifts start causing prediction bias, we here explore a universal drift detector based on a faded version of the Page-Hinkley (PH) statistic, which we test in three data streams from an industrial MF resin production process. We employ committee disagreement (CD), computed as the variance of model predictions from an ensemble of partial least squares (PLS) models, as a measure for sample-wise prediction uncertainty and use the PH statistic to detect changes in this quantity. We further explore supervised and unsupervised strategies for (semi-)automatic model adaptation upon detection of a drift. For the former, manual reference measurements are requested whenever statistical thresholds on Hotelling's T 2 and/or Q-Residuals are violated. Models are subsequently re-calibrated using weighted partial least squares in order to increase the influence of newer samples, which increases the flexibility when adapting to new (drifted) states. Unsupervised model adaptation is carried out exploiting the dual antecedent-consequent structure of a recently developed fuzzy systems variant of PLS termed FLEXFIS-PLS. In particular, antecedent parts are updated while maintaining the internal structure of the local linear predictors (i.e. the consequents). We found improved drift detection capability of the CD compared to Hotelling's T 2 and Q-Residuals when used in combination with the proposed PH test. Furthermore, we found that active

  10. From melamine sponge towards 3D sulfur-doping carbon nitride as metal-free electrocatalysts for oxygen reduction reaction

    Science.gov (United States)

    Xu, Jingjing; Li, Bin; Li, Songmei; Liu, Jianhua

    2017-07-01

    Development of new and efficient metal-free electrocatalysts for replacing Pt to improve the sluggish kinetics of oxygen reduction reaction (ORR) is of great importance to emerging renewable energy technologies such as metal-air batteries and polymer electrolyte fuel cells. Herein, 3D sulfur-doping carbon nitride (S-CN) as a novel metal-free ORR electrocatalyst was synthesized by exploiting commercial melamine sponge as raw material. The sulfur atoms were doping on CN networks uniformly through numerous S-C bonds which can provide additional active sites. And it was found that the S-CN exhibited high catalytic activity for ORR in term of more positive onset potential, higher electron transfer number and higher cathodic density. This work provides a novel choice of metal-free ORR electrocatalysts and highlights the importance of sulfur-doping CN in metal-free ORR electrocatalysts.

  11. Three dimensional nitrogen-doped graphene aerogels functionalized with melamine for multifunctional applications in supercapacitors and adsorption

    Science.gov (United States)

    Xing, Ling-Bao; Hou, Shu-Fen; Zhou, Jin; Zhang, Jing-Li; Si, Weijiang; Dong, Yunhui; Zhuo, Shuping

    2015-10-01

    In present work, we demonstrate an efficient and facile strategy to fabricate three-dimensional (3D) nitrogen-doped graphene aerogels (NGAs) based on melamine, which serves as reducing and functionalizing agent of graphene oxide (GO) in an aqueous medium with ammonia. Benefiting from well-defined and cross-linked 3D porous network architectures, the supercapacitor based on the NGAs exhibited a high specific capacitance of 170.5 F g-1 at 0.2 A g-1, and this capacitance also showed good electrochemical stability and a high degree of reversibility in the repetitive charge/discharge cycling test. More interestingly, the prepared NGAs further exhibited high adsorption capacities and high recycling performance toward several metal ions such as Pb2+, Cu2+ and Cd2+. Moreover, the hydrophobic carbonized nitrogen-doped graphene aerogels (CNGAs) showed outstanding adsorption and recycling performance for the removal of various oils and organic solvents.

  12. Robust and thermal-enhanced melamine formaldehyde–modified glassfiber composite separator for high-performance lithium batteries

    International Nuclear Information System (INIS)

    Wang, Qingfu

    2015-01-01

    The composite separator of melamine formaldehyde resin coated glass microfiber membrane was prepared for high performance lithium ion battery. It was demonstrated that this composite membranes possessed a significantly enhanced tensile strength and a modified porous structure, compared with that of pristine glass microfiber membrane. Impressive improvements in thermo-stability, with no shrinkage at an elevated temperature of 150 °C. Meanwhile, such composite membrane presented a favorable wettability and remarkable electrochemical stability in commercial liquid electrolyte. In addition, the battery test results of LiCoO 2 /graphite cells proved the composite membrane was a promising separator with an improved cycling performance and rate capability. The cycle performance of LiFePO 4 /Li cells at the elevated temperature of 120 °C demonstrated their excellent safety characteristic as separator in LIB, indicating the composite membrane was a potential separator candidate for high power battery.

  13. Preparation of carbon dioxide adsorbents from the chemical activation of urea-formaldehyde and melamine-formaldehyde resins

    Energy Technology Data Exchange (ETDEWEB)

    T.C. Drage; A. Arenillas; K.M. Smith; C. Pevida; S. Piippo; C.E. Snape [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2007-01-15

    Adsorption is considered to be one of the more promising technologies for the capture of CO{sub 2} from flue gases. In general, nitrogen enrichment is reported to be effective in enhancing the specific adsorbent-adsorbate interaction for CO{sub 2}. Nitrogen enriched carbons were produced from urea-formaldehyde and melamine-formaldehyde resins polymerised in the presence of K{sub 2}CO{sub 3} as a chemical activation agent, with activation undertaken over a range of temperatures. CO{sub 2} adsorption capacity was determined to be dependent upon both textural properties and more importantly nitrogen functionality. Adsorbents capable of capturing above 8 wt.% CO{sub 2} at 25{sup o}C were produced from the chemical activation of urea-formaldehyde resin at 500{sup o}C. Chemical activation seems to produce more effective adsorbents than CO{sub 2} activation. 29 refs., 4 figs., 3 tabs.

  14. Trace residue analysis of dicyandiamide, cyromazine, and melamine in animal tissue foods by ultra-performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    Xusheng Ge

    2016-07-01

    Full Text Available An effective sample preparation procedure using an accelerated solvent extraction (ASE procedure, followed by cleaning with melamine molecularly imprinted polymers solid-phase extraction (MISPE was developed. A novel and highly sensitive ASE–MISPE–ultra-performance liquid chromatography (UPLC method was developed for effective separation and simultaneous determination of dicyandiamide (DCD, cyromazine (CYR, and melamine (MEL in complex animal tissue foods. Under optimized conditions, good linearity was achieved with a correlation coefficient (r of 0.9999 in the range of at least two orders of magnitude. The limit of quantification of the method was 1.7 μg/kg, 5.0 μg/kg, and 3.2 μg/kg for DCD, MEL, and CYR, which was three orders of magnitude smaller than the maximum residue limits (MRLs. The intra- and inter-day precisions (in terms of the relative standard deviation, RSD of the three analytes were in the range of 1.7–3.1% and 3.1–6.3%, respectively. The average recoveries of analytes from blank chicken, beef, mutton, pork, and pig liver samples spiked with the three levels varied from 91.2% to 107% with RSD of 1.7–8.3% for DCD, 89.0–104% with RSD of 2.1–6.1% for CYR, and 94.8–105% with RSD of 1.1–6.6% for MEL. The proposed method has the characteristics of speed, sensitivity, and accuracy, and can be used for the routine determination of DCD, CYR, and MEL at the μg/kg level in complex animal tissue foods.

  15. Determination of spatial distribution of melamine-cyanuric acid crystals in rat kidney tissue by histology and imaging matrix-assisted laser desorption/ionization quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Kim, Chae-Wook; Yun, Jun-Won; Bae, Il-Hong; Lee, Joon-Seok; Kang, Hyun-Jin; Joo, Kyung-Mi; Jeong, Hye-Jin; Chung, Jin-Ho; Park, Young-Ho; Lim, Kyung-Min

    2010-01-01

    After the outbreak of acute renal failure associated with melamine-contaminated pet food, many attempts have been made to uncover the mechanism underlying the renal toxicity caused by melamine and melamine-related compounds. Using rat models, we investigated the renal crystal formation following the ingestion of a melamine-cyanuric acid mixture (M+CA, 1:1) to gain insight into the M+CA-induced renal toxicity. M+CA did not induce toxicity in precision-cut kidney slices, suggesting that M+CA does not have a direct nephrotoxicity. On the contrary, oral administration of M+CA for 3 days induced nephrotoxicity as determined by increased serum blood urea nitrogen and creatinine, reduced creatinine clearance, and enlarged kidneys in the animals treated with 50 mg/kg M+CA (melamine, 25 mg/kg, and cyanuric acid, 25 mg/kg; 2 of 10 animals) and 100 mg/kg M+CA (9 of 9 animals). While urine crystals were found in all animals treated with M+CA (25-100 mg/kg), histological examination revealed that renal crystals could be observed only in the kidneys of animals showing signs of nephrotoxicity. Remarkably, at 50 mg/kg M+CA, crystals were observed mainly in the medulla region of the kidney, while at 100 mg/kg, crystals were disseminated throughout the cortex and medulla regions. To further investigate the crystal formation by M+CA, matrix-assisted laser desorption/ionization quadrupole time-of-flight (MALDI-Q-TOF) imaging mass spectrometry detecting melamine distribution through monitoring the product ion (m/z 85, M + H) from melamine (m/z 127, M + H) was developed to directly obtain the image of melamine distribution in the kidney. The distribution image of melamine in kidney tissue confirmed that dense points of melamine were located only in the medulla region at 50 mg/kg M+CA, while at 100 mg/kg, they were disseminated widely from the cortex to medulla. These results demonstrated that M+CA ingestion could lead to crystal formation in kidney tubules along the osmotic gradient and

  16. Determination of melamine in milk-based products and other food and beverage products by ion-pair liquid chromatography-tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, Maria; Sancho, Juan V. [Research Institute for Pesticides and Water, University Jaume I, E-12071, Castellon (Spain); Hernandez, Felix, E-mail: felix.hernandez@qfa.uji.es [Research Institute for Pesticides and Water, University Jaume I, E-12071, Castellon (Spain)

    2009-09-01

    This paper describes a fast method for the sensitive and selective determination of melamine in a wide range of food matrices, including several milk-based products. The method involves an extraction with aqueous 1% trichloroacetic acid before the injection of the 10-fold diluted extract into the liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS) system, using labelled melamine as the internal standard. As melamine is present in aqueous media in the cationic form, the chromatographic separation in reversed-phase LC requires the use of anionic ion-pair reagents, such as tridecafluoroheptanoic acid (THFA). This allows a satisfactory chromatographic retention and peak shape in all the types of food samples investigated. The method has been validated in six food matrices (biscuit, dry pasta and four milk-based products) by means of recovery experiments in samples spiked at 1 and 5 mg kg{sup -1}. Average recoveries (n = 5) ranged from 77% to 100%, with excellent precision (RSDs lower than 5%) and limits of detection between 0.01 and 0.1 mg kg{sup -1}. In addition, accuracy and robustness of the method was proven in different soya-based matrices by means of quality control (QC) sample analysis. QC recoveries, at 1 and 2.5 mg kg{sup -1}, were satisfactory, ranging from 79% to 110%. The method developed in this work has been applied to the determination of melamine in different types of food samples. All detections were confirmed by acquiring two MS/MS transitions (127 > 85 for quantification; 127 > 68 for confirmation) and comparing their ion intensity ratio with that of reference standards. Accuracy of the method was also assessed by applying it to a milk-based product and a baking mix material as part of an EU proficiency test, in which highly satisfactory results were obtained.

  17. Determination of melamine in milk-based products and other food and beverage products by ion-pair liquid chromatography-tandem mass spectrometry

    International Nuclear Information System (INIS)

    Ibanez, Maria; Sancho, Juan V.; Hernandez, Felix

    2009-01-01

    This paper describes a fast method for the sensitive and selective determination of melamine in a wide range of food matrices, including several milk-based products. The method involves an extraction with aqueous 1% trichloroacetic acid before the injection of the 10-fold diluted extract into the liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS) system, using labelled melamine as the internal standard. As melamine is present in aqueous media in the cationic form, the chromatographic separation in reversed-phase LC requires the use of anionic ion-pair reagents, such as tridecafluoroheptanoic acid (THFA). This allows a satisfactory chromatographic retention and peak shape in all the types of food samples investigated. The method has been validated in six food matrices (biscuit, dry pasta and four milk-based products) by means of recovery experiments in samples spiked at 1 and 5 mg kg -1 . Average recoveries (n = 5) ranged from 77% to 100%, with excellent precision (RSDs lower than 5%) and limits of detection between 0.01 and 0.1 mg kg -1 . In addition, accuracy and robustness of the method was proven in different soya-based matrices by means of quality control (QC) sample analysis. QC recoveries, at 1 and 2.5 mg kg -1 , were satisfactory, ranging from 79% to 110%. The method developed in this work has been applied to the determination of melamine in different types of food samples. All detections were confirmed by acquiring two MS/MS transitions (127 > 85 for quantification; 127 > 68 for confirmation) and comparing their ion intensity ratio with that of reference standards. Accuracy of the method was also assessed by applying it to a milk-based product and a baking mix material as part of an EU proficiency test, in which highly satisfactory results were obtained.

  18. Fabrication of micro-dot arrays and micro-walls of acrylic acid/melamine resin on aluminum by AFM probe processing and electrophoretic coating

    International Nuclear Information System (INIS)

    Kurokawa, S.; Kikuchi, T.; Sakairi, M.; Takahashi, H.

    2008-01-01

    Micro-dot arrays and micro-walls of acrylic acid/melamine resin were fabricated on aluminum by anodizing, atomic force microscope (AFM) probe processing, and electrophoretic deposition. Barrier type anodic oxide films of 15 nm thickness were formed on aluminum and then the specimen was scratched with an AFM probe in a solution containing acrylic acid/melamine resin nano-particles to remove the anodic oxide film locally. After scratching, the specimen was anodically polarized to deposit acrylic acid/melamine resin electrophoretically at the film-removed area. The resin deposited on the specimen was finally cured by heating. It was found that scratching with the AFM probe on open circuit leads to the contamination of the probe with resin, due to positive shifts in the potential during scratching. Scratching of the specimen under potentiostatic conditions at -1.0 V, however, resulted in successful resin deposition at the film-removed area without probe contamination. The rate of resin deposition increased as the specimen potential becomes more positive during electrophoretic deposition. Arrays of resin dots with a few to several tens μm diameter and 100-1000 nm height, and resin walls with 100-1000 nm height and 1 μm width were obtained on specimens by successive anodizing, probe processing, and electrophoretic deposition

  19. Sample Preparation of Eggs from Laying Hens Using QuEChERS Dispersive Extraction for the Simultaneous Determination of Melamine and Cyromazine Residues by HPLC-DAD

    Directory of Open Access Journals (Sweden)

    Niki Tsartsali

    2015-01-01

    Full Text Available A quick, easy, cheap, effective, rugged, and safe (QuEChERS dispersive extraction method is proposed herein for the isolation and cleanup of melamine and cyromazine from chicken egg yolk. Analytes are determined by high-performance liquid chromatography using photodiode array detector after separation on a LiChroCART® (250 × 4 mm–-LiChrospher® RP-8e, 5 µm analytical column using a mobile phase of 0.1% trifluoracetic acid and methanol (80:20 v/v delivered isocratically at a flow rate of 1 mL/minute. Extraction of isolated compounds was achieved by methanol and acetonitrile mixture (1:1 v/v. Recovery rates ranged between 74.5% and 115.8%. The method was validated in terms of 657/2002/EC decision. The within-laboratory reproducibility, expressed as a relative standard deviation, was <11%. Decision limits (CCalfa were 2.56 mg/kg for melamine and 0.22 mg/kg -1 for cyromazine, and the corresponding results for detection capability (CCbeta were 2.8 mg/kg for melamine and 0.24 mg/kg for cyromazine. Ruggedness was estimated according to the Youden approach studying egg yolk mass, sorbent mass, centrifugation time, organic solvents volume, evaporation temperature, and vortex time.

  20. Fabrication of micro-dot arrays and micro-walls of acrylic acid/melamine resin on aluminum by AFM probe processing and electrophoretic coating

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, S.; Kikuchi, T.; Sakairi, M. [Graduate School of Engineering, Hokkaido University, N-13, W-8, Kita-Ku, Sapporo 060-8628 (Japan); Takahashi, H. [Graduate School of Engineering, Hokkaido University, N-13, W-8, Kita-Ku, Sapporo 060-8628 (Japan)], E-mail: takahasi@elechem1-mc.eng.hokudai.ac.jp

    2008-11-30

    Micro-dot arrays and micro-walls of acrylic acid/melamine resin were fabricated on aluminum by anodizing, atomic force microscope (AFM) probe processing, and electrophoretic deposition. Barrier type anodic oxide films of 15 nm thickness were formed on aluminum and then the specimen was scratched with an AFM probe in a solution containing acrylic acid/melamine resin nano-particles to remove the anodic oxide film locally. After scratching, the specimen was anodically polarized to deposit acrylic acid/melamine resin electrophoretically at the film-removed area. The resin deposited on the specimen was finally cured by heating. It was found that scratching with the AFM probe on open circuit leads to the contamination of the probe with resin, due to positive shifts in the potential during scratching. Scratching of the specimen under potentiostatic conditions at -1.0 V, however, resulted in successful resin deposition at the film-removed area without probe contamination. The rate of resin deposition increased as the specimen potential becomes more positive during electrophoretic deposition. Arrays of resin dots with a few to several tens {mu}m diameter and 100-1000 nm height, and resin walls with 100-1000 nm height and 1 {mu}m width were obtained on specimens by successive anodizing, probe processing, and electrophoretic deposition.

  1. Efficient fluorescence energy transfer system between CdTe-doped silica nanoparticles and gold nanoparticles for turn-on fluorescence detection of melamine.

    Science.gov (United States)

    Gao, Feng; Ye, Qingqing; Cui, Peng; Zhang, Lu

    2012-05-09

    We here report an efficient and enhanced fluorescence energy transfer system between confined quantum dots (QDs) by entrapping CdTe into the mesoporous silica shell (CdTe@SiO₂) as donors and gold nanoparticles (AuNPs) as acceptors. At pH 6.50, the CdTe@SiO₂-AuNPs assemblies coalesce to form larger clusters due to charge neutralization, leading to the fluorescence quenching of CdTe@SiO₂ as a result of energy transfer. As compared with the energy transfer system between unconfined CdTe and AuNPs, the maximum fluorescence quenching efficiency of the proposed system is improved by about 27.0%, and the quenching constant, K(sv), is increased by about 2.4-fold. The enhanced quenching effect largely turns off the fluorescence of CdTe@SiO₂ and provides an optimal "off-state" for sensitive "turn-on" assay. In the present study, upon addition of melamine, the weak fluorescence system of CdTe@SiO₂-AuNPs is enhanced due to the strong interactions between the amino group of melamine and the gold nanoparticles via covalent bond, leading to the release of AuNPs from the surfaces of CdTe@SiO₂; thus, its fluorescence is restored. A "turn-on" fluorimetric method for the detection of melamine is proposed based on the restored fluorescence of the system. Under the optimal conditions, the fluorescence enhanced efficiency shows a linear function against the melamine concentrations ranging from 7.5 × 10⁻⁹ to 3.5 × 10⁻⁷ M (i.e., 1.0-44 ppb). The analytical sensitivity is improved by about 50%, and the detection limit is decreased by 5.0-fold, as compared with the analytical results using the CdTe-AuNPs system. Moreover, the proposed method was successfully applied to the determination of melamine in real samples with excellent recoveries in the range from 97.4 to 104.1%. Such a fluorescence energy transfer system between confined QDs and AuNPs may pave a new way for designing chemo/biosensing.

  2. Nitrogen and Fluorine co-doped carbon catalyst with high oxygen reduction performance, prepared by pyrolyzing a mixture of melamine and PTFE

    International Nuclear Information System (INIS)

    Peng, Hongliang; Liu, Fangfang; Qiao, Xiaochang; Xiong, Ziang; Li, Xiuhua; Shu, Ting; Liao, Shijun

    2015-01-01

    Graphical abstract: A novel N and F co-doped metal-free doped carbon catalyst with three dimensional vesicles structures and ultra thin walls are prepared by pyrolyzing the mixture of melamine and PTFE. The catalyst has high N and F contents (13 and 6 at.%), and exhibits high ORR activity, high stability, and high limitation current density in both alkaline and acid medium. - Highlights: • N and F co-doped carbon catalyst was derived from the mixture of PTFE and melamine. • The N and F contents of the catalyst are up to 13 and 6 at.%, respectively. • The catalyst has three dimensional vesicles structure with ultra thin walls. • ORR activity of the catalyst is superior to that of Pt/C catalyst in alkaline medium. - Abstract: A novel nitrogen and fluorine co-doped carbon catalyst (C-Mela-PTFE) is prepared by pyrolyzing a mixture of melamine and polytetrafluoroethylene (PTFE), the catalyst has a three-dimensional vesicular structure with ultrathin wall, and exhibits excellent ORR performance in both alkaline and acidic mediums. In an alkaline medium, the catalyst exhibits superior ORR activity to that of commercial Pt/C catalyst. Notably, the ORR activity of the catalyst is just slightly lower than that of Pt/C catalyst in acidic medium. It is interesting that the ORR limiting current density of our C-Mela-PTFE catalyst is much higher than that of Pt/C catalyst. The effects of the melamine/PTFE ratio and the pyrolysis temperature on the catalyst's ORR performance are investigated. The optimal melamine/PTFE ratio by weight is 1:1.5, and the optimal pyrolysis temperature is 950 °C. The catalyst samples are characterized by XRD, SEM/TEM, Raman analysis, and XPS, the results reveal the ultra-thin-walled vesicular structure, high surface area and porosity, and high doping amounts of N and F of the catalyst. For the optimal sample, the N and F contents are up to 13 and 6 at.%, respectively, the proportion of pyridinic N is up to 45 at.% according to the

  3. Flame-Retardant and Thermal Degradation Mechanism of Caged Phosphate Charring Agent with Melamine Pyrophosphate for Polypropylene

    Directory of Open Access Journals (Sweden)

    Xuejun Lai

    2015-01-01

    Full Text Available An efficient caged phosphate charring agent named PEPA was synthesized and combined with melamine pyrophosphate (MPP to flame-retard polypropylene (PP. The effects of MPP/PEPA on the flame retardancy and thermal degradation of PP were investigated by limiting oxygen index (LOI, vertical burning test (UL-94, cone calorimetric test (CCT, and thermogravimetric analysis (TGA. It was found that PEPA showed an outstanding synergistic effect with MPP in flame retardant PP. When the content of PEPA was 13.3 wt% and MPP was 6.7 wt%, the LOI value of the flame retardant PP was 33.0% and the UL-94 test was classed as a V-0 rating. Meanwhile, the peak heat release rate (PHRR, average heat release rate (AV-HRR, and average mass loss rate (AV-MLR of the mixture were significantly reduced. The flame-retardant and thermal degradation mechanism of MPP/PEPA was investigated by TGA, Fourier transform infrared spectroscopy (FTIR, TG-FTIR, and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDXS. It revealed that MPP/PEPA could generate the triazine oligomer and phosphorus-containing compound radicals which changed the thermal degradation behavior of PP. Meanwhile, a compact and thermostable intumescent char was formed and covered on the matrix surface to prevent PP from degrading and burning.

  4. Surface tectonics of nanoporous networks of melamine-capped molecular building blocks formed through interface Schiff-base reactions.

    Science.gov (United States)

    Liu, Xuan-He; Wang, Dong; Wan, Li-Jun

    2013-10-01

    Control over the assembly of molecules on a surface is of great importance for the fabrication of molecule-based miniature devices. Melamine (MA) and molecules with terminal MA units are promising candidates for supramolecular interfacial packing patterning, owing to their multiple hydrogen-bonding sites. Herein, we report the formation of self-assembled structures of MA-capped molecules through a simple on-surface synthetic route. MA terminal groups were successfully fabricated onto rigid molecular cores with 2-fold and 3-fold symmetry through interfacial Schiff-base reactions between MA and aldehyde groups. Sub-molecular scanning tunneling microscopy (STM) imaging of the resultant adlayer revealed the formation of nanoporous networks. Detailed structural analysis indicated that strong hydrogen-bonding interactions between the MA groups persistently drove the formation of nanoporous networks. Herein, we demonstrate that functional groups with strong hydrogen-bond-formation ability are promising building blocks for the guided assembly of nanoporous networks and other hierarchical 2D assemblies. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effects of cryogenic temperature on the mechanical and failure characteristics of melamine-urea-formaldehyde adhesive plywood

    Science.gov (United States)

    Kim, Jeong-Hyeon; Choi, Sung-Woong; Park, Doo-Hwan; Park, Seong-Bo; Kim, Seul-Kee; Park, Kwang-Jun; Lee, Jae-Myung

    2018-04-01

    The present study investigates the applicability of melamine-urea-formaldehyde (MUF) resin plywood in cryogenic applications, including liquefied natural gas (LNG) carrier insulation systems. Phenolic-formaldehyde (PF) resin plywood has been extensively used as a structural material in industrial applications. However, many shortcomings of PF resin plywood have been reported, and replacement of PF resin plywood with a new material is necessary to resolve these problems. MUF resin plywood has the advantages of short fabrication time, low veneer cost, and economic feasibility compared to PF resin plywood. However, the mechanical and failure characteristics of MUF resin plywood have not yet been investigated at low temperature ranges. For this reason, adapting MUF resin plywood for cryogenic applications has been difficult, despite the many strong points of the material in engineering aspects. In this study, the effects of cryogenic temperature and thermal treatment on the mechanical characteristics of MUF resin plywood are investigated. The performance of MUF resin plywood is compared with that of PF resin plywood to verify the applicability of the material for use as a structural material in LNG insulation systems. The results demonstrate that MUF resin plywood has mechanical properties comparable with those of PF resin plywood, even at cryogenic conditions.

  6. Simple synthesis of porous melamine-formaldehyde resins by low temperature solvothermal method and its CO2 adsorption properties

    Directory of Open Access Journals (Sweden)

    F. Yin

    2017-11-01

    Full Text Available A simple and environmentally-friendly approach for the preparation of porous melamine-formaldehyde resins (PMFRs was developed by using low-boiling-point solvents, such as water, as pore-forming agent. With using dimethyl sulfoxide (DMSO and low-boiling solvents cosolvent method, PMFRs with a high specific surface area and well-defined pore structure can be synthesized at a low reaction temperature of 140 °C for a short reaction duration in 20 hours, which can replace the conventional methods that use dimethyl sulfoxide (DMSO as reaction medium and require 3 days at 170 °C to achieve similar surface area. When loaded with polyethylenimine (PEI, the PMFR-PEI-30% showed good CO2 adsorption performance with a capacity of up to 2.89 mmol/g at 30 °C. These results bring new perspectives for the development of lowcost and environmentally-friendly synthetic methods for porous materials, which can boost their widespread applications.

  7. A Fast and Cost-Effective Detection of Melamine by Surface Enhanced Raman Spectroscopy Using a Novel Hydrogen Bonding-Assisted Supramolecular Matrix and Gold-Coated Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jing Neng

    2017-05-01

    Full Text Available A fast and cost-effective melamine detection approach has been developed based on surface enhanced Raman spectroscopy (SERS using a novel hydrogen bonding-assisted supramolecular matrix. The detection utilizes Fe3O4/Au magnetic nanoparticles coated with 5-aminoorotic acid (AOA as a SERS active substrate (Fe3O4/Au–AOA, and Rhodamine B (RhB conjugated AOA as a Raman reporter (AOA–RhB. Upon mixing the reagents with melamine, a supramolecular complex [Fe3O4/Au–AOA•••melamine•••AOA–RhB] was formed due to the strong multiple hydrogen bonding interactions between AOA and melamine. The complex was separated and concentrated to a pellet by an external magnet and used as a supramolecular matrix for the melamine detection. Laser excitation of the complex pellet produced a strong SERS signal diagnostic for RhB. The logarithmic intensity of the characteristic RhB peaks was found to be proportional to the concentration of melamine with a limit of detection of 2.5 µg/mL and a detection linearity range of 2.5~15.0 µg/mL in milk. As Fe3O4 nanoparticles and AOA are thousands of times less expensive than the monoclonal antibody used in a traditional sandwich immunoassay, the current assay drastically cut down the cost of melamine detection. The current approach affords promise as a biosensor platform that cuts down sample pre-treatment steps and measurement expense.

  8. TiO2/Halloysite Composites Codoped with Carbon and Nitrogen from Melamine and Their Enhanced Solar-Light-Driven Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Pengcheng Yao

    2015-01-01

    Full Text Available Carbon (C and nitrogen (N codoped anatase TiO2/amorphous halloysite nanotubes (C+N-TiO2/HNTs were fabricated using melamine as C and N source. The samples prepared by different weight ratios of melamine and TiO2 were investigated by X-ray diffraction (XRD and UV-vis diffuse reflectance spectrometer. It is shown that the doping amounts of C and N could influence the photocatalytic performance of as-prepared composites. When the weight ratio of melamine/TiO2 is 4.5, the C+N-TiO2/HNTs exhibited the best photocatalytic degradation efficiency of methyl blue (MB under solar light irradiation. The obtained C+N-TiO2/HNTs were characterized by transmission electron microscopy (TEM, N2 adsorption-desorption isotherm (BET, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared spectrum (FT-IR. The results showed that the aggregation was effectively reduced, and TiO2 nanoparticles could be uniformly deposited on the surface of HNTs. This leads to an increase of their specific surface area. XPS and FT-IR analyses indicated TiO2 particles were doped successfully with C and N via the linkage of the Ti–O–N, O–Ti–N, and Ti–O–C. Photocatalytic experiments showed that C+N-TiO2/HNTs had higher degradation efficiency of MB than TiO2/HNTs. This makes the composite a potential candidate for the photocatalytic wastewater treatment.

  9. One-pot synthesis of copper-doped graphitic carbon nitride nanosheet by heating Cu–melamine supramolecular network and its enhanced visible-light-driven photocatalysis

    International Nuclear Information System (INIS)

    Gao, Junkuo; Wang, Jiangpeng; Qian, Xuefeng; Dong, Yingying; Xu, Hui; Song, Ruijing; Yan, Chenfeng; Zhu, Hangcheng; Zhong, Qiwei

    2015-01-01

    Here we report a novel synthetic pathway for preparation of Cu-doped g-C 3 N 4 (Cu-g-C 3 N 4 ) with nanosheet morphology by using a two dimensional Cu–melamine supramolecular network as both sacrificial template and precursor. The specific surface area of Cu-g-C 3 N 4 is 40.86 m 2 g −1 , which is more than 7 times larger than that of pure g-C 3 N 4 . Cu-g-C 3 N 4 showed strong optical absorption in the visible-light region and expanded the absorption to the near-infrared region. The uniform nanosheet morphology, higher surface area and strong visible-light absorption have enabled Cu-g-C 3 N 4 exhibiting enhanced visible light photocatalytic activity for the photo-degradation of methylene blue (MB). The results indicate that metal–melamine supramolecular network can be promising precursors for the one step preparation of efficient metal-doped g-C 3 N 4 photocatalysts. - Graphical abstract: Cu-doped g-C 3 N 4 (Cu-g-C 3 N 4 ) with nanosheet morphology was fabricated via a simple one step preparation by using a two dimensional Cu–melamine supra-molecular network as both sacrificial template and precursor. - Highlights: • Cu-doped g-C 3 N 4 (Cu-g-C 3 N 4 ) with nanosheet morphology was prepared. • Cu-g-C 3 N 4 showed strong optical absorption in the visible-light region. • Cu-g-C 3 N 4 exhibits enhanced visible light photocatalytic activity

  10. Determination of melamine in soil samples using surfactant-enhanced hollow fiber liquid phase microextraction followed by HPLC–UV using experimental design

    Directory of Open Access Journals (Sweden)

    Ali Sarafraz Yazdi

    2015-11-01

    Full Text Available Surfactant-enhanced hollow fiber liquid phase (SE-HF-LPME microextraction was applied for the extraction of melamine in conjunction with high performance liquid chromatography with UV detection (HPLC–UV. Sodium dodecyl sulfate (SDS was added firstly to the sample solution at pH 1.9 to form hydrophobic ion-pair with protonated melamine. Then the protonated melamine–dodecyl sulfate ion-pair (Mel–DS was extracted from aqueous phase into organic phase immobilized in the pores and lumen of the hollow fiber. After extraction, the analyte-enriched 1-octanol was withdrawn into the syringe and injected into the HPLC. Preliminary, one variable at a time method was applied to select the type of extraction solvent. Then, in screening step, the other variables that may affect the extraction efficiency of the analyte were studied using a fractional factorial design. In the next step, a central composite design was applied for optimization of the significant factors having positive effects on extraction efficiency. The optimum operational conditions included: sample volume, 5 mL; surfactant concentration, 1.5 mM; pH 1.9; stirring rate, 1500 rpm and extraction time, 60 min. Using the optimum conditions, the method was analytically evaluated. The detection limit, relative standard deviation and linear range were 0.005 μg mL−1, 4.0% (3 μg mL−1, n = 5 and 0.01–8 μg mL−1, respectively. The performance of the procedure in extraction of melamine from the soil samples was good according to its relative recoveries in different spiking levels (95–109%.

  11. Explosive decomposition of a melamine-cyanuric acid supramolecular assembly for fabricating defect-rich nitrogen-doped carbon nanotubes with significantly promoted catalysis.

    Science.gov (United States)

    Zhao, Zhongkui; Dai, Yitao; Ge, Guifang; Wang, Guiru

    2015-05-26

    A facile and scalable approach for fabricating structural defect-rich nitrogen-doped carbon nanotubes (MCSA-CNTs) through explosive decomposition of melamine-cyanuric acid supramolecular assembly is presented. In comparison to pristine carbon nanotubes, MCSA-CNT exhibits significantly enhanced catalytic performance in oxidant- and steam-free direct dehydrogenation of ethylbenzene, demonstrating the potential for metal-free clean and energy-saving styrene production. This finding also opens a new horizon for preparing highly-efficient carbocatalysts rich in structural defect sites for diverse transformations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Melamine derivatives as effective corrosion inhibitors for mild steel in acidic solution: Chemical, electrochemical, surface and DFT studies

    Science.gov (United States)

    Verma, Chandrabhan; Haque, J.; Ebenso, Eno E.; Quraishi, M. A.

    2018-06-01

    In present study two condensation products of melamine (triazine) and glyoxal namely, 2,2-bis(4,6-diamino-1,3,5-triazin-2-ylamino)acetaldehyde (ME-1) and (N2,N2‧E,N2,N2‧E)-N2,N2‧-(ethane-1,2-diylidene)-bis-(1,3,5-triazine-2,4,6-triamine) (ME-2) are tested as mild steel corrosion inhibitors in acidic solution (1M HCl). The inhibition efficiency of ME-1 and ME-2 increases with increase in their concentrations and maximum values of 91.47% and 94.88% were derived, respectively at 100 mgL-1 (34.20 × 10-5 M) concentration. Adsorption of ME-1 and ME-2 on the surface of metal obeyed the Langmuir adsorption isotherm. Polarization investigation revealed that ME-1 and ME-2 act as mixed type inhibitors with minor cathodic prevalence. The chemical and electrochemical analyses also supported by surface characterization methods where significant smoothness in the surface morphologies was observed in the images of SEM and AFM spectra. Several DFT indices such as EHOMO and ELUMO, ΔE, η, σ, χ, μ and ΔN were derived for both ME-1 and ME-2 molecules and correlated with experimental results. The DFT studies have also been carried out for protonated or cationic form of the inhibitor molecules by considering that in acidic medium the heteroatoms of organic inhibitors easily undergo protonation. The experimental and density functional theory (DFT) studies (neutral and protonated) were in good agreement.

  13. Flexible and Compressible PEDOT:PSS@Melamine Conductive Sponge Prepared via One-Step Dip Coating as Piezoresistive Pressure Sensor for Human Motion Detection.

    Science.gov (United States)

    Ding, Yichun; Yang, Jack; Tolle, Charles R; Zhu, Zhengtao

    2018-05-09

    Flexible and wearable pressure sensor may offer convenient, timely, and portable solutions to human motion detection, yet it is a challenge to develop cost-effective materials for pressure sensor with high compressibility and sensitivity. Herein, a cost-efficient and scalable approach is reported to prepare a highly flexible and compressible conductive sponge for piezoresistive pressure sensor. The conductive sponge, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)@melamine sponge (MS), is prepared by one-step dip coating the commercial melamine sponge (MS) in an aqueous dispersion of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Due to the interconnected porous structure of MS, the conductive PEDOT:PSS@MS has a high compressibility and a stable piezoresistive response at the compressive strain up to 80%, as well as good reproducibility over 1000 cycles. Thereafter, versatile pressure sensors fabricated using the conductive PEDOT:PSS@MS sponges are attached to the different parts of human body; the capabilities of these devices to detect a variety of human motions including speaking, finger bending, elbow bending, and walking are evaluated. Furthermore, prototype tactile sensory array based on these pressure sensors is demonstrated.

  14. Melamine-Schiff base/manganese complex with denritic structure: An efficient catalyst for oxidation of alcohols and one-pot synthesis of nitriles.

    Science.gov (United States)

    Kazemnejadi, Milad; Nikookar, Mahsa; Mohammadi, Mohammad; Shakeri, Alireza; Esmaeilpour, Mohsen

    2018-05-18

    Efficient and selective oxidation of alcohol to the corresponding carbonyl and/or nitrile was carried out by a new water-soluble melamine-based dendritic Mn(III) complex (Melamine-Mn (III)-Schiff base complex) in the presence of 2,4,6-trichloro-1,3,5-triazine (TCT) and O 2 at room temperature. Also, the oxidation of amine to the corresponding nitrile with high selectivity and conversion was performed at room temperature using the current method and high amounts of turnover frequencies (TOFs) were obtained for reactions. This system was also applicable for direct preparation of oxime through oxidation of alcohol. The catalyst was characterized by Fourier-transform infrared (FTIR), ultraviolet-visible (UV-Vis), thermogravimetric analysis (TGA), energy-dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), CHN and inductively coupled plasma (ICP) analyses. Also, oxidation/reduction behavior of the catalyst was studied by cyclic voltammetry (CV). Moreover, chemoselectivity of the catalyst was discussed with various combinations. The water-soluble catalyst could be recycled from the reaction mixture and reused for several times with a very low losing in efficiency. The recovered catalyst was also investigated with various analyses. Finally, gram scale preparation of nitrile was evaluated by present method. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Effect of rare earth hypophosphite and melamine cyanurate on fire performance of glass-fiber reinforced poly(1,4-butylene terephthalate) composites

    International Nuclear Information System (INIS)

    Yang, Wei; Tang, Gang; Song, Lei; Hu, Yuan; Yuen, Richard K.K.

    2011-01-01

    Highlights: ► We synthesize and characterize two types of rare earth hypophosphite (REHP). ► REHP and melamine cyanurate are used as flame retardants. ► We prepare fire retarded glass-fiber/poly(1,4-butylene terephthalate) composites. ► The flammability of these composites is significantly reduced. - Abstract: This work mainly deals with a novel flame retardant system for glass-fiber reinforced poly(1,4-butylene terephthalate) (GRPBT) composites using trivalent rare earth hypophosphite (REHP) and melamine cyanurate (MC) through melt blending method. Firstly, two types of REHP, lanthanum hypophosphite and cerium hypophosphite, were synthesized and characterized. Thermal gravimetric analysis (TGA) was employed to investigate the thermal decomposition behavior of REHP and flame retardant treated GRPBT composites. Thermal combustion properties were measured using microscale combustion calorimeter. Fire performance was evaluated by limiting oxygen index, Underwriters Laboratories 94 and cone calorimeter. The results showed that the flammability of GRPBT is significantly reduced by the incorporation of the flame retardant mixture. Mechanism analysis revealed that the addition of MC reduces the condensed phase effect of REHP, but improves the flame inhibition in gas phase.

  16. Integrated effect of supramolecular self-assembled sandwich-like melamine cyanurate/MoS{sub 2} hybrid sheets on reducing fire hazards of polyamide 6 composites

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xiaming [State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, Jiangsu 215123 (China); Wang, Xin, E-mail: wxcmx@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui 230026 (China); Cai, Wei; Hong, Ningning [State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, Jiangsu 215123 (China); Liew, Kim Meow [Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, Jiangsu 215123 (China); Department of Architectural and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2016-12-15

    A novel strategy of using supramolecular self-assembly for preparing sandwich-like melamine cyanurate/MoS{sub 2} sheets as the hybrid flame retardants for polyamide 6 (PA6) is reported for the first time. The introduction of MoS{sub 2} sheets function not only as a template to induce the formation of two-dimensional melamine cyanurate capping layers but also as a synergist to generate integrated flame-retarding effect of hybrid sheets, as well as a high-performance smoke suppressor to reduce fire hazards of PA6 materials. Once incorporating this well-designed structures (4 wt%) into PA6 matrix, there resulted in a remarkable drop (40%) in the peak heat release rate and a 25% reduction in total heat release. Moreover, the smoke production and pyrolysis gaseous products were efficiently suppressed by the addition of sandwich-like hybrid sheets. The integrated functions consisting of inherent flame retarding effect, physical barrier performance and catalytic activity are believed to the crucial guarantee for the reduced fire hazards of PA6 nanocomposites. Furthermore, this novel strategy with facile and scalable features may provide reference for developing various kinds of MoS{sub 2} based hybrid sheets for diverse applications.

  17. Spectrophotometric and visual detection of the herbicide atrazine by exploiting hydrogen bond-induced aggregation of melamine-modified gold nanoparticles

    International Nuclear Information System (INIS)

    Liu, Guangyang; Yang, Xin; Zhang, Yanxin; Zhou, Pan; Li, Tengfei; Yu, Hailong; Du, Xinwei; She, Yongxin; Wang, Jing; Wang, Shanshan; Jin, Fen; Jin, Maojun; Shao, Hua; Zheng, Lufei

    2015-01-01

    We report on a method for the determination of the herbicide atrazine in tap water samples using melamine-modified gold nanoparticles (Mel-AuNPs). If a solution containing atrazine is added to a solution of such NPs, a color change occurs from wine-red to blue. This is due to a transition from monodisperse to aggregated Mel-AuNPs and caused by strong hydrogen bonding between atrazine and melamine. The color change can be monitored by a UV–vis spectrophotometer or with bare eyes. The ratio of the absorbances at 640 and 523 nm is linearly related to the logarithm of the atrazine concentration in the 0.165 to 16.5 μM range, and (with different slope) in the 16.5 μM to 330 μM range. The detection limit of atrazine is as low as 16.5 nM (S/N = 3). The method was successfully applied to the determination of atrazine in spiked tap water and gave recoveries that ranged from 72.5 % to 102.3 %. (author)

  18. Activated Carbon by Co-pyrolysis and Steam Activation from Particle Board and Melamine Formaldehyde Resin: Production, Adsorption Properties and Techno Economic Evaluation

    Directory of Open Access Journals (Sweden)

    Kenny Vanreppelen

    2013-03-01

    Full Text Available One of the top strategic objectives and research areas in Europe is recovering wood from processing and end of life products. However, there are still several "contaminated" wood products that are not or only partly reused/recycled. Particle board waste which is contaminated with aminoplasts is one of these products. In addition, a considerable amount of aminoplast waste resinis produced for the production of particle board that cannot be re-used or recycled. The chemical properties of these wastes (high nitrogen content of 5.9 wt% and 54.1 wt% for particle board and melamine formaldehyde respectively make them ideal precursors for the production of nitrogenised activated carbon. The profitability of the produced activated carbon is investigated by calculating the net present value, the minimum selling price and performing a Monte Carlo sensitivity analysis. Encouraging results for a profitable production are obtained even though the current assumptions start from a rather pessimistic scenario.

  19. EFFECT OF WOOD SPECIES USED FOR CORE LAYER ON SOME PROPERTIES OF OKUME PLYWOOD PANELS BONDED WITH MELAMINE-UREA FORMALDEHYDE (MUF ADHESIVE

    Directory of Open Access Journals (Sweden)

    Cenk Demirkır

    2005-04-01

    Full Text Available In this study; changes in some properties of the okume plywood panels when used alder and beech veneers in their core layers were investigated. Two types of melamine-urea formaldehyde (MUF resins having different free formaldehyde contents were used for bonding plywood panels manufactured from 2 mm thick veneers at industrial conditions. The formaldehyde emission values of plywood panels bonded with MÜF having higher free formaldehyde content were found to be higher than those of the panels bonded with other resin type. The highest formaldehyde emission value was found for the panels manufactured from okume veneers in all layers while the lowest value was determined from the panels include beech veneers in the core layer. The shear and bending strength values of the panels consisted of beech veneers in the core layer were found to be higher than those of the panels consisted of okume and alder veneers in the core layers.

  20. Sample Preparation of Eggs From Laying Hens Using QuEChERS Dispersive Extraction for the Simultaneous Determination of Melamine and Cyromazine Residues by HPLC-DAD.

    Science.gov (United States)

    Tsartsali, Niki; Samanidou, Victoria F

    2015-01-01

    A quick, easy, cheap, effective, rugged, and safe (QuEChERS) dispersive extraction method is proposed herein for the isolation and cleanup of melamine and cyromazine from chicken egg yolk. Analytes are determined by high-performance liquid chromatography using photodiode array detector after separation on a LiChroCART® (250 × 4 mm)-LiChrospher® RP-8e, 5 μm analytical column using a mobile phase of 0.1% trifluoracetic acid and methanol (80:20 v/v) delivered isocratically at a flow rate of 1 mL/minute. Extraction of isolated compounds was achieved by methanol and acetonitrile mixture (1:1 v/v). Recovery rates ranged between 74.5% and 115.8%. The method was validated in terms of 657/2002/EC decision. The within-laboratory reproducibility, expressed as a relative standard deviation, was evaporation temperature, and vortex time.

  1. Stability of Hydrogen-Bonded Supramolecular Architecture under High Pressure Conditions: Pressure-Induced Amorphization in Melamine-Boric Acid Adduct

    International Nuclear Information System (INIS)

    Wang, K.; Duan, D.; Wang, R.; Lin, A.; Cui, Q.; Liu, B.; Cui, T.; Zou, B.; Zhang, X.

    2009-01-01

    The effects of high pressure on the structural stability of the melamine-boric acid adduct (C3N6H6 2H3BO3, M 2B), a three-dimensional hydrogen-bonded supramolecular architecture, were studied by in situ synchrotron X-ray diffraction (XRD) and Raman spectroscopy. M 2B exhibited a high compressibility and a strong anisotropic compression, which can be explained by the layerlike crystal packing. Furthermore, evolution of XRD patterns and Raman spectra indicated that the M 2B crystal undergoes a reversible pressure-induced amorphization (PIA) at 18 GPa. The mechanism for the PIA was attributed to the competition between close packing and long-range order. Ab initio calculations were also performed to account for the behavior of hydrogen bonding under high pressure.

  2. A new strategy for 2,4,6-Trinitrotoluene adsorption and electrochemical reduction on poly(melamine)/graphene oxide modified electrode

    International Nuclear Information System (INIS)

    Cotchim, Suparat; Thavarungkul, Panote; Kanatharana, Proespichaya; Limbut, Warakorn

    2015-01-01

    Highlights: • A new fabrication strategy of a poly(melamine)/graphene oxide (PM/GO) modified glassy carbon electrode (GCE) (PM/GO/GCE) for the detection of ultra-traces of TNT is proposed. • The PM/GO/GCE exhibits excellent adsorption and electrochemical reduction of TNT via the AdCSV technique. • The PM/GO/GCE provides for a high sensitivity, good repeatability and selectivity. • This strategy opens new opportunities for the sensitive detection of TNT aiming at protection of the environmental and homeland securities. - Abstract: A poly(melamine)/graphene oxide (PM/GO) layer modified on a glassy carbon electrode (GCE) was used for the adsorption and electrochemical detection of 2,4,6 trinitrotoluene (TNT). The surface morphology and electrochemical behaviour of the PM/GO/GCE were characterized by scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR), cyclic voltammetry (CV) and adsorptive cathodic stripping voltammetry (AdCSV). The PM/GO/GCE exhibited excellent adsorption and electrochemical reduction of TNT via the AdCSV technique with two linear ranges, 1–90 μg L −1 and 100–1000 μg L −1 , a detection limit of 0.34 μg L −1 and a quantitation limit of 1.14 μg L −1 . The PM/GO/GCE provided for a high sensitivity, good repeatability and selectivity. This modified electrode was successfully applied to detect TNT in soil samples with good recoveries that ranged from 93 to 99%.

  3. Lateral flow test strip based on colloidal selenium immunoassay for rapid detection of melamine in milk, milk powder, and animal feed

    Directory of Open Access Journals (Sweden)

    Wang ZZ

    2014-04-01

    Full Text Available Zhizeng Wang,1 Dejuan Zhi,2 Yang Zhao,1 Hailong Zhang,2 Xin Wang,2 Yi Ru,1 Hongyu Li1,2 1MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China; 2Institute of Microbiology and Biochemical Pharmacy, School of Pharmaceutics, Lanzhou University, Lanzhou, People's Republic of China Abstract: Although high melamine (MEL intake has been proven to cause serious health problems, MEL is sometimes illegally added to milk products and animal feed, arousing serious food safety concerns. A satisfactory method of detecting MEL in onsite or in-home testing is in urgent need of development. This work aimed to explore a rapid, convenient, and cost-effective method of identifying MEL in milk products or other food by colloidal selenium-based lateral flow immunoassay. Colloidal selenium was synthesized by L-ascorbic acid to reduce seleninic acid at room temperature. After conjugation with a monoclonal antibody anti-MEL, a test strip was successfully prepared. The detection limit of the test strip reached 150 µg/kg, 1,000 µg/kg, and 800 µg/kg in liquid milk, milk powder, and animal feed, respectively. No cross-reactions with homologues cyanuric acid, cyanurodiamide, or ammelide were found. Moreover, the MEL test strip can remain stable after storage for 1 year at room temperature. Our results demonstrate that the colloidal selenium MEL test strip can detect MEL in adulterated milk products or animal feed conveniently, rapidly, and sensitively. In contrast with a colloidal gold MEL test strip, the colloidal selenium MEL test strip was easy to prepare and more cost-efficient. Keywords: melamine, selenium nanoparticles, test strip, milk, animal feed, dairy food

  4. Development of a high performance liquid chromatography method and a liquid chromatography-tandem mass spectrometry method with pressurized liquid extraction for simultaneous quantification and confirmation of cyromazine, melamine and its metabolites in foods of animal origin

    International Nuclear Information System (INIS)

    Yu Huan; Tao Yanfei; Chen Dongmei; Wang Yulian; Liu Zhaoying; Pan Yuanhu; Huang Lingli; Peng Dapeng; Dai Menghong; Liu Zhenli; Yuan Zonghui

    2010-01-01

    Simple and sensitive methods have been developed for simultaneous detection of cyromazine, melamine and their metabolites (ammeline, ammelide and cyanuric acid) in samples of animal origins. These include a high performance liquid chromatography (HPLC) method and a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method and are useful in regular monitoring and in toxicity studies of these molecules. Representative samples used in this study include muscles and livers of swine, bovine, sheep and chicken, kidneys of swine, bovine and sheep, and milk powder. A new sample preparation procedure with pressurized liquid extraction (PLE) at 1400 psi and 70 deg. C was investigated. Quantification of these five compounds by HPLC was achieved using an APS-2 column with UV detection at 230 nm. Limit of detection (LOD) was at 10 μg kg -1 , and limit of quantification (LOQ) was at 40 μg kg -1 . Recoveries of the five analytes in spiked samples ranged from 72.2% to 115.4% with RSD less than 12%. Confirmatory analysis of the analytes was performed using LC-MS/MS in selected reaction monitoring (SRM) mode. The LOD and LOQ were 5 μg kg -1 and 15 μg kg -1 , respectively. This is the first simultaneous analysis of cyromazine, melamine, ammeline, ammelide and cyanuric acid residues in complex tissue samples using PLE and HPLC. It is expected that these methods will find many practical applications in evaluating the safety of cyromazine, melamine and their metabolites.

  5. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution

    International Nuclear Information System (INIS)

    Sivashanmugan, Kundan; Liao, Jiunn-Der; Liu, Bernard Haochih; Yao, Chih-Kai

    2013-01-01

    Graphical abstract: -- Highlights: •Well-ordered Au-nanorod array with a controlled tip ring diameter (Au N Rs d ) is made by focused ion beam. •Au N Rs d coupled with Ag nanoparticles (Ag NPs/Au N Rs d ) is competent to sense target molecules in a solution. •Ag NPs/Au N Rs d SERS active substrate can detect a single molecule of crystal violet. •Ag NPs/Au N Rs d as a SERS-active substrate can distinguish melamine contaminants at low concentrations (e.g., 10 −12 M). -- Abstract: A well-ordered Au-nanorod array with a controlled tip ring diameter (Au N Rs d ) was fabricated using the focused ion beam method. Au N Rs d was then coupled with Ag nanoparticles (Ag NPs) to bridge the gaps among Au nanorods. The effect of surface-enhanced Raman scattering (SERS) on Au N Rs d and Ag NPs/Au N Rs d was particularly verified using crystal violet (CV) as the molecular probe. Raman intensity obtained from a characteristic peak of CV on Au N Rs d was estimated by an enhancement factor of ≈10 7 in magnitude, which increased ≈10 12 in magnitude for that on Ag NPs/Au N Rs d . A highly SERS-active Ag NPs/Au N Rs d was furthermore applied for the detection of melamine (MEL) at very low concentrations. Raman-active peaks of MEL (10 −3 to 10 −12 M) in water or milk solution upon Au N Rs d or Ag NPs/Au N Rs d were well distinguished. The peaks at 680 and 702 cm −1 for MEL molecules were found suitable to be used as the index for sensing low-concentration MEL in a varied solution, while that at 1051 cm −1 was practical to interpret MEL molecules in water or milk solution bonded with Au (i.e., Au N Rs d ) or Ag (i.e., Ag NPs/Au N Rs d ) surface. At the interface of Ag NPs/Au N Rs d and MEL molecules in milk solution, a laser-induced electromagnetic field or hotspot effect was produced and competent to sense low-concentration MEL molecules interacting with Ag and Au surfaces. Accordingly, Ag NPs/Au N Rs d is very promising to be used as a fast and sensitive tool for

  6. Novel halogen-free flame retardant thermoset from a hybrid hexakis (methoxymethyl melamine/phosphorus-containing epoxy resin cured with phenol formaldehyde novolac

    Directory of Open Access Journals (Sweden)

    2009-12-01

    Full Text Available This paper describes the curing behaviours, thermal properties and flame-resistance of a novel halogen-free epoxy hybrid thermoset, prepared by the curing reaction of hexakis (methoxymethyl melamine (HMMM, a phosphorouscontaining epoxy resin (EPN-D with 9, 10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO group and phenol formaldehyde novolac (n-PF. The resultant thermosets showed high glass-transition temperatures (Tg, 123–147°C as determined by thermal mechanical analysis (TMA, excellent thermal stability with high 5 wt% decomposition temperatures (Td,5% ≥308°C and high char yields (Yc ≥39.4 wt% from the thermogravimetric analysis (TGA. All the cured EPND/ HMMM/n-PF hybrid resins achieved the UL 94 V-0 grade with high limited oxygen indices (LOI > 45.7. It is found that phosphorous and nitrogen elements in the cured EPN-D/HMMM/n-PF hybrid resins had a positive synergistic effect on the improvement of the flame retardancy.

  7. Sensitive determination of melamine in milk and powdered infant formula samples by high-performance liquid chromatography using dabsyl chloride derivatization followed by dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Faraji, M; Adeli, M

    2017-04-15

    A new and sensitive pre-column derivatization with dabsyl chloride followed by dispersive liquid-liquid microextraction was developed for the analysis of melamine (MEL) in raw milk and powdered infant formula samples by high performance liquid chromatography (HPLC) with visible detection. Derivatization with dabsyl chloride leads to improving sensitivity and hydrophobicity of MEL. Under optimum conditions of derivatization and microextraction steps, the method yielded a linear calibration curve ranging from 1.0 to 500μgL -1 with a determination coefficient (R 2 ) of 0.9995. Limit of detection and limit of quantification were 0.1 and 0.3μgL -1 , respectively. The relative standard deviation (RSD%) for intra-day (repeatability) and inter-day (reproducibility) at 25 and 100μgL -1 levels of MEL was less than 7.0% (n=6). Finally, the proposed method was successfully applied for the preconcentration and determination of MEL in different raw milk and powdered infant formula, and satisfactory results were obtained (relative recovery ⩾94%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. In Situ Carbon Coated LiNi0.5Mn1.5O4 Cathode Material Prepared by Prepolymer of Melamine Formaldehyde Resin Assisted Method

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2016-01-01

    Full Text Available Carbon coated spinel LiNi0.5Mn1.5O4 were prepared by spray-drying using prepolymer of melamine formaldehyde resin (PMF as carbon source of carbon coating layer. The PMF carbon coated LiNi0.5Mn1.5O4 was characterized by XRD, SEM, and other electrochemical measurements. The as-prepared lithium nickel manganese oxide has the cubic face-centered spinel structure with a space group of Fd3m. It showed good electrochemical performance as a cathode material for lithium ion battery. After 100 discharge and charge cycles at 0.5 C rate, the specific discharge capacity of carbon coated LiNi0.5Mn1.5O4 was 130 mAh·g−1, and the corresponding capacity retention was 98.8%. The 100th cycle specific discharge capacity at 10 C rate of carbon coated LiNi0.5Mn1.5O4 was 105.4 mAh·g−1, and even the corresponding capacity retention was 95.2%.

  9. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution

    Energy Technology Data Exchange (ETDEWEB)

    Sivashanmugan, Kundan [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liao, Jiunn-Der, E-mail: jdliao@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liu, Bernard Haochih; Yao, Chih-Kai [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2013-10-24

    Graphical abstract: -- Highlights: •Well-ordered Au-nanorod array with a controlled tip ring diameter (Au{sub N}Rs{sub d}) is made by focused ion beam. •Au{sub N}Rs{sub d} coupled with Ag nanoparticles (Ag NPs/Au{sub N}Rs{sub d}) is competent to sense target molecules in a solution. •Ag NPs/Au{sub N}Rs{sub d} SERS active substrate can detect a single molecule of crystal violet. •Ag NPs/Au{sub N}Rs{sub d} as a SERS-active substrate can distinguish melamine contaminants at low concentrations (e.g., 10{sup −12} M). -- Abstract: A well-ordered Au-nanorod array with a controlled tip ring diameter (Au{sub N}Rs{sub d}) was fabricated using the focused ion beam method. Au{sub N}Rs{sub d} was then coupled with Ag nanoparticles (Ag NPs) to bridge the gaps among Au nanorods. The effect of surface-enhanced Raman scattering (SERS) on Au{sub N}Rs{sub d} and Ag NPs/Au{sub N}Rs{sub d} was particularly verified using crystal violet (CV) as the molecular probe. Raman intensity obtained from a characteristic peak of CV on Au{sub N}Rs{sub d} was estimated by an enhancement factor of ≈10{sup 7} in magnitude, which increased ≈10{sup 12} in magnitude for that on Ag NPs/Au{sub N}Rs{sub d}. A highly SERS-active Ag NPs/Au{sub N}Rs{sub d} was furthermore applied for the detection of melamine (MEL) at very low concentrations. Raman-active peaks of MEL (10{sup −3} to 10{sup −12} M) in water or milk solution upon Au{sub N}Rs{sub d} or Ag NPs/Au{sub N}Rs{sub d} were well distinguished. The peaks at 680 and 702 cm{sup −1} for MEL molecules were found suitable to be used as the index for sensing low-concentration MEL in a varied solution, while that at 1051 cm{sup −1} was practical to interpret MEL molecules in water or milk solution bonded with Au (i.e., Au{sub N}Rs{sub d}) or Ag (i.e., Ag NPs/Au{sub N}Rs{sub d}) surface. At the interface of Ag NPs/Au{sub N}Rs{sub d} and MEL molecules in milk solution, a laser-induced electromagnetic field or hotspot effect was produced and

  10. Compressible and Recyclable Monolithic g-C3N4/Melamine Sponge: A Facile Ultrasonic-coating Approach and Enhanced Visible-light Photocatalytic Activity

    Science.gov (United States)

    Yang, Ye; Zhang, Qian; Zhang, Ruiyang; Ran, Tao; Wan, Wenchao; Zhou, Ying

    2018-05-01

    Powdery photocatalysts seriously restrict their practical application due to the difficult recycle and low photocatalytic activity. In this work, a monolithic g-C3N4/melamine sponge (g-C3N4/MS) was successfully fabricated by a cost-effective ultrasonic-coating route, which is easy to achieve the uniform dispersion and firm loading of g-C3N4 on MS skeleton. The monolithic g-C3N4/MS entirely inherits the porous structure of MS and results in a larger specific surface area (SSA) than its powdery counterpart. Benefit from this monolithic structure, g-C3N4/MS gains more exposed active sites, enhanced visible-light absorption and separation of photogenerated carriers, thus achieving noticeable photocatalytic activity on nitric oxide (NO) removal, rhodamine B (RhB) degradation and CO2 reduction. Specifically, NO removal ratio is as high as 78.6% which is 4.5 times higher than that of the powdery g-C3N4, while RhB degradation rate reaches 97.88%, and yield rate of CO and CH4 attains 7.48 and 3.93 μmol g-1 h-1. Importantly, the features of low-density, high porosity, good elasticity and firmness, not only endow g-C3N4/MS with flexibility in various environmental applications, but also make it easy to recycle and stable for long-time application. Our work provides a feasible approach to fabricate novel monolithic photocatalysts with large-scale production and application.

  11. Sensitive and selective determination of gallic acid in green tea samples based on an electrochemical platform of poly(melamine) film

    Energy Technology Data Exchange (ETDEWEB)

    Su, Ya-Ling; Cheng, Shu-Hua, E-mail: shcheng@ncnu.edu.tw

    2015-12-11

    In this work, an electrochemical sensor coupled with an effective flow-injection amperometry (FIA) system is developed, targeting the determination of gallic acid (GA) in a mild neutral condition, in contrast to the existing electrochemical methods. The sensor is based on a thin electroactive poly(melamine) film immobilized on a pre-anodized screen-printed carbon electrode (SPCE*/PME). The characteristics of the sensing surface are well-characterized by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and surface water contact angle experiments. The proposed assay exhibits a wide linear response to GA in both pH 3 and pH 7.0 phosphate buffer solutions (PBS) under the optimized flow-injection amperometry. The detection limit (S/N = 3) is 0.076 μM and 0.21 μM in the pH 3 and pH 7 solutions, respectively. A relative standard deviation (RSD) of 3.9% is obtained for 57 successive measurements of 50 μM GA in pH 7 solutions. Interference studies indicate that some inorganic salts, catechol, caffeine and ascorbic acid do not interfere with the GA assay. The interference effects from some orthodiphenolic compounds are also investigated. The proposed method and a conventional Folin–Ciocalteu method are applied to detect GA in green tea samples using the standard addition method, and satisfactory spiked recoveries are obtained. - Highlights: • A nitrogen-rich conducting polymer was used for electroanalysis of gallic acid. • The sensor exhibits excellent electrochemical activity in both acidic and neutral media. • Good analytical results in terms of low detection limit and wide linear range are obtained. • The flow-injection amperometric assay is highly stable for continuous 57 replicates measurement (RSD = 3.9%). • The assay shows good recovery for green tea samples.

  12. Sensitive and selective determination of gallic acid in green tea samples based on an electrochemical platform of poly(melamine) film

    International Nuclear Information System (INIS)

    Su, Ya-Ling; Cheng, Shu-Hua

    2015-01-01

    In this work, an electrochemical sensor coupled with an effective flow-injection amperometry (FIA) system is developed, targeting the determination of gallic acid (GA) in a mild neutral condition, in contrast to the existing electrochemical methods. The sensor is based on a thin electroactive poly(melamine) film immobilized on a pre-anodized screen-printed carbon electrode (SPCE*/PME). The characteristics of the sensing surface are well-characterized by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and surface water contact angle experiments. The proposed assay exhibits a wide linear response to GA in both pH 3 and pH 7.0 phosphate buffer solutions (PBS) under the optimized flow-injection amperometry. The detection limit (S/N = 3) is 0.076 μM and 0.21 μM in the pH 3 and pH 7 solutions, respectively. A relative standard deviation (RSD) of 3.9% is obtained for 57 successive measurements of 50 μM GA in pH 7 solutions. Interference studies indicate that some inorganic salts, catechol, caffeine and ascorbic acid do not interfere with the GA assay. The interference effects from some orthodiphenolic compounds are also investigated. The proposed method and a conventional Folin–Ciocalteu method are applied to detect GA in green tea samples using the standard addition method, and satisfactory spiked recoveries are obtained. - Highlights: • A nitrogen-rich conducting polymer was used for electroanalysis of gallic acid. • The sensor exhibits excellent electrochemical activity in both acidic and neutral media. • Good analytical results in terms of low detection limit and wide linear range are obtained. • The flow-injection amperometric assay is highly stable for continuous 57 replicates measurement (RSD = 3.9%). • The assay shows good recovery for green tea samples.

  13. Using urinary solubility data to estimate the level of safety concern of low levels of melamine (MEL) and cyanuric acid (CYA) present simultaneously in infant formulas.

    Science.gov (United States)

    Dominguez-Estevez, Manuel; Constable, Anne; Mazzatorta, Paolo; Renwick, Andrew G; Schilter, Benoit

    2010-01-01

    Melamine (MEL) and cyanuric acid (CYA) may occur simultaneously in milk products. There is no health based guidance value for the mixture of MEL+CYA. Limited toxicological data indicate that MEL+CYA toxicity occurs at levels lower than the toxic doses of the single compounds. The key adverse effect of MEL+CYA is the formation of crystals in the urinary tract, which is dependent on the solubility of the MEL+CYA complex. Urinary concentrations resulting from oral doses of MEL+CYA and MEL alone have been calculated from published data from animal studies. A human exposure scenario assuming consumption of infant formula contaminated at a level of 1 ppm of MEL and CYA each (2 ppm of MEL+CYA) was also analyzed. Margins of more than two orders or magnitude were observed between estimated urine concentrations known to be without detectable effects in rats and calculated human urine concentrations. Because the hazard is related to the physico-chemical characteristics of the mixture, there would be a negligible concern associated with crystal formation if the urinary concentration of the complex is within the solubility range. The solubility of MEL+CYA was higher in urine than in water. A strong pH-dependency was observed with the lowest solubility found at pH 5-5.5. The calculated human urinary concentration was about 30 times less than the solubility limit for MEL+CYA in adult human urine. Altogether, these data provide preliminary evidence suggesting that the presence of 1 ppm of MEL and CYA each in infant formula is unlikely to be of significant health concern. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Comparison of sensitivity to artificial spectral errors and multivariate LOD in NIR spectroscopy - Determining the performance of miniaturizations on melamine in milk powder.

    Science.gov (United States)

    Henn, Raphael; Kirchler, Christian G; Grossgut, Maria-Elisabeth; Huck, Christian W

    2017-05-01

    This study compared three commercially available spectrometers - whereas two of them were miniaturized - in terms of prediction ability of melamine in milk powder (infant formula). Therefore all spectra were split into calibration- and validation-set using Kennard Stone and Duplex algorithm in comparison. For each instrument the three best performing PLSR models were constructed using SNV and Savitzky Golay derivatives. The best RMSEP values were 0.28g/100g, 0.33g/100g and 0.27g/100g for the NIRFlex N-500, the microPHAZIR and the microNIR2200 respectively. Furthermore the multivariate LOD interval [LOD min , LOD max ] was calculated for all the PLSR models unveiling significant differences among the spectrometers showing values of 0.20g/100g - 0.27g/100g, 0.28g/100g - 0.54g/100g and 0.44g/100g - 1.01g/100g for the NIRFlex N-500, the microPHAZIR and the microNIR2200 respectively. To assess the robustness of all models, artificial introduction of white noise, baseline shift, multiplicative effect, spectral shrink and stretch, stray light and spectral shift were applied. Monitoring the RMSEP as function of the perturbation gave indication of robustness of the models and helped to compare the performances of the spectrometers. Not taking the additional information from the LOD calculations into account one could falsely assume that all the spectrometers perform equally well which is not the case when the multivariate evaluation and robustness data were considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Directed Self-Assembly in "Breath Figure" Templating of Melamine-Based Amphiphilic Copolymers: Effect of Hydrophilic End-Chain on Honeycomb Film Formation and Wetting.

    Science.gov (United States)

    Yin, Hongyao; Feng, Yujun; Billon, Laurent

    2018-01-09

    Amphiphilic copolymers are widely used in the fabrication of hierarchically honeycomb-structured films through a "breath figure" (BF) process because the hydrophilic block plays a key role in stabilising water templating. However, the hydrophilic monomers reported are mainly confined to acrylic acid and its derivatives, which largely limits understanding of the formation of BF arrays and the introduction of additional functions on porous films. The relationship between polymer composition, film microstructure and surface properties are also less documented. Herein, a novel melamine-based hydrophilic moiety, N-[3-({3-[(4,6-bis{[3-(dimethylamino)propyl]amino}-1,3,5-triazin-2yl)amino]propyl}(methyl)amino)propyl]methacrylamide (ANME), was incorporated into polystyrene (PS) chains by combining atom-transfer radical polymerisation and post-modification to afford three well-defined end-functionalised PS-PANME derivatives. These polymers were used to fabricate honeycomb films through the BF technique. Both inner and outer microstructures of the films were characterised by optical microscopy, AFM and SEM. Polymer hydrophilicity is enhanced upon increasing the PANME content, which results in variation of the film microstructure and porosity, and provokes a transition from Cassie-Baxter to Wenzel behaviour. Furthermore, the surface wettability of as-prepared honeycomb films and corresponding pillared films is mainly governed by film morphology, rather than by the properties of the polymers. Knowledge of the relationships between polymer composition and film structure, as well as surface wettability, is beneficial to design and prepare hierarchically porous films with desirable structures and properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Sensitive and selective determination of gallic acid in green tea samples based on an electrochemical platform of poly(melamine) film.

    Science.gov (United States)

    Su, Ya-Ling; Cheng, Shu-Hua

    2015-12-11

    In this work, an electrochemical sensor coupled with an effective flow-injection amperometry (FIA) system is developed, targeting the determination of gallic acid (GA) in a mild neutral condition, in contrast to the existing electrochemical methods. The sensor is based on a thin electroactive poly(melamine) film immobilized on a pre-anodized screen-printed carbon electrode (SPCE*/PME). The characteristics of the sensing surface are well-characterized by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and surface water contact angle experiments. The proposed assay exhibits a wide linear response to GA in both pH 3 and pH 7.0 phosphate buffer solutions (PBS) under the optimized flow-injection amperometry. The detection limit (S/N = 3) is 0.076 μM and 0.21 μM in the pH 3 and pH 7 solutions, respectively. A relative standard deviation (RSD) of 3.9% is obtained for 57 successive measurements of 50 μM GA in pH 7 solutions. Interference studies indicate that some inorganic salts, catechol, caffeine and ascorbic acid do not interfere with the GA assay. The interference effects from some orthodiphenolic compounds are also investigated. The proposed method and a conventional Folin-Ciocalteu method are applied to detect GA in green tea samples using the standard addition method, and satisfactory spiked recoveries are obtained. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Microencapsulation of butyl stearate with melamine-formaldehyde resin: Effect of decreasing the pH value on the composition and thermal stability of microcapsules

    Directory of Open Access Journals (Sweden)

    M. Krajnc

    2012-10-01

    Full Text Available The object of this study was to investigate how different decreasing of pH regimes during microencapsulation process with melamine-formaldehyde (MF resin affects the composition, morphology and thermal stability of microcapsules containing a phase-change material (PCM. Technical butyl stearate was used as PCM. Microencapsulation was carried out at 70°C. For all experiments the starting pH value was 6.0. After one hour of microencapsulation at the starting pH value, the pH value was lowered to final pH value (5.5; 5.0; 4.5 in a stepwise or linear way. The properties of microcapsules were monitored during and after the microencapsulation process. The results showed that pH value decreasing regime was critical for the morphology and stability of microcapsules. During microencapsulations with a stepwise decrease of pH value we observed faster increase of the amount of MF resin in the microencapsulation product compared to the microencapsulations with a linear pH value decrease. However, faster deposition in the case of microencapsulations with stepwise decrease of pH value did not result in thicker MF shells. The shell thickness increased much faster when the pH value was decreased in a linear way or in several smaller steps. It was shown that for the best thermal stability of microcapsules, the pH value during microencapsulation had to be lowered in a linear way or in smaller steps to 5.0 or lower.

  18. Structural and electronic properties of barbituric acid and melamine-containing ribonucleosides as plausible components of prebiotic RNA: implications for prebiotic self-assembly.

    Science.gov (United States)

    Kaur, Sarabjeet; Sharma, Purshotam; Wetmore, Stacey D

    2017-11-22

    The RNA world hypothesis assumes that RNA was the first informational polymer that originated from prebiotic chemical soup. However, since the reaction of d-ribose with canonical nucleobases (A, C, G and U) fails to yield ribonucleosides (rNs) in substantial amounts, the spontaneous origin of rNs and the subsequent synthesis of RNA remains an unsolved mystery. To this end, it has been suggested that RNA may have evolved from primitive genetic material (preRNA) composed of simpler prebiotic heterocycles that spontaneously form glycosidic bonds with ribose. As an effort toward evaluating this hypothesis, the present study uses density functional theory (DFT) to assess the suitability of barbituric acid (BA) and melamine (MM) to act as prebiotic nucleobases, both of which have recently been shown to spontaneously form a glycosidic bond with ribose and organize into supramolecular assemblies in solution. The significant strength of hydrogen bonds involving BA and MM indicates that such interactions may have played a crucial role in their preferential selection over competing heterocycles that interact solely through stacking interactions from the primordial soup during the early phase of evolution. However, the greater stability of stacked dimers involving BA or MM and the canonical nucleobases compared to those consisting solely of BA and/or MM points towards the possible evolution of intermediate informational polymers consisting of prebiotic and canonical nucleobases, which could have eventually evolved into RNA. Analysis of the associated rNs reveals an anti conformational preference for the biologically-relevant β-anomer of both BA and MM rNs, which will allow complementary WC-like hydrogen bonding that can stabilize preRNA polymers. Large calculated deglycosylation barriers suggest BA rNs containing C-C glycosidic bonds are relevant in challenging prebiotic environments such as volcanic geotherms, while lower barriers indicate the MM rNs containing C

  19. Melamine-based dendrimer amine-modified magnetic nanoparticles as an efficient Pb(II) adsorbent for wastewater treatment: Adsorption optimization by response surface methodology.

    Science.gov (United States)

    Jiryaei Sharahi, Fatemeh; Shahbazi, Afsaneh

    2017-12-01

    Magnetic Fe 3 O 4 nanoparticles with an average diameter of 64 nm was synthesized solvothermically and subsequently modified with melamine-based dendrimer amine (MDA-Fe 3 O 4 ) via grafting method. The synthesized materials were characterized using DLS, SEM, XRD, FTIR, VSM, TGA and elemental analysis techniques. The MDA-Fe 3 O 4 was employed for the efficient removal of Pb(II) ions from an aqueous solution. The adsorption efficiency was investigated in relation to the independent variables of Pb(II) concentration (80-250 mg L -1 ), pH of the solution (3-7), adsorbent dosage (0.1-0.5 g L -1 ) and temperature (10-40 °C) via a central composite design (CCD) using response surface methodology (RSM). The significance of independent variables and their interactions was tested using ANOVA at a 95% confidence limit (α = 0.05). A second-order quadratic model was established to predict the adsorption efficiency. Under the optimum condition (initial Pb(II) concentration = 110 mg L -1 , MDA-Fe 3 O 4 dosage = 0.49 g L -1 , pH = 5 and temperature = 30 °C) a removal percentage of 85.6% was obtained. The isotherm data fitted well to the Freundlich model within the concentration range of the experimental study. A maximum adsorption capacity of 333.3 mg g -1 was predicted by the Langmuir model. The adsorption rate of Pb(II) ions onto MDA-Fe 3 O 4 was in good agreement with the pseudo-second-order model (R 2  = 0.999; k 2  = 4.7 × 10 -4  g mg -1 min -1 ). Thermodynamically, adsorption was spontaneous and endothermic. The MDA-Fe 3 O 4 was successfully regenerated using 0.3 M HCl with little loss of adsorption capacity (≈7%) for five successive adsorption cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. [Determination of metformin hydrochloride, melamine and dicyandiamide in metformin hydrochloride preparations by tandem dual solid phase extraction cartridges-high performance liquid chromatography-electrospray ionization multi-stage mass spectrometry].

    Science.gov (United States)

    Zhou, Yanfen; Wang, Fanghuan; Wang, Zelan; Zhan, Haijuan; Liu, Wanyi; Meng, Zhe

    2018-02-08

    A method for the confirmation and quantification of metformin hydrochloride and its relative substances melamine and dicyandiamide using tandem dual solid phase extraction (SPE) cartridges and high performance liquid chromatography-electrospray ionization multi-stage mass spectrometry (HPLC-ESI-MS n ) was developed. The samples were extracted with anhydrous ethanol containing 0.1% (v/v) acetic acid under ultrasound-assisted conditions. The extracts were concentrated and purified using Cleanert PCX and C18 tandem dual solid phase extraction cartridges, and eluted with 5% (v/v) ammonia methanol solution. The separation was performed on a Kromasil-C18 column (100 mm×4.6 mm, 3.5 μm) with gradient elution. The detection was performed in selected ion monitoring (SIM) mode using electrospray ionization multi-stage mass spectrometry. The external standard method was used for quantification. The extraction solvents, types of SPE cartridges and eluents were optimized by comparing the recoveries under different conditions. The results showed that the detector response of each target compound was linear in corresponding mass concentration ranges with the correlation coefficients ( r 2 ) ≥ 0.9992. The limits of detection (LODs) and the limits of quantification (LOQs) of the three analytes were 1.48-13.61 μg/kg and 5.96-45.67 μg/kg, respectively. The recoveries of the three analytes were 65.02%-118.33% spiked at low, medium and high levels. The relative standard deviations (RSDs) were no more than 13.41%. The method is reliable, easy, and has a better purification effect. The method can be applied to the routine analysis of metformin hydrochloride and its relative substances melamine and dicyandiamide in different preparations of metformin hydrochloride.

  1. 预聚合条件对密胺树脂相变微胶囊包覆效率的影响%Effects of Prepolymerization Conditions on the Encapsulation Efficiency of Phase Change Microcapsules Based on Melamine-Formaldehyde

    Institute of Scientific and Technical Information of China (English)

    王先锋; 赵涛

    2017-01-01

    通过改变预聚合条件制备了一系列密胺树脂相变微胶囊,采用扫描电镜(SEM)、差示扫描量热仪(DSC)和热重分析仪(T3)对其进行表征.探究了微胶囊包覆效率的计算方法,并结合SEM的测试结果,系统地研究了甲醛与三聚氰胺(F/M)摩尔比、预聚合时间和预聚体质量分数等因素对包覆效率(En)的影响.实验结果表明,采用DSC-TG联用的方法计算得到的En可以更准确地表征相变微胶囊的包覆情况.En随F/M摩尔比的增加和预聚合时间的缩短而增大,随预聚体质量分数的增加先增大后减小.当F/M摩尔比为2.5,预聚合时间为30 min,预聚体质量分数为10%时,所制备微胶囊的En可以达到88.6%.%A series of phase change microcapsules based on melamine-formaldehyde were synthesized under different prepolymerization conditions.The properties of obtained microcapsules were investigated by SEM,differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).The calculation of encapsulation efficiency was discussed.Combined with SEM,the effects of parameters including formaldehyde/melamine (F/M) mole ratio,reaction time and mass concentration of prepolymer on the encapsulation efficiency were studied systematically.The experimental results indicate that the encapsulation efficiency(En) based on the results of DSC and TGA can reflect the effects of these parameters more accurately.The encapsulation efficiency shows significant increase with the decrease of reaction time and the increase of F/M mole ratio.And it decreases after obvious increase with the rise of mass concentration.When the F/M mole ratio is 2.5,the reaction time is 30 min and the mass fraction of prepolymer is 10 %,the encapsulation efficiency of fabricated microcapsules can reach up to 88.6 %.

  2. Sorption of thorium (Ⅳ) from aqueous solutions by melamine modified lemna minor%三聚氰胺化学改性浮萍吸附重金属钍(Ⅳ)研究

    Institute of Scientific and Technical Information of China (English)

    杨司坤; 吴玮琳; 侯小娟; 吴方评; 陆建生; 向开祥

    2017-01-01

    采用生物吸附法去除废水中Th(Ⅳ)离子,研究了水生浮萍化学改性后吸附Th(Ⅳ)的行为特性、吸附模型及吸附机理.以浮萍、三聚氰胺和甲醛为原料,通过接枝反应制得三聚氰胺改性浮萍(MELM),能更好的吸附钍离子.结果表明:常温常压下,pH为5.5,吸附剂MELM为0.03 g,Th(Ⅳ)初始浓度为80 mg·L1,反应60 min时,最大吸附率为97.4%,对应吸附量为129.88 mg·g-1,吸附量比未经处理的浮萍(最优吸附条件下,吸附量为22.83 mg·g-1)吸附量要大.通过Langmuir、Freundlich、Temkin 3种等温吸附模型对数据进行拟合,Langmuir模型能更好的描述吸附剂MELM对Th(Ⅳ)的平衡吸附行为,同时吸附过程能很好的用准二级反应动力学来解释.此外,FTIR实验数据表明,吸附剂MELM表面上氨基、羟基和羰基是主要的作用基团.%Thorium(Ⅳ) ions sorption is investigated by melamine treated lemna minor from wastewater.Lemna minor reacted with melamine dissolve in formaldehyde (MELM) exhibited the highest thorium(Ⅳ) ions uptake capacity.The sorption process was optimized at pH 5.5,equilibrium time 60 min,initial Th(Ⅳ) mass concentration 80 mg·L-1 and adsorbent dose 0.03 g with 97.4% of removal efficiency and 129.88 mg· g-1 of adsorption capacity,which is obviously greater than that (22.83 mg· g-1) of the untreated lemna minor for Th (Ⅳ) biosorption under the condition of optimization.The experimental data are analyzed by using isotherm and kinetic models.Kinetic data follow the pseudo-second-order model and equilibrium data agree very well with the Langmuir model.In addition,FTIR analysis indicates that hydroxyl,amino,and carbonyl groups act as the important roles in the adsorption process.

  3. At-line validation of a process analytical technology approach for quality control of melamine-urea-formaldehyde resin in composite wood-panel production using near infrared spectroscopy.

    Science.gov (United States)

    Meder, Roger; Stahl, Wolfgang; Warburton, Paul; Woolley, Sam; Earnshaw, Scott; Haselhofer, Klaus; van Langenberg, Ken; Ebdon, Nick; Mulder, Roger

    2017-01-01

    The reactivity of melamine-urea-formaldehyde resins is of key importance in the manufacture of engineered wood products such as medium density fibreboard (MDF) and other wood composite products. Often the MDF manufacturing plant has little available information on the resin reactivity other than details of the resin specification at the time of batch manufacture, which often occurs off-site at a third-party resin plant. Often too, fresh resin on delivery at the MDF plant is mixed with variable volume of aged resin in storage tanks, thereby rendering any specification of the fresh resin batch obsolete. It is therefore highly desirable to develop a real-time, at-line or on-line, process analytical technology to monitor the quality of the resin prior to MDF panel manufacture. Near infrared (NIR) spectroscopy has been calibrated against standard quality methods and against 13 C nuclear magnetic resonance (NMR) measures of molecular composition in order to provide at-line process analytical technology (PAT), to monitor the resin quality, particularly the formaldehyde content of the resin. At-line determination of formaldehyde content in the resin was made possible using a six-factor calibration with an R 2 (cal) value of 0.973, and R 2 (CV) value of 0.929 and a root-mean-square error of cross-validation of 0.01. This calibration was then used to generate control charts of formaldehyde content at regular four-hourly periods during MDF panel manufacture in a commercial MDF manufacturing plant.

  4. Melamin Plaka İle Kaplanmış Yonga Levhalı (YL-Lam Kutu Mobilyalarda Köşe Birleştirmelerin Yük Taşıma Kapasitesi

    Directory of Open Access Journals (Sweden)

    Mustafa ALTINOK

    2014-02-01

    Full Text Available Kutu mobilya köşe birleştirmelerindeki mukavemet, bu tip ürünlerin kullanım sürelerini doğrudan etkilemektedir. Mukavemeti etkileyen etmenler ise üretim aşamasında seçilen levha, köşe birleştirme tipi ve tutkaldır. Bu çalışmada, karma birleştirme (kavela+yabancı çıtalı yöntemiyle birleştirilmiş melamin plaka ile kaplanmış yonga levha (YL-Lam örneklerde kullanılan farklı tutkalların kutu mobilya köşe birleştirmelerindeki diyagonal zorlamalar (diyagonal basınç ve çekme karşısındaki mukavemet performansları araştırılmıştır. Bu amaçla, faklı tutkal türleri (PVAc, Polimerin, Silikon ile tutkallanmış karma köşe birleştirmeli YL- Lam örnekler hazırlanmıştır. Örneklere diyagonal basınç ve çekme deneyleri uygulanmıştır. Deneyler sonunda silikon tutkallı deney örneklerinde, diğer örneklerden daha yüksek basınç ve çekme direnci tespit edilmiştir. Anahtar kelimeler: Yapıştırıcı, Ahşap Birleştirme, Diyagonal Basma Direnci, Diyagonal Çekme Direnci

  5. Molecularly Imprinted Porous Monolithic Materials from Melamine-Formaldehyde for Selective Trapping of Phosphopeptides

    DEFF Research Database (Denmark)

    Liu, Mingquan; Tran, Tri Minh; Abbas Elhaj, Ahmed Awad

    2017-01-01

    monoliths, chosen based on the combination of meso- and macropores providing optimal percolative flow and accessible surface area, was synthesized in the presence of N-Fmoc and O-Et protected phosphoserine and phosphotyrosine to prepare molecularly imprinted monoliths with surface layers selective...... for phosphopeptides. These imprinted monoliths were characterized alongside nonimprinted monoliths by a variety of techniques and finally evaluated by liquid chromatography-mass spectrometry in the capillary format to assess their abilities to trap and release phosphorylated amino acids and peptides from partly...

  6. Melamine Trisulfonic Acid as a New, Efficient and Reusable Catalyst for the Chemoselective Oxathioacetalyzation of Aldehydes

    International Nuclear Information System (INIS)

    Shirini, F.; Albadi, J.

    2010-01-01

    We developed an efficient and high yielding method for the chemoselective oxathioacetalyzation of aldehydes. Relatively short reaction times, high efficiency, heterogeneous reaction conditions, availability and recyclability of the reagent and easy work-up are among the other advantages of this method, which make this procedure a useful and attractive addition to the available methods. We are exploring further applications of MTSA for the other types of functional group transformations in our laboratory. 1,3-Oxathiolanes are synthetically important protecting groups for aldehydes due to their considerable stability under a variety of reaction conditions, ease of formation and removal, equality to acyl carbanions in C-C bond forming reactions, and use in enantioselective synthesis of tertiary α-hydroxy acids and glycols

  7. Preparation of nanocrystalline VN by the melamine reduction of V2O5 xerogel and its supercapacitive behavior

    International Nuclear Information System (INIS)

    Cheng Fukui; He Chun; Shu Dong; Chen Hongyu; Zhang Jie; Tang Shaoqing; Finlow, David E.

    2011-01-01

    Highlights: ► Organic nitridizing agent was employed for preparation of nanocrystalline VN. ► The supercapacitive behavior of VN was studied by electrochemical method. ► The supercapacitive behavior of VN was studied in three kinds of electrolyte. ► The specific capacitance of VN was determined as 273 F g −1 in 1.0 M KOH. ► The supercapacitive mechanism and involved factor on capacitance were analyzed. - Abstract: An organic nitridizing reagent was employed in the preparation of nanocrystalline VN at 800 °C under a N 2 atmosphere. The prepared VN was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), and its supercapacitive behavior was studied by cyclic voltammetry (CV) in three different types of aqueous electrolyte, 0.5 M H 2 SO 4 , 2.0 M NaNO 3 and 1.0 M KOH. The XRD results indicate that prepared VN has a cubic structure with space group Fm3m and a lattice parameter of 4.139 Å. The nanocrystalline structure of VN with a low degree of crystallinity was confirmed by TEM imaging. The presence of oxygen on the VN surface was detected by FTIR and XPS, and its molecular composition was determined to be VN 1.02 O 0.1 . The specific capacitances of nanocrystalline VN were determined to be 114, 45.7 and 273 F g −1 in 0.5 M H 2 SO 4 , 2.0 M NaNO 3 and 1.0 M KOH, respectively. Thus, the KOH solution was considered the best aqueous electrolyte for the capacitive performance of VN. The supercapacitive mechanism and the factor that influenced the specific capacitance are also analyzed in this paper.

  8. Preparation of Melamine - Formaldehyde Microcapsules Containing Hexadecane as a Phase Change Material: The Effect of Surfactants Type and Concentration

    Directory of Open Access Journals (Sweden)

    Zeinab Alinejad

    2013-05-01

    Full Text Available Microcapsules containing n-hexadecane (HD as the core and melamineformaldehyde (MF prepolymer as the shell were prepared by in-situ dispersion polymerization. The effects of surfactants type and amount were studied in relation to the morphology and thermal properties of microcapsules. The morphology of the microcapsules was studied using scanning electron microscopy (SEM and thermal properties were detected by differential scanning calorimetry (DSC and thermogravimetric analysis (TGA. SEM images showed that the increase in the amount of Triton X-100 (non-ionic to SDS (ionic ratio resulted in the agglomeration of the prepared microcapsules. This increase led also to lower encapsulated hexadecane and thermal stability of microcapsules. As a result, the optimum composition of the above surfactants for obtaining higher thermal stability and proper morphology wasfound to be 20 wt% of Triton X-100 and 80 wt% of SDS in the recipe. The optimum total amounts of surfactants was 4 wt%, which resulted in spherical and separate microcapsules. DSC and TGA analyses revealed that a sample prepared with 4 wt% of surfactants was not only successful in encapsulation of hexadecane but also showedhigher thermal stability compared with other formulations.

  9. Technical guidelines on testing the migration of primary aromatic amines from polyamide kitchenware and of formaldehyde from melamine kitchenware

    DEFF Research Database (Denmark)

    Simoneau, C.; Hoekstra, E.; Bradley, E.

    Comparability of results is an important feature of the measurements carried out for official controls purposes. In the area of food contact materials and articles comparability of results is dependent on the availability of samples representative of a consignment, the type of exposure and the te...

  10. EFFECTS OF PRESS PRESSURE ON GLUE LINE THICKNESS AND PROPERTIES OF LAMINATED VENEER LUMBER GLUED WITH MELAMINE UREA FORMALDEHYDE ADHESIVE

    Directory of Open Access Journals (Sweden)

    Ramazan Kurt,

    2012-07-01

    Full Text Available Laminated veneer lumbers (LVLs were manufactured from half-round sliced I-214 hybrid poplar clone veneers with MUF adhesives using press pressures ranging from 2.5 to 15 kg cm-2. The results showed that the press pressures affected the glue line thickness (GLT and the physical and mechanical properties of the LVLs. Higher specific gravity (SG and mechanical properties, but lower GLT were developed as a result of using higher press pressures. The optimum press pressure was found to be 10 kg cm-2 in relation to GLT, SG, and mechanical properties. Significant linear correlations were found between GLT and mechanical properties. GLT can be used to determine the quality of wood bonding and may become a valuable tool for this purpose. Reliable data on the optimum GLT and press pressures can be used to design safe wood bonding applications in all aspects of wood based composites, as well as wood constructions when appropriate techniques are adopted to measure the GLT.

  11. A Surface Plasmon Resonance-Based Optical Fiber Probe Fabricated with Electropolymerized Molecular Imprinting Film for Melamine Detection

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-03-01

    Full Text Available Molecularly imprinted polymer (MIP films prepared by bulk polymerization suffer from numerous deficiencies, including poor mass transfer ability and difficulty in controlling reaction rate and film thickness, which usually result in poor repeatability. However, polymer film synthesized by electropolymerization methods benefit from high reproducibility, simplicity and rapidity of preparation. In the present study, an Au film served as the refractive index-sensitive metal film to couple with the light leaked out from optical fiber core and the electrode for electropolymerizing MIP film simultaneously. The manufactured probe exhibited satisfactory sensitivity and specificity. Furthermore, the surface morphology and functional groups of the synthesized MIP film were characterized by Atomic Force Microscopy (AFM and Fourier transform infrared microspectroscopy (FTIR for further insights into the adsorption and desorption processes. Given the low cost, label-free test, simple preparation process and fast response, this method has a potential application to monitor substances in complicated real samples for out-of-lab test in the future.

  12. Preparation of nanocrystalline VN by the melamine reduction of V{sub 2}O{sub 5} xerogel and its supercapacitive behavior

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Fukui [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); He Chun [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Shu Dong, E-mail: dshu@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Base of Production, Education and Research on Energy Storage and Power Battery of Guangdong Higher Education Institutes, Guangzhou 510006 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006 (China); Chen Hongyu, E-mail: hychen@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Base of Production, Education and Research on Energy Storage and Power Battery of Guangdong Higher Education Institutes, Guangzhou 510006 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006 (China); Zhang Jie; Tang Shaoqing; Finlow, David E. [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Organic nitridizing agent was employed for preparation of nanocrystalline VN. Black-Right-Pointing-Pointer The supercapacitive behavior of VN was studied by electrochemical method. Black-Right-Pointing-Pointer The supercapacitive behavior of VN was studied in three kinds of electrolyte. Black-Right-Pointing-Pointer The specific capacitance of VN was determined as 273 F g{sup -1} in 1.0 M KOH. Black-Right-Pointing-Pointer The supercapacitive mechanism and involved factor on capacitance were analyzed. - Abstract: An organic nitridizing reagent was employed in the preparation of nanocrystalline VN at 800 Degree-Sign C under a N{sub 2} atmosphere. The prepared VN was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), and its supercapacitive behavior was studied by cyclic voltammetry (CV) in three different types of aqueous electrolyte, 0.5 M H{sub 2}SO{sub 4}, 2.0 M NaNO{sub 3} and 1.0 M KOH. The XRD results indicate that prepared VN has a cubic structure with space group Fm3m and a lattice parameter of 4.139 Angstrom-Sign . The nanocrystalline structure of VN with a low degree of crystallinity was confirmed by TEM imaging. The presence of oxygen on the VN surface was detected by FTIR and XPS, and its molecular composition was determined to be VN{sub 1.02}O{sub 0.1}. The specific capacitances of nanocrystalline VN were determined to be 114, 45.7 and 273 F g{sup -1} in 0.5 M H{sub 2}SO{sub 4}, 2.0 M NaNO{sub 3} and 1.0 M KOH, respectively. Thus, the KOH solution was considered the best aqueous electrolyte for the capacitive performance of VN. The supercapacitive mechanism and the factor that influenced the specific capacitance are also analyzed in this paper.

  13. 2008 Chinese Milk Products Crisis

    Directory of Open Access Journals (Sweden)

    Rini Ariani Basyamfar

    2014-10-01

    Abstrak. Susu merupakan salah satu produk pangan yang paling penting untuk pertumbuhan anak-anak dan kesehatan. Melamin (2,4,6-triazina-1,3,5-triamino adalah senyawa organik yang digunakan dalam pembuatan pestisida, plastik, pembersih, dan disinfektan. Melamin ketika ditambahkan ke susu meningkatkan jumlah keseluruhan nitrogen dalam susu sehingga mengelabui tes umum untuk kandungan protein. Melamin juga sangat berbahaya bila tertelan, terutama untuk anak-anak. Sanlu, salah satu produsen susu terbesar di China, mengencerkan produk susu mereka dengan air dan menambahkan melamin untuk mengelabui tes protein. Konsumsi susu yang mengandung melamin dalam jumlah yang lebih besar dari 1 mg/kg dapat menyebabkan gagal ginjal, kanker kandung kemih dan kematian. Pengujian susu menggunakan LC-MS/MS dan metode GC-MS/MS dapat mengungkapkan kontaminasi melamin. Tindakan lebih lanjut yang dapat diterapkan untuk mengurangi pemalsuan susu antara lain penelusuran produk, transparansi perusahaan, 100% prosedur pengujian produk dan penegakan hukum yang konsisten.

  14. African Journal of Biotechnology - Vol 10, No 17 (2011)

    African Journals Online (AJOL)

    Effect of temperature and salinity on germination of Achillea fragrantissima ... Efficiency and safety of percuSurge distal protection device in acute ... Effects of different doses of melamine in the diet on melamine concentrations in milk, plasma, ... Schwann cells promote neuronal differentiation of bone marrow stromal cells ...

  15. 2012 edition JMBR - CORRECTION.cdr

    African Journals Online (AJOL)

    FinePrint

    MELAMINE: AN EMERGING NEUROTOXICANT? 1,2. 1. IBHAZEHIEBO K and KOIBUCHI N. ABSTRACT. Melamine is an organic compound used in combination with formaldehyde in the manufacture of plastics and also used as a flame retardant especially in buses and aircrafts. In the summer of 2008, multiple illness and ...

  16. Catalytic hydrolysis of s-triazine compounds over AlzO3

    NARCIS (Netherlands)

    Zhan, Z.; Zhan, Zhaoqi; Müllner, Martin; Lercher, J.A.

    1996-01-01

    Hydrolysis of cyanuric acid, melamine, melem, atrazine and melamine-formaldehyde resin was found to be catalyzed by an A12O3 catatyst. The reactions occur irreversibly with cleavage of the s-triazine ring between 240 and 450°C. The s-triazine-ring is hydrolyzed to ammonia and carbon dioxide, and the

  17. 2008 Chinese Milk Products Crisis

    OpenAIRE

    Rini Ariani Basyamfar

    2014-01-01

    Abstract. Milk is one of the most important food products for children’s growth and overall health.  Melamine (2,4,6-triazine-1,3,5-triamino) is an organic compound used in the manufacture of pesticides, plastics, sanitizers, and disinfectants.  Melamine when added to milk increases the overall amount of nitrogen in the milk thus fooling common tests for protein content.  Melamine is also extremely harmful when ingested, especially for young children.  Sanlu, one of China's largest dairy prod...

  18. Harvesting solar light with crystalline carbon nitrides for efficient photocatalytic hydrogen evolution

    KAUST Repository

    Bhunia, Manas Kumar; Yamauchi, Kazuo; Takanabe, Kazuhiro

    2014-01-01

    Described herein is the photocatalytic hydrogen evolution using crystalline carbon nitrides (CNs) obtained by supramolecular aggregation followed by ionic melt polycondensation (IMP) using melamine and 2,4,6-triaminopyrimidine as a dopant. The solid

  19. Presidential Green Chemistry Challenge: 2009 Greener Reaction Conditions Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2009 award winner, CEM Corporation, developed a fast, automated analytical process using less toxic reagents and less energy to distinguish protein from the food adulterant, melamine.

  20. Precursor polymer compositions comprising polybenzimidazole

    Science.gov (United States)

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  1. Polymer compositions, polymer films and methods and precursors for forming same

    Science.gov (United States)

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J

    2013-09-24

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  2. Photocatalytic degradation of methylene blue by C3N4/ZnO: the ...

    Indian Academy of Sciences (India)

    heating at 540◦C for 3 h in air, melamine was converted to C3N4 but the formation of C3N4 depended on the ratios of the melamine and ZnO (M/Z) powders. From the experimental results, ... decolourize the textile wastewater such as adsorption, chem- ical coagulation, oxidization and so on [1–3]. Photocataly- sis is one of ...

  3. Microcapsules Filled with a Palm Oil-Based Alkyd as Healing Agent for Epoxy Matrix

    OpenAIRE

    Nurshafiza Shahabudin; Rosiyah Yahya; Seng Neon Gan

    2016-01-01

    One of the approaches to prolong the service lifespan of polymeric material is the development of self-healing ability by means of embedded microcapsules containing a healing agent. In this work, poly(melamine-urea-formaldehyde) (PMUF) microcapsules containing a palm oil-based alkyd were produced by polymerization of melamine resin, urea and formaldehyde that encapsulated droplets of the suspended alkyd particles. A series of spherical and free-flowing microcapsules were obtained. The chemica...

  4. Effectiveness of Flame Retardants in TufFoam.

    Energy Technology Data Exchange (ETDEWEB)

    Abelow, Alexis Elizabeth [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nissen, April [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Massey, Lee Taylor [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Whinnery, LeRoy L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-12-01

    An investigation of polyurethane foam filled with known flame retardant fillers including hydroxides, melamine, phosphate-containing compounds, and melamine phosphates was carried out to produce a low-cost material with high flame retardant efficiency. The impact of flame retardant fillers on the physical properties such a s composite foam density, glass transition temperature, storage modulus, and thermal expansion of composite foams was investigated with the goal of synthesizing a robust rigid foam with excellent flame retardant properties.

  5. The effect of type and mixture of resin on the properties of impregnated paper

    Directory of Open Access Journals (Sweden)

    hossein Kermanian

    2017-05-01

    Full Text Available This study was carried out in order to investigate the effects of different types of resins and also their mixtures on the impregnated paper properties. In this regard, pure urea resin (100%, mixture of melamine and urea resins with various combinations (60/40 and 70/30 and 50/50, mixture of nano-fiber cellulose ratios of 1, 2 and 3 percent with urea resin and pure PVA (100% were used to impregnate of newsprint basic paper of Mazandaran wood and paper industries. Immersion of samples in the impregnation step were done in two time of 5 and 10 seconds. Next, melamine resin was used for surface coating and then absorption of resin in the impregnation and coating process measured. Results showed that in the impregnation step with pure urea (100%, in the respect of absorption rate and surface properties of melamine paper, the best time of impregnation was obtained 10 seconds. In the combined treatment, adding up to 30% melamine to urea resin, as impregnation step resin, offers better properties in terms of stain resistance, cigarette resistance, resistance to cracking and resistance to hot water steam for impregnatedmade paper. By adding nanocellulose up to 1% in impregnation resin, better properties is obtained for melamine paper. Also, PVA as impregnation resin, can be offer similar quality to pure urea in the resulting melamine papers.

  6. Synthesis and curing of alkyd enamels based on ricinoleic acid

    Directory of Open Access Journals (Sweden)

    Jovičić Mirjana C.

    2010-01-01

    Full Text Available A combination of an alkyd resin with a melamine-formaldehyde resin gives a cured enamel film with the flexibility of the alkyd constituent and the high chemical resistance and hardness of the melamine resin at the same time. The melamine resin is a minor constituent and plays the role of a crosslinking agent. In this paper, alkyd resins of high hydroxyl numbers based on trimethylolpropane, ricinoleic acid and phthalic anhydride were synthesized. Two alkyds having 30 and 40 wt% of ricinoleic acid were formulated by calculation on alkyd constant. Alkyds were characterized by FTIR and by the determination of acid and hydroxyl numbers. Then synthesized alkyds were made into baking enamels by mixing with melamine-formaldehyde resins (weight ratio of 70:30 based on dried mass. Two types of commercial melamine resins were used: threeisobutoxymethyl melamine-formaldehyde resin (TIMMF and hexamethoxymethyl melamine resin (HMMMF. Prepared alkyd/melamine resin mixtures were cured in a differential scanning calorimeter (DSC under non-isothermal mode. Apparent degree of curing as a function of temperature was calculated from the curing enthalpies. Kinetic parameters of curing were calculated using Freeman-Carroll method. TIMMF resin is more reactive with synthesized alkyds than HMMMF resin what was expected. Alkyd resin with 30 wt% of ricinoleic acid is slightly more reactive than alkyd with 40 wt% of ricinoleic acid, probably because it has the high contents of free hydroxyl and acid groups. The gel content, Tg, thermal stability, hardness, elasticity and impact resistance of coated films cured at 150°C for 60 min were measured. Cured films show good thermal stability since the onset of films thermal degradation determined by thermogravimetric analysis (TGA is observed at the temperatures from 281 to 329°C. Films based on alkyd 30 are more thermal stable than those from alkyd 40, with the same melamine resin. The type of alkyd resin has no significant

  7. Synthesis of nitrogen doped microporous carbons prepared by activation-free method and their high electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Seok [Department of Chemistry, Inha University, Incheon 402-751 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, Incheon 402-751 (Korea, Republic of)

    2011-11-30

    Graphical abstract: This describes the increase of specific capacitance in hybrid electrodes as a function of melamine content. Display Omitted Highlights: > For N-enriched hybrid carbons, co-precursors, PVDF/melamine composites, were used. > Microporous carbons were formed by only carbonization without chemical activation. > The nitrogen content of microporous carbons was controlled by melamine content. > N-doped carbons showed higher specific capacitance compared to microporous carbons. > It was attributed to the easy electron transfer and pseudocapacitance. - Abstract: Nitrogen-doped microporous carbons (N-MCs) were prepared by the carbonization of the polyvinylidene fluoride (PVDF)/melamine mixture without chemical activation. The electrochemical performance of the N-MCs was investigated as a function of PVDF/melamine ratio. It was found that, without additional activation, the N-MCs had a high specific surface area (greater than 560 m{sup 2}/g) because of the micropore formation by the release of fluorine groups. In addition, although the specific surface area decreased, nitrogen groups were increased with increasing melamine content, leading to an enhanced electrochemical performance. Indeed, the N-MCs showed a better electrochemical performance than that of microporous carbons (MCs) prepared by PVDF alone, and the highest specific capacitance (310 F/g) was obtained at a current density of 0.5 A/g, as compared to a value of 248 F/g for MCs. These results indicate that the microporous features of N-MC lead to feasible ion transfer during charge/discharge duration and the presence of nitrogen groups as strong electron donor on the N-MC electrode in electrolyte could provide a pseudocapacitance by the redox reaction.

  8. Synthesis of nitrogen doped microporous carbons prepared by activation-free method and their high electrochemical performance

    International Nuclear Information System (INIS)

    Kim, Ki-Seok; Park, Soo-Jin

    2011-01-01

    Graphical abstract: This describes the increase of specific capacitance in hybrid electrodes as a function of melamine content. Display Omitted Highlights: → For N-enriched hybrid carbons, co-precursors, PVDF/melamine composites, were used. → Microporous carbons were formed by only carbonization without chemical activation. → The nitrogen content of microporous carbons was controlled by melamine content. → N-doped carbons showed higher specific capacitance compared to microporous carbons. → It was attributed to the easy electron transfer and pseudocapacitance. - Abstract: Nitrogen-doped microporous carbons (N-MCs) were prepared by the carbonization of the polyvinylidene fluoride (PVDF)/melamine mixture without chemical activation. The electrochemical performance of the N-MCs was investigated as a function of PVDF/melamine ratio. It was found that, without additional activation, the N-MCs had a high specific surface area (greater than 560 m 2 /g) because of the micropore formation by the release of fluorine groups. In addition, although the specific surface area decreased, nitrogen groups were increased with increasing melamine content, leading to an enhanced electrochemical performance. Indeed, the N-MCs showed a better electrochemical performance than that of microporous carbons (MCs) prepared by PVDF alone, and the highest specific capacitance (310 F/g) was obtained at a current density of 0.5 A/g, as compared to a value of 248 F/g for MCs. These results indicate that the microporous features of N-MC lead to feasible ion transfer during charge/discharge duration and the presence of nitrogen groups as strong electron donor on the N-MC electrode in electrolyte could provide a pseudocapacitance by the redox reaction.

  9. Synthesis and characterization of novel curing agents for surface coatings based on acrylamide copolymers

    International Nuclear Information System (INIS)

    Patel, N. V.; Parmar, R. J.; Parmar, J. S.

    2003-01-01

    The acrylamide based curing agents were prepared form methyl methacrylate-acrylamide copolymers by further methylolation and subsequent etherification with butanol. These were characterized for their various physico-chemical characteristics. Various sets of these ACAs were blended with hydroxyl functional acrylic resin to prepare the staving compared with the conventional melamine-formaldehyde based curing agent containing compositions. The films were also characterized thermogravimetric analysis and IR-spectra. The result reveals that the properties of certain compositions based on ACAs were remarkably better than those of conventional melamine-formaldehyde based curing agent based coatings

  10. 1,3,5-Triazine-2,4,6-triyltrisulfamic acid (TTSA)

    Indian Academy of Sciences (India)

    Administrator

    cOrganic Polymer Chemistry Research Laboratory, Department of Chemistry, ... in handling, decreased reactor and plant corrosion ... eral acid in water or mixture of alcohol–water as ... Products were characterized by comparison ... A 250 mL suction flask was used. ... of melamine was completed, the mixture was shaken.

  11. Fe3C-based oxygen reduction catalysts: synthesis, hollow spherical structures and applications in fuel cells

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2015-01-01

    We present a detailed study of a novel Fe3C-based spherical catalyst with respect to synthetic parameters, nanostructure formation, ORR active sites and fuel cell demonstration. The catalyst is synthesized by high temperature autoclave pyrolysis using decomposing precursors. Below 500 °C, melamine...

  12. Nanopillar Filters for Surface-Enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Durucan, Onur; Rindzevicius, Tomas; Schmidt, Michael Stenbæk

    2017-01-01

    We present a simple, robust, and automated molecule extraction technique based on a centrifugal microfluidic platform. Fast and facile extraction of a food adulterant (melamine) from a complex sample medium (milk) on a SERS substrate is demonstrated. The unique characteristic of the detection met...

  13. Experimental Studies on the Effects of Thermal Bumps in the Flow-Field around a Flat Plate using a Hypersonic Wind Tunnel

    Science.gov (United States)

    2012-07-01

    Bakelite Hylem F1361, which is a thermosetting plastic consisting of a medium weave fabric reinforced laminate with Melamine resin binder. This composite...can be used for high-speed flow control. The laser ablation was conducted on the aluminium alloy plate inside a pressure chamber, where the

  14. 21 CFR 181.30 - Substances used in the manufacture of paper and paperboard products used in food packaging.

    Science.gov (United States)

    2010-04-01

    ... cyanodithioimidocarbamate with ethylene diamine and potassium N-methyl dithiocarbamate and/or sodium 2-mercaptobenzothiazole (slimicides).* Ethyl acrylate and methyl methacrylate copolymers of itaconic acid or methacrylic acid for use... acid (polymerized). Melamine formaldehyde polymer. Methyl acrylate (polymerized). Methyl ethers of mono...

  15. Process for preparing wastes for non-pollutant disposal

    International Nuclear Information System (INIS)

    Debus, A.A.G.; Rosenstiel, T.L.

    1982-01-01

    In disposing of wastes, especially those containing radioactive or toxic substances, wherein the liquid or finely divided solid waste is mixed with water and a hydraulic binder and allowed to set, the binder used comprises a mixture of calcium sulphate hemihydrate, a water-dispersible melamine formaldehyde resin which when cured is hydrophobic and sufficient cross-linking agent to cure the resin. (author)

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Water gas shift (WGS) reaction is an important reaction to generate hydrogen from steam reforming of CO. A new WGS catalyst, Ce1−RuO2− (0 ≤ ≤ 0.1) was prepared by hydrothermal method using melamine as a complexing agent. The Catalyst does not require any pre-treatment. Among the several compositions ...

  17. The cost-effective synthesis of furan- and thienyl-based microporous polyaminals for adsorption of gases and organic vapors.

    Science.gov (United States)

    Li, Guiyang; Zhang, Biao; Yan, Jun; Wang, Zhonggang

    2016-01-21

    This work reveals that furfural and 2-thenaldehyde can readily react with melamine via "one-step" polycondensation to yield hyper-cross-linked sulfur-, nitrogen- and oxygen-rich microporous polyaminals with promising applications in adsorption of gases and toxic organic vapors.

  18. Anodic stripping voltammetry of gold nanoparticles at boron-doped diamond electrodes and its application in immunochromatographic strip tests.

    Science.gov (United States)

    Ivandini, Tribidasari A; Wicaksono, Wiyogo P; Saepudin, Endang; Rismetov, Bakhadir; Einaga, Yasuaki

    2015-03-01

    Anodic stripping voltammetry (ASV) of colloidal gold-nanoparticles (AuNPs) was investigated at boron-doped diamond (BDD) electrodes in 50 mM HClO4. A deposition time of 300 s at-0.2 V (vs. Ag/AgCl) was fixed as the condition for the ASV. The voltammograms showed oxidation peaks that could be attributed to the oxidation of gold. These oxidation peaks were then investigated for potential application in immunochromatographic strip tests for the selective and quantitative detection of melamine, in which AuNPs were used as the label for the antibody of melamine. Linear regression of the oxidation peak currents appeared in the concentration range from 0.05-0.6 μg/mL melamine standard, with an estimated LOD of 0.069 μg/mL and an average relative standard deviation of 8.0%. This indicated that the method could be considered as an alternative method for selective and quantitative immunochromatographic applications. The validity was examined by the measurements of melamine injected into milk samples, which showed good recovery percentages during the measurements. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Dendritic Tip-on Polytriazine-Based Carbon Nitride Photocatalyst with High Hydrogen Evolution Activity

    KAUST Repository

    Bhunia, Manas Kumar; Melissen, Sigismund; Parida, Manas R.; Sarawade, Pradip; Basset, Jean-Marie; Anjum, Dalaver H.; Mohammed, Omar F.; Sautet, Philippe; Le Bahers, Tangui; Takanabe, Kazuhiro

    2015-01-01

    (CN) material with different C/N ratios achieved by varying the monomer composition ratio between melamine (Mel) and 2,4,6-triaminopyrimidine (TAP). The CN material with a different C/N ratio was obtained through a two-step synthesis protocol: starting

  20. 1,3,5-Triazine-2,4,6-triyltrisulfamic acid (TTSA)

    Indian Academy of Sciences (India)

    Melamine reacted with chlorosufonic acid (ClSO3H) to form a new sulfamic-type acid, 1,3,5-triazine-2,4,6-triyltrisulfamic acid (TTSA). Both nitrosation of secondary amines and oxidation of urazoles were accomplished by using TTSA/NaNO2 system under mild and heterogeneous conditions with good to excellent yields.

  1. Effect of resin variables on the creep behavior of high density hardwood composite panels

    Science.gov (United States)

    R.C. Tang; Jianhua Pu; C.Y Hse

    1993-01-01

    The flexural creep behavior of oriented strandboards (OSB) fabricated with mixed high, density hardwood flakes was investigated. Three types of adhesives, liquid phenolic-formaldehyde (LPF), melamine modified urea-formaldehyde (MUF), and LPF (face)/MUF (core) were chosen in this investigation. The resin contents (RC) used were 3.5 percent and 5.0 percent. The flakes...

  2. Construction of g-C{sub 3}N{sub 4}/Al{sub 2}O{sub 3} hybrids via in-situ acidification and exfoliation with enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao-jing [College of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China); State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Liu, Chao [College of Gemmology and Material Technics, Hebei GEO University, Shijiazhuang 050031 (China); Li, Xu-li [College of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China); Li, Fa-tang, E-mail: lifatang@126.com [College of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China); Li, Yu-pei [College of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China); Zhao, Jun [College of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China); State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Liu, Rui-hong [College of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China)

    2017-02-01

    Highlights: • Ultrathin g-C{sub 3}N{sub 4}/Al{sub 2}O{sub 3} hybrids are prepared via in-situ reaction. • The structure modification role of in-situ formed HNO{sub 3} for g-C{sub 3}N{sub 4} is found. • The ultrathin g-C{sub 3}N{sub 4} nanosheets are formed by the acidified melamine and Al(OH){sub 3}. • In-situ calcination of melamine and Al(OH){sub 3} benefits the contact of C{sub 3}N{sub 4} and Al{sub 2}O{sub 3}. • The activity of g-C{sub 3}N{sub 4}/Al{sub 2}O{sub 3} is 16.6 times that of pristine g-C{sub 3}N{sub 4} in degrading RhB. - Abstract: Homogeneous ultrathin g-C{sub 3}N{sub 4} nanosheets/Al{sub 2}O{sub 3} heterojunctions are synthesized using melamine and Al(NO{sub 3}){sub 3} via in-situ reaction and the following thermal polymerization approach. The in-situ reaction between melamine and Al(NO{sub 3}){sub 3} results in the existence of HNO{sub 3}-acidified melamine and Al(OH){sub 3} aggregates via the hydrolysis of Al(NO{sub 3}){sub 3}. After thermal polymerization, the aggregates are converted to g-C{sub 3}N{sub 4}/Al{sub 2}O{sub 3} composites. The thermal polymerization of acidified melamine and the support effect of aluminum hydroxide for g-C{sub 3}N{sub 4} during the calcination process lead to highly dispersed amrophous Al{sub 2}O{sub 3} on ultrathin g-C{sub 3}N{sub 4} nanosheets, which is beneficial for the separation of photogenerated electron-hole pairs in the heterojunction. The degradation rate for Rhodamine B (RhB) over the most activie sample is 16.6 times than that of pristine g-C{sub 3}N{sub 4} under visible light irradiation, which can be attributed to the high specific surface area, highly dispersion of amorphous Al{sub 2}O{sub 3} on ultrathin g-C{sub 3}N{sub 4} nanosheet, and the effective electrons transfer from g-C{sub 3}N{sub 4} to the amorphous Al{sub 2}O{sub 3}.

  3. Construction of g-C_3N_4/Al_2O_3 hybrids via in-situ acidification and exfoliation with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Wang, Xiao-jing; Liu, Chao; Li, Xu-li; Li, Fa-tang; Li, Yu-pei; Zhao, Jun; Liu, Rui-hong

    2017-01-01

    Highlights: • Ultrathin g-C_3N_4/Al_2O_3 hybrids are prepared via in-situ reaction. • The structure modification role of in-situ formed HNO_3 for g-C_3N_4 is found. • The ultrathin g-C_3N_4 nanosheets are formed by the acidified melamine and Al(OH)_3. • In-situ calcination of melamine and Al(OH)_3 benefits the contact of C_3N_4 and Al_2O_3. • The activity of g-C_3N_4/Al_2O_3 is 16.6 times that of pristine g-C_3N_4 in degrading RhB. - Abstract: Homogeneous ultrathin g-C_3N_4 nanosheets/Al_2O_3 heterojunctions are synthesized using melamine and Al(NO_3)_3 via in-situ reaction and the following thermal polymerization approach. The in-situ reaction between melamine and Al(NO_3)_3 results in the existence of HNO_3-acidified melamine and Al(OH)_3 aggregates via the hydrolysis of Al(NO_3)_3. After thermal polymerization, the aggregates are converted to g-C_3N_4/Al_2O_3 composites. The thermal polymerization of acidified melamine and the support effect of aluminum hydroxide for g-C_3N_4 during the calcination process lead to highly dispersed amrophous Al_2O_3 on ultrathin g-C_3N_4 nanosheets, which is beneficial for the separation of photogenerated electron-hole pairs in the heterojunction. The degradation rate for Rhodamine B (RhB) over the most activie sample is 16.6 times than that of pristine g-C_3N_4 under visible light irradiation, which can be attributed to the high specific surface area, highly dispersion of amorphous Al_2O_3 on ultrathin g-C_3N_4 nanosheet, and the effective electrons transfer from g-C_3N_4 to the amorphous Al_2O_3.

  4. Simple method for functionalization of silica with alkyl silane and organic ligands

    Directory of Open Access Journals (Sweden)

    Kasim Mohammed Hello

    2018-06-01

    Full Text Available 3–(chloropropyltriethoxysilane (CPTES with imidazole and sodium silicate from rice husk ash (RHA successfully reacted within a short time in one–pot synthesis in purely homogenous method. A similar procedure was used for the immobilization of melamine and saccharine to demonstrate a generally applicable method. No reflux was needed, and a green solvent was used as the reaction medium. The surface areas of the prepared materials were very high compared with the materials which have similar structure prepared by the traditional method. The TGA/DTA confirmed that all the materials were highly stable. The FT-IR shows that all expected the functional groups were present. The HRTEM showed that the materials had ordered mesoporous straight-channels which were like the MCM-41. The synthesis procedure is simple, repeatable with different organic ligands and does not require toxic solvents or multiple steps with high products yield. Keywords: Rice husk ash, MCM-41, Imidazole, Melamine, Saccharine

  5. Qualitative and quantitative analysis of milk for the detection of adulteration by Laser Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Moncayo, S; Manzoor, S; Rosales, J D; Anzano, J; Caceres, J O

    2017-10-01

    The present work focuses on the development of a fast and cost effective method based on Laser Induced Breakdown Spectroscopy (LIBS) to the quality control, traceability and detection of adulteration in milk. Two adulteration cases have been studied; a qualitative analysis for the discrimination between different milk blends and quantification of melamine in adulterated toddler milk powder. Principal Component Analysis (PCA) and neural networks (NN) have been used to analyze LIBS spectra obtaining a correct classification rate of 98% with a 100% of robustness. For the quantification of melamine, two methodologies have been developed; univariate analysis using CN emission band and multivariate calibration NN model obtaining correlation coefficient (R 2 ) values of 0.982 and 0.999 respectively. The results of the use of LIBS technique coupled with chemometric analysis are discussed in terms of its potential use in the food industry to perform the quality control of this dairy product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Chemical functionalization and stabilization of type I collagen with organic tanning agents

    International Nuclear Information System (INIS)

    Albu, Madalina Georgiana; Deselnicu, Viorica; Ioannidis, Ioannis; Deselnicu, Dana; Chelaru, Ciprian

    2015-01-01

    We investigated the interactions between selected organic tanning agents and type I fibrillar collagen as a model fibrillar substrate to enable the fast direct evaluation and validation of interpretations of tanning activity. Type I fibrillar collagen (1%) as gel was used as substrate of tanning and tannic acid, resorcinol- and melamine-formaldehyde and their combination at three concentrations as crosslinking agents (tannins). To evaluate the stability of collagen during tanning, the crosslinked gels at 2.8, 4.5 and 9.0 pHs were freeze-dried as discs which were characterized by FTIR, shrinkage temperature, enzymatic degradation and optical microscopy, and the results were validated by statistical analyses. The best stability was given by combinations between resorcinol- and melamine-formaldehyde at isoelectric pH

  7. Chemical functionalization and stabilization of type I collagen with organic tanning agents

    Energy Technology Data Exchange (ETDEWEB)

    Albu, Madalina Georgiana; Deselnicu, Viorica; Ioannidis, Ioannis; Deselnicu, Dana; Chelaru, Ciprian [Leather and Footwear Research Institute, Bucharest (Romania)

    2015-02-15

    We investigated the interactions between selected organic tanning agents and type I fibrillar collagen as a model fibrillar substrate to enable the fast direct evaluation and validation of interpretations of tanning activity. Type I fibrillar collagen (1%) as gel was used as substrate of tanning and tannic acid, resorcinol- and melamine-formaldehyde and their combination at three concentrations as crosslinking agents (tannins). To evaluate the stability of collagen during tanning, the crosslinked gels at 2.8, 4.5 and 9.0 pHs were freeze-dried as discs which were characterized by FTIR, shrinkage temperature, enzymatic degradation and optical microscopy, and the results were validated by statistical analyses. The best stability was given by combinations between resorcinol- and melamine-formaldehyde at isoelectric pH.

  8. Hard template synthesis of porous carbon nitride materials with improved efficiency for photocatalytic CO_2 utilization

    International Nuclear Information System (INIS)

    Ovcharov, M.; Shcherban, N.; Filonenko, S.; Mishura, A.; Skoryk, M.; Shvalagin, V.; Granchak, V.

    2015-01-01

    Graphical abstract: - Highlights: • Porous carbon nitrides were obtained via bulk and matrix pyrolysis of melamine. • Carbon nitride obtained in MCF has the highest bandgap and photocatalytic activity. • Acetaldehyde was the major product of the photoreduction reaction of CO2. - Abstract: Porous carbon nitrides of different morphology were obtained via bulk and hard template (SBA-15 and MCF) pyrolysis of melamine. Matrix method allowed obtaining ordered porous C_3N_4 with higher bandgap (2.87 eV) in the contrary to the bulk sample (2.45 eV). Obtained carbon nitrides were found to be p-type semiconductors with catalytic activity towards photoreduction of carbon dioxide with water vapour. Carbon nitride obtained in MCF has the higher bandgap, developed surface, sponge-like morphology, spatially ordering and it's characterized by the highest photocatalytic activity.

  9. 3-Nitrophenol–1,3,5-triazine-2,4,6-triamine (2/1

    Directory of Open Access Journals (Sweden)

    V. Sangeetha

    2013-06-01

    Full Text Available The asymmetric unit of the title compound, C3H6N6·2C6H5NO3, contains one melamine and two 3-nitrophenol molecules. The mean planes of the 3-nitrophenol molecules are almost orthogonal to the plane of melamine, making dihedral angles of 82.77 (4 and 88.36 (5°. In the crystal, molecules are linked via O—H...N, N—H...N and N—H...O hydrogen bonds, forming a three-dimensional network. The crystal also features weak C—H...π and π–π interactions [centroid–centroid distance = 3.9823 (9 Å].

  10. Metabolic engineering of microbial competitive advantage for industrial fermentation processes.

    Science.gov (United States)

    Shaw, A Joe; Lam, Felix H; Hamilton, Maureen; Consiglio, Andrew; MacEwen, Kyle; Brevnova, Elena E; Greenhagen, Emily; LaTouf, W Greg; South, Colin R; van Dijken, Hans; Stephanopoulos, Gregory

    2016-08-05

    Microbial contamination is an obstacle to widespread production of advanced biofuels and chemicals. Current practices such as process sterilization or antibiotic dosage carry excess costs or encourage the development of antibiotic resistance. We engineered Escherichia coli to assimilate melamine, a xenobiotic compound containing nitrogen. After adaptive laboratory evolution to improve pathway efficiency, the engineered strain rapidly outcompeted a control strain when melamine was supplied as the nitrogen source. We additionally engineered the yeasts Saccharomyces cerevisiae and Yarrowia lipolytica to assimilate nitrogen from cyanamide and phosphorus from potassium phosphite, and they outcompeted contaminating strains in several low-cost feedstocks. Supplying essential growth nutrients through xenobiotic or ecologically rare chemicals provides microbial competitive advantage with minimal external risks, given that engineered biocatalysts only have improved fitness within the customized fermentation environment. Copyright © 2016, American Association for the Advancement of Science.

  11. Intramolecular epistasis and the evolution of a new enzymatic function.

    Directory of Open Access Journals (Sweden)

    Sajid Noor

    Full Text Available Atrazine chlorohydrolase (AtzA and its close relative melamine deaminase (TriA differ by just nine amino acid substitutions but have distinct catalytic activities. Together, they offer an informative model system to study the molecular processes that underpin the emergence of new enzymatic function. Here we have constructed the potential evolutionary trajectories between AtzA and TriA, and characterized the catalytic activities and biophysical properties of the intermediates along those trajectories. The order in which the nine amino acid substitutions that separate the enzymes could be introduced to either enzyme, while maintaining significant catalytic activity, was dictated by epistatic interactions, principally between three amino acids within the active site: namely, S331C, N328D and F84L. The mechanistic basis for the epistatic relationships is consistent with a model for the catalytic mechanisms in which protonation is required for hydrolysis of melamine, but not atrazine.

  12. Structural and vibrational spectral investigations of melaminium maleate monohydrate by FTIR, FT-Raman and quantum chemical calculations

    Science.gov (United States)

    Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.

    2013-04-01

    The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G**, cc-pVDZ and 6-311++G** basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H⋯O and Nsbnd H⋯O hydrogen bonds shows notable vibrational effects.

  13. 3-Nitro-phenol-1,3,5-triazine-2,4,6-tri-amine (2/1).

    Science.gov (United States)

    Sangeetha, V; Kanagathara, N; Chakkaravarthi, G; Marchewka, M K; Anbalagan, G

    2013-06-01

    The asymmetric unit of the title compound, C3H6N6·2C6H5NO3, contains one melamine and two 3-nitro-phenol mol-ecules. The mean planes of the 3-nitro-phenol mol-ecules are almost orthogonal to the plane of melamine, making dihedral angles of 82.77 (4) and 88.36 (5)°. In the crystal, mol-ecules are linked via O-H⋯N, N-H⋯N and N-H⋯O hydrogen bonds, forming a three-dimensional network. The crystal also features weak C-H⋯π and π-π inter-actions [centroid-centroid distance = 3.9823 (9) Å].

  14. Structural and vibrational spectral investigations of melaminium maleate monohydrate by FTIR, FT-Raman and quantum chemical calculations.

    Science.gov (United States)

    Arjunan, V; Kalaivani, M; Marchewka, M K; Mohan, S

    2013-04-15

    The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G(**), cc-pVDZ and 6-311++G(**) basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak OH···O and NH···O hydrogen bonds shows notable vibrational effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Repulsion forces of superplasticizers on ground granulated blast furnace slag in alkaline media, from AFM measurements to rheological properties

    OpenAIRE

    Palacios, M.; Bowen, P.; Kappl, M.; Butt, H. J.; Stuer, M.; Pecharromán, C.; Aschauer, U.; Puertas, F.

    2012-01-01

    The electrostatic and steric repulsion induced by different superplasticizers on ground granulated blast furnace slag in alkaline media have been studied. The superplasticizers were sulfonated naphthalene, sulfonated melamine, vinyl copolymer, and polycarboxylate- based admixtures. With these superplasticizers the slag suspensions had negative zeta potentials, ranging from -3 to -10 mV. For the first time the adsorbed layer thicknesses for superplasticizers on slag using colloidal probe atomi...

  16. Direct detection of additives and degradation products from polymers by liquid extraction surface analysis employing chip-based nanospray mass spectrometry.

    Science.gov (United States)

    Paine, Martin R L; Barker, Philip J; Maclauglin, Shane A; Mitchell, Todd W; Blanksby, Stephen J

    2012-02-29

    Polymer-based surface coatings in outdoor applications experience accelerated degradation due to exposure to solar radiation, oxygen and atmospheric pollutants. These deleterious agents cause undesirable changes to the aesthetic and mechanical properties of the polymer, reducing its lifetime. The use of antioxidants such as hindered amine light stabilisers (HALS) retards these degradative processes; however, mechanisms for HALS action and polymer degradation are poorly understood. Detection of the HALS TINUVIN®123 (bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate) and the polymer degradation products directly from a polyester-based coil coating was achieved by liquid extraction surface analysis (LESA) coupled to a triple quadrupole QTRAP® 5500 mass spectrometer. The detection of TINUVIN®123 and melamine was confirmed by the characteristic fragmentation pattern observed in LESA-MS/MS spectra that was identical to that reported for authentic samples. Analysis of an unstabilised coil coating by LESA-MS after exposure to 4 years of outdoor field testing revealed the presence of melamine (1,3,5-triazine-2,4,6-triamine) as a polymer degradation product at elevated levels. Changes to the physical appearance of the coil coating, including powder-like deposits on the coating's surface, were observed to coincide with melamine deposits and are indicative of the phenomenon known as polymer 'blooming'. For the first time, in situ detection of analytes from a thermoset polymer coating was accomplished without any sample preparation, providing advantages over traditional extraction-analysis approaches and some contemporary ambient MS methods. Detection of HALS and polymer degradation products such as melamine provides insight into the mechanisms by which degradation occurs and suggests LESA-MS is a powerful new tool for polymer analysis. Copyright © 2012 John Wiley & Sons, Ltd.

  17. A one-step carbonization route towards nitrogen-doped porous carbon hollow spheres with ultrahigh nitrogen content for CO 2 adsorption

    KAUST Repository

    Wang, Yu

    2015-01-01

    © The Royal Society of Chemistry 2015. Nitrogen doped porous carbon hollow spheres (N-PCHSs) with an ultrahigh nitrogen content of 15.9 wt% and a high surface area of 775 m2 g-1 were prepared using Melamine-formaldehyde nanospheres as hard templates and nitrogen sources. The N-PCHSs were completely characterized and were found to exhibit considerable CO2 adsorption performance (4.42 mmol g-1).

  18. A Trilogy of Unfortunate Events in China: Reflecting on the Management of Crises

    OpenAIRE

    Zhang A. Long; William Crandall; John Parnell

    2010-01-01

    In this paper, the authors address three recent organizational crises that have occurred in China; the SK-II cosmetic incident, the Sharon Stone comment on the May 2008 earthquake in China, and the melamine milk contamination crisis. Each held significant notoriety due to the crises involving major companies and an assortment of negative outcomes. After presenting an overview of each case, the authors outline their reflections on the management of these crises in relation to their cultural co...

  19. Findings on pollutant formation in wood and chip board combustion. Erkenntnisse zur Schadstoffbildung bei der Verbrennung von Holz und Spanplatten

    Energy Technology Data Exchange (ETDEWEB)

    Marutzky, R.

    1991-10-01

    Combustion experiments were carried out using wood and several types of chip boards with binders on the basis of urea, melamine and phenol formaldehyde resins, polyureas, and PVC. The combustion process was observed, and the flue gas constituents in case of incomplete combustion were analyzed. The origins of the various organic and inorganic materials were discussed taking account of the results of pyrolysis experiments. (orig.).

  20. Effects of the super plasticizers and the water/cement ratio on the mini-slump of Portland cement pastes

    International Nuclear Information System (INIS)

    Meirelles, J.R.; Morelli, A.C.; Baldo, J.B.

    1998-01-01

    The rheology of Portland cement concrete is dominated by the cement paste rheology. In general the rheological behavior of cement pastes is evaluated by means of the mini-slump test. In the present paper it was investigated the effect of the water/cement ratio was as of two types of superplasticizers (melamine and naftalen based) on the mini-slump of pastes of common cement pastes. (author)

  1. Potential Applications of Alkali-Activated Alumino-Silicate Binders in Military Operations

    Science.gov (United States)

    1985-11-01

    portland 14 cement clinker) are to be blended, they are generally not ground together. However, some plasticizers (such as alkali lignosulphonate ) have a...34--- 31. Activators may also contain wetting agents (plasticizers) to re- duce the amount of water needed and to assist in mixing. Lignosulphonates ...or sulphonated lignins, have proven to be more effective than melamine or naphthalene-based superplastiCizers (Forss 1981, 1982). Lignosulphonates can

  2. g-C{sub 3}N{sub 4} Modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Pi, Liu, E-mail: 626956077@qq.com; Jiang, Rui, E-mail: jumrychem@163.com; Zhou, Wangchi, E-mail: 931860337@qq.com; Zhu, Hua, E-mail: zhuhua333@126.com; Xiao, Wei, E-mail: gabrielxiao@whu.edu.cn; Wang, Dihua, E-mail: wangdh@whu.edu.cn; Mao, Xuhui, E-mail: clab@whu.edu.cn

    2015-12-15

    Graphical abstract: - Highlights: • Composite material consisting of photo-responsive C{sub 3}N{sub 4} and biochar was studied. • Interconnection of C{sub 3}N{sub 4} and biochar was fulfilled via a condensation reaction. • The adsorption properties of composite were governed by the biochar. • The composite exhibited decontamination capability even after saturated. • Adsorption and photo-induced regeneration were mutual beneficial in composite. - Abstract: Converting the waste biomasses with high-carbon content into value-added materials is an environmental-friendly way for their utilization. In this study, a leaf-derived biochar is modified with graphitic C{sub 3}N{sub 4} to fulfill an affordable composite material capable of removing organic pollutants via adsorptive and photocatalytic processes simultaneously. The preparation process includes a carbonization process of chestnut leaf biomass and a followed condensation reaction of melamine at 520 °C. The characterization shows that biochar and C{sub 3}N{sub 4} existed in the composites in their pristine status, and the effective connection of C{sub 3}N{sub 4} and biochar was established. The adsorptive performance of the composites is governed by the biochar content in the composite, thus showing favorable performance for the removal of cationic dye methylene blue (MB). The condensation reaction of the melamine precursor has a coalescing effect on the dispersed biochar, resulting in the growth of particle size of composite. The composites prepared at different biochar/melamine ratios all show a photocatalytic activity on decolorization of MB. In terms of the specific photocatalytic activity of C{sub 3}N{sub 4} in the composite, biochar/melamine ratio of 0.5:1 is the best. Unlike the conventional adsorptive carbon materials which have saturated adsorption capacity, the composite in this study retain a sustaining decontamination capability due to the photocatalytic degradation of adsorbed organic

  3. Prompt γ energy spectrum by associated particle technique

    International Nuclear Information System (INIS)

    An Li; He Tie; Guo Haiping; Yang Jian; Zheng Pu; Wang Xinhua; Chen Yuan; Mou Yunfeng; Zhu Chuanxin; Yang Xiaofei

    2010-01-01

    The basic principle of associated alpha particle technique and the measurement system were introduced. The characteristic prompt gamma-rays coming from water, graphite, liquid nitrogen, ammonium nitrate, melamine and simulated samples induced by D-T neutron from generator were gained by single alpha particle detector and gamma-ray detector. The complex gamma-ray spectra were deconvolved. The element ratio between the experiment and chemic molecular formula is agreement in 10%. (authors)

  4. The associated particle method explosives detection technology

    International Nuclear Information System (INIS)

    An Li; Chen Yuan; Guo Haiping; Zheng Pu; Wang Xinhua; He Tie; Mu Yunfeng; Yang Xiaofei; Zhu Chuanxin

    2009-01-01

    This article introduces the basic principle of associated alpha particles technique for explosives' inspection and the measurement system. The characteristic prompt gamma-rays come from water, graphite, liquid nitrogen, ammonium nitrate, melamine and simulated samples induced by D-T neutron from generator were gained by single alpha particles detector and gamma-ray detector. The complex gamma-ray spectra were deconvolved. The element ratio between the experiment and chemics molecular formula is agreement in 10%. (authors)

  5. Synthesis and Characterisation of Aminoplast Microcapsules for Controlled Release of Bioactives. Influence of the Resin:Oil Ratio

    OpenAIRE

    Sánchez Navarro, M. Magdalena; Arán Aís, Francisca; Marcilla, Antonio; Orgilés-Barceló, César

    2015-01-01

    In this study a series of melamine-formaldehyde (MF) microcapsules containing Melaleuca alternifolia oil as natural biocide with different polymer to oil ratio was prepared by the in situ polymerization (O/W) method. The characterization of the microcapsules properties was undertaken by different experimental techniques in order to establish a correlation between the polymer to oil ratio and the oil encapsulation efficiency and properties for further applications. The average size distributio...

  6. Translations on Eastern Europe, Scientific Affairs, No. 562

    Science.gov (United States)

    1977-10-28

    achievements in the field of molecular biology we can cite such achievements as establishment of the composition and structure of nucleic acids and...way on study of the dynamics of metabolite processes, the biosynthesis of antibiotics, alka- loids, organic acids and protein substances, as well as...nitrocellulose in 1062, celluloid in 1070, Bakelite in 1872, urea formaldehyde resins in 1918, methyl polymethacrylate in 1929-1931, and Melamine in 193*t

  7. Mechanical properties of chemically modified portuguese pinewood

    OpenAIRE

    Lopes, Duarte B; Mai, Carsten; Militz, Holger

    2014-01-01

    To turn wood into a construction material with enhanced properties, many methods of chemical modification have been developed in the last few decades. In this work, mechanical properties of pine wood were chemically modified, compared and evaluated. Maritime pine wood (Pinus pinaster) was modified with four chemical processes: 1,3-dimethylol-4,5- dihydroxyethyleneurea, N-methylol melamine formaldehyde, tetra-alkoxysilane and wax. The following mechanical properties were assessed experiment...

  8. Vibrational, calorimetric and nonlinear optical studies of melaminium-bis(trichloroacetate) monohydrate molecular ionic crystal

    Science.gov (United States)

    Debrus, S.; Marchewka, M. K.; Drozd, M.; Ratajczak, H.

    2007-04-01

    The efficiency of second harmonic generation for melaminium bis(trichloroacetate) was estimated relatively to KDP: deff = 3.09 deff (KDP). Room temperature FT IR and FT Raman spectra were recorded. Some spectral features of this new crystal are referred to corresponding one for melamine crystal as well as for other trichloroacetates. Differential scanning calorimetric measurements performed on powder sample indicate the phase transition point at approximately 276 and 239 K for heating and cooling, respectively.

  9. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  10. Experiment of forced convection heat transfer using microencapsulated phase-change-material slurries

    International Nuclear Information System (INIS)

    Kubo, Shinji; Akino, Norio; Tanaka, Amane; Nagashima, Akira.

    1997-01-01

    The present study describes an experiment on forced convective heat transfer using a water slurry of Microencapsulated Phase-change-material. A normal paraffin hydrocarbon is microencapsulated by melamine resin, melting point of 28.1degC. The heat transfer coefficient and pressure drop in a circular tube were evaluated. The heat transfer coefficient using the slurry in case with and without phase change were compared to in case of using pure water. (author)

  11. Facile synthesis of nanorod-type graphitic carbon nitride/Fe2O3 composite with enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Wang, Jiangpeng; Li, Changqing; Cong, Jingkun; Liu, Ziwei; Zhang, Hanzhuo; Liang, Mei; Gao, Junkuo; Wang, Shunli; Yao, Juming

    2016-01-01

    Here we report a facile synthesis of nanorod-type graphitic carbon nitride/Fe 2 O 3 composite (Fe 2 O 3 -g-C 3 N 4 ) by using Fe-melamine supramolecular framework as precursor. The chemical and optical properties of the nanocomposites are well-characterized. The Fe 2 O 3 -g-C 3 N 4 nanocomposite demonstrated excellent photocatalytic activities under visible light due to the efficient utilization of sunlight and the construction of Z-scheme electron transfer pathway. The results indicated that it could be a promising approach for the preparation of efficient g-C 3 N 4 nanocomposites photocatalysts by using metal-melamine supramolecular framework as precursors. - Graphical abstract: Nanorod-type graphitic carbon nitride/Fe 2 O 3 composite (Fe 2 O 3 -g-C 3 N 4 ) was synthesized by using Fe-melamine supramolecular framework as precursor. The Fe 2 O 3 -g-C 3 N 4 nanocomposite demonstrated excellent photocatalytic activities under visible light. Display Omitted - Highlights: • Nanorod-type graphitic carbon nitride/Fe 2 O 3 composite (Fe 2 O 3 -g-C 3 N 4 ) was synthesized. • Fe 2 O 3 -g-C 3 N 4 showed strong optical absorption in the visible-light region. • The Fe 2 O 3 -g-C 3 N 4 nanocomposite demonstrated excellent photocatalytic activities.

  12. Synthesis of nitrogen-doped graphene via solid microwave method

    International Nuclear Information System (INIS)

    Zhang, Li; Ji, Bingcheng; Wang, Kai; Song, Jinyan

    2014-01-01

    Graphical abstract: - Highlights: • A direct solid microwave method is developed to prepare nitrogen-doped graphene. • The method consists of two steps, namely the functionalization and microwave irradiation. • Melamine can serve as not only functionalizing agent but also nitrogen source. - Abstract: In this paper, we propose a solid microwave-mediated method for scalable production of nitrogen-doped graphene sheets (NGS) using low-cost industrial material melamine as functionalizing agent and nitrogen source. The strong interaction of microwaves with graphene oxide has been fully utilized to generate in situ heating that induces the decompose melamine and nitrogen doping of graphene. The morphology, structure, and components of the as-produced nitrogen-doped graphene are characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET), pore-size distribution (PSD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The results show NGS can be successfully synthesized via this strategy

  13. Synthesis of nitrogen-doped graphene via solid microwave method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li, E-mail: zhangli379@sohu.com [School of Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024 (China); Ji, Bingcheng, E-mail: debbo.jee@outlook.com [School of Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024 (China); Wang, Kai [School of Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024 (China); Song, Jinyan [School of Information Engineering, Dalian Ocean University, Dalian, Liaoning 116024 (China)

    2014-07-01

    Graphical abstract: - Highlights: • A direct solid microwave method is developed to prepare nitrogen-doped graphene. • The method consists of two steps, namely the functionalization and microwave irradiation. • Melamine can serve as not only functionalizing agent but also nitrogen source. - Abstract: In this paper, we propose a solid microwave-mediated method for scalable production of nitrogen-doped graphene sheets (NGS) using low-cost industrial material melamine as functionalizing agent and nitrogen source. The strong interaction of microwaves with graphene oxide has been fully utilized to generate in situ heating that induces the decompose melamine and nitrogen doping of graphene. The morphology, structure, and components of the as-produced nitrogen-doped graphene are characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET), pore-size distribution (PSD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The results show NGS can be successfully synthesized via this strategy.

  14. Plastination of macroparasites: An eco-friendly method of long-term preservation.

    Science.gov (United States)

    Kumar, Niranjan; Das, Bhupamani; Solanki, Jayesh B; Jadav, Mehul M; Menaka, Ramasamy

    2017-11-01

    Preservation of macroparasites by infiltrating the polymer in the tissues can defy the inherited shortcoming of classical wet preservation method. Preservation was done by infiltrating the melamine alone or with xylene (MX)/chloroform (MC)/turpentine oil (MT) in 1:1 and hardener (MH) in 9:1 ratio in the tissues of the gross specimen of the animal parasites. The plastinated models withstand the process of microbial decomposition, and remain intact in the environmental conditions. The polymer mixture resists the entry of the water molecule, and model dried just after taking out it from the water tank. Overall, the plastinated parasites were dry, non-sticky, glossy, odorless, chemical free, and harmless, to some extent flexible, with detectable morphological structure, and retain their natural form but lost their natural color. Full marks were assigned to the degree of dryness, non-stickiness, and odorlessness to the model plastinated in different solutions on a five-point scale. For flexibility, the score was 1.2, 2.2, and 2.4 for the plastinated model in melamine/MH, MX/MC, and MT solutions, respectively. The average score of glossiness was 4.6 and 5 for the specimen plastinated in melamine/MH and MX/MC/MT solutions, respectively. The degree of dryness, glossiness, stickiness, and flexibility varies non-significantly, with the polymer mixtures used. The prepared model can be used to educate the students/general mass population.

  15. Plastination of macroparasites: An eco-friendly method of long-term preservation

    Directory of Open Access Journals (Sweden)

    Niranjan Kumar

    2017-11-01

    Full Text Available Aim: Preservation of macroparasites by infiltrating the polymer in the tissues can defy the inherited shortcoming of classical wet preservation method. Materials and Methods: Preservation was done by infiltrating the melamine alone or with xylene (MX/chloroform (MC/turpentine oil (MT in 1:1 and hardener (MH in 9:1 ratio in the tissues of the gross specimen of the animal parasites. Results: The plastinated models withstand the process of microbial decomposition, and remain intact in the environmental conditions. The polymer mixture resists the entry of the water molecule, and model dried just after taking out it from the water tank. Overall, the plastinated parasites were dry, non-sticky, glossy, odorless, chemical free, and harmless, to some extent flexible, with detectable morphological structure, and retain their natural form but lost their natural color. Full marks were assigned to the degree of dryness, non-stickiness, and odorlessness to the model plastinated in different solutions on a five-point scale. For flexibility, the score was 1.2, 2.2, and 2.4 for the plastinated model in melamine/MH, MX/MC, and MT solutions, respectively. The average score of glossiness was 4.6 and 5 for the specimen plastinated in melamine/MH and MX/MC/MT solutions, respectively. The degree of dryness, glossiness, stickiness, and flexibility varies non-significantly, with the polymer mixtures used. Conclusion: The prepared model can be used to educate the students/general mass population.

  16. ANALISIS FAKTOR-FAKTOR YANG BERPENGARUH TERHADAP KINERJA BALAI BESAR PENGAWAS OBAT DAN MAKANAN DI YOGYAKARTA DALAM MENANGANI KASUS MAKANAN BERMELAMIN

    Directory of Open Access Journals (Sweden)

    Khusnul Diana

    2017-03-01

    Full Text Available Melamine is not prohibited chemical to mix into food product. Around 2008, Melamine had found in baby milk which was made by China to make high protein level. To see BBPOM Yogyakarta’s performance handling of food which has contaminated of melamine, it is needed evaluation from customer’s satisfaction and affection of monitoring food contaminated melamine’s factors. In addition, it is necessary to know the gap between expectation and society’s perception. The study is descriptive explorative research. The study has done by giving performance questionnaire and the factor that affect to performance of employee at Investigation and Inspection sector in BBPOM Yogyakarta and qualitative analysis has done by interview. Based on the analysis result, personal/human resources, monitored system and infrastructure factors has not significance effect to BBPOM Yogyakarta performance handling contaminated food, because the monitoring has limited for withdrawing and scrapping product. From the interview result is known that there is an effect between personal/human resources, monitored system and infrastructures factors, because it is influenced by theoretical and subjectivity of respondent.

  17. Effects of seven chemicals on DNA damage in the rat urinary bladder: a comet assay study.

    Science.gov (United States)

    Wada, Kunio; Yoshida, Toshinori; Takahashi, Naofumi; Matsumoto, Kyomu

    2014-07-15

    The in vivo comet assay has been used for the evaluation of DNA damage and repair in various tissues of rodents. However, it can give false-positive results due to non-specific DNA damage associated with cell death. In this study, we examined whether the in vivo comet assay can distinguish between genotoxic and non-genotoxic DNA damage in urinary bladder cells, by using the following seven chemicals related to urinary bladder carcinogenesis in rodents: N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN), glycidol, 2,2-bis(bromomethyl)-1,3-propanediol (BMP), 2-nitroanisole (2-NA), benzyl isothiocyanate (BITC), uracil, and melamine. BBN, glycidol, BMP, and 2-NA are known to be Ames test-positive and they are expected to produce DNA damage in the absence of cytotoxicity. BITC, uracil, and melamine are Ames test-negative with metabolic activation but have the potential to induce non-specific DNA damage due to cytotoxicity. The test chemicals were administered orally to male Sprague-Dawley rats (five per group) for each of two consecutive days. Urinary bladders were sampled 3h after the second administration and urothelial cells were analyzed by the comet assay and subjected to histopathological examination to evaluate cytotoxicity. In the urinary bladders of rats treated with BBN, glycidol, and BMP, DNA damage was detected. In contrast, 2-NA induced neither DNA damage nor cytotoxicity. The non-genotoxic chemicals (BITC, uracil, and melamine) did not induce DNA damage in the urinary bladders under conditions where some histopathological changes were observed. The results indicate that the comet assay could distinguish between genotoxic and non-genotoxic chemicals and that no false-positive responses were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Does size matter? Study of performance of pseudo-ELISAs based on molecularly imprinted polymer nanoparticles prepared for analytes of different sizes.

    Science.gov (United States)

    Cáceres, C; Canfarotta, F; Chianella, I; Pereira, E; Moczko, E; Esen, C; Guerreiro, A; Piletska, E; Whitcombe, M J; Piletsky, S A

    2016-02-21

    The aim of this work is to evaluate whether the size of the analyte used as template for the synthesis of molecularly imprinted polymer nanoparticles (nanoMIPs) can affect their performance in pseudo-enzyme linked immunosorbent assays (pseudo-ELISAs). Successful demonstration of a nanoMIPs-based pseudo-ELISA for vancomycin (1449.3 g mol(-1)) was demonstrated earlier. In the present investigation, the following analytes were selected: horseradish peroxidase (HRP, 44 kDa), cytochrome C (Cyt C, 12 kDa) biotin (244.31 g mol(-1)) and melamine (126.12 g mol(-1)). NanoMIPs with a similar composition for all analytes were synthesised by persulfate-initiated polymerisation in water. In addition, core-shell nanoMIPs coated with polyethylene glycol (PEG) and imprinted for melamine were produced in organics and tested. The polymerisation of the nanoparticles was done using a solid-phase approach with the correspondent template immobilised on glass beads. The performance of the nanoMIPs used as replacement for antibodies in direct pseudo-ELISA (for the enzymes) and competitive pseudo-ELISA for the smaller analytes was investigated. For the competitive mode we rely on competition for the binding to the nanoparticles between free analyte and corresponding analyte-HRP conjugate. The results revealed that the best performances were obtained for nanoMIPs synthesised in aqueous media for the larger analytes. In addition, this approach was successful for biotin but completely failed for the smallest template melamine. This problem was solved using nanoMIP prepared by UV polymerisation in an organic media with a PEG shell. This study demonstrates that the preparation of nanoMIP by solid-phase approach can produce material with high affinity and potential to replace antibodies in ELISA tests for both large and small analytes. This makes this technology versatile and applicable to practically any target analyte and diagnostic field.

  19. STUDY ON OIL WASTEWATER TREATMENT WITH POLYMERIC REAGENTS

    Directory of Open Access Journals (Sweden)

    RODICA BUCUROIU

    2016-04-01

    Full Text Available Used the polymeric reagents in oil wastewater treatment is an effective method of eliminate hydrocarbons. The present study aims to finding reagents that lead to lowering of extractible (EXT, suspended solids (SS and chemical oxygen demand (COD of industrial wastewater from washing cars in loading ramps petroleum products. For this purpose five reagents were tested, namely: polyamines, cationic polyacrylamides, polydiallydimethyl ammonium chloride (PolyDADMAC, melamine formaldehyde polymer resin and polydicyandiamide polymer resin. Obtaining removal degrees over 80 % justifies using this method in the industrial practice.

  20. Rapid calibrated high-resolution hyperspectral imaging using tunable laser source

    Science.gov (United States)

    Nguyen, Lam K.; Margalith, Eli

    2009-05-01

    We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.

  1. Creep of MDF panels under constant load and cyclic environmental conditions. Influence of surface coating

    OpenAIRE

    Fernández-Golfín Seco, J. I.; Díez Barra, M. Rafael

    1997-01-01

    Four different strategies of surface coating (based on 80 g m2 melamin impregnated papers) were used on 19 mm thick commercial MDF panels to assess its reological behaviour under cyclic humidity conditions (20ºC 30 % rh-20ºC 90 % rh). Three different levels of stress (20 %, 30 % and 40 %), based on the ultimate load in bending, were used. Tests were conducted by means of the three points load system. For the same stress level, the relative creep of MDF panels was higher than that in par...

  2. Anionic surface binders

    OpenAIRE

    Aljaž-Rožič Mateja; Hočevar Nežka

    2004-01-01

    The MELAMIN Chemical Factory in Kočevje manufactures synthetic resins and binders for the paper industry. Binders based on AKD (alkyl ketene dimer) are produced which are used for binding paper and cardboard in the range of neutral and partially basic pH. Cationic and, lately, anionic binders are mostly used for the bulk binding of paper and board. The possibility of using AKD binders on paper or board surfaces is presented. In this case partially cationic AKD binders may be applied. When opt...

  3. 2,4,6-Triamino-1,3,5-triazine-1,3-diium aquapentafluoridoaluminate

    Directory of Open Access Journals (Sweden)

    V. Maisonneuve

    2008-04-01

    Full Text Available The title compound, (C3H8N6[AlF5(H2O], was obtained by solvothermal synthesis from the reaction of aluminium hydroxide, 1,3,5-triazine-2,4,6-triamine (melamine, aqueous HF and water at 323 K for 48 h. The structure consists of [AlF5(H2O]2− octahedra and diprotonated melaminium cations. Cohesion is ensured by a three-dimensional network of hydrogen bonds.

  4. Influence of Temperature and Humidity on Bakelite Resistivity

    CERN Document Server

    Arnaldi, R; Barret, V; Bastid, N; Blanchard, G; Chiavassa, E; Cortese, P; Crochet, Philippe; Dellacasa, G; De Marco, N; Dupieux, P; Espagnon, B; Fargeix, J; Ferretti, A; Gallio, M; Lamoine, L; Luquin, Lionel; Manso, F; Mereu, P; Métivier, V; Musso, A; Oppedisano, C; Piccotti, A; Rahmani, A; Royer, L; Roig, O; Scalas, E; Scomparin, E; Vercellin, Ermanno

    1999-01-01

    Presentation made at RPC99 and submitted to Elsevier PreprintThe use of phenolic or melaminic bakelite as RPC electrodes is widespread. The electrode resistivity is an important parameter for the RPC performance. As recent studies have pointed out, the bakelite resistivity changes with temperature and is influenced by humidity. In order to gain a quantitative understanding on the influence of temperature and humidity on RPC electrodes, we assembled an apparatus to measure resistivity in well-controlled conditions. A detailed description of the experimental set-up as well as the first resistivity measurements for various laminates in different environmental conditions are presented.

  5. Analysis of cement superplasticizers and grinding aids a literature survey

    International Nuclear Information System (INIS)

    Ervanne, H.; Hakanen, M.

    2007-04-01

    This literature survey reviews the methods for analysis of cement plasticizers and organic grounding aids in cement solutions in preparation of grouts/concrete and methods for determination of plasticizers and grinding aids in groundwater conditions. The survey focuses on three different types of superplasticizers: sulphonated naphthalene condensates, sulphonated melamine condensates and polycarboxylates. There are various organic grinding aids, such as alkanolamines, glycols or phenolic compounds, used in the cement industry. This review is concerned with the following compounds: triethylenetetramine, tetraethylenepentamine, diethanolamine, triethanolamine, triisopropanolamine, ethyleneglycol, diethyleneglycol, aminoethylethanolamine, hydroxyethyl diethylenetriamine and phenol. (orig.)

  6. Mechano-sorptive creep of Portuguese pinewood chemically modified

    Directory of Open Access Journals (Sweden)

    Barroso Lopes Duarte

    2014-03-01

    Full Text Available The effect of chemical modification on mechano-sorptive creep in bending was studied by experimental work. Stakes with 20 × 20 × 400 mm RTL of Portuguese wood species (Pinus pinaster Aiton modified with 1,3-dimethylol-4,5- dihydroxyethyleneurea (DMDHEU, m-methylated melamine resin (MMF, tetraethoxysilane (TEOS and amid wax (WA were measured under asymmetric moistening conditions over a period of 42 days (app. 1000 hours with stress level (SL of 12 MPa, according to ENV 1156.

  7. Process for preparing wastes for non-pollutant disposal

    International Nuclear Information System (INIS)

    Rosenstiel, T.L.; Debus, A.A.G.

    1984-01-01

    In disposing of wastes, particularly toxic wastes, containing organic liquids, i.e. solvents or oil, which may be radio-active a non-ionic surface active agent which is a polyoxy alkylphenol is added to the oily material and then calcium sulphate hemihydrate and water are added. This forms part of a process in which a melamine resin is also added to the mix which is then allowed to harden and the hardened mass disposed of. The use of polyoxyethylene glycol soaps as emulsifying agents is also referred to. Preferred soaps are tallates and preferred alkyl groups in the alkylphenol are octyl and ronyl. (author)

  8. Multiple encapsulation of LANL waste using polymers. Final report

    International Nuclear Information System (INIS)

    Schwartz, R.L.

    1994-01-01

    Polymer encapsulation of lead shielding/blasting grit (surrogate) mixed waste was optimized at bench scale using melamine formaldehyde, polyurethane, and butadiene thermosetting polymers. Three pellet-based intermediate waste forms, and a final waste form, were prepared, each providing an additional level of integrity. Encapsulated waste integrity was measured by chemical and physical techniques. Compliance was established using the Toxicity Characteristic Leaching Procedure. Equipment appropriate to pilot-scale demonstration of program techniques was investigated. A preliminary equipment list and layout, and process block flow diagram were prepared

  9. Material Analysis for a Fire Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Alexander; Nemer, Martin B.

    2014-08-01

    This report consolidates technical information on several materials and material classes for a fire assessment. The materials include three polymeric materials, wood, and hydraulic oil. The polymers are polystyrene, polyurethane, and melamine- formaldehyde foams. Samples of two of the specific materials were tested for their behavior in a fire - like environment. Test data and the methods used to test the materials are presented. Much of the remaining data are taken from a literature survey. This report serves as a reference source of properties necessary to predict the behavior of these materials in a fire.

  10. IWATANI, Yukiharu

    OpenAIRE

    2012-01-01

    This paper clarifies the real states and mechanism of ultra-low formations in the export prices of foods produced in China, and the influence of reducing prices far below costs on the quality and the safety of foods. The paper examines three case studies: traces of agricultural chemicals in frozen spinach, contamination of powdered milk with melamine, and food poisoning caused by frozen Chinese meat dumplings produced in China.In 2000, the producer price for spinach grown in Japan was 3.9 tim...

  11. Novel VN/C nanocomposites as methanol-tolerant oxygen reduction electrocatalyst in alkaline electrolyte

    OpenAIRE

    K. Huang; K. Bi; C. Liang; S. Lin; R. Zhang; W. J. Wang; H. L. Tang; M. Lei

    2015-01-01

    A novel VN/C nanostructure consisting of VN nanoparticles and graphite-dominant carbon layers is synthesized by nitridation of V2O5 using melamine as reductant under inert atmosphere. High crystalline VN nanoparticles are observed to be uniformly distributed in carbon layers with an average size of ca13.45?nm. Moreover, the electrocatalytic performance of VN/C towards oxygen reduction reaction (ORR) in alkaline electrolyte is fascinating. The results show that VN/C has a considerable ORR acti...

  12. Chemistry and Materials Science progress report, first half FY 1992

    International Nuclear Information System (INIS)

    1992-07-01

    This report contains sections on: Fundamentals of the physics and processing of metals; interfaces, adhesion, and bonding; energetic materials; plutonium research; synchrotron radiation-based materials science; atomistic approach to the interaction of surfaces with the environment: actinide studies; properties of carbon fibers; buried layer formation using ion implantation; active coherent control of chemical reaction dynamics; inorganic and organic aerogels; synthesis and characterization of melamine-formaldehyde aerogels; structural transformation and precursor phenomena in advanced materials; magnetic ultrathin films, surfaces, and overlayers; ductile-phase toughening of refractory-metal intermetallics; particle-solid interactions; electronic structure evolution of metal clusters; and nanoscale lithography induced chemically or physically by modified scanned probe microscopy

  13. Plastic

    International Nuclear Information System (INIS)

    Jeong Gi Hyeon

    1987-04-01

    This book deals with plastic, which includes introduction for plastic, chemistry of high polymers, polymerization, speciality and structure of a high molecule property of plastic, molding, thermosetting plastic, such as polyethylene, polyether, polyamide and polyvinyl acetyl, thermal plastic like phenolic resins, xylene resins, melamine resin, epoxy resin, alkyd resin and poly urethan resin, new plastic like ionomer and PPS resin, synthetic laminated tape and synthetic wood, mixed materials in plastic, reprocessing of waste plastic, polymer blend, test method for plastic materials and auxiliary materials of plastic.

  14. Development of a Halogen Free Flame Retardant Masterbatch for Polypropylene Fibers

    Directory of Open Access Journals (Sweden)

    François Rault

    2015-02-01

    Full Text Available The efficiency of new phosphinates, in combination with melamine cyanurate, was studied using different polypropylene textile structures. The influence of different ratios up to a total amount of 6 wt% in the polypropylene fiber was investigated using the limiting oxygen index (LOI and cone calorimeter method for research purposes, while the performances were correlated to the standards FMVSS 302 (Federal Motor Vehicle Safety Standards and DIN 4102-l (Deutsches Institut für Normung used more specifically for automotive and building sector.

  15. In-situ phosphatizing coatings for aerospace, OEM and coil coating applications

    Science.gov (United States)

    Neuder, Heather Aurelia

    The current metal coating process is a multi-step process. The surface is cleaned, primered, dried and then painted. The process is labor intensive and time consuming. The wash primer is a conversion coating, which prepares metal surface for better paint adhesion. The wash primers currently used often contain hexavalent chromium (Cr6+), which seals the pores in the conversion coating. The presence of hexavalent chromium, a known carcinogen, and volatile organic compounds (VOCs) make waste disposal expensive and pose dangers to workers. The novel technique of in-situ phosphatizing coating (ISPC) is a single-step, chrome-free alternative to the present coating practice. Formulation of an ISPC involves predispersal of an in-situ phosphatizing reagent (ISPR) into the paint system to form a stable formulation. The ISPR reacts with the metal surface and bonds with the paint film simultaneously, which eliminates the need for a conversion coating. In acid catalyzed paint systems, such as polyester-melamine paints, the ISPR also catalyzes cross-linking reactions between the melamine and the polyester polyols. ISPCs are formulated using commercially available coating systems including: polyester-melamine, two-component epoxy, polyurethane and high-hydroxy content polyester-melamine coil coating. The ISPCs are applied to metal substrates and their performances are evaluated using electrochemical, thermal and standard American Society for Testing and Materials (ASTM) testing methods. In addition, ISPCs were designed and formulated based on: (1) phosphate chemistry, (2) polymer chemistry, (3) sol-gel chemistry, and (4) the ion-exchange principle. Organo-functionalized silanes, which serve as excellent coupling and dispersion agents, are incorporated into the optimized ISPC formula and evaluated using standard ASTM testing methods and electrochemical spectroscopy. Also, an ion-exchange pigment, which leads to better adhesion by forming a mixed metal silicate surface, is

  16. Capillary electrophoresis for the analysis of contaminants in emerging food safety issues and food traceability.

    Science.gov (United States)

    Vallejo-Cordoba, Belinda; González-Córdova, Aarón F

    2010-07-01

    This review presents an overview of the applicability of CE in the analysis of chemical and biological contaminants involved in emerging food safety issues. Additionally, CE-based genetic analyzers' usefulness as a unique tool in food traceability verification systems was presented. First, analytical approaches for the determination of melamine and specific food allergens in different foods were discussed. Second, natural toxin analysis by CE was updated from the last review reported in 2008. Finally, the analysis of prion proteins associated with the "mad cow" crises and the application of CE-based genetic analyzers for meat traceability were summarized.

  17. Microcapsules Filled with a Palm Oil-Based Alkyd as Healing Agent for Epoxy Matrix

    Directory of Open Access Journals (Sweden)

    Nurshafiza Shahabudin

    2016-04-01

    Full Text Available One of the approaches to prolong the service lifespan of polymeric material is the development of self-healing ability by means of embedded microcapsules containing a healing agent. In this work, poly(melamine-urea-formaldehyde (PMUF microcapsules containing a palm oil-based alkyd were produced by polymerization of melamine resin, urea and formaldehyde that encapsulated droplets of the suspended alkyd particles. A series of spherical and free-flowing microcapsules were obtained. The chemical properties of core and shell materials were characterized by Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR and proton nuclear magnetic resonance spectroscopy (1H-NMR. Differential scanning calorimetry (DSC analysis showed a glass transition around −15 °C due to the alkyd, and a melting temperature at around 200 °C due to the shell. Thermogravimetric analysis (TGA results showed that the core and shell thermally degraded within the temperature range of 200–600 °C. Field emission scanning electron microscope (FESEM examination of the ruptured microcapsule showed smooth inner and rough outer surfaces of the shell. Flexural strength and microhardness (Vickers of the cured epoxy compound were not affected with the incorporation of 1%–3% of the microcapsules. The viability of the healing reactions was demonstrated by blending small amounts of alkyd with epoxy and hardener at different ratios. The blends could readily cure to non-sticky hard solids at room temperature and the reactions could be verified by ATR-FTIR.

  18. DFT Perspective on the Thermochemistry of Carbon Nitride Synthesis

    KAUST Repository

    Melissen, Sigismund T. A. G.

    2016-10-11

    Graphitic (g)-CxNyHz has become a popular family of photoharvesters in photocatalytic water splitting cells, as well as other applications in chemistry. In this Article, different g-CxNyHz structures were studied thermochemically using DFT. Following a benchmark study with different families of functionals, the B3LYP functional was shown to accurately capture the thermochemistry of carbon nitride synthesis. A triple-ζ polarized basis set, in combination with Civalleri’s modification to Grimme’s D2 formalism (with s6 = 0.5) for dispersion interactions, yielded accurate geometries. Grimme’s D3 formalism with Becke–Johnson damping was used to refine the energetic description of dispersion interactions. The stepwise cycloaddition of cyanamide to form melamine was shown to be exergonic, whereas the stepwise deamination of melamine to form g-C3N4 was shown to be endergonic. Of those structures respecting the [C6N9H3]n chemical formula, the structure commonly known as “melon” was found to be most stable, whereas the sp3-hybridized [C6N9H3]n elucidated by Horvath-Bordon et al. was found to be the least stable. Fully polymerized triazine-based g-C3N4 appeared slightly more stable than heptazine-based g-C3N4.

  19. Effects of Electrospun Carbon Nanofibers’ Interlayers on High-Performance Lithium–Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Tianji Gao

    2017-03-01

    Full Text Available Two different interlayers were introduced in lithium–sulfur batteries to improve the cycling stability with sulfur loading as high as 80% of total mass of cathode. Melamine was recommended as a nitrogen-rich (N-rich amine component to synthesize a modified polyacrylic acid (MPAA. The electrospun MPAA was carbonized into N-rich carbon nanofibers, which were used as cathode interlayers, while carbon nanofibers from PAA without melamine was used as an anode interlayer. At the rate of 0.1 C, the initial discharge capacity with two interlayers was 983 mAh g−1, and faded down to 651 mAh g−1 after 100 cycles with the coulombic efficiency of 95.4%. At the rate of 1 C, the discharge capacity was kept to 380 mAh g−1 after 600 cycles with a coulombic efficiency of 98.8%. It apparently demonstrated that the cathode interlayer is extremely effective at shutting down the migration of polysulfide ions. The anode interlayer induced the lithium ions to form uniform lithium metal deposits confined on the fiber surface and in the bulk to strengthen the cycling stability of the lithium metal anode.

  20. Effect of nitrogen precursors on the electrochemical performance of nitrogen-doped reduced graphene oxide towards oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Soo, Li Ting, E-mail: nicolesoo90@gmail.com [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Loh, Kee Shyuan, E-mail: ksloh@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Mohamad, Abu Bakar, E-mail: drab@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Daud, Wan Ramli Wan, E-mail: wramli@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Wong, Wai Yin, E-mail: waiyin.wwy@gmail.com [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); School of Engineering, Taylor' s University' s Lakeside Campus, No. 1, Jalan Taylor' s, 46500 Subang Jaya, Selangor (Malaysia)

    2016-08-25

    A series of nitrogen-doped reduced graphene oxides (NGs) with different ratios are synthesized by thermal annealing of graphene oxide with melamine or urea. The total nitrogen content in NG is high, with values of up to 5.88 at.%. The NG samples prepared by melamine exhibited thin transparent graphene sheets structure, with consist of higher nitrogen doping level and quaternary N content compared to those NG samples prepared from urea. Electrochemical characterizations show that NG is a promising metal-free electrocatalyst for an oxygen reduction reaction (ORR). Incorporation of nitrogen atoms into graphene basal plane can enhances its electrocatalytic activity toward ORR in alkaline media. The onset potential and mean number of electron transfers on NG 1 are −0.10 V and 3.80 respectively, which is higher than that of reduced graphene oxide (−0.15 V, 3.52). This study suggests that quaternary-N of the NG samples is the active site which determines the ORR activity Moreover, the NG samples with the transparent layer of graphene-like structure have better ORR performances than that of bulk graphite-like NG samples. - Highlights: • Synthesis of nitrogen-doped graphene (NG) via thermal annealing. • The effects of the nitrogen precursors on the synthesized NG are discussed. • Electrochemical performances of the NG are correlated to N doping and EASA. • Graphitic-N is proposed to be the active site for ORR.

  1. Melaminium nitrate–melamine–water (1/1/1

    Directory of Open Access Journals (Sweden)

    Farook Adam

    2010-11-01

    Full Text Available In the crystal structure of the title salt, C3H7N6+·NO3−·C3H6N6·H2O, the asymmetric unit consists of two neutral melamine (1,3,5-triazine-2,4,6-triamine molecules, two melaminium cations, two nitrate anions and two solvent water molecules. One of the nitrate anions is disordered over two sets of positions, with a refined occupancy ratio of 0.909 (3:0.091 (3. The cations and neutral molecules are approximately planar, with maximum deviations of 0.018 (2, 0.024 (2, 0.019 (2 and 0.007 (2 Å for each, respectively. In the crystal structure, melaminium cations and netural melamine molecules self-assemble via N—H...N hydrogen bonds to form a supramolecular hexagonal-shaped motif. In addition, the nitrate anions and water molecules are connected by N—H...O hydrogen bonds to form a three-dimensional network.

  2. Commercial Gold Nanoparticles on Untreated Aluminum Foil: Versatile, Sensitive, and Cost-Effective SERS Substrate

    Directory of Open Access Journals (Sweden)

    Kristina Gudun

    2017-01-01

    Full Text Available We introduce low-cost, tunable, hybrid SERS substrate of commercial gold nanoparticles on untreated aluminum foil (AuNPs@AlF. Two or three AuNP centrifugation/resuspension cycles are proven to be critical in the assay preparation. The limits of detection (LODs for 4-nitrobenzenethiol (NBT and crystal violet (CV on this substrate are about 0.12 nM and 0.19 nM, respectively, while maximum analytical SERS enhancement factors (AEFs are about 107. In comparative assays LODs for CV measured on AuNPs@Au film and AuNPs@glass are about 0.35 nM and 2 nM, respectively. The LOD for melamine detected on AuNPs@ Al foil is 27 ppb with 3 orders of magnitude for linear response range. Overall, AuNPs@AlF demonstrated competitive performance in comparison with AuNPs@ Au film substrate in SERS detection of CV, NBT, and melamine. To check the versatility of the AuNPs@AlF substrate we also detected KNO3 with LODs of 0.7 mM and SERS EF around 2 × 103, which is on the same order with SERS EF reported for this compound in the literature.

  3. A novel activated carbon for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Haijie [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China); Liu, Enhui, E-mail: liuenhui99@sina.com.cn [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China); Xiang, Xiaoxia; Huang, Zhengzheng; Tian, Yingying; Wu, Yuhu; Wu, Zhilian; Xie, Hui [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer A novel activated carbon was prepared from phenol-melamine-formaldehyde resin. Black-Right-Pointing-Pointer The carbon has large surface area with microporous, and high heteroatom content. Black-Right-Pointing-Pointer Heteroatom-containing functional groups can improve the pseudo-capacitance. Black-Right-Pointing-Pointer Physical and chemical properties lead to the good electrochemical properties. -- Abstract: A novel activated carbon has been prepared by simple carbonization and activation of phenol-melamine-formaldehyde resin which is synthesized by the condensation polymerization method. The morphology, thermal stability, surface area, elemental composition and surface chemical composition of samples have been investigated by scanning electron microscope, thermogravimetry and differential thermal analysis, Brunauer-Emmett-Teller measurement, elemental analysis and X-ray photoelectron spectroscopy, respectively. Electrochemical properties have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol L{sup -1} potassium hydroxide. The activated carbon shows good capacitive behavior and the specific capacitance is up to 210 F g{sup -1}, which indicates that it may be a promising candidate for supercapacitors.

  4. Adverse child health impacts resulting from food adulterations in the Greater China Region.

    Science.gov (United States)

    Li, Wai Chin; Chow, Chin Fung

    2017-09-01

    Food adulteration has a long history in human society, and it still occurs in modern times. Because children are relatively vulnerable to food adulterants, studying the health impacts of food adulteration on children is important. This article provides an overview of the child health impacts of food adulterants in two recent food adulteration incidents in the Greater China Region: (1) a plasticizer incident in Taiwan and (2) a 2,4,6-triamino-1,3,5-triazine (melamine)-tainted milk incident in China. The involved food adulterants, di-(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DiNP) and melamine, are harmful to the hippocampus, kidneys, reproductive organs and immune system of children, and they also increase the risk of cancer. To detect food adulteration and to avoid further harm caused by food adulteration, simple screening methods have been developed, and they have recently emerged as a new focus area for research. This article also summarizes the simple screening methods used to analyse the aforementioned food adulterants and reports how governments reacted to the recent food incidents. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Catalytic performance of heterogeneous Rh/C3N4 for the carbonylation of methanol

    Science.gov (United States)

    Budiman, Anatta Wahyu; Choi, Myoung Jae; Nur, Adrian

    2018-02-01

    The excess of water in homogeneous the carbonylation of methanol system could increase the amount of by-products formed through water-gas shift reaction and could accelerate the rusting of equipment. Many scientists tried to decrease the content of water in the carbonylation of methanol system by using lithium and iodide promoter that results a moderate catalytic activity in the water content at 2wt%. The heterogenized catalyst offers several distinct advantages such as it was enables increased catalyst concentration in the reaction mixture, which is directly proportional to acetic acid production rate, without the addition of an alkali iodide salt promoter. The heterogeneous catalyst also results in reduced by-product formation. This study is aimed to produce a novel catalyst (Rh/C3N4) with a high selectivity of acetic acid in a relatively lower water and halide content. This novel catalyst performs high conversion and selectivity of acetic acid as the result of the strong ionic bonding of melamine and rhodium complex species that was caused by the presence of methyl iodide species. The CO2 in feed gas significantly decreases the catalytic activity of Rh-melamine because of its inert characteristics. The kinetic test was performed as that the first order kinetic equation. The kinetic tests revealed the reaction route of the the carbonylation of methanol in this system was performed trough the methyl acetate.

  6. Facile preparation of three-dimensional Co1-xS/sulfur and nitrogen-codoped graphene/carbon foam for highly efficient oxygen reduction reaction

    Science.gov (United States)

    Liang, Hui; Li, Chenwei; Chen, Tao; Cui, Liang; Han, Jingrui; Peng, Zhi; Liu, Jingquan

    2018-02-01

    Because of the urgent need for renewable resources, oxygen reduction reaction (ORR) has been widely studied. Finding efficient and low cost non-precious metal catalyst is increasingly critical. In this study, melamine foam is used as template to obtain porous sulfur and nitrogen-codoped graphene/carbon foam with uniformly distributed cobalt sulfide nanoparticles (Co1-xS/SNG/CF) which is prepared by a simple infiltration-drying-sulfuration method. It is noteworthy that melamine foam not only works as a three-dimensional support skeleton, but also provides a nitrogen source without any environmental pollution. Such Co1-xS/SNG/CF catalyst shows excellent oxygen reduction catalytic performance with an onset potential of only 0.99 V, which is the same as that of Pt/C catalyst (Eonset = 0.99 V). Furthermore, the stability and methanol tolerance of Co1-xS/SNG/CF are more outstanding than those of Pt/C catalyst. Our work manifests a facile method to prepare S and N-codoped 3D graphene network decorated with Co1-xS nanoparticles, which may be utilized as potential alternative to the expensive Pt/C catalysts toward ORR.

  7. DFT Perspective on the Thermochemistry of Carbon Nitride Synthesis

    KAUST Repository

    Melissen, Sigismund T. A. G.; Steinmann, Stephan N.; Le Bahers, Tangui; Sautet, Philippe

    2016-01-01

    Graphitic (g)-CxNyHz has become a popular family of photoharvesters in photocatalytic water splitting cells, as well as other applications in chemistry. In this Article, different g-CxNyHz structures were studied thermochemically using DFT. Following a benchmark study with different families of functionals, the B3LYP functional was shown to accurately capture the thermochemistry of carbon nitride synthesis. A triple-ζ polarized basis set, in combination with Civalleri’s modification to Grimme’s D2 formalism (with s6 = 0.5) for dispersion interactions, yielded accurate geometries. Grimme’s D3 formalism with Becke–Johnson damping was used to refine the energetic description of dispersion interactions. The stepwise cycloaddition of cyanamide to form melamine was shown to be exergonic, whereas the stepwise deamination of melamine to form g-C3N4 was shown to be endergonic. Of those structures respecting the [C6N9H3]n chemical formula, the structure commonly known as “melon” was found to be most stable, whereas the sp3-hybridized [C6N9H3]n elucidated by Horvath-Bordon et al. was found to be the least stable. Fully polymerized triazine-based g-C3N4 appeared slightly more stable than heptazine-based g-C3N4.

  8. Effect of nitrogen precursors on the electrochemical performance of nitrogen-doped reduced graphene oxide towards oxygen reduction reaction

    International Nuclear Information System (INIS)

    Soo, Li Ting; Loh, Kee Shyuan; Mohamad, Abu Bakar; Daud, Wan Ramli Wan; Wong, Wai Yin

    2016-01-01

    A series of nitrogen-doped reduced graphene oxides (NGs) with different ratios are synthesized by thermal annealing of graphene oxide with melamine or urea. The total nitrogen content in NG is high, with values of up to 5.88 at.%. The NG samples prepared by melamine exhibited thin transparent graphene sheets structure, with consist of higher nitrogen doping level and quaternary N content compared to those NG samples prepared from urea. Electrochemical characterizations show that NG is a promising metal-free electrocatalyst for an oxygen reduction reaction (ORR). Incorporation of nitrogen atoms into graphene basal plane can enhances its electrocatalytic activity toward ORR in alkaline media. The onset potential and mean number of electron transfers on NG 1 are −0.10 V and 3.80 respectively, which is higher than that of reduced graphene oxide (−0.15 V, 3.52). This study suggests that quaternary-N of the NG samples is the active site which determines the ORR activity Moreover, the NG samples with the transparent layer of graphene-like structure have better ORR performances than that of bulk graphite-like NG samples. - Highlights: • Synthesis of nitrogen-doped graphene (NG) via thermal annealing. • The effects of the nitrogen precursors on the synthesized NG are discussed. • Electrochemical performances of the NG are correlated to N doping and EASA. • Graphitic-N is proposed to be the active site for ORR.

  9. The 'partial resonance' of the ring in the NLO crystal melaminium formate: study using vibrational spectra, DFT, HOMO-LUMO and MESP mapping.

    Science.gov (United States)

    Binoy, J; Marchewka, M K; Jayakumar, V S

    2013-03-01

    The molecular geometry and vibrational spectral investigations of melaminium formate, a potential material known for toxicity and NLO activity, has been performed. The FT IR and FT Raman spectral investigations of melaminium formate is performed aided by the computed spectra of melaminium formate, triazine, melamine, melaminium and formate ion, along with bond orders and PED, computed using the density functional method (B3LYP) with 6-31G(d) basis set and XRD data, to reveal intermolecular interactions of amino groups with neighbor formula units in the crystal, intramolecular H⋯H repulsion of amino group hydrogen with protonating hydrogen, consequent loss of resonance in the melaminium ring, restriction of resonance to N(3)C(1)N(1) moiety leading to special type resonance of the ring and the resonance structure of CO(2) group of formate ion. The 3D matrix of hyperpolarizability tensor components has been computed to quantify NLO activity of melamine, melaminium and melaminium formate and the hyperpolarizability enhancement is analyzed using computed plots of HOMO and LUMO orbitals. A new mechanism of proton transfer responsible for NLO activity has been suggested, based on anomalous IR spectral bands in the high wavenumber region. The computed MEP contour maps have been used to analyze the interaction of melaminium and formate ions in the crystal. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Nitrogen enriched mesoporous organic polymer anchored copper(II) material: an efficient and reusable catalyst for the synthesis of esters and amides from aromatic systems.

    Science.gov (United States)

    Molla, Rostam Ali; Iqubal, Md Asif; Ghosh, Kajari; Kamaluddin; Islam, Sk Manirul

    2015-04-14

    A new copper-grafted mesoporous poly-melamine-formaldehyde (Cu-mPMF) has been synthesized from melamine and paraformaldehyde in DMSO medium, followed by grafting of Cu(ii) at its surface. Cu-mPMF has been characterized by elemental analysis, powder XRD, HR TEM, FE-SEM, N2 adsorption study, FT-IR, UV-vis DRS, TGA-DTA, EPR spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The Cu-grafted mesoporous material showed very good catalytic activity in methyl esterification of benzylic alcohols and amidation of nitriles. Moreover, the catalyst is easily recoverable and can be reused seven times without appreciable loss of catalytic activity in the above reactions. The highly dispersed and strongly bound Cu(ii) sites in the Cu-grafted mesoporous polymer could be responsible for the observed high activities of the Cu-mPMF catalyst. Due to strong binding with the functional groups of the polymer, no evidence of leached copper from the catalyst during the course of reaction emerged, suggesting true heterogeneity in the catalytic process.

  11. Development of a technique using MCNPX code for determination of nitrogen content of explosive materials using prompt gamma neutron activation analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Nasrabadi, M.N., E-mail: mnnasrabadi@ast.ui.ac.ir [Department of Nuclear Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Bakhshi, F.; Jalali, M.; Mohammadi, A. [Department of Nuclear Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2011-12-11

    Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma 10.8 MeV following radioactive neutron capture by {sup 14}N nuclei. We aimed to study the feasibility of using field-portable prompt gamma neutron activation analysis (PGNAA) along with improved nuclear equipment to detect and identify explosives, illicit substances or landmines. A {sup 252}Cf radio-isotopic source was embedded in a cylinder made of high-density polyethylene (HDPE) and the cylinder was then placed in another cylindrical container filled with water. Measurements were performed on high nitrogen content compounds such as melamine (C{sub 3}H{sub 6}N{sub 6}). Melamine powder in a HDPE bottle was placed underneath the vessel containing water and the neutron source. Gamma rays were detected using two NaI(Tl) crystals. The results were simulated with MCNP4c code calculations. The theoretical calculations and experimental measurements were in good agreement indicating that this method can be used for detection of explosives and illicit drugs.

  12. Coating composition curable by electron beam irradiation

    International Nuclear Information System (INIS)

    Masuda, Hiromasa; Iijima, Ken-ichi.

    1971-01-01

    Here is provided a coating composition curable with low dose of electron beams to give a smooth coating film having no surface tackiness. In one example, 126 parts of melamine was reacted with 682 parts of formalin followed by 697 parts of β-hydroxyethyl acrylate to produce component (A) (viscosity 780 cp). On the other hand, 900 parts of tung oil was reacted with 343 parts of maleic anhydride followed by 22 parts of dimethylaminoethyl methacrylate and 406 parts of β-hydroxyethyl acrylate. The resulting product was diluted with 508 parts of methyl methacrylate to give component (B) (dark red, viscous substance). 900 parts of (A), 100 parts of (B), 0.5 part of bees wax and 0.2 part of paraffin wax were blended together. A sized material was coated with the mixture and irradiated with electron beams (6 Mrad) in the presence of air. A smooth film free from surface tackiness was obtained. β-hydroxyethyl acrylate may be replaced by other hydroxyalkyl esters of α,β-unsaturated acids, and melamine may be replaced by urea, benzoguanamine or acetoguanamine. Tung oil may be replaced by linseed, safflower, soybean, rice, oiticica or cotton seed oil. A more flexible film is obtained by using component (B) in a larger proportion. (A)/(B) ratio should be in the range of 90/10 to 10/90 by wt. (Kaichi, S.)

  13. Research report for fiscal 1998 on the basic research for energy consumption efficiency improvement in developing countries. Joint research for oil consumption efficiency improvement. Indonesia; 1998 nendo hatten tojokoku energy shohi koritsuka kiso chosa nado jigyo sekiyu shohi koritsuka kyoryoku chosa jigyochosa hokokusho. Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    On-site researches are conducted to study the possibility of a model business using energy-saving and environment preservation technologies of Japan and Indonesia. At textile plants, the management of heat and water in the dyeing and finishing processes is found inadequate, with great quantities of heat left uncared-for in medium- and low-temperature wastewater. An energy-saving proposition is submitted in which solar energy and absorption-type refrigerators are combined. Instrumentation and management also require improvement. At nitrogenous and phosphatic fertilizer plants, the energy consumption rate is found aggravated by degradation of facilities, and continued research and further analysis are necessary before working out energy-saving policies for them. At urea fertilizer plants, though it is not easy to modernize the manufacturing processes, energy-saving and environment preserving efforts are under way within the bounds of capability. Their energy consumption rate is high because of frequent shut-downs. It is necessary to detect an anomaly at its early stage and to introduce backup systems for the elimination of erroneous operations. Operating conditions need to be analyzed for validity. At melamine manufacturing plants, process drainage is allowed into the river without any treatment contaminating the water with products of melamine hydrolysis. Short-term and long-term solutions are suggested. (NEDO)

  14. Equilibrium moisture content of OSB panels produced with veneer inclusion and different types of adhesive

    Directory of Open Access Journals (Sweden)

    Lourival Marin Mendes

    2014-03-01

    Full Text Available The aim of this study was to evaluate different statistical models to estimate the equilibrium moisture content of OSB panels exposed to different conditions of air temperature and relative humidity, And also to evaluate the influence of the adhesive and veneer inclusion in the equilibrium moisture content. The panels were produced with three different adhesive types (phenol-formaldehyde - FF, melamine-urea-formaldehyde - MUF, and phenol-melamine-urea-formaldehyde - PMUF and with and without veneer inclusion. The evaluation of the equilibrium moisture content of the panels was carried out at temperatures of 30, 40 and 50°C and relative humidity of 40, 50, 60, 70, 80 and 90%. The modeling of equilibrium moisture content was performed using the statistical non-linear and polynomial models. In general, the polynomial models are most indicated for determining the equilibrium moisture content of OSB. The models adjusted only with air relative humidity presented the best precision measurements. The type of adhesive affected the equilibrium moisture content of the panels, being observed for adhesives PMUF and FF the same trend of variation, and the highest values obtained for the panels produced with adhesive MUF. The veneer inclusion decreased the equilibrium moisture content only in the panels with MUF adhesive.

  15. Ultrathin g-C3N4 films supported on Attapulgite nanofibers with enhanced photocatalytic performance

    Science.gov (United States)

    Xu, Yongshuai; Zhang, Lili; Yin, Minghui; Xie, Dengyu; Chen, Jiaqi; Yin, Jingzhou; Fu, Yongsheng; Zhao, Pusu; Zhong, Hui; Zhao, Yijiang; Wang, Xin

    2018-05-01

    A novel visible-light-responsive photocatalyst is fabricated by introducing g-C3N4 ultrathin films onto the surface of attapulgite (ATP) via a simple in-situ depositing technique, in which ATP was pre-grafted using (3-Glycidyloxypropyl) trimethoxysilane (KH560) as the surfactant. A combination of XRD, FT-IR, BET, XPS, UV-vis, TEM and SEM techniques are utilized to characterize the composition, morphology and optical properties of the products. The results show that with the help of KH560, g-C3N4 presented as ultrathin layer is uniformly loaded onto the surface of ATP by forming a new chemical bond (Sisbnd Osbnd C). Comparing with g-C3N4 and ATP, ATP/g-C3N4 exhibits remarkably enhanced visible-light photocatalytic activity in degradation of methyl orange (MO) because of its high surface area, appropriate band gap and the synergistic effect between g-C3N4 and ATP. To achieve the best photocatalyst, the ratio of g-C3N4 was adjusted by controlling the mass portion between ATP-KH560 and melamine (r = m (ATP-KH560)/m (melamine)). The highest decomposition rate of methyl orange (MO) was 96.06% when r = 0.5 and this degradation efficiency remained unchanged after 4 cycles, which is 10 times as that of pure g-C3N4 particles. Possible photocatalytic mechanism is presented.

  16. Crystal structure, vibrational and DFT simulation studies of melaminium dihydrogen phosphite monohydrate

    Science.gov (United States)

    Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.

    2013-08-01

    The crystal structure investigations of melamine with phosphorous acid, namely melaminium dihydrogenphosphite monohydrate (C3N6H7·H2PO3·H2O) have been investigated by means of single crystal X-ray diffraction method. The title compound crystallizes in monoclinic crystal system, and the space group is P21/c with a = 10.069 Å, b = 21.592 Å, c = 12.409 Å and Z = 12. The vibrational assignments and analysis of melaminium dihydrogen phosphite monohydrate have also been performed by FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical simulations were performed with DFT (B3LYP) method using 6-31G**, cc-pVTZ, and 6-311++G** basis sets to determine the energy, structural, thermodynamic parameters and vibrational frequencies of melaminium dihydrogen phosphite monohydrate. The hydrogen atom from phosphorous acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H···O and Nsbnd H···O hydrogen bonds shows notable vibrational effects.

  17. The `partial resonance' of the ring in the NLO crystal melaminium formate: Study using vibrational spectra, DFT, HOMO-LUMO and MESP mapping

    Science.gov (United States)

    Binoy, J.; Marchewka, M. K.; Jayakumar, V. S.

    2013-03-01

    The molecular geometry and vibrational spectral investigations of melaminium formate, a potential material known for toxicity and NLO activity, has been performed. The FT IR and FT Raman spectral investigations of melaminium formate is performed aided by the computed spectra of melaminium formate, triazine, melamine, melaminium and formate ion, along with bond orders and PED, computed using the density functional method (B3LYP) with 6-31G(d) basis set and XRD data, to reveal intermolecular interactions of amino groups with neighbor formula units in the crystal, intramolecular H⋯H repulsion of amino group hydrogen with protonating hydrogen, consequent loss of resonance in the melaminium ring, restriction of resonance to N3C1N1 moiety leading to special type resonance of the ring and the resonance structure of CO2 group of formate ion. The 3D matrix of hyperpolarizability tensor components has been computed to quantify NLO activity of melamine, melaminium and melaminium formate and the hyperpolarizability enhancement is analyzed using computed plots of HOMO and LUMO orbitals. A new mechanism of proton transfer responsible for NLO activity has been suggested, based on anomalous IR spectral bands in the high wavenumber region. The computed MEP contour maps have been used to analyze the interaction of melaminium and formate ions in the crystal.

  18. One-step synthesis of shell/core structural boron and nitrogen co-doped graphitic carbon/nanodiamond as efficient electrocatalyst for the oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    Liu, Xiaoxu; Wang, Yanhui; Dong, Liang; Chen, Xi; Xin, Guoxiang; Zhang, Yan; Zang, Jianbing

    2016-01-01

    Shell/core structural boron and nitrogen co-doped graphitic carbon/nanodiamond (BN-C/ND) non-noble metal catalyst has been synthesized by a simple one-step heat-treatment of the mixture with nanodiamond, melamine, boric acid and FeCl 3 . In the process of the surface graphitization of nanodiamond with catalysis by FeCl 3 , B and N atoms from the decomposition of boric acid and melamine were directly introduced into the graphite lattice to form B, N co-doped graphitic carbon shell, while the core still retained the diamond structure. Electrochemical measurements of the BN-C/ND catalyst show much higher electrocatalytic activities towards oxygen reduction reaction (ORR) in alkaline medium than its analogues doped with B or N alone (B-C/ND or N-C/ND). The high catalytic activity of BN-C/ND is attributed to the synergetic effect caused by co-doping of C/ND with B and N. Meanwhile, the BN-C/ND exhibits an excellent electrochemical stability due to the special shell/core structure. There is almost no alteration occurred in the cyclic voltammetry measurements for BN-C/ND before and after 5000 cycles. All experimental results prove that the BN-C/ND may be exploited as a potentially efficient and inexpensive non-noble metal cathode catalyst for ORR to substitute Pt-based catalysts in fuel cells.

  19. Thermal neutron capture cross section of chromium, vanadium, titanium and nickel isotopes

    International Nuclear Information System (INIS)

    Venturini, L.; Pecequilo, B.R.S.

    1990-04-01

    The thermal neutron cross section of chromium, vanadium, titanium and nickel can be determined by measuring the pair spectrum of prompt gamma-rays emitted targets of these elements are irradiated by a thermal neutron beam. Such measurements were carried out by irradiating the natural element mixed with a nitrogen standard (melamine) in the tangential beam hole of the IEA-R1 research reactor. The pair spectrometer efficiency calibration curve in the 1.5 to 11 MeV energy range was performed with a melamine plus ammonium chloride mixed target. The cross section was calculated for the most prominent gamma transitions of each isotope, using nitrogen as standard and averaged over the obtained values. The resulting mean cross sections are as follows: (13.4 ± 0.7)b for 50 Cr, (0.79 ± 0,02)b for 52 Cr, (18.1 ± 0,7)b for 53 Cr, (4.9 ± 0.2)b for 51 V, (8.4 ± 0.1)b for 48 Ti, (4.41 ± 0.08)b 58 Ni, (2.54 ± 0.07)b for 60 Ni, (15.2 ± 0.5)b for 62 Ni and (1.6 ± 0.1) for 64 Ni. (author) [pt

  20. Hydrogen, carbon and oxygen determination in proxy material samples using a LaBr3:Ce detector

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Al-Matouq, Faris A.; Khiari, F.Z.; Isab, A.A.; Raashid, M.; Khateeb-ur-Rehman

    2013-01-01

    Hydrogen, carbon and oxygen concentrations were measured in caffeine, urea, ammonium acetate and melamine bulk samples via 14 MeV neutron inelastic scattering using a LaBr 3 :Ce detector. The samples tested herein represent drugs, explosives and benign materials, respectively. Despite its intrinsic activity, the LaBr 3 :Ce detector performed well in detecting the hydrogen, carbon and oxygen elements. Because 5.1 MeV nitrogen gamma rays interfere with silicon and calcium prompt gamma rays from the room background, the nitrogen peak was not detected in the samples. An excellent agreement was observed between the experimental and theoretical yields of 2.22, 4.43 and 6.13 MeV gamma rays from the analyzed samples as a function of H, C and O concentrations, respectively. Within statistical errors, the minimum detectable concentration (MDC) of hydrogen, carbon and oxygen elements in the tested materials were consistent with previously reported MDC values for these elements measured in hydrocarbon samples. - Highlights: • Hydrogen, carbon and oxygen concentration measurement in bulk samples using 14 MeV neutrons induced prompt gamma rays. • Prompt gamma analysis of narcotics and explosive proxy materials e.g. ammonium acetate, caffeine, urea and melamine Bulk samples. • Prompt gamma detection using large cylindrical 76×76 mm 2 (diameter x height ) LaBr 3 :Ce detector. • Carbon/oxygen elemental ratio measurement from explosive and narcotics proxy material samples

  1. In situ hydrothermal synthesis of g-C{sub 3}N{sub 4}/TiO{sub 2} heterojunction photocatalysts with high specific surface area for Rhodamine B degradation

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Ruirui [Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Institute for Advanced Materials, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002 (China); Wang, Guohong, E-mail: wanggh2003@163.com [Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Institute for Advanced Materials, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002 (China); Jiang, Chuanjia [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070 (China); Tang, Hua [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013 (China); Xu, Qingchuan [Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Institute for Advanced Materials, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002 (China)

    2017-07-31

    Highlights: • High surface area g-C{sub 3}N4/TiO{sub 2} is obtained by combined hydrothermal-calcination method. • HCl formation from Ti precursor changed the structural properties of the composite. • Composite exhibited visible light photocatalytic performance for RhB degradation. • A 3 g of melamine for 0.5 mL TiCl{sub 4} was found to be the optimum content. - Abstract: Semiconductor-based photocatalysis is a promising method for degradation of environmental pollutants, but the activity of most widely used photocatalysts such as titania (TiO{sub 2}) is still unsatisfactory under visible light. Herein, we synthesized a highly efficient visible-light-responsive heterojunction catalysts based on graphitic carbon nitride (g-C{sub 3}N{sub 4}) and TiO{sub 2}. The g-C{sub 3}N{sub 4}/TiO{sub 2} heterojunction composites with high specific surface area were prepared via in situ hydrothermal synthesis followed by calcination, using titanium tetrachloride (TiCl{sub 4}) and melamine as precursors. Interesting, HCl from the hydrolysis of TiCl{sub 4} served as the proton source to acidify the melamine. The g-C{sub 3}N{sub 4}/TiO{sub 2} heterojunction composites exhibited higher photocatalytic performance for decomposition of Rhodamine B (RhB) than pure g-C{sub 3}N{sub 4} or TiO{sub 2} under visible light irradiation. The high activity can be ascribed to the high specific surface area (up to 115.6 m{sup 2} g{sup −1}) of the g-C{sub 3}N{sub 4}/TiO{sub 2} composites and a synergistic heterojunction structure between TiO{sub 2} and g-C{sub 3}N{sub 4}. Moreover, the photocatalytic performances of the g-C{sub 3}N{sub 4}/TiO{sub 2} composites rely on the content of melamine in the synthesis precursors: with an optimum melamine content (3 g for 0.5 mL of TiCl{sub 4}), the sample showed the highest photocatalytic performance, which is superior to pure TiO{sub 2} and g-C{sub 3}N{sub 4} by a factor of 18.7 and 3.5, respectively. Active species trapping experiments revealed that

  2. Effects of calcining temperature on photocatalysis of g-C{sub 3}N{sub 4}/TiO{sub 2} composites for hydrogen evolution from water

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ailan, E-mail: elainqal@163.com; Xu, Xinmei; Xie, Haolong; Zhang, Yangyu; Li, Yuyu; Wang, Junxian

    2016-08-15

    Highlights: • TiO{sub 2} promotes melon to form at 400 °C, whereas it forms at 500 °C for only melamine. • The highest photocatalytic activity was achieved when calcination was performed at 400 °C. • Coordinated N−Ti−N bonds were formed in MA/TiO{sub 2} (400) and disappeared at high temperature. • The surface area decreased and the pore size increased with increasing of temperature. • Only MA/TiO{sub 2} (400) has a narrower band gap than pure g-C{sub 3}N{sub 4}. - Abstract: A composite of graphitic carbon nitride and TiO{sub 2} (g-C{sub 3}N{sub 4}/TiO{sub 2}) with enhanced photocatalytic hydrogen evolution capacity was achieved by calcining melamine and TiO{sub 2} sol-gel precursor. Characterization results reveal that heating temperature had a great influence on the structure, surface area and properties of the composites. Compared with the polycondensation of pure melamine, the presence of TiO{sub 2} precursor can promote the formation of melon at a low temperature. The highest photocatalytic activity of g-C{sub 3}N{sub 4}/TiO{sub 2}(400) was achieved when the calcination was performed at 400 °C, exhibiting H{sub 2} production rate of 76.25 μmol/h under UV–vis light irradiation (λ > 320 nm) and 35.44 μmol/h under visible light irradiation (λ > 420 nm). The highest photocatalytic performance of g-C{sub 3}N{sub 4}/TiO{sub 2}(400) can be attributed to: (1) the strong UV–vis light absorption due to the narrow bandgap caused by synergic effect of TiO{sub 2} and g-C{sub 3}N{sub 4}, (2) high surface area and porosity, (3) the effective separation of photo-generated electron-holes owing to the favorable heterojunction between TiO{sub 2} and g-C{sub 3}N{sub 4}.

  3. Facile fabrication of ordered mesoporous graphitic carbon nitride for RhB photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lei; Zhang, Anfeng [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Janik, Michael J. [EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Li, Keyan [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Song, Chunshan [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Guo, Xinwen, E-mail: guoxw@dlut.edu.cn [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2017-02-28

    Highlights: • Ordered mesoporous graphitic carbon nitrides with S{sub BET} = 279.3 m{sup 2}/g were prepared. • Enhanced photocatalytic activity and reusability were presented. • Improved S{sub BET} and charge carrier separation efficiency contribute to the activity. - Abstract: Ordered mesoporous graphitic carbon nitrides were prepared by directly condensing the uniform mixtures of melamine and KIT-6. After removal of the KIT-6 sacrificial template, the carbon nitrides were characterized with TEM, N{sub 2} physical adsorption, XRD, FT-IR, XPS, UV–vis and PL spectrometries, and tested for their RhB photocatalytic degradation activity. Together, these characterizations confirmed the as-prepared tunable mesoporous materials with enhanced charge separation efficiency and superior photocatalytic performance. Compared with a conventional bulk g-C{sub 3}N{sub 4}, ordered mesoporous g-C{sub 3}N{sub 4} exhibits a larger specific surface area of 279.3 m{sup 2}/g and a pore size distribution about 4.0 nm and 13.0 nm. Meanwhile, the reduced bandgap energy of 2.77 eV and lower photogenerated electron-hole pair recombination frequency were evidenced by UV–Vis and PL spectra. The RhB photocatalytic degradation activity maximizes with a mass ratio of KIT-6/melamine of 80% (KCN80), and the kinetic constant reaches 0.0760 min{sup −1} which is 16 times higher than that of the bulk sample. Reusability of KCN80 was demonstrated by a lack of evident deactivation after three consecutive reaction periods. The direct condensation of the KIT-6 and melamine mixture does not require pre-casting of the precursor into the pore system of the templates. Owing to its high product yield, improved S{sub BET}, reduced bandgap energy and limited charge recombination, the facile-prepared ordered mesoporous g-C{sub 3}N{sub 4} is a practical candidate for further modification.

  4. Preparation of nanodispersed titania using stabilized ammonium nitrate melts

    KAUST Repository

    Raciulete, Monica

    2010-10-01

    An expedite one-step approach using simple precursors has been proposed to obtain metallic oxide compounds and exemplified by preparation of highly dispersed TiO2. The technique consists in heating to 400500 °C of molten ammonium nitrate stabilized with an organic nitrogen-containing compound (urea, melamine, ammonium oxalate) and containing dissolved metal salt precursor (TiOCl2). The crystallites of the resulting TiO2 demonstrated variable size and shape as a function of stabilizer used. Their activity in photocatalytic oxidation of formic acid also depends on the nature of the stabilizer. The catalysts as-prepared showed high photocatalytic performance, superior to that of the Degussa P25 reference. Nitrogen containing stabilizers play a double role of increasing the process safety and modifying the properties of the solid products. © 2010 Elsevier Inc. All rights reserved.

  5. Determination of the resistance of fabric printed with triclosan microcapsules to the action of soil micro-flora

    Science.gov (United States)

    Golja, B.; Forte Tavčer, P.

    2017-10-01

    Microcapsules with a pressure-sensitive melamine-formaldehyde wall and triclosan core were printed to 100% cotton fabric with screen printing technique. Previous research showed excellent antibacterial activity (estimated for E. Coli and S. Aureus) of such fabric, so our aim in this research was to determine its resistance to the action of microorganisms present in the soil. The soil burial test was conducted. The breaking strength of the buried samples was measured and also the scanning electron microscope analysis was done. The results showed that none of the samples are resistant to decay. It is evident from SEM micrographs that on all of the buried samples greater morphological changes occur due to the functions of the soil microflora. It can be concluded that the samples printed with triclosan microcapsules are biodegradable which is environmentally preferable.

  6. Synthesis of metal free ultrathin graphitic carbon nitride sheet for photocatalytic dye degradation of Rhodamine B under visible light irradiation

    Science.gov (United States)

    Rahman, Shakeelur; Momin, Bilal; Higgins M., W.; Annapure, Uday S.; Jha, Neetu

    2018-04-01

    In recent times, low cost and metal free photocatalyts driven under visible light have attracted a lot of interest. One such photo catalyst researched extensively is bulk graphitic carbon nitride sheets. But the low surface area and weak mobility of photo generated electrons limits its photocatalytic performance in the visible light spectrum. Here we present the facile synthesis of ultrathin graphitic carbon nitride using a cost effective melamine precursor and its application in highly efficient photocatalytic dye degradation of Rhodamine B molecules. Compared to bulk graphitic carbon nitride, the synthesized ultrathin graphitic carbon nitride shows an increase in surface area, a a decrease in optical band gap and effective photogenerated charge separation which facilitates the harvest of visible light irradiation. Due to these optimal properties of ultrathin graphitic carbon nitride, it shows excellent photocatalytic activity with photocatalytic degradation of about 95% rhodamine B molecules in 1 hour.

  7. 350 keV accelerator based PGNAA setup to detect nitrogen in bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.sa [Department of Physics and King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Matouq, Faris A.; Khiari, F.Z.; Gondal, M.A.; Rehman, Khateeb-ur [Department of Physics and King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Isab, A.A. [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Raashid, M.; Dastageer, M.A. [Department of Physics and King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2013-11-21

    Nitrogen concentration was measured in explosive and narcotics proxy material, e.g. anthranilic acid, caffeine, melamine, and urea samples, bulk samples through thermal neutron capture reaction using 350 keV accelerator based prompt gamma ray neutron activation (PGNAA) setup. Intensity of 2.52, 3.53–3.68, 4.51, 5.27–5.30 and 10.38 MeV prompt gamma rays of nitrogen from the bulk samples was measured using a cylindrical 100 mm×100 mm (diameter×height ) BGO detector. Inspite of interference of nitrogen gamma rays from bulk samples with capture prompt gamma rays from BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays has been obtained. This is an indication of the excellent performance of the PGNAA setup for detection of nitrogen in bulk samples.

  8. The Effect of Particle Size of Wollastonite Filler on Thermal Performance of Intumescent Fire Retardant Coating

    Directory of Open Access Journals (Sweden)

    Zia-ul-Mustafa M.

    2014-07-01

    Full Text Available Intumescent Fire retardant coatings (IFRC’s are one of the simplest ways to protect substrates exposed to fire. In this study, Wollastonite (W filler of two different particle sizes were used to determine the fire performance of intumescent fire retardant coating. The basic ingredients of the coating were ammonium poly-phosphate (APP as acid source, expandable graphite (EG as carbon source, melamine (MEL as blowing agent in epoxy binder, boric acid as additive and hardener as curing agent. A series of coating formulations were developed by using different weight percentages of both sized Wollastonite fillers. The coated steel substrate samples were tested for fire performance using Bunsen burner and char expansion was measured using furnace fire test. A Comparison of the coatings thermal performance was determined. Wollastonite containing filler particle size 10 μm showed better thermal performance than formulations containing filler’s particle size 44 μm.

  9. Solvent-induced synthesis of nitrogen-doped hollow carbon spheres with tunable surface morphology for supercapacitors

    Science.gov (United States)

    Liu, Feng; Yuan, Ren-Lu; Zhang, Ning; Ke, Chang-Ce; Ma, Shao-Xia; Zhang, Ru-Liang; Liu, Lei

    2018-04-01

    Nitrogen doped hollow carbon spheres (NHCSs) with tunable surface morphology have been prepared through one-pot carbonization method by using melamine-formaldehyde spheres as template and resorcinol-based resin as carbon precursor in ethanol-water solution. Well-dispersed NHCSs with particle size of 800 nm were obtained and the surface of NHCSs turn from smooth to tough, wrinkled, and finally concave by increasing the ethanol concentration. The fabricated NHCSs possessed high nitrogen content (3.99-4.83%) and hierarchical micro-dual mesoporous structure with surface area range of 265-405 m2 g-1 and total pore volume of 0.18-0.29 cm3 g-1, which contributed to high specific capacitance, excellent rate capability and long cycle life.

  10. A Study of UV Resistance of a Water-based Polyurethane Lacquer Containing Nano Ceria

    Directory of Open Access Journals (Sweden)

    Arash Saadat-Monfared

    2013-01-01

    Full Text Available Cerium oxide (Ceria nano particle, as photodegradation prevention agent was studied in water-based polyurethane clear coat  systems. Polyurethane coatings show superior weathering resistance compared with acrylic melamine systems. However, any chemical change has detrimental effects on the property profile of PU coatings. Coatings containing various amounts of cerium oxide nanoparticles were prepared and their weathering resistance was evaluated using simulated UV cabinet. To this end the extent and mechanism of degradation was studied utilizing UV-Vis and FTIR-ATR spectroscopy as well as DMTA analysis. The results revealed that Ceria nano particles with concentration of 1.44 % (wt absorb beyond 92.5% of UV light of UV-B region and showed an efficiency of 2000 times as of organic UV absorbers.

  11. A mechanistic study explaining the synergistic viscosity increase obtained from polyethylene oxide (PEO) and {beta}-naphthalene sulfonate (BNS) in shotcrete

    Energy Technology Data Exchange (ETDEWEB)

    Pickelmann, J.; Plank, J., E-mail: sekretariat@bauchemie.ch.tum.de

    2012-11-15

    In shotcrete, a combination of polyethylene oxide (PEO) and {beta}-naphthalene sulfonate (BNS) is commonly applied to reduce rebound. Here, the mechanism for the synergistic viscosity increase resulting from this admixture combination was investigated via x-ray diffraction (XRD), infrared and nuclear magnetic resonance (NMR) spectroscopy. It was found that the electron-rich aromatic rings present in BNS donate electrons to the alkyl protons of PEO and thus increase the electron density there. This rare interaction is known as CH-{pi} interaction and leads to the formation of a supramolecular structure whereby PEO chains bind weakly to BNS molecules. Through this mechanism a polymer network exhibiting exceptionally high molecular weight and thus viscosity is formed. Among polycondensates, sulfanilic acid-phenol-formaldehyde (SPF) provides even higher synergy with PEO than BNS while melamine (PMS), acetone (AFS) or polycarboxylate (PCE) based superplasticizers do not work at all. Effectiveness of lignosulfonates is dependent on their degree of sulfonation.

  12. The public health threat of phthalate-tainted foodstuffs in Taiwan: the policies the government implemented and the lessons we learned.

    Science.gov (United States)

    Wu, Ming-Tsang; Wu, Chia-Fang; Wu, Jiunn-Ren; Chen, Bai-Hsiun; Chen, Eric K; Chao, Mei-Chyn; Liu, Ching-Kuan; Ho, Chi-Kung

    2012-09-01

    A major incident of phthalate-contaminated foodstuffs happened in Taiwan between April and July, 2011. Phthalates were deliberately added to foodstuffs as a substitute of emulsifier. We describe the course of this incident, government response and management of the crisis, and its future implications. Five major food categories, including sports drinks, fruit beverages, tea drinks, fruit jam or jelly, and health food or supplements in tablet or powder form, were contaminated with Di-(2-ethylhexyl)phthalate and/or Di-isononyl phthalate. At least 900 different food products were affected. Like the scandal of melamine-tainted infant formula, this event represents another large deliberate food contamination incident. It is important to be reminded that many governments in developing countries make rapid economic growth as their first priority, often compromising environmental safety and public health. The administration leaders need to find a balance between economic expansion and health and environmental safety. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Preparation of Flame Retardant Modified with Titanate for Asphalt Binder

    Directory of Open Access Journals (Sweden)

    Bo Li

    2014-01-01

    Full Text Available Improving the compatibility between flame retardant and asphalt is a difficult task due to the complex nature of the materials. This study explores a low dosage compound flame retardant and seeks to improve the compatibility between flame retardants and asphalt. An orthogonal experiment was designed taking magnesium hydroxide, ammonium polyphosphate, and melamine as factors. The oil absorption and activation index were tested to determine the effect of titanate on the flame retardant additive. The pavement performance test was conducted to evaluate the effect of the flame retardant additive. Oxygen index test was conducted to confirm the effect of flame retardant on flame ability of asphalt binder. The results of this study showed that the new composite flame retardant is more effective in improving the compatibility between flame retardant and asphalt and reducing the limiting oxygen index of asphalt binder tested in this study.

  14. Absorbent agents for clean-up of liquid hydrocarbons

    International Nuclear Information System (INIS)

    Waldmann, J.J.

    1993-01-01

    A method is described for absorbing liquid hydrocarbon from a liquid hydrocarbon-contaminated substrate comprising applying to said contaminated substrate an effective amount of a chemical absorbent composition of formula: A m B n C p wherein A m is an acid leached bentonite in a form of hydrous silicate of alumina modified by a hydrophobic alkyl (C 12 -C 24 ) amine which has been double protonized by an aliphatic acid with C 1 -C 18 carbon atoms in which m = 0 to 100% by weight of the composition; B n is a modified aminoplast resin comprised of cyanoguanidine-melamine-urea-formaldehyde in a foam form in which n is 0 to 100% by weight; and C p is a siliceous support-modified hydrophobic material in which p is 0 to 100% by weight; provided that at least one of m and n is a positive numerical value

  15. The direct and inverse problems of an air-saturated poroelastic cylinder submitted to acoustic radiation

    Directory of Open Access Journals (Sweden)

    Erick Ogam

    2011-09-01

    Full Text Available A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory (MBT and plane-wave decomposition using orthogonal cylindrical functions is developed. The model is employed to recover from real data acquired in an anechoic chamber, the poromechanical properties of a soft cellular melamine cylinder submitted to an audible acoustic radiation. The inverse problem of acoustic diffraction is solved by constructing the objective functional given by the total square of the difference between predictions from the MBT interaction model and diffracted field data from experiment. The faculty of retrieval of the intrinsic poromechanical parameters from the diffracted acoustic fields, indicate that a wave initially propagating in a light fluid (air medium, is able to carry in the absence of mechanical excitation of the specimen, information on the macroscopic mechanical properties which depend on the microstructural and intrinsic properties of the solid phase.

  16. Nitrogen-doped carbon spheres: A new high-energy-density and long-life pseudo-capacitive electrode material for electrochemical flow capacitor.

    Science.gov (United States)

    Hou, Shujin; Wang, Miao; Xu, Xingtao; Li, Yandong; Li, Yanjiang; Lu, Ting; Pan, Likun

    2017-04-01

    One of the most challenging issues in developing electrochemical flow capacitor (EFC) technology is the design and synthesis of active electrode materials with high energy density and long cycle life. However, in practical cases, the energy density and cycle ability obtained currently cannot meet the practical need. In this work, we propose a new active material, nitrogen-doped carbon spheres (NCSs), as flowable electrodes for EFC application. The NCSs were prepared via one-pot hydrothermal synthesis in the presence of resorcinol/formaldehyde as carbon precursors and melamine as nitrogen precursor, followed by carbonization in nitrogen flow at various temperatures. The results of EFC experiments demonstrate that NCSs obtained at 800°C exhibit a high energy density of 13.5Whkg -1 and an excellent cycle ability, indicating the superiority of NCSs for EFC application. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Eco-friendly Crosslinking Agent for Acid Functional Acrylic Resin

    Directory of Open Access Journals (Sweden)

    Archana Shah

    2009-01-01

    Full Text Available Oil from J. multifida was extracted and it was first converted into N,N-bis(2-hydroxyethyl Jatropha fatty amide (HEJFA. HEJFA has been synthesized by reaction between Jatropha oil and diethanol amine in presence of zinc oxide as a catalyst. The reaction is relatively rapid and proceeded to high yield at 200±5 OC. The resulting HEJFA was used to formulate thermosetting coating compositions. Films were cured at ambient (air drying and elevated (stove drying temperatures using N, N-bis(2-hydroxyethyl Jatropha fatty amide (HEJFA as eco-friendly crosslinking agent for acrylic resin. The coating performance of the various compositions was tested by measurement of scratch hardness, impact strength and chemical resistance. The results show better performance of the HEJFA based compositions compared to butylated melamine formaldehyde (MF based compositions.

  18. Validation of the direct analysis in real time source for use in forensic drug screening.

    Science.gov (United States)

    Steiner, Robert R; Larson, Robyn L

    2009-05-01

    The Direct Analysis in Real Time (DART) ion source is a relatively new mass spectrometry technique that is seeing widespread use in chemical analyses world-wide. DART studies include such diverse topics as analysis of flavors and fragrances, melamine in contaminated dog food, differentiation of writing inks, characterization of solid counterfeit drugs, and as a detector for planar chromatography. Validation of this new technique for the rapid screening of forensic evidence for drugs of abuse, utilizing the DART source coupled to an accurate mass time-of-flight mass spectrometer, was conducted. The study consisted of the determination of the lower limit of detection for the method, determination of selectivity and a comparison of this technique to established analytical protocols. Examples of DART spectra are included. The results of this study have allowed the Virginia Department of Forensic Science to incorporate this new technique into their analysis scheme for the screening of solid dosage forms of drugs of abuse.

  19. Nickel Oxide and Nickel Co-doped Graphitic Carbon Nitride Nanocomposites and its Octylphenol Sensing Application

    KAUST Repository

    Gong, Wanyun

    2015-11-16

    Nickel oxide and nickel co-doped graphitic carbon nitride (NiO-Ni-GCN) nanocomposites were successfully prepared by thermal treatment of melamine and NiCl2 6H2O. NiO-Ni-GCN nanocomposites showed superior electrochemical catalytic activity for the oxidation of octylphenol to pure GCN. A detection method of octylphenol in environmental water samples was developed based at NiO-Ni-GCN nanocomposites modified electrode under infrared light irradiation. Differential pulse voltammetry was used as the analytic technique of octylphenol, exhibiting stable and specific concentration-dependent oxidation signal in the presence of octylphenol in the range of 10nM to 1μM and 1μM to 50μM, with a detection limit of 3.3nM (3S/N). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Application of mammalian cytogenetics to mutagenicity studies

    International Nuclear Information System (INIS)

    Brewen, J.G.

    1977-01-01

    Studies on induction of chromosome damage in germ cells by triethylene melamine (TEM) included determination of frequencies of chromosomal aberrations observed in human leukocytes after treating different stages of the cell cycle with TEM, frequencies of chromatid aberrations in metaphase I oocytes and the female pronuclear chromosomes following treatment of female mice with TEM, and frequencies of labeled diplotene-diakinesis figures and chromosome abberations at various intervals after treatment of primary spermatocytes with TEM and 3 H-thymidine. Studies on effects of low linear energy transfer radiation on mouse oocytes showed that the frequency of aberrations increased as a function of time and remained constant 8 to 9 days post-exposure. It was concluded that cytogenetic procedures were adequate to evaluate certain mutagenic end points

  1. Vertically aligned BCN nanotubes with high capacitance.

    Science.gov (United States)

    Iyyamperumal, Eswaramoorthi; Wang, Shuangyin; Dai, Liming

    2012-06-26

    Using a chemical vapor deposition method, we have synthesized vertically aligned BCN nanotubes (VA-BCNs) on a Ni-Fe-coated SiO(2)/Si substrate from a melamine diborate precursor. The effects of pyrolysis conditions on the morphology and thermal property of grown nanotubes, as well as the nanostructure and composition of an individual BCN nanotube, were systematically studied. It was found that nitrogen atoms are bonded to carbons in both graphitic and pyridinic forms and that the resultant VA-BCNs grown at 1000 °C show the highest specific capacitance (321.0 F/g) with an excellent rate capability and high durability with respect to nonaligned BCN (167.3 F/g) and undoped multiwalled carbon nanotubes (117.3 F/g) due to synergetic effects arising from the combined co-doping of B and N in CNTs and the well-aligned nanotube structure.

  2. Laser ablation of molecular carbon nitride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D., E-mail: d.fischer@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Schwinghammer, K. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), 80799 Munich (Germany); Sondermann, C. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Lau, V.W.; Mannhart, J. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Lotsch, B.V. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), 80799 Munich (Germany)

    2015-09-15

    We present a method for the preparation of thin films on sapphire substrates of the carbon nitride precursors dicyandiamide (C{sub 2}N{sub 4}H{sub 4}), melamine (C{sub 3}N{sub 6}H{sub 6}), and melem (C{sub 6}N{sub 10}H{sub 6}), using the femtosecond-pulsed laser deposition technique (femto-PLD) at different temperatures. The depositions were carried out under high vacuum with a femtosecond-pulsed laser. The focused laser beam is scanned on the surface of a rotating target consisting of the pelletized compounds. The resulting polycrystalline, opaque films were characterized by X-ray powder diffraction, infrared, Raman, and X-ray photoelectron spectroscopy, photoluminescence, SEM, and MALDI-TOF mass spectrometry measurements. The crystal structures and optical/spectroscopic results of the obtained rough films largely match those of the bulk materials.

  3. Radiation hardening lacquer binding agent based on a polyester resin with at least 3.5 double links pr. 1000 molecular weight units

    International Nuclear Information System (INIS)

    Crimlisk, D.J.; Wright, A.; Groves, T.E.

    1976-01-01

    The binding agent is suitable for hardening by electrons with an energy of between 100,000 and 500,000eV. It consists mainly of a solution of a polyester resin with at least 3.5 double links per 1000 mol, in an olefine-unsaturated monomer. The molecular weight of the polyester is between 800 and 1100 and the ratio of the number of double links in the monomer to that in the resin (degree of unsaturation) is in the range 0.75-2.0, or more specifically, between 1 and 1.5. Cellulose acetate/butyrate (CAB) and/or a butylated melamine/formaldehyde resin may be added to improve the surface properties. Likewise from 0.1 to 0.5% polyethylene wax may be added to give a better surface finish and hardness. (JIW)

  4. Harvesting solar light with crystalline carbon nitrides for efficient photocatalytic hydrogen evolution

    KAUST Repository

    Bhunia, Manas Kumar

    2014-08-14

    Described herein is the photocatalytic hydrogen evolution using crystalline carbon nitrides (CNs) obtained by supramolecular aggregation followed by ionic melt polycondensation (IMP) using melamine and 2,4,6-triaminopyrimidine as a dopant. The solid state NMR spectrum of 15N-enriched CN confirms the triazine as a building unit. Controlling the amount and arrangements of dopants in the CN structure can dramatically enhance the photocatalytic performance for H2 evolution. The polytriazine imide (PTI) exhibits the apparent quantum efficiency (AQE) of 15% at 400 nm. This method successfully enables a substantial amount of visible light to be harvested for H2 evolution, and provides a promising route for the rational design of a variety of highly active crystalline CN photocatalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Implementation of Deep Ultraviolet Raman Spectroscopy

    DEFF Research Database (Denmark)

    Liu, Chuan

    of the aromatics, Toluene and Naphthalene, in the gasoline. Chapter 6 shows examples of other applications of DUV Raman spectroscopy, for instance for the illegal red food additive: Sudan I. For this dye Raman spectra - useful to indicate an unwanted presence - could not be obtained with green or blue laser line...... Raman spectrometry was further applied to detect another illegal food additive, Melamine, in milk sample. It was shown that the DUV constitutes a more sensitive measurement method than traditional Raman spectrometry and realizes a direct detection in liquid milk. In another research field regarding...... spectra of the gasoline samples. It is virtually unimportant what the rest of the sample consisted of. The most intense characteristic band is located at 1381 cm-1. The Raman spectra of home-made artificial gasoline mixtures - with gradually increasing Naphthalene contents - can be used to determine...

  6. The Quasi-Static Electromagnetic Approximation for Weakly Conducting Media

    CERN Document Server

    Heubrandtner, T

    2002-01-01

    In a conducting dielectric charge and electric field decay with a time constant tau_R = \\varepsilon/\\sigma. In a weakly conducting medium, as e.g. glass or melamine-phenolic laminate in use in RPC's, this time is about 10^{-3} s; so it is long as compared to the time the charge cloud needs to move through the gap and to the time the signal needs to propagate through a dielectric to the electrode. A quasi-static theory to deal with transient phenomena in weakly conducting media has been developed in Haus and Melcher (1989), Fano, Chu and Adler (1963); it simplifies the analysis considerably since it requires only the solution of a scalar diffusion-type equations in place of the time-dependent Maxwell equations. This little known theory is applied to treat the generation of signals in simple models for chambers with such materials.

  7. RPC operation at high temperature

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R

    2003-01-01

    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  8. N-Doped Carbon Xerogels as Pt Support for the Electro-Reduction of Oxygen

    Directory of Open Access Journals (Sweden)

    Cinthia Alegre

    2017-09-01

    Full Text Available Durability and limited catalytic activity are key impediments to the commercialization of polymer electrolyte fuel cells. Carbon materials employed as catalyst support can be doped with different heteroatoms, like nitrogen, to improve both catalytic activity and durability. Carbon xerogels are nanoporous carbons that can be easily synthesized in order to obtain N-doped materials. In the present work, we introduced melamine as a carbon xerogel precursor together with resorcinol for an effective in-situ N doping (3–4 wt % N. Pt nanoparticles were supported on nitrogen-doped carbon xerogels and their activity for the oxygen reduction reaction (ORR was evaluated in acid media along with their stability. Results provide new evidences of the type of N groups aiding the activity of Pt for the ORR and of a remarkable stability for N-doped carbon-supported Pt catalysts, providing appropriate physico-chemical features.

  9. Bis(1,10-phenanthroline-κ2N,N′(sulfato-κ2O,O′cobalt(II propane-1,3-diol solvate

    Directory of Open Access Journals (Sweden)

    Kai-Long Zhong

    2010-03-01

    Full Text Available The title compound, [Co(SO4(C12H8N22]·C3H8O2, was obtained unexpectedly as a by-product during an attempt to synthesize a mixed-ligand complex of CoII with 1,10-phenanthroline (phen and melamine via a solvothermal reaction. The CoII metal ions are in a distorted octahedral coordination environment formed by four N atoms from two chelating phen ligands and two O atoms from a bidentate sulfate ligand. The two chelating N2C2 groups are almost perpendicular to each other [dihedral angle = 80.06 (8°]. A twofold rotation axis passes through the Co and S atoms, and also through the central C atom of the propane-1,3-diol solvent molecule. Intermolecular O—H...O hydrogen bonds help to stabilize the structure.

  10. Dose—response relationships for agents inhibiting the immune response

    Science.gov (United States)

    Berenbaum, M. C.; Brown, I. N.

    1964-01-01

    Mice were injected with T.A.B. vaccine and, 2 days later, with various doses of different compounds. The relation between dose of compound, mortality and antibody production was studied, and therapeutic indices were calculated for a number of compounds. The most effective agent in suppressing antibody production at relatively non-toxic doses was cyclophosphamide, with next amethopterin (the effect of which was, however, inexplicably erratic), 6-thioguanine and 6-mercaptopurine, in that order. Vincaleukoblastine, triethylene melamine, triethylenethiophosphoramide, mannomustine and 5-fluorouracil were less effective. Compounds of a miscellaneous group (boric acid, caffeine, sodium nitrite, bacitracin, neomycin and polymyxin `B') were studied in the same way: they had no effect on antibody production, even in lethal doses. PMID:14113077

  11. Nickel Oxide and Nickel Co-doped Graphitic Carbon Nitride Nanocomposites and its Octylphenol Sensing Application

    KAUST Repository

    Gong, Wanyun; Zou, Jing; Zhang, Sheng; Zhou, Xin; Jiang, Jizhou

    2015-01-01

    Nickel oxide and nickel co-doped graphitic carbon nitride (NiO-Ni-GCN) nanocomposites were successfully prepared by thermal treatment of melamine and NiCl2 6H2O. NiO-Ni-GCN nanocomposites showed superior electrochemical catalytic activity for the oxidation of octylphenol to pure GCN. A detection method of octylphenol in environmental water samples was developed based at NiO-Ni-GCN nanocomposites modified electrode under infrared light irradiation. Differential pulse voltammetry was used as the analytic technique of octylphenol, exhibiting stable and specific concentration-dependent oxidation signal in the presence of octylphenol in the range of 10nM to 1μM and 1μM to 50μM, with a detection limit of 3.3nM (3S/N). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Natural convection heat transfer from a heated horizontal cylinder with Microencapsulated Phase-Change-Material slurries

    International Nuclear Information System (INIS)

    Kubo, Shinji; Akino, Norio; Tanaka, Amane; Nagashima, Akira

    1998-01-01

    The present study investigates natural convection heat transfer from a heated cylinder cooled by a water slurry of Microencapsulated Phase Change Material (MCPCM). A normal paraffin hydrocarbon with carbon number of 18 and melting point of 27.9degC, is microencapsulated by Melamine resin into particles of which average diameter is 9.5 μm and specific weight is same as water. The slurry of the MCPCM and water is put into a rectangular enclosure with a heated horizontal cylinder. The heat transfer coefficients of the cylinder were evaluated. Changing the concentrations of PCM and temperature difference between cylinder surface and working fluid. Addition of MCPCM into water, the heat transfer is enhanced significantly comparison with pure water in cases with phase change and is reduced slightly in cases without phase change. (author)

  13. High-pressure pyrolysis study of C sub 3 N sub 6 H sub 6 : a route to preparing bulk C sub 3 N sub 4

    CERN Document Server

    Ma, H A; Chen, L X; Zhu, P W; Guo, W L; Guo, X B; Wang, Y D; Li, S Q; Zou Guang Tian; Zhang, G; Bex, P

    2002-01-01

    In order to prepare bulk C sub 3 N sub 4 , high-pressure pyrolysis of melamine (C sub 3 N sub 6 H sub 6) at different temperatures was carried out. The products were characterized by C, N, H element analysis, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, and x-ray diffractometry. The results of the analysis reveal that graphitic phase C sub 3 N sub 4 has been synthesized. It provides a novel route to synthesis of the theoretical superhard cubic C sub 3 N sub 4 and other C sub 3 N sub 4 phases from organic compounds by a high-pressure and high-temperature method.

  14. In situ nanoparticle diagnostics by multi-wavelength Rayleigh-Mie scattering ellipsometry

    CERN Document Server

    Gebauer, G

    2003-01-01

    We present and discuss the method of multiple-wavelength Rayleigh-Mie scattering ellipsometry for the in situ analysis of nanoparticles. It is applied to the problem of nanoparticles suspended in low-pressure plasmas. We discuss experimental results demonstrating that the size distribution and the complex refractive index can be determined with high accuracy and present a study on the in situ analysis of etching of melamine-formaldehyde nanoparticles suspended in an oxygen plasma. It is also shown that particles with a shell structure (core plus mantle) can be analysed by Rayleigh-Mie scattering ellipsometry. Rayleigh-Mie scattering ellipsometry is also applicable to in situ analysis of nanoparticles under high gas pressures and in liquids.

  15. Structural insights into photocatalytic performance of carbon nitrides for degradation of organic pollutants

    Science.gov (United States)

    Oh, Junghoon; Shim, Yeonjun; Lee, Soomin; Park, Sunghee; Jang, Dawoon; Shin, Yunseok; Ohn, Saerom; Kim, Jeongho; Park, Sungjin

    2018-02-01

    Degradation of organic pollutants has a large environmental impact, with graphitic carbon nitride (g-C3N4) being a promising metal-free, low cost, and environment-friendly photocatalyst well suited for this purpose. Herein, we investigate the photocatalytic performance of g-C3N4-based materials and correlate it with their structural properties, using three different precursors (dicyandiamide, melamine, and urea) and two heating processes (direct heating at 550 °C and sequential heating at 300 and 550 °C) to produce the above photocatalysts. We further demonstrate that sequential heating produces photocatalysts with grain sizes and activities larger than those of the catalysts produced by direct heating and that the use of urea as a precursor affords photocatalysts with larger surface areas, allowing efficient rhodamine B degradation under visible light.

  16. Influence of additives for concrete on the containment of radio-elements and strength under radiation of 'cement' matrices

    International Nuclear Information System (INIS)

    Pholvichith epouse Lezane, Ammala

    1994-01-01

    In order to improve the durability of cement-based materials used for the storage of radioactive wastes, fluidizers are generally introduced into these materials during their preparation. Thus, Naphtalene Sulfonate Formaldehyde (NSF) and Melamine Sulfonate Formaldehyde (MSF) are used as fluidizers in concrete which therefore presents good rheological properties when fresh, and a high compactness when hardened. This research study aims at investigating what happens to the fluidizer in a hardened cement paste, how this fluidizer affects the durability (mechanical strength, porosity, apparent diffusion coefficient) of a cement paste in absence of irradiation, what is the behaviour of these organic compounds under irradiation (reticulation or degradation, nature of radiolysis gases), how these organic compounds affects the durability (dimension, porosity, mechanical strength) of a cement paste under cobalt 60 gamma radiation, and how apparent solubilities of the different isotopes vary in cement water in presence of these organic compounds [fr

  17. Interaction between α-calcium sulfate hemihydrate and superplasticizer from the point of adsorption characteristics, hydration and hardening process

    International Nuclear Information System (INIS)

    Guan Baohong; Ye Qingqing; Zhang Jiali; Lou Wenbin; Wu Zhongbiao

    2010-01-01

    Superplasticizers (SPs), namely sulfonated melamine formaldehyde (SMF) and polycarboxylate (PC), were independently admixed with α-calcium sulfate hemihydrate based plaster to improve the material's performance. SMF and PC gave, respectively, 38% and 25% increases in the 2 h bending strength at the optimum dosages of 0.5 wt.% and 0.3 wt.%, which are determined essentially by the maximum water-reducing efficiency. The peak shift of binding energy of Ca2p 3/2 detected by X-ray photoelectron spectroscopy (XPS) suggests that SPs are chemically adsorbed on gypsum surface. A careful examination of the strength development of set plaster allowed the hydration and hardening process to be divided roughly into five stages. SMF accelerates early hydration, while PC decelerates it. Both SPs allowed similar maximum water reductions, giving a more compact structure and a decrease in total pore volume and average pore diameter, and thus leading to higher strengths in the hardened plasters with SPs.

  18. Adhesion of perfume-filled microcapsules to model fabric surfaces.

    Science.gov (United States)

    He, Yanping; Bowen, James; Andrews, James W; Liu, Min; Smets, Johan; Zhang, Zhibing

    2014-01-01

    The retention and adhesion of melamine formaldehyde (MF) microcapsules on a model fabric surface in aqueous solution were investigated using a customised flow chamber technique and atomic force microscopy (AFM). A cellulose film was employed as a model fabric surface. Modification of the cellulose with chitosan was found to increase the retention and adhesion of microcapsules on the model fabric surface. The AFM force-displacement data reveal that bridging forces resulting from the extension of cellulose chains dominate the adhesion between the microcapsule and the unmodified cellulose film, whereas electrostatic attraction helps the microcapsules adhere to the chitosan-modified cellulose film. The correlation between results obtained using these two complementary techniques suggests that the flow chamber device can be potentially used for rapid screening of the effect of chemical modification on the adhesion of microparticles to surfaces, reducing the time required to achieve an optimal formulation.

  19. Compressibility and phase contrast imaging of a irradiated polyurethane foam blocks

    International Nuclear Information System (INIS)

    Naik, Y.; Kulkarni, S.G.; Manjunath, B.S.; Patel, R.J.; Agarwal, A.K.; Kashyap, Y.; Sinha, A.

    2013-01-01

    Polyurethane foam was prepared with a view to use them as a protective enclosure for radioactive material transport package against accidental mechanical shock and fire. The foam samples were prepared by mixing the polyol premixed with additives such as water as blowing agent, melamine polyphosphate as a flame retardants (FR) and catalyst with isocynate keeping NCO/OH ratio as 1.1. It was observed that the irradiation of the foam results in cross linking leading to increased wall thickness and shrinkage of cellular structure. This leads to increased strain around the foam bubble. Increased exposure to gamma rays to higher doses results in reptures at the cellular boundary connecting the bubble structure, leading to decreased mechanical strength. This leads again to increase in deformation seen in the 15 and 20 kGy irradiated samples

  20. Preparation of a liquid nitrogen target for measurement of γ-ray in the 14N(n,γ)15N reaction as an intensity standard in energy region up to 11 MeV

    International Nuclear Information System (INIS)

    Hirano, M.; Obayashi, H.; Sakane, H.; Shibata, M.; Kawade, K.; Taniguchi, A.

    2001-01-01

    For determination of relative γ-ray intensities up to 11 MeV in the 14 N(n,γ) 15 N reaction, we have developed a liquid nitrogen (N 2 ) target which contain no hydrogen (H) to improve the accuracy of γ-ray intensities. The ratio of the relative uncertainties for the liquid nitrogen to that for the melamine (C 3 H 6 N 6 ) widely used was improved by a factor of 2 above 2.2 MeV and a factor of 3 - 6 below 2.2 MeV. It has been shown that the liquid nitrogen target is useful for reduction of the 2.2 MeV γ-ray from the 1 H(n,γ) 2 H reaction and improvement of statistics. (author)

  1. Nitrogen Detection in Bulk Samples Using a D-D Reaction-Based Portable Neutron Generator

    Directory of Open Access Journals (Sweden)

    A. A. Naqvi

    2013-01-01

    Full Text Available Nitrogen concentration was measured via 2.52 MeV nitrogen gamma ray from melamine, caffeine, urea, and disperse orange bulk samples using a newly designed D-D portable neutron generator-based prompt gamma ray setup. Inspite of low flux of thermal neutrons produced by D-D reaction-based portable neutron generator and interference of 2.52 MeV gamma rays from nitrogen in bulk samples with 2.50 MeV gamma ray from bismuth in BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays indicates satisfactory performance of the setup for detection of nitrogen in bulk samples.

  2. [The impact of melafen on the expression of chloroplastic chaperone protein HSP70B and photosynthetic pigments in cells of Chlamydomonas reinhardtii].

    Science.gov (United States)

    Ermokhina, O V; Belkina, G G; Oleskina, Iu P; Fattakhov, S G; Iurina, N P

    2009-01-01

    The effects of growth regulator of the new generation-melamine salt of bis(oxymethyl)phosphine acid (melafen)--on culture growth, pigment and protein content, and the induction of protective chloroplastic chaperone HSP70B in Chlamydomonas reinhardtii CW15 cells were studied. Melafen exhibited 10-30% growth inhibition at 10(-9)-10(-2)% concentration. At 10(-9)-10(-4)% of melafen electrophoretic concentration, the pattern of cellular proteins was similar to the control. The alterations in protein content of algae cells were detected only at 10(-2)% concentration. The content of chlorophyll and carotenoids in melafen-treated cells was 17-40% lower than in the control. Melafen at 10(-9)-109-2)% concentration inhibited HSP70B induction by 39-43% compared to untreated cells. The potential mechanism of melafen effect might involve its influence on nuclear gene expression.

  3. Synthesis of Porous and Mechanically Compliant Carbon Aerogels Using Conductive and Structural Additives

    Directory of Open Access Journals (Sweden)

    Carlos Macias

    2016-01-01

    Full Text Available We report the synthesis of conductive and mechanically compliant monolithic carbon aerogels prepared by sol-gel polycondensation of melamine-resorcinol-formaldehyde (MRF mixtures by incorporating diatomite and carbon black additives. The resulting aerogels composites displayed a well-developed porous structure, confirming that the polymerization of the precursors is not impeded in the presence of either additive. The aerogels retained the porous structure after etching off the siliceous additive, indicating adequate cross-linking of the MRF reactants. However, the presence of diatomite caused a significant fall in the pore volumes, accompanied by coarsening of the average pore size (predominance of large mesopores and macropores. The diatomite also prevented structural shrinkage and deformation of the as-prepared monoliths upon densification by carbonization, even after removal of the siliceous framework. The rigid pristine aerogels became more flexible upon incorporation of the diatomite, favoring implementation of binderless monolithic aerogel electrodes.

  4. Covalent organic framework-derived microporous carbon nanoparticles coated with conducting polypyrrole as an electrochemical capacitor

    Science.gov (United States)

    Kim, Dong Jun; Yoon, Jung Woon; Lee, Chang Soo; Bae, Youn-Sang; Kim, Jong Hak

    2018-05-01

    We report a high-performance electrochemical capacitor based on covalent organic framework (COF)-derived microporous carbon (MPC) nanoparticles and electrochemically polymerized polypyrrole (Ppy) as a pseudocapacitive material. The COF, Schiff-based network-1 (SNW-1) nanoparticles are prepared via a condensation reaction between melamine and terephthalaldehyde, and the resultant MPC film is prepared via a screen-printing method. The MPC film exhibits a bimodal porous structure with micropores and macropores, resulting in both a large surface area and good electrolyte infiltration. Ppy is synthesized potentio-statically (0.8 V vs. Ag/AgCl) by varying the reaction time, and successful synthesis of Ppy is confirmed via Raman spectroscopy. The specific capacitance with the Ppy coating is enhanced by up to 2.55 F cm-2 due to the synergetic effect of pseudocapacitance and reduced resistance.

  5. Heat Resistance of Glued Finger Joints in Spruce Wood Constructions

    Directory of Open Access Journals (Sweden)

    Martin Sviták

    2014-10-01

    Full Text Available The heat resistance of glued spruce wood was evaluated for different joint types and adhesives. Bending strength, modulus of elasticity, and also fracture evaluation were investigated on glued spruce samples made by the finger-jointed principle. Finger-jointed samples were glued with polyurethane (PUR and melamine-urea-formaldehyde (MUF adhesives. Heat loading was realized at temperatures 60, 80, and 110 °C and compared with wood with 20 °C. A static bending test with four-point flexural test was used. Elevated temperature and adhesive type had an important influence on the bending strength. On the other hand, adhesive type had a significant influence on the modulus of elasticity, but elevated temperature had no substantial influence.

  6. 4-Nitrophenol–2,4,6-triamino-1,3,5-triazine–water (2/1/1

    Directory of Open Access Journals (Sweden)

    N. Kanagathara

    2012-07-01

    Full Text Available In the title adduct, 2C6H5NO3·C3H6N6·H2O, the melamine and the two independent nitrophenol molecules are essentially planar, with maximum deviations of 0.0294 (10, 0.0706 (12 and 0.0742 (12 Å, respectively. In the crystal, N—H...N, O—H...N, N—H...O and O—H...O hydrogen bonds link the components into a three-dimensional network. In addition, weak π–π interactions [centroid–centroid distances = 3.728 (3 and 3.749 (3 Å] are observed.

  7. Preparation, crystal structure, vibrational spectral and density functional studies of bis (4-nitrophenol)-2,4,6-triamino-1,3,5-triazine monohydrate

    Science.gov (United States)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-10-01

    An organic-organic salt, bis (4-nitrophenol) 2,4,6-triamino 1,3,5-triazine monohydrate (BNPM) has been prepared by slow evaporation technique at room temperature. Single crystal X-ray diffraction analysis reveals that the compound crystallizes in triclinic system with centrosymmetric space group P-1. IR and Raman spectra of BNPM have been recorded and analyzed. The study has been extended to confocal Raman spectral analysis. Band assignments have been made for the melamine and p-nitrophenol molecules. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory calculations using Firefly (PC GAMESS) Version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with the experimental one. The Mulliken charges, HOMO-LUMO orbital energies are calculated and analyzed. The chemical structure of the compound was established by 1H NMR and 13C NMR spectra.

  8. Fireproofing and heat insulating performance improvement of EG/ATH modified intumescent flame retardant coating treated under Co-60 radiation

    Science.gov (United States)

    Zhang, Yuehong; Luan, Weiling; Jiang, Tao

    2017-12-01

    New intumescent flame retardant (IFR) coatings with different fire retardants were prepared in this paper. Expandable graphite (EG) and Aluminium hydroxide (ATH) were respectively added into the conventional IFR coating system, which included ammonium polyphosphate (APP) / pentaerythritol (PER) / melamine (MEL). The fireproofing time and heat insulating properties of the additives acted as fire retardants were investigated via thermogravimetry analysis (TGA) and fire resistance test of homemade big panel test. The morphology of the char layer structure was achieved by scanning electron microscopy (SEM). The highlight of the paper was that the coating samples were pretreated under Co-60 radiation. The influence of radiation on the fire resistance time and char layer height was investigated. The results showed that the prepared IFR coatings can be used in Co-60 radiation for more than 90 min when encountering fire. It would be a reference for radiation shielding in nuclear environment.

  9. Optical nanoparticles: synthesis and biomedical application

    International Nuclear Information System (INIS)

    Nhung Tran, Hong; Lien Nghiem, Thi Ha; Duong Vu, Thi Thuy; Ha Chu, Viet; Hoa Do, Quang; Vu, Duong; Nghia Nguyen, Trong; Tan Pham, Minh; Son Vu, Van; Nguyen, Thi Thuy; Ngoc Nguyen, Thi Bich; Duc Tran, Anh; Trinh, Thi Thuong; Huan Le, Quang; Thuan Tong, Kim; Thuy Tran, Thanh; Hoang, Thi My Nhung; Thanh Nguyen, Lai; Nguyen Duong, Cao; Minh Pham, Duc

    2015-01-01

    This paper presents a summary of our results on studies of synthesis and biomedical application of optical nanoparticles. Gold, dye-doped silica based and core–shell multifunctional multilayer (SiO_2/Au, Fe_3O_4/SiO_2, Fe_3O_4/SiO_2/Au) water-monodispersed nanoparticles were synthesized by chemical route and surface modified with proteins and biocompatible chemical reagents. The particles were conjugated with antibody or aptamer for specific detecting and imaging bacteria and cancer cells. The photothermal effects of gold nanoshells (SiO_2/Au and Fe_3O_4/SiO_2/Au) on cells and tissues were investigated. The nano silver substrates were developed for surface enhanced Raman scattering (SERS) spectroscopy to detect melamine. (review)

  10. Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma.

    Science.gov (United States)

    Yousefi, Razieh; Davis, Allen B; Carmona-Reyes, Jorge; Matthews, Lorin S; Hyde, Truell W

    2014-09-01

    Understanding the agglomeration of dust particles in complex plasmas requires knowledge of basic properties such as the net electrostatic charge and dipole moment of the dust. In this study, dust aggregates are formed from gold-coated mono-disperse spherical melamine-formaldehyde monomers in a radiofrequency (rf) argon discharge plasma. The behavior of observed dust aggregates is analyzed both by studying the particle trajectories and by employing computer models examining three-dimensional structures of aggregates and their interactions and rotations as induced by torques arising from their dipole moments. These allow the basic characteristics of the dust aggregates, such as the electrostatic charge and dipole moment, as well as the external electric field, to be determined. It is shown that the experimental results support the predicted values from computer models for aggregates in these environments.

  11. Analysis of the electrical characteristic of linseed oil films exposed to humidity

    Energy Technology Data Exchange (ETDEWEB)

    Palummo, Lucrezia [Rome University Tor Vergata, Physic Department, Rome (Italy); Bearzotti, Andrea [IMM-CNR, Area di Ricerca di Roma Tor Vergata, Rome (Italy)

    2009-12-15

    Linseed oil is a material widely used in various applications as a protecting layer for surfaces in industry, in scientific research, for medical use, and finally for artistic purpose. This natural origins substance has a particular application as a protective and smoothing layer on phenolic-melaminic laminate electrodes on Resistive Plate Chamber (RPC) detectors used in various particle physic experiments. In such electronic applications where linseed oil could be exposed to water vapours, an electrical characterization should result useful for having an overall control of the process involving the oil. In this paper, we studied the electrical behaviour towards relative humidity variations of linseed oil films deposited on interdigitated metal electrodes. Moreover, I/V characterisation both in air and vacuum, current vs. temperature and relative humidity was performed. (orig.)

  12. Natural convection heat transfer enhancement using Microencapsulated Phase-Change-Material slurries

    International Nuclear Information System (INIS)

    Kubo, Shinji; Akino, Norio; Tanaka, Amane; Nakano, Fumihiko; Nagashima, Akira.

    1997-01-01

    The present study investigates natural convection heat transfer from a heated cylinder cooled by a water slurry of Microencapsulated Phase Change Material (MCPCM). A normal paraffin hydrocarbon with carbon number of 18 and melting point of 27.9degC, is microencapsulated by Melamine resin into particles of which average diameter is 9.5μm and specific weight is same as water. The slurry of the MCPCM and water is put into a test apparatus, which is a rectangular enclosure with a heated horizontal cylinder. As the concentrations of PCM in the slurry are changed in 1,3 and 5%, the heat transfer coefficients of the cylinder are larger than that of water as working fluid, by 3,20 and 35% enhancements respectively. (author)

  13. Recent advances in chemical imaging technology for the detection of contaminants for food safety and security

    Science.gov (United States)

    Priore, Ryan J.; Olkhovyk, Oksana; Drauch, Amy; Treado, Patrick; Kim, Moon; Chao, Kaunglin

    2009-05-01

    The need for routine, non-destructive chemical screening of agricultural products is increasing due to the health hazards to animals and humans associated with intentional and unintentional contamination of foods. Melamine, an industrial additive used to increase flame retardation in the resin industry, has recently been used to increase the apparent protein content of animal feed, of infant formula, as well as powdered and liquid milk in the dairy industry. Such contaminants, even at regulated levels, pose serious health risks. Chemical imaging technology provides the ability to evaluate large volumes of agricultural products before reaching the consumer. In this presentation, recent advances in chemical imaging technology that exploit Raman, fluorescence and near-infrared (NIR) are presented for the detection of contaminants in agricultural products.

  14. Development of new addition-type composite resins

    Science.gov (United States)

    Kray, R. J.

    1981-01-01

    The most promising of a number of new addition type polyimides and polyaromatic melamine (NCNS) resins for use in high performance composite materials. Three different cure temperature ranges were of interest: 530-560 K (500-550 F), 475-530 K (400-500 F), and 450 K (350 F). Examined were a wide variety of polyimide precursors terminated with 5 norbornene groups and addition polymerized at 560 K similar to PMR-15 and LARC-160 polyimides. In addition, a number of lower curing cinnamal end capped polyimides and a bismaleimide were investigated but were not found promising. A group of NCNS resins were investigated and some were found to be superior to current epoxy resins in moisture resistance, oxidative aging and flame and smoke properties.

  15. 350 keV accelerator based PGNAA setup to detect nitrogen in bulk samples

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Al-Matouq, Faris A.; Khiari, F.Z.; Gondal, M.A.; Rehman, Khateeb-ur; Isab, A.A.; Raashid, M.; Dastageer, M.A.

    2013-01-01

    Nitrogen concentration was measured in explosive and narcotics proxy material, e.g. anthranilic acid, caffeine, melamine, and urea samples, bulk samples through thermal neutron capture reaction using 350 keV accelerator based prompt gamma ray neutron activation (PGNAA) setup. Intensity of 2.52, 3.53–3.68, 4.51, 5.27–5.30 and 10.38 MeV prompt gamma rays of nitrogen from the bulk samples was measured using a cylindrical 100 mm×100 mm (diameter×height ) BGO detector. Inspite of interference of nitrogen gamma rays from bulk samples with capture prompt gamma rays from BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays has been obtained. This is an indication of the excellent performance of the PGNAA setup for detection of nitrogen in bulk samples

  16. 350 keV accelerator based PGNAA setup to detect nitrogen in bulk samples

    Science.gov (United States)

    Naqvi, A. A.; Al-Matouq, Faris A.; Khiari, F. Z.; Gondal, M. A.; Rehman, Khateeb-ur; Isab, A. A.; Raashid, M.; Dastageer, M. A.

    2013-11-01

    Nitrogen concentration was measured in explosive and narcotics proxy material, e.g. anthranilic acid, caffeine, melamine, and urea samples, bulk samples through thermal neutron capture reaction using 350 keV accelerator based prompt gamma ray neutron activation (PGNAA) setup. Intensity of 2.52, 3.53-3.68, 4.51, 5.27-5.30 and 10.38 MeV prompt gamma rays of nitrogen from the bulk samples was measured using a cylindrical 100 mm×100 mm (diameter×height ) BGO detector. Inspite of interference of nitrogen gamma rays from bulk samples with capture prompt gamma rays from BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays has been obtained. This is an indication of the excellent performance of the PGNAA setup for detection of nitrogen in bulk samples.

  17. [Etiology of combined inhalational hydrocyanic acid and carbon monoxide poisoning].

    Science.gov (United States)

    Sigrist, T; Dirnhofer, R

    1979-01-01

    A young man was found dead in a kitchen, that was partly burnt. Autopsy revealed, as cause of death, a combined intoxication following inhalation of carbon monoxide and hydrocyanic acid. Own investigations on the pyrolysis of pieces of furniture found in the kitchen (plastic plates containing melamine and plates containing formaldehyde) showed, that hydrocyanic acid was liberated through combustion of such substances and inhaled by the victim. The poisoning picture is discussed, and discussion includes especially considerations on the peculiar sensitivity of the brain toward the action of hydrocyanic acid and the relative insensitivity of the heart muscle. It is thought that the cause of such sensitivity difference lies in the physiological differences of the intracellular energy production. Finally the dangers of combustion gases developing from burning plastic materials are reemphasized.

  18. Raman Analysis of Dilute Aqueous Samples by Localized Evaporation of Submicroliter Droplets on the Tips of Superhydrophobic Copper Wires.

    Science.gov (United States)

    Cheung, Melody; Lee, Wendy W Y; McCracken, John N; Larmour, Iain A; Brennan, Steven; Bell, Steven E J

    2016-04-19

    Raman analysis of dilute aqueous solutions is normally prevented by their low signal levels. A very general method to increase the concentration to detectable levels is to evaporate droplets of the sample to dryness, creating solid deposits which are then Raman probed. Here, superhydrophobic (SHP) wires with hydrophilic tips have been used as supports for drying droplets, which have the advantage that the residue is automatically deposited at the tip. The SHP wires were readily prepared in minutes using electroless galvanic deposition of Ag onto copper wires followed by modification with a polyfluorothiol (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decanethiol, HDFT). Cutting the coated wires with a scalpel revealed hydrophilic tips which could support droplets whose maximum size was determined by the wire diameter. Typically, 230 μm wires were used to support 0.6 μL droplets. Evaporation of dilute melamine droplets gave solid deposits which could be observed by scanning electron microscopy (SEM) and Raman spectroscopy. The limit of detection for melamine using a two stage evaporation procedure was 1 × 10(-6) mol dm(-3). The physical appearance of dried droplets of sucrose and glucose showed that the samples retained significant amounts of water, even under high vacuum. Nonetheless, the Raman detection limits of sucrose and glucose were 5 × 10(-4) and 2.5 × 10(-3) mol dm(-3), respectively, which is similar to the sensitivity reported for surface-enhanced Raman spectroscopy (SERS) detection of glucose. It was also possible to quantify the two sugars in mixtures at concentrations which were similar to those found in human blood through multivariate analysis.

  19. One-step fabrication of novel superhydrophobic and superoleophilic sponge with outstanding absorbency and flame-retardancy for the selective removal of oily organic solvent from water

    Science.gov (United States)

    Xiang, Yuqian; Pang, Youyou; Jiang, Xiaomei; Huang, Jie; Xi, Fengna; Liu, Jiyang

    2018-01-01

    Absorbent materials integrated with superhydrophobicity, superoleophilicity and flame-retardancy are highly desired in the adsorption/removal of flammable oils/organic compounds as well as reducing the risk of fire and explosion. Here, one-step fabrication of novel superhydrophobic and superoleophilic sponge with outstanding absorbency and flame-retardancy was presented. Using raw melamine (ME) sponge as the supporting matrix, the formation of polydopamine (PDA) nanoaggregates via in-situ self-polymerization of high-concentrated dopamine and the covalent grafting of hydrophobic n-dodecylthiol (DT) onto PDA were combined in a feasible alkaline water/ethanol medium. As investigated by scanning electron microscopy (SEM) and X-ray energy-dispersive spectroscopy (EDS), the as-prepared ME/PDA/DT sponge possessed hierarchical structure with submicron PDA nanoaggregates containing DT motif (low surface energy) on 3D interconnected porous network. It exhibited superhydrophobic (water contact angle 157.7°) and superoleophilic (oily/organic solvent contact angle 0° properties. Owing to the highly porous structure, superhydrophobic property, chemical and mechanical stability, the ME/PDA/DT sponge exhibited outstanding absorbency properties of oily organic solvents including fast absorption kinetics, high absorption capacity, and easy reusability. Also, the ME/PDA/DT sponge could be used for one-line continuous organic solvent/water separation. More interestingly, the ME/PDA/DT sponge demonstrated improved flame-retardant property as compared to the intrinsic flame-retardant nature of the raw melamine sponge. Consequently, the risk of fire and explosion was expected to reduce when the fabricated sponge was used as an absorbent for flammable oils and organic compounds. The ease of the one-step superhydrophobic/superoleophilic modification and the promising feature of the obtained materials exhibit great potential for application in oils/organic solvents clean-up.

  20. In-syringe extraction using dissolvable layered double hydroxide-polymer sponges templated from hierarchically porous coordination polymers.

    Science.gov (United States)

    Ghani, Milad; Frizzarin, Rejane M; Maya, Fernando; Cerdà, Víctor

    2016-07-01

    Herein we report the use of cobalt porous coordination polymers (PCP) as intermediates to prepare advanced extraction media based on layered double hydroxides (LDH) supported on melamine polymer foam. The obtained dissolvable Ni-Co LDH composite sponges can be molded and used as sorbent for the in-syringe solid-phase extraction (SPE) of phenolic acids from fruit juices. The proposed sorbent is obtained due to the surfactant-assisted self-assembly of Co(II)/imidazolate PCPs on commercially available melamine foam, followed by the in situ conversion of the PCP into the final dissolvable LDH coating. Advantageous features for SPE are obtained by using PCPs with hierarchical porosity (HPCPs). The LDH-sponge prepared using intermediate HPCPs (HLDH-sponge) is placed in the headspace of a glass syringe, enabling flow-through extraction followed by analyte elution by the dissolution of the LDH coating in acidic conditions. Three phenolic acids (gallic acid, p-hydroxybenzoic acid and caffeic acid) were extracted and quantified using high performance liquid chromatography. Using a 5mL sample volume, the obtained detection limits were 0.15-0.35μgL(-1). The proposed method for the preparation of HLDH-sponges showed a good reproducibility as observed from the intra- and inter-day RSD's, which were <10% for all analytes. The batch-to-batch reproducibility for three different batches of HLDH-sponges was 10.6-11.2%. Enrichment factors of 15-21 were obtained. The HLDH-sponges were applied satisfactorily to the determination of phenolic acids in natural and commercial fruit juices, obtaining relative recoveries among 89.7-95.3%. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. IE Information No. 86-71: Recent identified problems with Limitorque motor operators

    International Nuclear Information System (INIS)

    Jordan, E.L.

    1992-01-01

    This notice is provided to alert recipients of two potential problems discovered with Limitorque motor operators. On November 8, 1985 Georgia Power Company submitted a preliminary report to the NRC indicating that it had discovered burn damage to internal wiring in several Limitorque motor operators installed in their Vogtle Unit 1 Power Plant. On March 20, 1986 Georgia Power Company submitted a final report to the NRC which suggested that the burn damage was a generic problem applicable to all Limitorque motor operators. This assumption was based on a sampling inspection of 104 Limitorque motor operators installed in Vogtle Unit 1. Forty-six of the motor operators examined were Limitorque type SMB-000, and six of these were found to have burnt internal wiring. Out of the 58 operators other than type SMB-000 which were inspected, 5 were found to contain wires deemed susceptible to damage because of their close proximity to the heater elements (less than 1/2 inch). Several licensees have submitted reports to the NRC concerning a problem with cracked limit switch rotors on Limitorque motor operators installed inside and outside of containment. The limit switches are used for control of the motor operator and also provide indication of valve position in the control room. The cracks have been found on white melamine limit switch rotors. Most of these cracks were found in the area where the limit switch rotors are pinned to the pinion shafts. Some cracks have been found to extend halfway through the melamine rotors, weakening them to the extent that they are easily broken

  2. Hierarchical Honeycomb Br-, N-Codoped TiO2 with Enhanced Visible-Light Photocatalytic H2 Production.

    Science.gov (United States)

    Zhang, Chao; Zhou, Yuming; Bao, Jiehua; Sheng, Xiaoli; Fang, Jiasheng; Zhao, Shuo; Zhang, Yiwei; Chen, Wenxia

    2018-06-06

    The halogen elements modification strategy of TiO 2 encounters a bottleneck in visible-light H 2 production. Herein, we have for the first time reported a hierarchical honeycomb Br-, N-codoped anatase TiO 2 catalyst (HM-Br,N/TiO 2 ) with enhanced visible-light photocatalytic H 2 production. During the synthesizing process, large amounts of meso-macroporous channels and TiO 2 nanosheets were fabricated in massive TiO 2 automatically, constructing the hierarchical honeycomb structure with large specific surface area (464 m 2 g -1 ). cetyl trimethylammonium bromide and melamine played a key role in constructing the meso-macroporous channels. Additionally, HM-Br,N/TiO 2 showed a high visible-light H 2 production rate of 2247 μmol h -1 g -1 , which is far more higher than single Br- or N-doped TiO 2 (0 or 63 μmol h -1 g -1 , respectively), thereby demonstrating the excellent synergistic effects of Br and N elements in H 2 evolution. In HM-Br,N/TiO 2 catalytic system, the codoped Br-N atoms could reduce the band gap of TiO 2 to 2.88 eV and the holes on acceptor levels (N acceptor) can passivate the electrons on donor levels (Br donor), thereby preventing charge carriers recombination significantly. Furthermore, the proposed HM-Br,N/TiO 2 fabrication strategy had a wide range of choices for N source (e.g., melamine, urea, and dicyandiamide) and it can be applied to other TiO 2 materials (e.g., P25) as well, thereby implying its great potential application in visible-light H 2 production. Finally, on the basis of experimental results, a possible photocatalytic H 2 production mechanism for HM-Br,N/TiO 2 was proposed.

  3. Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide

    International Nuclear Information System (INIS)

    Praus, Petr; Svoboda, Ladislav; Ritz, Michal; Troppová, Ivana; Šihor, Marcel; Kočí, Kamila

    2017-01-01

    Graphitic carbon nitride (g-C_3N_4) was synthetized by condensation of melamine at the temperatures of 400–700 °C in air for 2 h and resulting products were characterized and finally tested for the photocatalytic decomposition of nitrous oxide. The characterization methods were elemental analysis, UV–Vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL), Fourier transform infrared (FTIR) and Raman spectroscopy, measurement of specific surface area (SSA), X-ray powder diffraction (XRD), scanning (SEM) and transmission (TEM) electron microscopy. The XRD patterns, FTIR and Raman spectra proved the presence of g-C_3N_4 at above 550 °C but the optimal synthesis temperature of 600–650 °C was found. Under these conditions graphitic carbon nitride of the overall empirical composition of C_6N_9H_2 was formed. At lower temperatures g-C_3N_4 with a higher content of hydrogen was formed but at higher temperatures g-C_3N_4 was decomposed. At the temperatures above 650 °C, its exfoliation was observed. The photocatalytic experiments showed that the activity of all the samples synthetized at 400–700 °C was very similar, that is, within the range of experimental error (5 %). The total conversion of N_2O reached about 43 % after 14 h. - Highlights: • Graphitic carbon nitride (g-C_3N_4) was thermally synthetized from melamine in the range of 400–700 °C. • The optimal temperature was determined at 600–650 °C. • All synthesis products were properly characterized by physico-chemical methods. • Exfoliation of g-C_3N_4 at above 600 °C was observed. • g-C_3N_4 was used for the photocatalytic decomposition of N_2O.

  4. CO{sub 2} capture using fly ash-derived activated carbons impregnated with low molecular mass amines

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.M.; Arenillas, A.; Drage, T.C.; Snape, C.E. [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre

    2005-07-01

    Two different approaches to develop high capacity CO{sub 2} sorbents are presented. Firstly, the modification of the surface chemistry of low cost carbons by impregnation with a basic nitrogen-containing polymer (i.e.polyethylenimine) is described. Relatively low molecular mass (MM) amines, namely diethanolamine (DEA, MM 105) and tetraethylenepentaamineacrylonitrile (TEPAN, MM 311) are used to produce high capacity CO{sub 2} sorbents from activated carbons derived from unburned carbon in fly ash, which have low mesoporosities. The CO{sub 2} adsorption capacity and thermal stability of the prepared sorbents was measured as a function of temperature in a thermogravimetric analyser. The results indicate that TEPAN is more effective than DEA; at a temperature of 75{sup o}C, fly ash-derived activated carbons loaded with TEPAN achieved CO{sub 2} adsorption capacities in excess of 5 wt%, which compares fabvourably with the CO{sub 2} absorption capacity of 6.5 wt% achieved with a mesoporous silica loaded with TEPAN, and outperforms fly ash-derived activated carbons loaded with PEI. TEPAN has also been shown to have a higher thermal stability than DEA. The second approach involves the development of high nitrogen content carbon matrix adsorbents by carbonisation and subsequent thermal or chemical activation of a range of materials (polyacrylonitrile, glucose-amine mixtures, melamine and urea/melamine-formaldehyde resins). The results show that although the amount of nitrogen incorporated to the final adsorbent is important, the N-functionality seems to be more relevant for increasing CO{sub 2} uptake. However, the adsorbent obtained from carbazole-sugar co-pyrolysis, despite the lower amount of N incorporated, shows high CO{sub 2} uptake, up to 9 wt%, probably because the presence of more basic functionalities as determined by XPS analysis. 9 refs., 2 figs.

  5. Synergistic increase of oxygen reduction favourable Fe-N coordination structures in a ternary hybrid of carbon nanospheres/carbon nanotubes/graphene sheets.

    Science.gov (United States)

    Zhang, Shiming; Liu, Bin; Chen, Shengli

    2013-11-14

    A Fe/N co-doped ternary nanocarbon hybrid, with uniform bamboo-like carbon nanotubes (CNTs) in situ grown on/between the single/few-layer graphene sheets interspaced by carbon nanosphere aggregates, was prepared through a one-pot heat treatment of a precursor mixture containing graphene oxide, Vulcan XC-72 carbon nanospheres, nitrogen rich melamine and small amounts of Fe ions. Physical characterization including electron microscopic images, N2 adsorption-desorption isotherms, pore size distribution, XPS, XRD, Mössbauer spectra, and EDX revealed that the 0-D/1-D/2-D ternary hybrid architecture not only offered an optimized morphology for high dispersion of each nanocarbon moiety, while the carbon nanosphere interspaced graphene sheets have provided a platform for efficient reaction between Fe ions and melamine molecules, resulting in uniform nucleation and growth of CNTs and formation of high density Fe-N coordination assemblies that have been believed to be the active centers for the oxygen reduction reaction (ORR) in carbon-based nonprecious metal electrocatalysts. In the absence of graphene oxides or carbon nanospheres, a similar heat treatment was found to result in large amounts of elemental Fe and Fe carbides and entangled CNTs with wide diameter distributions. As a result, the ternary Fe/N-doped nanocarbon hybrid exhibits ORR activity much higher than the Fe-N doped single or binary nanocarbon materials prepared under similar heat treatment conditions, and approaching that of the state-of-the-art carbon-supported platinum catalyst (Pt/C) in acidic media, as well as superior stability and methanol tolerance to Pt/C.

  6. A survey on trace organic chemicals in a German water protection area and the proposal of relevant indicators for anthropogenic influences.

    Science.gov (United States)

    Seitz, Wolfram; Winzenbacher, Rudi

    2017-06-01

    A comprehensive monitoring programme of trace organic chemicals (TOrC) was conducted for a German water protection area in karstic ground. The aim of this survey was to detect the potential anthropogenic influences of point sources such as wastewater treatment plants and diffuse pollution such as runoff water from roads on the raw water used for drinking water treatment. The programme comprised seven sampling campaigns within 2 years each with up to 20 sampling sites. In total, the programme included 84 anthropogenic compounds from pharmaceuticals, iodinated X-ray contrast media, sweeteners, industrial chemicals (benzotriazoles, melamines and benzothiazoles) and pesticide metabolites. Cyclamate occurred with the highest median concentration of 44 μg l -1 in untreated wastewater and acesulfame occurred with a concentration of 20 μg l -1 in treated wastewater. In runoff water from roads, the most relevant compounds were tolyltriazole with 2.3 μg l -1 and the desphenyl-chloridazon with 1.2 μg l -1 . In the stream waters, the highest median concentrations were found for melamine and acesulfame both at 0.61 μg l -1 . High elimination during conventional wastewater treatment was observed for 5 out of 49 compounds. These are acetyl-sulfamethoxazole, aciclovir, cyclamate, ibuprofen and saccharin. Based on the survey results, we propose a set of nine compounds to be used as indicators for wastewater, untreated wastewater and runoff water from roads for an efficient surveillance. The indicators are intended to detect anthropogenic influences in surface, ground and drinking water.

  7. Generation of polycyclic aromatic hydrocarbons (PAH during woodworking operations

    Directory of Open Access Journals (Sweden)

    Evin Danisman Bruschweiler

    2012-10-01

    Full Text Available Occupational exposures to wood dust have been associated with an elevated risk of sinonasal cancer (SNC. Wood dust is recognized as a human carcinogen but the specific cancer causative agent remains unknown. One possible explanation is a co-exposure to; wood dust and polycyclic aromatic hydrocarbons (PAHs. PAHs could be generated during incomplete combustion of wood due to heat created by use of power tools.To determine if PAHs are generated from wood during common woodworking operations, PAHs concentrations in wood dust samples collected in an experimental chamber operated under controlled conditions were analyzed. In addition, personal air samples from workers exposed to wood dust (n=30 were collected.Wood dust was generated using tree different power tools: vibrating sander, belt sander, and saw; and six wood materials: fir, Medium Density Fiberboard (MDF, beech, mahogany, oak and wood melamine. Monitoring of wood workers was carried out by means of personnel sampler device during wood working operations. We measured 21 PAHs concentrations in wood dust samples by capillary gas chromatographic-ion trap mass spectrometric analysis (GC-MS.Total PAH concentrations in wood dust varied greatly (0.24 – 7.95 ppm with the lowest being in MDF dust and the highest in wood melamine dust. Personal exposures to PAHs observed were between 37.5-119.8 ng m-3 among workers during wood working operations.Our results suggest that PAH exposures during woodworking operation are present and hence could play a role in the mechanism of cancer induction related to wood dust exposure.

  8. 包覆赤磷制备工艺及其热安定性研究%Preparation technique of microcapsulated red phosphorusand its thermostability

    Institute of Scientific and Technical Information of China (English)

    刘杰; 关华; 宋东明

    2017-01-01

    为了降低赤磷的吸湿性,提高其热安定性,该文采用氢氧化铝-密胺树脂包覆赤磷(MRP).通过单因素实验优化了制备包覆赤磷的工艺,采用傅里叶变换红外(FTIR)光谱仪和扫描电子显微镜(SEM)对包覆层进行了表征,用热重-差热分析法(TG-DTA)分析了包覆前后赤磷样品的热安定性.结果表明,制备包覆赤磷的最佳工艺参数为,九水合硝酸铝的质量为0.10 g,甲醛和三聚氰胺总质量为0.40 g、摩尔比为3∶1,反应温度为80 ℃,反应时间为1 h.在此工艺条件下,包覆赤磷(MRP)的吸湿率降幅最大,达到96.88%,且包覆物质量分数小于5%,包覆材料在赤磷表面的包覆状况良好.相比于未包覆赤磷,包覆后赤磷的外推起始温度、峰值温度和外推终点温度分别提高42.8 ℃、51.7 ℃和48.4 ℃;自发火温度提高58.8 ℃,表明包覆赤磷的热安定性大幅提高.%In order to reduce the hygroscopicity of red phosphorus and improve its thermostability,the aluminium hydroxide/melamine-formaldehyde resin microcapsulated red phosphorus(MRP)is successfully prepared.The process of preparing the coated red phosphorus is optimized by the single factor test.The coating layer of the red phosphorus is characterized by the Fourier transform infrared(FTIR)spectrometer and the scanning electron microscopy(SEM).The thermostability of the red phosphorus(RP)and the MRP is investigated by the thermogravimetric analysis-differential thermal analysis(TG-DTA)in air atmosphere.Results show that the optimal process parameters for preparing the coated red phosphorus are,the mass of the aluminum nitrate nonahydrate 0.10 g,the total mass of the formaldehyde and melamine 0.40 g,the molar ratio of the formaldehyde and the melamine 3∶1,the reaction temperature 80 ℃,the reaction time 1 h.Under these optimal process parameters,the moisture absorption ratio of MRP reduces 96.88%(the greatest reduction),the mass fraction of coating materials is below 5

  9. Preparation of three-dimensional nitrogen-doped graphene layers by gas foaming method and its electrochemical capactive behavior

    International Nuclear Information System (INIS)

    Hao, Junnan; Shu, Dong; Guo, Songtao; Gao, Aimei; He, Chun; Zhong, Yayun; Liao, Yuqing; Huang, Yulan; Zhong, Jie

    2016-01-01

    Highlights: • A three-dimensional porous graphene layers was prepared via a gas foaming method. • Melamine was the nitrogen source to synthesize the N-doped 3D graphene layers. • The specific surface area of 3D N-doped graphene material is as high as 1196 m 2 g −1 . • The 3D N-doped graphene specific capacitance is 335 F g −1 in three-electrode system. • The energy density of 3D N-doped graphene reaches 58.1 Wh kg −1 in a symmetric cell. - Abstract: A porous graphene layers with a three-dimensional structure (3DG) was prepared via a gas foaming method based on a polymeric predecessor. This intimately interconnected 3DG structure not only significantly increases the specific surface area but also provides more channels to facilitate electron transport. In addition, 3D N-doped (3DNG) layers materials were synthesized using melamine as a nitrogen source. The nitrogen content in the 3DNG layers significantly influenced the electrochemical performance. The sample denoted as 3DNG-2 exhibited a specific capacitance of 335.2 F g −1 at a current density of 1 A g −1 in a three-electrode system. Additionally, 3DNG-2 exhibited excellent electrochemical performance in aqueous and organic electrolytes using a two-electrode symmetric cell. An energy density of 58.1 Wh kg −1 at a power density of 2500 W kg −1 was achieved, which is approximately 3 times that (19.6 Wh kg −1 ) in an aqueous electrolyte in a two-electrode system. After 1000 cycles, the capacity retention in aqueous electrolyte was more than 99.0%, and this retention in organic electrolytes was more than 89.4%, which demonstrated its excellent cycle stability. This performance makes 3DNG-2 a promising candidate as an electrode material in high-power and high-energy supercapacitor applications.

  10. Electron transfer number control of the oxygen reduction reaction on nitrogen-doped reduced graphene oxides for the air electrodes of zinc-air batteries and organic degradation

    International Nuclear Information System (INIS)

    Wu, Sheng-Hui; Li, Po-Chieh; Hu, Chi-Chang

    2016-01-01

    The mean electron transfer number (n) of the oxygen reduction reaction (ORR) on reduced graphene oxide (rGO) is controlled by nitrogen doping for the air electrodes of Zn-air batteries and electrochemical organic degradation. Melamine and pyrrole are employed as the nitrogen sources for fabricating N-doped rGO (N-rGO) by microwave-assisted hydrothermal synthesis (MAHS). The n value of the ORR is determined by the rotating ring-disk electrode (RRDE) voltammetry and is successfully controlled from 2.34 to 3.93 by preparation variables. The N-doped structures are examined by the x-ray photoelectron spectroscopic (XPS) analysis. The morphology and the defect degree of N-rGOs are characterized by high resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy. N-rGOs with high and low n values are employed as the air electrode catalysts of zinc-air batteries and in-situ hydrogen peroxide (H_2O_2) generation, respectively. The highest discharge cell voltage of 1.235 V for a Zn-air battery is obtained at 2 mA cm"−"2 meanwhile the current efficiency of H_2O_2 generation in 1-h electrolysis at 0 V (vs. RHE) reaches 43%. The electrocatalytic degradation of orange G (OG), analyzed by UV-VIS absorption spectra, reveals a high decoloration degree from the relative absorbance of 0.38 for the azo π-conjugation structure of OG. - Highlights: • The mean electron transfer number (n) is controlled by nitrogen doping. • Melamine and pyrrole are used as the nitrogen sources for fabricating N-rGO. • The n value is successfully controlled from 2.34 to 3.93 by preparation variables. • The highest discharge cell voltage of 1.235 V for a Zn-air battery. • The current efficiency of H_2O_2 generation 1-h electrolysis reaches 43%.

  11. Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide

    Energy Technology Data Exchange (ETDEWEB)

    Praus, Petr, E-mail: petr.praus@vsb.cz [Institute of Environmental Technology, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava 708 33 (Czech Republic); Department of Chemistry, Faculty of Metallurgy and Materials Engineering, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava 708 33 (Czech Republic); Svoboda, Ladislav [Institute of Environmental Technology, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava 708 33 (Czech Republic); Department of Chemistry, Faculty of Metallurgy and Materials Engineering, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava 708 33 (Czech Republic); Ritz, Michal [Department of Chemistry, Faculty of Metallurgy and Materials Engineering, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava 708 33 (Czech Republic); Troppová, Ivana; Šihor, Marcel; Kočí, Kamila [Institute of Environmental Technology, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava 708 33 (Czech Republic)

    2017-06-01

    Graphitic carbon nitride (g-C{sub 3}N{sub 4}) was synthetized by condensation of melamine at the temperatures of 400–700 °C in air for 2 h and resulting products were characterized and finally tested for the photocatalytic decomposition of nitrous oxide. The characterization methods were elemental analysis, UV–Vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL), Fourier transform infrared (FTIR) and Raman spectroscopy, measurement of specific surface area (SSA), X-ray powder diffraction (XRD), scanning (SEM) and transmission (TEM) electron microscopy. The XRD patterns, FTIR and Raman spectra proved the presence of g-C{sub 3}N{sub 4} at above 550 °C but the optimal synthesis temperature of 600–650 °C was found. Under these conditions graphitic carbon nitride of the overall empirical composition of C{sub 6}N{sub 9}H{sub 2} was formed. At lower temperatures g-C{sub 3}N{sub 4} with a higher content of hydrogen was formed but at higher temperatures g-C{sub 3}N{sub 4} was decomposed. At the temperatures above 650 °C, its exfoliation was observed. The photocatalytic experiments showed that the activity of all the samples synthetized at 400–700 °C was very similar, that is, within the range of experimental error (5 %). The total conversion of N{sub 2}O reached about 43 % after 14 h. - Highlights: • Graphitic carbon nitride (g-C{sub 3}N{sub 4}) was thermally synthetized from melamine in the range of 400–700 °C. • The optimal temperature was determined at 600–650 °C. • All synthesis products were properly characterized by physico-chemical methods. • Exfoliation of g-C{sub 3}N{sub 4} at above 600 °C was observed. • g-C{sub 3}N{sub 4} was used for the photocatalytic decomposition of N{sub 2}O.

  12. Surface-modified multifunctional MIP nanoparticles

    Science.gov (United States)

    Moczko, Ewa; Poma, Alessandro; Guerreiro, Antonio; Perez de Vargas Sansalvador, Isabel; Caygill, Sarah; Canfarotta, Francesco; Whitcombe, Michael J.; Piletsky, Sergey

    2013-04-01

    The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as a protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity (PEG methacrylate); electro-activity (vinylferrocene); fluorescence (eosin acrylate); thiol groups (pentaerythritol tetrakis(3-mercaptopropionate)). The method has broad applicability and can be used to produce multifunctional imprinted nanoparticles with potential for further application in the biosensors, diagnostics and biomedical fields and as an alternative to natural receptors.The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as a protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity

  13. Electron transfer number control of the oxygen reduction reaction on nitrogen-doped reduced graphene oxides for the air electrodes of zinc-air batteries and organic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sheng-Hui; Li, Po-Chieh; Hu, Chi-Chang, E-mail: cchu@che.nthu.edu.tw

    2016-11-01

    The mean electron transfer number (n) of the oxygen reduction reaction (ORR) on reduced graphene oxide (rGO) is controlled by nitrogen doping for the air electrodes of Zn-air batteries and electrochemical organic degradation. Melamine and pyrrole are employed as the nitrogen sources for fabricating N-doped rGO (N-rGO) by microwave-assisted hydrothermal synthesis (MAHS). The n value of the ORR is determined by the rotating ring-disk electrode (RRDE) voltammetry and is successfully controlled from 2.34 to 3.93 by preparation variables. The N-doped structures are examined by the x-ray photoelectron spectroscopic (XPS) analysis. The morphology and the defect degree of N-rGOs are characterized by high resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy. N-rGOs with high and low n values are employed as the air electrode catalysts of zinc-air batteries and in-situ hydrogen peroxide (H{sub 2}O{sub 2}) generation, respectively. The highest discharge cell voltage of 1.235 V for a Zn-air battery is obtained at 2 mA cm{sup −2} meanwhile the current efficiency of H{sub 2}O{sub 2} generation in 1-h electrolysis at 0 V (vs. RHE) reaches 43%. The electrocatalytic degradation of orange G (OG), analyzed by UV-VIS absorption spectra, reveals a high decoloration degree from the relative absorbance of 0.38 for the azo π-conjugation structure of OG. - Highlights: • The mean electron transfer number (n) is controlled by nitrogen doping. • Melamine and pyrrole are used as the nitrogen sources for fabricating N-rGO. • The n value is successfully controlled from 2.34 to 3.93 by preparation variables. • The highest discharge cell voltage of 1.235 V for a Zn-air battery. • The current efficiency of H{sub 2}O{sub 2} generation 1-h electrolysis reaches 43%.

  14. The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yanchao [School of Materials Science and Engineering, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Wang, Guojian, E-mail: wanggj@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, 4800 Cao' an Road, Shanghai 201804 (China)

    2016-11-01

    Highlights: • The novel halogen-free flame retardant containing silicon and caged bicyclic phosphate was synthesized. • A novel transparent intumescent fire resistant coating was developed by the P-Si synergistic flame retardant and melamine formaldehyde resin. • Excellent fire protection of the transparent intumescent fire resistant coating. • The P-Si synergistic flame retardant could improve the thermo-oxidation resistance of transparent fire resistant coating. - Abstract: A series of novel silicon-containing epoxy/PEPA phosphate flame retardants (EPPSi) were synthesized by polyphosphoric acid (PPA), caged bicyclic phosphate 1-oxo-4-hydroxymethyl-2,6,7-trioxa-L-phosphabicyclo [2.2.2] octane (PEPA), and different ratios of silicon-containing epoxy 1,1,3,3-tetramethyl-1,3-bis(3-(oxiran-2-ylmethoxy)propyl)disiloxane (TMSEP) to 1,4-butanediol diglycidyl ether (BDE). The chemical structure of EPPSi was confirmed by Fourier transform infrared spectroscopy (FTIR) and {sup 1}H nuclear magnetic resonance spectroscopy ({sup 1}H NMR). Afterwards, the transparent intumescent fire resistant coatings were prepared by mixing EPPSi and melamine formaldehyde resin. The influence of silicon on the fire protection of coatings was intensively investigated by fire protection test, intumescence ratio, scanning electron microscope (SEM), compressive strength test, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and real-time FTIR. It was found that the fire resistant coatings obtained the best fire protection when the ratio of TMESP/BDE was 20/100, while excessive TMSEP made the fire protection of coatings deceased sharply. The intumescence ratio, compressive strength test and SEM result showed that a synergistic effect existed between phosphorus and silicon, which improved the foam structure and compressive strength of the char layer significantly. XPS result proved the out-migration effect of silicon. The high concentration silicon on surface played

  15. Enhanced NO2 abatement by alkaline-earth modified g-C3N4 nanocomposites for efficient air purification

    Science.gov (United States)

    Papailias, Ilias; Todorova, Nadia; Giannakopoulou, Tatiana; Karapati, Sofia; Boukos, Nikos; Dimotikali, Dimitra; Trapalis, Christos

    2018-02-01

    The emission of nitrogen dioxide (NO2) is a major problem encountered in photocatalytic NOx removal for air purification. Although the oxidation of nitric oxide (NO) has been extensively studied, the elimination of NO2 byproduct is still in preliminary stage. In this work, alkaline-earth modified graphitic carbon nitride (g-C3N4) is proposed for efficient NOx removal by minimizing the emission of NO2 during the NO oxidation process. The novel photocatalysts were synthesized by annealing mixtures of melamine and various alkaline-earth acetates (magnesium, calcium and barium acetate) at 550 °C for 3 h. The specific surface area of the photocatalysts varied between 4.65 and 11.81 m2/g. The formation of MgO, CaCO3 and BaCO3 was demonstrated by XPS and FT-IR analyses. The initial concentration of each alkaline-earth precursor was 5 and 10 wt%, while the final metal concentration in the nanocomposites was in the range of 7.19-22.39 wt%. The modified photocatalysts showed slightly reduced NO oxidation ability. However, the overall air quality was significantly improved by restraining the NO2 emission. The results were related to the basic character of the nanocomposites due to the presence of alkaline-earths and their enhanced NO2 adsorption capability.

  16. Experiment and Simulation Analysis on Noise Attenuation of Al/MF Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    Bin Li

    2017-01-01

    Full Text Available For the issue concerning internal noise reduction of Al-made cylindrical shell structure, the noise control method of laying melamine foam (MF layer is adopted for in-shell noise attenuation experiments of Al and Al/MF cylindrical shells and corresponding internal noise response spectrograms are obtained. Based on the Virtual.Lab acoustics software, a finite element model is established for the analysis of noise in the Al/MF cylinder shell and numerical simulation computation is conducted for the acoustic mode and in-shell acoustic response; the correctness of the finite element model is verified via comparison with measured data. On this basis, influence rules of different MF laying rate and different laying thickness on acoustic cavity resonance response within the low and medium frequency range of 100–400 Hz are studied. It is indicated that noise reduction increases with MF laying rate, but the amplification decreases along with the rising of MF laying rate; noise reduction per unit thickness decreases with the increase of laying thickness, while noise reduction per unit area increases.

  17. Novel VN/C nanocomposites as methanol-tolerant oxygen reduction electrocatalyst in alkaline electrolyte

    Science.gov (United States)

    Huang, K.; Bi, K.; Liang, C.; Lin, S.; Zhang, R.; Wang, W. J.; Tang, H. L.; Lei, M.

    2015-06-01

    A novel VN/C nanostructure consisting of VN nanoparticles and graphite-dominant carbon layers is synthesized by nitridation of V2O5 using melamine as reductant under inert atmosphere. High crystalline VN nanoparticles are observed to be uniformly distributed in carbon layers with an average size of ca13.45 nm. Moreover, the electrocatalytic performance of VN/C towards oxygen reduction reaction (ORR) in alkaline electrolyte is fascinating. The results show that VN/C has a considerable ORR activity, including a 75 percent value of the diffusion-limited current density and a 0.11 V smaller value about the onset potential with respect to Pt/C catalyst. Moreover, the excellent methanol-tolerance performance of VN/C has also been verified with 3 M methanol. Combined with the competitive prices, this VN/C nanocomposite can serve as an appropriate non-precious methanol-tolerant ORR catalyst for alkaline fuel cells.

  18. Preparation of molecularly imprinted adsorptive resin for trapping of ligustrazine from the traditional Chinese herb Ligusticum chuanxiong Hort

    International Nuclear Information System (INIS)

    Guo Zhifeng; Guo Tingting; Guo Mufan

    2008-01-01

    A highly selective molecularly imprinted adsorptive resin for ligustrazine was prepared by melamine-urea-formaldehyde (MUF) gel. In the experiments, two pieces of MUF gel were synthesized firstly; one was added ligustrazine hydrochloride as the template molecule in it to prepare the imprinted adsorptive resin, and the other was not. Scanning electron microscopy (SEM) revealed that both resins were the porous with a network structure whether or not it was added template molecule. The imprinted adsorptive resin had an absorbability of 85.22% measured by a 200 mg L -1 solution of ligustrazine hydrochloride at room temperature. The resin of MUF without template, on the other hand, displayed an adsorption capacity of almost zero. It illuminated the imprinted adsorptive resin formed ligustrazine recognition sites when the template molecule had been eluted. In the present paper, ligustrazine was effectively separated and enriched from herbs by using a solid-phase adsorptive column filled with the imprinted adsorptive resin. Its eluate, obtained from three kinds of solvents, was analyzed by GC-MS, and the results indicated that the imprinted adsorptive resin showed a high selectivity for ligustrazine. This is believed to be beneficial for extracting natural and highly purified ligustrazine

  19. Fabrication and Enhanced Photoelectrochemical Performance of MoS₂/S-Doped g-C₃N₄ Heterojunction Film.

    Science.gov (United States)

    Ye, Lijuan; Wang, Dan; Chen, Shijian

    2016-03-02

    We report on a novel MoS2/S-doped g-C3N4 heterojunction film with high visible-light photoelectrochemical (PEC) performance. The heterojunction films are prepared by CVD growth of S-doped g-C3N4 film on indium-tin oxide (ITO) glass substrates, with subsequent deposition of a low bandgap, 1.69 eV, visible-light response MoS2 layer by hydrothermal synthesis. Adding thiourea into melamine as the coprecursor not only facilitates the growth of g-C3N4 films but also introduces S dopants into the films, which significantly improves the PEC performance. The fabricated MoS2/S-doped g-C3N4 heterojunction film offers an enhanced anodic photocurrent of as high as ∼1.2 × 10(-4) A/cm(2) at an applied potential of +0.5 V vs Ag/AgCl under the visible light irradiation. The enhanced PEC performance of MoS2/S-doped g-C3N4 film is believed due to the improved light absorption and the efficient charge separation of the photogenerated charge at the MoS2/S-doped g-C3N4 interface. The convenient preparation of carbon nitride based heterojunction films in this work can be widely used to design new heterojunction photoelectrodes or photocatalysts with high performance for H2 evolution.

  20. Encapsulated Vanadium-Based Hybrids in Amorphous N-Doped Carbon Matrix as Anode Materials for Lithium-Ion Batteries.

    Science.gov (United States)

    Long, Bei; Balogun, Muhammad-Sadeeq; Luo, Lei; Luo, Yang; Qiu, Weitao; Song, Shuqin; Zhang, Lei; Tong, Yexiang

    2017-11-01

    Recently, researchers have made significant advancement in employing transition metal compound hybrids as anode material for lithium-ion batteries and developing simple preparation of these hybrids. To this end, this study reports a facile and scalable method for fabricating a vanadium oxide-nitride composite encapsulated in amorphous carbon matrix by simply mixing ammonium metavanadate and melamine as anode materials for lithium-ion batteries. By tuning the annealing temperature of the mixture, different hybrids of vanadium oxide-nitride compounds are synthesized. The electrode material prepared at 700 °C, i.e., VM-700, exhibits excellent cyclic stability retaining 92% of its reversible capacity after 200 cycles at a current density of 0.5 A g -1 and attractive rate performance (220 mAh g -1 ) under the current density of up to 2 A g -1 . The outstanding electrochemical properties can be attributed to the synergistic effect from heterojunction form by the vanadium compound hybrids, the improved ability of the excellent conductive carbon for electron transfer, and restraining the expansion and aggregation of vanadium oxide-nitride in cycling. These interesting findings will provide a reference for the preparation of transition metal oxide and nitride composites as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Characterization of orange oil microcapsules for application in textiles

    Science.gov (United States)

    Rossi, W.; Bonet-Aracil, M.; Bou-Belda, E.; Gisbert-Payá, J.; Wilson, K.; Roldo, L.

    2017-10-01

    The use of orange oil presents as an ecological alternative to chemicals, attracting the attention of the scientific community to the development of eco-friendly antimicrobials. The microencapsulation technology has been used for the application of orange oil to textiles, being an economically viable, fast and efficient method by combining core and shell materials, desirable perceptual and functional characteristics, responsible for properties related to the nature of the product and provides that the wall materials release the functional substances in a controlled manner, in addition to effectively protecting and isolating the core material from the external environment to prevent its volatilization and deterioration, increasing the stability of the oil, such as non-toxicity. Thus, to better exploit the properties of the orange essential oil applied to textile products this study presents a characterization of microcapsules of Melamine formaldehyde obtained by the interfacial polymerization method with variations of proportions of orange oil (volatile) with fixed oil Medium-Chain Triglycerides (MCT) (non-volatile) to assist in the stability of the orange essential oil. Scanning electron microscope (SEM) was used as visualizing tool to characterize microparticles and surface morphology and thermal characteristics of microcapsules were premeditated by mean Differential scanning calorimetry (DSC).

  2. Molecular Architectural Approach to Novel Electro-Optical Materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Johal, M.S.; Smilowitz, L.B.; Robinson, J.M.

    1999-06-29

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The goal is to construct polar multilayers with nonlinear optical coefficients larger than classical inorganic crystals such as KDP or quartz. The strategy is to use various chemical interactions such as covalent bonds or hydrogen bonding to build polar structures. We have synthesized novel barbituric acid and melamine derivatives that will spontaneously self-assemble into a supramolecular ribbon according to their complementary H-bond motif. This supramolecular ribbon can then stack into a polar multilayer structure as verified by sum frequency generation (w{sub 1}+w{sub 2}) or second harmonic generation (when w{sub 1}=w{sub 2}). Second harmonic generation yields a value of d{sub 33}=3.2 pm/V for the self-assembled films and sum frequency generation shows a net polar orientation of the methyl groups in the multilayer along the surface normal. X-ray diffraction confirms the layered structure and produces the periodicity of {approximately}41 A, which corresponds well to the width of the supramolecular ribbons ({approximately}40 A).

  3. Hybrid process for nitrogen oxides reduction

    Energy Technology Data Exchange (ETDEWEB)

    Epperly, W.R.; Sprague, B.N.

    1991-09-10

    This patent describes a process for reducing the nitrogen oxide concentration in the effluent from the combustion of a carbonaceous fuel. It comprises introducing into the effluent a first treatment agent comprising a nitrogenous composition selected from the group consisting of urea, ammonia, hexamethylenetetramine, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, NH{sub 4}-lignosulfonate, fur-furylamine, tetrahydrofurylamine, hexamethylenediamine, barbituric acid, guanidine, guanidine carbonate, biguanidine, guanylurea sulfate, melamine, dicyandiamide, biuret, 1.1{prime}-azobisformamide, methylol urea, methylol urea-urea condensation product, dimethylol urea, methyl urea, dimethyl urea, calcium cyanamide, and mixtures thereof under conditions effective to reduce the nitrogen oxides concentration and ensure the presence of ammonia in the effluent; introducing into the effluent a second treatment agent comprising an oxygenated hydrocarbon at an effluent temperature of about 500{degrees} F. to about 1600{degrees} F. under conditions effective to oxidize nitric oxide in the effluent to nitrogen dioxide and ensure the presence of ammonia at a weight ratio of ammonia to nitrogen dioxide of about 1:5 to about 5:1; and contacting the effluent with an aqueous scrubbing solution having a pH of 12 or lower under conditions effective to cause nitrogen dioxide to be absorbed therein.

  4. Design of a new bottom antireflective coating composition for KrF resist

    Science.gov (United States)

    Mizutani, Kazuyoshi; Momota, Makoto; Aoai, Toshiaki; Yagihara, Morio

    1999-06-01

    A study for a new organic bottom antireflective coating (BARC) composition is described. A structural design of a light-absorbing dye was most important because dye structure not only plays a role in eliminating reflection from a substrate but also shows influence on dry etch rate of BARC material to a considerable extent. For example, an anthracene moiety with large absorption at 248 nm had undesirable dry etch resistance. 3-Hydroxy-2-naphthoic acid moiety was found to be one of suitable dyes for KrF BARC compositions, and the polymer bearing the dye showed enough absorbance and good erodability in dry etch. The BARC polymer was eroded as one and a half times faster than a novolak resin, and a little faster than an anthracene incorporated polymer. The result was discussed from the concepts of Ohnishi parameter and the ring parameter for dry etch durability of resist materials. BARC polymer should be thermoset by hard bake to eliminate intermixing with resist compositions. The BARC polymer bearing hydroxy group which is useful for a crosslinking reaction was thermoset in the presence of melamine-formaldehyde crosslinker and an acid catalyst after baking over 200 degrees C.

  5. Effect of waste rubber powder as filler for plywood application

    Directory of Open Access Journals (Sweden)

    Ong Huei Ruey

    2015-03-01

    Full Text Available The study investigated the suitability of waste rubber powder (WRP use as filler in adhesive formulation for plywood application. Melamine Urea Formaldehyde (MUF was employed as resin for formulating the wood adhesive. To improve chemical properties and bonding quality of adhesive, WRP was treated by different chemicals like 20% nitric acid, 30% hydrogen peroxide and acetone solution. The treated WRP were analysed by XRD and it showed that inorganic compounds were removed and carbon was remained as major component under the treatment of 20% HNO3. The treatment improved the mechanical properties like shear strength and formaldehyde emission of plywood (high shear strength and low formaldehyde emission. The physico-chemical interaction between the wood, resin and filler was investigated using fourier transform infrared spectroscopic (FTIR technique and the interactions among N-H of MUF and C=O of wood and WRP were identified. The morphology of wood-adhesive interface was studied by field emission scanning electron microscope (FESEM and light microscope (LM. It showed that the penetration of adhesives and fillers through the wood pores was responsible for mechanical interlocking. Therefore, chemically treated WRP proved its potential use as filler in MUF based adhesive for making plywood.

  6. TLC-SERS Plates with a Built-In SERS Layer Consisting of Cap-Shaped Noble Metal Nanoparticles Intended for Environmental Monitoring and Food Safety Assurance

    Directory of Open Access Journals (Sweden)

    H. Takei

    2015-01-01

    Full Text Available We report on a thin layer chromatograph (TLC with a built-in surface enhanced Raman scattering (SERS layer for in-situ identification of chemical species separated by TLC. Our goal is to monitor mixture samples or diluted target molecules suspended in a host material, as happens often in environmental monitoring or detection of food additives. We demonstrate that the TLC-SERS can separate mixture samples and provide in-situ SERS spectra. One sample investigated was a mixture consisting of equal portions of Raman-active chemical species, rhodamine 6 G (R6G, crystal violet (CV, and 1,2-di(4-pyridylethylene (BPE. The three components could be separated and their SERS spectra were obtained from different locations. Another sample was skim milk with a trace amount of melamine. Without development, no characteristic peaks were observed, but after development, a peak was observed at 694 cm−1. Unlike previous TLC-SERS whereby noble metal nanoparticles are added after development of a sample, having a built-in SERS layer greatly facilitates analysis as well as maintaining high uniformity of noble metal nanoparticles.

  7. Optimizing Organophosphorus Fire Resistant Finish for Cotton Fabric Using Box-Behnken Design

    International Nuclear Information System (INIS)

    Sohail, Y.; Parag, B.; Nemeshwaree, B.; Giorgio, R.

    2016-01-01

    N-methylol dimethyl phosphono propionamide (MDPA) is one of the most utilized fire resistant (FR) finishes for cotton fabrics, utilized as part of a formulation with trimethylol melamine (TMM) to acquire better crosslinking and enhanced FR properties. The system parameters of the finishing treatment were upgraded for better FR properties and low mechanical loss to the fabric by the response surface methodology utilizing Box-Behnken statistical designed experimental strategy. The impacts of concentration on the cotton fabric’s properties (fire resistance and mechanical properties) were assessed with the regression equations. The optimum conditions by predicting the FR reagents focusing intact mechanical properties of the fabric were additionally studied. It was found that the parameters of crosslinking agents in the FR formulation have a prime role in the general FR properties of the cotton fabrics. The R-squared estimations of the considerable number of responses were above 92%, demonstrating the level of relationship between the predicted values by the Box-Behnken frameworks and the real test results.

  8. Urea thermolysis and NOx reduction with and without SCR catalysts

    International Nuclear Information System (INIS)

    Fang, Howard L.; DaCosta, Herbert F.M.

    2003-01-01

    Urea-selective catalytic reduction (SCR) has been a leading contender for removal of nitrogen oxides (deNO x ) from diesel engine emissions. Despite its advantages, the SCR technology faces some critical detriments to its catalytic performance such as catalyst surface passivation (caused by deposit formation) and consequent stoichiometric imbalance of the urea consumption. Deposit formation deactivates catalytic performance by not only consuming part of the ammonia produced during urea decomposition but also degrading the structural and thermal properties of the catalyst surface. We have characterized the urea thermolysis with and without the urea-SCR catalyst using both spectroscopic (DRIFTS and Raman) and thermal techniques (thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC)) to identify the deposit components and their corresponding thermal properties. Urea thermolysis exhibits two decomposition stages, involving ammonia generation and consumption, respectively. The decomposition after the second stage leads to the product of melamine complexes, (HNC=NH) x (HNCO) y , that hinder catalytic performance. The presence of catalyst accompanied with a good spray of the urea solution helps to eliminate the second stage. In this work, kinetics of the direct reduction of NO x by urea is determined and the possibility of using additives to the urea solution in order to rejuvenate the catalyst surface and improve its performance will be discussed

  9. The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa Sahmaran; Heru Ari Christianto; Ismail Ozgur Yaman [Middle East Technical University, Ankara (Turkey). Department of Civil Engineering

    2006-05-15

    Mortar serves as the basis for the workability properties of self-compacting concrete (SCC) and these properties could be assessed by self-compacting mortars (SCM). In fact, assessing the properties of SCM is an integral part of SCC design. The objective of this study was to evaluate the effectiveness of various mineral additives and chemical admixtures in producing SCMs. For this purpose, four mineral additives (fly ash, brick powder, limestone powder, and kaolinite), three superplasticizers (SP), and two viscosity modifying admixtures (VMA) were used. Within the scope of the experimental program, 43 mixtures of SCM were prepared keeping the amount of mixing water and total powder content (Portland cement and mineral additives) constant. Workability of the fresh mortar was determined using mini V-funnel and mini slump flow tests. The setting time of the mortars, were also determined. The hardened properties that were determined included ultrasonic pulse velocity and strength determined at 28 and 56 days. It was concluded that among the mineral additives used, fly ash and limestone powder significantly increased the workability of SCMs. On the other hand, especially fly ash significantly increased the setting time of the mortars, which can, however, be eliminated through the use of ternary mixtures, such as mixing fly ash with limestone powder. The two polycarboxyl based SPs yield approximately the same workability and the melamine formaldehyde based SP was not as effective as the other two.

  10. A rapid and accurate method for determining protein content in dairy products based on asynchronous-injection alternating merging zone flow-injection spectrophotometry.

    Science.gov (United States)

    Liang, Qin-Qin; Li, Yong-Sheng

    2013-12-01

    An accurate and rapid method and a system to determine protein content using asynchronous-injection alternating merging zone flow-injection spectrophotometry based on reaction between coomassie brilliant blue G250 (CBBG) and protein was established. Main merit of our approach is that it can avoid interferences of other nitric-compounds in samples, such as melamine and urea. Optimized conditions are as follows: Concentrations of CBBG, polyvinyl alcohol (PVA), NaCl and HCl are 150 mg/l, 30 mg/l, 0.1 mol/l and 1.0% (v/v), respectively; volumes of the sample and reagent are 150 μl and 30 μl, respectively; length of a reaction coil is 200 cm; total flow rate is 2.65 ml/min. The linear range of the method is 0.5-15 mg/l (BSA), its detection limit is 0.05 mg/l, relative standard deviation is less than 1.87% (n=11), and analytical speed is 60 samples per hour. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    Energy Technology Data Exchange (ETDEWEB)

    Amir, N., E-mail: norlailiamir@petronas.com.my; Othman, W. M. S. W., E-mail: wamosa@gmail.com; Ahmad, F., E-mail: faizahmad@petronas.com.my [Mechanical Engineering Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.

  12. Characterization of red mud-epoxy intumescent char using surface imaging and micro analysis

    Energy Technology Data Exchange (ETDEWEB)

    Arogundade, A. I., E-mail: ajiunolorioba@gmail.com; Megat-Yusoff, P. S. M., E-mail: puteris@petronas.com.my; Faiz, A. [Department of Mechanical Engineering, Universiti Tecknologi Petronas (Malaysia); Bhat, A. H. [Department of Fundamental and Applied Science, Universiti Tecknologi Petronas (Malaysia)

    2015-07-22

    In this study, red mud (RM), an oxide waste was proposed as reinforcing, synergistic filler for the traditional epoxy intumescent coating (IC). 5.5 wt% of acid-modified and unmodified red mud were introduced into the basic intumescent formulation of ammonium polyphosphate (APP), pentaerythritol (PER) and melamine (MEL). In order to predict effect of modification on its suitability, Field emission electron scanning microscopy and Fourier transform infra red were used to obtain detailed characteristics such as the cell size, pore distribution, homogeneity and chemical composition of the red mud-epoxy carbonaceous char. Both acid-modified and unmodified RM-filled ICs produced chars with smaller and more closely packed cells compared to chars from the unfilled coating. Both coating types had hard carbonaceous metal phosphate coverings that could act as heat barriers. The unmodified red mud was found to be antagonistic to the intumescent action with an expansion of only 2 times the initial thickness. The leached, low iron-red mud produced an expansion of 15 times the initial thickness, but possessed a hollow interior. From these findings, it may be deduced that while acid leaching of red mud may improve intumescent expansion, it would be necessary to optimize the percent filler loading to improve residual mass.

  13. Thermal performance of glass fiber reinforced intumescent fire retardant coating for structural applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Ullah, Sami; Aziz, Hammad, E-mail: engr.hammad.aziz03@gmail.com; Omar, Nor Sharifah [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Tronoh 31750 Perak (Malaysia)

    2015-07-22

    The results of influence of glass fiber addition into the basic intumescent coating formulation towards the enhancement of its thermal insulation properties are presented. The intumescent coatings were formulated from expandable graphite, ammonium polyphosphate, melamine, boric acid, bisphenol A epoxy resin BE-188, polyamide amine H-2310 hardener and fiberglass (FG) of length 3.0 mm. Eight intumescent formulations were developed and the samples were tested for their fire performance by burning them at 450°C, 650°C and 850°C in the furnace for two hours. The effects of each fire test at different temperatures; low and high temperature were evaluated. Scanning Electron Microscope, X-Ray Diffraction technique and Thermo Gravimetric Analysis were conducted on the samples to study the morphology, the chemical components of char and the residual weight of the coatings. The formulation, FG08 containing 7.0 wt% glass fiber provided better results with enhanced thermal insulation properties of the coatings.

  14. Fire performance, microstructure and thermal degradation of an epoxy based nano intumescent fire retardant coating for structural applications

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Hammad, E-mail: engr.hammad.aziz03@gmail.com; Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Yusoff, P. S. M. Megat; Zia-ul-Mustafa, M. [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Tronoh 31750, Perak (Malaysia)

    2015-07-22

    Intumescent fire retardant coating (IFRC) is a passive fire protection system which swells upon heating to form expanded multi-cellular char layer that protects the substrate from fire. In this research work, IFRC’s were developed using different flame retardants such as ammonium polyphosphate, expandable graphite, melamine and boric acid. These flame retardants were bound together with the help of epoxy binder and cured together using curing agent. IFRC was then reinforced with nano magnesium oxide and nano alumina as inorganic fillers to study their effect towards fire performance, microstructure and thermal degradation. Small scale fire test was conducted to investigate the thermal insulation of coating whereas fire performance was calculated using thermal margin value. Field emission scanning electron microscopy was used to examine the microstructure of char obtained after fire test. Thermogravimetric analysis was conducted to investigate the residual weight of coating. Results showed that the performance of the coating was enhanced by reinforcement with nano size fillers as compared to non-filler based coating. Comparing both nano size magnesium oxide and nano size alumina; nano size alumina gave better fire performance with improved microstructure of char and high residual weight.

  15. Effect of Kaolin Clay and Alumina on Thermal Performance and Char Morphology of Intumescent fire retardant coating

    Directory of Open Access Journals (Sweden)

    aziz Hammad

    2014-07-01

    Full Text Available Intumescent fire retardant coating (IFRC have been developed by using ammonium polyphosphate, expandable graphite, melamine, boric acid, kaolin clay and alumina as fillers bound together with epoxy resin and cured with the help of curing agent. Five different formulations were developed with and without using fillers. Cured samples were burned in furnace at 500°C for 2h for char expansion. Bunsen burner test was performed for 1h using UL-94 vertical burning test to investigate the thermal performance of IFRC. The resultant char obtained after burning of coated samples were characterized by using field emission scanning electron microscopy for char morphology. Char composition was analyzed by using fourier transform infrared spectroscopy. Thermogravimetric analysis was carried out to investigate the residual weight of coating. Results showed that formulation with 0.5 weight % of kaolin clay and 0.5 weight % of alumina provide best thermal performance, uniform and multi-porous char structure with high anti-oxidation property.

  16. Interconnected nitrogen and sulfur dual-doped porous carbon as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells

    Science.gov (United States)

    Li, Zhao; Yang, Wang; Xu, Xiuwen; Tang, Yushu; Zeng, Ziwei; Yang, Fan; Zhang, Liqiang; Ning, Guoqing; Xu, Chunming; Li, Yongfeng

    2016-09-01

    Exploiting cost-effective and efficient counter electrodes (CEs) for the reduction of triiodide (I3-) has been a persistent objective for the development of dye-sensitized solar cells (DSSCs). Here, we propose a strategy for the synthesis of nitrogen and sulfur dual-doped porous carbon (N/S-PC) via a thermal annealing approach by using melamine as N source, and basic magnesium sulfate (BMS) whiskers as S source and templates. Benefiting from the high surface area, unique interconnected structural feature and synergistic effects of N/S dual-doping, the N/S-PC shows excellent electrocatalytic activity toward I3- reduction, which has simultaneously been confirmed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The DSSC devices with N/S-PC CEs exhibit a PCE up to 7.41%, which is higher than that of DSSC devices with single heteroatom (N or S) doped CEs and even Pt CEs (7.14%).

  17. Fingerprinting food: current technologies for the detection of food adulteration and contamination.

    Science.gov (United States)

    Ellis, David I; Brewster, Victoria L; Dunn, Warwick B; Allwood, J William; Golovanov, Alexander P; Goodacre, Royston

    2012-09-07

    Major food adulteration and contamination events seem to occur with some regularity, such as the widely publicised adulteration of milk products with melamine and the recent microbial contamination of vegetables across Europe for example. With globalisation and rapid distribution systems, these can have international impacts with far-reaching and sometimes lethal consequences. These events, though potentially global in the modern era, are in fact far from contemporary, and deliberate adulteration of food products is probably as old as the food processing and production systems themselves. This review first introduces some background into these practices, both historically and contemporary, before introducing a range of the technologies currently available for the detection of food adulteration and contamination. These methods include the vibrational spectroscopies: near-infrared, mid-infrared, Raman; NMR spectroscopy, as well as a range of mass spectrometry (MS) techniques, amongst others. This subject area is particularly relevant at this time, as it not only concerns the continuous engagement with food adulterers, but also more recent issues such as food security, bioterrorism and climate change. It is hoped that this introductory overview acts as a springboard for researchers in science, technology, engineering, and industry, in this era of systems-level thinking and interdisciplinary approaches to new and contemporary problems.

  18. Preparation and properties of hexagonal boron nitride fibers used as high temperature membrane filter

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xinmei, E-mail: houxinmei@ustb.edu.cn; Yu, Ziyou; Li, Yang; Chou, Kuo-Chih

    2014-01-01

    Graphical abstract: - Highlights: • h-BN fibers were successfully fabricated using H{sub 3}BO{sub 3} and C{sub 3}H{sub 6}N{sub 6} as raw materials. • The obtained BN fibers were polycrystalline and uniform in morphology. • It exhibited good oxidation resistance and low thermal expansion coefficient. - Abstract: Hexagonal boron nitride fibers were synthesized via polymeric precursor method using boric acid (H{sub 3}BO{sub 3}) and melamine (C{sub 3}H{sub 6}N{sub 6}) as raw materials. The precursor fibers were synthesized by water bath and BN fibers were prepared from the precursor at 1873 K for 3 h in flowing nitrogen atmosphere. The crystalline phase and microstructures of BN fibers were examined by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and high resolution electron microscopy. The results showed that h-BN fibers with uniform morphology were successfully fabricated. The well-synthesized BN fibers were polycrystalline with 0.4–1.5 μm in diameter and 200–500 μm in length. The as-prepared samples exhibited good oxidation resistance and low thermal expansion coefficient at high temperature.

  19. Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries.

    Science.gov (United States)

    Hu, Chuangang; Xiao, Ying; Zhao, Yang; Chen, Nan; Zhang, Zhipan; Cao, Minhua; Qu, Liangti

    2013-04-07

    Highly nitrogen-doped carbon capsules (hN-CCs) have been successfully prepared by using inexpensive melamine and glyoxal as precursors via solvothermal reaction and carbonization. With a great promise for large scale production, the hN-CCs, having large surface area and high-level nitrogen content (N/C atomic ration of ca. 13%), possess superior crossover resistance, selective activity and catalytic stability towards oxygen reduction reaction for fuel cells in alkaline medium. As a new anode material in lithium-ion battery, hN-CCs also exhibit excellent cycle performance and high rate capacity with a reversible capacity of as high as 1046 mA h g(-1) at a current density of 50 mA g(-1) after 50 cycles. These features make the hN-CCs developed in this study promising as suitable substitutes for the expensive noble metal catalysts in the next generation alkaline fuel cells, and as advanced electrode materials in lithium-ion batteries.

  20. High Performance of N-Doped Graphene with Bubble-like Textures for Supercapacitors.

    Science.gov (United States)

    Zhang, Shuo; Sui, Lina; Kang, Hongquan; Dong, Hongzhou; Dong, Lifeng; Yu, Liyan

    2018-02-01

    Nitrogen-doped graphene (NG) with wrinkled and bubble-like texture is fabricated by a thermal treatment. Especially, a novel sonication-assisted pretreatment with nitric acid is used to further oxidize graphene oxide and its binding with melamine molecules. There are many bubble-like nanoflakes with a dimension of about 10 nm appeared on the undulated graphene nanosheets. The bubble-like texture provides more active sites for effective ion transport and reversible capacitive behavior. The specific surface area of NG (5.03 at% N) can reach up to 438.7 m 2 g -1 , and the NG electrode demonstrates high specific capacitance (481 F g -1 at 1 A g -1 , four times higher than reduced graphene oxide electrode (127.5 F g -1 )), superior cycle stability (the capacitance retention of 98.9% in 2 m KOH and 99.2% in 1 m H 2 SO 4 after 8000 cycles), and excellent energy density (42.8 Wh kg -1 at power density of 500 W kg -1 in 2 m KOH aqueous electrolyte). The results indicate the potential use of NG as graphene-based electrode material for energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites

    Science.gov (United States)

    He, Shuijian; Chen, Wei

    2014-09-01

    The syntheses and capacitance performances of ultralight and flexible MnO2/carbon foam (MnO2/CF) hybrids are systematically studied. Flexible carbon foam with a low mass density of 6.2 mg cm-3 and high porosity of 99.66% is simply obtained by carbonization of commercially available and low-cost melamine resin foam. With the high porous carbon foam as framework, ultrathin MnO2 nanosheets are grown through in situ redox reaction between KMnO4 and carbon foam. The three-dimensional (3D) MnO2/CF networks exhibit highly ordered hierarchical pore structure. Attributed to the good flexibility and ultralight weight, the MnO2/CF nanomaterials can be directly fabricated into supercapacitor electrodes without any binder and conductive agents. Moreover, the pseudocapacitance of the MnO2 nanosheets is enhanced by the fast ion diffusion in the three-dimensional porous architecture and by the conductive carbon foam skeleton as well as good contact of carbon/oxide interfaces. Supercapacitor based on the MnO2/CF composite with 3.4% weight percent of MnO2 shows a high specific capacitance of 1270.5 F g-1 (92.7% of the theoretical specific capacitance of MnO2) and high energy density of 86.2 Wh kg-1. The excellent capacitance performance of the present 3D ultralight and flexible nanomaterials make them promising candidates as electrode materials for supercapacitors.

  2. Sulfur-Doped Carbon Nitride Polymers for Photocatalytic Degradation of Organic Pollutant and Reduction of Cr(VI).

    Science.gov (United States)

    Zheng, Yun; Yu, Zihao; Lin, Feng; Guo, Fangsong; Alamry, Khalid A; Taib, Layla A; Asiri, Abdullah M; Wang, Xinchen

    2017-04-01

    As a promising conjugated polymer, binary carbon nitride has attracted extensive attention as a metal-free and visible-light-responsive photocatalyst in the area of photon-involving purification of water and air. Herein, we report sulfur-doped polymeric carbon nitride microrods that are synthesized through thermal polymerization based on trithiocyanuric acid and melamine (TM) supramolecular aggregates. By tuning the polymerization temperature, a series of sulfur-doped carbon nitride microrods are prepared. The degradation of Rhodamine B (RhB) and the reduction of hexavalent chromium Cr(VI) are selected as probe reactions to evaluate the photocatalytic activities. Results show that increasing pyrolysis temperature leads to a large specific surface area, strong visible-light absorption, and accelerated electron-hole separation. Compared to bulk carbon nitride, the highly porous sulfur-doped carbon nitride microrods fabricated at 650 °C exhibit remarkably higher photocatalytic activity for degradation of RhB and reduction of Cr(VI). This work highlights the importance of self-assembly approach and temperature-control strategy in the synthesis of photoactive materials for environmental remediation.

  3. Bimetallic-organic framework derived porous Co3O4/Fe3O4/C-loaded g-C3N4 nanocomposites as non-enzymic electrocatalysis oxidization toward ascorbic acid, dopamine acid, and uric acid

    Science.gov (United States)

    Hu, Bin; Liu, Yongkang; Wang, Zhuo-Wei; Song, Yingpan; Wang, Minghua; Zhang, Zhihong; Liu, Chun-Sen

    2018-05-01

    We report on the synthesis of Co- and Fe-based bimetallic nanocatalysts embedded in mesoporous carbon and g-C3N4 nanosheets (denoted as Co3O4/Fe3O4/mC@g-C3N4) for selectively simultaneous determination of ascorbic acid (AA), dopamine acid (DA), and uric acid (UA). These electrocatalysts consisting of bimetallic Co-Fe alloy nanoparticles encapsulated in N-doped carbon matrix were prepared via pyrolysis of Co/Fe-MOFs after grinding with high amounts of melamine. Chemical/crystal structures suggest high contents of mesoporous carbon in calcinated Co3O4/Fe3O4/mC nanocomposites, which exhibited enhanced electrocatalytic activity toward small biomolecules. The intrinsic performances of Co/Fe-MOFs with large specific surface area and regular nodes in the two-dimensional nanostructured g-C3N4 nanosheets endowed the as-prepared series of Co3O4/Fe3O4/mC@g-C3N4 nanocomposites with remarkable electrocatalytic activities and high adsorption ability toward oxidation of AA, DA, and UA. The developed biosensors also showed long-term stability and high selectivity for targeted analytes, with satisfactory results on actual samples in human urine. The results indicate that the as-synthesized Co3O4/Fe3O4/mC@g-C3N4 nanostructure exhibits good electrocatalytic activity and potential applications in clinical diagnosis and biosensing.

  4. Comparative Study of Pure g-C₃N₄ and Sulfur-Doped g-C₃N₄ Catalyst Performance in Photo-Degradation of Persistent Pollutant Under Visible Light.

    Science.gov (United States)

    Liu, Guixian; Qiao, Xingdu; Gondal, M A; Liu, Yun; Shen, Kai; Xu, Qingyu

    2018-06-01

    Graphitic carbon nitride (g-C3N4) and sulfur-doped g-C3N4 were prepared by pyrolysis of melamine and thiourea respectively. Their comparative performance was investigated for photo-degradation of a Rhodamine B (RhB) an organic toxic pollutant. The crystal structure, morphology, microscopic components and properties of the synthesized samples were characterized by XRD, TEM, FT-IR, photoluminescence (PL) emission spectroscopy and zeta potential. TG-DTA is a record of the process for pyrolysis of thiourea. Two simplified kinetic models, pseudo-first-order and pseudo-second-order were applied to predict the adsorption rate constants. Thermodynamic parameters, such as the change in free energy, enthalpy and entropy were also calculated to analyze the process of adsorption. Adsorption isotherms and equilibrium adsorption capacities were established by three well-known isotherm models including Langmuir, Freundlich and Dubinin-Radushkevich (D-R). Both samples were investigated for underlining the reaction mechanism during the photodegradation RhB process and then can be assigned to the overall reaction. The photosensitive hole is regarded as main oxidation species for the degradation by sulfur-doped g-C3N4, but not the exclusive way for g-C3N4. It is worth mentioning that the optimum operating condition can be obtained by orthogonal experiments.

  5. Polymer systems testing: Final report

    International Nuclear Information System (INIS)

    1993-01-01

    Los Alamos National Laboratory (LANL) is in the process of decontaminating lead shielding material. The procedure involves abrasive surface etching of the shielding to remove the outer layer of lead that contains the majority of the radioactive contaminants. This procedure generates a small volume of mixed waste in the form of a wet residue containing lead, abrasive grit (Al 2 O 3 ), uranium and water. IC Technologies, Inc. (ICT) has developed several processes for the treatment of mixed wastes involving stabilizing/encapsulating the waste in a polymer monolith. The objective of the test program was to verify the applicability of ICT's technology to this specific waste stream and provide LANL baseline data on the performance of polymer encapsulation techniques. Polymer microencapsulation of lead shielding/blasting grit (surrogate) mixed waste was evaluated. Two polymers, melamine formaldehyde and polyester xylene, were used to examine the effect of waste loading on Toxicity Characteristic Leaching Procedure (TCLP) extract Pb concentration. Six levels of waste loading were evaluated by eleven tests. Significant reduction in Pb solubility during TCLP was achieved. Additional optimization to the single-stage microencapsulation technique utilized will be necessary to mitigate the toxic (RCRA) characteristic of the waste

  6. Rheologic properties of fresh cement mixes for repository sealing applications: effects of superplasticizers, mixing procedures, and time

    International Nuclear Information System (INIS)

    Roy, D.M.; Asaga, K.

    1982-09-01

    As part of the design of optimally durable, hardened cementitious plugging materials for repository borheole plugging, shaft and tunnel sealing, detailed studies of rheological properties have been made. The effects of mixing procedures upon measured rheological properties of fresh cement mixes with and without superplasticizing admixtures condensates of sulfonated naphthalene- and melamine-formaldehyde have been investigated. Coaxial cylindrical viscometer measurements were made, recording shear stress-shear rate relationships and defining yield stress and plastic viscosity. In the absence of admixture, yield stress and plastic viscosity decreased substantially with increasing intensity of mixing, which caused a breakdown of particulate aggregates. However, with admixture present, the rheological properties of already well-dispersed mixes did not change significantly with increasingly intense mixing. The changes of the viscometric functions with time were investigated, and were related to admixture type and concentration, cement type, and volume concentration of cement. The mechanisms of action of the superplasticizers and their use in generating reliable workable low water/cement ratio mixes are discussed. 36 figures, 3 tables

  7. Flowing dusty plasma experiments: generation of flow and measurement techniques

    Science.gov (United States)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2016-12-01

    A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a \\Pi -shaped dusty plasma experimental device with micron size kaolin/melamine formaldehyde particles embedded in a background of argon plasma created by a direct current glow discharge. A stationary dust cloud is formed over the cathode region by precisely balancing the pumping speed and gas flow rate. A flow of dust particles/fluid is generated by additional gas injection from a single or dual locations or by altering the dust confining potential. The flow velocity is then estimated by three different techniques, namely, by super particle identification code, particle image velocimetry analysis and the excitation of dust acoustic waves. The results obtained from these three different techniques along with their merits and demerits are discussed. An estimation of the neutral drag force responsible for the generation as well as the attenuation of the dust fluid flow is made. These techniques can be usefully employed in laboratory devices to investigate linear and non-linear collective excitations in a flowing dusty plasma.

  8. Effect of reagent type on the froth floatation of Sokoto phosphate ore

    Directory of Open Access Journals (Sweden)

    U.A. Hassan

    2016-06-01

    Full Text Available Effect of reagent type on the froth floatation of Sokoto phosphate ore for its beneficiation has been established. The samples of the Sokoto phosphate mineral ore used for the research work were sourced from mining locations in Dange-Shuni, Bodinga, Yabo, Wurno, and Rabbah Local Government Areas of Sokoto State. Size-Assay analysis conducted on scrubbed Sokoto Phosphates nodules revealed that nodules had a size distribution with 80% passing 29.3 mm. Flotation Tests using AERO704 (fatty Acid, Alkyl Hydroxamates, Melamine as collectors (alone or mixed with diesel, MIBC as frother, Calcium Hydroxide and Sulphuric Acid as pH regulators and Dextrin, Sodium Silicate and Aluminium Chloride as depressants produced poor P2O5 separation in the flotation products due to very poor liberation associated with very fine mineral grains. Based on the results obtained, AERO704 Collector gave the best result with aP2O5 recovery pH of 10.

  9. Synergistic effects of mica and wollastonite fillers on thermal performance of intumescent fire retardant coating

    Energy Technology Data Exchange (ETDEWEB)

    Zia-ul-Mustafa, M., E-mail: engr.ziamustafa@gmail.com; Ahmad, Faiz; Megat-Yusoff, Puteri S. M.; Aziz, Hammad [Mechanical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    In this study, intumescent fire retardant coatings (IFRC) were developed to investigate the synergistic effects of reinforced mica and wollastonite fillers based IFRC towards heat shielding, char expansion, char composition and char morphology. Ammonium poly-phosphate (APP) was used as acid source, expandable graphite (EG) as carbon source, melamine as blowing agent, boric acid as additive and Hardener H-2310 polyamide amine in bisphenol A epoxy resin BE-188(BPA) was used as curing agent. Bunsen burner fire test was used for thermal performance according to UL-94 for 1 h. Field Emission Scanning Electron Microscopy (FESEM) was used to observe char microstructure. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to analyse char composition. The results showed that addition of clay filler in IFRC enhanced the fire protection performance of intumescent coating. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results showed the presence of boron phosphate, silicon phosphate oxide, aluminium borate in the char that improved the thermal performance of intumescent fire retardant coating (IFRC). Resultantly, the presence of these developed compounds enhanced the Integrity of structural steel upto 500°C.

  10. Study of the Thermal Properties and the Fire Performance of Flame Retardant-Organic PCM in Bulk Form.

    Science.gov (United States)

    Palacios, Anabel; De Gracia, Alvaro; Haurie, Laia; Cabeza, Luisa F; Fernández, A Inés; Barreneche, Camila

    2018-01-12

    The implementation of organic phase change materials (PCMs) in several applications such as heating and cooling or building comfort is an important target in thermal energy storage (TES). However, one of the major drawbacks of organic PCMs implementation is flammability. The addition of flame retardants to PCMs or shape-stabilized PCMs is one of the approaches to address this problem and improve their final deployment in the building material sector. In this study, the most common organic PCM, Paraffin RT-21, and fatty acids mixtures of capric acid (CA), myristic acid (MA), and palmitic acid (PA) in bulk, were tested to improve their fire reaction. Several flame retardants, such as ammonium phosphate, melamine phosphate, hydromagnesite, magnesium hydroxide, and aluminum hydroxide, were tested. The properties of the improved PCM with flame retardants were characterized by thermogravimetric analyses (TGA), the dripping test, and differential scanning calorimetry (DSC). The results for the dripping test show that fire retardancy was considerably enhanced by the addition of hydromagnesite (50 wt %) and magnesium hydroxide (50 wt %) in fatty acids mixtures. This will help the final implementation of these enhanced PCMs in building sector. The influence of the addition of flame retardants on the melting enthalpy and temperatures of PCMs has been evaluated.

  11. Multifunctional glass fiber/polyamide composites with thermal energy storage/release capability

    Directory of Open Access Journals (Sweden)

    G. Fredi

    2018-04-01

    Full Text Available Thermoplastic composite laminates with thermal energy storage (TES capability were prepared by combining a glass fabric, a polyamide 12 (PA12 matrix and two different phase change materials (PCMs, i.e. a paraffinic wax microencapsulated in melamine-formaldehyde shells and a paraffin shape stabilized with carbon nanotubes. The melt flow index of the PA12/PCM blends decreased with the PCM concentration, especially in the systems with shape stabilized wax. Differential scanning calorimetry showed that, for the matrices with microcapsules, the values of enthalpy were approximately the 70% of the theoretical values, which was attributed to the fracture of some microcapsules. Nevertheless, most of the energy storage capability was preserved. On the other hand, much lower relative enthalpy values were measured on the composites with shape stabilized wax, due to a considerable paraffin leakage or degradation. The subsequent characterization of the glass fabric laminates highlighted that the fiber and void volume fractions were comparable for all the laminates except for that with the higher amount of shape stabilized wax, where the high viscosity of the matrix led to a low fiber volume fraction and higher void content. The mechanical properties of the laminates were only slightly impaired by PCM addition, while a more sensible drop of the elastic modulus, of the stress at break and of the interlaminar shear strength could be observed in the shape stabilized wax systems.

  12. The Preparation of Graphene Reinforced Poly(vinyl alcohol Antibacterial Nanocomposite Thin Film

    Directory of Open Access Journals (Sweden)

    Yuan-Cheng Cao

    2015-01-01

    Full Text Available Methylated melamine grafted polyvinyl benzylchloride (mm-g-PvBCl was prepared which was used as additive in poly(vinyl alcohol (PVA and graphene nanosheets (GNs were used to reinforce the mechanical strength. Using casting method, antimicrobial nanocomposite films were prepared with the polymeric biocide loading lever of 1 wt%, 5 wt%, and 10 wt%. Thermogravimetric analysis (TGA characterization revealed the 2.0 wt% of graphene content in resultant nanocomposites films. XRD showed that the resultant GNs 2 theta was changed from 16.6 degree to 23.3 degree. Using Japanese Industry Standard test methods, the antimicrobial efficiency for the loading lever of 1 wt%, 5 wt%, and 10 wt% was 92.0%, 95.8%, and 97.1%, respectively, against gram negative bacteria E. coli and 92.3%, 99.6%, and 99.7%, respectively, against the gram positive S. aureus. These results indicate the prepared nanocomposite films are the promising materials for the food and drink package applications.

  13. Nitrogen-rich functional groups carbon nanoparticles based fluorescent pH sensor with broad-range responding for environmental and live cells applications.

    Science.gov (United States)

    Shi, Bingfang; Su, Yubin; Zhang, Liangliang; Liu, Rongjun; Huang, Mengjiao; Zhao, Shulin

    2016-08-15

    A nitrogen-rich functional groups carbon nanoparticles (N-CNs) based fluorescent pH sensor with a broad-range responding was prepared by one-pot hydrothermal treatment of melamine and triethanolamine. The as-prepared N-CNs exhibited excellent photoluminesence properties with an absolute quantum yield (QY) of 11.0%. Furthermore, the N-CNs possessed a broad-range pH response. The linear pH response range was 3.0 to 12.0, which is much wider than that of previously reported fluorescent pH sensors. The possible mechanism for the pH-sensitive response of the N-CNs was ascribed to photoinduced electron transfer (PET). Cell toxicity experiment showed that the as-prepared N-CNs exhibited low cytotoxicity and excellent biocompatibility with the cell viabilities of more than 87%. The proposed N-CNs-based pH sensor was used for pH monitoring of environmental water samples, and pH fluorescence imaging of live T24 cells. The N-CNs is promising as a convenient and general fluorescent pH sensor for environmental monitoring and bioimaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Graphite Carbon-Supported Mo2C Nanocomposites by a Single-Step Solid State Reaction for Electrochemical Oxygen Reduction.

    Science.gov (United States)

    Huang, K; Bi, K; Liang, C; Lin, S; Wang, W J; Yang, T Z; Liu, J; Zhang, R; Fan, D Y; Wang, Y G; Lei, M

    2015-01-01

    Novel graphite-molybdenum carbide nanocomposites (G-Mo2C) are synthesized by a typical solid state reaction with melamine and MoO3 as precursors under inert atmosphere. The characterization results indicate that G-Mo2C composites are composed of high crystallization and purity of Mo2C and few layers of graphite carbon. Mo2C nanoparticles with sizes ranging from 5 to 50 nm are uniformly supported by surrounding graphite layers. It is believed that Mo atom resulting from the reduction of MoO3 is beneficial to the immobilization of graphite carbon. Moreover, the electrocatalytic performances of G-Mo2C for ORR in alkaline medium are investigated by cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry test with 3M methanol. The results show that G-Mo2C has a considerable catalytic activity and superior methanol tolerance performance for the oxygen reduction reaction (ORR) benefiting from the chemical interaction between the carbide nanoparticles and graphite carbon.

  15. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor.

    Science.gov (United States)

    Ma, Guofu; Yang, Qian; Sun, Kanjun; Peng, Hui; Ran, Feitian; Zhao, Xiaolong; Lei, Ziqiang

    2015-12-01

    High capacitance property and low cost are the pivotal requirements for practical application of supercapacitor. In this paper, a low cost and high capacitance property nitrogen-doped porous carbon with high specific capacitance is prepared. The as-prepared nitrogen-doped porous carbon employing potato waste residue (PWR) as the carbon source, zinc chloride (ZnCl2) as the activating agent and melamine as nitrogen doping agent. The morphology and structure of the carbon materials are studied by scanning electron microscopy (SEM), N2 adsorption/desorption, X-ray diffraction (XRD) and Raman spectra. The surface area of the nitrogen-doped carbon which prepared under 700°C is found to be 1052m(2)/g, and the specific capacitance as high as 255Fg(-1) in 2M KOH electrolyte is obtained utilize the carbon as electrode materials. The electrode materials also show excellent cyclability with 93.7% coulombic efficiency at 5Ag(-1) current density of for 5000cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Health-hazard evaluation report HETA 86-456-1877, South Texas Nuclear Project, Wadsworth, Texas

    International Nuclear Information System (INIS)

    Sinks, T.H.; Hartle, R.W.

    1988-03-01

    An evaluation was made of an outbreak of dermatitis among workers at the South Texas Nuclear Project construction site, Wadsworth, Texas. The dermatitis occurred ten times more frequently among carpenters than other laborers, with the incidence in 1986 being 250% greater than it was in 1985. Some workers demonstrated pruritic, macular/papular lesions. Carpenters working on the inside of the power-project buildings had a higher incidence of skin disease than those employed on the outside of the buildings. Samples of plywood and lumber treated with fire-retardant indicated that they contained 3 and 5% phosphate, respectively. Arsenic was not detected but formaldehyde was detected at 59 parts per million. General environmental air samples were taken with no evidence found of airborne phosphate, melamine, dicyandiamide, or formaldehyde. Concentrations of total particulates ranged from 0.1 to 0.6mg/m 3 . The authors conclude that the workers were probably suffering from a contact dermatitis. The authors recommend specific precautions

  17. Potential harmful effects of dietary supplements in sports medicine.

    Science.gov (United States)

    Deldicque, Louise; Francaux, Marc

    2016-11-01

    The purpose of this article is to collect the most recent data regarding the safety of well-known or emerging dietary supplements used by athletes. From January 2014 to April 2016, about 30 articles have been published in the field. New data show that 90% of sports supplements contain trace of estrogenic endocrine disruptors, with 25% of them having a higher estrogenic activity than acceptable. About 50% of the supplements are contaminated by melamine, a source of nonprotein nitrogen. Additional data accumulate toward the safety of nitrate ingestion. In the last 2 years, the safety of emerging supplements such as higenamine, potentially interesting to lose weight, creatine nitrate and guanidinoacetic acid has been evaluated but still needs further investigation. The consumption of over-the-counter supplements is very popular in athletes. Although most supplements may be considered as safe when taking at the recommended doses, athletes should be aware of the potential risks linked to the consumption of supplements. In addition to the risks linked to overdosage and cross-effects when combining different supplements at the same time, inadvertent or deliberate contamination with stimulants, estrogenic compounds, diuretics or anabolic agents may occur.

  18. Facile synthesis of porous graphene-like carbon nitride nanosheets with high surface area and enhanced photocatalytic activity via one-step catalyst-free solution self-polymerization

    Science.gov (United States)

    Wu, Shikai; Wen, Shengwu; Xu, Xinmei; Huang, Guozhi; Cui, Yifan; Li, Jinyu; Qu, Ailan

    2018-04-01

    Porous graphite carbon nitride nanosheets (g-C3N4) are achieved via one-step catalyst-free solution self-polymerization from a single melamine precursor. The resultant porous g-C3N4 nanosheets with the best photodegradation capacity provided the surface area of 669.15 m2/g, which is superior to the surface area of any other porous g-C3N4 reported. Results showed enhanced adsorption and degradation capacity of methyl orange (MO) under UV-visible light irradiation (λ > 350 nm) compared to bulk g-C3N4. The MO oxidation of the porous g-C3N4 nanosheets is driven mostly by the participation of holes, and secondly by rad O2- and rad OH radicals. This approach shed lights on porous g-C3N4 production simply by self-polycondensation of single functional monomer. It also provided a low-cost and eco-friendly method to facilely mass-produce g-C3N4 nanosheets with high surface area for many potential applications.

  19. Vision-Based Haptic Feedback for Remote Micromanipulation in-SEM Environment

    Science.gov (United States)

    Bolopion, Aude; Dahmen, Christian; Stolle, Christian; Haliyo, Sinan; Régnier, Stéphane; Fatikow, Sergej

    2012-07-01

    This article presents an intuitive environment for remote micromanipulation composed of both haptic feedback and virtual reconstruction of the scene. To enable nonexpert users to perform complex teleoperated micromanipulation tasks, it is of utmost importance to provide them with information about the 3-D relative positions of the objects and the tools. Haptic feedback is an intuitive way to transmit such information. Since position sensors are not available at this scale, visual feedback is used to derive information about the scene. In this work, three different techniques are implemented, evaluated, and compared to derive the object positions from scanning electron microscope images. The modified correlation matching with generated template algorithm is accurate and provides reliable detection of objects. To track the tool, a marker-based approach is chosen since fast detection is required for stable haptic feedback. Information derived from these algorithms is used to propose an intuitive remote manipulation system that enables users situated in geographically distant sites to benefit from specific equipments, such as SEMs. Stability of the haptic feedback is ensured by the minimization of the delays, the computational efficiency of vision algorithms, and the proper tuning of the haptic coupling. Virtual guides are proposed to avoid any involuntary collisions between the tool and the objects. This approach is validated by a teleoperation involving melamine microspheres with a diameter of less than 2 μ m between Paris, France and Oldenburg, Germany.

  20. Studies on thermal degradation and termite resistant properties of chemically modified wood

    Energy Technology Data Exchange (ETDEWEB)

    Deka, M.; Saikia, C.N. [Council for Scientific and Industrial Research (CSIR), Regional Research Laboratory, Jorhat (India); Baruah, K.K. [Assam Agricultural University, Jorhat (India)

    2002-09-01

    A series of experiments were carried out to examine the resistant capacity of a chemically treated hard wood, Anthocephalus cadamba (Roxb) Miq. to thermal and termite degradation. The treatment with thermosetting resins viz. urea formaldehyde (UF), melamine formaldehyde (MF) and phenol formaldehyde (PF) at 31-33 levels of weight percent gain (WPG) increased the strength property i.e. modulus of rupture (MOR) by 7.50-21.02% and stiffness i.e. modulus of elasticity (MOE) by 9.50-12.18% over the untreated one with no remarkable effect on specific gravity. The treated samples were found resistant to termite attack, while the untreated one was badly damaged by termites on 12 months' exposure to a termite colony. The thermal degradations of untreated and treated wood samples were studied using thermogravimetric (TGA) and differential thermogravimetric (DTG) techniques at heating rates 20 and 30 {sup o}Cmin{sup -1} in temperature range 30-650{sup o}C. The treated wood was found to be thermally more stable than the untreated one. (author)

  1. The radiation resistance of thermoset plastics. Pt. 3

    International Nuclear Information System (INIS)

    Pauly, S.

    1992-01-01

    For the interpretation of the results of long term irradiation experiments in the presence of air it is necessary to know about the penetration of oxygen into the plastic material in the course of time. Therefore the oxygen permeability of two thermoset plastics (made from two unsaturated polyester resin thermosetting moulding compounds) was measured in the temperature range 20-60 o C. For the Typ 802, the following data were generated at 23 o C: permeability coefficient P = 3.08 x 10 -15 cm 3 . cm/cm 2 .s.Pa, diffusion coefficient D = 1.03 x 10 -8 cm 2 /s, solubility coefficient S = 3.00 x 10 -7 cm 3 /cm 3 .Pa. The permeability of two thermoset phenol-formaldehyde plastics and one melamine-formaldehyde plastic was found to be immeasurably small, i.e. P -17 cm 3 .cm/cm 2 .s.Pa at 60 o C. For discs of 4 mm thickness made from the polyester plastics, oxygen concentration profiles were calculated which are built up in the course of time during storage in air at 23 o C. For both other materials the profiles were estimated by assuming P = 3 x 10 -17 at 60 o C and the activation energy and the solubility being the same as in the case of polyester plastics. (author)

  2. Study of the Thermal Properties and the Fire Performance of Flame Retardant-Organic PCM in Bulk Form

    Directory of Open Access Journals (Sweden)

    Anabel Palacios

    2018-01-01

    Full Text Available The implementation of organic phase change materials (PCMs in several applications such as heating and cooling or building comfort is an important target in thermal energy storage (TES. However, one of the major drawbacks of organic PCMs implementation is flammability. The addition of flame retardants to PCMs or shape-stabilized PCMs is one of the approaches to address this problem and improve their final deployment in the building material sector. In this study, the most common organic PCM, Paraffin RT-21, and fatty acids mixtures of capric acid (CA, myristic acid (MA, and palmitic acid (PA in bulk, were tested to improve their fire reaction. Several flame retardants, such as ammonium phosphate, melamine phosphate, hydromagnesite, magnesium hydroxide, and aluminum hydroxide, were tested. The properties of the improved PCM with flame retardants were characterized by thermogravimetric analyses (TGA, the dripping test, and differential scanning calorimetry (DSC. The results for the dripping test show that fire retardancy was considerably enhanced by the addition of hydromagnesite (50 wt % and magnesium hydroxide (50 wt % in fatty acids mixtures. This will help the final implementation of these enhanced PCMs in building sector. The influence of the addition of flame retardants on the melting enthalpy and temperatures of PCMs has been evaluated.

  3. Influence of experimental parameters on the microencapsulation of a photopolymerizable phase.

    Science.gov (United States)

    Pernot, J M; Brun, H; Pouyet, B; Sergent, M; Phan-Tan-Luu, R

    1993-01-01

    Conditions of microencapsulation by in situ polycondensation, using melamine-formaldehyde as wall material, are influenced by the chemical nature of the core to encapsulate. In our study concerning the encapsulation of a photopolymerizable phase containing an electrically charged compound, it was necessary to modify the experimental process to obtain capsules of good quality. We used the factorial design method of screening by utilization of an asymmetric matrix, according to the collapsing principle of Addleman. The advantage of this method is that it allows determination of the simultaneous influences of the 11 experimental parameters involved in this preparation. The calculation method can be applied to more than two levels for some of the factors. The continuously varying parameters were altered between two extreme levels, chosen to allow encapsulation. For discontinuous factors, such as the molecular weight of the modifying system or nature of the aminoplast, we used the commercially available compounds, respectively three and four kinds. The results of the obtained capsules were determined by comparing microphotographic pictures. With 16 experiments we found four more factors influencing quality of capsules. We also determined the most favourable levels for the other seven parameters. The results allowed us to find optimal conditions in the experimental field. We obtained capsules of a satisfactory quality for this purpose, using only minimum experimentation.

  4. Hydrogen, carbon and oxygen determination in proxy material samples using a LaBr3:Ce detector.

    Science.gov (United States)

    Naqvi, A A; Al-Matouq, Faris A; Khiari, F Z; Isab, A A; Raashid, M; Khateeb-ur-Rehman

    2013-08-01

    Hydrogen, carbon and oxygen concentrations were measured in caffeine, urea, ammonium acetate and melamine bulk samples via 14 MeV neutron inelastic scattering using a LaBr3:Ce detector. The samples tested herein represent drugs, explosives and benign materials, respectively. Despite its intrinsic activity, the LaBr3:Ce detector performed well in detecting the hydrogen, carbon and oxygen elements. Because 5.1 MeV nitrogen gamma rays interfere with silicon and calcium prompt gamma rays from the room background, the nitrogen peak was not detected in the samples. An excellent agreement was observed between the experimental and theoretical yields of 2.22, 4.43 and 6.13 MeV gamma rays from the analyzed samples as a function of H, C and O concentrations, respectively. Within statistical errors, the minimum detectable concentration (MDC) of hydrogen, carbon and oxygen elements in the tested materials were consistent with previously reported MDC values for these elements measured in hydrocarbon samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Major food safety episodes in Taiwan: implications for the necessity of international collaboration on safety assessment and management.

    Science.gov (United States)

    Li, Jih-Heng; Yu, Wen-Jing; Lai, Yuan-Hui; Ko, Ying-Chin

    2012-07-01

    The major food safety episodes that occurred in Taiwan during the past decade are briefly reviewed in this paper. Among the nine major episodes surveyed, with the exception of a U.S. beef (associated with Creutzfeldt-Jakob disease)-related incident, all the others were associated with chemical toxicants. The general public, which has a layperson attitude of zero tolerance toward food safety, may panic over these food-safety-associated incidents. However, the health effects and impacts of most incidents, with the exception of the melamine incident, were essentially not fully evaluated. The mass media play an important role in determining whether a food safety concern becomes a major incident. A well-coordinated and harmonized system for domestic and international collaboration to set up standards and regulations is critical, as observed in the incidents of pork with ractopamine, Chinese hairy crab with nitrofuran antibiotics, and U.S. wheat with malathion. In the future, it can be anticipated that food safety issues will draw more attention from the general public. For unknown new toxicants or illicit adulteration of food, the establishment of a more proactive safety assessment system to monitor potential threats and provide real-time information exchange is imperative. Copyright © 2012. Published by Elsevier B.V.

  6. X-ray- and TEM-induced mitotic recombination in Drosophila melanogaster: Unequal and sister-strand recombination

    International Nuclear Information System (INIS)

    Becker, H.J.

    1975-01-01

    Twin mosaic spots of dark-apricot and light-apricot ommatidia were found in the eyes of wsup(a)/wsup(a) females, of wsup(a) males, of females homozygous for In(1)sc 4 , wsup(a) and of attached-X females homozygous for wsup(a). The flies were raised from larvae which had been treated with 1,630 R of X-rays at the age of 48-52 hours. An additional group of wsup(a)/wsup(a) females and wsup(a) males came from larvae that had been fed with triethylene melamine (TEM) at the age of 22-24 hours. The twin spots apparently were the result of induced unequal mitotic recombination, i.e. from unequal sister-strand recombination in the males and from unequal sister-strand recombination as well as, possibly, unequal recombination between homologous strands in the females. That is, a duplication resulted in wsup(a)Dpwsup(a)/wsup(a) dark-apricto ommatidia and the corresponding deficiency in an adjacent area of wsup(a)/Dfwsup(a) light-apricot ommatidia. In an additional experiment sister-strand mitotic recombination in the ring-X chromosome of ring-X/rod-X females heterozygous for w and wsup(co) is believed to be the cause for X-ray induced single mosaic spots that show the phenotype of the rod-X marker. (orig.) [de

  7. Study of the Thermal Properties and the Fire Performance of Flame Retardant-Organic PCM in Bulk Form

    Science.gov (United States)

    Palacios, Anabel; De Gracia, Alvaro

    2018-01-01

    The implementation of organic phase change materials (PCMs) in several applications such as heating and cooling or building comfort is an important target in thermal energy storage (TES). However, one of the major drawbacks of organic PCMs implementation is flammability. The addition of flame retardants to PCMs or shape-stabilized PCMs is one of the approaches to address this problem and improve their final deployment in the building material sector. In this study, the most common organic PCM, Paraffin RT-21, and fatty acids mixtures of capric acid (CA), myristic acid (MA), and palmitic acid (PA) in bulk, were tested to improve their fire reaction. Several flame retardants, such as ammonium phosphate, melamine phosphate, hydromagnesite, magnesium hydroxide, and aluminum hydroxide, were tested. The properties of the improved PCM with flame retardants were characterized by thermogravimetric analyses (TGA), the dripping test, and differential scanning calorimetry (DSC). The results for the dripping test show that fire retardancy was considerably enhanced by the addition of hydromagnesite (50 wt %) and magnesium hydroxide (50 wt %) in fatty acids mixtures. This will help the final implementation of these enhanced PCMs in building sector. The influence of the addition of flame retardants on the melting enthalpy and temperatures of PCMs has been evaluated. PMID:29329212

  8. Beam test results of CMS RPCs at high eta region under high-radiation environment

    CERN Document Server

    Park, S; Bahk, S Y; Hong, B; Hong, S J; Kang, D H; Kang, T I; Kim, T J; Kim, Y J; Kim, Y U; Koo, D G; Lee, H W; Lee, K S; Lee, S J; Lim, J K; Moon, D H; Nam, S K; Oh, J K; Park, W J; Rhee, J T; Ryu, M S; Shim, H H; Sim, K S

    2004-01-01

    The Compact Muon Solenoid (CMS) forward resistivity plate chambers (RPCs) at the high eta region must be operated in presence of a radiation-induced rate as high as 1 kHz/cm**2. It is still unknown if the RPCs coated with linseed oil can be operated under such a high- radiation environment over the lifetime of CMS. Non-oiled RPCs may be one of the options since phenolic or melamine-coated bakelite is chemically stabler than linseed oil. We have constructed oiled and non-oiled RPCs at the high eta region of CMS using phenolic bakelite and tested them in the Gamma Irradiation Facility at CERN. While both RPCs show the same characteristics in the efficiency and the strip multiplicity, the non-oiled RPC generates an intrinsic noise rate of 50 Hz/cm**2, compared to only 5 Hz/cm**2 for the oiled RPC, both at 10.0kV which is about 100 V above the 95% knee of the efficiency curve.

  9. [Determination of total protein content in soya-bean milk via visual moving reaction boundary titration].

    Science.gov (United States)

    Guo, Chengye; Wang, Houyu; Zhang, Lei; Fan, Liuyin; Cao, Chengxi

    2013-11-01

    A visual, rapid and accurate moving reaction boundary titration (MRBT) method was used for the determination of the total protein in soya-bean milk. During the process, moving reaction boundary (MRB) was formed by hydroxyl ions in the catholyte and soya-bean milk proteins immobilized in polyacrylamide gel (PAG), and an acid-base indicator was used to denote the boundary motion. The velocity of MRB has a relationship with protein concentration, which was used to obtain a standard curve. By paired t-test, there was no significant difference of the protein content between MRBT and Kjeldahl method at 95% confidence interval. The procedure of MRBT method required about 10 min, and it had linearity in the range of 2.0-14.0 g/L, low limit of detection (0.05 g/L), good precision (RSD of intra-day < 1.90% and inter-day < 4.39%), and high recoveries (97.41%-99.91%). In addition, non-protein nitrogen (NPN) such as melamine added into the soya-bean milk had weak influence on MRBT results.

  10. A visual detection of protein content based on titration of moving reaction boundary electrophoresis.

    Science.gov (United States)

    Wang, Hou-Yu; Guo, Cheng-Ye; Guo, Chen-Gang; Fan, Liu-Yin; Zhang, Lei; Cao, Cheng-Xi

    2013-04-24

    A visual electrophoretic titration method was firstly developed from the concept of moving reaction boundary (MRB) for protein content analysis. In the developed method, when the voltage was applied, the hydroxide ions in the cathodic vessel moved towards the anode, and neutralized the carboxyl groups of protein immobilized via highly cross-linked polyacrylamide gel (PAG), generating a MRB between the alkali and the immobilized protein. The boundary moving velocity (V(MRB)) was as a function of protein content, and an acid-base indicator was used to denote the boundary displacement. As a proof of concept, standard model proteins and biological samples were chosen for the experiments to study the feasibility of the developed method. The experiments revealed that good linear calibration functions between V(MRB) and protein content (correlation coefficients R>0.98). The experiments further demonstrated the following merits of developed method: (1) weak influence of non-protein nitrogen additives (e.g., melamine) adulterated in protein samples, (2) good agreement with the classic Kjeldahl method (R=0.9945), (3) fast measuring speed in total protein analysis of large samples from the same source, and (4) low limit of detection (0.02-0.15 mg mL(-1) for protein content), good precision (R.S.D. of intra-day less than 1.7% and inter-day less than 2.7%), and high recoveries (105-107%). Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  11. Fast and selective determination of total protein in milk powder via titration of moving reaction boundary electrophoresis.

    Science.gov (United States)

    Guo, Cheng-ye; Wang, Hou-yu; Liu, Xiao-ping; Fan, Liu-yin; Zhang, Lei; Cao, Cheng-xi

    2013-05-01

    In this paper, moving reaction boundary titration (MRBT) was developed for rapid and accurate quantification of total protein in infant milk powder, from the concept of moving reaction boundary (MRB) electrophoresis. In the method, the MRB was formed by the hydroxide ions and the acidic residues of milk proteins immobilized via cross-linked polyacrylamide gel (PAG), an acid-base indicator was used to denote the boundary motion. As a proof of concept, we chose five brands of infant milk powders to study the feasibility of MRBT method. The calibration curve of MRB velocity versus logarithmic total protein content of infant milk powder sample was established based on the visual signal of MRB motion as a function of logarithmic milk protein content. Weak influence of nonprotein nitrogen (NPN) reagents (e.g., melamine and urea) on MRBT method was observed, due to the fact that MRB was formed with hydroxide ions and the acidic residues of captured milk proteins, rather than the alkaline residues or the NPN reagents added. The total protein contents in infant milk powder samples detected via the MRBT method were in good agreement with those achieved by the classic Kjeldahl method. In addition, the developed method had much faster measuring speed compared with the Kjeldahl method. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Industrially benign super-compressible piezoresistive carbon foams with predefined wetting properties: from environmental to electrical applications.

    Science.gov (United States)

    Pham, Tung Ngoc; Samikannu, Ajaikumar; Kukkola, Jarmo; Rautio, Anne-Riikka; Pitkänen, Olli; Dombovari, Aron; Lorite, Gabriela Simone; Sipola, Teemu; Toth, Geza; Mohl, Melinda; Mikkola, Jyri-Pekka; Kordas, Krisztian

    2014-11-06

    In the present work electrically conductive, flexible, lightweight carbon sponge materials derived from open-pore structure melamine foams are studied and explored. Hydrophobic and hydrophilic surface properties - depending on the chosen treatment conditions - allow the separation and storage of liquid chemical compounds. Activation of the carbonaceous structures substantially increases the specific surface area from ~4 m(2)g(-1) to ~345 m(2)g(-1), while retaining the original three-dimensional, open-pore structure suitable for hosting, for example, Ni catalyst nanoparticles. In turn the structure is rendered suitable for hydrogenating acetone to 2-propanol and methyl isobutyl ketone as well for growing hierarchical carbon nanotube structures used as electric double-layer capacitor electrodes with specific capacitance of ~40 F/g. Mechanical stress-strain analysis indicates the materials are super-compressible (>70% volume reduction) and viscoelastic with excellent damping behavior (loss of 0.69 ± 0.07), while piezoresistive measurements show very high gauge factors (from ~20 to 50) over a large range of deformations. The cost-effective, robust and scalable synthesis - in conjunction with their fascinating multifunctional utility - makes the demonstrated carbon foams remarkable competitors with other three-dimensional carbon materials typically based on pyrolyzed biopolymers or on covalently bonded graphene and carbon nanotube frameworks.

  13. Solid-phase synthesis of molecularly imprinted nanoparticles.

    Science.gov (United States)

    Canfarotta, Francesco; Poma, Alessandro; Guerreiro, Antonio; Piletsky, Sergey

    2016-03-01

    Molecularly imprinted polymers (MIPs) are synthetic materials, generally based on acrylic or methacrylic monomers, that are polymerized in the presence of a specific target molecule called the 'template' and capable of rebinding selectively to this target molecule. They have the potential to be low-cost and robust alternatives to biomolecules such as antibodies and receptors. When prepared by traditional synthetic methods (i.e., with free template in solution), their usefulness has been limited by high binding site heterogeneity, the presence of residual template and the fact that the production methods are complex and difficult to standardize. To overcome some of these limitations, we developed a method for the synthesis of MIP nanoparticles (nanoMIPs) using an innovative solid-phase approach, which relies on the covalent immobilization of the template molecules onto the surface of a solid support (glass beads). The obtained nanoMIPs are virtually free of template and demonstrate high affinity for the target molecule (e.g., melamine and trypsin in our published work). Because of an affinity separation step performed on the solid phase after polymerization, poor binders and unproductive polymer are removed, so the final product has more uniform binding characteristics. The overall protocol, starting from the immobilization of the template onto the solid phase and including the purification and characterization of the nanoparticles, takes up to 1 week.

  14. Biomimetic Silica Nanoparticles Prepared by a Combination of Solid-Phase Imprinting and Ostwald Ripening.

    Science.gov (United States)

    Piletska, Elena; Yawer, Heersh; Canfarotta, Francesco; Moczko, Ewa; Smolinska-Kempisty, Katarzyna; Piletsky, Stanislav S; Guerreiro, Antonio; Whitcombe, Michael J; Piletsky, Sergey A

    2017-09-14

    Herein we describe the preparation of molecularly imprinted silica nanoparticles by Ostwald ripening in the presence of molecular templates immobilised on glass beads (the solid-phase). To achieve this, a seed material (12 nm diameter silica nanoparticles) was incubated in phosphate buffer in the presence of the solid-phase. Phosphate ions act as a catalyst in the ripening process which is driven by differences in surface energy between particles of different size, leading to the preferential growth of larger particles. Material deposited in the vicinity of template molecules results in the formation of sol-gel molecular imprints after around 2 hours. Selective washing and elution allows the higher affinity nanoparticles to be isolated. Unlike other strategies commonly used to prepare imprinted silica nanoparticles this approach is extremely simple in nature and can be performed under physiological conditions, making it suitable for imprinting whole proteins and other biomacromolecules in their native conformations. We have demonstrated the generic nature of this method by preparing imprinted silica nanoparticles against targets of varying molecular mass (melamine, vancomycin and trypsin). Binding to the imprinted particles was demonstrated in an immunoassay (ELISA) format in buffer and complex media (milk or blood plasma) with sub-nM detection ability.

  15. Solid-Phase Synthesis of Molecularly Imprinted Polymer Nanoparticles with a Reusable Template – “Plastic Antibodies”

    Science.gov (United States)

    Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J.; Piletska, Elena V.; Turner, Anthony P.F.; Piletsky, Sergey A.

    2016-01-01

    Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, Kd = 6.3 × 10−8 m), vancomycin (d = 250 nm, Kd = 3.4 × 10−9 m), a peptide (d = 350 nm, Kd = 4.8 × 10−8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium. PMID:26869870

  16. Solid-Phase Synthesis of Molecularly Imprinted Polymer Nanoparticles with a Reusable Template - "Plastic Antibodies".

    Science.gov (United States)

    Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J; Piletska, Elena V; Turner, Anthony P F; Piletsky, Sergey A

    2013-06-13

    Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, K d = 6.3 × 10 -8 m), vancomycin (d = 250 nm, K d = 3.4 × 10 -9 m), a peptide (d = 350 nm, K d = 4.8 × 10 -8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium.

  17. Photoinduced electron transfer through hydrogen bonds in a rod-like donor-acceptor molecule: A time-resolved EPR study

    International Nuclear Information System (INIS)

    Jakob, Manuela; Berg, Alexander; Stavitski, Eli; Chernick, Erin T.; Weiss, Emily A.; Wasielewski, Michael R.; Levanon, Haim

    2006-01-01

    Light-driven multi-step intramolecular electron transfer in a rod-like triad, in which two of the three redox components are linked by three hydrogen bonds, was studied by time-resolved electron paramagnetic resonance (TREPR) and optical spectroscopies. One part of the molecule consists of a p-methoxyaniline primary electron donor (MeOAn) covalently linked to a 4-aminonaphthalene-1, 8-dicarboximide (6ANI) chromophoric electron acceptor (MeOAn-6ANI). The unsubstituted dicarboximide of 6ANI serves as one half of a hydrogen bonding receptor pair. The other half of the receptor pair consists of a melamine linked to a naphthalene-1,8:4,5-bis(dicarboximide) (NI) secondary electron acceptor (MEL-NI). TREPR spectroscopy is used to probe the electronic interaction between the radicals within the photogenerated, spin-correlated radical ion pair MeOAn ·+ -6ANI/MEL-NI ·- . The results are compared to those obtained in earlier studies in which MeOAn-6ANI is covalently linked to NI through a 2,5-dimethylphenyl group (MeOAn-6ANI-Ph-NI). We show that the electronic coupling between the oxidized donor and reduced acceptor in the hydrogen-bonded radical ion pair MeOAn ·+ -6ANI/MEL-NI ·- is very similar to that of MeOAn ·+ -6ANI-Ph-NI ·-

  18. Commodity chemical growth to slow in 1993

    International Nuclear Information System (INIS)

    Plishner, E.S.

    1992-01-01

    In their latest chemical outlook, DRI/McGraw-Hill economists characterize 1992 as a peak year for U.S. commodity chemical demand growth, at 4.2%, tapering off to a compound 2.2% between 1993 and 1995. Just as operating rates begin to reach higher levels in 1995, however, DRI forecasts slowing GNP growth. DRI's Ramunas J. Svarcas expects a decline in exports. Those plastics promising the rosiest consumption outlook include melamine-formaldehyde resin, up 9.9% in 1992, from 155 million lbs in 1991, and projected to grow 8.6%/year through 1995; styrene acrylonitrile resin, up 23% this year, from 58 million lbs last year, and growing 8.2%/year through 1995; and unsaturated polyester, up 11.7% this year, from 1.07 billion lbs in 1991, and increasing at 6.5%/year. Methanol is a bright spot, with consumption growing 4.7%, from 11.2 billion lbs in 1991 and 12%/year thereafter. Ortho-xylene managed an impressive 21% rebound from a depressed 1991 level of 783 million lbs, and is expected to continue its recovery at 7.7%/year

  19. pH-Triggered Molecular Alignment for Reproducible SERS Detection via an AuNP/Nanocellulose Platform

    Science.gov (United States)

    Wei, Haoran; Vikesland, Peter J.

    2015-12-01

    The low affinity of neutral and hydrophobic molecules towards noble metal surfaces hinders their detection by surface-enhanced Raman spectroscopy (SERS). Herein, we present a method to enhance gold nanoparticle (AuNP) surface affinity by lowering the suspension pH below the analyte pKa. We developed an AuNP/bacterial cellulose (BC) nanocomposite platform and applied it to two common pollutants, carbamazepine (CBZ) and atrazine (ATZ) with pKa values of 2.3 and 1.7, respectively. Simple mixing of the analytes with AuNP/BC at pH < pKa resulted in consistent electrostatic alignment of the CBZ and ATZ molecules across the nanocomposite and highly reproducible SERS spectra. Limits of detection of 3 nM and 11 nM for CBZ and ATZ, respectively, were attained. Tests with additional analytes (melamine, 2,4-dichloroaniline, 4-chloroaniline, 3-bromoaniline, and 3-nitroaniline) further illustrate that the AuNP/BC platform provides reproducible analyte detection and quantification while avoiding the uncontrolled aggregation and flocculation of AuNPs that often hinder low pH detection.

  20. Water-compatible dummy molecularly imprinted resin prepared in aqueous solution for green miniaturized solid-phase extraction of plant growth regulators.

    Science.gov (United States)

    Wang, Mingyu; Chang, Xiaochen; Wu, Xingyu; Yan, Hongyuan; Qiao, Fengxia

    2016-08-05

    A water-compatible dummy molecularly imprinted resin (MIR) was synthesized in water using melamine, urea, and formaldehyde as hydrophilic monomers of co-polycondensation. A triblock copolymer (PEO-PPO-PEO, P123) was used as porogen to dredge the network structure of MIR, and N-(1-naphthyl) ethylenediamine dihydrochloride, which has similar shape and size to the target analytes, was the dummy template of molecular imprinting. The obtained MIR was used as the adsorbent in a green miniaturized solid-phase extraction (MIR⬜mini-SPE) of plant growth regulators, and there was no organic solvent used in the entire MIR⬜mini-SPE procedure. The calibration linearity of MIR⬜mini-SPE⬜HPLC method was obtained in a range 5⬜250ngmL(↙1) for IAA, IPA, IBA, and NAA with correlation coefficient (r) Ⱕ0.9998. Recoveries at three spike levels are in the range of 87.6⬜100.0% for coconut juice with relative standard deviations Ⱔ8.1%. The MIR⬜mini-SPE method possesses the advantages of environmental friendliness, simple operation, and high efficiency, so it is potential to apply the green pretreatment strategy to extraction of trace analytes in aqueous samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Chromatographic separation and detection of contaminants from whole milk powder using a chitosan-modified silver nanoparticles surface-enhanced Raman scattering device.

    Science.gov (United States)

    Li, Dan; Lv, Di Y; Zhu, Qing X; Li, Hao; Chen, Hui; Wu, Mian M; Chai, Yi F; Lu, Feng

    2017-06-01

    Methods for the on-site analysis of food contaminants are in high demand. Although portable Raman spectroscopy is commonly used to test food on-site, it can be challenge to achieve this goal with rapid detection and inexpensive substrate. In this study, we detected trace food contaminants in samples of whole milk powder using the methods that combined chromatography with surface-enhanced Raman scattering detection (SERS). We developed a simple and efficient technique to fabricate the paper with chitosan-modified silver nanoparticles as a SERS-active substrate. The soaking time of paper and the concentration of chitosan solution were optimized for chromatographic separation and SERS detection. We then studied the separation properties for real applications including complex sample matrices, and detected melamine at 1mg/L, dicyandiamide at 100mg/L and sodium sulfocyanate at 10mg/L in whole milk powder. As such, our methods have great potential for field-based detection of milk contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Emission of organic substances from chip-boards

    Energy Technology Data Exchange (ETDEWEB)

    Deppe, H.J.

    1982-01-01

    A relatively small number of investigations on emissions of organic substances from chip-board is available up to now. The emissions known to date are caused by glues or other additives rather than by the wood itself. As concerns aminoplast glues (urea-formaldehyde or melamine-formaldehyde resins) the most important point of public interest has been the off-gassing of formaldehyde from chip-board. Chip-board with phenol-formaldehyde glues has been known in some cases to give off phenol. The formation of diamino diphenyl methane from isocyanate glues is still a matter of discussion. A further source for possible emissions are wood and fire protectives which are added during the manufacturing process. Finally, coating of chip-board may lead to emissions of organic substances. The lack of adequate detection methods has so far delayed the treatment of questions in relation to emissions from chip-board. Even now, there are numerous problems in this field especially when investigating isocyanate glues. Problems in relation to the origin of emissions due to the kind of glue used and the manufacturing process are discussed, and proposals are made how to solve some of these problems. The question of the health risk is dealt with from the view-point of the civil engineer and in an general economic context.

  3. Improving biomass-derived carbon by activation with nitrogen and cobalt for supercapacitors and oxygen reduction reaction

    Science.gov (United States)

    Zhang, Man; Jin, Xin; Wang, Linan; Sun, Mengjia; Tang, Yang; Chen, Yongmei; Sun, Yanzhi; Yang, Xiaojin; Wan, Pingyu

    2017-07-01

    Biomass-derived carbon by activation with nitrogen and cobalt (denoted as NPACCo) was prepared by one-pot pyrolysis of pomelo peel with melamine, cobalt nitrate and potassium hydroxide, followed by acid leaching. NPACCo possesses high content of quaternary-N (2.5%) and pyridinic-N (1.7%), co-existences of amorphous and short-range ordered carbon, high specific surface area and pore structure with majority of micropores and small mesopores. As electrode material of supercapacitors, NPACCo exhibits high specific capacitance and good rate capability. At ultrahigh rate of 50 A g-1 (135 mA cm-2), the capacitance of NPACCo remains 246 F g-1, which is 6.3, 1.9 and 3.2 times as high as that of other three materials (PC, PAC and NPAC). The as-assembled symmetric supercapacitor of NPACCo delivers high energy density, high power density and excellent cycling stability. With respect to oxygen reduction reaction (ORR), NPACCo exhibits high onset potential (0.87 V), high half-wave potential (0.78 V), excellent methanol tolerance and low yield of H2O2. The ORR properties of NPACCo are comparable or superior to those of commercial Pt/C. This investigation of pomelo peel-based NPACCo would be valuable for development of both supercapacitor and ORR.

  4. Impact of biogenic amine molecular weight and structure on surfactant adsorption at the air-water interface.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun

    2016-02-01

    The oligoamines, such as ethylenediamine to pentaethylenetetramine, and the aliphatic biogenic amines, such as putrescine, spermidine and spermine, strongly interact with anionic surfactants, such as sodium dodecylsulfate, SDS. It has been shown that this results in pronounced surfactant adsorption at the air-water interface and the transition from monolayer to multilayer adsorption which depends upon solution pH and oligoamine structure. In the neutron reflectivity, NR, and surface tension, ST, results presented here the role of the oligoamine structure on the adsorption of SDS is investigated more fully using a range of different biogenic amines. The effect of the extent of the intra-molecular spacing between amine groups on the adsorption has been extended by comparing results for cadavarine with putrescine and ethylenediamine. The impact of more complex biogenic amine structures on the adsorption has been investigated with the aromatic phenethylamine, and the heterocyclic amines histamine and melamine. The results provide an important insight into how surfactant adsorption at interfaces can be manipulated by the addition of biogenic amines, and into the role of solution pH and oligoamine structure in modifying the interaction between the surfactant and oligoamine. The results impact greatly upon potential applications and in understanding some of the important biological functions of biogenic amines. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Rheological Properties of Very High-Strength Portland Cement Pastes: Influence of Very Effective Superplasticizers

    Directory of Open Access Journals (Sweden)

    Adriano Papo

    2010-01-01

    Full Text Available The influence of the addition of very effective superplasticizers, that are commercially available, employed for maximising the solid loading of very high-strength Portland cement pastes, has been investigated. Cement pastes were prepared from deionized water and a commercially manufactured Portland cement (Ultracem 52.5 R. Cement and water were mixed with a vane stirrer according to ASTM Standard C305. The 0.38 to 0.44 water/cement ratio range was investigated. Three commercial superplasticizing agents produced by Ruredil S.p.a. were used. They are based on a melamine resin (Fluiment 33 M, on a modified lignosulphonate (Concretan 200 L, and on a modified polyacrylate (Ergomix 1000. Rheological tests were performed at 25°C by using the rate controlled coaxial cylinder viscometer Rotovisko-Haake 20, system M5-osc., measuring device MV2P with serrated surfaces. The tests were carried out under continuous flow conditions. The results of this study were compared with those obtained in a previous article for an ordinary Portland cement paste.

  6. Carbon paste electrode modified molecularly imprinted polymer as a sensor for creatinine analysis by stripping voltammetry

    Science.gov (United States)

    Khasanah, M.; Darmokoesoemo, H.; Rizki, D. A.

    2017-09-01

    Modification of carbon paste electrode with molecularly imprinted polymer (CP-MIP) as a voltammetric sensor for creatinine has been developed. MIP was synthesized by reacting melamine, chloranil and creatinine with a mole ratio of 1:1:0.1. Creatinine was extracted from polymer chain by using hot water to form a specific imprinted for creatinine molecule. Carbon paste-MIP electrode was prepared by mixing activated carbon, solid paraffin, and MIP in a 45:40:15(w/w %) ratio. The optimum conditions of creatinine analysis by differential pulse stripping voltammetry (DPSV) using the developed electrode were the accumulation potential -1000 mV during 90 s at pH 5. The precision of the method for 0.1-0.5 μlg/L creatinine was 88.7-96.3%, while the detection limit of this method was 0.0315 μlg/L. The accuracy compared by spectrophotometric method was 95.3-103.6%

  7. Nitrogen-Doped Porous Carbons As Electrode Materials for High-Performance Supercapacitor and Dye-Sensitized Solar Cell.

    Science.gov (United States)

    Wang, Lan; Gao, Zhiyong; Chang, Jiuli; Liu, Xiao; Wu, Dapeng; Xu, Fang; Guo, Yuming; Jiang, Kai

    2015-09-16

    Activated N-doped porous carbons (a-NCs) were synthesized by pyrolysis and alkali activation of graphene incorporated melamine formaldehyde resin (MF). The moderate N doping levels, mesopores rich porous texture, and incorporation of graphene enable the applications of a-NCs in surface and conductivity dependent electrode materials for supercapacitor and dye-sensitized solar cell (DSSC). Under optimal activation temperature of 700 °C, the afforded sample, labeled as a-NC700, possesses a specific surface area of 1302 m2 g(-1), a N fraction of 4.5%, and a modest graphitization. When used as a supercapacitor electrode, a-NC700 offers a high specific capacitance of 296 F g(-1) at a current density of 1 A g(-1), an acceptable rate capability, and a high cycling stability in 1 M H2SO4 electrolyte. As a result, a-NC700 supercapacitor delivers energy densities of 5.0-3.5 Wh kg(-1) under power densities of 83-1609 W kg(-1). Moreover, a-NC700 also demonstrates high electrocatalytic activity for I3- reduction. When employed as a counter electrode (CE) of DSSC, a power conversion efficiency (PCE) of 6.9% is achieved, which is comparable to that of the Pt CE based counterpart (7.1%). The excellent capacitive and photovoltaic performances highlight the potential of a-NCs in sustainable energy devices.

  8. Preparation and Electrocapacitive Properties of Hierarchical Porous Carbons Based on Loofah Sponge

    Directory of Open Access Journals (Sweden)

    Zichao Li

    2016-11-01

    Full Text Available Four porous carbon samples denoted as LSC-1, LSC-2, LCS-3, and LSC-4 were prepared by carbonization of loofah sponge pretreated by ZnCl2 activation, immersion in N,N-dimethylformamide (DMF, DMF-assisted solvothermal and melamine-assisted hydrothermal processes, and the specific surface areas were 1007, 799, 773, and 538 m2·g−1 with mainly micropores, respectively. Electrocapacitive properties of four porous carbon-based electrodes were investigated with cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy in symmetric supercapacitors. All the cyclic voltammetries of four types of supercapacitors showed a rectangular shape, even under a high scan rate of 500 mV·s−1. The capacitances of LSC-1, LSC-2, LSC-3, and LSC-4 were 107.4, 92.5, 60.3, and 82.3 F·g−1 at the current density of 0.1 A·g−1, respectively, and LSC-1 displayed the excellent capacitance retention of about 81.3% with a current density up to 5 A·g−1. All supercapacitors showed excellent electrochemical stability, and the LSC-1-based supercapacitor showed a cycle stability with 92.6% capacitance retention after 5000 cycles at 1 A·g−1. The structure–property relationship of LSC samples is discussed and analyzed on the basis of the experimental data.

  9. Pseudocapacitance effects for enhancement of capacitor performance

    Energy Technology Data Exchange (ETDEWEB)

    Lota, G.; Frackowiak, E. [Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, 60-965 Poznan, Piotrowo 3 (Poland)

    2010-10-15

    We report on the pseudo-capacitance induced by a nitrogen substituted in the carbon network composite prepared by a simple carbonisation (750 C) of formaldehyde and melamine in the presence of carbon nanotubes. Nitrogen content in the composites varied from 7.4 to 21.7 wt.%. Such materials have a higher density than activated carbons, hence, they can supply better volumetric capacity. N-rich composites show an excellent charge propagation at current loads from 500 mA g{sup -1} to 50 A g{sup -1} because of multiwalled nanotubes which play a conducting as well as a supporting role. The electrochemical performance of various composites was investigated in two- and three-electrode cells using acidic (1 mol L{sup -1} H{sub 2}SO{sub 4}), alkaline (6 mol L{sup -1}KOH), neutral (1 mol L{sup -1} Na{sub 2}SO{sub 4}) and organic electrolytes (1 mol L{sup -1} TEABF{sub 4} in acetonitrile). Organic and neutral medium is not adapted for N-rich carbon electrodes of supercapacitor. The detailed electrochemical characterisation pointed out the differences of charge propagation of electrodes with the different polarity. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Photoneutron cross sections measurements in 9Be, 13C e 17O with thermal neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Semmler, Renato

    2006-01-01

    Photoneutron cross sections measurements of 9 Be, 13 C and 17 O have been obtained in the energy interval between 1,6 and 10,8 MeV, using neutron capture gamma-rays with high resolution in energy (3 a 21 eV), produced by 21 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 (5 MW) research reactor. The samples have been irradiated inside a 4π geometry neutron detector system 'Long Counter', 520,5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (EG and G ORTEC, 25 cm 3 , 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A inversion matrix methodology to solve inversion problems for unfolding the set of experimental compound cross sections, was used in order to obtain the cross sections at specific excitation energy values (principal gamma line energies of the capture targets). The cross sections obtained at the energy values of the principal gamma lines were compared with experimental data reported by other authors, with have employed different gamma-ray sources. A good agreement was observed among the experimental data in this work with reported in the literature. (author)

  11. High Pressure Laminates with Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Sandra Magina

    2016-02-01

    Full Text Available High-pressure laminates (HPLs are durable, resistant to environmental effects and good cost-benefit decorative surface composite materials with special properties tailored to meet market demand. In the present work, polyhexamethylene biguanide (PHMB was incorporated for the first time into melamine-formaldehyde resin (MF matrix on the outer layer of HPLs to provide them antimicrobial properties. Chemical binding of PHMB to resin matrix was detected on the surface of produced HPLs by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR. Antimicrobial evaluation tests were carried out on the ensuing HPLs doped with PHMB against gram-positive Listeria innocua and gram-negative Escherichia coli bacteria. The results revealed that laminates prepared with 1.0 wt % PHMB in MF resin were bacteriostatic (i.e., inhibited the growth of microorganisms, whereas those prepared with 2.4 wt % PHMB in MF resin exhibited bactericidal activity (i.e., inactivated the inoculated microorganisms. The results herein reported disclose a promising strategy for the production of HPLs with antimicrobial activity without affecting basic intrinsic quality parameters of composite material.

  12. Fabrication and Properties of Micro-Nanoencapsulated Phase Change Materials for Internally-Cooled Liquid Desiccant Dehumidification.

    Science.gov (United States)

    Niu, Xiaofeng; Xu, Qing; Zhang, Yi; Zhang, Yue; Yan, Yufeng; Liu, Tao

    2017-04-29

    Micro-nanoencapsulated phase change materials (M-NEPCMs) are proposed to be useful in liquid desiccant dehumidification by restraining the temperature rise in the moisture-removal process and improving the dehumidification efficiency. In this paper, the n -octadecane M-NEPCMs with desirable thermal properties for internally-cooled dehumidification were fabricated by using compound emulsifiers through the in-situ polymerization method. Melamine-formaldehyde resin was used as the shell material. The effects of the mixing ratio, emulsification methods and amount of the compound emulsifiers on the morphology, size and thermal properties of the M-NEPCMs were investigated experimentally. The optimum weight mixing ratio of the compound emulsifiers is SDS (sodium dodecyl sulfate):Tween80 (polyoxyethylene sorbitan monooleate):Span80 (sorbitan monooleate) = 0.1:0.6:0.3, which achieves the best stability of the n -octadecane emulsion. When the compound emulsifiers are 10 wt. % of the core material, the melting enthalpy of M-NEPCMs reaches its maximum of 145.26 J/g of capsules, with an encapsulation efficiency of 62.88% and a mean diameter of 636 nm. The sub-cooling of the prepared M-NEPCMs is lower than 3 °C, with an acceptable thermal reliability after the thermal cycling test. A pre-emulsification prior to the addition of deionized water in the emulsification is beneficial to the morphology of the capsules, as the phase change enthalpy can be increased by 123.7%.

  13. Effect of nonionic compound emulsifiers Tween80 and Span80 on the properties of microencapsulated phase change materials.

    Science.gov (United States)

    Zhan, Shiping; Zhou, Zhiyi; Wang, Weijing; Zhao, Qicheng; Hou, Weimin

    2014-01-01

    In this article, the nonionic compound emulsifiers Tween80 and Span80 were used to prepare microcapsules containing phase change materials (microPCMs) with melamine-formaldehyde (MF) shells by in situ polymerization method. The effects of compound emulsifiers Tween80 and Span80 on the structure, morphologies and properties of microPCMs containing paraffin were studied. SEM morphological investigation suggests that a complex of Tween80 and Span80 as emulsifiers are optimal for the fabrication of microPCMs in this study compared to Tween60 or OP-10. The diameter distributions of microPCMs synthesized with different amounts of compound emulsifiers are uniform, whereas compound emulsifiers' amount affect the mean diameter of microPCMs decreasing from 5.34 to 3.05 µm. These microPCMs with the core/shell weight ratio 3/1 have smoother surface and a higher core content of 68.7% than other core/shell ratio. Anti-osmosis measurements indicate that microPCMs have good compactness and stable performance compared to those synthesized by one type of emulsifier.

  14. Full recovery of Arundo donax particleboard from swelling test without waterproofing additives

    Directory of Open Access Journals (Sweden)

    Jose-Antonio Flores-Yepes

    2012-11-01

    Full Text Available This paper presents the development of particleboard based on common reed, reproducing the industry standard manufacturing process applied to wood chipboard. One of the main properties of the resulting board was its resistance to water, due to the hydrophobic properties of the common reed, despite there being no incorporation of melamine or any other waterproofing additive. The boards that were developed were analyzed using 2 mm and 4 mm sieves for fibre selection, a manufacturing pressure of 3 N/mm2 and 25 N/mm2, and a volume of urea formaldehyde resin content ranging from 5.2% to 13% (8 to 20% liquid format. Standard destructive tests were performed. It was found that under certain applied conditions, namely high pressure and adequate resin proportion (a pressure of over 3 N/mm2 and over 15% liquid resin, Arundo donax L. particleboard demonstrated full recovery from the swelling test. This finding highlights an unmatched property in terms of recovery from the swelling test of the designed board. This property confers a interesting property to be used in high humidity environments without the need for special resin or waterproofing process.

  15. Atomic-Level Co3O4 Layer Stabilized by Metallic Cobalt Nanoparticles: A Highly Active and Stable Electrocatalyst for Oxygen Reduction.

    Science.gov (United States)

    Liu, Min; Liu, Jingjun; Li, Zhilin; Wang, Feng

    2018-02-28

    Developing atomic-level transition oxides may be one of the most promising ways for providing ultrahigh electrocatalytic performance for oxygen reduction reaction (ORR), compared with their bulk counterparts. In this article, we developed a set of atomically thick Co 3 O 4 layers covered on Co nanoparticles through partial reduction of Co 3 O 4 nanoparticles using melamine as a reductive additive at an elevated temperature. Compared with the original Co 3 O 4 nanoparticles, the synthesized Co 3 O 4 with a thickness of 1.1 nm exhibits remarkably enhanced ORR activity and durability, which are even higher than those obtained by a commercial Pt/C in an alkaline environment. The superior activity can be attributed to the unique physical and chemical structures of the atomic-level oxide featuring the narrowed band gap and decreased work function, caused by the escaped lattice oxygen and the enriched coordination-unsaturated Co 2+ in this atomic layer. Besides, the outstanding durability of the catalyst can result from the chemically epitaxial deposition of the Co 3 O 4 on the cobalt surface. Therefore, the proposed synthetic strategy may offer a smart way to develop other atomic-level transition metals with high electrocatalytic activity and stability for energy conversion and storage devices.

  16. Ancient Chemistry "Pharaoh's Snakes" for Efficient Fe-/N-Doped Carbon Electrocatalysts.

    Science.gov (United States)

    Ren, Guangyuan; Gao, Liangliang; Teng, Chao; Li, Yunan; Yang, Hequn; Shui, Jianglan; Lu, Xianyong; Zhu, Ying; Dai, Liming

    2018-04-04

    The method of fabricating nonprecious metal electrocatalysts with high activity and durability through a facile and eco-friendly procedure is of great significance to the development of low-cost fuel cells and metal-air batteries. Herein, we present that an ancient chemical reaction of "Pharaoh's snakes" can be a fast and convenient technique to prepare Fe-/N-doped carbon (Fe/N-C) nanosheet/nanotube electrocatalysts with sugar, soda, melamine, and iron nitrate as precursors. The resultant Fe/N-C catalyst has a hierarchically porous structure, a large surface area, and uniformly distributed active sites. The catalyst shows high electrocatalytic activities toward both the oxygen reduction reaction with a half-wave potential of 0.90 V (vs reversible hydrogen electrode) better than that of Pt/C and the oxygen evolution reaction with an overpotential of 0.46 V at the current density of 10 mA cm -2 comparable to that of RuO 2 . The activity and stability of the catalyst are also evaluated in primary and rechargeable Zn-air batteries. In both conditions, three-dimensional Fe/N-C exhibited performances superior to Pt/C. Our work demonstrates a success of utilizing an ancient science to make a state-of-the-art electrocatalyst.

  17. FAO/IAEA International Symposium on Food Safety and Quality: Applications of Nuclear and Related Techniques, Vienna, Austria, 10−13 November 2014

    International Nuclear Information System (INIS)

    2015-01-01

    Ensuring food supply integrity is of the utmost importance in relation to food security, safety and quality, consumer protection and international trade. Control measures throughout the entire food production and supply chain are essential to maintain and assure this integrity. The fundamental purpose of the controls is to support food safety and quality, because both are essential and set the foundation for food security and consumer protection as well as facilitating both domestic and international trade. The need for methods to monitor and verify food safety and quality is evidenced by the ever growing list of food product recalls and incidents such as melamine, antibiotic and dioxin contamination. Food fraud (e.g. the adulteration of beef products with horse meat), the introduction of new technologies with potential food safety implications (e.g. nanotechnology) and environmental factors (e.g. climate change) further highlight the importance of continued refinement, development and innovation to improve food control measures. Effective techniques are necessary to help assess and manage risks and protect the consumer. These include food irradiation to treat food directly, as well as other nuclear and related technologies for tracing food products in order to verify their provenance or to detect and control contaminants. To explore some of these challenges experienced by many Member States, an International Symposium on Food Safety and Quality: Applications of Nuclear and Related Techniques was held in Vienna, Austria, from 10 to 13 November 2014, under the auspices of the Food and Environmental Protection Subprogramme.

  18. Fire Propagation Performance of Intumescent Fire Protective Coatings Using Eggshells as a Novel Biofiller

    Directory of Open Access Journals (Sweden)

    M. C. Yew

    2014-01-01

    Full Text Available This paper aims to synthesize and characterize an effective intumescent fire protective coating that incorporates eggshell powder as a novel biofiller. The performances of thermal stability, char formation, fire propagation, water resistance, and adhesion strength of coatings have been evaluated. A few intumescent flame-retardant coatings based on these three ecofriendly fire retardant additives ammonium polyphosphate phase II, pentaerythritol and melamine mixed together with flame-retardant fillers, and acrylic binder have been prepared and designed for steel. The fire performance of the coatings has conducted employing BS 476: Part 6-Fire propagation test. The foam structures of the intumescent coatings have been observed using field emission scanning electron microscopy. On exposure, the coated specimens’ B, C, and D had been certified to be Class 0 due to the fact that their fire propagation indexes were less than 12. Incorporation of ecofriendly eggshell, biofiller into formulation D led to excellent performance in fire stopping (index value, (I=4.3 and antioxidation of intumescent coating. The coating is also found to be quite effective in water repellency, uniform foam structure, and adhesion strength.

  19. Synthesis and Characterization of Core-Shell Acrylate Based Latex and Study of Its Reactive Blends

    Directory of Open Access Journals (Sweden)

    Ying Nie

    2008-03-01

    Full Text Available Techniques in resin blending are simple and efficient method for improving the properties of polymers, and have been used widely in polymer modification field. However, polymer latex blends such as the combination of latexes, especially the latexes with water-soluble polymers, were rarely reported. Here, we report a core-shell composite latex synthesized using methyl methacrylate (MMA, butyl acrylate (BA, 2-ethylhexyl acrylate (EHA and glycidyl methacrylate (GMA as monomers and ammonium persulfate and sodium bisulfite redox system as the initiator. Two stages seeded semi-continuous emulsion polymerization were employed for constructing a core-shell structure with P(MMA-co-BA component as the core and P(EHA-co-GMA component as the shell. Results of Transmission Electron Microscopy (TEM and Dynamics Light Scattering (DLS tests confirmed that the particles obtained are indeed possessing a desired core-shell structural character. Stable reactive latex blends were prepared by adding the latex with waterborne melamine-formaldehyde resin (MF or urea-formaldehyde resin (UF. It was found that the glass transition temperature, the mechanical strength and the hygroscopic property of films cast from the latex blends present marked enhancements under higher thermal treatment temperature. It was revealed that the physical properties of chemically reactive latexes with core-shell structure could be altered via the change of crosslinking density both from the addition of crosslinkers and the thermal treatment.

  20. Sunlight Induced Rapid Oil Absorption and Passive Room-Temperature Release: An Effective Solution toward Heavy Oil Spill Cleanup

    KAUST Repository

    Wu, Mengchun

    2018-05-18

    Rapid cleanup and easy recovery of spilled heavy oils is always a great challenge due to their high viscosity (>103 mPa s). One of the efficient methods to absorb highly viscous oils is to reduce their viscosity by increasing their temperature. In this work, the authors integrate the sunlight‐induced light‐to‐heat conversion effect of polypyrrole (PPy) and thermoresponsive property of poly(N‐isopropylacrylamide) (PNIPAm) into the melamine sponge, which successfully delivers a fast heavy oil absorption under sunlight and passive oil release underwater at room temperature. Thanks to the rationally designed functionalities, the PNIPAm/PPy functionalized sponges possess oleophilicity and hydrophobicity under sunlight. Due to the photothermal effect of PPy, the sponges locally heat up contacting heavy oil under sunlight and reduce its viscosity to a point where the oil voluntarily flow into the pores of the sponge. The material in this work is able to rapidly absorb the heavy oil with room temperature viscosity as high as ≈1.60 × 105 mPa s. The absorbed oil can be passively forced out the sponge underwater at room temperature due to the hydrophilicity of PNIPAm. The sunlight responsive and multifunctional sponge represents a meaningful attempt in coming up with a sustainable solution toward heavy oil spill.

  1. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    Science.gov (United States)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  2. Multiscale Interfacial Strategy to Engineer Mixed Metal-Oxide Anodes toward Enhanced Cycling Efficiency.

    Science.gov (United States)

    Ma, Yue; Tai, Cheuk-Wai; Li, Shaowen; Edström, Kristina; Wei, Bingqing

    2018-06-13

    Interconnected macro/mesoporous structures of mixed metal oxide (MMO) are developed on nickel foam as freestanding anodes for Li-ion batteries. The sustainable production is realized via a wet chemical etching process with bio-friendly chemicals. By means of divalent iron doping during an in situ recrystallization process, the as-developed MMO anodes exhibit enhanced levels of cycling efficiency. Furthermore, this atomic-scale modification coherently synergizes with the encapsulation layer across a micrometer scale. During this step, we develop a quasi-gel-state tri-copolymer, i.e., F127-resorcinol-melamine, as the N-doped carbon source to regulate the interfacial chemistry of the MMO electrodes. Electrochemical tests of the modified Fe x Ni 1- x O@NC-NiF anode in both half-cell and full-cell configurations unravel the favorable suppression of the irreversible capacity loss and satisfactory cyclability at the high rates. This study highlights a proof-of-concept modification strategy across multiple scales to govern the interfacial chemical process of the electrodes toward better reversibility.

  3. A facile modification of g-C{sub 3}N{sub 4} with enhanced photocatalytic activity for degradation of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Fei, E-mail: feichang@usst.edu.cn [School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Xie, Yunchao; Li, Chenlu; Chen, Juan; Luo, Jieru [School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Hu, Xuefeng, E-mail: xfhu@yic.ac.cn [Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003 (China); Shen, Jiaowen [School of Urban Development and Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209 (China)

    2013-09-01

    In this investigation, a facile modification of g-C{sub 3}N{sub 4} through co-pyrolysis of melamine and sodium nitrate or potassium nitrate was reported and the as-synthesized samples were characterized by a collection of techniques, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV–vis diffuse reflectance spectroscopy, nitrogen adsorption–desorption, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and elemental analysis. Based upon the analysis, we speculated that the g-C{sub 3}N{sub 4} framework was partially destroyed to produce cyano-containing fragments, which resulted into the variation of physical and optical properties, further affecting the adsorption and photocatalytic performance of g-C{sub 3}N{sub 4} on the dye methylene blue. Furthermore, we found that nitrate anions rather than sodium or potassium ions had important effect on the structure and photocatalytic performance of g-C{sub 3}N{sub 4}. In addition, the photocatalysis mechanism and reusability test were also investigated and discussed in the study.

  4. Influence of expandable graphite on fire resistance and water resistance of flame-retardant coatings

    International Nuclear Information System (INIS)

    Wang, Zhenyu; Han, Enhou; Ke, Wei

    2007-01-01

    Expandable graphite (EG) coating and ammonium polyphosphate-pentaerythritol-melamine (APP-PER-MEL) coating were prepared. Thermal degradation and char formation of the coatings were investigated by differential thermal analysis (DTA), thermogravimetry (TG), X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results have shown that the anti-oxidation and fire-resistant properties of expandable graphite coating containing EG with size of 74 μm are better than those of APP-PER-MEL coating. The static immersion test was applied to study water resistance of the coatings, and the fire protection test and mechanical test were used to analyse heat insulation and mechanical properties of coatings before and after water immersion. The fire-resistant and mechanical properties of APP-PER-MEL coating were severely damaged by water immersion, whereas EG coating containing 8.5% EG with size of 74 μm could retain the good fire resistance even after 500 h water immersion

  5. Food safety issues in China: a case study of the dairy sector.

    Science.gov (United States)

    Dong, Xiaoxia; Li, Zhemin

    2016-01-15

    Over the past 10 years, food safety incidents have occurred frequently in China. Food safety issues in the dairy sector have increasingly gained the attention of the Chinese government and the public. The objective of this research is to explore consumption changes of dairy products of different income groups after these dairy safety incidents. The research indicates that consumers' response to dairy safety risk is very intense. Dairy consumption has experienced a declining trend in recent years, and the impact of dairy safety incidents has lasted for at least 5 years. Until 2012, dairy consumption had not yet fully recovered from this influence. Using the random effects model, this study examined the relationship between food safety incident and consumption. Overall, the results show that consumers in the low-income group are more sensitive to safety risk than those in the high-income group. It can be seen from this paper that the decrease of urban residents' dairy consumption was mainly driven by changes in fresh milk consumption, while the decline of milk powder consumption, which was affected by the melamine incident, was relatively moderate, and milk powder consumption for the high-income group even increased. © 2015 Society of Chemical Industry.

  6. Development of TREN dendrimers over mesoporous SBA-15 for CO2 adsorption

    International Nuclear Information System (INIS)

    Bhagiyalakshmi, Margandan; Park, Sang Do; Cha, Wang Seog; Jang, Hyun Tae

    2010-01-01

    Mesoporous SBA-15 was synthesized using rice husk ash (RHA) as the silica source and their defective Si-OH groups were grafted with tris(2-aminoethyl) amine (TREN) dendrimers generation through step-wise growth technique. The X-ray diffraction (XRD) and nitrogen adsorption/desorption results of parent SBA-15 obtained from RHA, suggests its resemblance with SBA-15 synthesized using conventional silica sources. Furthermore, the nitrogen adsorption/desorption results of SBA-15/TREN dendrimer generations (G1-G3) illustrates the growth of dendrimer inside the mesopores of SBA-15 and their CO 2 adsorption capacity was determined at 25 deg. C. The maximum CO 2 adsorption capacity of 5-6 and 7-8 wt% over second and third dendrimer generation was observed which is discernibly higher than the reported melamine and PAMAM dendrimers. The experimental CO 2 adsorption capacity was found to be less than theoretically calculated CO 2 adsorption capacity due to inter and intra molecular amidation as result of steric hindrance during the dendrimer growth. These SBA-15/TREN dendrimer generations also exhibit thermal stability up to 350 deg. C and CO 2 adsorption capacity remains unaltered upon seven consecutive runs.

  7. Polyaniline-encapsulated silicon on three-dimensional carbon nanotubes foam with enhanced electrochemical performance for lithium-ion batteries

    Science.gov (United States)

    Zhou, Xiaoming; Liu, Yang; Du, Chunyu; Ren, Yang; Mu, Tiansheng; Zuo, Pengjian; Yin, Geping; Ma, Yulin; Cheng, Xinqun; Gao, Yunzhi

    2018-03-01

    Seeking free volume around nanostructures for silicon-based anodes has been a crucial strategy to improve cycling and rate performance in the next generation Li-ion batteries. Herein, through a simple pyrolysis and in-situ polymerization approach, the low cost commercially available melamine foam as a soft template converts carbon nanotubes into highly dispersed and three-dimensionally interconnected framework with encapsulated silicon/polyaniline hierarchical nanoarchitecture. This unique core-sheath structure based on carbon nanotubes foam integrates a large number of mesoporous, thus providing well-accessible space for electrolyte wetting, whereas the carbon nanotubes matrix serves as conductive thoroughfares for electron transport. Meanwhile, the outer polyaniline coated on silicon nanoparticles provides effective space for volume expansion of silicon, further inhibiting the active material escape from the current collector. As expected, the PANI-Si@CNTs foam exhibits a high initial specific capacity of 1954 mAh g-1 and retains 727 mAh g-1 after 100 cycles at 100 mA g-1, which can be attributed to highly electrical conductivity of carbon nanotubes and protective layer of polyaniline sheath, together with three-dimensionally interconnected porous skeleton. This facile structure can pave a way for large scale synthesis of high durable silicon-based anodes or other electrode materials with huge volume expansion.

  8. Synthesis and Performances of Phase Change Microcapsules with a Polymer/Diatomite Hybrid Shell for Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Yanli Sun

    2018-05-01

    Full Text Available The mechanical behavior of phase-change microcapsules (microPCMs is of vital significance for practical applications in thermal energy storage. Hence, a new type of microPCMs based on an n-octadecane (C18 core and a melamine-urea-formaldehyde (MUF/diatomite hybrid shell was developed through in situ polymerization. Based on SEM micrographs, most microPCMs exhibited a nearly spherical and smooth microstructure, with broadened particle size distributions. It was confirmed by Fourier transform infrared (FTIR that successful polymerization of diatomite into the microPCMs occurred, and that additional diatomite had no effect on the core coated by the shell. In addition, the results of the differential scanning calorimeter (DSC and Atomic Force Microscopy (AFM demonstrated that the mechanical properties of the microPCMs were remarkably improved by the addition of a moderate amount of diatomite, but that the heat enthalpy and encapsulated efficiency (η decreased slightly. The incorporation of 2 wt % diatomite resulted in the average Young’s modulus of microPCMs, which was 1.64 times greater than those of microPCMs without diatomite. Furthermore, the melting and crystallization enthalpies and the encapsulated efficiency of the microPCMs were as high as 237.6 J/g, 234.4 J/g and 77.90%, respectively. The microPCMs with a polymer/diatomite hybrid shell may become the potential materials in the application of thermal energy storage.

  9. Particle Board and Oriented Strand Board Prepared with Nanocellulose-Reinforced Adhesive

    Directory of Open Access Journals (Sweden)

    Stefan Veigel

    2012-01-01

    Full Text Available Adhesives on the basis of urea-formaldehyde (UF and melamine-urea-formaldehyde (MUF are extensively used in the production of wood-based panels. In the present study, the attempt was made to improve the mechanical board properties by reinforcing these adhesives with cellulose nanofibers (CNFs. The latter were produced from dissolving grade beech pulp by a mechanical homogenization process. Adhesive mixtures with a CNF content of 0, 1, and 3 wt% based on solid resin were prepared by mixing an aqueous CNF suspension with UF and MUF adhesives. Laboratory-scale particle boards and oriented strand boards (OSBs were produced, and the mechanical and fracture mechanical properties were investigated. Particle boards prepared with UF containing 1 wt% CNF showed a reduced thickness swelling and better internal bond and bending strength than boards produced with pure UF. The reinforcing effect of CNF was even more obvious for OSB where a significant improvement of strength properties of 16% was found. For both, particle board and OSB, mode I fracture energy and fracture toughness were the parameters with the greatest improvement indicating that the adhesive bonds were markedly toughened by the CNF addition.

  10. On-chip ultra-thin layer chromatography and surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Chen, Jing; Abell, Justin; Huang, Yao-wen; Zhao, Yiping

    2012-09-07

    We demonstrate that silver nanorod (AgNR) array substrates can be used for on-chip separation and detection of chemical mixtures by combining ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The UTLC-SERS plate consists of an AgNR array fabricated by oblique angle deposition. The capability of the AgNR substrates to separate the different compounds in a mixture was explored using a mixture of four dyes and a mixture of melamine and Rhodamine 6G at varied concentrations with different mobile phase solvents. After UTLC separation, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the potential for separating the test dyes with plate heights as low as 9.6 μm. The limits of detection are between 10(-5)-10(-6) M. Furthermore, we show that the coupling of UTLC with SERS improves the SERS detection specificity, as small amounts of target analytes can be separated from the interfering background components.

  11. Nitrogen doped activated carbon from pea skin for high performance supercapacitor

    Science.gov (United States)

    Ahmed, Sultan; Ahmed, Ahsan; Rafat, M.

    2018-04-01

    In this work, nitrogen doped porous carbon (NDC) has been synthesized employing a facile two-step process. Firstly, carbon precursor (pea skin) was heated with melamine (acting as nitrogen source) followed by activation with KOH in different ratios. The dependence of porosity and nitrogen content on impregnation ratio was extensively studied. Other textural properties of prepared NDC sample were studied using standard techniques of material characterization. The electrochemical performance of NDC sample as an electrode was studied in two-electrode symmetric supercapacitor system. 1 M LiTFSI (lithium bis-trifluoromethanesulfonimide) solution in IL EMITFSI (1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), was used as electrolyte. It was found that the fabricated supercapacitor cell offers high values of specific capacitance (141.1 F g‑1), specific energy (19.6 Wh kg‑1) and specific power (25.4 kW kg‑1) at current density of 1.3 A g‑1. More importantly, the fabricated supercapacitor cell shows capacitance retention of ∼75%, for more than 5000 cycles. The enhanced performance of NDC sample is primarily due to large surface area with favorable surface structure (contributing to double layer capacitance) and presence of nitrogen functionalities (contributing to pseudo-capacitance). Such important features make the synthesized NDC sample, an attractive choice for electrode material in high performance supercapacitor.

  12. Evaluation of direct analysis in real time for the determination of highly polar pesticides in lettuce and celery using modified Quick Polar Pesticides Extraction method.

    Science.gov (United States)

    Lara, Francisco J; Chan, Danny; Dickinson, Michael; Lloyd, Antony S; Adams, Stuart J

    2017-05-05

    Direct analysis in real time (DART) was evaluated for the determination of a number of highly polar pesticides using the Quick Polar Pesticides Extraction (QuPPe) method. DART was hyphenated to high resolution mass spectrometry (HRMS) in order to get the required selectivity that allows the determination of these compounds in complex samples such as lettuce and celery. Experimental parameters such as desorption temperature, scanning speed, and distances between the DART ion source and MS inlet were optimized. Two different mass analyzers (Orbitrap and QTOF) and two accessories for sample introduction (Dip-it ® tips and QuickStrip™ sample cards) were evaluated. An extra clean-up step using primary-secondary amine (PSA) was included in the QuPPe method to improve sensitivity. The main limitation found was in-source fragmentation, nevertheless QuPPe-DART-HRMS proved to be a fast and reliable tool with quantitative capabilities for at least seven compounds: amitrole, cyromazine, propamocarb, melamine, diethanolamine, triethanolamine and 1,2,4-triazole. The limits of detection ranged from 20 to 60μg/kg. Recoveries for fortified samples ranged from 71 to 115%, with relative standard deviations <18%. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Synthesis and Crystal Structure of an Unprecedented Supramolecular Complex[Co(μ2-ClO4)2(H2O)2]·2MA

    Institute of Scientific and Technical Information of China (English)

    XU,Jing; BAI,Zhengshuai; SUN,Weiyin

    2009-01-01

    A new supramolecular framework[Co(μ2-C104)2(H2O)2]·2MA(1)[MA=melamine(C3H6N6)]has been syn-thesized by a hydrothermal method.Interestingly,there ale inorganic and organic building blocks with two different supramolecular synthons:(a)2D(4,4)network constructed by infinite inorganic 1D chains through interchain hy-drogen bonding interactions;(b)1D zigzag organic chains formed by hydrogen bonds, which further stack up through,ππ-interactions between the two adjacent MA molecules.The entire structure of 1 is a 3D supramolecular framework resulting from the presence of abundant hydrogen bonds between infinite[CO(μ2-C1O4)2(H2O)2]n chains and zigzag MA chains in different sheets.1 gives a nice example of supramolecular framework based on non-covalent interactions including hydrogen bonding and π-π interactions.

  14. Detecting adulterants in milk with lower cost mid-infrared and Raman spectroscopy

    Science.gov (United States)

    Lee, Changwon; Wang, Wenbo; Wilson, Benjamin K.; Connett, Marie; Keller, Matthew D.

    2018-02-01

    Adulteration of milk for economic gains is a widespread issue throughout the developing world that can have far-reaching health and nutritional impacts. Milk analysis technologies, such as infrared spectroscopy, can screen for adulteration, but the cost of these technologies has prohibited their use in low resource settings. Recent developments in infrared and Raman spectroscopy hardware have led to commercially available low-cost devices. In this work, we evaluated the performance of two such spectrometers in detecting and quantifying the presence of milk adulterants. Five common adulterants - ammonium sulfate, melamine, sodium bicarbonate, sucrose, and urea, were spiked into five different raw cow and goat milk samples at different concentrations. Collected MIR and Raman spectra were analyzed using partial least squares regression. The limit of detection (LOD) for each adulterant was determined to be in the range of 0.04 to 0.28% (400 to 2800 ppm) using MIR spectroscopy. Raman spectroscopy showed similar LOD's for some of the adulterants, notably those with strong amine group signals, and slightly higher LOD's (up to 1.0%) for other molecules. Overall, the LODs were comparable to other spectroscopic milk analyzers on the market, and they were within the economically relevant concentration range of 100 to 4000 ppm. These lower cost spectroscopic devices therefore appear to hold promise for use in low resource settings.

  15. Membrane emulsification to produce perfume microcapsules

    Science.gov (United States)

    Pan, Xuemiao

    Microencapsulation is an efficient technology to deliver perfume oils from consumer products onto the surface of fabrics. Microcapsules having uniform size/mechanical strength, may provide better release performance. Membrane emulsification in a dispersion cell followed by in-situ polymerization was used to prepare narrow size distribution melamine-formaldehyde (MF) microcapsules containing several types of oil-based fragrances or ingredients. Investigated in this study are the parameters impacting to the size and size distribution of the droplets and final MF microcapsules. A pilot plant-scale cross-flow membrane system was also used to produce MF microcapsules, demonstrating that the membrane emulsification process has potential to be scaled up for industrial applications. In this study, health and environmental friendly poly (methyl methacrylate) (PMMA) microcapsules with narrow size distribution were also prepared for the first time using the dispersion cell membrane emulsification system. Characterization methods previously used for thin-shell microcapsules were expanded to analyse microcapsules with thick shells. The intrinsic mechanical properties of thick shells were determined using a micromanipulation technique and finite element analysis (FEM). The microcapsules structure was also considered in the determination of the permeability and diffusivity of the perfume oils in good solvents..

  16. Barriers to Sustainable Food Trade: China’s Exports Food Rejected by the U.S. Food and Drug Administration 2011–2017

    Directory of Open Access Journals (Sweden)

    Xiaowei Wen

    2018-05-01

    Full Text Available Food export rejection can be a harmful barrier to sustainable international food trade. To understand China’s export food rejected by FDA (Food and Drug Administration of the United States, we analyzed 4047 cases of rejection from February 2011 to July 2017. Although the number of rejected food exported from China to the United States has been declining, and the quality has been improving, there is still space for improvement. Of the 4047 cases of rejection, the Guangdong, Fujian and Shandong provinces were the top three with the largest number of rejected food (1253 (31%, 520 (12.8%, and 508 (12.6%, respectively (being rejected mainly in New York and Los Angeles. The top four types of rejected food involved fruits and vegetables, fishery and seafood products, bakery products, grain and related processed products. More importantly, the major reasons for rejection can be attributed to problems in maintaining food safety, namely: (1 the food contained filth, decay, decomposition or other substances; (2, the food contained toxic and harmful substances (e.g., suspected melamine, chemical insecticides, or lead; and (3 the food contained agricultural and veterinary drugs. The results are of great implications for the United States to regulate the imported food from China, and for China to improve the quality and safety of export food.

  17. Poly(vinyl alcohol)-Assisted Fabrication of Hollow Carbon Spheres/Reduced Graphene Oxide Nanocomposites for High-Performance Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Zhang, Yunqiang; Ma, Qiang; Wang, Shulan; Liu, Xuan; Li, Li

    2018-05-22

    Three-dimensional hollow carbon spheres/reduced graphene oxide (DHCSs/RGO) nanocomposites with high-level heteroatom doping and hierarchical pores are fabricated via a versatile method. Poly(vinyl alcohol) (PVA) that serves as a dispersant and nucleating agent is used as the nonremoval template for synthesizing melamine resin (MR) spheres with abundant heteroatoms, which are subsequently composited with graphene oxide (GO). Use of PVA and implementation of freezing treatment prevent agglomeration of MR spheres within the GO network. Molten KOH is used to achieve the one-step carbonization/activation/reduction for the synthesis of DHCSs/RGO. DHCSs/RGO annealed at 700 °C shows superior discharge capacity of 1395 mA h/g at 0.1 A/g and 606 mA h/g at 5 A/g as well as excellent retentive capacity of 755 mA h/g after 600 cycles at a current density of 2 A/g. An extra CO 2 activation leads to further enhancement of electrochemical performance with outstanding discharge capacity of 1709 mA h/g at 0.1 A/g and 835 mA h/g at 2 A/g after 600 cycles. This work may improve our understanding of the synthesis of graphene-like nanocomposites with hollow and porous carbon architectures and fabrication of high-performance functional devices.

  18. Borax mediated layer-by-layer self-assembly of neutral poly(vinyl alcohol) and chitosan.

    Science.gov (United States)

    Manna, Uttam; Patil, Satish

    2009-07-09

    We report a multilayer film of poly(vinyl alcohol) (PVA)-borate complex and chitosan by using a layer-by-layer approach. PVA is an uncharged polymer, but hydroxyl functional groups of PVA can be cross-linked by using borax as a cross-linking agent. As a result electrostatic charges and intra- and interchain cross-links are introduced in the PVA chain and provide physically cross-linked networks. The PVA-borate was then deposited on a flat substrate as well as on colloidal particles with chitosan as an oppositely charged polyelectrolyte. Quartz crystal microbalance, scanning electron microscopy, and atomic force microscopy were used to follow the growth of thin film on flat substrate. Analogous experiments were performed on melamine formaldehyde colloidal particles (3-3.5 microm) to quantify the process for the preparation of hollow microcapsules. Removal of the core in 0.1 N HCl results in hollow microcapsules. Characterization of microcapsules by transmission electron microscopy revealed formation of stable microcapsules. Further, self-assembly of PVA-borate/chitosan was loaded with the anticancer drug doxorubicin, and release rates were determined at different pH values to highlight the drug delivery potential of this system.

  19. Ultrasonic preparation of nano-nickel/activated carbon composite using spent electroless nickel plating bath and application in degradation of 2,6-dichlorophenol.

    Science.gov (United States)

    Su, Jingyu; Jin, Guanping; Li, Changyong; Zhu, Xiaohui; Dou, Yan; Li, Yong; Wang, Xin; Wang, Kunwei; Gu, Qianqian

    2014-11-01

    Ni was effectively recovered from spent electroless nickel (EN) plating baths by forming a nano-nickel coated activated carbon composite. With the aid of ultrasonication, melamine-formaldehyde-tetraoxalyl-ethylenediamine chelating resins were grafted on activated carbon (MFT/AC). PdCl2 sol was adsorbed on MFT/AC, which was then immersed in spent electroless nickel plating bath; then nano-nickel could be reduced by ascorbic acid to form a nano-nickel coating on the activated carbon composite (Ni/AC) in situ. The materials present were carefully examined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy and electrochemistry techniques. The resins were well distributed on the inside and outside surfaces of activated carbon with a size of 120 ± 30 nm in MFT/AC, and a great deal of nano-nickel particles were evenly deposited with a size of 3.8 ± 1.1 nm in Ni/MFT. Moreover, Ni/AC was successfully used as a catalyst for ultrasonic degradation of 2,6-dichlorophenol. Copyright © 2014. Published by Elsevier B.V.

  20. Effect of some addition agents on the electrodeposition of cadmium from acidic chloride baths

    International Nuclear Information System (INIS)

    Abd El-Halim, A.M.; Baghlaf, A.O.; Sobahi, M.I.

    1984-01-01

    A further development of a chloride-based cadmium plating bath containing 0.3 M CdCl 2 .(5/2)H 2 O, 0.1 M HCl, 0.4 M H 3 BO 3 and 2.0 M NH 4 Cl (bath I) is described. The influences of the individual addition agents thiourea, coumarin Ni 2+ ions and I - ions on the characteristics of cadmium electrodeposition from acidic chloride electrolytes containing 0.3 M CdCl 2 .(5/2)H 2 O, 0.1 M HCl, 0.4 M H 3 BO 3 , 2.0 M NH 4 Cl, 0.5 M sodium potassium tartrate and 5 g gelatin l -1 (bath II) were studied. Bath II including a combination of the four above-mentioned additives was denoted bath III. The additive-containing bath III produced a brighter but less hard cadmium deposit than the additive-free bath II. The individual effects of melamine, 3-methyl-4-p-methoxyphenylazopyrazol-5-one, dimethylformamide (DMF) and DMF with biacetyl-bis-(benzoylhydrazone) on the cathodic polarization and current efficiency of cadmium electrodeposition from baths II and III, as well as on the morphology and microhardness of the as-plated cadmium deposits, were investigated and discussed. (Auth.)

  1. Preparation of precipitated barium sulphate from Egyptian barytes ore and its application in paints

    International Nuclear Information System (INIS)

    El-Sawy, S.M.; Ahmed, N.M.; Abd El-Ghaffar, M.A.

    2005-01-01

    Precipitated barium sulphate (Blank fixe) was prepared and evaluated as an extender pigment, making use of the naturally occurring Egyptian barytes ore. X-ray diffraction patterns, transmission electron microscope, thermal gravimetric analysis, color measurements, specific gravity, oil absorption, bulking value, bleed resistance, hydrogen ion concentration, permanence for light and heat and chemical resistance were different methods used for characterization and evaluation of the prepared pigment. Medium oil alkyd resin, melamine-alkyd and epoxy resin were used as different binding media for the application and testing of the prepared pigments as an extender- in some paint formulations, this was done in comparison with a commercial imported blank fixe sample and the Egyptian barytes ore that it was prepared from. It was found that; a white bright fine powder of precipitated barium sulfate could be successfully prepared from the locally abundant Egyptian barytes ore. It has a suitable properties as an extender pigment. Paints pigmented with blank fixe offered favourable rheological and protective properties exceeding that of the imported commercial sample and the ore that was prepared from

  2. Novel calibration model maintenance strategy for solving the signal instability in quantitative liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Du, Hai-Li; Chen, Zeng-Ping; Song, Mi; Chen, Yao; Yu, Ru-Qin

    2014-04-18

    In this contribution, a multiplicative effects model with a parameter accounting for the variations in overall sensitivity over time was proposed to reduce the effects of signal instability on quantitative results of LC-MS/MS. This method allows the use of calibration models constructed from large standard sets without having to repeat their measurement even though variations occur in sensitivity and baseline signal intensity. The performance of the proposed method was tested on two proof-of-concept model systems: the determination of the target peptide in two sets of peptide digests mixtures and the quantification of melamine and metronidazole in two sets of milk powder samples. Experimental results confirmed that multiplicative effects model could provide quite satisfactory concentration predictions for both systems with average relative predictive error values far lower than the corresponding values of various models investigated in this paper. Considering its capability in solving the problem of signal instability across samples and over time in LC-MS/MS assays and its implementation simplicity, it is expected that the multiplicative effects model can be developed and extended in many application areas such as the quantification of specific protein in cells and human plasma and other complex systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Beam test results of CMS RPCs at high eta region under high-radiation environment

    International Nuclear Information System (INIS)

    Park, S.; Ahn, S.H.; Bahk, S.Y.; Hong, B.; Hong, S.J.; Kang, D.H.; Kang, T.I.; Kim, T.J.; Kim, Y.J.; Kim, Y.U.; Koo, D.G.; Lee, H.W.; Lee, K.S.; Lee, S.J.; Lim, J.K.; Moon, D.H.; Nam, S.K.; Oh, J.K.; Park, W.J.; Rhee, J.T.; Ryu, M.S.; Shim, H.H.; Sim, K.S.

    2004-01-01

    The Compact Muon Solenoid (CMS) forward resistivity plate chambers (RPCs) at the high eta region must be operated in presence of a radiation-induced rate as high as 1kHz/cm2. It is still unknown if the RPCs coated with linseed oil can be operated under such a high-radiation environment over the lifetime of CMS. Non-oiled RPCs may be one of the options since phenolic or melamine-coated bakelite is chemically stabler than linseed oil. We have constructed oiled and non-oiled RPCs at the high eta region of CMS using phenolic bakelite and tested them in the Gamma Irradiation Facility at CERN. While both RPCs show the same characteristics in the efficiency and the strip multiplicity, the non-oiled RPC generates an intrinsic noise rate of 50Hz/cm2, compared to only 5Hz/cm2 for the oiled RPC, both at 10.0kV which is about 100V above the 95% knee of the efficiency curve

  4. Constitutive Curve and Velocity Profile in Entangled Polymers during Start-Up of Steady Shear Flow

    KAUST Repository

    Hayes, Keesha A.

    2010-05-11

    Time-dependent shear stress versus shear rate, constitutive curve, and velocity profile measurements are reported in entangled polymer solutions during start-up of steady shear flow. By combining confocal microscopy and particle image velocimetry (PIV), we determine the time-dependent velocity profile in polybutadiene and polystyrene solutions seeded with fluorescent 150 nm silica and 7.5 μm melamine particles. By comparing these profiles with time-dependent constitutive curves obtained from experiment and theory, we explore the connection between transient nonmonotonic regions in the constitutive curve for an entangled polymer and its susceptibility to unstable flow by shear banding [Adams et al. Phys. Rev. Lett. 2009, 102, 067801-4]. Surprisingly, we find that even polymer systems which exhibit transient, nonmonotonic shear stress-shear rate relationships in bulk rheology experiments manifest time-dependent velocity profiles that are decidedly linear and show no evidence of unstable flow. We also report that interfacial slip plays an important role in the steady shear flow behavior of entangled polymers at shear rates above the reciprocal terminal relaxation time but has little, if any, effect on the shape of the velocity profile. © 2010 American Chemical Society.

  5. Nitrogen-doped 3D reduced graphene oxide/polyaniline composite as active material for supercapacitor electrodes

    Science.gov (United States)

    Liu, Zhisen; Li, Dehao; Li, Zesheng; Liu, Zhenghui; Zhang, Zhiyuan

    2017-11-01

    A facile strategy for the fabrication of a nitrogen-doped 3D reduced graphene oxide (N-3D-rGO) macroporous structure is proposed in this paper. The proposed strategy used polystyrene microspheres as the templates and melamine as the nitrogen source. Using β-MnO2 as the oxidant, the as-prepared N-3D-rGO was then composited with polyaniline (PANI) nanowires (denoted as N-3D-rGO/PANI-B). The structure, morphology, and electrochemical properties of the composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller analysis, scanning electron microscopy, transmission electron microscopy, cyclic voltammetry, charge-discharge test, and electrochemical impedance spectroscopy. Results revealed that the N-3D-rGO/PANI-B composite has a better specific capacity than the composites prepared with 3D-rGO as the support material and peroxydisulfate as the oxidant. These results suggested that N-3D-rGO/PANI-B has potential applications in supercapacitors.

  6. The wide gap resistive plate chamber

    International Nuclear Information System (INIS)

    Crotty, I.; Lamas Valverde, J.; Hatzifotiadou, D.; Williams, M.C.S.; Zichichi, A.

    1995-01-01

    The resistive plate chamber (RPC) has good time and position resolution; these factors (coupled to its simple construction) make it an attractive candidate for muon trigger systems at future colliders. However, operated in spark mode, the RPC has severe rate problems that make it unusable above 10 Hz/cm 2 . We have previously published our results concerning the operation of the RPC in spark and in avalanche mode; we have shown that the rate limit can be increased to 150 Hz/cm 2 if the RPC is operated in avalanche mode. Here, we discuss the performance of chambers with 6 and 8 mm gas gaps (compared to the more usual 2 mm gap). We outline the reasons for this choice, and also discuss anode versus cathode strip readout. We have measured the efficiency versus flux, and also show that an enhanced rate limit can be obtained if only a small region of the chamber is exposed to the beam (spot illumination). Finally we have tested the performance of chambers constructed with other materials for the resistiv e plate and compare it to chambers constructed with our preferred plastic, melamine laminate. (orig.)

  7. Simple synthesis of nitrogen-rich polymer network and its further amination with PEI for CO2 adsorption

    Science.gov (United States)

    Yin, Fengqin; Zhuang, Linzhou; Luo, Xianyong; Chen, Shuixia

    2018-03-01

    The nitrogen-rich polymer network (MF/PAM) was synthesized through interpenetration between the molecular chains of melamine-formaldehyde resin(MF) and polyacrylamide (PAM), to which the polyethylene imine (PEI) was grafted to obtain solid amine adsorbent (MF/PAM-g-PEI). Compared with MF, the swelling capacity of MF/PAM was greatly enhanced, it could swell rapidly and directly in water. Although the interpenetration of PAM into MF may reduce the porosity of MF/PAM, the CO2 capture capacity of the solid amine adsorbents (MF/PAM-g-PEI) could still reach 2.8 mmol/g at 273 K. The adsorbents also exhibited promising adsorption kinetics and regeneration performances. The kinetics observation showed that the Avrami model could better descript the CO2 adsorption process compared with the pseudo-first-order model and pseudo-second-order model. Meanwhile, the Avrami kinetic orders (na) range from 1.21 to 1.56, displaying that the both physisorption and chemisorption exist in the adsorption process and the PEI have successfully grafted onto the polymer network, which also can be confirmed by the adsorption activation energy value. After 18 adsorption-desorption recycles, the MF/PAM-g-PEI could preserve its initial capacity without any decrease. Our work provides a new method to achieve promising solid amine adsorbents with higher adsorption capacity and better regeneration performance.

  8. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    International Nuclear Information System (INIS)

    Amir, N.; Othman, W. M. S. W.; Ahmad, F.

    2015-01-01

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating

  9. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    Science.gov (United States)

    Amir, N.; Othman, W. M. S. W.; Ahmad, F.

    2015-07-01

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.

  10. Study of surface-modified PVP gate dielectric in organic thin film transistors with the nano-particle silver ink source/drain electrode.

    Science.gov (United States)

    Yun, Ho-Jin; Ham, Yong-Hyun; Shin, Hong-Sik; Jeong, Kwang-Seok; Park, Jeong-Gyu; Choi, Deuk-Sung; Lee, Ga-Won

    2011-07-01

    We have fabricated the flexible pentacene based organic thin film transistors (OTFTs) with formulated poly[4-vinylphenol] (PVP) gate dielectrics treated by CF4/O2 plasma on poly[ethersulfones] (PES) substrate. The solution of gate dielectrics is made by adding methylated poly[melamine-co-formaldehyde] (MMF) to PVP. The PVP gate dielectric layer was cross linked at 90 degrees under UV ozone exposure. Source/drain electrodes are formed by micro contact printing (MCP) method using nano particle silver ink for the purposes of low cost and high throughput. The optimized OTFT shows the device performance with field effect mobility of the 0.88 cm2/V s, subthreshold slope of 2.2 V/decade, and on/off current ratios of 1.8 x 10(-6) at -40 V gate bias. We found that hydrophobic PVP gate dielectric surface can influence on the initial film morphologies of pentacene making dense, which is more important for high performance OTFTs than large grain size. Moreover, hydrophobic gate dielelctric surface reduces voids and -OH groups that interrupt the carrier transport in OTFTs.

  11. Molten salt-mediated formation of g-C3N4-MoS2 for visible-light-driven photocatalytic hydrogen evolution

    Science.gov (United States)

    Li, Ni; Zhou, Jing; Sheng, Ziqiong; Xiao, Wei

    2018-02-01

    Construction of two-dimensional/two-dimensional (2D/2D) hybrid with well-defined composition and microstructure is a general protocol to achieve high-performance catalysts. We herein report preparation of g-C3N4-MoS2 hybrid by pyrolysis of affordable melamine and (NH4)2MoS4 in molten LiCl-NaCl-KCl at 550 °C. Molten salts are confirmed as ideal reaction media for formation of homogeneous hybrid. Characterizations suggest a strong interaction between g-C3N4 and MoS2 in the hybrid, which results in an enhanced visible-light-driven photocatalytic hydrogen generation of the hybrid with an optimal g-C3N4/MoS2 ratio. The present study highlights the merits of molten salt methods on preparation of 2D photocatalysts and provides a rational design of 2D/2D hybrid catalysts for advanced environmental and energy applications.

  12. Process Optimization of Eco-Friendly Flame Retardant Finish for Cotton Fabric: a Response Surface Methodology Approach

    Science.gov (United States)

    Yasin, Sohail; Curti, Massimo; Behary, Nemeshwaree; Perwuelz, Anne; Giraud, Stephane; Rovero, Giorgio; Guan, Jinping; Chen, Guoqiang

    The n-methylol dimethyl phosphono propionamide (MDPA) flame retardant compounds are predominantly used for cotton fabric treatments with trimethylol melamine (TMM) to obtain better crosslinking and enhanced flame retardant properties. Nevertheless, such treatments are associated with a toxic issue of cancer-causing formaldehyde release. An eco-friendly finishing was used to get formaldehyde-free fixation of flame retardant to the cotton fabric. Citric acid as a crosslinking agent along with the sodium hypophosphite as a catalyst in the treatment was utilized. The process parameters of the treatment were enhanced for optimized flame retardant properties, in addition, low mechanical loss to the fabric by response surface methodology using Box-Behnken statistical design experiment methodology was achieved. The effects of concentrations on the fabric’s properties (flame retardancy and mechanical properties) were evaluated. The regression equations for the prediction of concentrations and mechanical properties of the fabric were also obtained for the eco-friendly treatment. The R-squared values of all the responses were above 0.95 for the reagents used, indicating the degree of relationship between the predicted values by the Box-Behnken design and the actual experimental results. It was also found that the concentration parameters (crosslinking reagents and catalysts) in the treatment formulation have a prime role in the overall performance of flame retardant cotton fabrics.

  13. Identification by microscopy and MS-based electronic nose of a fraudulent addition to maize gluten

    Directory of Open Access Journals (Sweden)

    Frick G.

    2009-01-01

    Full Text Available Classical and chemometric methods have been used to detect falsified maize gluten products. Microscopic observations (numerous starch grains, seed envelopes and wheat bran fragments clearly showed the presence of atypical maize gluten particles in samples with otherwise normal crude protein levels (≥ 60% and the usual gold-yellow color. Chemical analyses in a few samples confirmed the presence of urea (19 to 174 g.kg-1, melamine (0 to 20 g.kg-1, and cyanuric acid (0 to 10 g.kg-1 coping for the low levels of methionine (0 to 13 g.kg-1 in incriminated products (genuine maize gluten methionine level ≥ 16 g.kg-1. Furthermore, a fast technique (an electronic nose based on mass spectrometry detection also proved to be reliable for the identification of falsified maize gluten products: 100% correct classification of model and unknown samples was achieved with principal component analysis. As a consequence of these results, the Swiss feed-inspection authority blocked the import, or restricted the use, of 2,500 tons of the falsified products.

  14. Colloidal micro- and nano-particles as templates for polyelectrolyte multilayer capsules.

    Science.gov (United States)

    Parakhonskiy, Bogdan V; Yashchenok, Alexey M; Konrad, Manfred; Skirtach, Andre G

    2014-05-01

    Colloidal particles play an important role in various areas of material and pharmaceutical sciences, biotechnology, and biomedicine. In this overview we describe micro- and nano-particles used for the preparation of polyelectrolyte multilayer capsules and as drug delivery vehicles. An essential feature of polyelectrolyte multilayer capsule preparations is the ability to adsorb polymeric layers onto colloidal particles or templates followed by dissolution of these templates. The choice of the template is determined by various physico-chemical conditions: solvent needed for dissolution, porosity, aggregation tendency, as well as release of materials from capsules. Historically, the first templates were based on melamine formaldehyde, later evolving towards more elaborate materials such as silica and calcium carbonate. Their advantages and disadvantages are discussed here in comparison to non-particulate templates such as red blood cells. Further steps in this area include development of anisotropic particles, which themselves can serve as delivery carriers. We provide insights into application of particles as drug delivery carriers in comparison to microcapsules templated on them. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The transformation of trust in China's alternative food networks: disruption, reconstruction, and development

    Directory of Open Access Journals (Sweden)

    Raymond Yu. Wang

    2015-06-01

    Full Text Available Food safety issues in China have received much scholarly attention, yet few studies systematically examined this matter through the lens of trust. More importantly, little is known about the transformation of different types of trust in the dynamic process of food production, provision, and consumption. We consider trust as an evolving interdependent relationship between different actors. We used the Beijing County Fair, a prominent ecological farmers' market in China, as an example to examine the transformation of trust in China's alternative food networks. We argue that although there has been a disruption of institutional trust among the general public since 2008 when the melamine-tainted milk scandal broke out, reconstruction of individual trust and development of organizational trust have been observed, along with the emergence and increasing popularity of alternative food networks. Based on more than six months of fieldwork on the emerging ecological agriculture sector in 13 provinces across China as well as monitoring of online discussions and posts, we analyze how various social factors - including but not limited to direct and indirect reciprocity, information, endogenous institutions, and altruism - have simultaneously contributed to the transformation of trust in China's alternative food networks. The findings not only complement current social theories of trust, but also highlight an important yet understudied phenomenon whereby informal social mechanisms have been partially substituting for formal institutions and gradually have been building trust against the backdrop of the food safety crisis in China.

  16. Influence of time addition of superplasticizers on the rheological properties of fresh cement pastes

    International Nuclear Information System (INIS)

    Aiad, Ismail

    2003-01-01

    It is well known that the fluidity and the fluidity loss of fresh cement pastes are affected by the kind and the time of addition of organic admixtures. The influence of the time addition of two chemical admixtures, namely, melamine formaldehyde sulfonate (MFS) and naphthalene formaldehyde sulfonate (NFS), on the rheological properties of ordinary Portland and sulfate-resisting cement pastes through the first 120 min of hydration was investigated. The admixture addition was delayed by 0, 5, 10, 15, 20, and 25 min. Shear stress and apparent viscosity of the cement pastes were determined at different shear rates (3-146 s -1 ) and hydration times of 30, 60, 90, and 120 min. The concentration of Ca 2+ and the combined water content of the cement pastes were determined after 120 min. Yield stress and plastic viscosity values were also determined by using the Bingham model. The results show that an increase in the addition time of the admixture reduces the shear stress, the yield stress, and the plastic viscosity of the cement pastes at the early ages (15 min) as well as at later early ages (120 min). The optimum delaying time of admixture addition is found to be 10-15 min. This time does not depend on the cement and superplasticizer type

  17. Single- and Multiwalled Carbon Nanotubes with Phosphorus Based Flame Retardants for Textiles

    Directory of Open Access Journals (Sweden)

    D. Wesolek

    2014-01-01

    Full Text Available Due to growing popularity of composites, modification methods to obtain the best properties are searched for. The aim of the study is to reduce the flammability of textile materials using nanocomposite polymer back-coating. Different types of carbon nanotubes (single- and multiwalled and different phosphorus flame retardants (ammonium polyphosphates and melamine polyphosphate were introduced into the resin and then the fabrics were covered by the obtained composites. Homogeneous dispersion of multiwalled carbon nanotubes in the polyurethane resin was obtained by sonification, which was confirmed by scanning electron microscopy. Flammability tests of fabrics coated by modified polyurethane resin were carried out using pyrolysis combustion flow calorimeter (PCFC and thermal stability of textiles was evaluated. Also, organoleptic estimation of coatings was conducted (flexibility and fragility. The use of polymer nanocomposites with phophorus flame retardants as a back-coating for textiles effectively reduces flammability and improves thermal stability of the fabric. Furthermore, the synergistic effect beetwen carbon nanotubes and phosphorous compound occurs. The resulting coatings are flexible and do not crack or change the feel of fabrics.

  18. Aluminum hypophosphite microencapsulated to improve its safety and application to flame retardant polyamide 6

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Hua [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Tang, Gang [School of Architecture and Civil Engineering, Anhui University of Technology, 59 Hudong Road, Ma’anshan, Anhui 243002 (China); Hu, Wei-Zhao; Wang, Bi-Bo; Pan, Ying [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Song, Lei, E-mail: leisong@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren’ai Road, Suzhou, Jiangsu 215123 (China)

    2015-08-30

    Highlights: • MCAHP was prepared and applied in polyamide 6. • MCA as the capsule material can improve the fire safety of AHP. • Flame retardant polyamide 6 composites with MCAHP show good flame retardancy. - Abstract: Aluminum hypophosphite (AHP) is an effective phosphorus-containing flame retardant. But AHP also has fire risk that it will decompose and release phosphine which is spontaneously flammable in air and even can form explosive mixtures with air in extreme cases. In this paper, AHP has been microencapsulated by melamine cyanurate (MCA) to prepare microencapsulated aluminum hypophosphite (MCAHP) with the aim of enhancing the fire safety in the procedure of production, storage and use. Meanwhile, MCA was a nitrogen-containing flame retardant that can work with AHP via the nitrogen-phosphorus synergistic effect to show improved flame-retardant property than other capsule materials. After microencapsulation, MCA presented as a protection layer inhibit the degradation of AHP and postpone the generation of phosphine. Furthermore, the phosphine concentration could be effectively diluted by inert decomposition products of MCA. These nonflammable decomposition products of MCA could separate phosphine from air delay the oxidizing reaction with oxygen and decrease the heat release rate, which imply that the fire safety of AHP has been improved. Furthermore, MCAHP was added into polyamide 6 to prepare flame retardant polyamide 6 composites (FR-PA6) which show good flame retardancy.

  19. Enzyme-free colorimetric determination of EV71 virus using a 3D-MnO2-PEG nanoflower and 4-MBA-MA-AgNPs.

    Science.gov (United States)

    Chu, Chengchao; Ge, Shengxiang; Zhang, Jing; Lin, Huirong; Liu, Gang; Chen, Xiaoyuan

    2016-09-15

    We present a simple colorimetric assay for EV71 virus detection based on the aggregation of 4-mercaptobenzoic acid (4-MBA) and melamine (MA) modified silver nanoparticles (4-MBA-MA-AgNPs) in the presence of Mn 2+ . The EV71-Ab 1 was incubated on a 96-well plate and the EV71-Ab 2 was labeled on the surface of three-dimensional nanoflower-like MnO 2 -PEG (3D-MnO 2 -PEG). After layer-by-layer immunoreactions, the EV71 virus and the corresponding 3D-MnO 2 -PEG-Ab 2 were captured on the plate. With the addition of Vitamin C (Vc), Mn 2+ was released from the 3D-MnO 2 -PEG and then the aggregation of the 4-MBA-MA-AgNPs was induced, allowing a naked-eye detection limit of EV71 virus to be as low as 5 × 10 4 particles per mL, which is about three orders of magnitude lower than the conventional enzyme-linked immunosorbent assay (ELISA). This enzyme-free immunoassay based on a hybrid 3D-MnO 2 features signal amplification strategies via a simple reduction reaction.

  20. ENGINEERING DESIGN: EICOSANE MICROCAPSULES SYNTHESIS AND APPLICATION IN POLYURETHANE FOAMS AIMING TO DIMINISH WHEELCHAIR CUSHION EFFECT ON SKIN TEMPERATURE

    Directory of Open Access Journals (Sweden)

    ELISA M. BERETTA

    2016-12-01

    Full Text Available Thermal comfort of wheelchairs still requires improvements, since users remain on the chair for as long as 12 h a day. Increased sweating makes the skin more susceptible to colonization by fungi and bacteria, and may cause pressure ulcers. In this sense, the microencapsulation of Phase-Change Materials (PCMs may help to enhance wheelchair cushion comfort by regulating heat exchange. This study describes the production of PCM microcapsules and their application in flexible polyurethane foams after expansion, and assesses improvements in heat exchange. Microcapsules with eicosane core coated with melamine-formaldehyde were produced. Eicosane is a thermoregulation agent whose phase-change temperature is near that of the human body’s. Microcapsules were characterized by thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and Fourier transform infrared spectroscopy. Then, microcapsules were applied on polyurethane foams by vacuum filtration and high-pressure air gun. Samples were exposed to a heat source and analysed by infrared thermography. The results indicate that thermal load increased in samples treated with microcapsules, especially by pressure air gun, and show that it is possible to enhance thermal comfort in wheelchair seats. Thereby, this study contributes to enhance quality of life for wheelchair users, focusing on thermal comfort provided by cushion seats made from PU foam.